
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

Knowledge Base Support for Design and Synthesis of Multi-Agent Knowledge Base Support for Design and Synthesis of Multi-Agent

Systems Systems

Marc J. Raphael

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Raphael, Marc J., "Knowledge Base Support for Design and Synthesis of Multi-Agent Systems" (2000).
Theses and Dissertations. 4847.
https://scholar.afit.edu/etd/4847

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F4847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4847?utm_source=scholar.afit.edu%2Fetd%2F4847&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/OOM-21

KNOWLEDGE BASE SUPPORT FOR DESIGN

AND SYNTHESIS OF MULTI-AGENT SYSTEMS

THESIS

Marc J Raphael, Capiu'r., Ü3AF

AFIT/GCS/ENG/OOM-21
20000815 183

J

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AM FORCE INSTITUTE OF TECHNOLOGY

■iä-Pstte'--" ■ i fw K<:":& Bast, Olio Reproduced From
Best Available Copy

APPROVED FOR 'PUJAJIL ■M'-l ~</SE, ":TSTIÜBUTI9N UNLIMITED.

[miC QUALITY mCFWJSED 4

\tl 1 /(JUS/ÜJNU/UUM-21

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/OOM-21

KNOWLEDGE BASE SUPPORT FOR

DESIGN AND SYNTHESIS OF MULTI-

AGENT SYSTEMS

THESIS

Presented to the faculty of the Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Marc J Raphael, B. S.
Captain, USAF

March 2000

Approved for public release, distribution unlimited.

\tl 1 /LrUS/JbJN<J/UUM-Z 1

KNOWLEDGE BASE SUPPORT FOR DESIGN

AND SYNTHESIS OF MULTI-AGENT SYSTEMS

THESIS

Marc J Raphael, B. S.
Captain, USAF

Approved:

Major Scott A. DeLoach, Committee Chairman date

Dr. Thomas C. Hartrum, Committee Member date

Major Robert P. Graham Jr., Committee Member date

AFIT/GCS/ENG/OOM-21

ACKNOWLEDGMENTS

I am at the crossroads with this effort, but I don't know which road brought me
the furthest to get here.

-For the thirst for learning, I credit God.

-For the opportunity to learn, I credit my Country. I give her back this small
return.

-For pulling me through the tougher days, I credit the support of my wife, Rachel
and the smiles, hugs, and laughs of our children, Ethan and Sarah.

-For accepting nothing less than technical excellence and then showing how best
to achieve it, I credit Major DeLoach.

Marc J Raphael

Abi 1/LrUS/hiJN (j/UUM-21

TABLE OF CONTENTS

ACKNOWLEDGMENTS II

TABLE OF CONTENTS Ill

LIST OF FIGURES VI

LIST OF TABLES VIII

ABSTRACT IX

I. INTRODUCTION l

1.1 Background 2

1.2AgentTool 2

1.3 Problem 3

1.4 Requirements and Assumptions 4

1.5 Overview 5

II. BACKGROUND 6

2.1 Knowledge Base Representation Schemes 7

2.1.1 Logic 8

2.1.2 Rules 9

2.1.3 Semantic or Associative Nets 11

2.1.4 Frames 12

2.1.5 Objects 14

2.1.6 Hybrids and Other Schemes 14

2.2 Knowledge Base Implementation Structures 17

2.3 Knowledge Base Content 21

2.3.1 Franklin and Graesser 21

2.3.2 University of Michigan 23

2.3.3 McGill University 25

ill

FIT/GCS/ENG/OOM-21

2.3.4 University of Cincinnati and Stanford 26

2.3.5 Elizabeth Kendall 26

2.3.6 FIPA 28

2.3.7 Others 32

2.4 Summary 33

III. METHODOLOGY 35

3.1 Determine and Organize KB Content 36

3.1.1 Preparing the Domain 37

3.1.2 Domain Analysis (DA) 39

3.2 Implement Representation Structure and Generate Domain Language 41

3.2.1 Select a Scheme 42

3.2.2 Map to a Scheme 43

3.2.3 Construct Domain Language 43

3.3 Implement Knowledge Base Meta-Structure 43

3.4 Summary 45

IV. KNOWLEDGE SUPPORT DESIGN 46

4.1 Prepare Domain Knowledge Decisions 46

4.2 Domain Analysis 47

4.2.1 Agent Entity Sub-Domain Analysis 51

4.2.2 Multi-Agent System Analysis 59

4.2.3 Summary 65

4.3 Knowledge Base Design 65

4.3.1 Find Candidate Schemes 66

4.3.2 Multi-Agent Markup Language (MAML) 68

4.3.3 Meta-structure Implementation 75

4.4 Summary 80

V.DEMONSTRATION 82

5.1 Understanding the agentTool Interface 82

5.2 Storing Knowledge in ARAMS '. 83

IV

AFIT/GCS/ENG/00M-21

5.3 Locating and Retrieving Knowledge in ARAMS 85

5.4 Summary 86

VI. RESULTS 87

6.1 Strengths and Weaknesses 87

6.2 Applications and Future Work 88

6.3 Conclusion 91

APPENDIX A: DOMAIN ANALYSIS REQUIREMENTS DOCUMENT 92

APPENDLX B: VISUAL SUMMARY OF KBDM FOR EFFORT 94

APPENDIX C: KEYMAML DTDS 95

BIBLIOGRAPHY 98

VITA 101

AFIT/GCS/ENG/OOM-21

LIST OF FIGURES

FIGURE 1: RULE-BASED EXAMPLE FOR AGENT APPLICATION DOMAIN 10

FIGURE 2: ASSOCIATIVE NET EXAMPLE FOR AGENT APPLICATION DOMAIN 12

FIGURE 3: FRAME EXAMPLE FOR AGENT APPLICATION DOMAIN 13

FIGURE 4: UPPER LEVELS OF AN AGENT TAXONOMY(FRANKLIN 1996) 23

FIGURE 5:RMIT AGENT FRAMEWORK (KENDALL 1998B) 27

FIGURE 6: RELATIONSHIP BETWEEN ROLE MODEL AND OBJECT MODEL 28

FIGURE 7: KNOWLEDGE BASE DEVELOPMENT METHODOLOGY (KBDM) 35

FIGURE 8: DOMAIN ENGINEERING PROCESS (WARNER 1993) 36

FIGURE 9: KBDM CODAM SUB-METHODOLOGY 40

FIGURE 10: KBDM STAGE 2 - IMPLEMENTING REPRESENTATION SCHEME 42

FIGURE 11: KBDM STAGE 3 - IMPLEMENTING KB META-STRUCTURE 44

FIGURE 12: GENERALIZED VIEW OF AGENT DOMAIN 49

FIGURE 13: UML MODEL OF AGENT DOMAIN 50

FIGURE 14: AGENT ENTITY SUB-DOMAIN 51

FIGURE 15: PROPERTY ABSTRACTION HIERARCHY 56

FIGURE 16: ARCHITECTURE ABSTRACTION HIERARCHY 57

FIGURE 17: COMPONENT ABSTRACTION HIERARCHY 58

FIGURE 18: MULTI-AGENT SYSTEM SUB-DOMAIN 60

FIGURE 19: AGENT SYSTEM FRAMEWORK HIERARCHY 63

FIGURE 20: ROLE MODEL TAXONOMY (KENDALL 1998A) 64

FIGURE 21: RELATIONSHIP BETWEEN PRODUCTS OF THE EFFORT 66

FIGURE 22: JAVA OBJECT MODEL USED IN AGENTTOOL (NOVEMBER 1999) 67

FIGURE 23:PROCESS FOR UTILIZING THE MAML REPRESENTATION SCHEME 71

VI

AFIT/GCS/ENG/OOM-21

FIGURE 24:EXAMPLE DESIGN OBJECT AND ONE MAML-WRAPPED IMPLEMENTATION 73

FIGURE 25: MAML REPRESENTATION OF Two ASSOCIATIONS 74

FIGURE 26: FORMAT FOR RECORD FILE (HAMNER 1999) 77

FIGURE 27: AGENT-ORIENTED AGENTTOOL-KB INTERFACE 80

FIGURE 28: AGENTTOOL GUI 82

FIGURE 29: CONVERSATION DESIGN WINDOW 84

FIGURE 30: STOREGUI 84

FIGURE 31: LOADGUI (SELECTING A KNOWLEDGE CATEGORY) 85

FIGURE 32: LOADGUI DISPLAYING A LIST AND SELECTED CONVERSATION OBJECT 86

FIGURE 33: DOM-VIEWER SHOWING AN AGENT SYSTEM REPRESENTED BY MAML 90

Vll

AM 1 /UU S/fcJN U/UUM-21

LIST OF TABLES

TABLE 1: AGENT PROPERTIES (FRANKLIN 1996) 22

TABLE 2: SUBCATEGORIES OF THREE KEY AGENT PROPERTIES (ARRIOLA 1994) 24

TABLE 3: SOME AGENT ARCHITECTURES (ARRIOLA 1994) 25

TABLE 4: SOME AGENT RELATIONSHIPS (FIPA 1999) 31

TABLE 5: MULTI-AGENT SYSTEM ASSOCIATIONS 62

Vlll

AFrr/üCS/ENü/00M-21

ABSTRACT

AgentTool is an AFIT-produced, AFOSR-sponsored multi-agent system (MAS)

development tool intended for production of MASs that meet military requirements. This

research focuses on enabling MAS design and synthesis tools like agentTool to store, retrieve,

and filter persistent, reusable, and reliable agent domain knowledge. This "enabling" is vital if

such tools are expected to produce consistent, maintainable, and verifiable agent applications on

short timetables. Enabling requires: 1) modeling the agent knowledge domain, 2) designing and

employing a persistent knowledge base, and 3) bridging that domain model to the knowledge

base with an extensible domain interchange grammar. The achieved interchange grammar, called

Multi-Agent Markup Language (MAML), is presented and shown to be capable of representing

MAS design knowledge in a concise and easily parsed form that is readily stored and retrieved in

the knowledge base. The selected knowledge base, called the Agent Random-Access Meta-

Structure (ARAMS), is shown to support MAML and operate in a distributed environment that

permits sharing of agent development knowledge between various tools and tool instances. Tests

of MAML and ARAMS with agentTool are summarized, and related future work suggested.

IX

AFIT/GCS/ENG/OOM-21

KNOWLEDGE BASE SUPPORT FOR DESIGN

AND SYNTHESIS OF MULTI-AGENT SYSTEMS

I. Introduction

Today's world is interconnected and the medium of that connectivity is information.

Technology has allowed information of all classes to be both created and made available at an

ever-increasing pace. There is significant need for certain types of information interconnection to

extend throughout military infrastructure. However, with military manpower forces unable to

grow at a technology-matching pace, technology itself must be creatively applied to reduce the

information processing workload to a manageable level. If this is not done, potentially vital

knowledge will simply be either lost or just not be made available in a timely or coherent fashion.

Intelligent agents provide one solution to this problem. Agents work in the information domain

and reside in the high-tech hardware whose complexity grows faster than our traditional forces.

They are a natural choice to maintain our military infrastructure's superiority.

A limiting factor in this choice is that intelligent agents must interact with humans and

each other in order to handle the diverse taskings that they, the agents, may be commissioned for.

Additionally, security must be integrated at a ground level. These concerns merely transfer the

manpower shortage to technical specially personnel such as software programmers. Fortunately,

software development aids can alleviate the manpower burden at this level.

1.1 Background

The science of Artificial Intelligence has greatly expanded since the advent of intelligent

software agents in the mid-eighties. As a direct result, a burgeoning population of intelligent

agents is finding its way into many aspects of our society. The military, and particularly the Air

Force, is not, nor should be, exempt from this incursion. Both Joint Vision 2010 and Air Force

2025 point out accelerated movement towards distributed C3I applications and the need for

security in these applications. Agents lend themselves naturally to both these elements.

Unfortunately, the complex and evolving nature of distributed software (especially

multiple interacting agents) requires significant expertise. This expertise can be provided by

traditional human resources or, less expensively, by using flexible software design tools. A recent

research program at the Air Force Institute of Technology is developing such a tool for the rapid

design of agents and agent systems. That tool is called agentTool.

1.2 AgentTool

A handful of commercial toolkits have recently become available for designing agents

and agent systems (Agentsoft 1998; IBM 1999; Ndumu 1999). Many of these tools are geared

for use in economic applications such as electronic commerce and inventory management. In

contrast, none are well suited for the breadth of military application, especially where security is

concerned. Additionally, few allow for the verification of a design's reliability that is only now

becoming available for traditional non-agent software (e.g. automated debugging and formalized

specification verification).

One candidate for filling this niche is agentTool, an AFOSR-sponsored, AFIT-led effort

to create a Java-based tool for rapid development of multi-agent systems. Because agentTool

multi-agent systems are generated in Java (currently), they will be platform-independent and

operable in a distributed environment. AgentTool considers communication, coordination, and

security as critical factors up front. Other factors, such as agent mobility, may be incorporated

through extensions. Systems produced by agentTool are not limited to simple information-

gathering and commerce applications. Applications such as intelligent control of unmanned

aerial vehicles (UAVs) and acquisition system modeling are also possible. Moreover,

agentTool's design allows for formal verification of agent system specifications.

For the initial 1999-2000 research cycle, four areas vital to agentTool operation were

addressed. These are:

1) Development of a Multi-Agent System (MAS) design methodology (Wood
2000)

2) Specification of an agent architecture description language (Robinson 2000)

3) Creation of a storage/retrieval structure and mechanisms (e.g. knowledge
base system) to contain and manipulate reusable agent domain knowledge
(this work).

4) Formal verification of agent systems (Lacey 2000)

This effort focuses on the third of these areas.

1.3 Problem

The agentTool system will help to develop secure systems rapidly and reliably.

Persistence, reusability, and reliability of design are keys to facilitating this. Persistence allows

agent systems and system components to be stored in long-term memory. Some elements that

might require persistence include hardware interfaces, application interfaces, communication

protocols, coordination schemes, security protocols, agent architectures, data structures, and

system frameworks. Along with these items, more abstract concepts such as agent roles, rules,

conversations, and intentions may also need to be stored. Reusability refers to making these

persistent elements available at varying levels of abstraction. For instance, agent roles are

templates that may be assigned to a diverse class of agents whereas communication protocols

may be very specific to a single communications framework. Both roles and protocols, however,

are reusable to an appropriate extent. A structure for storing and maintaining such a wide scope

of knowledge is currently non-existent for agentTool and is not readily available for most other

agent construction utilities. Without some instrument to meet reusability, persistence, and

reliability requirements, agentTool will be incapable of meeting its design goals. The following

statement summarizes the aim of this effort in regard to agentTool requirements as just

introduced:

Goal Statement: Develop a technique/methodology for determining knowledge

base requirements, constraints, and contents for a multi-agent system

development environment. Test the technique by producing a prototype agent

knowledge base and evaluating it.

1.4 Requirements and Assumptions

Even though the goal statement captures the general purpose of this effort, it can be

partitioned and expanded to reflect more specific requirements. These requirements will be

significant throughout the effort in gauging progress. Three key requirements are:

1. Research and model the agent development knowledge domain.

2. Develop a process (methodology) for structuring a knowledge base
containing the domain knowledge model.

3. Produce a prototype and test it with agentTool.

Two significant assumptions apply to these requirements. The first is that the agent

domain model will contain a wide range of knowledge classes, of which only a subset may be

implemented and tested fully in the prototype within the time allotted for completion of this

effort. The second, related assumption is that the prototype knowledge base will be critiqued for

interoperability with agentTool, persistence and reusability of content, extensibility, and

reliability. Section 1.2 notes that interoperability with agentTool starts with designing the

knowledgebase in Java. However, Java alone is not sufficient for interoperability. True

interoperability is achieved by requiring a set of standard interfaces between the tool's

components and packages so that changes in any component do not require significant changes in

the other components. These Java interfaces are established through the AFIT Agent Research

Group (ARG).

1.5 Overview

The remainder of this effort in composed of five chapters. Chapter 2 reviews research

efforts and general knowledge pertaining to knowledge representation, knowledge base structure,

agent design, and agent system design. Chapter 3 outlines the methodology for obtaining the goal

stated above in Section 1.3. Chapter 4 presents the design decisions and related details of

implementing a knowledge base prototype that supports agentTool and even other agent utilities.

Chapter 5 demonstrates the behavior of the prototype in regards to agentTool. Finally, Chapter 6

analyzes the effort's end results and provides suggestions for future work.

II. Background

The crux of this effort involves development of knowledge support system for the

agentTool multi-agent system development environment. Such a knowledge base must capture

all the knowledge needed to develop diverse agent systems. In designing a knowledge base to

provide this knowledge, consideration should be given to both the knowledge representation

format as well as the implementation structure of the knowledge base as a whole. This chapter

focuses on what research has already been accomplished in each of these three areas.

Before reviewing research in these fields, it is appropriate to define the term knowledge

base. Though multiple definitions exist, a knowledge base is most simply defined in regards to

its composition or content. From this compositional perspective, a knowledge base is a "large

collection of facts, rules, and heuristics that capture knowledge about a specific domain of

applications" (Schmidt 1989). Since several of the terms used in this definition reappear

throughout this work, it is useful to provide some additional definitions. Facts and rules are

representations of specific and general knowledge, respectively. Heuristics are a class of rules

(rules-of-thumb) regarding relationships within a specific domain, and are usually an order of

magnitude more complex than rules (Gonzalez 1993). Facts, rules and heuristics allow inference

and reasoning. Inference refers to the passing from one proposition considered as true to another

whose truth is believed to follow that of the former and reasoning refers to the creation of

inferences from known facts to bring about coherent and logical thought (Webster 1986).

Though accurate, the above definition of a knowledge base contains no notion of how

knowledge bases fit into the rest of computer science and why they are needed. This is resolved

by expanding the former definition as follows:

A knowledge base is a product of knowledge engineering, which is a
discipline within the science of artificial intelligence. Artificial

intelligence, in turn, is a branch of computer science. Computer science,
together with its peers: philosophy, psychology, and linguistics, form the
cognitive sciences. Each of the cognitive sciences studies the mind or
understanding in a different way. Computer science stands out in this
group because it involves mimicking the mind or its processes via
computer programs rather than simply analyzing them. Because
traditional computer science had no effective mechanism to imitate
important human characteristics (e.g. learning, reasoning, and self-
correction), the sub-science of artificial intelligence was created. AI
programs use a changing knowledge base rather than fixed,
pre-programmed algorithms to simulate human behavior (Lukose 1996).

This expanded definition places the idea of domain-specific knowledge into the context

of software that focuses on imitating humans. However, it does not make sense to have such a

virtual person without a means to manage and apply its knowledge. Therefore it can be seen that

knowledge bases are not intended to be stand-alone software entities, but rather an integral part of

some domain-specific knowledge-based system. In particular, both expert systems and AI

knowledge-based management systems (KBMS) utilizes some sort of reasoning engine and meta-

knowledge in order to function (Gallaire 1989; Williams 1990).

