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ABSTRACT 

AgentTool is an AFIT-produced, AFOSR-sponsored multi-agent system (MAS) 

development tool intended for production of MASs that meet military requirements. This 

research focuses on enabling MAS design and synthesis tools like agentTool to store, retrieve, 

and filter persistent, reusable, and reliable agent domain knowledge. This "enabling" is vital if 

such tools are expected to produce consistent, maintainable, and verifiable agent applications on 

short timetables. Enabling requires: 1) modeling the agent knowledge domain, 2) designing and 

employing a persistent knowledge base, and 3) bridging that domain model to the knowledge 

base with an extensible domain interchange grammar. The achieved interchange grammar, called 

Multi-Agent Markup Language (MAML), is presented and shown to be capable of representing 

MAS design knowledge in a concise and easily parsed form that is readily stored and retrieved in 

the knowledge base. The selected knowledge base, called the Agent Random-Access Meta- 

Structure (ARAMS), is shown to support MAML and operate in a distributed environment that 

permits sharing of agent development knowledge between various tools and tool instances. Tests 

of MAML and ARAMS with agentTool are summarized, and related future work suggested. 

IX 
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KNOWLEDGE BASE SUPPORT FOR DESIGN 

AND SYNTHESIS OF MULTI-AGENT SYSTEMS 

I. Introduction 

Today's world is interconnected and the medium of that connectivity is information. 

Technology has allowed information of all classes to be both created and made available at an 

ever-increasing pace. There is significant need for certain types of information interconnection to 

extend throughout military infrastructure. However, with military manpower forces unable to 

grow at a technology-matching pace, technology itself must be creatively applied to reduce the 

information processing workload to a manageable level. If this is not done, potentially vital 

knowledge will simply be either lost or just not be made available in a timely or coherent fashion. 

Intelligent agents provide one solution to this problem. Agents work in the information domain 

and reside in the high-tech hardware whose complexity grows faster than our traditional forces. 

They are a natural choice to maintain our military infrastructure's superiority. 

A limiting factor in this choice is that intelligent agents must interact with humans and 

each other in order to handle the diverse taskings that they, the agents, may be commissioned for. 

Additionally, security must be integrated at a ground level. These concerns merely transfer the 

manpower shortage to technical specially personnel such as software programmers. Fortunately, 

software development aids can alleviate the manpower burden at this level. 



1.1 Background 

The science of Artificial Intelligence has greatly expanded since the advent of intelligent 

software agents in the mid-eighties. As a direct result, a burgeoning population of intelligent 

agents is finding its way into many aspects of our society. The military, and particularly the Air 

Force, is not, nor should be, exempt from this incursion. Both Joint Vision 2010 and Air Force 

2025 point out accelerated movement towards distributed C3I applications and the need for 

security in these applications. Agents lend themselves naturally to both these elements. 

Unfortunately, the complex and evolving nature of distributed software (especially 

multiple interacting agents) requires significant expertise. This expertise can be provided by 

traditional human resources or, less expensively, by using flexible software design tools. A recent 

research program at the Air Force Institute of Technology is developing such a tool for the rapid 

design of agents and agent systems. That tool is called agentTool. 

1.2 AgentTool 

A handful of commercial toolkits have recently become available for designing agents 

and agent systems (Agentsoft 1998; IBM 1999; Ndumu 1999). Many of these tools are geared 

for use in economic applications such as electronic commerce and inventory management. In 

contrast, none are well suited for the breadth of military application, especially where security is 

concerned. Additionally, few allow for the verification of a design's reliability that is only now 

becoming available for traditional non-agent software (e.g. automated debugging and formalized 

specification verification). 

One candidate for filling this niche is agentTool, an AFOSR-sponsored, AFIT-led effort 

to create a Java-based tool for rapid development of multi-agent systems. Because agentTool 

multi-agent systems are generated in Java (currently), they will be platform-independent and 



operable in a distributed environment. AgentTool considers communication, coordination, and 

security as critical factors up front. Other factors, such as agent mobility, may be incorporated 

through extensions. Systems produced by agentTool are not limited to simple information- 

gathering and commerce applications. Applications such as intelligent control of unmanned 

aerial vehicles (UAVs) and acquisition system modeling are also possible. Moreover, 

agentTool's design allows for formal verification of agent system specifications. 

For the initial 1999-2000 research cycle, four areas vital to agentTool operation were 

addressed. These are: 

1) Development of a Multi-Agent System (MAS) design methodology (Wood 
2000) 

2) Specification of an agent architecture description language (Robinson 2000) 

3) Creation of a storage/retrieval structure and mechanisms (e.g. knowledge 
base system) to contain and manipulate reusable agent domain knowledge 
(this work). 

4) Formal verification of agent systems (Lacey 2000) 

This effort focuses on the third of these areas. 

1.3 Problem 

The agentTool system will help to develop secure systems rapidly and reliably. 

Persistence, reusability, and reliability of design are keys to facilitating this. Persistence allows 

agent systems and system components to be stored in long-term memory. Some elements that 

might require persistence include hardware interfaces, application interfaces, communication 

protocols, coordination schemes, security protocols, agent architectures, data structures, and 

system frameworks. Along with these items, more abstract concepts such as agent roles, rules, 

conversations, and intentions may also need to be stored.   Reusability refers to making these 



persistent elements available at varying levels of abstraction. For instance, agent roles are 

templates that may be assigned to a diverse class of agents whereas communication protocols 

may be very specific to a single communications framework. Both roles and protocols, however, 

are reusable to an appropriate extent. A structure for storing and maintaining such a wide scope 

of knowledge is currently non-existent for agentTool and is not readily available for most other 

agent construction utilities. Without some instrument to meet reusability, persistence, and 

reliability requirements, agentTool will be incapable of meeting its design goals. The following 

statement summarizes the aim of this effort in regard to agentTool requirements as just 

introduced: 

Goal Statement: Develop a technique/methodology for determining knowledge 

base requirements, constraints, and contents for a multi-agent system 

development environment. Test the technique by producing a prototype agent 

knowledge base and evaluating it. 

1.4 Requirements and Assumptions 

Even though the goal statement captures the general purpose of this effort, it can be 

partitioned and expanded to reflect more specific requirements. These requirements will be 

significant throughout the effort in gauging progress. Three key requirements are: 

1. Research and model the agent development knowledge domain. 

2. Develop a process (methodology) for structuring a knowledge base 
containing the domain knowledge model. 

3. Produce a prototype and test it with agentTool. 

Two significant assumptions apply to these requirements. The first is that the agent 

domain model will contain a wide range of knowledge classes, of which only a subset may be 

implemented and tested fully in the prototype within the time allotted for completion of this 



effort. The second, related assumption is that the prototype knowledge base will be critiqued for 

interoperability with agentTool, persistence and reusability of content, extensibility, and 

reliability. Section 1.2 notes that interoperability with agentTool starts with designing the 

knowledgebase in Java. However, Java alone is not sufficient for interoperability. True 

interoperability is achieved by requiring a set of standard interfaces between the tool's 

components and packages so that changes in any component do not require significant changes in 

the other components. These Java interfaces are established through the AFIT Agent Research 

Group (ARG). 

1.5 Overview 

The remainder of this effort in composed of five chapters. Chapter 2 reviews research 

efforts and general knowledge pertaining to knowledge representation, knowledge base structure, 

agent design, and agent system design. Chapter 3 outlines the methodology for obtaining the goal 

stated above in Section 1.3. Chapter 4 presents the design decisions and related details of 

implementing a knowledge base prototype that supports agentTool and even other agent utilities. 

Chapter 5 demonstrates the behavior of the prototype in regards to agentTool. Finally, Chapter 6 

analyzes the effort's end results and provides suggestions for future work. 



II. Background 

The crux of this effort involves development of knowledge support system for the 

agentTool multi-agent system development environment. Such a knowledge base must capture 

all the knowledge needed to develop diverse agent systems. In designing a knowledge base to 

provide this knowledge, consideration should be given to both the knowledge representation 

format as well as the implementation structure of the knowledge base as a whole. This chapter 

focuses on what research has already been accomplished in each of these three areas. 

Before reviewing research in these fields, it is appropriate to define the term knowledge 

base. Though multiple definitions exist, a knowledge base is most simply defined in regards to 

its composition or content. From this compositional perspective, a knowledge base is a "large 

collection of facts, rules, and heuristics that capture knowledge about a specific domain of 

applications" (Schmidt 1989). Since several of the terms used in this definition reappear 

throughout this work, it is useful to provide some additional definitions. Facts and rules are 

representations of specific and general knowledge, respectively. Heuristics are a class of rules 

(rules-of-thumb) regarding relationships within a specific domain, and are usually an order of 

magnitude more complex than rules (Gonzalez 1993). Facts, rules and heuristics allow inference 

and reasoning. Inference refers to the passing from one proposition considered as true to another 

whose truth is believed to follow that of the former and reasoning refers to the creation of 

inferences from known facts to bring about coherent and logical thought (Webster 1986). 

Though accurate, the above definition of a knowledge base contains no notion of how 

knowledge bases fit into the rest of computer science and why they are needed. This is resolved 

by expanding the former definition as follows: 

A knowledge base is a product of knowledge engineering, which is a 
discipline   within   the   science   of  artificial   intelligence.      Artificial 



intelligence, in turn, is a branch of computer science. Computer science, 
together with its peers: philosophy, psychology, and linguistics, form the 
cognitive sciences. Each of the cognitive sciences studies the mind or 
understanding in a different way. Computer science stands out in this 
group because it involves mimicking the mind or its processes via 
computer programs rather than simply analyzing them. Because 
traditional computer science had no effective mechanism to imitate 
important human characteristics (e.g. learning, reasoning, and self- 
correction), the sub-science of artificial intelligence was created. AI 
programs use a changing knowledge base rather than fixed, 
pre-programmed algorithms to simulate human behavior (Lukose 1996). 

This expanded definition places the idea of domain-specific knowledge into the context 

of software that focuses on imitating humans. However, it does not make sense to have such a 

virtual person without a means to manage and apply its knowledge. Therefore it can be seen that 

knowledge bases are not intended to be stand-alone software entities, but rather an integral part of 

some domain-specific knowledge-based system. In particular, both expert systems and AI 

knowledge-based management systems (KBMS) utilizes some sort of reasoning engine and meta- 

knowledge in order to function (Gallaire 1989; Williams 1990). 

The remainder of this chapter provides an overview of past and current efforts in 

knowledge base design and agent domain research. Specifically, Section 2.1 reviews several 

proposed knowledge representations schemes. Section 2.2 then introduces options for overall 

knowledge base structure. Section 2.3 focuses on work done in defining and populating the agent 

domain space. Section 2.4 summarizes the previous three sections and provides a transition to 

Chapter 3. 

2.1 Knowledge Base Representation Schemes 

As discussed above, a knowledge base may contain knowledge as facts, rules, or 

heuristics. Though correct, this is very general. Several perspectives exist to explain the different 

ways that these facts, rules, and heuristics may be specifically represented in a knowledge base. 



This section gives a brief comparison of these perspectives and their corresponding representation 

schemes. 

Gonzalez and Dankel categorize knowledge representation schemes into five areas: logic, 

rules, semantic networks, frames, and objects (Gonzalez 1993). Nixon adds a sixth category for 

Entity-Relationship representation (Nixon 1989). Other authors generalize these six facets into 

two or three broader categories. Amilcar and Cristina Sernadas visualize logical, structural, and 

procedural paradigms (Sernadas 1989) whereas Lukose, Kramer, and Pedersen take a black-and- 

white stance where knowledge is either represented declaratively or procedurally (Lukose 1996; 

Pedersen 1989a). Which of these three perspectives is best depends on the level of abstraction 

required. Since Gonzalez and Dankel provide the greatest depth and breadth of information, their 

classification is detailed first, with references to the other two generalizations made as needed. 

2.1.1 Logic 

Formal first-order predicate logic has been at the core of artificial intelligence since its 

infancy. Because of the rigorous mathematical base and the Boolean base of this logic, 

computers are able to use it naturally. Knowledge engineers often hold first-order predicate logic 

as the preferred language of knowledge base construction because it can be used both to represent 

knowledge and reason over that knowledge. With logic, the knowledge base is considered as a 

theory (set of theorems) obtained by varying a set of stored facts in a fact base (logic axioms) 

using a fixed set of logic inference mechanisms (Sernadas 1989). Reasoning takes place by 

applying certain inference mechanisms in an inductive, abductive, or deductive form, to generate 

new facts (Gonzalez 1993). For example, given (A v B) and (B v C), the new fact (B v (A A C)) 

may be derived using available logic inference constructs. 

There are a number of limitations to using logic in the realm defined above. One of these 

limitations is the lack of mechanism to remove axioms and facts that become invalid due to some 



other change in the knowledge base. This is a specific instance of the more general problems of 

lack of organization principles and absence of inference procedure control (Sernadas 1989). 

Logic is also inflexible due to its implicitly declarative language, which does not allow much 

flexible application of reasoning methods (Gonzalez 1993). Fortunately, there are alternatives to 

using pure logic representation in a knowledge base. 

2.1.2 Rules 

Populating a knowledge base following a rule paradigm is the classical approach used in 

expert systems. A medical diagnosis expert system, for example, might maintain a set of if-then 

rules that relate symptoms to diagnosis. An inference engine would attempt to pattern-match a 

symptom with the left-hand side of rules in the rule set. A match would cause the return of the 

right hand side ofthat rule, which will either be the diagnosis or a match for the left-hand side of 

yet another rule. In this second case, multiple rules may then "chain" to a diagnosis. 

Though rule-based inferencing is founded in logic, there are several distinctions that 

make rules more flexible than logic alone. An example of thisforward chaining is shown and 

explained in Figure 1. Alternatively, rule-based systems may use backward chaining, which is 

also called goal-driven reasoning. There are two rule-based architectures for supporting these 

reasoning methods: inference networking, and pattern matching. The first considers the 

knowledge base as a graph where rules are represented by edges and nodes represent facts. The 

second, pattern-matching, tries to match facts to the patterns of either the RHS or LHS of rules, 

depending on whether forward or backward chaining is being used. A great deal has been written 

on additional features of these two architectures (Gonzalez 1993). 

Compared to logic-based representation, rule-based representation offers greater ease of 

use (especially in populating the knowledge base) and an escape from the restrictions of strictly 

Boolean  results.     However,  the  rules  approach  has  three  drawbacks:  infinite  chaining, 



contradictory knowledge, and behavioral opacity. Infinite chaining occurs when a set of 

inferences loops back on itself in a way so that the rules are repeatedly checked with no way to 

terminate. This problem exists between these rules: 

A=>B 

B=>C 

C=>A 

Contradictory knowledge occurs, as its name suggests, when the addition of a new rule has an 

undesirable side effect of invalidating a previously correct inference path. Finally, the nature of 

rule-based representation makes it behaviorally opaque, which means that determining when rules 

will fire is not easy. This causes problems in debugging and maintaining large rule-based 

knowledge bases because, even when all rules are formed correctly, the sequence of their 

execution may lead to hard-to-detect errors (Gonzalez 1993; Pedersen 1989a). 

—Left-Hand Side (LHS>~-     ► —Right-HandSide (RHS)  
Rule 1:  If a program is mobile THEN the program is an agent 
Rule 2:  If an agent has goals  THEN the agent is goal-based 

Given the following facts: Program X  is  mobile  and  has   goals 

A rule-based system deduces:   Program X   is   a   goal-based  agent 

Figure 1: Rule-Based Example for Agent Application Domain 

A partial solution to rule and logic limitations involves applying structure to the 

knowledge base. Doing so generates a structural knowledge representation (as opposed to the 

strict logical representations so far discussed). Sernada and Sernada point out that the structural 

approach involves organizing the fact base in a way that keys on having abstractions for related 

groups of facts (Sernadas 1989). Instead of using the axiomatic approach to find new facts that 

rules and logic take, a set of rules is applied to these semantic abstractions (also called semantic 

10 



primitives) to generate new facts.    Semantic nets and frames are the two most often used 

structural representations. 

2.1.3 Semantic or Associative Nets 

Associative nets are enriched versions of the directed graphs used by the inference 

network architecture of rule bases. The 'richness' is arrived at by having the nodes of the graph 

represent concepts and objects rather than just facts, and by having edges define relations or 

associations between these objects rather than just rules. By doing this, the unrelated facts of 

rule-based representation are supplanted by explicitly and implicitly interrelated concepts. For 

example, associations PART-OF and IS-A might be dscribed as follows for a knowledge base. 

(sub-structure PART-OF super-structure) 
(transitive PART-OF) 
(transitive IS-A) 

By utilizing such associations in an agent domain space, queries such as "Is a planner part of a 

multi-agent system?" can now be answered (see Figure 2). This example is fairly simple, but 

demonstrates the power of adding semantic structure to a knowledge base. Instead of simple IF- 

THEN constructs, queries such as exemplified above, can be posed. One can imagine that adding 

more diverse relations that combine multiple concepts such as (age IN-RANGE-OF integerl 

integer2) can make associative networks much more powerful than simple logic or rule-based 

representations. Even so, associative networks have drawbacks. 

