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Abstract

This thesis provides a method to reduce physical resource requirements along with cost
reduction in Space Based Radar (SBR) platforms, and provides a rule of thumb for
randomization effects on arrays. A trend analysis is performed on 4, 8, 12, and 16 square
meter arrays. Three aperiodic thinning approaches are examined. They are an equal
current density element distribution, a random periodic grid of elements, and random
element distribution based a peak sidelobe indicator. According to the metrics used, the
statistical and deterministic array thinning approaches performed best for these small
arrays. However, the statistical arrays have a scan angle limitation of 8,=30° due to the
interelement spacing of two wavelengths. The deterministic does poorly with peak
sidelobes. The random array performance was limited due to the relatively small array
sizes for the random approach used. The small size limits the array’s capability to meet
the peak sidelobe threshold requirement, due to a reduced confidence level, along with
limiting the effective area to be randomized. However, as the array size increased, the
thinning levels and performance increased to become competitive with the other array

approaches. If trends continue as array size increases, the random array is the ideal

solution.




NONUNIFORMLY SPACED ARRAY ELEMENTS

1 Introduction

The United States Air Force has a vital interést in providing continual, all-weather
surveillance of large geographical areas. The breakup of major world powers coupled
with the ease of access, purchase, and use of lethal weapons, has reduced regional
stability overseas. Ironically, the dispersion of lethal threats takes place concurrent with
a decrease in US foreign presence and an increase in restrictions on US military use of
foreign airspace. This results in a need for a worldwide surveillance capability to protect
national security, assets, and interests abroad. This capability requires wide angle
scanning over large coverage areas and precision target tracking in high-density
electromagnetic environments.

One emerging solution to address this need is space-based radar. With its ability
to cover large geographical areas continuously under all weather conditions without
regard to airspace restrictions or forward presence, it has become a primary candidate for
meeting this critical need. However, using radar platforms in a space environment
introduces problems of platform weight, limited power, flexibility, and cost. It also
requires overcoming major technological challenges of wide-angle precision tracking and

multiple target discrimination from low earth orbit (LEO) and medium earth orbit (MEO)

trajectories (see Figure 1).




The following example provides insight into the problem by comparing the
capabilities and requirements for air breathing radar platforms with those of space based
platforms, operating at 12 GHz. In particular, the example compares the array sizes and
element counts for an unmanned aerial vehicle (UAV), a fighter and an SBR. A UAV
with a 1.1 by 1.1-meter array will have approximately 2,000 elements if populated at half
a wavelength interelement spacing. Similarly, a fighter with a 1 by 1-m array has over
1,600 elements. Finally, a SBR of 10 by 10-meters would require over 640,000 elements

to populate the array at half a wavelength interelement spacing.

Medium Earth Ovrbit
3,000kmto 30,000km

Low Earth Orbit
surface to 3,000km

Figure 1.1 Low and Medium Earth Orbit Altitudes




Taking the element counts above and looking at the power, size, weight and cost
limitations, it is evident that the implementation of a SBR is not a simple problem. The
demands of space-based platforms require an unconventional look at how to achieve the
same performance with less power, smaller éize and lighter weight.

Some approaches involve using constellations or clusters of multiple smaller
platforms networked together (Figure 1.2), collapsible parabolic apertures, and splitting
large apertures into smaller pieces to create a larger effective aperture (Figure 1.3). This
research focuses on yet another approach by reducing the number of array elements with
non-uniform mterelement spacing. Concepts from this approach could prove useful for

the above approaches and other large array applications.

Figure 1.2 Networked Cluster of Space Based Radars
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Figure 1.3 Large Effective Aperture

1.1 Problem Statement

This research focuses on determining an optimal array design to minimize the
number of radiating elements by utilization of non-periodic array structures. There are
many methods of creating a non-periodic array structure. The specific methods of
interest in this thesis are:

e Deterministic: element locations based on an algorithmic approach, in
particular a variant of the equal current area or volume approach.

e Random: element locations randomly selected from a probability distribution
function (pdf). The pdf used is the tapered current distribution on the baseline
uniform array.

o Statistical: periodic grid with interelement spacing of two wavelengths.

Randomly selected element locations are “turned off” or not used based upon



apdf. The pdf used is the tapered current distribution on the baseline uniform

array.

1.2 Assurﬁptions

The assumptions used in this research and modeling process are:

e The mutual coupling between the array elements is negligible.

e The elements are isotropic radiators.

e The array structure is assumed symmetric in each quadrant. This results in a
reduction in complexity and cost in the manufacturing process, eases transport
and construction requirements in space, and most importantly, decreases
computational and implementation complexity.

e The pattern factor is symmetric about the scan angle of 6 for all ¢ and the
scan angle ¢y since the array structure is symmetric.

e The computations for scan angles are only requested in the two principle
planes defined by ¢,=0° and ¢=90°.

¢ Due to symmetry about the mainbeam, 6 is sampled from 0° to 90° and ¢ is

sampled from ¢qto ¢o plus 180°.



1.3 Scope

The approaches covered in this thesis are applicable to any size array. For trend
analysis purposes and in interest of time, the focus is on arrays of 4, 8, 12, and 16 square
meters. This thesis has the following tasks:

¢ Find an optimal element reduction approach out of the three approaches

mentioned previously.

e Determine the optimal approach for the 4, 8, 12, and 16 square meter arrays

that best meets the following operating requirements.
e +5(0°scan capability
e Peak sidelobe level (PSL) threshold of —13.5 dB or less for aperiodic
arrays.
e 2 GHz to 12 GHz frequency range
e Provide a metric for determining the effects of randomization on an array.

e Provide a trend analysis for aperiodic arrays as the array size gets larger.

1.4 Resources

The computational program was developed using Microsoft Visual C++° V6.
The graphical user interface and representation of results are in MATLAB®. Various PC

platforms were used to execute the program. They ranged from a Pentium 133 to a

Pentium III 550, running either Windows 98 or NT.




1.5 Overview

This document contains a review of significant works in non-uniform arrays, the
theory behind the deterministic, statistical, and random approaches, the selection of the
optimal non-uniform approach, and the optimal approach applied to four different sized
arrays. Chapter 2 contains a review of periodic arrays and literature review of significant
writings on non-uniform, random, and non-periodic array theory and synthesis. The third
chapter is devoted to the theory behind the approaches used in this effort. Chapter 4
contains the application of the non-uniform element reduction approaches to the arrays
and the methodology used to determine the optimal array approach. The fifth chapter
provides the results and analysis from the application in Chapter 4. Chapter 6 contains

conclusions and recommendations based on the results presented in Chapter 5.




2 Background

This chapter lays a foundation for both periodic and aperiodic linear arrays. It
concludes with a summary of the advantages and disadvantages that are inherent to each

array type.

2.1 Periodic Arrays

‘ An array can be broken down into its individual radiating elements. The array’s
pattern factor is just the summation of the radiation pattern from each element in the

array.

2.1.1. Pattern Factor

The patter factor for a single element is

f(Y) = Iexp(j¥) 2.1)




The far field pattern is the summation of each individual radiating element’s
contributions in a given direction. For N isotropic, in-phase elements spaced along the

x-axis, the pattern factor is equivalent to

f6) = iin exp(jfd, sin(8)) (2.2)
where
i, = the current on the nth element
d, = the distance of the nth element from the point of origin in meters

6 is referenced off of the z-axis (see Figure 2.1)

Figure 2.1 Spherical coordinate system

The two independent design variables are the element locations d, and the
element weighting or currents i,. However, for equally spaced arrays, the element
locations are normally fixed to half a wavelength, leaving the elements’ weighting as the

only design parameter (Steinberg, 1974:124).




Since the current magnitude of the antenna is equal to the sum of the individual
element currents, the equally spaced array with a uniform current distribution has a
normalized current magnitude, I, of one. Therefore, the excitation coefficients or

weightings become

[=N-ii n=123.,N (2.3)
and
i, =I/N . (24
Now for I=1, i, becomes
i, =1/N n=123.,N . 2.5)

Reducmg the array factor by substituting Equation (2.5) into Equation (2.2) gives

N
1 J2md(n - 1) sin8
fO = N §=1 CXP{———T—] (2.6)

where d is the interelement spacing. With the excitation being uniform, the last design

freedom is no longer available.

