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Abstract 

A layerwise geometrically nonlinear theory for a thick sandwich plate was developed by intro- 

ducing assumptions on a variation of transverse strains in the thickness direction of the faces and 

the core of the plate. An effect of transverse extensibility or compressibility of the core and the face 

sheets is taken into account, and the terms associated with transverse shear strain of the face sheets 

and the core are included into the expression for the strain energy. Displacements, obtained by 

integration of the strain-displacement relations, depend nonlinearly on a coordinate in the thickness 

direction, and are continuous at the boundaries between the face sheets and the core. The nonlinear 

von-Karman strain-displacement relations are used in order to provide a representation of the mod- 

erately large rotations. The in-plane stresses are computed from the constitutive relations in each 

ply of the face sheets, using each ply's material properties, and the transverse stresses are computed 

by substituting the in-plane stresses into equations of motion and by integrating the equations of 

motion. Such a method of computation of the transverse stress components allows one to obtain ac- 

curate results, because this method leads to satisfaction of conditions of continuity of the transverse 

stresses at the boundaries between the face sheets and the core, at the boundaries between the plies 

of the face sheets, and allows one to satisfy stress boundary conditions at both the upper and lower 

external surfaces. 

A finite element formulation was developed for a sandwich cargo platform under its impact against 

the ground, modelled as an elastic Winkler foundation. This formulation was done for a plate in 

cylindrical bending, and a finite element program was written on the basis of this formulation, 

with the capability of taking account of damage progression in time. The damage prediciton is 

performed with the use of the Hashin's and Tsai-Wu criteria by reducing, at each step of time 

integration, the appropriate material characteristics of those plies within a finite element in which 

failure occurs. The stresses and displacements, computed by this program, are shown to be in 

good agreement with the known exact solutions of various static and dynamic problems. Example 

problems of stress and failure analysis of sandwich cargo-delivery patforms during their impact 

against the elastic foundations are considered. In these example problems, the stresses as functions 

of time are computed at certain locations in the platforms with account of damage progression, i.e. 

with account of degradation of material characteristics of the failing plies. The locations of the 

failures, the modes of failures and the times of their occurence are defined by the program. 
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The theory of the sandwich plates, presented in the dissertation, does not require many degrees 

of freedom in the finite element formulation and has a wide range of applicability. It can be used for 

analysis of both thick and thin sandwich plates, with thick and thin face sheets, with transversely 

rigid and transversely flexible faces and cores. 
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Chapter 1 

Introduction 

Thick sandwich composite panels have many Air Force applications. One such application is the 

design of cargo delivery platforms that undergo extensive failure though ground impact. A study of 

this phenomenon requires an analysis of the sandwich plates with the development of an exact state 

of stress. A finite element analysis with the use of solid elements can provide information about 

all stress components, but such an approach is often unacceptable for real structures, because it 

requires many degrees of freedom. A computational cost can be reduced by using two-dimensional 

plate formulations. The formulations of thick sandwich plates in the past, using two-dimensional 

approaches, lack the ability to predict the necessary stress components that can lead to realistic 

states of stress for use in failure analysis. The work developed in this dissertation overcomes the 

shortcomings of the two-dimensionality by incorporating a method which contains the associated 

conditions of through-the-thickness strains and failure response. In addition, this work takes into 

account the appropriate equations of motion pertaining to the plate under the impact with an elastic 

foundation. 

The sandwich plates have a well pronounced zigzag variation of the in-plane displacements in the 

thickness direction, due to their high ratios of thickness to in-plane dimensions and large difference 

of elastic moduli of the face sheets and the core. Such characteristics of the sandwich plates make it 

necessary to use a layerwise approach in their analysis, the idea of which is to introduce the separate 

simplifying assumptions regarding through-the-thickness variation of either displacements, or strains 

or stresses within each face sheet and the core. Besides, in order to achieve a high accuracy of stress 

computation, in a model of the sandwich plate with a thick core and thick face sheets, it must be 

17 
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assumed that the in-plane displacements vary nonlinearly in the thickness direction of both the core 

and the face sheets, and, in the expression for the strain energy, the transverse direct and shear 

strains need to be taken into account not only in the core, but also in the face sheets. 

The two-dimensional layerwise finite element formulations of this type, for analysis of thick 

sandwich plates with transversely compressible or extensible cores and face sheets and with nonlinear 

variation of the in-plane displacements in the thickness direction of both the core and the face 

sheets, have not been presented extensively in literature so far. Development of such a finite element 

formulation and its application to progressive failure analysis of sandwich cargo-delivery platforms 

under their ground impact, is the objective of this dissertation. 

To determine a load-carrying capacity and service life of a composite structure, it is necessary to 

predict the initiation and evolution of the damage. When the stresses, as functions of time, in the 

composite structure are known as a result of solving the plate-bending problem, then the onset of 

failure can be predicted by applying an appropriate failure criterion. It has been observed that after 

the initial failure in a single layer of a composite structure, loading can still be carried. Therefore, 

the subsequent failure prediction is required to determine the dynamic response of the platform in 

the presence of some damage. There are many proposed theories to predict the onset of failures 

and their progression. A set of failure criteria that can predict modes of failures in the composite 

laminates, and in which failures are due to the combination of in-plane and transverse stresses were 

suggested by Hashin (1980). In our study these criteria are used for the face sheets of the sandwich 

platform. For the core of the sandwich platform, we use the Tsai-Wu criterion. 

It is possible to predict the first occurrence of failure (first-ply failure) in a composite laminate 

without much difficulty (Reifsnider and Masters (1982), Highsmith and Reisfinder (1982), Talreja 

(1985), Hashin (1985), Reddy and Pandley (1987), Reddy, Y.S.N. and Reddy, J. N. (1992), Daniel 

and Ishai (1994), Barbero (1999)). But it is more difficult to predict the subsequent failures after the 

initial damage has occurred, since the detailed stress analysis of a composite laminate with thousands 

of small cracks becomes practically impossible. In the progressive failure analysis, this problem is 

dealt with in an indirect way. It is assumed that the damaged material can be replaced with an 

equivalent material with degraded properties, and the stress analysis of a composite laminate with 

degraded properties is conducted without taking into account the singularities of the stress field near 

the crack tips. 

One of the first attempts to model the failure behavior of composite laminates by progressive 

failure analysis was done by Petit and Waddoups (1969). They used the classical laminated plate 
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theory for stress analysis and an incremental loading procedure for failure analysis. As the incre- 

mental loading proceeded, the individual lamina elastic constants were updated. Ultimate failure of 

a laminate was assumed to occur when the in-plane laminate stiffness matrix [A] became singular, 

or when a diagonal term of [A] became negative. 

Chang et al. (1984, 1987) performed progressive failure analysis of notched composite laminates 

in tension and compression by using the finite element model based on the classical plate theory. 

Stiffness reduction was carried out at the element level and a failure criterion originally proposed by 

Yamada and Sun was used. 

Tan (1991) included the effect of thermal residual stresses and hygroscopic stresses in his pro- 

gressive failure model. The classical laminated plate theory was used for stress analysis, and the 

Tsai-Wu criterion was used for failure prediction. 

The progressive failure models, considered so far, were based on computation only of the in-plane 

stresses and could not take into account the delamination type of failure. Ochoa and Engblom (1987) 

used a higher order plate theory for stress analysis and computed the transverse shear and normal 

stresses from the equilibrium equations. Stiffness reduction was carried out at Gauss points, and 

Hashin's failure criterion was used for the failure prediction. 

Lee (1982) performed a fully three-dimensional failure analysis of biaxially loaded laminates with 

a central hole. The finite element mesh consisted of 8-node brick elements, and a special kind of 

loading condition was used that made it possible to analyze only a quarter of the entire laminate. 

The stiffness reduction was carried out at the element level, taking into account three types of 

damage models: fiber breakage, transverse cracking and delamination. 

Sun (1989) performed progressive failure analysis of angle-ply laminates by using an iterative 

three-dimensional finite element approach. The average stress in each element and the Hashin's 

failure criterion were used for failure prediction. 

Tolson and Zabaras (1991) developed a seven degree of freedom finite element model for lami- 

nated composite plates. The model utilizes three displacements, two rotations of normals about the 

plate midplane, and two rotations of the normals to the datum surface. The in-plane stresses were 

calculated from the constitutive equations, and the transverse stresses - from the three-dimensional 

equilibrium equations. The maximum stress, Lee, Hashin, Hoffman and Tsai-Wu failure criteria 

were used. The procedure for determining the strength of a laminate involved an incremental load 

analysis. For a given load the stresses in each lamina were determined with respect to the material 

coordinates. When failure in a lamina occurred, the stiffness was modified and the load increased 
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until the final failure was reached. 

Eason and Ochoa (1996) incorporated a shear deformable composite element with built-in pro- 

gressive damage capability into a commercial finite element program ABAQUS, as a user element. 

The constitutive equations were used for calculation of the in-plane stresses, and the equilibrium 

equations were used to calculate the transverse shear and normal stresses. When a damage was 

detected at a quadrature point, damage was accounted for by reducing stiffness of the lamina at the 

quadrature point, in correspondence with the failure mode. The criterion with quadratic interaction 

between stresses and the maximum stress criterion were used for failure prediction. 

In all the above references, the material failure was considered for structures under static defor- 

mations, and not much work has been done to study the influence of geometric nonlinearity and 

transverse normal stress on the failure behavior of composite laminates subjected to bending loads. 

In the present work the stress and failure analysis is conducted for a dynamic problem, and both 

the geometric nonlinearity and the transverse normal stress are taken into account. 

In the dynamic finite element program, that is developed for the analysis of our problem, the 

damage progression is taken into account by reducing, at each step of time integration, the values of 

appropriate material constants of those plies within a finite element in which failure occurs. After 

that, the element and global stiffness matrices are recomputed, and the finite element analysis is 

restarted at the same time step, i.e. stresses are calculated at the same moment of time with a 

new stiffness matrix. If no failure occurs, analysis proceeds to the next time step. Otherwise, the 

appropriate material constants are reduced again. The degraded material characteristics of a failed 

ply within a finite element are assumed to be small fractions of the original material characteristics of 

the undamaged material, but not equal to zero, in order to avoid ill-conditioning of the finite element 

equations (large differences of relative magnitudes of terms in the stiffness matrix, that results in 

large computational errors). The average stress in each element and the Hashin failure criterion for 

the face sheets together with the Tsai-Wu criterion for the core are used for failure prediction. In 

this work, all integrations required in the calculation of the element stiffness matrices are performed 

in closed form, using programs for symbolic computation (MAPLE and "Scientific Workplace"). No 

numerical quadratures were used. This feature leads to savings in computations, that is important 

in this work, where the finite element method is used for nonlinear dynamic analysis, that requires 

updating of the stiffness matrix in each step of time integration. 

To study the impact-generated damage, it is important to get accurate information not only for 

the in-plane stresses, but also for the transverse stresses, which are not negligible in thick sandwich 
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panels.  The transverse stresses play a significant role in the various modes of failure.  Therefore, 

we have a three-dimensional problem. Theoretically, one can model fiber composite structures with 

three-dimensional finite elements, representing a thickness of each ply with a thickness of at least 

one element.   But practically this leads either to the elements with large aspect ratios, resulting 

in ill-conditioning of the finite element equations, or to an excessively large number of degrees of 

freedom in the model, if the large element aspect ratios are avoided by making in-plane dimensions 

of the three-dimensional elements not much larger than their thickness. Therefore, the composite 

structures are usually modeled by putting several plies into the thickness of one element.   This 

can be achieved by dividing the laminate into a number of sublaminates, each of which contains 

several plies, and by introducing some simplifying assumptions regarding the through-the-thickness 

distribution of displacements, strains or stresses within each sublaminate. This leads to the layer- 

wise (or discrete-layer) plate theories, in which each sublaminate is analyzed as a single layer with the 

averaged through-the-thickness material properties. In the post-processing procedure the stresses are 

computed in each ply, using each ply's material properties (not the averaged though-the-thickness 

material properties).   The layerwise theories of the laminated plates, beams or shells, based on 

different assumptions, were developed, for example, by Whitney (1969), Mau (1973), Chou and 

Carleone (1973), Swift, G. W. and Heller, R. A. (1974), Durocher and Solecki (1975), Seide (1980), 

Di Sciuva (1984, 1986, 1987), Mukarami (1986), Ren (1986), Hinrichsen and Palazotto (1986), 

Chaudhuri and Seide (1987), Reddy (1987). The layerwise theories can represent the zigzag variation 

of the in-plane displacements in the thickness direction. This zigzag variation is more pronounced 

for thick laminates, where the transverse shear moduli change abruptly through the thickness, and 

it can be seen in the exact three-dimensional elasticity solutions, obtained by Pagano (1969, 1970), 

Pagano and Hatfield (1972), Srinivas, Joga Rao and Rao (1970), Srinivas and Rao (1970), Noor 

(1973), Pikul (1977), Savoia and Reddy (1992).   The sandwich plate, that is considered in this 

dissertation, has the characteristics that make the discrete-layer approach necessary, namely high 

thickness-to-length ratio, and large difference in values of elastic moduli of the face sheets and the 

core.  In this layerwise model of the sandwich plate there are three sublaminates: the face sheets 

and the core. 

According to the existing exact three-dimensional elasticity solutions for composite laminates, 

mentioned earlier, and the exact elasticity solutions for homogeneous isotropic beams and plates 

(Saada (1993), Vlasov (1957) ) the strains, stresses and in-plane displacements in the plates vary 

nonlinearly in the thickness direction of the plate. In two-dimensional plate or shell theories these 
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nonlinear variations can be captured by maintaining the higher-order terms in the expansions of 

displacements in the thickness coordinate. Such theories were proposed by Sun and Whitney (1973), 

Lo et. al. (1977, 1978), Reddy (1984), Reddy and Liu (1985), Murthy and Vellaichamy (1987), 

Hinrichsen and Palazotto (1986, 1988), Tessler (1991), Greer and Palazotto (1996) and others. 

In all these references, except that of Greer and Palazotto (1996), the transverse displacement is 

assumed to be constant in the thickness direction, or, in other words, the direct transverse strain 

ezz is assumed to be equal to zero. In our model of the sandwich plate, the in-plane displacements 

vary quadratically in the thickness direction, and the transverse displacement varies linearly in the 

thickness direction within the thickness of a sublaminate. This is achieved by assuming that the 

transverse strains ezz, exz and eyz are constant in the thickness direction, and by integrating the 

strain-displacement relations in order to obtain displacements in terms of the unknown functions 

and the transverse coordinate (the unknown functions depend on the in-plane coordinates x and 

y). In this procedure of integrating the strain-displacement relations the constants of integration 

are chosen such that conditions of continuity of the displacements at the interfaces between the 

sublaminates are satisfied. 

In the plate theories, the transverse stresses, obtained from constitutive equations, turn out 

discontinuous at the interfaces between the plies of a sublaminate with different material properties 

(or between the plies of the whole laminate in single-layer theories), due to assumed continuity of 

strains at the interfaces between these plies. This is a violation of the third Newton's law. Therefore, 

the accuracy of the transverse stresses, computed from the constitutive equations, is not sufficient 

to use them in failure criteria. 

That is why, many authors e.g. Lo et al. (1978), Lajczok (1986), Chaudhuri (1986), Chaud- 

huri and Seide (1987), Reddy (1984), Barbero and Reddy (1989), Barbero et al.(1990), Byun and 

Kapania (1991), obtained only the in-plane stresses from the constitutive relations, and expressed 

the transverse stresses in terms of the in-plane stresses by integrating three-dimensional equilib- 

rium equations (or equations of motion in dynamic problems). In this case, the continuity of the 

transverse stresses can be enforced by defining the constants of integration from these conditions of 

continuity. 

Many researchers studied the sandwich plates with thick, vertically incompressible cores and thin 

incompressible face sheets, using layerwise models. Most of the layerwise models of such structures 

are based on the piecewise linear through the thickness approximations of in-plane displacement, in 
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addition to constant (though the thickness) transverse displacements (Reissner (1948), Yu (1959), 

Plantema (1966), Allen (1969), Kanematsu, Hirano et al (1969), Monforton and Ibrahim (1975), 

Mukhopadhyay and Sierakowski (1990), Lee, Xavier et al (1993)). 

The assumption of linear variation of the in-plane displacements in the thickness direction, i. 

e. the assumption, that the cross-sections of the core and the face sheets remain plane after de- 

formation, holds only for the cross-sections that are far from supports or locations of concentrated 

and partially distributed loads. Therefore, the discrete-layer models with higher-order through-the- 

thickness displacement approximations for each layer (Chan and Foo (1977), Gutierrez and Webber 

(1980), Kutilowski and Myslecki (1991), Liu and Chen (1991), Hemp (1996) ) produce more accurate 

results. In all of the models of the sandwich plates discussed above, the transverse displacement 

does not vary in the thickness direction, i.e. the plates are assumed to be incompressible in the 

thickness direction. 

The modern cores are usually made of plastic foams and non-metallic honeycombs, like Aramid 

and Nomex. These cores have properties similar to those used traditionally (for example, metallic 

honeycombs), but due to their transverse compressibility (i.e. ability of such cores to change height 

under applied loads) the direct transverse strain ezz becomes important. Therefore, the models 

of the sandwich plates with the cores made of plastic foams or non-metallic honeycombs must not 

exclude the change of height of the core. Frostig, Baruch et al (1992, 1996) developed a theory of a 

sandwich beam with thin face sheets in which account is taken of transverse compressibility of the 

core, and the longitudinal displacement in the core varies nonlinearly in the thickness direction. In 

this theory the longitudinal displacement in the face sheets varies linearly in the thickness direction, 

and the transverse displacement of the face sheets does not vary in the thickness direction (i. e. 

the transverse direct strain ezz in the face sheets is assumed to be equal to zero in the expression 

for the strain energy). The transverse shear strain exz in the face sheets is also considered to be 

negligibly small in the expression for the strain energy, that is used for variational derivation of the 

differential equations for the unknown functions. The transverse shear stress in the face sheets can 

be computed by integration of the pointwise equilibrium equation crXX]X + axz%z = 0. 

Under certain circumstances, when the face sheets are thick, when the plate is loaded by a 

concentrated or partially distributed load, or when the plate is on an elastic foundation, taking 

account of the direct transverse strain ezz in the face sheets and the transverse shear strain exz in 

the face sheets in the expression for the strain energy allows one to obtain a higher accuracy of the 

stress computation. Besides, in order to achieve a high accuracy of stress computation in the thick 
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face sheets, a model for such a plate must assume or lead to the nonlinear through-the-thickness 

variation of the in-plane displacements not only in the core (as in the works of Frostig, Baruch et 

al), but also in the face sheets. 

Construction of a computational scheme that satisfies these requirements can be approached, 

for example, with the help of the layerwise laminated plate theory of Reddy (1996), which is a 

generalization of many other displacement-based layerwise theories of laminated plates. In this 

theory the displacement field in the k-th layer is written as 
m 

u^{x,y,z)t) = YJ^\x,y,t)<j)f
){z), 

j=i 

m 

t;(fc)(x,2/,Z,i) = ^f)(x1j/,t)^
)(z), 

wM(x,y,z,t) = Y/w<.k)(x,y,t)^k)(z), 

where u^ (x, y, t), v(k) {x, y, t), w^k) (x, y, t) are the unknown functions and (j)f] (z) and ij)f] (z) are 

chosen to be the Lagrange interpolation functions of the thickness coordinate, in order to provide the 

required continuity of displacements and discontinuity of the transverse strains across the interface 

between adjacent thickness subdivisions. This theory allows one to achieve a high accuracy of 

computation of all stress components in the composite laminates, but for this purpose it requires a 

large number of thickness subdivisions of the laminate. This leads to a large number of the unknown 

functions and degrees of freedom in a finite element model. In effect, the finite element model, based 

on this generalized layerwise laminated plate theory is equivalent to the three-dimensional finite 

element model. In order to reduce a number of the unknown functions in the layerwise model 

of a laminated plate, one can use a concept of a sublaminate, i.e. make the number of thickness 

subdivisions less than the number of material layers, and deal with the material properties, averaged 

through the thickness of a sublaminate. In a model of the sandwich plate it is natural to choose three 

sublaminates: the two face sheets and the core. With such a small number of the sublaminates, 

the nature of assumptions on the through-the-thickness variation of displacements can have a large 

effect on the accuracy of the computed stresses. Therefore, in a layerwise model of the sandwich 

plate with only three sublaminates, it is desirable to have a flexibility in the choice of the functions 

that represent through-the-thickness variation of displacements. 

Pikul (1995) suggested an approach to construction of a layered shell theory, based on represen- 

tation of the transverse components of the strain tensor in the k-th layer of the shell in the following 
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approximate form 

e<8(x,y,z,t) = flk)(z)4>?\x,y), 

eik
zHx,y,z,t) = tik)(z)4k\x,y), 

e[kJ(x,y,z,t) = f{
3
k)(z)4k\x,y), 

where <j)\k) (x, y) are the unknown functions of the tangential coordinates and /a   {z), /2   (z), /3   (2) 

are some known functions that represent variation of the transverse strains in the thickness direction. 

The differential equations for the unknown functions were derived from the boundary conditions on 

one of the external surfaces and from the conditions of minimization of the discrepancy between the 

assumed transverse strains and the transverse strains obtained from the strain-stress relations with 

transverse stresses being expressed in terms of the unknown functions with the use of the equilibrium 

equations. A finite element formulation based on this approach was not performed by this author. 

In the dissertation, in order to construct a layerwise sandwich plate theory that takes account 

of the transverse strains in both the face sheets and the core but has fewer unknown functions 

(and therefore fewer degrees of freedom in the finite model) than the Reddy's layerwise theory, a 

computational scheme is constructed in which the simplifying assumptions, that lead to a plate-type 

theory, are made for the transverse strains, similarly to the Pikul's theory, but, unlike the Pikul's 

theory, these assumptions are introduced into the virtual work principle in order to construct a finite 

element formulation.   The assumptions are made with respect to the variation of the transverse 

strains in the thickness direction of the faces and the core of the sandwich plate. The displacements 

are then obtained by integration of these assumed transverse strains, and the constants of integration 

are chosen to satisfy the conditions of continuity of the displacements across the borders between 

the face sheets and the core. In such a method, the required continuity of the displacements in the 

thickness direction is satisfied regardless of the assumed type of through-the-thickness distribution 

of the transverse strains. This leads to a larger number of choices of simplifying assumptions about 

the variation of strains (and, therefore, displacements) in the thickness direction, and, therefore 

allows a better adjustment of the computational scheme to the conditions under which the sandwich 

plate is analyzed by a layerwise method with only three sublaminates (being the face sheets and the 

core).  This allows one to achieve any desired degree of nonlinearity of the through-the -thickness 

variation of the displacements without an increase of the number of the unknown functions, and, 

therefore, without an increase of the number of the degrees of freedom in finite element models. The 

transverse stresses are computed by integration of the pointwise equilibrium equations, that leads 
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to satisfaction of conditions of continuity of the transverse stresses across the boundaries between 

the face sheets and the core and satisfaction of stress boundary conditions on the upper and lower 

surfaces of the plate. 

In the present work, a model was developed based on the simplest of such assumptions that 

do not ignore in the expression for the strain energy the transverse shear and normal strains in 

both the face sheets and the core. It is assumed that the transverse strains do not vary in the 

thickness direction within the face sheets and the core, but can be different functions of the in-plane 

coordinates in the face sheets and the core. In the post-process stage, these first approximations of 

the transverse strains can be improved by substituting the transverse stresses, obtained by integration 

of the pointwise equilibrium equations into the strain-stress relations. The improved values of the 

transverse strains depend on the z-coordinate (z-axis is in the thickness direction). In this model, 

the transverse displacement, obtained by integration of the assumed transverse normal strain, varies 

linearly in the thickness direction within a sublaminate, and the in-plane displacements, obtained 

by integration of the assumed transverse shear strains, vary quadratically within the thickness of a 

sublaminate. 

The theory of the sandwich plate, presented in the dissertation, does not require many degrees 

of freedom in the finite element formulation and has a wide range of applicability. It can be used for 

analysis of both thick and thin sandwich plates, with thick and thin face sheets, with transversely 

rigid and transversely flexible faces and cores. Besides, in the finite element analysis of the thin 

sandwich plates, the shear locking phenomenon does not occur. 

In our model we use the Green-Lagrange strain tensor and the energy-conjugate to it second 

Piola-Kirchhoff stress tensor. Due to relatively high velocities of the platform when it hits the 

ground, we need to provide the capability of the model to represent moderately large displacements 

and rotations (displacements of the order of thickness of the platform, and rotations of the order 

of 10-15 degrees). For the problems with such characteristics, in the strain-displacement relations 

for the Green's strain tensor, the non-linear terms (f^)2 , (§f ) , (§|) (§f ) are not negligible as 

compared to |^, f1, §£, f^, fj, and all other non-linear terms in the strain-displacement relations 

are negligible (von Karman (1910), Palazotto and Dennis (1992), Reddy (1996)). So, the strain- 

displacement relations, used in our model, are (von Karman strains): 

du     1 (dw\2 1 (du     dv       dw dw 

dx     2 \dxj   '     Iy     2 \dy     dx        dx dy 
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_l(du     dw\ __du     l(dw\2 

£xz ~ 2 I dz + dx) '   £yy " dy + 2 \dy) 

1 f dv     dw\ _ dw 
2\d~z + ~dy~)'   £zz~~d~z ^ - ö l ÄZ + «T ) '   e*2 _ ~ (L1) 

In our study the expressions for the transverse stresses in terms of the unknown functions, 

obtained by integration of the pointwise equations of motion1 

Cxx,z + Vxy.v + <*xz,z + Fx — pÜ, <Tyx,x + ayyiy + Gyz,z + Fy = pV, 

Ozx,x + Vzy,y + &zz,z + "g~ ((?xxW,x + OyxW,y) + Q- {(^xy W,x + Vyy W,y) + Fz = pw, (1.2) 

contain derivatives of the unknown functions of the order higher than the degree of the interpolation 

polynomials, used in the finite element formulation. These higher order derivatives can not be 

computed as derivatives of the piecewise2 interpolation polynomials, used in the finite element 

formulation, because such method would lead to vanishing of these higher order derivatives, that 

can be wrong for a particular problem. Therefore, some numerical procedure is necessary to construct 

these higher-order derivatives from the nodal values of the unknown functions, obtained as a result 

of the finite element solution. Byun and Kapania (1991) used a least -squares global 3 polynomial 

approximation of the nodal values of displacements4, and calculated various higher order derivatives 

of the displacements as derivatives of these global approximation polynomials. The two types of 

polynomials were used in the global displacement approximation: Chebishev polynomials and a 

class of orthogonal polynomials, defined by the following recurrence formula: 

P0(a:) = l,    P_!(i) = 0,    Pr+i(x) = (x-ar+1)Pr(x)-ßrPr^(x) (r = 0,1,2,...),   (1.3) 

where 

m m 

Y^a-iXi [Pr (Xi)}2                     Ylai [Pr (Ii^2 

ar+1 = i4 ,       ßr = ^  (1.4) 

^[PriXi)]2 £> [PP_, (Xi)]2 

i=l i=l 

Hhese are equations of motion, variationally consistent with the Von-Karman strain-dispacement equations. 
2defined over a domain of a finite element 
3defined over the whole area of the plate 
4these nodal values of the unknown functions were taken directly from the finite element solution 
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and ai are values of weighting functions at data points xt. The higher order derivatives, computed by 

both methods were in good agreement with the values of derivatives obtained from exact solutions. 

In this study, for computation of the higher order derivatives a finite-difference scheme was 

applied, using the nodal data from the finite element solution. The numerical experiments showed 

that, despite the simplicity of such a method, it can produce quite accurate values of the derivatives, 

if the finite element mesh is sufficiently fine. 

In the dissertation, we will consider a dynamic response of the cargo platform dropped on the 

ground modelled as elastic foundation. The Winkler (1867) model of the elastic foundation is the 

simplest model for expressing relationship of pressure and deflection of the foundation surface. This 

relationship can be expressed as 

p(x,y) = -kw(x,y), (1.5) 

where k is a modulus of surface reaction with units of force per cubic length, and w(x, y) is a ground 

surface displacement. The characteristic feature of this soil mechanics relationship is that it leads to 

discontinuity of the surface displacement. It is obvious that a correction had to be found since the 

surface displacement is present beyond the loaded region. Pasternak (1954) developed a relationship 

in which some interaction between the spring elements occurred. The proposed response equation 

was: 

p(x,y) = -kw{x,y)-GA2w{x,y), (1.6) 

where k and G are two foundation parameters, and A2 is the Laplace operator. Unfortunately, 

this relationship produces concentrated reactions along the free edges of the structure. Kerr (1964) 

proposed a correction to the Pasternak model by adding a spring layer on top of a shearing layer, 

that is considered more appropriate for elastic foundation analyses, but the expression is much more 

complicated, resulting in a sixth order partial differential equation (Kneifati, 1985). It was decided 

that as an initial attempt at representing the overall problem, we would only consider the simpler 

Winkler foundation representation. It is possible to consider the more accurate expressions. 

The subsequent chapters contain some preliminary considerations regarding construction of plate 

theories, based on assumed transverse strains, development of the two-dimensional geometrically 

nonlinear computational model of the composite sandwich plate with account of transverse stresses, 

transverse flexibility and damage progression, development of a simplified model of the sandwich 

composite plate and the corresponding finite element formulation, description of the finite element 
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program based on this formulation and discussion of results for an example problem, obtained with 

help of this finite element program. 



Chapter 2 

Preliminary Considerations 

Regarding Construction of a Plate 

Theory, Based on Assumed 

Transverse Strains 

In thick sandwich plates the transverse shear strains exz, eyz and transverse direct strain ezz can be 

not negligibly small as compared to the in-plane strains exx, eyy, exy (it is implied that the z-axis 

is in the direction of the plate's thickness, and x- and y- coordinates are in the plane of the plate's 

middle surface, as shown, for example in Figure 2.1). This is especially true if the plate is on an 

elastic foundation or is loaded by a partially distributed load, as it is in the case of a cargo platform, 

dropped on the ground. The corresponding transverse stresses oxz, ayz and crzz can also be not 

negligibly small under the same conditions. Therefore, in analysis of such plates it can be important 

that in the expressions for the strain energy density the terms axzexz, ayzeyz and azztzz are taken 

into account. 

The two-dimensional computational models of plates are usually deduced from the three-dimensional 

formulations by making some assumptions about through-the-thickness distribution of either dis- 

placements or strains or stresses in the plates. We construct a plate theory of the sandwich plate 

30 



CHAPTER 2 31 

by making assumptions on distribution of the transverse strains e22, exz and eyz in the thickness 

of the face sheets and the core, i.e. by assuming that these transverse strains are some known 

functions of the z-coordinate within the face sheets and the core. Such method of constructing a 

two-dimensional plate theory provides a convenient way to make displacements continuous across the 

boundaries between the face sheets and the core: the expressions for the displacements are obtained 

by integration of the strain-displacement relations and the constants of integration are chosen such 

that the conditions of continuity of displacements are satisfied. 

But before proceeding to the actual problem of the dissertation, we will study and compare, in a 

simpler problem of cylindrical bending of a sandwich plate with homogeneous isotropic face sheets 

and the core, the accuracy and computational efficiency of theories based on two different kinds of 

assumptions on transverse strains: 

1) the transverse strains are non-zero in both the face sheets and the core, do not depend on 

z-coordinate within the face sheets and the core, but each of these strains is a different function of 

the in-plane coordinate within each sublaminate (a face sheet or a core); 

2) the assumed transverse strains in the face sheets, that enter into the expression for the strain 

energy density, are equal to zero, and the assumed transverse strains in the core do not vary in 

z-direction. 

As it was mentioned in the first chapter, the transverse stresses will be computed by integration of 

the pointwise equilibrium equations for each sublaminate. In this integration the number of constants 

of integration is equal to the number of interfaces between the sublaminates plus one. Therefore, 

these constants of integration can be chosen to satisfy the conditions of continuity of the transverse 

stresses at the interfaces between the sublaminates and the boundary conditions on one of the 

external surfaces (upper or lower). In this chapter it will be shown that if the governing differential 

equations for the unknown functions have an exact solution, then the transverse stresses, obtained 

by integration of the pointwise equilibrium equations, satisfy exactly the boundary conditions on 

both the upper and lower external surfaces. Proving this fact requires less voluminous derivations 

if a homogeneous plate is considered, rather than the sandwich plate. Therefore, this chapter is 

started by considering a model of a homogeneous isotropic plate in cylindrical bending, based on 

assumptions, similar to those that will be applied to the sandwich plates: the transverse strains will 

be assumed to be non-zero and not dependent on the z-coordinate (not varying in the thickness 

direction). In this chapter it will be shown also that if the unknown functions of the model of 

the sandwich plate are computed by the finite element method (which is equivalent to approximate 
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solving the differential equations for the unknown functions), then the boundary conditions on one of 

the external surfaces (upper or lower) are satisfied approximately by the transverse stresses obtained 

from the pointwise equilibrium equations, in addition to exact satisfaction of the boundary conditions 

on the other external surface and conditions of continuity of the transverse stresses between the 

sublaminates. 

2.1    Cylindrical Bending of a Homogeneous Isotropie Plate 

In this section we will consider construction of a theory of cylindrical bending of a homogeneous 

isotropic plate, based on assumption that the transverse strains are not negligible in the expression 

for the strain energy, and on the assumption that these strains do not vary in the thickness direction. 

The purpose of this paragraph is to evaluate the accuracy of stresses, obtained from a computational 

model based on such assumptions, and to determine if the boundary conditions on both the upper and 

lower surfaces are satisfied exactly by the transverse stresses obtained by integration of the pointwise 

equilibrium equations. It will be shown also that in this theory the stress boundary conditions on the 

lateral surfaces are satisfied in the integral sense, i.e. conditions of static equilibrium are satisfied. 

Using this theory, a problem of a simply supported plate under a uniform loading on the upper 

surface will be solved and the solution will be compared with the exact elasticity solution. This 

comparison will enable an assessment of the accuracy of the theory, based on the above mentioned 

assumptions on the transverse strains. 

Cylindrical bending implies the condition of plane strain, i.e. 

„ = 0,^ = 0,^ = 0, (2.1.1) 
dy dy 

which can occur if the plate's dimension in the y-direction (that will be called width 6) is much 

larger than its dimension in the x-direction (that will be called length L) and the loadings on the 

upper and lower surfaces of the plate do not vary in the y-direction (figure 2.1). The problem is 

considered on the basis of linear elasticity, i.e. in the general form it is described by the following 

equations: 

equilibrium equations 

^=0; (2-1.2) 
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strain-displacement relations 

constitutive equations 

boundary conditions 

^TT^ + T^£^; (2-L4) 

ff«*=0, ff** = -f   at 2 = --, (2-1-5) 

(r« = 0,a„ = ^  ats=^ (2.1.6) 

where g( and g„ are projections on the z-axis of forces per unit length \$g J at the lower and upper 

surfaces correspondingly (by qt and qu we denote not absolute values of forces per unit length, but 

their projections on the z-axis, therefore values qx and qu can be positive or negative, depending on 

direction of the forces); 

conditions of static equilibrium x: 

h/2 

f axx dz = 0 at x = 0, L , (2.1.7) 

-h/2 

h/2 

[ axxzdz = 0a.tx = 0,L , (2.1.8) 

-h/2 

1None of the plate theories are capable of providing exact satisfaction of stress boundary conditions at the contour 

of a plate, i.e. satisfaction of the stress boundary conditions at the contour of a plate at each value of z-coordinate 

(coordinate in the thickness direction). Therefore, we require satisfaction of the stress boundary conditions only in 

the integral sense, i.e. conditions of static equilibrium. Our "exact" elasticity solution, the purpose of which is to 

evaluate the accuracy of the stresses, produced by our plate theory, will also satisfy the stress boundary conditions 

only in the integral sense, unlike that of Pagano (1969), which satisfies the stress boundary conditions exactly. We 

chose to require that our "exact" elasticity solution satisfies only the mitigated, integral stress boundary conditions, 

because such requirement allows one to obtain analytical expressions for stresses. The truly exact solution of Pagano, 

which satisfies the stress boundary conditions at each point of the plate contour, contains coefficients which can be 

obtained only numerically, and it is too rigorous for our purposes, because its comparison with the solution, based on 

the plate theory, will only reveal the fact that the plate theory can not take account of edge effects, that is known in 

advance. 
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h/2 L 

b   I  [axz (L) - oxz (0)] dz = -j {qi + qu) dx . (2.1.9) 

-h/2 0 

In view of plane strain assumptions (2.1.1), the strain-displacement relations (2.1.3), take the 

form: 

£JI — ^,II 

Szz = W zz — w.zt 

and the constitutive equations (2.1.4) become 

E 
(1 + v) (1 - 2v) 

E v 
&1I11   — vv     (l + i/) (1 -2i/ 

E 
(l + i/)(l-2i/) 

(2.1.10) 

exz = \(u,x + w,x), (2.1-11) 

(2.1.12) 

£xy = 0, eyy = 0, eyz = 0, (2.1.13) 

[(l-v)exx + ue„), (2.1.14) 

(exx + ezz), (2-1.15) 

Kxx + (1 - ")£«*], (2-1-16) 

oxz = j^e.z, (2-1.17) 

ffxy = 0, ayz = 0. (2.1.18) 

The equilibrium equations for the plane strain condition have the form 

axx,x + aXz,z = 0, (2.1.19) 

<r,x,* + <r«,, = 0. (2-1.20) 

In order to construct a plate theory, additional simplifying assumptions will be made regarding 

dependence of the transverse strains, exz and ezz, on the z-coordinate. The purpose of this chapter is 
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to study the accuracy of a plate theory, based on the assumptions that exz and ezz are independent 

of the z-coordinate: 

exz=exz(x), (2-1.21) 

e„ =£„(*)• (2-1-22) 

Integration of equation (2.1.12) yields 

Z 2 

w{x, z) - w\z=0 =  / -^- dx =  / ezz(x) dz = ezz{x) z , 

^)      ° ° 

Z 2 

u{x, z)- u        =  / -^ dz=     {2exz - w,x) dz 

o 
«o(i) 

(2.1.23) 

where 

w0{x) = w\z=0. 

Therefore, 

w(x,z) = w0(x)+£zz(x)z. (2.1.24) 

From equation (2.1.11), we receive 

0u dw(x) 

d-z=2£xz{x)~-dx- 

Integration of the last equation yields 

2 2 
f z 

=  / (2eX2 - w0,x - £«,**) dz = (2£x2 - i«o,x)2 - £22,xy , 

0 

where 

u\z=0 = u0(x). (2.1-25) 

Therefore, 

u{x, z) = UQ(I) + [2e„(a:) - tuo.xfc)]* - ^«.x^)*2- (2.1.26) 
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So, we have four unknown functions in this problem: 

u0(a;), w0{x), exz{x), ezz{x). 

Let us express strains and stresses in terms of the unknown functions. Strain exx can be found 

by substituting expression (2.1.26) into the strain-displacement relation (2.1.10): 

u'Q + {2e'xz-w'£)z--e"zzz 2. (2.1.27) 

Here and further primes denote derivatives with respect to x-coordinates. Substitution of expression 

(2.1.27) into constitutive relation (2.1.14) yields: 

E 
[\-v) v!0 + {2e'xz-w'i)Z--e"zzz

2 + VEZZ (2.1.28) 

Here the superscript H means that the stress was obtained from the Hooke's law, as opposed to 

stresses oxz and azz, which will be obtained from the equilibrium equations. To find expressions for 

the transverse stresses in terms of the unknown functions, we integrate the equilibrium equations 

(2.1.19) and (2.1.20), in which for stress axx we take its expression (2.1.28), obtained from the 

Hooke's law: 

<?xx,x + axz,z = °     '     a**>* + °zz'z = 0- 

From the first equilibrium equation, we obtain 

Z * 

<*xz - 0-«L = _h/2 =    /   °*z<z dz = - a"x,x dz > 

0 _2 2 

where a   \ = 0 due to the boundary condition (2.1.6). The substitution of expression (2.1.28) 
XZ'z = -h/2 

for a^x into the last equation yields 

E{\ - v) 
(1 + I/)(1-2I/) 

Ev 

h\     1 
Un  [Z + - ) + 

1 (n  " '"\ 
2 (&„ " »0 ) ^TH-'*3+ 

(l + V){l-2uf"\Z+2 
(2.1.29) 

From the second equilibrium equation we obtain 

z 

°*z-    *«L_-h/a    =     /    °".'dz = -   J &xz,x dz. 

_2l 
6 

duo to BC (2.1.5) 

-h/2 -hjl 
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Substitution of expression (2.1.29) for axz into the last equation gives 

_J_ (4^ _ Ahz + 3/l2) (22; + hf e{vz 

37 

384 
+ — r- (22 + hfe"zz , (2.1.30) + (l + zv)(l-2iv)8V ;    "' 

where the superscript IV means the 4-th derivative with respect to x-coordinate. 

Expressions for the transverse stresses in terms of the unknown functions can also be obtained 

from the Hooke's law. Upon substitution of expression (2.1.27) for exx into the constitutive equation 

(2.1.16), we receive 

E H _  

"     (l + i/)(l-2i/) 
{„ [i4 + (2,1, - w';) z - \e'zzz

2] +(!-«')*..} • (2-1-31) 

We will also write the constitutive equation (2.1.17) in the form 

a», = ^-exz. (2.1.32) J XZ 1 + v 

We see that expressions (2.1.29) and (2.1.30) for the transverse stresses oxz and ozz in terms of the 

unknown functions, obtained from the equilibrium equations, are different from the corresponding 

expressions (2.1.32) and (2.1.31) for o*z and «r», obtained from the constitutive equations. It was 

already shown that the transverse stresses axz and azz, obtained from the equilibrium equations, 

satisfy the boundary conditions (2.1.5) at the lower surface of the plate, and it will be shown later 

that they satisfy also the boundary conditions (2.1.6) at the upper surface of the plate. Besides, as it 

will be shown later, in composite plate theory the transverse stresses obtained from the equilibrium 

equations (or equations of motion in dynamic problems) can be forced to satisfy also the conditions 

of continuity of the transverse stresses at the interfaces between the plies with different material 

properties. On the other hand, the transverse stresses obtained from the constitutive equations, do 

not satisfy the boundary conditions either at the upper surface or at the lower one, and do not satisfy 

the conditions of continuity of the transverse stresses at the interfaces between the plies in composite 

plates. Therefore, the transverse stresses obtained by integrating the equilibrium equations are more 

accurate. 

Now, let us derive differential equations for the unknown functions u0{x), w0{x), exz{x), ezz(x) 

and boundary conditions, using the principle of virtual work. The virtual work principle is a conve- 

nient way of reducing the three-dimensional continuum mechanics problems to the two-dimensional 

and one dimensional problems for the following reasons: 
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1) It allows to formalize the process of derivation of the governing differential equations in terms of 

the unknown functions and natural boundary conditions, i.e. boundary conditions on the part of 

the surface, where the displacements are not imposed. 

2) The number of boundary conditions, formally derived from the virtual work principle, is equal to 

the order of the governing differential equations for the unknown functions. This can be not the case 

if the differential equations for the unknown functions of the plate model are derived by averaging 

(through the plate's thickness) the pointwise equilibrium equations, due to contradictions between 

the equations of elasticity, brought about by introducing the simplifying assumptions. An example 

of such case is the boundary conditions at a free end of a plate in the classical plate theory based on 

the Kirchhoff - Love assumptions (Saada, 1993). The use of a variational method allowed Kirchhoff 

to obtain the free-end boundary conditions, consistent with the governing differential equations. 

4) The level of accuracy of all equations of a plate theory, derived from the virtual work principle, 

is the same and is consistent with the simplifying assumptions that lead to the plate theory. 

5) The finite element formulation is most easily performed on the basis of the variational formula- 

tion. 

The virtual work principle is 

SU - 6'W = 0, (2.1.33) 

where U is strain energy of the plate and 6'W is virtual work of external forces, acting on the plate. 

In the notation 6'W the prime is used over the 6 because in case of nonconservative external loads, 

the virtual work of external loads is not a variation of some state function W. Here we follow the 

notation of Washizu (1982). 

The expression for the strain energy has the form 

U exx + 2a"exz + cr"ezz + a" eyy + 2 a" exy+2 tfz ey 

(V) 

L   § Exx 
T 

^xx 

u\ 6£Xz >     < °Hxz 

o-l eZz {* J 
> dz dx. 

dV =       (2.1.34) 
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The constitutive equations (2.1.14), (2.1.16) and (2.1.17) can be written in the form 

E 
> = 

1 + v 0       \ 

l-2i/ 

l-2i/ 

0 

o   J^- 

Cxx 

2exz > dz dx. 

Substitution of (35) into (34) yields: 

U 
bE 

2(1 + 

L   § 

ill 
0 -ä 

-xx 

2e XZ 

£zz 

l-i/ 
l-2i/ 

0 
1/ 

l-2i/ 

l-2i/ 

0 
1-1/ 
l-2i/ 

-xx 

2e XZ 

Ezz 

> dz dx. 

In view of relation (2.1.27), we can write 

E-xx 

2exz 

Bzz 

If equation (2.1.37) is substituted into (2.1.36), we receive 

T 

1 z 1-2 
2Z 0 0 2e'xz ~ w 

► = 0 0 0 1 0 < z'zz 

0 0 0 0 1 2exz 

£zz 

>. 

u 
2( 

bE     r 

a0 

2e'Xz - W'Q 

2EXZ 

eZz 

\c\{ 
2exz ~ ™0 

- ZZ 

2e XZ 

£zz 

> dx , 

where 

VA-J 

1 0 0 

z 0 0 

2Z 0 0 

0 1 0 

0 0 1 

\-v 
\-2v 

0 
v 

l-2i/ 

l-2i/ 

0 
1-1/ 
l-2i/ 

1 z -\z2 0 0 

0 0 0 10 

0   0       0       0    1 

dz ■■ 

(2.1.35) 

(2.1.36) 

(2.1.37) 

(2.1.38) 
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2i/-l 

v-1 ±h2(l-v)        0 

0 ±h2(v-l) 0 0 0 

24 

0 

— V 

The substitution of (2.1.39) into (2.1.38) yields 

0                     0 V-\ 0 

0                  ±h2v 0 v — 

yields 

L 

U= JÜdx, 

(2.1.39) 

(2.1.40) 

where 

U [uQ,exz,exz,ezz,Ezz,w0J = 
bEh 

2(1 + v) {2v - 1) 
(i/ -1) («;) 

2        /l2 (1 + I/) 
H - - 

12 
une Oczz~ 

/l4(l/-l)   /   »  \2 

2vuQezz +     v [2exz - w0 J   +      g2Q      (e„ J 
12       Vxz     ~"J   +      320      ,£"'   + 

h2V   " . ( 1  \    9      ,   / i\    2 
+-12-e„e„ + 4 (i/ - - ) 4Z + («/ - 1) e* (2.1.41) 

So, 

fit/ 
f (dÜ    ■      dÜ c  „      ÖÜ . dÜ ..    ,   dU 8U     „ \ 

n      \ 

(2.1.42) 

The integration by parts in the last expression yields 

6U = -[- J dx 
d dU  .      ,   ^ dU        L      f 

dun dun 

d2   dÜ   .     ,3^  , L 
- bw0 dx+ —-77 ow0\0- 

dx2 dw'n dwn 

d  ÖU 

dx dw0 

77  SW0\ 

L. 

dU       d  dU\ dU I. 
a -J-^-r-     S£xz dx + -?-7- b£xz\  + 
dexz     dx deTZ / dex. 

■I 
dÜ       d2   dÜ dU 

+ nä77z 
+ dx2-d7Tz)

6£"dx + ^6£ 
de'zz     ""' 

d  dU   . 
— OEz 

dx de" 
(2.1.43) 
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The virtual work of external forces has the form 

L L 

S'W =   fqu 6w\z=h/2 dx + fqi 6w\M__h/2 dx . (2.1.44) 

0 0 

According to equation (2.1.24), 

Sw = 6wo + z Sezz . (2.1.45) 

Therefore, 

L L 

S'W =  fqu (sw0 + 1 Sezz}  dx + jqi (sw0 - ^ 6ezzJ  dx. (2.1.46) 
0 0 

Upon substitution of expression (2.1.43) and (2.1.46) into the principle of virtual work, 6U-S'W = 0, 

and equating to zero the coefficients of the variations of the unknown functions u0, w0, EXZ,EZZ and 

the boundary terms, we receive the following differential equations and boundary conditions: 

6u0: 4~^=°    (Q<X<L) . dx ou0 

6w0 :        TT-5—77 =qu+qi     (0 < x < L) , 
dxz OWQ 

6exz: f--±™_=0    (0<x<L), 
dexz     dx oexz 

6£-:        8e7z 
+ dx-*lKr2{q»-qi)      <°^L>- 

Either —- = 0 or uo is specified at x = 0, L . 
du0 

Either     ,    = 0 or exz is specified at x — 0, L . 
9exz 

r\rr 

Either —- — 0 or w'0 is specified at x = 0, L . 
dw0 

Either — ——77 = 0 or WQ is specified at x = 0, L . 
dx ow0 
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£\TJ 

Either —— — 0 or e'zz is specified at x = 0, L 
dezz 

J       €\JJ 

Either — = 0 or ezz is specified at x = 0, L . 
ax dezz 

The substitution of expression (41) for Ü into these equations yields the following differential equa- 

tions and boundary conditions: 

6u0 :        (!-«/) (ul - ^C) + "4 = 0    (0 < x < L) , (2.1.47) 

1 - i/ 6£/i3 

^°:   {i+l){i-2.) "it K - 2e~' = x«) = 9« + 9'    (0 < * < £) , (2.1.48) 

6e XZ   ■ CI2 12(1-21/   V  ° XV v   -    -    ' 
(2.1.49) 

6ezz :       i/ ( u0 - —e"zz ) + (1 + v) 
24"" 

(1 + I/)(1-2I/) 

ft2 M2 /v     1  ,» 

(9« -ft)     (0 < a; < L) . 

(2.1.50) 

Either (l-i/)(u0- i^'zz ) + vezz = 0 or u0 is specified at a; = 0, L . (2.1.51) 

Either 2e'xz —w'0 = 0 or exz is specified at x = 0, L 

Either 2e'xz —w0 = 0 or w0 is specified at x = 0, L 

Either 2£IZ - w0  = 0 or w0 is specified at x = 0, L . 

Either (l-v)[u0- j^^zz ) + v^zz = 0 or ezz is specified at x = 0, L 

(2.1.52) 

(2.1.53) 

(2.1.54) 

(2.1.55) 

Either (1 - i/) ( uö - 7^24 ) + "4 = 0 or ezz is specified at x = 0, L (2.1.56) 
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Equations (2.1.47) and (2.1.48) can be derived, also, by substituting expressions (2.1.29) and 

(2.1.30) for stresses axz and azz, obtained from the equilibrium equations, into the boundary con- 

ditions (2.1.6) at the upper surface of the beam. Indeed, 

Eh 
0 = <7 «li=k/! 

m 

(1 + i/) (1 - 2i/) 

Eh2 

(2.1.57) 

t. -n     I 
b        "L=h/2 6   ' 2 (1 + i/) (1 - 2v) 

+ (1 - v)[ u0 &:>+■*. + 

because of eqn.   (56) 

£/i3 

(u<o/v - 2exz) —rr.     ■ (2.1.58) 
12  (1 + v) (1 - 1v) \» ") 

Equations (2.1.57) and (2.1.58) are the same as equations (2.1.47) and (2.1.48), derived from the 

principle of total potential energy. So, the principle of total potential energy produces differential 

equations for the unknown functions such that their solution guarantees that the expressions for the 

transverse stresses axz and azz (obtained from the equilibrium equations), in terms of the unknown 

functions, satisfy the boundary conditions (2.1.6) at the upper surface of the plate. Satisfaction 

of the boundary conditions (2.1.5) at the lower surface of the plate by the stresses axz and azz 

(obtained from the equilibrium equations) is guaranteed by the fact that these conditions were used 

in the process of deriving expressions for axz and azz from the equilibrium equations. 

Let us express the conditions of static equilibrium (2.1.7)-(2.1.9) in terms of the unknown func- 

tions n0, wo, £xz, £zz- The substitution of expression (2.1.28) for a^x into the conditions of static 

equilibrium (2.1.7) and (2.1.9) yields 

h 
(1 -v)u0- —e'zz + uezz = 0 at x = 0, L , (2.1.59) 

2exz -w0 = 0 at x = 0, L . (2.1.60) 

Let us substitute expression (2.1.29) for axz into the left-hand side of static equilibrium condition 

(2.1.9) 

£(l-i/)      bh3 L 

b I  [axz (L) - axz (0)] dz = ^-^±-- (2e"xz - *%) 
-h/2 

Ebh2 

2 (1 + u) (1 - 2v) 

„     h2 .,.' 
:i-v)|u0 - —ezz ) +veZ2 

o 
duo to diff.   eqn.   (47} 
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Using differential equation (2.1.48), we can write the right-hand side of the static equilibrium con- 

dition (2.1.9) in the form 

L 

(1 + ")' 

L 

-I E(l-v)      bh3 /   » »>\ 
<«" + *> dX = (l + u)(l -2^12- (2£- ~ W° ) 

ft/2 

From the last two equations it follows that the left-hand side b   /   [axz (L) - oxz (0)] dz of the static 

-h/2 
L 

equilibrium equation (2.1.9) is identically equal to its right-hand side -     {qu + qi) dx.  Since the 

o 
static equilibrium conditions (2.1.7) and (2.1.8), being expressed in terms of the unknown functions of 

our plate theory (equations (2.1.59) and (2.1.60)), are the same as the natural boundary conditions of 

the plate theory (equations (2.1.51), (2.1.52) and (2.1.53)), and since the static equilibrium condition 

(2.1.9), being expressed in terms of the unknown functions of our plate theory, is an identity, we 

make a conclusion that our plate theory guarantees satisfaction of all the static equilibrium conditions 

(2.1.7)-(2.1.9). 

Now, let us solve a problem of cylindrical bending of a plate, simply supported at the 

edges x = 0,L, under a uniform load qu, applied to the upper surface (figure 2.2). The results 

will be compared with the exact elasticity solution. 

The boundary conditions (2.1.51)-(2.1.56) for this problem take the form 

(1 - i/) (u'0 - ^4) + vezz = 0 at x = 0, L , (2.1.61) 

2e'xx-w'ö =0atx = 0,L , (2.1.62) 

wo = 0s.tx = 0,L , (2.1.63) 

(1 - u) (u0 - |)/i
2<4) + vzxz = 0 at x = 0, L , (2.1.64) 

(1 - v) (u'ö - ^h2C) + ve'zz = 0&tx = 0,L. (2.1.65) 

In addition, due to symmetry of the problem, 

exz(0) = -EXZ(L),   «(f)=0. (2.1.66) 
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Differential equations (2.1.47)-(2.1.50) can be written as the following independent sets of equations: 

1) equation 

with symmetry condition 

r^« = -9» (o<*<^) 

£x*(0) = -exz(L) 

(2.1.67) 

2) equation 

1 - v bEh3 

(1 + i/) (1 - 2i/)   12 

with boundary conditions 

(wT
0
v - 2eZ) =qu    (0<x<L) 

2exz —w0=0, w0 = 0 at x = 0, L ; 

3) equations 

and 

(l-i/)( uj,' - — el'l ) +i/e„ = 0   (0 < x < L) 

,     h2 „ 
10 ~ 24£z 

with boundary conditions 

" ' U° ~ 24£zz ' + ^ ~ ^ e« + 
h2 (h2 IV     1  „, 
8  U0£"      3U° 

(1 + v) (1 - 2v) 
bE 

qu    (0 < x < L) 

(1 - v) ( w0 - —e^ ) + i/e« = 0 at x = 0, L , 

and symmetry condition 

(1 - v) ( u0' - — el'l ) + ve'zz = 0&tx = 0,L 

«1^1=0 

For gu = const these equations have the following solution 

(2.1.68) 

"° = 2bh^-H)EX {X ~ L) [(1 " 2V) {X2 ~LX- L2) ~ 2k2 (1 " V)] (2.1.69) 
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ezz = {l + u){l-v)^. (2.1.71) 

Substitution of expressions (2.1.68)-(2.1.71) into the expressions (2.1.28), (2.1.29) and (2.1.30) for 

<r%x,°xz,Ozz yields 

<T?t = -%±x(x-L)z, (2.1.72) 

— £(*-§)(«•-*)• 
-    -      qu   (2z + hf {z - h). (2.1.74) 

26/i3 

It can be verified that the conditions of static equilibrium 

f L 

bj [axz(L) - (TXZ(Q)} dz = -Jqu dx, (2.1.75) 

2 

fax
i

xdz = 0a.tx = 0,L, (2.1.76) 

2 

\ o*x zdz = 0&tx = 0,L (2.1.77) 
_ h 

2 

are satisfied by the found stresses (2.1.72)-(2.1.74). The expressions (2.1.72)-(2.1.74) for the stresses 

satisfy the equilibrium equations 

flW+<Xx*.. = 0  1 (2i78) 

o"xz,x + ozz,z = 0  J 

the boundary conditions 

Oxz =0, 0V, = -3f  at z = -§ 

<7xz = 0, ozz = at   at 2 - * 
(2.1.79) 
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and the conditions of static equilibrium (2.1.75)-(2.1.77). But the equation of compatibility in terms 

of stress 

is not satisfied by the expressions (2.1.72) and (2.1.74), obtained from the plate theory. Therefore, 

the expressions for stresses (2.1.72)-(2.1.74), obtained from the plate theory, are not exact. 

The exact elasticity solution (within a framework of linear elasticity) for the plate in cylindri- 

cal bending (in plane strain condition), which satisfies the equilibrium equations (2.1.78), boundary 

conditions (2.1.79), conditions of static equilibrium (2.1.75)-(2.1.77) and equation of compatibility 

in terms of stress (2.1.80), is derived in Appendix 2-A. This solution is: 

'--V^-V + H-iTV <"*> 

azz = -±^(2z + h)2(z-h). (2.1.83) 

Comparison of formulas (2.1.72)-(2.1.74) and (2.1.81)-(2.1.83) shows that the theory of a homo- 

geneous plate, based on assumption exz = £xz(x),ezz = ezz{x), produces exact expressions for the 

transverse stresses oxz and <JZZ , if these stresses are calculated by integration of equilibrium equa- 

tions (not from Hooke's law). But expression (2.1.72) for the in-plane stress axx, calculated from 

the plate theory, differs from the corresponding exact stress (expression (2.1.81)). 

Let us compare the exact stress axx with the one obtained from the plate theory at a point 

x = \, z = |, i.e. at a point, where, according to the plate theory, the stress axx is the highest. 

From formulas (2.1.70) and (2.1.79) we find 

„gate theory) = *g (^   &% x = L    z = ^ 

Ab\h 2'        2 

^rct) = ll(L\       lq L h 
'XX 

2 

Ab \h)    ' 5 b """~ 2 ' " ~ 2' 

So, a relative error in computation of axx, produced by the plate theory, is 

(exact) {plate theory) ~ 
GXX &xx -*■ 

(exact) 15 (L\2   ,-\ 
Vxx TYh)    + L 
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Therefore, in order for relative error of the plate theory not to exceed 5%, the height to length ratio 

of the plate must not exceed 0.44426 : 

y < 0.44426. 

This condition is met for the problem, which is the topic of the dissertation. So, a theory of 

homogeneous plates, based on assumption that the transverse strains do not vary in the thickness 

direction, produces sufficiently accurate values of all stresses, both in-plane and transverse. The 

transverse strains, as unknown functions of the problem, which, according to the assumptions (2.1.21) 

and (2.1.22), do not vary in the thickness direction, were found to be expressed by the formulas 

(2.1.70) and (2.1.71). This is the first form of the transverse strains: 

>..)<"- *££*<*-*>• (2.1.84) 

^')_ Qu 
{£zz)V> = (l + 1/)(l-v)^. (2.1.85) 

The more accurate expressions for the transverse strains (second form of the transverse strains) 

can be found by substitution of the transverse stresses axz and azz, obtained from the equilibrium 

equations (expressions (2.1.73) and (2.1.74)), into the strain-stress relations 

(e*2)
(//) = i^xz, (2.1-86) 

The substitution yields: 

(,.,)"" - 4£ (Tzz - 
l-V 

{6xz)       -    E   bh* \       2J\ 4/' 

(2.1.87) 

(2.1.88) 

K zz) 2Ebh? L 
(v - 1) (2z + hf (z-h)+ 6ux (x- L) z (2.1.89) 

For consistency of nomenclature, the stresses a"z and azz, obtained from the Hooke's law, must be 

called the first forms of transverse stresses: 

rH I„    \(i)     „H _ ,„   \(J) 
(axz) ,   <7zz = \Pzz) 

and the stresses axz and azz, obtained from the equilibrium equations, must be called the second 

forms of the transverse stresses: 

Gxz = (&xz) (") (*«) 
(II) 



CHAPTER 2 49 

In-plane strain exx and in-plane stress axx have only one form. The second forms of the transverse 

strains and stresses are more accurate than the first forms. Stress ayy can be found by substituting 

expressions for strains exx and (eZ2)
(/7)into the constitutive equation (2.1.15). 

In this section we came to the conclusion that a theory of a homogeneous plate, based on the 

assumption that the transverse stresses do not vary in the thickness direction, leads to sufficiently 

accurate results if the thickness of a plate is much smaller than its length and width. In the next 

section we will consider construction of a layerwise theory of cylindrical bending of a sandwich 

plate, based on the similar assumptions: the assumed transverse strains (i.e. the first forms of the 

transverse strains) do not vary in the thickness direction within a layer (a face sheet or a core) of a 

sandwich plate, but can be different in different layers. Then we will consider a problem of cylindrical 

bending of a simply supported sandwich plate under a constant load and compare a solution of the 

problem, based on the plate theory, with the exact elasticity solution. This will enable us to evaluate 

the validity of the assumptions on the transverse strains. In order to avoid the excessive complexity 

of the problem, we will consider the material of the face sheets and the core to be isotropic. 
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2.2    Cylindrical Bending of a Sandwich Isotropie Plate 

2.2.1    Formulation of the Problem Based on Linear Elasticity 

Let us consider cylindrical bending of a wide sandwich plate with isotropic face sheets and the core 

(Figure 2.3). The upper and lower surfaces of the plate are under loads with intensity (force per unit 

length) qu and qi. By qu and qi we denote not absolute values of the load intensities, but projections 

of the load intensities on the z-axis, i.e. qu and qt can be positive or negative, depending on direction 

of the load. 

We will denote a number of a layer of the plate by a superscript k (k — 1,2,3). 

The equations of linear elasticity, as applied to this problem, have the form: equilibrium equa- 

tions: 

(2.2.1) 

(2.2.2) 

Strain-displacement relations for plane strain are: 

uxx,x   '   "xz,z 0, 

uxz,x ~ u zz,z 0; 

e strain are: 

F(k) _ u(fc) 
cxx   —  U,X   1 

#>=«#>, 

e<8 = \(uW+w£ 

(2.2.3) 

(2.2.4) 

(2.2.5) 

e% = 4*> = eW = 0; (2.2.6) 

The constitutive relations for plane strain can be stated as: 

£(fc> 
ff(*> =   uxx it   ,   ,.(k\\ (i       ov(fc)1 (l + i/(*))(l-2i/<- 

uzz (1+ «/<*>) (l-2i/<fc>) 

(l _„W) eW+^)e(*)]; (2.2.7) 

(l-v(*))£(*)+^)ffW]; (2.2.8) 

^ - (i+4(i-2,W) (<£+®) = *(fc) (*£>+°®)' (2-2-9> 
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,(*) - 
E(k) 

,(*). 
(1+ «/<*>) 

(2.2.10) 

or, in the inverse form 

uxy   — uyz   — "> 

£?(*) 

(2.2.11) 

(2.2.12) 

r(fc) 
1 -  (^fc)) „<*)  _        "^       a(k) 

E(k) \°z*        l-VW    xx   I' 

(fc) _ l+*w (t). 
xz £(*)     xz ' 

(2.2.13) 

(2.2.14) 

-(*) _ _(fc) = Jk) = Q. 
cyy        cxy        cyz u' 

The boundary conditions at the upper and lower surfaces are 

b 
<J=0,cT^' = -^&tz = -- = z1; 

h 
2 

(2.2.15) 

(2.2.16) 

CT(3) = 0    (3) = 9u 
'xz   — «>"zz   —    .     at z —  2  _ 24' (2.2.17) 

The continuity of displacements and stresses at the interfaces between the core and the face sheets 

can be stated as: 

xd) = „(«^(i) = „(«^(i) = „my» = am at 2 = -^ ,2) 

u(2) = „(3))U7(2) = „(3)^(2) = ff(3))ff(2) = „(3) at z = i = ^ 

The conditions of static equilibrium yield: 

ft/2 

b 

-ft/2 

or 

-t/2 t/2 ft/2 

2lx=L       <Ti2U=0 /   ""Z I {qi + Qu ) dx, 

(2.2.18) 

(2.2.19) 

/   (^|0
L )  dz+ I   (<£>£ )  dz + j (<£)£ )  dz = -\J(qi+qu) dx .        (2.2. 

ft/2 -t/2 t/2 0 

.20) 

-ft/2 
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The formulation of the problem includes also the boundary conditions at x = 0, L. For example, 

for a plate, simply supported along the edges x = 0, L, the boundary conditions have the form: 

mitigated (integral) stress boundary conditions, that can also be looked upon as conditions of static 

equilibrium 

-t/2 

aiV dz = 0 at x = 0. L I 
-h/2 

t/2 

I (TxJ dz = 0 at x = 0, L 

-t/2 
ft/2 

t/2 

al.J dz = 0 at x = 0, L 

(2.2.21) 

h/2 

l   ** 
-h/2 

t/2 

z dz = 0 at x = 0, L 

or 
-t/2 t/2 h/2 

f diV zdz+   f a™ zdz+  f ff<? 
h/2 -t/2 t/2 

z dz = 0 at x = 0, L 

-h/2 -t/2 

and the displacement boundary conditions 

w = 0 at x = 0, L and 2 = 0. 

(2.2.22) 

(2.2.23) 

If the boundary conditions and the load are symmetric with respect to the plane x = \, then we 

also have a symmetry condition 

'V 
Ul2,=°- 

(2.2.24) 

2.2.2    Construction of a Plate Theory for Cylindrical Bending of an Isotropie 

Sandwich Plate, Based on Linear Elasticity 

In order to construct a plate theory, we make an assumption that the transverse strains do not vary 

in the thickness direction within a layer (a face sheet or a core) of a sandwich plate, but can be 
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different in different layers: 

4*> = 4*> (x), E£ = e{kJ (x)      (k = 1,2,3). (2.2.25) 

These are the first forms of the transverse strains. To indicate that the assumed transverse strains 

of equations (2.2.25) are the first forms of the strains, we will also use another notation: 

4fc^(<)(/\   e® S (sty10 . (2-2.26) 

The notation (2.2.26), with the second upper superscript, will be used only when it is necessary 

to distinguish between the first and the second forms of the transverse strains. 

The unknown functions of the problem are 

Uo (ar) = „(2)        = u\z=0 , w0 (x) = W&       = w\z=0 , eikJ (x), 6% (x)   (k = 1,2,3).   (2.2.27) 
2=0 z=0 

So, there are 8 unknown functions in this theory of cylindrical bending of a sandwich plate. 
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Expressions for displacements u(x, z), w(x,z) in terms of the unknown functions 

uo,w0,£xz,e^  (k = 1,2,3) 

Let us integrate strain-displacement relations (2.2.4) 

For the core of the sandwich plate (k=2), which contains plane z=0, we receive 

z 2 

w™ (x, z) - WW        = f^L dz =  fez
2} (x, z) dz      (z2<z< zz), 

*=q     J    oz J 

w0(x) 

w{2) (x, z) = w0 (x) +    e<£> {x) dz       (z2 < z < z3). 

0 

From equation (2.2.28) it follows 

22 

•<2> = wo + [eg dz. u>v 

(2.2.28) 

(2.2.29) 

Integration of equation eiV = 9w
dz    from z2 to z, where z belongs to the region of the lower face 

sheet (21 < z < z2), yields 

WW - WW j%T dz = /e" dz    {Z1 -z -Z2) ■ (2.2.30) 

22 «2 

or, due to continuity condition w^\        = w^\       , 

WW = w& J& +    e^dz. (2.2.31) 

If we substitute expression (2.2.29) for w^\ _    into (2.2.31), we receive \z—z2 

22 2 

ww =w0+ le™ dz + /eW dz     (zl<z<z2). (2.2.32) 

Analogously, if we integrate equation ezJ — d^z   and satisfy the continuity condition at the interface 

between the second and the third zone, u/3) •>W\ = wK"> , we receive 
z—z., \z=z~   ' 

u/3' = WQ 

23 2 

+ jef) dz + fei3] dz     (z3<z<z4). (2.2.33) 
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Integration in equations (2.2.28), (2.2.32) and (2.2.33) yields 

,(i) : w0 + ef}z2 + 4V (z - z2)    (*i < * < 22), 

w(2) = w0 +.4^ 2       (22 < 2 < 23), 

;<3> = u;0 + 4^*3 + el? (•* - ^3)      (23 < z < 24) • 

(2.2.34) 

(2.2.35) 

(2.2.36) 

Now, let us find expressions for displacements u^\ u(2), u(3) in terms of the unknown functions. 

From the strain-displacement relations (2.2.5) we receive 

uV = 2elk)-wW. 

Integration of equation (2.2.37) yields 

U& {x, z) - uW\z=o = J^- dz = I (242i - w$)  dz       (22 < z < 23); 

(2.2.37) 

(2.2.38) 

u0(x) 

uW(x,z)-uW\z=z   =j^rdz = J(2e^-w^) dz       (Zl < z < z2), (2.2.39) 

«") (*, 2) - UP) [_z    = j%rdz = I (24V - «£>)   dz (23 < 2 < 24) . (2.2.40) 

When we substitute expressions (2.2.34) - (2.2.36) for w^,w^2\w^ into expressions (2.2.38) - 

(2.2.40), perform the integration in the resulting expressions and find the constants of integration 

from the conditions of continuity of displacements u at the interfaces between the zones, 

,d) ,(2) ,(2) ,(3) 

we receive expressions for displacements u^\u^2\u^ in terms of the unknown functions UQ(X), 

w0 (x), e(xz (x), e{J°J (x): 

W =uo+ (2422 - «,o,x) Z2 - \e% zl + (24V - w0,x - E% 22) (z - z2) 

-\^lAz-z2)
2       (Zl<z<z2), (2.2.41) 



CHAPTER 2 56 

uM=uo+(2eW-w0,x)z-±E?lxz
2      (z2<z<z3), (2.2.42) 

u(3) = u0 + (2e£2i - w0,x) z3 - -e£\x z\ + fag* - w0tX - e™xz3) (z ~ z3) 

-\^lx{z-z3f      (z3<z<Zi). (2.2.43) 

Expressions (2.2.41)-(2.2.43) can be written in the form 

u^=^+^z + ^z\ (2.2.44) 

uW=^+iP$z + ^)z2, (2.2.45) 

«(3)=^+^ + ^3M (2-2.46) 

where 

1,™ =u0 + 2z2 (4
2i - a) + \4 {e% - e{%) 

^ = 2e£-w0iX + z2(ei%-e£\x), 

1p) = _I£(i) 

/(2) 

Vd? = 242i - »0,x, 

W,(2) _ _L(2) "ru2   —      cczz,xi 

*<$> = u0 + 2,3 (42> - 43i) + !*§ (Ä - 43),*), 

^ = -U A<3) _ _L(3) 
<"u2   —       2   ■JZ>X' 
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In-Plane Strains dfcV, dfc*, eix in Terms of the Unknown Functions 

u0,w0,eik2,eiD {k = 1,2,3) 

(k) Substitution of the expressions (2.2.44)-(2.2.46) into the strain-displacement relations exx  = 

Hr yields 

where 

eä^Ä + ^i' + Ä*2, (2.2.47) 

& = & + &* + &*, (2-2-48) 

a=Ä + ^HÄ,2, (2.2.49) 

Ä = «o,x + 2,2 (4
2i,x - 4^) + 5^ (4*U - #U) , (2-2.50) 

& = 24^ - ™o,xx + z2 (e£\xx - 4tx) , (2.2.51) 

Y^ = 44V,xx, (2-2.52) 

A = «o,x, (2-2.53) 

^2x\=242i,x-^o,xx, (2-2.54) 

Ä = -^4, (2-2.55) 

A - «o,, + 223 (4
2i,x - 43

2
),x) + \4 (42,,xx - 43),xx) , (2-2.56) 

A = 2432,x - ™o,xx + ^3 (43),xx - 42),xx) , (2.2.57) 

A = -k32xx- (2-2.58) 
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Using the found expression for the in-plane strains in terms of the unknown functions, we can write 

the following matrix relations, which will be useful in writing the expression for strain energy in 

terms of the unknown functions 

p> (:r, z)} = [Z(2)] {/(*>(*)}      (fc = l,2,3), (2.2.59) 

where 

(3x1) (3x5) (5x1) 

{e(fc) (*,*)} 

Jfc) 
c-xx 

czz 

(2.2.60) 

[Z{z)\ 

1 0   0 

0   0    0    10 

0   0    0    0   1 

(2.2.61) 

{/<*>(*)} = 

(k) 
VxxO 

(fc) 
fxxl 

(k) 
<Pxx2 

2e(k) 
ACXZ 

_(*) t-zz 

(2.2.62) 

Expressions for In-Plane Stresses and the First Forms of Transverse Stresses    in 

Terms of the Unknown Functions   u0, w0, exz\ e\z   (k = 1,2,3). 