The remainder of this chapter provides an overview of past and current efforts in

knowledge base design and agent domain research. Specifically, Section 2.1 reviews several

proposed knowledge representations schemes. Section 2.2 then introduces options for overall

knowledge base structure. Section 2.3 focuses on work done in defining and populating the agent

domain space. Section 2.4 summarizes the previous three sections and provides a transition to

Chapter 3.

2.1 Knowledge Base Representation Schemes

As discussed above, a knowledge base may contain knowledge as facts, rules, or

heuristics. Though correct, this is very general. Several perspectives exist to explain the different

ways that these facts, rules, and heuristics may be specifically represented in a knowledge base.

This section gives a brief comparison of these perspectives and their corresponding representation

schemes.

Gonzalez and Dankel categorize knowledge representation schemes into five areas: logic,

rules, semantic networks, frames, and objects (Gonzalez 1993). Nixon adds a sixth category for

Entity-Relationship representation (Nixon 1989). Other authors generalize these six facets into

two or three broader categories. Amilcar and Cristina Sernadas visualize logical, structural, and

procedural paradigms (Sernadas 1989) whereas Lukose, Kramer, and Pedersen take a black-and-

white stance where knowledge is either represented declaratively or procedurally (Lukose 1996;

Pedersen 1989a). Which of these three perspectives is best depends on the level of abstraction

required. Since Gonzalez and Dankel provide the greatest depth and breadth of information, their

classification is detailed first, with references to the other two generalizations made as needed.

2.1.1 Logic

Formal first-order predicate logic has been at the core of artificial intelligence since its

infancy. Because of the rigorous mathematical base and the Boolean base of this logic,

computers are able to use it naturally. Knowledge engineers often hold first-order predicate logic

as the preferred language of knowledge base construction because it can be used both to represent

knowledge and reason over that knowledge. With logic, the knowledge base is considered as a

theory (set of theorems) obtained by varying a set of stored facts in a fact base (logic axioms)

using a fixed set of logic inference mechanisms (Sernadas 1989). Reasoning takes place by

applying certain inference mechanisms in an inductive, abductive, or deductive form, to generate

new facts (Gonzalez 1993). For example, given (A v B) and (B v C), the new fact (B v (A A C))

may be derived using available logic inference constructs.

There are a number of limitations to using logic in the realm defined above. One of these

limitations is the lack of mechanism to remove axioms and facts that become invalid due to some

other change in the knowledge base. This is a specific instance of the more general problems of

lack of organization principles and absence of inference procedure control (Sernadas 1989).

Logic is also inflexible due to its implicitly declarative language, which does not allow much

flexible application of reasoning methods (Gonzalez 1993). Fortunately, there are alternatives to

using pure logic representation in a knowledge base.

2.1.2 Rules

Populating a knowledge base following a rule paradigm is the classical approach used in

expert systems. A medical diagnosis expert system, for example, might maintain a set of if-then

rules that relate symptoms to diagnosis. An inference engine would attempt to pattern-match a

symptom with the left-hand side of rules in the rule set. A match would cause the return of the

right hand side ofthat rule, which will either be the diagnosis or a match for the left-hand side of

yet another rule. In this second case, multiple rules may then "chain" to a diagnosis.

Though rule-based inferencing is founded in logic, there are several distinctions that

make rules more flexible than logic alone. An example of thisforward chaining is shown and

explained in Figure 1. Alternatively, rule-based systems may use backward chaining, which is

also called goal-driven reasoning. There are two rule-based architectures for supporting these

reasoning methods: inference networking, and pattern matching. The first considers the

knowledge base as a graph where rules are represented by edges and nodes represent facts. The

second, pattern-matching, tries to match facts to the patterns of either the RHS or LHS of rules,

depending on whether forward or backward chaining is being used. A great deal has been written

on additional features of these two architectures (Gonzalez 1993).

Compared to logic-based representation, rule-based representation offers greater ease of

use (especially in populating the knowledge base) and an escape from the restrictions of strictly

Boolean results. However, the rules approach has three drawbacks: infinite chaining,

contradictory knowledge, and behavioral opacity. Infinite chaining occurs when a set of

inferences loops back on itself in a way so that the rules are repeatedly checked with no way to

terminate. This problem exists between these rules:

A=>B

B=>C

C=>A

Contradictory knowledge occurs, as its name suggests, when the addition of a new rule has an

undesirable side effect of invalidating a previously correct inference path. Finally, the nature of

rule-based representation makes it behaviorally opaque, which means that determining when rules

will fire is not easy. This causes problems in debugging and maintaining large rule-based

knowledge bases because, even when all rules are formed correctly, the sequence of their

execution may lead to hard-to-detect errors (Gonzalez 1993; Pedersen 1989a).

—Left-Hand Side (LHS>~- ► —Right-HandSide (RHS)
Rule 1: If a program is mobile THEN the program is an agent
Rule 2: If an agent has goals THEN the agent is goal-based

Given the following facts: Program X is mobile and has goals

A rule-based system deduces: Program X is a goal-based agent

Figure 1: Rule-Based Example for Agent Application Domain

A partial solution to rule and logic limitations involves applying structure to the

knowledge base. Doing so generates a structural knowledge representation (as opposed to the

strict logical representations so far discussed). Sernada and Sernada point out that the structural

approach involves organizing the fact base in a way that keys on having abstractions for related

groups of facts (Sernadas 1989). Instead of using the axiomatic approach to find new facts that

rules and logic take, a set of rules is applied to these semantic abstractions (also called semantic

10

primitives) to generate new facts. Semantic nets and frames are the two most often used

structural representations.

2.1.3 Semantic or Associative Nets

Associative nets are enriched versions of the directed graphs used by the inference

network architecture of rule bases. The 'richness' is arrived at by having the nodes of the graph

represent concepts and objects rather than just facts, and by having edges define relations or

associations between these objects rather than just rules. By doing this, the unrelated facts of

rule-based representation are supplanted by explicitly and implicitly interrelated concepts. For

example, associations PART-OF and IS-A might be dscribed as follows for a knowledge base.

(sub-structure PART-OF super-structure)
(transitive PART-OF)
(transitive IS-A)

By utilizing such associations in an agent domain space, queries such as "Is a planner part of a

multi-agent system?" can now be answered (see Figure 2). This example is fairly simple, but

demonstrates the power of adding semantic structure to a knowledge base. Instead of simple IF-

THEN constructs, queries such as exemplified above, can be posed. One can imagine that adding

more diverse relations that combine multiple concepts such as (age IN-RANGE-OF integerl

integer2) can make associative networks much more powerful than simple logic or rule-based

representations. Even so, associative networks have drawbacks.

The drawbacks of this approach involve frame-of-reference confusion and combinatorial

explosion (Gonzalez 1993). Frame-of-reference confusion arises when there is greater detail in

an object being related than in the relation itself. This can be better understood by examining the

shaded parts of Figure 2. If the knowledge base is queried whether ALPHA is part of WORKGROUP

the response will be true because MOBILE-AGENTS are agents, agents are parts of a MULTI-

11

AGENT_SYSTEMS, and WORKGROUP is a MULTI-AGENT_SYSTEM (MAS). This seems fine unless

ALPHA is actually PART-OF some other MAS (not WORKGROUP) or is stand-alone. Exactly what

the associative net is missing in this and similar cases is a frame-of-reference, or constraint that

allows for an association not to exist in particular instances.

"•"■V^V Agent J ^V a J (' Work
 ,..__ \^ yX^~- ^^ K Group

/ \ part-of
Alpha } _, ^/nart-of \

Figure 2: Associative Net Example for Agent Application Domain

The second drawback to associative networks, combinatorial explosion, occurs when an

ambiguous relationship is determined false. In theAGENT example, for instance, the query: "Is a

database part of a multi-agent system? " would receive a false reply, but only after the system had

fired every rule. This is a more significant problem in large knowledge bases because of the

greater number of relations to examine.

2.1.4 Frames

In 1975 Minsky tackled the associative networks' frame-of-reference problem by

proposing the frame representation scheme (Minsky 1975). With frames, an entity is classified in

terms of a set of attribute-value pairs that populate slots in that entity's./ra/we. The values of

these pairs, in turn, may be composed of facets that are constraints or operators on the attribute of

that pair. For instance, in the AGENT frame shown in Figure 3 there are slots filled with attributes

for Planner, Knowledge-Store, and Security-Level. For Security-Level, there are

two facets: Range and If-Changed. Range constrains the value associated with Security-

12

Level while if-Changed references a procedure to execute if the value changes. Procedures,

such as If-Changed, are referred to as demons. Demons are unique in that they represent

procedural knowledge and are thus imperative, not declarative. The power of frames lies in both

this use of demons and frame inheritance. Frame inheritance is captured by the

Specialization-of and Generalization-of fields of a frame. In Figure 3 AGENT is a

specialized PROGRAM, which is another frame not shown but which likely has slots for

Programmer and Language. Because AGENT is a specialization of PROGRAM, it would inherit

these slot fields implicitly. Extending this further,MOBlLE-AGENT and INTERFACE-AGENT also

inherit those program slots as well as AGENT'S slots because they are specializations of AGENT.

Generic AGENT Frame
Specialization-of : PROGRAM
Generalization-of: (MOBILE-AGENT, INTERFACE-AGENT)

Planner:
Range: (FORWARD-CHAINING, BACKWARD-CHAINING)

Knowledge-Store:
Range: (Database, Flat-File)

Default: Database

Security-Level:
Range: (SECRET, UNCLASSIFIED, TOP-SECRET)
If-Changed:(ERROR: No permission to change classification)

Figure 3: Frame Example for Agent Application Domain

As with other schemes, frames do have disadvantages, although significantly less serious

ones. The primary fault with frames is they do not represent heuristic knowledge as easily as

rules. Frames are also limited by an inability to accommodate new situations or objects

(Gonzalez 1993). Additionally, structural knowledge representation approaches such as semantic

nets and frames suffer from a need for inference engines that are dependent on the particular

scheme's domain semantics (Sernadas 1989). This is the opposite problem imposed by rule and

logic-based approaches, where the inference process is encapsulated in a relatively inaccessible

inference engine. One way around this close semantic binding is to merge logical and structural

13

representations in order to maintain a generic logic-based inference engine while keeping a more

flexible representation scheme. Schemes that take this approach are known as hybrids and will be

discussed in Section 2.1.6.

2.1.5 Objects

Object representation takes the procedural usefulness of frame demons a step further.

Instead of referencing independently maintained procedures for a given attribute, objects

encapsulate procedures together with the data they operate on. In the large, the object-oriented

approach to knowledge representation offers the same benefits of abstraction, encapsulation,

polymorphism, and inheritance that it does for programming in general. Excluding inheritance,

each of these benefits is unique to the object approach and makes it more efficient than frames.

However, Gonzalez points out, object-based knowledge representation has at least one

shortcoming in common with frames: the accommodation of new situations (Gonzalez 1993).

Forms of the Entity-Relationship scheme, another common representation form, have significant

commonalities with the object approach.

2.1.6 Hybrids and Other Schemes

Whether logic, rules, associative nets, frames, or objects is best for knowledge

representation depends on the application. Maybe none of these schemes (in their pure form) are

appropriate in certain circumstances. In these cases, hybrid schemes may be necessary. These

hybrids may be a simple merger of two or more pure schemes (Pedersen 1989b), or they may be

complex enough so that they cannot be simply classified as a simple merger. Examples from

both categories of hybrids are presented below.

14

2.1.6.1 Rule-Frame Hybrid

Implementing a rules paradigm using frames is a hybrid representation scheme for an

inference net developed by Fox in 1983 (Gonzalez 1993). The purpose of using this hybrid

would be to perform the functions of a rule-based system but with structural advantages. One

problem a rule-frame approach alleviates is that rule firing is now controllable via the frame

demons rather than being accomplished in a black-box inference engine. Additionally, this

hybrid give frames the capability of suggesting other frames when found in situations that don't

apply to themselves (Gonzalez 1993).

2.1.6.2 Extended Institutional Hybrid

In 1989 Sernadas and Sernadas published a framework that supports logical, structural,

and procedural representation paradigms. Their extended institutional framework centers on

considering knowledge bases as theories and individual representation schemes as parameterized

theories called theory mappings. In such, theory mappings are semantic primitives that map one

theory to another. The advantage this brings is two-fold: 1) new theories can be made from logic

applied to existing theories and 2) since new theory mappings can be made, there is no restriction

of using only semantic constructs of one representation scheme. In short, this framework

introduces a meta-knowledge representation scheme that allows for flexibility of representation as

well as of content represented. A lengthy example of creating a theory mapping for an Entity-

Relationship representation approach is given by the Sernadases (Sernadas 1989). Unfortunately,

the extended institutional framework, despite its extensive advantages, lacks real-world validation

(especially of the vital theory mappings).

2.1.6.3 CKML, OML, and XML

The Conceptual Knowledge Markup Language (CKML) is one of the many proposed

application-specific extensions to XML (extensible Markup Language), the data format standard

15

for structured document interchange on the Web (Olsen 1997). Since CKML, like its more-

narrowly-scoped cousin the Ontology-Markup Language (OML), extends XML to allow for

broader content-based access to documents and related entities, it may be utilized in the

representation of knowledge entities in a knowledge base. The two most powerful aspects of

CKML are 1) it is text based, and 2) it allows knowledge to be accessed via multiplefacets. The

concept of a facet is roughly equivalent to that of an ontology; meaning, it identifies a frame of

reference for an object. The text based grammatical constructs of CKML enable multi-faceted

access to knowledge by forming class hierarchies called categories (using IS-A). Knowledge

content then takes the form of objects that are instances of one or more ontology categories.

Each category is accessible though a facet (Olsen 1997). Unfortunately, the majority of available

literature on CKML relates to the language and falls short in detailing extensive knowledge base

application.

2.1.6.4 Abstract Syntax Trees

CKML's XML foundation allows it to be represented by & formal grammar, which

provides consistent syntax for developing knowledge-based applications and for representing

knowledge. This idea of having a formal grammar has merits in the application of yet another

knowledge representation scheme - the abstract syntax tree (AST). The following are two

complementary definitions for AST:

AST- A data structure representing a program which has been parsed, often
used as a compiler or interpreter's internal representation of a program while it
is being optimized and from which code generation is performed. The range of
all possible such structures is described by the abstract syntax (English 1998).

AST- This is a tree structure, typically an N-ary tree, that mirrors the abstract
syntax of the source language. Each leaf in the tree corresponds to a terminal of
some sort in the language (say, a constant or a variable) and each node
corresponds to an operator or, perhaps, a non-terminal (add, subtract, assign).
This type of structure is typically the result of a parse, and is used for type

16

checking and as input to a later stage of the compilation process
(VandenBerghe 1999).

The power of ASTs is in their abstract nature. A single AST can be reused in multiple

ways just by redefining how it is interpreted. ASTs are created by parsing special domain-

defining programs written in a formal grammar (as CKML has) into a tree of nodes according to

tree-building algorithms. Once created, these Domain ASTs are used to guide specification of

specific programs in the AST's domain. Succinctly put, a program's specification knowledge is

parsed into an AST to be either read, modified, or translated by special "visitor" or tree-walking

programs. Compilers, for example, perform this function by applying certain tree-walking

algorithms to parsed program code in order to optimize or compile the code.

Although visitors provide important functionality, it is the ASTs themselves that

declaratively represent knowledge. Visitors merely provide a mechanism for interpreting the

AST representation. The same applies to all knowledge representation schemes; a physical

mechanism for maintaining or operating on the represented knowledge is required for a scheme to

be useful. The following section discusses information relevant to designing such a mechanism.

2.2 Knowledge Base Implementation Structures

At the beginning of this chapter a definition was given for knowledge base. A number of

authors, including Pedersen, add the following simple addendum to that definition; that is, a

knowledge base is, at a fundamental level, a database of knowledge (Pedersen 1989a).

Understanding this is the first key to seeing that a database structure is the first logical option for

knowledge base implementation. However, there are various classes of database. Understanding

which is best for a given need requires an understanding of the fundamental differences between

them. The remainder of this section will describe several common data base structures,

particularly their strengths and weaknesses.

17

Databases are the key elements to database systems (DBS). Database systems collect in

one package not only the basic storage structure, but also access and control mechanisms for that

structure. Modern DBSs usually have three levels of architecture. The first level, and closest to

physical storage, is called the internal level. Above it is the external level, which is the interface

to the user or application. Between these two exists the third, or conceptual, level. Each of these

levels presents a certain view of the database, which is established by what are called Schemas.

The three schema types (one per level) can be defined as follows.

Internal Schema: A representation-dependent description of the database
corresponding to a precise specification of the storage structures and access
methods used to store data in secondary memory (Galdarin 1989).

Conceptual Schema: A collection of descriptions of stored data written in a
storage-structure-independent way. External Schemas are written in terms of the
conceptual schema.

External Schema: A description of a part of the database corresponding to a
program or a user view of the modeled [domain]. The nature of the external
schema prevents a user from modifying database content not specifically
permitted by the schema, e.g. data security (Galdarin 1989).

These various Schemas are written using Data Description and Data Manipulation Languages

(DDLs and DMLs).

The database system architecture just described follows what is called conceptual data

model design. Traditional hierarchical and network database systems do not fit this architecture

because they do not permit the inclusion of conceptual Schemas. Relational and object-oriented

(00) data models, however, do. By allowing for conceptual Schemas at least three advantages

arise. First, community sharing of a database storage structure becomes feasible. Second, formal

representations of user-scoped data and relationship views are permitted. Finally, the data

domain becomes enriched (more detailed). This enrichment takes the form of (1) a set of real-

world entities that correspond to stored data elements, (2) a set of relationships between these

entities, (3) a set of attributes belonging to these entities and relationships, and (4) specific

18

properties of entities, relationships, and attributes, such as the cardinalities of relationship

participation (Galdarin 1989).

Of the four classes of database system introduced above, network and hierarchical

systems are simplest but lack the additional schema that relational and 00 systems use. As a

result, relationships that have attributes are not easily captured. Additionally, many-to-many

relationships cannot be readily modeled. Although special data records may be added to get

around this to some extent (in the network model), doing so slows data access speed down while

adding complexity. Predicate logic is the data description language of both network and

hierarchical data models (Brodie 1989). The primary difference between the network and

hierarchical data models is that the former organizes data as a directed graph net while the latter

models it as a tree structure. By imposing a strict tree structure, any given data element in a

hierarchal model can only have one parent element. This leads to significant data redundancy

(multiple hierarchies) when more complex relations need to be modeled. In cases when none of

the above-mentioned complex relations are needed for a given application, either the hierarchal or

network database system models provide the fastest and most efficient DBS model solutions.