2.1.2. Sidelobes
Sidelobes are minor lobes in the array pattern (see Figure 2.2). Reductions in
sidelobe levels are desirable since they are a large source of power loss. The number of
sidelobes in one period of the pattern factor relates directly to the number of elements in
the array. For N elements, there is one mainlobe and N-2 sidelobes in each period. The

sidelobe widths are 27t/N while the main and grating lobes are twice this width. As N




increases, the number of sidelobes increases while their width and peak values decrease.
As N approaches infinity, the sidelobe levels approach that of a uniform line source

(Stutzman, 1998:100).

Grating Lobe

//Jﬂ'ﬁhbcs\>
f¥)

Minor Sidelobes

Visible Region

27(2d/\)

—————Y

¥ =Bdsin(6)

Figure 2.2 Normalized Radiation Pattern For A Uniform Aperture Distribution

2.1.3. Grating Lobes
The largest source of periodic array limitations and power loss is the grating lobe.

Grating lobes are additional major lobes (see Figure 2.2) whose power intensity is equal
to that of the mainlobe (Stutzman, 1998:99). These lobes are a result from the coherent
sum of all the elements’ radiation at angles other than the steering angle (Steinberg,
1976:125). In a periodic array, to avoid grating lobes from appearing in the visible
region, the interelement spacing needs to be less than half a wavelength. This stems from
the fact that for d=A/2 only one period of the array factor appears in the visible region

(-m/2 <B<m/2) (Stutzman, 1998:98). The portion of the array factor that appears in the

11




visible region is determined by setting the period of the pattern factor to the phase

progression over the visible region,

27 sin(0)

YO =+ =5 @7)

Substituting the limits on 6 into Equation (2.7) gives

2dr 2dr
OC—T<‘I’(9)<OC+T (2.8)
or
4dm
‘I’(Q) < T’ ‘ (2.9)

For one period (2m) to be in the visible region, ¥ must equal 27t. Then Equation (2.9)

becomes
27 < 4a’_7'c
I (2.10)
Finally, solving for d
A
d=— .
> (2.11)

which is the half wavelength interelement spacing.
Grating lobes further affect array capabilities by limiting the scan angle of the
array. The maximum scan angle of an array is the maximum steering angle prior to the

introduction of grating lobes in the visible region.

12



2.1.4. Scanning
Electronic beam scanning occurs through cumulative changes in phase. By
progressively shifting the phase (o) on each element, the summation of the phases results
in the mainbeam being directed off boresight. This electronic form of beam steering
allows scanning without physically moving the aperture. The new direction of the main

beam is found by solving Equation (2.12) for 6, and then finding the angle where the

array factor is a maximum. This maximum occurs where ¥'=0. So setting

27 sin(6)

YO)=oa+ — (2.12)
to 0, and solving for o results in
_ _ 2zsin(6,)
- 2 . (2.13)
Then solving for 6
. oA
% =7 —asin(—) - (2.14)

Equation (2.14) determines the maximum scanning angle for the array.

2.1.5. Mutual Coupling
Mutual coupling is another design consideration with arrays. Coupling can occur
from the feed structure and surface paths, along with reflections at the antenna terminals,

and element radiation (Steinberg, 1976:124). Each element’s radiation induces currents




upon all the other elements in the array. The radiation-coupling coefficient, ¢y, , between

elements m and n is

_sin(d,,,B)
T B 2.15)

Coupling affects gain, effective element pattern, and transmitter load (Steinberg,
1976:125). Theoretically, coupling effects are calculable; however, in practice they are
not. The best approach to dealing with mutual coupling is to make it negligible. One
way this can be accomplished is by thinning or over spacing the array elements. The
drawback of thinning is that it reintroduces the problem of grating lobes, unless the array

is aperiodic (Steinberg, 1976:125).

2.2 Aperiodic Arrays

As stated in the introduction, very large arrays with equal spacing require a large
number of elements. With aperiodic structures using fewer elements, it is possible to
gain a higher direction finding resolution than with periodic arrays (Andreasen,
1962:138). Furthermore, aperiodic arrays have wider scan capability over a larger

frequency band (Andreasen, 1962:137).

2.2.1. Pattern Factor
The previous section stated that an array’s pattern can be broken down to its

individual elements’ radiation pattern. This is still applicable to aperiodic arrays.




The only change occurs in the parameter d, in order to account for phase progression
along the array. The pattern factor is still

u id 27 sin(8
1=, exp[uf—m—(—)} 216)

where

i»= the current on the nth element

d,= distance from the center of the array to the nth element in meters
However, aperiodic arrays differ from the periodic in that their element positions d,, are
not chosen to be equally spaced along the array. In the past, the selection of element
locations for aperiodic arrays was a trial and error process due to the limited
computational capability. Trial and error approaches are highly inefficient and require an
abundance of time. A more efficient method for the selection of element positions is the

use of deterministic sampling algorithms.

2.2.2. Deterministic Array Thinning
The deterministic approach uses an algorithm to choose the element locations. A
common deterministic approach is density tapering. Density or spatial tapering on an
aperiodic array is directly equivalent to current or amplitude tapering of a periodic array
(Sandler, 19‘60:496). This is where the selection of element locations are found by
dividing the area under the current excitation function into equal subsections. Then the
elements are placed in the middle of each equal area subsection (see Figure 2.3). This is

the deterministic approach used in this research. Chapter 3 will discus this method

further.
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Figure 2.3 Example Of A Linear Deterministic Array Element Distribution

The reciprocal current density is another deterministic algorithm, similar to the
equal area approach. Each successive element’s location is relative to the previous
element’s position based on the reciprocal of the current excitation on that previous
element. The first spacing is

D

dm=iaﬁ (2.17)

where D is the designer proportionality constant. With the first element located at x,=0,

the next element is located at

X=Xy +dy = : (2.18)

For the second element, the distance from x; is

D
dy, = 'z’(;l')' (2.19)




placing x; at
X, =x+d,=D L+ 1
2 1 12 i) i(x) (2.20)

Therefore, the nth element location is

—

n—

1
x, =D ) (2.21)

J

1]
o

A deterministic approach taken by Sheldon Sandler is based on spatial frequency.
“Spatial frequency is a measure of the variation of each element contribution with far
field angle” (Sandler, 1960:496). In this approach, elements are spaced from each other

based on harmonic frequencies of the uniformly spaced array.

(N-1)/2

f©) =1+2 Y cos(2dmm cos(6)) (2.22)

where

d = element spacing in fractions of a wavelength

N = total number of elements.
In Equation (2.22), the lowest array frequency is associated with the center element, with
the fundamental frequency given by the m=1 term, the first harmonic given by the m=2,
up to the m=(N-1)/2 term. For instance, take 3 elements in a line. Make one the center
and place the other two a distance d, from the center. The distance d determines the
fundamental frequency for the 3-element array. Now take two more elements and place
them 2d from the center. These last two elements, due to the periodicity (integer
multiples of length d) of their location, will determine the first harmonic frequency of the

array. Add two more elements and place them 3d from the center and this generates the




3™ harmonic frequency. The harmonic frequencies are due to the periodicity of the
element locations. Since the uniform array is composed of multiple pairs located by
integer multiple of d away from the center, there are multiple harmonics. Applying this
concept to a nonuniformly spaced array results in an unevenly distributed spatial
frequency spectrum. This approach determines the element locations based on desired
frequency capability of the desired array.

Some other deterministic approaches are log density taper, primes, arithmetic
progression, controlled cosines, and elimination of multiples. (King and others, 1960)
The log density taper places the kth element at a location 1-log(10-k) from the center of
the array. For prime numbers spacing, the element locations are generated by taking a set
of successive prime numbers, doubling those numbers, and scaling them down by
dividing by 100 (see Table 2.1).

The arithmetic progression is generated with an initial spacing of 1 and a common

difference of 1/7. In other words, each element location in given by d,

n
d, =1+ 7 (2.23)

where d,, is the distance between the element and array center.
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Table 2.1 Prime Number Element Spacing

Prime Derived
Element | Prime Distance
Doubled | Spacing
1 53 106 1.06 1.06
2 59 118 1.18 2.24
3 61 122 1.22 3.46
4 67 134 1.34 4.80
5 71 142 1.42 6.22
6 73 - 146 1.46 7.68
7 79 158 1.58 9.26
8 83 166 1.66 10.92

The controlled cosines is generated by

i d
c+2) cos2nZ Tk)
A = 20log k=12n s (2.24)

where
A = the magnitude of the pattern factor in dB,
Z = Spin(sn6 -sin 6y)
Smin = the smallest of the set of unequal spacings in wavelengths,
0 = the angle to which the beam is steered,
6y = the azimuth angle measured from broad side,

2n+c =the number of elements in the array

c=1 for odd elements and ¢=0 for even elements




di/A = the distance in wavelengths from the center of the array to the kth element.
The element locations, dj, are a set of distances that evenly spread the product Zd/A,
from O to 1 for all Z from .05 to 2. This will minimize the sidelobes in the range of Z
from .05 to 2.