We will distinguish between the two forms of expressions for the transverse stresses in terms of the 

unknown functions: the first forms, H<r{£ = W<i£} and Haz
k

z
] = W<ri$, obtained from the Hooke's 

law by substituting into the stress-strain relations the assumed transverse strains (2.2.25), (which we 

also called the first forms of the transverse strains and denoted as exz = UxZ ) , ezz = \£zz J ), 

and the second forms of transverse stresses, obtained from the equilibrium equations (2.2.1) and 

(2.2.2), which will be denoted as a^J = ln)aik2 and (r{kJ = WciD. We showed in the first section 

of this chapter that in homogeneous plates the second forms of expressions for the transverse stresses 

satisfy the stress boundary conditions at the upper and lower surfaces of the plate. We will show 
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later that the same is true for the second forms of the transverse stresses in the sandwich plates. 

Besides, the second forms of the transverse stresses in the sandwich plate satisfy the conditions 

of continuity of the transverse stresses at the interfaces between the layers with different material 

properties. The first form of the transverse stresses can not satisfy the mentioned boundary and 

continuity conditions. Therefore, the second form of the transverse stresses is more accurate than 

the first one. The expressions for the in-plane stresses aikJ in terms of the unknown functions will 

be determined only from the Hooke's law and, therefore, these expressions will be denoted by Haxx . 

Constitutive relations (2.27), (2.2.8) and (2.2.10) can be written in matrix form as follows 

where 

{V*>}=[C<*>] {*<*>}      (k = 1,2,3) 
(3x1) (3x3)     (3x1) 

{H<jW} = 
»oik2 

(2.2.63) 

(2.2.64) 

C(k) 
1 + v 

l-i/ (*) 
l-2«/(*> 

0 

l-2i/(*> 

„<*> 
l-2i/("> 

0 
i-Vfc) 

l-2i/(fc> 

(2.2.65) 

P'} = 
Jfc) 
c-xx 

2e(fc) (2.2.66) 

Using equation (2.2.59) we can write 

{*Vfc>} = [C^] [Z (2)]{/(fc) (x)}. (2.2.67) 
(3x1) (3x3)    (3X5)        (5x1) 

Strain Energy of the Sandwich Plate 

Strain energy of the sandwich plates consists of strain energies of the face sheets and the core. 
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Therefore, it can be written as follows: 

(vo   \ ooooo 

+ 1111 ("<£>£> + 2 «,M> + MM? + *<$ *« + 2 ^W 4- 2 ^g]   dV + 
0 0 0 0 

+ yjj[ ^M + 2 *,£>£<s> + M»,e(3) + H„<S>^ + 2 *^W + 2 >^J>     dV , 
(V3)      \ 0 0 0 0 0/ 

where Vi, V2, V3 are volumes of the lower face sheet, core and upper face sheet. The under braced 

terms in the above expression are equal to zero due to the condition of plane strain. Using definitions 

(2.2.60) and (2.2.64), we can write the expression for the strain  energy in the form 

U=\bJJ{EW}T{H<rV} dzdx + \bjj{eW}T{»crV} dz dx + 
0  zi 

L z4 

0   22 

L 23 

+ l6/7{e(3)}T{V3>}   dzdx = 
0 z3 

= \bJJ{ell)}T [C(1)] M dZ dx+12bJj{£{2)}T [C(2)l i£i2)} dz dX 
0   2l °   J2 

+ \bfJ{e^}T[c^]{e^} dzdx. 
0   23 

One can substitute expression (2.2.59) into the last expression yielding 

U=\b({fW[x)\T   (]lZ{z)]T\cM][Z(z)]dz)   {/^(x)} 
2   /   l   (1X5)   J        Vz!    (5X3)       (3X3)    «*V ] (5X1) 

+ ^/{/(a)(*)}T   (l\Z(z)\T[c^}[Z(z)}dz)   {/«(a:)} 
2   /   l    (1X5)    J U    (5X3)        (3X3)    (3X5) / (»XD 

+ W{/(3)(*)f f/Vw]Tfc(3)l[^W]^] {/(3)(*)} 
2   / (1X5)    J U    (5X3)        (3X3)    <3*5> / (5X1) 

+ 

dx + 

dx + 

>dx , 
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or 

U=h
L[({fV{x)}T[DV] {/«(*)} + {/(2)(*)}>(2)] {/(2)W} + 
S     \       (1X5) (5X5) (5x1) (1X5) (5x5) (5x1) 

+ {/(3)W}T[^(3)]{/(3)(-)})    d*> 
(1x5) (5x5) (5x1) 

(2.2.68) 

where 

*2 

D^U f[Z(z))T\c^][Z(z)]dz 
i        J    (5X3)      L/3xSxJ   (3X5) (3x3) 

El 

1 + Vl 

ä(i-"i)fe! 

3(i-^i)fef 
0 

"1 2i/i-l 

tl_ i(l-^l) 

| (1 - «*) 

i(l-^l)fe| 

0 

21/1-1 

2i/i-l 

"l 2i/i-l 

i  (1   -   l/l 

0 

2i/i-l 

3^ 2i/i-l 

|z2 - |*1 

"l 2i/,-l 

1       2 

5"l2 

5"1 

i/i-i 

23-23 

2i/i 

0 

(i-^)itf 
(2.2.69) 

2,(2) 
23 

J        J    (5 x3) 

C(2) 

(3x3) 

[Z (z)] dz : 
(3x5) 

1 + 1^2 

u-i*)8=ü   i(i-«*)fe! K1 
_2 2 , .    ,3_,3 ,    ,_ 

i(l-^)X?_*S 

-I/2) 
Z3-23 

„^    . „ 21/2-I 

2.-1       3,       «*)fel J(l-^)fel 
fei      *d-*)fef *(!-*) £3 

0 0 0 

"2 21/2-1 

z2-z2 

5** 2^=1 3,2 
22      *S 
21/2-1 

0 

0 

0 

5*3 - \zi 

0 

"2 
»2—»a 

2 21/2-1 

1   4-*i 

.a 
1 *9 1^2^ 21/2-1 

0 

(1 -1/2) 
£2H: 
2i/2- 

(2.2.70) 

£,(3) 

24 

J     (5x3) 

C(3) 

(3x3) 

[Z {z)\ dz = 
(3x5) 
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1 + ^3 

(i-»*)Sj3 
1(1-^3) 21/3-1 

-3-z3 

| (1 - ^) 2^_! 

0 

"3 2K3-1 

i(i-^e 5(1-^)5; 

21/3-1 

2^3 21/3-I 

3 V-       "-V 21/3-I 

1 i(i-*)g=Ü 
t(l-»*)&3 

0 

3^3 21/3-I 

0 

0 

0 

2^4 — 223 

The expression (2.2.68) for the potential energy can be written in the form 

^3 21/3-I 
1 22-Z2 

2^3 21/3-I 

3^3 21/3-I 

0 

(1 - «*) 21/3-I 

(2.2.71) 

C/ 
{/(1)} 

{/(2)} 

I {/(3)} J 
(1x15) 

[ß(1)]{/(1)} 

[-D(2)]{/(2)} 
[D<3)] {/(3)} 

(15x1) 

► eta; = 

•                        \ T 

L {/(1,l 

W {/(2)} > 

0 [ {/(3)} j 
(1x15) 

(5x5) 

[0] 
(5x5) 

[0] 
(5x5) 

[0] 
(5x5) (5x5) 

(15x15) 

[0] 
(5x5) 

[DM] 
(5x5) 

[0]        [ü<»>] 

[0] 
(5x5) 

(5x5) 

{/(1)} 

{/(2)} 

I    {/<*>}    J 
(15x1) 

> dx, 

or 
L 

U = b[{ff   [D]    {/}   dx, 
1   J   (Ixl5)(15xl5)(15xl) 

(2.2.72) 

where 

{/}T = { 
(1x15) 

{/(1)} 

{/(2)} (2.2.73) 

[D] 
(15x15) 

[DM]       [0] [0] 
'"    "" (5x5) (5x5) (5x5) 

[DM] 
(5x5) 

[0] 
(5x5) 

[0] 
(5x5) 

[0] 
(5x5) 

[0]       [D^] 
(5x5) (5x5) 

(2.2.74) 
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Virtual Work of External Forces in Terms of Variations of the Unknown Functions u0, 

WQ, SXZ , £zz 

Virtual work of loads on the upper and lower surfaces, qu and qt correspondingly, is 

6'W= f {qi Sw\z=Zi  +qu Sw\z=zJ dx 

Qi 6w{1) + qu  6w{3) )  dx . (2.2.75) 

In notation S'W the prime is used because in case of nonconservative external loads, the virtual 

work S'W is not a variation of some state function W. 

If equations (2.2.34) and (2.2.36) are used then 

SVJM = Sw0 + z2 Sez
2} + (zi - z2) Se{}} , 

6w™ = 6w0 + 23 Sez
2} + (*4 - *3) Sei3} • (2-2-76) 

Z—Z\ 

The results of (2.2.76) can be substituted into (2.2.75) yielding 

S'W = fqi [Sw0 + z2 Sez
2} + (*i - 22) Sei1} 

+ 
L, 

/ qu \SVJ0 
+ z3Sez

2}+(zi-z3) Sei3} 

dx + 

dx . (2.2.77) 

Finite Element Formulation for Static Problem of Cylindrical Bending of the 

Sandwich Isotropie Plate 

The column-matrices {/(fc)}, defined by equation (2.2.62), can be written in the form 

Uo,x + *z2 I £xz,x — eXz,x I + 2   2 \ezz,xx — eZz,xx\ 

2eXz,x — wo,IT + z2 [eZz,xx — eZz,xx) 

{/(1)}H 

VxxO 

<Px±2 

£cxz 

t-zz 

2czz,a 

2e(1) 

e{1) 
Czz 

> = 
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dx 0 -2*2^ i7
2X 2^2^ 2^2 3? 0 0 

e(1) 
c-xz 

0 d2 

dx^ 
n d 
Ldx ^2^ 0 -22 5?r 0 Ü 

e(1) 

0 0 0 1   d2 

2d? 0 0 0 0 < 
£(2) 

0 0 2 0 0 0 0 0 
e(2) 

0 0 0 1 0 0 0 Ü .0) 
tu 

u0 

w0 

.(3) 

(2.2.78) 

{/(2)} 

(2) 
fxxO U0,x 

(2) 
</>xxl 2ex2i,x - u>o 

(2) 
</>xx2 

•   =   < lJ2) 
— 2^-zz,xx 

2r(2) 2f(2) 

e(2) £(2) 

d 
dx 0 0 0 0 0 0 0 

£(1) 

0 d2 

dx1 0 0 e\  d 
'•dx 0 0 0 

£(1) 

0 0 0 0 0 1  <r 
2dx^ 0 0 < 

_(2) 
txz 

0 0 0 0 2 0 Ü Ü 
£(2) 
tzz 

0 0 0 0 0 1 Ü u (3) 

e(3) 

u0 

W0 

(2.2.79) 

{/(3)} = 

(3) 
VxxO 

(3) 
Vxxl 

(3) 
</?xx2 

2e(3) 

-(3) tzz 

> = < 

U0,x + 2z3 feL.x - £x2,xj + \z\ \£zz,xx - eZz,xxj 

2£xz,x — »0,11 + z3 ( £zz,xx — £zz,xx) 

-*e 
lJ3) 
2C2ä,:EX 

2e(3) 

E(3) 
C22 
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«o 

A 
dx 4-     o 
o 

0 

0 

0 

dx'2 

0 

0 

0 

0   0   2zz±    \z\j^ 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

2-^ 

0 

2 

0 

l_2_d± 
_2Z3d? 

23rf?T 

_I <*2 

2i? 

0 

1 

w0 

til 

£(1) 
t-zz 

E-xz 

J2) 

_(3) 
C-XJ2 

£(3) 
ti2 

(2.2.80) 

Equations (2.2.78)-(2.2.80) can be written briefly in the form 

{/(1)} = [di]{F} , 
(5x1) (5x8)(8xl) 

{/(2)}= {d2]{F} , 
(5x1) (5x8)(8xl) 

{/(3)}= [ds]{F} , 
(5x1) (5x8)(8xl) 

' {/(1)}' 
(5x1) 

[di] 
(5x8) 

<      {/(2)} 
(5x1) 

> = [ft] 
(5x8) 

{/(3)} 
I     (5xl)     J 

[&] 
(5x8) 

{F} 
(8xl) 

(2.2.81) 

where 

u0 

{F} = { 
(8xl) 

1Ü0 

£(1) 

e(1) 

e(2) 

.(2) 

>, (2.2.82) 

-0) 
E-xz 

,(3) 



CHAPTER 2 66 

is column-matrix of the unknown functions of the problem and 

[di] 
(5x8) 

d_ 
dx 

0 

0 

0 

0 

0 

JL 
' dx2 

0 

0 

0 

-2z2 

o d 
Ldx 

0 

2 

0 

d_ 
dx 

„    d2 

2 dx2 

0 

1 

2z2£ 

0 

0 

0 

0 

1 -2 d\ 
l^ldx1 

'Z2dx^ 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

(2.2.83) 

[92] = 
(5x8) 

d_ 
dx 

0 

0 

0 

0 

dx2 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

o d 
Ldx 

0 

2 

0 

0 

0 

' 2 dx2 

0 

1 

0 0 

0 0 

0 0 

0 0 

0 0 

(2.2.84) 

A. 
dx 0 

0 d2 

Ix1 

(5x8) 
0 

0 

0 

0 

0 0 

1^2 <r 0 0 2zzfx ±4fc 
o o     o -z3-£, 
0 0       0 0 

0 0       0 0 

0 0       0 0 

Thus, from the notation (2.2.73) 

and the notation 

-2z^di 
cy   d 
zdx 

0 

2 

0 

{/(1)} 

(15x1) 
{/(2)} 
{/(3)} 

[öl] 
(5x8) 

±72X< 
'2Z3dx? 

*3 dx2 

2 ~dx2~ 

0 

1 

(2.2.85) 

[d]    EE 
(15x8) 

[02] 
(5x8) 

(2.2.86) 

m 
(5x8) 
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One can write equation (2.2.81) in the form 

{/}  =   [d]   {F}. 
(15x1)        (15x8)(8xl) 

(2.2.87) 

The substitution of expression (2.2.87) into expression (2.2.72) for the strain energy yields 

L   , v T 

U=h[(   [d]   {F}\      [D]     [d]   {F}dx. 
1   J     \(15x8)(8xl)/      (15xl5)(15x8)(8xl) 

(2.2.89) 

Strain energy of a finite element is 

Ü=\bl\   [d]   {F})      [D]     [d]   {F} dx-- 
*   J    V(15x8)(8xl)7     (15xl5)(15x8)(8xl) 

I    , v   T 

= b[l   \d]   {F})      [D]     [d]   {F}dx, 
1   J     \(15x8)(8xl)/     (15xl5)(15x8)(8xl) 

(2.2.90) 

where xi and x2 are coordinates of the end-points of a finite element in a global coordinate system; 

x is an x-coordinate in a local, element coordinate system (figure 2.4); / = x2 - xx is a length of a 

finite element. 

According to equation (2.2.77), virtual work of external forces, acting on a finite element of the 

plate, is 

i 

fW= j    {qi+ qu) 8w0 + (Zl - z2) qi fe£V + (22 Qi + z3 Qu) 6e%} + {z4 - z3) qu Sef} dx 

/ 

6u0 0 

6w0 qi +qu 

Sei1} 0 

Sei2} 
>   < 

(zi - z2)qi 

0 

Se?} (z2qi + z3qu) 

Sei3} 0 

fei? (z4 - z3)qu 

dx ■ [\S{F})     {q} 
J    V(8xl)/     (8x1) 

dx , (2.2.91) 

where {F} is defined by equation (2.2.82), and 

(8x1) 
0    (qi+qu)    0    (zi-z2)qt    0    (z2qt + z3qu)    0    (z4 - z3)qu 

(2.2.92) 
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So, the principle of total potential energy for a finite element, 6U - S'W = 0, takes the form 

i   , -.T i   , \ T 

\bsf[   [d]   {F})      [D]     [d]   {F} dx- [ ls{F})     {q}  dx = Q. (2.2.93) 
2       J    \(15x8)(8xl)/      (15xl5)(15x8)(8xl) J     \(8xl)/      (8x1) 

Now, we need to represent the unknown functions u0,w0,eik
z\ez

k
z' by interpolation polynomials. 

The maximum order of derivatives of u0 and of ei*} {k = 1,2,3) , entering into the virtual work 

principle (2.2.93), is 1, as observed from investigating equations (2.2.78)-(2.2.80). Therefore, inter- 

polation polynomials for u0 and eik] must be of at least first degree, and across boundaries between 

elements there must be continuity of, at least, u0 and eiV (continuity of derivatives of u0 and eiJ 

is not required). Therefore, we choose the first degree Lagrange polynomials to interpolate u0 and 

ej.7 (/c = 1,2,3) as functions of x: 

u0 = [M\ {ü} = [Mi M2\ {0} , (2.2.94) 

d£> = [M\ {e<fc>} = \M1 M2\ {e<fc)} , (2.2.95) 

where 

M1 = 1 - y, M2 = y, (2.2.96) 

{ü} =      M0)      , (2.2.97) 
u0(0 

e^(0) 

In the same fashion, the maximum order of derivatives of w0 and eiJ is 2. Therefore, interpolation 

polynomials for w0 and e{kJ must be of at least second degree and must have derivatives, continuous 

at the element boundaries up to the first order (i.e. w0, ^,e« and ^- must be continuous). 

Therefore, we choose the Hermit polynomial of the third degree to interpolate w0 and EIJ (the 

lowest degree of the Hermit polynomials is three): 

™0 = [N\ {w} = [Ni N2 N3 N4\ {w}, (2.2.99) 

4kJ = [N\ {e{k)} = [Nx N2 N3 iV4J {e™}, (2.2.100) 
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where 

3a;2     2x3    „      _    2x2  . x3    „      3x2     2x ^3 

W = ! - IT + IT - ^ = * - ==- + =5", ^3 = ^ - ^-- ^4 = 
X2        X3 

(2.2.101) 

{tö} = - 

u>o(0) 

™o(0) 

WQ{1) 

w'0(l) 

(2.2.102) 

{e™} = l 

fczz (0) 
dE 

(*) 
ds   (0) 

49(0 

dx (0 

(2.2.103) 

The column-matrix {F} of the unknown functions of the problem, denned by equation (82), now 

can be written in the form: 

[M\{U} 

[N\ {w} 

LMj{e-W} 

[N\ {&} 

[M\ {*»>} 

LMJ{e<3)} 

[N\{e-W}   j 

{F} 

(                \ 
Uo 

w0 

e(1) 

av 
£(2) 
t-xz 

r = l 

e(2) 

e(3) 

_(3) 
V.                  J 

LMj Loj L0J LOJ L0J [oj Loj Loj 
[oj [N\ [oj Loj [oj LOJ LOJ Loj 
LOJ Loj LMJ Loj Loj LOJ LOJ [oj 
LOJ LOJ LOJ [N\ LOJ Loj Loj LOJ 
Loj LOJ LOJ LOJ LMJ LOJ LOJ LOJ 
Loj LOJ LOJ LOJ LOJ L^J LOJ LOJ 
LOJ LOJ LOJ LOJ LOJ LOJ LMJ LOJ 
LOJ LOJ Loj LOJ LOJ Loj LOJ L^J 

{Ü} 

{w} 

{*!>} 

< 
{&} 

{f<2>} 

{^} 
{  {&}  j 

(2.2.104) 
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or 

where 

[Q] 
(8x24) 

{F}=   [Q] {d} 
(8x1) (8x24)(24xl ) 

(1x2) 
LOJ LOJ LOJ LOJ LOJ LOJ LOJ 

LOJ [N\ 
(1x4) 

LOJ LOJ LOJ LOJ LOJ LOJ 

LOJ LOJ 
(1x2) 

LOJ LOJ LOJ LOJ LOJ 

LOJ LOJ LOJ L7VJ 
(1X4) 

LOJ LOJ LOJ LOJ 

LOJ LOJ LOJ LOJ 
(1x2) 

LOJ LOJ LOJ 

LOJ LOJ LOJ LOJ LOJ 
(1x4) 

LOJ LOJ 

LOJ LOJ LOJ LOJ LOJ LOJ [M\ 
(1x2) 

LOJ 

LOJ LOJ LOJ LOJ LOJ LOJ LOJ Livj 
(1X4) 

(2.2.105) 

(2.2.106) 
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is a matrix of shape functions, and 

{d}   ={ 
(24x1) 

{g(3)} 

(4xl) 

is a vector of nodal degrees of freedom of an element. In equation (2.2.107) 

{Ü} 
(2x1) 

{w} 
(4x1) 

(2xl) 

(4xl) 

(2x1) 

(4x1) 

(2x1) 

>  =  < 

d2 

^24 

(2.2.107) 

di = uo (0), d2=u0 {1), d3=w0 (0), d4 = u>0 (0), d5 = w0 {I), d6 = w0 (I), 

d7 = 4V (o), d8 = e£> (o, d9 = 41; (o), d10 = ^r (o), d„ = 4V (0 - 

& (i) & (2) 

d12 = ^ (0 ,   dl3 - 42 (0) ,   dl4 = 42i (0 -   d,5 = 4? (0) .   <*16 = -^ (°) < 

j   (2) 

dir = 42 (0 . dis - ^ (0 , di9 = 43) (0), d20 = 43i (0 , <*2i - 42 (0), 

de (3) 

d22 = ^ (o), d23 = 43; (i), d24 
de (3) 

dx dx (0 (2.2.108) 
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These are the nodal degrees of freedom of an element. 

Let us write expression (2.2.90) for the strain energy of a finite element in terms of the nodal 

degrees of freedom: 

U=\bl[   \d]   {F(x)}\      [D]     [d]   {F(x)}dx = 
Z   J     \(15x8)    (8x1)    /      (15xl5)(15x8)    (8x1) 

i     , x  T 

= b[\   19) IQ(*)] id)        PI    Id) IQ&] W <& = 1   J     \(15x8) (8x24) (24x1)/      (15xl5)(15x8) (8x24) (24x 1) 

= bf{d}T(  [d]   [Q(x)]\      [D]     [d]   [Q(x)\ {d}   dx = 
1   J   (1x24) \(15x8) (8x24)/     (15xl5)(15x8) (8x24) (24x 1) 

\{df 
^(1x24) 

(24x15) 

( 7 V x 
bfi   [d]  [Q(x)]\     [D]     [8]  [Q(x)]dx 
J    \(15x8) (8x24)/     (15xl5)(15x8) (8x24) 

{d} 
(24x1) 

or 
(24x15) 

—       IT U^Udf {d}   , 
2(1X24)(24X24)(24X1) 

(2.2.109) 

where 

= bfl   [d]  [Q(x)}\     [D]     [d]   [Q(x)}dx. (2.2.110) 
(24x24) n    \(15x8)(8x24)/     (15xl5)(15x8)(8x24) 
( ' (24x15) 

Let us write expression (2.2.91) for the virtual work of external forces, acting on a finite element 

of the plate, in terms of variations of the nodal degrees of freedom: 

WW =  f (6 {F (x)}\    {q(x)}dx =  fl[Q(x)}  6{d}\    {q(x)}dx = 
J    \     (8X1)     /        (8x1) J     \(8x24)   (24x1)/        (8x1) 

I 

=    8{df f[Q(x)}T{q(x)}dx, 
(1x24)    J   (24x8)       (8x1) 

or 

where 

(24 

S'W=   6{dy   {r}   , 
(1x24)     (24x1) 

I 

{?}   =  [lQ(x)f{q(x)}dx 
24x1)       J    (24x8)        (8x1) 

(2.2.111) 

(2.2.112) 
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Let us substitute expressions (2.2.109) and (2.2.111) into the principle of total potential energy 

for a finite element, 6U — S'W = 0 : 

0 = 6 I l{df 
2(i (1X24),,.L 

(24x24) 

{d}     -   6{d}T W   = 
(24x1)/ (1x24)     (24x1) 

(6{d}r)   [*] {d} + i {df  [k]  6{d}-(6{df){r} . (2.2.113) 

But 

(6{d}T)   [*]{d} = {d}r \k\ 6{d} , 

therefore, equation (2.2.113) takes the form 

(6{d}T)([k]{d}-{r})=0, 

(24x24) 

{d}    =    {Pi 
(24x1)        (24x1) 

(2.2.114) 

This is equilibrium equation for a finite element in terms of the nodal degrees of freedom. For 

convenience of representation of a load, acting on a wide plate in cylindrical bending, let us divide 

the left-hand and the right-hand sides of equation (2.2.114) by b: 

I   \k]    {d}  = \ {7}   , 
(24LxJ24)(24Xl>        Ö<24Xl> 

or 

where 

[k]     {d} = {r} 
(24x24)(24xl)    (24x1) 

[k]   =1  [*]   =/f [d\ [Q 
(24X24> (24X241        l   V(^X8)(8; (24x24)        0 

X)\ 
X24); 

(24x15) 

[D]     [d]   [Q(x)]dx 
(15xl5)(15x8) (8x24) 

(2.2.115) 

(2.2.116) 

(2.2.117) 
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Matrices     [k]     and   {r}   are the stiffness   matrix and load vector   of a finite element.  In 
(24x24) (24x1) 

equations (2.2.116) and (2.2.117) matrix [d] is defined by equation (2.2.86), matrix [Q]-by equation 

(2.2.106), matrix [D]-by equation (2.2.74), matrix {q}-by equation (2.2.92). 

The components of the element stiffness matrix were computed analytically, with the help of a 

program for symbolic computation. Some components of the stiffness matrix are shown in Appendix 

2-B. 

Second forms of expressions for the transverse stresses in terms of   u0, wQ, exz, elz 

After computing the unknown functions u0(x), w0 (x), eXz (x), eW (x) {k = 1,2,3) as a result 

of solving the finite element equations, we can find displacements, strains and stresses in the plate as 

functions of x- and z-coordinates (there is no dependence on the y-coordinate because we consider 

cylindrical bending). The displacements can be computed by formulas (2.2.34)-(2.2.36) and (2.2.41)- 

(2.2.42), the in-plane strains e£x, eix, £{
xx - by formulas (2.2.47)-(2.2.49), the in-plane stresses axx

], 

ox
2}, ax

3J - by formulas (2.2.67). The first forms of expressions for the transverse stresses in terms 

of u0{x), w0 (x), eikJ (x), e{kJ (x) (equations (2.2.67)), i.e. expressions for the transverse stresses 

obtained from the constitutive relations, were used only for the purpose of expressing the strain 

energy in terms of the unknown functions, which was used for the finite element formulation and 

can also be used for deriving differential equilibrium equations in terms of the unknown functions. In 

order to compute the transverse stresses, we will use the second forms of expressions for the transverse 

stresses in terms of u0(x), w0 (x), ex
kJ (x), e(z) (x) (denoted as axV = (aiV) , aiJ = (ozz J ), 

obtained from the equilibrium equations (2.2.1) and (2.2.2). As it was mentioned previously, the 

second forms of the transverse stresses are more accurate than the first forms. 

First, let us write expressions (2.2.67) for the in-plane stresses Haxx\ 
H
(TX

2
X\ 

Hax
3J in expanded 

form: 

£(D       1 _ j,(l) 
»nW 

1 + I/O) 1 - 2I/W 
U0,x + 2*2 (42i,x - 4V,x) + 2*2 (42i,xx - 41U) + 

+ £d /(I) 
r(l). 

l + „(i)l_2i/(i)nV + 

■    E{1)     1-^(1)   [2,(1) 
1 + i/(D 1 - 2i/(D i   "•' 

^0,xx + Z2 (eQxx - £l?z,xx) 
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i   £(1)    i-"(1>m    z2 
21 + j/d) \-2vM  "<xx 

(2.2.118) 

H (2)     EV)   I-I/W       ^ Ev> _jSn     (2, 
axx   -   1+ u(2) 1 __ 2„(2) «0,i + 1 + V 1 - 2i/(2> 

£(2)       1 — !/(2)    /     (2) \ A     £/-  '        l - «/■  '     (2) 2 
+ 1 + I/(2) 1 - 2l/(2)   V2^'* " ""H * ~ 2 1 + I/«2) 1 - 2l/(2) *"■** *     ' 

(2.2.119) 

£(3)       1 _ i/(3) 
"<T(3) = IX 1 + 1/(3) 1 - 2l/(3> uo,x + 2z3 (4*1* - el*lx) + ^ (£^ ~ e"-**) + 

+ 
£(3) „(3) 

,(3). 

+ 
£(3)       1 _ jy(3) 

1 + I/«3) 1 - 2l/(3) 

 £w + 
1 + 1/(3)1-21/(3)   " 

0F(3)     _ Wn        +2, (V(3)       _ £(2)      A 
^XZ,X w0,XX  T *3   I C2Z,IX c2Z,Ill 0 — 

(2.2.120) 1    E<3)     1-t/'3)   (3)       2 

21 + 1/(3) 1_2I/(3)£"^ *    • 

Now, let us find expressions for ai% and a[k^z by integration of equilibrium equations (2.2.1) 

and (2.2.2). Performing integration of the first equilibrium equation for the lower face sheet of the 

sandwich plate (k=l), 

(i)    .    (l)   =0 
UXX,X     >    UXZ,Z U! 

with respect to z in the direction from the lower surface of the plate to its upper surface, we receive 

Z 

-  f «ffW, dz      (Zl<z< z2) , (2.2.121) 
» = 2l J 

"l2 12 

where aiJ = 0 due to the first boundary condition (2.2.20). From (2.2.121) it follows that 

= - / Mil*dz • (2-2-122) 
2 J 

r(D 
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Integration of the first equilibrium equation for the core of the sandwich plate (k=2), 

76 

(2)    ,    (2)   =0 uxx,x ~ uxz,z       u ' 

from z2 to z, where z2 < z < z^, yields 

<T<
2

> = <r<2> wxz uxz 

z 

-  f *V2' J        wxx,x dz (2.2.123) 

According to the continuity conditions (2.2.23) between the plies with different material properties 

and according to equation (2.2.122), we have 

Z2 

r(2) = a. (i) = - / H°xlx dz ■ (2.2.124) 

Substitution of (2.2.124) into (2.2.123) yields: 

Of} = 'J "rtlx dz-'j Ho£,x dz        (z2<Z< ,3)   • 

For the upper face sheet (k=3) we receive analogously 

*£> = -/ H "III dz- j Hc?lx dz- j "afl dz     (z3<z< z,) 

(2.2.125) 

(2.2.126) 

Substitution of expressions (2.2.118)-(2.2.120) into expressions (2.2.121), (2.2.125) and (2.2.126) 

yields the required second forms of expressions for the transverse stresses aiJ in terms of the 

i-     ^ CO    co functions u0, w0, exz , £zz '• 

(48) 
(ii) 

wxz 

gd)    l-t/W 

1 + i/(D 1 - 2vV> 
vn     +2«, ^<2)     -e(D    )+-z2(e^2)      -e(1)     ") "0,xx ^ i-^1 \t-xz,xx       cxz,xx]    '    n   2  y-ZZtXXX       °zz,xxxl 

EW I/W        (1)    ,     _   .   , 
+r^wi-2uw£zz'x(Zl z) 

(zi -z) + 

1   EW     1-Z/
(1) 

+ - 
21 + 1/0) l-2i/(D 

texlxx - u>o,xxx + z2 (e™xxx - £?lxxx)   (z2 - z2) - 
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1   Eil)    i-"(1)-m     (z?_ ,3) 
6 ! + „(l) i _ 2v(D  zz'xxx { x ;  ' 

(2.2.127) 

A") 
(*£>)-<£> = 

1 + i/(D 1 - 2I/W "■0,11 T i^2 1CXZ,XX        cxz,xx j  ~  n*"2  \czz,xxx        czz,xxxl Ul - Z2) + 

£<D        Z/
(1) 

+
1+y(l)l-2,(l)^^-^+ 

+ 
2 1 + i/(1> 1 - 2i/<!) 24V,xx - ™0,*xx + 22 (4V,xxx - e?lxxx)]  {Zi ~ 4) 

1   ^(1)     l-^(1)-m      f,3_23) + 61 + 1/(1) 1_2iy(l)
£^,xxx^l        *2J + 

+ £(2) 

(l-2l/(2)) (1 + 1/ (2)1 (l-V2))   U0,xx + ^(2)a,x](22-2) + 

+ 
1 £(2)        1_l/{2) 

2 1 + 1/(2) 1 - 2i/(2) 
(242i,xx - ™0,xxx)  (4 - *2) - g^xx* (4 - *3) (2.2.128) 

(-2?) 
(") 

rO) 
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~ 1 + i/(D 1 - 21/«1) 

78 

uO,xx + 222 [£xz,xx       ei2,n)    •    cyZ2 \£zz,xxx       £zz,xxxj (zi - z2) + 

EM        vM 
+ ,    .      M^ T-(T)4V,x («1 - ^) + 

+ - 

1 + 1/(1) 1 - 2i/d) 
1 £(D     l-„d>   r M 

2 1 + i/tD 1 - 2J/(D  . 

1     £(D       1-«/^     (1) f,3_z3) + 

61 + i/d) ! _ 2l/(i) 
fc"'xxx *■ !       2'T 

+ (I-2^HI + ,W) K1" *w) Uo- + ^ e-l(22 -23) + 

1
     ^2)       1_l/(2)     [{2e^x~^xxx){4-4)-\^zlxxx    {4-4 

u0,xx + 2z3 (ex%x - ex%x) + -4 (e£>IIS - e^.xxx) 

+ - 

+ 

+ 

2 1 + i/(2) 1 - 2z/(2) 

£(3)       1 - l/(3) 

1 + I/«3) 1 - 2i/(3) 

£<3> 1/(3) 

(«3 - ^) + 

+ 

1 + 1/(3) 1 - 2l/(3) 
! £(3) ^„(S)        ,- 

4i!x (*3 - ^) + 

21 + I/«3) 1 - 2i/(3) 
1     £(3)       1-1/(3) 

6 1 + i/(3) 1 - 2i/(3)  "'xxx  V 3        ' 

Integration of equilibrium equations 

OfO)      _«,„        + 2, (V3)       -e<2)      11   f ^12,11        "/(J.xxx ~ ^3 I czz,xxx       czz,xxxJ       V u
2-z2) 

^!x + ^ = 0     (A = 1,2,3) 

yields 

uzz u zz 

z 

-  [a™ I "xz.x 
>=*x        J 

dz      (zi < z < z2) , 

(2.2.129) 

(2.2.130) 

where a (i) due to a boundary condition (2.2.20), 

-2 * 

erg) = -| - J<,1% dz - jax% dz      (z2<z< z3) , (2.2.131) 

<7<3)  = 

Z2 i3 2 

-| - j°x% dz - jag\x dz - jax% dz      (z3 < z < z4) . (2.2.132) 
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Substitution of (2.2.127)-(2.2.129) into (2.2.130)-(2.2.132) yields 

[•sO 
(//) 

W ZZ 

EW 
i + 

1-I/W 
1 + i/d) 1 - 2I/W 

2 1 + i/«1) 1 - 2zv(D 
1 £(D i_„(P 

6 H-^1) l-2i/(!) 

(2-2i) 

(2-*l) 

d3Uo 

2 O £22 

+ 222 
'(Pe™      <Pe£ 

dx3 

dx2 + 

{z + 2z1){z-z1y 

I     £(D     1 _ „(i) 

(Pe£     d4w0 

dx4 

d^ 
dx4 

dxz + Z2 dx4 

d^y 
dx4 

24 1 + i/d) 1 - 2i/(1> 
-(22+22i2 + 32?)(2-Zi)' 

d4, 
da:4 (2.2.133) 
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(»!?)"" " b 

(22 -2l) 
l + j/IDl 2,(i) 

d3 
wo 

dar3 + 2^2 
d3

£<2)      <Pe£\      iJdte™      dMV 
da;3 da;3 + 

da-4 da-4 

1    EM        VW x2d2ei*)_L 

2 1 + i/W 

1 £(!>   1 

da-2 

,(i) 

6 1 + i/W 1 - 2i/W 
-y (22+ 2zi) (22-2l)' 

rf^y  d4w0 
dx3 dx4 22 

dx4 

1    fjW     1 - j/W   , 2    „ „ 2W ,2 ^eiV ^ 
241 + ,Wl-2,U)^ + 22lZ2 + 3Z?)(22"Zl)  ^- + 

+ EW   I-»/*) 
1 + i/O) 1 _ 21/W 

d3 
U0 

12 /d4
£i

2;  d4
£jv 

2*2 I   dx4 dx4 

+ 220 fer(2)     - £(1)    ^ + 

(21 - 22) (22 - 2) + 

Ed) /t1)     d2^ 
1+ ,(i)l-2,(D   ^ («1-*)(*-*) + 

1    £<*>     1 -,(i) 

2i + ,(i) 1 - 2i/(!)        dx3        dx4 

1    £?(i)     1 - i/d) d4e£ 

,d3d (i) d4™0 ^44z}     d4el2/ 
+ 22 

dx4 dx4 (*? 

61 + z/t1) l-2i/(!)   dx4 (2? - 2|) (22 - 2) + 

£(2) 

(l-2^(2)) (l + ^(2) 

1 g(2)       l_v(2) 

2 1 + ,(2) 1 - 2,(2) 

ld442)    1 

M2)) d3 
U0+,(2) 

dx3 

dx3 

d4wo \ 1 

d^ 
dx2 2 (22 -2) + 

dx4  J 3 
(222 + 2) (22 - 2)5 

3   dx4    4 
(322 + 2222 + 22) (22 - 2) 

d^T 
dx4 

(22 - 2) - 

+ 

(2.2.134) 
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(•80 
(II) 

r(3) 9, + 

£<D       l-l/W     , ,2 
(■22 - 21) 

1 + 1/(1) 1 - 2z/(D 

1 g(l) l/d) 

2 1 + i/(D 1 - 2z/(i) 

1    £<D     1-//(D 

d3u0     0     /d3^      d34V 
+ 202 

(22 -2l) 

da;3 

2 O £zz 

dx2 + 

61 + ,(Dl-2,(i)(Z2 + 2Zl)(22-Zl) 

da;3 

d^V      d4^0 

dx3        dx4 

dx4 

+ 22 
'd4^ 

dx4 
dM2/ 
dx4 

1    £(D     1 - z/(D 
241 + ^)1^(1) (^ + *^2 + ^ (Z2 - 2l) 

+ £(i>     1-i/W 

1 + i/(i) 1 - 2J/(D 

d3 
'wo 

dx3 + 222  (422, ,(1) 

dx4 

•h 
+ 

i,/d4
ei

2)   d4
e<V 

dx4 

£(D ,(i) 

dx4 y 

d2^ 
I + v(i) i _ 2i/(i)   dx2 

(21 - 22) (22 - 23) + 

(2l - 22) (22 - 23) + 

1     E<D       1 ■ Z/ ,(1) 

2 1 + „(1) 1 _ 2i/(D        dx3 
d3elV     d4w0  .      /d4^ 

dx4 + 22 
dx4 

d4.*2/ 
dx4 (2? - 22) (22 - 23) 

1    £(D     1 - t/(D d4
££ 

6 1 + i/(i) 1 - 2i/(i)   dx4 (2? - 4) te - 23) + 

+ £(2) 

(1 - 2^(2)) (1 + jy(2)) 

1 EM     1-I/
(2) 

2 l + z/(2) l - 2i/(2) 

1 d4^(2) 

(l-i/W) 

d3ej2)     d4^ 1 
dx3 

d3^ + vl2) 

dx3 dx2 2 (22 - 23)
2 + 

1 J4rW    1 
|^J(322

2+2,223 + 23
2)(,2-,3) 

(2^2 + 23) (22 - 23)' 

+ 
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EM     1 /i) 

1 + i/(U 1 - 2i/(D 
+ 2z2 dx3 dx3 dx3 + i Jd*S 

1   da:4 
d^r 
dx4 (Zl ~ 22) (^3 - Z) + 

E& vW     cPe :i) 

1 + i/(i) 1 - 2i/(i)   dar2 (21 - 22) (23 - z) + 

1    £(D     1-*/(!>         
21 + ^(1) i_2i/(i)   " dx3 

1    £(P     1 - z/(D d4e£ 

61 + z/(!) l-2i/(!)   dx4 

E<2) 
+ (l-2z/(2))(l + i/(2); 

1 E(2)     ^„W 

2 1 + i/<2) 1 - 2i/(2) 

£(3)       1 - !/(3) 

d^V     d4™0 /rf44V     d4e<: (2)' 

dx4 + z2 dx* dx* 
(z\ - zl) (23 -z)- 

(4 - 4) (23 - z) + 

(l-vW) 

d?e% 
dx3 

dx3 

d*w0\ , 
dx*  ] {' 

fu^ + ^(2) d*e% 
dx2 (z2 - 23) (23 - z) + 

D-1, 
ld4

£<2> 
3   da:4 (zl - 4) (23 - z) + 

1 + I/(3) 1 - 2l/(3) 

d3U0    ,   0       (d36% 
+ 2z3 

dx3 

-(3) 

dx3 dx3 
1 ,/**?> 

dx* 
d*e?y 
dx* 

\{zz-zf + 

(Z3-Z)   + 
1 + i/(3) 1 - 2z/(3)   dx2   2 
I     £(3)       !_„(3) 

2 1 + i/(3) 1 - 2y(3) 
d?e% 
dx3 

d*wo 
dx* 

+ z3 
'd*e$ 

dx* 
d*e?y 
dx* 

i (223 + Z) (23 - zf 

1     £(3)       1 - „<3)   d4ei')    1  ,Q   2 ^ o _,_    2^ , ^2 
61 + ,(3)l-2,(3)-d^4^+2^ + ^(Z3^) (2.2.135) 

Second forms of expressions for the transverse strains in terms of the unknown 

functions 

The first forms of the transverse strains e£}, eihJ (k = 1,2,3) are the unknown functions of the 

problem, that can be found directly from the finite element solution, as the nodal variables. The 

more accurate values of the transverse strains, the second forms of the transverse strains, can be 

computed by substituting the second forms of the transverse stresses, formulas (2.2.127)-(2.2.129) 

and (2.2.130)-(2.2.133) into the strain-stress relations (2.2.13) and (2.2.14): 

(«a») (n) (i/W)2 

EM {<&) 
Ui) „(*) 

(<!Sr-^(-20 

1 - i/CO 

(II) 

Ha(k) 
w XX (2.2.136) 

(2.2.137) 
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(* = 1,2,3). 

The in-plane stresses  HaikJ , which enter into these formulas, are computed by formulas (2.2.118)- 

(2.2.120). 

Satisfaction of stress boundary conditions on the upper surface 

In the process of derivation of the second forms of expressions for the transverse stresses in terms 

of the functions u0, w0, ei\], ell$ (equations (2.2.127)-(2.2.129) and (2.2.133)-(2.2.135)), we used 

stress boundary conditions at the lower surface and the conditions of continuity of the transverse 

stresses at the interfaces of the layers of sandwich plate: 

<r<3> " xz = 0, a$ = -% at z = - 
b 2 = zi; 

uxz UXZ   > " zz = of) at z = 
t 

~2 ~~ 
= Zl\ 

a™ u xz UXZ <7<2> u zz = af) at z = 
t 
2 ~ ^3; 

Therefore, the second forms of the transverse stresses satisfy these boundary and continuity condi- 

tions. When we considered a homogeneous plate, we showed that the second forms of the transverse 

stresses satisfy also the boundary conditions at the upper surface of the plate. Now, let us show that 

the same is true for the sandwich plate in cylindrical bending, i.e. the second forms of the transverse 

stresses satisfy the boundary conditions at the upper surface. These boundary conditions, written 

here again, are 

aW=0   at2=^ = z4, (2.2.138) 

a£ = q-f    at *=£ = *. (2.2.139) 

Like in the case of homogeneous plates, this can be proven by showing that the differential equations 

for the unknown functions, that result from substitution of the second forms of the transverse stresses 

into the boundary conditions on the upper surface (equations (2.2.138) and (2.2.139)), are the same 
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equations that follow from the virtual work principle2. But in case of the sandwich plates, or 

laminated composite plates, such a proof requires very voluminous derivations. Therefore, for the 

sandwich plates the same thing will be shown in slightly different way: it will be shown that the 

differential equations in terms of force and moment resultants, that are derived by requiring that 

the second forms of the transverse stresses on the upper surface are equal to the externally applied 

loads on the upper surface, are the same equations that follow from the virtual work principle. 

Substitution of expression (2.2.126) into the boundary condition (2.2.138) yields 

22 *3 z4 

j "ax% dz + J Hax% dz + J "ax% dz = 0, (2.2.140) 

or 
24 

dxj 
dz = 0 , (2.2.141) 

where 

H&xx in z\ < z < z2 

Oxx = ' 
HaxJ in Z2 < z < z3 

Haxx' in z3 < z < z4 

(2.2.142) 

Introducing an in-plane force resultant, defined as 

l 3      2fc+l 

[»Oxxdz   = £     /    »4kJdz Nxx = / "cJxx dz =YI   Hax
kJ dz , (2.2.143) 

2Therefore, the system of differential equations for the unknown functions, that is derived from the virtual work 

principle, contains those differential equations that can be derived also by substituting the second forms of the 

transverse stresses into the boundary conditions (2.2.138) and (2.2.139) on the upper surface. Therefore the solution 

of this system of differential equations for the unknown functions, derived from the virtual work principle, is such, 

that being substituted into the expressions for the second forms of the transverse stresses in terms of the unknown 

functions (field variables), this solution guarantees that the second forms of the transverse stresses satisfy the boundary 

conditions on the upper surface. More generally, the fact that the same differential equations for the unknown functions 

(but not all of them) can be derived both from the boundary conditions on the upper surface and from the virtual 

work principle, means that the virtual work principle contains information that the second forms of the transverse 

stresses satisfy the boundary conditions on the upper surface. Therefore, the finite element formulation, based on 

the virtual work principle, leads to the finite element solution for the field variables that guarantees the approximate 

equality of transverse stresses (written in terms of those field variables) on the upper surface to the external loads 

(per unit area) on the upper surface. 
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we can write equation (2.2.141) in the form 

HN 
rllfE = 0. (2.2.144) 

dx 

Substitution of expression (2.2.132) into the boundary condition (2.2.139) yields 

or 

z2 3 zi 

} - /<&>, dz - jax% dz - jax% dz = Qf   , (2.2.145) 

^jaxzdz + ^±^ = 0, (2.2.146) 
dx 

where 

Vxz = < 

(i) • ^     ^ Ox! in z\ < z < z2 

cr£mz2<z<z3   . (2.2.147) 

(3)  • /      / CTXZ in zs < z < z4 

Using definition of a transverse force resultant 

z* 3     Zk+1 3 

Qxz EE  faxz dz = Y,   f  "«  dz = E^ ' (2-2-148) 

. fc=i ^ *=i 

where 

Zk+l 

Qikj = / ^ ^, 
2fc 

we can write equation (2.2.148) in the form 

dQ^ + qu^ = 0 (2.2.149) 
dx b 

Differential equations (2.2.144) and (2.2.149) are the stress boundary conditions at the upper surface 

of the plate in cylindrical bending, expressed in terms of the force resultants. Equations (2.2.144) and 

(2.2.149) express the statement that the second forms of transverse stresses3 satisfy the boundary 

conditions at the upper surface. The same equations follow from the principle of virtual work ( 

Appendix 2-C). Therefore, the virtual work principle contains information that the second forms 

3obtained from the pointwise equilibrium equations (2.2.1) and (2.2.2) 
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of the transverse stresses axz, ozz satisfy the boundary conditions (2.2.138) and (2.2.139) on the 

upper surface of the layered plate. Therefore, the finite element formulation, based on the principle 

of virtual work, guarantees that the second forms of the transverse stresses (expressions (2.2.127)- 

(2.2.129) and (2.2.133)-(2.2.135) ), satisfy approximately the boundary conditions (2.2.138) and 

(2.2.139) on the upper surface of the plate. 
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2.3 Comparison of Results of the Plate Theory with Ex- 

act Elasticity Solution for a Simply Supported Isotropie 

Sandwich Plate in Cylindrical Bending under a Uniform 

Load on the Upper Surface 

Let us consider cylindrical bending of a symmetric sandwich plate with isotropic face sheets and the 

core (Figure 2.3). The upper surface of the plate is under a uniform load with intensity (force per 

unit length) qu. By qu we denote not an absolute value of the load intensity, but a projection of 

the load intensity on the z-axis, therefore q can be positive or negative, depending on direction of 

the load. Along the edges x = 0, L the plate is simply supported. The Young's moduli of the face 

sheets are equal and will be denoted by Ex and the Young's modulus of the core will be denoted by 

Ei. We will consider the Poisson ratio v to be the same for all layers. 

A load vector of a finite element is defined by equation (2.2.117), written here again: 

i 

W   =l[[Q(x)]T{q(x)}dx, (2.3.1) 
(24x1)        °J    (24x8)        (8x1) 

where [Q] is defined by equation (2.2.106), and {q} is defined by equation (2.2.92). Computations 

give the following result for the load vector: 

rx =0,r2 = 0, r3 = |Z*S ^ = Ä^t- ^ = ¥°?> r* = "l^ ^ = °> 

r8 = 0, r9 = 0, T-io = 0, rn = 0, r12 = 0, r13 = 0, r14 = 0, r15 = \lz3*£, 

r16 = £/2^3, ri7 = \lz^, r18 = -&J2£z3, 
ri9 = 0, r20 = 0, 

T2X = \l*£ (Z4 - 23) , 7-22 - ±P*f (z4 - *3) , ^23 = 5^ (24 ~ **) , 

As an example, let us consider a sandwich plate with steel face sheets and an isotropic core, 

made of foam. We assume the following properties of the face sheets and the core: 

core: Young's modulus E2 = 1.0192 x 108^, v = 0.3, thickness t = 2 x 10_2m, mass density 

pc = 2xl02^; 

face sheets: Young's modulus Ei = 1.9796 x lO11^, Poisson ratio v = 0.3, thickness of each 

face sheet 4 - i = 1 x lQ-3m, mass density Pl = 7.8 x 103^. 
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The total thickness of the plate is h = 2.2 x 10_2m. We will consider the lengths L of the plate, 

varying in the range from 0.05m to 1.2m. In order to provide the condition of cylindrical bending, 

we assume that the width b of the plate is much higher than its length L. The plate is under the 

load % = -1 x 105^r (directed downward, in the negative direction of z-axis). In this example 

problem the plate is weightless, i.e. the intensity of gravity field is considered to be equal to zero. 

We will compare the stress axx, obtained from the finite element solution, based on the plate 

theory, and from the exact solution, presented in Appendix 2-E. The stresses will be evaluated at 

x — k and at various values of z-coordinate. In this linear static problem, the transverse stresses axz 

and azz are obtained by substituting the stress axx into the equilibrium equations crxx>x+crxz,z = 0, 

<yzx,x + °zz,z = 0 and integrating these equilibrium equations. Therefore, if the in-plane stress axx 

is accurate, the transverse stresses axz and azz must be accurate too, if the numerical procedures of 

integrating the equilibrium equations are correct. Therefore, in this chapter, the purpose of which 

is to evaluate the quality of the simplifying assumptions on which our plate theory is based, it is 

sufficient to compare only the in-plane stress axx, obtained from the finite element analysis, with 

that of exact elasticity solution. 

The tables below show the results of comparison. 
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Table 2.1: Comparison of exact and finite element solutions for stress axx in a simply supported 

uniformly loaded sandwich plate with homogeneous isotropic face sheets and the core. Stress axx is 

computed at x = \, thickness of the plate is h = 0.022m, thickness of each face sheet is 0.001m, 

length L of the plate varies 

L 
(m) 

h 
L Oxx "k 

(x1065) 
*            2 Oxx       "V 

(*1065) 
2 —  Zj+H 
Z —       2 Vxx         at 

(xlO6^) 
*        2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.05 0.44 1.556 1.555 
error0.06 % 

-1.484 -1.481 
error 0.2 % 

-1.556 -1.555 
error0.06 % 

0.1 0.22 6.222 6.221 
error 0.02% 

-5.938 -5.922 
error 0.3 % 

-6.222 6.221 
error 0.02% 

0.2 0.11 24.887 24.875 
error 0.05% 

-23.75 -23.69 
error 0.25 % 

-24.887 -24.875 
error 0.05% 

0.3 0.07 55.99 55.97 
error0.04 % 

-53.45 -53.23 
error 0.4 % 

-55.99 -55.97 
error 0.04 % 

0.4 0.055 99.54 99.49 
error 0.05 % 

-95.02 -94.64 
error 0.4 % 

-99.54 -99.49 
error 0.05 % 

0.5 0.044 155.5 155.4 
error 0.06% 

-148.5 -147.91 
error 0.4 % 

-155.5 -155.4 
error 0.06 % 

0.6 0.037 223.97 223.75 
error 0.1 % 

-213.8 -212.74 
error 0.5 % 

-223.97 -223.75 
error 0.1 % 

0.7 0.031 304.85 304.69 
error 0.05 % 

-291.0 -289.3 
error 0.6 % 

-304.85 -304.69 
error 0.05 % 

0.8 0.0275 398.2 399.18 
error 0.2 % 

-380.1 -378.3 
error 0.5 % 

-398.2 399.18 
error 0.2 % 

0.9 0.024 503.9 504.5 
error 0.1 % 

-481.0 -477.5 
error 0.7 % 

-503.9 504.5 
error 0.1 % 

1 0.022 622.1 624.4 
error 0.4 % 

-593.9 -587.55 
error 1.1 % 

-622.1 -624.4 
error 0.4 % 

1.1 0.02 752.8 756.6 
error 0.5 % 

-718.58 -698.7 
error 2.8 % 

-752.8 756.6 
error 0.5 % 

1.2 0.018 895.9 873.2 
error 2.5 % 

-855.2 -790.85 
error 7.5 % 

-895.9 873.2 
error 2.5 % 
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Table 2.2: Comparison of exact and finite element solutions for stress axx in a simply supported 

uniformly loaded sandwich plate with homogeneous isotropic face sheets and the core. Stress axx is 

computed at x = \ (L = 0.5m), thickness of the plate is h=0.022m, thickness of the face sheet r 

varies 

T 
(m) 

T 
h Oxx at Z            2 @xx    at 

(xl0BA) 

ZX+Z4 
z —       2 Gxx         at Z        2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.001 0.045 155.5 155.4 
error 0.06 % 

-148.5 -147.8 
error 0.5 % 

-155.5 -155.4 
error 0.06 % 

0.002 0.09 85.60 85.48 
error 0.1 % 

-77.82 -77.57 
error 0.3 % 

-85.60 -85.48 
error 0.1 % 

0.003 0.14 62.94 62.83 
error 0.17 % 

-54.35 -54.23 
error 0.2 % 

-62.94 -62.83 
error 0.17 % 

0.004 0.18 52.18 52.09 
error 0.2 % 

-42.69 -42.56 
error 0.3 % 

-52.18 -52.09 
error 0.2 % 

0.005 0.18 46.245 46.18 
error 0.14 % 

-35.728 -35.67 
error 0.2 % 

-46.245 -46.18 
error 0.14 % 

0.006 0.27 42.76 42.67 
error 0.2 % 

-31.09 -30.98 
error 0.35 % 

-42.76 -42.67 
error 0.2 % 

0.010 0.45 38.78 38.69 
error 0.2 % 

-21.14 -21.09 
error 0.2 % 

-38.78 -38.69 
error 0.2 % 

So, we see, that the layerwise theory of the sandwich plates, based on assumptions of non-zero, 

constant (in the thickness direction) transverse strains in the face sheets and the core, leads to highly 

accurate values of the in-plane stresses. Therefore, the high accuracy of the transverse stresses can 

also be achieved, if they are computed by integration of equilibrium equations (or equations of motion 

in dynamic case), in which the in-plane stresses are substituted. But this approach to construction 

of the sandwich plate theory leads to the finite element formulation with many degrees of freedom 

per element: 24 degrees of freedom for a one-dimensional element for cylindrical bending. Therefore, 

in the next section a simplified approach to construction of the sandwich plate theory, with fewer 

degrees of freedom in the finite element formulation will be considered. 

2.4    Simplified theory of a sandwich plate in cylindrical bend- 

ing 

If the thickness of the face sheets is much lower than the thickness of the core, then we can consider 

the face sheets on the basis of the classical plate theory, i.e.  set the first forms of the transverse 
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strains (assumed transverse strains) in the face sheets equal to zero: 

EW = 0 e(1) = 0 e(3) = 0 e(3) = 0, (2.4.1) 

The accuracy of analysis with these additional assumptions will be verified in the end of this sec- 

tion by comparing results of the finite element analysis, based on assumptions (2.4.1), with the 

corresponding exact elasticity solutions. The assumptions (2.4.1) do not mean that the transverse 

strains and stresses in the face sheets are completely ignored in this computational model. In the 

post-process stage, the second form of the transverse stresses is computed by substitution of the 

in-plane stress axx into the pointwise equilibrium equations crXXtX + oXZyZ = 0 , aXZiX+azz<z — 0, and 

by integration of these equations. Then the second form of the transverse strains can be obtained by 

substitution of the second form of the transverse stresses into strain-stress relations. So, the assumed 

transverse strains, defined by equations (2.4.1), are used only in the expression for the strain energy, 

that is used for the finite element formulation. If one needs the values of the transverse stresses in 

the face sheets that counteract the external forces, and the corresponding transverse strains, one 

has to use the second form of these strains and stresses. 

The similar approaches to analysis of the sandwich plates with thin face sheets, in which either 

transverse strains or transverse stresses in the face sheets are assumed to be equal to zero, are 

adopted, for example, by Mead (1972), Markus and Nanashi (1981), Whitney (1987), Al-Qarra 

(1988), Yu (1997) and other authors. 

Besides, according to assumptions (2.2.25), we have 

a=aW,4!=a4 (2-4-2) 

If there are no external in-plane forces, applied to the plate, then, due to the fact that the Poisson's 

ratio of the core is usually small, we can set 

u0 = 0. (2.4.3) 

So, the unknown functions of the problem in our simplified theory of cylindrical bending of 

sandwich plates are 

w0{x), ex
2}{x), £™(x). 

In an example problem we will show that this simplified approach to the analysis of the sandwich 

plates, based on the additional assumptions (2.4.1) and (2.4.3) does not lead to a significant loss of 

accuracy of stress computation if the face sheets are thin as compared to the core. 



CHAPTER 2 92 

In this simplified computational model all of the formulas of section 2.2 are applicable, if according 

to the assumptions (2.4.1) and (2.4.3), we set eiV = 0, e£V = 0, e^j = 0, e^ = 0, u0 = 0. In the 

finite element formulation of the nonsimplified model, presented in section 2.2 of this chapter, the 

nodal variables are (Figure 2.4): 

, (1) , (2) , (3) 

,.„ „,„  f™°   M) e(D   ~f£-  e(2)  e(2)   ^fi. e<3)  £<3>   — (2.4.4) 

In the simplified model, the nodal variables, associated with the unknown functions eiJ, e\z , £xz, 

Ezz, uo are to be set equal to zero: 

- 0 e^ - 0 e(1) = 0  — = 0 e(3) = 0 e(3) = 0  — = o (2.4.5) W0 da; '   xz        '   "        '   rfx 

So, the nodal variables of the simplified model of the sandwich pate in cylindrical bending are 

^o    (2)    (2)   <k±±_ f2 4 6") 
dx '   xz'   " '   dx ' l ' ' ' 

In order to find the accuracy of stress computation by the simplified model of the sandwich plates, 

presented in this section, let us consider the same numerical example as in section 2.3 (page 2-71) 

and compare the results with the exact elasticity solution (Appendix 2-E). The tables of comparison 

are given below. 
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Table 2.3: Comparison of exact and finite element solutions, based on the simplified model, for stress 

axx in a simply supported uniformly loaded sandwich plate with homogeneous isotropic face sheets 

and the core. Stress axx is computed at x - \, thickness of the plate is h = 0.022m, thickness of 

each face sheet is 0.001m, length L of the plate varies 

L 
(m) 

h 
L <yXx at Z            2 

(*106S) 
 ZX + Z4 
z ~      2 Oxx          at 

(xlO6^) 

Z        2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.05 0.44 1.556 1.555 
error 0.06% 

-1.484 -1.476 
error 0.5% 

-1.556 -1.555 
error 0.06% 

0.1 0.22 6.222 6.219 
error 0.05% 

-5.938 -5.906 
error 0.5% 

-6.222 -6.219 
error 0.05% 

0.2 0.11 24.887 24.865 
error 0.09% 

-23.75 -23.63 
error 0.5% 

-24.887 -24.865 
error 0.09% 

0.3 0.07 55.99 55.92 
error 0.125% 

-53.45 -53.17 
error 0.5% 

-55.99 -55.92 
error 0.125% 

0.4 0.055 99.54 99.38 
error 0.16% 

-95.02 -94.52 
error 0.5% 

-99.54 -99.38 
error 0.16% 

0.5 0.044 155.5 155.3 
error 0.13% 

-148.5 -147.68 
error 0.55% 

-155.5 -155.3 
error 0.13% 

0.6 0.037 223.97 223.64 
error 0.15% 

-213.8 -212.57 
error 0.58% 

-223.97 -223.64 
error 0.15% 

0.7 0.031 304.85 304.58 
error 0.09% 

-291.0 -289.1 
error 0.65% 

-304.85 -304.58 
error 0.09% 

0.8 0.0275 398.2 400.015 
error 0.46% 

-380.1 -377.1 
error 0.8% 

-398.2 -400.015 
error 0.46% 

0.9 0.024 503.9 505.0 
error 0.2% 

-481.0 -476.4 
error 0.96% 

-503.9 -505.0 
error 0.2% 

1 0.022 622.1 625.1 
error 0.48% 

-593.9 -586.55 
error 1.2% 

-622.1 -625.1 
error 0.48% 

1.1 0.02 752.8 744.5 
error 1.1% 

-718.58 -691.1 
error 3.8% 

-752.8 -744.5 
error 1.1% 

1.2 0.018 895.9 837.5 
error 6.5% 

-855.2 -760.76 
error 11% 

-895.9 -837.5 
error 6.5% 
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Table 2.4: Comparison of exact and finite element solutions for stress axx in a simply supported 

uniformly loaded sandwich plate with homogeneous isotropic face sheets and the core for stress axx 

at x = \ (L = 0.5m). Thickness of the plate is h=0.022m, thickness of the face sheet r varies 

for stress axx at x = f (L = 0.5m), thickness of the plate is h=0.022m, thickness of the face 

sheet r varies 

T 
(m) 

T 
h oxx at 

(xlO6^) 
2=-* Z            2 oxx    at 

(xlO6^) 
z —       2 oxx       at 

(xlO6^) 
2= £ Z        2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.001 0.045 155.5 155.3 
error 0.13% 

-148.5 -147.68 
error 0.55% 

-155.5 -155.3 
error 0.13% 

0.002 0.09 85.60 85.39 
error 0.2% 

-77.82 -77.48 
error 0.4% 

-85.60 -85.39 
error 0.2% 

0.003 0.14 62.94 62.78 
error 0.25% 

-54.35 -54.14 
error 0.4% 

-62.94 -62.78 
error 0.25% 

0.004 0.18 52.18 52.04 
error 0.27% 

-42.69 -42.52 
error 0.4% 

-52.18 -52.04 
error 0.27% 

0.005 0.18 46.245 46.12 
error 0.27% 

-35.728 -35.64 
error 0.25% 

-46.245 -46.12 
error 0.27% 

0.006 0.27 42.76 42.63 
error 0.3% 

-31.09 -30.97 
error 0.4% 

-42.76 -42.63 
error 0.3% 

0.010 0.45 38.78 38.64 
error 0.4% 

-21.14 -21.07 
error 0.3% 

-38.78 -38.64 
error 0.4% 

We see that with a simplified approach to construction of the sandwich plate theory, we have 

achieved an accuracy of the stresses that is quite acceptable for practical analysis of thick sandwich 

plates, though slightly worse than the accuracy of the stresses obtained with the non-simplified 

approach, i.e. with non-zero assumed stresses in the face sheets. The advantage of the simplified 

model of the sandwich pate, presented in this section, is a lower number of degrees of freedom in 

finite element models. This conclusion allows to apply the similar simplified approach to modeling 

the sandwich plates with the laminated composite face sheets and anisotropic core. The finite 

element program for analysis of the sandwich cargo platforms, dropped on the ground, with account 

of damage progression, presented in the chapter 5, is based on the simplified theory presented in 

this section. 
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2.5    Appendix 2-A 

Exact solution for a simply supported homogeneous plate 

in cylindrical bending under a uniform load on the upper 

surface 

This problem is solved in order to compare the stresses obtained from exact solution with the 

stresses obtained from the plate theory, based on assumed transverse strains, presented in chapter 2, 

equations (2.1.72)-(2.1.74). The exact solution for a wide simply supported uniformly loaded plate 

in cylindrical bending (which is a plane strain problem with respect to the y-direction) presented in 

this Appendix, is similar to the exact solution for a narrow rectangular simply supported uniformly 

loaded beam (which is a plane stress problem with respect to the y-direction) presented in the book 

ofSaada(1993). 

Let us consider the problem of cylindrical bending of a plate of length L, height h and width b. 

Cylindrical bending implies that b > h. The plate is under the uniform load, acting on the upper 

surface with intensity (force per unit length) qu (Figure 2.2). By qu we denoted not an absolute value 

of the load intensity, but a projection of the load intensity on the z-axis, i.e. qu can be positive or 

negative, depending on the direction of the load. The sides x = 0,L are acted upon by reaction forces 

2^, and the longitudinal forces and moments at these edges are equal to zero. So, the boundary 

conditions for this problem can be written in the form: 

axz=0and<Tzz = ^*tz=^, (2-A.l) 

a« = 0 and <r« = 0 at z = --, (2-A.2) 

2 2. 

/ <jxx dz = 0 and   / oxx z dz = 0 at x = 0, L. (2-A.3) 

The boundary conditions for the edges x - 0, L are written on the basis of Saint-Venant principle, 

according to which the substitution of the actual load by the statically equivalent load influences 

the distribution of stresses only in the limited area around the place of application of the external 

load. 
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Let us write the equilibrium equations and the equation of compatibility in terms of stress: 

0?2Z + £ü« = o, (2-A.4) 
dx        dz 

^I± + ^ZlL = o , (2-A.5) 
dx        dz 

G&+S>»+->=°- (2-A-6) 

As a first approximation, we will assume that the stresses axx, azz, axz are defined by the known 

expressions for beams from Mechanics of Materials courses. Then we will add to these expressions 

some unknown functions and find these functions by requiring that the expressions for the stresses 

satisfy the equilibrium equations (4) and the compatibility equation (5). The first approximation 

for the stresses is 

M{x)        qux(L-x) 
<?xx = —;—z —  ^ z 

Iy 2Iy 

_ QS 

where Iy = ^6/i3 is a moment of inertia of rectangular cross-section with respect to y-axis, Q = ^ 
6/2 h/2 

is a shear force, S =    /    / z dz dy = -\b (z2 - ^] is the first moment of rectangular cross sectioi 

-6/2  z 
above a line z = const. So, the first approximation for the stresses has the form: 

&XX 4fx(x-i)», (2-A.7) 

ozz = 0. (2-A.9) 

These expressions for stresses do not satisfy the equilibrium equation (5). In order to satisfy the 

equilibrium equation (5), let us find azz from this equation : 

z 
d(Txz 

J    dx 
h/2 

dz, 
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<r„ = ~^(2z + h)t{z-h). (2-A.10) 

Expression (10) satisfies the boundary conditions (1) and (2) for azz. 

