
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2000 

NonUniformly Spaced Array Elements NonUniformly Spaced Array Elements 

Daniel R. Richards Jr. 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Richards, Daniel R. Jr., "NonUniformly Spaced Array Elements" (2000). Theses and Dissertations. 4849. 
https://scholar.afit.edu/etd/4849 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholar.afit.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4849?utm_source=scholar.afit.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


NONUNIFORMLY SPACED ARRAY ELEMENTS 

THESIS 

Daniel Robert Richards Jr., Captain, USAF 

AFIT/GE/ENG/00M-14 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
Wright-Patterson Air Force Base, Ohio 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 

20000815 173 



The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U. S. Government. 



AFIT/GE/ENG/00M-14 

NONUNIFORMLY SPACED ARRAY ELEMENTS 

THESIS 

Presented to the Faculty 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Electrical Engineering 

Daniel Robert Richards Jr., B.S.E.E. 

Captain, USAF 

March 2000 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 



AFIT/GE/ENG/OOM-14 

NONUNIFORMLY SPACED ARRAY ELEMENTS 

Daniel Robert Richards Jr. 

Captain, USAF 

Approved: 

Maj PeteiU/C/ollins (Chairman) 

-tyLt&L 
Drt Michael A. Temple (Member) 

UJU. ß ß 
iQMemb Dr. Vittal P. PyatiC^Member) 

/S" K>\P<OQ 
date 

date 

date 



ACKNOWLEDGMENTS 

First, I would like to thank my Lord and Savior, Jesus Christ, for the opportunity 

and ability to not only endure AFIT, but also graduate. I also thank my wife, Mary 

Helen, and my son, Daniel, for what patience and understanding they have had while 

their loved one is at his second home. 

I would also like to thank, my advisor, Major Peter Collins, for his insight, 

direction, and patience with this endeavor. I would also like to thank my sponsor and 

future supervisor, Dr Stephen Schneider, for giving me such an impossible endeavor, and 

then somehow convincing me that it was all my idea. I want to also thank the honorable 

"Doc" John Mehr formerly of Mission Research Center, for his superb engineering 

knowledge and experience. Without him as a sounding board, this thesis would not have 

been possible. I would also like to thank Sir, Dr., Maj. (Retired), Professor Mike Temple, 

for his insight and advice on the focus of the AFIT experience. 

Lastly, I want to thank the other AFIT RASCALS, Lt Mike "Snitch" Saville, and 

Lt Geoff "Mr. Bean" Akers, for their late night discussions and support with this thesis. 

Daniel Robert Richards Jr. 

IV 



TABLE OF CONTENTS 

1 Introduction 1 
1.1 Problem Statement 4 
1.2 Assumptions 5 
1.3 Scope 6 
1.4 Resources 6 
1.5 Overview 7 

2 Background 8 
2.1 Periodic Arrays 8 

2.1.1. Pattern Factor 8 
2.1.2. Sidelobes 10 
2.1.3. Grating Lobes 11 
2.1.4. Scanning 13 
2.1.5. Mutual Coupling 13 

2.2 Aperiodic Arrays 14 
2.2.1. Pattern Factor 14 
2.2.2. Deterministic Array Thinning 15 
2.2.3. Random and Statistical Array Thinning 20 

2.3 Aperiodic vs. Periodic 23 
2.3.1. Similarities 23 
2.3.2. Advantages 23 
2.3.3. Disadvantages 24 

3 Theory 25 
3.1 Periodic Arrays 25 

3.1.1. Spacing 25 
3.1.2. Current 26 

3.2 Deterministic Approach 27 
3.3 Statistical Theory for Random Arrays 29 

3.3.1. Average Array Factor 31 
3.4 Statistical Approaches 32 

3.4.1. Statistical Density Taper 33 
... 3.4.2. Random Array 37 

3.4.3. Peak Sidelobe Indicator Statistics 42 

4 Application 45 
4.1 Planar Array Pattern Factor 45 
4.2 Parameter Values 49 

4.2.1. Uniform and Baseline Arrays 49 
4.2.2. Deterministic Array 50 
4.2.3. Statistical Array 51 
4.2.4. Random Array 52 

4.3 Comparison Analysis Methodology 54 
4.3.1. Requirements 54 
4.3.2. Metric 55 

5 Results and Analysis 57 
5.1 Process 57 
5.2 Results 59 

5.2.1. Array Performance 61 
5.2.2. Element Counts 78 

5.3 Analysis 79 



5.3.1. Statistical Array 79 
5.3.2. Random Array 79 
5.3.3. Deterministic Array 80 

6 Conclusions and Recommendations 81 
6.1 Conclusions 81 
6.2 Recommendations 81 
6.3 Future Topics 82 

Appendix A: C++Flowcharts 83 

Appendix B: Boresight Pattern Factors 90 

Appendix C: Boresight Plots of Larger Arrays with Higher p Values 114 

Appendix D: Nonprintable Materials List 121 

Bibliography 123 

Vita 125 

VI 



TABLE OF FIGURES 

Figure 1.1 Low and Medium Earth Orbit Altitudes 2 
Figure 1.2 Networked Cluster of Space Based Radars 3 
Figure 1.3 Large Effective Aperture 4 
Figure 2.1 Spherical coordinate system 9 
Figure 2.2 Normalized Radiation Pattern For A Uniform Aperture Distribution 11 
Figure 2.3 Example Of A Linear Deterministic Array Element Distribution 16 
Figure 3.1 Tapered Current Distribution On A 4 M2 Array With Maximum Value Of 1 

And Axes Normalized To L, The Length Of The Array 27 
Figure 3.2 Sample random array 30 
Figure 3.3 The PDF For Both The Random And Statistical Array Approaches 33 
Figure 3.4 Peak Sidelobe Estimator 41 
Figure 4.1 Example Symmetric 4 Element Array 47 
Figure 4.2 Peak Sidelobe Level Vs Confidence Level For Various Array Sizes 53 
Figure 5.1 Process Of Data Generation And Analysis 58 
Figure 5.2 HPBW Comparison on 4m2 Arrays 61 
Figure 5.3 PSL Comparison on 4m2 Arrays 62 
Figure 5.4 Uniform 4m2 Array Metric Breakdown 62 
Figure 5.5 Deterministic 4m2 Array Metric Breakdown 63 
Figure 5.6 Statistic 4m2 Array Metric Breakdown 63 
Figure 5.7 Random 4m2 Array Metric Breakdown 64 
Figure 5.8 Random2 4m2 Array Metric Breakdown 64 
Figure 5.9 HPBW Comparison on 8m2 Arrays 65 
Figure 5.10 PSL Comparison on 8m2 Arrays 65 
Figure 5.11 Uniform 8m2 Array Metric Breakdown 66 
Figure 5.12 Deterministic 8m2 Array Metric Breakdown 66 
Figure 5.13 Statistic 8m2 Array Metric Breakdown 67 
Figure 5.14 Random 8m2 Array Metric Breakdown 67 
Figure 5.15 Random2 8m2 Array Metric Breakdown 68 
Figure 5.16 HPBW Comparison on 12m2 Arrays 68 
Figure 5.17 PSL Comparison on 12m2 Arrays 69 
Figure 5.18 Uniform 12m2 Array Metric Breakdown 69 
Figure 5.19 Deterministic 12m2 Array Metric Breakdown 70 
Figure 5.20 Statistic 12m2 Array Metric Breakdown 70 
Figure 5.21 Random 12m2 Array Metric Breakdown 71 
Figure 5.22 Random2 12m2 Array Metric Breakdown 71 
Figure 5.23 HPBW Comparison on 16m2 Arrays 72 
Figure 5.24 PSL Comparison on 16m2 Arrays 72 
Figure 5.25 Uniform 16m2 Array Metric Breakdown 73 
Figure 5.26 Deterministic 16m2 Array Metric Breakdown 73 
Figure 5.27 Statistic 16m2 Array Metric Breakdown 74 
Figure 5.28 Random 16m2 Array Metric Breakdown 74 
Figure 5.29 Random2 16m2 Array Metric Breakdown 75 
Figure 5.30 Random2 16m2 Array (ß=999) Metric Breakdown 75 

Vll 



Figure 5.31 Element Count Trend For Each Array vs. Array Size 76 
Figure 5.32 Boresight Trend For Each Array vs. Array Size 76 
Figure 5.33 HPBW Trend For Each Array vs. Array Size 77 
Figure 5.34 PSL Trend For Each Array vs. Array Size 77 

Vlll 



Abstract 

This thesis provides a method to reduce physical resource requirements along with cost 

reduction in Space Based Radar (SBR) platforms, and provides a rule of thumb for 

randomization effects on arrays. A trend analysis is performed on 4, 8, 12, and 16 square 

meter arrays. Three aperiodic thinning approaches are examined. They are an equal 

current density element distribution, a random periodic grid of elements, and random 

element distribution based a peak sidelobe indicator. According to the metrics used, the 

statistical and deterministic array thinning approaches performed best for these small 

arrays. However, the statistical arrays have a scan angle limitation of 60=30° due to the 

interelement spacing of two wavelengths. The deterministic does poorly with peak 

sidelobes. The random array performance was limited due to the relatively small array 

sizes for the random approach used. The small size limits the array's capability to meet 

the peak sidelobe threshold requirement, due to a reduced confidence level, along with 

limiting the effective area to be randomized. However, as the array size increased, the 

thinning levels and performance increased to become competitive with the other array 

approaches. If trends continue as array size increases, the random array is the ideal 

solution. 

IX 



NONUNIFORMLY SPACED ARRAY ELEMENTS 

1 Introduction 

The United States Air Force has a vital interest in providing continual, all-weather 

surveillance of large geographical areas. The breakup of major world powers coupled 

with the ease of access, purchase, and use of lethal weapons, has reduced regional 

stability overseas. Ironically, the dispersion of lethal threats takes place concurrent with 

a decrease in US foreign presence and an increase in restrictions on US military use of 

foreign airspace. This results in a need for a worldwide surveillance capability to protect 

national security, assets, and interests abroad. This capability requires wide angle 

scanning over large coverage areas and precision target tracking in high-density 

electromagnetic environments. 