As already mentioned, the conceptual schema permits modeling options in relational and

OO models that are not as available in the non-conceptual models. Beyond this, the relational

model captures both entities and relationships as data objects (the basic non-conceptual models

use pointers for relationships). It does this in tables in a way that permits mathematical precision

in the operation of the database system (using relational algebra and relational calculus). In fact,

its formal mathematical underpinnings are a key strength to the relational model, permitting such

activities as direct capture of a design into the database tables (Bjork 1998b). The contents of the

relational table generally appear as a set of ordered atomic tuples, such as:

19

UAV_TASKING= (UAV_ID: integer, TASK: string) *. These tuples can be reused to limit the

need for the data redundancy that is present in the hierarchal model. Relational systems do have

some weaknesses however. First, they are somewhat slower than non-conceptually modeled

systems. Additionally, they have difficulty supporting non-textually represented data. This also

includes representing behavioral information that accompanies certain data types. Object-

oriented systems overcome both these weaknesses by storing more complex forms than atomic

tuples. Saving complex structures saves time by avoiding the relational step of decomposing

complex entities for storage as atomic tuples. Behavioral information is also stored in

encapsulated form with the data it applies to. Another thing that the 00 model handles better

than other models is polymorphism, the allowance of variations in the inheritance relationship.

The key ingredient present in the relational model that does not carry over into the 00 model is

the inherent mathematical basis. Because of this, proposals to extend the relational model to

include non-atomic data types and behavioral knowledge have been made (Bjork 1998a).

Hierarchal, network, relational, and 00 DBSs have been implemented in virtually every

sector, public and private. Some implementations follow one of these models exclusively while

others provide partial implementations, using only what is needed. Tools exist to facilitate going

in either of these directions. Oracle databases, for instance are generally relational and the DDL

and DML they use (SQL) makes effective use of relational algebra and calculus. At the opposite

end of the spectrum there are languages such as CKML (Section 2.1.6.3), which are not generally

associated with any one vendor or underlying structure at all, but which are still useful as DDLs

or DMLs. In the agent domain specifically are several tools that use databases for storage. Bit &

Pixels IAFactory takes a traditional approach by storing an agent in terms of a specification

containing the agent's state table information. This is a simple approach but seems limited in the

* This defines that an relationship called UAVJTASKING is composed of a UAVJD and a TASK.

20

domain of agents that can be created this way (Thomas 1999). AgentSoft's LiveAgentPro takes a

step away from this by using JavaScript scripts (Agentsoft 1998). Taking these approaches

greatly simplifies knowledge base (database) creation but only at the cost of having less

flexibility than more intricately modeled databases.

2.3 Knowledge Base Content

Since any given knowledge-based application operates in a specialized knowledge

domain, that domain should be well understood before choosing any representation scheme

whether pure or hybrid. This section explores agent and multi-agent system composition in order

to lay a foundation for later selection of an appropriate knowledge representation scheme. To

accomplish this exploration, a variety of efforts aimed at analyzing the agent domain will be

reviewed.

2.3.1 Franklin and Graesser

It is important that a definition for agent be given here in order to scope the extent of this

investigation. Franklin and Graesser provide a thorough comparison of several agent definitions

and conclude this comparison with the following definition:

An autonomous agent is a system situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own
agenda so as to effect what it senses in the future (Franklin 1996).

This definition is broad enough to even include non-software agents but specific enough

to distinguish agents from programs. From the definition it is already apparent that agents are

characterized by at least two elements: properties and components. Properties include goal-

driven (pursues agenda), while components include Application Programming Interfaces (API)

and state machines (acts on environment and senses time change). In addition to the low-level

properties, there appear to be one or more high-level properties (e.g. autonomous) for classifying

21

whole categories of agents. A collection of high-level and low-level agent properties collected by

Franklin and Graesser appear in Table 1. According to the given definition, all autonomous

agents will have the first four properties listed in the table. However, any single agent may also

have one or more of the remaining properties.

Table 1: Agent Properties (Franklin 1996)

Property Other Names Meaning
Reactive Sensing and acting responds in a timely fashion to changes in the environment
Autonomous exercises control over its own actions
Goal-oriented Pro-active/purposeful does not simply act in response to the environment
Temporally
continuous

Persistent is a continuously running process

Communicative Socially able communicates with other agents, perhaps including
people. Requires protocols/transports.

Learning Adaptive changes its behavior based on its previous experience
Mobile able to transport itself from one machine to another
Flexible actions are not scripted
Character believable "personality" and emotional state

Franklin and Graesser also discuss classifying agents into a taxonomic structure. Figure

4 shows the highest levels of Franklin and Graesser's agent taxonomy. The subclass covering

software agents might be further classified by control structure, environment, programming

language, etc. For example, classification by control mechanism could produce subclasses using

planning, regulation, and adaptive mechanisms. Binary classification is another taxonomic

classification option. Under this approach, the properties listed earlier may be the basis of

classification. For instance, agents may be categorized as mobile or non-mobile, learning or non-

learning, etc. This would quickly generate a large (and redundant) binary tree from a pool of

features or properties like those already discussed. Franklin and Graesser also discuss

classification methods adopted from the sciences of mathematics and psychology. One of these

schemes, matrix organization, considers each of n features/properties as a dimension in n-

22

dimensional matrix space, giving each matrix cell a unique category of classification (and

removing redundancy). This allows for absolute identification of mobile agents, mobile

communicative agents, mobile communicative learning agents, and so on (Franklin 1996). The

key assumption of this scheme is that the properties are well defined.

Biological Agents

Autonomous Agents

Robotic Agents Computational Agents

Software Agents Artificial Life Agents

Task-Specific Agents Entertainment Agents Viruses

Figure 4: Upper Levels of an Agent Taxonomy(Franklin 1996)

2.3.2 University of Michigan

Working independently but in parallel with Franklin and Graesser, a University of

Michigan (UM) effort also produced a property listing for agents. The UM list, however,

encompassed significantly more detail by adding further property descriptions and a limited

property hierarchy (see Table 2). Beyond confirming Franklin and Graesser's consideration of

properties, the UM effort gives more substantive support to these same researchers' indirectly

mentioned idea of agent component composition. In particular, properties are noted to be of little

use without some corresponding implementation in the form of architectures and/or components

(Arriola 1994).

The UM study that produced the information in Table 2 did so by analysis of several

specific agent systems. In that analysis, it was noticed that many systems had properties in

common despite having very different supporting implementations of them. The differences were

accounted for by looking at each system as a collection of agent components forming an agent

23

architecture. Table 3 lists the architectures categorized under this premise, as well as their

corresponding properties.

Table 2: Subcategories of Three Key Agent Properties (Arriola 1994)

I Property Sub-property Meaning

Reactive Prediction Determining what changes in world may occur as result of

Query-answering Decision describing. Agent can explain how it arrived at a
conclusion.

Language Perception Can send and receive words to communicate.

Goal-oriented Planning Based on establishing a set of actions to achieve a goal.

Re-planning Modifying or rebuilding plans because of environmental
changes

Simultaneous
Multiple-Goal support

Can work toward several goals at once

Self Reflection Can examine own behavior by actively applying meta-
knowledge on internal mechanisms

Meta-Reasoning Relates to skill improvement, adaptation, and learning. Can
be deployed implicitly through mechanisms such as domain-
independent learning, or explicitly using, for example,
declarative knowledge, which the agent can interpret and
manipulate.

Deductive Reasoning Takes form of IF A THENB. Basis of explanation-based
learning. Gives no new semantic information.

Inductive Reasoning Allows for developing new semantic knowledge.

Expert System A rule-based rather than planner-based agent

Learning Single Method Self-describing

Multi-method Agent can use more than one learning method

by Instruction Agent is given domain knowledge when it asks or because it is
"educated" by a teacher.

by Experimentation Discovery. Applying perceptions to domain knowledge to
refine it.

by Analogy Reasoning by analogy generally involves abstracting details
from a particular set of problems and resolving structural
similarities between previously distinct problems. Analogical
reasoning refers to this process of recognition and then
applying the solution from the known problem to the new
problem. Such a technique is often identified as case-based
reasoning

Transfer of Learning Learning can be passed between agents

Inductive learning and
Concept Acquisition

Concept acquisition refers to the ability of an agent to identify
the discriminating properties of objects in the world, to
generate labels for the objects and to use the labels in the
condition list of operators, thereby associating operations with
the concept.

24

By Abstraction Contrasted with concept acquisition, abstraction is the ability
to detect the relevant — or critical — information and action for
a particular problem. Abstraction is often used in planning
and problem solving in order to form a condition list for
operators that lead from one complex state to another based on
the criticality of the precondition.

Table 3: Some Agent Architectures (Arriola 1994)

Architecture Features

Subsumption Architecture No planning, "instinctive"

ATLANTIS Planning and Re-planning; Multiple-Goal;

Theo Learning by Concept Acquisition; Planning; Multiple-Goal; Self-
Reflection; Meta-Reasoning; Prediction; Language Perception;

Homer Planning and Re-planning; Multiple-Goal; Self-Reflection; Language
Perception; Language Perception;

Prodigy Learning by Instruction, Analogy, Abstraction, and Experimentation;
Planning; Self-Reflection; Meta-Reasoning; Prediction;

Soar Learning by Instruction, Abstraction, Analogy, and Concept
Acquisition; Transfer of Learning; Planning and Re-planning; Meta-
Reasoning; Expert-Capable; Language Perception;

Teton Planning; Multiple-Goal;

RAPLH-MEA Planning and Re-planning; Multiple-Goal; Meta-Reasoning;
Prediction;

Entropy Reduction Engine Learning by Concept Acquisition; Planning; Prediction;

Meta-Reasoning Architecture Learning by Experimentation; Planning and Re-planning; Self-
Reflection; Meta-Reasoning;

Adaptive Intelligent Systems Planning and Re-planning; Multiple-Goal; Self-Reflection; Meta-
Reasoning; Expert-Capable; Prediction; Language Perception;
Reasoning processes for diagnosis, prediction, and planning; real-time
control; global coordination of multiple tasks; reasoning by analogy;
learning from experience.

ICARUS Learning by Concept Acquisition; Planning and Re-planning; Self-
Reflection; Prediction;

2.3.3 McGill University

In contrast to the UM work, which identified properties and associated architectures in

existing agent systems, some groups sought to develop a universally applicable architecture. One

example is the Unified Agent Architecture (UAA) project at McGill University(Belgrave 1995).

McGilPs generic UAA is intended for creating any agents, which contrasts the UM effort's

categorization of existing ones. Even so, UAA work required some agent domain analysis in

25

order to extract common agent mechanisms that would need to be captured by UAA's generic

agent class. The results of this analysis produced a UAA agent with the following composition:

1) an Execution Facility that often contains an finite state machine (FSM) and model of the world

that the agent operates in, 2) a Communications Facility which holds the standard protocol set for

information exchange with users, resources, and other agents, 3) a Transport Facility, which is a

process set allowing agent to change domains, both local and remote, and 4) a Packaging

Facility, which is needed for mobility and persistence (Belgrave 1995). These four facilities are

components associated with the UAA architecture. In devising UAA, its authors realized the

need for a broad agent framework that allowed for agents to be constructed on a variety of

platforms. CORBA was chosen as the framework for UAA.

2.3.4 University of Cincinnati and Stanford

While the University of Michigan sought to categorize existing agents and McGill

University attempted to abstract common features from them, others focused on scoped analysis

of inter-agent activities. Two of most prominent works in this area were accomplished at the

University of Cincinnati and Stanford (Frost 1996; Guha 1994). Both involved analyzing the

communication needs of agents and creating a generic framework for meeting these needs. Both

Stanford's JATLite and University of Cincinnati's JAFMAS frameworks model inter-agent

communications as message-passing conversations. JATLite, however applies a TCP/IP

substructure while JAFMAS is based on Java RMI.

2.3.5 Elizabeth Kendall

Kendall's work parallels that of the UAA group at McGill. That is, she focuses on

abstracting a common architecture for agents by first analyzing multiple existing agents and agent

systems. However, the result of her work, the Royal Melbourne Institute of Technology (RMIT)

agent framework, is significantly different than McGill's UAA. In fact, the RMIT agent domain

26

analysis does not seem to directly capture architectural components at all. Instead, the

architecture is based on using a set of interacting layers rather than objects. These layers model

behavioral domains of agents but not the structural characteristics captured by components. The

seven key layers (and their accompanying behaviors) appear in Figure 5. Each layer of the model

interacts only with immediately adjacent layers. Within each layer, adesign pattern exists to

impose a functional structure on that layer. In the design patterns are certain abstractions that

relate to the components mentioned in Sections 2.2.3 - 2.2.4. For example, the sensor abstraction

that is part of the design pattern for the RMIT Sensory layer may actually map to a component

object. All component (structural) objects in RMIT are generic and are captured in a static

configuration independent object (CIO). It is through the CIO that a realization structure is

provided for agents modeled behaviorally in the RMIT framework. Unfortunately Kendall

provides little detail on CIO internals (Kendall 1998b).

Top Down
Layer 7: brings in messages from
distant agent societies

Layer 6: translates incoming

Layer 5: determines whether an
incoming message should be
processed
Layer 4: takes in pending
actions

Layer 3: reasons regarding the
selected action

Layer 2: updates beliefs
according to reasoning

Lay e r 1: gathers regular sensor
updates

MOBILITY

TRANSLATION
* A

COLLABORATION

ACTIONS

REASONING
* A

BELIEFS
t A

SENSORY

Layer 7: transports the agent to distant
societies
Layer 6: translates the agent's
messages
to other agent's semantics (ontologies)
Layer 5: verifies & directs outgoing
messages to distant and local agents

Layer 4: stores and carries out the
intentions being undertaken by the agent

Layer 3: processes the beliefs to determine
what should be done next; stores the
reasoner and the plans
Layer 2: stores the agent's beliefs;
updates beliefs according to sensor input

Layer 1: : senses changes in the
environment; messages updates

Bottom Up

Figure 5.RMITAgent Framework (Kendall 1998b)

The idea of separating agent behavior from agent structure is not unique to design

patterns. Agent roles and role models also capture agent behavior independent of agent structure.

27

According to Kendall, "a role focuses on the position, responsibilities, and collaborations of an

entity within an overall structure or system." (Kendall). This is independent from what would

normally be captured in an agent modeled as an object since an object primarily captures

capabilities. Another difference between the objects and the roles is that objects are instantiated

from classes while roles are elements of subsystems instantiated from role models. Figure 6

shows the relation between a particular set of agent objects and an agent role model. This

particular role model is composed of two roles, which are used by several different agents. The

importance of this is that elements of agent systems not captured by other research efforts (i.e.

behavior) are captured by role and role models.

Role Model
(composed of roles)

Client Mediator Colleague)

Object Model
(composed of agent objects)

Figure 6: Relationship between Role Model and Object Model

2.3.6 FIPA

In addition to research done in classifying agent properties, components, roles, role

models, and architectures, work is progressing in defining other aspects of agent space. The

Foundation for Intelligent Physical Agents (FIPA), for one, is doing exactly that (FIPA 1999b).

After FIPA formed in 1996, work started on standardizing agent management, agent naming, and

28

agent communications. Draft specifications similar to ISO standards were the products of this

work. In 1999 FIPA expanded their focus to include more than negotiation, communication, and

inter-operational issues. Specifically, they began formalizing how to construct multi-agent

systems using software engineering principles. In this area, two significant drafts have been

released. The first is a draft standard for agent attributes or "abstractions" (FIPA 1999a). The

second is an architectural overview of the FIPA abstract architecture (FIPA 1999b). Both will be

discussed here.

FIPA points out the purpose of the first of these two papers is to resolve the following

four agent domain classification/specification problems:

1. How to have alternative mechanisms (components) for particular functions
(properties and attributes). For example, the enabling of multiple transport
mechanisms for messages and allowing for alternative representations and
encoding of content languages.

2. How to map or integrate FIPA's specifications with existing or emerging
technologies. This includes such diverse technologies as XML, SMTP, Java,
Jini, Active Objects, CORBA, Directory models, Web servers, e-commerce
and various messaging transports.

3. Defining conformance models and conformance tests that enable interested
parties to verify conformance to FIPA specifications

4. Defining and describing levels of interoperability. The issues of
interoperability include the relationships between agents, the relationships
between agents and platforms, the relationships between different
implementations of agent services, and versioning issues (FIPA 1999a).

These are all significant issues that have not, as of yet, been adequately addressed by the agent

development community. Even FIPA's own effort in these areas has only produced preliminary

results. What has been accomplished is a cursory specification of three dimensions of the agent

domain: attributes, abstractions, and relations. The following lists several FIPA agent domain

attributes and abstractions.

• Agent • Address
• Name • Agent-platform
• Service • FIPA-message

29

Message-transport-service
Agent-host
Message-content
Message-content-language
Message-encoding-representation
Ontology

Ontology-service
Content language expressions
Agent-communication-language
Directory-service
Naming-service
FIPA-message

Though this is useful information, questions remain. For instance, are services capturing the

same information as Kendall's roles?

In addition to defining agent content by attributes, FIPA's effort has resulted in

classification of many agent relationships. These relations are predominantly ones that exist

between the agent abstractions just introduced. Table 4 reflects some of the proposed

relationships or associations between agent attributes and other abstractions.

30

Table 4: Some Agent Relationships (FIPA 1999)

Architectural Abstract Concepts and Relations

Agent associated with one or more agent-platforms
Agent has a name
Agent has an address
Agent can send an FIPA-message
Agent can send a FIPA-message to one or more agents
Agent can provide a service

Agent-platform can host one or more agents
Agent-platform provides one naming-service
Agent-platform provides one or more directory-services
Agent-platform provides a FIPA message-transport-service

A directory-service provides a mapping between agents and one or more
services
The naming-service provides a mapping between agent-names and its address
A message-transport-service supports one or more FIPA-transport-protocols

An FIPA-message has a content
An FIPA-message is sent by an agent
An FIPA-message is received from an agent

Content is expressed in a content-language
Content may reference one or more ontologies
Content is either action, proposition or object description
Content-language must be capable of expressing at least actions,
propositions and objects

Service may be provided by an agent
Service has a service-name
Service can declare its service-interface
A service-interface can declare one or more actions
Service can be registered at a directory-service

Some of the relationships in Table 4 pertain to agents on a multi-agent system level rather

than on a purely internal scope. For instance, agent-platform knowledge defines inter-agent

relations in terms of the message-transport-service, directory-service, and naming-

service used by a group of agents. Here are a few concrete examples that might appear in

FIPA relations:

• HTTP is a type of FIPA-transport-protocol

• KQML is a Agent-Communication-Language

• KIF is a content-language

• XML-Encoding is an Encoding into XML

31

• Transfer-of-Learning is a Service

• Soar is an Agent

• Transfer-of-Learning may be provided by Soar

The second FIPA document mentioned in this section builds on the information in the

first document. It also relies heavily on analysis of existing system and proposed mechanisms

(protocols, services, etc) to create powerful design abstractions (FIPA 1999b). In doing this, the

resulting FIPA architecture intends to separate behavior from mechanism. The way FIPA

accomplishes this is similar to Dr. Kendall's approach. An agentpolicy is produced as an abstract

specification that captures how an agent element or agent interacts with other elements in an

agent system. This is done by formally defining constraint expressions (preconditions, post-

conditions, and invariants) that capture the interaction. An example of one policy would be an

agent requiring that all messages the agent exchanges with other agents must be encrypted. Since

policies are independent of agent mechanisms (instantiations), policies can be reused and changed

dynamically.