The equilibrium equation (4) is satisfied by the first approximations of axx and axz (expressions 

(7) and (8)), but the compatibility equation (6) is not satisfied by the first approximation of axx and 

azz (expressions (7) and (10)). To satisfy the compatibility equation (6) we use the fact that the 

equilibrium equation (4) will still be satisfied, if we add to the expression (7) for axx some function 

of z: 

axx = -^qfx(x-L)z + f(z). (2-A.ll) 

If we substitute expressions (10) and (11) for azz and <TXX into the equation of compatibility (6), we 

receive the differential equation 

_24^       dV(f)=0 (2-A.12) 
h* b    +    dz* X ' 

the solution of which is 

f{z) = ±-^zz + Clz + C2. (2-A.13) 

So, expression (11) for axx takes the form: 

a„ = ~|x(a:-L)z + ^z3 + C1Ä + C2. (2-A.14) 

The constants of integration C\ and C2 must be found from the conditions (3). From (14) it follows 

that 

2 

axx dz — C2h, 

2 

/ 

jax 2 dz = 1^ + lCl/>3 - \^x> + l^xL. 
20 b 12   ' 2b 2 6 

Therefore, from conditions (3) we obtain: 

C2 = 0, 

r  -     3 SlL 
Ll~~hh b   ' 
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and expression (14) for axx takes the form: 

6 9«    ,        T s     ,   4 qu  3       3 j„ ,„  . 1 _> 
a** = -vTx{x-L)z+h?Tz ~5hTz- (2"A-15) 

So, we found that expressions (8), (10) and (15) satisfy the boundary conditions (l)-(3), the equi- 

librium equations (4), (5) and the equation of compatibility in terms of stress (6). Therefore, 

expressions (8), (10) and (15) are the solution of the problem. Stress ayy can be found from the 

following plane-strain relation: 

Tyy v{axx+azz). (2-A.16) 

So, the exact solution for stresses in a plate, in cylindrical bending, is 

6?,/       L\ ( 2     h
2 

a- = vT [x-2   [z "7 

ozz = -±qf(2z + h)2(z-h), 

6 Qu    ,        T-, 4 qu  3      3 g„ 
a** = -vTx{x-L)z+h?Tz ~5hTz> 
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2.6    Appendix 2-B 

Some components of an element stiffness matrix for an 

isotropic sandwich plate, for an element with 24 degrees 

of freedom 

The components of the stiffness matrix were derived by exact integration with the use of sym- 

bolic computation capabilities of the program "Scientific Workplace". In this Appendix only few 

components of the stiffness matrix are shown, because of limitations on the size of the dissertation. 

fcll=£l   Z(l + i/)(2«/-l) 2    Z(l+i/)(2«/-l) 3    Z(1 + I/)(2I/-1)    ' 

_       TT   
Zl ~ Z2 ~ ^2l + ^        P   -Z2 + ^3 + VZ2 - UZ3 -Z3 + Z4 + VZi - VZ4 

12 =-Ei   Z(1 + I/)(2„-i)   +±i2    l{l + v){2v-l)     +   3    Z(1 + J/)(2»/-1)    ' 

Cl3 

l„z%-3%- vz\ + vz%      1      -zl + z% + vz\ -vz\      1      -zf + zf + i/zg - vz\ 
ku~    2   *   Z (1 + i/) (2i/- 1)        2   2     Z(l + i/)(2i/-l) 2   3    Z (1 + i/) (2i/- 1)     ' 

*15 = 0, 

ln   z\-zl-VZ2+ VZ\ 1 „   -2% + zg + 1/zg - t/zg 1 -Z§ + z| + l/Zf - "2J 
/Cl6"2i'1   Z(l + »/)(2i/-l)        2^     i (1 + i/) (21/ - 1) 2*3     / (1 + »/) (2v - 1) 

222^1 - z\ - 2z2vzi + vz\ - z\ + vz\ 
C17 -Er l{l + v) {2v - 1) 

_      2z2zi - z\ - 2z2uzi + vz\ - z2 + vz\ 
ku ~El Z(l + i/)(2i/-l) ' 

_  F   -^1 - z2 ~ ^1 + ^   _ ~Z2 + Z3 + t/Z2 - l/23  _  ^   ~^3 + Z4 + i/Z3 - ^Z4 

fc22 = £l   Z(1 + J/)(2I/-1)    ~    2    Z(l + »/)(2i/-l) 3    Z (1 + 1/) (2«/ - 1)     ' 

fc23 = 0, 
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1      z\ - z2 - vz\ + uzj      1, -z\ + 4 + vz\ - i/zg      1      -2§ + z\ + i/gg - i/zj 
feM = 2El   J(l + !/)(2i/-l)        2^2    Z (1 + ^) (2^ -1) 2   3    l(l + «/)(2i/-l)    ' 

k25 = 0, 

1 „   4 ~ 4 - »4 + "4    ,    1 P   ~*2 + Zf + ^f ~ VZ\    ,    1 F   ~*I + *1 + */Z2 - l/zj 
k™ = ~2El   *(l + i/)(2i/-l)    +2E2    Z(l + i/)(2«/-l)     + 2*3    J(l + i/)(2»/-l)     ' 

2z2zi ~ 4 - 2z2vzi + i/z| - z\ + i/z? 
fc27 =£l Z(l + i/)(2i/-l) ' 

2Z2Zi - 4 - IZjVZ-L + vz\ -z\ + vz\ 
k™= ~El J(l + i/)(2i/-l) ' 

.„ZJ-4-V4 + V4   .ir -^ + z| + ^l-^3
3   1F -4 + 4 + »4-^ 

*33 = 4£1   i3(1+I/)(2v-l)     _4E2     Z3(1 + I/)(2l/-l) ^     Z3(H-V)(2«/-1) 

nr,4-4-vz* + v4   0„ -4 + 4+^4z±4_oF z4+A±^4z_^4 
k34 = 2El  l*(l + v)(2v-l) 2    /2(l+^)(2^-l) Z2(l + I/)(2^-l)    ' 

^ 4-4-uzl + vzl  ,  _ -z3 + z3 + t/z3 -i/gg  , , P -*g + 4 + t/z3 - i/zj 
fc35 = -4gl    p (l+y)(2l/-l)     +4£2     f3(l + t/)(2t/-l)       +4^3     Z3(1 + l/)(2v-l)      ' 

„4-4-v4 + v4   „„-4 + 4 + »4-v4   nP -*3 + 4 + ^f-^43 
fc

36 = 2£i  ,2(1 + I/)(2l/_i)   -2£2   Z2 (1 + «/) (2«/ - 1) 3   Z= (1 + i/) (21/- 1)    ' 

«37 = U, 

fc38 = 0, 

«44 

4      z3 - z| - vz\ + vz\      4      -z3 + 4 + v4 - vz\      4      -z\ + z3 + vz\ - vz\ 
3El   Z(l + i/)(2i/-l)        3^2    i (1 +1/) (21/ - 1) 3   3    l(l + v)(2v-l)    ' 

„„ 4-4-»4 + »4 ^„r? -4 +4 +»4-"4 , „F -4 + 4 + v4-»4 
k45 = -2Er pil + v){2l/_1)   +

2E*   i2(i + |/)(2t/-i)    +^3   P(l + l/)(2I/-l)   ' 

2      z3 - zf - i/z? + i/z3      2 ^ -z3 + zf + t/zg - i/z3      2      -z| + zf + i/z3 - i/z3 

fc46=3El   Z(l + «/)(2i/-l)        3   2    l(l + v){2v-l) 3   3     l{l + v){2v-\)     ' 
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1 „ 3z2z? - z\ - Zz2vz\ + vz\ - 2z\ + 2vz\ 
Ul = 3   a i(l + i/)(2i/-l) ' 

1     3^22?-2|-3z2i/^+^-2^ + 2^ 
fc48 = -g£i Z(l+i/)(2i/-l) ' 

^   ,3 _    3 _ ^3 +       3 _,3 + ,3 + vzl _ vz% -Z3 + ,3 + ^3 _ „^3 

*»» = 4gi  p^ + ^t^-l)   "4£2    P(i + „)(2„-l)        4i3    P (1 + 0 (2* - 1) 

_   Z3_    3_^3+       3 -zg + ^ + ^-^        og   -Zl + Zl + Vzl-Vzl 

he = -2E1  ]2{1
a

+v){2v-l)   +2Ez    P (1 + ^-1)    +     3    P (1 + «0 (2* - D 

fc57 = 0, 

k58 = 0, 

4     Z3_^_I/Z3 + 1/^     4 „ -*9
3 + sg + vz\ - vz\     4     -zj + 4 + "*f - »4 

fc66^3El   f(l + t/)(2,/-l)    ~3^2     l{l + v)(2v-l) 3 Z(l + i/)(2l/-l) 

1     3z2z?-zf- 3z2^i + i/^ - 2z? + 2i/z? 
fcf57 = _3El J(l + i/)(2i/-l) ' 

_ 1     3z2z? -4- 1z2vz\ + vzl - 2z\ + 2vz\ 
fc68 - 3El Z (1 +i/) (2i/- 1) ' 
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2.7    Appendix 2-C 

Remarks on variational principles and equilibrium equa- 

tions for a plate in cylindrical bending in terms of force 

and moment resultants 

In chapter 2 we wrote the stress boundary conditions on the upper surface of the sandwich plate 

eri3; = 0  at  z = * = 24. (eqn 2.2.141),     a?) = f  at  z = f = z,   (eqn 2.2.142),4 

in terms of the force resultants5 : 

^^ = 0,      (equation 2.2.144), 
dx 

dQxz + qu + q< = 0      (equation 2.2.149). 
dx b 

It was stated in chapter 2 that equations (2.2.144) and (2.2.149) follow also from the virtual work 

principle, and the reader was referenced to this Appendix. Prom this we will be able to make 

a conclusion that the virtual work principle contains information that the second forms of the 

transverse stresses satisfy the boundary conditions on the upper surface of the plate6. Therefore, 

the finite element formulation, based on the virtual work principle, guarantees that the second forms 

of the transverse stresses satisfy approximately the boundary conditions on the upper surface of the 

plate. 

Our finite element formulation of the problem of cylindrical bending of the sandwich plate is 

based on the virtual work principle: 

J2JJJ(H4kJ&&> + H°$*& + H°$fc»)dv 

4
where of} and a?) are second forms of transverse stresses, obtained by integration of the pointwise equilibrium 

equations aXx,x + <?xz,z = 0, aXz,x + &zz:z = 0 
3   **+' i. 3   **+' 

5defined by formulas QXz =  I<rXz dz = y\   f   cx
k} dz and Nxx = / 

Haxx dz  = J2 "a™  dz 

6in addition to satisfaction of the boundary conditions on the lower surface of the plate and conditions of continuity 

of the transverse stresses at the the interfaces between the layers of the layered plate, that is guaranteed by the fact 

that these boundary and continuity conditions were used in the process of integration of the pointwise equilibrium 

equations axx<x + aXz,z = 0 and azx,x + czz,z = 0 in order to obtain stresses axz and czz. 
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-/*• (6w(3)L)dx- Jq' {s™(1)L=Jdx=0,        (2"C1) 
o ° 

where the superscript k denotes a number of a layer. The transverse stresses, that enter into equation 

(2-C.l), are the first forms of the transverse stresses, i.e. they are expressed in terms of the unknown 

functions with the help of the Hooke's law, equations (2.2.63). If in equation (2-C.l) instead of the 

first forms of the transverse stresses »crx
k

x\ 
H<£) we put the second forms of the transverse stresses 

4*2 , 41](equations (2.2.127)-(2.2.129) and (2.2.133)-(2.2.135) ), i.e. transverse stresses obtained 

from the pointwise equilibrium equations, we obtain the virtual work principle, written in the form 

J2///("^^+°$6&] + °® fc«)dV 
k=

\vw) 

L L 

-jqu   U w^\2_z )  dx - Jq,   (6 vW\z=J  dx = 0, (2-C.2) 
o ° 

which is equivalent to the virtual work principle, expressed by equation (2-C.l). The equivalency 

of variational equations (2-C.l) and (2-C.2) is in the sense that both of them produce the same 

differential equations for the unknown functions u0l w0, e&\ ef} and boundary conditions. This 

idea is discussed at greater length in Appendix D. 

Now, from the virtual work principle, written in the form of equation (2-C.2), let us obtain the 

equilibrium equations for a sandwich plate in cylindrical bending in terms of force and moment 

resultants. For this we need to substitute in equation (2-C.2) expressions (2.2.47)-(2.2.49) for exx in 

terms of the unknown functions u0, w0, e£\ e&\ perform integration by parts in order to relieve the 

variations of the unknown functions, collect the coefficients of variations of the unknown functions 

and set them equal to zero separately. As a result of this, we receive the following equilibrium 

equations of a sandwich plate in cylindrical bending in terms of force and moment resultants: 

6u0 : ^ = 0, (2-C3) 

6wo: IM^ + *LpL = o, (2-C.4) 
dxz o 

SeikJ: 5^rär-tfJ?=0    (fc = l,2,3). (2-C.6) zz 2   dx1 
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*1 

2H-I 

Zfr 

If we sum up equations (2-C.5), we receive 

3    juW       J_ 

fc=i fc=i 

From equations (2-C.4) and (2-C.15) it follows: 

104 

where the force and moment resultants are defined as follows: 

MikJ = J  HaJS z dz, (2-C8) 

xx = 7 *,XI , dx = f   f *,£ zdzJf MW, (2-C.9) 
■/ fc=i J fc=i 

Q&> = J ffW <fe, (2-ClO) 

Q„ = ?*« * = t 7*» dz = S0»' (2"aU) 
■/ fc=l i fc=l 

Zfc+1 

*£> = / 42 *2 *. (2"ai2) 

^fc)=    /^dz. (2-C13) 

^^L_^Q(*)=0, (2-C14) 

^E2l_Q„ = 0. (2-C15) 
dx 

dQxz + qu + q, = 0 (2-C.16) 
dx b 
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Equilibrium equations (2-C.13) and (2-C.16), obtained from the virtual work principle, are the same 

as equations (2.2.144) and (2.2.149), which express the statement that the second forms of the 

transverse stresses satisfy the boundary conditions on the upper surface of the sandwich plate'. 

Therefore, the virtual work principle contains information that the second forms of the transverse 

stresses satisfy the boundary conditions on the upper surface of the plate 

' 'Note that the transverse force resultants <&>, which enter into the equation (2-C.16), are defined the same way 

a, Qi\K which enter into the equation (2.2.149): they are defined in terms of <&\ the second forms of the transverse 

c H    W shear stresses, not in terms ot    cxz 
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2.8    Appendix 2-D 

Equivalence of the virtual work principle for a plate with 

transverse stresses obtained from the pointwise equilib- 

rium equations, to the virtual work principle for a plate 

with transverse stresses obtained from the constitutive 

equations 

In Appendix 2-C a statement was made (with a reference to the Appendix 2-D) that the virtual 

work principle for a plate can be written in two equivalent forms: 

III ( H°xx Sexx + 2 Haxz 8exz + 
Hazz 8ezz) dV 

(V) 

L L 

fqu  (Sv)\_   ) dx -  fq,   (s w\^ )  dx = 0 (2-D.l) 

and 

o o 

III ( H°xx fexx + 2crxz 6exz + azz 6ezz) dV 

(V) 

L 

- A« (6 w\ _)dx - jq' (6 w\z-z) 
dx=o> (2_D-2) 

o Z o 

where in the first equation the transverse stresses Haxz, 
Hazz are obtained from the constitutive 

equations, and in the second equation the transverse stresses axz and azz are expressed in terms 

of the unknown functions by integration of the pointwise equilibrium equations aijtj = 0. The 

equivalence of variational principles (2-D.l) and (2-D.2) is in the sense that both of these variational 

principles produce the same differential equations and boundary conditions. 

This statement was a necessary logical link in the proof that the finite element formulation, based 

on the virtual work principle (2-D.l) guarantees that the second forms of the transverse stresses 8 

satisfy the boundary conditions on the upper surface of the plate (pages 79 - 82). 

8obtained by integration of the equilibrium equations aXx,x + Oxz,z — 0, ffzx.x + Czz,z = 0. 
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In this Appendix we will show that for homogeneous Isotropie plates the virtual work principles 

(2-D.l) and (2-D.2) produce the same differential equations and boundary conditions. For a sandwich 

plate this can be shown in a similar fashion, but the derivation is much more voluminous. 

The differential equations and boundary conditions for a homogeneous isotropic plate were de- 

rived from the virtual work principle (2-D.l) in chapter 2 (equations (2.1.47)-(2.1.56)), and these 

equations, written here again, are 

6u0:        (1 - «0 («£ " £*«) + •*« = 0    (0 < x < L)    (eqn 2.1.47), 

** =     (TT^)^ K-2£-) = * + * <°**^>   (eqn2"L48)' 

Sezz :       v ( u0 - —e'zz ) + (1 + v) 
h2 (h2 IV     1  „, 

= (l + t/)(l-2^) {0<x<L)      (eqn 2.1.50). 

Either (1 - i/) («o - Jje« ) + vz" = 0 or uo specified at a; = 0, L     (eqn 2.1.51); 

either 2e'xz -w'o=0 or exz specified at x - 0, L     (eqn    2.1.52); 

either 2e'xz -w'0 =0 or w'0 specified at x = 0, L     (eqn  2.1.53); 

either 2e^z - w'ö = 0 or ID0 specified at x = 0, L     (eqn    2.1.54); 

either (1 - i/) («o - |^2e«) + "e" = ° or e" sPecified at x = °>L     (ecln  2'L55); 

either (1 - «/) (u0 - ^
2e«) + *4 = 0 or ezz specified at x = 0, L     (eqn  2.1.56). 

Now, let us derive differential equations and boundary conditions from the virtual work principle 

(2-D.2). The expressions for the strain and the stresses in terms of the unknown functions u0(x), 
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w0 {x), exz {x), ezz(x), that enter into the virtual work principle (2-D.2), were found in chapter 2. 

These expressions are 

w = w0{x)+£zz{x)z    (eqn 2.1.24), 

exx = u'0 + (2eJ - O z - -e"zzz
2     (eqn 2.1.27), 

(1 + *xr*r){{1-v) u'o + (2e*z' - w'ö) 2 - ^zz"z2 + uezz\      (eqn 2.1.28), 

Oxz — 
E{1 - v) '^y^-*)(*-*)-Y-{?+ 

(i+ 

(l + i/)(l-2i/ 

_^ e    (z+-)      (eqn 2.1.29) 

ff"~     6 + (1+ i/)(l-2i/) 
i(2z + /i)2<' + ^(2 - h)(2z + h)2 (2e"xz - wiv) 

2    TV  L (4z2 - 4hz + 3/i2) (2z + /i)2 e 
384 

+ -3(2z + h)2e«     (2.1.30). 
(l + i/)(l-2i/)8 

Substitution of equations (2.1.24), (2.1.27) - (2.1.30) into equation (2-D.2) yields: 

L   h/2 

0°"//(i + yKi-2,){"^ 
"~2 

a'o + (2e« - wo)2 - öe" z + I/£zz ) X 

0 -ft/2 

."   ~2 6t/0 + (2fex2' - 6w'0') z - -8e"zzz dz dx+ 

L   h/2 

-// {-j^^r^Hy^-^ *-$)-l<-(* h° 
0 -h/2 

 ^ -e'zz (z + %)}2 6exz dz dx+ 
(1 +i/)(l-2i/) "V       2/J 

L   h/2 

+>/ / B + (i^& [*<" + ",!";" + *" " "K2Z + h,! (*~ " "^ 
0 -ft/2 
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2    TV 
_ J_ Uz2 - Ahz + 3/i2) (2z + ft)2 £ 

384 v 
+ 

£i/ 1 
(l + i/)(l-2i/)8 

--{2z + h)2e'zz \ 6ezz dz dx+ 

+ f- {qi - qu) {SEZZ) dx-  I (qi + qu) {Sw0) dx. 

o  2 ° 

Performing integration with respect to z in equation (2-D.3), we obtain: 

 E- -J 
(1 + I/)(1-2I/)    J 

1      ',2,_M 

(1 - ")     u'o - 51 h £»     + VE" 24 
<5u'0 dx+ 

+ E 
(l + i/)(l-2i/) 

(1 - „) ^361 (2e'xz - «#) fe'I2 dx 

(1+ i/)(l-2 
_ (1 _ i/) -U3& / (24, - No) K' ^+ 
v) Ll      J 

(2-D.3) 

L, 

+ (1 + i/)(l- 2i/)      7 d-^l-^ + ^ö^'-)-^" 
<5e"   dx+ 

+ (l + i/)(l-2i/) 
6/    -(1-^) 

o      /' 1 Q    / " '"\ 1     1.4     "' v-h2e'   \ 2 <5eXz dx+ 

-/{-!' + £(1 - v) \h*u>»-^(2e:z-Wlv) 

120      2Z 

(1 +i/)(l - 2i/) 

+ — r-hh'zz) 6ezz dx+ + (1 + u)(\- 2v)6     "J 

+ /^ (9! - Qu) (6ezz) dx- J (qi + qu) (6w0) dx. 

Integration by parts in equation (2-D.4) yields: 

Ehb 
(1 + i/)(l - 2i/) (! - ") i  u'o--^ hV" )   + VE* (6u0) 

(2-D.4) 
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L 

 ^  I [(1 - v) ( < - i- Ä^'O  + i/e',. 
(l + i/)(l-2i/)y  V        J\   °     24       zv 

(5UQ) dz+ 

^^d^-l)'2''--^^"» 

Trt[nV>l/l>1-fllt-)* 

■ 1^-   £(1-"» 
12      (1 +i/) (1 - 2»/) (2ei2-<)(K: + 

^^(i+wö-^)'2^-^"^ 

-ife36.    -Ed-") 
12       (1 + J/)(1-2. 

-J (2el'z-Wiv)  (6w0) dx 

+ 
(1 + u) (1 - 2i/) 

/i36 ^-^l-^ + äk^'J-M^" (&'«) 

£ 
(1 +i/) (1 - 2i/) 

/i36 <1-">(-S"'»'+3S''V--)-^» (fc. 

+(i+ ■,)*-»)*''/ [<*" "> ("5"!'+ 55*v« ) - äH <&-> dl+ 

+ 
U + ' 

L 

+6/<_**+   ^-^ 
b        (l + u){l-2i>) 

l-h^-^(2C-<V) 
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120    £" 
+ Ev 1, 

(1 + I/)(1-2I/)6' 
hae,, } 8ezz dx+ 

0 0 

Prom the last equation we obtain the following differential equations: 

<5«o: (l-^)(<-^2^)   + ve'zz=0, 

(2-D.5) 

(2-D.6) 

6WQ :      £ 
/i3fr        (l-i/) 

12 (1 + i/)(l- 2i/) 
m JV      o„'" 24")-(ft+9u) = 0, (2-D.7) 

6e, 
1,3,     E{\-u) E 
6h \l + „)(!- 2») (2e- - W° } + (l + v)(l-2u) 

26 x 

-(!-") 2ft  U0 - J^h   (2exz -W0)--^h  £zz A*<» 0, (2-D.8) 

hf      N   Lf ft,.      E(I-I/)    ri 
fc„:    2(g'-g") + 6l"6 ^ + (! + ,)(!-2.) [e 

_1_ 

24' 
^M' - £/»« (2,- - w^ 

hAV 

120 
/iae 

Ev 1  3,„ \ 
+ (l + ^)(l-2^)6n e^/ + 

+- £ 
-/iJ6 ('-')i-^+^«jr)-i«*„ (l + i/)(l-2i/) 

After simple transformations, equation (2-D.8) can be written in the form 

6exz : (1 -v)(^- ^M") + <* = ° • 

and equation (2-D.9) can be written in the form: 

= 0. (2-D.9) 

(2-D.8') 

Sezz:    E hH     (1   v)     Nv-&£)-(« + *.)+ 

+ 

12 (1 + v) (1 - 2v) 

Eh2b 

4(l + i/)(l-2i/) (l-^)(<'-^Mr)+<, 0. 

0     because of eqn (2-E.6) 

(2-D.9') 
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In summary, the differential equations that follow from the virtual work principle (2-D.2), are the 

following: 

6u0:        (l-^)(<-^24")   + «V«=0, 

yb    (l-i/)       IV 

(2-D.6) 

6W°:      El2(l + v){l-2v)^»    -^)-(»+«■)= 0 (2-D.7) 

fe« : (1 - ,/) (< - ^V^) + K* = 0 , (2-D.8') 

6£":    Elt (1 +lHl'- 2.) « - ^ - (9' + ^ = ° ■ <2-D-9') 

We see that only two out of these four equations are independent, but these two equations are the 

same equations that follow from the virtual work principle (2-D.l). As can be seen from equation 

(2-D.5), the boundary conditions, that follow from the virtual work principle (2-D.2), are the same 

as the boundary conditions that follow from the virtual work principle (2-D.l) (equations 2.1.51 - 

2.1.56). 

In a similar fashion it can be shown that the same conclusions can be made for the layerwise 

model of the sandwich plate. But for the layerwise model of the sandwich plate the proof is much 

more voluminous. 
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2.9    Appendix 2-E 

Exact Elasticity Solution for a Simply Supported Isotropie 

Sandwich Plate in Static Cylindrical Bending under a 

Uniform Load on the Upper Surface 

Let us consider cylindrical bending of a wide symmetric sandwich plate with isotropic face sheets and 

the core (Figure 2.3). The upper surface of the plate is under a uniform load with intensity (force 

per unit length) q. By q we denoted not an absolute value of the load intensity, but a projection of 

the load intensity on the z-axis, i.e. q can be positive or negative, depending on the direction of the 

load. Along the edges x — 0, L the plate is simply supported. We will denote a number of layer of the 

plate by a superscript k (fc = 1,2,3). The Young's moduli of the face sheets are different from that 

of the core (£(1) = £(3) ^ £(2)), but the Poisson ratio is the same for all layers (i/W = i><2> = v^). 

The equations of linear elasticity, as applied to this problem, have the form: 

equilibrium equations: 

o-(fc)   +0-(fc)   =0 (2-E.l) 

CT(fc)   +a(k)   =0. 
"12,1  ~ UZZ,Z U! 

strain-displacement relations for plane strain: 

FW _ u(k) 

czz w,z   > 

&<*>=««+«#>, 

(2-E.2) 

(2-E.3) 

(2-E.4) 

(2-E.5) 

e(fc) = -(fc) = e(fc) = o- (2-E.6) 

constitutive relations for plane strain: 

<7«  = 
£(fc) 

(1 + i/)(l- 2i/) L 
(i-„)eM + „e: ■'ZZ 

(2-E.7) 
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Eik) 
"(l-i/Je^ + i/eW' ) (2-E.8) zz       (1 +i/) (l-2i/) 

uyy 

EW           (£W+EW)_((k) + 
(1 +v) (l-2i/) V xx +  zz )     v\a** + " ZZ     1   1 (2-E.9) 

a(k) _   E(k)    (k). 
xz    (i + vy

x" (2-E.10) 

°% = °® = o; (2-E.ll) 

or, in the inverse form 

e(fc)=
1~,/Vff(*)        "   aw\. 

E(k) yu*x    i _ u°zz j. (2-E.12) 

E(k)   \^«      \-vxx)% (2-E.13) 

Jk) _ 1 + " Ik). (2-E.14) 

Jk) _ Jk) _ Jk) _ n. 
c!/!/         cxj/         &j/z          ui (2-E.15) 

boundary conditions: 

w; = 0 at x = 0, L and 2 = 0; (2-E.16) 

-t/2                                                         "1 

l  <JiJ dz = 0 at x = 0, L 

-ft/2 
t/2 

/ <riJ dz = 0 at x = 0, L > (2-E.17) 
-t/2 

ft/2 

/ <rxa/ dz = 0 at x = 0, £ 

t/2 

ft/2 

/  <rxx z dz = 0 at x — 0, L 

-ft/2 
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or 

-•■/* E/ü h/2 

J a?] zdz+ j aW z dz +   fag} z dz = 0 at x = 0, L; (2-E.18) 

-t/2 t/2 h/2 

J eg zdz+ J 42
x) zdz+ J 

-h/2 -t/2 t/2 

h/2 

/ 
-/i/2 

h/2 

jQ.nL 
axz dz = -—- a.t x = 0, 

I 
-h/2 

<TXJ: dz = —— — at x = L 

-t/2 t/2 h/2 

-h/2 -t/2 t/2 

-t/2 t/2 h/2 

symmetry condition: 
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J <&> dz + j „Wdz + jagdz = H at z = 0; (2-E.19) 

/ "IV ^ + / <42> + /*** = -^§atx = Zi; (2-E.20) 
-h/2 -t/2 t/2 

^O.^Oat*^; (2-E.21) 

"(2/     °; (2-E.23) 

continuity of displacements and stresses at the interfaces between the core and the face sheets: 

U(D = u(2)iU,(i) = wmyxi) = ,(2))(T(i) = a(2) at , = J ( 
2' 

„(») = tt(»)ittPl = ,(3), ,(2) = „(3)^(2, = ffg) at z =   t_ (2E25) 

We will find exact elasticity solution of this problem, following a procedure, suggested by Pikul 

(1977) for a problem with different boundary conditions. 
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Let us take shear strains of the layers in the form 

Jx, 
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(2-E.26) 

where R and c<*> are the unknown constants, which are to be defined. Upon substitution of (2-E.26) 

into the constitutive relations (2-E.10), we receive 

'2?-r^«*-«"■)*■ (2-E.27) 

Let us substitute expression (2-E.27) into the equilibrium equations (2-E.l) and (2-E.2), and inte- 

grate them with respect to x and z correspondingly: 

,(*) 
l + i/ 

-R x2z + <pM (^ (2-E.28) 

" ZZ -i     . •"- 
Z--c^z + ^{x) 
o (2-E.29) 

where i/?(fc) (z) and V(fc) (a;) are the arbitrary functions of integration.  Substitution of expressions 

(2-E.28) and (2-E.29) into the constitutive relations (2-E.12) and (2-E.13) yields: 

*3 
=•(*) -(l-v)R 

K '     l-i/ V 3 
cwz + p<')(z) (2-E.30) 

e<*> = -(l-„)Ä L. _ cwz + ^k) {x) _ JL_ (^z + ^ {z)j (2-E.31) 

Substitution of (2-E.30) into (2-E.3) and integration of the resulting equation with respect to 

yields: 

,00 -(l-v)R 
T* + ^WW-TZ7(T c^z I x- 

Y^[ip{k) (x) dx + X
(fc) (z) (2-E.32) 

where x{k) (z) is an arbitrary function of integration.   Substitution of (2-E.31) into (2-E.4) and 

integration of the resulting equation with respect to z yields 

w (k) -R(l-v) 
12 2 +  ^     [X)     \-vX   2 

T^J<plk)(z)dz + X^(x) (2-E.33) 
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Upon substitution of expressions (2-E.32)and (2-E.33) for displacements into the strain-displacement 

relation (2-E.5), we receive the second form of expression for Exz (*0. 

£<*> = -*(!-!/) g + X^L -Jf-U- cw) x + d*w <*> + 
3 dz l — v\ ) dz 

djjW (x) v     2       d\W(x] 
■2 Z   X ~\~ (2-E.34) eta 1 — */ dx     ^ 

Exact elasticity solution is possible if both expressions for ex
kJ, (2-E.26) and (2-E.34), are identically 

equal: 

^3 j.Jfc 

R(Z
2
 - c^ x = -R{1 - y) 

x3        dwk (z) 
3 dz 

_^_c»)I+-^+ 

<ty(fe) (re) i/      2 z       .  w - z2x + 
d\M 

dx l-v dx (2-E.35) 

In order to find the functions tpW (z), ■0(fc) (x), A(fc) (x) and x{k) (z), which make the identity (2-E.35) 

possible, let us represent the functions tpW (z), tpW (x) and X^ (x) in the form: 

¥><*> (z) = <pW (z) + pW (z) + <pW (z) + ^ (z). 

tf<*> (x) = ip[k) (x) + 4k) (x), 

A<*>(s)=A<fc> (a:)+*<*>(*). 

Substitution of (2-E.36) into (2-E.35) yields 

V  ,  dX^(x)\   | 

3 dx      I 

„(*) d<p\   (z) v     / 2 

dz -i^-*") z" - &K>    X + 
z2 - c(fc>) X 

1 + v 
+ 

(2-E.36) 

„<*>, ,(*), <,<*> ■X^M.JL.^  +   ,^M + 25^   + 

„<*) l(fc)' .dy^(g)  , ^i"M  ,  (dxik)(z)  , „d^W 
dz 

+ 
dx 

+ 
dz 

+ z- 
dx 

0. (2-E.37) 

The identity (2-E.37) will take place, if each term in brackets in (2-E.37) is equal to zero. This leads us 

to differential equations for the functions ip\k){z) (t = 1,2,3,4), ip[k) (x), ^k){x), x[h) (x), X{
2
k) (x). 

When we solve these differential equations and substitute the found functions into expressions (2- 
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E.36), we find 
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(2-E.38) 

„<*> (2) = 
y(3

1-_^-1 (£ - ä) + JL.'L + fl»* + Kwg + aw 

X(*)(z) = -e(*)^+ «(*), 

where oW.ftW.dW,^*',^*',-'*' and «W are constants of integration. Substitution of (2-E.38) 

into (2-E.28), (2-E.29), (2-E.32) and (2-E.33) yields 

<jW = _ 
" XX 

l + i/' 
-Ä 

2 v (3 - I/) - 1 
arz + 

1-j/ 
y-c«z| + 

1-1/3 2 (2-E.39) 

*« =~i R 1 + is 

zl-c(k)z_ß{k)^ + e(k)x + h(k) (2-E.40) 

w(fc) = - (1 - i/) Ä 

^3 

: + \ {V - 1) (z2 - 3c<fc>) ZZ+ 

7^ ?* + /?<*> ^-rr + -<*>z:r + aWi + 
1-1/3 2 

v 

1 - i/ V       6 
eWt-„bWx\e(k)±_ + K(k) (2-E.41) 

w (fc) -R(l-v) 

v    x2z2      v2{Z-v)-v (z^__   (lt)f\ i/2      Z4 

i2_c TJ~T;   TT2 — l-i/    2 (i-"r (1 - t/)2 12 
..4 „.2 

l-z/P     6      l-i/        2      1-v 12 2 + (2-E.42) 

Substitution of expressions (2-E.39)-(2-E.42) into the boundary conditions, symmetry conditions and 

continuity conditions (2-E.16)-(2-E.25) yields equations for the constants of integration. Solving 

these equations and substituting expressions for the constants of integration into expressions (2- 

E.27), (2-E.39) and (2-E.40) for stresses, we receive 

" xz 
b (h3ElU - PEW + t3EW) V        4 

x--L (2-E.43) 
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o-(2) _ Sn 
6EW 

b (h3EW-t3EW+t3EW) \Z      4 

6EW 

1 h2E^ _ f2^(l) + £02) 

£?(2) 

x I ^- 2^ ) ' 

CT(3) - £ü 
6 (/i3£(D - t3£(D + «3£(2)j \z2     A

h2) (x     2
L ' ' 

*£? = - 6£W 
6 (h3EW-t3El V+1*EV){{L-X)xz-I[l(h2 + *) ■ht z+ 

-ä*"*+"-sC+*')}' 
r(2)   _   *ü. £(2) 

6   (ft3£(l) -i3£(l)+i3£(2)) 

r(3) -  9" 6^(1) 

6 (L - a:) xz + 4z3 i2z 
5 

+ §,»+£*<« + ») + £(«> + *.)}, 
(h2 +t2) + ht 

a^ = _Sl 6EW 

b (#»£(1) - t3EW + t3E(2))\3        4 
-X - -h'z 

12 

(2) _ _Qu. 6£<2> 

b (h3EW -■pEW + tfEW) 

1 h3EM-1?EM+1*EW 
12 £(2) 

„(3) -_<k.  

1  3     lh
2E^-t2E^+t2E^ r  4 £(2) 

6£<J) 

1 

b (/i3£(D -PEW+PEW) [3        4 
£(2) 

V        1/^    1Ä3 
12 

+ 6 I1 "Ed) 

(2-E.44) 

(2-E.45) 

(2-E.46) 

(2-E.47) 

(2-E.48) 

(2-E.49) 

(2-E.50) 

(2-E.51) 

two = w (2) 3 (1 - v2 

z=o b Eih3 - Erf3 + E2t
3 x (L — x) x 

2      1    v 
+ Eih5 - Erf5 + E2t

5 

5 ' 41-vj Eih3 - Erf3 + E2t
3 

3       Et{h2-t2)       E1-E2 (t{h2-t2)      ut3 

6    X     2J       24L 

4 Erf\3 - Erf3 + E2t
3   1-v E2 3£j 

(2-E.52) 
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If EW = £(2), equations (2-E.43)-(2-E.51) give stresses in a homogeneous simply supported 

plate under a uniform load, derived in Appendix 2-A. 

wi = -- 
6%(l-^; L2 + 4(x-±y _tf 

4 
-8 + 

1 -v 

^-(l-f^ ^(D-ffP) |        „        t{h2_t2}    ^        v      h3 

1-2/12 

v      ft3_2(l-|!i)t3' 

1-z/ 12 
3(/i2 -t2) 

A3 - (1 - fffi-)*3 
+ 1 + 1/ 

12(1-i/); l-i/ X-2 

2     L2 

-(8+—) 
5*/  x    fe5 - (1 - f^)t5 (EM-EM.,        v   ,t(h2-t2)        v    h* 

20 ä3_(I_|U>)43 £(2) i + r-r) + 
1-z/'       2 l-j/12 

v  fe3-2(i-f^)t^ 3(ft2-*2) 
l-i/ 12 /i3 - (l - f&) * 

+    1 + 
*/    \2h2 

l-v)    4 
2" 

+ 
/i3-2 (i-fS) 

12 
* v     (   £<J) - £<2> / v   \ t (h2-t2) 

1 + *    v ; 

l-i/ £(2) 1-1/ 

fiW* *3 - (l - f£) *3 + _^^- 2 (l - f£) *3 

1 - i/ *£(2) + (/i - t)EW 12 1-j/ 12 

£(D _ E{2)   (    _     Zv 

£(2) 
V     \   t 

l-v    V       1-1/7 32 ^Tt^Hö^-*2) 

+   1 (l-i/)V 24 [*-(-&) £(1)\    . 2-m)-h (2-E.53) 
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w2 = 6t(l-^2) r£
2-4(*-f)2 

£(D A»- (i-n^)*»; 
£2 + 4(*-f)2     L2 

24 4 
i + 

5i/ 

/»»-(i-lgf)t» 
20 A3 - (i - Efofi 

£;(i)-jS(2) ;,     t(/t2 -12)  ,      i/    /i3 

£(2) 1-1/' 1-1/12 

?(2) , 
„      /z3- 2(l-|^)f 3(/*2-t2) 

l-i/ 12 *» _ (1 _ fg> )*3 
+ 1 + v 

12(1-i/); l-i/ 

L2 

<8+—J 
5i/   ,    /i5-(l-f£)i5 (EM-EM v   Ah2-t2) v    h3 

EV)      { l+l-v'       2        +l-i/12 20 ^-(l-f^i)^ 

,/     fr3- 2(l-f^)t3>\  3(/i2 - i2) 

l-i/ 12 2 [*» _ (i - ||« ) is' 

+    1 + 
l-i/ 

[^2-(l-f^)^ £(D 

4J5(2) 
+ ^-(l-l^)*3 f?«1 

12EW 

l-v 
EWh 

/i3-    1 £(2>  \ ,3 
£(D 

1 - v tEW + (h - t)EW 12 
+ [fr3-(l-f£)*3 \ 

l-i/ 12£<2) >; 

/J   J 
(2-E.54) 

w3 ^-8 + 
L2-4(a;-f)2  L2+4(x-f)2 _ I? 

8 ( 24 4 

EW-£(
2
) i/    Mh2-t2) v    h3 

E(2)      (1+i_J/-
)       2        

+ 1-1/12 

5z/ 
l-i/ 
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v    fc3-2(l-g|H3\ 3(h2-t2) 
\-v 12 ^-(l-iy)«3 

, 1 + 1/        4 
12(1-1/) 

L\2     L2 

l-i/ W1     2/        4 

5„ ft» - (l - f^)t» /£(D-gW „    Ah*-*) v     h* 
K       l-u'nlhS-H-BW-ud      \      EW      K^\-v>       2 1-1/12 

3 (h2 - i 

»-(!-*&)* 

( v   Yh\z2     ,h3 v      EW-EMf v    \t(h2-t2) 

E(l)h h3 - (l - fgi) t3 „      ft3 fl(l) _ Jg(2) 

+ (Ä-t)£<1> 12 + l-z/12)J* £?(2) l-vtEW + {h-t)EW 
1- 

3z/ 
l-i/ 

„ \t^2-n   /      z/2  ^£(2)/>3-£(1) 

l-i//      32 (l-j/)V 2 
^-(i-lS)*3 

12£(2) 
;       (2-E.55) 

Ul 
6fr(«-j)(l-„» 

£(i) h*-(l-ffi)l* 
-8 + 5t/ 

l-i/ 

^-(l-f^)*» 
20 ^ - (i - us) *»; £(2) l-i/ 

£(D_£(2)   / „     \   t (ft2 - t2 

1-1/ 

E^ft 
' tEW + (ft - t)E( 

h3~(l- f£) t3 „ft3 ff(D _ ff(2)   / „     W (ft2 

i) 12 + 12(1-1/) +       E<2)        V1+l-i/J 

+ 
fl(l)ft ft3 - (l - |g|) «»    [    ft3-2(l-|£)t 

1 - i/ tEW + (ft - £)£(1) 12 12 

2 _+2\ 3 (h2 - « 

fc3-(l-f&)^ 
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2-±jks+1(i+ * ^2 

\-v     4 
z + 

E™ - £<2> 
~E~V) (-r^)^1 

JgWft fr3 - (l - f%) *3 

1-1/   ££(2) + (/l - *)£(!) 12 (2-E.56) 

"2 
6t(x-f)(l-^) 

£(i) Mi-sO*»; 4 
^-8 + 

5^ 

l-i/ 

^-(l-fi})^5 

20 /i3 

y-   EW ) v 
£(*> - EW 

£?(2) (> + r^)^ 

+ 
fl      £(2) ^ f 3 

l-i/ 

3 (ft2-*2 

2[^-(l-|f),3] ^Ml+       " 
1- V 

Z£(U 

ü^)/* /i3 

1 - v tEV) + (h - t) EW 
('-#) 

12 (2-E.57) 

u3 = -- 
6fr (x - f) (1 - ,2) 

^(i) [^ - (i - f&j *>; 
'(*■ 

4 
-    8 + 5i/ 

1-M 

»5-(l-f£>5 

20 /i3 *3 

£(1) _ £(2) 

(-r^)^ 

+ 
1-1/12      1 - v 12 

3(fe2_f2) \      2(l + T^) 
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+ (l + T^)^2 

z + 
EW - E& 

(^)^ 

got     ^-(i-f^y 
l-vtEV) + {h-t)EW 12 (2-E.58) 
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Figure 2.1 

Wide plate under a load that does not vary in the width direction 

y.v 
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X 

Figure 2.2 
Wide simply supported plate under a uniform load on the upper surface 
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_h 
Zi~2 

23 = 2 

Z2='i 

upper face sheet, k=3 

core, k=2 

lower face sheet, k=l 

x 

Figure 2.3. The coordinate system and notations for the sandwich plate, 
h is thickness of the whole plate, t is thickness of the core 
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Figure 2.4 

The element coordinate system and nodal variables associated with one node 
of a finite element 

y 

node 1 (x = 0) node 2 (x = /) 
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The probk 

Figure 2.5 

;m and element coordinate 
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Chapter 3 

Two-Dimensional Model of a 

Composite Cargo Platform, 

Dropped on Elastic Foundation 

In this chapter we consider the problem of computation of stresses, strains and displacements in a 

sandwich composite platform, loaded by a cargo on its upper face sheet, dropped from the aircraft 

on the ground , which is modelled as an elastic Winkler foundation. The sandwich plate is analyzed 

with a layer-wise theory with three conventional layers representing the core and the upper and 

lower face sheets (Figure 2.3). 

3.1    Three-dimensional formulation of the problem 

As work-conjugate measures of strain and stress, we use the Green-Lagrange strain tensor and the 

second Piola-Kirchhoff stress tensor. We limit our research to a practically important case of small 

strains, moderate displacements (of the order of thickness of the plate) and moderate rotations 

(10° - 15°). This means that of all the higher order terms in strain-displacement relations 

eij — Ö (Ui>J + UJ.» + Us,iUs,j) (3.1.1) 

only U3,QM3,/3 (a, ß = 1,2) are not negligible compared to uUti (a = 1,2; i =1, 2, 3) (von Karman, 

1910).   Therefore, the strain-displacement relations for the k-th conventional layer (sublaminate) 

130 
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become 

*!8 = |(«lV«iU + *4:y     («,/5=1.2) (3-1.2) 

(no summation with respect to k), 

4fc) = |(«iS + «S8)     « = 1.2,3), (3.1-3) 

or, in unabridged form, 

eJS^uW + \(wW)\ (3.1.2-a) 

e(fc) = I LW + w(*) + w^w^A    (no summation with respect to k), (3.1.2-c) 

4kJ = \{^+w^), (3.1.3-a) 

e$ = l(vW+wW), (3.1.3-b) 

e£>=u,<*>. (3.1.3-c) 

Now we need to find the simplified equations of motion and boundary conditions, such that their 

accuracy corresponds to the accuracy of the adopted von-Karman strain-displacement relations. 

These equations of motion will be used for computation of the transverse stresses in the post- 

processing stage of the finite element analysis. 

One way to do this is to simplify the general non-linear equations of motion. Such an approach 

is adopted in books by Novozhilov (1961), Stoker (1968), Ambartsumyan (1969) and other. Thus, 

to find the equations of motion, corresponding to the von Karman strain-displacement relations, 

Stoker (1968) retains in the general non-linear equations of motion those non-linear terms which 

involve products of stresses and plate slopes wtX and wiV, and neglects all other non-linear terms. 

The resulting equations of motion are 

<*xx,x + Oxy,y + °xz,z + Fx = pü, (3.1.4) 



CHAPTER 3 132 

(Tyx,x + Pyy.y + Vyz,z + FV = (™> (3A^ Jyx,x   '  uyy 

(Tzx,x + °zy,y + °zz,z + ^Ki«,i + °yxW,y) + 

+ Q-(
<T

*V
W

<
X
 
+ amw<v) + ~ö~z(

a"w>x + av*w,v) + Fz = pü>- (3-1-6) 

Another known method of deriving the simplified non-linear equations of motion is the variational 

method, based on substituting strain-displacement relations into the virtual work principle. Such 

a method is adopted by Reddy (1984, 1996), Lu and Liu (1992), Yu (1997) and other authors for 

deriving the two-dimensional equations of motion of plates, i.e. equations of motion averaged over 

thickness of plates. Pikul (1985) used this method to derive nonlinear three-dimensional pointwise 

equilibrium equations for shells, under assumed strain-displacement relations different from those, 

which are used in the present work. Equations of motion and boundary conditions, obtained by 

substituting strain-displacement relations into the virtual work principle, are called "variationally 

consistent" with the strain-displacement relations (terminology of Reddy, 1984, 1996). Following 

this idea, let us receive equations of motion and boundary conditions, variationally consistent with 

the von-Karman strain-displacement relations (3.1.2) and (3.1.3). 

Let us substitute variations of strains, defined by equations (3.1.2) and (3.1.3), 

6eaß = - {6ua<ß + 6u0tQ + u3,a Su3ß + uiß 5u3,a)      (a = 1,2; ß = 1,2), (3.1.7) 

fei3 = \ (<K3 + ««3,0      (i = 1.2,3) (3.1.8) 

into the virtual work principle 

Ifloij Sea dV =  III (Fi - put) 6u{ dV + JJ~U ÖUi dS , (3.1.9) 

(V) (V) (S) 

where F, is a known body force per unit volume, U is a known surface traction. Expression ay fey 

can be presented in the form 

<7y bEij = Oaß 6eaß + 2<TQ3 fea3 + ^33 fe33 (3.1.10) 

(a = 1,2; /? = 1,2; t= 1,2,3; j = 1,2,3). 
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When we substitute equations (3.1.7) and (3.1.8) into equation (3.1.10), we receive 

<Tij Seij = (Ta0- {6uaiß + 6uß,a + u3,Q <5u3,/3 + "3,ö <5u3,Q) + 

2CTQ3- (<5UQ,3 + <5u3,Q) + 0-33 <5w3,3 = 

= - Waß 6uaiß+ (Tßa ÖUß,a + CTaßU3<a 8u3ß + OßaU3ß <5u3,a] 

+ CTa3 (<5«a,3 + <5u3,Q) + ^33 ^3,3 

= - \aaß 6ua,ß+ CTaß ÖUa,ß + (TaßU3,a 6u3,ß +(TaßU3,a 8u3ß] 

+ Va3 (<$UQ,3 + <5u3,a) + <T33 <5u3,3 

= " [2(Tc,0 ÖUa,ß + 2aaßU3>a 8u3ß] + (Ta3 (<5«a,3 + <5u3,a) + <T33 <5"3,3 

= (Taß ÖUa,ß + <J*ß «3,a 8>U3%ß + <TQ3 (<5"a,3 + 6u3,a) + <T33 <$U3,3 

= (<Ta/9 *"a,/3 + <Ta3 <5«a,3 + <73a <5u3,Q + <733 <5u3,3) + CTaß UZ<a 8u3ß 

— Oij ÖUij + (Taß U3,a 8u3ß 

(a=l,2; 0 = 1,2; * = 1,2,3; j = 1,2,3). 

Substituting expression (3.1.11) into the left-hand side of equation (3.1.9), we receive 

[[[tTij fcij dV = III {(Tij 6uid + aa0 u3,Q 6u3,ß) dV 
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(3.1.11) 

(V) (V) 

III dV 

(V) 

((Tij Suijj - (Tijj SUi + {(Taß U3>a 6u3) ß - {(Taß UZ,a)ß   8u3 

= (Tij ™j <5"i +<?aß "3,a rip 8u3)  dS - 

(S) 

///   [vijj 6ui + ^^ U*ß),ß   SU3     dV 

{V) 

= ff Waj rij Sua + ((T^rij + aaß u3,a riß ) 6u3] dS 

(S) 

-   Jlj {(TajJ  6ua +  [<73jj + («Taß «3,a),J    <5u3}   <*V 

(V) 

(a = 1,2; 0 = 1,2; i = 1,2,3; j = 1,2,3), 

where n1? n2 and n3 are components of the outward unit normal vector to the surface. The substi- 

(3.1.12) 
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tution of expression (3.1.12) into the virtual work principle (3.1.9) yields 

0 = fffffij Seij dV - jji (Fi - püi) out dV + jfti out dS 
(V) (V) (S) 

=  // Waj n-j <5uQ + (^3j"j + °aß «3,a riß ) 6u3] dS 
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(5) 

- Ill  {ffeyj  ÖUa +    a3jtj + (aa0 U3,a)|/3     <5u3j   dV 

(V) 

- jjj (Fi - püi) 6ui dV + II'U 6ut dS 

(V) (S) 

= // [(CT"J nJ "*") SUa dS+ (^ ni+a°ß u^n0 -t3) 8u3] dS 

(S) 

- Iff {{crajj +Fa- püa) 6u + [a3jJ + {aaß u3>a)0 + F3- pü3]  6u3} dV 

(V) 

(3.1.13) (a = 1,2; 0 = 1,2;   j = 1,2,3). 

If one equates to zero the coefficients of variations of displacements, one obtains the equations 

of motion 

Vajj + Fa = püa;    a3jJ + (aaßu3ta)tß+F3 = fm3    (a = 1,2; ß= 1,2;   j = 1,2,3)     (3.1.14) 

and natural boundary conditions 

aaj rij = ta;   a3j n, + aaß u3<a n0 = t3  at Sa (a = 1,2; ß = 1,2; j = 1,2,3), (3.1.15) 

where Sa is part of the surface on which displacements are not specified.   Equations of motion 

(3.1.14) in unabridged form are 

CT*X,X  + (Txy,y  + O-XZ.2   + FX   =  pÜ, (3.1.14-a) 

Gyx,x + <?yy,y + ayz,z + Fy — pV, (3.1.14-b) 

Ozx,x + <Tzy,y + &zz,z + ö~ (^i^i + °yxW,y) + 

d_ 

dy 
Pxy U>,x + Gyy W,y) + FZ = pW. (3.1.14-c) 
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The boundary conditions (3.1.15) in unabridged form are 

axxnx + axyny + axznz = tx , (3.1.15-a) 

tfj/xTXX   +  OyyTly   +  OyZUZ   =   ty    , (3.1.15-b) 

ozxnx + azyny + azznz + axxw<xnx + ayyw<yny + axy {wiXny + w,ynx) = tz . (3.1.15-c) 

We see that the third equation of motion, derived from the virtual work principle (equation 3.1.14- 

c), is different from the corresponding equation (3.1.6), obtained by simplification of the general 

non-linear equations of motion, namely, in equation (3.1.14-c) the term Wz (vxz wiX+ayz w,y) is 

not present. In single-layer theories of plates, if tangential components of surface tractions are 

equal to zero, this term does not influence the two-dimensional (averaged over the thickness) plate 

equations of motion (Whitney, 1987). But in the layer-wise theories, these terms influence the two- 

dimensional equations of motion for individual layers, because stresses axz and ayz do not vanish at 

the interfaces between the layers. Therefore, a question arises: what simplified non-linear equations 

of motion are to be used in our analysis. 

To make such a decision one needs to keep in mind that the simplified non-linear equations 

of motion must be consistent with a finite element formulation, that will be based on the virtual 

work principle (3.1.9)1. In case of fully nonlinear Green-Lagrange strain-displacement relations, the 

virtual work principle (3.1.9) is derived (Washizu, 1982) from the equilibrium equations2 in terms 

of the second Piola-Kirchhoff stress tensor 

[(5xß + ux^)cTKß\K + Fx-püx = 0     (A = 1,2,3) (3.1.16) 

and stress boundary conditions 

<rij{6xi + u>,i)nj-ix=0 (3.1-17) 

1 In case of elastic material and conservative external forces, that is the case in the problem of the dissertation, the 

virtual work principle takes the form of the Hamilton's principle: 6(K-U-V) = 0, where K is kinetic energy of the 

system, U is strain energy of the system and V is potential energy of the system in an external force field (potential 

energy due to the load). 
2In the dynamic problems, the term equilibrium equations implies dynamic equilibrium equations (or equations of 

motion), i.e. implies that inertia forces are part of the body forces. 
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as follows: first, the left-hand parts of the equilibrium equations (3.1.16) and stress boundary con- 

ditions (3.1.17) are multiplied by variations of displacements and integrated: 

- [ff {[(6xß + UA,M) *«*],«+F* ~ P **} ^ dV + // \.av{6xi + Ux>i)ni " h = °1 6UxdS = °" 
(V) (5i) 

(3.1.18) 

where Sj is part of the surface where the stresses are specified. Integration by parts in the equation 

(3.1.18) yields 

/// 
(V) 

0V $ (WA,p + uß:x + UK,\ uKtli) dV _  fff (FA - p üx) 6u> dV - jjtx 6ux dS = 0. 
(V) (Si) 

(3.1.19) 

In equation (3.1.19), the expression under the variation sign in the first term is recognizable as the 

Green-Lagrange strain tensor. In a similar fashion, in order to derive the virtual work principle with 

the von-Karman strains3 , i.e. equation 

(V)   a=lß=l 

■ {ua,ß + Uß,a + U3,Q U3tß) mi: dV+ 111 > Va <5 ■ (uit3 +U3<i) 

fff (Fx - P üx) Sux dV - fftx 6ux dS = 0, 

(Si) 

dV 

(3.1.20) 

(V) 

it is necessary to use in the derivation such equilibrium equations, that they lead to the virtual work 

principle (3.1.20) with von-Karman strains. Such equilibrium equations can be found by starting 

from the virtual work principle (3.1.20) and performing the same derivations as those that led to 

virtual work principle (3.1.19), but in the reverse order. This has been done already in this chapter, 

with the result being equilibrium equations (3.1.14) and natural boundary conditions (3.1.15). If in 

conjunction with the von-Karman strains some other equilibrium equations are used (for example, 

equations (3.1.4)-(3.1.6)), then the virtual work principle (3.1.20) is non-existent. Then, the finite 

element formulation on the basis of the virtual work principle (3.1.20) (i.e. with the von-Karman 

strains) can not be made. 

Therefore, in the post-processing stage of the finite element analysis, the computation of the 

transverse stresses needs to be done with the use of the equations of motion (3.1.14-a), (3.1.14-b), 

3given by equations (3.1.2) and (3.1.3) 
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(3.1.14-c), variationally consistent with the von-Karman strains. This opinion is shared by other 

authors. For example, according to Reddy (1984), "the correct forms of differential equations and 

boundary conditions for any theory, based on assumed displacement field, are not known without 

using the virtual work principle". 

The equations of motion (3.1.14) will be written for each of the three conventional layers: upper 

and lower face sheets and the core. Besides, we will take into account that in our problem the 

body force is the gravity force, therefore Fx = Fy = 0 and Fz = -pg, where p is mass density and 

5 = 9.81^. 

aW   +aW   + <TW   =p(*)ä(fc) (3.1.21) uxx,x   '     xy,y   '  "xz,z       r      "       > v i 

aW   +a(k)  +ak     = pW$W (3.1.22) 
"yx,x ~   yy,y ~   yz,z      " ' v 

„m +{Tik) +<T(k) +JL(a(k)(k),(k)(k)\ 
"zx,x + azy,y T "zz,z ^ QX \"XX 

W
,X    ^ uyx w,y  J 

+ |. („<*) WW + ,f) „,(*)) - pWg = p^wW (3.1.23) 

(fc=l,2,3). 

The boundary conditions (3.1.15) will be written for the upper and lower surfaces of the plate and 

for the interfaces between the face sheets and the core, i.e. for the surfaces z = Zj, z = z^, z = z£, 

z = zj, z = zj and z = z4 (Figure 3.1). At these surfaces nx = ny = 0, nz = ±1. Therefore, in our 

problem the boundary conditions (3.1.15) take the form: 

at z = Z!   4V (*i) = tx (*i) = 0,   4V (2i) = *v (*i) = 0.  °% (*i) M^i) = ** (*i) ■ 5      (3-L24) 
-l 

at z = z2-     <r£> (z2-) = t* (z2-) ,  4i> (z2-) = tB (z2-),    <rW (z2)   n2 (z2~) = t2 (z2~) ;    (3.1.25) 

at z = z+     «x£> (4) = tx (z2~),  <#> (z+) = iv (z+),    a$ (z2)n, (z+) = tz (z+)  ;      (3.1.26) 
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at z = z3-     4? (*3~) = ** (^) ,  <#> (*3~) = ty (*3~).    ^ (^3)^2 = tz fa) ; 
1 

(3.1.27) 

at z = z3
+   ^ (4) = ** (4), <#> (4) = ty (4), ^ WM4)='«(4) ; 

-1 

(3.1.28) 

at 2 = z4  a£ (24) = tx (z4) = 0,   a£> (24) = ty (24) = 0,  <r£> (24) n^ = *z (24) • 
1 

(3.1.29) 

At each of the interfaces the absolute values of forces, acting at the adjacent layers, are equal: 

r (*2-) = -T (4), r (23-) = -T (23+), (3.1.30) 

or 

tx (22-) = -t* (2+) ,   ty (22-) = -t„ (2+) ,    t, (22-) = -tz (2+)   , (3.1.31) 

tx   (23-)   -   -tx   {Z+)   ,      t„   (23-)   =   -ty   (23
+)   ,      tz   (23-)   =   -t2   (23

+)      . (3.1.32) 

Therefore, from equations (3.1.25) and (3.1.26) it follows that: 

°$ (-2) = <£> (za),  <#> (22) = <#> (22),  <#> (22) = <r£> (22) , (3.1.33) 

and from equations (3.1.27) and (3.1.28) it follows that: 

<& (-3) = a£> (23),   «rW (23) = <$ (*),  *£> (^3) = *£> (23). (3.1.34) 

Equations (3.1.33) and (3.1.34) are conditions of continuity of the transverse stresses at the interfaces 

between the face sheets and the core. 

At the edges of the plate x = 0, L , where nx = =Fl, ny = nz - 0, the boundary conditions 

(3.1.15) take the form: 

T^xx = tx ,   T Oyx = ty ,   T <?zx T <*xx *",* =F Oyx W,y = tz   at X = 0, X . (3.1.35) 

At the edges of the plate y = 0,B (Figure 3.1.2), where ny = =fl, nx = nz = 0, the boundary 

conditions (3.1.15) take the form 

TPxy = tx,     T<Tyy = ty,     =F O zy =F °xy ™,x T °yy W,y = ^    at   J/ = 0, B . (3.1.36) 
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For a plate with the edges free from loads, that is the case for a cargo platform dropped on the 

ground, 

tx = ty = tz = 0 at x = 0, L and y = 0, B . (3.1.37) 

Therefore, the boundary conditions (3.1.35) and (3.1.36) in this case take the form: 

axx = 0, oyx = 0,    =F c*x =F 0-xx w,x T oVx w,y = 0 at x = 0, L , (3.1.38) 

o o 

crxy = 0,   Oyy = 0,    =F ozy =F oxy w,x T (Tyy w,y = 0   at   ?/ = 0, ß . (3.1.39) 

0 0 

The stress boundary conditions at the edges x = 0, L and y = 0, B, namely the boundary conditions 

expressed by equations (3.1.35) and (3.1.36), or (3.1.38) and (3.1.39), can not be satisfied exactly 

within the framework of a plate theory, in which some simplifying assumptions are introduced in 

addition to the 3-D formulation. In any plate theory the stress boundary conditions at the edges 

x - 0, L and y = 0, B are satisfied approximately, in the integral sense. The approximate, integral 

stress boundary conditions at the edges of a plate can be derived from the Hamilton's principle (or 

virtual work principle), as natural boundary conditions, the same way as it was done in Chapter 

2 for a homogeneous plate in cylindrical bending. In a problem of a cargo platform, dropped on 

elastic foundation, the boundary conditions at the edges are the stress boundary conditions (3.1.38) 

and (3.1.39). Therefore, the corresponding approximate boundary conditions, which follow from 

the Hamilton's principle, are the natural boundary conditions. When we solve the problem by 

a finite element method, based on the Hamilton's principle, the natural boundary conditions will 

be automatically satisfied approximately, with no need to impose any constraints on the degrees 

of freedom of nodes at the boundaries. Therefore, if we solve the problem by the finite element 

method, based on the Hamilton's principle, we do not have to derive the approximate stress boundary 

conditions, as it was done for a problem of a homogeneous plate in Chapter 2, that was solved 

analytically by solving differential equations with boundary conditions, equations (2.1.47)-(2.1.56). 

In conclusion, let us write again those equations, which will be used in subsequent derivations: 

strain-displacement relations 

,2 

^H-' + sKO       (eqn3.1.2-a), 

4») = w.(«) + |(u',(*))2   (eqn3-L2"b)' 
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F(k) = - (u(k) + i>(fc) + w^k)w^A    (no summation with respect to k)    (eqn 3.1.2-c), cxy c\ \    ,y ,x ix      >y  J     v 

4**) = |(«!*)+«',(*))     (eqn 3.1.3-a), 

e$ = \(v<P+wW)     (eqn 3.1.3-b), 

e« = wlz]     (eqn 3.1.3-c), 

equations of motion 

4% + °l£y + 4% = P{k)ü(k)    (eqn 3-1.21), 

CT(*)   +0-(fc)  +CT(fc)  + — ^a(':)u;(fc)+(T(fc)u;(fc)W 

y(<TJ$wW+0WwW)-pMg = p<k)uW     (A = 1,2,3)     (eqn 3.1.23), 

stress boundary conditions on the lower and upper surfaces 

at z = Zl   a£ = 0,   4V = 0,  a£ = -tz (Z!)      (eqn 3.1.24), 

at z = z4  <x<3> = 0,   <$> = 0,  cri3; = t, (z4)      (eqn 3.1.29). 

continuity of the transverse stresses at the interfaces between the face sheets and the core 

4V (*2) = a™ (*2),  0$ (^2) = <#> (,2),  CT(i) (22) = <r<2
z> (z2)      (eqn 3.1.33), 

of} (23) = 4? (23),  <#> (23) = 4V (23),  ^ (23) = <x<3; (23)      (eqn 3.1.34). 

In addition, continuity of displacements at the interfaces between the face sheets and the core is 

required: 

U(D = u(2)> „(i) = „W  „,(1) = WV)   at 2 = 22 , (3.1.40) 

u(2) = u(3)t „(2) = „(3)| w(2) = w(3)    at Ä = 23_ (3.L41) 

The formulation of the problem includes also the constitutive relations, that are demonstrated 

in section 3.6 of this chapter. 
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3.2      Simplifying Assumptions of the Plate Theory 

In order to apply the failure criteria to sandwich composite structures, the full three-dimensional 

state of stress must be known. A finite element analysis using three-dimensional elements could 

provide this, however the effort is enormous and often not acceptable for real structures. The 

computational cost can be cut down by reducing the problem to a two-dimensional one, i.e. by 

using a plate formulation. The improved values of transverse stress components axz, ayz, azz 

can then be computed in a postprocessing procedure, utilizing equations of motion of a three- 

dimensional continuum. To construct a plate theory, in addition to the three-dimensional formulation 

of the problem we will make simplifying assumptions regarding distribution of the transverse strain 

components in the thickness direction. In chapter 2 we considered the construction of a plate theory 

of a sandwich plate in cylindrical bending, based on the assumption that the transverse strain 

components do not vary in the thickness direction within a conventional layer of a sandwich plate 

(a face sheet or the core), but can be different in different layers. This theory was based on linear 

elasticity and its results were compared with the exact solution of linear elasticity. The comparison 

showed the validity of these assumptions. Therefore, considering nonlinear dynamics of a sandwich 

composite plate, we will make the similar simplifying assumptions, leading to a plate theory, i.e. 

we will assume that within the face sheets and the core the transverse strains do not depend on 

the z-coordinate, but they can be different functions of coordinates x, y and time t in different face 

sheets and the core: 

Exz   —Exz   \X^y^t) 

_(fc) _ Ak) 
-yz = £i {x,y,t) 

_(*), 
(3.2.1) 

eiz = Ezz (x, y, t) 

(k = 1,2,3), 

where the superscript k denotes the number of a sublaminate: k = 1 denotes the lower face sheet, 

k = 2 denotes the core and k - 3 denotes the upper face sheet. As in chapter 2, the assumed 

transverse strains will be called the first form of the transverse strains, and they will be denoted 

also as 

A') 
Exz 

.<*) = (£(k)Vn 
tyz   —  \tyz   I 

-(*) = (Jk)\{1) 

tzz     =   IC2Z    I 

(3.2.2) 
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The assumed transverse strains (3.2.1), together with displacements of the middle surface of the 

plate 

u0(x,y,t) = u(2)|J=0 , 

v0(x,y,t) = w(2)|2=0 , 

wo {x,y,t)= wW\ z=0 

(3.2.3) 

are the unknown functions of the problem, which will be computed by the finite element method. 

Therefore, all displacements, strains and stresses must be expressed in terms of these functions. 
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3.3    Displacements in Terms of the Unknown Functions 

In this section we will integrate strain-displacement relations for the transverse strains in order to 

obtain expressions for displacements in terms of the unknown functions exz , eyz , £zz , u0, v0, w0- 

The von-Karman strain-displacement relations (3.1.2) and (3.1.3), written here again, are 

dkJ-u^ + l-(W^)\ (3.3.1) 

w=w+\W> (3-3-2) 

e(fe) = - (u{k) + v{k) + w^w^A   (no summation with respect to k), (3.3.3) 
xy 9  V.   '^ ,X / 

f^^+^O' (3-3-5) £yz        2 

eW=wP, (3-3.6) 

where the superscript k is the number of a sublaminate (a face sheet or the core). Let us integrate 

strain-displacement relation (3.3.6). For the core (k = 2), which contains the plane z = 0, we receive 

z z 

WW (X) y, z, t) - w™ |^o = J^-dz = Je™ (x, y, t) dz = e£> (x, y, t) z    (z2 < z < z3) 

(3.3.7) 

or 

WW (a;, y, z, t) = wo (x, y, t) + ef) (x, y, t) z, (3.3.8) 

where 

w0 = w& . (3.3.10) 
2=0 

Integration of equation eiV = §3^- from z2 to z, where z belongs to the lower face sheet {zl < z < 

z2), yields: 

■,W-wW(z2)=[?jrdz = JeWdz      {Zl<z<z2), (3.3.11) 

™(2>(z2) 
22 
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or, due to the continuity condition, w(1) (22) = w(2) M, 
z 

WW = wM (Z2) + JeW dz . (3.3.12) 

■22 

From equation (3.3.7), it follows that 
Z2 

WW (22) =Wo + Jefjdz . (3.3.13) 

0 

The substitution of (3.3.13) into (3.3.12) yields: 

(x, y, z, t) = w0 (x, y, t) + Je™ (x, y, t) dz + Je™ (x, y, t) dz       {zx < z < z2) , ui"). 

wW (x, y, z, t) = w0 (x, y, t) + e£> (x, y, t) z2 + £W (x, y, t) (z - z2)     {zx < z < z2) .      (3.3.14) 

Analogously, integrating equation eg* = ^ and satisfying the continuity condition at the interface 

between the core and the upper face sheet, w<3> (23) = ™(2) (23), we receive 

w<3> (x, y, z, t) = w0 (x, y, t) + I'e£> (x, y, i) dz + Je™ (x, y, t) dz       (z3 < z < 24) , 

or 

u,<3> (1, y, z, t) = w0 (x, y, t) + e<2> (*,y, t) 23 + e{2 (x, y, t) (2 - 23)       (23 < z < z4) .      (3.3.15) 

Now, let us integrate strain-displacement relations (3.3.4) and (3.3.5) in order to obtain expressions 

for displacements U(fc>(x,y,z,t) and v<fc> {x,y,z,t) in terms of the unknown functions. In tensorial 

notations relations (3.3.4) and (3.3.5) can be written as 

^s^lKi + 42)      (a = l,2;* = l,2,3). (3-3.16) 

Integrating equations (3.3.16) with respect to z, we receive 

/ 1/1' 

z=0 
uW - uM [*£. dz = j (2e(2) _ UW ) dz    (Q = 1,2;   22 < z < z3) . (3.3.17) 

^ - «<?> (z2) = J^dz = J (2eL1
3

) - «gi) ^2    (a = 1,2;   * < 2 < z2) . (3.3.18) 

*2 
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u™ - u& (Z3) = jftjZL- dz = j (2ei3
3) - ufl) dz    (a = 1,2;   2l < * < *2) . (3.3.19) 

The substitution of expressions (3.3.13)-(3.3.15) for u/fc> = u3
h) into equations (3.3.17)-(3.3.19), 

performing integration in these equations and finding the constants of integration from the conditions 

of continuity of displacements u and v at the interfaces between the face sheets and the core 

«W (z2) = uW (22),  „(2) (Z3) = u<3> (23), VW (Z2) = v& {Z2),  „P) (23) = v(3) (23),       (3.3.20) 

yields expressions for u(fc) and v{k) in terms of u0, v0, w0, eiV, eyz>, ezz , where u0 = u\z=0, 

vo = v\z=0 : 

uW =u0+ (242
z) - w0,x) z2 - \ez% 4 + (&&> - w0,x - ez% z2) (z - z2) 

\ez%{z-z2)
2 (z1<z<z2) , 

(z2< z < z3)  , U<2> = u0+ (2eW - «*>,,) z - l-e% z* 

UW = Uo + (242i - «*.,) z3 - \e[% 4 + (feg - WOtX - eWxz3) (z - z3) 

-\^lx(z-z3f (z3<z<z4) , 

v™ = vo+ (2e$ - wo,v) z2 - \e™y z\ + (^ - «*,„ - e{% z2) (z - z2) 

1 

(Zi < z < z2)  , 

(3.3.21) 

(3.3.22) 

-A {*-*>? 

VW =Vo+ (24
2

2> - Wo,y) z - \eWy z*        (z2<z< z3) , 

«<»> = ,o + (&&> - w0,y) z, - !*£),, 4 + (*$ - «*,* - 4*U) (z - *) 

A(*-«r {Z3<Z< Z4) 

(3.3.23) 

(3.3.24) 

(3.3.25) 

(3.3.26) 

Expressions (3.3.8), (3.3.14), (3.3.15) and (3.3.21)-(3.3.26) for displacements in terms of the unknown 

functions u0, vQ, w0, e{k
z
], ey

k
z
], ez

k
z
]   can be written in a more convenient form: 

u 
(fc) f                 y 

IpuO 

(fc) (fc) '                  1 

<      V ,     = < IpvO >        + < 1pvl >     z+ < i>v2 

w 4>wQ 0 

(fc) 

>      z (3.3.27) 
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where 

*$ = u0 + 2z2 (4
22 - 4V) + \4 (41 - 4l) ,                         (3-3.28) 

tf'V = 24V - «*,, + ,2 (41 - £?»,)  , (3-3-29) 

^ = -^iV,x , (3-3-30) 

v$ = «o, (3-3-31) 

^ = 2e^-w0,x, (3.3.32) 

^ = ~\e% , (3-3.33) 

^ = uo + 2,3 (42i - 43)) + \4 (41 - 4l) ,                         (3-3.34) 

^ = 24^ - «*,, + *3 (E£U - 4l)  , (3.3.35) 

1$ = ~\e% , (3-3.36) 

^0) = ,0 + 2z2 (#> - #>) + |4 (41 - 41) ,                          (3-3.37) 

^ = 24V - w0,y + z2 (41 - 41)  , (3-3-38) 

*% = -^41 , (3-3-39) 

1>% = vo , (3-3-40) 

1>$ = 2e$-w0,v, (3.3.41) 



CHAPTER 3 147 

C (2) - _iP(2) 
'zz,y 

^3
0> = ,0 + 2,3 (4? - #>) + \4 (Ä - Ä) , 

^ = &W - mo,, + zz (e^y - ££>y)  , 

O) _ _L(3) 
^' = -* 

^ = -o + 22(42,)-4i)) , 

;(2) 

^ = 4*> , 

,/.(3) _ _(3) 

Matrix equation (3.3.27) can be written in the form 

.j(k) 

(3x8) 

where 

Z 
(3x8) 

1 z z2 0 0 0 0 0 

0 0 0 1 z z2 0 0 

OOOOOOlz 

(3.3.42) 

(3.3.43) 

(3.3.44) 

(3.3.45) 

(3.3.46) 

(3.3.47) 

(3.3.48) 

(3.3.49) 

(3.3.50) 

(3.3.51) 

(3.3.52) 

(3.3.53) 

and 

{*W}=1*<$    *$    *®    ^    ^    ^    ^    ^l\T ■ (3-3-54) 
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Then, displacements of the lower face sheet (k=l) can be written in the form 

w,(1) 

148 

-,(D 

,,(i) 

{*..>}_[ 
(3x8)    (8x1) 

z 
(3x8) 

Vv2 

Viul 

UO + ^22 I £iz   — £12   I T 2   2 I £z2,x       tzz,x J 

2e{x) - w0iX + z2 (e[% - ei%) 

2^zz,a 

„    10,    /V2>       .(^W 1.2 /F(2)    _    (1)   ^ 
^0 + /22 I £yz  — eyz  I + 222 1 £'z,V      E",V\ 

ley1) - w0,y + z2 (eil\y - Ä) 
lJl) — 2
fc22,y 

w0 + 22 (eL - £i 5) 

(3x8) 

1 0 0 -2z2 0 

0 0 3 
dx 2 0 

0 0 0 0 0 

0 1 w0 0 -2z2 

0 0 __9_ 
dy 0 2 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

u0 

Vo 

l ,2 a 
2Z2dx 222 0 1,2 9 

222 9i 0 0 0 Wo 

22gJ 0 0 0 0 0 t-XZ 

1 9 
2 dx 0 0 0 0 0 0 e(1) 

tyz 

1 .2 9 
2Z2 9y 0 222 

1 ,2 9 
2Z2 9y 0 0 0 

I 
e{1) 

22g£ 0 0 -Z1S-y 0 0 0 (2) 
Cxz 

1 9 
2 9y 0 0 0 0 0 0 E(2) 

tyz 

-22 0 0 22 0 0 0 £(2) 
t-zz 

1 0 0 0 0 0 0 t-xz 

(8x12) 
tyz 

e(3) 
CzZ 

(12x1) 
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or 

(1) u 
öd) {/}   , (3.3.55) 

(3x8)   (8x12) (12Xl) 

where matrix 

as 

is defined by formula (3.3.53); öd) is a matrix of differential operators, defined 

gW 

1 0 

0 0 

0 0 

0 1 

0 0 

0 0 

0 0 

0 0 

_d_ 
dx 

0 

W0 

_JL 
dy 

0 

1 

0 

-2z2 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-2z2 

2 

0 

0 

0 

ly2JL 

*    a 
Z2dx- 

— LJL 
2 dx 

_Iy2 JL 
2Z2dy 

Z*Ty 
_IJL 

2 dy 

-Z2 

1 

222 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2z2 

0 

0 

0 

0 

H-k  o. o o 
-Z2-I-X    0 ° 0 

0        0 0 0 

0 0 0 

0 0 0 

0 0 0 

22           0 0 0 

0        0 0 0 

2Z2dy 

~Z2^ 

0 

(3.3.56) 

and {/} is a column-matrix of the unknown functions of the problem, defined as 

T 

{f} = UQ     VQ     Wo     Exz      Eyz £(1) 
tzz £(2) 

t-xz £(2) 
tyz .(2) 

C-Z2 £xz r(3) 
tyz e(3) (3.3.57) 

Displacements of the core (k = 2) can be written in the form 

u<2> 

t,(2) 

w<2) 

z]{^)} = 
(3x8)    (8x1) 

^u2 

^(2) 

^(2) 

>   = 
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Uo 

vo 
r 

wo 1 0 0 0 0 0   0   0 0 0 0 0 Wo 

2e£) - w0,x 0 0 a 
dx 0 0 0   2   0 0 0 0 0 £(1) 

cxz 

lJ2) 
2 t-zz,^ 0 0 0 0 0 0   0   0 i a 

2 dx 0 0 0 tyz 

Vo r  ~ n 0 1 0 0 0 0   0   0 0 0 0 0 t-zz 
z < (2) 2ey - w0,y 

* — 
[3x8) 0 0 9 

dy 
0 0 0   0   2 0 0 0 0 t-xz 

lJ2) 0 0 0 0 0 0   0   0 i a 
2 dy 0 0 0 e(2) 

tyz 

Wo 0 0 1 0 0 0   0   0 0 0 0 0 E(2) 

e{2) 
czz 0 0 0 0 0 0   0   0 1 0 0 0 e(3) 

cxz 
\                                '                      <- 

(8x12) 
tyz 

E{3) 

}, 

(12x1) 

or 

u<2> 

«<2> 

(2) W 

}  = 9(2) {/} 
(3x8)   (8x12)  (12xl) 

> v ' 

(3.3.58) 

where 

#2) 

1 0 0 0 0 0 0   0 

0 0 8 
dx 0 0 0 2   0 

0 0 0 0 0 0 0   0 

0 1 0 0 0 0 0   0 

0 0 _a_ 
dy 0 0 0 0   2 

0 0 0 0 0 0 0   0 

0 0 1 0 0 0 0   0 

0 0 0 0 0 0 
(8 

0   0 
xl2) 

0 

0 

IJL 
"2 dx 

0 

0 
11 
2 dy 

0 

1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

(3.3.59) 

is a matrix, defined by equation (3.3.53), {/} is a column-matrix of the unknown functions of 

the problem, defined by equation (3.3.57). 