The drawbacks of this approach involve frame-of-reference confusion and combinatorial 

explosion (Gonzalez 1993). Frame-of-reference confusion arises when there is greater detail in 

an object being related than in the relation itself. This can be better understood by examining the 

shaded parts of Figure 2. If the knowledge base is queried whether ALPHA is part of WORKGROUP 

the response will be true because MOBILE-AGENTS are agents, agents are parts of a MULTI- 

11 



AGENT_SYSTEMS, and WORKGROUP is a MULTI-AGENT_SYSTEM (MAS). This seems fine unless 

ALPHA is actually PART-OF some other MAS (not WORKGROUP) or is stand-alone. Exactly what 

the associative net is missing in this and similar cases is a frame-of-reference, or constraint that 

allows for an association not to exist in particular instances. 

"•"■V^V    Agent      J ^V        a J       ('      Work 
 ,..__   \^  yX^~- ^^ K      Group 

/ \ part-of 
Alpha       }     _, ^/nart-of \ 

Figure 2: Associative Net Example for Agent Application Domain 

The second drawback to associative networks, combinatorial explosion, occurs when an 

ambiguous relationship is determined false. In theAGENT example, for instance, the query: "Is a 

database part of a multi-agent system? " would receive a false reply, but only after the system had 

fired every rule. This is a more significant problem in large knowledge bases because of the 

greater number of relations to examine. 

2.1.4 Frames 

In 1975 Minsky tackled the associative networks' frame-of-reference problem by 

proposing the frame representation scheme (Minsky 1975). With frames, an entity is classified in 

terms of a set of attribute-value pairs that populate slots in that entity's./ra/we. The values of 

these pairs, in turn, may be composed of facets that are constraints or operators on the attribute of 

that pair. For instance, in the AGENT frame shown in Figure 3 there are slots filled with attributes 

for Planner, Knowledge-Store, and Security-Level. For Security-Level, there are 

two facets: Range and If-Changed.   Range constrains the value associated with Security- 

12 



Level while if-Changed references a procedure to execute if the value changes. Procedures, 

such as If-Changed, are referred to as demons. Demons are unique in that they represent 

procedural knowledge and are thus imperative, not declarative. The power of frames lies in both 

this use of demons and frame inheritance. Frame inheritance is captured by the 

Specialization-of and Generalization-of fields of a frame. In Figure 3 AGENT is a 

specialized PROGRAM, which is another frame not shown but which likely has slots for 

Programmer and Language. Because AGENT is a specialization of PROGRAM, it would inherit 

these slot fields implicitly. Extending this further,MOBlLE-AGENT and INTERFACE-AGENT also 

inherit those program slots as well as AGENT'S slots because they are specializations of AGENT. 

Generic AGENT Frame 
Specialization-of : PROGRAM 
Generalization-of: (MOBILE-AGENT, INTERFACE-AGENT) 

Planner: 
Range: (FORWARD-CHAINING, BACKWARD-CHAINING) 

Knowledge-Store: 
Range: (Database, Flat-File) 

Default: Database 

Security-Level: 
Range: (SECRET, UNCLASSIFIED, TOP-SECRET) 
If-Changed:(ERROR: No permission to change classification) 

Figure 3: Frame Example for Agent Application Domain 

As with other schemes, frames do have disadvantages, although significantly less serious 

ones. The primary fault with frames is they do not represent heuristic knowledge as easily as 

rules. Frames are also limited by an inability to accommodate new situations or objects 

(Gonzalez 1993). Additionally, structural knowledge representation approaches such as semantic 

nets and frames suffer from a need for inference engines that are dependent on the particular 

scheme's domain semantics (Sernadas 1989). This is the opposite problem imposed by rule and 

logic-based approaches, where the inference process is encapsulated in a relatively inaccessible 

inference engine. One way around this close semantic binding is to merge logical and structural 
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representations in order to maintain a generic logic-based inference engine while keeping a more 

flexible representation scheme. Schemes that take this approach are known as hybrids and will be 

discussed in Section 2.1.6. 

2.1.5 Objects 

Object representation takes the procedural usefulness of frame demons a step further. 

Instead of referencing independently maintained procedures for a given attribute, objects 

encapsulate procedures together with the data they operate on. In the large, the object-oriented 

approach to knowledge representation offers the same benefits of abstraction, encapsulation, 

polymorphism, and inheritance that it does for programming in general. Excluding inheritance, 

each of these benefits is unique to the object approach and makes it more efficient than frames. 

However, Gonzalez points out, object-based knowledge representation has at least one 

shortcoming in common with frames: the accommodation of new situations (Gonzalez 1993). 

Forms of the Entity-Relationship scheme, another common representation form, have significant 

commonalities with the object approach. 

2.1.6 Hybrids and Other Schemes 

Whether logic, rules, associative nets, frames, or objects is best for knowledge 

representation depends on the application. Maybe none of these schemes (in their pure form) are 

appropriate in certain circumstances. In these cases, hybrid schemes may be necessary. These 

hybrids may be a simple merger of two or more pure schemes (Pedersen 1989b), or they may be 

complex enough so that they cannot be simply classified as a simple merger. Examples from 

both categories of hybrids are presented below. 
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2.1.6.1 Rule-Frame Hybrid 

Implementing a rules paradigm using frames is a hybrid representation scheme for an 

inference net developed by Fox in 1983 (Gonzalez 1993). The purpose of using this hybrid 

would be to perform the functions of a rule-based system but with structural advantages. One 

problem a rule-frame approach alleviates is that rule firing is now controllable via the frame 

demons rather than being accomplished in a black-box inference engine. Additionally, this 

hybrid give frames the capability of suggesting other frames when found in situations that don't 

apply to themselves (Gonzalez 1993). 

2.1.6.2 Extended Institutional Hybrid 

In 1989 Sernadas and Sernadas published a framework that supports logical, structural, 

and procedural representation paradigms. Their extended institutional framework centers on 

considering knowledge bases as theories and individual representation schemes as parameterized 

theories called theory mappings. In such, theory mappings are semantic primitives that map one 

theory to another. The advantage this brings is two-fold: 1) new theories can be made from logic 

applied to existing theories and 2) since new theory mappings can be made, there is no restriction 

of using only semantic constructs of one representation scheme. In short, this framework 

introduces a meta-knowledge representation scheme that allows for flexibility of representation as 

well as of content represented. A lengthy example of creating a theory mapping for an Entity- 

Relationship representation approach is given by the Sernadases (Sernadas 1989). Unfortunately, 

the extended institutional framework, despite its extensive advantages, lacks real-world validation 

(especially of the vital theory mappings). 

2.1.6.3 CKML, OML, and XML 

The Conceptual Knowledge Markup Language (CKML) is one of the many proposed 

application-specific extensions to XML (extensible Markup Language), the data format standard 
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for structured document interchange on the Web (Olsen 1997). Since CKML, like its more- 

narrowly-scoped cousin the Ontology-Markup Language (OML), extends XML to allow for 

broader content-based access to documents and related entities, it may be utilized in the 

representation of knowledge entities in a knowledge base. The two most powerful aspects of 

CKML are 1) it is text based, and 2) it allows knowledge to be accessed via multiplefacets. The 

concept of a facet is roughly equivalent to that of an ontology; meaning, it identifies a frame of 

reference for an object. The text based grammatical constructs of CKML enable multi-faceted 

access to knowledge by forming class hierarchies called categories (using IS-A). Knowledge 

content then takes the form of objects that are instances of one or more ontology categories. 

Each category is accessible though a facet (Olsen 1997). Unfortunately, the majority of available 

literature on CKML relates to the language and falls short in detailing extensive knowledge base 

application. 

2.1.6.4 Abstract Syntax Trees 

CKML's XML foundation allows it to be represented by & formal grammar, which 

provides consistent syntax for developing knowledge-based applications and for representing 

knowledge. This idea of having a formal grammar has merits in the application of yet another 

knowledge representation scheme - the abstract syntax tree (AST). The following are two 

complementary definitions for AST: 

AST- A data structure representing a program which has been parsed, often 
used as a compiler or interpreter's internal representation of a program while it 
is being optimized and from which code generation is performed. The range of 
all possible such structures is described by the abstract syntax (English 1998). 

AST- This is a tree structure, typically an N-ary tree, that mirrors the abstract 
syntax of the source language. Each leaf in the tree corresponds to a terminal of 
some sort in the language (say, a constant or a variable) and each node 
corresponds to an operator or, perhaps, a non-terminal (add, subtract, assign). 
This type of structure is typically the result of a parse, and is used for type 
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checking   and   as   input  to   a   later   stage   of the   compilation   process 
(VandenBerghe 1999). 

The power of ASTs is in their abstract nature. A single AST can be reused in multiple 

ways just by redefining how it is interpreted. ASTs are created by parsing special domain- 

defining programs written in a formal grammar (as CKML has) into a tree of nodes according to 

tree-building algorithms. Once created, these Domain ASTs are used to guide specification of 

specific programs in the AST's domain. Succinctly put, a program's specification knowledge is 

parsed into an AST to be either read, modified, or translated by special "visitor" or tree-walking 

programs. Compilers, for example, perform this function by applying certain tree-walking 

algorithms to parsed program code in order to optimize or compile the code. 

Although visitors provide important functionality, it is the ASTs themselves that 

declaratively represent knowledge. Visitors merely provide a mechanism for interpreting the 

AST representation. The same applies to all knowledge representation schemes; a physical 

mechanism for maintaining or operating on the represented knowledge is required for a scheme to 

be useful. The following section discusses information relevant to designing such a mechanism. 

2.2 Knowledge Base Implementation Structures 

At the beginning of this chapter a definition was given for knowledge base. A number of 

authors, including Pedersen, add the following simple addendum to that definition; that is, a 

knowledge base is, at a fundamental level, a database of knowledge (Pedersen 1989a). 

Understanding this is the first key to seeing that a database structure is the first logical option for 

knowledge base implementation. However, there are various classes of database. Understanding 

which is best for a given need requires an understanding of the fundamental differences between 

them. The remainder of this section will describe several common data base structures, 

particularly their strengths and weaknesses. 
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Databases are the key elements to database systems (DBS). Database systems collect in 

one package not only the basic storage structure, but also access and control mechanisms for that 

structure. Modern DBSs usually have three levels of architecture. The first level, and closest to 

physical storage, is called the internal level. Above it is the external level, which is the interface 

to the user or application. Between these two exists the third, or conceptual, level. Each of these 

levels presents a certain view of the database, which is established by what are called Schemas. 

The three schema types (one per level) can be defined as follows. 

Internal Schema: A representation-dependent description of the database 
corresponding to a precise specification of the storage structures and access 
methods used to store data in secondary memory (Galdarin 1989). 

Conceptual Schema: A collection of descriptions of stored data written in a 
storage-structure-independent way. External Schemas are written in terms of the 
conceptual schema. 

External Schema: A description of a part of the database corresponding to a 
program or a user view of the modeled [domain]. The nature of the external 
schema prevents a user from modifying database content not specifically 
permitted by the schema, e.g. data security (Galdarin 1989). 

These various Schemas are written using Data Description and Data Manipulation Languages 

(DDLs and DMLs). 

The database system architecture just described follows what is called conceptual data 

model design. Traditional hierarchical and network database systems do not fit this architecture 

because they do not permit the inclusion of conceptual Schemas. Relational and object-oriented 

(00) data models, however, do. By allowing for conceptual Schemas at least three advantages 

arise. First, community sharing of a database storage structure becomes feasible. Second, formal 

representations of user-scoped data and relationship views are permitted. Finally, the data 

domain becomes enriched (more detailed). This enrichment takes the form of (1) a set of real- 

world entities that correspond to stored data elements, (2) a set of relationships between these 

entities, (3) a set of attributes belonging to these entities and relationships, and (4) specific 
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properties of entities, relationships, and attributes, such as the cardinalities of relationship 

participation (Galdarin 1989). 

Of the four classes of database system introduced above, network and hierarchical 

systems are simplest but lack the additional schema that relational and 00 systems use. As a 

result, relationships that have attributes are not easily captured. Additionally, many-to-many 

relationships cannot be readily modeled. Although special data records may be added to get 

around this to some extent (in the network model), doing so slows data access speed down while 

adding complexity. Predicate logic is the data description language of both network and 

hierarchical data models (Brodie 1989). The primary difference between the network and 

hierarchical data models is that the former organizes data as a directed graph net while the latter 

models it as a tree structure. By imposing a strict tree structure, any given data element in a 

hierarchal model can only have one parent element. This leads to significant data redundancy 

(multiple hierarchies) when more complex relations need to be modeled. In cases when none of 

the above-mentioned complex relations are needed for a given application, either the hierarchal or 

network database system models provide the fastest and most efficient DBS model solutions. 

As already mentioned, the conceptual schema permits modeling options in relational and 

OO models that are not as available in the non-conceptual models. Beyond this, the relational 

model captures both entities and relationships as data objects (the basic non-conceptual models 

use pointers for relationships). It does this in tables in a way that permits mathematical precision 

in the operation of the database system (using relational algebra and relational calculus). In fact, 

its formal mathematical underpinnings are a key strength to the relational model, permitting such 

activities as direct capture of a design into the database tables (Bjork 1998b). The contents of the 

relational    table    generally    appear    as    a    set    of   ordered    atomic    tuples,    such    as: 
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UAV_TASKING= (UAV_ID: integer, TASK: string) *. These tuples can be reused to limit the 

need for the data redundancy that is present in the hierarchal model. Relational systems do have 

some weaknesses however. First, they are somewhat slower than non-conceptually modeled 

systems. Additionally, they have difficulty supporting non-textually represented data. This also 

includes representing behavioral information that accompanies certain data types. Object- 

oriented systems overcome both these weaknesses by storing more complex forms than atomic 

tuples. Saving complex structures saves time by avoiding the relational step of decomposing 

complex entities for storage as atomic tuples. Behavioral information is also stored in 

encapsulated form with the data it applies to. Another thing that the 00 model handles better 

than other models is polymorphism, the allowance of variations in the inheritance relationship. 

The key ingredient present in the relational model that does not carry over into the 00 model is 

the inherent mathematical basis. Because of this, proposals to extend the relational model to 

include non-atomic data types and behavioral knowledge have been made (Bjork 1998a). 

Hierarchal, network, relational, and 00 DBSs have been implemented in virtually every 

sector, public and private. Some implementations follow one of these models exclusively while 

others provide partial implementations, using only what is needed. Tools exist to facilitate going 

in either of these directions. Oracle databases, for instance are generally relational and the DDL 

and DML they use (SQL) makes effective use of relational algebra and calculus. At the opposite 

end of the spectrum there are languages such as CKML (Section 2.1.6.3), which are not generally 

associated with any one vendor or underlying structure at all, but which are still useful as DDLs 

or DMLs. In the agent domain specifically are several tools that use databases for storage. Bit & 

Pixels IAFactory takes a traditional approach by storing an agent in terms of a specification 

containing the agent's state table information. This is a simple approach but seems limited in the 

* This defines that an relationship called UAVJTASKING is composed of a UAVJD and a TASK. 
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domain of agents that can be created this way (Thomas 1999). AgentSoft's LiveAgentPro takes a 

step away from this by using JavaScript scripts (Agentsoft 1998). Taking these approaches 

greatly simplifies knowledge base (database) creation but only at the cost of having less 

flexibility than more intricately modeled databases. 

2.3 Knowledge Base Content 

Since any given knowledge-based application operates in a specialized knowledge 

domain, that domain should be well understood before choosing any representation scheme 

whether pure or hybrid. This section explores agent and multi-agent system composition in order 

to lay a foundation for later selection of an appropriate knowledge representation scheme. To 

accomplish this exploration, a variety of efforts aimed at analyzing the agent domain will be 

reviewed. 

2.3.1 Franklin and Graesser 

It is important that a definition for agent be given here in order to scope the extent of this 

investigation. Franklin and Graesser provide a thorough comparison of several agent definitions 

and conclude this comparison with the following definition: 

An autonomous agent is a system situated within and a part of an environment 
that senses that environment and acts on it, over time, in pursuit of its own 
agenda so as to effect what it senses in the future (Franklin 1996). 

This definition is broad enough to even include non-software agents but specific enough 

to distinguish agents from programs. From the definition it is already apparent that agents are 

characterized by at least two elements: properties and components. Properties include goal- 

driven (pursues agenda), while components include Application Programming Interfaces (API) 

and state machines (acts on environment and senses time change). In addition to the low-level 

properties, there appear to be one or more high-level properties (e.g. autonomous) for classifying 
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whole categories of agents. A collection of high-level and low-level agent properties collected by 

Franklin and Graesser appear in Table 1. According to the given definition, all autonomous 

agents will have the first four properties listed in the table. However, any single agent may also 

have one or more of the remaining properties. 