One emerging solution to address this need is space-based radar. With its ability 

to cover large geographical areas continuously under all weather conditions without 

regard to airspace restrictions or forward presence, it has become a primary candidate for 

meeting this critical need. However, using radar platforms in a space environment 

introduces problems of platform weight, limited power, flexibility, and cost. It also 

requires overcoming major technological challenges of wide-angle precision tracking and 

multiple target discrimination from low earth orbit (LEO) and medium earth orbit (MEO) 

trajectories (see Figure 1). 



The following example provides insight into the problem by comparing the 

capabilities and requirements for air breathing radar platforms with those of space based 

platforms, operating at 12 GHz. In particular, the example compares the array sizes and 

element counts for an unmanned aerial vehicle (UAV), a fighter and an SBR. A UAV 

with a 1.1 by 1.1-meter array will have approximately 2,000 elements if populated at half 

a wavelength interelement spacing. Similarly, a fighter with a 1 by 1-m array has over 

1,600 elements. Finally, a SBR of 10 by 10-meters would require over 640,000 elements 

to populate the array at half a wavelength interelement spacing. 

1 
Medium Earth Obit 
3,00Clcmto30,00Qkm 

Low Earth Orbit 
surface to 3,000km 

Figure 1.1 Low and Medium Earth Orbit Altitudes 



Taking the element counts above and looking at the power, size, weight and cost 

limitations, it is evident that the implementation of a SBR is not a simple problem. The 

demands of space-based platforms require an unconventional look at how to achieve the 

same performance with less power, smaller size and lighter weight. 

Some approaches involve using constellations or clusters of multiple smaller 

platforms networked together (Figure 1.2), collapsible parabolic apertures, and splitting 

large apertures into smaller pieces to create a larger effective aperture (Figure 1.3). This 

research focuses on yet another approach by reducing the number of array elements with 

non-uniform interelement spacing. Concepts from this approach could prove useful for 

the above approaches and other large array applications. 

Figure 1.2 Networked Cluster of Space Based Radars 
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EFFECTIVE APERATURE 

Figure 1.3 Large Effective Aperture 

1.1 Problem Statement 

This research focuses on determining an optimal array design to rninirnize the 

number of radiating elements by utilization of non-periodic array structures. There are 

many methods of creating a non-periodic array structure. The specific methods of 

interest in this thesis are: 

• Deterministic: element locations based on an algorithmic approach, in 

particular a variant of the equal current area or volume approach. 

• Random: element locations randomly selected from a probability distribution 

function (pdf). The pdf used is the tapered current distribution on the baseline 

uniform array. 

• Statistical: periodic grid with interelement spacing of two wavelengths. 

Randomly selected element locations are "turned off or not used based upon 



a pdf. The pdf used is the tapered current distribution on the baseline uniform 

array. 

1.2 Assumptions 

The assumptions used in this research and modeling process are: 

• The mutual coupling between the array elements is negligible. 

• The elements are iso tropic radiators. 

• The array structure is assumed symmetric in each quadrant. This results in a 

reduction in complexity and cost in the manufacturing process, eases transport 

and construction requirements in space, and most importantly, decreases 

computational and implementation complexity. 

• The pattern factor is symmetric about the scan angle of 80 for all § and the 

scan angle §0 since the array structure is symmetric. 

• The computations for scan angles are only requested in the two principle 

planes defined by (j)o=0° and <t>o=90°. 

• Due to symmetry about the mainbeam, 9 is sampled from 0° to 90° and § is 

sampled from(j)oto (foplus 180°. 



1.3 Scope 

The approaches covered in this thesis are applicable to any size array. For trend 

analysis purposes and in interest of time, the focus is on arrays of 4, 8, 12, and 16 square 

meters. This thesis has the following tasks: 

• Find an optimal element reduction approach out of the three approaches 

mentioned previously. 

• Determine the optimal approach for the 4, 8, 12, and 16 square meter arrays 

that best meets the following operating requirements. 

• ±50° scan capability 

• Peak sidelobe level (PSL) threshold of-13.5 dB or less for aperiodic 

arrays. 

• 2 GHz to 12 GHz frequency range 

• Provide a metric for determining the effects of randomization on an array. 

• Provide a trend analysis for aperiodic arrays as the array size gets larger. 

1.4 Resources 

The computational program was developed using Microsoft Visual C++® V6. 

The graphical user interface and representation of results are in M ATLABR. Various PC 

platforms were used to execute the program They ranged from a Pentium 133 to a 

Pentium III 550, running either Windows 98 or NT. 



1.5 Overview 

This document contains a review of significant works in non-uniform arrays, the 

theory behind the deterministic, statistical, and random approaches, the selection of the 

optimal non-uniform approach, and the optimal approach applied to four different sized 

arrays. Chapter 2 contains a review of periodic arrays and literature review of significant 

writings on non-uniform, random, and non-periodic array theory and synthesis. The third 

chapter is devoted to the theory behind the approaches used in this effort. Chapter 4 

contains the application of the non-uniform element reduction approaches to the arrays 

and the methodology used to determine the optimal array approach. The fifth chapter 

provides the results and analysis from the application in Chapter 4. Chapter 6 contains 

conclusions and recommendations based on the results presented in Chapter 5. 



2 Background 

This chapter lays a foundation for both periodic and aperiodic linear arrays. It 

concludes with a summary of the advantages and disadvantages that are inherent to each 

array type. 

2.1 Periodic Arrays 

An array can be broken down into its individual radiating elements. The array's 

pattern factor is just the summation of the radiation pattern from each element in the 

array. 

2.1.1. Pattern Factor 

The patter factor for a single element is 

/(¥) = /exp(/F) (2.1) 

where 

x¥ = ßsw(6) 

ß = 2JL . 



The far field pattern is the summation of each individual radiating element's 

contributions in a given direction. For N isotropic, in-phase elements spaced along the 

x-axis, the pattern factor is equivalent to 

/(0) = 2/nexp(;Rsin(0)) (2.2) 
n=l 

where 

in = the current on the nth element 

dn = the distance of the nth element from the point of origin in meters 

9 is referenced off of the z-axis (see Figure 2.1) 

X 

Figure 2.1 Spherical coordinate system 

The two independent design variables are the element locations dn and the 

element weighting or currents in. However, for equally spaced arrays, the element 

locations are normally fixed to half a wavelength, leaving the elements' weighting as the 

only design parameter (Steinberg, 1974:124). 



Since the current magnitude of the antenna is equal to the sum of the individual 

element currents, the equally spaced array with a uniform current distribution has a 

normalized current magnitude, /, of one. Therefore, the excitation coefficients or 

weightings become 

and 

I = N-i„   n = 1,2,3.. .,N (2.3) 

in=HN . (2.4) 

Now for 1=1, in becomes 

in=\/N    n = l,2,3...,N   . (2.5) 

Reducing the array factor by substituting Equation (2.5) into Equation (2.2) gives 

/®-iS 
N r 

j2ud(n -1) sin0 
exp 

X (2.6) 

where d is the interelement spacing. With the excitation being uniform, the last design 

freedom is no longer available. 

2.1.2. Sidelobes 

Sidelobes are minor lobes in the array pattern (see Figure 2.2). Reductions in 

sidelobe levels are desirable since they are a large source of power loss. The number of 

sidelobes in one period of the pattern factor relates directly to the number of elements in 

the array. For N elements, there is one mainlobe and N-2 sidelobes in each period. The 

sidelobe widths are 2xc/N while the main and grating lobes are twice this width. As N 

10 



increases, the number of sidelobes increases while their width and peak values decrease. 

As N approaches infinity, the sidelobe levels approach that of a uniform line source 

(Stutzman, 1998:100). 

i, 

Grating Lobe Major Lobes 

Minor Sidelobes      i           T7. .,,   „   . i            Visible Region 

Main Lobe 

\    fCF) 

1      1 r\ 
/ l\\                 '             2n(2d/X) 

-Sn         -4n          -3TT           -2n -It        0        K 

vF=ßdsin(e) 

2n 3it 471 57t 

Figure 2.2 Normalized Radiation Pattern For A Uniform Aperture Distribution 

2.1.3. Grating Lobes 

The largest source of periodic array limitations and power loss is the grating lobe. 

Grating lobes are additional major lobes (see Figure 2.2) whose power intensity is equal 

to that of the mainlobe (Stutzman, 1998:99). These lobes are a result from the coherent 

sum of all the elements' radiation at angles other than the steering angle (Steinberg, 

1976:125). In a periodic array, to avoid grating lobes from appearing in the visible 

region, the interelement spacing needs to be less than half a wavelength. This stems from 

the fact that for d=?J2 only one period of the array factor appears in the visible region 

(-nil <9<7i/2) (Stutzman, 1998:98). The portion of the array factor that appears in the 

11 



visible region is determined by setting the period of the pattern factor to the phase 

progression over the visible region, 

„.._. In sin(0) 
Y(0) = a + j±-± (2.7) 

Substituting the limits on 0 into Equation (2.7) gives 

2dn    ...... 2dn 
a - — < Y(0) < a + — (2.8) 

or 

^ < 4-f (2.9) 

For one period (2n) to be in the visible region, Y must equal 2n. Then Equation (2.9) 

becomes 

27r<^^ • (2.10) 

Finally, solving for d 

d = - (2.11) 

which is the half wavelength interelement spacing. 

Grating lobes further affect array capabilities by limiting the scan angle of the 

array. The maximum scan angle of an array is the maximum steering angle prior to the 

introduction of grating lobes in the visible region. 