The elimination of multiples is just the placement of the elements such that no
spacing between two elements is a multiple of one-half. Table 2.2 gives sample location

for the first 7 elements of each of the linear array types.

Table 2.2 Other Deterministic Array Element Locations (In Wavelengths)

Array Type Xy Xy X, X3 X4 Xs X5
Uniform 0 0.5 1.0 1.5 2.0 2.5 3.0
Logarithmic 0 1.0 2.1 3.4 49 6.6 8.7
Prime Numbers 0 1.06 2.24 3.46 4.8 6.22 7.68
Arithmetic 0 10 | 217 | 337 | 467 | 6417 | 837
Progression
Elimination of
Multiples 0 1.0 2.05 3.15 43 5.6 6.95
Controlled 0 10 | 21 34 | 49 66 | 85
Cosines

There are many deterministic approaches to choose from, determining which
approach is best is not an easy task. One has to look at how each affects desired pattern
parameters and select one that best meets performance requirements. One way to skirt

that selection process is to use a statistically controlled aperiodic thinning technique.

2.2.3. Random and Statistical Array Thinning
These two are grouped together since they are both handled via application of
statistical theory. An array constructed with element locations chosen by some random

process is a random array. In the statistical approach, the element spacing is initially




uniform. A fraction of the elements are randomly removed. Both array-thinning
methods share the same statistical properties even though they involve different design
approaches (Steinberg, 1976:140).

The statistical density taper approach evolved from the study of random
amplitude and phase errors in an array. The same mathematics is applicable to random
errors in element location. This evolved into an approach of taking a filled array and
removing elements according to some random or statistically process.

Another approach is to let a random process supply the element locations. For
instance, take the current distribution on a uniformly spaced array and make it the
probability density function for the random process that selects the element’s location.
Now randomly select a probability density function (pdf) level and find random location
values that produce a pdf value less than the random pdf value selected (see Figure 3.3).
This process is repeated until the desired number of elements is reached.

Selecting the number of elements can be based on desired thinning levels, average
sidelobe levels (ASL), or peak sidelobe detection (PSD). Thinning level is just a
percentage reduction in the number of elements from a fully populated array. The ASL is
based on selecting an average sidelobe level and using the normalized theoretical average

sidelobe level of

ASL = (2.25)

1
N

to determine the number of elements, N, for the array (Steinberg, 1972). These are non-

complex approaches to deriving the number of elements. However, they do not provide




decent sidelobe control. A random method that provides more control is by a random
process described by a tapered probability distribution. This would result in fewer
elements at the outskirts of the array, resulting in lower sidelobe levels.

In an approach presented by Maffett, a method is given to design an aperiodic
linear array. This array is composed of one-fourth the number of elements needed by a
uniformly spaced array, with no mainlobe beamwidth sacrifice, and only a 5-dB sidelobe
sacrifice (Maffett, 1962:131). The number of elements is found by first taking the

sampled version of the desired pattern factor G

N Ln =0
G(u) = 2 &b, cos(kx,u), €, = 2 m £ 0 (2.26)

n=0

where

u = cosB -cosby

6 = observation angle

6y = beam steer angle

b,, = the amplitude factor

n, = element location
and dividing it by the total source current A. Taking the moments of G/A, for suitable
values for the length L of the array and the number of elements N, the expression for G/A
can be approximated by the normal distribution (Maffett, 1962:133). The advantage of

the normal distribution is that it provides a very useful statistical description for the

random array.
Steinberg also presents another technique that combines sidelobe levels and the

required number of elements for statistical arrays in his articles discussing the theory of

22




peak sidelobe indicators. Y. T. Lo also presents a variant of this method (Lo, 1967:231).
The maximum peak sidelobe is predicted given a desired confidence level that sidelobes

will not exceed the predicted level. Chapter 3 covers this technique in more detail.

2.3 Aperiodic vs. Periodic

This section gives a brief summary of the similarities, advantages, and

disadvantages of the aperiodic and periodic arrays.

2.3.1. Similarities
Some things are relatively unchanged between periodic and aperiodic arrays. As
mentioned earlier, the fundamentals of the array factor do not change. Since beamwidth
is primarily dependent on array size, it remains unaffected by using variable interelement

spacing in an array, assuming the thinning is not excessive.

2.3.2. Advantages

The primary advantage of aperiodic arrays is the reduction in the number of
elements required to populate the array. Depending on the extent of thinning, the
reduction can provide significant cost and weight savings.

Another major advantage of aperiodic arrays is that the average spacing can be
designed to be over several wavelengths, without running into grating lobes
(Lo, 1968:425). This allows for greater beam steering range. Increased spacing also
reduces the effects of radiation coupling. From Equation (2.15), it is apparent that the
effects of radiation coupling are dependent on the spacing of the two elements in

consideration. As d,., increases, the coupling decreases. The reason for not allowing dpn




to be larger than half a wavelength in a periodic array is due to the introduction of grating
lobes into the visible region. With aperiodic arrays, the periodicity of the structure is not
there to allow the development of grating lobes (Steinberg, 1976:125).

Finally, the variation in the elements’ location allow for better array performance
over a larger band of frequencies. Since the distance from the origin of each element
varies, the frequencies with wavelengths equal to or multiples of those distances, will

| radiate more efficiently with an aperiodic array.

2.3.3. Disadvantages

The improvements in scan angle, bandwidth, and fewer elements, comes at a cost.
The major expense is in design control of the radiation pattern in the sidelobe region.
With a reduction in the number of elements, the sidelobe levels not only increase but also
lose their predictability outside the neighborhood (past the third null) of the main beam.
The other cost encountered is gain loss. With fewer radiating elements, the total array
gain is going to be less than that of the periodic array of the same size with the same
element types and feed structure.

With the foundation laid down in this chapter on periodic and aperiodic array

structures, the next chapter will further develop the aperiodic array thinning techniques

that are used i this thesis.




3 Theory

This chapter examines in depth, the three approaches chosen as possible optimal
design methods. All three approaches are referenced to a baseline or control array of
equally spaced, uniformly excited elements. Coverage of the baseline array is first along
with an equally spaced array employing an amplitude taper. Then a discussion is
provided on the deterministic approach, followed by a brief section on random array
statistics. Finally, a detailed look at the last two approaches, statistic and random array

thinning, is presented.

3.1 Periodic Arrays

3.1.1. Spacing

The baseline array is a fully populated array with elements separated by half a
wavelength. The choice of wavelength is determined by the operating frequency. Since
the array is to operate over a range of frequencies, one must decide which of those
frequencies determines the spacing. For this thesis, the frequency selection is based on
the idea that the element locations are sampling intervals for the current distribution
producing the desired pattern factor. At the lower frequencies, the wavelengths are larger
providing lower sampling resolution for the higher frequencies. However, using the high
frequency for element locations, provides over sampling of the current distribution at
lower frequencies. Since it is more advantageous to have over sampling than under

sampling, the highest operating frequency will determine the design wavelength.




3.1.2. Current
The baseline array has a uniform current excitation. An equally spaced array with
amplitude tapering is also used. This amplitude-tapered array provides an equally spaced
array that is optimized for low sidelobe levels. This optimized equispaced array provides
a low sidelobe array for approximation purposes by the aperiodic arrays. A commonly

used tapered current excitation is the raised cosine, given by

2
ir(x,) = %(1 — cos( x[jﬂ: + n‘)) (3.1)

where

i7(x,) = the current on the nth element in the uniform array

L = the length of the array in meters
At the edges, -L/2 and L/2, the current drops down to zero, while reaching a max of one
at the center of the array (x,=0). The design array is a two dimensional, planar array, so
ir must also be planar to produce the same current excitation along the y-axis. The
current excitation for the array is just a product of the x and y current functions. In this

case, i becomes

i(x,,y,) = %[1 - cos(z’zﬁ + n)Il ~ cos(zyT"” + n)) 3.2)

where
W = the width of the array
¥. = nth element location on the y-axis, ranging from -W/2 to W/2.