2.3.7 Others

Though eliciting agent domain characteristics like architectures, roles, properties,

attributes, components, and relations appears satisfactory to some researchers, it is not to all. For

instance, Wooldridge and Jennings point out that languages could and do exist for specifying

agents as well as building them (Wooldridge 1995). These same authors claim that agent theories

to guide use of languages according to theoretic principles are also needed. They refer to a set of

such theories beginning with Dennett's intentional systems theory. Therefore language and

theory selection are two other possible areas for classifying agent the domain.

This concludes the review of key agent domain research. Several aspects or dimensions

of the agent domain have been introduced. Some of these dimensions have been classified or

32

further partitioned. Despite the breadth of the provided information, more exists. For example,

Nwana moves beyond agent classification by property and architecture by suggesting

classification by roles and goals (Nwana 1996).

2.4 Summary

In summary, a knowledge base system is an abstraction of a database system intended to

contain not just data, but any class of knowledge. It would even be possible, following the

approach of Sernadas and Sernadas, to have a knowledge base system of knowledge bases. Not

only can knowledge base systems manage virtually any domain of knowledge, but they can also

take on very different structures. At a high level, if behavioral knowledge and complex

relationships are to be captured, then an 00 or possibly a relational knowledge base system is

needed. On the other hand, if the knowledge is effectively modeled by a directed graph or tree

structure, then a network or hierarchal knowledge base system will be more efficient.

Options exist for choosing a lower-level structure as well. In fact, there is a wide

selection of representations for domain knowledge to take within a given knowledge base system

meta-structure. Rules are excellent for well-defined domains of question-and-answer type

information (like the medical diagnosis system), but they don't work as neatly with structured

knowledge such as representing parts of an automobile and their interrelations. Structured

declarative knowledge approaches, in turn, may not be the best choice where flexibility in

operations on knowledge is needed. This could be accomplished, alternatively, by taking part of

the inference engine's black-box procedural operation and including it as procedural content in

the knowledge base, which is exactly what frames and objects can provide. Still other cases exist

where a hybrid or meta-representation would be better than any of these pure approaches.

Apart from, and as important as knowledge base structure, is determination of knowledge

base content. Much research has been done in the agent domain in extracting knowledge. Some

33

of the more applicable research was reviewed in this chapter. The following chapter presents a

methodology for correlating and building upon that knowledge and incorporating it into a well-

structured knowledge base.

34

III. Methodology

Chapter 2 explained knowledge bases in terms of 1) their content, 2) the structure of the

content, and 3) the meta-structure or system for containing and accessing this content. This

chapter outlines the methodology for establishing all three of these items for an agent-oriented

knowledge base system.

A sensible starting point for a methodology would be an understanding of the knowledge

to be stored. Once this knowledge is understood, it can be captured into appropriate

representation structures, which can then be organized for storage in a selected knowledge base

meta-structure. These three primary steps summarize the Knowledge Base Development

Methodology (KBDM) to be followed (Figure 7). Details regarding each step appear in the next

few subsections.

Assumptions & Initial
Requirements

domain knowledge
(prior DA.systems) --^Refine & Iterate

Implement
Representation

^Scheme
Section 3.2

Section 3.3

Structured
Knowledge Entities
+ Language

Figure 7: Knowledge Base Development Methodology (KBDM)

35

3.1 Determine and Organize KB Content

The first step of this general methodology (that of determining the knowledge and

organizing it for storage) is known among computer scientists as knowledge engineering.

Knowledge engineering requires 1) an expert in the domain to provide the knowledge, and 2) a

domain analyst that can effectively collect, filter, and organize domain knowledge from one or

more such experts. Figure 8 captures the two key stages of knowledge engineering: 1) Preparing

Domain Information and 2) Analyzing the Domain. These sub-stages of the KBDM capture the

essentials of preparing the knowledge, analyzing it based on requirements, and creating an

organized knowledge structure. As reflected in Figure 8, the resultant knowledge structure would

then be mapped to a selected representation scheme, which, in turn, would be stored in a meta-

structure for the knowledge base system. The knowledge engineering sub-stages precursory to

these latter steps will now be explained further.

assumptions & Initial
Requirements

-. Refi ne & Iterate

Structured
Knowledge Entities +
Lang uage

Figure 8: Domain Engineering Process (Warner 1993)

36

3.1.1 Preparing the Domain

Preparing the domain for analysis is, in short, 1) systematic research and 2) summarizing

that research in a Domain Analysis Requirement Document (DARD). This step involves

extracting what the domain experts view as the essence of the knowledge area as a bounded set of

requirements. For example, a mathematics knowledge engineering task may involve questioning

mathematicians but would not involve querying veterinarians. It may not even involve gathering

calculus knowledge if that is not a requirement (it would be out of bounds). Knowledge can be

obtained either by a series of question and answer sessions or by review of the literature. Often a

domain has had systems developed for use in it already. In such cases the existing systems

themselves can be analyzed to extract domain knowledge. Of particular interest in this stage of

KBDM is the collection of prior domain analysis efforts in general, especially those geared

towards creating any existing systems. Warner, in his complementary knowledge-based effort,

noted that a "knowledge base must [also] support the code generation component of a knowledge-

based software engineering system by providing a library of reusable software specifications of

implementations" (Warner 1993). Since code generation is a goal of agentTool, both

specification and implementation level agent knowledge needs to be collected in preparing the

domain information for later organization and conversion to a reusable form by the domain

analyst. This requirement for specification and implementation analysis is an example of

something that would appear in the DARD. It also leads to the suggested addition of meta-

knowledge as a focus of the knowledge engineer. The relationships between knowledge elements

such as implementations and specifications form this meta-knowledge. Collected and generalized

meta-knowledge should appear in the DARD when available.

37

In addition to providing collected knowledge, meta-knowledge, and referenced existing

systems, certain other information should appear in the KBDM DARD. Warner lists 14 specific

items as particularly useful in effecting domain analysis (Warner 1993). Among these are:

• Definition of "domain" (and/or the particular domain)

• Determination of problems in the domain

• Permanence of domain analysis results

• Focus of analysis

• Approach to reuse

• Primary product of domain development

• Relation to the software development process

• Purpose and nature of domain models

Not all of these items are clear as to exactly what they represent, but it is the knowledge

engineer's responsibility to clarify and justify whichever of these are selected for inclusion in the

DARD for the analyst's benefit. However, the KBDM requires as a minimum 1) the definition of

the domain to be analyzed (e.g., agent domain), 2) a description of the relationship the domain

model has to the parent software development tool (e.g., agentTool), 3) potential analysis

problems, and 4) recommendations.

To exemplify exactly what is accomplished in this step, consider the package-shipping

domain. A knowledge engineer is tasked to develop a system to handle package shipping. The

engineer's requirements bound the package-shipping domain to cover non-international ground

and air shipping. He is also given additional guidelines that scope the type of shipping activities

38

that must be captured (pick-up, payment, delivery, etc). With this information, he first consults

inventory and customer service personnel and then examines a couple of programs that handle

shipping for other businesses. He is fortunate to discover a prior, though somewhat ad hoc,

domain analysis that was used for development of one of those other programs. Next, from the

bounds, guidelines, and specific knowledge gathered, the knowledge engineer produces a DARD

for the domain analyst to use. This document may suggest a breakdown of shipping domain

activities and modules, refer to the existing systems, and provide other relevant shipping

knowledge. Included also is a definition of the shipping domain and a description of how a

model of it is to be used in the future application. It definitely contains the prior domain analysis

results that the knowledge engineer located. However, this document does not contain the final

domain analysis (which may need to be more extensive than the included analysis), but it does

help guide a successful domain analysis effort.

3.1.2 Domain Analysis (DA)

The core task of a domain analyst is filtering and organizing domain knowledge. Several

domain analysis approaches are listed by Warner (i.e., Arango, Neighbors, Iscoe, Kang, McCain,

Prieto-Diaz) (Warner 1993). KBDM will combine strengths of each these approaches with

contemporary object-oriented principles. For simplicity, this Combined Objectified Domain

Analysis Methodology will be called COD AM. There are four basic steps to CODAM as well as

one important underlying principle. The principle is that the Unified Modeling Language (UML)

will be used for visual representation of the domain model and taxonomies. The steps are:

1) Identify Abstract Objects: This step involves looking at collected
knowledge and existing systems for determining what objects are in
common. This may require decomposition of the collected knowledge to a
level where commonalities can be found. For instance, individual attributes
and methods may need to be examined.

39

2) Identify Abstract Associations and Operations: As with the previous step,
common entities are collected. However, these entities are associations
between objects. Operations are common activities performed on objects.

3) Identify Abstract Relationships: Relationships differ from association in
that they capture structure rather than behavior. In this step specific common
relationships are extracted from collected knowledge. These relationships
may then be abstracted. In the case of aggregation, the individual parent-
child relationships are identified during abstraction.

4) Perform Classification: In this final step all the above information is
organized into a domain model as well as hierarchies capturing inheritance.

These component steps of COD AM also appear in Figure 9.

Assumptions & Initial
Requirements

domain knowledge
(prior DA.systems) Refine& Iterate

Structured
Knowledge Entities +
Language

Figure 9: KBDM COD AM sub-Methodology

Earlier, in the Prepare Domain Knowledge stage, a package-shipping example was given.

The end product of that example was a DA Requirements Document for use by the domain

analyst. That example can now be brought one step further. The domain analyst takes that

40

document and uses it as a guide while following CODAM. The following lists what may occur

in the four steps the analyst then follows.

1) Identify Abstract Objects: The analyst reviews the prior DA effort for the
objects found to be common. He compares the results to other existing
systems and generates a final list of common objects. That list may include
sending-customer, receiving-customer, package, and vehicle.

2) Identify Abstract Associations and Operations: At this point, the analyst
identifies associations such as: sending-customer sends package,
package intended-for receiving-customer, and package sent-on
vehicle. He does the same with operations, to include: change-name-of
customer and assign-vehicle-to package.

3) Identify Abstract Relationships: Relationships may be specific to
individual systems such as: package [10, Dayton-NYC, #104], which
states that a package is composed of a weight, origin-destination,
and customer-number. The analyst can take these specific relationships
and abstract them. Thus, for instance, the package object above abstracts
to: package has-an origin, package has-a destination, shipment
has-a weight, and shipment has-a customer-number.

4) Perform Classification: The analyst now creates a taxonomy of objects and
other pertinent knowledge. The transport object taxonomy, for example,
maintains a vehicle at the top level and several subclasses below it (van,
semi, airplane, railroad, etc). The domain model is also generated to
capture associations, relationships, and hopefully aspects of the taxonomies.

The next section examines how the domain model produced here is used by KBDM.

3.2 Implement Representation Structure and Generate Domain Language

The knowledge collected and organized in the domain analysis portion of knowledge

engineering resulted in production of a model of the domain. To be usable by an application,

however, three things must occur. First is the selection of a scheme for representing all modeled

knowledge. Next is the mapping of domain model entities into that representation structure

(Figure 10). Last is the generation of a language common to the application system and domain

model. Each of these is discussed below.

41

3.2.1 Select a Scheme

A set of implemented domain objects is the primary product of this stage. The

implementation vehicle is a representation scheme. Among the representation schemes available

are logic, rules, semantic nets, frames, objects, and hybrids such as CKML and ASTs. In the

event that the domain model is complex enough so that no single representation scheme is ideal

for all abstractions, multiple representation schemes may be required. The advantages and

disadvantages of these schemes were presented earlier, providing criteria for this selection

(Section 2.2).

Assumptions & Initial
Requirements domain knowledge

^-—"(prior DA,systems) * Refi ne & Iterate

1. Select Scheme(s)
2. Map to Scheme
3. Construct Language

Structured
Knowledge Entities +
Lang uage

Figure 10: KBDM Stage 2 - Implementing Representation Scheme

42

3.2.2 Map to a Scheme

Depending on how well organized and consistent the domain model is, mapping the

domain model's content into unique representation structures may be either simple or complex.

If the domain entities lend themselves well to a standard modular implementation structure then

they are simply rewritten in the form that structure compels. When domain analyst Arango

referred to moving a reuse infrastructure specification into reuse infrastructure implementation,

he was classifying this same type of operation (Arango 1991). Care must be taken to ensure that

taxonomic information (knowledge instances) as well as the abstract domain entities and relations

are all represented.

3.2.3 Construct Domain Language

The second product of this stage is a domain language. The primary intent of a domain

language is to provide a textual syntax (and possibly semantics) for capturing operations

involving domain entities. In other words, it provides a grammatical context for an application or

user to understand and interact with a domain model. The most straightforward way to create the

domain language is to give a unique name to each object, relation, and activity abstraction in the

domain model. This was partially done with the package-shipping domain earlier using words

such as: customer, send-to, origin, etc. How the resulting language grammar is actually

used by the application environment is an issue handled at the knowledge base meta-structure

level, which is discussed next.

3.3 Implement Knowledge Base Meta-Structure

Once elemental knowledge structuring is achieved and a domain language specified, the

meta-structure for the knowledge base itself is selected and implemented (Figure 11). The result

is a complete knowledge base system (KBS). The KBS structure may be strongly dependent on

the representation scheme chosen for domain knowledge entities. The domain language also

43

biases selection of this structure. The reason for the latter is that access methods to individual

domain entities are directed through the meta-structure, so the meta-structure will need to absorb

that domain grammar into its design in order to correctly perform access functions. In database

terms, the domain language becomes a Data Description Language, which is important for

database (knowledge base) operation. Section 2.3 correctly suggested then that a database would

be the most appropriate meta-structure (due to flexibility, primarily). The selected KBS will need

to provide a minimum access method set to include 1) adding new knowledge object, relation,

and activity abstractions, 2) removing any of the preceding, or 3) retrieving any of the same for

modification or use. Likewise, any of these same operations should be permitted on specific

instances of the abstractions. Figure 11 captures this step as well as Refine & Iterate, a

succeeding step that places the resultant knowledge base system in the position of an existing

system at the start of a new KBDM cycle.

Assumptions & Initial]
Requirements I

domain knowledge
(prior DA.systems) ^Refine & Iterate

Structured
Knowledge Entities +

Figure 11: KBDM Stage 3 - Implementing KB Meta-Structure

44

3.4 Summary

This chapter presented Knowledge Base Development Methodology (KBDM), a

methodology for designing a knowledge base scoped to a particular domain and containing

persistent, reusable knowledge. The scoping for this effort is to be achieved by knowledge

engineering of the agent domain. Results of that step take the form of a Domain Analysis

Requirements Document (DARD) that contains definitions, assumptions, requirements,

recommendations, and other pertinent information to guide domain analysis. Using the DARD

as a guide, a domain analyst produces a domain model and taxonomies. Reusable knowledge can

then be mapped from that model and those taxonomies into 1) a language and 2) a representation

structure. These two products are next combined into a implementation knowledge base system.

Access to knowledge objects will be enabled by the incorporation of the domain language into the

meta-structure in the form of methods for adding, deleting, finding, and retrieving knowledge.

The next chapter will detail the design decisions made in applying KBDM in the agent domain.

45

IV. Knowledge Support Design

The Knowledge Base Development Methodology (KBDM) discussed in the previous

chapter has five products; 1) a Domain Analysis Requirements Document (DARD), 2) a model of

the agent system design domain, 3) a selected knowledge representation scheme for the contents

of this model, 4) a domain language and grammar, and 5) a knowledge base meta-structure

implementation for containing the domain knowledge, integrating the domain language, and

supporting the representation scheme. This chapter presents the implementation of these five

products resulting from application of the KBDM. Section 4.1 briefly discusses the initial

preparation stage (Prepare Domain Knowledge) and introduces the DARD. Section 4.2 then

addresses decisions made during domain analysis and presents the domain model. Section 4.3

covers decisions relating to mapping knowledge elements from the domain model into a selected

representation scheme and incorporating that scheme into a knowledge base meta-structure.

Section 4.4 then concludes the chapter. Although design decisions are made throughout these

sections, key decisions will be highlighted due to their particularly significant impact.

4.1 Prepare Domain Knowledge Decisions

In Section 3.1.1 the process of preparing domain knowledge was summarized as being

the systematic collection and summarization of domain knowledge in a Domain Analysis

Requirements Document. The DARD for this effort (Appendix A) contains:

1) Definition of domain and agent domain

2) Explanation of the agent domain model's place in the software engineering
process

3) General analysis requirements and assumptions

4) List of existing systems that may be useful to the analysis

5) Potential problem areas and recommendations

46

The domain definition and one requirement that appear in this effort's DARD are reproduced

below to add clarity for transitioning to the next stage of the KBDM, Domain Analysis.

Agent Domain Definition: A collection of knowledge for multiple
dimensions/aspects of agent including: concepts, designs, specifications, and
implementations of agent systems, agents, and agent components that together
completely capture agent information at every level of representation
(abstraction) and stage of development.

DARD Requirement: The domain analysis should support the Multi-agent
System Engineering (MaSE) development methodology, by capturing knowledge
entities that are used by that approach.

4.2 Domain Analysis

In the past, several efforts have attempted to organize or specify the agent domain. Most

of those efforts focused on narrowly scoped portions of the domain. The efforts include (see

Section 2.3):

1) Franklin and Graesser's classification of agents by properties and
components.

2) University of Michigan's delineation of agent architectures and
distinguishing of them by their properties and components.

3) McGill University's UAA, an attempt to create an abstract agent architecture
with universally usable components and implementation framework.

4) University of Cincinnati and Stanford's JAFMAS and JATLite
communication frameworks and communication specifications.

5) Elizabeth Kendall's analysis and specification of roles, role models, and
behaviorally modeled RMIT agent architecture.

6) FIPA's various specifications for standardizing and defining agent
relationships, architecture, and constitution.

Of these, FIPA's is exceptional because it examines the agent domain macroscopically

and is consorted effort by several agent domain researchers. However, their consensus-driven

approach has a drawback: FIPA's standards are yet very much in draft. To build on the strengths

47

of FIPA and non-FIPA research approaches, this effort examines the agent domain space broadly

yet without extensive peer consensus.

The final result of domain analysis is a domain model and a related collection of

taxonomies. Figure 12 generalizes the domain model into two primary, though overlapping*, sub-

domains: an agent entity sub-domain and a multi-agent system sub-domain. Both sub-domains

contain knowledge at conceptual, design, specification, and implementation levels. One-way

arrows on the figure represent relationships that exist between knowledge levels (mappings). The

larger multi-way arrow represents non-mapping relationships (associations) between elements at

various knowledge levels in both sub-domains. Specific mappings and associations are discussed

later in this chapter. However, descriptions for the four knowledge levels and some facets of each

are provided here. Note that each of the identified facets of each knowledge level corresponds to

a single class of abstract knowledge object

Conceptual Knowledge Level: A concept is a general idea. Agent concept facets
include goals (objectives for the agent or multi-agent system to achieve) and
properties that characterize behaviors of agents or agent systems. Most agent
development starts with generating conceptual knowledge.