CHAPTER 3 151 

The displacements of the upper face sheet (k = 3) can be written in the form 

Vu2 

Vv2 

</>(3) 

«(3) 

w(3) 
[*]{*"}-[2 
(3x8)    (8x1) 

'   „    4.0,    /V2)       JS)^   ,    1.2/_(2) r(3)   \ 
UO + 6Z3 \6Xz   — £xz  1 + 23 I   "'^ ~~ £zz,x ] 

2ex
3z - wo,* + 23 fe«,x - ei^xj 

1_(3) 

^0 + £ZZ \£yz  -£FI + 2
2

3 I £zz<V ~ Ezz,v) 

^£yz   — ^0,y + z3 [£zz,y ~ £zz,yj 

1 J3) 

™0 + ^3 I £22 ^22     1 

e(3) 
t22: 

1 0 0 0 0 0 223 0 1 Ji a 
2Z3dx -223 0 1 ~2 a 

2Z3dx 

0 0 __a_ 
dx 0 0 0 0 0 -zz~di 2 0 y     9 z3 9x 

0 0 0 0 0 0 0 0 0 0 0 1 a 
2 dx 

0 1 0 0 0 0 0 223 
1-2 9 
2z3dy 0 -223 

1 JI a 
2z3 9j/ 

0 0 dy 0 0 0 0 0 y    d 
Z3dy 0 2 y      9 Z*Ty 

0 0 0 0 0 0 0 0 0 0 0 1 9 
2 9y 

0 0 1 0 0 0 0 0 23 0 0 -23 

0 0 0 0 0 0 0 0 0 0 0 1 

«0 

v0 

W0 

e{1) 
C-XZ 

E(1) 
tyz 

tzz 

e(2) 

e{2) 
Cyz 

6{2) Czz 

-(3) 
t-xz 

.(3) 
tyz 

J3) 

>, 



CHAPTER 3 152 

or 

< 

u<3) 

Z,(3) 

w(3) 

> = z 
;3x8) 

>>1  {/}   , 
(8X12)<12X1> 

*>               ' ^ 
^.(31 

1 0 0 0   ( 3   0 2^3     0     \z\-§-x -223 0 1 Jl 9 
2Z3dx 

0 0 dx 0   0   0 0           0        -Z3& 2 0 v    9 zsdx 

0 0 0 0   0   0 0       0         0 0 0 1 9 
2 9x 

' d<3>' 

(8x12) 

- 
0 

0 

1 

0 

0 

dy 

0   0   0 

0   0   0 

0     2.3    \zljL 

0         0       -*3& 

0 

0 

-223 

2 

1.2 9 
2Z3dy 

23 8j/ 
0 0 0 0   0   0 0       0          0 0 0 1 9 

2 93/ 

0 0 1 0    0   0 0       0         z3 0 0 -23 

0 0 0 0   0   0 0 0 0 0 0 1 

(3.3.60) 

(3.3.61) 

is a matrix, defined by equation (3.3.53), {/} is a column-matrix of the unknown functions of 

the problem, defined by equation (3.3.57). 

In summary, the column-matrices of displacements in each of the sublaminates can be written 

in the form: 

,,(1) > = ä<i> 

(3x8)  (8x12) 
{/} 

(12x1) 
(3.3.62) 

{v-c 

u<2> 

1/(2) •  = Z ß(2) {/} , 
U,(2) ;3x8)   (8x12)  <12xl) 

s v              ' 

'    U<3>    ' 

vW > = Z go) {/} , 

w(3) 3x8) (8x12) 
s V 

(12x1) 

where is a matrix, that depends only on z-coordinate; 

(3.3.63) 

&V > 3(2) ) a(3) 

(3.3.64) 

are matrices of 

differential operators; and {/} is a column-matrix of the unknown functions of the problem. 
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3.4     In-Plane Strains in Terms of the Unknown Functions 

In order to perform the finite element formulation, it is necessary to have an expression for the strain 

energy in terms of the unknown functions u0, v0, w0, eXz, £XJ, eiz, £yz , £yz, £yz , £\L , £zz , £zJ • 

This requires expressions for the strains in term of the unknown functions. The transverse strains 

£xz , £xz , £xz , £yz , EyJ, EyJ, £zz , £zz , Ezz are the unknown functions themselves. Therefore, it is 

necessary to express the in-plane strains £xx, £xx , £xJ, £xy , £xy , £xy , £yy, £yy , £yy in terms of the 

unknown functions. 

In order to find the in-plane strains exx', exy'and eyy in terms of the unknown functions we will 

substitute expressions (3.3.27), written here again, 

u 
(fc) 

V'uO 

(fc) (k) 

$u1 

<      V »     = < i'vO >        + < i>vi >        Z+ < 1pv2     1 

w 
I             > 

4>w2    J 

(*) 

(eqn 3.3.27) 

into the strain-displacement relations (3.1.2), written here again, 

£iky = 9 (u|y' + v^ + w^w\y)j    (n0 summation with respect to k). 

(eqn 3.1.12) 

The result can be written in the form 

£-XX 

£yy 

texy 

(fc) 

</>xxO 

(fc) 

►     = < PyyO 

<PxyO 

►    + < 2+ < 

fxx2 

<Pyy2 

<Pxy2 

(fc) 

(3.4.1) 

where expressions for <piJm, <pyym, <fixym (m = 0,1,2) in terms of the unknown functions are (the 

non-linear terms are underbraced): 

Vxio = U0,x + 222 (42.x - 4V,x) + 

-z? (e(2)     - e(l)    \ + c\   2  y-zz,xx       0zz,xxj    ' 

2 [wo,x + Z2 (e(zlx ~ 41',x) (3.4.2) 
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<Pxxi = 2ei% ~ wo,xx + z2 (e^xx - eg'.xx) + 

^x+^^x-^x)]^, 

T^xx2 Q
czz,n   '   o  lczz,xy      i 

(3.4.3) 

(3.4.4) 

VyyO = ^0,y + 222 [£{yly ~ tfly) + 

-zl /V<2)      - £(1>     ) + o   2 lcz.z,yy zz,yy I    ' 

2 [™o,y + 22 (4^ - 41^) 

V?vl = 2evlv - wO,yy + z2 (film ~ £?lyy) + 

wo,y + z2fily-eg\y)]eg\y , 

(3.4.5) 

(3.4.6) 

ryy2        2 zz>yy     o V zz'yJ    ' (3.4.7) 

S<"xyO — u0,y T ^0,x T ."2 lfcxz,y       bxz,y   '   tyz,x       tyz,xJ + 

,2 f,(2)       _    (1)     \    , 
^2 \czz,xy       czz,xyl ~ 

[w0,x + *2 (42),x - 4V,x)]   [wo,v + Z2 (e?ly - £&>„) 

^iVl = 2 (fily + 4V.x) - 2^0,xy + 222 (4V,x„ ~ 4zU) + 

ei\\y [w0,x + 22 (eg), - e{%)] + e% [w,,y + z2 (cg)y - ei%) 

(3.4.8) 

(3.4.9) 

rxy2 ^zz^y   '   ^zz^x^zz,% (3.4.10) 
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fxxO = U0,x + 2^W°^2   ' (3.4.11) 

A = ^x},x - ™o,xx + wa^eflx , (3.4.12) 

JV   - _L(2)      + I />)   \2 
T'XX2 nc2Z,II    '     <J   lcZJ,X  / 1 (3.4.13) 

VyyO = «0,1/ + 2 (^O.y)2    , (3.4.14) 

Vyyi = 2e^,3/ ~ w°.vy + wo,y^?ly  . (3.4.15) 

„(2)   = _I   (2)        ,   I (   (2)   \* 
rVy2       2 zz<w    2 \zz,v)    ' (3.4.16) 

vivo = u°<y + v°>* + ^o.aj^o.j/ (3.4.17) 

<p% = 2 (42,)   + e$tX - w0lXy) + ™o,y42),x + wo,xe™v , (3.4.18) 

J21   = _.(2)        ,   F(2)   M) 
Txy2 °zz,xy   *   *~zz,x*~zz,y   > (3.4.19) 

A = «0,* + 223 (42),x - 43i,x) + \4 {e?lxx - tflxx) + 

■)] (3.4.20) 
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fxxl = 243i,x - ™0,sz + 23 (4'U - 4'U) + 

wo,x + z3 (eWx - 43>x)] 43),x , (3.4.21) 

„,<3>   -_L(3)       +Ife(3)   ^ 
lrxx2 oczj,xx   '   iy  y-zz,x I      ) (3.4.22) 

J3) - vn   + 22, /V<2>   - e<3> W i«? lV2)     - e(3)    "l VyyO - v0,y + *z3 \£yz,y      £yz,yj + 2   3 \  "^ ZZ<VV) 

- \wn   + z-i(e^   -e(3) Y " ~    "'O.T/ T- ^3 I tzz.y      tz2,y ) 

+ 

Ä = 24*,v - wo,yy + 23 (4^ - 42),w) 

"'0,v + Z3(42),y-43,),y)] 

+ 
,(3) 
-zz,y   > 

(3.4.23) 

(3.4.24) 

„(3) _ _iF0)     , 1Tyy2 r)czz,yy T - fe(3) I' 2 \"*J    ' (3.4.25) 

w(3l - un   + vn   + 2zi (e(2)   - e(3)   + e(2)   - e(3) ^ + "rxyO — u0,y   >   u0,x T ^3 I t-xz.y      ^z.y ~ t!/z,x      tyz,xl   ' 

2 /  (2)      _    (3)     \   , 
*3 lczz,xy       czz,xyl   ' 

[w0,x + z3 (e% - 43)
iX)] [w0,y + z3 (4

2>y - eWy) 

W(3)_2L(3)      .-(3)    _Wn       +zjM)      _P(2)     )] + 
fxyl ~ z   bxz,y   i   tyz,x       w0,xy T" Z3 \^zz,xy       tzz,xyJ I  ^ 

,(3) 

(3.4.26) 

™0,y + 23 (4^ ~ 4^)] + 4^ [™0,x + Z3 (^ - £<*>„)]    , (3.4.27) 

0,(3)   = _P(3)        ,      (3)      (3) 
rxy2 °zz,xy   '   ^ zz^x^zz^y (3.4.28) 
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3.5    Expressions for All Strains in Terms of the Unknown 

Functions in Matrix Form 

In performing the finite element formulation it is convenient to write the expression for the strain 

energy in matrix form. Therefore, it is convenient to form column-matrices of strains of each 

sublaminate as follows 

T {,<*>} s 
(fc)        (fc)        (fc)      „   (fc)      „   (fc)      „   (fc) 

til tyy tzz "tyz ^txz 6&X ~-xy (* = 1,2,3), (3.5.1) 
(6x1) 

(where the superscript k denotes the number of a sublaminate) and to write the expressions for these 

column-matrices in terms of the unknown functions UQ, VQ, WO, eU, £xz, £xz, £yz , £yz, £yJ, eL , 

£zz, £zz in matrix form. 

Then, using expressions (3.4.1) for the in-plane strains in terms of the unknown functions, one 

can write 

{eM}=[Z]{pW}, 
(6x1) (6xJ2) (i2xl) 

where 

W-l „(fc) ,(*) „CO „(fc) (k) „CO „(*) „CO M 
VxxO      fxxl      <Pxx2      VyyO      fyyl      iPyy2      PxyO      <Pxyl      Pxy2 2e 

(k) 
£Eyz e{k) 

(12x1) 

(3.5.2) 

JT. 
(3.5.3) 

and 

[Z] = 
(6x12) 

(3.5.4) 

1 z z2 000000000 

000 1 z z2 000000 

000000000001 

000000000010 

000000000 100 

00000012   z2   000 

In the column-matrix {</?(fc)}, the functions <p{^0, ip{
x
k

x\, <p{k
x\, y

(k
y\, ^\, tpfy, <px

k
y\, <p(ky\, ipx

k
y\ are 

expressed in terms of derivatives of the unknown functions by formulas (3.4.2)-(3.4.28). With the 

help of a matrix of differential operators, let us express the column-matrices {</>'fc'} in terms of a 

column-matrix {/}, which contains only the unknown functions. Let us define the column-matrix 
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of the unknown functions as follows: 

if} = „        „        ,„        r{1)      r(1)      P(1)
      P(2)      P(2)      r(2)      f(3)      f(3)      P(3) 

tiO     ^0     ^0     £xz      £yz      Ezz       Exz      Eyz       Ezz       Exz      Eyz      Ezz (3.5.5) 

Then 

L(i)\=L(i)     Ji)     Jl)     „(i)     ,,(!)     „,0)     Ji)     ^d)     W(D     2r(1)    2f(1)    f(1) 
^V      / —   L   VxxO     Pxxl      iPxx2      fyyO      <Pyyl      Pyy2     fxyO     Vxyl      <Pxy2      LExz       ^£yz       Ezz 
(12x1) 

„        4-9*    fr<2) FW   \,    l,2/-(2) Jl)      \ "■OjX "t" ^22 I txz,x       txz,x I ~r 2   2 l t-z-^xx       tjz(n I 

oJ1) ,„ 4-,    /V(1) f(2)      "\ ■^cx2,x       "^C^xx   '   *2 X^zz^xx       &zz,xx J 

-±£(1) 

„       4.0,    fJ2) -(1)^,1,2^(2) -(1)     \ u0,y -r ^Z2 lfcy2,2/       byz,y 1 "r 2^2 lfczz>l/!/       tzz,yy I 

9 J1) ,„„       4- ,„ f J1' J2)     "l &t-yz,y — UJQ,yy T «2 I Ezz,yy      tzz,yy j 

1,(1) 

„        4.,,       J.9,    fJ2) J1)     4.0(2) (1)   \        .2 /.(2) (1)     \ 
"0,y   1   ^0,x "T &z2 \ txz,y       tj2,y Ttj/z,!       tyz,x J    \   *>% \ &zz,xy       tzz,xy J 

9^(1)    4-JD   ^       9,„ 4-9,    fJ1) J2>     ^ ■£ I tx2,y ~r tyz,x f       ^w0,xy ~r -£^2 I t.z.z,xy       czz,xy J 

t-zzyxy 

2e(l) 

2e(1) 
6tyz 

E(1) t22 

> + 

+ < 

£(1) 

»0,1 + 22 feL.1 - £zz,x) 

™0,x + 22 feflx - eiV,TJ 

2  ^«.*j 
i L,   4., ^(2)    J1) Y 2    w0,y + 22 I £zz,y — Ezz,y I 

^0,y + 22 UzJ.y ~ Ezz,y) 

2 y£zz,yj 

W0,x + 22 Uiz.x - e«,:r) I   \wo,y + z2 Uzly ~ Ezz,y) 

^O.x + 22 \£zz,x — £zz,x I     + £zz,x \^0,y + 22 \£zz,y ~ £zz,y j 

e(1) 

Jl) 
-zz,y 

£(1) e(1) 
^22,1^22,1/ 

0 

0 

0 
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8 
8x 0 

82 

0 

0 0 

0 8 

0 0 

0 0 
e 
Si 

e 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
a2 

dv7 

0 

0 

-2 _2!_ 
8x9y 

0 

0 

0 

0 

0 

0 

0 

0 

2-5- 

0 

2 

0 

0 

0 

0 

0 

öv 

2-2- 

1_2 82 

"2*2 8? 

22S?r 

_I »' 

1_2 82 

"2^8F 
22aF 
iji) 

2-2^ 

0 

0 

0 

0 

0 

2-5- 

0 

0 

2 

0 

8x8y 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

*>* 

0 

0 

-^l   -2z,j-x    -4j£ry   2*%   2Z2fx 

0 

0 

0 

0 

0 

1 Jl 8* 
l^dx1 

-22e? 

2Z2W 

z2aTSi 

_222efeT 
0 

0 

0 

0 

0   0 0 
> 

0   0 0 fo 

0   0 0 v>o 

0   0 0 £(1) 
CIS 

0   0 0 £(1) 

0   0 

0   0 

0 

0 Exz 

0   0 0 ® 
0   0 0 £ 
0   0 0 ,(3) 

til 

0   0 0 ® 
0   0 0 I c" ) 

> + 

So, 

+ < 

\ [u>0,x + 22 (e«,x " C«.x)] 

ffiO,i + 22 (tzz.x — £zz,xj I £z«,x 

2 \E"'X) 2 

i [u)0lV + 22 (ei^i, - elV,3/)j 

2 \£zz,yj 

[w0,x + ,2 (Ä - ei%)} [«*, + 22 (e?ly - *&)] 

«V, [-0,x + 22 (Ä - &>„)] + & [wo,y + 22 (e?),y - &>,) 

Czz,xtzz,v 

0 

0 

0 

(6X1) <6Xl2) 

\ 

[flW] {/}  + {r/<1>} 
(12X12) (12Xl)        (12x1) 

{v(1)} 

(3.5.6) 



CHAPTER 3 
160 

where 

Ö 
bx 0 0 * ox 0 i-2 a5 

2Z2ö?f 2*2& 0 2Z2 3? 0 0   0 

_ ö2 

bx'1 0 0 2-$- bx 
0 ,  e2 

0 0 ,   a2 

~2 "bx1 0 0   0 

0 0 0 0 0 1   82 

28? 0 0 0 0 0   0 

0 a 
by 

0 0 0,    b i _2 a2 

2z2äy7 0 2^ 
i .2 a2 

2'2 3l^ 0 0   0 

0 0 _ 92 

by'1 0 Lby 
22SF 0 0 -z*w 0 0   0 

9(1> ] = 
(12x12) 

0 0 0 0 0 2£"iVV 0 0 0 0 0   0 

a 
by 

a 
8s 

0 -2*2£ Jl   82 

z2 5ä5y 
2**& 2*2& 22-äi- z2 öxby 

Q2 

0 0   0 

0 0 zbxby 'by 
2^ OS 

222?fs; 0 0 ~222ä^ 0 0   0 

0 0 0 0 0 a2 

bxby 0 0 0 0 0   0 

0 0 0 2 0 0 0 0 0 0 0   0 

0 0 0 0 2 0 0 0 0 0 0   0 

0 0 0 0 0 1 0 0 0 0 0   0 

(3.5.7) 

(12x1) 

r(1) 
tzz,y 

(   (2) (1)   W 
Ulo.i + ^2 1 Ezz,x ~~ £zz,x I 

2 \f:*,*) 

I   (2) (1)   V     '" 
U^O.y + z2 I £*z,y ~ £zz,y) 

I few\2 

[«,„.,+z2 (<&>, - ai)] [-o,y+Z2 (& - Ä)] 
tin,.,+22 (^ - A)] + av., [«*„+*2 (a

3.1., - A) 

F(1) 
fczz.i 

F(1) 
C22.J/ 

1 

0 

0 

0 

(3.5.8) 

matrix [Z] is defined by equation (3.5.4) and matrix {/}-by equation (3.5.5). 

Analogously we obtain expressions for strains in the second and the third sublaminates in terms 
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of the unknown functions in matrix form: 

where 

(6x1) 

[Z] 
(6x12) 

9 
ÖX 0 0 

0 0 a2 

HZ1 

0 0 0 

0 a 
dy 0 

0 0 a2 

w 
' d(2) ' 

(12x12) 

= 
0 

dy 

0 

_a_ 
dx 

0 

0 

0 0 a2 

dxdy 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

3(2)j {/}  +U2)) 
(12x12) (12x1) (12x1) 

{v<2>} 

0 0 0 0 0 0 

0 0 0 2-2- 0 0 

0 0 0 0 0 1 a2 

2 dx2 

0 0 0 0 0 0 

0 0 0 0 2-2- 0 

0 0 0 0 0 1 92 

2W 
0 0 0 0 0 0 

0 0 0 2-2- Lav 
2-2- *dx 0 

0 0 0 0 0 a2 

dxdy 

0 0 0 2 0 0 

0 0 0 0 2 0 

0 0 0 0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

(3.5.9) 

(3.5.10) 

{*<■>}- 
(12x1) 

\{w0,xf 
(2) 

W0,x£zz,x 

* (e{2) Y 2  \£",x) 

5 (^O.y)2 

(2) 
U>0,yEzz,y 

i (e{2) V 

W0,xW0,y 

(2)      , (2) 
W0,y£zz,x + Wo,x£hz,y 

_(2)   „(2) 

0 

0 

(3.5.11) 
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and 

(6x1) 

[Z] 
(6x12) 

[ö(3)] {/} +{v{3)) 
(12x12) (12xl)        (12x1) 

{„(»>} 

(3.5.12) 

where 

a 
dx 0 0 0 0 0 2*s& 0 ly2 82 

2z3 3?r -2*3£ 0 -1*2 e2 

2*3 37? 

0 0 92 

IP 0 0 0 0 0 -23e?r 2-2- Ldx 0 r     »3 23e? 

0 0 0 0 0 0 0 0 0 0 0 3   82 

"25?? 

0 8 
dy 0 0 0 0 0 

2*4 2*3 a? 0 -2*s£ 2Z3 3pr 

0 0 82 

~w 0 0 0 0 0 ,  e2 

~Z*W 0 2-2- **£ 
9(3) ] = 

(12x12) 

0 
a 
8v 

0 
9 

ax 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

2*3£ 

0 
-2 a7 
ZZ dxdy 

0 

-2*4 
0 1   8s 

28^ 

r2   82 

*3 8i8v 

0 0 0 0 0 0 0 ~2z3ehi 2-2- 2^ Z3»£5J 

0 0 0 0 0 0 0 0 0 0 0 92 

8xd~y 

0 0 0 0 0 0 0 0 0 2 0 0 

0 0 0 0 0 0 0 0 0 0 2 0 

0 0 0 0 0 0 0 0 0 0 0 1 

(3.5.13) 
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(12x1) 

e(3) 
C-ZZ.X 

\    W0,x + Z3 \£?z,x - Ez%) 

t«0,i + 23 I ^,i — £zz,x I 

I fe
(3)   V 

I    WO.y + 23 (e".y _ ^2.» j 

/   (2) (3)   \1     (3) wO,y ~T~ z3 [Ezz,y — £zz,y j    £zz,y 

{v{3)} = \ kfäy) \.      (3.5.14) 

w0,x + 23 {e(zlx - el*'*Jj ]yjo,y + z3 [ez
2ly - eflyj 

lx \m,y + *3 (e{% - £%)] + ei3ly [wo,x + 23 (Ä ~ &) 

F(3) e( 

0 

0 

0 

In summary, the column-matrices of strains {e(1)}, {e{2)}, {e(3)} in each of the three sublami- 

nates (the face sheets and the core) are defined by the expressions 

/ \ 

e(3) 
£■22,: 

.(3)     (3) 
~zz,xt-zz,y 

(6X1) <6X12> M9v191 (12xl) M9V11 (12x12) (12x1) 

{„(!>} 

(eqn 3.5.6) 

/ 

U(2)}=[Z] 
(6xl) (6x12) 

\ 

>>]   {/}   +{r/(2)} 
(12x12) (12xl)        (12x1) 

V / 

(eqn 3.5.9) 

{e^}=[Z\ 
(6X1) (6X12) nivi')i (12x1)        iioyii (12x12) (12x1) 

V (^,(3)} / 

(eqn 3.5.12) 

where  [ Z ]  is a matrix that depends only on the z-coordinate, [ d{l) ], [ 9(2) ], [ d(3) ] are the 
(6x12) (12x12)      (12x12)     (12x12) 

matrices of differential operators,   {/}   is a column-matrix of the unknown functions of the problem, 
(12x1) 
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IV1'}, {V2)}> {??(3)} are tne column-matrices of non-linear combinations of the unknown functions 
(12x1)     (12x1)     (12x1) 
of the problem. 
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3.6    Stress-Strain Relations 

165 

The fiber-reinforced lamina of a composite material are orthotropic. In a material coordinate system 

(xi, X2,xs), whose xj-axis is parallel to the fiber direction of a lamina, the stress-strain and strain- 

stress relations have the form 

and 

0-11 C11 C\2 Cl3 0 0 0 £11 

022 C12 C22 ^23 0 0 0 £22 

033 
>   Cl3 C*23 C33 0 0 0 

< 
£33 

"23 0 0 0 C44 0 0 2£23 

0"l3 0 0 0 0 CM 0 2ei3 

012 
- 

0 0 0 0 0 C*66 2£l2 

£n 

* 
" 5„ S\2 -5i3 0 0 0 o-ii 

£22 5i2 S22 -523 0 0 0 022 

£33 
► = 

Sl3 S23 S33 0 0 0 
< 

033 

2E23 0 0 0 £44 0 0 ^23 

2£l3 0 0 0 0 S55 0 013 

2^12 0 0 0 0 0 -566 012 

(3.6.1) 

(3.6.2) 

Quantities CVj and Sij are the stiffness coefficients and compliance coefficients in the material coor- 

dinate system. The strain-stress relations in the principal material coordinate system can be written 

in terms of engineering constants as follows 

£11 

£22 

£33 

2£23 

2£l3 

2£l2 

If we invert the compliance matrix in equation (3), we receive the following expressions for the stiff- 

ness coefficients Cy, in material coordinate system, in terms of engineering constants: 

 (£2 - 43E3) E\ 

1 
£1 

_£1Z 
£. £1 

0 0 0 011 

i02 1 
£2 

"23 
£2 

0 0 0 022 

£. 
"23 
£2 

1 
£3 

0 0 0 I 033 

0 0 0 1 
G23 

0 0 023 

0 0 0 0 1 
G,3 

0 013 

0 0 0 0 0 1 
0-12 

(3.6.3) 

C„ 
E2EX - Eu&Es - v\2El - 2v12E2V23Vi3E3 - ^3£2£3' 

(3.6.4) 
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C\i = 

Cl3 = 

C22 = 

C23 = 

C33 = 

(1/12E2 + ^23^13-^3) Ei E2 

E2E\ - - Exv\3E3 - v\2E\ - 2vi2E2V2zV\sEz - 

{V\2V2Z + V\z) E1E2E3 

- v^3E2E3' 

E2E1 - - Eiv%3E3 - v^El - 2vi2E2V23Vi3E3 - 

(E1 - ul3E3) El 

-v\3E2E3' 

E2E1 - - Eiv\3E3 - v\2E\ - 2vnE2V23VizE3 - 

(V22E1 + VUV12E2) E2E3 

- v\3E2E3' 

E2E1 - Exv\3E3 - v\2E\ - 2vi2E2V2zvuE3 - 

(Ei - VI2E2) E2E3 

-v\3E2E3' 

E2E1 - Exv\3E3 - v\^El - 2vi2E2V2^\%E3 - v\3E2E3' 

C44 — G23, 

166 

(3.6.5) 

(3.6.6) 

(3.6.7) 

(3.6.8) 

(3.6.9) 

(3.6.10) 

C55 = G 13, (3.6.11) 

Cfiß — G 12- (3.6.12) 

In the laminate coordinate system (x, y, z), whose axes are aligned with the sides of the plate (Figure 

3.2), the stress-strain relations have the form (Reddy, 1996): 

or 

Gyy 

<7zz 

<?yz 

<?xz 

(T- xy 

>  = 

C11 C\2 C13     0       0 Ci6 

C12 C22 C23      0       0 ^26 

C13 C23 C33      0       0 C36 

0 0 0 Ü44 c45 0 

0 0 0 Ci5 Ü55 0 

c 16 ?26      C36 0 0    c 66 

&XX 

£yy 

£zz 

2Zyz 

£&XZ 

"Cxy 

M=[C]{e}. 

(3.6.13) 

(3.6.14) 

where d0 are the transformed elastic coefficients, referred to the laminate coordinate system, which 

are related to the elastic coefficients Ci7- in the material coordinate system by the following formulas: 

Cn = Cue4 + 2 (C12 + 2C66) cV + C22s (3.6.15) 
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C12 = C12c
4 + (Cn + C22 - 4C66) cV + C12s

4, (3.6.16) 

C13 = C13c
2 + C23s

2, (3.6.17) 

C16 = {Cu - Cl2 - 2C66)c
3s - 3C16c

2s2 + (2C66 + C12 - C22) cs3, (3.6.18) 

C22 = C22c
4 + 2 (C12 + 2C66) cV + Cll5

4, (3.6.19) 

C23 = C23c
2 + C13s

2, (3-6.20) 

C26 = (C12 - C22 + 2C66) c
3s + (Cn - C12 - 2C66)cs3, (3.6.21) 

Ü33 = C33, (3-6.22) 

C36 = (C13-C23)cS, (3.6.23) 

C44 = C44c
2 + C55s

2, (3.6.24) 

C45 = (C55 - C44)c5, (3.6.25) 

C55 = C55c
2 + C4452, (3.6.26) 

C66 = (Cn + C22 - 2C12 - 2C66) cV + C66 (c
4 + s4) , (3.6.27) 

where c = cosO, s = sinö, 6 is an angle between a direction of fiber orientation in a lamina and the 

x-axis of a laminate coordinate system, measured counterclockwise (Figure 3.2). 
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3.7    Strain Energy of the Sandwich Composite Plate 

In order to perform the finite element formulation, it is necessary to write the strain energy of the 

sandwich plate in matrix form in terms of the unknown functions. The strain energy of the whole 

sandwich plate consists of the strain energies of the face sheets and the core. Therefore, in this 

section the expressions for the strain energies of the face sheets and the core are derived 

Strain Energy of the Lower Face Sheet 

The face sheets of the sandwich platform are composite laminated plates, which are built up of 

fiber-reinforced plies. The orientation of the fibers can vary from ply to ply, and, therefore, values of 

the stiffness coefficients dj in the Hooke's law (referred to the laminate coordinate system) can vary 

from ply to ply in the face sheets. Let us introduce the following notation for a stiffness coefficient 

in the Hooke's law for a ply of the lower face sheet, in the laminate coordinate system: 

a7*(l) (3.7.1) 

where the right superscript (1) denotes that a stiffness coefficient is associated with the first sub- 

laminate (i.e. the lower face sheet), the left superscript a is a number of a ply in a lower face sheet, 

subscripts i and j denote a position of the stiffness coefficient in the stiffness matrix. The stiffness 

matrix with components aCij   will be denoted as 

W 

*7M 
°11 U12 

a7>0) 
°13 0 0 °16 

^\2 °22 u23 0 0 °26 

u13 °23 °33 0 0 ^36 

0 0 0 °44 (-/45 0 

0 0 0 °45 °55 0 
*7M u16 °26 

a^1) 
^ße 0 0 °66 

(3.7.2) 

So, the strain energy of a lower face sheet's ply with a number a is 

u*) = \ll!{e(1))T]£{"]{£(l)}dV' (37-3) 

where V&    is volume of a ply with number a, of the lower face sheet (Figure 9.1), and the column- 

matrix of strains {e^} is defined as follows: 

{*<*>} S[ff&>    4V    £>    24V    24V    24V f. (3.7.4) 
(6x1) 



CHAPTER 3 169 

Unlike the material coefficients ac[]), the strains do not have a subscript a, which denotes the 

number of a ply of the lower face sheet, because assumptions about through-the-thickness variation 

of strains4 are made for the whole lower face sheet, not for each individual ply of the lower face 

sheet. Therefore, each strain in the lower face sheet, as a function of z-coordinate, is represented 

with a single expression for all the domain z\ < z < 22 (Figure 2.3) 

If one substitutes equation (3.5.6) into equation (3.7.3), one obtains 

u^ = U[fU<[z}T[c^}[z}{^} 
lJJJ    \,    ,J     (12x6)    l,c      J(6xl2) ),„„,f 

dV . 

(vi») (lxl2) 

Let n be a number of plies in the lower face sheet and let 

(6x6)  (6Xl2) (12x1) 

(3.7.5) 

£l = 2li 12, £3, •••, in = *2 

be 2-coordinates of the interfaces between the plies of the lower face sheet (Figure 3.3). A ply with 

a number a is enclosed between the planes z = £Q and z = £a+1. Then expression (3.7.5) can be 

written as 

t/U) = ijj {^>}T (j [ Z ]T [ &?} \Z\dz\ {^>} dx dy . (3.7.6) 

0 0 \£„ / 

The strain energy of the whole lower face sheet is 

a=l {I U=l/ / 0 0 \a=ii. 

B  L 

where 

\JJ{<pV}T[DV]{pV}dxdy, 
0 0 

D"]-i:1 \z\T[c(?]\z\dz. 
19x121 0=1   , 

(3.7.7) 

(3.7.8) 
(12x12) 

Matrix [D^] is symmetric and its components are 
(12x12) 

4section 3.2 of the chapter 3 
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W_IV «r(1) (& D$ = E ^n tta+i - &), ^ = | E a^n (^+i - £) > 
a=l a=l 

^ = 5 E ^ (^ - £). ^ = 11 "*» (^ - & 
a=l a=1 

a=\ a=l 

^^E^^+i-^X^o, 

Q = l 

#22   = Ö 2^      Gl1   VWl - UJ .   ^23   - 4 2^      °n   VWl       Sa) > 
3 a=l " "=1 

a=l Q=1 

^ = J E '#£ (44
+1 - £), D$ = i E <*« (£+1 - £), 

3 a=l " «=1 

ugio=o,ija=o,43a=if:(€i+1-ö)ac 2\   a7=7(l) 
9 ^^ v»a-M       ^>aj      °13 > 

a=l 

^ = \ E "3? (€-+i - £). ^ = IE "3? (^ - £). 
5 a=l " "=1 



CHAPTER 3 m 

Dil] = \ E ati8 (ci+i - £). ^ = | E (&» - £) ^y, 

a=l o=l 

öSI=O. ^^E^fei^)- 3«=i 

Q=l "=1 

Q=l 0=1 

^48   =5   E ^   ^+1 ~~ ^ '     Di9   ~ 3 E   "^26   ^"+1       ^ ' 
a=l oc-\ 

^So = o, i>öi = o, i?S2 = E a^} (&-&), 
Q = l 

Dg]=\ E 
a^y (£+i - ß). ^=1 E °^ <&» - &. 

^ - \ E Q^ te+i - O .   DSo = 0,   D& = 0, 
a=l 

n(i)  _ 1 v   ar(1) (f2     -f2) 
■^5,12 - öL 23   ^° + 1       ?Q> 
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Q=l "=1 

^ = I E   ^ (&» - £)'•   ^ = g E   ^ (€S + 1 - «a) 
Q = l Q = l 

Sgo - 0.   ^i = 0.   *>& = \ E ^ (Ä+i - ^) 
3
Q=i 

^ = E a3? «-+1 - *■> • ^ = \ E Q 3? (ö+i - ea), 
a=l Q=1 

^i
9
)=iEa4i6)(^+1-a.M:io=oI 

a=l 

D® = \ E "3? (ö+i - £). ^ = j E aeff (£+i - £) • 
Q=1 <*=1 

n«1)  _n  n*1)  -n    n(1)  -!v Qr(1) Cf2     -f2,l ■^8,10 = U' -^8,11 — U'     "^8,12 —  2 2^      °36   l>a+l       S<J> 
i = l 

D99   - 7 2^,      G66   IWl       ?aj >     ^9,10 ~U> 
o = l 

n*1) -n n(1) -iv Qr(1) fa3    -f3) ■^9,11 — U' ^9,12 —  n  /_,      °36   VSQ+1       SOJ I 
öa=l 

0&O = E   a^55   (&+1 - &) ,     ögll = E   ^ tta+1 - fa) , 
a=l a=l 

^lo!l2 = 0,   D{\]n = E   <4  (4.+1 - U ,    oil!» = 0. 
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^12,12 — Z_^      ^33   (Ca+1       Sa)' 
(3.7.9) 

Q=l 

The quantities £>jx) characterize the averaged (through the thickness) material properties of the 

lower face sheet. If failure occurs, the material constants ac[]\ that characterize each individual ply 

of the lower face sheet, change their values. Therefore, if the failure occurs, the averaged material 

properties DJ1} change their values too. The method of reducing the values of the material constants 
aC~M in case of the failure, is described in the subsequent sections. 

So, the strain energy of the lower face sheet is 

U^ = 1-JJ{^Y[D^]{^}dV = 

{/}   + 
(12x1) (12x1) 

{/}    + 
(12x1) 

dx dy , (3.7.10) 

(12x1) 

where the matrix [ <9(1) ] of differential operators is defined by equations (3.5.7) , the column-matrix 

{/} of the unknown functions is defined by equation (3.5.5), {r]W} is the column-matrix of the non- 

linear combinations of the unknown functions, and matrix [D^] is the matrix of material constants, 

averaged over the thickness of the lower face sheet. 

Strain Energy of the Upper Face Sheet 

Let us introduce the following notation for a stiffness coefficient in the Hooke's law for a ply of 

the upper face sheet in the laminate coordinate system: 

aC (3) (3.7.11) 

where the right superscript (3) denotes that a stiffness coefficient is associated with the third sub- 

laminate (i.e. the upper face sheet), the left superscript a is a number of a ply in the upper face 

sheet, subscripts i and j denote a position of the stiffness coefficient in the stiffness matrix. The 

stiffness matrix with components aCti   will be denoted as 

' a77(3) 
°11 

a7^(3) 
°12 

a7-(3) 
W3 0 0 a7*(3) 

°16 

a^(3) 
°12 

a7T(3) 
°22 °23 0 0 a^<3) 

°26 

r^(3)i 
= 

a^(3) 
°13 

0 

a?^(3) 
°23 

0 

a7^(3) 
°33 

0 

0 
a7*(3) 

L-44 

0 
a7^(3) 

°45 

a^(3) 
°36 

0 

0 0 0 ap(3) a^<3) 0 

°16 
a^(3) 

L/26 °36 0 0 a7^(3) 
u66 

(3.7.12) 
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So, the strain energy of a ply with a number a, of the upper face sheet, is 

^3> = |///{e(8,}T[^3)]{e(3)}dV' (3-7-13) 

where V"i3) is volume of a ply with number a, of the upper face sheet. Let  m be a number of plies 

in the upper face sheet and let 

Cl = z3, C2, C3, ■•-, Cm = Z4 

be z-coordinates of the interfaces between the plies of the upper face sheet. 

Then, performing the same derivations as for the lower face sheets, one can obtain the following 

expression for the strain energy of the upper face sheet 

B L 

jy(3) = i//{<^(3)}T[-D(3)]{^3)} dx dy, (3.7.14) 
0   0    (1x12)     (12X12) (12x1) 

where matrix [£>(3)] is symmetric and its components are defined by the formulas similar to the 

formulas that define the components of the matrix [-D(1)] , for example: 

D™ = £ <» (Co+1 - o, D$ = \ £ «cff (c2+1 - C), 1$ = \ £ a&S (£+> - cl) ■ 
a=l a=l a=l 

(3.7.15) 

So, the strain energy of the upper face sheet is 

1/(3) = IJj {^)}T [D^\ {^} dx dy = 

{/}   +{VW}}    [D(3)
] ([ö<

3
>]  {/}   +{^(3)})   dxdy, (3.7.16) 

12xl)        (12x1)/      (12x12)   \ (12X12) (12xl)        (12x1)/ 

where matrices [ d^ ], {/} and {T?(
3
)} are defined by formulas (3.5.13), (3.5.5) and (3.5.14) respec- 

tively and matrix [£>(3)] is a matrix of material constants, averaged over the thickness of the upper 

face sheet. 

Strain energy of the core of the sandwich plate 

The core of the sandwich plate is considered to be a homogeneous orthotropic medium. But the 

failure in the core can be distributed nonuniformly in the thickness direction. As a result of this, 

in the presence of failure the coefficients Cij of the stress-strain relation of the core can vary in the 
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thickness direction. To take account of this, the core is nominally divided into the layers, parallel to 

the x-y-plane, such that within each layer the coefficients of the stress-strain relation do not vary in 

the thickness direction. Therefore, the core is treated as a laminated plate, the same way as the face 

sheets, and the expression for the strain energy of the core has the same form as the expressions for 

the strain energy of the face sheets: 

{/}   +{r/(2)})    [P<2>] ([a<2>]  {/}   +{v{2)})   dxdy,      (3.7.17) 
0   0      \ (12X12) (12X1)        (12X1)/      (12x12)   V (12X12) (12X1)        (12x1)/ 

where matrices [ d<2> ], {/} and {r)W} are defined by formulas (3.5.10), (3.5.5) and (3.5.11) respec- 

tively. The matrix [£>(2)] is a matrix of material constants, averaged over the thickness of the core. 

It is defined analogously to the matrices [£>(1)] and [£>(3)] . 

Strain Energy of the Sandwich Plate 

The strain energy of the sandwich plate is the sum of the strain energies of the core and the face 

sheets: 

B   L 

öo)i {/} + {T?
(1)

}) [z?(1)] \[d{1)] {/} +{7?(1)}l dxdy + 
12x12) (12Xl)        (12x1)/ (12x12)   \ (12x12) (12X1)        (12x1)/ 

9(2)] {/} +{T/
2
>}) [D&] j[d(2)] {/} +{7?(2)}| dxdy + 

12x12) (12Xl)        (12X1)/ (12x12)  V (12X12) (12Xl)        (12x1)/ 

0(3) {/}   + {TM)    to<3>l \\dW]  {/}   +U3)})   dxdy,        (3.7.18) 
12x1)        L.J   /      LJ,  \LJ(12xl) „„, (12x1) ,(12x12) (12X1)        (12x1)/      (12x12)   \ (12x12) 

where [l>(1)], [D(2)], [-D(3)] are the matrices of material constants, averaged over the thickness 

of the sublaminates; {/} is the column-matrix of the unknown functions of the problem; {7?(1)}, 

{^(2)}. {y3)} are the column-matrices of the non-linear combinations of the unknown functions of 

the problem and their spatial derivatives. All the functions, that enter into the expression (3.7.18) 

for the strain energy of the sandwich plate, depend on coordinates x, y and time t. Therefore, this 

expression is suitable for construction of the two-dimensional plate theory of the sandwich composite 

platform. 
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3.8    Strain Energy of Elastic Foundation 

We shall model the ground, on which the platform is dropped, as a Winkler elastic foundation, 

i.e. we shall take the reaction forces of the elastic foundation to be linearly proportional to the 

displacement of the platform in z-direction at the area of contact of the platform with the ground. 

In such a model, the force per unit area, resisting the displacement of the platform, is equal to 

-s w(1)| _ , where the function s (x,y) is usually referred to as the modulus of the foundation. 

Then the strain energy of the elastic foundation is 

B  L 

Uf = -        s{x,y) |u>w (z,y,zi,t) 

0   0 

l2 
dx dy 

According to equation (3.3.14), 

WW {x,y,zut)= w0 + 4**2 + 4V (2i - 2z) 

(3.8.1) 

(3.8.2) 

or 

where 

ur W{x,y,z-1,t)=    0   0    1    0   0    (21 -Zi)   0   0   z2    0   0   0 {/}. 

{/} 
(1)      Jl)      Jl)      ,(2)      J2)      .(2)      _(3) (3) (3) 

UQ     VQ     WQ     EXZ      Eyz      Ezz      £xz      £yz      £zz       £xz      tyz      Ezz 

is a column-matrix of the unknown functions of the problem. Then 

,0) 
l2 

{x,y,zi,t)    ={fY< 

0 

0 

1 

0 

0 

z\ -z2 

0 

0 

Z2 

0 

0 

0 

> < 

0 

0 

1 

0 

0 

Zl -Z2 

0 

0 

Z2 

0 

0 

0 

} {/} 

(3.8.3) 
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where 

[D] 

— {f}T[D} 
(1x12)    (12x12 

{/} 
)(12xl) 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 21 -22 0 0 22 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 Z\ - Z2 0 0 (Zl - 22)2 0 0 (21 - 22) 22 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 22 0 0 {Z\ - 22) 22 0 0 z2 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

The substitution of equation (11.4) into equation (11.1) yields 

B L 

Uf = U fa{x,y)  {f}T[D}   {/}   dxdy 
lJ   J (1x12)    (12xl2)(12xl) 

(3.8.4) 

(3.8.5) 

(3.8.6) 

This is the expression for the strain energy of the elastic foundation in terms of the unknown functions 

{/} 
(i)    M) .(1) 

UQ     VQ     WQ     £XZ      Eyz      £zz fcxz 
.(2) (2) 
--yz        £zz fcxz 

.(3) (3) 
-yz       t-zz 
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3.9    Potential Energy of the Platform and the Cargo in the 

Gravity Field 

Potential energy of the platform in the gravity field 

We take a zero level of the potential energy of the platform in the position, in which the platform 

touches the ground, but the ground is not compressed yet, or, in other words, it is assumed that 

the potential energy of the platform in the gravity field is equal to zero at the initial moment of 

interaction of the platform with the ground. Let us find an expression for the potential energy of 

the lower face sheet. The projection on the z-axis of the gravity force per unit volume, acting on 

the lower face sheet, is 

G(D = -pWg, (3.9.1) 

where p^ is mass density of the material of the lower face sheet, and g = 9.8^ is the absolute value 

of acceleration of free fall (absolute value of gravity force per unit mass). The projection Gz of 

the gravity force on the z-axis is negative because the gravity force is directed downward, while the 

z-axis is chosen to be directed upward. Therefore, we had to put the " - " sign in the expression 

(3.9.1). When the platform deforms as a result of its interaction with the ground, the gravity force 

performs mechanical work, which for the lower face sheet has the form 

B   L z2 

W(D = fffö^ WW dV = fff - pWgwW dV = -P{l)af If™{1) dz dx dy. (3.9.2) 

(vo>) (ve>) ° ° 2l 

Therefore, the potential energy of the lower face sheet, due to the gravity force, is 

B  L z2 

n<J) = -W(1) = pWg f f fwW dz dx dy . (3.9.3) 

0   0 z\ 

According to equation (3.3.14), it was found that 

w^ (x, y, z, t) = w0 (x, y, t) + e£> (a:, y, t) z2 + e£> (*, y, t) (z - z2)     (z, < z < z2). 

The substitution of the last expression into the expression (3.9.3) yields 

B   L   22 

IlW = p{1)g f f f [wo {x, y, t) + £$ (a:, y, t) z2 + e™ {x, y, t) {z - 22)]  dz dx dy . 

0     0   21 
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The integrating of the last expression with respect to z leads 

179 

to 

B L 

UW=pWgjj 
n   n 

dx dy . (3.9.4) 
W0 (22 - 2l) + &  *2 (22 - *l) ~ ^E"  ^l ~ ^ 

0   0 

The potential energy of the core of the sandwich plate in the gravity field is 

B  L z3 

n(2) = p(2)g f f fwW dz dx dy . (3-9-5) 

n  n zo 

According to equation (3.3.8), 

0    0   22 

w& (a:, y, z, t) = w0 {x, y, t) + e%} {x, y, t) 

Substituting the last expression into expression (3.9.5.5) and integrating 

obtains 

with respect to z, one 

B L 

HV)=pMgJJ 
o o 

w0{z3-Z2) + \e?H2%-!$) 
0   0 

The potential energy of the upper face sheet of the sandwich plat 

is 

dx dy . (3.9.6) 

;e in the gravity field 

B L Zi 

n(3) = pWg f f fwW dz dx dy . (3-9-7) 

0     0   23 

Then one can incorporate equation (3.3.15), 

v,W(x,y,z,t) = w0{x,y,t) + e(?Hwt) zi +e% (x,y,t)(z - z3)      {z3 < z < z*). 

into expression (3.9.7) and integrate with respect to z, yielding 

B  L j - 
n(3) = p(Z)g [  f    m (24 _ Z3) + e(2)  Z3 (24 _ 23) + e(3) _ (Z4 _ 23)2 

0   0 

The potential energy of the whole sandwich plate in the gravity field is 

iW/orm-nW + nm + n^ 

dx dy . (3.9.8) 

B  L 1 - 

= PW9 \ / U (Z2 - *i) + eg z2 (z2 - zx) - -eiV (*i - ^)2J  dx dy+ 
0 0 
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B  L 

0   0 

dx dy+ 

+PW9 

B  L 

II 
0   0 

WO (24 - 23) + 41   z3 (24 - 23) + 41 Ö (24 ~ Z3) (3); dx dy (3.9.9) 

This expression can be written in matrix form as 

B L 

^platform = if}     i^p}   dx 

0   0 

dy, 

where 

{/}J „   ,,   „,   M)      M)      M)      .(2)  J2)  ,(2)   (3)   (3)   (3) 
UO     VQ     WQ     EXZ      £yz      £zz      £xz      £yz      £zz       £xz      Eyz      Ezz 

is a row-matrix of the unknown functions of the problem and 

0 

0 

[P{1) (22 - *l) + P(2) (23 - 22) + PW (Zi - Z3)] 

0 

0 

-4P
(1)
(*I-*)

2 

{rP} = 5 { 
0 

0 

[P(l)22     (22      -Zl)+      IP'2)      (*f      -     2|)      +    PW       Z,    ^     -     Zg)] 

0 

0 

*P<3> (24 - 23)
2 

> . 

(3.9.10) 

(3.9.11) 

Potential energy of the cargo in the gravity field 

Next, let the cargo of mass M on the upper surface occupy the region So of area Ao- We assume 

that contact between the cargo and upper surface of the sandwich platform exists all the time. 

During interaction of the platform with the ground, the displacement of the cargo is equal to the 
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displacement of the region So of the upper surface, which is in contact with the cargo, i.e. the 

displacement of the cargo is equal to w(3) (x, y, z4, t), where x and y belong to the region S0. When 

the platform deforms as a result of its interaction with the ground and the cargo, the gravity force, 

acting on the cargo, produces mechanical work 

Wcargo = -    big w{3)(x,y,z4,t) dxdy 

(So) 

B  L 

= - f IM 9 H{x,y) ™(3) (x,y,z4,t) dx dy , (3.9.12) 

o o 

where 

,   1 in region So ,„ „   „> 
H(x,y) = { (3.9.13) 

I     0 otherwise 

and n is the mass of the cargo per unit area of contact with the platform, i.e. a quantity such that 

M =  11 /J. dx dy . 

(So) 

If the mass of the cargo is uniformly distributed over the surface of the contact, then 

M 

Then the potential energy of the cargo in the gravity field is 

B  L 

ncargo = -Wcargo = J[p 9H(x,y) w& (x,y,z4,t) dx dy . (3.9.14) 

0   0 

According to equation (3.3.15), 

w^ (x, y, Z4, t) = w0 (x, y, t) + e<2; (x, y, t) z3 + e£> (a;, y, t) (z4 - 23) • (3-9.15) 

Substituting (3.9.15) into (3.9.14), one receives 

B  L 

ncargo = / [fig H(x,y)  [w0 + eg z3 + e£> {z4 - z3)] dx dy . (3.9.16) 

0 0 

Expression (3.9.16) can be written in matrix form as follows: 

B L 

ncargo = yy   {/}T{rc}   , (3.9.17) 

0   0 
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u      t t\T (!)      (!)    JV    -(2>    ^    A2)    P(3)
    P

(3)
    r(3)     is a row-matrix where {/}    =     u0    VQ    U>O    £XZ    eyd    £iz    £Xz    £yz    £zz    eXz    £yz    £zz   J 1Sllim 

of the unknown functions of the problem and 

{Tc} = fi g H {x,y) [ 0   0100000    z3    00    «4 - 23 j     • (3.9.18) 

Thus, the total potential energy of the platform and the cargo in the gravity field is 

B  L 

IWorm + Ilcargo = j J iff (PP) + Wc})   dx dy = 

0   0 

where 

0   0 

dx dy 

{r} = {rp} + {rc} = 

(3.9.19) 

0 

0 

9 [p(1) (22 - 21) + P(2) (*3 - za) + P{3) (24 - z3) + M # (i, y)] 

0 

0 

0 

0 

g [pMz2 (z2 -Zl) + \PW {4 - 4) + P{3) z3 (24 - z3) + p H (x, y) z3] 

0 

0 

~pWUZ4-Z3)
2+nH(x,y)(zi-z3) 

(3.9.20) 
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3.10    Kinetic Energy of the Platform and the Cargo 

In order to perform the finite element formulation on the basis of the Hamilton's principle, it is 

necessary to have an expression for the kinetic energy in terms of the unknown functions. The 

kinetic energy of the system under consideration consists of kinetic energies of the platform and the 

cargo. 

Kinetic energy of the platform 

Considering the fact that the mass density of the face sheets is constant, kinetic energy of the 

lower face sheet can be written as follows: 

, 2 Kil)=Vx)ill [("(1))+ (*(1))+ (*(1))' 
(V) 

dV 

'  iW 
T 

'    id) 

(V) 

«w 

w™ 
t           ' 

►      < 

t                                 J 

> dV ,- 

where dots over letters denote partial derivatives with respect to time. 

According to equation (3.3.62), the column-matrix 

form 

i(i)    {,(D    «,(1) 

(3.10.1) 

can be written in the 

d > = Z 
;3x8) (8x12) 

lat {/} • 
(12x1) 

(3.10.2) 

Therefore, 

tf< »-WJI 3(1) 

{v)        \(8X12) 

d_ 
dt {f}        L {12xl)J      ^8x3^       J3x8^ 

9(D d 

L ,ft{f} dV 

(8X12)        (12XlV 

-w// 
(V)       \(8X12) 

J OT(12xl) 

glDll 

(8x8)    \(8xl2> 

Jot {/}      <*V , (3.10.3) 
(12x1) 

where 

Z 

(8x8) 

T   r 

(8x3)       (3x8) 
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1 0 0 

0 0 

0 0 

1 0 

z 0 

z2 0 

0     0 1 

0        0 2 

z 

z2 

0 

0 

0 

z2    0   0    0    0   0 

0   0    0    1 0   0 

0   0    0    0   0    0    1 

z 

z2 

0 

0 

0 

0 

0 

z 

z2 

z3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

z 

z2 

0 

0 

0 

0 

0 

z 

z2 

z3 

0 

0 

0 0 0 

0 0 0 

0 0 0 

z2 0 0 

z3 0 0 

z4 0 0 

1 

Now the kinetic energy can be written in the form 

T B  L 

K( 

0   0 

Z 

(8x8) 

dz 

(3.10.4) 

OT(12xl) 
dx dy ■■ 

B  L 

where 

0   0 (8X12)        (12Xl)> 

D«1 

D^ 

22r 

{/}       dx dy , 
(12xl) / 

Z 
zi    (8x8) 

dz 

(3.10.5) 
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22 

1 z z1 0 0 0 0 0 

z z2 z3 0 0 0 0 0 

z2 
Z3 z4 0 0 0 0 0 

0 0 0 1 z z2 0 0 

0 0 0 z Z2 z3 0 0 

0 0 0 z2 
Z3 Z4 0 0 

0     0     0     0     0     0    1 

0     0     0     0     0     0    z 

dz 

z2 - 2l i (*§ " 4) § (*23 - 4) 0 0 0 0 0 

2 \Z2 4) * H " 4) 1 W - 4) 0 0 0 0 0 

3 1*2 Z?) J«- *f) * te " *?) 0 0 0 0 0 

0 0 0 Z2- Z\ i (4 - 4) i (4 - 4) 0 0 

0 0 0 \ (4 - 4) § (4 - 4) i (4 - 4) 0 0 

0 0 0 3- (4 - 4) 1(4-4) I (4 - 4) 0 0 

0 0 0 0 0 0 z2 -i 'I 1 f,2 _ ,2 
2 V22       *1 

0 0 0 0 0 0 i (4 - 4) I /r3 _ -3 
3 \Z2       z\ 

(3.10.6) 

Analogously, we can write the kinetic energy of the core and the upper face sheet: 

B  L   / \   T 

K(2) \rll 
0   0 (8X12)        ("xl)> 

gf(2) D& 
(8x12) 

£ {/}   )  dxdy  , (3.10.7) 
OT(12xl) 

B  L 

tf<3) -w/ Ö   Ö     \ (8x12) 

where 

OT(12xl) 

JD(3)    |   a'3) 
(8x12) 

at {/}   |  dx d?/  , 
(12x1); 

(3.10.8) 

5(2) 
23 

/ 
z 

zi   (8x8) 

dz = 
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23- «2 i (4 - 4) \(4- 4) 0 0 0 0 0 

i (4 - 4) J (4 - 4) \ (4 - 4) 0 0 0 0 0 

\(4- 4) \(4- 4) 1 (4 - 4) 0 0 0 0 0 

0 0 0 23-22 2- (4 - 4) 3 (Z3 ~ Z2J 0 0 

0 0 0 U4-4) \ (4 - 4) i (4 - 4) 0 0 

0 0 0 3 (23 - z2j i (4 - 4) \{4-4) 0 0 

0 0 0 0 0 0 23 -22 1 (4 - 
0 0 0 0 0 0 1 (4 - 4) U4- 

(3.10.9) 

I5"]"/ 

zA-Z3    ±(4-4)  1(4-4) 
U4-4)  1(4-4)  \(4-4) 
1(4-4)  \(4-4)  1(4-4) 
000 

000 

000 

000 

000 

*s   (8x8) 

0 

0 

0 

24-23 

I (4 - 4) 
U4-4) 

0 

0 

0 

0 

0 

h(4-4)  1(4-4) 
I (4 - 4) 
U4-4) 

U4-4) 
1(4-4) 

0 

0 

0 

0 

0 

0 

24 - 23 

0 

0 

0 

0 

0 

0 

C-2 - 1*4 

(4-4)  H4-4) 

and 0(2)] 

(3.10.10) 

and    d^    are the matrices of differential operators, denned by formulas (3.3.59) and 

(3.3.61). 

So, the kinetic energy of the sandwich plate is 

-w/fey ifii d?fe)dxdy+ 
0   0     \(8xl2) (8x8)       \(8xl2)       (12xl); 

+> fJil ö(2)l I {/} )     f -D(2) 1   ([ ö(2)] I {/} )  dx dy+ 
2 {I    V(8X12)        (12X1V (BX8)J     V(Sxl2)Jat(»")y 
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B L 

+ 
0   0     \(8xl2) 

^(12x1) 

5(3) 

(8x8) 

9<3,ll w   dxdy 
(8x12)       (12X1V 

(3.10.11) 

where matrices of differential operators 9(D ) d& , 0(3) are denned by equations (3.3.56), 

(3.3.59), and (3.3.61); {/} is a column-matrix of the unknown functions, defined by equation (3.3.57); 

and DM 5(2) and L>W are matrices of constants, defined by equations (3.10.6) (3.10.9) 

and (3.10.10). 

Kinetic energy of the cargo 

The cargo of mass M on the upper surface is said to occupy the region So of area A0. We 

assume that a contact between the cargo and upper surface of the sandwich platform exists all the 

time. During interaction of the platform with the ground, the velocity of the cargo is equal to the 

velocity of the region So of the upper surface, which is in contact with the cargo, i.e. the velocity 

of the cargo is equal to ^w^ (x, y, 24, t), where x and y belong to the region So- Therefore, the 

kinetic energy of the cargo is equal to 

Mb 
(So) 

dw(3) (x,y,z4,t) 
dt 

dx dy (3.10.12) 

where fi is the mass of the cargo per unit area of contact with the platform, i.e. a quantity such that 

M =  fffi dx dy . (3.10.13) 

(So) 

If the mass of the cargo is uniformly distributed over the surface of the contact, then 

M 
M = 

Ao 

Equation (3.10.12) can also be written in the form 

B  L 

Kc=\JJfiH(x,y)^ 
0   0 

(dwW(x,y,z4,t) 

where 

H(x,y) = 

dt 

1 in region So 

0 otherwise 

dx dy (3.10.14) 

(3.10.15) 
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According to equation (3.3.15), 

U)(3) (x, y, 24, t) = w0+ E{£ z3 + 4*' (24 - 23) (3.10.16) 

w (3) x,y,24,t) = {/}   {w} (3.10.17) 

where 

{/}^ m fi) (1) t(2) (2) (2) „(3) (3) ,.(3) 
u0 '"0 U>0 CX2 tj/2 t-zz tj2 fcyz tzz C-X2 tyz £*z 

is the row-matrix of the unknown functions of the problem and 

M 

Then 

and 

00100000   z3   00   24- 23 

|«W(x,y,^*)=(|{/})
rM 

/d^3>(x,7/,24,t) 

V        at |{/})TM MT(|{/}) = OT /     (12xl)(lxl2)      VOT / 

a 
{/} at 

(1x12) 

(1x12) 

(12x12) 

(12x1) 

(12x1) 

where 

(12x12) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0    24 

0 

0 

1 

0 

0 

0 

0 

0 

23 

0 

0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 

0 

23 

0 

0 

0 

0 

0 

z3 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

0 

24 - 23 

0 

0 

0 

0 

0 

0   0    23 (24 - 23) 

0   0 0 

0   0 0 

23    0   0   0   0   0   23(24-23)    0   0     (zi-zsY 

(3.10.18) 

(3.10.19) 

(3.10.20) 
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Substitution of expression (18) into the expression (13) yields 

B L 

*e = |//M *(*,*)    (| {/>)       [D, 
(1X12) (12x12)       (12xl) 

— {/} )dx dy . 

o o 

So, the total kinetic energy of the platform and the cargo is 

K = KP + KC = 

(3.10.21) 

B  L 

0   0     \(8xl2) 

d_ 
dt {/} D{1)      I    9(1)1 ^ {/}   I   dx dy+ 

(12x1)y ^gx8^        \ (8x12) dt (12x1) 

B  L 

+ \rJI Q(2) 
1*M 

5<2>        ä~(2> WoO  Ö 

at 
{/}       dxdy+ 

{{     V(8X12)OT(12X1V (8X8)J     VL(8X12)        (12X1) 

B  L 

+ \rll 0(3) 

0   0     \ (8x12) 

d_ 
\dt {/} 

r »,ii a p(3) Q(3) 
dt 

(12x1)/ (8X8)        \(8X12)        (12X1) 

{/}       dxdy+ 

B  L 

+UkH{x>y){l{f} 
0   0 (1x12) 

Dc 

(1x12) (12x12)       (12xi) 

— {/} )dx dy , (3.10.22) 

where 30)    ,      fi)(2)    f      ö(3) are the matrices of differential operators, defined by formulas (3.3.56), 

(3.3.59) and (3.3.61); {/} is a column-matrix of the unknown functions of the problem, defined 

by formula (3.3.57); f D^ J 5(2) 7 5<3> J £>c are the matrices of constants, defined by 

formulas (3.10.6), (3.10.9) and (3.10.10); \i is the mass of the cargo per unit area of the contact with 

the platform, defined by formula (3.10.13); H {x,y) is a function, defined by formula (3.10.15); p(l\ 

p(2), /?(3) are the mass densities of the lower face sheet, the core and the upper face sheet. 
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3.11 Hamilton's Principle for the Sandwich Composite Plat- 

form with the Cargo on its Upper Surface, Dropped on 

Elastic Foundation 

As it was discussed in the chapter 2, the virtual work principle5 

fffaij ÖEij dV = jjJFi 6ui dV + ffqi 6Ui dS (3.11.1) 

(V) (V) (S) 

contains information that the transverse stresses, obtained by integration of the pointwise equilibrium 

equations (second form of the transverse stresses), satisfy the stress boundary conditions on both the 

upper and lower surfaces of the plate6, i.e. the transverse stresses at the upper and lower surfaces 

are equal to the externally applied loads per unit area. Therefore, the finite element formulation, 

based on the virtual work principle, guarantees that the values of the unknown functions, computed 

by the finite element method, are such that the second forms of the transverse stresses, expressed in 

terms of the unknown functions, satisfy the stress boundary conditions on both the upper and lower 

surfaces. In the chapter 2, the finite element formulation, on the basis of the virtual work principle, 

for a plate in cylindrical bending was performed for a static problem. For the problem of the cargo 

platform, dropped on the elastic foundation, which is essentially a dynamic problem, the dynamic 

form of the virtual work principle will be used for the finite element formulation. In the dynamic 

problems, by the use of the d'Alembert's principle which states that a system can be considered 

to be in equilibrium if inertial forces are taken into account, the principle of virtual work can be 

derived in a manner similar to the static problems, except that the terms representing the virtual 

work done by the inertial forces are now included (Washizu, 1982). The virtual work principle for 

the dynamic problems has the form: 

\\\aa Ö£ij dv = Iff (F* - f™i)6ui dv + //* 6ui dS- (3-11,2) 
(V) (V) (S) 

5where Fi are components of the body force per unit volume, qi are components of the surface force per unit 

volume 
6in addition to satisfaction of the conditions of continuity of the transverse stresses across the interfaces between 

the plies of a laminated plate; this continuity is assured by the process of integration of the pointwise equilibrium 

equations. 
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In case of elastic bodies, the virtual work   / / / aij ÖEij dV of internal forces can be written as a 

(V) 
variation of the strain energy 

U = jjj\°a £y dV = JIj\ciimneijemn dV = jjjv dV, (3.11.3) 
(V) (V) (V) 

where Cymn are elastic constants. Besides, suppose that the body forces Fj and the surface forces 

qi have the conservative and nonconservative parts: 

Fi = jrM + Ftc) = -§; + if C\      ft = tf + lt} = ~+ FlnC\ (3-H-4) 

where V is a potential energy density due to the body forces, and V is a potential energy density 

due to the surface forces. Then, the virtual work principle (3.11.2) can be written in the form: 

Sn = j! I (>fc) - pux) 6Ui dV + ffq^c] bm dS, (3.11.5) 

(V) (S) 

where 

n = fffü dV + jjjv dV + jjv dS (3.11.6) 
(V) (V) (S) 

is the total potential energy of the system. The dynamic virtual work principle (3.11.5) can be 

integrated with respect to time between two limits t — t\ and t = t2. Through integration by parts 

and by the use of the convention that the virtual displacements vanish at the limits, one can write 

the dynamic virtual work principle in the form of the extended Hamilton's principle (Meirovich, 

1970) 

6 j (T-U.) dt+ J6'Wnc dt = 0, (3.11.7) 

where 

= IJJJp Wi dV (3.11.8) 
{V) 

is kinetic energy of the system, and 

6'Wnc - jjJF^Sui dV + jjq^c) 6Ui dS (3.11.9) 
(V) (S) 
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is the virtual work of the external nonconservative forces. In the notation 6'Wnc the prime is used 

in order to make it understood, that 6'Wnc is not a variation of some state function Wnc (Washizu, 

1982). 

The mechanical system under consideration consists of the sandwich platform, the cargo on its 

upper surface and elastic foundation. This system is not acted upon by any nonconservative surface 

forces. The nonconservative body forces are the forces of internal friction that cause damping 

(damping forces). 

So, the Hamilton's principle for the system that consists of the sandwich platform, the cargo on 

its upper surface and the elastic foundation can be written as follows: 

6 / [(strain energy of platform) + ( strain energy of elastic foundation) + 

t, 

+ (potential energy of platform in gravity field) + (potential energy of cargo in gravity field) 

- (kinetic energy of platform) - (kinetic energy of cargo)] dt 

(virtual work of damping forces ) dt = 0. (3.11.10) 

u 

12 

In order to perform the finite element formulation, the Hamilton's principle (3.11.10) needs to be 

written in terms of the unknown functions for a finite element, and that allows to derive the element 

stiffness matrix, mass matrix, damping matrix and load vector. In a finite element model of the 

whole structure, these element matrices and vectors need to be assembled into the global matrices 

and vectors. In general, the global damping matrix can not be constructed from the element damping 

matrices, the same way as it is done for the mass and stiffness matrices, mainly because the damping 

properties of the separate finite elements are difficult to measure experimentally, and because the 

energy dissipation in a system depends on the properties of the whole system. Therefore, it is a 

common practice to construct the global damping matrix as a linear combination of the mass matrix 

and stiffness matrix of the complete element assemblage (Bathe, 1995 ). Therefore, for the purpose 

of developing the finite element formulation, there is no need to include the virtual work of the 

damping forces into the Hamilton's principle, written for a finite element. The components of all 

terms of the equation (3.11.10), except for the virtual work of the damping forces, were written in 
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terms of the column-matrix of the unknown functions 

{/} = , „        ,,,        *-(1)      r(1)      rW      P(2)      F(2)      F(2)      f(3)      f(3)      £(3) 
UQ      VQ     WQ     EXZ      £yz      £zz      £xz      Eyz      tzz       Exz      tyz      tzz 

in the previous sections of this chapter. 

The Hamilton's principle, written in the form of equation (3.11.10), is convenient for the finite 

element formulation of the problem. A method of performing the finite element formulation for the 

problem under consideration will be discussed in the following section. 
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3.12    Some Considerations Regarding Finite Element Formu- 

lation 

The maximum order of derivatives of w0 and e[kJ with respect to x and y in the Hamilton's principle 

is 2. Hence, the convergence of the finite element model will be ensured if, along the interelement 

boundaries, interpolation polynomials for w0 and e£y and their first derivatives in the directions 

normal to the element boundaries (^ and ^-) are continuous. If finite elements satisfy these 

requirements, they are called conforming elements with C1 continuity. If interpolating poly- 

nomials for w0 and el*' are continuous at the interelement boundaries, and their first derivatives 

with respect to x and y are continuous at the nodes, but the normal derivatives -$%■ and -gf- 

at the interelement boundaries are not continuous, then the elements are called nonconforming 

elements with C1 continuity. Conformity of an element is not an indispensable requirement: 

the non-conforming elements (i.e. the elements that lack the required level of continuity in order to 

make the convergence most plausible) can still be successful (MacNeal, 1994). The nonconforming 

elements can be even needed to model discontinuities of the first derivatives of the unknown func- 

tions, that can appear in places of abrupt changes of plate thickness, or in places of abrupt in-plane 

changes of material properties of a plate. But since the cargo platform, that we are modelling, does 

not have such discontinuities, we expect that the conforming finite elements will produce more accu- 

rate results. Therefore, we will use the conforming finite elements for the unknown functions w0 and 

eikJ. Besides, our finite elements will be rectangular, since the cargo platform has the rectangular 

shape. 

Let us consider, for example, interpolation of w0. The interpolation polynomial for rectangu- 

lar four-node element, that provides continuity of w0 and ^ along the interelement boundaries, 

developed by Bogner, Fox and Schmidt (1965), has the form (Figure 3.4): 

»°4(H2(H(H!(I+2H')+ 

1  (x      \   (x      \ (y      \   /       y\ ,dw0 
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+nH)'H)(H'(H"*(*)+ 

where i and y are the coordinates in the element (local) coordinate system.   Each node of this 

element has the following degrees of freedom: w0, ^, ^, f^- 
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The interpolation polynomial w0 and its boundary-normal derivative ^ are continuous along a 

common boundary with another element because w0 and ^ depend only on the degrees of freedom 

of the nodes, that belong to the boundary. To verify this, let us find wQ and ^ at the element 

boundaries, i.e. at x = ±a, y = ±b. 