12 



2.1.4. Scanning 

Electronic beam scanning occurs through cumulative changes in phase. By 

progressively shifting the phase (a) on each element, the summation of the phases results 

in the mainbeam being directed off boresight. This electronic form of beam steering 

allows scanning without physically moving the aperture. The new direction of the main 

beam is found by solving Equation (2.12) for 90, and then finding the angle where the 

array factor is a maximum This maximum occurs where ¥=0. So setting 

„,,_. In sin(0) 
Y(9) = a + -^-L (2.12) 

to 0, and solving for a results in 

27rsin(0o) 
a = -■ 

X (2.13) 

Then solving for 90 

G° = 7t~asm( lÄn   ' <2-14) 

Equation (2.14) determines the maximum scanning angle for the array. 

2.1.5. Mutual Coupling 

Mutual coupling is another design consideration with arrays. Coupling can occur 

from the feed structure and surface paths, along with reflections at the antenna terminals, 

and element radiation (Steinberg, 1976:124). Each element's radiation induces currents 

13 



upon all the other elements in the array. The radiation-coupling coefficient, cm , between 

elements m and n is 

sin(cLß) 
c„ 

dmnß 
(2.15) 

Coupling affects gain, effective element pattern, and transmitter load (Steinberg, 

1976:125). Theoretically, coupling effects are calculable; however, in practice they are 

not. The best approach to dealing with mutual coupling is to make it negligible. One 

way this can be accomplished is by thinning or over spacing the array elements. The 

drawback of thinning is that it reintroduces the problem of grating lobes, unless the array 

is aperiodic (Steinberg, 1976:125). 

2.2 Aperiodic Arrays 

As stated in the introduction, very large arrays with equal spacing require a large 

number of elements. With aperiodic structures using fewer elements, it is possible to 

gain a higher direction finding resolution than with periodic arrays (Andreasen, 

1962:138). Furthermore, aperiodic arrays have wider scan capability over a larger 

frequency band (Andreasen, 1962:137). 

2.2.1. Pattern Factor 

The previous section stated that an array's pattern can be broken down to its 

individual elements' radiation pattern. This is still applicable to aperiodic arrays. 

14 



The only change occurs in the parameter dn in order to account for phase progression 

along the array. The pattern factor is still 

/(0) = ]T;„exp 
«=1 

where 

jdn2its,m{6) 

Ä (2.16) 

in = the current on the nth element 

dn = distance from the center of the array to the nth element in meters 

However, aperiodic arrays differ from the periodic in that their element positions dn are 

not chosen to be equally spaced along the array. In the past, the selection of element 

locations for aperiodic arrays was a trial and error process due to the limited 

computational capability. Trial and error approaches are highly inefficient and require an 

abundance of time. A more efficient method for the selection of element positions is the 

use of deterministic sampling algorithms. 

2.2.2. Deterministic Array Thinning 

The deterministic approach uses an algorithm to choose the element locations. A 

common deterministic approach is density tapering. Density or spatial tapering on an 

aperiodic array is directly equivalent to current or amplitude tapering of a periodic array 

(Sandier, 1960:496). This is where the selection of element locations are found by 

dividing the area under the current excitation function into equal subsections. Then the 

elements are placed in the middle of each equal area subsection (see Figure 2.3). This is 

the deterministic approach used in this research. Chapter 3 will discus this method 

further. 

15 



I(x)=.5(l-cos(27ixlyL+7i))  AI(x)      ^ Equal Areas 

Xi       x An-l An 

h- 

Figure 2.3 Example Of A Linear Deterministic Array Element Distribution 

The reciprocal current density is another deterministic algorithm, similar to the 

equal area approach. Each successive element's location is relative to the previous 

element's position based on the reciprocal of the current excitation on that previous 

element. The first spacing is 

D 
d0l = 

i(xQ) (2.17) 

where D is the designer proportionality constant. With the first element located at x0=0, 

the next element is located at 

%i — x0 + d01 — 
D 

i(x0) (2.18) 

For the second element, the distance from xx is 

dn = 
D 

i(xr) (2.19) 

16 



placing X2 at 

•V^    ~~  Ai     i    t*i^   ^~   IS 
<   1 1   ^  +  

i(x0)    i(xj (2.20) 

Therefore, the nth element location is 

A deterministic approach taken by Sheldon Sandier is based on spatial frequency. 

"Spatial frequency is a measure of the variation of each element contribution with far 

field angle" (Sandier, 1960:496). In this approach, elements are spaced from each other 

based on harmonic frequencies of the uniformly spaced array. 

(N-D/2 

f(6) = 1 + 2  ^cos(2dmncos(9)) (2.22) 
m=l 

where 

d = element spacing in fractions of a wavelength 

N = total number of elements. 

In Equation (2.22), the lowest array frequency is associated with the center element, with 

the fundamental frequency given by the m=\ term, the first harmonic given by the m=2, 

up to the m=(7V-l)/2 term. For instance, take 3 elements in a line. Make one the center 

and place the other two a distance d, from the center. The distance d deteraiines the 

fundamental frequency for the 3-element array. Now take two more elements and place 

them 2d from the center. These last two elements, due to the periodicity (integer 

multiples of length d) of their location, will determine the first harmonic frequency of the 

array. Add two more elements and place them 3d from the center and this generates the 

17 



3rd harmonic frequency. The harmonic frequencies are due to the periodicity of the 

element locations. Since the uniform array is composed of multiple pairs located by 

integer multiple of d away from the center, there are multiple harmonics. Applying this 

concept to a nonuniformly spaced array results in an unevenly distributed spatial 

frequency spectrum This approach determines the element locations based on desired 

frequency capability of the desired array. 

Some other deterministic approaches are log density taper, primes, arithmetic 

progression, controlled cosines, and elimination of multiples. (King and others, 1960) 

The log density taper places the fan element at a location l-log(lO-fc) from the center of 

the array. For prime numbers spacing, the element locations are generated by taking a set 

of successive prime numbers, doubling those numbers, and scaling them down by 

dividing by 100 (see Table 2.1). 

The arithmetic progression is generated with an initial spacing of 1 and a common 

difference of 1/7. In other words, each element location in given by dn 

n 
dn  = 1 + ~ (2.23) 

where dn is the distance between the element and array center. 

18 



Table 2.1 Prime Number Element Spacing 

Element Prime 
Prime 

Doubled 

Derived 

Spacing 
Distance 

1 53 106 1.06 1.06 

2 59 118 1.18 2.24 

3 61 122 1.22 3.46 

4 67 134 1.34 4.80 

5 71 142 1.42 6.22 

6 73 146 1.46 7.68 

7 79 158 1.58 9.26 

8 83 166 1.66 10.92 

The controlled cosines is generated by 

A = 20 log 

d> 
c + 2^cos(2nZ -y) 

k=l A 
In + c (2.24) 

where 

A = the magnitude of the pattern factor in dB, 

Z= Sm!„(sin0 -sin0o) 

Smin = the smallest of the set of unequal spacings in wavelengths, 

6 = the angle to which the beam is steered, 

So = the azimuth angle measured from broad side, 

2n+c =the number of elements in the array 

c-\ for odd elements and c=0 for even elements 

19 



di/Ä = the distance in wavelengths from the center of the array to the Mi element. 

The element locations, dk, are a set of distances that evenly spread the product Zdi/h, 

from 0 to 1 for all Z from .05 to 2. This will minimize the sidelobes in the range of Z 

from .05 to 2. 

The elimination of multiples is just the placement of the elements such that no 

spacing between two elements is a multiple of one-half. Table 2.2 gives sample location 

for the first 7 elements of each of the linear array types. 

Table 2.2 Other Deterministic Array Element Locations (In Wavelengths) 

Array Type Xo Xr x2 x3 x4 x5 x6 
Uniform 0 0.5 1.0 1.5 2.0 2.5 3.0 

Logarithmic 0 1.0 2.1 3.4 4.9 6.6 8.7 
Prime Numbers 0 1.06 2.24 3.46 4.8 6.22 7.68 

Arithmetic 
Progression 

0 1.0 2 1/7 3 3/7 4 6/7 6 4/7 8 3/7 

Elimination of 
Multiples 

0 1.0 2.05 3.15 4.3 5.6 6.95 

Controlled 
Cosines 

0 1.0 2.1 3.4 4.9 6.6 8.5 

There are many deterministic approaches to choose from, determining which 

approach is best is not an easy task. One has to look at how each affects desired pattern 

parameters and select one that best meets performance requirements. One way to skirt 

that selection process is to use a statistically controlled aperiodic thinning technique. 

2.2.3. Random and Statistical Array Thinning 

These two are grouped together since they are both handled via application of 

statistical theory. An array constructed with element locations chosen by some random 

process is a random array. In the statistical approach, the element spacing is initially 
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uniform. A fraction of the elements are randomly removed. Both array-thinning 

methods share the same statistical properties even though they involve different design 

approaches (Steinberg, 1976:140). 

The statistical density taper approach evolved from the study of random 

amplitude and phase errors in an array. The same mathematics is applicable to random 

errors in element location. This evolved into an approach of taking a filled array and 

removing elements according to some random or statistically process. 

Another approach is to let a random process supply the element locations. For 

instance, take the current distribution on a uniformly spaced array and make it the 

probability density function for the random process that selects the element's location. 

Now randomly select a probability density function (pdf) level and find random location 

values that produce a pdf value less than the random pdf value selected (see Figure 3.3). 

This process is repeated until the desired number of elements is reached. 

Selecting the number of elements can be based on desired thinning levels, average 

sidelobe levels (ASL), or peak sidelobe detection (PSD). Thinning level is just a 

percentage reduction in the number of elements from a fully populated array. The ASL is 

based on selecting an average sidelobe level and using the normalized theoretical average 

sidelobe level of 

ASL = - (2.25) 

to determine the number of elements, N, for the array (Steinberg, 1972). These are non- 

complex approaches to deriving the number of elements. However, they do not provide 
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decent sidelobe control. A random method that provides more control is by a random 

process described by a tapered probability distribution. This would result in fewer 

elements at the outskirts of the array, resulting in lower sidelobe levels. 