Design Knowledge Level: A design is a general pattern or method. Agent
designs organize and add meaning to agent concepts. Design knowledge facets
include:

Role: An intended pattern of behavior, responsibilities, and
collaborations for an agent class within an overall structure or
system. Roles contain generalized tasks and a set of resources.

Communication: A simple model of an interaction between roles.

Role Model: A collection of roles and patterned communications
between roles.

Task: A method that constrains and defines how a goal is to be achieved.

Resource: Something that a role has access to that aids or supports the
role in its responsibilities.

* The sub-domains overlap because the agent knowledge element exists in both sub-domains, linking them.

48

Specification Knowledge Level: A specification is a detailed and exact
description of an agent or agent system. Agent and agent system specification
facets include:

Agent: The key functional entity of the agent domain.

Component: The fundamental functional module of an agent.

Architecture: An abstraction for using a set of components together in a
particular way. Although an agent always has an architecture,
components themselves may also have architectures for organizing their
sub-components.

Communication Framework: A set of protocols, components, and
mechanisms that permit relay of data and knowledge. Java Remote
Method Invocation (RMI) and sockets are two common communication
frameworks. Framework specifications have close ties with framework
implementations.

Data Construct: Analogous to a resource for a role, but for an agent.
Data constructs are not necessarily part of an agent, though an agent may
have access to them. Components of an agent may utilize this access in
order to function.

Conversation: Basically a state-transition table (or finite-state machine)
defining interactions between agents.

Implementation Knowledge Level: An implementation is the equivalent of a
complete specification though in a compilable and runnable form.

' 'IC^IsM

Concepts SE3K' Concepts

\
Designs IJtsfe'

 ♦
Designs

Specifications
""^MEE"

y

Specifications

-^ ~
Implementations
 *-

Implementations

Multi-Agent
System Domain

:: Agent Entity
Domain

Agent Domain

Figure 12: Generalized View of Agent Domain

49

By inserting these and other knowledge facets into the generalized domain model, and by

then applying the KBDM/CODAM principle of using UML in modeling the domain, the model

shown in Figure 13 was produced*. Four shades of objects are used to differentiate between

facets in different knowledge levels (i.e., implementation facets are darker than conceptual

facets).

Communication

Involves

Specifies Property

Implements

Role Model

Maps-to

I System I I —i

f Message F Component

I—- IF71171 1
Needs

l Comm "rmwrk

-< >-

Achieves
Task

IGoal

——————

rprotocol

Method

! Conversation I

r—\

Role

Uses

Resource

 I I Participates-in
Summarizes ■ " ""rp=-~-i

I Agent

Played-by [

l Multi-Agent System
! Sub Domain

Defines

Accesses

=3—7 b
Architecture }

H

Interfaces I.
I 1 Component

Attribute

I Method

Data Construct Utilizes

Implements

 ' BÜJ i

f i™»^--
gmentatlo^l

Maps-to jMflHT 0 t J*y?»y«J— *

Property Agent Entity
Sub-Domain

Figure 13: UML Model of Agent Domain

' Method and Property appear twice strictly to reduce visual clutter.

50

More information on the knowledge elements (facets), the taxonomies they represent, and

element associations appear in the following two subsections. Section 4.2.1 discusses knowledge

contained in the agent entity sub-domain while Section 4.2.2 covers multi-agent system sub-

domain knowledge.

4.2.1 Agent Entity Sub-Domain Analysis

This portion of the agent domain is depicted in Figure 14. Agents are composed of

architectures, components, attributes, and methods. Data constructs and properties are also

associated to an agent via its components, as are component implementations. Presenting the

origin and relationship of these knowledge elements is the focus of this section.

UMLKEY
^] Object/Facet
■y Aggregation
— Association

I Data Construct

Accesses

Interfaces

1 Utilizes

| Agent

Architecture

| Component
O-

j Attribute 1

rfe
f Method

Figure 14: Agent Entity Sub-Domain

Any analysis of the fundamental entity of the agent domain, the agent, is incomplete

unless it poses the question "What is the definition of 'agent'?" or at least "Which definition of

agent is correct?". The answer to either query is found by analysis of the myriad of circulating

definitions of 'agent'; and that answer is that they all define what an agent is, providing that each

51

definition is considered in context. This is possible because each definition intends to define a

specific class of agents, though few, if any, describe every class of agent. For example, the

general definition of agent introduced in Chapter 2 actually defines just what an autonomous

agent class is.

An autonomous agent is a system situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own
agenda so as to effect what it senses in the future (Franklin 1996).

Other definitions likewise refer to classes of agents with other properties. Viewing this another

way, properties provide a means to conceptualize or define agent classes (or multi-agent system

classes). Therefore, rather than present various definitions of agenthood, this effort presents the

properties that those definitions all use. A property taxonomy appears in Section 4.2.1.2.

Though agents can be organized and identified by their properties, non-conceptual

knowledge must exist to provide a foundation for implementing those properties. Analysis of the

research summarized in Chapter 2 indicates that agent architectures and components implement

properties on behalf of agents owning those components. This is not to say that an agent is a

empty shell, but rather it is composed of an architecture of interoperable components that realize

the properties that are associated with that class of agent. Components, like the agents

themselves, may have an architecture with encapsulated sub-components. These two elements

(components and architectures) fall into the specification knowledge level, as do data constructs.

Data constructs represent resources available to an agent, and thus to its components. For

instance, a virus-definition data construct could be one that a virus-checker component

of an agent, with some security architecture, would require to function. Just as properties

form the core of agent conceptual knowledge, components, architectures, and data constructs

form the core of agent specification knowledge. Taxonomies of three of these (but not data

constructs) will be introduced in Section 4.2.1.2.

52

Abstract architecture, property, data construct, and component objects have identifiable

attributes such as names and descriptions. In addition, data construct attributes may include a set

of data fields detailing the internals of the construct. For example, virus-definition may

have data fields for virus-name, discovery-date, size, affected-OS. To keep consistent

with the CODAM principle of using UML wherever possible, all attributes that are not reusable

will be represented as UML attributes. Reusable knowledge elements like the attribute and

method object parts of the component entity, however, will be attached using UML aggregation.

This decision is reworded below and is apparent in the UML models that appear in this chapter.

Key Design Decision #1: Aggregation will used whenever the lower level object
has significant potential for reuse. This means that components will be found in
aggregations but not as attributes of architectures. It a means that names and
descriptions will appear as attributes. Objects defined in the multi-agent system
analysis stage will follow this same guide. At the implementation stage, of
course, aggregated objects may be stored separately or as part of the aggregation.

4.2.1.1 Agent-Entity Association Knowledge

Before considering specific instances of conceptual and specification knowledge sub-

types, associative knowledge needs to be presented. In Figure 12 associative knowledge takes the

form of 1) a set of one-way arrows that map from one knowledge level to its neighbor and 2) a

multi-way arrow that maps within and between the agent sub-domains. The mapping arrows

serve the purpose of transferring knowledge from a lower level to a higher level (e.g., concepts to

designs, designs to specifications, and specifications to implementations). Figure 14 shows that

one of these mappings is Maps-to. Maps-to is used to link a specified component to the actual

software code implementation of that component. Other mappings will be discussed in

Section 4.2.2.

The multi-way arrow shown on Figure 12 represents a large set of non-mapping

associations, to include 1) Interfaces, 2) Utilizes, 3) Accesses, and 4) Implements. The Interfaces

53

association exists between two components in an architecture that need to coordinate their

behavior in some form. One use of this association might be in capturing the fact that avirus-

checker component needs to address a knowledge-store component in order to look up

stored virus-definitions. This differs from the Utilizes association, which reflects that a

component requires an interface with a data construct directly. Accesses is related to Utilizes in

that it specifies that an agent has access to a given data construct. An agent with such access can

have its components utilize them. For defining the final association, Implements, captures the

relation between a property and the component that realizes that property (see Key Design

Decision #2).

Key Design Decision #2: Properties may be implemented by either individual
components or sets that compose an architecture. To simplify this in the domain
model, any architecture that implements a property will be assignable to
components and that component will implement the property on behalf of the
architecture.

More detailed behavior than shown by these associations is captured by individual component

methods (e.g., find_smallest_num (array) is a method that takes an array and finds the

smallest number in it).

4.2.1.2 Agent Entity Knowledge Taxonomies

A key aspect of the domain not reflected by the domain model is the depth of the domain

space for each knowledge facet (e.g. property, component, etc. *). Just as the original knowledge

levels broke down into these facets, those facets break down into taxonomies. Each taxonomy

has a static top-level partitioning under which numerous instances and subclasses are organized.

Having a taxonomical classification will be important when the domain model is implemented in

a knowledge base because it will allow for easier organization of reusable knowledge,

accelerating both storage and retrieval. Due to time limitations, only a small subset of existing

* Tables 1-3 provide most of this information.

54

systems are classified in the taxonomies presented by this effort. This can be seen in the

following sub-sections as those taxonomies are presented.

4.2.1.2.1 Property Classification Taxonomy

Classifying properties is challenging for two reasons: first, properties are not tangible,

and second, properties are tightly related to capabilities. Though capabilities have not been

mentioned to this point, they were assumed in the University of Michigan study discussed in

Section 2.2. They differ from pure properties in that capabilities identify what agents can do

(ability) while properties identify what agents are (traits). Rather than promote semantic

confusion, this iteration of KBDM will consider properties and capabilities together in a single

hierarchy. Figure 15 shows several key properties/capabilities in hierarchal form. Though the

definitions for the properties appearing in this figure were presented in Tables 1 and 2 in Chapter

2, descriptions of key top-level properties appear here for convenience.

Mobile- Able to transport itself from one hardware unit to another (e.g. between
two networked computers).

Communicative- Able to communicate with other agents or a user.

Reactive- Responds in a timely fashion to changes in the environment.

Learning- Changes its behavior dynamically based on acquired knowledge,
whether that knowledge comes by experience or by instruction.

Planning- Able to sequence actions to reach a desired goal. Although there are
multiple types of planning, most require a memory/storage facility.

Reasoning- Able to consider alternatives and make weighted decisions.

4.2.1.2.2 Architecture Classification Taxonomy

Prior agent architecture classification attempts influenced the design of this effort's

domain taxonomies, including the property taxonomy just discussed (Arriola 1994; Robinson

2000). Whereas the Michigan study classified architecture by platform or research team and

55

produced a lengthy list, Robinson lists just five architectures (reactive, planning, knowledge-

Base, Belief-Desire-Intention (BDI), and user-defined). Both of these approaches are used in this

effort by 1) identifying a small set of architectural styles and 2) classifying each architecture

instance under one of those abstractions. The decision to format domain taxonomies in this way

was suggested in Section 4.2.1.2 and appears as Key Design Decision #3.

Mobility

Other

Reactive

Property Abstraction Communicative

Learning !

ZA Learning Transfer
Planning

by Example

by Analogy]

by Instruction

Other

Self-interested

Altruistic

Secure

Other

Reasoning
p" :

Optimal ity

I Cooperative

[Means-End I

E Other I

Replänning I

Opportunistic I

Exec. Monitoring

Hierarchal POP I

Deductive

[Tiductive

Goal-Oriented

Pother I

KEY
I Object

—T> Subclass

Figure 15: Property Abstraction Hierarchy

Key Design Decision #3: The agent architecture sub-domain is partitioned into
two levels of abstraction. Highest is a set of abstract architectural styles. Below
these styles are platform-dependent architectures conforming to constraints
imposed by the styles. Below this level may exist yet more specific architecture
instances. In the event that a platform architecture will not map to one of the
fundamental styles, a new composite style may be added to the hierarchy. Other
domain taxonomies follow a similar bi-level format.

56

Figure 16 presents a set of architectural styles similar to Robinson's but with two noteworthy

differences. First, Robinson's planning style is captured by the CODAM Pure-Deliberative

architectural style {Deliberative for short). More complex deliberative systems that are based on

human-like reasoning models are captured by the Pragmatic architectural style. Second,

Robinson's user-defined style is replaced with the generic Composite style, which identifies

architectures that mix aspects of the other three categories (deliberative, reactive, and pragmatic,

and composite). Reactive architectures, as the name would suggest, are ones that directly support

implementation of the reactive agent property. Classic architectures are those that use an

inferencing style like that found in classic rule-based expert systems (Robinson 2000).

Architecture Abstraction

Deliberative

ICARUS

Theo

Other

Teton

Homer

Prodigy

Roactive

Pragmatic I Classic I I Composite

BDI Atlantis

Subsumption

Other

JESS CLIPS KEY
] Object

—[> Subclass

Figure 16: Architecture Abstraction Hierarchy

4.2.1.2.3 Component Classification Taxonomy

Figure 17 depicts the five key categories of agent components as well as several specific

subclasses of each. The selection of the six areas follows logical functional partitions between

the behaviors of components of existing agent systems (Ndumu 1999). Planner components are

those that constitute and directly support planning while Knowledge components permit

57

organization, storage, and retrieval of data. Execution and Service components are somewhat

related, the former capturing general control and execution structures and the latter more task-

specific operating components, which includes interface components to applications,

communications systems, data constructs, and the environment in general. Model components

model the environment an agent works in so that agents can maintain a local representation of

their world. Any other components not captured in one of these five areas would fall under the

Other classification. A handful of definitions for component types appear below.

Planner Cmpt

Plan

Goal

I Model Cmpt Other Cmpt

Component Abstraction

Knowledge Cmpt

_ Fact

Rule

Plan Engine Execution Cmpt

State Table

Service Cmpt

API

Inference Engine

KEY

Object
—1> Subclass

State Engine

Stateless Engine

Perceptor

Effector

fComm Engine

Figure 17: Component Abstraction Hierarchy

Communication Engine- A key service component directly supporting
frameworks (see Section 4.2.2).

API- An application programming interface (API) models how an agent can
access and interact with a particular resource. Common resources are people and
databases.

58

Inference Engine- Component maintaining access to a knowledge storage
structure and performing inferencing functions on knowledge in than structure,
such as chaining rules.

Perceptor- A component allowing an agent to sense environmental changes.
Perceptors are key in implementing reactive and autonomous agents.

Plan Engine- Used by an agent to assemble plans dynamically and reason.

State Engine- The component of an agent governing its execution if the agent is
state-based.

Though not obvious from the taxonomy, components really have two taxonomies. The

taxonomies are identical in composition though one contains component specifications and the

other component implementations. Implementations have been referenced as the end products of

deploying an agent or multi-agent system specification. Each component specification-

implementation pair is linked by a mapping relation, which was discussed earlier.

This concludes analysis of the agent entity sub-domain of the agent domain space. The

high-level 'agent' entity focused on to this point will be one of many entities considered at the

system level in the following section.

4.2.2 Multi-Agent System Analysis

This section provides an analysis of the multi-agent system domain, and thus deals with

what agents compose (systems) rather than what composes the agents. Specifically, a multi-agent

system can be defined as:

A software program designed using agents as the main programming element,
and thus inheriting all the advantages (e.g., distribution) and disadvantages (e.g.,
narrow scope) ofthat construct.

Figure 18 provides an overview of the multi-agent sub-domain. The conceptual, design,

specification, implementation, and association knowledge shown (Figure 18) are discussed

below.

59

Like agents, multi-agent systems are modeled conceptually by properties. Multi-agent

systems also have goals, though agents generally achieve those goals. Unlike agent properties,

properties in multi-agent systems are not directly implemented by components and architectures.

Instead, system properties are emerge from agent interactions at the design level. These

interactions then have ties to specification and implementation facets. The interactions are

captured in roles, role models, and inter-role communications. Multi-agent system

communications frameworks do what architectures did for agents; they implement the properties

and permit inter-role communications to occur.

Communication
Specifies

WMM^^BSMS&MM^B

Property
Implements

I Message J ^Component

Needs

Comm Frmwrk

Conversation

Follows

I Protocol

Participates-in

UMLKEY
^\ Object
> Aggregation
— Association

Figure 18: Multi-agent System Sub-Domain

For this effort, all communication frameworks require the existence of four other

specification types: agents, messages, conversations, and protocols. Though the first three do not

60

actually compose a framework, they must be present in a system along with a framework in order

for it to be effective. Agents have been described already, messages are the objects passed to

relay information between agents, and conversations are refined descriptions of inter-agent

interactions governing message sending and other activities. Because of the way MaSE (the

agentTool development methodology) uses conversations, a design decision was required for

domain modeling of them.

Key Design Decision #4: Because MaSE models conversations as dialogues, the
domain model must minimally do the same. However, the capability to capture
broadcast conversation should be possible without significant change in the
domain model.

The fourth specification entity related to frameworks, protocols, specifies the constraints placed

on the basic communications using that framework. Frameworks may also require certain

components to exist in all agents in a system using that framework, so that those agents can

interact. One of these components, the communications engine, appeared in Section 4.2.1.2's

component taxonomy. Each unique framework would have a unique communication engine (i.e.

a Java RMI framework would have an RMI communications engine and follow RMI protocols).

The conversations that occur between agents over a framework are basically finite-state

machines, complete with states, transitions, and guards.

Three other noteworthy top-level knowledge elements are the task, resource, and system

implementation. A task is a simple design structure that encapsulates a goal, resources needed

for achieving that goal, and possibly some applicable constraints. Tasks are collected in role

entities whose responsibilities match the task function. A resource represents something that aids

or supports a role in achieving its tasks. Some tasks may require multiple cooperating roles.

Related tasks may be assigned to a single role or to a group of roles in the same role model. The

role model, then, would also contain interaction knowledge (communications) applicable to those

61

roles. The final knowledge element, the system implementation entity, contains code for a

system just as component implementations contained code for component specifications.

4.2.2.1 Multi-agent System Association Knowledge

Like agents, multi-agent system knowledge elements have both mapping relationships

and non-mapping relationships between them. The Maps-to mapping exists between a system

specification and the implementation that realizes it. Played-by is a mapping relation that assigns

a role design to an agent specification (e.g., an agent plays a role). Summarizes maps a task to a

specific component method. Finally, the Defines mapping links a design resource to a data

construct specification ofthat resource. These mappings appear in Figures 13 and 18.

Several non-mapping associations also exist in the multi-agent system domain: 1)

Follows, 2) Implements, 3) Achieves, 4) Uses, 5) Involves, and 6) Participates-in. These

associations are identified in Table 5.

Table 5: Multi-agent System Associations

Association
Name Association Description Template

Follows A Framework Follows a Protocol
Implements A Framework Implements a Property
Achieves A Task Achieves a Goal

Uses A Role Uses a Resource
Involves A Communication Involves a Role

Participates-in Agent Participates-in a Conversation

4.2.2.2 Multi-agent System Knowledge Taxonomies

As with the agent entity sub-domain model, the multi-agent system domain model does

not show the full depth of the domain space. Taxonomies fill this need here as well. However,

the incredible diversity of possible tasks, goals, resources, and conversations makes it unwieldy to

produce their hierarchies at this time (this same situation arose with data constructs). However,

62

framework and role model taxonomies are presented in Figures 19 and 20. Short descriptions of

some specific frameworks and role models are listed as well.