Table 1: Agent Properties (Franklin 1996) 

Property Other Names Meaning 
Reactive Sensing and acting responds in a timely fashion to changes in the environment 
Autonomous exercises control over its own actions 
Goal-oriented Pro-active/purposeful does not simply act in response to the environment 
Temporally 
continuous 

Persistent is a continuously running process 

Communicative Socially able communicates with other agents, perhaps including 
people. Requires protocols/transports. 

Learning Adaptive changes its behavior based on its previous experience 
Mobile able to transport itself from one machine to another 
Flexible actions are not scripted 
Character believable "personality" and emotional state 

Franklin and Graesser also discuss classifying agents into a taxonomic structure. Figure 

4 shows the highest levels of Franklin and Graesser's agent taxonomy. The subclass covering 

software agents might be further classified by control structure, environment, programming 

language, etc. For example, classification by control mechanism could produce subclasses using 

planning, regulation, and adaptive mechanisms. Binary classification is another taxonomic 

classification option. Under this approach, the properties listed earlier may be the basis of 

classification. For instance, agents may be categorized as mobile or non-mobile, learning or non- 

learning, etc. This would quickly generate a large (and redundant) binary tree from a pool of 

features or properties like those already discussed. Franklin and Graesser also discuss 

classification methods adopted from the sciences of mathematics and psychology. One of these 

schemes, matrix organization, considers each of n features/properties as a dimension in n- 
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dimensional matrix space, giving each matrix cell a unique category of classification (and 

removing redundancy). This allows for absolute identification of mobile agents, mobile 

communicative agents, mobile communicative learning agents, and so on (Franklin 1996). The 

key assumption of this scheme is that the properties are well defined. 

Biological Agents 

Autonomous Agents 

Robotic Agents Computational Agents 

Software Agents Artificial Life Agents 

Task-Specific Agents    Entertainment Agents Viruses 

Figure 4: Upper Levels of an Agent Taxonomy(Franklin 1996) 

2.3.2 University of Michigan 

Working independently but in parallel with Franklin and Graesser, a University of 

Michigan (UM) effort also produced a property listing for agents. The UM list, however, 

encompassed significantly more detail by adding further property descriptions and a limited 

property hierarchy (see Table 2). Beyond confirming Franklin and Graesser's consideration of 

properties, the UM effort gives more substantive support to these same researchers' indirectly 

mentioned idea of agent component composition. In particular, properties are noted to be of little 

use without some corresponding implementation in the form of architectures and/or components 

(Arriola 1994). 

The UM study that produced the information in Table 2 did so by analysis of several 

specific agent systems. In that analysis, it was noticed that many systems had properties in 

common despite having very different supporting implementations of them. The differences were 

accounted for by looking at each system as a collection of agent components forming an agent 
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architecture.   Table 3 lists the architectures categorized under this premise, as well as their 

corresponding properties. 

Table 2: Subcategories of Three Key Agent Properties (Arriola 1994) 

I   Property Sub-property Meaning 

Reactive Prediction Determining what changes in world may occur as result of 

Query-answering Decision describing. Agent can explain how it arrived at a 
conclusion. 

Language Perception Can send and receive words to communicate. 

Goal-oriented Planning Based on establishing a set of actions to achieve a goal. 

Re-planning Modifying or rebuilding plans because of environmental 
changes 

Simultaneous 
Multiple-Goal support 

Can work toward several goals at once 

Self Reflection Can examine own behavior by actively applying meta- 
knowledge on internal mechanisms 

Meta-Reasoning Relates to skill improvement, adaptation, and learning. Can 
be deployed implicitly through mechanisms such as domain- 
independent learning, or explicitly using, for example, 
declarative knowledge, which the agent can interpret and 
manipulate. 

Deductive Reasoning Takes form of IF A THENB. Basis of explanation-based 
learning. Gives no new semantic information. 

Inductive Reasoning Allows for developing new semantic knowledge. 

Expert System A rule-based rather than planner-based agent 

Learning Single Method Self-describing 

Multi-method Agent can use more than one learning method 

by Instruction Agent is given domain knowledge when it asks or because it is 
"educated" by a teacher. 

by Experimentation Discovery. Applying perceptions to domain knowledge to 
refine it. 

by Analogy Reasoning by analogy generally involves abstracting details 
from a particular set of problems and resolving structural 
similarities between previously distinct problems. Analogical 
reasoning refers to this process of recognition and then 
applying the solution from the known problem to the new 
problem. Such a technique is often identified as case-based 
reasoning 

Transfer of Learning Learning can be passed between agents 

Inductive learning and 
Concept Acquisition 

Concept acquisition refers to the ability of an agent to identify 
the discriminating properties of objects in the world, to 
generate labels for the objects and to use the labels in the 
condition list of operators, thereby associating operations with 
the concept. 
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By Abstraction Contrasted with concept acquisition, abstraction is the ability 
to detect the relevant — or critical — information and action for 
a particular problem. Abstraction is often used in planning 
and problem solving in order to form a condition list for 
operators that lead from one complex state to another based on 
the criticality of the precondition. 

Table 3: Some Agent Architectures (Arriola 1994) 

Architecture Features 

Subsumption Architecture No planning, "instinctive" 

ATLANTIS Planning and Re-planning; Multiple-Goal; 

Theo Learning by Concept Acquisition; Planning; Multiple-Goal; Self- 
Reflection; Meta-Reasoning; Prediction; Language Perception; 

Homer Planning and Re-planning; Multiple-Goal; Self-Reflection; Language 
Perception; Language Perception; 

Prodigy Learning by Instruction, Analogy, Abstraction, and Experimentation; 
Planning; Self-Reflection; Meta-Reasoning; Prediction; 

Soar Learning by Instruction, Abstraction, Analogy, and Concept 
Acquisition; Transfer of Learning; Planning and Re-planning; Meta- 
Reasoning; Expert-Capable; Language Perception; 

Teton Planning; Multiple-Goal; 

RAPLH-MEA Planning and Re-planning; Multiple-Goal; Meta-Reasoning; 
Prediction; 

Entropy Reduction Engine Learning by Concept Acquisition; Planning; Prediction; 

Meta-Reasoning Architecture Learning by Experimentation; Planning and Re-planning; Self- 
Reflection; Meta-Reasoning; 

Adaptive Intelligent Systems Planning and Re-planning; Multiple-Goal; Self-Reflection; Meta- 
Reasoning; Expert-Capable; Prediction; Language Perception; 
Reasoning processes for diagnosis, prediction, and planning; real-time 
control; global coordination of multiple tasks; reasoning by analogy; 
learning from experience. 

ICARUS Learning by Concept Acquisition; Planning and Re-planning; Self- 
Reflection; Prediction; 

2.3.3 McGill University 

In contrast to the UM work, which identified properties and associated architectures in 

existing agent systems, some groups sought to develop a universally applicable architecture. One 

example is the Unified Agent Architecture (UAA) project at McGill University(Belgrave 1995). 

McGilPs generic UAA is intended for creating any agents, which contrasts the UM effort's 

categorization of existing ones.   Even so, UAA work required some agent domain analysis in 
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order to extract common agent mechanisms that would need to be captured by UAA's generic 

agent class. The results of this analysis produced a UAA agent with the following composition: 

1) an Execution Facility that often contains an finite state machine (FSM) and model of the world 

that the agent operates in, 2) a Communications Facility which holds the standard protocol set for 

information exchange with users, resources, and other agents, 3) a Transport Facility, which is a 

process set allowing agent to change domains, both local and remote, and 4) a Packaging 

Facility, which is needed for mobility and persistence (Belgrave 1995). These four facilities are 

components associated with the UAA architecture. In devising UAA, its authors realized the 

need for a broad agent framework that allowed for agents to be constructed on a variety of 

platforms. CORBA was chosen as the framework for UAA. 

2.3.4 University of Cincinnati and Stanford 

While the University of Michigan sought to categorize existing agents and McGill 

University attempted to abstract common features from them, others focused on scoped analysis 

of inter-agent activities. Two of most prominent works in this area were accomplished at the 

University of Cincinnati and Stanford (Frost 1996; Guha 1994). Both involved analyzing the 

communication needs of agents and creating a generic framework for meeting these needs. Both 

Stanford's JATLite and University of Cincinnati's JAFMAS frameworks model inter-agent 

communications as message-passing conversations. JATLite, however applies a TCP/IP 

substructure while JAFMAS is based on Java RMI. 

2.3.5 Elizabeth Kendall 

Kendall's work parallels that of the UAA group at McGill. That is, she focuses on 

abstracting a common architecture for agents by first analyzing multiple existing agents and agent 

systems. However, the result of her work, the Royal Melbourne Institute of Technology (RMIT) 

agent framework, is significantly different than McGill's UAA. In fact, the RMIT agent domain 
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analysis does not seem to directly capture architectural components at all. Instead, the 

architecture is based on using a set of interacting layers rather than objects. These layers model 

behavioral domains of agents but not the structural characteristics captured by components. The 

seven key layers (and their accompanying behaviors) appear in Figure 5. Each layer of the model 

interacts only with immediately adjacent layers. Within each layer, adesign pattern exists to 

impose a functional structure on that layer. In the design patterns are certain abstractions that 

relate to the components mentioned in Sections 2.2.3 - 2.2.4. For example, the sensor abstraction 

that is part of the design pattern for the RMIT Sensory layer may actually map to a component 

object. All component (structural) objects in RMIT are generic and are captured in a static 

configuration independent object (CIO). It is through the CIO that a realization structure is 

provided for agents modeled behaviorally in the RMIT framework. Unfortunately Kendall 

provides little detail on CIO internals (Kendall 1998b). 

Top Down 
Layer 7: brings in messages from 
distant agent societies 

Layer 6: translates incoming 

Layer 5: determines whether an 
incoming message should be 
processed 
Layer 4: takes in pending 
actions 

Layer 3: reasons regarding the 
selected action 

Layer 2: updates beliefs 
according to reasoning 

Lay e r 1: gathers regular sensor 
updates 

MOBILITY 

TRANSLATION 
* A 

COLLABORATION 

ACTIONS 

REASONING 
* A 

BELIEFS 
t A 

SENSORY 

Layer 7: transports the agent to distant 
societies 
Layer 6: translates the agent's 
messages 
to other agent's semantics (ontologies) 
Layer 5: verifies & directs outgoing 
messages to distant and local agents 

Layer 4: stores and carries out the 
intentions being undertaken by the agent 

Layer 3: processes the beliefs to determine 
what should be done next; stores the 
reasoner and the plans 
Layer 2: stores the agent's beliefs; 
updates beliefs according to sensor input 

Layer 1: : senses changes in the 
environment; messages updates 

Bottom Up 

Figure 5.RMITAgent Framework (Kendall 1998b) 

The idea of separating agent behavior from agent structure is not unique to design 

patterns. Agent roles and role models also capture agent behavior independent of agent structure. 
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According to Kendall, "a role focuses on the position, responsibilities, and collaborations of an 

entity within an overall structure or system." (Kendall ). This is independent from what would 

normally be captured in an agent modeled as an object since an object primarily captures 

capabilities. Another difference between the objects and the roles is that objects are instantiated 

from classes while roles are elements of subsystems instantiated from role models. Figure 6 

shows the relation between a particular set of agent objects and an agent role model. This 

particular role model is composed of two roles, which are used by several different agents. The 

importance of this is that elements of agent systems not captured by other research efforts (i.e. 

behavior) are captured by role and role models. 

Role Model 
(composed of roles) 

Client Mediator Colleague ) 

Object Model 
(composed of agent objects) 

Figure 6: Relationship between Role Model and Object Model 

2.3.6 FIPA 

In addition to research done in classifying agent properties, components, roles, role 

models, and architectures, work is progressing in defining other aspects of agent space. The 

Foundation for Intelligent Physical Agents (FIPA), for one, is doing exactly that (FIPA 1999b). 

After FIPA formed in 1996, work started on standardizing agent management, agent naming, and 
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agent communications. Draft specifications similar to ISO standards were the products of this 

work. In 1999 FIPA expanded their focus to include more than negotiation, communication, and 

inter-operational issues. Specifically, they began formalizing how to construct multi-agent 

systems using software engineering principles. In this area, two significant drafts have been 

released. The first is a draft standard for agent attributes or "abstractions" (FIPA 1999a). The 

second is an architectural overview of the FIPA abstract architecture (FIPA 1999b). Both will be 

discussed here. 

FIPA points out the purpose of the first of these two papers is to resolve the following 

four agent domain classification/specification problems: 

1. How to have alternative mechanisms (components) for particular functions 
(properties and attributes). For example, the enabling of multiple transport 
mechanisms for messages and allowing for alternative representations and 
encoding of content languages. 

2. How to map or integrate FIPA's specifications with existing or emerging 
technologies. This includes such diverse technologies as XML, SMTP, Java, 
Jini, Active Objects, CORBA, Directory models, Web servers, e-commerce 
and various messaging transports. 

3. Defining conformance models and conformance tests that enable interested 
parties to verify conformance to FIPA specifications 

4. Defining and describing levels of interoperability. The issues of 
interoperability include the relationships between agents, the relationships 
between agents and platforms, the relationships between different 
implementations of agent services, and versioning issues (FIPA 1999a). 

These are all significant issues that have not, as of yet, been adequately addressed by the agent 

development community. Even FIPA's own effort in these areas has only produced preliminary 

results.   What has been accomplished is a cursory specification of three dimensions of the agent 

domain: attributes, abstractions, and relations.   The following lists several FIPA agent domain 

attributes and abstractions. 

• Agent •    Address 
• Name •    Agent-platform 
• Service •    FIPA-message 
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Message-transport-service 
Agent-host 
Message-content 
Message-content-language 
Message-encoding-representation 
Ontology 

Ontology-service 
Content language expressions 
Agent-communication-language 
Directory-service 
Naming-service 
FIPA-message 

Though this is useful information, questions remain.   For instance, are services capturing the 

same information as Kendall's roles? 

In addition to defining agent content by attributes, FIPA's effort has resulted in 

classification of many agent relationships. These relations are predominantly ones that exist 

between the agent abstractions just introduced. Table 4 reflects some of the proposed 

relationships or associations between agent attributes and other abstractions. 
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Table 4: Some Agent Relationships (FIPA 1999) 

Architectural Abstract Concepts and Relations 

Agent associated with one or more agent-platforms 
Agent has a name 
Agent has an address 
Agent can send an FIPA-message 
Agent can send a FIPA-message to one or more agents 
Agent can provide a service 

Agent-platform can host one or more agents 
Agent-platform provides one naming-service 
Agent-platform provides one or more directory-services 
Agent-platform provides a FIPA message-transport-service 

A directory-service provides a mapping between agents and one or more 
services 
The naming-service provides a mapping between agent-names and its address 
A message-transport-service supports one or more FIPA-transport-protocols 

An FIPA-message has a content 
An FIPA-message is sent by an agent 
An FIPA-message is received from an agent 

Content is expressed in a content-language 
Content may reference one or more ontologies 
Content is either action, proposition or object description 
Content-language must be capable of expressing at least actions, 
propositions and objects 

Service may be provided by an agent 
Service has a service-name 
Service can declare its service-interface 
A service-interface can declare one or more actions 
Service can be registered at a directory-service 

Some of the relationships in Table 4 pertain to agents on a multi-agent system level rather 

than on a purely internal scope.  For instance, agent-platform knowledge defines inter-agent 

relations in terms of the message-transport-service, directory-service, and naming- 

service used by a group of agents.   Here are a few concrete examples that might appear in 

FIPA relations: 

• HTTP is a type of FIPA-transport-protocol 

• KQML is a Agent-Communication-Language 

• KIF is a content-language 

• XML-Encoding is an Encoding into XML 
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• Transfer-of-Learning is a Service 

• Soar is an Agent 

• Transfer-of-Learning may be provided by Soar 

The second FIPA document mentioned in this section builds on the information in the 

first document. It also relies heavily on analysis of existing system and proposed mechanisms 

(protocols, services, etc) to create powerful design abstractions (FIPA 1999b). In doing this, the 

resulting FIPA architecture intends to separate behavior from mechanism. The way FIPA 

accomplishes this is similar to Dr. Kendall's approach. An agentpolicy is produced as an abstract 

specification that captures how an agent element or agent interacts with other elements in an 

agent system. This is done by formally defining constraint expressions (preconditions, post- 

conditions, and invariants) that capture the interaction. An example of one policy would be an 

agent requiring that all messages the agent exchanges with other agents must be encrypted. Since 

policies are independent of agent mechanisms (instantiations), policies can be reused and changed 

dynamically. 

2.3.7 Others 

Though eliciting agent domain characteristics like architectures, roles, properties, 

attributes, components, and relations appears satisfactory to some researchers, it is not to all. For 

instance, Wooldridge and Jennings point out that languages could and do exist for specifying 

agents as well as building them (Wooldridge 1995). These same authors claim that agent theories 

to guide use of languages according to theoretic principles are also needed. They refer to a set of 

such theories beginning with Dennett's intentional systems theory. Therefore language and 

theory selection are two other possible areas for classifying agent the domain. 