In an approach presented by Maffett, a method is given to design an aperiodic 

linear array. This array is composed of one-fourth the number of elements needed by a 

uniformly spaced array, with no mainlobe beamwidth sacrifice, and only a 5-dB sidelobe 

sacrifice (Maffett, 1962:131). The number of elements is found by first taking the 

sampled version of the desired pattern factor G 

Ä fl, n  =  0 
G(u)  =  2J 

£nbn cos(kxnu), s*   =  U n  *  0 (2>26) 

where 

W = COS0-COS0O 

0 = observation angle 

60 = beam steer angle 

bn = the amplitude factor 

nn = element location 

and dividing it by the total source current A. Taking the moments of G/A, for suitable 

values for the length L of the array and the number of elements N, the expression for G/A 

can be approximated by the normal distribution (Maffett, 1962:133). The advantage of 

the normal distribution is that it provides a very useful statistical description for the 

random array. 

Steinberg also presents another technique that combines sidelobe levels and the 

required number of elements for statistical arrays in his articles discussing the theory of 
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peak sidelobe indicators. Y. T. Lo also presents a variant of this method (Lo, 1967:231). 

The maximum peak sidelobe is predicted given a desired confidence level that sidelobes 

will not exceed the predicted level. Chapter 3 covers this technique in more detail. 

2.3 Aperiodic vs. Periodic 

This section gives a brief summary of the similarities, advantages, and 

disadvantages of the aperiodic and periodic arrays. 

2.3.1. Similarities 

Some things are relatively unchanged between periodic and aperiodic arrays. As 

mentioned earlier, the fundamentals of the array factor do not change. Since beamwidth 

is primarily dependent on array size, it remains unaffected by using variable interelement 

spacing in an array, assuming the thinning is not excessive. 

2.3.2. Advantages 

The primary advantage of aperiodic arrays is the reduction in the number of 

elements required to populate the array. Depending on the extent of thinning, the 

reduction can provide significant cost and weight savings. 

Another major advantage of aperiodic arrays is that the average spacing can be 

designed to be over several wavelengths, without running into grating lobes 

(Lo, 1968:425). This allows for greater beam steering range. Increased spacing also 

reduces the effects of radiation coupling. From Equation (2.15), it is apparent that the 

effects of radiation coupling are dependent on the spacing of the two elements in 

consideration. As dmn increases, the coupling decreases. The reason for not allowing dmn 
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to be larger than half a wavelength in a periodic array is due to the introduction of grating 

lobes into the visible region. With aperiodic arrays, the periodicity of the structure is not 

there to allow the development of grating lobes (Steinberg, 1976:125). 

Finally, the variation in the elements' location allow for better array performance 

over a larger band of frequencies. Since the distance from the origin of each element 

varies, the frequencies with wavelengths equal to or multiples of those distances, will 

radiate more efficiently with an aperiodic array. 

2.3.3. Disadvantages 

The improvements in scan angle, bandwidth, and fewer elements, comes at a cost. 

The major expense is in design control of the radiation pattern in the sidelobe region. 

With a reduction in the number of elements, the sidelobe levels not only increase but also 

lose their predictability outside the neighborhood (past the third null) of the main beam. 

The other cost encountered is gain loss. With fewer radiating elements, the total array 

gain is going to be less than that of the periodic array of the same size with the same 

element types and feed structure. 

With the foundation laid down in this chapter on periodic and aperiodic array 

structures, the next chapter will further develop the aperiodic array thinning techniques 

that are used in this thesis. 
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3 Theory 

This chapter examines in depth, the three approaches chosen as possible optimal 

design methods. All three approaches are referenced to a baseline or control array of 

equally spaced, uniformly excited elements. Coverage of the baseline array is first along 

with an equally spaced array employing an amplitude taper. Then a discussion is 

provided on the deterministic approach, followed by a brief section on random array 

statistics. Finally, a detailed look at the last two approaches, statistic and random array 

thinning, is presented. 

3.1 Periodic Arrays 

3.1.1. Spacing 

The baseline array is a fully populated array with elements separated by half a 

wavelength. The choice of wavelength is determined by the operating frequency. Since 

the array is to operate over a range of frequencies, one must decide which of those 

frequencies determines the spacing. For this thesis, the frequency selection is based on 

the idea that the element locations are sampling intervals for the current distribution 

producing the desired pattern factor. At the lower frequencies, the wavelengths are larger 

providing lower sampling resolution for the higher frequencies. However, using the high 

frequency for element locations, provides over sampling of the current distribution at 

lower frequencies. Since it is more advantageous to have over sampling than under 

sampling, the highest operating frequency will determine the design wavelength. 
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3.1.2. Current 

The baseline array has a uniform current excitation. An equally spaced array with 

amplitude tapering is also used. This amplitude-tapered array provides an equally spaced 

array that is optimized for low sidelobe levels. This optimized equispaced array provides 

a low sidelobe array for approximation purposes by the aperiodic arrays. A commonly 

used tapered current excitation is the raised cosine, given by 

hM = 2 
,2x„ff       ^ 

1 - COS( — + 71) (3.1) 

where 

ii{Xn) = the current on the nth element in the uniform array 

L = the length of the array in meters 

At the edges, -L/2 and L/2, the current drops down to zero, while reaching a max of one 

at the center of the array (x„=0). The design array is a two dimensional, planar array, so 

ir must also be planar to produce the same current excitation along the y-axis. The 

current excitation for the array is just a product of the x and y current functions. In this 

case, ir becomes 

1 
h(xn,yn) 

(, 2xnit      J, 2ynn        \ 
1 - COS( — + It)     1 - COS(^^- + Tt) 

L W (3.2) 

where 

W = the width of the array 

yn = nth element location on the y-axis, ranging from-W/2 to W/2. 

Figure 3.1 contains an example plot of the tapered current distribution for a 4-m2 array. 
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Figure 3.1 Tapered Current Distribution On A 4 M2 Array With Maximum Value Of 1 And Axes 

Normalized To L, The Length Of The Array. 

3.2 Deterministic Approach 

One of the easier array thinning approaches to implement is the deterministic 

approach. A modified equal area element distribution is chosen as the deterministic 

thinning approach. It is a spatial taper approach based on element location dispersion due 

to equal area regions under the current excitation function (see Figure 3.1). The 

modification comes from placing elements at the ends of the array in order to maintain 
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the beamwidth requirements. Otherwise, the rest of the process follows the spatial taper 

approach described in Chapter 2. 

As previously stated, a periodic array can be viewed as a continuous current 

distribution sampled at equally spaced intervals. Each of these samples has a magnitude 

equal to the excitation current at each sample point. This gives a sampled approximation 

of the array's excitation current i(x). For this deterministic approach, the first step is to 

divide the total area under the current distribution curve into equal area subsections. The 

cumulative current distribution as a function of x is 

I(x) =   ji(x)dx   . (33) 
-L/2 

Integrating over the length of the array gives the total area under i(x). Labeling it IT, 

L/2 

IT =   \i(x)dx (3.4) 
-L/2 

and then dividing it into N-2 equal subsections of area, gives 

Ir 
eq      N — 2 (3-5) 

which is the equal area value that each interval or subsection of i(x) must contain. Once 

the intervals are found, the element locations are placed at the midpoint of the interval. 

Therefore, each element location is determined by combining (3.4) and (3.5). 

tf-ÜT = JlWUJC  ■ (3.6) 
7«* =7rfr= li(-x)dx 

"n-l 
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The value for the first non edge element, xj, is 

a, -0 
*i = "V- (3.7) 

In Equation (3.7), Xi is located halfway between ao and aj. The value for ai is 

determined by solving Equation (3.6) for an ■ When n=l, Equation (3.6) becomes 

/„„ = —-— = J i(x)dx 
eq     TV - 2     0 

(3.8) 

Using Equations (3.6) through (3.8), the location of the nth element is found to be 

a — a  , 
** = -^r^ • (3.9) 

For example take a five element linear array. At a frequency of 3 GHz, the 

wavelength is 0.1 meters. Since the desired minimum interelement spacing is two 

wavelengths, the first pair of elements will be located at ±0.2 meters about the center 

element of the array. Taking 0 and 0.2 as the limits of integration for Equation (3.6) the 

equal cumulative current density is found. The next pair of elements are located where an 

sets the integral in Equation (3.6) equal to the Ieq. Repeating this process determines the 

locations for the rest of the elements. 

3.3 Statistical Theory for Random Arrays 

The following development is based on Steinberg's "Theory of the Random 

Array" (Steinberg, 1976:139-188). It starts with a linear random array of N elements that 

have corresponding element locations of xn on the x-axis. The location values of xn are 
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from a set of independent random variables. These variables have some arbitrary 

probability density distribution wj(x). 

In Figure 3.2, the length of the array is L and has a current density of i(x), which 

is a sum of <5 functions at each x„ on L. 

i(x) = YJ8(x-xn) 
M=l 

(3.10) 

III         ^(x) 

Xn 

4                             L                                  b 

X 

^                                   w 

Figure 3.2 Sample random array 

The Fourier transform of i(x) is the complex far-field radiation pattern f(u). The 

pattern is proportional to the sum of unit vectors, since i(x) is a set of 5 functions whose 

Fourier transform is one. i.e., 

/(") = ^exTp(jkxnu) 
rt=l 

(3.11) 

where 

xn = distance of the nth element from the array center 

u = sin(0) - sin(0o) (3.12) 

(3.13) 
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The amplitude on the mainlobe is going to be equal to the number of elements, N. 

The RMS amplitude of the sidelobes is ■<J~N . The mean of the sidelobe power pattern is 

N, which is the square of the RMS amplitude. The power ratio of average sidelobe (N) to 

mainlobe (N2) is N/N2, which simplifies to 1/N. This is the theoretical average sidelobe 

level. 

3.3.1. Average Array Factor 

Since the random array's element locations differ from one run to the next, the 

pattern factor needs to be in terms of averages. Therefore, the next item of interest is the 

ensemble average of random arrays. The ensemble average of a pattern factor is 

fW = T7(EexP(^«"^ (3-14) 

where the over bar represents the average value. 