Comm. Framework

Other ! Socket-Based Shared-Memory CORBA-Compliant

agentMOM I I JATLite ! , RMI/RPC1 Other

1 - ■ '■ It.

"^

JAFMAS r

I
i

Other

KEY

—D> Subclass
 Association

Figure 19: Agent System Framework Hierarchy

Frameworks:

Socket-Based - These frameworks use a two-way communication link between
two programs running on the network, where each end is called a socket. Most
socket connections are client-server and use TCP protocol, though multi-casting
and broadcasting sockets expand beyond this to allow for groups of programs to
share a single socket network connection. The underlying protocols in such
those systems are usually UDP, RAMP, or similar multicast-capable protocol.
JATLite is a particular incarnation of a socket-based framework (Chapter 2).

agentMOM- Message-Oriented Middleware for agents is a standard set of
objects: conversation, message, etc. that allows socket-based message exchange.
The knowledge base of this effort uses this to communicate with agentTool.

Shared-Memory- A framework where a common storage resource (usually main
memory) is used for message exchange. One agent generally leaves a message
with a recipient tag in the shared area, and at some unpredictable future time the
attended recipient checks the memory and recovers the message. Similar to a
blackboard architecture.

63

RMI/RPC- Remote Method Invocation in Java; Remote Procedure Call in other
languages. RMI is slightly more powerful (and uses RMI sockets). Both allow
distributed objects to call methods in each other without explicit declaration of
sockets by a user.

CORBA-Compliant- A framework that follows CORBA standards. Slightly
more flexible than RPC because a handle on an object, not just an object method
is available remotely.

Extended Supply Chain

Self-Provisioning

Otheis: [\
Controlled Society
Ciadle-to-Giave

Role Model

TV

FPA KAoS Interface

Single Function

Initiator-Partner: Conflict

Propose Value

Others: [\
Supply Chain with Contract
Net
Electronic Marketplace

Generic Zeus

Name Server i \ /olunteer Matchmaker \ Assemble Agent Society

Broker 1 Librarian |
F ' 1 T Propose^ ■rMail Service 1

Contract Net [| Assistant 1 ' Diagnosis 1 Basic SupplyT^hain

English Auction 1 Consultant , Prediction 1 Negotiate 4 Timel

I Dutch Auction 1 1 Design 1

[Decompose

i Master-Slave

Adapter

Directory Service j Monitoring

Figure 20: Role Model Taxonomy (Kendall 1998a)

Role Models:

Contract Net - Based on the contract net protocol. It is a task allocation
paradigm where the allocation is realized by a negotiation process between agent
roles. A manager (role) with tasks to be executed, contacts contractors (roles)
that may be able to execute those tasks.

64

Dutch and English Auctions- These are closely related role models. Both have
several bidder roles and one seller role. In the Dutch auction, the seller requests
bits at an ideal price (could be time units for execution), and gradually lowers the
price until the bid is met. English auction usually has the seller request all bids
and selects the highest as winner.

NameServer- This role model has a name server role and several client roles. A
client will register with the name server what the client's capabilities are. The
name server then can respond to queries from other clients who are looking for a
client with certain abilities.

4.2.3 Summary

This concludes the domain analysis portion of the KBDM. In Section 4.2.1 the agent

entity domain analysis was discussed. This provided a foundation for the successive multi-agent

system domain analysis in Section 4.2.2. Combining the collected sub-domain knowledge and

organizing it according to the design decisions made thus far provides the overall domain model

as shown in Figure 13. Following KBDM, the next stages of knowledge base development

transform that domain model into a useable knowledge base implementation.

4.3 Knowledge Base Design

In this section a representation scheme is presented and then incorporated into a meta-

structure for managing the represented domain knowledge. Subsection 4.3.1 considers various

scheme options, and provides arguments for selecting a hybrid. The selected hybrid

representation consists of two parts: an object model for the agentTool execution environment

and a text-based extensible Markup Language (XML) model for storage and transfer that is called

the Multi-Agent Markup Language (MAML). The text model doubles as a representation scheme

and domain language, and is described in subsection 4.3.2. The storage meta-structure, called the

Agent Random-Access Meta-Structure (ARAMS), is described in Section 4.3.3. Figure 21

illustrates how the domain model, object model scheme, agentTool, MAML model scheme, and

ARAMS interact.

65

4.3.1 Find Candidate Schemes

Selection of a representation scheme for a domain should never be arbitrary. Even when

domain entities seem to lend themselves to a given scheme, consideration must be given to the

behavioral and relational content that affects those entities. For instance, though the semantic net

representation scheme introduced in Section 2.1 can capture associations, it may fail to disallow

an unnecessary association. Beginning without bias towards one scheme or another is the ideal

approach. Logic, rules, semantic nets, frames, objects, and common hybrids are then competing

on equal grounds. Even with such equality, examination of the domain model quickly rules out

logic and rule-based schemes for their inability to encapsulate structural knowledge. Semantic

nets also fail to adequately capture relationship and association knowledge, though they do so

better than logic and rules (see example in Figure 2). This leaves only frames, objects, and

hybrids as true candidates.

ARAMS
Knowledge
Libraries

Figure 21: Relationship Between Products of the Effort

For this effort, the prior assumption that selection of a knowledge representation scheme

would start without bias must be thrown out due to agentTooPs Java requirement (see Chapter 1).

Despite the bias toward schemes promoted by Java, selection of an effective scheme is not

hampered since Java permits and thoroughly supports object representation. Considering that

66

frames are fundamentally objects without procedural encapsulation, frames can be modeled in

Java if needed. The choice remaining is then between objects and some hybrid scheme such as

CKMLortheAST.

In agentTool, agent systems, agents, and conversations are modeled as Java objects.

Figure 22 shows the object model of the agentTool agent system design space (as of November

1999). Though the structure only shows the generic objects (like the KBDM domain model),

each of the objects can be instantiated to any of several object instances. For example, the

ATconversation object can be instantiated to a RegistrationConversation.

ATobject
version : integer
description : string

~K

r ATtransition
(guard : type = inltvif
tmsg : string
rmsg : string
csname: string
nsname: string
action : string

I ATcomponentMethod
[name : string
pre : string
post : string
params : string

ATcomponentAttrtbute
name : string ~ |
type : strrig
'structure: booleans

ATsystem |
[name : string"

I V
currentstate

nextstate

1 1

ATtableElement

ATconversation Y
name: string '„

responder

J.

0.1 initiator

ATstatetable
agentname : string

■ 0..1

ATagentComponent
name : string
[parent: strhg
hassub : boolean
sub: boolean
basic: boolean

I |

ATstartState

1|

I ATstate
name "string ;
.action: string!

ATendState

1 I

. I

.., „ A ,
I ATagent

 name : string
0.1 components : Vector

Figure 22: Java Object Model used in agentTool (November 1999)

67

Though objects originally seemed to provide a flexible and effective representation

scheme for the KBDM domain model, this changed during testing of the KBDM's knowledge

base when stored agentTool object instances became irretrievable because they could not map to

newer versions of their parent object types. This problem is analogous to re-keying the locks on a

car - the older version of keys become useless. Although complex Java coding could have

provided a partial work-around, a more elegant and flexible approach was chosen. This approach

is captured in the following design decision.

Key Design Decision #5: KBDM and agentTool will use two representation
schemes. The first is an object scheme for modeling agent domain objects in the
dynamic environment of agentTool. The second, the Multi-Agent Markup
Language (MAML), will be used for static, persistent storage of agent domain
knowledge.

4.3.2 Multi-Agent Markup Language (MAML)

The Extensible Markup Language (XML) provides a flexible but powerful solution to the

need for a secondary representation scheme. Using XML not only eliminated the object-verison

problem, but it reduced the size of represented objects by orders of magnitude. The Multi-Agent

Markup Language (MAML) is the application of XML in this effort. KBDM's MAML offers

three advantages over alternative forms. First, MAML captures the domain grammar. Second,

MAML represents all design objects in compact and persistent form, its primarily aim. Lastly,

MAML is language and platform-independent, meaning that it is possible for agentTool to

interact via MAML with an entire virtual suite of Java and non-Java agent design tools.

MAML consists of 1) a set of linked Document Type Declarations (DTDs), 2)

encapsulated MAML production methods and object-model constructors, 3) a text parsing utility,

and 4) a process for applying each of these. Section 4.3.2.1 introduces the first three of these

items and how they integrate into the agentTool domain model. Section 4.3.2.2 relates how these

elements apply to the process for creating, storing, and retrieving persistent, reusable knowledge

68

facets. Section 4.3.2.3 finishes this section by discussing how the MAML representation scheme

may be extended beyond design object to the implementation level.

4.3.2.1 MAML Integration

Though the object model used in agentTool is dynamic, changing constantly as

improvements are made to capturing agent design information, certain parts of the model are

fairly static. The single most static component of the model is ATobject, the abstract parent of

ATsystem, ATagent, ATconversation, etc. This fact influenced key design decision #6.

Key Design Decision #6: Because correspondence must be maintained between
what is captured in MAML and what is captured in the object model, MAML
methods and parameters will be included in the abstract ATobject. Additional
concrete extensions and applications of these methods will be made mATobject
subclasses as needed.

Implementing this decision led to these additions to ATobject:

MAML [parameter]: This string holds the MAML representation of an object.

MAMLheader [parameter]: This string holds header information in the MAML.
Use of this information will be discussed later.

EncodeMAMLO [abstract method]: This method is defined by each subclass with
the purpose of translating object content into a MAML representation to store in
MAML.

ATobject(string) [constructor]: Constructor receives a string (e.g., MAML string)
as input

Parseline(string) [method]: This method parses a MAML string into an array of
elements using significant MAML characters as delimiters (<, >, and "). The
array is returned. Usually called by subclasses in their ATObject(string)
constructors.

GetMAMLO [method]: Returns the MAML parameter.

GetFullMAMLQ [method]: Returns the MAML parameter prepended by a
MAMLheader, making a self-contatined MAML document readable by XML-
focused tools.

•

69

• Extract(string[], int, int) [method]: Receives an array of string elements and two
array index integers, will return a substring of appended array elements from
between the two indexes.

• FindNextlnstanceOf(string, stringf], int) [method]: Receives a string, an array of
strings, and an index integer. Searches for the string in the array, starting at the
index, and returns the index of the first match.

• FindLastInstanceOf(string, stringf], in, int) [method]: Receives a string, an array
of strings, and two array indexes. Searches for the last appearance of the search
string within the array, and returns the index ofthat appearance.

• FindMatch(string, stringf], int) [method]: Receives a string, an array of strings,
and a start index to the array. Searches for a correct match to the given string and
returns the array index of the match. A correct match is the appropriate MAML
end tag. This method is only needed for components and architectures since they
can contain each other in multiple layers.

All of these methods and parameters exist for the sole purpose of encapsulating MAML

functionality at the lowest level possible in the object model. The key to these eleven items is the

MAML parameter, which holds a string that completely characterizes its parent object instance.

Though this is incredibly efficient in both storing and transmitting domain knowledge, this

efficiency comes at a price. That price translates to a set of rigorous formalisms that are

collected in MAML DTDs and direct how a valid MAML string can be composed. Appendix C

contains the MAML DTDs for the primary entities of the agent domain model/object model.

These DTDs are used in creating both the encodeMAMLQ methods and the constructors that serve

to compliment those methods (one maps from the object to MAML and the other maps from

MAML back to the object).

4.3.2.2 MAML Application Process

Though the DTDs are important for formalizing MAML grammar, the encapsulated

production and construction methods perform all the work of mapping to and from the Java

design objects and persistent MAML entities. Figure 23 shows the process of creating a MAML

70

entity from a Java object and then re-creating the original domain object from this entity. The

seven steps in this process are:

1) A defined (or partially defined) Java domain object is selected. This may be
a specific A Tsystem, for instance

2) There are several sub steps to this:
2.1 - The encodeMAMLQ method of the selected object is called. This
method parses the object attributes into the MAML grammar, building a
structured MAML text string as it progresses.

2.2 - When aggregate objects are encountered, their own encodeMAMLQ
methods are called.

2.3 - The getMAMLQ methods are called to retrieve the generated MAML
text from the aggregate objects.

2.4 - MAML text strings from aggregate objects are then appended to the
parent object's MAML text string

3) The system calls getMAMLQ on the selected object (the ATsystem, for
instance) and redirects the retrieved string into persistent storage.

Figure 23:Processfor utilizing the MAML representation scheme

71

4) A stored MAML entity string is retrieved from persistent storage and a new
(empty) instance of the appropriate Java object class is created.

5) The MAML string is sent to the new object as a parameter of the
constructFromMAMLQ constructor method.

6) The constructor determines the version of the MAML grammar by
examination of a field at the start of the string. A method for populating the
object (in its current model) from the MAML grammar version is chosen.
For instance, if the version of the MAML string was [1] (meaning that its
parent object model was of that version), then a method for building the
current object (maybe version [3]) from that older version is called.

7) If grammar is encountered for aggregate objects, the version method creates
an empty object of the appropriate aggregate type and recursively repeats
steps five through seven until the entire original object structure is recreated.

4.3.2.3 MAML at Implementation Level

At this point, the knowledge representation scheme for most of the domain model has

been introduced. Although domain design elements such as frameworks have not been captured

in agentTool's object model, there is nothing inherent in them to prevent their creation in that

model or in the MAML representation scheme. However, consideration has yet to be given to

implementation objects and the mappings from the specifications to them. Since agentTool does

not address implementation level knowledge at this point, KBDM has unlimited flexibility in

developing a storage solution. The only constraint, in reality, is that the form of implementation

objects themselves has to be compatible with agentTool's general approach to design. The

following design decision was made to assure this compatibility.

Key Design Decision #7: Because implementations will, in the future, be in
languages other than Java, and because certain code-level details may need to be
mapped from the specifications to those corresponding implementations,
implementation objects need to be captured as accessible and reusable source
code objects rather than an alternative form.

72

What this decision means is that a MAML wrapper may be placed around a source code object so

that that object may then be represented in the same general form as the design objects, a MAML

string. In fact, wrapping may be just a start. MAML tags (like HTML tags) may embed the

source code object as well as wrap it. This would provide anchors in the code for insertion of

specification-level parameters. For example, suppose that an agent specification captures the

need for a knowledge base component containing rules. Figure 24a shows a partial component

object for this rulecontainer. The source code for one specific rulecontainer and the associated

rule take the form of MAML-wrapped Java objects (Figure 24b). It is notable that there are also

MAML tags imbedded in the code to identify distinct objects and static fields (italicized). These

anchors may be either removed or replaced by actual rule strings captured in the specification.

To support this, a mechanism for parsing the MAML implementation string and operating on it

will be needed, though a small variation to parselineQ may suffice for this.

a) Component b) Source Code

RuleContainer
+name: String

+Rule: Set(Rule)

Rule

+name: String
+precondition
+postcondition

execute()

<KBitem typ e=" implementation"
name=" ruletestbase">

<code>
<object>
class rule {
String name= <componentname/>;
String precondition <precond/>;
String postcondition= <postcond/>;

public executed {

} "
}
</object>
<object>
class ruleBase extends dataBase {
String name= <componentname/>] ;
Rule rules[] = { <rulelist/> };

}
</object>

</code>
</KBitem>

Figure 24.Example Design Object and One MAML-wrappedImplementation

The mappings from the MAML specification objects to MAML-permeated

implementation objects may also be captured in the MAML. For this to work, a new mapping

73

object needs to be created for every implementation stored. Each of these mappings, as with

other MAML representations, must conform to a certain subset of the MAML grammar.

Application of that grammar is shown in Figure 25, where the Maps-to association is defined.

This nomenclature's similarity to Figure 12's associations is not coincidental. Indeed, the

maps-to association is exactly what is needed for capture and MAML is flexible enough to

provide it. Because of this ability, MAML can be used to capture mappings and associations in

the agent domain. Such information may be useful as meta-knowledge for more quickly locating

an object that meets desired constraints. For example, if a user wants to know what planner

components support cooperative planning, it would be time consuming to load every planner

design, look at their respective properties, and then look at each implementation for each of

specifications that have the desired property. A more logical approach would be to include

significant associations and relationships (such as the component implements property

association) as independent represented knowledge entities that reference other entities (Figure

25b).

This completes discussion of the MAML knowledge representation scheme for the

knowledge gathered by the KBDM domain analysis.

-«relationship type="maps-to"> relationship type="implements">
<implementation name="ruletestbase"> <component key="jointplanner">
</implementation> </component>
<specification> <property key="cooperative">
<name>"rul econtain er"</nam e> </property>
</specification> </relationship>

</relationship>

a) Maps-to Association b) Implements Association

Figure 25: MAML Representation of Two Associations

74

4.3.3 Meta-structure Implementation

The final stage of the KBDM requires selection or design of a meta-structure for the

knowledge captured by the chosen static representation scheme. An effective meta-structure

must do more than simply contain the represented knowledge; it must provide organization and

access at a higher level than addressed by the knowledge representation scheme itself. Section

2.3 argued that a database system is the answer to this need. Several classes of database were

suggested in that same section, but one with low overhead and significant extensibility is what is

needed here.

The decision made in this effort was to use a low-level database with its model being

neither strictly 00, relational, network, or hierarchal. Not only does this eliminate costs

associated with commercial model databases but, more-importantly, it allows for a simpler, more-

tailored solution. Java's built-in support for file access methods makes design of such a low-level

structure an even better choice (in addition to providing implicit compatibility withagentTool,

which also is designed in Java). The particular Java constructs that provided the most use in

designing this database are Collection and RandomAccessFile. These two structures gave

representation ability at the internal schema level and mapping ability to bring knowledge at that

level up to the conceptual and external schema levels. The internal schema is essentially a file

structure while the conceptual and external Schemas appeared in the forms of MAML and the

agentTool object model, respectively. The following constraints were met in developing this

knowledge base system (schemas, constructs, etc):

1) A common interface for passing knowledge elements was provided.

2) The system did not require that the number of records be known at
creation time. This is because the knowledge base was to be manually
populated over time.

3) Because of #2, there needed to be a mechanism for dynamically
increasing the size of the knowledge structure in long-term storage.

75

4) Stored knowledge elements were uniquely identifiable.

5) The system provided a means for saving, locating, deleting, and
retrieving unique elements or groups of elements.

6) Since the number of stored elements may grow quite large, access
methods that function independently of content cardinality were
desirable.

In this effort, an existing RandomAccessFile-based database structure was modified in

order to extends its abilities (Hamner 1999). The modified implementation is called the Agent

Random-Access Meta-Structure (ARAMS).

4.3.3.1 ARAMS

There are two levels of the ARAMS. The first borrows heavily from Hamner's work and

deals primarily with general file access. The file type chosen is the Java RandomAccessFile, a

persistent storage data structure that has the capability of 1) being sized explicitly, 2) supporting

the seek() method, and 3) using Datalnput() and DataOutput() interfaces. The significance of

these interfaces will be discussed briefly later on. Details of the general implementation of this

structure are presented in Section 4.3.3.2. Section 4.3.3.3 captures modification to this basic

construct to make it 1) operable with agentTool, and 2) able to contain and organize the MAML

scheme objects.