This concludes the review of key agent domain research. Several aspects or dimensions 

of the agent domain have been introduced.   Some of these dimensions have been classified or 
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further partitioned. Despite the breadth of the provided information, more exists. For example, 

Nwana moves beyond agent classification by property and architecture by suggesting 

classification by roles and goals (Nwana 1996). 

2.4    Summary 

In summary, a knowledge base system is an abstraction of a database system intended to 

contain not just data, but any class of knowledge. It would even be possible, following the 

approach of Sernadas and Sernadas, to have a knowledge base system of knowledge bases. Not 

only can knowledge base systems manage virtually any domain of knowledge, but they can also 

take on very different structures. At a high level, if behavioral knowledge and complex 

relationships are to be captured, then an 00 or possibly a relational knowledge base system is 

needed. On the other hand, if the knowledge is effectively modeled by a directed graph or tree 

structure, then a network or hierarchal knowledge base system will be more efficient. 

Options exist for choosing a lower-level structure as well. In fact, there is a wide 

selection of representations for domain knowledge to take within a given knowledge base system 

meta-structure. Rules are excellent for well-defined domains of question-and-answer type 

information (like the medical diagnosis system), but they don't work as neatly with structured 

knowledge such as representing parts of an automobile and their interrelations. Structured 

declarative knowledge approaches, in turn, may not be the best choice where flexibility in 

operations on knowledge is needed. This could be accomplished, alternatively, by taking part of 

the inference engine's black-box procedural operation and including it as procedural content in 

the knowledge base, which is exactly what frames and objects can provide. Still other cases exist 

where a hybrid or meta-representation would be better than any of these pure approaches. 

Apart from, and as important as knowledge base structure, is determination of knowledge 

base content. Much research has been done in the agent domain in extracting knowledge. Some 
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of the more applicable research was reviewed in this chapter. The following chapter presents a 

methodology for correlating and building upon that knowledge and incorporating it into a well- 

structured knowledge base. 
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III. Methodology 

Chapter 2 explained knowledge bases in terms of 1) their content, 2) the structure of the 

content, and 3) the meta-structure or system for containing and accessing this content. This 

chapter outlines the methodology for establishing all three of these items for an agent-oriented 

knowledge base system. 

A sensible starting point for a methodology would be an understanding of the knowledge 

to be stored. Once this knowledge is understood, it can be captured into appropriate 

representation structures, which can then be organized for storage in a selected knowledge base 

meta-structure. These three primary steps summarize the Knowledge Base Development 

Methodology (KBDM) to be followed (Figure 7). Details regarding each step appear in the next 

few subsections. 

Assumptions & Initial 
Requirements 

domain knowledge 
(prior DA.systems) --^Refine & Iterate 

Implement 
Representation 

^Scheme 
Section 3.2 

Section 3.3 

Structured 
Knowledge Entities 
+ Language 

Figure 7: Knowledge Base Development Methodology (KBDM) 
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3.1 Determine and Organize KB Content 

The first step of this general methodology (that of determining the knowledge and 

organizing it for storage) is known among computer scientists as knowledge engineering. 

Knowledge engineering requires 1) an expert in the domain to provide the knowledge, and 2) a 

domain analyst that can effectively collect, filter, and organize domain knowledge from one or 

more such experts. Figure 8 captures the two key stages of knowledge engineering: 1) Preparing 

Domain Information and 2) Analyzing the Domain. These sub-stages of the KBDM capture the 

essentials of preparing the knowledge, analyzing it based on requirements, and creating an 

organized knowledge structure. As reflected in Figure 8, the resultant knowledge structure would 

then be mapped to a selected representation scheme, which, in turn, would be stored in a meta- 

structure for the knowledge base system. The knowledge engineering sub-stages precursory to 

these latter steps will now be explained further. 

assumptions & Initial 
Requirements 

-. Refi ne & Iterate 

Structured 
Knowledge Entities + 
Lang uage 

Figure 8: Domain Engineering Process (Warner 1993) 
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3.1.1 Preparing the Domain 

Preparing the domain for analysis is, in short, 1) systematic research and 2) summarizing 

that research in a Domain Analysis Requirement Document (DARD). This step involves 

extracting what the domain experts view as the essence of the knowledge area as a bounded set of 

requirements. For example, a mathematics knowledge engineering task may involve questioning 

mathematicians but would not involve querying veterinarians. It may not even involve gathering 

calculus knowledge if that is not a requirement (it would be out of bounds). Knowledge can be 

obtained either by a series of question and answer sessions or by review of the literature. Often a 

domain has had systems developed for use in it already. In such cases the existing systems 

themselves can be analyzed to extract domain knowledge. Of particular interest in this stage of 

KBDM is the collection of prior domain analysis efforts in general, especially those geared 

towards creating any existing systems. Warner, in his complementary knowledge-based effort, 

noted that a "knowledge base must [also] support the code generation component of a knowledge- 

based software engineering system by providing a library of reusable software specifications of 

implementations" (Warner 1993). Since code generation is a goal of agentTool, both 

specification and implementation level agent knowledge needs to be collected in preparing the 

domain information for later organization and conversion to a reusable form by the domain 

analyst. This requirement for specification and implementation analysis is an example of 

something that would appear in the DARD. It also leads to the suggested addition of meta- 

knowledge as a focus of the knowledge engineer. The relationships between knowledge elements 

such as implementations and specifications form this meta-knowledge. Collected and generalized 

meta-knowledge should appear in the DARD when available. 
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In addition to providing collected knowledge, meta-knowledge, and referenced existing 

systems, certain other information should appear in the KBDM DARD. Warner lists 14 specific 

items as particularly useful in effecting domain analysis (Warner 1993). Among these are: 

• Definition of "domain" (and/or the particular domain) 

• Determination of problems in the domain 

• Permanence of domain analysis results 

• Focus of analysis 

• Approach to reuse 

• Primary product of domain development 

• Relation to the software development process 

• Purpose and nature of domain models 

Not all of these items are clear as to exactly what they represent, but it is the knowledge 

engineer's responsibility to clarify and justify whichever of these are selected for inclusion in the 

DARD for the analyst's benefit. However, the KBDM requires as a minimum 1) the definition of 

the domain to be analyzed (e.g., agent domain), 2) a description of the relationship the domain 

model has to the parent software development tool (e.g., agentTool), 3) potential analysis 

problems, and 4) recommendations. 

To exemplify exactly what is accomplished in this step, consider the package-shipping 

domain. A knowledge engineer is tasked to develop a system to handle package shipping. The 

engineer's requirements bound the package-shipping domain to cover non-international ground 

and air shipping. He is also given additional guidelines that scope the type of shipping activities 
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that must be captured (pick-up, payment, delivery, etc). With this information, he first consults 

inventory and customer service personnel and then examines a couple of programs that handle 

shipping for other businesses. He is fortunate to discover a prior, though somewhat ad hoc, 

domain analysis that was used for development of one of those other programs. Next, from the 

bounds, guidelines, and specific knowledge gathered, the knowledge engineer produces a DARD 

for the domain analyst to use. This document may suggest a breakdown of shipping domain 

activities and modules, refer to the existing systems, and provide other relevant shipping 

knowledge. Included also is a definition of the shipping domain and a description of how a 

model of it is to be used in the future application. It definitely contains the prior domain analysis 

results that the knowledge engineer located. However, this document does not contain the final 

domain analysis (which may need to be more extensive than the included analysis), but it does 

help guide a successful domain analysis effort. 

3.1.2 Domain Analysis (DA) 

The core task of a domain analyst is filtering and organizing domain knowledge. Several 

domain analysis approaches are listed by Warner (i.e., Arango, Neighbors, Iscoe, Kang, McCain, 

Prieto-Diaz) (Warner 1993). KBDM will combine strengths of each these approaches with 

contemporary object-oriented principles. For simplicity, this Combined Objectified Domain 

Analysis Methodology will be called COD AM. There are four basic steps to CODAM as well as 

one important underlying principle. The principle is that the Unified Modeling Language (UML) 

will be used for visual representation of the domain model and taxonomies. The steps are: 

1) Identify Abstract Objects: This step involves looking at collected 
knowledge and existing systems for determining what objects are in 
common. This may require decomposition of the collected knowledge to a 
level where commonalities can be found. For instance, individual attributes 
and methods may need to be examined. 
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2) Identify Abstract Associations and Operations: As with the previous step, 
common entities are collected. However, these entities are associations 
between objects. Operations are common activities performed on objects. 

3) Identify Abstract Relationships: Relationships differ from association in 
that they capture structure rather than behavior. In this step specific common 
relationships are extracted from collected knowledge. These relationships 
may then be abstracted. In the case of aggregation, the individual parent- 
child relationships are identified during abstraction. 

4) Perform Classification: In this final step all the above information is 
organized into a domain model as well as hierarchies capturing inheritance. 

These component steps of COD AM also appear in Figure 9. 

Assumptions & Initial 
Requirements 

domain knowledge 
(prior DA.systems) Refine& Iterate 

Structured 
Knowledge Entities + 
Language 

Figure 9: KBDM COD AM sub-Methodology 

Earlier, in the Prepare Domain Knowledge stage, a package-shipping example was given. 

The end product of that example was a DA Requirements Document for use by the domain 

analyst.   That example can now be brought one step further.   The domain analyst takes that 
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document and uses it as a guide while following CODAM.    The following lists what may occur 

in the four steps the analyst then follows. 

1) Identify Abstract Objects: The analyst reviews the prior DA effort for the 
objects found to be common. He compares the results to other existing 
systems and generates a final list of common objects. That list may include 
sending-customer, receiving-customer, package, and vehicle. 

2) Identify Abstract Associations and Operations: At this point, the analyst 
identifies associations such as: sending-customer sends package, 
package intended-for receiving-customer, and package sent-on 
vehicle. He does the same with operations, to include: change-name-of 
customer and assign-vehicle-to package. 

3) Identify   Abstract   Relationships:   Relationships   may   be   specific   to 
individual systems such as: package [10, Dayton-NYC, #104], which 
states that a package is composed of a weight, origin-destination, 
and customer-number. The analyst can take these specific relationships 
and abstract them. Thus, for instance, the package object above abstracts 
to: package has-an origin, package has-a destination, shipment 
has-a weight, and shipment has-a customer-number. 

4) Perform Classification: The analyst now creates a taxonomy of objects and 
other pertinent knowledge. The transport object taxonomy, for example, 
maintains a vehicle at the top level and several subclasses below it (van, 
semi, airplane, railroad, etc). The domain model is also generated to 
capture associations, relationships, and hopefully aspects of the taxonomies. 

The next section examines how the domain model produced here is used by KBDM. 

3.2 Implement Representation Structure and Generate Domain Language 

The knowledge collected and organized in the domain analysis portion of knowledge 

engineering resulted in production of a model of the domain. To be usable by an application, 

however, three things must occur. First is the selection of a scheme for representing all modeled 

knowledge. Next is the mapping of domain model entities into that representation structure 

(Figure 10). Last is the generation of a language common to the application system and domain 

model. Each of these is discussed below. 
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3.2.1 Select a Scheme 

A set of implemented domain objects is the primary product of this stage. The 

implementation vehicle is a representation scheme. Among the representation schemes available 

are logic, rules, semantic nets, frames, objects, and hybrids such as CKML and ASTs. In the 

event that the domain model is complex enough so that no single representation scheme is ideal 

for all abstractions, multiple representation schemes may be required. The advantages and 

disadvantages of these schemes were presented earlier, providing criteria for this selection 

(Section 2.2). 

Assumptions & Initial 
Requirements domain knowledge 

^-—"(prior DA,systems) * Refi ne & Iterate 

1. Select Scheme(s) 
2. Map to Scheme 
3. Construct Language 

Structured 
Knowledge Entities + 
Lang uage 

Figure 10: KBDM Stage 2 - Implementing Representation Scheme 
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3.2.2 Map to a Scheme 

Depending on how well organized and consistent the domain model is, mapping the 

domain model's content into unique representation structures may be either simple or complex. 

If the domain entities lend themselves well to a standard modular implementation structure then 

they are simply rewritten in the form that structure compels. When domain analyst Arango 

referred to moving a reuse infrastructure specification into reuse infrastructure implementation, 

he was classifying this same type of operation (Arango 1991). Care must be taken to ensure that 

taxonomic information (knowledge instances) as well as the abstract domain entities and relations 

are all represented. 

3.2.3 Construct Domain Language 

The second product of this stage is a domain language. The primary intent of a domain 

language is to provide a textual syntax (and possibly semantics) for capturing operations 

involving domain entities. In other words, it provides a grammatical context for an application or 

user to understand and interact with a domain model. The most straightforward way to create the 

domain language is to give a unique name to each object, relation, and activity abstraction in the 

domain model. This was partially done with the package-shipping domain earlier using words 

such as: customer, send-to, origin, etc. How the resulting language grammar is actually 

used by the application environment is an issue handled at the knowledge base meta-structure 

level, which is discussed next. 

3.3 Implement Knowledge Base Meta-Structure 

Once elemental knowledge structuring is achieved and a domain language specified, the 

meta-structure for the knowledge base itself is selected and implemented (Figure 11). The result 

is a complete knowledge base system (KBS). The KBS structure may be strongly dependent on 

the representation scheme chosen for domain knowledge entities.   The domain language also 

43 



biases selection of this structure. The reason for the latter is that access methods to individual 

domain entities are directed through the meta-structure, so the meta-structure will need to absorb 

that domain grammar into its design in order to correctly perform access functions. In database 

terms, the domain language becomes a Data Description Language, which is important for 

database (knowledge base) operation. Section 2.3 correctly suggested then that a database would 

be the most appropriate meta-structure (due to flexibility, primarily). The selected KBS will need 

to provide a minimum access method set to include 1) adding new knowledge object, relation, 

and activity abstractions, 2) removing any of the preceding, or 3) retrieving any of the same for 

modification or use. Likewise, any of these same operations should be permitted on specific 

instances of the abstractions. Figure 11 captures this step as well as Refine & Iterate, a 

succeeding step that places the resultant knowledge base system in the position of an existing 

system at the start of a new KBDM cycle. 

Assumptions & Initial] 
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Figure 11: KBDM Stage 3 - Implementing KB Meta-Structure 
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3.4 Summary 

This chapter presented Knowledge Base Development Methodology (KBDM), a 

methodology for designing a knowledge base scoped to a particular domain and containing 

persistent, reusable knowledge. The scoping for this effort is to be achieved by knowledge 

engineering of the agent domain. Results of that step take the form of a Domain Analysis 

Requirements Document (DARD) that contains definitions, assumptions, requirements, 

recommendations, and other pertinent information to guide domain analysis. Using the DARD 

as a guide, a domain analyst produces a domain model and taxonomies. Reusable knowledge can 

then be mapped from that model and those taxonomies into 1) a language and 2) a representation 

structure. These two products are next combined into a implementation knowledge base system. 

Access to knowledge objects will be enabled by the incorporation of the domain language into the 

meta-structure in the form of methods for adding, deleting, finding, and retrieving knowledge. 

The next chapter will detail the design decisions made in applying KBDM in the agent domain. 
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IV. Knowledge Support Design 

The Knowledge Base Development Methodology (KBDM) discussed in the previous 

chapter has five products; 1) a Domain Analysis Requirements Document (DARD), 2) a model of 

the agent system design domain, 3) a selected knowledge representation scheme for the contents 

of this model, 4) a domain language and grammar, and 5) a knowledge base meta-structure 

implementation for containing the domain knowledge, integrating the domain language, and 

supporting the representation scheme. This chapter presents the implementation of these five 

products resulting from application of the KBDM. Section 4.1 briefly discusses the initial 

preparation stage (Prepare Domain Knowledge) and introduces the DARD. Section 4.2 then 

addresses decisions made during domain analysis and presents the domain model. Section 4.3 

covers decisions relating to mapping knowledge elements from the domain model into a selected 

representation scheme and incorporating that scheme into a knowledge base meta-structure. 

Section 4.4 then concludes the chapter. Although design decisions are made throughout these 

sections, key decisions will be highlighted due to their particularly significant impact. 

4.1 Prepare Domain Knowledge Decisions 

In Section 3.1.1 the process of preparing domain knowledge was summarized as being 

the systematic collection and summarization of domain knowledge in a Domain Analysis 

Requirements Document. The DARD for this effort (Appendix A) contains: 

1) Definition of domain and agent domain 

2) Explanation of the agent domain model's place in the software engineering 
process 

3) General analysis requirements and assumptions 

4) List of existing systems that may be useful to the analysis 

5) Potential problem areas and recommendations 
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The domain definition and one requirement that appear in this effort's DARD are reproduced 

below to add clarity for transitioning to the next stage of the KBDM, Domain Analysis. 

Agent Domain Definition: A collection of knowledge for multiple 
dimensions/aspects of agent including: concepts, designs, specifications, and 
implementations of agent systems, agents, and agent components that together 
completely capture agent information at every level of representation 
(abstraction) and stage of development. 

DARD Requirement: The domain analysis should support the Multi-agent 
System Engineering (MaSE) development methodology, by capturing knowledge 
entities that are used by that approach. 