At the edge A\Ai (y = -6) 

1 (x       \2 (x       \       ...      1 (x       \   (       x\    dw0 »oU=     --i     : + 2UM,)+       -i     i + - a-sr(^i) + 

2    / -\ 1     / ^r\2 

dy !/=—6 

4H) H)«<*>+H1 + !) (H'£<*'•      (3'12"2) 

/  1 _2        1 1_ 1   _3\  Ö2Wo ,  .   .        (I 1_ 1 -2 1   -3A   92W0 -—X2- -a- -x+—r£J    •3=r3=(A2)+    -a- -a;- j-x  + T-öX'
5
    _-__(J4.1) + 

\4a 4       4       4a?    J dxdy V4       4       4a 4a      / °X°V 

1        1 ^3\ öu;0 , „ N ,   Z'  * -3      3 _ ,   1 ^ 9w0 +'sI+i-^3J:t^+l^-^+^w(A')-     <312'3) 

At the edge ^2^3 (x = a): 

»ol,„ - 4 f I - lV (I + >) - <*> + 3 f I - 0' f1 + I) >% M 

2   /- \ -i    /TT \ 2 

x=a 

I(f + .)   (|-2)„0(,3)-i(i + 1)   (!-!>£(*). (3-) 

1      , 3 1\  ÖÜJ0 , ,,        (I, 1_2 1_3        1_\Ö2U)0... 

1       1 _3      3_\ dw0       .     / 1 _3     1_     1,      1_2\ d2u>o 

dw0 

dx 

+ (j " S»8" + 5»J ¥ <*> + U^ - i» - I»+ S5 J 5ä| l*>' (3'12-5) 

At the edge A3A4 (y = b) 

1 (x     ,\2 /x     „\      , t N .  1 /x     „\   /x , „\   9wo +iU-' U+'J-^'+iU-'J U+V-s^'-    (3-i2-6) 
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dwp 
dy y=b 

1     ,      3 1\ dw0 , t .      (  1  _3       1 _2      1_     1   \ # V) ... 
—-^ x + «) -s=r (>U) +    7-0^ + T"1  - 7* - 7a   7F^= (As) + 4a3 4a        2/   dy \4a2 4a 4       4/ öxöy 

+ f I _ V +1^ ^0       + M-3 _ 1 ^ + 1  _ U ^ (il4).        (3.12.7) 
\2     4a3 4a  J   dy \4a2 4a 4       4/ öxöy 

At the edge A1A4 (x = -a) 

«u^-i(f-0*(!-s)-<A'>+Kf-1),(,+f)*^(A>+ 

0^0 
dx 

+i f+i  2-Jr°(A«)+i J+I  l-1)^^»-    <""> 

1 _3      l_o     1_     1A d2w0 ,..,/!,    1-3     3   \ öw( —3 x —2 

462y   "Ift2'   ~Ä"~r4"JdxdyK"u '  V2  ' 463i/       4b"J   dx 
iV + -:b)^:(A1)+- + --yi--y^(A1) + "o 

We see that, indeed, iu0 and ^ on the element boundaries depend only on nodal variables of 

those boundaries at which w0 and ^ are evaluated. Therefore, w0 and ^ are continuous on a 

common boundary with another element. 

For the unknown functions e£) {k = 1,2,3), we will use the interpolation polynomial of the same 

type as (16.1), i.e. at each node the degrees of freedom will be eW, -g£S -g£S -g^- and the shape 

functions will be the same as in polynomial (16.1). 

The maximum order of derivatives of the unknown functions u0, vo,eL and eyz (k = 1,2,3) 

in the Hamilton's principle is 1. Therefore, it is necessary that interpolation polynomials for these 

functions are continuous at the interelement boundaries, but the derivatives of the interpolation 

polynomials of these unknown functions at the interelement boundaries are not required to be 

continuous. The four-node rectangular element, that has these properties, is called the bilinear 

Lagrange element (Cook, Malkus, Plesha, 1989). Let us consider, for example, the unknown 

function u0. The bilinear Lagrange element for u0 has the form (Figure 3.4): 

«-i(1-:)('-!)*('4') + i(1+:)(1-!)-^>+ 

+j 0+f) 0+!) - ^+3 0 - D 0+!) * <A«> ■      (3-1210) 
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This element has four degrees of freedom: the values of the interpolated functions at the nodes. 

The combined finite element for all the unknown functions of the problem will have 96 degrees 
(fc) 

of freedom: 4 degrees of freedom must be used for interpolation of each of the functions u0, v0,£xz , 

e$ (k = 1,2,3), and 16 degrees of freedom must be used for interpolation of each of the functions 

WOi e
(z) {k = 1,2,3). Each node of the combined finite element has 24 degrees of freedom The nodal 

i n   -^       i i dwn     dwn     d2wo     .(1)    J2)       (3) variables of each node of the combined unite element are u0,v0, w0, -gf, -Q£-, dxdy, £xz, t« , txz, 

(i)    (2)    (3)    (i)   öelV   Mil  *£L JV  *£L  M^   a^    (3)   a^  a^   a^ 
4*i %•*> £!/^ , £** , "feS     d£~, -gid^' £zz '     öi   '     dy   '    dxdy'bzz'     dx   '     dy   '    axSy • 

The finite element model, based on the layerwise plate theory presented in this chapter, allows 

to analyze the sandwich composite plates with fewer degrees of freedom than the finite models 

constructed with the use of three-dimensional finite elements. This is due to the fact that in the 

three-dimensional finite element models it is necessary to represent the thickness of one ply of the 

face sheets with a thickness of at least one three-dimensional finite element, in order to compute ac- 

curately the through-the-thickness variation of displacements and stresses and in order to determine 

damage in each ply; On the other hand, in the layerwise plate theory, discussed in this chapter, the 

number of the finite elements, required to represent properly the through-the-thickness variation of 

displacements and stresses and the damage in each ply, does not depend on the number of plies in 

the composite face sheets7. 

Let us consider an example problem and compare the number of the degrees of freedom in the 

three-dimensional and layerwise plate finite element models. We will consider an example of a 

sandwich plate with the following characteristics: thickness of the lower face sheet 0.01m, thickness 

of the upper face sheet 0.005m, thickness of the core 0.05m, number of plies in the lower face sheets 

is 100, number of plies in the upper face sheets is 50, in-plane dimensions Im x lm. Each ply of the 

face sheets has the thickness of 1 x 10~4m. 

Suppose this sandwich plate is modelled with the linear solid elements, i.e. the eight-node brick 

elements. Each node of such an element has three degrees of freedom: the nodal displacements. In 

order to avoid ill-conditioning of the finite element equations, the in-plane dimensions of these finite 

elements must be not much larger than their size in the thickness direction. For the same reason, 
7Though, with the increase of the number of plies in the face sheets, the number of the finite elements, required to 

achieve convergence, increases. But this increase of the number of the elements in the layerwise plate model, dictated 

by the convergence requirement, is not proportional to the number of plies and is very small as compared to the 

increase of the number of the three-dimensional elements in the three-dimensional finite element models, dictated by 

the requirement of representing the thickness of one ply with a thickness of at least one three-dimensional element. 
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the sizes of adjacent elements must not be much different. Besides, the mesh in the core must be 

sufficiently fine in order to determine the damage in the core, that can be distributed nonuniformly 

in the thickness direction and in the in-plane directions. 

Therefore, for the purpose of estimating a number of elements in this example problem, the finite 

elements will be considered with in-plane dimensions five times larger than their thickness, and all 

the elements will be chosen to be of the same size. If in the thickness of one ply there is one such 

element, then the size of each element is 0.5mm x 0.5mm x 0.1mm, and the total number of the 

elements in the whole model of the plate is 2000 x 2000 x 650 = 2.6 x 109. The total number of the 

nodes in this model is 2001 x 2001 x 651 « 2.6 x 109, and the total number of degrees of freedom in 

the whole three-dimensional model is 2.6 x 109 x 3 = 7.8 x 109. 

Now, let us evaluate the number of degrees of freedom in the layerwise plate FE model with a 

50 x 50 FE mesh. The number of nodes in such a two-dimensional FE model is 51 x 51 = 2601, 

and the number of degrees of freedom is 2601 x 24 = 62424. As it will be shown in the chapter 5, 

the stresses, computed by the use of the layerwise plate FE model of the sandwich plates, including 

the transverse stresses, are sufficiently accurate as compared with the stresses of exact elasticity 

solutions , if the transverse stresses are computed by integration of the equilibrium equations. 

So, we see that the use of the two-dimensional layerwise FE model of the sandwich plates, 

presented in this chapter, allows to achieve a tremendous decrease of the number of degrees of 

freedom, as compared to the three-dimensional FE model, without decrease of the accuracy of stress 

computation. 
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3.13 Post-processing Stage of the Finite Element Analysis: 

Expressions for the In-Plane Stress Components and 

the Second Forms of the Transverse Stress Components 
(k)       Ik) 

in Terms of the Unknown Functions u0, v0, w0, exz, eyz, 

Ak) 
CzZ   ' 

After the finite element solution for the unknown functions is obtained, the components of the stress 

tensor need to be computed . As it was mentioned previously, the in-plane stress components will 

be computed from the constitutive relations, i.e. by substituting the in-plane strains, expressed 

in terms of the unknown functions, into the Hooke's law for the in-plane stresses. The transverse 

stress components will be computed not from the Hooke's law, but by integration of the equations of 

motion (3.1.21)-(3.1.23). The transverse stress components, obtained by integration of the equations 

of motion (the second form of the transverse stresses) are more accurate than those obtained from 

the Hooke's law ( the first form of the transverse stresses), because, as it was shown in chapter 2, 

the second forms of the transverse stresses, unlike the first forms, satisfy the boundary conditions 

at the upper and lower surfaces of the sandwich plate and at the interfaces between the face sheets 

and the core. 

The expressions (3.4.1) for the in-plane strains in terms of the unknown functions, written here 

again, are the following 

(                          \ (k) t        \ 

&XX VxiO 

£yy >   = < Vj/yO 

£&xy tPxyO 

(k) 

+ 

(fc) 
<Pxxl ¥>xx2 

'Pyyl >      z+ i 

1 

<Pyy2 

<Pxyl Wxy2 

(fc) 

(3.13.1) 

where the functions <p in the right-hand side of the equation (3.13.1) are expressed in terms of the 

unknown functions by equations (3.4.2)-(3.4.28). The Hooke's law for an orthotropic material (in a 
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coordinate system, whose coordinate planes do not coincide with planes of elastic symmetry), is 

0*2 X 

Ozz 

Oyz 

<j~xz 

&xy 

> = 

Cn Ci2 C13 0 0 C"l6 £11 

Ci2 C22 C23 0 0 C26 eyy 

c13 C23 C33 0 0 C36 < 
Ezz 

0 0 0 C44 C45 0 2,6yz 

0 0 0 C45 C55 0 2exz 

C*16 C26 (^36 0 0 ^66 Az-xv 

(3.13.2) 

Therefore, the Hooke's law for only the in-plane stresses is 

(fc) 
H a. 

H, 

H, 
Jxy 

>        = 

C11 C12 ^16 C13 

C12 C*22 C26 C23 

Cl6      C*26      C66      C36 

f                 \ 

(*) &xx 

< 
evy 

£&xy 

Szz 

(fc) 

(3.13.3) 

where the left superscript H in notations for stresses means that the stresses are computed by the 

Hooke's law (in contrast to the second forms of transverse stresses axz, ayz and azz, that will 

be computed by integrating the 3-D equations of motion). Substitution of equation (3.13.1) into 

equation (3.13.3) yields 

H. 

H , 

H , 
Jxy 

(fc) 

C\\ C12 ^16 C13 

C\2 C22 C26 C23 

C\s     C26      ^66      C36 

(fc) 

V 

(fc) 

¥>xxO 9?xxl fxx2 

VyyO 
>        + < 

fyyl z+ < 
fyy2 

<PxyO fxyl fxy2 

£zz 0 0 

(fc) (fc)   \ 

>      z' 

) 
(3.13.4) 

where the functions if in the right-hand side of the equation (3.13.4) are expressed in terms of the 

unknown functions by equations (3.4.2)-(3.4.28). 

Now let us express the transverse stresses aX2, ayz and azz in terms of the in-plane stresses and 

displacements by integrating equations of motion (3.1.21)-(3.1.23). Then we can substitute into the 
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resulting equations expressions (3.13.4) for the in-plane stresses in terms of the unknown functions 

and expressions (3.3.27) for displacements in terms of the unknown functions. Thus, the transverse 

stresses can be expressed in terms of the unknown functions. 

Performing integration of equation of motion (3.1.21) with k=l (for the lower face sheet) 

ff(D   +CT(i)   + „W   =pWüW uxx,x   '      xy,y   '      xz,z       r      "■ 

with respect to z in the positive direction of the z-axis, we receive: 

z 

4\] = <&> (*0 + / (>)ü(1) - H°i% ~ H<\v) dz    ^ ^ *>> • (3-13-5) 

0 *i 

where a^J (zi) = 0 due to the fact that tangential components of the surface traction at the lower 

surface of the platform is equal to zero (boundary conditions (3.1.24) ). From equation (3.13.5) it 

follows that 

«&> (-2) = / (p(1)ü(1) - *<&>.. - H°2y\v) dz (3-13.6) 

of} (*) = / (p(1)ü(1) - H^,x - H<rg\y) dz, (3.13.7) 

or 

because 

4\HZ2) = ^(Z2) 

due to the first continuity condition (3.1.33). 

Integrating equation of motion (3.1.21) with k=2 (for the core) 

*llx+°x2
y\y+<rx2lz=Pi2)*{2) 

from 22 to 2, where  z belongs to the interval z2 < z < 23, one can receive 

z 

°$ = *£> (*) + I (P{2)ü{2) -   H°x\x ~   "oily)   dz        (z2 < Z < *,) . (3.13.8) 

The substitution of equation (3.13.7) into equation (3.13.8) yields: 

°x2} = J (P(1)"(1) -   "°i% -   H4\\y)   dz+ 
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+J (p^üW - *,£>. - »a?y\y) dz    (z2<z< 23) • (3-13.9) 

22 

One can receive in the same way the following for the upper face sheets (k=3): 

22 

„     (3) _    / (0WiiW _   »„W     -   "<TW   )   dz+ "xz        —   \   \P      u uxx,x xy,y J   """"^ 
21 

+](PWüW-»*^-»^y\y)dz+ 

Z 

+J (pWüW - Hv?lx - 
Haily) dz      (z3<z< z4). (3.13.10) 

Analogously, integration of equation of motion (3.1.22) 

uyx,x   '  uyy,y   '     yz,z       " 

with respect to z gives expressions tor ayz : 

z 

°$ = <$ (*i) + / (P(1)
*

(1)
 - *<$,. - Ho&\y) dz    (zi<*< Z2), (3.13.11) 

0 Zl 

z 

+ f (p<2>ü<3> - "ay% - HaWy) dz    (z2 < z < z3), (3.13.12) 

Z-2 

z2 

_.(3) _    f (M)yW _   H    (\)    _   H    {1)   \   d   + "yz  —   /   \P     u uyx,x uyy,yJ   """^ 
21 

+](pWvV-»ay%-»ayly)dz+ 
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J (,(3)S(3) _   Hff(3)x _   »al*\y)   dz        (z,<Z< Z4) . (3.13.13) 

Expressions (3.13.5), (3.13.9)-(3.13.13) for ,<? and „£> in terms of displacements and in-plane 

• 8 written in tensor notations as : 

dz    (a = l,2; /0 = 1,2) 

m=l / 2* 
(3.13.14) 

in the interval Zfc < z < Zfc+i, 

where the sum is considered to be equal to zero, if the upper value of the summation index m is 

smaller than the lower value, i.e. if k = 1. 

Let us integrate equations of motion (3.1.23) 

+f (4? -!xfc)+4? «#>) - ^ - "(t)*(fc)   {k = 1,2>3) • 
Doing this, one needs to take account of continuity conditions at the interfaces between the face 

sheets and the core .£> (*) = *2> (*>, a« (*) = <# («) (equations (3.1.33), (3.1.34) ) and of 

the boundary condition at the lower surface of the platform a® (*) = -t, (*) (the third equation 

(3 l 24) ) The surface force per unit area tz (*) in this problem is equal to -sw^ (*0, where s 

is a modulus of the elastic foundation. As a result, we receive the following expressions for stresses 

Ak). 
O zz • 

„«.,, „<■> <„,+f y> («<■>+,) -1 (<«>+*'-s>) 
su><i>(z,) 

-A^W+^SO-^-^J^ (31315) 

-T^^l) the foUowing notations are implied: „g> S a«   ,g> S «#\ and the upper index denotes 

th. number of a sublaminate (K=l means the iower face sheet, k=2 means the core, k=3 means the upper face sheet). 
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al2)=W1) {Z1)+£ [,<» (*<»+,) -1 (4«+*y?) 

+jrw[,(»)(^>+ff)-|(^^)+^s)) 
-|-(^y?+^y?)-^--^r 9y 

a + f U3> (^3) +9) - yx (*«? +<«) 

Equations (3.13.15)-(3.13.17) can be written in tensor notations as follows: 

aW = sw^ '33 
771=1    , 

(3.13.16) 

(3.13.17) 

+/[^(4fc)^)-(^S«),,-^ dz      (a = 1,2; /3 = 1,2) (3.13.18) 

in the interval zk < z < Zfc+i 

M) 
■ „„ « 11 14^ for a{k) (a = 1,2) into equation (3.13.18) for a33' gives Substitution of expressions (3.13.14) tor fx3a   (a     *.,*) H 

expressions for o£> in terms of displacements and in-plane stresses: 

ffc-i Zm+1 771—1 

4? = »m 

lm=1  zm 

dz 
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/ (,<»>« - "Ä) *| 4 +/ ["w («?'+») - ("'S -SS) 

-'£ 7' ("(")«- *•&-) * - / ('m e - "<«,.«,) 
n=l , Zk 

dz dz    (a = 1,2; ,0=1,2) 

(3.13.19) 

in the interval zk < z < zk+i 

or 

^) = s^)(,l) + E [p^{4m)+s)äz-t J (""SMS),,* 
m=i y m=1 2m 

fc-1 m-1 Jm+lJ»+l 

E E / / (>(n)fi& - ÄffäU) dz dz 

m—\ n=l 

2|»+1   Z 

- E / / ("(m)fi$ - "'SW d* dz 
m=l   , 

+/p(fc) (W+^dz-j^vbtyjdz 

-E/ / 0>(n) *& - Hffäu) dz dz 

-fj (p{k) *& - **SU) ^d2   (Q =*•2; " =x'2) 

Zfc Zfc 

in the interval zk < z < zk+\ ■ 

(3.13.20) 

So, equations (3.13.14) and (3.13.20) express the transverse stresses in terms of displacements 

u(fc), «<*>, «,<*> and in-plane stresses "a<*\ Haik
y\ 

Ho§, which, in turn, are expressed in terms of 
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=.(fc)   ^fc)   ^k) hv emiations (3 3.27)-(3.3.51) and by equations the unknown functions u0, v0, w0, elJ, £yz , ezz   by equations yco.ti) yo o     , 

(3 13 4) together with equations (3.4.2)-(3.4.28). The explicit expressions for the transverse stresses 

in terms of the unknown functions ,0, v0, v*, ei\\ #\ eff are not shown here because of their 

large size. 
The values of the in-plane and transverse stresses, computed by the formulas, derived in this 

chapter, can be substituted into the failure criteria in order to take account of damage progression 

in the sandwich platform. The methods of failure analysis will be discussed in chapter 5. 
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Figure 3.1 

Cross-sections of the face sheets and the core 

upper face sheet 

lower face sheet 1 
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Figure 3.4 
A rectangular finite element and the element (local) coordinate system 
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Chapter 4 

A Simplified Approach to the 

Analysis of Sandwich Plates 

In this chapter, a simplified approach to modelling the sandwich plates will be considered. This 

simplified approach is similar to the one presented in chapter 2, section 2.4, for the sandwich plate 

in cylindrical bending with homogeneous isotropic face sheets and the core. It is based on assuming 

that in the in the expression for the strain energy, the transverse strains in the face sheets are 

negligibly small. The transverse stresses are computed by integration of equilibrium equations, and 

they can be substituted into the strain-stress relations to obtain the second form of the transverse 

strains, that are not equal to zero. As it was shown in section 2.4 of the chapter 2 for a sandwich plate 

with homogeneous isotropic face sheets and core, the stresses produced by the simplified layerwise 

model are sufficiently close to the stresses obtained from the exact elasticity solutions, though the 

accuracy of stress computation is slightly lower than in the nonsimplified model presented in chapter 

3. The advantage of this simplified model is that it has fewer unknown functions and fewer degrees 

of freedom in the finite element formulation. 

4.1    Simplifying assumptions and the unknown functions 

We will assume that in the expression for the strain energy of the core the transverse strains do 

not depend on the z-coordinate, and the transverse strains of the face sheets are negligibly 

212 



CHAPTER 4 213 

small: 

,(i)_n ,(!)_n p(J)-n CXZ  — U, Eyz  — u, e2J  = u , 

,0) _ 0 ,(3) _ n .(3) _ n txZ    —   U, Cy^     —  U, tiZ     —   U   , (4.1.1) 

ei2J = si2} (x, y, t), e<2> = e<2> (x, v> t), e<2) = ,i2; (X, „, t) . 

It is assumed also that at each point of the sandwich plate there is a plane of elastic sym- 

metry parallel to x-z plane. This occurs if the sublaminates of the sandwich plate are cross-ply, 

specially orthotropic or isotropic. Besides, an account will be taken of the fact that in the problem 

of the cargo platform dropped on elastic foundation, there are no external in-plane forces, acting 

on the platform, and the Poisson ratio of the core is small. Due to the last three limitations of 

the problem, described in bold type, the in-plane middle surface displacements can be set equal to 

zero: 

u0=0, V0 = 0 . (4.1.2) 

So, the unknown functions of the problem are: 

w0 (x, y, t), e£> (i, y, t), 42
2> (x, y, t), e<2) (^ ^ ^ _ (4_0) 

4.2    Displacements in terms of the unknown functions 

Setting the transverse strains in the face sheets (e£V, e{
y\\ eiV.eÜ?, 4*. e« ) equal to zero, one can 

obtain from formulas of chapter 5 the following expressions: 

w(1) (x, y, t) = w0 (x, y, t) + ef} (x, y, t) z2      (Zl < z < z2) , (4.2.1) 

u>W (x, y, z, t) = w0 (x, y, t) + eg (x, y,t)z      (z2 < z < z3) , (4.2.2) 

w^(x,y,t) = w0{x,y,t)+eg(x,y,t)z3      (z3 < z < z4), (4.2.3) 

«<*> (x, y, z, t) = (2e?) - u>0,*) z2 - -E®   Z\ - (e% z2 + w0>x} (z - z2)      (Zl < z < z2) , 

(4.2.4) 
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uW (x, y, z, t) = (&£> - u*,x) z - \e%z* {z2<z< z3) , (4.2.5) 

uW (x, y, 2, t) =  (2,(2) _ WoJ Z3 _  1 Emt z2 _ (Wox + £(2)TZ^ {Z _ Za) (23 < z < 24)   , 

(4.2.6) 

V™ (X) y, Z, t) =  (242; - «,„,„) ^2 - j^y 4 -  (W0,y + £i^y **) (* ~ *S) («1  < 2 < 22) 

t><2> (*, y, Z, t) =  (242; - «,„,„) 2 - \e™y  ** (22 < 2 < 23) 

„(3) (x, y, z, t) = (242
2) - w0,y) z3 - \efly z\ - (w0,y + e™yz3) (z - z3) 

(4.2.7) 

(4.2.8) 

(z3 < z < z4)  . 

(4.2.9) 

These relations can be written in the form: 

where 

w (k) 

2(h) Q(k) {/} 
J (4x1) 

(A = 1,2,3) , 

{/}={ 

w0 

txz 

£(2) 
tyz 

,<2) 

>, 

(4.2.10) 

(4.2.11) 

ZW   =    zW 

(3x5) (3x5) 

1 z 0 0 0 

0 0 1 z 0 

0   0   0   0    1 

(4.2.12) 

(3x6) 

z   z2    0    0 0 0 

0    0    z   z2 0 0 

0    0    0    0 1 z 
(3x6) 

(4.2.13) 
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0 222 0 i ~2 a 
2Z2öi 

(5x4) 

= 

 a. 
dx 

0 
 a_ 

dy 

0 

0 

0 

0 

222 

0 

ir2 a 
2z2dy 

~Z*fy 
1 0 0 22 

__a_ 
dx 2 0 0 

0 0 0    - i a 
2 dx 

(6x4) 

= 
__a_ 

dy 

0 

0 

0 

2 

0    - 

0 
i a 
2 ay 

1 0 0 0 

0 0 0 1 
(6 x4) 

0 223 0 ir2 a 
2z3dx 

(5x4)" 

- 

 a_ 
dx 

0 
_d_ 

dy 

0 

0 

0 

0 

223 

0 

r     9 Z3dx 
iy2 a 
2z3ay 

»    d 

-23a^ 

1 0 0 23 

(5 x4) 

(4.2.14) 

(4.2.15) 

(4.2.16) 
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4.3    Strains in terms of the unknown functions 

Setting eiV = 0, e$ = 0, ei\] = 0, e(£ = 0, e$ = 0, el3,' = 0 in expressions (3.5.6), (3.5.9) and 

(3.5.12) we obtain 

{<:<*>} = [z<*>] Maw] {/} +{Vfc)})      (A = 1,2,3) (4.3.1) 

where 

{f}={ 

w0 

txz 

e(2) 
fcj/2 

£(2) 

>, (4.3.2) 

(3x1) 

e{1) 
txx 

-yy 

2e: 
(i) 
xy 

(4.3.3) 

Z(D 

(3x8) 

Z(3) 

(3x8) 

1    2   z2    0   0    0    0   0 

0   0    0    1 0   0 

0   0    0    0   0    0    1 

(4.3.4) 

0(D 

(8X4) 

0 

0 

0 

0 
Ö2 

~w 
0 

0 

-2 

d_ 
'■dx 

0 

0 

0 

0 

0 

2*2 9y 

0 

0 

0 

0 

0 

2*& 

■ 9y 

1,2 a2 

2Z2ä^ 

1.2 a2 

2Z2äF 

32 

_229F 

0 
a a2 

dxdy 

2 dxdy 

-2z2 dxdy 

(4.3.5) 
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(8x1) 

0 

0 

\ (wo,y + Z2 e(zlyj 

0 

0 

(W0,x + Z2 £zz,x)  \Wo,y + Z2 £z2z,y) 

>, (4.3.6) 

{<•*} - 
(6x1) 

£{2) tu 

e(2) tvv 

E(2) 
czz 

4tyz 

2E
(2) 

'tu 

2e, (2) 
xy 
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ö(2) 
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0 
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ö(3) 

(8x4) 

dx2 

o 
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a2 

~W 
0 

0 

' dxdy 

223äl 
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0 

0 

0 

0 
2*4 

0 

0 

0 
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0 

223^ 
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(8x4) 

iy2 a-' 
2Z3ä^ 

, Ö2 
~23ä^ 

0 

iy2 a2 

2Z3ä^ 

-23ä^ 

,2 aJ 

^3 öiay 

-2Z3  *2 
dxdy 

(4.3.12) 

o(3) 

1 (wo,x + 23 e«,ij 

0 

0 

2 [w0,y + z3 £?z,y) 
(4.3.13) 

0 

0 

(W0,x + 23 £z2z,x)  \W0,y + Z3 £zz\y) 

0 
(8xl) 

(2) (2) The transverse shear strains in the core exJ and eyz , that enter into the expressions for the 

strain energy (the first form of the transverse shear strains) are assumed to be constant through the 

thickness of core. Therefore, the transverse shear stresses, computed from the stress-strain relations 

(first form of the transverse shear stresses) are also constant in the thickness direction. On the 

other hand, the same stresses computed in the post-processing stage by integration of the equations 

of motion, vary nonlinearly in the thickness direction. Besides, it is well known from elementary 

theory of homogeneous beams that the transverse shear stress varies parabolically through the beam 

thickness. In composite laminated beams and plates, the transverse shear stresses vary at least 

quadratically through layer thickness. This discrepancy between the transverse stresses computed 

from the Hooke's law on the one hand and from the equations of motion or exact solutions on the 

other hand, is often corrected (especially in the first order shear deformation theory) by multiplying 

the transverse shear strain energy by the shear correction coefficient. In the theory of the sandwich 

plate discussed in this chapter, we will introduce a shear correction coefficient, which, at first, will be 
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set equal to unity. If, with the shear correction coefficient equal to one, the results of the sandwich 

plate theory for the transverse stresses obtained by integration of equilibrium equations turn out to 

be close enough to the known exact elasticity solutions, then the further search for an optimal value 

of the shear correction factor may not be necessary. Otherwise, the shear correction coefficient can 

be determined by a method, presented in the paper of Whitney (1973). 

In order to introduce the shear correction coefficient, it is convenient to divide the column-matrix 
T 

of strains in the core {e^} = 
(6x1) 

£xx £yy 
-<2) 
tzz 2E

{2) 
Ltyz 2F

(2)
    2r(2) into two parts: a part that 

contains the transverse shear strains: 2f(2)    2£(2) 
"t-yz 4CXZ -V* 

, and the part that contains all the other 

strains in the core: _(2) txx 
-(2) 
~-VV e(2) 2e[ (2) 

xy . Then, equation (4.3.1) with k=2, i.e.   equation 

{e'2H = [ZW] ([d'2'] {/} + {v^}) can De written as two separate matrix equations: 

2e(2) 

2e{2) 
6txz 

0   0   2   0 

0   2   0   0 
{/} 
(4xl) 

(4.3.14) 

and 

e(2) 
txx 

e(2) tyv 
„(2) 
tzz 

2e (2) 
xy 

(4.3.15) 

where 

f(2) 

(4x10) 

\ z z2 0000000 

000 1 z z2 0000 

000000000    1 

0   0    0    0   0    0    1 0 

(4.3.16) 
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5(W0,x)2 
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2 ^c«z,xy 

\ (W0,y)2 
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i /V2) Y 
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U>0,y£zz,x + W>o,T£z*,y 

J2)   J2) 

(4.3.18) 
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4.4    Stress-strain relations 

(k) 
For the lower and upper face sheets (k=l and k=3), where, according to our assumptions, ezz 

ex
k} = e(y) = 0 (k=l,3), the constitutive equations (3.6.13) take the form 

Hoxx 

(k) 

uyy 
>    = 

v xy 

C\\ Ci2 Cl6 

C\2 C22 C26 

C16     C26     Cfö 

(k) /                              X 

Exx 

< £yy 

££xy 

(k) 

(* = 1,3), 

"aikJ = Cl3     C23     C; 36 
(*) 

C11 

2e. xy 

(fc) 

(1,3), (4.4.1) 

M?= *ff« = 0     (fc = l,3). 

The constitutive equations for the core are 

' 
&XX 

W 

aVV >        - 
Vzz 

k 
Gxy 

C11 C12 C13 Ci6 

C12 C22 C23 C26 

^13 C23 C33 C36 

Cl6 C26 C36 C66 

(2) 

£11 

2e xy 

(2) 

(4.4.2) 

C44    C45 

C45    C55 

(4.4.3) 
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4.5    Strain energy of the core 

The strain energy of the core is defined by expression 

B L z3 

*"-\ll! 
0    0i2 

f     E(2)     1 
1 

txi 

J2) 
tyy > 
<-2 
Ezz 

2E
(2) 

£*c.xy 

C\\ Cl2 C*13 Ci6 

Cl2 C"22 C23 ^26 

Cl3 C23 C33 C36 

Cl6 C26 C36 C66 

(2) f     £
(2)     1 til 

< 
e(2) tvv 

e(2) 
tzz 

2e(2) 

► dz dx dy+ 

+ 
2e(2) 
ÄC.12 ^/// 

C44    C45 

C45      C55 

-|(2) 
2£(2) 

2£(2) 
dz da; dj/ 

0   0:2 

where kc is shear correction factor. 

Substitution of expressions (4.3.13) and (4.3.14) into the last expression yields 

(4.5.1) 

^ = ±//([S« {/} + 
(4xl) 

7^2> 

ö  ö     \(10x4) v""''        (10x1) 
(1x10) 

/ 

*3 

f [ z<2> 
(10x4) 

V 

C11 C12 C13 Ci6 

C12 C22 C23 C*26 

C13 C23 ^33 C36 

Cl6 ^26 C36 C66 

(2) \ 

' £<2) " dz 
(4x10) 

/ 

Ld<2) ]{/} + [ ^2) 

L
(10x4) (4Xl) (10x1) 

dx dy+ 

+ 
0 0 

/ 0 0 
«3 

/ 

u 

2 

2 

n 
22 

V 0 0 

C44    C45 

C45    C55 

(2) 

0   0   2   0 

0   2   0   0 
dz {/} dz dy ,        (4.5.2) 

(4x1) 
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where matrix Z<2> is defined by expression (4.3.15), matrix £(2) by expression (4.3.16) and 

matrix [ 7p' ] - by expression (4.3.17). So, 

J
0   

Jo     \(10x4)(4Xl) (10x1) / 

5(2)] ( p) 
^ (10x4) 

{/}   + 
(4x1) 

5J<2) 

(10x1) 

dx dy+ 

(lx 10) 

where 

0   0 

m {/} dx dy , 
(4x1) 

5(2) 

(10X10) 22 

•Z3 

/ 
z<2> 

(10x4) 

C\\ C\2 Cl3 Ci6 

C\2 C22 C23 C26 

Cl3 C23 C33 C36 

Cl6 C26 C36 6*66 

(2) 

2(2) 

(4x10) 

dz 

(4.5.3) 

(4.5.4) 

£,(2) 
23 

]■/ 
22 

0   0 

0    2 

2   0 

0   0 
- 

C44    C45 

C45    C55 

-1(2) r 
0   0   2   0 

0    2   0   0 
dz (4.5.5) 
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4.6    Strain energy of the face sheets 

The strain energy of the face sheets is defined by expression 

225 

B  L Zfc+i 

"»'Mil 
0   0    zk 

Ak) 
t-xx 

Ak) 
£yy 

£>Exy 

Cu C\2 Cie 
(k) 

tu 

C\2 C22 C26 < Ak) tvv 

C"l6 C26 (^66 dcxy 

► dzdxdy      (/c = l,3)    (4.6.1) 

or 

B L Zfc+i 

UW = i (I  He^Y [C(h)]{e(k)} dz dx dy     (fc = l,3). (4.6.2) 
0   0    zk      (1x3)        (3x3)    (3x1) 

Substituting (4.3.1) into (4.6.2), we obtain 

B  L 

vm=UI [f!M+W  x 
0   0      \ (8x4) (8x1) 

Zk+l 

x  I [z<*>] r[c<fc>][z<*>' 
ik     (8X3) (3x3)    (3x8) 

dzx 

Q(k) 

(8X4) 

{/} +{^)}l   dxdy       (fc = l,3) 
(4x1) (8xl) 

(4.6.3) 

B L 

u(k) = 1/7   [ö<*)1 {/} + {,,<*>}    \DM]   \d^} {/} + Uk)\ 
({    V(8x4)<4Xl> (8x1)/        (8X8)     V (8X4) (4Xl) (8x1) 

dx dy      (k = 1,3), 

(4.6.4) 

where matrices [Z^jand [Z<3>] are defined by equation (4.3.4), matrix [<9(1)] - by equation (4.3.5), 

matrix [d<3>] - by equation (4.3.12), [t/1)] - by (4.3.6), [i/W] - by (4.3.13). 

Like in chapter 3, a stiffness coefficient in the Hooke's law for a ply of the lower face sheet, in 

the laminate coordinate system, will be denoted by aCi:J ,where the right superscript (1) denotes 

that a stiffness coefficient is associated with the 1-st sublaminate (i.e. the lower face sheet), the left 

superscript a is a number of a ply in the lower face sheet, subscripts i and j denote a position of 
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the stiffness coefficient in the stiffness matrix. The stiffness matrix with components aCj   will be 

denoted as   Cn     i. e. 

C ;(i) 

a/^(l)     aM1)     a/^1) 
Wl °12 °16 

a£.(l)      c/=*(l)      a^(l) 
12 °22 °' 26 

a/^(l)      a/^(l) "C Ci »/"> o. (1) 
'16 ^26 ^66 

Analogously, a stiffness coefficient in the Hooke's law for a ply of the upper face sheet will be 

denoted by  aCii■ , and the matrix of these coefficients - by C (3) 
, l. e. 

w 
a/^(3) a/-r(3) Q/^i(3) 

L-JJ 012 <^16 

a/=«(3) Q/ör(3) Q/ör(3) 
°12 °22 °26 

a/=<(3) a/=<(3) af<(3) ac. ^16 ^26 ^66 

Let n be a number of plies in the lower face sheet and let 

£l = Zl, &, &3> •••> £n — 22 

be z-coordinates  of the interfaces between the plies of the lower face sheet (Figure 3.3). Also, let 

m be a number of plies in the upper face sheet and let 

Cl = 23, C21 C3, •■■, Cm — z4 

be z-coordinates of the interfaces between the plies of the upper face sheet. Then 

*2 n    €°t' 

DW]= f\zw]T[cw][z^]dz = J2 I [z{1)~ ü(l) 
Z(D dz = 

(8x8) 2l     (8x3)        (3x3)    (3x8) £Q      (8x3)        (3x3)    (3x8) 

and 

cl1' Z(l) dz 

£,(3) 

^4 

Z(3) 

«.» 

W3) 

(8x8)        Z3    (8x3)       (3x3) 

>(3)]<fe=£ /[^(3)]T[c(3) 

(3x8) a=1 ia      (8x3)       (3x3) 

Z(3) 

x3)    (3x8) 

dz = 

(4.6.5) 

Z(3) c (3) 
Z(3) dz. 

"=1  £,      (8x3)        (3x3)    (3x8) 

(4.6.6) 
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4.7    Strain energy of the plate 

Strain energy of the sandwich plate is the sum of the strain energies of the core and the face sheets: 

C/p = C/(D+[/(2)+[/(3) = 

- It (V'l {/} +W1)Y\ M (M w +{r?(1)})dxdy+ 
2
{{     \\&J{4Xl) (8X1)/        (8X8)'VW4*1' (8X1)/ 

+ 
B  L 

g(2) {/} + 
(4x1) 

J}{2) 5(2) ö(2) {/}   + #2) 

0   0     \(10x4) ^"'' (10X1) 
(1x10) 

(10x4) (4xl)        (10x1) 

dx dy+ 

B  L 

0   0 

£>(2>    {/} dxd2/+ 
J (4xl) 

+ 2. - /" / f M {/} + {^(3)11 fD(3)l [ fö(3)l {/> + W3)})dx dy-     (4-7,1 
2
H    \(8X4)(4X1) (8X1)/        (8X8) JV(8X4)<4X1> (8x1)/ 

4.8    Strain energy of elastic foundation 

The strain energy of the elastic foundation is defined by expression 

B  L 

Uf = ^[ [s(x,v)[wW{x,y,t)] 

0   0 

dx dy. 

According to equation (4.2.1), 

w W=w0 + e^z2    (zi<z<z2) 

(4.8.1) 

or 

,(i) 1    0    0    z2 

r                \ 

W0 

£(2) 

< J2) 
tyz 

tzz 

> = =     1    0    0    z2 {/}■ (4.8.2) 
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Then 

or 

where 

/        \ 

(-(1))2 = {/}T< 

1 

0 

0 

22 

1      0     0      22   J {/} 

(wW)2=:{f}T[D}{f} 
V ' (1X4)     (4x4) (4x1) 

D 

1       0     0      22 

0    0   0    0 

0    0   0    0 

22    0    0    z\ 

Substitution of equation (4.8.3) into equation (4.8.1) yields 

B  L 

Uf = U fs(x,y){f}T[D]{f} dxdy. 
*J  JQ (1x4)     (4x4) (4x1) 

(4.8.3) 

(4.8.4) 

(4.8.5) 

4.9    Potential energy of the platform and the cargo in the 

gravity field 

If we set el£ = e$ = elV = el£ = e$ = e(z) = 0, equation (3.9.19) for potential energy of the 

platform and the cargo in the gravity field takes the form 

B  L 

npiat/orm+ncarg0= / / {/}T{r} dxdy 
J   J   (1x4)    (4x1) 

(4.9.1) 

where 

{/} = < 

o o 

w0 

cxz 

tyz 

J2) 

)   , 
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{r} ={ 
(4x1) 

9 [p{1) (z2 -zi) + P{2) (z3 - z2) + p(3) (24 - 23) + ft H (x, y)] 

0 

0 

9 [p(1)Z2 (Z2 -zi) + \p{2) [zl - z\) + pW Z3 (z4 -z3) + nH (x,y) z3] 

(4.9.2) 

4.10    Kinetic Energy of the Platform 

The kinetic energy of the platform of the k-th sublaminate (k=l, 2, 3), i. e. the kinetic energy of 

either one of the face sheets or of the core is 

B  L 2k+i 

0   0    zk 

According to equation (4.2.10), 

' ü<fc) ' 
T 

'    U<*> 

<     i,(fc> >     < y(k) 

<                   * 

> dz dx dy. 

w (*) 

Z(k)    d(k) 

dt {/}■ 

Therefore, 

KW 
B  L 

-W/( 
0   0 

0(*) 
dt {/} m Q(k) — {/} )  dx dy, 

where 

b^\ = I [z<fc>]T[z<fc> dz     (fc = 1,2,3). 

Substitution of (4.2.12) and (4.2.13) into (4.10.4) yields 

5...]-/ 

1    0   0 

z   0   0 

0    1    0 

0      2     0 

0   0    1 

1    z   0 0   0 

0   0    1 z    0 

0   0   0 0    1 

dz 

(4.10.1) 

(4.10.2) 

(4.10.3) 

(4.10.4) 
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22 

a* 
- Zl \ (4 - 4) 0 0 0 

zl) \ (4 - zf) 0 0 0 

0 0 22 -2l 1 (*2 - 4) 0 

0 0 1 (*f - 4) 1 (-1 - *?) 0 

0 0 0 0 22 - 2l 

(4.10.5) 

5(2) 
^3 

-/ 

2    z2   0    0    0   0 

0    0 0   0 

0    0    0    0    1 

z2    0    0    0   0 

0    0 0   0 

0    0    0    0    1 

\(4~- 
1(4- 

r2 
22 

i) 
\(4-4)   1(4-4)   \(* zl) 

\(4-4) \(4-4) \(4-4) \(4 
\(4-4) \(4-4) 1(4-4) \(4 
\(4-4)  \(4-4)  1(4-4)  \(4 

)  1(4-4)  \(*. \(4 
\(4-4)  \(4-4)  \(4- 

\(* 

4) \ (4 - -zl) I (4 - -zl) 

zl) 1 (4 - -zl) 2- (4 - -zl) 

4) I (4 - -zl) 2- (4 - -zl) 

4) i (4 - -zl) 2- (4 - -zl) 

4) 23- 22 \ (4 - -4) 
zl) 1 (4 - ~4) 3- (4 - -4) 

(4.10.6) 

5(3) 

1 0   0 

z 0   0 

0 10 

0 z   0 

0 0    1 

1 z 0 0 0 

0 0 1 2 0 

0   0   0   0    1 

dz 

24 - 23 

I (4 - 4) 
o 
o 
0 

\ (4 - 4) 
\ (4 - 4) 

o 
0 

0 

0 

0 

24 - 23 

0 

0 

\(4-4)  \(4-4) 

So, the kinetic energy of the whole sandwich plate is 

0 

0 

0 

0 

24 - 23 

(4.10.7) 

KP = KW + KW + KW 
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B L 

i^iimkü 
0   0      \ (5x4) 

(4X1), (5x5)     \ (5x4) 
dt 

{/}      dxdy+ 
(4X1)/ 

B  L 

+ )rS! 0(2) 

0   0     \ (6x4) 
OT(4xl) 

5(2)]        p(2) 
(6x6)     \ (6x4) 

^ {/}   I   dx dy+ 
.JOT(4xl)/ 

0   0      \(5X4) 

{/} 
(4x1), 

5(3) ö(3) 

(5x5)     \ (5x4) 

i a 
dt (4X1)/ 

(4.10.8) 

4.11    Kinetic energy of the cargo 

According to equation (3.10.4), kinetic energy of the cargo is 

fdwW(x,y,ty2 B  L 

Kc=\JJnH(x,y)(j 
0   0 

dt 
dx dy, 

where w<3) (x,y,t) is defined by expression (17.6), that can be written in the form 

T 

Then 

w (3) 

w0 

.(2) 
txz 

E(2) 
tyz 

J2) 

>   < 

1 

0 

0 

23 

) = {/>     < 

1 

0 

0 

23 

> . 

(^.\2
=(l{f))

Ti 
V at J     \dt 

i 

o 
o 

*3 

1    0    0    z3 !<"> = 

"(H Dc dt {/} 

(4.11.1) 

(4.11.2) 

(4.11.3) 
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where 

Df 

1 0 0 z3 

0 0 0 0 

0 0 0 0 

z3 0 0 z3
2 

(4.11.4) 

Substitution of (4.11.3) into (4.11.1) yields: 

B L 

Kc = J//M*(X,,)(5{/} Dc — {/} ) dx dy. (4.11.5) 

0 0 

4.12    Considerations regarding finite element formulation 

The Hamilton's principle used for the finite element formulation is discussed in chapter 3, and has 

the form 

«2 

<5 / [(strain energy of platform) + ( strain energy of elastic foundation) + 

ti 

+ (potential energy of platform in gravity field) + (potential energy of cargo in gravity field) 

- (kinetic energy of platform) - (kinetic energy of cargo)] dt 

12 

-I — / (virtual work of damping forces ) dt = 0. (eqn 3.11.10) 

All the considerations regarding the finite element formulation, presented in chapter 3, are also valid 

for the simplified model of the chapter 4, except that the simplified model has fewer unknown func- 

tions and, therefore, fewer degrees of freedom. The unknown functions of the simplified model are 

wo (x, y, t), exz (x, y, t), eyz (x, y, t) and ezz(x, y, t). In the finite element formulation, the interpola- 

tion polynomials for these functions will be the same as those discussed in section 3.12 of chapter 

3. The combined finite element for all the unknown functions of the problem will have 40 degrees 
(2)       (2) 

of freedom: 4 degrees of freedom must be used for interpolation of each of the functions exz , £yz , 

and 16 degrees of freedom must be used for interpolation of each of the functions w0 and ezz. Each 

node of the combined finite element has 10 degrees of freedom: w0, -££■, -§^, Q^§%, £XZ , £yz , £zz , 

dei2J    dej2J 
dx   '     dy   ' dxdy 
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4.13 Post-processing stage of the finite element analysis: ex- 

pressions for the in-plane stress components and the 

second form of the transverse stress components in terms 
(2)       (2)       (2) 

of the unknown functions WQ, £
K

XJ, eyz, ezz. 

To obtain expressions for the in-plane stresses in terms of the unknown functions for this simplified 

model, one can use the corresponding expressions (3.13.4) of the nonsimplified model and set in 

them the functions u0, «o, e«, 4*. 4V, e«, 4^, £" eclual to zero- Thus' one can receive: 

H, 

H, 
'yy 

H, 
>xy 

(k) 

C\\      Ci2      Cl6      Cl3 

Cyi      C22      C26      C*23 

^16   C26   Cee   C36 

where 

(fc) ( 
<fixxO 

(k) 

fxxl 

(k) 

<fxx2 
(k)   \ 

< 
fyyO 

<PxyO 

>    + < 
<Pyyl 

Vxyl 

. z + < 
<Pyy2 

<fixy2 

►     z2 

\ 
0 0 

) 
(4.13.1) 

& = «o,x + 2^4^ + \^lxx + \ (w0lX + z2efl)2 , (4.13.2) 

vixi = ~wo,xx - z2e
{2lxx ' (4.13.3) 

Ä = 0, (4.13.4) 

Ä = t*,y + 2^.. + 5^2.).» + \ K + ^O2   ' (413-5) 
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fyyl = -W0,yy ~ ^z},yy (4.13.6) 

*ä = o, (4.13.7) 

Ä = 222 (£>„ + ey
2ix) + 4e%y + («*„ + **&>,) (-0, + z2£?z,y)   > (4.13.8) 

¥>xyl = -2u;0,xy - 222ei2
2
),Iy . (4.13.9) 

^i = o, (4.13.10) 

A = 2^Wo'x^2 ' 
" v ' 

(4.13.11) 

fx2xi = 2£xlx - ™o,x* + w0<xe
{?lx , (4.13.12) 

jv - _L(2)   +1 (ew )2 
Vxx2 ~      QC

ZZ,XX   '   9  V   ZZ'XJ      ' 
* v ' 

(4.13.13) 

(2)          1 /          \2 
^yyO = 2 (W°'v)    ' 

v v ' 

(4.13.14) 

Vffl = *$,v - ^0,yy + 1U0,lA   > (4.13.15) 

w(2)   _ _I£(2)        ,   I (-(2)   \2 

V?yy2 —        2    ZZ'yy         2   \ZZ'V)       ' 
> v ' 

(4.13.16) 
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Ä = Vo.y , (4-13.17) 

<P%i = 2 (a,y + 41 - w0,xy) + wo,ye£\x + wo,xe^ , (4.13.18) 

J2)   _        (2)        ,      (2)      (2) (4.13.19) iPxy2—      £zz,xy ^ tzz,xtzz,y   > ^,1J,1;'^ 

A = a^Sl, + ^M2U + \ («*.. + ^Ä!.)2. (4-13-2°) 

Ai = -^o,xx-^U, (4-13.21) 

vi322 = 0, (4.13.22) 

Ä = 2*5,4»), + i^gU + \ K + «»A)2 , (4-13.23) 

Ä = -^y-^42^, (4-13.24) 

vS2 = 0, (4-13.25) 

Ä - 2*3 (422,y + 4z),x) + «U + («*.- + ^S,*) (»o.» + ^S!,)  , (4-13.26) 

Al = 2 (-«Jo™ + ^3 - 41y)  , (4-13.27) 
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A = 0, (4-13.28) 

where the nonlinear terms are underbraced. 

The formulas for the transverse stresses in terms of the in-plane stresses are the same as those 

presented in section 3.13 of chapter3: 

m=1 z,n zk 

(a = 1,2;   ß = 1,2; k = 1,2,3) in the interval  2fc < 2 < zk+1, (eqn 3.13.14) 

where the sum is considered to be equal to zero, if the upper value of the summation index m is 

smaller than the lower value, i.e. if k = 1; 

,£> = a«,™ („) + £    /^» (4m) +5) d* - £   /   ("'S* *) , dz 
m=1 *"i m=1 *m 

- E E / / (^(n)ü^ - ""SU) *d2 
m=l n=l /       / 

- E / / ("(m,ü^ - "*$«*) ^d* 

+JP
w{4k) +9)dz-zj(»^ßu?l)ßdz 

z Z,i + \ 

-E/ / ("(n) fi& - H*SU) *rf* 
Zk    zrl 

z   z 

-f [ (p{k) üi% - Ho%<aß) dz dz      (a = 1,2;   0 = 1,2;   fc = 1,2,3) (eqn 3.13.20) 
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in the interval z^ < z < Zfc+i • 

In the next chapter, the computational model of the sandwich plate, presented in this chapter, 

will be applied for stress and failure analysis of the cargo platform modelled as a wide beam (plate 

in cylindrical bending), dropped on the ground modelled as elastic Winkler foundation. 



Chapter 5 

Stress and Failure Analysis of the 

Sandwich Cargo Platform 

Modelled as a Plate in Cylindrical 

Bending 

The problem of stress and failure analysis of the cargo sandwich platform dropped on elastic foun- 

dation, as formulated in chapters 3 and 4, requires two-dimensional finite element analysis with 

geometric nonlinearity and the equivalent of material nonlinearity, due to taking account of failure 

progression. In doing a complex analysis of this type, analysts usually start from simple models 

and do not attempt a complete solution all at once. A first step toward understanding the response 

of the composite sandwich platform to the impact against the elastic foundation can be made by 

solving a simpler problem of cylindrical bending of such a platform. Such a one-dimensional problem 

has many similar features to the two-dimensional problem of interest, and allows one to discover 

more easily the inaccuracies that may appear in the finite element formulation and program. The 

analysis of the cargo platform as a plate in cylindrical bending will become a foundation for the 

further analysis of the cargo platform with the use of two-dimensional finite elements. 

238 
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5.1    Some general considerations regarding cylindrical bend- 

ing 

Let us consider an anisotropic plate loaded by surface and body forces, acting in the z-direction, and 

not varying along the y-direction (Figure 2.1). Let us call the dimension of the plate in x-direction 

the length, and dimension in y-direction - the width. If the width of the plate is much larger than 

the length, the displacements do not depend on the y-coordinate: 

u — u(x,z), v = v(x,z), w = w(x,z). (5-1-) 

Such a condition is called generalized plane strain (Lekhnitskii, 1981). In this case, the compo- 

nents of the Green's strain tensor, associated with the y-direction, are: 

2 /Q\2 / Q     \ 2' 
_dv     1 

6yy ~ %j + 2 

duV     fdv\       ( dw\' 
dy)       \dy)       \dy) 

0, (5.1.2) 

\ (du     dv     du du     dv dv     dw dw\ _ dv 
2\dy     dx     dx dy     dx dy     dx dy)      dx' 

,xy = t[^ + ^ + ^.^ + ^-^- + ^-—) = — (5.1.3) 

If 

I f dv     dw     du du     dv dv     dw dw\ _ dv .       . 
£yz = 2\dl + ^ + ^'dl + dy'd~z + 'dy'Il)~d^' [''} 

u = u(x,z), w = w (x, z), v = const (5.1.5) 

(or u = u (x, z), w — w (x, z), v = 0, if rigid body displacements in y-direction are excluded from 

consideration), then we have a condition of pure plane strain or simply plane strain. In this 

case all strain components, associated with y-direction, are equal to zero: 

Eyy   =   0,     exy   =   0,     EyZ   =   0. (5.1.6) 

The condition of the generalized plane strain reduces to the condition of the pure plane strain if the 

plate is isotropic, or if the plate is anisotropic and at each point of the plate there is a plane of 

elastic symmetry parallel to x-z plane (Lekhnitskii, 1981). 

If a deformed plate is in the condition of the generalized plane strain, then it is said to be in 

cylindrical bending. A plate is in cylindrical bending if : 1) its width (dimension in y-direction) is 
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much larger than its length (dimension in the x-direction), and 2) the load intensity does not vary 

in the y-direction. 

L and B are taken to be dimensions of a rectangular plate relative to the x- and y-axes. The 

aspect ratio f, required to make the assumption of cylindrical bending for a laminated plate, depends 

on laminate construction. For unsymmetrical laminates of the class [0°/90°]n it has been shown 

(Whitney, 1969, 1987) that the maximum deflection under transverse loading rapidly approaches 

the maximum deflection of cylindrical bending, if the aspect ratio increases. For an aspect ratio 

f = 3 the plate center deflection was within 4% of the center deflection of an infinite strip. In the 

case of angle-ply laminates the convergence to cylindrical bending with increasing aspect ratio is 

less rapid. 

Let us assume the cargo platform satisfies the conditions of cylindrical bending, described above, 

i.e. the load of the cargo is uniformly distributed in one direction (y-direction), and the face sheets 

are cross -ply laminates with aspect ratio f equal, at least, 3. Then in the platform there is, 

approximately, the condition of the generalized plane strain, which occurs if the unknown functions 

of the problem depend only on x-coordinate. If we do the simplified analysis, introduced in chapter 

4, the unknown functions in case of cylindrical bending are w0, exJ, e\z, e\z . As it was mentioned 

in chapter 4, the middle-surface displacements u0 and v0 are considered negligible because, among 

other reasons, the sublaminates of the sandwich plates are assumed to be either cross-ply, or specially 

orthotropic, i.e. at each point of the plate there is a plane of elastic symmetry parallel to the x-z 

plane. Due to the same assumption, the condition of the generalized plane strain reduces to the 

condition of the pure plane strain (Lekhnitskii, 1981), i.e. u = u (x, z), w — w (x, z), v = 0 and, 

therefore, eyz = 0. So, in the case of cylindrical bending, the unknown functions of the problem are 

w0(x,t), e£(x,t), e<g(x,t). (5.1.7) 

5.2    Displacements in terms of the unknown functions 

Equations (4.2.1)-(4.2.9) for a plate in cylindrical bending take the form: 

wW(x,t) = w0(x,t)+e™(x,t)z2      (zi<z<z2), (5.2.1) 

wW(x,z,t)=w0{x,t) + eW(x,t)z      (z2<z<z3), (5.2.2) 
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-,(3) x, t) = w0 (x, t) + efj (x, t) 23      (z3 < z < z4), 
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(5.2.3) 

uW (x, z, t) = (2422 - «,0.x) Z2 - \e(?l z\ - (e?l z2 + w0,x) (2 - z2)    (z, < z < z2),    (5.2.4) 

u™ (x, z, t) = (2^) _ WOx) z - l£mx z* (z2<z< 23) , (5.2.5) 

u™ (X, z, t) = (242i - w0,x) 23 - \e% 4 - (w0iX + e%z,) (2-23)       (23 < 2 < 24),    (5.2.6) 

W(D = „W = z,<3) - 0. 

These equations can be written in matrix form as follows: 

,(D 

w (i) 

wM 

1      2     0 
D      222 

1-2 d 
2Z2dx Wo 

-£   0 -Zl>di 42> 
0   0    1 

(2x3) 1    0 22 

(3x3) (3xl) 

d       Q 
dx      ^ 0 '           ■> 

r -\ Wo 
2      Z2      0 0 0      0 1 d 

2 dx m 
0    0    1 2 1      0 0 

<        > (2X4) 
0      0 1 

>, 

(4x3) 

w(3) 

r             1 0 2z3 
1-2 d 
2*3 dx W0 

1    2   0 
__d_ 0 d 

Z3dx 
< -<2) 

0   0    1 
(2x3) 1 0 

(3x3) 

Zl e(2) 

(3xl) 

> . 

These equations can also be written in the form 

w (*) 
2JW    d(k) {/}       (fc= 1,2,3), 

(5.2.7) 

(5.2.8) 

(5.2.9) 

(5.2.10) 

(5.2.11) 

where 
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(2x3)" 

{/}=< 

z<3> 
(2x3) 

W0 

txz 

E(2) 
tzz 

1      2     0 

0   0    1 

"(2x4)' 

2      2 0   0 

(3x3) 

0    0    1 
(2x4) 

0      222    ±22
2£ 

"22^ da: o 

o 

0(2) 

(4x3) 

a(3) 

(3x3) 

2 

0 0 

1 0 

0      0 

0      2z3 

Z2 

1A. 
'2 dx 

0 

1 

U21 
2Z3dx 
_      d_ 

Z3dx 

*3 

(5.2.12) 

(5.2.13) 

(5.2.14) 

(5.2.15) 

(5.2.16) 

(5.2.17) 

5.3    Strains in terms of the unknown functions 

If we substitute expressions (5.2.1)-(5.2.6) for displacements into the strain-displacement relations 

we obtain 

r(i) =   2z2 ei% + \z\ E{%X + - (w0tX 
-xx * Z  \ 

+ 22 4"'* 
\2 

r(2) >       ) ,xx / (5.3.1) 
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42i =   ^o,*)2   + (242.x - wo^ + w^J  z + (-\e<?z\xx + \ (e?lx)
2j (5.3.2) 

r(3) 2z3 & + \zl e{zlxx + 2 (wo,* + *3 4^)     - (w0,xx + 23 4*U)  2- (5-3-3) 

In the last three equations the nonlinear terms are underbraced. 

Using expressions (5.3.1)-(5.3.3), we can write strains in terms of the unknown functions as 

follows: 

,(D zw\ l[d^]{f}+{v{1)}), 
(1x2)     \ (2x3) (3xl) (2x1)  / 

(5.3.4) 

r(3) Z(3)j   Mö(3']{/}   +{T,™} 
(1x2)    \ (2x3) (3xl) (2x1)  , 

(5.3.5) 

til 

e(2) 
tzz 

ö(2)l{/}+{^2)} , 
,. .J(3xl)       %_..,/  / (2x4)    \ (4x3) (3xl) (4x1) 

(5.3.6) 

0    1    0 
J (3x1) 

(5.3.7) 

where 

(3x1) 

/ \ 
W0 

t-xz (5.3.8) 

Z(D I = I z<3) I = [ 1    z \, [Z<2>   = 
1    z   z2    0 

0   0    0    1 
(5.3.9) 

0<i> 

(2x3) 

0 2*2 dJ       2Z2dx^ 

dx2 0 '22dx^ 

(5.3.10) 

0(3) 

(2x3) 

0 2z3dx- 
Iz2X 

dx2 0 
(2x3) 

(5.3.11) 
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0(2) 

(4x3) 

0 0 

d2 

dx? 
c\ d 
Zdx 0 

0 0 1 d2 

2 dx- 

0 0 
(4x3) 

1 

2(^0 1 + 22 

0 

e(2)  "l CZ2,I   J 

(5.3.12) 

(2xl) 

(5.3.13) 

(5.3.14) 

(2xl) 

(4xl) 

\{WQ,x)2 

(2) 

- (V2) V 
0 

(4x1) 

> . (5.3.15) 

5.4    Constitutive relations 

If eiV = e(y) = eiV = £x3i = 4^ = e« = 0, then constitutive equations (3.6.13) for an orthotropic 

material can be written for the face sheets and the core as follows: 

for the upper face sheet: 

lower face sheet: 

core: 

a{2) 

H    (3) _ C{3)EW 
°xx   — ull tn 1 

7?(2) 7=?(2) 
°11 °13 

^(2) 7?(2) 
°13 °33 

(5.4.2) 

e(2) 
c-xx 

J2) 
(5.4.3) 

(5.4.4) 
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5.5    Strain energy of the plate in cylindrical bending 

The strain energy of the sandwich plate consists of the strain energies of the face sheets and the 

core, and it has the form: 

I»2 L   zi 

U = \bffe™ *«&> dz dx + \bjje% «a™ dz dx+ 
0 z, 0 z. 

L H 

0 z, 

t-xx 

£{2) 
Czz 

HA*) Cxi 

HCT(2) 
u zz 

dz dx + 
0 z„ 

a¥)dz dx = 

\bjje^C^l dz dx + \bjjel*> Cl?eW dz dx+ 

0 2, 0 z3 

+ 
0 z,     V. 

7&)      7&) 
^11       °13 

°13       °33 

E(2) 
txx 

£(2) 
t-zz 

L H 

0 z, 

dz dx + lb[   2e™C?J 2e£)dz dx = 

= -bfl\d^]{f}+U1)})        [\ZW\T^[ZW\ dz    [[d^]{f}+{vW})  dx+ 
2{    V(2X3)(3X1> (2X1)/       \i    (2X1) (1X2)       I   \ (2x3) <3Xl> (2x1)/ 

+ ~b ) [\d^\ {/}   + W*\\      ( /   Z&   T Cg>   Z(3) I  <fe ]   [[0(3)1  {/}   + J„<3)} ]    d:c+ 
2   {     V(2x3)(3Xl) (2X1)/       U     (2X1) (1X2) I   \ (2x3) <3* J> (2x1)/ 

+ ^/l: a(2) 

0     \ (4x3) 

\T (H 

{/} + V2)' {{ z<3>' 
7' 

(3x1) (4x1) / (4X2) 

7^(2)      ~(2) 
°11       °13 

(2)      7^(2) 
13 '-'is       ^33 

z<2>] 
(2x4)  j 

dzx 

|(2)j  {/}   + ^2) 

(4x3) (3Xl)        (4X1) 

dx+ 
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\>Jiff  /»• 
0 

1 

0 

^?2 0    1   0 dz {/}  dx 
(3x1) 

(5.5.1) 

2{     \(2X3)(3X1) (2X1)   /        (2X2)     \<2x3)<3Xl) (2x1) 

dx+ 

4 ) ([ö(3)l {/} + U*)\)   fowl [ fö(»)l {/} + {.,<»>} 
^    V(2X3)(3X1) (2X1)  /        (2X2)    \(2X3)(3X1) (2x1) 

dx+ 

4 f ( [ö(2)] {/} + 
lJ     \   ,.    J(3xl) 

3(2)]   p<2' 
Ö      \ (4x3)'(3xl)        (4x1)/        (4x4)     \ (4x3) 

^2) {/}   + 
(3x1) (4x1) 

dx+ 

+ \h' p(2) 

(3x3) 

{/} dx, 
(3xl) 

(5.5.2) 

where 

D™]=bf 
(4x4) . 

Z<2> 

(4X2) 

7&) 7=7(2) 
°11 W3 
^(2) 7^(2) 
Ws °33 

f(2) 

(2x4)' 

dz = 

~3 

^(2) n^i ~r^> y^rK ' rK ' 
^11 2L,11 2  *-' 11 °13 

zCn z Cn z Cn zC13 

J17&) ^37=7(2) .47^(2) JlTi™ 

7&) 
°13 zCi3        2  Cj3 C33 

dz (5.5.3) 

/ \ 

£)(2) 

(3x3) '/ 
Ci?2< 

0 

1 

0 

> 2 0    1    0 dz , (5.5.4) 

DW 

(2x2) 

~2 

Z(D 

"(2xl) 

ci (1) 
Z(l) 

'(1x2) 

dz, (5.5.5) 



CHAPTER 5 247 

D(3)" 

(2x2) 

*4 

"(2x1) 

7&) Z(3) 

"(1x2) 

cte . (5.5.6) 

As in chapters 3 and 4, a stiffness coefficient in the Hooke's law for a ply of the lower face 

sheet, in the laminate coordinate system, will be denoted by aüJ , where the right superscript (1) 

denotes a stiffness coefficient associated with the 1-st sublaminate (i.e. the lower face sheet), the 

left superscript a is a number of a ply in the lower face sheet, subscripts i and j denote a position 

of the stiffness coefficient in the stiffness matrix. Analogously, a stiffness coefficient in the Hooke's 

law for a ply of the upper face sheet will be denoted by aCii . Let n be a number of plies in the 

lower face sheet and let 

i\ = Z\, &, &, —. £n = z2 

be z-coordinates of the interfaces between the plies of the lower face sheet (Figure 3.3). Also, let m 

be a number of plies in the upper face sheet and let 

Cl = 23, C2, C3i •••! Cm = 24 

be z-coordinates of the interfaces between the plies of the upper face sheet. Then 

Xj(D 

(2x2)' _        /9v1\ Mv91 « = 1 c (2x11 (1x21 Zx     (2xl) (1x2) (2x1)        (1x2) 

(1) *E ac\i 
a=l 

£a+l _ £a 2 Ua+1       £<*) 

2 UQ+1
—€a)      3 U<*+1 —£»J 

(5.5.7) 

0(3) 

(2x2)' 

*4 

Z(3) 

(2x1) 

7^(3) 
°11 Z<3>J dz = 6^ QüS?   / |z<3>JT|z<3>j dz 

I1V91 a=l ,-        (2x11        (1x21 (1x2) (2x1)        (1x2) 

a7=j(3> *E -zft 
a=l 

(5.5.8) 
Ca+1 — Ca 2 (CQ+I       Caj 

2 (Ca+1 ~ Ca)       3 (Ca+1 _ Caj 

In absence of damage, the elastic constants of the core do not vary in the thickness direction, i.e. 

do not depend on z-coordinate. But the damage, that can occur in the core as a result of impact, 

can be distributed nonuniformly in the thickness direction, and, therefore, the elastic coefficients 
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C<2 of the damaged core can depend on z-coordinate. This will be taken into account by dividing 
(2) 

the core into a number of nominal layers and by considering the elastic coefficients C{j of the core 

independent of the z-coordinate within a nominal layer, but varying from layer to layer. A stiffness 

coefficient in the Hooke's law for a nominal layer in the core, in the laminate coordinate system, will 

be denoted by aüf\ where the right superscript (2) denotes a stiffness coefficient associated with 

the second sublaminate (i.e. the core), the left superscript a is an ordinal number of a nominal layer 

in the core. Let s be a number of nominal layers in the core, and let 

Vi = 22> %, %.—i Vs = *z 

be z-coordinates of the interfaces between the nominal layers of the core. Then 

D^]=bf[z^]T 

(4x4) z      (4x2) 

7=(2)     7=;(2) 
Wl       u13 

r(2)      ~(2) 
'13 33 (2x4) 

dz = 

'3 

Sä?? 
r27=>w     y37=f(2) 2 On      Z On 

7*(2) 
°11 

OS 
==(2) 

7^(2) 
^13 zC{2) 

'US 

7=7(2) 
°13 

zC™ 

2  °13 
7=5(2) 
°33 

dz = 

1a + l 

->tj 

a?>(2) 

Z    Uu 

°13 

2 aC(2) 2     Un 

2       °11 

,3 a7^2> 2       On 

■77(2) »C 13 

22 °cS2)      QC 
,3 a7=?<2) 

_4 Q7=<(2) 

*2 a C 
(2) 
13 

(2) 
13 

2 *Ü(2) 2     013 

-2 a; ==(2) 
'13 

a7^(2) 
u33 

d2 

= >E 
Q = l 

***?   (Wl - »Ja) aC|2' I (Vl+1 - Vl)        QCl2) i (T£+1 _ ,3) aC<2) (% + ] _ ^ 

,7^(2) ] (2)- 7(2), 37$ (*»+,-.£)    ^JiCi-ll)    <.'{(trll)    'Qfc-Ä) 
 (2) 

lC13   (TJ0+I - 7?Q) ü13 2 Vla+l       'W °13 3 vWl       ^aj 
 (2) 

"^33  (»?a+l ~ *7a) 

(5.5.9) 

£)(2> 
(3x3) 

*3 0 

2 Ki?(*) 0   2   0 d2 = 
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/ \ 

b< 0    2    0 J    I Cl£ (z) dz 

0 
1o + ] 

7(2) 0    |4b>      /   "CTsdz       0 

5.6    Strain energy of elastic foundation 

The strain energy of the elastic foundation is defined by expression 

L 

Uf = \bjs s(x)  ww{x,t) dx , 

where s (x) is a modulus of the foundation. According to equation (5.2.1), 

ww =w0 + £(?}z2     (zi<z< z2) 

(5.5.10) 

(5.6.1) 

Then 

or 

where 

w :i)=[l    0    z2\< 

w0 

<&>   \=[l    0    22j{/}. 
J2) 
t-zz 

(-(1))2 = {/}r    o 

22 

1      0      22 {/} 

U^)2={f}T[D}{f} 
V ' (1x3)     (3x3) (3X1) 

D      = 

1 

0 

22 

1      0      22 

1 0 22 

0 0 0 

22 0 ?2 z2 

(5.6.2) 

(5.6.3) 

(5.6.4) 

(5.6.5) 
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Substitution of equation (5.6.4) into equation (5.6.1) yields 

L 

Uf^
1-b[s(x){f}T[D]{f} dx 

1   J (1x3)     (3x3) (3x1) 
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(5.6.6) 

5.7    Potential energy of the platform and the cargo in the 

gravity field 

In order to obtain the expression for the potential energy II of a wide beam and the cargo in the 

gravity field, we need to set in expression (4.9.1) £yz = 0. Then 

L 

n = b [ {/}T {T} dx, 
J  (1x3)    (3x1) 

(5.7.1) 

where 

{/}=< 

w0 

F
(2) 

fcxz 

.(2) 

9 [p{1) (*2 - 2l) + P{2) (23 - 22) + P{3) («4 -Z3) + HH (X)] 

{T} = i 0 
<3X1) g [p(1)*2 (Z2 - zi) + IP™ (4 - 4) + P{3) Z3 (*4 - *3) + M H (x) z3] 

5.8    Kinetic energy of the platform 

The kinetic energy of the platform of the k-th sublaminate (k=l, 2, 3) 

(5.7.2) 

L *lr+l 

According to equation (5.2.11), 

(fc) 

(fc) 
0      Zk 

tV(fc) 

ritfc) 
dz da; (5.8.1) 

w 

i(fc) 
z<*> ä(*) 

at {/}, 
(5.8.2) 

where quantities, entering into equation (5.8.2), are defined by equations (5.2.12)-(5.2.17). Therefore, 

ifW = W([9W]|{/} owl f [§(*) 
m{f))*°> (5.8.3) 
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where 
•t-k + l 

zw Z(k) dz     (/c = 1,2,3). (5.8.4) 

Substitution of (5.2.13) and (5.2.14) into (5.8.4) yields: 

*2 
1     0 r 

5(1)' = f\zW]   [Zw] dz= 1 Z     0 

(3x3) I    (3X2)       (2X3) 0     1 L 

1    z   0 

0   0   1 
dz = 

22 -2! 