4.3.3.2 ARAMS Foundation

The ARAMS uses a set of record files that act as libraries for different knowledge classes.

Figure 26 illustrates the general internal composition that each of these library/record files adheres

to. The content and purpose of the three regions illustrated in the figure (internal schema

information) are described below.

File Headers Region: There are two pieces of information in this short section
of the file. The first is a variable containing the count of the number of stored
elements in the file while the second contains a data start pointer to the start of

76

the Records Data Region. Together, these provide a measure the length of the
Index Region.

Index Region: In this section are recorded attribute-value pairs, as in a frame
representation scheme. Each attribute is a unique key that accompanies a single
record header for a record in the Record Data Region (the value). The header
contains a pointer to the record itself, a number that measures the space allotted
for that record, and a number indicating how much ofthat space is actually used.
Index pairs can be dynamically removed or added as corresponding records are
removed or added.

Record Data Region: This constitutes the entire space in the file after the end of
the index region. Raw elements (serialize objects) are stored here. Elements can
be dynamically removed and added.

(file start)

file readers
k- regional

index region

record data
region

[.■*■: # of records -.w.•>!

: data start

key/ header;

(free space)

record; data

♦
of

(free space)

Figure 26: Format for Record File (Hamner 1999)

Several operations are supported by the basic ARAMS architecture. These include insert,

read, update, delete, and ensure capacity. These operations perform the functions that would be

expected, with the last one allowing for the index region to expand into Has Record Data Region

if needed (the first record would be moved of course). Earlier, Datalnput() and DataOutputQ

77

functions were mentioned. These functions allow information to be written into the record

structure without concern regarding the hardware platform used, which is useful in a distributed

heterogeneous environment. Yet another operation streams incoming data to an array which can

be stored much more quickly. This is better than streaming data directly to the file structure,

since that would prevent reads from occurring for an interval, causing a waste of valuable

execution time. In addition to these operations, several other tailored functions have been

integrated in order to provide special access by agentTool. Section 4.3.3.3 discusses these

functions and other aspects of the knowledge base interface to agentTool.

4.3.3.3 ARAMS Extension

In the previous section the underlying file structure of ARAMS was presented. For the

purposes of creating a knowledge base for the agent domain, several instances of these file

structures will be needed. This is a design decision.

Key Design Decision #8: Because the agent domain knowledge falls into natural
partitions, or classes of knowledge, the meta-structure of the knowledge base will
be structured along those same partitions.

These file structures contain distinct portions of the agent domain that have been represented in

MAML as libraries (Conversations, Architectures, Systems, Roles, Agents, Resources, Data

Constructs, Frameworks, Associations, Component Implementations, and Component Specs).

It became obvious early on in this effort, that the knowledge base produced by KBDM

would be unique among agentTool components because of sharing. Several instances of the

agentTool interface may want to extract or add knowledge to the knowledge base simultaneously.

Since independent knowledge bases for each such instance would quickly lead to loss of

coherence of the platform knowledge base, something was needed to prevent this. The most

reasonable solution was to allow the knowledge base system to be a single persistent application

in a distributed environment. Ironically, this solution describes an agent.

78

Key Design Decision #9: Because the prototype knowledge base for this effort
needs to be available on-demand to various users in the most current form, it will
reside in a distributed environment and communicate with agentTool using
agent-oriented communications principles.

This decision led to development of: 1) an administrator agent with access to all

knowledge libraries, 2) a connection agent that is used by agentTool to contact and coordinate

with the administrator agent, 3) a set of conversations constraining that coordination, 4)

communication components for the two agent types that allow them to reach each other over a

network, and 5) GUIs for the connection agents to allow users to guide the access process (within

the imposed constraints). Figure 27 expands upon Figure 21 with a detailed schematic of how

these various elements interact. The Java Collections mentioned in the previous section have an

effect at this level. Collections fill the need for the untying of data structure at the storage access

level from data structure at the manipulation level. The benefits of being able to do this are

many, though the most significant is that they allow for information stored in one data structures

to be moved transparently into another structure, or for the original data structure code to be

replaced without effecting code elsewhere in the system. This is not a fantastic scenario. Data

structures that are highly effective for small amounts of content in the internal schema of

ARAMS can become ridiculously slow as the content grows orders of magnitude in size, or when

that content is mapped to the conceptual and external Schemas (MAML and object models).

Using Collections to permit schema evolution was the final key design decision in the KBDM.

Key Design Decision #10: To allow ARAMS to meet the extensibility and
flexibility requirements of this effort, Java Collections are used where possible in
accessing and passing data structure content.

This completes review of the selection and design of a knowledge base meta-

structure for KBDM. This also concludes discussion of implementation of the KBDM as

a whole.

79

Agent
TOOH

^>

Connection
Agentl

StoreObject
(conversation)

StoreGUl

Agent
Tool2 h Connection

Agentl

IE

List
and/or

LoadObject
(conversations)

LoadGUl
Note: Gray boxes are

communication-framework
interfaces

Local Network nodes Comm framework Remote KBServer

Figure 27: Agent-Oriented agentTool-KB Interface

4.4 Summary

At the opening of this chapter the central goal of implementing the Knowledge Base

Development Methodology (KBDM) was presented. The five objectives of that methodology

were then outlined as:

1) Completion of a DARD by the Domain Knowledge Engineer

2) Creation of a model of the agent system design domain.

3) Selection of knowledge representation schemes for the contents of this
model.

4) Specification of a domain language and grammar (another representation
structure).

5) Design and development of a knowledge base meta-structure (KBS) for
containing the domain knowledge, integrating the domain language, and
supporting the representation scheme.

These products were generated at appropriate points in following KBDM (Appendix B).

Section 4.1 laid the foundation of how KBDM could proceed by collecting agent domain

knowledge and summarizing the results in a Domain Analysis Requirements Document. From

that document, a complete domain model containing associations, objects, and relationships was

80

produced in Section 4.2. Taxonomies containing specific populations represented by the model's

object abstractions were also introduced in that section. Section 4.3 took these results and

defined both dynamic and static representation schemes for this collected and organized

knowledge. The described dynamic scheme is the agentTool object model while the static

scheme is called the Multi-Agent Meta-Language (MAML). MAML doubled as the domain

language for KBDM. Finally, but in Section 4.3, a meta-structure called the Agent Random-

Access Meta-Structure (ARAMS) was introduced. This structure satisfied the final KBDM

requirement by capturing for persistent storage the MAML-represented domain knowledge. It

also provided access to that knowledge through an agent-oriented interface to agentTool.

81

V. Demonstration

The last chapter presented the design of the ARAMS knowledge base produced by

applying the KBDM. This chapter presents the results of several tests performed on agentTool-

ARAMS in 1) storing agent knowledge (Section 5.2), 2) locating agent knowledge (Section 5.3),

and 3) retrieving stored knowledge (Section 5.3). Though the ARAMS administrator agent

supports deletion and modification tasks, agentTool does not yet support these. Section 5.1

introduces some key features of agentTool as background to understanding. Section 5.5

summarizes the testing results.

5.1 Understanding the agentTool Interface

Wood's companion effort entails how agentTool's interface is tailored to support a

specific agent system development methodology (Wood 2000). Extensions to that interface have

been made to support most ARAMS functions. Figure 28 shows the agentTool GUI as it would

appear to a user developing a particular agent system. Note the drop-down menu that supports

storage/retrieval is visible in the upper-left corner of the GUI. The center and right of the GUI is

predominately occupied by the default design window, in which appear several connected boxes

representing agent classes and the conversations between them.

s£*j agentTool

lästern Command:

Store Object

Load Ohiuct

Store Architecture

Load Architecture

Store System

j;(!oarf System >;

Save to File

Load from File

Currentry Selected [Agent: DataAgent

Anent Diagram

ShareFtesource

agentTool v0.7
Reedy
Adding Conveisetion

Select INITIATOR
Select RESPONDER

Commsttion Added

Figure 28: AgentTool GUI

82

5.2 Storing Knowledge in ARAMS

As any agent system is developed, a user may want to store either the entire system or

any part of it for later use. Four agentTool menu options support storage: Store System, Store

Architecture, Store Object, and Save to File. The first three of these operate identically but

handle storage to ARAMS of systems, architectures, and elements of these two separately

(process generalized in steps 1-2 shown in Figure 22). For an example, the conversation shown

in Figure 28 (and expanded in Figure 29) would be stored as follows:

1) User selects the Register conversation by clicking on it with the mouse pointer.

2) User selects the Store Object menu option

3) AgentTool launches a connectionAgent, passing it a handle to the currently
selected object. The connectionAgent immediately establishes a socket
connection with the ARAMS administrator agent.

4) The connectionAgent launches a StoreGUI as illustrated in Figure 30.

5) In the StoreGUI, the user enters "RegisterConversation" in the "object type
(key)" field and then enters a detailed description of what that conversation does
in the "object description" pane. The user then clicks the Store button.

6) StoreGUI calls object.setDescription(d) which sets the selected object's
description field to contain what the user typed.

7) StoreGUI calls object.encodeMAMLQ is called which starts the cascading
process described in Section 4.3.3.2. This effective translated the object model
of the conversation into MAML, which is then stored inside that object.

8) StoreGUI creates an ATKB_Object consisting of the user's typed identifier, the
MAML string just created, and the classname of the selected object
(Atconversation in this case).

9) The CAStoreObject conversation side is started and the ATKBObject is passed
to it. The conversation builds message that is sent to the ARAMS administrator
agent, which starts its half of the same conversation (KBStoreObject).

10) The keyTest method is called to see if the user's identifier is already being used
in the intended library, cLibrary (conversation library). If it is in use, an
appropriate reply is sent back to the initiating connectionAgent, which displays
the message in the StoreGUI.

83

11)

12)

13)

If the key is new (see step 10) then the store method is called. This method
extracts the MAML string and classtype from the received ATKB Object. If the
key is already in use, the user is notified and prompted to choose another key.

The MAML string and accompanying key are stored in the cLibrary.

An acknowledgment is sent to the connectionAgent notifying the user that the
store operation was a success.

CJjagentTool

System1 J Command

Store System

Restore System

Store 01*»*

Restore Obfect

Saw to file

Lu;irli7umfile

l rtr/fc iiii-d L'unv:Regtster

Adding TMnsfciai
(tltct CURRENT Slot
»ltd NEXT SUtt

Tnns ttiaa. Addid
Adding Tnwitim
»ltd CURRENT Suit
ttltdNZSCT StaU

TrowÄiom AddwJ
Adding Tnw Aim
«led CURRENT ft**
»ltd HEXT Statt

Transition Addtd

j Agent Dwgi dm CuiwRL'gistei biitidlor CumrReflister Resiwmlci

RegisterMetalreaoMtegisterethlriieKAIreadyRegistered

"RegisterSuccess

| RegisterMeIalreaiVtegistbre<f=ralse]fcheckRegistiy y

Figure 29: Conversation Design Window

This same basic process is used for storing any agent, agent architecture, component,

conversation, or system. Systems may also be stored using the Save to File menu. When this

option is chosen, the encodeMAML method of the current agent system is called and the user is

prompted to type a file name for the resulting MAML string. That file is then stored locally to the

parent instance of agentTool.

isiiätei
Oiiiect Label {KM: |_

ATMotfelVfflShwis 1

Object Description:

) New Object motel?

yiease enter a unaabiguous label (key) £or the ob3ect
being stored and a description that cleariy distinguishes ;
the object firoa any another object

System fvaatut*

Figure 30: StoreGUI

84

5.3 Locating and Retrieving Knowledge in ARAMS

The Restore Object, Restore System, and Load from File menu options handle location

and retrieval of stored knowledge. In the previous section, the RegisterConversation object was

stored in ARAMS. Below is the process for locating and retrieving that same conversation.

Figure 22 (specifically steps 4-6 ofthat figure) captures this process generically.

1)

2)

3)

4)

5)

6)

Because the current version of agentTool uses pointers, a user must create a
generic conversation and select it.

Select Restore Object option, which will either create a new connectionAgent or
use the existing one if it is still active.

The LoadGUI appears (Figure 31). Currently the user must select the knowledge
type he intends to load, which is conversations in this case. This initiates the
CAList side of a conversation with the ARAMS Administrator agent by passing
the selected objecttype to it.

I.Ö Systems.:..;-^;

D Agents

• Conversations

TVPe Other

3
hame works

0 Properties

;2)Architectures

OComjtinnpnts

Object Desertion:

Us*:

Figure 31: LoadGUI (selecting a knowledge category)

The CList conversation side send a list request message to the Administrator
agent, which initiates its half of the conversation as KBList.

KBList calls its parent agent's list method which extracts a Collection (discussed
in Chapter 4) of keys for the selected knowledge type. For this example, a list of
conversation keys/identifiers is produced.

The key collection is returned to the connectionAgent, which causes them to be
displayed on the LoadGUI.

85

7)

8)

9)

10)

The user selects a candidate from LoadGUFs listing and then clicks the
GetObject button. This starts the CALoadObject conversation side by passing it
an ATKB Object as done in the Store example above).

The ARAMS administrator launches its corresponding side of the conversation,
called KBLoadObject. The key is checked for a match (there should be one).

If there is a match, the parent agent's Load method is run, which retrieves the
MAML string corresponding to the key.

The MAML code is returned to the connection and the MAML description field
is displayed in LoadGUI (Figure 32). If the described object is what the user
desired, then he clicks the Use button, which replaces the object selected in
agentTool with the loaded object by passing the MAML string into the object's
IntegrateKBInfo method. This method simply reconstructs the object from the
MAML code.

Other Type

PJHII-1 Pflqiii>

ShareResource Object Description:
simpletestl ai» conversation takes two »anticipants.
Sendinformation One in a HaaeServer end a>e ether is any
Register agent that has a socket/link to that

iSharedPlan HameServer. The latterrequests
refristeraticn and the formet grants it if

• the agent is not already registered.

Use

get Object j

Figure 32: LoadGUI Displaying a List and Selected Conversation object

This covers the restore function of agentTool and how it interfaces with ARAMS to

provides knowledge persistence and reuse.

5.4 Summary

Several load and store tests similar to the given example were performed using ARAMS

and agentTool in distributed environment. These tests were successful and fast in every instance.

However, delete and update functions were not tested due to time constraints. Doing so is

considered future work. Additional areas of future work are suggested in Chapter 6.

86

VI. Results

This chapter focuses on the Knowledge Base Development Methodology (KBDM) and

its resulting ARAMS Knowledge Base. Strengths and weaknesses of these two aspects of this

effort are presented in Section 6.1. Suggestions for possible applications and future work are

then suggested in Section 6.2. Finally, Section 6.3 provides a conclusion.

6.1 Strengths and Weaknesses

Chapter 1 summarized the goal of this effort as: first, developing a methodology for

designing an agent knowledge base to support agent synthesis; second, producing a prototype

knowledge base by following that methodology; and third, testing the prototype. That testing

required evaluation in the areas of: interoperability with agentTool, persistence and reusability of

content, extensibility, and reliability. Both the methodology and prototype are critiqued here.

This effort required development of a methodology for producing a workable knowledge

base. This was accomplished. The result, KBDM, is both logical in its progression, and clear in

its goals (Chapter 3). Of the five key products of KBDM, all can be traced to initial

requirements. In part because of the key products, KBDM was straightforward and completely

successful in what it was established to do: formalize development of a knowledge base

prototype. Though there are no obvious limitations to KBDM, more extensive domain research

could have produced a more rigorous domain model. The domain model product of KBDM,

however, is sufficient as a baseline and is even permitted to evolve by iterative application of

KBDM.

The final product of KBDM was the prototype ARAMS knowledge base. ARAMS

interoperated smoothly with agentTool due to the MAML-Java object parsing functions. All

agentTool knowledge modeled as Java objects was able to be stored and retrieved for reuse using

87

MAML and ARAMS. While stored, this knowledge was kept in secondary storage, which

persisted even when the ARAMS management threads were terminated and later restarted. This

was proven by intentional termination of the ARAMS processes, which otherwise ran reliably

even over extended periods of time. Unlike reliability, persistence, and interoperability with

agentTool, extensibility of MAML-ARAMS was not easily proven. MAML did succeed in

providing flexibility to capture changes to the agentTool domain model, which are identified

using a version tag. However, that flexibility required programmer intervention in updating the

object-MAML parse methods. The following section indicates one means of removing this

overhead for achieving extensibility, XML

By accomplishing this short analysis, we have implicitly discussed several of the

strengths and weaknesses of KBDM and ARAMS. Another issue that may, in effect, be either a

weakness or strength is the flexibility of applying KBDM in other domains. This idea, in part, is

addressed in the next section.

6.2 Applications and Future Work

There are several activities that may follow-on from this effort, ranging from

formalization of expansion of the domain itself, to powerful new uses and extensions of MAML.

In the middle is expansion of agentTool to use untested abilities of the prototype (such as filtering

knowledge by association). Formalization of domain model organization would permit

automation of adding domain knowledge to agentTool and ARAMS through known software

engineering design processes. Whether that new information is added formally or in traditional

fashion, there are several domain dimensions that could be targeted for expansion. Here are

three:

1) Conversations: Conversations in the current version of agentTool are modeled strictly
as dialogues (for two party communications). In reality, a conversation does not have to
be a dialogue, because it could occur between as a multicast or broadcast to multiple

88

parties. To design agent systems taking advantages of the full range of communication
possibilities, the conversation dimension of the agent domain needs to be reworked. This
would likely incur changes in the MAML grammar and DTDs.

2) Cognitive Features: In KBDM domain analysis, properties and capabilities of agents and
their components were discussed. Though these are helpful for developing an agent that
meets specific functional needs, there may be a need to identify agents that have certain
cognitive features as well. For example: an agent may be most suited for a specific
environment type (static, dynamic, simulated, real-world, etc). Or maybe the user needs
an agent that can handle certain environmental events better than others (unpredictable,
asynchronous, concurrent, timed). Capturing these cognitive features in the agent domain
model would enrich the property dimension and indirectly increase the utility of the
relationships entities that function to provide users options based on requirements.

3) Agent Theories: If the process of adding broad new classes of knowledge is to be
achieved, agent theories need to be given due consideration. Though Wooldridge and
Jenning's work on agent theories was given only a cursory examination in Chapter 2,
their efforts provide an ideal starting point. In short, they introduce agent theories as
collections of logical principles/concepts that allow for specification of agents. Since the
products of KBDM (e.g. domain model, knowledge base, etc) directly support
specification of agents at multiple levels, KBDM might be formalized so that those
products support either specific theories or a meta-theory that encompasses multiple
theory possibilities.