4.2 Domain Analysis 

In the past, several efforts have attempted to organize or specify the agent domain. Most 

of those efforts focused on narrowly scoped portions of the domain. The efforts include (see 

Section 2.3): 

1) Franklin   and   Graesser's   classification   of  agents   by   properties   and 
components. 

2) University    of   Michigan's    delineation    of   agent    architectures    and 
distinguishing of them by their properties and components. 

3) McGill University's UAA, an attempt to create an abstract agent architecture 
with universally usable components and implementation framework. 

4) University    of   Cincinnati    and    Stanford's    JAFMAS    and    JATLite 
communication frameworks and communication specifications. 

5) Elizabeth Kendall's analysis and specification of roles, role models, and 
behaviorally modeled RMIT agent architecture. 

6) FIPA's   various   specifications   for   standardizing   and   defining   agent 
relationships, architecture, and constitution. 

Of these, FIPA's is exceptional because it examines the agent domain macroscopically 

and is consorted effort by several agent domain researchers. However, their consensus-driven 

approach has a drawback: FIPA's standards are yet very much in draft. To build on the strengths 
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of FIPA and non-FIPA research approaches, this effort examines the agent domain space broadly 

yet without extensive peer consensus. 

The final result of domain analysis is a domain model and a related collection of 

taxonomies. Figure 12 generalizes the domain model into two primary, though overlapping*, sub- 

domains: an agent entity sub-domain and a multi-agent system sub-domain. Both sub-domains 

contain knowledge at conceptual, design, specification, and implementation levels. One-way 

arrows on the figure represent relationships that exist between knowledge levels (mappings). The 

larger multi-way arrow represents non-mapping relationships (associations) between elements at 

various knowledge levels in both sub-domains. Specific mappings and associations are discussed 

later in this chapter. However, descriptions for the four knowledge levels and some facets of each 

are provided here. Note that each of the identified facets of each knowledge level corresponds to 

a single class of abstract knowledge object 

Conceptual Knowledge Level: A concept is a general idea. Agent concept facets 
include goals (objectives for the agent or multi-agent system to achieve) and 
properties that characterize behaviors of agents or agent systems. Most agent 
development starts with generating conceptual knowledge. 

Design Knowledge Level: A design is a general pattern or method. Agent 
designs organize and add meaning to agent concepts. Design knowledge facets 
include: 

Role: An intended pattern of behavior, responsibilities, and 
collaborations for an agent class within an overall structure or 
system. Roles contain generalized tasks and a set of resources. 

Communication: A simple model of an interaction between roles. 

Role Model: A collection of roles and patterned communications 
between roles. 

Task: A method that constrains and defines how a goal is to be achieved. 

Resource: Something that a role has access to that aids or supports the 
role in its responsibilities. 

* The sub-domains overlap because the agent knowledge element exists in both sub-domains, linking them. 
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Specification Knowledge Level: A specification is a detailed and exact 
description of an agent or agent system. Agent and agent system specification 
facets include: 

Agent: The key functional entity of the agent domain. 

Component: The fundamental functional module of an agent. 

Architecture: An abstraction for using a set of components together in a 
particular way. Although an agent always has an architecture, 
components themselves may also have architectures for organizing their 
sub-components. 

Communication Framework: A set of protocols, components, and 
mechanisms that permit relay of data and knowledge. Java Remote 
Method Invocation (RMI) and sockets are two common communication 
frameworks. Framework specifications have close ties with framework 
implementations. 

Data Construct: Analogous to a resource for a role, but for an agent. 
Data constructs are not necessarily part of an agent, though an agent may 
have access to them. Components of an agent may utilize this access in 
order to function. 

Conversation: Basically a state-transition table (or finite-state machine) 
defining interactions between agents. 

Implementation Knowledge Level: An implementation is the equivalent of a 
complete specification though in a compilable and runnable form. 
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Figure 12: Generalized View of Agent Domain 
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By inserting these and other knowledge facets into the generalized domain model, and by 

then applying the KBDM/CODAM principle of using UML in modeling the domain, the model 

shown in Figure 13 was produced*. Four shades of objects are used to differentiate between 

facets in different knowledge levels (i.e., implementation facets are darker than conceptual 

facets). 
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' Method and Property appear twice strictly to reduce visual clutter. 

50 



More information on the knowledge elements (facets), the taxonomies they represent, and 

element associations appear in the following two subsections. Section 4.2.1 discusses knowledge 

contained in the agent entity sub-domain while Section 4.2.2 covers multi-agent system sub- 

domain knowledge. 

4.2.1 Agent Entity Sub-Domain Analysis 

This portion of the agent domain is depicted in Figure 14. Agents are composed of 

architectures, components, attributes, and methods. Data constructs and properties are also 

associated to an agent via its components, as are component implementations. Presenting the 

origin and relationship of these knowledge elements is the focus of this section. 
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Figure 14: Agent Entity Sub-Domain 

Any analysis of the fundamental entity of the agent domain, the agent, is incomplete 

unless it poses the question "What is the definition of 'agent'?" or at least "Which definition of 

agent is correct?". The answer to either query is found by analysis of the myriad of circulating 

definitions of 'agent'; and that answer is that they all define what an agent is, providing that each 
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definition is considered in context. This is possible because each definition intends to define a 

specific class of agents, though few, if any, describe every class of agent. For example, the 

general definition of agent introduced in Chapter 2 actually defines just what an autonomous 

agent class is. 

An autonomous agent is a system situated within and a part of an environment 
that senses that environment and acts on it, over time, in pursuit of its own 
agenda so as to effect what it senses in the future (Franklin 1996). 

Other definitions likewise refer to classes of agents with other properties. Viewing this another 

way, properties provide a means to conceptualize or define agent classes (or multi-agent system 

classes). Therefore, rather than present various definitions of agenthood, this effort presents the 

properties that those definitions all use. A property taxonomy appears in Section 4.2.1.2. 

Though agents can be organized and identified by their properties, non-conceptual 

knowledge must exist to provide a foundation for implementing those properties. Analysis of the 

research summarized in Chapter 2 indicates that agent architectures and components implement 

properties on behalf of agents owning those components. This is not to say that an agent is a 

empty shell, but rather it is composed of an architecture of interoperable components that realize 

the properties that are associated with that class of agent. Components, like the agents 

themselves, may have an architecture with encapsulated sub-components. These two elements 

(components and architectures) fall into the specification knowledge level, as do data constructs. 

Data constructs represent resources available to an agent, and thus to its components. For 

instance, a virus-definition data construct could be one that a virus-checker component 

of an agent, with some security architecture, would require to function. Just as properties 

form the core of agent conceptual knowledge, components, architectures, and data constructs 

form the core of agent specification knowledge. Taxonomies of three of these (but not data 

constructs) will be introduced in Section 4.2.1.2. 
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Abstract architecture, property, data construct, and component objects have identifiable 

attributes such as names and descriptions. In addition, data construct attributes may include a set 

of data fields detailing the internals of the construct. For example, virus-definition may 

have data fields for virus-name, discovery-date, size, affected-OS. To keep consistent 

with the CODAM principle of using UML wherever possible, all attributes that are not reusable 

will be represented as UML attributes. Reusable knowledge elements like the attribute and 

method object parts of the component entity, however, will be attached using UML aggregation. 

This decision is reworded below and is apparent in the UML models that appear in this chapter. 

Key Design Decision #1: Aggregation will used whenever the lower level object 
has significant potential for reuse. This means that components will be found in 
aggregations but not as attributes of architectures. It a means that names and 
descriptions will appear as attributes. Objects defined in the multi-agent system 
analysis stage will follow this same guide. At the implementation stage, of 
course, aggregated objects may be stored separately or as part of the aggregation. 

4.2.1.1 Agent-Entity Association Knowledge 

Before considering specific instances of conceptual and specification knowledge sub- 

types, associative knowledge needs to be presented. In Figure 12 associative knowledge takes the 

form of 1) a set of one-way arrows that map from one knowledge level to its neighbor and 2) a 

multi-way arrow that maps within and between the agent sub-domains. The mapping arrows 

serve the purpose of transferring knowledge from a lower level to a higher level (e.g., concepts to 

designs, designs to specifications, and specifications to implementations). Figure 14 shows that 

one of these mappings is Maps-to. Maps-to is used to link a specified component to the actual 

software code implementation of that component. Other mappings will be discussed in 

Section 4.2.2. 

The multi-way arrow shown on Figure 12 represents a large set of non-mapping 

associations, to include 1) Interfaces, 2) Utilizes, 3) Accesses, and 4) Implements. The Interfaces 
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association exists between two components in an architecture that need to coordinate their 

behavior in some form. One use of this association might be in capturing the fact that avirus- 

checker component needs to address a knowledge-store component in order to look up 

stored virus-definitions. This differs from the Utilizes association, which reflects that a 

component requires an interface with a data construct directly. Accesses is related to Utilizes in 

that it specifies that an agent has access to a given data construct. An agent with such access can 

have its components utilize them. For defining the final association, Implements, captures the 

relation between a property and the component that realizes that property (see Key Design 

Decision #2). 

Key Design Decision #2: Properties may be implemented by either individual 
components or sets that compose an architecture. To simplify this in the domain 
model, any architecture that implements a property will be assignable to 
components and that component will implement the property on behalf of the 
architecture. 

More detailed behavior than shown by these associations is captured by individual component 

methods (e.g., find_smallest_num (array) is a method that takes an array and finds the 

smallest number in it). 

4.2.1.2 Agent Entity Knowledge Taxonomies 

A key aspect of the domain not reflected by the domain model is the depth of the domain 

space for each knowledge facet (e.g. property, component, etc. *). Just as the original knowledge 

levels broke down into these facets, those facets break down into taxonomies. Each taxonomy 

has a static top-level partitioning under which numerous instances and subclasses are organized. 

Having a taxonomical classification will be important when the domain model is implemented in 

a knowledge base because it will allow for easier organization of reusable knowledge, 

accelerating both storage and retrieval.  Due to time limitations, only a small subset of existing 

* Tables 1-3 provide most of this information. 

54 



systems are classified in the taxonomies presented by this effort.   This can be seen in the 

following sub-sections as those taxonomies are presented. 

4.2.1.2.1 Property Classification Taxonomy 

Classifying properties is challenging for two reasons: first, properties are not tangible, 

and second, properties are tightly related to capabilities. Though capabilities have not been 

mentioned to this point, they were assumed in the University of Michigan study discussed in 

Section 2.2. They differ from pure properties in that capabilities identify what agents can do 

(ability) while properties identify what agents are (traits). Rather than promote semantic 

confusion, this iteration of KBDM will consider properties and capabilities together in a single 

hierarchy. Figure 15 shows several key properties/capabilities in hierarchal form. Though the 

definitions for the properties appearing in this figure were presented in Tables 1 and 2 in Chapter 

2, descriptions of key top-level properties appear here for convenience. 

Mobile- Able to transport itself from one hardware unit to another (e.g. between 
two networked computers). 

Communicative- Able to communicate with other agents or a user. 

Reactive- Responds in a timely fashion to changes in the environment. 

Learning- Changes its behavior dynamically based on acquired knowledge, 
whether that knowledge comes by experience or by instruction. 

Planning- Able to sequence actions to reach a desired goal. Although there are 
multiple types of planning, most require a memory/storage facility. 

Reasoning- Able to consider alternatives and make weighted decisions. 

4.2.1.2.2 Architecture Classification Taxonomy 

Prior agent architecture classification attempts influenced the design of this effort's 

domain taxonomies, including the property taxonomy just discussed (Arriola 1994; Robinson 

2000).    Whereas the Michigan study classified architecture by platform or research team and 
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produced a lengthy list, Robinson lists just five architectures (reactive, planning, knowledge- 

Base, Belief-Desire-Intention (BDI), and user-defined). Both of these approaches are used in this 

effort by 1) identifying a small set of architectural styles and 2) classifying each architecture 

instance under one of those abstractions. The decision to format domain taxonomies in this way 

was suggested in Section 4.2.1.2 and appears as Key Design Decision #3. 
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Figure 15: Property Abstraction Hierarchy 

Key Design Decision #3: The agent architecture sub-domain is partitioned into 
two levels of abstraction. Highest is a set of abstract architectural styles. Below 
these styles are platform-dependent architectures conforming to constraints 
imposed by the styles. Below this level may exist yet more specific architecture 
instances. In the event that a platform architecture will not map to one of the 
fundamental styles, a new composite style may be added to the hierarchy. Other 
domain taxonomies follow a similar bi-level format. 
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Figure 16 presents a set of architectural styles similar to Robinson's but with two noteworthy 

differences. First, Robinson's planning style is captured by the CODAM Pure-Deliberative 

architectural style {Deliberative for short). More complex deliberative systems that are based on 

human-like reasoning models are captured by the Pragmatic architectural style. Second, 

Robinson's user-defined style is replaced with the generic Composite style, which identifies 

architectures that mix aspects of the other three categories (deliberative, reactive, and pragmatic, 

and composite). Reactive architectures, as the name would suggest, are ones that directly support 

implementation of the reactive agent property. Classic architectures are those that use an 

inferencing style like that found in classic rule-based expert systems (Robinson 2000). 
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Figure 16: Architecture Abstraction Hierarchy 

4.2.1.2.3 Component Classification Taxonomy 

Figure 17 depicts the five key categories of agent components as well as several specific 

subclasses of each. The selection of the six areas follows logical functional partitions between 

the behaviors of components of existing agent systems (Ndumu 1999). Planner components are 

those that constitute and directly support planning while Knowledge components permit 
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organization, storage, and retrieval of data. Execution and Service components are somewhat 

related, the former capturing general control and execution structures and the latter more task- 

specific operating components, which includes interface components to applications, 

communications systems, data constructs, and the environment in general. Model components 

model the environment an agent works in so that agents can maintain a local representation of 

their world. Any other components not captured in one of these five areas would fall under the 

Other classification.  A handful of definitions for component types appear below. 
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Figure 17: Component Abstraction Hierarchy 

Communication Engine- A key service component directly supporting 
frameworks (see Section 4.2.2). 

API- An application programming interface (API) models how an agent can 
access and interact with a particular resource. Common resources are people and 
databases. 
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Inference Engine- Component maintaining access to a knowledge storage 
structure and performing inferencing functions on knowledge in than structure, 
such as chaining rules. 

Perceptor- A component allowing an agent to sense environmental changes. 
Perceptors are key in implementing reactive and autonomous agents. 

Plan Engine- Used by an agent to assemble plans dynamically and reason. 

State Engine- The component of an agent governing its execution if the agent is 
state-based. 

Though not obvious from the taxonomy, components really have two taxonomies. The 

taxonomies are identical in composition though one contains component specifications and the 

other component implementations. Implementations have been referenced as the end products of 

deploying an agent or multi-agent system specification. Each component specification- 

implementation pair is linked by a mapping relation, which was discussed earlier. 

This concludes analysis of the agent entity sub-domain of the agent domain space. The 

high-level 'agent' entity focused on to this point will be one of many entities considered at the 

system level in the following section. 

4.2.2 Multi-Agent System Analysis 

This section provides an analysis of the multi-agent system domain, and thus deals with 

what agents compose (systems) rather than what composes the agents. Specifically, a multi-agent 

system can be defined as: 

A software program designed using agents as the main programming element, 
and thus inheriting all the advantages (e.g., distribution) and disadvantages (e.g., 
narrow scope) ofthat construct. 

Figure 18 provides an overview of the multi-agent sub-domain.    The conceptual, design, 

specification, implementation, and association knowledge shown (Figure 18) are discussed 

below. 
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Like agents, multi-agent systems are modeled conceptually by properties. Multi-agent 

systems also have goals, though agents generally achieve those goals. Unlike agent properties, 

properties in multi-agent systems are not directly implemented by components and architectures. 

Instead, system properties are emerge from agent interactions at the design level. These 

interactions then have ties to specification and implementation facets. The interactions are 

captured in roles, role models, and inter-role communications. Multi-agent system 

communications frameworks do what architectures did for agents; they implement the properties 

and permit inter-role communications to occur. 
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Figure 18: Multi-agent System Sub-Domain 

For this effort, all communication frameworks require the existence of four other 

specification types: agents, messages, conversations, and protocols. Though the first three do not 
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actually compose a framework, they must be present in a system along with a framework in order 

for it to be effective. Agents have been described already, messages are the objects passed to 

relay information between agents, and conversations are refined descriptions of inter-agent 

interactions governing message sending and other activities. Because of the way MaSE (the 

agentTool development methodology) uses conversations, a design decision was required for 

domain modeling of them. 

Key Design Decision #4: Because MaSE models conversations as dialogues, the 
domain model must minimally do the same. However, the capability to capture 
broadcast conversation should be possible without significant change in the 
domain model. 