Figure 3.1 contains an example plot of the tapered current distribution for a 4-m2 array.




ir(x.y)

Figure 3.1 Tapered Current Distribution On A 4 M2 Array With Maximum Value Of 1 And Axes
Normalized To L, The Length Of The Array.

| 3.2 Deterministic Approach

One of the easier array thinning approaches to implement is the deterministic
approach. A modified equal area element distribution is chosen as the deterministic
thinning approach. It is a spatial taper approach based on element location dispersion due
to equal area regions under the current excitation function (see Figure 3.1). The

modification comes from placing elements at the ends of the array in order to maintain




the beamwidth requirements. Otherwise, the rest of the process follows the spatial taper
approach described in Chapter 2.

As previously stated, a periodic array can be viewed as a continuous current
distribution sampled at equally spaced intervals. Each of these samples has a magnitude
equal to the excitation current at each sample point. This gives a sampled approximation
of the array’s excitation current i(x). For this deterministic approach, the first step is to
divide the total area under the current distribution curve into equal area subsections. The

cumulative current distribution as a function of x is

X

I = [i(x)dx . (3.3)

-L/2

Integrating over the length of the array gives the total area under i(x). Labeling it I7,

L/2

I = [i(0dx (3.4)

-L/2

and then dividing it into N-2 equal subsections of area, gives

L, = (3.5)

which is the equal area value that each interval or subsection of i(x) must contain. Once
the intervals are found, the element locations are placed at the midpoint of the interval.

Therefore, each element location is determined by combining (3.4) and (3.5).

a,

Il
i 5 = Ji(X)dx . (3-6)

a

n=1

28




The value for the first non edge element, x, is

a -0

X == (3.7)

In Equation (3.7), x; is located halfway between ay and a;. The value for a; is

determined by solving Equation (3.6) for @, . When n=1, Equation (3.6) becomes

1, = Nli . - I':i(x)dx . (3.8)
Using Equations (3.6) through (3.8), the location of the nth element is found to be
Xy = Sl 3.9
2

For example take a five element linear array. At a frequency of 3 GHz, the
wavelength is 0.1 meters. Since the desired minimum interelement spacing is two
wavelengths, the first pair of elements will be located at £0.2 meters about the center
element of the array. Taking 0 and 0.2 as the limits of integration for Equation (3.6) the
equal cumulative current density is found. The next pair of elements are located where a,
sets the integral in Equation (3.6) equal to the 1., Repeating this process determines the

locations for the rest of the elements.

3.3 Statistical Theory for Random Arrays

The following development is based on Steinberg’s “Theory of the Random
Array” (Steinberg, 1976:139-188). It starts with a linear random array of N elements that

have corresponding element locations of x, on the x-axis. The location values of x, are
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from a set of independent random variables. These variables have some arbitrary
probability density distribution w;(x).
In Figure 3.2, the length of the array is L and has a current density of i(x), which

is a sum of & functions at each x, on L.

N
i(x) =Y 8(x - x,) (3.10)
n=l
A Ai(x)
X, X
< L —

Figure 3.2 Sample random array

The Fourier transform of i(x) is the complex far-field radiation pattern f{u). The
pattern is proportional to the sum of unit vectors, since i(x) is a set of & functions whose

Fourier transform is one. i.e.,

N
F@) =Y exp(jkx,u) (3.11)
n=1

where

X» = distance of the nth element from the array center

u = sin(8) — sin(6,) (3.12)

2
k=ﬁ=77I : (3.13)




The amplitude on the mainlobe is going to be equal to the number of elements, N.

The RMS amplitude of the sidelobes is VN . The mean of the sidelobe power pattern is
N, which is the square of the RMS amplitude. The power ratio of average sidelobe (N) to
mainlobe (N?) is N/N?, which simplifies to 1/N. This is the theoretical average sidelobe

level.

3.3.1. Average Array Factor
Since the random array’s element locations differ from one run to the next, the
pattern factor needs to be in terms of averages. Therefore, the next item of interest is the

ensemble average of random arrays. The ensemble average of a pattern factor is

1 N
flu) = F(Z exp(jkx,u)) (3.14)
n=1

where the over bar represents the average value.
Since all the random variables x, are from the same population, each term has the
same average value. In addition, the average value of the sum is equal to the sum of the

average values. This reduces the pattern factor to

l N —_—
fw = eXP(jkx,,u)Nzl = exp(jkx,u) . (3.15)

An important statistical attribute to notice with Equation (3.15) is that it is the
characteristic equation for the random value x, which in turn is the average value of

exp(j k x.u). The characteristic equation is also equal to

exp(jkx,u) = J. w, (x) exp(jkx,u)dx (3.16)




This is similar to the desired array pattern factor of

£ ) = [[ig(x) exp(jkx,u)dx (3.17)

If fy(u) is the normalized pattern factor then iy(x) is normalized, and by setting the

weighting function to the normalized current excitation

wy(x) = i,(x) (3.18)

then the following equivalency can be made

|
|
W = 319)

This is an important relationship since it states that the ensemble average of the
complex random array can be matched to any radiation pattern with a real current
density. This is accomplished by selecting the pdf of element locations according to

Equation (3.18).

3.4 Statistical Approaches

The statistical approach is another type of random array thinning. It originated
from analysis on periodic arrays with random element failure, and phase or amplitude

errors. It essentially looks at the results of randomization on periodic structures.




3.4.1. Statistical Density Taper
The starting point is a periodic grid with an interelement spacing of two

wavelengths. The randomization comes into play through a random process controlling
each element’s excitation. The normalized tapered current in(x,,y»),that would excite the
nth element, is compared to a randomly generated number from a uniform distribution. If
the random number is less than Iy the element is turned on with a current amplitude of
one. If it is greater, than the element is off or not present in the array. Looking at Figure
3.3, if p(n)=.25 for the nth element, that means there is only a 25% chance that the
element is “on”. There are more numbers (between 0 and 1) greater than 0.25, than there
are less than 0.25. Therefore, by setting the “on” state dependent upon the random
number being less than p(n), results in the appropriate probability that the element is

(13 »

on’.

p(n)
1.0

Probability that
element is at
location n

L2 4 3 21 012 3 4 n L2

Figure 3.3 The PDF For Both The Random And Statistical Array Approaches.




If there is an N element filled array, the array factor is

f6,9) = n%] 1Fn exp(jY) (3.20)
where
F,, = element on/off factor, either O or 1
¥, =phase on the nth element.
In this array, F, is selected randomly to be either one or zero. It is chosen randomly from

element to element so that its ensemble average is

F o=k-4 (3.21)

where
k = the degree of thinning
A, = the amplitude of the current excitation on a filled array whose pattern factor,
Jo, is being modeled.
When k=1, an array is naturally thinned. Depending on array geometry, natural thinning
reduces the number of elements to 40 to 60 percent of the element count of the original
array.

The desired or modeled pattern factor is

N
fo6,0) = ¥ A exp(jT)) - (3.22)
n =1




Since F, is random process, so is the pattern factor f. If the nurhber of elements, N, is
large, the central limit theorem states that the distribution for f{ 6, ¢), for a given 6 and ¢,
will be approximately Gaussian (Collin, 1969:221). Furthermore, due to independence of
the random variable x, the mean value of the sum is the sum of the means. Just as in the
previous section, the average pattern factor is identical to that of the amplitude tapered
arréy. Therefore combining Equation (3.21) with Equation (3.23), for k=1, the ensemble

average of the reduced element array is equivalent to the modeled array fo,

N
f6.9) = X F,-exp(j ¥, =
n =1
N (3.23)
S A -exp(j ¥, =60, )
n =1
Squaring the ensemble average in Equation (3.21), results in the power pattern

—2 *

[f6. 9 = f6.9) - fO6,9) =
¥ FF, exp(j(¥, - ¥,)) (3.24)
nm

The mean of a product of independent random variables is equal to the product of those

means. Since F, and F,, are independent when n#m, the average becomes

Ra ¢>|2m¢n = 2 ; F,F, exp(j(¥, - ¥, )+ Z F; (3.25)




The values for F, and F,, are either zero or one, therefore the second summation in

Equation (3.25) becomes

n (3.26)

Applying the theorem for the sum of the averages to the first sum in Equation (3.25)
results in