Since all the random variables x„ are from the same population, each term has the 

same average value. In addition, the average value of the sum is equal to the sum of the 

average values. This reduces the pattern factor to 

            I     N   
f(u) = expC/fayO — X1 = expO'ta„iO 

N ~   (3.15) 

An important statistical attribute to notice with Equation (3.15) is that it is the 

characteristic equation for the random value x, which in turn is the average value of 

exp(7 kxnii). The characteristic equation is also equal to 

expO'fcx,,«) = J w^x) exp(jkxnu)dx Q^ 
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This is similar to the desired array pattern factor of 

flu) = | i0(x) ex.p(jkxnu)dx ^^ 

If fo(u) is the normalized pattern factor then io(x) is normalized, and by setting the 

weighting function to the normalized current excitation 

wlW  = j
0W (3.18) 

then the following equivalency can be made 

fiu)  =  f0(u) (3>19) 

This is an important relationship since it states that the ensemble average of the 

complex random array can be matched to any radiation pattern with a real current 

density. This is accomplished by selecting the pdf of element locations according to 

Equation (3.18). 

3.4 Statistical Approaches 

The statistical approach is another type of random array thinning. It originated 

from analysis on periodic arrays with random element failure, and phase or amplitude 

errors. It essentially looks at the results of randomization on periodic structures. 
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3.4.1. Statistical Density Taper 

The starting point is a periodic grid with an interelement spacing of two 

wavelengths. The randomization comes into play through a random process controlling 

each element's excitation. The normalized tapered current iN(xn,yn),that would excite the 

nth element, is compared to a randomly generated number from a uniform distribution. If 

the random number is less than IN, the element is turned on with a current amplitude of 

one. If it is greater, than the element is off or not present in the array. Looking at Figure 

3.3, if p(n)=.25 for the nth element, that means there is only a 25% chance that the 

element is "on". There are more numbers (between 0 and 1) greater than 0.25, than there 

are less than 0.25. Therefore, by setting the "on" state dependent upon the random 

number being less than p(n), results in the appropriate probability that the element is 

"on". 

P(n) 

_1.0 

__^—-""'Prob ability that/-^1 

element is at 
location n 

A. 

-L/2                           4    3     2    1 3    12     3    4           n              L/2 

X 

Figure 3.3 The PDF For Both The Random And Statistical Array Approaches. 
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If there is an N element filled array, the array factor is 

/(M)=    X   VXP°'V (3.20) 
n = 1 

where 

Fn = element on/off factor, either 0 or 1 

Wn =phase on the nth element. 

In this array, Fn is selected randomly to be either one or zero. It is chosen randomly from 

element to element so that its ensemble average is 

Fn=k-An (3.21) 

where 

k = the degree of thinning 

An = the amplitude of the current excitation on a filled array whose pattern factor, 

fo, is being modeled. 

When k=l, an array is naturally thinned. Depending on array geometry, natural thinning 

reduces the number of elements to 40 to 60 percent of the element count of the original 

array. 

The desired or modeled pattern factor is 

MB, 0)  =      1     \ exp(/Fn)   . (3>22) 

n  =  1 
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Since Fn is random process, so is the pattern factor/. If the number of elements, N, is 

large, the central limit theorem states that the distribution for/f 9, (/>), for a given 9 and 0, 

will be approximately Gaussian (Collin, 1969:221). Furthermore, due to independence of 

the random variable x, the mean value of the sum is the sum of the means. Just as in the 

previous section, the average pattern factor is identical to that of the amplitude tapered 

array. Therefore combining Equation (3.21) with Equation (3.23), for k=l, the ensemble 

average of the reduced element array is equivalent to the modeled array f0. 

N 
f(ß, 0)  =      X     Fn- expO • \) 

n = 1 

1     An ■ expU • Yn)  =/o(0, 0) 
n  = 1 

Squaring the ensemble average in Equation (3.21), results in the power pattern 

(3.23) 

|/(0, 0)|    =  f(9, 0) • f(9, 0)    = 

1 1 FnFm exP(;(Yn - YJ)  " (3.24) 
n m 

The mean of a product of independent random variables is equal to the product of those 

means. Since Fn and Fm are independent when n^m, the average becomes 

|/(M)| *=JJ;F/B expC/CF,, -TJ) + 2^2 (3.25) 
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The values for F„ and Fm are either zero or one, therefore the second summation in 

Equation (3.25) becomes 

n n n 

Applying the theorem for the sum of the averages to the first sum in Equation (3.25) 

results in 

EZAAexp(T„-Tm) 
n     « (3.27) 

In order to make Equation (3.27) equivalent to the square of the modeled pattern factor in 

Equation (3.22), the n=m components need to be added. Adding and subtracting the n=m 

components gives 

|/(0,0)|2 = /o(S,402 + X V1 - V   • (3.28) 
n 

Looking at the two terms above, we see that the first term is the power pattern for the 

amplitude-tapered array. The second term is only dependent on the number of elements 

and the amplitude tapered array's illumination current and not on 0 and </>. This implies 

that the average radiation pattern is predictable based on the illumination currents of the 

tapered array. An important note about Equation (3.28) is that the second term dominates 

the pattern outside the neighborhood of the main beam and defines the average sidelobe 

level of the statistical sidelobes (Collin, 1969:223). 
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3.4.2. Random Array 

The following development is from Steinberg's peak sidelobe theory for random 

arrays (Steinberg, 1976). Steinberg provides a method to control the statistical sidelobe 

levels. While theoretically complex, it is simple to implement mathematically. First, a 

revisit of the average power pattern, with a slightly different approach, is necessary. 

The power pattern is the product of the pattern factor and it's conjugate. The 

normalized ensemble average of the power pattern is 

|/(")|2=/-/*=-^-   I      X   cxp(jk(xn-xm)u) (3.29) 
™     n - \m = 1 

Through the following reduction 

~ 1 N     M    . 

|/0)|   =T3--XEexPW'^-*m)") (3.30) 

\f(uf =^T(N + exV(jkxu)exp(-jkxu)(N2 - N)) 

N' 

the average pattern becomes 

N      N 
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\f(uf = "W + f0(u)f0\u)(N2 - N)) (3#32) 

\m\2=\f0(uf.(l-±-) + ±- (3.33) 



In other words, Equation (3.33) states that near the mainlobe region of the design pattern 

(where \f0(u)\2~l), the amplitude of the mainlobe and nearby sidelobes are greater than 

l/N, so the patterns are relatively unchanged. In the statistical sidelobe region, the 

sidelobe values of the design pattern fall below the 1/iV average sidelobe power of the 

random component and disappear leaving the region controlled by the random 

component (Steinberg, 1976:144). 

The next step is to determine the peak statistical sidelobe levels using the peak 

sidelobe estimator B. The peak sidelobe indicator predicts, to a certain confidence level, 

ß, that n number of samples of the pattern factor will not exceed some desired threshold 

level, Ao. The probability that any sample out of the n samples of the sidelobe pattern, at 

some angle u, falls between Ao and some 5 above Ao is 

Pr(^Q <A<AQ + 8A)=      f wx{A)dA . 

A. + SA 

i (3.34) 

Letting 8 go to infinity gives the integral 

CO 

a =     w1(A)dA = exp 
N (3.35) 

If n independent samples of the sidelobe pattern are taken, the probability that none of 

those samples exceeds the threshold level Ao is 

j8 = (l-aOB 1 - exp 
AT 

(3.36) 
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The quantity (A0)
2/N is the power ratio B. The parameter B, which is also the 

peak sidelobe estimator, is the ratio between the normalized threshold level and the 

theoretical average sidelobe level (1/W). To normalize the threshold level, it is divided by 

the peak power of the mainlobe, which is N2. Substituting B into Equation (3.36) and 

solving for B gives 

ß = -ln(l-/31/")  . (3.37) 

Finally, the number of samples that needs to be taken for a desired B, must be 

determined. The value of n brings in all the relevant array properties (length, frequency, 

and scan angle) with the exception of the number of elements, N. The number of samples 

to be taken is chosen by using the Nyquist sampling theorem This theorem states that 

for a band limited wave, with a maximum bandwidth of W, can be determined uniquely 

by values sampled at uniform intervals of Ts seconds, where TS=2W (Sklar, 1988:58) 

The minimum sampling rate is two times the length of the array divided by the 

wavelength (Steinberg, 1976:154). This results in the number of samples being equal to 

the number of 2*L/A, intervals there are in the visible region. Since the visible region 

changes when scanning occurs, the number of intervals will change. At endfire, there are 

two lengths in the visible region, but at other angles, this is not the case and therefore 

fewer samples are required. This leads to 

n = — (1 + |«0|) = — (l + |sin(0o)|) (338) 
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samples to specify the complex radiation pattern. However, since the pattern is 

symmetrical, only half the number of samples is needed (Steinberg, 1976:154). 

Therefore, n becomes 

n = -(l + |sin(0o)|) . (339) 
A 

Taking Equations (3.37) and (3.39), and solving for N, results in the number of 

elements required for a specified threshold, A0, for an L length array, with a maximum 

desired scan angle of So- i.e., 

B 

-ln(l-/3 

A 

(l + sin(0o)) 
(3.40) 

) 

However there is one problem with Equation (3.40). The estimator B is biased. 

Look at Figure 3.4, which is a sample of a section of sidelobes from a power pattern. The 

highest peak is Bp. The process up to this point gives a peak-sampled maximum of B. 

The location of B is a distance AU away from the true peak Bp. Since AU is always 

greater than zero, then B is always less than Bp making B a downward biased estimator. 

To account for this, an average for AB is needed in order to add to B and remove 

the bias (Steinberg, 1976:161). This average is found by choosing a sample point close 

to the peak Bp and then approximating the power pattern around that point using Taylor's 

expansion. Through differentiation, averages, and further approximations (Steinberg 

161-165), the average becomes 
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A5 = l + 
B (3.41) 

Adding AB to B gives the new peak sidelobe estimator Bp 

(3.42) 

Figure 3.4 Peak Sidelobe Estimator 

The estimator Bp is the ratio of the unnormalized peak sidelobe to the average 

sidelobe level N. The value of Ao2 is the normalized peak sidelobe power, so multiplying 

it by the power of the mainlobe, N2, and substituting into Bp gives 

BP = NA; . 