The fourth specification entity related to frameworks, protocols, specifies the constraints placed 

on the basic communications using that framework.    Frameworks may also require certain 

components to exist in all agents in a system using that framework, so that those agents can 

interact.    One of these components, the communications engine, appeared in Section 4.2.1.2's 

component taxonomy. Each unique framework would have a unique communication engine (i.e. 

a Java RMI framework would have an RMI communications engine and follow RMI protocols). 

The conversations that occur between agents over a framework are basically finite-state 

machines, complete with states, transitions, and guards. 

Three other noteworthy top-level knowledge elements are the task, resource, and system 

implementation. A task is a simple design structure that encapsulates a goal, resources needed 

for achieving that goal, and possibly some applicable constraints. Tasks are collected in role 

entities whose responsibilities match the task function. A resource represents something that aids 

or supports a role in achieving its tasks. Some tasks may require multiple cooperating roles. 

Related tasks may be assigned to a single role or to a group of roles in the same role model. The 

role model, then, would also contain interaction knowledge (communications) applicable to those 
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roles.   The final knowledge element, the system implementation entity, contains code for a 

system just as component implementations contained code for component specifications. 

4.2.2.1 Multi-agent System Association Knowledge 

Like agents, multi-agent system knowledge elements have both mapping relationships 

and non-mapping relationships between them. The Maps-to mapping exists between a system 

specification and the implementation that realizes it. Played-by is a mapping relation that assigns 

a role design to an agent specification (e.g., an agent plays a role). Summarizes maps a task to a 

specific component method. Finally, the Defines mapping links a design resource to a data 

construct specification ofthat resource. These mappings appear in Figures 13 and 18. 

Several non-mapping associations also exist in the multi-agent system domain: 1) 

Follows, 2) Implements, 3) Achieves, 4) Uses, 5) Involves, and 6) Participates-in. These 

associations are identified in Table 5. 

Table 5: Multi-agent System Associations 

Association 
Name Association Description Template 

Follows A Framework Follows a Protocol 
Implements A Framework Implements a Property 
Achieves A Task Achieves a Goal 

Uses A Role Uses a Resource 
Involves A Communication Involves a Role 

Participates-in Agent Participates-in a Conversation 

4.2.2.2 Multi-agent System Knowledge Taxonomies 

As with the agent entity sub-domain model, the multi-agent system domain model does 

not show the full depth of the domain space. Taxonomies fill this need here as well. However, 

the incredible diversity of possible tasks, goals, resources, and conversations makes it unwieldy to 

produce their hierarchies at this time (this same situation arose with data constructs). However, 

62 



framework and role model taxonomies are presented in Figures 19 and 20. Short descriptions of 

some specific frameworks and role models are listed as well. 
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Figure 19: Agent System Framework Hierarchy 

Frameworks: 

Socket-Based - These frameworks use a two-way communication link between 
two programs running on the network, where each end is called a socket. Most 
socket connections are client-server and use TCP protocol, though multi-casting 
and broadcasting sockets expand beyond this to allow for groups of programs to 
share a single socket network connection. The underlying protocols in such 
those systems are usually UDP, RAMP, or similar multicast-capable protocol. 
JATLite is a particular incarnation of a socket-based framework (Chapter 2). 

agentMOM- Message-Oriented Middleware for agents is a standard set of 
objects: conversation, message, etc. that allows socket-based message exchange. 
The knowledge base of this effort uses this to communicate with agentTool. 

Shared-Memory- A framework where a common storage resource (usually main 
memory) is used for message exchange. One agent generally leaves a message 
with a recipient tag in the shared area, and at some unpredictable future time the 
attended recipient checks the memory and recovers the message. Similar to a 
blackboard architecture. 
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RMI/RPC- Remote Method Invocation in Java; Remote Procedure Call in other 
languages. RMI is slightly more powerful (and uses RMI sockets). Both allow 
distributed objects to call methods in each other without explicit declaration of 
sockets by a user. 

CORBA-Compliant- A framework that follows CORBA standards. Slightly 
more flexible than RPC because a handle on an object, not just an object method 
is available remotely. 
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Figure 20: Role Model Taxonomy (Kendall 1998a) 

Role Models: 

Contract Net - Based on the contract net protocol. It is a task allocation 
paradigm where the allocation is realized by a negotiation process between agent 
roles. A manager (role) with tasks to be executed, contacts contractors (roles) 
that may be able to execute those tasks. 
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Dutch and English Auctions- These are closely related role models. Both have 
several bidder roles and one seller role. In the Dutch auction, the seller requests 
bits at an ideal price (could be time units for execution), and gradually lowers the 
price until the bid is met. English auction usually has the seller request all bids 
and selects the highest as winner. 

NameServer- This role model has a name server role and several client roles. A 
client will register with the name server what the client's capabilities are. The 
name server then can respond to queries from other clients who are looking for a 
client with certain abilities. 

4.2.3 Summary 

This concludes the domain analysis portion of the KBDM. In Section 4.2.1 the agent 

entity domain analysis was discussed. This provided a foundation for the successive multi-agent 

system domain analysis in Section 4.2.2. Combining the collected sub-domain knowledge and 

organizing it according to the design decisions made thus far provides the overall domain model 

as shown in Figure 13. Following KBDM, the next stages of knowledge base development 

transform that domain model into a useable knowledge base implementation. 

4.3 Knowledge Base Design 

In this section a representation scheme is presented and then incorporated into a meta- 

structure for managing the represented domain knowledge. Subsection 4.3.1 considers various 

scheme options, and provides arguments for selecting a hybrid. The selected hybrid 

representation consists of two parts: an object model for the agentTool execution environment 

and a text-based extensible Markup Language (XML) model for storage and transfer that is called 

the Multi-Agent Markup Language (MAML). The text model doubles as a representation scheme 

and domain language, and is described in subsection 4.3.2. The storage meta-structure, called the 

Agent Random-Access Meta-Structure (ARAMS), is described in Section 4.3.3. Figure 21 

illustrates how the domain model, object model scheme, agentTool, MAML model scheme, and 

ARAMS interact. 
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4.3.1 Find Candidate Schemes 

Selection of a representation scheme for a domain should never be arbitrary. Even when 

domain entities seem to lend themselves to a given scheme, consideration must be given to the 

behavioral and relational content that affects those entities. For instance, though the semantic net 

representation scheme introduced in Section 2.1 can capture associations, it may fail to disallow 

an unnecessary association. Beginning without bias towards one scheme or another is the ideal 

approach. Logic, rules, semantic nets, frames, objects, and common hybrids are then competing 

on equal grounds. Even with such equality, examination of the domain model quickly rules out 

logic and rule-based schemes for their inability to encapsulate structural knowledge. Semantic 

nets also fail to adequately capture relationship and association knowledge, though they do so 

better than logic and rules (see example in Figure 2). This leaves only frames, objects, and 

hybrids as true candidates. 

ARAMS 
Knowledge 
Libraries 

Figure 21: Relationship Between Products of the Effort 

For this effort, the prior assumption that selection of a knowledge representation scheme 

would start without bias must be thrown out due to agentTooPs Java requirement (see Chapter 1). 

Despite the bias toward schemes promoted by Java, selection of an effective scheme is not 

hampered since Java permits and thoroughly supports object representation.   Considering that 
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frames are fundamentally objects without procedural encapsulation, frames can be modeled in 

Java if needed. The choice remaining is then between objects and some hybrid scheme such as 

CKMLortheAST. 

In agentTool, agent systems, agents, and conversations are modeled as Java objects. 

Figure 22 shows the object model of the agentTool agent system design space (as of November 

1999). Though the structure only shows the generic objects (like the KBDM domain model), 

each of the objects can be instantiated to any of several object instances. For example, the 

ATconversation object can be instantiated to a RegistrationConversation. 

ATobject 
version : integer 
description : string 

~K 

r    ATtransition 
(guard : type = inltvif 
tmsg : string 
rmsg : string 
csname: string 
nsname: string 
action : string 

I ATcomponentMethod 
[name : string 
pre : string 
post : string 
params : string 

ATcomponentAttrtbute 
name : string     ~        | 
type : strrig 
'structure: booleans 

ATsystem  | 
[name : string" 

I V 
currentstate 

nextstate 

1       1 

ATtableElement 

ATconversation      Y 
name: string      '„ 

responder 

J. 

0.1    initiator 

ATstatetable 
agentname : string 

■ 0..1 

ATagentComponent 
name : string 
[parent: strhg 
hassub : boolean 
sub: boolean 
basic: boolean 

I | 

ATstartState 

1| 

I     ATstate 
name "string ; 
.action: string! 

ATendState 

1 I 

.   I 

..,  „ A , 
I ATagent 

 name : string 
0.1  components : Vector 

Figure 22: Java Object Model used in agentTool (November 1999) 
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Though objects originally seemed to provide a flexible and effective representation 

scheme for the KBDM domain model, this changed during testing of the KBDM's knowledge 

base when stored agentTool object instances became irretrievable because they could not map to 

newer versions of their parent object types. This problem is analogous to re-keying the locks on a 

car - the older version of keys become useless. Although complex Java coding could have 

provided a partial work-around, a more elegant and flexible approach was chosen. This approach 

is captured in the following design decision. 

Key Design Decision #5: KBDM and agentTool will use two representation 
schemes. The first is an object scheme for modeling agent domain objects in the 
dynamic environment of agentTool. The second, the Multi-Agent Markup 
Language (MAML), will be used for static, persistent storage of agent domain 
knowledge. 

4.3.2 Multi-Agent Markup Language (MAML) 

The Extensible Markup Language (XML) provides a flexible but powerful solution to the 

need for a secondary representation scheme. Using XML not only eliminated the object-verison 

problem, but it reduced the size of represented objects by orders of magnitude. The Multi-Agent 

Markup Language (MAML) is the application of XML in this effort. KBDM's MAML offers 

three advantages over alternative forms. First, MAML captures the domain grammar. Second, 

MAML represents all design objects in compact and persistent form, its primarily aim. Lastly, 

MAML is language and platform-independent, meaning that it is possible for agentTool to 

interact via MAML with an entire virtual suite of Java and non-Java agent design tools. 

MAML consists of 1) a set of linked Document Type Declarations (DTDs), 2) 

encapsulated MAML production methods and object-model constructors, 3) a text parsing utility, 

and 4) a process for applying each of these. Section 4.3.2.1 introduces the first three of these 

items and how they integrate into the agentTool domain model. Section 4.3.2.2 relates how these 

elements apply to the process for creating, storing, and retrieving persistent, reusable knowledge 
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facets. Section 4.3.2.3 finishes this section by discussing how the MAML representation scheme 

may be extended beyond design object to the implementation level. 

4.3.2.1 MAML Integration 

Though the object model used in agentTool is dynamic, changing constantly as 

improvements are made to capturing agent design information, certain parts of the model are 

fairly static. The single most static component of the model is ATobject, the abstract parent of 

ATsystem, ATagent, ATconversation, etc.   This fact influenced key design decision #6. 

Key Design Decision #6: Because correspondence must be maintained between 
what is captured in MAML and what is captured in the object model, MAML 
methods and parameters will be included in the abstract ATobject. Additional 
concrete extensions and applications of these methods will be made mATobject 
subclasses as needed. 

Implementing this decision led to these additions to ATobject: 

MAML [parameter]: This string holds the MAML representation of an object. 

MAMLheader [parameter]: This string holds header information in the MAML. 
Use of this information will be discussed later. 

EncodeMAMLO [abstract method]: This method is defined by each subclass with 
the purpose of translating object content into a MAML representation to store in 
MAML. 

ATobject(string) [constructor]: Constructor receives a string (e.g., MAML string) 
as input 

Parseline(string) [method]: This method parses a MAML string into an array of 
elements using significant MAML characters as delimiters (<, >, and " ). The 
array is returned. Usually called by subclasses in their ATObject(string) 
constructors. 

GetMAMLO [method]: Returns the MAML parameter. 

GetFullMAMLQ [method]: Returns the MAML parameter prepended by a 
MAMLheader, making a self-contatined MAML document readable by XML- 
focused tools. 

• 
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• Extract(string[], int, int) [method]: Receives an array of string elements and two 
array index integers, will return a substring of appended array elements from 
between the two indexes. 

• FindNextlnstanceOf(string, stringf], int) [method]: Receives a string, an array of 
strings, and an index integer. Searches for the string in the array, starting at the 
index, and returns the index of the first match. 

• FindLastInstanceOf(string, stringf], in, int) [method]: Receives a string, an array 
of strings, and two array indexes. Searches for the last appearance of the search 
string within the array, and returns the index ofthat appearance. 

• FindMatch(string, stringf], int) [method]: Receives a string, an array of strings, 
and a start index to the array. Searches for a correct match to the given string and 
returns the array index of the match. A correct match is the appropriate MAML 
end tag. This method is only needed for components and architectures since they 
can contain each other in multiple layers. 

All of these methods and parameters exist for the sole purpose of encapsulating MAML 

functionality at the lowest level possible in the object model. The key to these eleven items is the 

MAML parameter, which holds a string that completely characterizes its parent object instance. 

Though this is incredibly efficient in both storing and transmitting domain knowledge, this 

efficiency comes at a price.     That price translates to a set of rigorous formalisms that are 

collected in MAML DTDs and direct how a valid MAML string can be composed.   Appendix C 

contains the MAML DTDs for the primary entities of the agent domain model/object model. 

These DTDs are used in creating both the encodeMAMLQ methods and the constructors that serve 

to compliment those methods (one maps from the object to MAML and the other maps from 

MAML back to the object). 

4.3.2.2 MAML Application Process 

Though the DTDs are important for formalizing MAML grammar, the encapsulated 

production and construction methods perform all the work of mapping to and from the Java 

design objects and persistent MAML entities. Figure 23 shows the process of creating a MAML 
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entity from a Java object and then re-creating the original domain object from this entity.  The 

seven steps in this process are: 

1) A defined (or partially defined) Java domain object is selected. This may be 
a specific A Tsystem, for instance 

2) There are several sub steps to this: 
2.1 - The encodeMAMLQ method of the selected object is called. This 
method parses the object attributes into the MAML grammar, building a 
structured MAML text string as it progresses. 

2.2 - When aggregate objects are encountered, their own encodeMAMLQ 
methods are called. 

2.3 - The getMAMLQ methods are called to retrieve the generated MAML 
text from the aggregate objects. 

2.4 - MAML text strings from aggregate objects are then appended to the 
parent object's MAML text string 

3) The system calls getMAMLQ on the selected object (the ATsystem, for 
instance) and redirects the retrieved string into persistent storage. 

Figure 23:Processfor utilizing the MAML representation scheme 

71 



4) A stored MAML entity string is retrieved from persistent storage and a new 
(empty) instance of the appropriate Java object class is created. 

5) The MAML string is sent to the new object as a parameter of the 
constructFromMAMLQ constructor method. 

6) The constructor determines the version of the MAML grammar by 
examination of a field at the start of the string. A method for populating the 
object (in its current model) from the MAML grammar version is chosen. 
For instance, if the version of the MAML string was [1] (meaning that its 
parent object model was of that version), then a method for building the 
current object (maybe version [3]) from that older version is called. 

7) If grammar is encountered for aggregate objects, the version method creates 
an empty object of the appropriate aggregate type and recursively repeats 
steps five through seven until the entire original object structure is recreated. 

4.3.2.3 MAML at Implementation Level 

At this point, the knowledge representation scheme for most of the domain model has 

been introduced. Although domain design elements such as frameworks have not been captured 

in agentTool's object model, there is nothing inherent in them to prevent their creation in that 

model or in the MAML representation scheme. However, consideration has yet to be given to 

implementation objects and the mappings from the specifications to them. Since agentTool does 

not address implementation level knowledge at this point, KBDM has unlimited flexibility in 

developing a storage solution. The only constraint, in reality, is that the form of implementation 

objects themselves has to be compatible with agentTool's general approach to design. The 

following design decision was made to assure this compatibility. 

Key Design Decision #7: Because implementations will, in the future, be in 
languages other than Java, and because certain code-level details may need to be 
mapped from the specifications to those corresponding implementations, 
implementation objects need to be captured as accessible and reusable source 
code objects rather than an alternative form. 
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What this decision means is that a MAML wrapper may be placed around a source code object so 

that that object may then be represented in the same general form as the design objects, a MAML 

string. In fact, wrapping may be just a start. MAML tags (like HTML tags) may embed the 

source code object as well as wrap it. This would provide anchors in the code for insertion of 

specification-level parameters. For example, suppose that an agent specification captures the 

need for a knowledge base component containing rules. Figure 24a shows a partial component 

object for this rulecontainer. The source code for one specific rulecontainer and the associated 

rule take the form of MAML-wrapped Java objects (Figure 24b). It is notable that there are also 

MAML tags imbedded in the code to identify distinct objects and static fields (italicized). These 

anchors may be either removed or replaced by actual rule strings captured in the specification. 