2 VZ2       21 

M*2 
I (»3 (4- 

o 

o 

22 - *1 

(5.8.5) 

5(2) 

(4x4) 

*3 

#2) ^(2) dz 

(4x2)      (2x4) 

'3 

-/ 

Z 0 

Z2 0 

0 1 

0 2 

Z     22      0     0 

0      0       12 
dz = 

1(4-4)  \(4-4) 
\(4-> \ (4 - 4) 

o 

o 

0 

23 -22 

0 

0 

\ (4 - 4) 
o       \(4-4)  1(4 

(5.8.6) 

Z" 
1   0 r 

'5(3)' =  /"[z<3>]   [z<3>] dz = z    0 

(3x3) I    (3x2)       (2x3)               z3 0    1 

1    z   0 

0    0    1 
dz 

24 -23 
I (J2. 
\( 

\(4-4)  1(4-4)     o 
24 - 23 

(5.8.7) 
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So, the kinetic energy of the whole sandwich plate is 

Kp = K™ + K& + ^(3) 

WMsifl I5"'] Mkt\ dx + 

0     \ (3x3) (3x3)     \ (3x3) 

+ W [; 0(2) 

0     \(4x3) 
dt {/} 

(3xl), 

5(2) 

(4x4)     \ (4x3) 

Ö(2)l|{/} I  dx + 
OT(3xl) 

l/E +ip(3)6 /   I  [ö<3> 
0      \(3X3) 

Öt {/} 
(3x1), 

5(3)]       p{3) 
(3x3)     \ (3x3) 

OT(3xl) 

5.9    Kinetic energy of the cargo 

According to equation (4.11.1), kinetic energy of the cargo is 

Kc 

dw^(x,y,t) 
dt 

dx 

(5.8.8) 

(5.9.1) 

where w(3) (x,y,t) is defined by expression (5.2.3), that can be written in the form 

Then 

„(3) 

w0 

£(2) 
t-xz 

J2) 
tzz 

f \ 

>   < 

23 

(1x3) 

1 

0 

23 

m (2) 

k^(3xl). 
0 

23 

1      0     23 
^(3x1), 

(5.9.2) 

dt {/} 
(3x1), (3x3) ,^(3X1), 

(5.9.3) 
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where 

D, 
(3x3) 

= < 

1 

0 

23 

1      0     23 

Substitution of (5.9.4) into (4.11.1) yields: 

L 
1 

2 
o 

= 56/^ <*>(£<'> (3x1); 
D, 

(3x3) 

1 0 23 

0 0 0 

23     0     zk 

dt 
{/}      rfx . 

(3X1)/ 

(5.9.4) 

(5.9.5) 
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5.10    Finite Element Formulation for the Cargo Platform Mod- 

elled as a Plate under Cylindrical Bending 

5.10.1     Strain energy in terms of the nodal variables 

Strain energy of the finite element that represents a platform is defined by expression (5.5.2), 

if in this expression the total length of the platform L is substituted by a length I of a finite element, 

and x implies the local, element coordinate, not a global coordinate as in equation (5.5.2). This 

expression is 

U If HA
4

- 
{,,"}) MlM^/M 0      \ (2x3) ^   ^ (2x1)/ (2x2)     \ (2x3) (cS      ; (2x1) 

dx+ 

+\\{[ö
(3)

]{/}+{^>}) [s(3)](V]{/}+{v3)} 
0     \(2x3)(3Xl) (2x1)  /        (2x2)     \(2x3)(3xl) (2x1) 

dx+ 

+\ I \d{2)] {/} + W2) 

H     V(4X3)(3X1)        (4X1) 

5(2) j        ^(2) 

(4x4)     \ (4x3) 

{/}   + 
(3x1) (4xlj 

dx+ 

where 

+ !/</>' 
£)(2) 

(3x3) 

{/} dx, 
(3x1) 

(3x1) 

is a column-vector of the unknown functions, 

(2x3) 

0       2z2 
_d_      12 d2 

dx      2 z2 dx* 

dx2 0 "22j? 

W0 

_(2) 
txz 

t-zz 

0(3) 

(2x3) 0 d2 

~dx~S 
_       d2 

zZd£Z 

(5.10.1) 

(5.10.2) 

(5.10.3) 

0(2) 

(4x3) 

0 0 

"dS1 

0 

0 

*dx 

0 

0 

0 

0 

1 d2 

2 dx2" 

(5.10.4) 
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are matrices of differential operators, also 

(2X1) 1 ° J (2X1) 

I (w0,x -U ,    rW   V + 23 £zz,x I (5.10.5) 

(4X1) 

^(w'O.x)2 

(2) 

(5.10.6) 
* (e(2) V 2 y-z*ixj 

0 

are the column-matrices of non-linear combinations of the unknown functions of the problem.  In 

addition, 

£a+\ — id 2 (f<*+l — ?<*/ 

2 Ua+1 ~ £a)      3 UQ+1 
_ £oJ (2x2) a=l 

(5.10.7) 

(3) z?(3) =b^rac\i 
(2x2) a=l 

CQ+1 
— CQ 2 \£a+l       »a 

2 (CQ+1 ~~ Ca)       3 \C*+1 _ Ca 

(5.10.8) 

(4x4) Q=1 

aC{£ (Va+i - t?«) "r(2) I Cr,2 ull 2 Wo+1 -Ä) °r{2)i (r? Wl 3 V/a+1 -tf) QCl3  (Wl ~ Va) 

°11   2  WQ+1        ^M 
a C(2) I fr,3 

"tf) 
aC{2)l fn4 

Wl  4  lla+1 -■£) ar(2) I (rfl _ „2 
°13 2 V

T
/Q+1       Va 

°ll 3 Vla+1      Va) 
ar(2)i (n4 

-^) £»r(2)i in5 -»£) ar(2) I CT,3 _ „3 
°13 3 V"Q+1      "a 

°C{3(ria+i-V*) or(2) 1 /„2 
^13 2 V'W: "tf) °13 3 V"a+1 -tf) QC"33  (Va+1 - Va) 

(5.10.9) 

0 0 0 

/    •   "%+I          \ 
D™ = 0 46^         °tf£dz) 0 

(3x3) V   °=1 i                 ) 
0 0 0 

(5.10.10) 

are the matrices of material constants, averaged over the thickness of a sublaminate. 

Let us represent the unknown functions w0, d£\ ei2) by interpolation polynomials. The 

general rules for choosing the interpolation polynomials are the following: if the Hamilton's principle 

contains derivatives of a field variable through order m, then an interpolation polynomial must satisfy 
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the following requirements (Cook, Malkus, Plesha, 1989): 

1) it must be a complete polynomial of degree m; 

2) across boundaries between elements, there must be continuity of the field variable and its derivative 

through order m - 1, therefore these derivatives must be carried as nodal variables. 

The first requirement ensures that the m-th derivative of the interpolation polynomial does not 

vanish in the Hamilton's principle. The completeness of the interpolation polynomial is necessary 

in order to make an element capable to represent a constant value of any of the m derivatives of the 

field variable. The second requirement is due to the fact that if the Hamilton's principle contains 

derivatives of a field variable (f> through order m, then the primary variables associated with this 

field variable, are <j>, ff, ■••, g™m-f, and the primary variables must be continuous at the interelement 

boundaries (Reddy, 1993). 

In the problem under consideration, the interpolation polynomials will be chosen to satisfy the 

minimal requirements of general rules, presented above. In other words, the simplest allowable 

elements will be used, which is a general practice in solving the transient and nonlinear problems 

(Cook, Malkus, Plesha, 1989). 

The maximum order of derivatives of ex}, entering into the Hamilton's principle, is 1. There- 

fore, an interpolation polynomial for exz' must be of at least first degree, and across boundaries 

between elements there must be continuity of, at least, exz' (continuity of derivatives of eL is not 
(2) 

required). Therefore, we choose the first degree Lagrange polynomials to interpolate exz' (k = 1,2,3) 

as functions of x1: 

42i = W\ {e} = |M! M2j {e} , (5.10.11) 

where 

(5.10.12) 

(5.10.13) 

The maximum order of the derivatives of WQ and ezz is 2. Therefore, interpolation polynomials for 

WQ and ezz must be of at least second degree and must have derivatives, continuous at the element 

boundaries up to the first order (i.e.   WQ, ^,ezz  and -£- must be continuous).   Therefore, we 

xHere and further in this section devoted to the FE formulation, it is implied for simplicity of notations, that x is 

a coordinate in the element (local) coordinate system. 
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choose the Hermit polynomial of the third degree to interpolate w0 and elz  (the lowest degree of 

the Hermit polynomials is three): 

Wo = [N\ {w} = LJVi N2 N3 N4\ {w}, (5.10.14) 

£?J = [N\ {e} = [Ni N2 JV3 N4\ {e}.. (5.10.15) 

where 

3x2     2x3    xr 2x2     xz    Ar      3x2     2x3    Ar N1 = l-1F + ir,N2^x- — + ¥,N3 = -w--w,N4 ' I  + P 
(5.10.16) 

{w} = - 

«>o(0) 

^(0) 

w0(l) 

^(0 

(5.10.17) 

{*} = { 

e®(0) 

^(0) 

elS(D 
de1-: r(2) 

dx "(0 

(5.10.18) 

So, the combined finite element has 10 degrees of freedom. At each node there are 5 nodal variables: 

,„      <*Hü    J2)      (2)    de£_ 
WO,    fa  , txz , Ezz ,     fa   ■ 

Let us write expression (5.10.1) for the strain energy in terms of the nodal variables. First, we 

will obtain an expression for [d^] {/} in terms of the nodal variables: 

w0 

a<u {/}   = 0(1) < ^ 
(2X3)<3X1> 

L 

_(2) 
£zz 

\              J 

0(1) 

Livj {w} 
(lx4)(4xl) 

[N\ 
(1x4) 

LOJ 
(1x2) 

LOJ 
(1X4) 

[M\   {6} 
(lx2)(2xl) 

[N\ {e} 
,    (lx4)(4xl)   J 

> = Ö(D 

(2x3) 

LOJ 
(1x4) 

LOJ 
.   (1X4) 

[M\ 
(1x2) 

LOJ 
(1x2) 

LOJ 
(1x4) 

Livj 
(1x4) 

(4xl) 

{?} 
(2xl) 

{e} 
k (4xi) ) 

> = 
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where 

(2x10) ,,(10xl) 

(2x10) 

9(D 

(2x3) 

Livj [oj [oj 
(1x4) (1x2) (1x4) 

LOJ [M\ LOJ 
(1x4) (1x2) (1x4) 

LOJ LOJ [N\ 
(1x4) (1x2) (1x4) 

(3x10) 

1 Jl d< 0       2,2£    && 

0 d? 

'~dxr 
d'N; 
dr: 

daN3 "~d?T 

(5.10.19) 

N! N2 N3 N4 0 0 0 0 0 0 

0000 MjM2 0000 

0      0      0      0      0       0     Ni    N2    Ns    N4 

d2N. 

2zl~dT 

0 

l-2d3JVi 
222"d?T 

-Z2-E31- 

1 _2d2W2 
222"dP^ 

-Z2~5£T 

1 -2d2Na 
2 "2 "d?T 

-22-^ 

1 JZ£N. 
2Z1~3Z? 

,   d3Nj 
-zi-dZT 

(5.10.20) 

(4x1) d2 

{d}=> {*} 
(2xl) 

> = < > 

I   (4x1)   J 
dio 

In equation (5.10.21) 

di = tuo(O), d2 = w'0{0), d3 = w0{l), d4 = w'0{l), d5 = e^{0), d6 = E£>(0, 

de (2) de (2) 

d7 = cg)(0), d8 = =£-(0), d9 = eW(Z), d10 = -£-(0 

(5.10.21) 

(5.10.22) 
dx  v"" ~"     "" v"" """       dx 

These are the nodal variables of a finite element. 

Now, let us obtain expression for {T}
{1)

} , defined by expression (5.10.5), in terms of the nodal 

variables. 

1 (d^   ,    ■■   «ton*'.','    ■    l~2^4z'V 
2 l"dTi    + ^UTte    + 2Z2 ^   di   j 

oil 0 
{„<»} = ( 'K'22'"'1)' (5.10.23) 

(2x1) 



CHAPTER 5 259 

Using representation of the unknown functions wo and eL in terms of the nodal variables (equations 

(5.10.14) and (5.10.15) ), one can obtain 

^ = W.{W} = {W}TWT        fk» =lHim = &TW. 
dx       (rff4)(4xi)     (1x4)     (dxx)   ' dx ^(4x1)        (1X4)        (4^} 

(5.10.24) 

Therefore, 

fdw0\   = T 

V dx )        (lx4) 

d[N\T d[N\ 
w 

<lx4>     (4%    (i^V4*1* 
(5.10.25) 

v   dX   J &A)        (4S)       ,&, (4"1) 
w«^w (5.10.26) 

*f|o^_ mT d[NjT d[N\ 
dx   dx   ~(lx4)     ^    (i^4)(4xi) 

{£} (5.10.27) 

. dw0 de<£ The substitution of expressions (5.10.24)-(5.10.26) into the expression \ (^)   + 22^^- + 

H(^)   Yields 

1 f dwo\"        dwodeiJ   i  1  2 (deiJ 
2 \ dx J dx   dx       2 2 1   di 

'^       L   J {w} + 22 {w}   -^ ±-± {e} + -«I {e}    -M ^ {e) 
2(lx4>     (&)    A«4*1'        (lx4)     (4%    Ä)<4X1>     2    (lx4)     (4fi)    (1 

dx       dx 
x4) 

(4xl) 

1.   ,r<*IW Td[N J ,_,      /    ,_,r     1 2 ._, T\ d iV Td [N    ._. 
= 7; {™}   —^ ^ M +    22 {ÜJ}    + -2| {e}       —^ j-1 {e} = 2(ixi)     ,<*»\      dx^ (Li)     V    (ixi)       2 \ x^   /     dx       dx 1<1X4)       (4Ux"l)      (l"V4Xl> (1x4)    /      ,,    ,>      ,,    ^ (4x1) v        '   '       (4x1)      (1x4) v        ' 

i{_}T^i^i 0     0 
(1x4)     (4x1) (1x4) 

Z2{W 
,      (1x4) 

r,    1J2 }J+^22m 
(1x4) 

T j  d[Nlr d[N\ 
dx        dx 

(4x1) (1x4) 

(4x1) 

{?} 
(2xl) 

I   (4xl)   J 

> = 

1 rw1Td|N|' d|Af| 
2 lw' dx        dx 

(1x4)     (4x1) (1x4) 

0   0 
v     (1x4) (1x4)   /    (4x1) (1x4) 

{d}   .    (5.10.28) 
(10x1) 
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Therefore, 

{""'} = 
J U&)'+ »&*§-+ &{*§■)' 

(2xl) (2x10) 

{d} , 
(10x1) 

(5.10.29) 

where 

'fit»   
1 ,     ]Td\N\Td\N\ 
2 >-w>          dx        dx 

(1x4)     (4x1) (1x4) 

0   0 [ 
[2x10 Loj 

(1x10) 

(1x4) (1x4)   /    (4x1) (1x4) 

Column-matrices {w} and  {e}  can be written in the form 
(1x4) (1x4) 

(5.10.30) 

m 
(4xl) 

{w} 
(4x1) 

m   to] < {6} 
(4x4)      (4x6) (2xl) 

(4x10) M 
I   (4xl)   J 

(10x1) 

m   [o] 
L   (4X4)      (4x6)   J (10xi) 

{d}   , 

where 

Then 

(4xl) 
[0]       [J] 

(4x6)      (4x4) 

(2x10) 

{W} 
(4xl) 

{?} 
(2x1) 

{?} 
(4x1) 

[0]       [/] 
(4x6)      (4x4) 

{d} , 
(10x1) 

(4x4) 

10 0 0 

0 10 0 

0 0 10 

0   0   0    1 

{d} T [<*>]      oo      M T [*] 
,(1x10)   (10x4), ,(1x10)   (10x4)y 

LOJ 
(1x10) 
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{d} 
0   J (1x10) 

(2xl) 

(10x4)     (10x2)      (10x4) 
(10x10) 

(5.10.31) 

where 

I*]   = « 
(10x4)        L 

[I]       [0] 
(4x4)     (4x6) 

(10x4) 

Td[N\Td[N\ 
dx       dx 

(4x1)     (1x4) 

(5.10.32) 

(10x4) 

22 [I]       [0] 
(4x4)      (4x6) 

V (10x4) 

1 
+ 222 

[0]       [I] 
(4x6)      (4x4) 

(10x4) 

T* d[N\T d[N\ 
dx       dx 

(4x1)     (1x4) 

(5.10.33) 

So, 

(2x3)(3Xl) (2x1) \(2xl0)        (2x10)/   UUX1) 

(5.10.34) 

where 

.*"] - 
(2x10) 

0 0 
d'Ny 
dx2 '~dx2 dx2 

d*Nt 
"dx2 

1*2   dx 

0 

dM,       o.   dM 2z2 
1 _2d3A>l       1.2£Wz      l,2i!üi      ly2rfi^i dx      5z2"5?r    5z2^r     2r2^?r     2*2^r 

-22-d?T 
,   d-'jV; „   d3Ns „   d'A?,, 

~22 -Z?     -22-5P1      -22 — dx2 

(2x10) 

{d) 
0    I (1x10) 

(2xl) 

[*]      to]    [*(1)] 
(10x4)     (10x2)      (10x4) 

(10x10) 

(10x4) 
[I]       [0] 

(4x4)      (4x6) 
(10x4) 

Td[N\T d[N\ 
dx       dx 

(4x1)      (1x4) 

#0) 

(10x4) 

22 
(4x4)      (4x6) 

(10x4) 

1 
+ 2* [0]        [/] 

(4x6)      (4x4) 
(10x4) 

T* d[N\T d[N\ 
dx       dx 

(4x1)      (1x4) 

[N\ = LiVi iV2 JV3 N4\ 
(1x4) 

[MJ = [Mj M2J 
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Ar      n     3x2      2x3    Ar 2a:2     a;3    „      3x2     2x3    M x2     x3 

"T + T2"' 

X X 
MX   =  1 -  y,    M2  =   y, 

-(*)/ ,<*)m    c(2)m    <fe£%\    .<2)m    Ä is {<*}   -     Wo(0)    ^(0)    MO    w'S)   e?J(0)   e£>(l)   eil'(O)    ^(0)   eilJ(0    £g*-(Z) 
(10x1) L 

a column-matrix of the nodal variables. 

So, the first term in the expression (5.10.1) for the strain energy of the finite element 

of the plate is 

0     \(2x3)l,iX1' (2x1)/        (2x2)     \(2x3)lJXX' (2x1) 

dx = 

\ {d} T f I [B^] + [ßU] J    [D^] I [BW] + [flW] J   do; {rf} 
(1x10)    V     \(2xl0)        (2x10)/        (2x2)     \(2xl0) (2x10)/ (10xl 

(10x2) 

''(lxlO)    J 

ßd)' 
T 

DM 'BW 

0    (10x2)       (2x2)    (2x10) 

fc<" 

dx   {d} + 
(10x1) 

+Ud}Tf[fi11 
''(lxlO)   J   L 

£,(1) BW 
0   (10x2)       (2x2)    (2x10) 

dx   {d} + 
(10x1) 

+\ {d} T f\B^]T\D^]\ß^]dx   {d} + 
(1Xl0>    I   (10X2)       (2X2)   (2X10) <10xl> 

+\ {d}     I Z(lxl0)   J 
ß (1) 

T v 
Dw ß (1) dx   {d} . (5.10.35) 

'(1Xl°)   J0   (10X2        (2X2)   (2X10 <10Xl> 

Matrix [kW\ in the first term of expression (5.10.35) is part of the stiffness matrix of the linearly 

formulated problem. Its components are shown in Appendix 5-A. The last three terms in the 

expression (5.10.35) are not quadratic with respect to the nodal variables. They lead to the part of 
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the internal force vector, that is nonlinear with respect to the nodal variables. The components of 

the nonlinear part of the internal force vector were derived with the use of MAPLE, a program for 

svmbolic computation. As an illustration, the first component of the nonlinear part of the internal 

force vector is shown in Appendix 5-C2. 

Now, let us write the second term in the expression (5.10.1) for the streun energy in 

terms of the nodal variables. Analogously to equation (5.10.34), we obtain 

ö^]{/}+{r?
(3)}=([ß(3)] + [jS(3)])   {d} 

(2x3)(3xl)        (2x1) \(2xl0)        (2x10)/  (10X1 

(5.10.36) 

where 

'~SScr 
d2Ni 
dx'i 

d2Na 
'~dW 

0 

d2N, 
~~5& 

B<3> 

(2x10) 

0,   dM< 

0 

2z3~d? 

0 

1 -2d3N, 
2z3"d?T 

-zz-d&r 

2Z3^J2 

d2N? 
-z*st 

1 Jld^N-., 
2 "3 ~dZf 

,   daNa 

1 -2rf2N, 
2Z3^?T 

,   d7Nt 

[j?(3)] 
(2x10) 

{d} 
0    I (1x10) 

(2xl) 

[*]       [0]     [v™] 
(10x4)     (10x2)      (10x4) 

(10x10) 

(10x4)        ^ 

[i]      [0] 
(4x4)      (4x6) 

(10x4) 

Td[N\Td[N\ 
dx       dx 

(4x1)      (1x4) 

(10x4) 

23 \I]        [0] 
(4X4)      (4x6) 

(10x4) 

1 
+ 2*3 [0]        [/] 

(4X6)      (4x4) 
(10x4) 

T* d[N\T d[N\ 
dx       dx 

(4x1)     (1x4) 

So, the second term in the expression (5.10.1) for the strain energy of the beam is 

y >>]{/} +{»7(3)}        [^(3)' 
"(2x3) (3Xl) (2x1)  /        (2x2)' 

0(3) 

(2x3) 

{/} +{^(3)}|  dx = 
(3X1)        \o„U   / (2x1) 

2In Appendix 5-C, the first component of the nonlinear part of the internal force vector is written in terms of 

the nodal variables 0i, numbered, for convenience, in a different way than the nodal variables d;, as described in 

subsequent text 
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{d} T f I [B&] + [flW] )    [D^] l [BW] + [ßW] J   dx {d} 
1Xl0)    0     \(2xl0)        (2x10)/       (2x2)     \(2xl0)        (2x10)/ (10xl 

(10x2) 

- \M 7 ''(ixio) ./ 

£<3)' 
T 

Z>(3)" ß(3)" 

0    (10x2)       (2x2)   (2x10) 

*(3) 

dx   {d} + 
(10x1) 

+ \ {d} T/[j»(3)|Tb(3)]fß(3)ldx   {d} - 
2(1Xl°)   ^   (10x2)      (2X2)   (2X10)        (10Xl) 

+ I <"> 7 ^flxlO)   J 

£(3)]     |J0(3)| [jj(3)j   da.    {d}   + 

(10x1) 
0    (10x2)       (2x2)   (2x10) 

+ \ w 7 z(lxlO)   J 
J8 (3) D<3>   jß<3>   dx   {d} . 

(10x1) 
0   (10x2)       (2x2)   (2x10) 

(5.10.37) 

Matrix [k^] in the first term of expression (5.10.37) is part of the stiffness matrix of the linearly 

formulated problem. Its components are shown in Appendix 5-A. The last three terms in the 

expression (5.10.37) are not quadratic with respect to the nodal variables. They lead to the part of 

the internal force vector, that is nonlinear with respect to the nodal variables. As an illustration, 

the first component of the nonlinear part of the internal force vector is shown in Appendix 5-C. 

Let us write the third term in the expression (5.10.1) for the strain energy in terms 

of the nodal variables. First, we will obtain an expression for 

variables: 

Ö<2> 

(4X3) 

{/}  in terms of the nodal 
(3xl) 

/               \ 
W0 

Q(2) 
{/}   = d<2> < Exz > = d<2> 

(4X3)(3X1> (4X3) 
e{2) 
Czz 

(4X3) 

\                } 

[N\ LOJ L0J 
(1x4) (1x2) (1x4) 

[0J [M\ LOJ 
(1x4) (1x2) (1x4) 

LOJ LOJ L^J 
(1x4) (1x2) (1x4) 

(3x10) 

{W} 
(4x1) 

m 
(2x1) 

(   (4x1)   ) 
(10x1) 
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B<2) 

(4x10) 

{w} 
(4xl) 

(2x1) 

{^} 
L   (4x1)   ) 

(10x1) 

> = £(2) 

(4x10) 

{d} , 
(10x1) 

(5.10.38) 

where 

\N\ LOJ LOJ 
(1x4) (1x2) (1x4) 

[ß(2>l — W2)] LOJ [M\ LOJ 
. . (1x4) (1x2) (1x4) 
(4x10)         (4x3) 

|0J LOJ LJVJ 
.  (1x4) (1x2) (1x4) 

(3x10) 

0         0 

_ d2     2-sL 
dx2         dx 

0         0 

0         0 

0 

0 

1 d2 

2d? 

1 

0 

0 

N2 

0 

0 

N3 

0 

0 

0 0 0 0 0 0 

d2 

d; 
N,            d2N-2 
c2              dx* 

d2N;1 

dx* 
d2N^ 
dx2 

odM, 
z  dx 

odM, 
z  dx 

0 0 0 0 0 0 

0 0 0 c 0 0 

N4     0      0      0      0      0      0 

0     Mi    M2     0      0      0      0 

0      0       0     N!    N2    N3    N4 

l d-jy, 
"2   dx2 

iVi 

0 

0 

1 d2AT2 
2"dx2 

No 

0 

0 

1 d2JVn 
2~dx2 

JV3 

Now, let us obtain an expression for {?7^}, defined by expression (5.10.6), in terms 

variables: 

0 

0 

1 d2 AT,, 
2"d?r 

N4 

(5.10.39) 

of the nodal 

(4xlj 

il^o.i)2 

(2) 

i ff(2)   )2 

0 
(4x1) 

1 [_-, T   d\N\' d\N\   ,—•, 
jM           dx dx1 iw) 

(1x4)      (4x1) (lx4)(4xl) 

(1x4)      (4x1)   (lx4)(4xl) 

2 lfcJ            dx dx     lfc' 
(1x4)      (4x1) (lx4)(4xl) 

0 

> = 
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k   (1x4)      (4x1)   (1x4), 

LOJ 
(1x4) 

LOJ 
(1X4) 

LOJ 
(1X4) 

LOJ 
(1X2) 

LOJ 
(1x2) 

LOJ 
(1x2) 

LOJ 
(1x2) 

(4x10) 

LOJ 
(1x4) 

(1x4)      (4x1)   (1x4)/ 

(I m T <t\N\T*\"\ 
I  2   1&J dx       dx 
\    (1x4)      (4x1)   (1x4), 

LOJ 
(1x4) 

(4x1) 

{*} 
(2x1) 

(    (4xl) 

>  = 

where 

(4x10) 

(4x10) 

{d} , 
(10x1) 

^   (1x4)      (4x1)   (1x4), 

LOJ 
(1x4) 

LOJ 
(1x4) 

LOJ 
(1x4) 

LOJ 
(1x2) 

LOJ 
(1x2) 

LOJ 
(1x2) 

LOJ 
(1X2) 

(4x10) 

LOJ 
(1x4) 

(1x4)      (4x1)   (1x4)/ 

(i inT tinHämi 
I   2   lcJ dx        dx 
\   (1x4)      (4x1)   (1x4), 

LOJ 
(1x4) 

where 

{d} l   [*] 
v(lxl0)   (10x4), 

LOJ 
(1x4) 

LOJ 
(1x4) 

LOJ 
(1x4) 

[*]     = 
(10x4) 

LOJ 
(1x2) 

LOJ 
(1x2) 

LOJ 
(1x2) 

LOJ 
(1x2) 

(4x10) 

[I]       [0] 
(4x4)      (4x6) 

(10x4) 

LOJ 
(1x4) 

\   {d}   T    [*]   ) 
^   (1x10)   (10x4)/ 

( id} T[^2)] 
\(lxl0)    (10x4), 

LOJ 
(1x4) 

Td[N\Td[N\ 
dx       dx 

(4x1)      (1x4) 

(5.10.40) 

*(2) 

(10x4) 

[0]      [/] 
(4x6)      (4x4) 

T d[N\T d[N\ 
dx       dx 

(4x1)      (1x4) 
(10x4) 

(5.10.41) 
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and   [I]   is a unit matrix: 
(4x4) 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

[I] = 
(4X4) 

So, the third term in the expression (5.10.1) for the strain energy of the beam is 

l/lMm + M) [5(2)]([ö(2) 

0     \(4x3)(3><1)        (4X1)/        (4X4)     \ (4x3) 

{/}   + 
(3x1) (4x1). 

dx 

\        I*™}  {d}   + 
*J    \  \ niOxl) 

0     \ (4x10) 

r {d} 
J(10xl) 

(4x10) / 

3(2) 

(4x4) i  (4x10) 

{d}   + 
(10x1) 

(4x4) 
(4x10) 

{d}   | dx = 
(10xl) 

+ 
V")   I    \(4X10) 

(10x4) 
(4x10)/ 

p(2) 

(4x4) 

5(2) + r 
\(4X1°) (4x10) 

dx   {d} 
(10x1) 

5 M 71 z(lxl0)   J   \ 
s«2)1 T 

5(2)" ß(2)" 

0    (10x4)       (4x4)    (4x10) 

dx   {d} + 
(10x1) 

fc(2> 

+ I« 7 ''(lxlO)   J 
fi 

(2) 5(2)      5(2) dx   {d} + 

0     (10x4)      (4x4)   (4xl°)        (10Xl) 

+ 5 w 7 ^(1x10)   J 

5(2)        5(2) fl 
(2) 

0    (10X4)       (4x4)   (4xl0) 

dx    {d}  + 
(10x1) 

+ I w 7 
^(1x10)   J 

r 
0    (10x4) 

5(2) 

(4x4) (4x10) 

dx   {d} . 
(10x1) 

(5.10.42) 
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Matrix [ifc(2)] in the first term of expression (5.10.42) is a part of the stiffness matrix of the linearly 

formulated problem. Its components are shown in Appendix 5-A. The last three terms in the 

expression (5.10.42) are not quadratic with respect to the nodal variables. They lead to the part of 

the internal force vector, that is nonlinear with respect to the nodal variables. As an illustration, 

the first component of the nonlinear part of the internal force vector is shown in Appendix 5-C. 

Let us write the fourth term in the expression (5.10.1) for the strain energy of the 

wide beam in terms of the nodal variables. This term is 

where 

{/} = 
(3x1) 

W0 

E(2) 

E{2) 

IJif} 
*J   (1x3 (1X3) 

[N\ {w} 
(lx4)(4xl) 

[M\  {£} 
(lx2)(2xl) 

L^J {£} 
I.   (lx4)(4xl)   ) 

£,(2) 

(3x3) 

{/} dx, 
(3x1) 

[N\ Loj     LOJ 
(1x4) (1x2) (1x4) 

LOJ LMJ    LOJ 
(1x4) (1x2) (1x4) 

LOJ LOJ L^J 
(1x4) (1x2) (1x4)  . 

{w} 
(4xl) 

(2xl) 

.   (4x1)   ) 

>  = 

[N\    LOJ     LOJ 
(1x4) (1x2) (1x4) 

LOJ [M\    LOJ 
(1x4) (1x2) (1x4) 

LOJ     LOJ L^J 
(1x4) (1x2) (1x4) 

and [£>W] is defined by equation (5.10.10): 

\DW}= Abcg)(z,-z2) 

{d}   =   [Q]    {d} 
(10x1)        (3xl0)(10xl) 

Therefore, 

0   0   0 

0    1    0 = 

0   0   0 

0 0 0 

0 D(2) 0 

0 0 0 

U{f}T\D^]{f} dx = \{d}Tl [Q] ' 
2{W    L(3x3)(3xl) (1Xl0)   {  (10X3) 

£,(2) 

(3x3) 

[Q] dx   {d} 
J(3xl0)        (10x1) 

(5.10.43) 

(5.10.44) 

[fc(2|l 

- \ {d} T [fc(2)]   {d} , 
''(lxlO)   (10xl0)(10xl) 

(5.10.45) 
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where 

[fc(2)] 
(10x10) 

/ [Q] 
J (iox: (10x3) 

Ö<2> 

(3x3) 

[Q] dx 
(3x10) 
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0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 

0 

0 

0 

0   0   0   0    \ID$ 

0   0   0   0    \ID(22 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

6'-^22 

3^22 

0 

0 

0 

0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

(5.10.46) 

is a part of the stiffness matrix. 

Now, let us write the strain energy of the elastic foundation in terms of the nodal 

variables. According to equation (5.6.6), the strain energy of the elastic foundation is 

i 

Uf = b[s(x){f}T[D]{f} dx 
*   J (1x3)    (3x3) (3x1) 

where, according to equation (5.6.5), 

D 

1       0      Z2 

0    0    0 

z2    0    z\ 

and, according to equation (5.10.43), 

where 

[Q] 
(3x10) 

{/} =   [Q]    {d} 
(3x1)       (3xl0)(10xl) 

iVi JV2 N3   N4     0       0 0 0 0 0 

0 0 0      0     Mi    M2 0 0 0 0 

0 0 0      0      0       0 JVi N2 JV3 N< 
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and {d} is a column-matrix of the nodal variables. So, 

i 

U, = h [a (x) {/} r [ D } {/} dx = {{d}T [fc(/)]   {d} , 
2   7 (ix3)    (3x3) (3X1) ^(1X10)    (

L
10xl0

J)(10xl) 

where 
i 

dx 

270 

[*(/)] =b[s(x)   [Q]T[D]  [Q] 
(loxio)   i     (10x3) <3x3>(3><1< 

is part of the stiffness matrix of the system. 

If 5 (x) =const, then 

1     0    22 

kM]=bs[[Q] 

10) 

0    0    0 

22    0    z\ 

[Q] dx = 

(5.10.47) 

(5.10.48) 

= 6s 
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0 
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(19.49) 

The strain energy of the mechanical system under consideration is the sum of the strain energies of 

the lower face sheet, the upper face sheet, the core and the elastic foundation. Therefore, according 

to the equations (5.10.35), (5.10.37), (5.10.42), (5.10.45) and(5.10.47), the part of the strain 

energy of the system that is quadratic with respect to the nodal variables3, is 

Ui = l {d} T 

•'(lxlO) 
JfeW 

(10x10) 

{d} , 
(1x10) 

(5.10.50) 

3i.e. the strain energy of the linearly formulated problem 
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where 

'*<'>' = fc«1»' + fc<3>' + kW + kW + 'kin (5.10.51) 

is the stiffness matrix of the linearly formulated problem. The part of the strain energy of the system 

that is not quadratic with respect to the nodal variables4 

i 

^(1x10)    J   ,L„J     L,0v0v 

B(l) 
;(lxlO)   J   (10x2)      (2x2)   (2x10) 

dx   {d} + 
(10x1) 
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B (i) D(D J» (i) 

<lxl0)    o    (10x2)       (2x2)   (2x10) 

dx   {d} + 
(10x1) 

I 

+ \« 7 z(lxl0)   J 
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0   (10x2) 

I 

(2x2)   (2x10) (10Xl) 

+ 
•'(lxlO)   J   ,nfw„ 

Tr 0(3)1    B(3) 
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(10x1) 
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+jwTftffl 
2

<lxl°)    tf   (10x2 
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j» 
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(10x1) 

+ 5 «> 7 MlxlO)    J 
ß 

(2) 0(2) ß(2) 

0      (10X4        (4x4)    <4xl0> 

dx   {d} + 
(10x1) 

+\{d] 7 z(lxl0)   J 
m 0(2) ß 

(2) 

0    (10x4)       (4x4)   (4xl0) 

dx    {d}  + 
(10x1) 
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ß 

(2) 0(2) ß 
(2) 
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dx   {d} . 
(10x1) 

(5.10.52) 

4i.e. the part of the strain energy that appears due to nonlinear terms in the strain-displacement relations 
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5.10.2    Kinetic energy in terms of the nodal variables 

Now, we need to derive a matrix of inertia of a finite element. For this we need to derive an expression 

for a kinetic energy of the system in terms of the time derivatives of the nodal variables. The kinetic 

energy of the system is a sum of kinetic energies of the sandwich plate and the cargo. According to 

equations (4.10.8) and (4.11.5), the kinetic energy of the sandwich plate and the cargo, over a finite 

element, is 

K =W P(1) 
0     V (3x3) 

£{/> at (3x1), 

5(D öd) 

(3x3)     \ (3x3) 

d_ 
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7» {f}        dX ' 
(5.10.54) 

where 
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D, 
(3x3) 

1 0 23 

0 0 0 
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a(3) 
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0 0 1 d 
2 dx 
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dx 0 9      d 
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/x is a mass of the cargo per unit area of contact with the platform; H(x) is a function, defined as 

follows: 

H(x) 
1 in region of the upper surface, occupied by the cargo 

0 in region of the upper surface, not occupied by the cargo 

According to equation (5.10.43), 

where 
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and {d} is a column-matrix of the nodal variables. 

Let us write the first term of the expression (5.10.54) for the kinetic energy in terms 

of the time derivatives of the nodal variables. This term is 

In this expression 

>)l|r/}=[ö(i>l| {d] 
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Substitution of (5.10.55) into the first term of expression (5.10.54) yields 

dx = 

(5.10.56) 

where 

-iW'M«. 
(1x10)   (10xl0)(10xl) 

(5.10.57) 

(10x10) 

1 

■ pWb[[GW 5(D G(D dx. 
0    (10x3)       (3x3)    (3x10) 

(5.10.58) 

The components of the matrix (W1)] are written in Appendix 5-B. 
(10x10) 

Now, let us write the second term of the expression (5.10.54) for the kinetic energy in 

terms of the time derivatives of the nodal variables. This term is 

\   T 

W ([■ 
0      \( 

0(2) 

(4X3) 
\dt {/} 

(3x1), 
dx . 

In this expression 

ö<2)]|{/} =[ö<2>]|  [Q]    {d}   = [ö<2>]   [Q]   \d\  = 
(4x3)        <3xl>        L

(4x3)
J ^(3x10X10x1)        L

(4x3)
J(3xlO)(1'bx

J
1) 
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—4- 2 dx *■ 

0 0 

1 0 

0 0 

1 _d_ 
" 1 dx 

0 

1 

Ni N2 N3 N4 0 0 0 0 0 0 

0000 Mi Mi 0000 

0      0      0      0      0       0     JVi    JV2    N3    N4 

M 
(10x1) 

dN, 
dx 

0 

0 

dx 

0 

W2 

0 

rfJVa 

0 

0 

_dNA 

dx 

0 

JV4 

0 

2Mi 

0 

0 

0 

2M2 

0 

0 

0 

1 dN, 
2 dx 

0 

1 dN2 
"2   dx 

0 

W2 

1 dN.i 
"2   dx 

0 

N3 

iää± 
2   dx 

0 (10x1) 

where 

G(2) 

(4x10) 

dN, 
dx 

0 

0 

dN-2 
dx 

0 

iV2 

0 

dN* 
dx 

0 

7V3 

0 

G<2>] {d} , 
(4x10) (10x1) 

-^ 2M, 2M2 

0         0 0 

iV4        0 0 

0         0 0 

1 dN, 
"2   dx 

0 

1 dN2 
2 dx 

0 

N2 

1 dJVi 
2 dx 

0 

N3 

(5.10.59) 

1 dNt 

"2   dx 

0 

w4 

—6a: -;+x 

f2-4x;+3x2 

 j^  

6a: ^ 

„,-2i+3x 

2f 
ox 
zi 

0 

0 

0 

0 

0 1 — 3-p- + 2^ 0 

0 a; -2^ 4- z3 
+ 7T 0 

0 *5"7T — 
ox3 

0 

0 
~2            „3 X        j     X 0 

0 0 0 

0 0 0 

-3x=££ 0 1 — 3-p- + 2p- 
1 I2-4xi+3x2 

2 i2 0 a; O X        i     X' 

3x=$z 0 Q X2          n X'1 

«> (2    -  ^75- 

1     -21+3X 
2X      /2 0 x2     ,    X3 

 r  +  72- 

-\ T 

(5.10.60) 

Substitution of expression (5.10.59) into the second term of expression (5.10.54) for the kinetic 
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(lxlO)   (10xlO)(10xl) 

(5.10.61) 

where 

(10x10) 

pWbf[G^]T[D^][G^]dx 
0   (10x4)       (4X4)   (4x10) 

(5.10.62) 

The components of the matrix [m™] are written in Appendix 5-B. 
(10x10) 

Now, let us write the third term of the expression (5.10.54) for the kinetic energy in 

terms of the time derivatives of the nodal variables. This term is 

T 

d 

In this expression 

2 /    V1(3X3)        (SX1V       WVW«*3*1 

ä<3)]|{/} = [ö<3>]| [Q]   {d} 
L(3X3)        (3X1)        (3X3)        (3X10K10X1 

dx. 

[g<3>]   [Q]    [d]  = 
(3x3) (3xl0)(10xl) 

0 "3      223di 

d 
' dx o    -23 £ 

1 0            23 

(3x3) 

JVi    N2   Nz    JV4     0       0 0      0      0      0 

0000     MjMz 0000 

0      0      0      0       0       0 JVi    N2    N3    N4 

(3x10) 

(10x1) 

di dx 

AT2 

dN? 
di 

7V3 

dN, 
dx 

N4 

2z3Mi 2z3M2 
1 _2dN, 
2Z3  di 

1 -2dN; 
2^-3  d* 

1 -2 tW» 
2Z3  dx 

1 -2 <W< 
2Z3   di 

0 

0 

0 

0 
(3x10) 

»  ML 
-^-dT 

23 N] 

„ Ma _23-dT 

23 ^2 

, Ma 
-23-dT 

23A73 

»   Ml 
-23 "5T 

Z3/V4 

(4 
(10x1 
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where 

G<3) 

(3x10) 

rfJVi 
dx 

dJV2 

dx 

Ni        N2 

dx 

N3 

dx 

G(3)] {d} , 
(3x10) (10x1) 

0       223Mi    2-z3M2 
1 _2 dJVi 
2Z3   dx 

~ Mi 

1 _2 dN2 
2Z3   dx 

Mz z3 dx 

Z3N2 

1 „2 dJV3 
2Z3   dx 

-23-^r 

23-^3 

(5.10.63) 

1 Jl dA'.i 
2Z3   dx 

_y    Ml z3  dx 

Z3JV4 

0 

0 

0 

0 

2*3(1-7) 

223 f 

^3^-73- 3z?ar=*±* 

t2-4xl+3x2 

 IT— 

6x^ 
„-2J+3X 

0 

0 
-i+x 

1 — 3-7ir + 2f; >77 "P" 

1-2 X 

I 
I     X 

+ 7T 
ox2 

- OX3 

X2 

I 
,   x3 

- + -JT 

0 

0 

23(1-3^ + 2^) 

z3 (x-2^ + £) 
z3 (3fr - 2|r) 

Substitution of (5.10.63) into the third term of expression (5.10.54) yields 

1 ..2r-4xi+3x- 
2 Z3 (2 

Q,2„-i+x —023rc   jj 

1 ~2„-2i+3x 
2 3 -1       p 

-623:r-p 

_   ;2-4xf+3x2 

-23 fp— 

623*=^ 

iWTM (4 
(Ixl0)(10xl0)(10xl) 

where 

m<3> 
(10x10) 

-'""/ 
G(3)l   [5(3)] |G(3) 

dx. 
0    (10x3)       (3x3)        (3x10) 

(5.10.64) 

(5.10.65) 

(5.10.66) 

The components of the matrix |W3)] are written in Appendix 5-B. 
(10x10) 

Now, let us write the fourth term of the expression (5.10.54) for the kinetic energy in 

terms of the time derivatives of the nodal variables. This term is 

\bfnH{x) d_ 
dt {/} 

(3x1), (3x3) 

d_ 
dt {/}     dx, 

(3xl)/ 
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H(x) 

where fi is a mass of the cargo per unit area of contact with the platform; H{x) is a function, defined 

as follows: 

1 in region of the upper surface, occupied by the cargo 

0 in region of the upper surface, not occupied by the cargo 

Let us consider a finite element, the upper surface of which is fully occupied by the cargo. 

Then H(x) = 1 within this finite element. In this case the fourth term of the expression (19.54) for 

the kinetic energy is 

2   J 1^(3x1), 

a 
(3x3) 

~T{/}     dx = 
01 (3x1)/ 

= bL[  [Q]  U\ )   \DC] [Q]  U\ 
1   {       V(3Xl0)(10xl)/      (3x3)<3xl0>(10xl) 

dx = 

Ud}T [bffi [Q] T
\DC]   [Q] dx)   \d\ 

(1X10)     Vo      (10X3)    (3X3)(3X1°)      /(lOxl) 

where 

(1x10)   (10xl0)(10xl) 

,(«=) = bL [Q] T 

J      (10x3) 
D, 

(3x3) 

[Q] dx 
(3x10) 

(5.10.67) 

(5.10.68) 
(10x10) o 

The components of the matrix [Wc>] are written in Appendix 5-B. 

If the upper surface of a finite element does not have a cargo on it, then the fourth term of the 

expression (5.10.54) for the kinetic energy is equal to zero. 

So, kinetic energy of the system is 

1 , .>T 
K=2{d} H{4> (5.10.69) 

where 

H=   ™(1>   +  mW   +  m(3)   +   m(c) (5.10.70) 
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5.10.3    Potential energy of the platform and the cargo in the gravity field 

According to equation (5.7.1), potential energy of the platform and the cargo in the gravity field is 

L 

U = bf {f}T{T} dx 
J  (1x3)    (3x1) 

where 

{/}=< 

w0 

_(2) t-xz 

t-zz 

(5.10.71) 

{r} 
(3xl) 

9 [p{1) (Z2 -z1) + pW (Z3 - z2) + pW (Z4 -z3)+nH (x)] 

0 

g [PWz2 (z2 - Zl) + ip<2> {z* - z\) + pW z3 (z4 -z3)+»H (x) z3] 

(5.10.72) 

Substitution of relation {/} =   [Q]    {d}   (equation (5.10.43) ) into (5.10.71) yields 
(3x1)       (3xl0)(10xl) 

I 

n =   {d} Tb [ [Q] T {T} dx = 
(1x10)      J  (10x3)   (3x1) 

i 

=   {d} Tbf 
(1x10)      J 

Ni 0 0 

N2 0 0 

N3 0 0 

N4 0 0 

0 Mi 0 

0 M2 0 

0 0 Ni 

0 0 N2 

0 0 N3 

0 0 N4 _ 

{r} dx. 
(3x1) 

Calculations give the following result 

n = - {d} l  {r} , 
(1x10)   (10x1) 

(5.10.73) 
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where 5 

{r}   = -bg 
(10x1) 

>(1) (*2 - Zl) + W2) (23 - **) + >(3) (*4 - 23) + |//X 

i/V1' (22 - 2!) + £/V2) (23 - 22) + i*V3> (24 - 23) + ^V 

^> (22 - 2j) + ^<2> (23 - 22) + i/p<3) (z4 - Z3) + ±1(1 

^VX) (2! - 22) + i/V2> (22 - 23) + i/2p(3) (z3 - Z4) - ijV 

0 

0 

i^'z, (z2 - Zi) + ><2> (z| - Zl) + \lp™Z3 (z4 - 23) + \lpZ3 

^/V(1)«2 (22 - 2!) + ^V*' (22 - 22) + ^V3>23 (z4 - Z3) + ±PßZ3 

\lp^Z2 (z2 - 2!) + \lPW {zl - Zl) + \lp^Z3 (z4 - 23) + \lßZ3 

±PpMZ2 (Zl - Z2) + ^V2> (zl - 22) + ^V3>23 (23 - 24) - ±l2ßZ3 

(5.10.74) 

if the upper surface of the finite element is fully covered by the cargo, and 

{r} 
(10x1) 

-bg (5.10.75) 

±lpW (22 -Zl) + \lpM (a* - z2) + Iip(3) (z4 - z3) 

^V*' (22 - 2!) + ^/2p(2) (23 - 22) + ^/2p(3) (Z4 - Z3) 

ilpW (22 _ Zl) + Iip(2) (z3 _ z2) + Iip(3) (24 - 23) 

±PpW (Zl - Z2) + ±PpW (z2 - Z3) + ±PpW (Z3 - Z4) 

0 

0 

\lpWz2 (22 - Zl) + \lPW {4 - Zl) + \lP^Z3 (z4 - 23) 

±PpMz2 (22 - Zl) + £ZV*> (22 - Z2) + ^V3>23 (24 - Z3) 

\lfiWz2 (22 - Zl) + \lpW (4 - Zl) + i/p(3)z3 (Z4 - Z3) 

^VDz2 (2l - Z2) + ±PpW (4 - 4) + j^V3)23 (23 - 24) 

if on the upper surface of the finite element the cargo is totally absent. We do not consider the case 

of the cargo occupying a part of the upper surface of the finite element, because a finite element 

mesh can be created in such a way that some of the finite elements are totally covered by the cargo, 

and the rest of the finite elements have totally free upper surfaces. 

5 vector {d} is shown in equation (5.10.22) 
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5.10.4    Equations of motion in terms of the nodal variables 

The Hamilton's principle for the system, that consists of the platform, the cargo on the upper surface 

of the platform and the elastic foundation, written in terms of the nodal variables, has the form: 

/ («5 Q {df [k] {d}) + SUnl - 6 ({df {r}) - 6 Q {d}T [m] {d}) + {6d} [c] {d}) dt = 0, 

ti 

(5.10.76) 

where [c] is an element damping matrix. It is difficult to determine the element damping matrix 

experimentally because the damping characteristics of the plate depend on the properties of the 

whole plate. For this reason, the global damping matrix is in general not assembled from element 

damping matrices, but is constructed from the mass and stiffness matrix of the complete element 

assemblage together with experimental results on the amount of damping in the whole plate. We 

will use the Rayleigh damping model, in which the global damping matrix [C] is presented as a 

linear combination of the global mass matrix [M] and the global stiffness matrix [K] 

[C] = a[K]+/3[M], (5.10.77) 

where a and ß are constants to be determined from two given logarithmic decrements 8\ and <52 that 

correspond to two unequal frequencies of vibrations UJI and u>2 by the formulas 

SlUJl — 62W2 

■K (u)\ - W| ,2^ 
(5.10.78) 

W1W2 (^2^1 - 61W2) 
0="wwp-«™i. (5.10.79) 

The Lagrange equations of motion in terms of the nodal variables, that follow from the Hamilton's 

principle (5.10.76), are 

dd 

+ [c]{d}=0 (i = l,2,...,10) (5.10.80) 

or in matrix notations 

^awTw«)+i^-4(Mrw)+^awrww)+ 
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+ [c] {d} = {0}. (5.10.81) 

From equation (5.10.81) we obtain 

[k] {d} + ^f} + [m] {d} + [c] {d} = {r} . (5.10.82) 

Part of the strain energy Uni is due to the nonlinear terms in the strain-displacement relations 

(geometric non-linearity of the von-Karman type). Uni is not a quadratic form of the nodal variables, 

therefore vector frV is not linear with respect to the nodal variables. All the quantities that enter 

into the equation (5.10.82), except the element damping matrix [c], are defined in this chapter. But, 

as it was written before, the element damping matrix is not required because the global damping 

matrix will be constructed from the global mass matrix and the global stiffness matrix. 

5.10.5    The more convenient numbering scheme for the local degrees of 

freedom 

So far, the nodal variables of an element were defined as follows, i.e. were given the following local 

numbers (equation (5.10.22) ): 

dx = w0(0), d2 = w'0{0), d3 = wQ(l), d4 = w'0{l), db = 42i(0), 

^<2) dr(2) 

d6 = 42i(0, d7 = e%(0), d8 = ^(0), d9 = £W(0, d10 = ^-(0, 

where, for example, w0 (0) = w0\^=0 is displacement at the left node of an element, or, which is the 

same, at point x = 0, where x is local (element) x-coordinate; w0(l) = ^olx=z is displacement at the 

right node of an element, or, which is the same, at x = I, where I is length of an element. 

For the sake of convenience of assembling the global matrices, we will introduce a different local 

numbering scheme of the nodal variables: 

0! = V)Q{0) = du 

92 = d^(0) = d2, 

Ö3 = 4x)(0) = d5) 

Ö4 = ei2
z
)(0) = d7, 
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e6 = w0(i) = ^3, 

ax 

e8 = eg(l) = d6, 

69 = e<?)(l) = d9, 

910 = ^{l) = dw. (5.10.84) 
ax 

These new nodal variables 0* are more convenient for assembling of global matrices, because the 

numbering order of 9i is such that: 

the first nodal variable of the left node (0i) is w0 and the first nodal variable of the right node (06) 

is also wo; 

the second nodal variable of the left node (02) is ^ and the second nodal variable of the right node 

(67) is also ^; 

the third nodal variable of the left node (6»3) is ei2} and the third nodal variable of the right node 

(08) is also exJ; 

the fourth nodal variable of the left node (04) is e¥2 and the fourth nodal variable of the right node 
(2) 

(#9) is also ezz , 

the fifth nodal variable of the left node (05) is ^- and the fifth nodal variable of the right node 

(0io) is also -g^-. 

Such numbering scheme allows to establish the correspondence between the local and global notations 

of the nodal variables by a simple formula 

<sl«ni.# 
T 

('f   =9 ,«.,.„+,. (5.10.85) 5(irl-l) + i  • 

"' do ■'■ of d....r. 

Let Ai,A2,...,Anei+i be the notations of the nodal points. Then, from relations (5.10.84), which 

establish correspondence between the meaning of nodal variables and their local numbering, and 
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from relations (5.10.85) (which establish correspondence between the local and global numbering of 

the nodal variables) we obtain, for example, 

for the first element: 

w0(A1) = e[1) = Q1, 

for the second element: 

A  (2) 

w0 

dwi 

(A2) = e™ = e6, 

J{M) = W = *, 

(A2) = C = e10, de<$ 

dx 

w0(A2) = 6?) = e6, 

^(A2) = 42, = e7, 

e?HM) = öf = 09, 
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de (2) 

(A2) = öf = 01O, 
dx 

w0(A3) = e{
(?

) = en, 

^ {A3) = *(?> = eMl 
ax 

&{Az) = #) = Q 13, 

e?l(A3) = P9 
(2) e 14, 

dS 
dx 

(A3 
g(2) 
y10 G 15- 

So, when we pass from local 0* to global Gj notations of nodal variables by formula (5.10.85), 

each nodal variable, that belongs to both adjacent elements, is denoted as one and the same in 

global notations, that is required for providing continuity of the nodal variables at the interelement 

boundaries. For example, the nodal variable 0^ = w0 (A2), that belongs to the first element, and 

the nodal variable 0^ = wo^), that belongs to the second element, are both denoted as 06- The 

numbering of nodal variables, can be presented as follows: 

MAiei) = e (if =e8 (iri-li+1 

1 
global 

node # 
local # 
of d.o.f. 

or      i«oUi«i+i 

I 
global 

node # 

elem.# 

i 
local # 
of d.o.f. 

=   GM 

global 
node # 

or 
dwQ 

dx 
i 

global 
nodi! # 

,(»el)     _ 
—   "üfiel-n + T, 

local # 
of d.o.f. 

,(2) (Aid) 
I 

global 
node # 

elern.# 

(ill) 
3 
1 

local # 
of d.o.f. 

) = 0(i"   =0^^      or      £™(A^ = 
I 

global 
node # 

i 

e?}(Aiei) r(2) 

global 
node # 

0 

elem.# 

9 —  C_5(i.,M ) + !) 

local # 
of d.o.f. 
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elem.# ,„. eleni.# 
j   (2) T J   (2)   / \ T 
d£" (A     \-0 (iei)    - A nr ^f-    A 1-0 {iel)    - 

4*1 ÖÄ ^>£f i or-'ot node # of d.o.f. global 
node # 

The element stiffness matrix, mass matrix, damping matrix and force vector, corresponding to 

the newly defined nodal variables 0j, will be denoted, respectively, as [K], [mass], [g] and {p}. 

The correspondence between the components of the element force vector in old notations, r,, and 

the components of the element force vector in new notations, pi, is the following: 

Pi = rh pi = r2, P3 = r5, p4 = r7, p5 = rs, 

Pe - n, pi = r4, p8 = r6, p9 = r9, p10 = rw. 

The correspondence between the components of the element stiffness matrix in old notations, 

kij, and the components of the element stiffness matrix in new notations, /Cy, is given below: 
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The correspondence between the components of the element mass matrix in old notations, m„ 

and the components of the element mass matrix in new notations, (mass)^, is established in the 

same manner. 

So, the equation of motion of a finite element (5.10.82), written with the use of the new nodal 

variables fa, defined by equation (5.10.84), takes the form 

H {0} + |^y + [mass] {§} + [g] {e} = {p}. (5.10.86) 

The first component of the nonlinear part of the internal force vector |^ is written explicitly 

in Appendix 5-C. The other nine components are not written in Appendix 5-C due to the limitation 

on the size of the dissertation. 
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5.11    Post-Processing of Results of the Finite Element Anal- 

ysis of the Cargo Platform, Modelled as a Wide Beam 

5.11.1    Formulas for stresses in terms of the field variables 

After computation of the nodal variables, the stresses need to be computed in the post-processing 

procedure, in order to substitute them into the failure criteria. As it was written in the previous 

chapters, the in-plane stresses axx will be computed from the constitutive relations, and the trans- 

verse stresses axz and azz - from the equations of motion in terms of the second Piola-Kirchhoff 

stress tensor, equations (3.1.21)-(3.1.23). These equations, written here again, are 

«i%+°iky\y+<ri%=P{k)*W, (5.H.1) 

*l& + °&\y+°i.,.=ftk)*W, (5-11-2) 

+§j (*# »!-fc) + <v WW) ~ P(k)9 = PW*W (5-n-3) 

(k = 1,2,3). 

In case of cylindrical bending these equations of motion take the form: 

<rlkJ,x+*l% = P{k)üW , (5.11.4) 

<£!, + a{% + A (ffW^>) - pWg = pWfiW (5.11.5) 

(k = 1,2,3). 
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From the constitutive equations (3.6.13) and formulas (5.3.1)-(5.3.3) for the strains in terms of 

the field variables w0{x,t), ex
2} {x,t), el2), (x,t), we find the following expressions for the in-plane 

stresses in terms of the field variables: 

H„(\) ^r^Kd) ,r{l)AV xr'1'^1' +?7(i)2e(1) = axx   - Cll £xx'+°12 £yy   + °13 5". 16        ^ 

o 0 0 

7?(D 222 4
2),x + \zl e£U + \ (w0,x + z2 E%)     - (w0,xx + z2 e^xx) (5.11.6) 

^il    =  Cn  Eis'   + 012   £yy    + <->13 £22    + ° 16 Z  £Xy 

7^(2) 
°11 |(™0,x)2    + (242i,x - ™0,xx + W0,x42),x)    2 + .ie(2)       + 

2   "'^        2 5 («-): + 

+ r(2)£<2> + *^13 £Z2   1 
(5.11.7) 

°"ix   = Cn eix  + W2 4y   + C13 f«' +G16 l £xy   ~ 

7=j(3) : °11 2z3 Ä + 5*3 e«,xx + 5 (™o,x + 23 e^,*)     - (™o,xx + 23 e&U) (5.11.8) 

^TO °12 Cxx  +°22 £yi/   +°23ezz    + U26 z£xy   — 

0 0 0 

7=7(1) 
°12 2*2 4

2),x + |z| ei2),xx + \ (w0,x + Z2 4
2),x)       - (™0,xx + 22 £%x) Z (5.11.9) 

<7yy   = ^12 exx  + °22 £yy   + °23 £zz   + °26 Z£xy 
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\{WQ,x?    + (2£xlx - ™0,xx + tWO.xE^.x) z+    - =-(2) 
2 ^".»V 

+ 

+^)
£?> '23 cz2 1 

(5.11.10) 

//   (3)     nW (3) ,r!(3)c(3) j-r'2^«3) +r(3)2f(3> "<x^/ = C124I
; +C22 ey +o23 e     +o26^exv 

= C 2z3 Ä + \z\ e«,xx + 2 (wo,* + 23 ei^x)     - (™0,xx + *3 42),xx) (5.11.11) 

H (1)    7*(iUi) .r^M) j.r{1Kw 4-r{1)iF^ - H a(J-> = C16 £
KJ + C26 ely' + ^36 eiz   + ^66 ^exj/   - 'xy 

0 0 

7=^(1) 2*2 £&>,* + f Z§ Ax + \ («»0.x + Z2 £i2),x)2     - (™0,xx + *2 <£>,*) (5.11.12) 

tf    (2)        7^(2)   (2)   ,   7t(2),(2)    ,   7i(2)p(2)   ,   7^(2)9   (2) "alt = C16 ex
zJ + C26 e).' + C36 ey + C66 2exy 

= C i(Wo,x)2   + Ue% - w0,xx +^x^x)  z + (-\z%x + I (^.x)2 + 

+°36 £zz ' (5.11.13) 

H    (3)       7^(3)   (3)   ,   7t('L(3)  _i_ 7=f(3) „(3)  4.7'(3>Oc(3) 

7^(3) 
W6 

2z3 £xz\x + \z\ e?lxx + 2 (™o,x + *3 ei2),x)     - (w0,xx + z3 4
2,U) (5.11.14) 
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Coefficients C^ , Zfff, C^ and cf? depend on z-coordinate because they vary from ply to ply 

Now, let us find expressions for the transverse stresses axz and azz by integrating equations of 

motion. These expressions will be called the second forms of expressions for the transverse stresses, 

in contrast with the expressions for the transverse stresses that can be found from the constitutive 

equations. 

In section 3.13 of chapter 3, the second form of expressions for the transverse stresses was found 

by integrating the equations of motion (3.16)-(3.18). Now, let us use these formulas to express the 

second form of the transverse stresses in terms of the nodal variables of a finite element, for the case 

of cylindrical bending of the platform. 

From formulas (3.13.5), (3.13.9), (3.13.10), (3.13.15), (3.13.16) and (3.13.17), one can receive the 

formulas for the transverse stresses in the cylindrically bent plate by setting axy = 0 and ay. = 0 

(the nonlinear terms are underbraced): 

z 

4V = / (P(1)
"

(1)
 - H°i%) dz  (*i <z < *2), (5.11.15) 

Z2 2 

^ = / (/>(1)«(1) - H°i%) dz + J (P{2)ü{2]
 - H°(?l*) dz      (<*<*< «0        (5-11 .16) 

«2 23 

CT(3) = I (p(Dfi(l) - Vi',x)   dz + J^Ü™-   *<&>,)   dz 

Z 

+ J (p<3>«<3> - »^) dz       (z3<z< z4) (5.11.17) 

*$ = 2»j!li+[ [p(l) (Ä<1) + 9) " h {°"WP) - '».-]rfz' (5-1L18) 

where s is modulus of elastic foundation. 

ffm = sww {zi) + f* [p(D (Ä(i) + ,) _ A (CTdyd)) _ ^ 

+ /2 [p<2> (*<2> +g) - | (42>,(2)) - "£>,, 

dz + 

(5.11.9) 
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*£> = ,«,('>( 

+ 

*i) +/*' [P
(1)

 (*(1) +g)-j£ («>) - <&>. (fz 

(5.11.20) 

The substitution of expression (5.2.4) for u^(x,z,t) and expression (5.11.6) for HaxJ into 

expression (5.11.15) for axJ yields: 

<4y(*.M) = 

= p(1)(«-2l) (2 ef] - wo,,) z2 - \e% 4 + {eflx z2 + w0,x) \ (2z2 - zx 

2z2 E{xlxx + \z\ ^zlxxx    + (wo,x + z2 e^z) (™0,x* + Z2 £(?lxx)       / C[\] (z) dz+ 

+ 
z 

(wo,*** + z2 e%xx) j C^ i,xxx + z2 e\z\xxx ] / U\{ {z) z dz. 

Z\ 

(5.11.21) 

If one substitutes equation (5.2.5) for u^ and equation (5.11.7) for H axx into equation (5.11.16) 

for Oxz , one obtains: 

oW=h(x,t) + p> (2) (242i - *>.,) \ (Z* - Zl) - \s% (2
3 - 4) W0,xW0,xx 

z 

Jc{u] (z) dz 

24*,xx - w0,xxx + WQ,xxEl3,x + W0,x£zl\xx 
)fo 

(z) z dz 

\^lxxx + ^,-eSU ) J&3 (*) *2 dz ~ ^IJC^ (z) dz , (5.11.22) 
22 

where 

h(x,t)=a£ 
Z = Z2 
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P{1)(Z2-Z1) (2 £■•£> - tB0lx) *2 - f{% *2 + (42^ *2 + ti)o,x) - (22 - Zx) 

Z-2 

2z2 e£lxx + \z\ e?lxxx   + (»o,, + z2 eflx) (w0,xx + z2 £&>„)     j C^ (z) dz+ 

+ 
*2 

(w0:XXX + z2 £(?lxxx) j CJI (z) z dz. (5.11.23) 

The substitution of equation (5.2.6) for u(3) and equation (5.11.8) for Haxx into equation (5.11.17) 

ax
3J=I2(x,t)+I3(x,t)+ 

for axJ yields: 

<riV(z3) 

+p^z3(z-z3) (2ef}-w0,x)-\eVxz3 

-P{3)\(z-z3)
2{w0,x+sflxz3) 

Z 

2z3 ex
2},xx + \z\ efzlxxx + (ui0,x + z3 e^xJ [w0,xx + z3 ef}<xxj      jcf) (z) dz+ 

< v ' J J 

( +    V>0,xxx + z3 e. (2) .)J*g z) z dz, (5.11.24) 

where 

h(x,t) = p™ 
1 

{2ex
2} - i»o,«) i (2? - *g) - \z% {4 ' 4)   - wo,xw0,xx Jc$ (z) dz 

1e(
x%x - w0tXXX +t«o,gJcP),x+^o,»ei2,U) Jcfi (z) z dz 

- (-\e^xxx + CP)x£gÜ JC™ (z) z> dz - C^e% (23 - z2). (5.11.25) 
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Z 

r$ = I (P(1)*(1) -  H'& ~  "<\v) **     (eqn. 3.3.11 

where we set v = 0 and Hayy\y = 0 (because of cylindrical bending), and from equation (5.11.12) 

for OyJ, we obtain: 

<#> (*,*,«) 

z 

2Z2 E(x),xx + \z\ E(z),xxx + \Wo,x + z2 £{%) \W0,xx + z2 ei^xxj      / -&H (z) dz+ 

+ 
z 

(wO,ixx + 22 eiz'.xxx)       Cll  (z)   z dz- 

From equation 

(5.11.26) 

•si 

where we set u = 0 and derivatives with respect to y equal to zero (because of cylindrical bending), 

and from equation (5.11.13) for ayx , we obtain: 

Z2 Z 

z-z 

H™(x,t)=a${z2) 

z 

H^(x,t)   -wo,xW0,Xx I  Üi?(z) dz 

•22 



CHAPTER 5 297 

2£{xlxx - ™0,xxx + W0,xx42ix + ^0,x£(2) y j 
'    22 

C16 (2) 2 dz+ 

where 

+ (|eSU - ^x 42Ü / C™ (z) 22 dz - E%JC™ (z) dz, (5.11.27) 

tf(2)M)MV 
2 = 22 z. 

](-»*&) dz = 

■       Z-2 

2z2 e{xlxx + \z\ £z%xx + (w0,x + 22 42),x) (™o,xx + z2 e£\xx)       ' C{H (z) dz+ 

+ 
Zn 

(™0,xxx + 22 ^xxx) JCu   (Z)   Z dz- (5.11.28) 

Analogously, from equation (3.3.13), where we set v = 0 and the derivatives with respect to y 

equal to zero (because of cylindrical bending), and from equation (5.11.14) for cTyX , we obtain: 

<#'<*3> 
f * N 

<#> (*, *, *) = / (- "*&>,) dz + J (- «^) dz + J(- "vgl) dz = 
*1 «2 23 
v v / V v / 

H(2'(x,t) H<-V(x,t) 

= H™ (x,t) + HW (x,t) 

z 
223 ei2lxx + \z\ 6J%xx + (w0,x + *3 E%)  (w0,xx + 23 gffi,,)   1    feg) (Z) dZ + 

Z 

+ (^0,xxx + 23 42),xxx)       C 16   (z)   2 d2- (5.11.29) 

where 

23 

#<3> (a:,*) =   -wo,xWo,xx I C{$ (z) dz 
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2F<2) ^o.xxi + w0<xx£^x + ivo,x£?],xx J   / C16 (z) z dz+ 

+    7:e (2) 
22,111 ■ *<?„ <&u) / ci? w -2 d* - Ä/eff w *■ (5.11.30) 

If one substitutes equation 

w(1) (i, t) = w0 (x, t) + 42) (x, t) z2      (eqn 5.2.1) 

into equation (5.11.6) for axJ, and equation (5.11.15) for axJ into equation (5.11.18) for alJ, one 

can receive: 

aQ(x,z,t) = s w0 + ^} z2 + P (i) w0 + £<£>z2+g (Z-Zi) 

Z 

2^2 £x%x + g^ 42),xxx + (wo,x + z2 e%) (wQ,xx + z2 £<?,„)   (w0,x + 42),x 22) Jc[\] (z) dz 

Z 

+ (w0,xxx + z2 efz\xxxj \w0,x + 4z!* z2)     Cn (2) 2 dz 

Z 

2*2 42i,x + \zl 42),xx + \ (m,. + 22 4
2),x)2     (™0,xx + 42),xx Z2) J~C~n   (z)   <** 

(™0,xx + 22 £ i2),xx)  (™0, x* + e{3,xx*2)jCn(z) zdz 

2| 

-nO) Pll^(*l-*r (2 42),x - ^o,xx) 22 - ^«U *§ - - (2*i + 2 - 3*2) (e£)„ 22 + t»o,x«) 

+ 
-1 2      2 

222 £x2),xxx + \z\ ei2),xxxx    + (U'O.T + 22 4
2),XIJ  (™0,xxx + 22 e^xxx)        /   / Cu (z) dz dz 

Zl   Z\ 
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Z     Z 

- (w0,xxxx + 22 eQxxxx) / / Cn (z) z dz dz- 

From equation (5.11.19) we receive: 

a<£(x,z,t) = J2(x,t) + pW(z-z2) (z + z2)eW+w0+g 

(5.11.31) 

Z 

-(w0,xfwo,xx     Cu (z) dz 
22 

v v , 

- W0,x (2e¥lxx ~ W°>*xz + W0,x*£<?z,x + W0,x^z\xx)   I ^11   (z)   z dz 

-WO,x     -7,£\lxxx+E'zz 

Z 

»   e<2)    "l [l ,X   *~ZZ,XX   If 
(2) 4.^(2)     P(2)       \    IC™(Z)   Z2dz 

z 

- £?lxwo,xU>o,xX JCn {z) zdz 
2-> 
 v ' 

2 

■ EP)X (2e<^>xx - w0>xxx + ™0,xx42),x + ^o.xe^xx) / ^n (*) ** <** 

-e<2) -e(2)      +e (2)        (2)      \    fä 
zz,x <-zz,xx I    /       1 

(?(2)   Z3 ^ 

• «*„ #>„ J&3 (z) dz + eflx eflf C "™(z) zdz 
22 

2 2 

-^{wo,x)2wo,xxCn (z) dz+-{u)QtXfef}xx     Cu {z) zdz 
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Z 

(2e(?lx - w0,xx + w0,x£?z\x) wo,xx    Cn (*) z dz 

( ^£xz,x - wo,xx + "w0,xe (2) !,) *£U fäi (*) -2 <** 

■^SU + j^,,)2]^.-./^?^)*3* 

-I^SU +1 (42;,x)2] #U /zi? W *3 «** 

0 z 

-e^wo,xxjc{S(z) dz + e<~Mlxxjc(S(z) z dz 

*2 *2 

dh(x,t) 
dx > - ^) 

-/.W (2eWs - i»o,xx) (z + 2z2) - £&>« (z2 + 2zz2 + 3z2) I 
6(z_2ä) 

((™o +    (W0,ii)    + VJ0,xW0,xxx VM z) dz dz 

+ 2exlxxx - ™0,zxxx + W0:xxx£?z\x + 2w0,xxe{2lxx + w0,x£ (2) 
ZZ, XXX 

z   z 

II 
«2 *2 

 (2) 
Cn (z) z dz dz 

+ .L(2) +F(2)      ~(2)        ,,(2)      (2) \    [ (c(2) (z\   Z2 dzdz 
f><-ZZ,XXXX     >    0ZZ,Xx'~ZZ,XX  ~ °ZZ,X°ZZ,XXX   III 11    \    ' 
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%1*XJJC1S{*) dz dz, (5.11.32) 

where 

J2(x,t)=ai\Hz2) 

,(2) „(!) s wo + e\J z2    +p{ '  w0 + e\Jz2 +g  (z2 - zi) 

2^2 42*U + \zl si%xx + (wo,x + z2 efl^ (w0,xx + z2 eflxx)   (w0tX + e£\x z2) feV (*) dz 

+ 
*2 

\W0,xxx + 22 £(zlxxx) [w0,x + E^x 22J   / Cn   (z)   Z dz 

O2o F(2)    + _z2 „(2)        , 
^2 cu,i T „^2  tzz,xx   '    rj  V —u,x   i   ~z >-zz,i 

*2 

\ (w0>x + z2 e™x)     (w0,xx + e%x z2) Jc[\] (z) dz 

[W0,x + ( W0,xx + z2 EflxxJ (w0tXX + e£\xx z2 
)fa 

(z) z dz 

PW^-z2f (2 42
2',x - ™0,xx) Z2 - -efi.xx  4-$ (2*1 - 2*2) (4

2i,xx 22 + ™0,xx) 

+ 
-1        *2    Z 

2Z2 4
2),xxx + 2Z2 42!xxxx + (wo,x + 22 E^xx) (™0,xxx + 22 E^j        /   / dS (z) dz dz 

[w0,x + 22 e (2) 
XXXX   T -^2   C2Z,XXXX )   / / Cff (2)   Z d2 dz (5.11.33) 

and 

dl2(x,t) 
dx 
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= P{l)(Z2-Z1) (2 422,x - ™0,xx) Z2 - -4^ z\ + (e¥lxx  Z2 + ™0,xx) £ (Z2 ~ *l) 

-    (2^2 
_(2) ,    12  ,(2) 
ci2,in   *   2   *  ^zz.xxxx 

)/*" 
(2:)   d-Z 

22 

(u>0,xx + 22 e^xx)  (™0,xx + *2 E^) + (w0,x + 22 e^,«)  (™0,xxx + 22 ^zxx)      /   CJV (2)   tfe + 

+ 
«2 

(u>0,xxxx + 22 4z},xxxx)   /   ^U   (2)   2 <k. 