Y Y AA, exp(¥, - ¥,)

n#Em

(3.27)

In order to make Equation (3.27) equivalent to the square of the modeled pattern factor m
Equation (3.22), the n=m components need to be added. Adding and subtracting the n=m

components gives

2 2
re.0f =|rp@.0f +24,0-4, (3.28)

Looking at the two terms above, we see that the first term is the power pattern for the
amplitude-tapered array. The second term is only dependent on the number of elements
and the amplitude tapered array’s illumination current and not on 6 and ¢. This implies
that the average radiation pattern is predictable based on the illumination currents of the
tapered array. An important note about Equation (3.28) is that the second term dominates
the pattern outside the neighborhood of the main beam and defines the average sidelobe

level of the statistical sidelobes (Collin, 1969:223).
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3.4.2. Random Array
The following development is from Steinberg’s peak sidelobe theory for random
arrays (Steinberg, 1976). Steinberg provides a method to control the statistical sidelobe
levels. While theoretically complex, it is simple to implement mathematically. First, a
revisit of the average power pattern, with a slightly different approach, is necessary.
The power pattern is the product of the pattern factor and it’s conjugate. The

normalized ensemble average of the power pattern is

1 N N
F@f=ff == 3 3 expjk(x -x ) (3.29)
N p=1m=1 :
Through the following reduction
1 N M
|f (u)l2 =2 Em:exp(jk(x,. = X, )W) (3.30)
1
lFa = 7 (N + expjlexp(- Ja)(N? = NY) 3.31)
1 .
@l = 5V + LW £ @O = M) (3.32)
the average pattern becomes
2 1. 1
@l =1l -a-peg (3.33)
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In other words, Equation (3.33) states that near the mainlobe region of the design pattern
(where |fo(u )|>=1), the amplitude of the mainlobe and nearby sidelobes are greater than
1/N, so the patterns are relatively unchanged. In the statistical sidelobe region, the
sidelobe values of the design pattern fall below the 1/N average sidelobe power of the
random component and disappear leaving the region controlled by the random
component (Steinberg, 1976:144).

The next step is to determine the peak statistical sidelobe levels using the peak
sidelobe estimator B. The peak sidelobe indicator predicts, to a certain confidence level,
B, that n number of samples of the pattern factor will not exceed some desired threshold
level, Ap. The probability that any sample out of the n samples of the sidelobe pattern, at

some angle u, falls between Ag and some & above Ay is

A+0A
A,
Letting & go to infinity gives the integral
a= J‘W(A)dA = ex _—(—Al)i
1 p N - (3.35)
A

0

If n independent samples of the sidelobe pattern are taken, the probability that none of

those samples exceeds the threshold level A is

B=01-a)" = {1 - expli (2’0) ﬂ . © (3.36)
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The quantity (4, /N is the power ratio B. The parameter B, which is also the
peak sidelobe estimator, is the ratio between the normalized threshold level and the
theoretical average sidelobe level (1/N). To normalize the threshold level, it is divided by
the peak power of the mainlobe, which is N Substituting B into Equation (3.36) and

solving for B gives

B=-In(1- B") . (3.37)

Finally, the number of samples that needs to be taken for a desired B, must be
determined. The value of n brings in all the relevant array properties (length, frequency,
and scan angle) with the exception of the number of elements, N. The number of samples
to be taken is chosen by using the Nyquist sampling theorem. This theorem states that
for a band limited wave, with a maximum bandwidth of W, can be determined uniquely
by values sampled at uniform intervals of T seconds, where T=2W (Sklar, 1988:58)

The minimum sampling rate is two times the length of the array divided by the
wavelength (Steinberg, 1976:154). This results in the number of samples being equal to
the number of 2*L/A intervals there are in the visible region. Since the visible region
changes when scanning occurs, the number of intervals will change. At endfire, there are
two lengths in the visible region, but at other angles, this is not the case and therefore

fewer samples are required. This leads to

2L 2L .
n= 2l = = (1 +[sin(6,)]) (3.38)




samples to specify the complex radiation pattern. However, since the pattern is
symmetrical, only half the number of samples is needed (Steinberg, 1976:154).

{

Therefore, n becomes

L )
n= 1—(1 + |sm(60)|) . (3.39)

Taking Equations (3.37) and (3.39), and solving for N, results in the number of
elements required for a specified threshold, A,, for an L length array, with a maximum

desired scan angle of 6,. ie.,

2 2
voo_ 4 _
B A
(3.40)

L{t + [sin(6y) |

-In(1- 8

However there is one problem with Equation (3.40). The estimator B is biased.
Look at Figure 3.4, which is a sample of a section of sidelobes from a power pattern. The
highest peak is B,. The process up to this point gives a peak-sampled maximum of B.
The location of B is a distance AU away from the true peak B,. Since AU is always
greater than zero, then B is always less than B, making B a downward biased estimator.

To account for this, an average for AB is needed in order to add to B and remove
the bias (Steinberg, 1976:161). This average is found by choosing a sample point close
to the peak B, and then approximating the power pattern around that point using Taylor’s

expansion. Through differentiation, averages, and further approximations (Steinberg

161-165), the average becomes




AB =1+ — . (3.41)

Adding AB to B gives the new peak sidelobe estimator B,

2
Bp=B+1+E . (3.42)

l‘-?»/L" .

Sample width

Figure 3.4 Peak Sidelobe Estimator

The estimator B, is the ratio of the unnormalized peak sidelobe to the average
sidelobe level N. The value of Ay’ is the normalized peak sidelobe power, so multiplying

it by the power of the mainlobe, N?, and substituting into B, gives

(3.43)
Finally, solving for N.

B P
el (3.44)
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In terms of B, N becomes

N=—e B (3.45)

This expression is used to generate the number of elements required for the random

approach.

3.4.3. Peak Sidelobe Indicator Statistics
Looking at the statistical behavior of B will give some insight on what to expect
from B,, along with expected results. The probability distribution function of B is simply

B. The probability density function is simply the derivative of 3 taken with respect to B.

W(B) = Z—[; = n(l - exp(-B))" " exp(~B) (3.46)

The first moment is the average of B, and the second moment gives the variance

about the average. The characteristic function of B is

D () = —.[ W(B) exp(SB)dB =nf (1 - exp(-B))" ™ exp((S — 1)B)dB (3.47)

Using the method of cumulants on the characteristic function gives the moments

of B through the logarithm of the characteristic function

i S
In(@4(8)) = =), In(1 - 2 (3.48)

Using the power series expansion of the logarithm and solving for semiinvariants yields




A o=(r- 1)!;/«" (3.49)

Therefore, for r=1, the first moment of B, or its mean, is
— )’ —_ N 1
p=h =3 — (3.50)
k=1 k

where n is still the array parameter.

The variance of B is

n

1
2
o =4A,= - (3.51)

k=1

An important fact about the variance is that as the array size gets larger the variance goes

to

O‘2=).2= k2=>—6— asn —> o . (3.52)

Which is independent of the array size.
Before going into the nexf chapter, lets review the important points developed
thus far. For the average quantities of the random arrays:
1. The ensemble average array' factor is equivalent to the desired array pattern
factor.
2. Randomization does not significantly affect the mainlobe and nearby
sidelobes.

3. Randomization does dominate the sidelobe structure outside the mainlobe

region.




The peak sidelobe theory provides a method to estimate the probability 3, that the
statistical or random sidelobes do not exceed a sidelobe threshold level Aq, for some
maximum steering angle 6). As the size of the array increases the variance of the peak

sidelobe indicator B,, remains constant



4 Application

This chapter goes into detail on the implementation of the concepts of each
approach covered in Chapter 3. It starts with the pattern factor for a symmetric planar
array, and then summarizes the mathematics for the array parameters of interest. The
theory applicable to the linear array is also applicable to the planar array. The conversion
of the pattern factor from a linear planar array is simple. The current excitation and
| phase progression simply contains a y component to account for the added array

dimension.