To support this, a mechanism for parsing the MAML implementation string and operating on it 

will be needed, though a small variation to parselineQ may suffice for this. 

a) Component b) Source Code 

RuleContainer 
+name: String 

+Rule: Set(Rule) 

Rule 

+name: String 
+precondition 
+postcondition 

execute() 

<KBitem typ e=" implementation" 
name=" ruletestbase"> 

<code> 
<object> 
class rule  { 
String name=  <componentname/>; 
String precondition  <precond/>; 
String postcondition=  <postcond/>; 

public executed   { 

}   " 
} 
</object> 
<object> 
class ruleBase  extends  dataBase   { 
String name=  <componentname/>] ; 
Rule rules[]   =  {   <rulelist/> }; 

} 
</object> 

</code> 
</KBitem> 

Figure 24.Example Design Object and One MAML-wrappedImplementation 

The   mappings    from   the   MAML   specification   objects   to   MAML-permeated 

implementation objects may also be captured in the MAML.    For this to work, a new mapping 
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object needs to be created for every implementation stored. Each of these mappings, as with 

other MAML representations, must conform to a certain subset of the MAML grammar. 

Application of that grammar is shown in Figure 25, where the Maps-to association is defined. 

This nomenclature's similarity to Figure 12's associations is not coincidental. Indeed, the 

maps-to association is exactly what is needed for capture and MAML is flexible enough to 

provide it. Because of this ability, MAML can be used to capture mappings and associations in 

the agent domain. Such information may be useful as meta-knowledge for more quickly locating 

an object that meets desired constraints. For example, if a user wants to know what planner 

components support cooperative planning, it would be time consuming to load every planner 

design, look at their respective properties, and then look at each implementation for each of 

specifications that have the desired property. A more logical approach would be to include 

significant associations and relationships (such as the component implements property 

association) as independent represented knowledge entities that reference other entities (Figure 

25b). 

This completes discussion of the MAML knowledge representation scheme for the 

knowledge gathered by the KBDM domain analysis. 

-«relationship type="maps-to"> relationship type="implements"> 
<implementation name="ruletestbase"> <component key="jointplanner"> 
</implementation> </component> 
<specification> <property key="cooperative"> 
<name>"rul econtain er"</nam e> </property> 
</specification> </relationship> 

</relationship> 

a) Maps-to Association b) Implements Association 

Figure 25: MAML Representation of Two Associations 
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4.3.3 Meta-structure Implementation 

The final stage of the KBDM requires selection or design of a meta-structure for the 

knowledge captured by the chosen static representation scheme. An effective meta-structure 

must do more than simply contain the represented knowledge; it must provide organization and 

access at a higher level than addressed by the knowledge representation scheme itself. Section 

2.3 argued that a database system is the answer to this need. Several classes of database were 

suggested in that same section, but one with low overhead and significant extensibility is what is 

needed here. 

The decision made in this effort was to use a low-level database with its model being 

neither strictly 00, relational, network, or hierarchal. Not only does this eliminate costs 

associated with commercial model databases but, more-importantly, it allows for a simpler, more- 

tailored solution. Java's built-in support for file access methods makes design of such a low-level 

structure an even better choice (in addition to providing implicit compatibility withagentTool, 

which also is designed in Java). The particular Java constructs that provided the most use in 

designing this database are Collection and RandomAccessFile. These two structures gave 

representation ability at the internal schema level and mapping ability to bring knowledge at that 

level up to the conceptual and external schema levels. The internal schema is essentially a file 

structure while the conceptual and external Schemas appeared in the forms of MAML and the 

agentTool object model, respectively. The following constraints were met in developing this 

knowledge base system (schemas, constructs, etc): 

1) A common interface for passing knowledge elements was provided. 

2) The system did not require that the number of records be known at 
creation time. This is because the knowledge base was to be manually 
populated over time. 

3) Because of #2, there needed to be a mechanism for dynamically 
increasing the size of the knowledge structure in long-term storage. 
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4) Stored knowledge elements were uniquely identifiable. 

5) The system provided a means for saving, locating, deleting, and 
retrieving unique elements or groups of elements. 

6) Since the number of stored elements may grow quite large, access 
methods that function independently of content cardinality were 
desirable. 

In this effort, an existing RandomAccessFile-based database structure was modified in 

order to extends its abilities (Hamner 1999).  The modified implementation is called the Agent 

Random-Access Meta-Structure (ARAMS). 

4.3.3.1 ARAMS 

There are two levels of the ARAMS. The first borrows heavily from Hamner's work and 

deals primarily with general file access. The file type chosen is the Java RandomAccessFile, a 

persistent storage data structure that has the capability of 1) being sized explicitly, 2) supporting 

the seek() method, and 3) using Datalnput() and DataOutput() interfaces. The significance of 

these interfaces will be discussed briefly later on. Details of the general implementation of this 

structure are presented in Section 4.3.3.2. Section 4.3.3.3 captures modification to this basic 

construct to make it 1) operable with agentTool, and 2) able to contain and organize the MAML 

scheme objects. 

4.3.3.2 ARAMS Foundation 

The ARAMS uses a set of record files that act as libraries for different knowledge classes. 

Figure 26 illustrates the general internal composition that each of these library/record files adheres 

to. The content and purpose of the three regions illustrated in the figure (internal schema 

information) are described below. 

File Headers Region: There are two pieces of information in this short section 
of the file. The first is a variable containing the count of the number of stored 
elements in the file while the second contains a data start pointer to the start of 
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the Records Data Region. Together, these provide a measure the length of the 
Index Region. 

Index Region: In this section are recorded attribute-value pairs, as in a frame 
representation scheme. Each attribute is a unique key that accompanies a single 
record header for a record in the Record Data Region (the value). The header 
contains a pointer to the record itself, a number that measures the space allotted 
for that record, and a number indicating how much ofthat space is actually used. 
Index pairs can be dynamically removed or added as corresponding records are 
removed or added. 

Record Data Region: This constitutes the entire space in the file after the end of 
the index region. Raw elements (serialize objects) are stored here. Elements can 
be dynamically removed and added. 

(file start) 

file readers 
k- regional 

index region 

record data 
region 

[.■*■: # of records -.w.•>! 

: data start 

key/ header; 

(free space) 

record; data 

♦ 
of 

(free space) 

Figure 26: Format for Record File (Hamner 1999) 

Several operations are supported by the basic ARAMS architecture. These include insert, 

read, update, delete, and ensure capacity. These operations perform the functions that would be 

expected, with the last one allowing for the index region to expand into Has Record Data Region 

if needed (the first record would be moved of course).   Earlier, Datalnput() and DataOutputQ 
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functions were mentioned. These functions allow information to be written into the record 

structure without concern regarding the hardware platform used, which is useful in a distributed 

heterogeneous environment. Yet another operation streams incoming data to an array which can 

be stored much more quickly. This is better than streaming data directly to the file structure, 

since that would prevent reads from occurring for an interval, causing a waste of valuable 

execution time. In addition to these operations, several other tailored functions have been 

integrated in order to provide special access by agentTool. Section 4.3.3.3 discusses these 

functions and other aspects of the knowledge base interface to agentTool. 

4.3.3.3 ARAMS Extension 

In the previous section the underlying file structure of ARAMS was presented. For the 

purposes of creating a knowledge base for the agent domain, several instances of these file 

structures will be needed. This is a design decision. 

Key Design Decision #8: Because the agent domain knowledge falls into natural 
partitions, or classes of knowledge, the meta-structure of the knowledge base will 
be structured along those same partitions. 

These file structures contain distinct portions of the agent domain that have been represented in 

MAML as libraries (Conversations, Architectures, Systems, Roles, Agents, Resources, Data 

Constructs, Frameworks, Associations, Component Implementations, and Component Specs). 

It became obvious early on in this effort, that the knowledge base produced by KBDM 

would be unique among agentTool components because of sharing. Several instances of the 

agentTool interface may want to extract or add knowledge to the knowledge base simultaneously. 

Since independent knowledge bases for each such instance would quickly lead to loss of 

coherence of the platform knowledge base, something was needed to prevent this. The most 

reasonable solution was to allow the knowledge base system to be a single persistent application 

in a distributed environment. Ironically, this solution describes an agent. 
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Key Design Decision #9: Because the prototype knowledge base for this effort 
needs to be available on-demand to various users in the most current form, it will 
reside in a distributed environment and communicate with agentTool using 
agent-oriented communications principles. 

This decision led to development of:    1) an administrator agent with access to all 

knowledge libraries, 2) a connection agent that is used by agentTool to contact and coordinate 

with the administrator agent, 3) a set of conversations constraining that coordination, 4) 

communication components for the two agent types that allow them to reach each other over a 

network, and 5) GUIs for the connection agents to allow users to guide the access process (within 

the imposed constraints).  Figure 27 expands upon Figure 21 with a detailed schematic of how 

these various elements interact. The Java Collections mentioned in the previous section have an 

effect at this level. Collections fill the need for the untying of data structure at the storage access 

level from data structure at the manipulation level.   The benefits of being able to do this are 

many, though the most significant is that they allow for information stored in one data structures 

to be moved transparently into another structure, or for the original data structure code to be 

replaced without effecting code elsewhere in the system.  This is not a fantastic scenario.  Data 

structures that are highly effective for small amounts of content in the internal schema of 

ARAMS can become ridiculously slow as the content grows orders of magnitude in size, or when 

that content is mapped to the conceptual and external Schemas (MAML and object models). 

Using Collections to permit schema evolution was the final key design decision in the KBDM. 

Key Design Decision #10: To allow ARAMS to meet the extensibility and 
flexibility requirements of this effort, Java Collections are used where possible in 
accessing and passing data structure content. 

This completes review of the selection and design of a knowledge base meta- 

structure for KBDM. This also concludes discussion of implementation of the KBDM as 

a whole. 
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Figure 27: Agent-Oriented agentTool-KB Interface 

4.4 Summary 

At the opening of this chapter the central goal of implementing the Knowledge Base 

Development Methodology (KBDM) was presented. The five objectives of that methodology 

were then outlined as: 

1) Completion of a DARD by the Domain Knowledge Engineer 

2) Creation of a model of the agent system design domain. 

3) Selection of knowledge representation schemes for the contents of this 
model. 

4) Specification of a domain language and grammar (another representation 
structure). 

5) Design and development of a knowledge base meta-structure (KBS) for 
containing the domain knowledge, integrating the domain language, and 
supporting the representation scheme. 

These products were generated at appropriate points in following KBDM (Appendix B). 

Section 4.1 laid the foundation of how KBDM could proceed by collecting agent domain 

knowledge and summarizing the results in a Domain Analysis Requirements Document.  From 

that document, a complete domain model containing associations, objects, and relationships was 
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produced in Section 4.2. Taxonomies containing specific populations represented by the model's 

object abstractions were also introduced in that section. Section 4.3 took these results and 

defined both dynamic and static representation schemes for this collected and organized 

knowledge. The described dynamic scheme is the agentTool object model while the static 

scheme is called the Multi-Agent Meta-Language (MAML). MAML doubled as the domain 

language for KBDM. Finally, but in Section 4.3, a meta-structure called the Agent Random- 

Access Meta-Structure (ARAMS) was introduced. This structure satisfied the final KBDM 

requirement by capturing for persistent storage the MAML-represented domain knowledge. It 

also provided access to that knowledge through an agent-oriented interface to agentTool. 
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V. Demonstration 

The last chapter presented the design of the ARAMS knowledge base produced by 

applying the KBDM. This chapter presents the results of several tests performed on agentTool- 

ARAMS in 1) storing agent knowledge (Section 5.2), 2) locating agent knowledge (Section 5.3), 

and 3) retrieving stored knowledge (Section 5.3). Though the ARAMS administrator agent 

supports deletion and modification tasks, agentTool does not yet support these. Section 5.1 

introduces some key features of agentTool as background to understanding. Section 5.5 

summarizes the testing results. 

5.1 Understanding the agentTool Interface 

Wood's companion effort entails how agentTool's interface is tailored to support a 

specific agent system development methodology (Wood 2000). Extensions to that interface have 

been made to support most ARAMS functions. Figure 28 shows the agentTool GUI as it would 

appear to a user developing a particular agent system. Note the drop-down menu that supports 

storage/retrieval is visible in the upper-left corner of the GUI. The center and right of the GUI is 

predominately occupied by the default design window, in which appear several connected boxes 

representing agent classes and the conversations between them. 

s£*j agentTool 

lästern Command: 

Store Object 

Load Ohiuct 

Store Architecture 

Load Architecture 

Store System 

j;(!oarf System >; 

Save to File 

Load from File 

Currentry Selected [Agent: DataAgent 

Anent Diagram 

ShareFtesource 

agentTool v0.7 
Reedy 
Adding Conveisetion 

Select INITIATOR 
Select RESPONDER 

Commsttion Added 

Figure 28: AgentTool GUI 
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5.2 Storing Knowledge in ARAMS 

As any agent system is developed, a user may want to store either the entire system or 

any part of it for later use. Four agentTool menu options support storage: Store System, Store 

Architecture, Store Object, and Save to File. The first three of these operate identically but 

handle storage to ARAMS of systems, architectures, and elements of these two separately 

(process generalized in steps 1-2 shown in Figure 22). For an example, the conversation shown 

in Figure 28 (and expanded in Figure 29) would be stored as follows: 

1) User selects the Register conversation by clicking on it with the mouse pointer. 

2) User selects the Store Object menu option 

3) AgentTool launches a connectionAgent, passing it a handle to the currently 
selected object. The connectionAgent immediately establishes a socket 
connection with the ARAMS administrator agent. 

4) The connectionAgent launches a StoreGUI as illustrated in Figure 30. 

5) In the StoreGUI, the user enters "RegisterConversation" in the "object type 
(key)" field and then enters a detailed description of what that conversation does 
in the "object description" pane. The user then clicks the Store button. 

6) StoreGUI calls object.setDescription(d) which sets the selected object's 
description field to contain what the user typed. 

7) StoreGUI calls object.encodeMAMLQ is called which starts the cascading 
process described in Section 4.3.3.2. This effective translated the object model 
of the conversation into MAML, which is then stored inside that object. 

8) StoreGUI creates an ATKB_Object consisting of the user's typed identifier, the 
MAML string just created, and the classname of the selected object 
(Atconversation in this case). 

9) The CAStoreObject conversation side is started and the ATKBObject is passed 
to it. The conversation builds message that is sent to the ARAMS administrator 
agent, which starts its half of the same conversation (KBStoreObject). 

10) The keyTest method is called to see if the user's identifier is already being used 
in the intended library, cLibrary (conversation library). If it is in use, an 
appropriate reply is sent back to the initiating connectionAgent, which displays 
the message in the StoreGUI. 
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11) 

12) 

13) 

If the key is new (see step 10) then the store method is called. This method 
extracts the MAML string and classtype from the received ATKB Object. If the 
key is already in use, the user is notified and prompted to choose another key. 

The MAML string and accompanying key are stored in the cLibrary. 

An acknowledgment is sent to the connectionAgent notifying the user that the 
store operation was a success. 

CJjagentTool 
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»ltd NEXT SUtt 
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»ltd CURRENT Suit 
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TrowÄiom AddwJ 
Adding Tnw Aim 
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RegisterMetalreaoMtegisterethlriieKAIreadyRegistered 

"RegisterSuccess 

| RegisterMeIalreaiVtegistbre<f=ralse]fcheckRegistiy y 

Figure 29: Conversation Design Window 

This same basic process is used for storing any agent, agent architecture, component, 

conversation, or system. Systems may also be stored using the Save to File menu. When this 

option is chosen, the encodeMAML method of the current agent system is called and the user is 

prompted to type a file name for the resulting MAML string. That file is then stored locally to the 

parent instance of agentTool. 
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Figure 30: StoreGUI 
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5.3 Locating and Retrieving Knowledge in ARAMS 

The Restore Object, Restore System, and Load from File menu options handle location 

and retrieval of stored knowledge. In the previous section, the RegisterConversation object was 

stored in ARAMS. Below is the process for locating and retrieving that same conversation. 

Figure 22 (specifically steps 4-6 ofthat figure) captures this process generically. 

1) 

2) 

3) 

4) 

5) 

6) 

Because the current version of agentTool uses pointers, a user must create a 
generic conversation and select it. 

Select Restore Object option, which will either create a new connectionAgent or 
use the existing one if it is still active. 

The LoadGUI appears (Figure 31). Currently the user must select the knowledge 
type he intends to load, which is conversations in this case. This initiates the 
CAList side of a conversation with the ARAMS Administrator agent by passing 
the selected objecttype to it. 

I.Ö Systems.:..;-^; 

D Agents 

• Conversations 

TVPe Other 

3 
hame works 

0 Properties 

;2)Architectures 

OComjtinnpnts 

Object Desertion: 

Us*: 

Figure 31: LoadGUI (selecting a knowledge category) 

The CList conversation side send a list request message to the Administrator 
agent, which initiates its half of the conversation as KBList. 

KBList calls its parent agent's list method which extracts a Collection (discussed 
in Chapter 4) of keys for the selected knowledge type. For this example, a list of 
conversation keys/identifiers is produced. 

The key collection is returned to the connectionAgent, which causes them to be 
displayed on the LoadGUI. 
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7) 

8) 

9) 

10) 

The user selects a candidate from LoadGUFs listing and then clicks the 
GetObject button. This starts the CALoadObject conversation side by passing it 
an ATKB Object as done in the Store example above). 