MAML's XML ties make it another likely target for future work. For instance, the

extensible Styling Language (XSL) may be applied to MAML (W3C 1998). This application

may be in the form of providing scripts for automated translation from one version of the MAML

to another. The reader may recall that a key feature of MAML was its ability to capture different

versions of the agentTool object model, which could be then mapped to the current version as

needed. Doing so, however, involved programmer intervention. XSL would automate the process

by formalizing all necessary mappings in a set of DTDs for a Multi-Agent Styling Language

(MASL). An alternative to using XSL that can produce similar results is) the Document Object

Model (DOM) (W3C 1998), and XML DOM standardizes the structure of XML documents

(objects in the case of MAML). By doing this, direct mapping from one XML variant to another,

such as MAML to HTML for viewing in a browser, is facilitated. Besides aiding translation,

DOM also assists direct creation of XML documents by growing them as a tree structure rather

89

than by adding various tags to a flat text file (McGrath 1998). Some preliminary work with the

DOM was accomplished in this effort in the form of a utility used for viewing MAML-

represented knowledge entities as an object tree. Figure 33 below shows the output ofthat utility

for one agent system captured in MAML. Other XML-related technologies are also forthcoming.

One is schematic XML, which allows for user-defined data types and other useful extensions.

Another, the extensible XML Metadata Interchange standard (XMI), provides a complete meta-

meta structure format for XML documents (and a meta-structure for DTDs) (OMG 1998). In

short, this allows for auto-generation and exchange of different XML DTDs between proprietary

tools and versions of tools without regard to the source. Taking advantage of XMI for MAML

would allow agentTool MAML agents to be used by other agent utilities and for those tool

products to be used by agentTool. Implicit synergy between currently disparate research efforts

would be the results of doing this.

la^ML Viewer HS3Ö1
Fife Settings

E3 [Document] Q name=counter
j • C3mas Q ret»rntype=boolean

c

c

1 *

) □ description
□ framework

> C3ayent
' Öafjetrt

o C3 description
Öview

C3 architecture
p C3 description
» E3 component

Ö E3 description

Q parameters**

0 pre=courrt»0

Q post=count=0

Q visible=false

r"l view
< ► Q statetable

d state
Ö state

0 C3 slate
du transition
C3 transition

Q attribute
Z3 method

© Ef] component
c > El) conversation

Figure 33: DOM-viewer Showing an Agent System Represented by MAML

90

6.3 Conclusion

In Chapter 1, the motivating force of this effort was introduced as being a military need

that is arising from quickly-evolving technology both here and abroad, in concert with ever-more

strained manpower for operating and otherwise interfacing with this technology. Agents can act

as a source of virtual manpower to assist the military. However, agents require manpower for

their own development, deployment, and maintenance. This "catch-22" can be circumvented

through the application of tools such as agentTool that speed effective, tailored development of

agent forces. The development of the ARAMS as a knowledge base for agentTool directly

supports this goal. ARAMS maintains agent development know-how in persistent storage for on-

demand implementation. Population of the ARAMS is, for the most part, done through

agentTool, allowing security, robustness, and consistency to be centrally controlled.

KBDM (or a close variant) is envisioned to be applicable in other areas where knowledge

reuse and persistence is a requirement. Additionally, agentTool, KBDM, and ARAMS can, at a

minimum, provide templates for creation of tools to serve the US Air Force in the coming

century. Finally, agentTool, via MAML, may become one application in a virtual suite of agent

development and test tools that are brought together via a shared meta-domain model.

91

APPENDIXA: Domain Analysis Requirements Document

Domain Analysis JVequirement Document 10 Jan 2000

Definition of Domain: J bounded sphere of activity, interest, or function (or knowledge).

Name of Target Domain: Agent

Definition of Target Domain: A collection of knowledge for multiple dimensions (aspects) of
agent; including: concepts, specifications, designs, and implementations of agent systems,
agents, and agent constituent components that together completely capture agent information
at every level of representation (abstraction) and stage of development

Relation to SW Engineering Process: Domain model will be used by agentTool application
in the form of a reliable, extensible knowledge base system containing reusable and
persistent agent domain knowledge. AgentTool uses the MaSE methodology in applying that
knowledge (Wood 2000).

MaSE Stage New Knowledge Elements Used

Capturing Goals Goals, Use Cases, and Goal Hierarchy

Transforming To
Roles

Use Cases & Roles

Applying Use Cases Tasks

Creating Agents Sequence Diagrams

Creating
Conversations &
Assembling Agents

Conversations, Components, Connectors, and
Architectures

System Deployment Implementations

Requirements:

• Domain model and other products must support MaSE knowledge needs.

• Products must be implemented in Java in order to interface with agentTool.

Assumptions.

• Domain analysis may extend beyond the MaSE areas so as to permit operation of
alternative development methodologies in the future.

• Domain model should be capable of evolving as a byproduct of future domain
analysis iterations.

• Agent theories and language will not be captured in this analysis iteration

• There are specification, design, and implementation levels and possibly a
conceptual level of agent creation. Elements in the MaSE table reflect objects at
all design levels.

92

Problem:

• Evolving domain model may cause version incompatibilities. Resolve this.

Recommendations:

• Perform domain analysis in: the agent-entity and agent-system sub-domains

• Capture meta-knowledge for mapping design-level knowledge to
implementation-level knowledge

Collected Knowledge: Here is a short index to the research summarized in Section 2.3.

• Franklin and Graesser's classification of agents by properties and components.

• University of Michigan's delineation of agent architectures and distinguishing of
them by their properties and components

• McGill University's UAA, an attempt to create an abstract agent architecture
with universally usable components and implementation framework

• University of Cincinnati and Stanford's JAFMAS and JATLite communication
frameworks and communication specifications.

• Elizabeth Kendall's analysis and specification of roles, role models, and
behaviorally modeled RMIT agent architecture.

• FIPA's various specifications for standardizing and defining agent relationships,
architecture, and constitution.

Existing Systems:

• Zeus Agent Toolkit (Ndumu 1999)

• IBM Aglets (IBM 1999)

• AgentBuilder (Reticular 1999)

• BOND (Boloni 1999)

Knowledge Engineer: Marc J Raphael

93

APPENDIX B: Visual Summary of KBDMfor Effort

Inputs from Section 1.4
Section 2.3, Zeus,
Bond, etc. Refine & Iterate

Section 4.4

Section 4.3

MAMLDTDand
Represented
Knowledge Elements

94

APPENDIX C: Key MÄML DTDs

(These are accurate as of 12Dec99)

System DTD
<?xml encoding="US-ASCII"?>
<!— The Document Type Definition of atsystem.xml—>
<!ENTITY % agent-grammar SYSTEM "atagent.dtd">
<!ENTITY % conversation-grammar SYSTEM "atconversationl.dtd">

<!ELEMENT mas (description?, framework?, agent*, conversation*)>
<!ATTLIST mas version CDATA #REQUIRED name CDATA #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ELEMENT framework EMPTY>
<!ATTLIST framework name CDATA #REQUIRED>

Agent DTD
<?xml encoding="US-ASCII"?>
<!— The Document Type Definition of atagent.xml—>
<!—ENTITY % architecture-grammar SYSTEM "atarchitecture.dtd"—>

<!ELEMENT agent (description,view?,property*)>
<!ATTLIST agent
version CDATA #REQUIRED
name CDATA #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ELEMENT view EMPTY>
<!ATTLIST view

x CDATA #IMPLIED
y CDATA #IMPLIED
w CDATA #IMPLIED
h CDATA #IMPLIED>

<!ELEMENT property (#PCDATA)>

Architecture DTD
<?xml encoding="US-ASCII"?>
<!— The Document Type Definition of atarchitecture.xml—>
<!ENTITY % component-grammar SYSTEM "atcomponent.dtd">

<!ELEMENT architecture (description?, component*)>
<!ATTLIST architecture

name CDATA #REQUIRED
category(REACTIVE|DELIBERATIVE|COMPOSITE|BDI|OTHER) #IMPLIED>
<!ELEMENT description (#PCDATA)>

Role DTD

<?XML ENCODING="US-ASCII"?>
<!— THE DOCUMENT TYPE DEFINITION OF ATROLE.XML-

< ! ELEMENT ROLE () >
<!ATTLIST ROLE

95

NAME CDATA iREQUIRED

Conversation DTD
<?xml encoding="US-ASCII"?>
<!— The Document Type Definition of atconversation.xml—>
<!ELEMENT conversation (participant*)>
<!ATTLIST conversation

name CDATA #REQUIRED
version CDATA #REQUIRED>
<!ELEMENT participant(description,statetable?)>
<!ATTLIST participant

name (initiator|responderImulticastparticipant) "initiator">
<!ELEMENT description (#PCDATA)>
<!ELEMENT statetable(state*, transition*)>

<!ELEMENT state (view)>
<!ATTLIST state

name CDATA tIMPLIED
action CDATA #IMPLIED>
<!ELEMENT view EMPTY>
<!ATTLIST view

x CDATA #IMPLIED
y CDATA tIMPLIED
w CDATA #IMPLIED
h CDATA #IMPLIED>

<!ELEMENT transition EMPTY>
<!ATTLIST transition

rMessage CDATA #IMPLIED
tMessage CDATA #IMPLIED
guard CDATA tIMPLIED
estate CDATA tIMPLIED
nstate CDATA tIMPLIED
action CDATA tIMPLIED

Component DTD
<?xml encoding="US-ASCII"?>
<!— The Document Type Definition of atcomponent.xml-->
<!ENTITY % architecture-grammar SYSTEM "atarchitecture.dtd">

<!ELEMENT component (description?, view?, architecture?, statetable?,
attribute*, method*)>

<!ATTLIST component
name CDATA tREQUIRED
<!ELEMENT view EMPTY>
<!ATTLIST view

x CDATA tIMPLIED
y CDATA tIMPLIED
.w CDATA tIMPLIED
h CDATA tIMPLIED>

<!ELEMENT description (tPCDATA)>
<!ELEMENT statetable(state*, transition*)>

<!ELEMENT state (view)>
<!ATTLIST state

96

name CDATA #IMPLIED
action CDATA #IMPLIED>
<!ELEMENT view EMPTY>
<!ATTLIST view

x CDATA #IMPLIED
y CDATA #IMPLIED
w CDATA #IMPLIED
h CDATA #IMPLIED>

<!ELEMENT transition EMPTY>
<!ATTLIST transition

rMessage CDATA #IMPLIED
tMessage CDATA #IMPLIED
guard CDATA #IMPLIED
estate CDATA #IMPLIED
nstate CDATA #IMPLIED
action CDATA #IMPLIED

<!ELEMENT method EMPTY>
<!ATTLIST method

rMessage CDATA #IMPLIED
tMessage CDATA #IMPLIED
guard
estate
nstate
action

<!ELEMENT
<!ATTLIST

name
type
runtimedefined
userdefined

CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED>
attribute EMPTY>
attribute

CDATA #IMPLIED
CDATA #IMPLIED

CDATA #IMPLIED
CDATA #IMPLIED

collectiontype (SET|SEQUENCE|BAG) #IMPLIED>

97

Bibliography

Agentsoft. (1998). "Agentsoft and Automation Technology White Paper." .

Arango, G., and Prieto-Diaz. (1991). "Domain analysis concepts and research directions."
Domain Analysis and Software Systems Modeling, A. a. Prieto-Diaz, ed., IEEE Computer
Society Press, Los Alamitos, CA.

Arriola, G. a. o. (1994). "A Survey of Cognitive and Agent Architectures." for EECS
547, Cognitive Architectures, University of Michigan.

Belgrave, M. (1995). "The Unified Agent Architecture: A White Paper." , McGill
University, Montreal, Canada.

Bjork, R. (1998a). "CS352: Object-Oriented Databases." , Gordon College, Wedham,
MA.

Bjork, R. (1998b). "CS352: The Relational Data Model." , Gordon College, Wenham,
MA.

Boloni, L. (1999). "BOND." , Purdue University, Layfayette, IN.

Brodie, M. a. F. M. (1989). "Database Management: A Survey." Foundations of
Knowledge Base Management, J. W. a. C. T. Schmidt, ed., Springer-Verlag, Harrisburg,
VA, 205-235.

English, J. (1998). "The Brighton University Resource Kit for Students." , University of
Brighton, United Kingdom.

FIPA. (1999a). "Architectural Principles Baseline." FIPA Spec 0-1999, Foundation for
Intelligent Physical Agents.

FIPA. (1999b). "FIPA Architectural Overview." FIPA 9710.

Franklin, S. a. A. G. "Is it an Agent, or Just a Program?: A Taxonomy for Autonomous
Agents." Third International Workshop on Agent Theories.

Frost, R. a. C. "Design for Manufacturability via Agent Interaction." ASME Computers in
Engineering Conference.

Galdarin, G. a. P. V. (1989). Relational Databases and Knowledge Bases, Addison-
Wesley, Reading, MA.

Gallaire, H. a. J.-M. N. (1989). "How to Look at Deductive Databases." Foundations of
Knowledge Base Management, J. W. a. C. T. Schmidt, ed., Springer-Verlag, Harrisburg,
VA, 119-126.

Gonzalez, A. J. (1993). Engineering of Knowledge-based Systems, Prentice Hall,
Englewood Cliffs, NJ.

Guha, R. a. D. L. (1994). "Enabling Agents to Work Together." Communications of the
ACM(CACM), Volume 37,126-142.

Hamner, D. (1999). "Use a RandomAccessFile to building a low-level database."
JavaWorld.

98

IBM. (1999). "Aglets Software Development Kit.", IBM.

Kendall, E. (1998a). "Role Modeling for Agent System Analysis, Design, and
Implementation." , Royal Melbourne Institute of Technology, Melbourne, Australia.

Kendall, K., Pathak, and Suresh. "A Java Application Framework for Agent Based
Systems." ACM Computing Surveys Symposium on Application Frameworks.

Lacey, T. (2000). "A Formal Methodology and Technique for Verifying Conversations in
a Closed Multi-agent System,", Air Force Institute of Technology, Dayton.

Lukose, D. a. R. K. (1996). "Knowledge Engineering." , University of Calgary, Calgary,
Canada.

McGrath, S. (1998). XML by Example: Building e-Commerce Applications, Prentice-
Hall, Upper Saddle River.

Minsky, M. (1975). "A Framework for Representing Knowledge." The Psychology of
Computer Vision, P. H. Winston, ed., McGraw-Hill, New York, NY.

Ndumu, O. a. (1999). "Zeus Toolkit." , British Telecommunications, United Kingdom.

Nixon, B. e. a. (1989). "Design of a Compiler for a Semantic Data Model." Foundations
of Knowledge Base Management, J. W. a. C. T. Schmidt, ed., Springer-Verlag,
Harrisburg, VA, 293-343.

Nwana, H. (1996). "Software Agents: An Overview." Knowledge Engineering Review,
11(3), 205-244.

Olsen, J. D. a. R. E. K. "Conceptual Knowledge Markup Language, an XML
Application." XML Developer's Day, Montreal, Canada.

OMG, O. M. G. (1998). "XML Metadata Interchange (XMI)." , 20 October 1998.

Pedersen, K. (1989a). "Well-Structured Knowledge Bases Part I." Validating and
Verifying Knowledge-based Systems, U. Gupta, ed., IEEE Computer Press Society, Los
Alamitos, CA, 365-276.

Pedersen, K. (1989b). "Well-Structured Knowledge Bases Part II." Validating and
Verifying Knowledge-based Systems, U. Gupta, ed., IEEE Computer Press Society, Los
Alamitos, CA, 377-380.

Reticular. (1999). "AgentBuilder." , Reticular Systems, San Diego.

Robinson, D. J. (2000). "A Component Based Approach to Agent Specification," , Air
Force Institute of Technology, Dayton.

Schmidt, J. W. a. C. T. (1989). "Preface." Foundations of Knowledge Base Management,
J. W. a. C. T. Schmidt, ed., Springer-Verlag, Harrisburg, VA, VII-IX.

Sernadas, A. a. C. S. (1989). "Abstraction and Inference Mechanisms for Knowledge
Representation." Foundations of Knowledge Base Management, J. W. a. C. T. Schmidt,
ed., Springer-Verlag, Harrisburg, VA, 91-111.

Thomas. (1999). "An Agent Generator." , Bits & Pixels.

99

VandenBerghe, D. (1999). "Re: Intermediate language." .

W3C, W. W. W. C. (1998). "Document Object Model (DOM) Level 1 Specification." ,
MIT.

Warner, R. M. (1993). "A Method for Populating the Knowledge Base of AFIT's
Domain-Oriented Application Composition System," Masters, AFIT, Dayton.

Webster. (1986). Collegiate Dictionary, Merriam-Webster, Springfield, MA.

Williams, C. (1990). "Expert Systems, Knowledge Engineering, and AI Tools - An
Overview." Expert Systems: A Software Methodology for Modern Applications, E.
Nahouraii, ed., IEEE Computer Press Society, Los Alamitos, CA.

Wood, M. (2000). "Multiagent Systems Engineering: A Methodology For Analysis and
Design of MultiAgent Systems," , Air Force Institute of Technology, WPAFB.

Wooldridge, M. a. N. J. (1995). "Intelligent Agents: Theory and Practice." Knowledge
Engineering.

100

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE

KNOWLEDGE BASE SUPPORT FOR DESIGN AND SYNTHESIS OF MULTI-AGENT
SYSTEMS

6. AUTHOR(S)

Marc J. Raphael, Captain, USAF

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/00M-21

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
Atta: Captain Freeman Alex Kilpatrick
801 North Randolph Street
Arlington, VA 22203-1977 Commercial: (703) 696-6565

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Maj Scott A. DeLoach, ENG, DSN785-3636, ext. 4622

12a. DISTRIBUTION /AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT (Maximum 200 Words)

AgentTool is an AFIT-produced, AFOSR-sponsored multi-agent system (MAS) development tool
intended for production of MASs that meet military requirements. This research focuses on enabling
MAS design and synthesis tools like agentTool to store, retrieve, and filter persistent, reusable, and
reliable agent domain knowledge. This "enabling" is vital if such tools are expected to produce
consistent, maintainable, and verifiable agent applications on short timetables. Enabling requires: 1)
modeling the agent knowledge domain, 2) designing and employing a persistent knowledge base, and 3)
bridging that domain model to the knowledge base with an extensible domain interchange grammar.
The achieved interchange grammar, called Multi-Agent Markup Language (MAML), is presented and
shown to be capable of representing MAS design knowledge in a concise and easily parsed form that is
readily stored and retrieved in the knowledge base. The selected knowledge base, called the Agent
Random-Access Meta-Structure (ARAMS), is shown to support MAML and operate in a distributed
environment that permits sharing of agent development knowledge between various tools and tool
instances. Tests of MAML and ARAMS with agentTool are summarized, and related future work
suggested.

14. SUBJECT TERMS
Agents, agentTool, Domain Model, UML, XML, KBDM, ARAMS, Java, Knowledge Base, Storage, Data Base,
Retrieval

15. NUMBER OF PAGES
no (US)

16. PRICE CODE

17. SECURITY
CLASSIFICATION

OF REPORT
UNCLASSIFIED

18. SECURITY
CLASSIFICATION

OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
SN 7540-01-280-5500

102

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Knowledge Base Support for Design and Synthesis of Multi-Agent Systems
	Recommended Citation

	/tardir/tiffs/a380744.tiff