Prom formula (5.11.20) we receive: 

<r£) (a:, 2, i) = J2 (2, t) + J3 (a;,«) + 

+pW (w0 + efz^a + 0) (2 - 23) 

(5.11.34) 

2 

223 (&U + 5*3 42),xxx) (w0tX + e™x 23) j&S dz 

(w0tX + 23 e%) (w0,xx + 23 e£>M)  (lü0lI + 422x 23) y^S3! 

z 

+ (^o.xxx + 23 ei^xxxj   (w0,x + 42,* 23)     CuZ dz 

223 42 * + -2? £<2>      ^  (l 9Z3 ^z.xx  I  I l ,(2) ™0,*x+41,xx 23J   /Cn    ok 
7(3) 

z 

- \ (w0,x + 23 42),x)2 (w0,xx + eWxx 23) JC{S dz 
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Z 

+ (w0,xs + z3 e™xx)    [(fftzdz 

dl2(x,t)  ,  dl3(x,t)\, 
dx       +       dx       ,U_23) 

P^^z3{z-z3) (242i,x - ™0,xx) -  2^«,*x*3 

+P{3)1 (z - z3f (w0iXX + e£>M*3) 

Z     Z 

+ (2*3 42,U + \4 ^U*) JJ&3 (z) dz dz 

(wo,i + (^o,xx + z3 e%x) (w0,xx + z3 e%x) JclS (z) dz 

+ 
z    z 

(w0,x + z3 E^) (^o,xxx + z3 e%xxJ J jcfi (z) dz dz 

1 wenn + z3 e\ (2) 
25,1111 )//^ 

z) z dz dz, (5.11.35) 

where 

J3 (x, t) 

- n(2) P^(z3-z2) (z3 + z2) e<£ + w0 + g 

(W0,x)   WO,xx /  Cu (z) dz 
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23 

- W0,x \^e(xlxx - wO,xxx + W0,xxE?2,x + ^O^^xx)   / CU   (z)   z dz 

.«,„      I _L(2) +e(2) J.^)/^ (.)-»* 

- ei2
rLu;o.x^o.xx     C-n (z) z dz Ezz,xwO,x'WO ,M   / OJJ (2) 

23 

' Ä (2e&U - %,,xx + tüo.xie^.x + ™o,*42),xx) /^n (2) *2 dz 

23 

zzz,x\~~2Ezz,xxxJt~ezz,x£zz,xx)   1^11   (z)   z    dz 

23 23 

■ «*,. e% J&3 (z) dz + eg\x e%j C{$ (z) z dz 
22 22 

23 23 

- \{^x?W0tXXJc3 (z)   dz + |KX)M'U /^ff (*)   * d* 
22 

23 

(2ei22,x - w0,xx + ^0,xel2),x) w0,xx      Cu   (Z)   z dz 

(242),x - vo,xx + wo,xe£l) ei%x J&$ (z) z" dz 
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\&U + \{®*?]^Jrt8i*) *** 

-|<&U + \ (42^)2] #>„ Jtfg (z) z3 dz 
22 

(2),„„ ....   r{2) <9\ A, x ADA*)      r(2) ■e£w0tXXJC\y(z) dz + e^e™xxjC^{z) z dz 
Z-2 22 

23 

dh(x,t) 
dx (za ~ Z2) 

-P (2) (2ex% - w0lXX) {z3 + 2z2) - e™xx (z
2 + 2zz2 + 3z|) i 

1( ^ g (*3 - Z2) 

23    2 

+ ([wo.xx)  +^o,x«^o,ccxiJ / /Cn (z) dz dz 

22  22 

f(^0,xx)2 

+ 2£{xlxxx - ™o,xxxx + w0,xxxe{2
z\x + 2w0tXX£{2lxx + w0<x£^x 

*3    * 

// 
Cn   (2)   2 dz ^2 

+ [_Ie(2) +e(2)     £(2)       +£(2)      (2) )[[(?*■ 1     I Q°Z2,XXXX    '    t-2Z,IIt22,IX    '    C22,ICZ2,III   I     /     I   ^ 11 (z) z2 dz dz 

£zz,xx /   / ^13 (2) dz dz, (5.11.36) 

22 22 

and 

dh(x,t) 
dx 
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= P(2) (2tflx - w0,xx) \ {z\ - zl) - \e%x (4 - 4) 

- (W0,xxW0,xx + W0,xWa,xxx)   I Cn  (z)  dz 
" v 'J 

22 

1 ?— 
-   texlxxx ~ ™p,xxxx + wo,xxx£{zJ,x + 2wo,xXeflxx + wp^e^ssx]   / Cn (z) z dz 

)*3 

fc{2 
I ^ 11 

22 

(2)  22 dz 

7^2>  (2)     /■ ^ -Cl3£lJ,xx(Z3-Z2). (5.11.37) 

5.11.2    Computation of spacial derivatives of the field variables 

The formulas for the stresses contain derivatives of the field variables wo, exz , elz ■ In the finite 

element formulation the functions WQ and ezJ are approximated by the Hermit interpolation poly- 

nomials of the third degree, and the function exJ is approximated by the Lagrange polynomial of 

the first degree. Therefore, the derivatives ^, ^, ^, %g-, ^, %$-, °$- can be and 

will be computed as the derivatives of the interpolation polynomials that were used for the finite 

element formulation. 
-(2)    de± -(2) The values of wo, -g®-, e\z, -gjjf- and exz are most accurate at the nodes (because these variables 

are carried as nodal variables), and they can be taken directly from the finite element solution. Let 

A{ and Ai+\ be the nodal points of the i-th element. Then the average (over the element) value of 

-^x
a-, that is used to compute an average stress in the element, will be computed as 

dwo _ 1 
~är~~ 2 £">+£"♦-> w'0(0) + w'0{l) = 2^2+^4). (5.11.38) 

According to the more convenient numbering scheme of the element degrees of freedom introduced 

in equations (5.10.84), d2 = #2, ^4 = Ö7. Therefore, 

£->♦*>• (5.11.39) 
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Similarly, the average (over the element) values of e\J, -g£- and exJ are 

A2) _ I 
"      2 

e%{0) + e%(l) (2) = 2 (Ö4 + 09), (5.11.40) 

ö^l 
dx       2 

fc (2) 

Öl (0) + 
de (2) 

dz (0 2 (05 + 0io). (5.11.41) 

e(2) 
C-X2 aw + ^w] = 2(03 + 08), (5.11.42) 

The second derivatives ^^ and Qxif will be computed at the Gauss points , whose coordinates 

in the local (element) coordinate system are x\ = (^ +.g\/3) I and x-i = (^ — g\/3) /, because at 

the Gauss points (and maybe at some other points too), the derivatives ^ffi and a
dxl

i, computed 

from interpolation polynomials used in the FE formulation, are most accurate (explanation of that 

is in Appendix 5-D). Then, the average (over the element) value of ^ffi, that is used to compute 

an average stress in the element, will be computed as 

d2w0 

dx2 

rd2w0 ,_       d2w0 .     ' 
XV + -^r{x2) dx2 dx2 (5.11.43) 

In the finite element formulation, the following polynomial approximation of the function WQ was 

used: 

w0 

i  _ 3x2    ,    2x:< 

I 

3xJ 2x* 
~ 13" 

+ 7T 

wo(O) 

^(0) 

WQ (I) 

dwn 
dx (0 

(eqn 5.10.14). 

From the last equation we obtain 

— JI + 12jj wo(0) — J7 + 12yg- 0i 

d2w -|+6f 
6        in x 
(7 — " JZ 

►    < 
^(0) 

W0(Z) 
► = < 

-f + 6f 
6        inx 

>   < 
02 

06 

[    -f + 6f    J [ ^(0 J i   -i+^   . 07 

(5.11.44) 
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and, therefore, at the Gauss points x\ = f \ — & j / and rr2 = ( \ + ^ ) / we have 

92tu 
0^2 (Si) 

-2# 

2# 
■ -H-/3 

l 

>   < 

01 

02 

*7 

>, 
d w 
dx2 [X2) =  < 

2# 
-l + \/3 

I 

l + \/3 
1 

Substitution of equations (5.11.45) into equation (5.11.43) yields: 

T 

01 

>  < 
02 

> 
06 

07 

(5.11.45) 

d2w 
dx2 

-2# 

2# 
-l + v/3 

T f    1 
01 

02 
►  ^ 

06 

07 

r +1 

2# 

; 
-2# 

i 

Öl  \ 

► * 

02 
> 

06 

07 1/ 

= < 

0 
T 

01 
1 
I > < 

02 

0 06 
1 

07 

)=\{07 02). 

The same way, from the polynomial approximation 

T 

A2) = < 

1- 35* + 2xJ 

IS" 

 T + 7. W 
35* 
I2- 

-T + 

2X-1 

l3- 

>      < 

e£? (0) 
de (2) 

«  (0) 

*£> (0 
(0 

used in the finite element formulation, one can obtain 

d2e% 
dx2 = < 

•      > T 
0 

_1 
' >   < 

0 

I 

e%(0) 

^(0) 

dx •(0 

(eqn 5.10.18) 

0 
T 

04 

> = i 

l 
i 

0 
>      < 

05 

09 

1 
#10 

(0io - 0b)- 

(5.11.46) 

(5.11.47) 

The third derivatives ^^ and -%$f-, computed from the interpolation polynomials, used in 

the FE formulation, are constant in the finte element, and they are most accurate in the middle of 
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the finite element, at the point x = | and maybe at some other points too (explanation of that is 

Appendix 5-D). From polynomial approximations (5.10.17) and (5.10.18) we obtain: 

d3w 

dx3 

dhv 
dx3 = < 

r i2 ] T 

™0(o) 12 
73" 

T f            \ 
0i 

6 

12 
>     < 

w'0(0) 

W0{1) 
>   =z   < 

6 

12 
>     < 

*2 
> 

06 

6 

V        l          J 
w'0(l) 6 

K        l          ) 
07 

^                        J 

and 

9x3 

12 
73" 

6 

12 
"F 

>      < 
ÖX3 

6 

f (01 -06)+ ^(02 + 07) 

£(2) 

M2> 
(0) 

ä* (0) 

dx ■(0 

12 
73" 

T 

04 

> = < 
6 
¥ 

12 
>      < 

05 
> 

09 

6 
#10 

(5.11.48) 

= ^(04-09) + ^(05 + 01o). 

8eg 
dx 

(5.11.49) 

The first derivative ^f-, computed from the interpolation polynomial, used in the FE formu- 

lation, is constant in the finite element, and is most accurate in the middle of the finite element 

and maybe at some other points too (explanation of this is in Appendix 5-D). From the polynomial 

approximation (5.10.11) we receive: 

.(2) 
d£(2) 
Ubxz 

dx 
de{2) 
<Jt-xz 

dx 08 
(08-03). (5.11.50) 

The derivatives 2
QX^

L
, dx\

s and dx^ , taken as the fourth derivatives of the interpolation poly- 

nomials, that were used in the finite element formulation, are equal to zero, that can be wrong for a 

particular problem. Therefore, these derivatives are computed numerically at the nodal points by a 
(2) (2) finite difference scheme, using the nodal values of wo, e\z and eXz, obtained from the finite element 

solution. The average over the element values of these derivatives will be computed as 

d4w0 

dx4 dx4 dx4 (5.11.51) 
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dx* 
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~ 2 

1 
~~ 2 

9x4   W 1    ^ 

dx2 dx*   {X) '    9x2 

(Ai+i) 

(Ai+i) 
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(5.11.52) 

(5.11.53) 
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5.12    Damage Progression and Time Integration 

When a failure occurs in a single layer of a composite laminate, a composite structure can still carry 

a load. Therefore, a subsequent failure prediction is required to determine a dynamic response of 

the structure in the presence of some damage. This problem is dealt with by assuming that within a 

finite element where the damage occurs the original material characteristics of the damaged ply can 

be replaced with degraded material characteristics. The degraded material properties are assumed 

to be small fractions of the properties of the undamaged material, but not equal to zero, in order to 

avoid ill-conditioning of the finite element equations. For example, a degraded value of the Young's 

modulus Ed of the damaged ply within a finite element is computed as 

Eld = (src)E1, (5.12.1) 

where E\ is an original value of the Young's modulus and (src) is a stiffness reduction coefficient. 

The stiffness reduction coefficient is set to be as small as possible, but its smallness is limited by the 

need to avoid numerical difficulties that can be caused by the large difference of material constants 

of adjacent finite elements. Such values of the stiffness reduction coefficients are found by numerical 

experimentation. 

The face sheets of the sandwich plate are made of laminated composite plates, that can fail 

in different modes: due to matrix cracking, fiber fracture, fiber matrix debonds and delamination. 

Therefore, for accurate prediction of failure in the face sheets, one needs to use a failure criterion 

that takes account of the microstructure of the composite laminates and the variety of modes of 

failure that can occur due to this microstructure. A set of failure criteria, designed for this purpose, 

were suggested by Hashin (1980). Therefore, for the face sheets the Hashin's criteria will be used in 

this study. 

The core of the sandwich plate, made of polymeric foam or a honeycomb structure, is modelled 

as a homogeneous isotropic or transversely isotropic medium. Such a medium has fewer modes of 

failure, namely crushing under compression and cracking under tension. Therefore, for the failure 

analysis of the core, it is more appropriate to use a failure criterion that does not take account of 

the microstructure of the material. One such criterion is the Tsai-Wu criterion, and it will be used 

for the core in our study. The core, that is uniform before the beginning of the damage, becomes 

nonuniform in the thickness direction (as well as in longitudinal direction) when the damage starts 

to progress in the thickness direction.   For this reason, we will divide the core into the nominal 



CHAPTER 5 312 

layers, and we will check the failure criterion in the middle of each such layer. 

At each time step the average (over a finite element length) stresses in each element and in each 
(2) layer are used in the failure criteria. The expressions for stresses in terms of the variables wo, eXz, 

eiV and their derivatives were developed in subsection 5.11.1 of this chapter. In order to compute the 

average (over the finite element's length) stresses, the average values of the field variables and their 

derivatives must be used in these expressions. The computation of the average (over the element) 

values of the field variables and their derivatives is discussed in subsection 5.11.2 of this chapter. 

5.12.1    The Tsai-Wu criterion 

The Tsai-Wu failure criterion (Azzi and Tsai, 1965. Wu, 1974 ) is used for the core. Let XT, YT, ZT 

be the lamina normal strengths in tension along the (1, 2, 3) directions, Xc, Ye, Zc - lamina normal 

strengths in compression and 523, Si 3, S12 - shear strengths in the (23, 13, 12) planes respectively. 

In the Tsai-Wu criterion, failure is assumed to occur if the following condition is satisfied: 

6 6      6 

i=i t=ij=i 

where 

^1 = Cll>   02 = <T22,   °3 = 033>   "4 = "23,   "5 = &1Z,   °6 = <7l2, (5.12.3) 

Fi = J L, F2 = J_ _ J_, F3 = J_ _ J_, 
XT     XQ YT     YQ ZT     ZC 

1 1 1 
FU =   „    „    ,   F22 =  ..  .,   ,   .T33 — 

XTXC YCYT ZTZC 

1 1 1 
F44 = -$—, F55 = -£—, F66 — —-, 

Z>23 <->13 <->12 

1 1 1 
-P12 = -^21 = — r   rw—„  ,, ,,  1 -^13 = -F31 — — Ö" 

2 T/XTXCYTYC 2 \jXfXcZfZc 

F23 = F32 = -\   .       *    =. (5.12.4) 23 2 S/ZTZCYTYC V ' 



CHAPTER 5 313 

If the failure occurs, then the following expressions are used to determine the failure mode: 

Hi = JiCTi + FU<T\,   H2 = F2(T2 + F22a\,   H3 = F3CT3 + F33IT3, 

A4 = Fual H5= F55al H6 = F66crl (5.12.5) 

The largest Hi is selected as a quantity that determines the dominant failure mode, and the corre- 

sponding engineering elastic constant is reduced. The correspondence between Hi and engineering 

elastic constants is the following: 

Hi —» Ei, 

H2 —> i?2, 

#3 —* £3, 

^4-G: 23, 

#5^G 13, 

#6 —► G12, 

The method of reduction of values of engineering elastic constants of the core, using 

the Tsai-Wu failure criteria is described below. 
6 6      6 

Compute the failure index F = Y^-Fi^i + ^^-FV;(Ti0j- If failure occurs, i.e. if F > 1, then in 
i=l i=\j=\ 

each layer of the core of each finite element, at each time step find the maximum of H\, H2, H3, 

H4, H5, #6- 

a) If H\ is the maximum among Hi, then set 

Eld = (src)E1, (5.12.6) 

where (src) is a stiffness reduction coefficient. 
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b) If H2 is the maximum among Hi, then set 

E2d = (src)E2. (5.12.7) 

c) If H3 is the maximum among Hi, then set 

EM = (src)E3. (5.12.8) 

d) If H4 is the maximum among Hi then set 

G2M = (src) G23. (5.12.9) 

e) If H5 is the maximum among Hi then set 

G13d = (src)Gl3. (5.12.10) 

f) If He is the maximum among Hi, then set 

Gi2d = (src)G12. (5.12.11) 

A value of the stiffness reduction coefficient needs to be chosen very small, but not lower than a 

certain limiting value, below which the ill-conditioning of the finite element equations can occur. 

This limiting value of the stiffness reduction coefficient can be found by numerical experiments with 

a particular model. In the numerical example in the subsequent section 5.14, the stiffness reduction 

coefficient (src) was chosen to be 0.001. 

5.12.2    The Hashin's criteria 

The Hashin's criteria ( Hashin, 1980) will be used for the face sheets. The Hashin's criteria and the 

method of reducing the values of engineering elastic constants of the face sheets are described below. 

The fiber failure in tension (fiber breakage) in the face sheets in a layer of a face sheet of a 

finite element is predicted when 

<7„>0and^ + ^-^i3>l. (5.12.12) 



CHAPTER 5 315 

When fiber failure in tension is predicted in a layer, the load carrying capacity of that layer is 

almost completely eliminated. Therefore, the values of all the elastic constants that characterize the 

in-plane deformation of the plate in cylindrical bending are reduced to some very low values, i.e. it 

is set 

Eid = {src) Ei, Gnd = (src) G13, vizd = (src) ui3, vi2d = (src) v12, (5.12.13) 

where (src) is a stiffness reduction coefficient. As it was mentioned earlier, the value of the stiffness 

reduction coefficient is chosen to be as small as possible, but not lower than a certain limit value 

under which the ill-conditioning of the FE equations occurs. 

The fiber failure in compression in a layer of the face sheets of a finite element is predicted 

when 

ffn < 0 and  (^- J   > 1. (5.12.14) 

In the works of Schuerch (1966), Hermann, Mason, Chan (1967), Sadovski, Pu, Hussain (1967), 

Karpenko, Terletzki, Liashchenko (1972), Greszczuk (1974) and other authors, the compressive fiber 

mode of failure is interpreted as a failure caused by instability (buckling) of fibers in the matrix. 

These and other works were included into the monographs of Broutman and Krock (1967), Rosen and 

Dow (1975). More recently, the failure of composite materials under compression due to instability 

of fibers was considered in the monograph of Guz (1989). 

For compressive fiber failure, it is assumed that the material constants E2, E3, G12, G13, re- 

sponsible for transverse load carrying capacity, are reduced to some very low values. Therefore, it 

is set: 

E2d = (src) E2, E3d = {src) E3, GUd = {src) Gu, GUd = {src) Gu, (5.12.15) 

where (src) is a stiffness reduction coefficient. Besides, it is assumed that if the buckling of the 

fibers occurs, the layer still has some residual strength in the direction of the fibers. Therefore, the 

original Young's modulus in the fiber direction Ei is replaced with some reduced value Eld by the 

formula 

Eid = (SRC) Ei, (5.12.16) 
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where (SRC) is another stiffness reduction coefficient, whose value is larger than the value of the 

stiffness reduction coefficient (src): 

(src) < (SRC). (5.12.17) 

The matrix failure in the face sheets is predicted when 

2 = (^2+f^y     {^f-cr^      (a12)
2 + (a13)

2      x ^ ^ > 
1      V     YT     J (S23f (512)

2 

or when 

\2 

F2=±- c      Yc V2523; 
(<722 + ^33) 

4(S23; 
+        --   ,2    + 

(cr23f- WM      (a12)
2 + (a13)

2 > 1 ^       +       < Q 

(S23f (512)
2 

In this case, the degraded stiffness properties are: 

E3d = (src) E3, G23d = (src) G23, Gx3d = (src) Gi3, 

£2d = (src) E2, G\2d = (s^c) G12, 

viu = (src) vn, v23d = (src) i/23. 

The delamination (separation of the plies) occurs when 

(^f)   > 1    and    <733 > 0. (5.12.20) 

In this case, the degraded material properties are: 

E3d = (src) E3, G23d = (src) G23, Gi3d = (src) G13, v23d = (src) v23. 

5.12.3    The algorithm of modeling the damage progression 

Now, the algorithm of damage progression will be presented without the details of how it is imbedded 

into the time integration scheme. These details will be discussed in the subsequent subsection. 
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1) At each time step compute average (over an element length) stresses axx, axy, ayy, crxz, ayz, 

crzz in the problem coordinate system in all finite elements, in the middle of each ply of the face sheets 

(at z = k±ii±i) and in the middle of each nominal layer of the core. The method of computing 

the average (over an element length) values of derivatives of the field variables, that enter into the 

formulas for the average stresses, was presented in section 5.11 of chapter 5. 

2) Transform the stresses to the principle material coordinates, i.e. compute an, <r22, ^33, ^12, 

CT13, cr23 by formulas (Reddy, 1996): 

an = (axxcos0 + axysm0)cos9 + (axycos0 + sayy)sm9, (5.12.21) 

a12 = - (fxx cos 0 + axy sin 9) sin 0 + (axy cos 0 + ayy sin 0) cos 0, (5.12.22) 

<T13 = <Txzcos0 + <T„zsin0, (5.12.23) 

<722 = (<jxxsm0 - axy cos0) sin0+{-scrxy+cryy cos0) cos0, (5.12.24) 

(T23 = -crxzsm0 + ayzcos9, (5.12.25) 

033 = az 
(5.12.26) 

where 0 is angle of fiber orientation with respect to the x-axis of the problem coordinate system. 

3) Substitute the stresses in the material coordinate system into the failure criteria. The Hashin 

criteria will be used for the face sheets and the Tsai-Wu criterion will be used for the core. If the 

failure occurs, reduce the appropriate engineering constants of the face sheets and the core, using 

the methods, described above. 

4) Using the modified values of engineering elastic constants, for each layer of each finite element 

that fails recompute elastic constants ac[f, element stiffness matrices, global stiffness matrix and 
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restart the analysis at the same time step, i.e. return to the 1-st step.6 

5) If failure does not occur, proceed to the next time step. 

The analysis will continue for a time duration, specified by a user, or until all finite elements fail. 

The flow-chart of this algorithm is presented in Figure 5.1 

5.12.4    Time-history analysis by Newmark method with account of dam- 

age progression 

Let us introduce the following notations: 

{G} = {0}    - vector of nodal variables, evaluated at moment of time tn, {©} 
t=tn 

{©}n+i - vector of nodal variables, evaluated at moment of time t„+i, T = tn+\ — £„. 

Then, the Taylor expansion of {0} about a point tn, with four terms, evaluated at point tn+i, 

has the form: 

{e}n+1 « {©}„ + {©}n r + \ {©}n r
2 + \ {0}n r

3  . (5.12.27) 

The quantity \ {©}„ in the last term can be written approximately as follows (Englemann, 1988): 

{©}       -{©} 
* {@}n «/   J"+1

r    L   J", (5.12.28) 

where ß is a free parameter that controls the accuracy and stability of the method.   Therefore, 

equation (5.12.27) takes the form 

(e}„+, - (6). + {e}n r +1 {e}B H + »> ({e}n+i - {6}.) - 

« (G}„ + r {&}n + r- (i - ß) {e}n + r'ß {e}_+i, (5.12.29) 

Analogously, expanding the vector 10 \ in Taylor series, keeping three terms in the expansion 

and evaluating I Q\ at moment of time tn+\, one can obtain (Englemann, 1988): 

H,+M
öL+RT+HH,+,-R 

6 When failure occurs, the stress field changes instantly due to the change of material properties. This redistribution 

of the stresses may cause additional failure to occur. Therefore, in case of failure, the time incrementation must be 

stopped, and analysis must be run again for the same time interval to determine the new failure. If the new failure 

does not occur, the analysis can go on to the next time step. 



CHAPTER 5 319 

«{e} +T(i-7T){G}n + T2
7{e}n   , (5.12.30) 

where 7 is another free parameter that controls the accuracy and stability of the method. 

Equations of motion of the system in terms of the global nodal variables {6}, in which vectors 

{6}, {©}, {©} are evaluated at a moment of time tn+i, are 

[M] {Ö)n+1 
+ [C] ({Ö}n+1 " Mi) + {K] {e}"+1 + {Q}"+1 = {P} ' (5'12-31) 

where {Q} is a nonlinear part of the internal force vector, whose components are defined as —"g^"""", 

where {Uni)s stem *s tne whole system's part of the strain energy, that is not quadratic with respect 

to the nodal parameters 0j. This part of the strain energy appears due to the nonlinear terms 

in the von-Karman strain-displacement relations. In equation (5.12.31) the vector [K] {0} is a 

linear part of the internal force vector, and, therefore, the matrix [K] is a stiffness matrix of a 

geometrically linearly formulated problem. The stiffness matrix [K] does not depend on the nodal 

unknowns. In equation (5.12.31) the load vector {P} is due to the gravity force, therefore it does 

not depend on time. At the initial moment of time t\, when the platform touches the elastic foun- 

dation, but the foundation is not compressed yet, the damping in the platform is absent. This is 

taken into account by writing in equation (5.12.31) the term, responsible for damping, in the form 

[C] ( jo) -{©} )> witn initial velocity J6> subtracted from the velocity <Q\ . As a 

result of this, the equation of motion (5.12.31), written for the initial moment of time ti, takes the 

form: 

[M]{ej  +[K}{e}1 + {Q}1 = {P}. (5.12.32) 

0 

The internal force vector at the initial moment of time is equal to a zero-vector, because at the 

initial moment of time all components of the generalized displacement vector {©} are equal to zero: 

{eh = {0}. (5.12.33) 

Therefore, equation (5.12.32) takes the form: 

[M]{e}   ={P}. (5.12.34) 

The global vector of nodal parameters at the initial moment of time, I Q \ , computed from equation 

(5.12.34), is such that those components of this vector, that are the second time derivatives of the 
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nodal transverse displacements at t = h, iü0(ii), are equal to 9.8 jj, as it is expected to be. 

If in equation (5.12.31) the term responsible for damping was written as [C] j© j        instead of 

[C] ( {©} -{©}), then the initial acceleration tü0(*i) would be computed from equation 

[M] {©} = {P} - [C] {©} and, therefore, would take on very high values, different from the 

acceleration of free fall 9.8 j£. 

Substitution of equations (5.12.29) and (5.12.30) into equation (5.12.31) yields: 

([M] + [C] r2
7 + \K] T2ß) {e}n+i + {Q}n+1 + 

+ [c]({e}n + r(i-7r){0}n-{e}i) + 

+ [K] ({0}n + r {0}n + r2 (± - ß) {©}R ) = {P} (5.12.35) 

Prom equation (5.12.29) we find 

{«}„„ = ^ <e'»«" h (<e>-+ T W.+T'{1-ß) W.)'       (512'36) 

Substitution of equation (5.12.36) into equation (5.12.35) yields 

( [M] ^ + [C] j + \K}) {©}n+l + {Q)n+l 

+ [c]({e}n + r(i-7r){e}n-{e}i) + 

+ [K] ( {©}„ + r {e}n + r2 Q - /?) {Ö}n ) - {P} = {0}. (5.12.37) 

Now, assuming that we know the values of {©}n, j © \  ,and| 0 j  , we need to find the values of 

{©} j.1, (©i      ,and{©}      . Components of vector {Q}n+1, that enters into equation (5.12.37), n+i     I     J n+l I     Jn+1 
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depend nonlinearly on components of the vector of nodal parameters {©}n+1 • Therefore, equation 

(5.12.37) is a nonlinear system of equations with respect to components of the vector {©}n+1 • 

These nonlinear equations will be solved by a direct iteration (Picard) method (Reddy, 1996). Let 

us introduce the following notations: 

K lM}^ + {C}j + [K], (5.12.38) 

R=^Oel-+rR+T2G-")R)(|JU|+[C|T27+|if|r2,3)+ 

+ !C]({e}n + r(i-7x){e}n-{e}i) + 

+ K(l)] ( {©}„ + r {e}n + r2 Q - /?) {e}n ) - {P} , (5.12.37) 

Then, equation (5.12.37) takes the form 

K {e}n+1 = -{F}n-{<?}„+, , 

or 

(5.12.38) 

(5.12.39) 

The direct iteration method is based on computing a sequence of vectors 

by the recurrence formula 

WW--[*]'* {{*}a + {Qtil) , 
where the vector {Q}^ is the vector {Q}n+l evaluated at {0}n+1 = {©li+j • The components 

of the matrix K and the vector IF \ do not depend on the unknowns, i.e. on the components 

of the vector {0}n+r If the sequence of vectors {©}*,+j, {©}!+!, {©}l+i,- converges to some 

(5.12.40) 

(5.12.41) 

vector 

vcv-KVJl   l^Jn + l-    "   »ut ov^uvavA, u.   vv^v^u   iv|n+1,    l^Jn+l'    l^Jn + l'"'     *ö~"  

{©)      , then this vector \Q\       is a solution of the system of equations (5.12.38). Since 
I     Jn+l I-     J n+\ 

the inversion of matrix   K   is not an effective computational procedure, it is more convenient to find 

each next term of the recurrence sequence (5.12.40) by solving a system of linear algebraic equations 

K WÜ? = - Hn - {Q)t •) +i (5.12.42) 
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for the components of the vector i©}^1'- The components of the vector {O}^^ found in each 

iteration, are used to evaluate the nonlinear part of the internal force vector {Q}n+1, which is then 

used in the next iteration to obtain the next improved approximation of the vector {0}n+1. In other 

words, in the next iteration the system of linear algebraic equations 

K (r+l) 
{e}£!ia) = - {p}n - {Q)Üi (5.12.43) 

is solved for the vector {Q}n+P- In the FE program, that is developed for the analysis of the 

problem, the first term of the iteration sequence {©}*>+!, {©}l+i, {©}„+!» ■•• is set ecJual t0 a 

zero-vector at all time intervals: 

m{n% = {0} (5.12.44) 

for n=l,2,3,... . With such a choice of initial guess of the solution vector, the convergence of the 

iteration sequence (5.12.40) is achieved successfully unless the number of the damaged plies is high. 

But if the number of the damaged plies is large, the program needs to be stopped anyway. Iteration 

is stopped if a norm of vector {0}^+^ - {©}„+i (a difference of solution vectors in two successive 

approximations), divided by the norm of vector {0}^   is less than some number (tolerance): 

{©l!^ - (e}S, 

{e}£!i,) 
< tolerance (5.12.44) 

As a norm of a vector, we used a square root of sum of squares of its components. Let (&i)n+i be 

an i-th component of the approximate solution vector obtained in an iteration with a number r at 

a moment of time with a number n + l.Then the criterion (5.12.44) for stopping the iterations will 

be written as follows: 

&& - (©Ä' 

mi (r+1) 
+ 1 

l2 
< tolerance (5.12.45) 

In the example problem in the subsequent section 5.14, the value of tolerance is chosen to be 0.001. 

So, in the problems without damage progression taken into account, the algorithm of the Newmark 

time integration scheme, combined with the direct iteration method of solving the nonlinear algebraic 

equations, can be summarized as follows: 

I)   At the first time interval \t\, t2] : 
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Set the vectors of initial generalized displacements {9i} and velocities {0}j equal to the initial 

conditions. In our finite element formulation we have the following nodal variables at each node: 

u,0) 9a) £<£>, £Wf £|«i.. Therefore, for a platform, dropped on elastic foundation, at the initial 

moment of time t = t\ we set at each node 

wo = 0, °jg = 0,42i = 0,42; = 0, ^ = 0  ; (5.12.46) 

^ - initial veocity    * (^] = 0   *® = 0,  *® = 0>   * (^ = Q ({UJU7) 

The vector {©) of initial generalized accelerations is found from the equation (5.12.34), repeated 

here as equation (5.12.48): 

[M]{G}   ={P}. (5.12.48) 

II) At the n-th time interval [tn, tn+l] the vectors {G}„, {ö} , {G}^ are known, and it is 

necessary to find the vectors {0}„+1, {G} , {G}^ . For this purpose the following algorithm 

is used. 

1) Set iteration counter r = 1, and set the initial approximation for the vector of nodal parameters 

at t = tn+i as 

{ö}£I = {o}, 

2) Evaluate {Q}^, i.e. evaluate {Q}n+1 at {G}n+1 = {G}^ and solve a linear system of 

algebraic equations for the components of the vector {G}n
r
+1 

K && = - {r}n - {Q)i% 

Evaluate the acceleration vector of the current iteration by the formula 

(C" - wf (<
ei- -,e)- - TH -i2 (H w.)     (5-I249) 

(equation (5.12.49) is obtained by expressing |G|        from equation (5.12.29) ).   Evaluate the 

velocity vector of the current iteration by the formula 

{C" - W.+T (1 -7T) W.+rh {C" •       (5'12-50) 
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(equation (5.12.50) is obtained from equation (5.12.30). 

3) Check if the vectors {G}^1' and {O}^ satisfy the convergence criterion of equation 

(5.12.45) 

(eoKi1} - (Qitl2 

(e.fö1* 2 
< tolerance      (eqn 5.12.45) 

If the convergence criterion is not satisfied, then begin a new iteration within this time interval, 

i.e. set r = r +■ 1 and go to the step 2. If the convergence criterion is satisfied, go to the next step. 

4) Set the vector of nodal parameters and the vectors of the first and second time derivatives 

of the nodal parameters equal to the corresponding vectors obtained in the iteration at which the 

convergence criterion of the step 3 was satisfied, i.e. set 

{0}n+1 = {&}£? , (5.12.51) 

(e)    = {e)(r+1) , (5.12.52) 
I     )n+1        1     > n+1 

{el    = {e)      . (5.12.53) 
I     J n+1        I     i n+1 

for use in the next time step and for computation of stresses at t = tn+i . 

5) Compute average stresses in all plies of each finite element at t = i„+i, using the vectors 

{©} , j©| and {©} .obtained in the 4-th step. Then set n = n + 1, i.e. go to the next 

time interval. 

Analysis goes on for all time steps, the number of which is specified by a user, or until all plies in all 

finite elements fail. If a number of the damaged plies is large, the iterative procedure of solving the 

nonlinear algebraic equations (5.12.43) can fail to lead to convergence of the sequence of approximate 

solutions, i.e. the termination criterion (5.12.45) of the iteration process will not be satisfied. This 

serves as an indicator that the number of the damaged plies is high and also leads to stopping the 

finite element program. 

If the damage is taken into account, then the 5-th step of the above algorithm will be modified 

as follows: 

5') Compute average stresses in all plies of each finite element at t = tn+i, using the vectors 

{0} (Q\       and (ö)        ,obtained in the 4-th step. Substitute these stresses into the failure Jn+i' ^   jn+1 L   j n+1 
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criteria. If failure occurs in a ply of a finite element, modify material elastic constants of this ply, 

modify the element stiffness matrix [k] and the nonlinear internal force vector {q}n+1 = (f^f) 

of the finite element to which the damaged ply belongs and assemble the global stiffness matrix 

[K] and global nonlinear internal force vector {Q}n+1 with account of modifications to the element 

stiffness matrices and element nonlinear internal force vectors due to the damage. Then go to the 

step 2. If failure does not occur in any ply of any finite element, then set n = n + 1, i.e. go to the 

next time interval. 
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5.13    Verification of results of the finite element program 

In this section we will consider some static and dynamic problems, for which exact elasticity solutions 

exist, and compare results of these exact solutions with the results produced by the finite element 

program, based on the layerwise theory of sandwich plates developed in this chapter. 

5.13.1 Comparison of exact solution for a homogeneous isotropic simply 

supported plate and the FE solution of the same problem, based 

on the layerwise plate theory. 

Let us consider a static problem of cylindrical bending of a simply supported homogeneous isotropic 

plate of length L, height h and width b (Figure 2.2). The plate is under a uniform load, acting on 

the upper surface with intensity (force per unit length) qu. By qu we denote not an absolute value 

of the load intensity, but a projection of the load intensity on the z-axis, i.e. qu can be positive or 

negative, depending on the direction of the load. Let ^ = Q — -1 x 105^?, h - 0.022m, L = lm, 

x = 0.5m, where qu is force per unit length on the upper surface, b is width of the plate. In this 

problem, the exact solution for stresses is (Appendix 2-A): 

6 „ (       L\ ( 2     h
2 

<rZ; = -^Q(2z + h)2(z-h), (5.13.2) 

axx - -^Qx (x-L)z+ ^Qz* - ^Qz. (5.13.3) 

In the finite element model, 50 elements of equal length were used. The stresses were computed as 

the average stresses over the length of the elements. The tables of comparison of stresses, obtained 

from the exact and the finite element solutions, are shown below. 
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Table 5.1: Comparison of exact and FE solutions for stress axx in a homogeneous isotropic simply 

supported plate 

X 
(m) 

z 
(m) 

&XX                              @XX 

(xio-Jfr)     (xio«#) 

exact plate 
theory 

0.5 -0.011 154.98 154.87 
error 0.07% 

0.5 -0.0105 147.93 147.84 
error 0.06% 

0.5 -0.010 140.88 140.80 
error 0.06% 

0.5 -0.008 112.69 112.64 
error 0.04% 

0.5 -0.005 70.427 70.402 
error 0.03% 

0.5 -0.002 28.169 28.164 
error 0.02% 

0.5 0.0 0 -0.026 

0.5 0.002 -28.169 -28.164 
error 0.02% 

0.5 0.005 -70.427 -70.402 
error 0.04% 

0.5 0.008 -112.69 -112.64 
error 0.04% 

0.5 0.010 -140.88 -140.80 
error 0.06% 

0.5 0.0105 -147.93 -147.84 
error 0.06% 

0.5 0.011 -154.98 -154.87 
error 0.07% 
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Table 5.2: Comparison of exact and FE solutions for stress axz in a homogeneous isotropic simply 

supported plate 

X 
(m) 

z 
(m) (x!0%)      (xlO%) 

exact plate 
theory 

0.8 -0.011 0 0.0 

0.8 -0.0105 0.1817 0.1882 
error 3.6% 

0.8 -0.010 0.355 0.3677 
error 3.6% 

0.8 -0.008 0.9636 0.9981 
error % 

0.8 -0.005 1.6228 1.6810 
error 3.6% 

0.8 -0.002 1.9778 2.048 
error 3.5% 

0.8 0.0 2.0455 2.1188 
error 3.6% 

0.8 0.002 1.9778 2.048 
error 3.5% 

0.8 0.005 1.6228 1.6810 
error 3.6% 

0.8 0.008 0.9636 0.9981 
error 3.6% 

0.8 0.010 0.355 0.3677 
error 3.6% 

0.8 0.0105 0.1817 0.1883 
error 3.6% 

0.8 0.011 0 0.00002 
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Table 5.3: Comparison of exact and FE solutions for stress azz in a homogeneous isotropic simply 

supported plate 

X 
(m) 

z 
(m) 

°zz                       Vzz 
(xlO^)           (X10«£) 

exact plate 
theory 

0.8 -0.011 0 0 

0.8 -0.0105 -0.015261 -0.0145 
error 4.9% 

0.8 -0.010 -0.060105 -0.0571 
error 4.9% 

0.8 -0.008 -0.50714 -0.4814 
error 5% 

0.8 -0.005 -1.8257 -1.7327 
error 5% 

0.8 -0.002 -3.6514 -3.4646 
error 5.1% 

0.8 0 -5.0 -4.7434 
error 5.1% 

0.8 0.002 -6.3486 -6.0260 
error 5.1% 

0.8 0.005 -8.1743 -7.777 
error 4.9% 

0.8 0.008 -9.4929 -9.0206 
error 5% 

0.8 0.010 -9.9399 -9.4489 
error 4.9% 

0.8 0.0105 -9.9847 -9.4924 
error 4.9% 

0.8 0.011 -10.0 -9.5079 
error 4.9% 

So, the FE program allows one to achieve high accuracy of computation of the in-plane stress 

axx and satisfactory computational accuracy of the transverse stresses axz and azz. The lower 

accuracy of the transverse stresses is explained by the fact that these stresses are computed by 

integration of the pointwise equilibrium equations, and this procedure requires computation of the 

higher-order derivatives7 by a finite difference scheme. The results of stress computation presented 

in the tables above, confirm an idea discussed in chapter 2, that the transverse stresses obtained by 

integration of the equilibrium equations, satisfy the boundary conditions on both the upper surface 

and lower surface of the plate8 despite the fact that the number of constants of integration is fewer 
7of the order higher than the degree of the interpolation polynomials used in the finite element formulation 
8i.e. the transverse stresses at the external surfaces are equal to the loads applied at these surfaces 
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than the number of the boundary conditions. The satisfaction of the stress boundary conditions 

on the lower surface is exact, because these boundary conditions were used in integration of the 

equilibrium equations, and the satisfaction of the stress boundary conditions on the upper surface is 

approximate, because the field variables w0, ei2
2\ eiV that enter into the formulas for the transverse 

stresses (section 5.11 of chapter 5)9 are computed approximately by the FE method. 

Now, let us consider a dynamic problem of a plate falling on simple supports and compare the 

values of the transverse displacement at the middle surface (z = 0) and at x = ^, as a function of 

time, obtained from the exact and finite element solutions. In this example problem, the material 

properties and geometric dimensions are 

M fag 
E = 114.8 x 109^r, v = 0.3, p = 1614-4, L = lm, h = 0.06m. 

m2 mJ 

The plate falls on simple supports with velocity -10^ • In this example problem, the exact elasticity 

solution for wo, with 25 terms in the series expansion, is (Appendix 5-E): 

w0 =- 0.009128805307 sin( 1395.05t)+ 0.0003289319625 sin( 12902.7t)- 

0.00007686926503 sin( 33127.8t)+ 0.00003079797019 sin( 59061.4t)- 

0.00001601025860 sin( 88362.8t)+ 0.000009680766718 sin( 119567.0t)- 

0.000006451456069 sin( 151811.0t)+ 0.000004598394395 sin( 184592.0t)- 

0.000003441628335 sin( 217620.0t)+ 0.000002672743865 sin( 250724.0t)- 

0.000002136375939 sin( 283800.0t)+ 0.000001747401522 sin( 316802.0t)- 

0.000001456401848 sin( 349694.0t)+ 0.000001232994575 sin( 382460.0t)- 

0.000001057703130 sin( 415098.0t)+ 0.0000009175877618 sin( 447610.0t) 

- 0.0000008038299104 sin( 479992.0t)+ 0.0000007101573229 sin( 512252.0t) 

- 0.0000006321067301 sin( 544398.0t)+ 0.0000005663630004 sin(576434.0t)- 

0.0000005104607016 sin( 608364.0t)- 0.0000004625190558 sin( 640194.0t) 

- 0.0000004210857347 sin( 671938.0t)+0.0000003850322280 sin( 703586.0t) 

- 0.0000003534568308 sin( 735156.0t) 

The displacement w0asa function of time, obtained from the finite element analysis, is 

Time w (z= 0, x=L/2) 

.0000      .0000E+00 

.0001     -.1024E-02 
9these formulas for the transverse stresses are obtained by integration of the pointwise equilibrium equations 
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.0002 -.2303E-02 

.0003 -.3777E-02 

.0004 -.5104E-02 

.0005 -.6143E-02 

.0006 -.6904E-02 

.0007 -.7398E-02 

.0008 -.8021E-02 

.0009 -.8500E-02 

.0010 -.8823E-02 

.0011 -.9036E-02 

.0012 -.8918E-02 

.0013 -.8442E-02 

.0014 -.7760E-02 

.0015 -.6954E-02 

.0016 -.6246E-02 

.0017 -.5560E-02 

.0018 -.4632E-02 

.0019 -.3318E-02 

.0020 -.3200E-02 

.0021 -.3632E-03 

.0022 . 8289E-03 

.0023 .1855E-02 

.0024 .2918E-02 

.0025 .4228E-02 

.0026 .5522E-02 

.0027 .6531E-02 

.0028 .7404E-02 

.0029 .7953E-02 

.0030 .8301E-02 

.0031 .8549E-02 

.0032 .8706E-02 

.0033 .8852E-02 

331 
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.0034      .8771E-02 

.0035      .8389E-02 

.0036      .7532E-02 

.0037      .6491E-02 

.0038      .5625E-02 

.0039      .4854E-02 

.0040      .3921E-02 

.0041      .2786E-02 

.0042      .1223E-02 

.0043    -.2953E-03 

.0044    -.1544E-02 

.0045     -.2687E-02 

.0046     -.3719E-02 

.0047    -.4786E-02 

.0048    -.5858E-02 

.0049    -.6891E-02 

.0050    -.7768E-02 

.0051     -.8385E-02 

The graphs of the exact and the finite element solutions for w0 as & function of time are shown in 

figure 5.4. These two graphs are close to each other. 

Now, let us consider a dynamic problem of a plate falling on simple supports and compare the 

values of the transverse displacement at the middle surface (z — 0) and at t = 0.0004s, as a function 

of x-coordinate, obtained from the exact and finite element solutions. In this example problem, the 

material properties and geometric dimensions are 

E = 114.8 x 109^r, p = 1614-^, v = 0.3, L = lm, h = 0.06m. 

The plate falls on simple supports with velocity -10jJ. In this example problem, the exact elasticity 

solution for w0, with 25 terms in the series expansion, is (Appendix 5-E): 

w0 = 0.0000005282171331 sin( 116.2389282x)+ 0.0000006388611505 sin(59.69026043x) 

- 0.000001005826267 sin( 84.82300166x)- 0.004833771658 sin( 3.141592654x) 

+ 0.0000005351651669 sin( 122.5221135x)-0.0000004744973290 sin( 91.10618697x) 

+ 0.000005544528261 sin(40.84070450x)+ 0.00003073761580 sin( 21.99114858x) 
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- 0.000001521866275 sin( 72.25663104x)+ 0.000002731048304 sin( 53.40707512x)+ 

0.000006258042552 sin( 34.55751919x)- 0.00000002457121402 sin(97.38937227x)+ 

0.000004598192420 sin( 47.12388981x)- 0.00004861818949 sin( 15.70796327x) 

- 0.0000008763241083 sin( 65.97344573x)+ 0.0000003719067811 sin( 147.6548547x) 

+ 0.0000004560154750 sin(109.9557429x)- 0.000001452117018 sin( 78.53981635x) 

+0.0000002829038361 sin( 103.6725576x)+0.0000003351240114 sin(153.9380400x)- 

0.0000004621886845 sin( 135.0884841x)+0.00001134587104 sin( 28.27433389x) 

+ 0.0002963728581 sin(9.424777962x)+ 0.0000004150847268 sin(141.3716694x) 

+ 0.0000005062957414 sin(128.8052988x). 

In this expression, the terms are written not in ascending order of coefficients of x under the 

"sin" sign, i.e. not in ascending order of summation index k in the formula (5-E.74). The finite 

element solution for the same problem is presented in the table below: 

x-coordinate w (t=0.0004s, z=0) 

0.0 0.00000E+00; 

0.05 -7.24664E-04 

0.10 -1.40675E-03 

0.15 -1.99268E-03 

0.20 -2.60446E-03 

0.25 -3.29689E-03 

0.30 -3.92329E-03 

0.35 -4.38506E-03 

0.40 -4.66854E-03 

0.45 -4.81039E-03 

0.50 -4.85239E-03 

0.55 -4.81161E-03 

0.60 -4.67059E-03 

0.65 -4.38700E-03 

0.70 -3.92346E-03 

0.75 -3.29359E-03 

0.80 -2.59886E-03 

0.85 -1.99009E-03 
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0.90 -1.43711E-03; 

0.95 -6.87228E-04; 

1.0 O.OOOOOE+00; 
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The graphs of displacement u>o (x) as a function of x-coordinate, obtained from the exact and 

the finite element solutions, are shown in Figure 5.5. These two graphs are close to each other. 

Now, let us consider again the problem of a plate falling on simple supports and compare the 

values of the stress crxx at the upper surface (z = |) and at x = j, as a function of time, obtained 

from the exact and finite element solutions. In this example problem, the material properties and 

geometric dimensions are 

N kg 
E = 114.8 x 109-^r, p = 1614-4, v = 0.3, L = lm, h = 0.06m. 

The plate falls on simple supports with velocity —10^. In this example problem, the analytical 

solution for axx, with 25 terms in the series expansion, is (Appendix 5-E): 

-307276473.2 sin( 1395.05t)+ 108412712.3 sin( 12902.7t) 

i( 33127.8t)+ 53045550.32 sin( 59061.4t) 

i( 88362.8t)+ 39735103.54 sin( 119567.0t) 

i( 151811.0t)+34641592.27 sin( 184592.0t) 

i( 217620.0t)+ 32597764.0 sin( 250724.0t) 

i( 283800.0t)+ 32130246.4 sin(316802.0t) 

i( 349694.0t)+ 32659958.90 sin( 382460.0t) 

i( 415098.0t)+ 33947871.87 sin( 447610.0t) 

i( 479992.0t)+ 35895713.33 sin( 512252.0t) 

i(544398.0t)+ 38455409.80 sin( 576434.0t) 

i( 608364.0t)-41658403.41 sin( 640194.0t) 

i( 671938.0t)+ 45541253.86 sin( 703586.0t) 

i( 735156.0t) 

On the time interval 0 < t < 0.005 s, the above formula for the stress axx can be represented by 

the following least-square polynomial approximation (in order to smooth out the small oscillations 

due to truncation of the Fourier series): 

-69200847.15 sin( 

-44665057.84 sin( 

-36639293.88 sin( 

-33362189.14 sin( 

-32217053.76 sin( 

-32286840.13 sin( 

-33216080.31 sin( 

-34841555.15 sin( 

-37089957.48 sin( 

-39978697.92 sin( 

-43517015.88 sin( 

-47771451.41 sin( 

axx = -5.16214 x 10nt - 9.09721 x 1013i2 + 3.51795 x 1017t3 



CHAPTER 5 335 

-1.26565 x 102<V + 1.5273 x 1022*5 - 5.05268 x 1023*6. (5.13.4) 

The stress axx as a function of time, obtained from the finite element analysis, is: 

time sigmajoc (x=0.5, z=0.03) 

0.0 0.0 

1.0E-4 300590795.9 

2.0E-4 -136863991.1 

3.0E-4 -285641192.0 

4.0E-4 -231020454.7 

5.0E-4 -368096028.6 

6.0E-4 -310867463.8 

7.0E-4 9814421.003 

8.0E-4 -438507427.3 

9.0E-4 -291994594.9 

10.0E-4 -270109686.1 

11.0E-4 -44108278.28 

12.0E-4 -371968043.5 

13.0E-4 -372064327.8 

14.0E-4 -252926687.6 

15.0E-4 -226476659.7 

16.0E-4 -223540794.1 

17.0E-4 -114323702.8 

18.0E-4 -499221197.3 

19.0E-4 -239680400.7 

20.0E-4 -253103767.2 

21.0E-4 44260144.22 

22.0E-4 -367739967.3 

23.0E-4 -291313468.1 

24.0E-4 34464105.86 

25.0E-4 69105029.93 

26.0E-4 504973155.0 



336 
CHAPTER 5 

27.0E-4 181440238.1 

28.0E-4 327516616.8 

29.0E-4 171564055.1 

30.0E-4 465921279.0 

31.0E-4 483077118.1 

32.0E-4 133516492.0 

33.0E-4 9867897.009 

34.0E-4 350106295.7 

35.0E-4 218206438.9 

36.0E-4 478119085.7 

37.0E-4 150719904.3 

38.0E-4 -53134854.76 

39.0E-4 31817117.24 

40.0E-4 255088912.6 

41.0E-4 313136614.6 

42.0E-4 122606780.4 

43.0E-4 -87272429.67 

44.0E-4 -124044299.8 

45.0E-4 86437846.18 

46.0E-4 -11355005.43 

47.0E-4 83989098.10 

48.0E-4 - 97318192.67 

49.0E-4 -60958656.28 

50.0E-4 -252631951.8 

The least-square polynomial approximation of this data, produced by the FE program, is 

axx = -4.39327 x 10nt - 1.27106 x 1014i2+ 

+3.42043 x 1017t3 - 1.17946 x 1020*4 + 1.33736 x 1022t5 - 3.57798 x 1023t6. (5.13.5) 

The graphs of polynomials (5.13.4) and (5.13.5), representing the analytical and FE solutions for 

stress axx as functions of time, are shown in Figure 5.6. These two graphs are sufficiently close to 

each other. 
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5.13.2    Comparison of exact and FE solutions for a simply supported 

sandwich plate with isotropic face sheets and the core 

Let us consider a sandwich plate with steel face sheets and an isotropic core made of foam.   We 

assume the following properties of the face sheets and the core: 

core: Young's modulus E2 = 1.0192 x 108 Jr, Poisson's ratio v = 0.3, thickness t = 2 x lO-2?™, 

mass density pc — 2 x 102^r; 

face sheets: Young's modulus Ex = 1.9796 x 10n^, Poisson's ratio v = 0.3, thickness of each 

face sheet f - \ = 1 x 10-3m, mass density px = 7.8 x 103^. 

The total thickness of the plate is ft = 2.2 x 10-2m. The plate is under the load ^ = -1 x 105^. 

The exact analytical solution for stresses in a static simply supported isotropic sandwich plate, 

loaded uniformly on the upper surface, has the form of equations (2-E.43) - (2-E.51) of Appendix 

2-E. The tables below show the results of comparison of the stresses, obtained for this problem by 

exact analytical method and by the FE method. 
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Table 5.4: Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core for stress axx at x = §. Thickness of the plate is h = 0.022m, 

thickness of each face sheet is 0.001m, thickness of the core is t = 0.02m, length L varies. 

L 
(m) 

h 
L 0Xx at 

(xlO6^) 
^            2 (*xx      at Z —       2 oxx       axi 

(*106S) 
Z        2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.05 0.44 1.556 1.555 
error0.06 % 

-1.484 -1.481 
error 0.2 % 

-1.556 -1.555 
error0.06 % 

0.1 0.22 6.222 6.221 
error 0.02% 

-5.938 -5.922 
error 0.3 % 

-6.222 6.221 
error 0.02% 

0.2 0.11 24.887 24.875 
error 0.05% 

-23.75 -23.69 
error 0.25 % 

-24.887 -24.875 
error 0.05% 

0.3 0.07 55.99 55.97 
error0.04 % 

-53.45 -53.23 
error 0.4 % 

-55.99 -55.97 
error 0.04 % 

0.4 0.055 99.54 99.49 
error 0.05 % 

-95.02 -94.64 
error 0.4 % 

-99.54 -99.49 
error 0.05 % 

0.5 0.044 155.5 155.4 
error 0.06% 

-148.5 -147.91 
error 0.4 % 

-155.5 -155.4 
error 0.06 % 

0.6 0.037 223.97 223.75 
error 0.1 % 

-213.8 -212.74 
error 0.5 % 

-223.97 -223.75 
error 0.1 % 

0.7 0.031 304.85 304.69 
error 0.05 % 

-291.0 -289.3 
error 0.6 % 

-304.85 -304.69 
error 0.05 % 

0.8 0.0275 398.2 399.18 
error 0.2 % 

-380.1 -378.3 
error 0.5 % 

-398.2 399.18 
error 0.2 % 

0.9 0.024 503.9 504.5 
error 0.1 % 

-481.0 -477.5 
error 0.7 % 

-503.9 504.5 
error 0.1 % 

1 0.022 622.1 624.4 
error 0.4 % 

-593.9 -587.55 
error 1.1 % 

-622.1 -624.4 
error 0.4 % 

1.1 0.02 752.8 756.6 
error 0.5 % 

-718.58 -698.7 
error 2.8 % 

-752.8 -756.6 
error 0.5 % 

" 
0.018 895.9 873.2 

error 2.5 % 
-855.2 -790.85 

error 7.5 % 
-895.9 -873.2 

error 2.5 % 

This table shows that the finite element program allows one to achieve a high accuracy of compu- 

tation of the in-plane stress axx. As the thickness-to-length ratio decreases, the accuracy of axx 

computed by the FE program decreases slightly, but remains acceptable for a very wide range of the 

thickness-to-length ratios. The upper faces are under compression (stress axx is negative), and the 

lower faces are in tension (stress axx is positive) as expected. 
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Table 5.5:   Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core for stress axx at x = § (L = 0.5m).   Thickness of the plate is 

h=0.022m, thickness of the face sheet r varies 

r 
(m) 

T 
h Oxx &t 

(xlO8^-) 
Z            2 Oxx      "^ z —       2 <?xx          &t Z        2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.001 0.045 155.5 155.3 
error 0.13% 

-148.5 -147.68 
error 0.55% 

-155.5 -155.3 
error 0.13% 

0.002 0.09 85.60 85.39 
error 0.2% 

-77.82 -77.48 
error 0.4% 

-85.60 -85.39 
error 0.2% 

0.003 0.14 62.94 62.78 
error 0.25% 

-54.35 -54.14 
error 0.4% 

-62.94 -62.78 
error 0.25% 

0.004 0.18 52.18 52.04 
error 0.27% 

-42.69 -42.52 
error 0.4% 

-52.18 -52.04 
error 0.27% 

0.005 0.18 46.245 46.12 
error 0.27% 

-35.728 -35.64 
error 0.25% 

-46.245 -46.12 
error 0.27% 

0.006 0.27 42.76 42.63 
error 0.3% 

-31.09 -30.97 
error 0.4% 

-42.76 -42.63 
error 0.3% 

0.010 0.45 38.78 38.64 
error 0.4% 

-21.14 -21.07 
error 0.3% 

-38.78 -38.64 
error 0.4% 

From the last table we see that as the relative thickness of the face sheets increases, the accuracy of 

the in-plane stress axx decreases slightly, but remains sufficiently high in a wide range of the ratios 

of the face sheet's thickness to the total thickness of the plate. 
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Table 5.6: Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core. Variation of stress axx in the thickness direction at x = L/2 of a 

plate with length L = lm, thickness of each face sheet r = 0.001m, thickness of the core t = 0.02m 

X 
(m) 

z 
(m) (xlOOJir)        (xlOOjgr) 

exact plate 
theory 

0.5 -0.0110 622.14 619.27 
error 0.46% 

0.5 -0.0108 610.83 609.51 
error 0.22% 

0.5 -0.0106 599.52 598.21 
error .022% 

0.5 -0.0104 588.21 586.91 
error 0.22% 

0.5 -0.0102 576.9 574.17 
error 0.47% 

0.5 -0.0100 565.59 564.30 
error 0.23% 

0.5 -0.009999 0.29119 0.2825 
error 3% 

0.5 -0.0060 0.1747 0.1662 
error 4.9 % 

0.5 -0.0020 0.05823 0.0556 
error 4.5% 

0.5 0.0 0 -0.006 

0.5 0.0020 -0.05823 0.0556 
error 4.5% 

0.5 0.0060 -0.1747 -0.1664 
error 4.7% 

0.5 0.009999 -0.29119 -0.2836 
error 2.6% 

0.5 0.0100 -565.59 -565.30 
error 0.05% 

0.5 0.0102 -576.9 -575.6 
error 0.22% 

0.5 0.0104 -588.21 -586.91 
error 0.22% 

0.5 0.0106 -599.52 -598.21 
error 0.22% 

0.5 0.0108 -610.83 -609.513 
error 0.22% 

0.5 0.0110 -622.14 -622.44 
error 0.05% 



CHAPTER 5 341 

This data is shown graphically in Figure 5.7. This comparison shows that the in-plane stress axx in 

the face sheets is computed by the finite element with high accuracy. In the core, the relative error 

in computation of the stress crxx, is higher, but is acceptable. The values of the stress axx in the 

core are very low, and this is the reason why the relative error is higher in the core than in the face 

sheets, despite the fact that the absolute error in the core is small. At the middle surface of the 

plate (z = 0), the exact value of axx is equal to zero, and this leads to the infinite relative error at 

this location regardless of the smallness of the approximate solution. This suggests that if the exact 

values of stresses are very small, the relative error can be not a good measure of accuracy. 
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Table 5.7: Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core for stress axz at x = 0.8L. Thickness of the plate is h — 0.022m, 

thickness of each face sheet is 0.001m, length L varies 

L 
(m) 

h 
L axz at  21+Z2 

Z ~       2 (Jxz    at 

(10°^) 

~  _    22 + 2« 
Z            2 6 xz         at 

(10<i5) 
Z              2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.05 0.44 0.0365 0.0338 
error 7.4% 

0.0714 0.0660 
error 7.5% 

0.0365 0.03376 
error 7.5% 

0.1 0.22 0.0730 0.0675 
error 7.5% 

0.1429 0.1321 
error 7.5% 

0.0730 0.0678 
error 7.4% 

0.2 0.11 0.1459 0.1357 
error 7.0% 

0.2857 0.2654 
error 7.1% 

0.1459 0.1382 
error 5.3% 

0.3 0.07 0.2189 0.2191 
error 0.09% 

0.4286 0.4289 
error 0.07% 

0.2189 0.2123 
error 3.0% 

0.4 0.055 0.2918 0.2725 
error 6.6% 

0.5715 0.5331 
error 6.7% 

0.2918 0.2892 
error 0.9% 

0.5 0.044 0.3648 0.3649 
error 0.03% 

0.7144 0.7143 
error 0.01% 

0.3648 0.3625 
error 0.6% 

0.6 0.037 0.4378 0.4409 
error 0.7% 

0.8573 0.8630 
error 0.7% 

0.4378 0.4502 
error 2.8% 

0.7 0.031 0.5107 0.5172 
error 1.3% 

1.0001 1.0127 
error 1.26% 

0.5107 0.5320 
error 4.2% 

0.8 0.0275 0.5837 0.5681 
error 2.7% 

1.1430 1.1126 
error 2.6% 

0.5837 0.5715 
error 2.1% 

0.9 0.024 0.6566 0.6756 
error 2.9% 

1.2859 1.3229 
error 2.8 % 

0.6566 0.6800 
error 3.6% 

1 0.022 0.7296 0.7367 
error 0.9% 

1.4288 1.4426 
error   1.0% 

0.7296 0.7391 
error 1.3% 

1.1 0.02 0.8026 0.7879 
error 1.8% 

1.5716 1.5429 
error 1.8% 

0.8026 0.7902 
error 1.5% 

The accuracy of computation of the transverse shear stress axz is good in the wide range of the 

thickness-to-length ratios. For very short plates (high thickness-to-length ratios), the relative errors 

are larger than 7%, despite the fact that the absolute errors are small. This is due to the fact that 

in short plates the exact values of the stress oxz are very small, and, as it was mentioned earlier, 

the relative error in computation of small values can be not a good criterion of accuracy. 
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Table 5.8: Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core for stress axz at x = 0.8L (L = lm). Thickness of the plate is 

h = 0.022m, thickness of the face sheets r varies. 

T 
(m) 

T 
h <rxz at 

(x1065) 
«l+«2 axz    at 

(xlO6^) 

-  _   Z2+Z3 z —       2 axz       at 
(xlO6^) 

 2.1 + Z.l 
Z —       2 *-       2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.001 0.045 0.72961 0.7367 
error 1.0% 

1.4288 1.4426 
error 1.0% 

0.72961 0.7391 
error 1.3% 

0.002 0.09 0.78439 0.7986 
error 1.8% 

1.4956 1.5227 
error 1.8% 

0.78439 0.8051 
error 2.6% 

0.003 0.14 0.84451 0.8662 
error 2.6% 

1.5663 1.6068 
error 2.3% 

0.84451 0.8148 
error 3.5% 

0.004 0.18 0.91077 0.9401 
error 3.2% 

1.64 1.6949 
error 3.3% 

0.91077 0.9512 
error 4.4 % 

0.005 0.18 0.98365 0.9985 
error 1.5% 

1.7154 1.7405 
error 1.5% 

0.98365 1.0299 
error 4.7% 

0.006 0.27 1.0634 1.0723 
error 0.84% 

1.7912 1.8010 
error 0.54% 

1.0634 1.1123 
error 4.6% 

0.010 0.45 1.438 1.4767 
error 2.7% 

2.0301 2.0843 
error 2.7% 

1.438 1.4895 
error 3.4% 

The accuracy of computation of stress <yxz is good for a wide range of ratios of the face sheet's 

thickness to the total thickness of the plate. The closer to the upper surface of the plate, the lower 

the accuracy. This is due to the fact that expressions for the stress axz in the face sheets and the 

core are found by integration of equilibrium equations: 

z 

o® = ZJ2M + j (P{1)*(1) ~ "°(*l* - H^lv) dz     (*!<*<*>), (5-13-6) 

*-*W+/(^-.*.-.*)*  hs.s„.       ,,, 
z 

°i*2 = *£> (*) + / (/>(1)ü(3) -  Hcrx% - Hcrg\y)  dz      (z3<z< zA), (5.13.8) 

23 

The integration is performed in the direction from the lower surface to the upper surface. This leads 

to exact satisfaction of the boundary condition at the lower surface (axz' {z\) = 0) regardless of 
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accuracy of computation of the in-plane stresses, and to approximate satisfaction of the boundary 

conditions at the upper surface (ax
2J (z4) = OJ, if the in-plane stresses are computed approximately. 

Therefore, the accuracy of computation of the transverse stresses cxz deteriorates slightly as the ob- 

servation point moves from the lower surface to the upper surface of the plate. Besides, the accuracy 

of the transverse stress uxz computation is lower than the accuracy of the in-plane stress compu- 

tation. This is due to the fact that the computation of the transverse stresses by the integration 

of equilibrium equations requires computation of the derivatives of the field variables of the order 

higher than the degree of the interpolation polynomials. This is done by a finite difference scheme 

applied to the nodal values of the field variables. But with the increase in the order of a derivative, 

the accuracy of numerical differentiation is reduced. To overcome this deterioration of accuracy of 

computation of the higher order derivatives, a large number of elements must be used. The same is 

true for the transverse stress azz, as will be seen in the subsequent text. 
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Table 5.9: Comparison of exact and FE solutions for a simply supported sandwich plate with isotropic 

face sheets and the core. Variation of stress oxz in the thickness direction for a plate with length 

L = lm, thickness of each face sheet r = 0.001m, thickness of the core t = 0.02m, at x = 0.81. 

X 
(m) 

z 
(m) (xlO%)       (xl0%) 

exact plate 
theory 

0.8 -0.0110 0 0 

0.8 -0.0108 0.29591 0.2988 
error 1% 

0.8 -0.0106 0.58640 0.5921 
error 1% 

0.8 -0.0104 0.87145 0.8799 
error 1% 

0.8 -0.0102 1.1511 1.1622 
error 1% 

0.8 -0.0100 1.4253 1.4390 
error 1% 

0.8 -0.009999 1.4253 1.4390 
error 1% 

0.8 -0.0060 1.4275 1.4413 
error 1% 

0.8 -0.0020 1.4286 1.4424 
error 1% 

0.8 0.0 1.4288 1.4426 
error 1% 

0.8 0.0020 1.4286 1.4424 
error 1% 

0.8 0.0060 1.4275 1.4413 
error 1% 

0.8 0.009999 1.4253 1.4390 
error 1% 

0.8 0.0100 1.4253 1.4426 
error 1% 

0.8 0.0102 1.1511 1.1654 
error 1.2% 

0.8 0.0104 0.87145 0.8826 
error 1.3% 

0.8 0.0106 0.5864 0.5943 
error 1.3% 

0.8 0.0108 0.29591 0.3005 
error 1.5% 

0.8 0.011 0.0 0.0012 

This data is shown graphically in Figure 5.8.   This comparison shows that the through-the- 
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thickness variation of the stress axz is accurately computed by the FE program. The accuracy 

of the stress axz computation deteriorates slightly as the observation point moves from the lower 

surface to the upper surface for the reason mentioned above. Besides, the accuracy of the stress 

axz is somewhat lower than the accuracy of the in-plane stress axx. The reason of this (as it was 

mentioned above) is the need to evaluate the higher order derivatives of the field variables by a finite 

difference scheme in order to compute the stress axz. 
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Table 5.10: Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core for stress azz at x = L/2. Thickness of the plate is h = 0.022m, 

thickness of each face sheet is 0.001m, length L varies 

L 
(m) 

h 
L az, at 

(*105S) 
* = -$ <jzz    at 

(xl°5^) 
 22+«3 
z -      2 azz       at     2=1 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.05 0.44 0 0 -0.5 -0.5004 
error 0.08% 

-1 -1.0466 
error 4.7% 

0.1 0.22 0 0 -0.5 -0.4997 
error 0.06% 

-1 -1.0451 
error 4.5% 

0.2 0.11 0 0 -0.5 -0.5077 
error 1.54% 

-1 -1.0413 
error 4.1% 

0.3 0.07 0 0 -0.5 -0.5043 
error 0.9% 

-1 -1.0438 
error 4.4% 

0.4 0.055 0 0 -0.5 -0.5162 
error 3.2% 

-1 -1.0490 
error 4.9% 

0.5 0.044 0 0 -0.5 -0.4862 
error 2.8% 

-1 -1.0162 
error 1.6% 

0.6 0.037 0 0 -0.5 -0.4993 
error 0.1% 

-1 -1.0435 
error 4.35% 

0.7 0.031 0 0 -0.5 -0.4942 
error 1.2% 

-1 -1.0329 
error 3.29% 

0.8 0.0275 0 0 -0.5 -0.5147 
error 2.9% 

-1 -1.0457 
error 4.6% 

0.9 0.024 0 0 -0.5 -0.5026 
error 0.5% 

-1 -1.0406 
error 4.1% 

1 0.022 0 0 -0.5 -0.4859 
error 2.8% 

-1 -1.0156 
error 1.6% 

1.1 0.02 0 0 -0.5 -0.4953 
error 0.9% 

-1 -1.0352 
error 3.5% 

1.2 0.018 0 0 -0.5 -0.5001 
error 0.02% 

-1 -1.0453 
error 4.5% 

This comparison shows the following tendencies: the thickness-to-length ratio has little influence 

on the accuracy of the stress azz computation; the accuracy decreases as the observation point moves 

from the lower surface to the upper surface (the reason of this was discussed above); 
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Table 5.11: Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core for stress azz at x = L/2 (L=lm). Thickness of the plate is 

h = 0.022m, thickness r of each face sheet varies 

T 
(m) 

r Ozz at Z            2 azz     at Zl + ZH 
Z —       2 Ozz       at 

(*i°55) 
2=  * ^        2 

exact plate 
theory 

exact plate 
theory 

exact plate 
theory 

0.001 0.045 0 0 -0.5 -0.4859 
error 2.8% 

-1 -1.0156 
error 1.56% 

0.002 0.09 0 0 -0.5 -0.4932 
error 1.4% 

-1 -0.9855 
error 1.45% 

0.003 0.14 0 0 -0.5 -0.5031 
error 0.6% 

-1 -1.024 
error 2.4% 

0.004 0.18 0 0 -0.5 -0.4879 
error 2.4% 

-1 -1.031 
error 3.1% 

0.005 0.18 0 0 -0.5 -0.5003 
error 0.06% 

-1 -1.039 
error 3.9% 

0.006 0.27 0 0 -0.5 -0.4845 
error 3.1% 

-1 -1.046 
error 4.6% 

0.010 0.45 0 0 -0.5 -0.4849 
error 3.0% 

-1 -1.071 
error 7.1% 

So, the accuracy is higher for the plates with thinner face sheets. 
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Table 5.12: Comparison of exact and FE solutions for a simply supported sandwich plate with 

isotropic face sheets and the core. Variation of stress azz in the thickness direction of a plate with 

length L = lm, thickness h = 0.022m, thickness of each face sheet r = 0.001m, thickness of the core 

t = 0.02m. 