The ARAMS administrator launches its corresponding side of the conversation, 
called KBLoadObject. The key is checked for a match (there should be one). 

If there is a match, the parent agent's Load method is run, which retrieves the 
MAML string corresponding to the key. 

The MAML code is returned to the connection and the MAML description field 
is displayed in LoadGUI (Figure 32). If the described object is what the user 
desired, then he clicks the Use button, which replaces the object selected in 
agentTool with the loaded object by passing the MAML string into the object's 
IntegrateKBInfo method. This method simply reconstructs the object from the 
MAML code. 

Other Type 

PJHII-1   Pflqiii> 
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Register                        agent that has a socket/link to that 

iSharedPlan                    HameServer.   The latterrequests 
refristeraticn and the formet grants it if 

•   the agent is not already registered. 

Use 

get Object     j 

Figure 32: LoadGUI Displaying a List and Selected Conversation object 

This covers the restore function of agentTool and how it interfaces with ARAMS to 

provides knowledge persistence and reuse. 

5.4 Summary 

Several load and store tests similar to the given example were performed using ARAMS 

and agentTool in distributed environment. These tests were successful and fast in every instance. 

However, delete and update functions were not tested due to time constraints. Doing so is 

considered future work. Additional areas of future work are suggested in Chapter 6. 
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VI. Results 

This chapter focuses on the Knowledge Base Development Methodology (KBDM) and 

its resulting ARAMS Knowledge Base. Strengths and weaknesses of these two aspects of this 

effort are presented in Section 6.1. Suggestions for possible applications and future work are 

then suggested in Section 6.2. Finally, Section 6.3 provides a conclusion. 

6.1 Strengths and Weaknesses 

Chapter 1 summarized the goal of this effort as: first, developing a methodology for 

designing an agent knowledge base to support agent synthesis; second, producing a prototype 

knowledge base by following that methodology; and third, testing the prototype. That testing 

required evaluation in the areas of: interoperability with agentTool, persistence and reusability of 

content, extensibility, and reliability. Both the methodology and prototype are critiqued here. 

This effort required development of a methodology for producing a workable knowledge 

base. This was accomplished. The result, KBDM, is both logical in its progression, and clear in 

its goals (Chapter 3). Of the five key products of KBDM, all can be traced to initial 

requirements. In part because of the key products, KBDM was straightforward and completely 

successful in what it was established to do: formalize development of a knowledge base 

prototype. Though there are no obvious limitations to KBDM, more extensive domain research 

could have produced a more rigorous domain model. The domain model product of KBDM, 

however, is sufficient as a baseline and is even permitted to evolve by iterative application of 

KBDM. 

The final product of KBDM was the prototype ARAMS knowledge base. ARAMS 

interoperated smoothly with agentTool due to the MAML-Java object parsing functions. All 

agentTool knowledge modeled as Java objects was able to be stored and retrieved for reuse using 
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MAML and ARAMS. While stored, this knowledge was kept in secondary storage, which 

persisted even when the ARAMS management threads were terminated and later restarted. This 

was proven by intentional termination of the ARAMS processes, which otherwise ran reliably 

even over extended periods of time. Unlike reliability, persistence, and interoperability with 

agentTool, extensibility of MAML-ARAMS was not easily proven. MAML did succeed in 

providing flexibility to capture changes to the agentTool domain model, which are identified 

using a version tag. However, that flexibility required programmer intervention in updating the 

object-MAML parse methods. The following section indicates one means of removing this 

overhead for achieving extensibility, XML 

By accomplishing this short analysis, we have implicitly discussed several of the 

strengths and weaknesses of KBDM and ARAMS. Another issue that may, in effect, be either a 

weakness or strength is the flexibility of applying KBDM in other domains. This idea, in part, is 

addressed in the next section. 

6.2 Applications and Future Work 

There are several activities that may follow-on from this effort, ranging from 

formalization of expansion of the domain itself, to powerful new uses and extensions of MAML. 

In the middle is expansion of agentTool to use untested abilities of the prototype (such as filtering 

knowledge by association). Formalization of domain model organization would permit 

automation of adding domain knowledge to agentTool and ARAMS through known software 

engineering design processes. Whether that new information is added formally or in traditional 

fashion, there are several domain dimensions that could be targeted for expansion. Here are 

three: 

1) Conversations: Conversations in the current version of agentTool are modeled strictly 
as dialogues (for two party communications). In reality, a conversation does not have to 
be a dialogue, because it could occur between as a multicast or broadcast to multiple 
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parties. To design agent systems taking advantages of the full range of communication 
possibilities, the conversation dimension of the agent domain needs to be reworked. This 
would likely incur changes in the MAML grammar and DTDs. 

2) Cognitive Features: In KBDM domain analysis, properties and capabilities of agents and 
their components were discussed. Though these are helpful for developing an agent that 
meets specific functional needs, there may be a need to identify agents that have certain 
cognitive features as well. For example: an agent may be most suited for a specific 
environment type (static, dynamic, simulated, real-world, etc). Or maybe the user needs 
an agent that can handle certain environmental events better than others (unpredictable, 
asynchronous, concurrent, timed). Capturing these cognitive features in the agent domain 
model would enrich the property dimension and indirectly increase the utility of the 
relationships entities that function to provide users options based on requirements. 

3) Agent Theories: If the process of adding broad new classes of knowledge is to be 
achieved, agent theories need to be given due consideration. Though Wooldridge and 
Jenning's work on agent theories was given only a cursory examination in Chapter 2, 
their efforts provide an ideal starting point. In short, they introduce agent theories as 
collections of logical principles/concepts that allow for specification of agents. Since the 
products of KBDM (e.g. domain model, knowledge base, etc) directly support 
specification of agents at multiple levels, KBDM might be formalized so that those 
products support either specific theories or a meta-theory that encompasses multiple 
theory possibilities. 

MAML's XML ties make it another likely target for future work. For instance, the 

extensible Styling Language (XSL) may be applied to MAML (W3C 1998). This application 

may be in the form of providing scripts for automated translation from one version of the MAML 

to another. The reader may recall that a key feature of MAML was its ability to capture different 

versions of the agentTool object model, which could be then mapped to the current version as 

needed. Doing so, however, involved programmer intervention. XSL would automate the process 

by formalizing all necessary mappings in a set of DTDs for a Multi-Agent Styling Language 

(MASL). An alternative to using XSL that can produce similar results is) the Document Object 

Model (DOM) (W3C 1998), and XML DOM standardizes the structure of XML documents 

(objects in the case of MAML). By doing this, direct mapping from one XML variant to another, 

such as MAML to HTML for viewing in a browser, is facilitated. Besides aiding translation, 

DOM also assists direct creation of XML documents by growing them as a tree structure rather 
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than by adding various tags to a flat text file (McGrath 1998). Some preliminary work with the 

DOM was accomplished in this effort in the form of a utility used for viewing MAML- 

represented knowledge entities as an object tree. Figure 33 below shows the output ofthat utility 

for one agent system captured in MAML. Other XML-related technologies are also forthcoming. 

One is schematic XML, which allows for user-defined data types and other useful extensions. 

Another, the extensible XML Metadata Interchange standard (XMI), provides a complete meta- 

meta structure format for XML documents (and a meta-structure for DTDs) (OMG 1998). In 

short, this allows for auto-generation and exchange of different XML DTDs between proprietary 

tools and versions of tools without regard to the source. Taking advantage of XMI for MAML 

would allow agentTool MAML agents to be used by other agent utilities and for those tool 

products to be used by agentTool. Implicit synergy between currently disparate research efforts 

would be the results of doing this. 
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Figure 33: DOM-viewer Showing an Agent System Represented by MAML 
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6.3 Conclusion 

In Chapter 1, the motivating force of this effort was introduced as being a military need 

that is arising from quickly-evolving technology both here and abroad, in concert with ever-more 

strained manpower for operating and otherwise interfacing with this technology. Agents can act 

as a source of virtual manpower to assist the military. However, agents require manpower for 

their own development, deployment, and maintenance. This "catch-22" can be circumvented 

through the application of tools such as agentTool that speed effective, tailored development of 

agent forces. The development of the ARAMS as a knowledge base for agentTool directly 

supports this goal. ARAMS maintains agent development know-how in persistent storage for on- 

demand implementation. Population of the ARAMS is, for the most part, done through 

agentTool, allowing security, robustness, and consistency to be centrally controlled. 

KBDM (or a close variant) is envisioned to be applicable in other areas where knowledge 

reuse and persistence is a requirement. Additionally, agentTool, KBDM, and ARAMS can, at a 

minimum, provide templates for creation of tools to serve the US Air Force in the coming 

century. Finally, agentTool, via MAML, may become one application in a virtual suite of agent 

development and test tools that are brought together via a shared meta-domain model. 
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APPENDIXA: Domain Analysis Requirements Document 

Domain Analysis JVequirement Document 10 Jan 2000 

Definition of Domain: J bounded sphere of activity, interest, or function (or knowledge). 

Name of Target Domain: Agent 

Definition of Target Domain: A collection of knowledge for multiple dimensions (aspects) of 
agent; including: concepts, specifications, designs, and implementations of agent systems, 
agents, and agent constituent components that together completely capture agent information 
at every level of representation (abstraction) and stage of development 

Relation to SW Engineering Process: Domain model will be used by agentTool application 
in the form of a reliable, extensible knowledge base system containing reusable and 
persistent agent domain knowledge. AgentTool uses the MaSE methodology in applying that 
knowledge (Wood 2000). 

MaSE Stage New Knowledge Elements Used 

Capturing Goals Goals, Use Cases, and Goal Hierarchy 

Transforming To 
Roles 

Use Cases & Roles 

Applying Use Cases Tasks 

Creating Agents Sequence Diagrams 

Creating 
Conversations & 
Assembling Agents 

Conversations, Components, Connectors, and 
Architectures 

System Deployment Implementations 

Requirements: 

• Domain model and other products must support MaSE knowledge needs. 

• Products must be implemented in Java in order to interface with agentTool. 

Assumptions. 

• Domain analysis may extend beyond the MaSE areas so as to permit operation of 
alternative development methodologies in the future. 

• Domain model should be capable of evolving as a byproduct of future domain 
analysis iterations. 

• Agent theories and language will not be captured in this analysis iteration 

• There are specification, design, and implementation levels and possibly a 
conceptual level of agent creation. Elements in the MaSE table reflect objects at 
all design levels. 
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Problem: 

• Evolving domain model may cause version incompatibilities. Resolve this. 

Recommendations: 

• Perform domain analysis in: the agent-entity and agent-system sub-domains 

• Capture meta-knowledge for mapping design-level knowledge to 
implementation-level knowledge 

Collected Knowledge: Here is a short index to the research summarized in Section 2.3. 

• Franklin and Graesser's classification of agents by properties and components. 

• University of Michigan's delineation of agent architectures and distinguishing of 
them by their properties and components 

• McGill University's UAA, an attempt to create an abstract agent architecture 
with universally usable components and implementation framework 

• University of Cincinnati and Stanford's JAFMAS and JATLite communication 
frameworks and communication specifications. 

• Elizabeth Kendall's  analysis  and  specification of roles, role models,  and 
behaviorally modeled RMIT agent architecture. 

• FIPA's various specifications for standardizing and defining agent relationships, 
architecture, and constitution. 

Existing Systems: 

• Zeus Agent Toolkit (Ndumu 1999) 

• IBM Aglets (IBM 1999) 

• AgentBuilder (Reticular 1999) 

• BOND (Boloni 1999) 

Knowledge Engineer: Marc J Raphael 
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APPENDIX B: Visual Summary of KBDMfor Effort 

Inputs from Section 1.4 
Section 2.3, Zeus, 
Bond, etc. Refine & Iterate 

Section 4.4 

Section 4.3 

MAMLDTDand 
Represented 
Knowledge Elements 
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APPENDIX C: Key MÄML DTDs 

(These are accurate as of 12Dec99) 

System DTD 
<?xml encoding="US-ASCII"?> 
<!— The Document Type Definition of atsystem.xml—> 
<!ENTITY % agent-grammar SYSTEM "atagent.dtd"> 
<!ENTITY % conversation-grammar SYSTEM "atconversationl.dtd"> 

<!ELEMENT mas (description?, framework?, agent*, conversation*)> 
<!ATTLIST mas version CDATA #REQUIRED name CDATA #REQUIRED> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT framework EMPTY> 
<!ATTLIST framework name CDATA #REQUIRED> 

Agent DTD 
<?xml encoding="US-ASCII"?> 
<!— The Document Type Definition of atagent.xml—> 
<!—ENTITY % architecture-grammar SYSTEM "atarchitecture.dtd"—> 

<!ELEMENT agent (description,view?,property*)> 
<!ATTLIST agent 
version CDATA #REQUIRED 
name    CDATA #REQUIRED> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT view EMPTY> 
<!ATTLIST view 

x CDATA #IMPLIED 
y CDATA #IMPLIED 
w CDATA #IMPLIED 
h CDATA #IMPLIED> 

<!ELEMENT property    (#PCDATA)> 

Architecture DTD 
<?xml encoding="US-ASCII"?> 
<!— The Document Type Definition of atarchitecture.xml—> 
<!ENTITY % component-grammar SYSTEM "atcomponent.dtd"> 

<!ELEMENT architecture (description?, component*)> 
<!ATTLIST architecture 

name CDATA #REQUIRED 
category(REACTIVE|DELIBERATIVE|COMPOSITE|BDI|OTHER) #IMPLIED> 
<!ELEMENT description (#PCDATA)> 

Role DTD 

<?XML ENCODING="US-ASCII"?> 
<!— THE DOCUMENT TYPE DEFINITION OF ATROLE.XML- 

< ! ELEMENT  ROLE   () > 
<!ATTLIST  ROLE 
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NAME CDATA  iREQUIRED 

Conversation DTD 
<?xml encoding="US-ASCII"?> 
<!— The Document Type Definition of atconversation.xml—> 
<!ELEMENT conversation   (participant*)> 
<!ATTLIST conversation 

name   CDATA #REQUIRED 
version CDATA #REQUIRED> 
<!ELEMENT participant(description,statetable?)> 
<!ATTLIST participant 

name (initiator|responderImulticastparticipant) "initiator"> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT statetable(state*, transition*)> 

<!ELEMENT state   (view)> 
<!ATTLIST state 

name   CDATA tIMPLIED 
action CDATA #IMPLIED> 
<!ELEMENT view EMPTY> 
<!ATTLIST view 

x CDATA #IMPLIED 
y CDATA tIMPLIED 
w CDATA #IMPLIED 
h CDATA #IMPLIED> 

<!ELEMENT transition EMPTY> 
<!ATTLIST transition 

rMessage CDATA #IMPLIED 
tMessage CDATA #IMPLIED 
guard CDATA tIMPLIED 
estate CDATA tIMPLIED 
nstate CDATA tIMPLIED 
action   CDATA tIMPLIED 

Component DTD 
<?xml encoding="US-ASCII"?> 
<!— The Document Type Definition of atcomponent.xml--> 
<!ENTITY % architecture-grammar SYSTEM "atarchitecture.dtd"> 

<!ELEMENT component (description?, view?, architecture?, statetable?, 
attribute*, method*)> 

<!ATTLIST component 
name CDATA tREQUIRED 
<!ELEMENT view EMPTY> 
<!ATTLIST view 

x CDATA tIMPLIED 
y CDATA tIMPLIED 
.w CDATA tIMPLIED 
h CDATA tIMPLIED> 

<!ELEMENT description (tPCDATA)> 
<!ELEMENT statetable(state*, transition*)> 

<!ELEMENT state   (view)> 
<!ATTLIST state 

96 



name   CDATA #IMPLIED 
action CDATA #IMPLIED> 
<!ELEMENT view EMPTY> 
<!ATTLIST view 

x CDATA #IMPLIED 
y CDATA #IMPLIED 
w CDATA #IMPLIED 
h CDATA #IMPLIED> 

<!ELEMENT transition EMPTY> 
<!ATTLIST transition 

rMessage CDATA #IMPLIED 
tMessage CDATA #IMPLIED 
guard CDATA #IMPLIED 
estate CDATA #IMPLIED 
nstate CDATA #IMPLIED 
action CDATA #IMPLIED 

<!ELEMENT method EMPTY> 
<!ATTLIST method 

rMessage CDATA #IMPLIED 
tMessage CDATA #IMPLIED 
guard 
estate 
nstate 
action 

<!ELEMENT 
<!ATTLIST 

name 
type 
runtimedefined 
userdefined 

CDATA #IMPLIED 
CDATA #IMPLIED 
CDATA #IMPLIED 
CDATA #IMPLIED> 
attribute EMPTY> 
attribute 

CDATA #IMPLIED 
CDATA #IMPLIED 

CDATA #IMPLIED 
CDATA #IMPLIED 

collectiontype (SET|SEQUENCE|BAG) #IMPLIED> 
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