4.1 Planar Array Pattern Factor

The pattern factor for a planar array is

N M
£6,8) =231, exp(jBY,,6,9)) - @.1)

n=1 m=1

Except for the non-uniformly excited uniform array, the current amplitude, I, is equal to

one. The uniform array has a tapered current of

1 2x,,7 2y,
I =—|1-cos(m+—= 1- T+ —== .
- 4( ( W )I cos( 3 )) (4.2)

The phase ¥,..(6,¢) is equal to

Y (6.9) = x,(sin B cos ¢ —sin 6, cos @,) + y,(sin O sin ¢ — sin G, sin ¢,) (4.3)

where 6, and ¢, are the beam steering angles.
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Combining the three equations above, the pattern factor is dependent on 6, ¢, 6,
@, x, and y. These variables have ranges of 0 < 6<7/2, 0< o<, -W/2<x< W/2 and
-L/2 <y < L2, respectively. Computing the pattern factor over these ranges takes up a
lot of computation time. The total number of iterations or loops required is equal to the
number of elements in the array times the number of sample points in ¢ times the number

of sample points in 6. That gives the number of iterations for one run for one approach
with no scan or frequency analysis performed. For the simulations in this thesis, there are
three scan angle runs (one boresight and then 6,=50° in the xz and the yz principle
planes), times the eleven frequency intervals. For a four square meter array with one
degree angular sampling, the total number of iterations for the uniform array at 12 GHz
would be

(180 deg of phi)(90 deg of theta)(11 frequencies)(3 scan angles)*

(160 * 160 elements)=1.3685760e+10 iterations.

For sixteen square meter array, the number of elements is 4 times that of the four
square meter array. For proper sampling of a pattern, there needs to be 16*1 times the
area of the array in wavelengths. That is 16mA/A* samples of the full pattern. Due to
angular symmetry, only a fourth of the sampling needs to be done. Recalculating the
above four square meter array example results in

(16*1#4/A%)(11)(3)(160*160)/4= 6.794284¢+10 iterations.

As can be seen, the computational time required becomes enormous as the array
sizes increase. In order to reduce this time, the array is assumed to be symmetric. Each

quadrant is a mirror image of the two quadrants it borders. With symmetry, the pattern




factor can be reduced to computations in only one quadrant. Take a simple example of

four elements symmetrically located in each quadrant of the x-y plane as seen in Figure

4.1.

@
(x3,y3) (x4,y4)

Figure 4.1 Example Symmetric 4 Element Array

For the array above, the pattern factor is

M N
£©6,0) =) Y1, exp

m=1n=1

[jﬁ(xm(sin 0 cos¢ — sin , cos ¢0)]

+ y,(sin 6 sin ¢ — sin 6, sin ¢;)) 4.9

For notation simplicity, let the steering angles be zero, then the pattern factor for the

above array would be

f6, ) = i exp[jB(x, sin 6 cos ¢ + y, sin O sin ¢)]
+ i exp[jﬁ(xz sin 6 cos ¢ + y, sin @ sin ¢)]
+ i3 expljB(x; sin 6 cos ¢ + y; sin O sin ¢)]
+ iy expljB(x, sin B cos ¢ + y, sin 8 sin ¢)]

4.5)
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Since the current is symmetric also, then the current on each is also equal.
Furthermore, the physical locations are related by x;= x4= -x3= -x2 and y;= y,= -y3=-ys.
Substituting a corresponding value of x=x; and y=y, into Equation (4.5) results in

6, ¢) = iexpljB(x sin 6 cos ¢ + y sin 6 sin ¢)]
+ i exp[jB(-x sin 6 cos ¢ + y sin O sin ¢)]
+ i exp[jB(-x sin 6 cos ¢ — y sin O sin ¢)] (4.6)
+ i exp[jB(x sin 6 cos ¢ ~ y sin 6 sin )]

Using the trigonometric substitution of

exp(xjB) = cos(B) £ jsin(B) 4.7)

in Equation (4.6) and applying further trigonometric substitutions, the final pattern factor

is

f(6,¢) = 4cos(xP sin 6 cos @) cos(y sin 6 sin ¢) (4.8)

This means that each set of four symmetric elements can be reduced to Equation
(4.8). Those elements lying on the axis are in pairs so their combined pattern factor is
half of that found in Equation (4.8). Therefore, the total pattern factor for a symmetric

planar array is

N
fO,9) =1+ 2 2 cos(xB(sin 6 cos ¢ — )

n=1,x#0
N
+ 2 2 cos(yB(sin 6 sin ¢ — @) 4.9)
n=1y#0

(cos(xB(sin B cos ¢ — o)) *
4 2 cos(yB(sin O sin ¢ — o))

n=1x#0,y#0
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where
N, = the number of elements in the first quadrant
o = the beam steering phase progression for the corresponding x or y.
This reduced form of the pattern factor only requires the first quadrant to be processed,

reducing the computational time by approximately seventy-five percent.

4.2 Parameter Values
The values used for each approach are shown next. A summary of the parameters

for each approach is given at the end of this section.

4.2.1. Uniform and Baseline Arrays

For the uniform equispaéed array, the parameters for the array are constant. The
interelement spacing is .0125 meters for a max operating frequency at 12 GHz. The
maximum operating frequency is used to determine interelement spacing since at that
spacing the lower frequencies will have more sampling elements. The maximum number
of elements is equal to each dimension of the array divided by the wavelength. The
product of these two becomes the total number of elements needed to fill the array.

The current distribution on uniform array is tapered. It is a raised cosine function.
As previously mentioned, the tapering reduces sidelobe levels. The current I(x,y) was

given earlier in Equation (4.2) for the equispaced array. The aperiodic arrays will have a

uniform current distribution.




The baseline array is used for comparison purposes and has the same structure as
the uniform array above but has a uniform current excitation. Element and beamwidth

~ are given in Table 4.1.

Table 4.1 Uniform And Baseline Element Counts And First Null Beamwidth (FNBW)

Array Nug;ber FNBW | FNBW
2
Area (m") Elements (rad) (deg)
4 25600 | 0.01250 | 0.71656
8 51200 | 0.00884 | 0.50668
12 76800 | 0.00722 | 0.41371

16 102400 | 0.00625 | 0.35828
32 204800 | 0.00442 | 0.25334
100 640000 | 0.00250 | 0.14331

4.2.2. Deterministic Array

Element positions are determined by equal area integrals of the tapered current
density distribution applied to the uniform array. It is also desirable to have a minimum
interelement spacing of two wavelengths to avoid mutual coupling. For the deterministic
approach, elements will be closest in the center of the array due to the larger percentage
of the volume under the current curve there. Therefore, taking in consideration the two
wavelength lower limit, the current is integrated from zero to two wavelengths to get the

equal area value for determining the remaining element locations.
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Table 4.2 Deterministic Array Element Counts

Array | Number of
Area (m®)| Elements

4 441
8 961
12 1369
16 1681

4.2.3. Statistical Array

The statistical approach implementation is rather straightforward. A periodic grid
is created with an interelement separation of two wavelengths. Then the value of the
current at that x-y location in Equation (4.2) is calculated. A random number from zero to
one is compared to the current value. If the random number is less than the current value,
than the element is on by giving it a current value of one. This results in the element
probability distribution being the same equation as the current function of the uniform
array. Table 4.3 provides the maximum expected element counts for the statistical array

if all elements are in the “on’ status.

Table 4.3 Maximum Element Count For Statistical Array

Array Max
Number
Area
(mz) of
Elements
4 1600
8 3200
12 4800
16 6400




4.2.4. Random Array

For the random approach, there are several items of interest. First, a desired peak
sidelobe level Ay, is selected, followed by the confidence level B, that the sidelobes will
not exceed that level. Then the number of elements N, is determined.

First, an upper limit has to be determined for the number of elements. This sets
the minimum attainable confidence level and peak sidelobe levels. In order to be
feasible, the number of elements in the random array needs to be less than the number in
the filled array. By setting N to the number of elements in the equispaced array

LW

N P (4.10)

and placing Equation (4.10) into Equation (3.40), the lower limit of At is

A

A
Figure 4.2 contains plots of Equation (4.11) for array sizes of 4, 8, 12, 16, and 100 square
meters versus the confidence levels. The peak sidelobe level threshold is ~13.5 dB. This
threshold value was chosen since it is the minimum peak sidelobe value for a uniform
line source. Table 4.4 contains is a break down of the calculated values for N, n, B, 3, B,,
and Ao’ for the array sizes of interest and larger sized arrays. The larger arrays are
included to demonstrate that the behavior of the element counts with respect to array size

for random arrays.
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Table 4.4 Random Array Parameters
Array |Confidence PSL Linear

Area | Level PSLA (ZdB) B Bp Samples | Array :rlf;a;[
() B ° n N Y
4 0.65 -13.5 4.92 6.33 59.01 141 | 20080
8 0.65 -13.5 5.27 6.65 83.45 148 | 22154

12 0.65 -13.5 5.47 6.84 102.20 153 | 23426
16 0.65 -13.5 5.61 6.97 118.02 156 | 24355
32 0.65 -13.5 5.96 7.30 166.90 163 | 26681
100 0.65 -13.5 6.53 7.84 295.05 175 | 30776

~—- Random 4 m? Beta vs PSL Threshold

10 @ Random 8 m? T ' '
- Random 12 m?

nr i Random 16 m@

— Random 32 m?
-12F | Random 36 m?