Finally, solving for N. 
(3.43) 

(3.44) 
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In terms of B, N becomes 

2 
5 + 1 + - 

N = 5-5. . (3.45) 

This expression is used to generate the number of elements required for the random 

approach. 

3.4.3. Peak Sidelobe Indicator Statistics 

Looking at the statistical behavior of B will give some insight on what to expect 

fromBp, along with expected results. The probability distribution function of B is simply 

ß. The probability density function is simply the derivative of ß taken with respect to B. 

W(B) = H = n(l - exp(-5))"H exp(-fi) (3>46) 

The first moment is the average of B, and the second moment gives the variance 

about the average. The characteristic function of B is 

Ofl (5) = -J W(B) exp(SB)dB =nJ (1 - exp(-ß))""1 exp((5 - \)B)dB      ^Al) 
0 0 

Using the method of cumulants on the characteristic function gives the moments 

of B through the logarithm of the characteristic function 

m(0>s(S)) = -|>(l-^) (3>48) 

Using the power series expansion of the logarithm and solving for semiinvariants yields 
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Ar=(r-l)!jr (3.49) 
*=i 

Therefore, for r=l, the first moment of B, or its mean, is 

"   1 
^ 

=
 
A
,
=

XT (3.50) 
t tk 

where n is still the array parameter. 

The variance of B is 

"    1 

°2 = K = 1 2   sir (3.51) 

An important fact about the variance is that as the array size gets larger the variance goes 

to 

"1 7T2 

al =A2 = ETT=>-r asn-*°° • (3.52) 

Which is independent of the array size. 

Before going into the next chapter, lets review the important points developed 

thus far. For the average quantities of the random arrays: 

1. The ensemble average array factor is equivalent to the desired array pattern 

factor. 

2. Randomization does not significantly affect the mainlobe and nearby 

sidelobes. 

3. Randomization does dominate the sidelobe structure outside the mainlobe 

region. 
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The peak sidelobe theory provides a method to estimate the probability ß, that the 

statistical or random sidelobes do not exceed a sidelobe threshold level A0, for some 

maximum steering angle BQ. AS the size of the array increases the variance of the peak 

sidelobe indicator Bp, remains constant 
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4 Application 

This chapter goes into detail on the implementation of the concepts of each 

approach covered in Chapter 3. It starts with the pattern factor for a symmetric planar 

array, and then summarizes the mathematics for the array parameters of interest. The 

theory applicable to the linear array is also applicable to the planar array. The conversion 

of the pattern factor from a linear planar array is simple. The current excitation and 

phase progression simply contains a y component to account for the added array 

dimension. 

4.1 Planar Array Pattern Factor 

The pattern factor for a planar array is 

N    M 

/(Ö, *) = £ X Imn exp(;/3 Ymn(B, 0))  . (41) 
n-l m~l 

Except for the non-uniformly excited uniform array, the current amplitude, Imn, is equal to 

one. The uniform array has a tapered current of 

4 
1L .       2VY(    _.    , 2ynn 

1 - COS(7T + —)     1 - COS(7T + -ML-) 
W     1 L (4.2) 

J 

The phase Wmn(Q, (j)) is equal to 

TF».(
0

-0) 
= xm(sin Ö cos 0 - sin 0O cos 0O) + y„(sin 9 sin 0 - sin 90 sin 0O)     ^3^ 

where 60 and 0O are the beam steering angles. 
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Combining the three equations above, the pattern factor is dependent on 6, </>, Go, 

</>o, x, and y. These variables have ranges of 0 < 6 < nil, 0 < 0 < it, -WI2 <x< W/2 and 

-L/2 < y < L/2, respectively. Computing the pattern factor over these ranges takes up a 

lot of computation time. The total number of iterations or loops required is equal to the 

number of elements in the array times the number of sample points in 0 times the number 

of sample points in 6. That gives the number of iterations for one run for one approach 

with no scan or frequency analysis performed. For the simulations in this thesis, there are 

three scan angle runs (one boresight and then 0O=5O° in the xz and the yz principle 

planes), times the eleven frequency intervals. For a four square meter array with one 

degree angular sampling, the total number of iterations for the uniform array at 12 GHz 

would be 

(180 deg of phi)(90 deg of theta)(ll frequencies)(3 scan angles)* 

(160 * 160 elements)=1.3685760e+10 iterations. 

For sixteen square meter array, the number of elements is 4 times that of the four 

square meter array. For proper sampling of a pattern, there needs to be 16*71 times the 

area of the array in wavelengths. That is 16itAfk2 samples of the full pattern. Due to 

angular symmetry, only a fourth of the sampling needs to be done. Recalculating the 

above four square meter array example results in 

(16*7r*4/X2)(ll)(3)(160*160)/4= 6.794284e+10 iterations. 

As can be seen, the computational time required becomes enormous as the array 

sizes increase. In order to reduce this time, the array is assumed to be symmetric. Each 

quadrant is a mirror image of the two quadrants it borders. With symmetry, the pattern 
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factor can be reduced to computations in only one quadrant. Take a simple example of 

four elements symmetrically located in each quadrant of the x-y plane as seen in Figure 

4.1. 

(x2,y2)#      y- 

-x 

(x3,y3) 

(xl.yl) 

H > 

(x4,y4) 

Figure 4.1 Example Symmetric 4 Element Array 

For the array above, the pattern factor is 

M    N 

/(ö^) = EE7-exp 
m = l n=l 

jß(xm(sm6 cos(j) - sin0o cos0o) 

+ yn (sin 0 sin <p - sin 0O sin </>0)) (4.4) 

For notation simplicity, let the steering angles be zero, then the pattern factor for the 

above array would be 

f(9, 0) = 4 exp[/jß(;q sin 0 cos 0 + ^ sin 0 sin (j>)] 

+ i2 exp\jß(x2 s"1 ^ cos 0 + y2 sin 0 sin ^))] 

+ z3 exp[//3(^3 sin 0 cos 0 + y3 sin 0 sin </>)] 

+ i4 exp[//3(x4 sin 0 cos 0 + y4 sin 0 sin 0)] 

(4.5) 
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Since the current is symmetric also, then the current on each is also equal. 

Furthermore, the physical locations are related by Xj= x*= -x?= -Xi and yi- y2= -y3=-y4- 

Substituting a corresponding value of x-Xj and y-yi into Equation (4.5) results in 

f(9, (j>) = i exp{jß(x sin 0 cos (j> + y sin 0 sin </>)] 

+ i exp[jß(-x sin 0 cos ^ + v sin 0 sin 0)] 

+ i exp[jß(-x sin 0 cos <j> - y sin 0 sin 0)] ^'"^ 

+ i exp[//3(x sin 0 cos 0 - v sin 0 sin 0)J 

Using the trigonometric substitution of 

exp(±7'j8) = cos(jS) ± ;'sin(/3) (4>7) 

in Equation (4.6) and applying further trigonometric substitutions, the final pattern factor 

is 

/(0, <j>) = 4 cos(x/3 sin 0 cos 0) cos(v/3 sin 0 sin 0) /4 g\ 

This means that each set of four symmetric elements can be reduced to Equation 

(4.8). Those elements lying on the axis are in pairs so their combined pattern factor is 

half of that found in Equation (4.8). Therefore, the total pattern factor for a symmetric 

planar array is 

iV 

/(0, <j>) = 1 + 2   V cos(x/3(sin 9 cos (p - ax)) 

+ 2    >   cos(y/3(sin 0 sin 0 - ay)) /4m 

+ 4  £ 
n=l,jr^0, y^O 

(cos(;e/3(sin 0 cos 0 - ax)) * 

cos(v/3(sin 0 sin 0 - ofj,))) 
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where 

Nq = the number of elements in the first quadrant 

a = the beam steering phase progression for the corresponding x or y. 

This reduced form of the pattern factor only requires the first quadrant to be processed, 

reducing the computational time by approximately seventy-five percent. 

4.2 Parameter Values 

The values used for each approach are shown next. A summary of the parameters 

for each approach is given at the end of this section. 

4.2.1. Uniform and Baseline Arrays 

For the uniform equispaced array, the parameters for the array are constant. The 

interelement spacing is .0125 meters for a max operating frequency at 12 GHz. The 

maximum operating frequency is used to determine interelement spacing since at that 

spacing the lower frequencies will have more sampling elements. The maximum number 

of elements is equal to each dimension of the array divided by the wavelength. The 

product of these two becomes the total number of elements needed to fill the array. 

The current distribution on uniform array is tapered. It is a raised cosine function. 

As previously mentioned, the tapering reduces sidelobe levels. The current I(x,y) was 

given earlier in Equation (4.2) for the equispaced array. The aperiodic arrays will have a 

uniform current distribution. 
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The baseline array is used for comparison purposes and has the same structure as 

the uniform array above but has a uniform current excitation. Element and beamwidth 

are given in Table 4.1. 

Table 4.1 Uniform And Baseline Element Counts And First Null Beamwidth (FNBW) 

Array 
Area (m2) 

Number 
of 

Elements 

FNBW 
(rad) 

FNBW 
(deg) 

4 25600 0.01250 0.71656 
8 51200 0.00884 0.50668 
12 76800 0.00722 0.41371 
16 102400 0.00625 0.35828 
32 204800 0.00442 0.25334 
100 640000 0.00250 0.14331 

4.2.2. Deterministic Array 

Element positions are determined by equal area integrals of the tapered current 

density distribution applied to the uniform array. It is also desirable to have a minimum 

interelement spacing of two wavelengths to avoid mutual coupling. For the deterministic 

approach, elements will be closest in the center of the array due to the larger percentage 

of the volume under the current curve there. Therefore, taking in consideration the two 

wavelength lower limit, the current is integrated from zero to two wavelengths to get the 

equal area value for determining the remaining element locations. 
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Table 4.2 Deterministic Array Element Counts 

Array 
Area (m2) 

Number of 
Elements 

4 441 
8 961 
12 1369 
16 1681 

4.2.3. Statistical Array 

The statistical approach implementation is rather straightforward. A periodic grid 

is created with an interelement separation of two wavelengths. Then the value of the 

current at that x-y location in Equation (4.2) is calculated. A random number from zero to 

one is compared to the current value. If the random number is less than the current value, 

than the element is on by giving it a current value of one. This results in the element 

probability distribution being the same equation as the current function of the uniform 

array. Table 4.3 provides the maximum expected element counts for the statistical array 

if all elements are in the "on" status. 