---- - Random 64 m?
131 - - Random 100 m?

- p— "ﬁ{reshold‘
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EL-16

| /]
..... SO
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""" —_— e T - T e T T e "/
e T T LT e 5

e ]
-19 T |

r— 1 l : L ! } !
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B

Figure 4.2 Peak Sidelobe Level Vs Confidence Level For Various Array Sizes




The value for S is set at 65% since it is the maximum confidence level possible
for 4-m” array (see Figure 4.2). This is because for the given frequency, the element
count for a higher confidence level would exceed the number of elements required for the
half wavelength equal spaced array. To keep all arrays on a level field, the confidence
level remained at 65% for the larger arrays as well. Table 4.5 shows some of the

expected parameters for higher B values for various array sizes.

Table 4.5 Random Array Parameters For Higher

Array |Confidence| PSL PSL | procar Eleli‘;fms
?;2;‘ Level (sz) B Bp Salsngle Array N| Uniform
B 0 Array

8 0.95 -13.5 | 7.39 | 8.67 |83.453| 37632 | 51200

12 0.998 -13.5 | 10.84 |12.03]102.21 | 72473 | 76800
16 0.999 -13.5 | 11.68 |12.85(118.02 [ 82749 | 102400
32 0.999 -13.5 | 12.02 |13.19[166.91 [ 87207 | 204800
100 0.999 -13.5 | 12.59 |13.75}295.05 | 94799 | 640000

4.3 Comparison Analysis Methodology

4.3.1. Requirements
The performance requirements for the arrays are in the areas of beamwidth, beam
scanning, frequency range, and element reduction. For comparison and analysis, all
thinning approaches referenced the performance of a baseline (uniform amplitude,

equally spaced) array of equal size. Metrics are used to compare the different thinning
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approaches and determine the overall optimal array performance. The next section

discusses these metrics.

4.3.2. Metric

The metric is broken down into four areas. These areas are boresight, xz plane, yz
plane, and element count. The first three areas are the three different mainbeam
directions. The directions include each array’s performance over the frequency band (2-
12 GHz). Under each of these position categories, are subcategories for half power
beamwidth (HPBW) and peak sidelobe level (PSL). Table 4.6 provides a breakdown of
the metric along with the weightings that are used in the analysis in Chapter 5. The
HPBW is found by simply finding the half power point for each array for both the xz and
yz planes. Linear interpolation is applied if the half power point lies between two sample
points. The HPBW is then determined by taking the square root of the product of the
beamwidth in each plane giving the beamwidth, bwy, for that approach. The same
method determines the beamwidth, bwg, for the baseline array.

The final value used in the metric is

HPBW =1 -

bWB - bWA
bwy + bw, | (4.12)
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The PSL value is calculated by determining the number of angular samples
greater than the threshold level of —=13.5 dB and comparing that to the number of samples
in the baseline array that exceeds the same threshold. The metric value is determined by

the following

| pslg — psly
1 PSL =1~ | —2——-214¢ .
‘ [pSlB + ‘pSlA) (4.13)

where
pslp=baseline PSL value

psla= thinning approach PSL value.

Table 4.6 Breakdown Of Array Performance Metric

Boresight (20%)

XZ Plane (20%)

YZ Plane (20%)

Number of Elements (40 %)

The metric for the element count is found by subtracting from one, the ratio of the
number of elements in the aperiodic array to that in the baseline array.
Now that a metric (one of many possible metrics) has been defined, the next step

is to apply that metric to each array to determine the optimal thinning approach.




S5 Results and Analysis

This chapter discusses the outcome of applying the covered theories, thinning
approaches, and metrics. A brief process description is given, followed by the results of
applying the metric formed in Chapter 4. Then the metric values are changed to
emphasize HPBW, PSL, and boresight performance rather than element count. Next
trend analysis plots for all the arrays are shown. Finally, the chapter concludes with an

overall analysis section.

5.1 Process

The overall process from pattern factor generation to data analysis and results is
shown in Figure 5.1. Appendix A contains flowcharts for the first two sections of the
computational process. These two section are C++ programs. The first program
generated all the pattern factor data for the given parameters of length, width, frequency
range, number of éampling points for 6 and ¢, start and stop values for 6, desired
confidence level, and PSL threshold. The second program was a data compilation

program that sorted and compiled the data from multiple runs for analysis in MATLAB®.
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THMAIN (C++)

Computes pattern factors,
element location vectors, and
current vectors for uniform,
baseline, random, statistical,
and deterministic arravs.

v

THAVEDB (C++)
Compiled multiple statistical
and random array runs for
each array configuration into
single files for statistical
analysis. Also converts any
array pattern factor into dB.

v

v

STATANALYSIS (MATLAB)
Computed the average and
standard deviation for each
statistical array configuration
creating a single ensemble
average array for comparison
analysis purposes.

RANDANALYSIS (MATLAB)
Computed the average and
standard deviation for each
random array configuration
creating a single ensemble
average array for comparison
analysis purposes.

v

v

THMETRIC (MATLAB)

Compares all arrays (baseline, uniform,
deterministic, random, and statistical) to
each other in the areas of peak sidelobe
levels, element count, and half power
beamwidth. Then computes array
performance based on given metric
weightings for each area of interest.

v

RESPLOT (MATLAB)

Plots the comparison
results generated by
THMETRIC.

Figure 5.1 Process Of Data Generation And Analysis
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5.2 Results

Due to the size of the arrays and the pattern factor sampling resolution
requirements, the computational time was extensive. Along with the computational time,
the volume of data generated and processed was overwhelming (15-20 GB). Table 5.1
shows a breakdown of the number of resolution samples required and used for the pattern

factor generation.

Table 5.1 Pattern Factor Sampling

Array Required Bequirﬁed Samples | Theta Phi Total # of
Area (m?) Satwples tor. region per degree| samples | Samples Sawples
for Sphere |of interest Used

4 321699 80425 4.96 201 402 80802

8 643398 160850 9.93 284 568 161312

12 965097 241274 14.89 347 694 240818

16 1286796 321699} 19.86 401 802 321602

32 2573593 643398 39.72 567 1134 642978
100 8042477 2010619 124.11 1003 2006 2012018

There were multiple runs (each with a different set of element locations) for the
pattern factors of the statistical and random arrays to allow for statistical analysis (see
for run counts). The runs for the statistical and random arrays are compiled together and
the ensemble average of each array configuration was calculated. The ensemble average
is the arithmetic average of each 6 and ¢ pair from each sample run. For example, look at

Table 5.3. The Average row contains the values for each 6 and ¢ pair for the ensemble

average pattern factor for the array.




Table 5.2 Approach Run Counts

Area(m’) | 4 g8 | 12 | 16
Statistical 37 14 29 21
Random 42 20 30 20
Random?2 9 8 10 4

Table 5.3 Ensemble Average Pattern Factor Example

theta(deg) o0 0 O 0 1 1 1 .. 90
phi (deg) 0 1 21... 0 1 2| ... | 180
Run 1 1.00] 0.25] 0.10] 0.50] 0.00] 0.10] 0.15] .. | 1.00
Run 2 1.00] 0.50] 0.20] 0.70] 0.09] 0.03] 0.50] ... | 0.50
‘ Run 3 1.00] 0.25 0.16] 0.80[ 0.11] 0.13] 0.18] ... [0.70
Run 4 1.00| 1.00] 0.40] 0.95] 0.10] 0.20] 0.22] ... | 0.80
Average | 1.00] 0.50] 0.22] 0.74| 0.08] 0.12 0.26] ... |0.75

These ensemble average pattern factors for the random or statistical arrays are
thén used for performance comparison purposes with the baseline, uniform, and
deterministic arrays. Comparisons for each frequency and scan angle (for each planar
cut) are then calculated.

There is an additional random array pattern in the comparisons. It is labeled
“random”. The “random” pdf has twice the period of that in the original random,
“random?2”. It is included with this analysis to show the effects a second pdf on a random
array that contains the same element count.

Additional runs of higher confidence levels (.999) for the 16m” array are included in
the metric analysis. Additional single runs of statistical and random approaches applied

to larger array sizes (25, 32, 64, and 100 m?). The results of these arrays are located in

Appendix C.




5.2.1. Array Performance

The first figure in each series represents the performance of the different thinning
approaches for a given array size in the areas of beamwidth and PSL. The boresight
performance of an array was determined by the performance of each thinning approach
over all frequencies (2-12 GHz) for 8,=0¢=0°, in the areas of PSL and HPBW. The same
applies to the performance in the xz and yz mainbeam scan positions with angles of
80=50°, ¢¢=0°, and B;=50°, ¢=90° respectively. The second set of plots breaks down the
overall performance for each array into the three beam positions. Finally, trend analysis
plots for all approaches versus array size are provided for metrics emphasizing reduced

element count, HPBW, PSL, and boresight (mainbeam at 8,=¢¢=0°)..
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4 m? Detenministic Array Metric Breakdown
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5.2.2. Element Counts
The resulting element counts are found in Table 5.4. Table 5.5 contains the
statistical and random array element statistics. The advantage of the element reduction of
the random array is not apparent in the 4 and 8 m” arrays. The statistical and

deterministic arrays outperform the random array in the area of element reduction.

Table 5.4 Non Statistical Array Element Counts

| Area

! 4 8 12 16

i Baseline 25600 51076 76729 102400
| ’ Uniform 25600 51076 76729 102400
‘ Deterministic 441 961 1369 1681

Table 5.5 Random and Statistical Array Element Statistics

Area
Statistic 4 8 12 16
Average | 389.00 787.00 | 1202.14 | 1571.67
Statisticall Variance | 618.67 | 849.23 | 1461.98 | 4092.13
Array Stdev 24.87 29.14 38.24 63.97
Element | Max 459 847 1271 1683
Count Min 337 729 1139 1445
Median 385 784 1193 1575
Average | 24961.71 | 27553.60 | 28897.47 | 30273.70
Random | Variance 5.97 4.04 4.95 3.91
Array Stdev 2.44 2.01 2.22 1.98
Element | Max 24964 27556 28900 30276
Count Min 24954 27550 28892 30268
Median | 24962 27554 28898 30274




5.3 Analysis

5.3. 1.‘ Statistical Array
From Figure 5.31, for the reduced element count emphasis, the statistical and

deterministic thinning approaches out performs the random approaches for all sized
arrays. The main reason for this is obviously due to the extremely low element count.
The statistical and deterministic thinning approaches have the highest thinning ratios at
these sized arrays (see Table 5.6). However, the performance of the statistical array in
the area of scanning was poor. Looking at all the statistical pattern factor plots in
Appendix B (and C), there is a majorllobe present at 6=30° that will limit its scan
capability and prevent it from meeting the £50° scan requirement. This is expected since
the interelement spacing is periodic (2A). Taking the interelement spacing and using a
combination of Equations (2.7) and (2.8) to get

_r
1 + |sin 6 (5.1)

which for d=2 results in 6=30°. Otherwise, the metrics in Figures 5.11 through 5.14

show that it performs competitively with the random and uniform arrays.

5.3.2. Random Array
The random arrays performed as expected. Due to the small sizes of the arrays,

the number of elements was high with respect to the other approaches. However, as can
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be seen in Table 5.6, as the array size increases the thinning ratio is also increasing,
which means improved performance with larger array sizes for reduced element metrics.
This is also evident in Figure 5.31. In this figure, the metrics for both random approaches
are increasing, while the statistical begins to decrease. The thinning ratio for the random
approaches is only going to increase. However, the statistical approach remains constant,
allowing the random arrays to exceed the performance of the statistical array as the array
size increases. In Figure 5.33, it is apparent that as the array size increases the HPBW
performance also increases for the random arrays. It also shows that the random
outperforms the random2 in HPBW. This is due to the array having a larger effective
aperture than the random2 array since the array has element clusters at the edges of the

array, instead of only at the center.

5.3.3. Deterministic Array
The deterministic approach performed the well in the HPBW and element
reduction metrics. However, it did not perform as well in the PSL and boresight metrics.
In the PSL and boresight metrics, it stayed level while the random and statistical
approaches were on the rise. For the most part though, the difference between the

deterministic within 5% of the random and statistical approaches.

Table 5.6 Resulting array Percent Thinning

4 8 12 16

Uniform 0% 0% 0% 0%
Deterministic| 98% 98% 98% 98%
Statistical 98% 98% 98% 98%
Random 2% 46% 62% 70%
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6 Conclusions and Recommendations

6.1 Conclusions

For the array sizes looked at, the deterministic and statistical arrays are ideal
according to the metrics. However, looking at the PSL of the deterministic, and the
limited scan capability of the statistic arrays, these approaches do not meet the desired
performance requirements. The random array doesn’t perform exceedingly well at these
sized arrays either. However, the trends show' that as the array sizes increase the HPBW,
PSL, and element reduction performance of the random array continually increases. It is
not apparent at the largest size (16m®) that the random array outperforms the other two
aperiodic approaches. However, looking at the larger array sizes with a higher beta (see
Appendix C), it can be seen that the PSL, HPBW, element count (see Table 4.5), and
boresight performance continues to improves as the array size increases. However, since
only boresight data is available at the 12 GHz frequency, overall performance of the
larger arrays can not be determined without further data generation. However, based on
the trends on the boresight, for larger arrays, the random approach is the ideal aperiodic

approach out of the thinning approaches studied in this thesis.

6.2 Recommendations

There are two possible recommendations that can be derived from the results in
Chapter 5. First, based on the metrics, the use of deterministic thinning approach is
optimal. However, that will not meet the PSL requirements. The second

recommendation, based on looking at pattern factor results such as in Appendices B and
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C, the random array would be more suitable, especially if the array is actually going to be
larger than the 16m®. Looking at Appendix C, the larger random arrays, have better
beamwidth and peak sidelobe performance than the statistical, while maintaining
scanning capability. For large aperture SBR’s, random array thinning should be feasible
assuming there is capable and practical supporting architecture available to operate a
randomly thinned array. Further research would be required to prove the feasibility of
random arrays for even larger arrays. Use of the Major Shared Computer Resource
Center is recommended due to the mass amounts of data storage and computational time

required for larger arrays.

6.3 Future Topics

There are some topic recommendations for further study. One area is array
geometry. This involves looking at the effects of aperiodic element distributions for
circular, three-dimensional, and conformal array applications. Other areas of further
research include application feasibility in multibeam phased arrays and satellite
communications systems. Further analysis needs to be done on other aperiodic
approaches, in particular deterministic, and combinations of approaches.

Another area that needs to be looked into is the effective footprint of SBR’s. At
LEO and MEO, the footprint of the radar is in hundreds, if not thousands (depending on

aperture size) of kilometers in diameter.
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APPENDIX D: Nonprintable Materials List

The CD enclosed contains the following programs

* Th_main.exe: C++ program described in Appendix A.

* Th_avedb.exe: C++ program described in Chapter 5.

* Randanalysis.m: Matlab® script described in Chapter 5.

* Statanalysis.m: Matlab® script described in Chapter 5.

* Thmetric.m: Matlab® script described in Chapter 5.

* Metadj.m: Matlab® script to recalculate metric for all metric
emphases.

= Resplot.m: Matlab® script that generates comparison pattern factor
plots when used in conjunction with Thmetric.m.

* Singplt.m: Matlab® function that plots a pattern factor filename
passed to it.

* Saprmetric.m: Matlab® function that computes the metric for a single
thinning approach (same as Thmetric.m but only for one approach).

» Trends.m: Matlab® script that ploté trend line plots for each thinning
approach vs. array size.

» HPBW.m: Matlab® function for determining the half power
beamwidth for a pattern factor.

* PSLE.m: Matlab® function that determines the number of angular

samples that are greater than a given threshold level.




Bwinterp.m: Matlab® function for use by HPBW.m function for
interpolation purposes.

Detelem.m: Matlab® script for generating plots of deterministic
element location for the full array.

Readme.txt: brief text file explaining the contents of the required

mput file for thmain.exe.
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