Table 4.3 Maximum Element Count For Statistical Array 

Array 
Area 
(m2) 

Max 
Number 

of 
Elements 

4 1600 
8 3200 
12 4800 
16 6400 
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4.2.4. Random Array 

For the random approach, there are several items of interest. First, a desired peak 

sidelobe level A0, is selected, followed by the confidence level ß, that the sidelobes will 

not exceed that level. Then the number of elements N, is determined. 

First, an upper limit has to be determined for the number of elements. This sets 

the minimum attainable confidence level and peak sidelobe levels. In order to be 

feasible, the number of elements in the random array needs to be less than the number in 

the filled array. By setting N to the number of elements in the equispaced array 

N = ~Y (4-10) 

and placing Equation (4.10) into Equation (3.40), the lower limit of A0
2 is 

A 

Ao '=-j(-W-ß 2 _LW .   W1     fl
L(1+sin(0O)\, (4.11) 

)) 

Figure 4.2 contains plots of Equation (4.11) for array sizes of 4, 8, 12, 16, and 100 square 

meters versus the confidence levels. The peak sidelobe level threshold is -13.5 dB. This 

threshold value was chosen since it is the minimum peak sidelobe value for a uniform 

line source. Table 4.4 contains is a break down of the calculated values for N, n, B, ß, Bp, 

and Ao2 for the array sizes of interest and larger sized arrays. The larger arrays are 

included to demonstrate that the behavior of the element counts with respect to array size 

for random arrays. 
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Table 4.4 Random Array Parameters 

Array 
Area 
(m2) 

Confidence 
Level 

ß 

PSL (dB) 
Ao2 B Bp 

PSL 
Samples 

n 

Linear 
Array 

N 

Planar 
Array N 

4 0.65 -13.5 4.92 6.33 59.01 141 20080 
8 0.65 -13.5 5.27 6.65 83.45 148 22154 
12 0.65 -13.5 5.47 6.84 102.20 153 23426 
16 0.65 -13.5 5.61 6.97 118.02 156 24355 
32 0.65 -13.5 5.96 7.30 166.90 163 26681 
100 0.65 -13.5 6.53 7.84 295.05 175 30776 

-10 
  Random 4 m Beta vs PSL Threshold 
SKK4* Random 8 m2 i                   i                   i i                    i 

" "    Random 12 m2 

-11 ***** Random 16 m2 

—    Random 32 m2 

-12 
' 

Random 36 m 

  Random 64 m2 

-13 - - -    Random 100 m2 

Threshold 

jf~ 

-14 

' '                ..■..•■■*s**::;: ^°-15 

-16 

-17 

-18 

—  — ......   — — —   - 
._ -- — — "" ."~ ■■'"" - ■ 

.■■■'"                          /- 

_ -19 - 
____--'--""" 

i                     i .on i                    i i                   i                   i 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

Figure 4.2 Peak Sidelobe Level Vs Confidence Level For Various Array Sizes 
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The value for ß is set at 65% since it is the maximum confidence level possible 

for 4-m2 array (see Figure 4.2). This is because for the given frequency, the element 

count for a higher confidence level would exceed the number of elements required for the 

half wavelength equal spaced array. To keep all arrays on a level field, the confidence 

level remained at 65% for the larger arrays as well. Table 4.5 shows some of the 

expected parameters for higher ß values for various array sizes. 

Table 4.5 Random Array Parameters For Higher ß 

Array 
Area 
(m2) 

Confidence 
Level 

ß 

PSL 
(dB) 
Ao2 

B Bp 
PSL 

Sample 
s n 

Planar 
Array N 

Elements 
in 

Uniform 
Array 

8 0.95 -13.5 7.39 8.67 83.453 37632 51200 
12 0.998 -13.5 10.84 12.03 102.21 72473 76800 

16 0.999 -13.5 11.68 12.85 118.02 82749 102400 
32 0.999 -13.5 12.02 13.19 166.91 87207 204800 

100 0.999 -13.5 12.59 13.75 295.05 94799 640000 

4.3 Comparison Analysis Methodology 

4.3.1. Requirements 

The performance requirements for the arrays are in the areas of beamwidth, beam 

scanning, frequency range, and element reduction. For comparison and analysis, all 

thinning approaches referenced the performance of a baseline (uniform amplitude, 

equally spaced) array of equal size. Metrics are used to compare the different thinning 
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approaches and determine the overall optimal array performance. The next section 

discusses these metrics. 

4.3.2. Metric 

The metric is broken down into four areas. These areas are boresight, xz plane, yz 

plane, and element count. The first three areas are the three different mainbeam 

directions. The directions include each array's performance over the frequency band (2- 

12 GHz). Under each of these position categories, are subcategories for half power 

beamwidth (HPBW) and peak sidelobe level (PSL). Table 4.6 provides a breakdown of 

the metric along with the weightings that are used in the analysis in Chapter 5. The 

HPBW is found by simply finding the half power point for each array for both the xz and 

yz planes. Linear interpolation is applied if the half power point lies between two sample 

points. The HPBW is then determined by taking the square root of the product of the 

beamwidth in each plane giving the beamwidth, öWA, for that approach. The same 

method determines the beamwidth, bwe, for the baseline array. 

The final value used in the metric is 

HPBW  = 1 
^bwB - bwA^ 

bwB + bwA 
(4.12) 
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The PSL value is calculated by determining the number of angular samples 

greater than the threshold level of-13.5 dB and comparing that to the number of samples 

in the baseline array that exceeds the same threshold. The metric value is determined by 

the following 

PSL = 1 
pslB - pslA 

pslB + pslA 

N 
(4.13) 

where 

pslß= baseline PSL value 

PSIA= tliinning approach PSL value. 

Table 4.6 Breakdown Of Array Performance Metric 

Boresight (20%) 
Half Power Beamwidth (50%) 

Peak Sidelobe Levels (50%) 

XZ Plane (20%) 
Half Power Beamwidth (50%) 
Peak Sidelobe Levels (50%) 

YZ Plane (20%) 
Half Power Beamwidth (50%) 
Peak Sidelobe Levels (50%) 

Number of Elements (40%) 

The metric for the element count is found by subtracting from one, the ratio of the 

number of elements in the aperiodic array to that in the baseline array. 

Now that a metric (one of many possible metrics) has been defined, the next step 

is to apply that metric to each array to determine the optimal thinning approach. 
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5 Results and Analysis 

This chapter discusses the outcome of applying the covered theories, thinning 

approaches, and metrics. A brief process description is given, followed by the results of 

applying the metric formed in Chapter 4. Then the metric values are changed to 

emphasize HPBW, PSL, and boresight performance rather than element count. Next 

trend analysis plots for all the arrays are shown. Finally, the chapter concludes with an 

overall analysis section. 

5.1 Process 

The overall process from pattern factor generation to data analysis and results is 

shown in Figure 5.1. Appendix A contains flowcharts for the first two sections of the 

computational process. These two section are C++ programs. The first program 

generated all the pattern factor data for the given parameters of length, width, frequency 

range, number of sampling points for 0 and (j>, start and stop values for 6, desired 

confidence level, and PSL threshold. The second program was a data compilation 

program that sorted and compiled the data from multiple runs for analysis in MATLABR. 
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THMAIN (C++) 
Computes pattern factors, 
element location vectors, and 
current vectors for uniform, 
baseline, random, statistical, 
and deterministic arravs 

I 
THAVEDB (C++) 

Compiled multiple statistical 
and random array runs for 

each array configuration into 
single files for statistical 

analysis. Also converts any 
array pattern factor into dB. 

STATANALYSIS (MATLAB) 
Computed the average and 
standard deviation for each 

statistical array configuration 
creating a single ensemble 

average array for comparison 
analysis purposes. 

I 

RANDANALYSIS (MATLAB) 
Computed the average and 
standard deviation for each 
random array configuration 
creating a single ensemble 

average array for comparison 
analysis purposes. 

I 
THMETRIC (MATLAB) 

Compares all arrays (baseline, uniform, 
deterministic, random, and statistical) to 
each other in the areas of peak sidelobe 
levels, element count, and half power 

beamwidth. Then computes array 
performance based on given metric 
weightings for each area of interest. 

I 
RESPLOT (MATLAB) 
Plots the comparison 
results generated by 

THMETRIC 

Figure 5.1 Process Of Data Generation And Analysis 
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5.2 Results 

Due to the size of the arrays and the pattern factor sampling resolution 

requirements, the computational time was extensive. Along with the computational time, 

the volume of data generated and processed was overwhelming (15-20 GB). Table 5.1 

shows a breakdown of the number of resolution samples required and used for the pattern 

factor generation. 

Table 5.1 Pattern Factor Sampling 

Array 
Area (m2) 

Required 
Samples 

for Sphere 

Required 
for region 
of interest 

Samples 
per degree 

Theta 
samples 

Phi 
Samples 

Total # of 
Samples 

Used 

4 321699 80425 4.96 201 402 80802 
8 643398 160850 9.93 284 568 161312 
12 965097 241274 14.89 347 694 240818 
16 1286796 321699 19.86 401 802 321602 
32 2573593 643398 39.72 567 1134 642978 
100 8042477 2010619 124.11 1003 2006 2012018 

There were multiple runs (each with a different set of element locations) for the 

pattern factors of the statistical and random arrays to allow for statistical analysis (see 

for run counts). The runs for the statistical and random arrays are compiled together and 

the ensemble average of each array configuration was calculated. The ensemble average 

is the arithmetic average of each 6 and § pair from each sample run. For example, look at 

Table 5.3. The Average row contains the values for each 9 and (j) pair for the ensemble 

average pattern factor for the array. 
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Table 5.2 Approach Run Counts 

Area (m2) 4 8 12 16 
Statistical 37 14 29 21 
Random 42 20 30 20 

Random2 9 8 10 4 

Table 5.3 Ensemble Average Pattern Factor Example 

theta(deg) 0 0 0 0 1 1 1 90 

phi (deg) 0 1 2 0 1 2 180 

Runl 1.00 0.25 0.10 0.50 0.00 0.10 0.15 1.00 
Run 2 1.00 0.50 0.20 0.70 0.09 0.03 0.50 0.50 

Run 3 1.00 0.25 0.16 0.80 0.11 0.13 0.18 0.70 
Run 4 1.00 1.00 0.40 0.95 0.10 0.20 0.22 0.80 

«•• 

Average 1.00 0.50 0.22 0.74 0.08 0.12 0.26 0.75 

These ensemble average pattern factors for the random or statistical arrays are 

then used for performance comparison purposes with the baseline, uniform, and 

deterministic arrays. Comparisons for each frequency and scan angle (for each planar 

cut) are then calculated. 

There is an additional random array pattern in the comparisons. It is labeled 

"random". The "random" pdf has twice the period of that in the original random, 

"random2". It is included with this analysis to show the effects a second pdf on a random 

array that contains the same element count. 

Additional runs of higher confidence levels (.999) for the 16m2 array are included in 

the metric analysis. Additional single runs of statistical and random approaches applied 

to larger array sizes (25, 32, 64, and 100 m2). The results of these arrays are located in 

Appendix C. 
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5.2.1. Array Performance 

The first figure in each series represents the performance of the different thinning 

approaches for a given array size in the areas of beamwidth and PSL. The boresight 

performance of an array was determined by the performance of each thinning approach 

over all frequencies (2-12 GHz) for 90=<J)o=00, in the areas of PSL and HPBW. The same 

applies to the performance in the xz and yz mainbeam scan positions with angles of 

0o=5O0, (J)o=0°, and 90=50°, <j)0=90° respectively. The second set of plots breaks down the 

overall performance for each array into the three beam positions. Finally, trend analysis 

plots for all approaches versus array size are provided for metrics emphasizing reduced 

element count, HPBW, PSL, and boresight (mainbeam at 0o=(|>o=Oo). 
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5.2.2. Element Counts 

The resulting element counts are found in Table 5.4. Table 5.5 contains the 

statistical and random array element statistics. The advantage of the element reduction of 

the random array is not apparent in the 4 and 8 m2 arrays. The statistical and 

deterministic arrays outperform the random array in the area of element reduction. 

Table 5.4 Non Statistical Array Element Counts 

Area 

4 8 12 16 
Baseline 25600 51076 76729 102400 
Uniform 25600 51076 76729 102400 

Deterministic 441 961 1369 1681 

Table 5.5 Random and Statistical Array Element Statistics 

Area 
Statistic 4 8 12 16 

Statistical 
Array 

Element 
Count 

Average 389.00 787.00 1202.14 1571.67 
Variance 618.67 849.23 1461.98 4092.13 

Stdev 24.87 29.14 38.24 63.97 
Max 459 847 1271 1683 
Min 337 729 1139 1445 

Median 385 784 1193 1575 

Random 
Array 

Element 
Count 

Average 24961.71 27553.60 28897.47 30273.70 
Variance 5.97 4.04 4.95 3.91 

Stdev 2.44 2.01 2.22 1.98 
Max 24964 27556 28900 30276 
Min 24954 27550 28892 30268 

Median 24962 27554 28898 30274 
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5.3 Analysis 

5.3.1. Statistical Array 

From Figure 5.31, for the reduced element count emphasis, the statistical and 

deterministic thinning approaches out performs the random approaches for all sized 

arrays. The main reason for this is obviously due to the extremely low element count. 

The statistical and deterministic thinning approaches have the highest thinning ratios at 

these sized arrays (see Table 5.6). However, the performance of the statistical array in 

the area of scanning was poor. Looking at all the statistical pattern factor plots in 

Appendix B (and C), there is a major lobe present at G=30° that will limit its scan 

capability and prevent it from meeting the ±50° scan requirement. This is expected since 

the interelement spacing is periodic (2X). Taking the interelement spacing and using a 

combination of Equations (2.7) and (2.8) to get 

d  = X 

1 + |sin 0O| (5-1) 

which for d=2X results in 0O=3O°. Otherwise, the metrics in Figures 5.11 through 5.14 

show that it performs competitively with the random and uniform arrays. 

5.3.2. Random Array 

The random arrays performed as expected. Due to the small sizes of the arrays, 

the number of elements was high with respect to the other approaches. However, as can 
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be seen in Table 5.6, as the array size increases the thinning ratio is also increasing, 

which means improved performance with larger array sizes for reduced element metrics. 

This is also evident in Figure 5.31. In this figure, the metrics for both random approaches 

are increasing, while the statistical begins to decrease. The thinning ratio for the random 

approaches is only going to increase. However, the statistical approach remains constant, 

allowing the random arrays to exceed the performance of the statistical array as the array 

size increases. In Figure 5.33, it is apparent that as the array size increases the HPBW 

performance also increases for the random arrays. It also shows that the random 

outperforms the random2 in HPBW. This is due to the array having a larger effective 

aperture than the random2 array since the array has element clusters at the edges of the 

array, instead of only at the center. 

5.3.3. Deterministic Array 

The deterministic approach performed the well in the HPBW and element 

reduction metrics. However, it did not perform as well in the PSL and boresight metrics. 

In the PSL and boresight metrics, it stayed level while the random and statistical 

approaches were on the rise. For the most part though, the difference between the 

deterministic within 5% of the random and statistical approaches. 

Table 5.6 Resulting array Percent Thinning 

4 8 12 16 
Uniform 0% 0% 0% 0% 

Deterministic 98% 98% 98% 98% 
Statistical 98% 98% 98% 98% 
Random 2% 46% 62% 70% 
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6 Conclusions and Recommendations 

6.1 Conclusions 

For the array sizes looked at, the deterministic and statistical arrays are ideal 

according to the metrics. However, looking at the PSL of the deterministic, and the 

limited scan capability of the statistic arrays, these approaches do not meet the desired 

performance requirements. The random array doesn't perform exceedingly well at these 

sized arrays either. However, the trends show that as the array sizes increase the HPBW, 

PSL, and element reduction performance of the random array continually increases. It is 

not apparent at the largest size (16m2) that the random array outperforms the other two 

aperiodic approaches. However, looking at the larger array sizes with a higher beta (see 

Appendix C), it can be seen that the PSL, HPBW, element count (see Table 4.5), and 

boresight performance continues to improves as the array size increases. However, since 

only boresight data is available at the 12 GHz frequency, overall performance of the 

larger arrays can not be determined without further data generation. However, based on 

the trends on the boresight, for larger arrays, the random approach is the ideal aperiodic 

approach out of the thinning approaches studied in this thesis. 

6.2 Recommendations 

There are two possible recommendations that can be derived from the results in 

Chapter 5. First, based on the metrics, the use of deterministic thinning approach is 

optimal. However, that will not meet the PSL requirements. The second 

recommendation, based on looking at pattern factor results such as in Appendices B and 
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C, the random array would be more suitable, especially if the array is actually going to be 

larger than the 16m2. Looking at Appendix C, the larger random arrays, have better 

beamwidth and peak sidelobe performance than the statistical, while maintaining 

scanning capability. For large aperture SBR's, random array thinning should be feasible 

assuming there is capable and practical supporting architecture available to operate a 

randomly thinned array. Further research would be required to prove the feasibility of 

random arrays for even larger arrays. Use of the Major Shared Computer Resource 

Center is recommended due to the mass amounts of data storage and computational time 

required for larger arrays. 

6.3 Future Topics 

There are some topic recommendations for further study. One area is array 

geometry. This involves looking at the effects of aperiodic element distributions for 

circular, three-dimensional, and conformal array applications. Other areas of further 

research include application feasibility in multibeam phased arrays and satellite 

communications systems. Further analysis needs to be done on other aperiodic 

approaches, in particular deterministic, and combinations of approaches. 

Another area that needs to be looked into is the effective footprint of SBR' s. At 

LEO and MEO, the footprint of the radar is in hundreds, if not thousands (depending on 

aperture size) of kilometers in diameter. 
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APPENDIX D: Nonprintable Materials List 

The CD enclosed contains the following programs 

■ Th_main.exe: C++ program described in Appendix A. 

■ Th_avedb.exe: C++ program described in Chapter 5. 

■ Randanalysis.m: Matlab® script described in Chapter 5. 

■ Statanalysis.m: Matlab® script described in Chapter 5. 

■ Thmetric.m: Matlab® script described in Chapter 5. 

■ Metadj.m: Matlab® script to recalculate metric for all metric 

emphases. 

■ Resplot.m: Matlab® script that generates comparison pattern factor 

plots when used in conjunction with Thmetric.m 

■ Singplt.m: Matlab® function that plots a pattern factor filename 

passed to it. 

■ Saprmetric.m: Matlab® function that computes the metric for a single 

thinning approach (same as Thmetric.m but only for one approach). 

■ Trends, m: Matlab® script that plots trend line plots for each thinning 

approach vs. array size. 

■ HPBW.m: Matlab® function for determining the half power 

beamwidth for a pattern factor. 

■ PSLE.m: Matlab® function that detennines the number of angular 

samples that are greater than a given threshold level. 
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Bwinterp.m: Matlab® function for use by HPBW.m function for 

interpolation purposes. 

Detelem.ni: Matlab® script for generating plots of deterministic 

element location for the full array. 

Readme.txt: brief text file explaining the contents of the required 

input file for thmain.exe. 
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