X 
(m) 

2 
(m) "~ (&) 

exact plate 
theory 

0.5 -0.0110 0 0 

0.5 -0.0108 -98.94 -96.13 
error 2.8% 

0.5 -0.0106 -393.35 -382.18 
error 2.8% 

0.5 -0.0104 -879.6 -854.65 
error   2.8% 

0.5 -0.0102 -1554.1 1510.02 
error 2.8% 

0.5 -0.0100 -2413.2 -2344.78 
error 2.8% 

0.5 -0.009999 -2417.9 -2354.90 
error 2.5 % 

0.5 -0.0060 -2.1433 x 104 -2.0832 x 104 

error 2.8% 

0.5 -0.0020 -4.0475 x 104 -3.9335 x 104 

error 2.8 % 

0.5 0.0 -5.0 x 104 -4.8590 x 104 

error 2.8% 

0.5 0.0020 -5.9525 x 104 -5.7846 X 104 

error 2.8% 

0.5 0.0060 -7.8567 x 104 -7.6349 x 104 

error 2.8% 

0.5 0.009999 -9.7582 x 104 -9.4826 X 104 

error 2.8% 

0.5 0.0100 -9.7587 x 104 -9.4837 x 104 

error 2.8% 

0.5 0.0102 -9.8446 x 104 -9.5641 X 104 

error 2.8 % 

0.5 0.0104 -9.9120 x 104 -9.6266 x 104 

error 2.9% 

0.5 0.0106 -9.9607 x 104 -9.6708 x 104 

error 2.9% 

0.5 0.0108 -9.9901 x 104 -9.6963 x 104 

error 2.9% 

0.5 0.011 -1.0 x 105 
-1.0156 x 105 

1        error 1.6 %          I 
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This data is shown graphically in Figure 5.9. The accuracy of computation is sufficiently high. 

The comparison of the exact and finite element solutions made in this section, shows that 1) 

the simplified layerwise theory of the sandwich plate, developed in this chapter, leads to sufficiently 

high accuracy of stress computation for a wide range of geometric dimensions; 2) the finite element 

program developed on the basis of the simplified layerwise theory of the sandwich plates in cylindrical 

bending is a reliable tool for analysis of the sandwich plates if the conditions of cylindrical bending 

are met. 

In the next section, this finite element program will be applied to stress and failure analysis of 

a composite cargo platform dropped on elastic foundation. It will be assumed that the conditions 

that allow the platform to be in cylindrical bending, are met. 
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5.14 An Example Problem: Finite Element Analysis, with 

Account of Damage Progression, of a Composite Sand- 

wich Cargo Platform Dropped on Elastic Foundation 

Let us consider a sandwich platform with laminated composite face sheets, made of AS4/3501-6 

material, and a honeycomb core, made of Nomex HRH10-1/8-4.0. Both face sheets have the same 

thickness 0.0025m, and each of them consists of 25 plies with 0°/90° layup. The thickness of the core 

is 0.04m. The cargo of mass 500 kg on the upper surface is located symmetrically with respect to the 

middle of the plate's span, and has the length 0.2m. The moduli of the elastic Winkler foundations, 

considered in the example problems, are 6.7864 x 107^ and 6.7864 x 108^. We will consider a 

plate falling on the elastic foundation with the initial velocities -ly and -30y. The values of 

coefficients at and Q2 in the proportional damping matrix [C] = ax [K] + a2 [M] were chosen to be 

Qi = 0.002, a2 = 0.2. In this example problem we will compute all stresses as functions of time 

at the middle of the plate's span (i.e. at x = §• = 0.5m) and at the plate's lower surface (i.e. at 

x = -£ = -0.0225). 

First, a nonlinear dynamic finite element analysis will be performed and a comparison will be 

made of stresses and the transverse displacement, obtained from the finite element program with 

damage analysis capability activated and deactivated, with different initial velocities. The input 

data (in SI units) can be summarized as follows: 

Number of elements in FE mesh = 40 

Panel length = 1.00 

Panel width = 5.00 

Total number of nodes in FE mesh = 41 

Number of DOF per node = 5 

Number of plies in each face ..= 25 

Number of core plies = 10 

Face ply Core ply 

material properties material properties 

El = .145E+12 El = 0.804E+08 

E2 = .970E+10 E2 = 0.804E+08 

E3 = .970E+10 E3 = 0.101E+10 
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G12 = .600E+10 

G13 = .600E+10 

G23 = .360E+10 

Nul2 = .300E+00 

Nul3 = .300E+00 

Nu23 = .300E+00 

XT = .217E+10 

XC = .172E+10 

YT = .538E+08 

YC = .206E+09 

ZT = .538E+08 

ZC = .206E+09 

S12 = .121E+09 

S13 = .121E+09 

S23 = .893E+08 

352 

G12 = 0.322E+08 

G13 = 0.120E+09 

G23 = 0.758E+11 

Nul2 = 0.250E+00 

Nul3 = 0.200E-01 

Nu23 = 0.200E-01 

XT = 0.100E+07 

XC = 0.100E+07 

YT = 0.100E+07 

YC = 0.100E+07 

ZT = 0.383E+07 

ZC = 0.383E+07 

S12 = 0.178E+09 

S13 = 0.178E+09 

S23 = 0.142E+09 

Face mass density = 0.161E+04 

Face thickness =       0.100E-03 

Core mass density = 0.139E+03 

Core thickness = 0.400E-01 

Rigid body mass =     0.500E+03 

Coordinates of the beginning and the end of the cargo: 

XI = 0.4 

X2 = 0.6 

Foundation modulus = 0.679E+08 

Time increment = 0.10000E-03 

Total time = 0.40000E-01 

Initial displacement ..= 0.00000E+00 

Initial velocity = -1.0 

Initial acceleration ...= 0.98100E+01 
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Parameters of proportional damping matrix: 

Alphal  = .20000E-02 

Alpha2 = .20000E+00 

Parameters of the Newmark method: 

Gamma = 0.5 

Beta = 0.25 

Figures 5.10-5.14 show results of analysis with initial velocity -ly and a foundation modulus 

6.7864 x 107 A (sand). In this case no damage occurs, therefore, the graphs of the stresses and 

the transverse displacement, computed with and without account of damage, coincide. Figure 5.13 

shows the transverse displacements of the upper and lower surfaces as a function of time. In the 

first half-period, the absolute value of the transverse displacement of the upper surface is larger than 

the absolute value of the transverse displacement of the lower surface, that means that in the first 

half-period the thickness of the plate is smaller than its thickness in the undeformed state. In the 

second half-period the thickness of the plate is larger than its thickness in the undeformed state. 

This change of the plate's thickness was captured due to the fact that the direct transverse strain 

ezz was not assumed to be equal to zero. 

Figures 5.15-5.18 show stresses and the transverse displacement in the platform that has initial 

velocity -30y and falls on the same elastic foundation (with modulus 6.7864 x 107^r). Under this 

initial velocity the damage in the plate occurs at the moment of time t = 0.14 x 10"2s (Figure 5.20). 

In the finite elements, that are located directly under the mass on the upper surface (for example 

the element #11, Figure 5.19) the damage occurs in both the core and the face sheets. The picture 

of damage progression in the thickness direction of the eleventh element is shown in Figure 5.20. 

We see that the failure of the core occurs first,and this failure is due to the vertical compression 

(crushing) of the core. This is due to the fact that the compression strength of the Nomex core in 

the thickness direction is the lowest as compared to all other strength characteristics of the faces 

and the core. At the moment of time t = 0.14 x 10_2s, when the damage starts to progress, there 

also occurs the tensile matrix failure in the ply of the lower face that is adjacent to the core. 

As the failure in the 11-th element progresses with time in the thickness direction, the plies in 

the lower face sheets with 90-degree orientation experience the tensile matrix failure. (Figure 5.20). 

This occurs mainly due to the tensile (positive) stress axx (CT22 for the plies with 90-degree fiber 

orientation) in the plies that are closer to the lower surface. 
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As the failure in the 11-th element progresses further, the fiber failure in compression occurs in 

the plies of the upper face with the 0-degree fiber orientation. This mode of failure starts closer to 

the upper surface and progresses downward as the compressive stress axx (responsible for this mode 

of failure according to the criterion (5.2.14)) increases with time 

The next mode of failure is the fiber failure in tension that occurs (according to the criterion 

(5.12.12)) in the lower face sheet in the plies with the 0-degree fiber orientation that are closer to 

the lower surface. This mode of failure occurs closer to the lower surface, that suggests that it is 

mainly due to the tensile stress axx, but the stress axz also contributes to the breakage of the fibers. 

The last mode of failure in the 11-th element is matrix failure in compression (matrix crushing) 

in the 90-degree plies of the upper face sheet, that is predicted by the criterion (5.2.19) 

The graphs in Figures 5.15 -5.18 show stresses and the transverse displacement in the 11-th 

element of the plate dropped on the sand foundation, computed with and without account of damage, 

in order to study the changes in the structural response due to the damage progression. When the 

failure of the face sheets and the core occurs and begins to progress, the stress axx in the lower face 

sheet, in a finite element that contains the damaged face sheet (at a point x = L/2, z = -h/2, Figure 

5.15), begins reducing rapidly with time until it reaches the zero value. This result is expected, since 

in this problem there are no external forces in the x-direction, acting on the plate. The stress axx 

in the face sheets is due to the strains that appear in the face sheets because of bending, and is 

computed from the constitutive equations. Therefore, if the values of the stiffness coefficients in the 

constitutive equations reduce because of fiber failure in tension, the stress axx also reduces. 

The amplitude of stress azz does not change significantly when the failure occurs, because it 

depends mainly on the external forces in z-direction, that do not change abruptly when the failure 

occurs. But the amplitudes of the stress azz in the presence of damage (Figures 5.16) shift in the 

graphs to right, because the frequencies of vibration decrease, due to the decrease of the plate's 

stiffness. 

The graphs of stress ayy as a function of time have the same shape as the corresponding graphs 

of the stress axx, but the values of ayv are much lower than the values of axx at the same moments 

of time. This can be explained as follows. From the constitutive equations (3.6.13), we receive the 

following stress-strain relations in case of plane strain (cylindrical bending) : 

crxx = Cuexx + C13ezz, (5.14.1) 



CHAPTER 5 355 

azz = C2exx + C33ezz, (5-14.2) 

cryy = CnexX + C23ezz. (5-14.3) 

If we express strains exx and ezz in terms of stresses from equations (5.14.1) and (5.14.2), and 

substitute the resulting equations into the equation (5.14.3), we receive 

Uyy = 
1    _2   [ (C12C33 - C23Cu) oxx + (C23ÜH - C12C13) 0zz] • (5-14-4) 

C11C33 — C13 

In a ply with zero-degree fiber orientation, according to equations (3.6.4) - (3.6.9), 

(C12C33 _ C23C13) — 

(vl2E2 + V23V13E3) (^1 - A2E2) EiE%E3 ~ {V23E1 + V\3Vl2E2) (^12^23 + v\s) EiE%E% 

{E2E1 - EivhEk - v\2E\ - 2vl2E2u23vl3E3 - u\zE2E3f 

(5.14.5) 

and 

(C23C11 — Ci2C\3) = 

(^23-El + U13y12E2) (#2 - V23E3) E\E2E3 - {v\2E2 + V33V13E3) (^12^23 + ^13> E\E\E3 

(E2Ei - Eiv$3E3 - v\2E\ ~ 2vuE2v23vnE3 - v\zE2E3) 

(5.14.6) 

Therefore, in equation (5.14.6), coefficients of axx and azz are of the same order of magnitude, but 

the stress azz on the lower surface of the plate is much lower than the stress axx , according to 

Figures 5.15 and 5.16. Therefore, according to equation (5.14.4), the stress ayy is proportional to 

the stress axx. 

The transverse displacement w (Figure 5.18), computed with account of damage, has larger 

amplitudes than w, computed without account of damage, that is expected, because the damage 

leads to reduction of the plate's stiffness. 

Figures 5.22-5.25 show the stresses and the transverse displacement of the plate that falls with 

the same initial velocity on the elastic foundation with a higher modulus. Comparing the graphs of 

Figures 5.22 and 5.15, we see that with the increase of the modulus of elastic foundation, the stress 



356 
CHAPTER 5 

axx decreases, that is expected because the plate on the elastic foundation with higher modulus 

has smaller curvature. The stress azz in the plate, falling on a stiffer foundation, is higher (Figures 

5.23 and 5.16), as expected, because deceleration of the plate interacting with the stiffer foundation 

occurs at a higher rate, that leads to the larger forces of interaction of the plate with the cargo and 

with the foundation. The transverse displacement of the plate on the stiffer foundation is lower ( 

compare Figures 5.25 and 5.18). When the plate falls on the stiffer foundation, the modes of failure 

and the sequence of occurrence of failure in time are approximately the same, but the failure begins 

earlier in time, as can be seen by comparing the Figure 5.26 to 5.20, Figure 5.27 to 5.21. 

The developed finite element program allows to perform both linear and nonlinear analyses, 

based on linear strain-displacement relations and the von-Karman strain-displacement relations. 

Therefore, it is interesting to compare the stresses and displacements obtained from these two kinds 

of analysis. The question of appropriateness of such a comparison is discussed in Appendix 5-F. 

The results based on linear and nonlinear analyses (Figures 5.28 - 5.31) are somewhat different: the 

nonlinear analysis predicts a higher rate of decrease of the stresses axx and am due to the failure 

and slightly higher amplitudes of the stress azz and the transverse displacement w. 
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5.15    Appendix 5-A. Components of the stiffness matrix of 

the linearly formulated problem 

Matrix [fc(1)] = [fc(1)]T in the first term of expression (5.10.35) has the following components: 

fcW=o, jb|j) = o,  fc^-e^v2*", 

7(1)      4 n(l)      ;(!) 6 n(J)      tW-Snl1)      t(x) - _9£2.n(1) 

«22   - f-D^,      fc23=-^jD22'      «24   = 1D22 .      «25   ~ ~2 I U\1 > 

j.0)       ,fin(D       ,(H o.   »,£><''-2CU'        fc(l) = _222££&f2£&. 
«26   = ^ i -^12 1      «27   —      <J22 ;2 >      re28 "2 i 

«29 «^    (3 >      «2,10 —      22 ; > 

7,(1)     i2n(1)     t(J) _    6 n*1)     i-(1)-n    *-(1)-o 
«33   = F-P22 '        34   = -1tD12 '      «35   ~ U'      ^36   ~ U' 

(1)_          z^D^-2D^        ,(D        3      »3P{'»-2P<'> 
«37   = 022 (3 >      «38   — 022 j3 > 

,(1)            ß      z2Di!,>-2D^)         ,(1)          «,.   g2D<V-2D^ 
«39   = -6Z2 'V 22-1      «3,10 = ^2 ^^2 

-,(". 

k^.^ia!^,    fcU) = 3,2^%^,    fcU)0._2z2-^^) 

(1)   ,,„(« 
.(1)        4   2n(D        UW -      4,2n(D        JL(D_n       /.(I) 2-^Dl1'+2£>;2 fc55   = 7 ^ll >      «56   =-T22-L'll»      fc57   ~ U>      «58   ~      22 I 

1.(1) _n       fc«1) 2-^^','+2Pi2' 

(1)   ,,n(H 
1.(1) _ 4 ,2 r)(l)        1.(1) _ 0       k{1) ~ Z2 -*>D\\+2DW        jfe( 1) = 0 
«66 722"L'll >      «67   — U>      «68   — Z2 I '      ^69 u> 

JL(1) -2-^Pi',)+2P^) 

«6,10 —      z2 ' ' 

K)7' = -6Z2 
i—u p— 1      «78   —      2Z2 1?^ ' 

,(1)        „   ,-,^iV+4,2DiV-4D^ ,0) 3..2-»gPi1.,+4^iV-40<V 
Kyg   = 6Z2 '—u j3~ t      «7,10 —      2   2 W^ ' 

4) = _f (_,2D(i)+^(i) _ 4D<2>), $> - izr^')+rly-4^ 

Ä = -|f(-^i1
1
)+422D(12)-4412))! 



CHAPTER 5 358 

Matrix [/c<3>] = [/c(3)]T in the first term of expression (5.10.37) has the following components: 

*<3>=0,   Jb<3>=0,    *W =-6^25131 
-,(3) 
ii2_ 

L(3)            O,   £3D^-2D<^         (3)        fl      z3D\V-2Dg]        ,(3)    _ _„      «D^ 
Kjg ' = -023    (3       1    fc19   =023 Lip )      Kl,10 —      0Z3 I2 

,(3) = 3,3^%-£     ^.^i^ 

1.(3)     12 n(3)     1.(3) -    6 r>(3'     i-(3) - n    A-(3) - 0 fc33   = 7#£>22 ,      fc34   = -T?D22 '      «35   ~ U>      K36   ~ U> 

.(3)        ,      zaD™-2D% .13)        3      »,D<?,'-2P<3> 
K37   = 023 ^       ,      AC38   — Ö23 "^3 , 

, (3) a      ZSPW-ZDW        1.(3)    _ or   ^g!3,'-2gg' 
fcy = -623—^—22-, ä3I10 = -J23—^ 

-,(3)    on(3) 
1.(3) 4 n(3)       t-<3> - 9£3.n(3)       t(3) _ _9£3.n(3)       fc(3) _ _3     £3^-20^ 
«44   = (^22 '      «45   = 2 I "^12 >      «46   -      Z I ^12 '      «47   ~      ^"p 

.(3) »3Di3,'-2P<3
2' ,.(3)        ...   z3D^-2DJV        fc(3)    _ _g      „pff^pff 

^48   = -23 ^ >      «49   - ^Z3 ;2,      K4,10~      ZZ3 ; 

1.(3)        4   2n(3)        hW -      4r2r)(3)        k<-3) - f)       fc(3) - - 2? -*3°il'+2Pl]l' 
«55   =   I ZiDU '      «56   = -7*3-^11'      «57   ~ U>      «58   ~      Z3 I 

)L(3)_n       1.(3) i-x3D\V+2D% 
«59   — U'      K5,10 — z3 I ' 

L(3) _ 4 ,2 r><3>        i-(3) - 0       fc(3) - 2? -^^Sl'+^U jfe(3) = 0, 
«66 1ZZU\\ '      «67   - U'      «68   - Z3 ( '      a69 u' 

(3) 2-«aD<3'+2Di»» 
K6,10 —      z3 ( ' 

fe(3) = 3z2-^ir+^-4^;  ^,o = _Hz5ä£ilwi3!z^ 

(3) _ S.S-^Pfl'+^sPff^Pg' (3)            *l(    ,2n(3),j,n(3)       anP)^        ,.(3)        3 jj-zjPW+4*s 
88   = f \~ziD\\   + 4z3-L'l2   - 4-L,22 J '     «89   - 2Z3P 
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*i8io = -*H^)+^g)-4Dg)). 
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Matrix kW 

p*) - 12 n(2)    k 

f(2) 

(2) _ 
12   _ 

(2),2       ~ 

in the first term of expression (5.10.42) has the following components: 

j5-£>22 ,    «12   — TT-^22 > ""W 
6.5(2)    t(2) 12R(2)     t(2) 

"TT-^22 '   ,c14   — T*-u22 '   "15 
(2)    S(2)_0j  £(2) 

6 5P^'+D^'t:i     £(2) _    1  WD^+D^l 
IM—     1    K-1B    —   ~ v18 10 

n<2)+p(2),2 

I5" 
L(2) 

t(2) _ 4n(2) 
""22   —   ; "^22 > 

fc(2) 

t(2)_ 
«23   — 

V2),2 

6 n(2)       t(2) _ 2 fj(2) 
-j7i/22 '      ""24   ~~   I-^22 ' 

19   ~      5 

t(2) _ 
^25   — 

6 SD^'+D^'i2        T(2) 
;a i     «i, 10 

_2fiW 
(-^22 1 

t(2) K26 

1 soD^+up^i2  r(2) _ 2 /'n(2)/24-icin(2),\     ?(2) _ _A 27   — TO J2" i   «28   —  157 ^24 '    "+" 10-L,23 j '       K29   ~       1C 

2nl 
(■^22 ' 

,(21   ,   fi(2>,2 

:0, 
1   30J^2)+J3<2)i2 

10 I2 

l(2) 

10 

t(2) 
«2,10 

V2) . 

30 

5^,2 

P2) - 12 n(2) K33   — 7^-^22 1 
P2) 
^34 

6 R(2)       t(2) 
— 77x^99 ,      ft.35 '22 ' 

n       t(2)_n       r(2) 65D.^ + P^'f2 

U,        A.^fi     —  U,        ft.37     — K 13 , v36 

J(2)_ 
K38   —       10 

1  30Dg'+5ffl2 

(2 , 
L(2) 
C39 

65i^'+D^2 

v37 

t(2) 1  30£>^'+£>^''J 

K3,10 —       10 V2 

t(2) 
K44 

t(2) 
K48 

l(2) 4 f)(2)     t(2)_2n^;      iw - _2nw      J- 
7-^22 !      K45   — T-^22 1      K46   —       ("^22 >      ^47 

J(2)__2n(2) (2) 1  SOD^'+P'2,'/2 

10 > 
l(2). i<2);2      -/• 1  -30P^+J?a'l'      r(2) _ 

30 
v49 

1   30D^' + ll£>^'i 
10 

(2),2 
24. 

'      K4,10 —  15! ^24 '    + 10iy23 j 

r(2) _ 4 ft(2)        -L(2) 
K55   ~~ lu11 )      re56 

4 ft«2)      P2) 
"7-^22 i      «-57 

l(2)       t(2) _ 
-i/24 ,    K58 —    § 

1 (>D%+D%12 t(2) _       Ä(2) 
K59   —      "^24 i 

t(2)  _ i eSg'+D^i2 

"■5,10 ~ 6 I > 

t(2)_4n(2)       t<2) _  n(2) 
KfiK    —   I i^OO  !       "-«7    — iy24 ' v66 i-^22 i 

t(2) 
«68 

a epg+D^i2     t(2) _ n<2>     ?(2)   - - 
6 i '      K69   — -^24 >      ^6,10 —      6 

165^'+ Dg'ta 

'22 i      "'67   — -"^24 i      ,v68   — 6 I '        69 -"24 '      '"e.lU 

fcg) = 3^ (42D3
2^2 + 105ßg> + IS/4^) ,    fcg> = ^ (mD$l2 + 3155« + 1^4B^>) , 

fcg> = ^ (-28D«/» - 70S« + UAD%) ,    fcW   = -^ (-420«^ _ esoS« + 13/4B«) , 

^ = 10^7 (l^'2 + 1055g' + l*m) -   ^ = 42b (-42ß34^2 - 630D« + 13/4S«) , 

^3o = -dü7 (l4S«/2 - 2105« + 3/^'2)) , 

k^ = _i, (425g)p + 105S<23» + 13^S2>) ,    fc«0 = -2107* (l265<2)/2 + 315D^ + 111*0%) , 

k'Zo-Tk^^fi + mDW+l^). 

Matrix [k^], that enters into the expression (5.10.45) for the strain energy of the core, has the 

form 
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[*(2)] 
(10x10) 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 3tX722 6 '-^22 

0 0 0 0 6 llJ22 3'-^22 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

If the modulus s of the elastic foundation is constant, matrix [kW] in the expression (5.10.47) 

for the strain energy of the elastic foundation has the form : 

[*<»] - 

bs 

111 
35' 

11 ;2 
210' ■2-1 70 ' 

13 ;2 
420' 0 0 13/_ 

35/22 2iö'   22 JölZ2 -&^ 
11 ;2 

210' 105' 
13 ;2 

420' 140' 0 0 2^Z2 105'   ^2 42Ö'   22 "l^ 

-2-/ 
70' 

13 /2 
420' 35' 

11 ;2 
210' 0 0 fM22 42Ö'   22 3s'Z2 "Ä^ 

13 ;2 
420 

 2-J3 
140' 

11  |2 
210' 

JL/3 
105' 0 0 13 /2,„ 

42ö'   22 
 l_;32 

140'   z2 
11 ;2. 
äiö' 22 ife''* 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

W* &P* 
9 1, 
70'22 

13 12- 
42ö'  22 0 0 m 210L   22 70t22 

_J3_/2,,2 
420'   22 

2^*2 i^22 420'   Z2  1_Z322 140'   ** 0 0 U /2-2 
210'   22 

1   /3.2 
105'   '2 

13 ;2-2 
420'   Z2 

_JL/3-2 
140'   22 

&* 420'  Z2 
13;, 
35Zz2 

11 ;2^ 
21Ö*  Z2 0 0 70iZ2 

_13;2_2 
420'   22 35'22 

11 /2-2 
210'   Z2 

[   "4^2 140'   Z2 
11 ;2,„ 

-2iÖ'   22 -±-l3Zi 105'  Z2 0 0 13 ;2_2 _l_/3-2 
140'   Z2 

_1L/2Z2 
210'   22 

_l_/3_2 
105'   22 

The the stiffness matrix of the finite element is 

k(D fcW] + [ifcW] + kW + k& + kU) 
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5.16    Appendix 5-B. Mass matrix. 

The first term of expression (5.10.54) for the kinetic energy is (expression (5.10.57) ) 

>6/f[^)]|m) [5(1)]f[ö(1)]|{/)l <** = 
2 {    V(3X3)        (3X1V        (3X3)    VUs)^^^/ 

(1x10)    (10xl0)(10xl) 

where components of the matrix [m^1'] are 

mW = ±pUb{z2 _ 2l) ^ + 14.^ + 13^ + 14^ 

362 

m 

m 

= 2löP(1)^ (22 - *i) (7«i + 7^ + ll/2 + 7z?), 12 

(1) 
13 

210 

J 
70 

1 
420 

1     (Dir                 N 28z2+28zi.2-9' +28zf 
Ä^'fc (22 - *1) -^ j L. 

"»14   = 42V1)ft(22 - Zl) (14^2 + 14*1 *2 ~ 13Z2 + 142?), 

m^ = ^^ (Z
2 - 2?),  mft = Ip«1)^ (22

2 - 2?), 

m 

m 

m 

i17 

(i) 
18 

(1) 
19 

(1)    _ 

p(1)6z2 (22 21) 
7z,+7ziz2+28zf+26r 

= sfep(1)te2 (22 - 21) (7*2
2 + 72l22 + 28z2 + 44/2), 

1     (l)u      /■ \ 7z;(+7ziZ2-9i2+28z2 

^p(1,&z2 (22 - 21) —' 1 L, 

1,10 = ^P
(l)bz2 (22 - 2j) (7*f + 72j22 + 282? - 26Z2), 

m. (1) 
22 

m. 

m 

«4s' = 
m(1)- m24   — 

m25   = 

(1) _ 
26 — 

(1) _ 
27 — 

(1) _ 
28 — 

(1) _ 
29 — 

.(1)    - 
»2,10 - 

»33 

,(1) 

m. 

m. 

^p{1)bl (22 - 22) (1422 + 142j22 + 3/2 + U22), 

^p^b(z2 - Zl) (-14^ - UzlZ2 + 13/2 - 142?) 

-jköPWbl^ ~ *i) (14*22 + UzlZ2+9l2 + 142?), 

-ip(D6/22(22
2-22), 

^)W22(22-2?), 

giüp(1)622 (22 - Zl) (722 + 72j22 + 282? + 44Z2), 

giüp(1)Ö22/(22 - *i) (74 +72J 22 + 282? + 6/2) , 

-giü/9<1)622 (22 - 2i) (722 + 72!22 + 282? - 2612) , 

= -2^ö^(1)6*2^ (Z2 - 2i) (jz\ + 72i22 + 282? + 18Z2), 

1     f1Ul4z?-14z? + 13z2f
2-13l2zi 

"l34)-P(1)&[^(*l-*23) + ^2(*l-*2)], 
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m. (i) 35 -\pWbZi {z2 -Zl) (z2 + 2l), 

"4V = -5P(1)^2 (22 - «l) (22 + 2l), 
(1) 1     (Ik      / \ 74+7z1z2+28*2-9i2 

"4s = -83öP(1)Ö22 (22 - 2i) (7z§ + 72l22 + 28*? - 26Z2), 
(1)          1     (Du      (                 ^ 7z2+7.ziz2+28z2+26!2 

"»39   = T^/9      6z2 (22 - 2l) -J2 j ' , 

\5p^bz2 (z2 - zi) (7z| + 7*iz2 + 28z2 +44Z2), m '3,10 ~"      840 

"»44   = 3i5^(1)W («2 - 2l) (14^2 + 14*1*2 + 3/2 + UZ?) 

"»«   =TöP{1)blZ2 (22 -2j) (22 + *l), 

M4   — 315' 

I(1) - J-/ »45   — 12' 

"»iß   = -TÖP{1)blZ2 (22 - 2!) (22 + 2j), 

m .V = -mP(l)hz* (22 - *i) (~722
2 - 72lz2 - 28z? + 26Z2), 

"»^ = -2köPWblz2 (*2 - 2l) (722 + 72j22 + 28z? + 18Z2), 

"»49   = -mPWbz* (Z2 - ^ (7^22 + 72122 + 282? + 44/2), 

i'io = 63l)P(1)W*2 (22 - 2i) (722 + 7Zl22 + 28z2 + 6/2), m 

m$> = ±pWblzl(z2-z1), 

mg) = -lp^blz2
2(-z2 + zl), 

mi\) = ^bz1zl(z2-z1), 

mä) = £p(1>Ms1z2(-Z2 + *i), 

m(1
g
) = |p(1)6212

2(-22 + 2i), 

™8<> = "I^6^ (-22 + 2l] 

4e =-|p(1)W22(-22 + 2i), 

n4V = |p(1)^i^(^-«i). 
^618) = ^(1)W2l222(22-2l), 

419) = 5/?(1)b2lZ22(2l-22), l69 

»6,10 —  12 W    -ip(1)W2i22(2i-22), 

"»77  = sV^2 (02 - 2i) (282? - 14222l + 44/2 + 722), 

"»78   = lkPWbz22 (22 - 2l) (722 - 142!22 + 44/2 + 2822) , 
(1) ,     (1),   2/ x -7^.^ + 14^1 ^o+9'2-28z2 

"»79 = mP   bz2 (22 ~ z" — i  ' 

"»Bo = -83ü^(1)^22 (22 - 2l) (-722 + 142!22 + 26Z2 - 28z2), 

"»8s' = <kp(1)blz22 (22 - *l) (722
2 ~ 142l22 + 6l2 + 282?) , 
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\öP{1)b4 (** - 2i) (-74 + 142i22 + 26Z2 - 28z?), 

™£\o = -jköP{1)blZ2 ^ ~ 2l) (7Z2 - UZ^ + 18f + 282?) • 

89   —  840 

m, (1)          1     (lli   2/                 \ 7J?-14ZIZ2+26(
2
+28£? 

99   = ^P(  )fc4 (*2 - Zl) -3 j L. 

m. ̂ lo = -mP{1)b4 ^ ~ *) (7z2 -14^ + 44;2 + 28,?; 

m (i)   
10,10 — 630 W^Mzf {z2 - Zl) (74 - 14zi22 + 6/2 + 282?) . 

The second term of expression (5.10.54) for the kinetic energy is (expression (5.10.61)) 

0     V (4x3) 
{/} 

(3X1), 

5(2)]        [fli(2) 
(4x4)     V (4x3) 

Jöt 
{/}  I   dx 

(3x1), 

-iW'1-1«. 
(1x10)    (10xl0)(10xl) 

where components of the matrix [m^] are 

(2) 1     f2U l4z3 - 14*2 + !3'2 23 -13PZ2 
m[> = -p< )6 j , 

^)^(2)K^3-^3+^3-^222)' 
m 

(2) _    1     12),. ~284 + 28z2 + 9?223 - 9/222 
13 - 70P I 

m -^(£4-!*) 

f2i       1    ™, 2l24 - 2l4 + 2U2zl - 26l2z% 
# = nö^( )6~3—2 3 " I 
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(2) _ _3_ (2)L-7zj + 7z* + 3l2zl-3l2zl 
19 " U0P 

13 
■*-*»» (^-54-55^+ £<■•* 

m. (2) _ J_   (2U14z3 ~ 14Z2 + 13^3 - Wl2Z2 
33 35 

p<2>6 
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-74 + 74 + 3Z2z? - 3i2*2 
m(2) - —n^b- = =  17137 ~ uop  b I 

(2) 

,,,        1    ,,,,21«ä-2l2*+26I2!3-26Pjä 
>ä> = ii5e<2,<>——H—-—"< 
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m 

m 

£> = P{2)<> (fa - p4), 

# = P{2)> (fa - fa). 

«$ = >>* (4-4). 

™£} = ^(2M4 - 4). 

-So = ^>(2M4 - 4) 

»$ = \pvu (4 - 4), 

>*( ^67=i^'n^-^;. 

-So = ^(2)w (4 - 4) , 

(2) _    1     m 63^ - 63*f + 13(H2zf - 130^f 
77 ~~ 1Ö5ÖP i 
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m (2) 
78 <>">{&■*-&■* + &'*-&'■*)' 

(2) 1 V      '      —- =  ^P(2)b- 79      350 
-7z§+7z§ + bl2zj-5l2zl 

I 

-swG^-s 200 i     1260 

13   /2^3 + JL/2^3 
1260 2  I ) 

^-^{m*-h*+-kf*-kf'f) 

m (2) _ 
89   — <*»{-*»*+ Z»* + £if* 

13 
1260" 

;2„3 
^2      ' 

^V^-^+^-4^+iö<34 

(2) 
™99   = 

1     ,ol,63zf-634 + 130Z2z?-130/24 
1050 

pWb I 

m, 3o = ^(-äöö«S + ä5ö^-^ + är 
2
^-'24i, 

i(2) 
no,io ^(^l4'^'4+^pzl-k'34) 

The third term of the expression (5.10.54) for the kinetic energy is (expression (5.10.65)) 

T 

W [■ 9(3) 

0     \ (3x3) 
OT(3xl) 

50) j   p) 
(3x3)     \ (3x3) 

i- {/}   I   dx = 
} <"(3xl) 

I M hi (4 ■ 
(Ixl0)(10xl0)(10xl) 
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where components of the matrix [m'3'] are 

(3) _ _ l_  ft»   ~Uz4 + u4 ~ 13/2g4 + I3l2z3 mh = -pWb 
35H I 

TO<
3)
 = ^P{3)b (24 - z3) (7*2 + 7z3z4 + 1112 + 7*3

2) 

(3)       1   (3)., , -28*2 - 28z3z4 + 9l2 - 28*f 
13 = 7ÖP    (24 ~ *3) / : m,t       70 

(3) TO /  = -p^b {z4 - z3) (-14*2 - 14*3*4 + 13/2 - 14zf), 14 420r 

"4s' = 2'°(3)ö'Z3 (*4 _ Z3) (*4 + 23)' 

m16   = öP(3)&23 (^4 - ^) (24 + 23) , 2r 

,(3) 
1   «II    1           , 28*| + 7*324 + 26/2 + 7z| 

—pwbz3 (24 - 23) : , 77117 ~ 70r    "~° v~*     ~°' I 

mfg' = g^(3)*«3 (24 - 23) (2822 + 72324 + 44Z2 + 7*2), 

(3)          1   (3W    -21z3z
2-7z3

i + 28zl-9l2Z4+9l2z3 1     - -—pv   bz  

"»So = -gi5^(3)^3 (24 - 23) (-28*2 - 72324 + 26/2 - 7*2), 

"4? = ^Pi3)bl ^ - 23) (1422 + 14*324 + 3Z2 + 14*2), 

m, (3) 
23 

1-P{3)b(z4 - *3) (-14*2 - 142324 + 13Z2 - 14*2) 
420 

m" = - iijöp(3)w (24 ~23) (14z* +14*3*4 + 9'2 + Uz^' 
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j(3> = -LpWblz3 (*4 - *3) (24 + 23), ™25 12r 

m26   = TZPl3)bZ3l (*4 - 23) (*4 + 23) , 12 

m. (3) 
'27 ^(3)&23 (24 - 23) (2824

2 + 723*4 + 44Z2 + 7*0 , 
840 

m (3) 
28 l~p{3)bz3l (*4 - 23) (282| + 72324 + Ql2 + 74), 

630 

T4
3

9) = --i-p<3>6*3 (24 - 23) (28*| + 72324 - 2612 + 7*3
2), 

mg0 = ~2^öP(3W (24 - 23) (28*| + 7*324 + 18i2 + 7*3
2) 

m(3) = ^(3), {Z4 _ zs) U4 + 14*324 + 13^14*^ 

m« = " 2lÖ/9(3>6 (*4 ~ Z3) ^4 + 7Z3Zi + 11/2 + 7Z^ 

"^ = -\p{3)bz3 (24 - 23) (24 + 23) , 

"»36   = -ö^(3)fe3 (24 - 23) (24 + 23) , 2 

T7l37   = 7-P
{3)bz3 (*4 - 23) l 

(») - _l„(3)fc,. ,„ _ ^ 282J + 7*3*4 - W + 7*j 

m. '38   = -lLp{3)bz* (-2" + **) (-723
2 - 7*4*3 - 28*4

2 + 26/2 

840 

,(3) 1   <3U    / x 7^3 + 7*423 + 28*| + 26/2 

— /0
(3)6*3 (-24 + 23) —2 4 , m39   -       7Qf      -ov     -   '   "•»/ | 

»"33io = S^P(3)^3 (-24 + 23) (722 + 7*4*3 + 28*4
2 + 44/2) 

' o4U 
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m^ = ~^(3)W (-24 + 23) (14*32 + 14*4*3 + 3J2 + Uz\), 

m« = -J2p{3)blz3 (_*4 + Z3) (*3 + ZA) ' 

m<3> = lp<3>W23 (-*4 + 23) (*3 + 24), 

(3) = -L-p^bzs (-24 + 23) (-7^ - 724*3 - 28zJ + 26/2) , m«      840 

m« = dbp(3)WZ3 (~*4+23) (723+724*3+28z*+18'2)' 
49   = ^P(3)&23 (-^4 + 23) (7*3

2 + 7*4*3 + 2822 + 4tf) , m 
840 

m. (3)  
4>10        630 

_ J^(3)W33 (_24 + 23) (7Z2 + 72423 + 282I + 6/2) 

m £> = -|p<3>W*ä (-* + *) 
3 

^56=-IP
(3)W2

3
2
(-*4 + *3). 

mS7   = -2'°(3)623*4 (-*4 + *3) , 

"»M   = ^P(3)W^*4 (-*4 + *3) , 

m59   =  2^3)^3*4 (-*4 + *3) , 

mf}o = -^(3>W*3*4 (-*4 + *3) , 
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m$ = -fp(3)M*?(-*4 + *3), 

m67   = -2p{3)bZ*Z4 (~Z4 + ZZ) ' 

"»68   = -^P(3)ft^324 (-«4 + Z3) , 

™69   =  2^<3)fcZ3^4 (-24 + 23) , 

"43lo = j^P{3)blztz4 (-24 + 23), 

(3) 1   (3), 2/        ,     , 74 - Uz*z3 + 26/2 + 2822 

m" = ~7ö/5    *(~24   *3)     i ' 

m<3
8> = -^p(3)6*32 (-24 + 23) (74 - Uz4z3 + 28zj + Ul2), 

(3)          1   (3),  2/        ,     , -74 + 14z4*3 + 9*2 - 28zf 
m\9' = -—p(6)bzi (-24 + 23) j  

m(3]0 = -i-pWfczl (-24 + 23) (-723
2 + 142423 + 26Z2 - 2824

2) , 
' o4U 

™88   = -lkiPl3)bl4 (-24 + 23) (722 - 142423 + 28^ + 6i2) , 630 

m88 = ~84Öp(3)ö*3 (_24 + 23) ^ + UZ4Z3 + m2 ~ 28^ ' 

mg0 = -^P(3)W23
2 (-24 + 23) (722 - 142423 + 2%z\ + 1812) , 
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m, g> =-4,^ (-**+*) 
lz\ - Uz4z3 + 26Z2 + 28zj 

I 

mf\0 = ±:P{3)bzl (-24 + 23) (7z3
2 - Uz4z3 + 44?2 + 28z2), 

™ioio = -^/>(3)Wz3 (~2" + 2s) {74 - 14Z423 + 6/2 + 28z2) . 630 

If the upper surface of a finite element is completely covered by the cargo, and the weight of the 

cargo is evenly distributed over the length of the finite element (/z = const), then the fourth term 

of the expression (5.10.54) for the kinetic energy is (expression 5.10.67) 

l      / \ T 

2       J       1^(3x1), 
D, 

(3x3) 

d_ 
dt {/}     dx = 

(3x1)7 

■1WV1W' 
(1x10)    (10xl0)(10xl) 

where 
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7<e>l  = 

bn 

11; 
35' 

11 ;2 
210' 70' 

13 ;2 
420' 0 0 gfc» 2^Z3 70**3 "Ä^  ' 

11 ;2 
210' 

-i-Z3 
105 

13 ;2 
420' 

 M3 
140 ' 0 0 ^3 ife^ 

13 ;2-., 
42Ö'   23 -i4ö'3z3 

•2-Z 70 ' 
13 ;2 

420 35 ' 
11 ;2 

210' 0 0 TV
Z

3 420'   Z3 M<Z3 --^-Z22-, 210'   Z3 

13 ;2 
420' 140 ' 

11 ;2 
210' 

_J_;3 
105 0 0 420'  Z3 140'  Z3 -&<2z3 ■±-l3Z-< 105'   Z3 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

§<z3 
-IL/22 
210'  Z3 fa 420'  *3 0 0 35iz3 

11 ;2.2 
21Ö'  Z3 7ÖiZ3 

 13.12-2 
42Ö'  Z3 

2^^3 105'  23 W* 140 ' Z3 0 0 11 ;2.2 
210*  Z3 

J_ ;35-2 
105'  Z3 

J3./2-2 
420'  Z3 140'  Z3 

TV
Z

3 420'  Z3 35 "3 210'  Z3 0 0 7Ö'Z3 
13 72-2 

42Ö'  Z3 
12/r2 

35IZ3 
11 ;2.2 

210'   Z3 

_J3-/22, 420'   Z3 140'  Z3 --Ü-Z22, 210'  Z3 105'  Z3 0 0 13 ;2_2 
42Ö'  Z3 

1  ;3-2 
14Ö1  Z3 210'  Z3 

1   )3.2 
105£  Z3 

The mass matrix of a finite element is 

[m] = [m<1} + m<2>] + m 0) + m (c) 
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5.17    Appendix 5-C. Expressions for the 1-st component of 

the nonlinear part of the internal force vector 

In this appendix, the first component of the nonlinear part of the internal force vector ^f > that 

enters into the equation of motion (5.10.85) of a finite element, is written explicitely in terms of the 

nodal parameters 0j and the material characteristics of the sandwich plate. The other components 

of the vector i&f are not written here due to the limitation on the size of the dissertation. The 

expression presented in this appendix was derived by the program for symbolic computation MAPLE, 

and it was transformed automatically into the FORTRAN format. The quantities su s2,etc. are 

the auxiliary quantities that allow to break up a very lengthy expression for ^- into a number of 

shorter expressions. 

So, the expression for the first component of the nonlinear internal force vector qx = -jfef- in 

FORTRAN format is: 

s3 = 1/I**2*(1008*theta4**2*l-I2*thetal0**2*l**3-I008*l*theta9**2+ 

#12*theta5**2*l**3-24*theta5*l**2*theta9-24*theta4*l**2*thetal0+192 

#*theta9*l**2*thetal0+192*theta4*l**2*theta5)*D2HAT.42/3360 

s4= 1/1**2* (1008*theta4*thetal*l-216*thetal0*l**2*thetal+216*thet 

#a5*l**2*thetal+1008*theta9*thetal*l+192*theta9*theta2*l**2-12*thet 

#al0*l**3*theta7-36*thetal0*l**3*theta2-24*theta9*theta7*l**2+12*th 

#eta5*l**3*theta2+216*thetal0*l**2*theta6+36*theta5*l**3*theta7-216 

#*theta5*l**2*theta6-1008*theta4*l*theta6+192*theta4*theta7*l**2-10 

#08*theta9*l*theta6-24*theta4*theta2*l**2)*D2HAT.41/3360+(l/l**2*(- 

#504*theta4*thetal0+168*thetal0**2*l-168*theta5**2*l-504*theta9*the 

#ta5+504*theta4*theta5+504*theta9*thetal0)/3360+l/l**2*(1008*theta4 

#*thetal0-336*thetal0**2*l+336*theta5**2*l+1008*theta9*theta5-1008* 

#theta4*theta5-1008*theta9*thetal0)/3360)*D2HAT_32 

s2 = s3+s4 

si = S2+l/l**2*(504*theta4*theta7-504*theta9*theta7+504*theta9*the 

#ta2+1008*thetal0*theta6-1008*theta5*theta6-504*theta4*theta2+336*t 

#heta5*l*theta7+168*thetal0*l*theta7-168*theta5*l*theta2+1008*theta 

#5*thetal-336*thetal0*l*theta2-1008*thetal0*thetal)*D2HAT.31/3360+l 

#/l**2*(1008*theta4**2*l-12*thetal0**2*l**3-1008*l*theta9**2+12*the 
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#ta5**2*l**3-24*theta5*l**2*theta9-24*theta4*l**2*thetal0+192*theta 

#9*l**2*thetal0+192*theta4*l**2*theta5)*D2HAT.24/3360+(l/l**2*(-504 

#*theta4*thetal0+168*thetal0**2*l-168*theta5**2*l-504*theta9*theta5 

#+504*theta4*theta5+504*theta9*thetal0)/3360+l/l**2*(1008*theta4*th 

#etal0-336*thetal0**2*l+336*theta5**2*l+1008*theta9*theta5-1008*the 

#ta4*theta5-1008*theta9*thetal0)/3360)*D2HAT.23 

s3 = sl+l/l**2*(-1008*theta4*theta7+1008*theta9*theta7-1008*theta9 

#*theta2-2016*thetal0*theta6+2016*theta5*theta6+1008*theta4*theta2- 

#4032*theta3*theta4+4032*theta8*theta4-4032*theta8*theta9+4032*thet 

#a3*theta9-672*theta5*l*theta7-336*thetal0*l*theta7+336*theta5*l*th 

#eta2-2016*theta5*thetal-336*theta3*l*thetal0+336*theta8*l*theta5+3 

#36*theta3*l*thetal0+672*thetal0*l*theta2-336*theta3*l*theta5+2016* 

#thetalO*thetal)*D2HAT.22/1680 

s2 = s3+l/l**2*(-336*theta3*l*theta7-4032*theta3*thetal-336*theta3 

#*l*theta2+336*theta8*l*theta7+4032*theta3*theta6+4032*theta8*theta 

#l-4032*theta8*theta6+336*theta8*l*theta2)*D2HAT.21/3360+l/l**2*(10 

#08*theta4*thetal*l-216*thetal0*l**2*thetal+216*theta5*l**2*thetal+ 

#1008*theta9*thetal*l+192*theta9*theta2*l**2-12*thetal0*l**3*theta7 

#-36*thetal0*l**3*theta2-24*theta9*theta7*l**2+12*theta5*l**3*theta 

#2+216*thetal0*l**2*theta6+36*theta5*l**3*theta7-216*theta5*l**2*th 

#eta6-1008*theta4*l*theta6+192*theta4*theta7*l**2-1008*theta9*l*the 

#ta6-24*theta4*theta2*l**2)*D2HATU4/3360 

s3 = s2+l/l**2*(504*theta4*theta7-504*theta9*theta7+504*theta9*the 

#ta2+1008*thetal0*theta6-1008*theta5*theta6-504*theta4*theta2+336*t 

#heta5*l*theta7+168*thetal0*l*theta7-168*theta5*l*theta2+1008*theta 

#5*thetal-336*thetal0*l*theta2-1008*thetal0*thetal)*D2HAT.13/3360 

s4 = s3+l/l**2*(-336*theta3*l*theta7-4032*theta3*thetal-336*theta3 

#*l*theta2+336*theta8*l*theta7+4032*theta3*theta6+4032*theta8*theta 

#l-4032*theta8*theta6+336*theta8*l*theta2)*D2HAT.12/3360 

s5 = s4 

s8 = 1/1**2/60 

sll = 6*theta2*l*theta5*z3**2+12*theta5*z3**2*l*theta8-12*theta5*z 
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#3**2*l*theta3-12*theta2*l*z3*theta3+12*theta2*l*z3*theta8+12*theta 

#10*z3**2*l*theta8-12*theta7*l*theta5*z3**2-6*theta7*l*z3**2*thetal 

#0+12*theta7*l*z3*theta8-12*theta7*l*z3*theta3-12*thetal0*z3**2*l*t 

#heta3-18*theta2*z3**2*theta9+18*theta9*z3**3*theta5+18*theta4*z3** 

#3*thetal0-18*theta4*z3**3*theta5+18*theta2*z3**2*theta4+144*theta9 

#*z3**2*theta3 

510 = sll+6*theta5**2*z3**3*l+144*theta6*z3*theta3-6*thetal0**2*z3 

#**3*l+36*theta6*theta5*z3**2-36*theta6*z3**2*thetal0+18*theta7*z3* 

#*2*theta9-18*theta7*z3**2*theta4-18*theta9*z3**3*thetal0+144*theta 

#4*z3**2*theta8-144*theta4*z3**2*theta3-144*theta9*z3**2*theta8-144 

#*theta6*z3*theta8+12*theta2*l*z3**2*thetal0-144*thetal*z3*theta3+l 

#44*thetal*z3*thet£i8-36*thetal*theta5*z3**2+36*thetal*z3**2*thetal0 

sll = D3.ll 

s9 = slO*sll 

s7 = s8*s9 

s9 = 1/1**2/60 

sl2 = 36*thetal*z2**2*thetal0+144*theta6*z2*theta3-144*theta6*z2*t 

#heta8+144*thetal*z2*theta8-6*thetal0**2*z2**3*l-144*theta9*z2**2*t 

#heta8+144*theta9*z2**2*theta3-18*theta2*z2**2*theta9+6*theta5**2*z 

#2**3*l-18*theta9*z2**3*thetal0-144*thetal*z2*theta3+144*theta4*z2* 

#*2*theta8-36*thetal*theta5*z2**2-144*theta4*z2**2*theta3-18*theta4 

#*z2**3*theta5-36*theta6*z2**2*thetal0+36*theta6*theta5*z2**2 

511 = sl2+18*theta4*z2**3*thetal0+18*theta2*z2**2*theta4-18*theta7 

#*z2**2*theta4+18*theta9*z2**3*theta5+18*theta7*z2**2*theta9-12*the 

#ta7*l*theta5*z2**2+12*theta5*z2**2*l*theta8+12*theta2*l*z2*theta8- 

#12*theta5*z2**2*l*theta3+12*theta2*l*z2**2*thetal0+12*thetal0*z2** 

#2*l*theta8-12*thetal0*z2**2*l*theta3-6*theta7*l*z2**2*thetal0+6*th 

#eta2*l*theta5*z2**2-12*theta7*l*z2*theta3+12*theta7*l*z2*theta8-12 

#*theta2*l*z2*theta3 

sl2 = Dl.ll 

slO = sll*sl2 

s8 = s9*sl0 
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s6 = s7+s8 

ql = s5+s6 

5.18    Appendix 5-D. Location of the error-minimal points for 

computation of spacial derivatives of the field variables 

In order to calculate the stresses, there is a need for accurate estimates of the derivatives of the field 

variables w0, e£z', e« ■ In the finite element formulation, the functions w0 and eiv are approximated 
tty\ 

by the Hermit interpolation polynomials of the third degree, and the function e\i is approximated by 
o =2 S3 ge(2)    d2e(2)    ö3£(2)    df(2) 

the Lagrange polynomial of the first degree. The derivatives ^f, ^f-, -$$?-, -£f-, -ggf-, -g^-, -£- 

will be computed as the derivatives of the interpolation polynomials that were used in the finite 

element formulation. In this appendix we will discuss a question of location in a finite element of 

optimal points that give the most accurate estimates of these derivatives. In this discussion, the 

ideas of Akin (1987) will be used. 

The values of primary variables (those variables that are involved in specification of the essential 

boundary conditions, and whose values at the nodes are used as the nodal parameters in the finite 

element formulation) are most accurate at the nodal points, in some problems even exact (Reddy, 

1993, page 206). In our problem, the nodal parametrs are w0 {x,t), g*' , e« , -rf£- and EXZ . 

Therefore, the values of ^f, (fiz\ ^- and ei^, that enter into the expressions for the stresses, 

must be computed at the nodes and can be taken directly from the finite element solution. 

Now, let us consider the computation of the second derivative ^p. In the finite element 

formulation, displacement w0 is approximated by a polynomial of the third degree. If the exact 

solution for w0 is a polynomial of the same or lower degree (or if the exact solution can be best 

approximated by a polynomial of the third or lower degree), then the finite element solution for w0 

will be exact at each point of the finite element (or very close to exact, if the exact solution can be 

best approximated by a polynomial of the third or lower degree). In this case the second derivative 

(with respect to x) of the interpolation polynomial for w0 will coincide with -ffi obtained from the 

exact solution, at each point of the finite element. But such situations occur very rarely. Now, let 

us consider a situation, when the exact solution for w0 is a polynomial of the fourth degree, and let 

the superscripts e and / denote the exact and the finite element solution, respectively: 

w. U) =ao + a1x + a2X2+a3x
3, (5-D.l) 
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WW = b0 + hx + b2x
2 + 63X3 + 64X4. (5-D.2) 

As it was mentioned previously, the computed values of the primary variables are most accurate 

at the nodal points. For simplicity we will assume that the values of the primary variables at the 

nodes are exact: 

^)(0) = 4e)(0), (5-D.3) 

*g-(0) = «g-«», (5-D.4) 

^/)(0 = 4e)(0, (5-D-5) 

ö4^(0 = ^(0. (5.D.6) 
dx dx 

If we substitute equations (5-D.l) and (5-D.2) into equations (5-D.3)-(5-D.6) we obtain, respectively 

o0 = 60, (5-D.7) 

a1=61> (5-D.8) 

a0 + lax + l2a2 + l3a3 =b0 + lbx + l2b2 + 1% + l4b4, (5-D.9) 

d + 2la2 + 3/2a3 = 61 + 2lb2 + 3l2b3 + 4/364- (5-D.10) 

Let xo be an optimal point for computation of -jffi, i.e. 

pa,.,U) fßiiS^ 
^M = ^(x„). (MUi) 

Substitution of equations (5-D.l) and (5-D.2) into equation (5-D.ll) yields: 

2o2 + 6i0a3 = 262 + 6x063 + 12xoV (5-D.12) 

Solving equations (5-D.7)-(5-D.10) and (5-D.12) simultaneously for a0, Oj, a2, a3 and x0, we obtain: 

a0 = b0, a! = bu a3 = b3 + 2lb4, a2 = -l2b4 + b2: x0=(-± -v^J I, (5-D.13) 
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So, if the exact solution for w0 is a polynomial of the fourth degree, then the coordinates of the 

optimal points for computing ^f- are 

W = f - + ^Vz) I = 0.78868 I and „(2) 1 -ly/3)l = 0.21132 I. (5-D.14) 
2 6 

These are the Gauss points of the third-degree polynomial. 

Now, let us consider a situation, when the exact solution for w0 is a polynomial of the fifth 

degree: 

u4e> =b0 + bix + b2x
2 + b3x

3 + b4x* + bsx5 (5-D.15) 

Then equations (5-D.3)-(5-D.6) and (5-D.ll) lead to the following equations: 

ao = bo 

a, = bi 

a0 + la, + l2a2 + l*a3 = b0 + lh + l2b2 + l3b3 + 1% + l5b5   } (5-D.16) 

ai + 2la2 + 3/2a3 = h+ 2lb2 + 3l2b3 + 4/3&4 + 5Z465 

2a2 + 6a;oa3 = 2b2 + ^0b3 + 12arg64 + 20a:g65 

From the first four equations of the system (5-D.16) we obtain: 

a2 = -l2bi - 2l3b5 + b2,     a3 = b3 + 2lb4 + 3l2b5. (5-D.17) 

If we substitute expressions for a2 and a3 into the last equation of the system (5-D.16), we obtain 

(l2z0Z - 2/2 - 12x1) b4 + (-4Z3 + 18l2x0 - 20x1) b5 = 0. (5-D.18) 

Equation (5-D.18) can be satisfied for arbitrary 64 and b5 if coefficients of 64 and b5 are equal to 

zero. This leads to the following two equations for the coordinate x0 of the optimum point: 

12x0l - 2l2 - 12x1 = 0, (5-D.19) 

-4/3 + 18Z2:ro - 20a:3, = 0. (5-D.20) 

The solutions of equation (5-D.19) are 

rW- (l + I^/iA I = 0.78868 I and  x{
0
2] = (\~ \^\ I = 0.21132 I (5-D.21) 
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The solutions of equation (5-D.20) in the element's domain 0 < x < I  are 

x<3)=0.8077Z,  x<4) -0.23702 I. (5-D.22) 

So, if the exact solution for w0 is a polynomial of the fifth degree, then the coordinates of the optimal 

points for computing ^^ are 

41] = Q + iv/5) I = 0.78868 I ,   z<2) = Q - gVä) I = 0.21132 I, 

43) = 0.8077 I,  44) = 0.23702 I. (5-D.23) 

Coordinates 4^ and x^ are the Gauss points. 

If the exact solution for w0 is a polynomial of the sixth degree, then, in a similar manner, we 

find the following coordinates of the optimal points for computation of -jffi : 

41' = (\ + \y/i) I = 0.78868 I ,   42) = Q - ^ I = 0.21132 I, 

43) = 0.8077 I, x0
4) = 0.23702 I, 

45) = 0.822 74 Z,   46) = 0-255 31 '• (5-D.24) 

So, regardless of the degree of a polynomial of exact solution, the Gauss points x0 = (\ + |\/3) I = 

0.78868 I and x^ = (\ - \S) I = 0.21132 I are the coordinates of the optimal points for compu- 

tation of ^^ (but there may exist other optimal points, in addition to the Gauss points). 

Now, let us consider computation of the third derivative ^^. Let us consider a situation, 

when the exact solution for w0 is a polynomial of the fourth degree (equation (2) ). Let x0 be a 

point where the finite element solution and the exact solution for ^^ are the same. Then 

o37.,(/) ^3?/i(e) 

^(*o) = ^-(*o). (5-D.25) 

If we substitute equations (5-D.l) and (5-D.2)  into equations (5-D.25), we receive 

6a3 = 663 + 24x064. (5-D.26) 
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Equations (5-D.7)-(5-D.10) and equation (5-D.26) make the following system: 

ao — bo, 

a0 + lax + l2a2 + /3a3 = &o + i&i + '2&2 + l3h + l4h, 

ai + 2la2 + 3/2a3 = bx + 2lb2 + 3/263 + 4/3&4, 

6a3 = 663 + 24^64 • 

If we solve this system of equations for o0, ßi, a2, a3, x0, we receive 

a0 = 60, ai = 61, a2 = -i264 + b2, a3 = 63 + 2/64, z0 = -/• 

(5-D.27) 

(5-D.28) 

So, the if the exact solution is a polynomial of the fourth degree (or if it is best approximated by 

the polynomial of the fourth degree), then the finite element solution for 2g^L is equal to the exact 

solution (or is the closest to the exact solution) in the middle of the element, at the point x0 2 • 

Let us consider a situation, when the exact solution for w0 is a polynomial of the fifth degree 

(equation (5-D.15) ). Then equations (5-D.3)-(5-D.6) and (5-D.25) lead to the following equations: 

ao = bo, 

ai = bi, 

a0 + leu + l2a2 + /3a3 = b0 + lh + l2b2 + l3b3 + 1% + /565, 

<H + 2la2 + 3/2a3 = h + 2lb2 + 3/263 + 4/364 + 5/465, 

6a3 = 6fe3 + 24x0bi + 60x§65- 

From the first four equations of the system (5-D.29) we obtain: 

a2 = -l2b4 - 21% + b2, a3 = 63 + 2lb4 + 3l2b5. 

(5-D.29) 

(5-D.30) 

If we substitute expressions (5-D.30) for a2 and a3 into the last equation of the system (5-D.29), we 

obtain the following equation: 

(12/ - 24x0) h + (18/2 - 60z2,) 65 = 0. (5-D.31) 

Equation (5-D.31) can be satisfied for arbitrary 64 and 65 if coefficients of 64 and b5 are equal to 

zero. This leads to the following two equations for the coordinate XQ, at which the finite element 

and the exact solution for g^- coincide: 

12/ - 24x0 = 0, (5-D.32) 
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18Z2 - 60x2
0 = 0. 

The solutions of these equations in the element's domain 0 < x < I are 

41} = ^42)= 0-54772/ 
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(5-D.33) 

(5-D.34) 

So, if the exact solution for w0 is a polynomial of the fifth degree, then the finite element solution 

for §lm is equal to the exact solution at the points  x^ = £, z0
2) = 0.54772 I. 

In a similar manner it can be shown that if the exact solution for w0 is a polynomial of any 

degree higher than three, then the finite element solution for ^^ is equal to the exact solution for 

dgffi at the point x^ = | (and at some other points, if the exact solution is a polynomial of a 

degree higher than four). 

The interpolation polynomial for eiV is the same as for the w0. Therefore, all conclusions 

regarding computation of spatial derivatives of w0 are also valid for the computation of spatial 

derivatives of e (2) 

(2) Now, let us consider location of error-minimal points for computation of exz and -§£*-• Strain 
tty\ 

ei2} is one of the primary variables of the problem, and in the finite element formulation exz  is 

approximated by the Lagrange polynomial of the first degree: 

Af) 
(.2)' : a0 + a{x. (5-D.35) 

Therefore, the most accurate values of sXz are at the nodes. 

Let us consider a situation, when an exact solution is a polynomial of the second degree: 

Ae) 
(42i)      =b0 + b1x + b2x

2, (5-D.36) 

.m 
and let x0 be a point, where the finite element and the exact solution for -|^- coincide: 

V     '      (x0)=     KJ     (so) 
dx dx 

(5-D.37) 

From equation (5-D.35) - (5-D.37) we obtain: 

ai = 6i + 2b2x0- 

Since the most accurate values of E*£) are at the nodes, at points x = 0 and x = I,wecan write 

(5-D.38) 

(4?)'"     =(4?)'"      .   (45)"'    -(«2)w 

x=n x=o x=i 

(5-D.39) 

x—l 
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Substitution of equations (5-D.35) and (5-D.36) into equations (5-D.39) gives the following equations: 

a0 - 60 (5-D'4°) 

ao + <M = &o + M + W2 (5-D.41) 

The solution of equations (5-D.38), (5-D.40) and (5-D.41) with respect to a0, aj, x0 is: 

o0 = 60, ai = 61 + b2l, x0 = 2L (5-D.42) 

Therefore, if the exact solution is a polynomial of the second degree, then the finite element solution 

for ®^L coincides with exact solution in the middle of the element, at the point x0 - ^l. 

Let us consider a situation, when an exact solution is a polynomial of the third degree: 

(42i)(6) - 60 + hx + b2x
2 + 63X3. (5-D.43) 

Then, from equations (5-D.35), (5-D.43) and (5-D.37) we receive 

d = 61 + 2b2x0 + 3b3x
2

0 (5-D.44) 

From equations (5-D.40) and (5-D.41) we obtain 

ai=6!+ b2l (5-D.45) 

Substitution of equation (5-D.45) into equation (5-D.44) yields: 

62 {I - 2x0) - 3ib3x
2

0 = 0, (5-D.46) 

from where we find 

41] = I 42) = 0, (5-D.47) 

9e(2) 
i.e. if the exact solution is a polynomial of the third degree, then the finite element solution for -fä- 

coincides with exact solution in the middle of the element, at the point x\ = $1, and at the left 

end of the element, at the point XQ ' = 0. 

In a similar manner it can be shown that if the exact solution for Ey
xJ is a polynomial of any 

ft   (2) 

degree higher than one, then the finite element solution for -|^- is equal to the exact solution for 

^- at the point x^ = | (and at some other points, if the exact solution is a polynomial of a 

degree higher than two). 
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5.19    Appendix 5-E. Verification problem for finite element 

program: exact analysis for vibration of simply-supported 

homogeneous isotropic plate in cylindrical bending 

An exact analysis for vibration of a simply-supported rectangular plate was performed by Srinivas, 

Joga Rao and Rao (1970). In this chapter we will find natural frequencies for the simply-supported 

plate in cylindrical bending, following the method of Srinivas, Joga Rao and Rao. The plate is 

considered to be homogeneous and isotropic. Besides, we will find transient response of such plate, 

dropped on the simple supports. The solution, that we obtain in this chapter, has the form of the 

infinite series, and it is exact in the sense that 

1) each term of the series for the displacements satisfies the equations of motion of linear elasticity, 

written in terms of displacements, with no additional assumptions about through-the-thickness 

variation of displacements, strains or stresses; 

2) each term of the series for the displacements satisfies boundary conditions of a simply supported 

plate. 

The displacements of the solution, represented by the finite number of terms in the series, satisfy the 

initial conditions approximately, but with any desired accuracy, that is achieved by taking sufficient 

number of terms in the expansion. In other words, the series that represent the displacements and 

their time derivatives at the initial moment of time, converge to the initial displacements and initial 

velocities. 

Let us write equations of motion for a plate in cylindrical bending in terms of displacements: 

d2u{x,z,t)     d2u(x,z,t)  ,       1     d2u(x,z,t) 1     d2w{x,z,t) _ pd2u{x,z,t) x) 

 dx^       +       äz5           1 - 2i/      dx2           1-2«/     dxdz          G       dt2        ' 

d2w{x,z,t)     d2w(x,z,t) 1     aMv,t) 1     d2w{x,z,t) _ pd2w{x,z,t) 
 d^2 +        dz2        + 1 - 2v     dxdz      + 1 - 2v       dz2 G       dt* 

To separate variables we seek solution in the form: 

u{x,z,t) = U(x,z)T(t) , (5-E.3) 

w(x,z,t) = W{x,z)T(t) . (5-E.4) 

Substitution of equations (5-E.3) and (5-E.4) into equations (5-E.l) and (5-E.2) yields: 
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d2U{x,. 
dx2 + 

d2U(x,z) 1     cPUix^zl     _J__d^Wix1z)_ 

dz2 + + 
l-2i/     dx2 1-2»/     9x02 

Gr(t)   0t2 G    ' 

1 

£/(*,*) 

(5-E.5) 

d2W{x,z)  , ö2W^(^^_J_ö2^(£^ + _J^ö2jy(x12) 

1 - 2i/    9x9z dx2 H ^9    " +i     o,.    Fi^n-, \ — 1v      dz2 
dz2 W{x,z) 

P    1    &T{t)_     pfi2 

~GT(i)    9t2 G 
(5-E.6) 

Therefore, we have the following differential equations for the functions U(x, z), W(x, z) and T (t): 

(5-E.7) i-vdHHx^    dHHx^i ,_J__d^x1z)_+P_ü2U{xz) = 0) 

Y^Tv     dx2 dz2 1-2;/     dxdz G 

1 -«/ d2W(x,z)     d2W(x,z)     _J_d2U(x,z)     £Q2W{    z) = o 
2l32^—öi2_ + "~Ö^2—+l-2//    dxdz G 

d2T{t) 
dt2 + u2T{t) = 0. 

The solution of equation (5-E.9) is the following 

T(t) = Q cos Qt + R sin fit, 

where Q and R are constants of integration. 

The boundary conditions for a simply supported plate are 

w{x,z,t) = 0 and axx = 0      at x = 0 and x = L. 

But, according to Hooke's law 

E s du       dw 
(l-i/ )■£- + V-S- 

"IX_ (1 + i/) (1 - 2i/) 

Therefore, the boundary conditions for the functions U (x, 2) and W (x, z) are 

(5-E.8) 

(5-E.9) 

(5-E.10) 

(5-E.ll) 

(5-E.12) 

(5-E.13) 
dx 
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These boundary conditions are identically satisfied by setting 

U{x,z) = J^4>m{z)cos{-j-) 
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(5-E.14) 

m—l 

oo 

W(»,z)=5:XmW8in(^). (5-E.15) 

Substitution of equations (5-E.14) and (5-E.15) into equations (5-E.7) and (5-E.8) yields: 

E 
m=l 

d2<Pm (2) 1     rrm dXm (z) + P_Q2 
dz2 l-2v L      dz G 

+ £«^m(*) cos (__ j = o, 

(5-E.16) 

E 
771=1 

l-l/fvJz) 27T2 ,   . 1 * d<t>m{z)    ,    P n2„    /_N sin ^_ j = 0. 

(5-E.17) 

Equating to zero the coefficients of cos (***) and sin (^) in equations (5-E.16) and (5-E.17), we 

obtain the following differential equations for the functions <f>m (2) and Xm{z): 

d?(ßm{z)   , 1       W7T dXm (2) 
dz2      + 1 - 2v  L      dz 

+ G l-2iAlJ «Am (z) = 0, (5-E.18) 

1 - v (Pxmjz) _ _1      rmr d4>m{z)_ + ^2-(f)' "l-2i/     dz2 l-2i/ L       ^2 

The non-trivial solution of these differential equations is the following: 

Xm(*) = 0. (5-E.19) 

^V^f1^™ ^{m-^ -—H(x) -*§ + 

+ 7B7T \/rrvK\2 _   , p   1-2;/ 
Cexp|W^J   -^§2TT^)2    +5eXP("V^   " 

ft2 p   l-2i/  i 

G2(l-!/); 

(5-E.20) 
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Xm(Z) -(^'('«""(VCT)'-^')^ exp (¥)-«•§'   + 

-(^(^'-«•iÄ')-5 

where A, K, C, S are the constants of integration. 

Now, let us write the stress-displacement relations: 

exp    -. 

f                \ 

<*xx 

°m 

< 

°xz 

' = 

h 2./2+1/-1 

-£7 

-£ v 
W + V-l 

0 

0 

0 

T?       v—1 
•C,2I/'+»<-1 

-■E2j/5 + „_l 

0 

0 

0 

-E 

-E 

2v1+v-\ 

v 

■>    ■/-! 
'2i>a+i/-l 

0 

0 

0 

0 

0 

0 
1  

2() + >/)J 

0 

0 

r \ *     ^o P   1 — 2f 

V L )      " G 2 {1-v)' 
(™\   -& 

(5-E.21) 

0 0 du 
dx 

0 0 dv 
dy 

0 

0 

0 

0 
< 

dw 
8z 

8v   ,   dw 
dz "•"  Sy 

> 

1       zr 0 öu   ,   dw 

0 1      F 
2(1+1/)"^   J k    öy "*" 55    , 

(5-E.22) 

respect to y are ec iu al to zero, the In case of cylindrical bending, when v = 0 and derivatives with respect to y are equal 

stress-displacement relations take the form: 

Oxx 

ayy 

Vzz 

Oxz 

>  = 

' 2vi+v-\ 

-E 

-E 

Iv'i + v-l 

V 

2vl + v-\ 

0 

-E 

'2v2+is-l 

V 

2vi+v-\ 
i      v-\ 
'2t/2 + i/-l 

0 

0 

0 

0 

2(1 + 1/) E 

du 
dx 

dw 
dz 

du _i_ dw 
dz "•"   9z 

(5-E.23) 

0yz = 0,   axy = 0 

Substitution of expressions for displacements 
00 

u (i, 2, t) = u (x, z) T(t) = Y, *•» w cos{-~r)T {t)' 

(5-E.24) 

(5-E.25) 
m=l 

00 

w(x,z,t) = W(x,z)T{t)= Y,*rn (z)sin (-j-)T{t) 
m=l 

(5-E.26) 
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into the stress-displacement relations (5-E.23) yields 

E 
&xx — (1 + v) (2z/ - 1) 

, du       dw 
v        ' dx       dz 
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 E y m-K        dxm (2) 
(1 - V) 4>m (Z) -f- - V dz )sin \- T) T(t) 

where cj>m (z) is defined by equation (5-E.20), and, according to equation (5-E.21), 

(5-E.27) 

Aexp (™Y-&PZ    -Kexp    -, 
V L ) »•^-"•s.i« + 

{/rmr\2       2P   1 ~ 2t/ 

+ (^—j   _S2 G2(l-«/) 

Cexp 
l/mn\2     n,p   1 - 2i/ 
VXJ   "" G2(l-i/) 

zVSexpN(!r)2"n2G2Tf^)^ ,   (5-E.28) 

= £ 
(1/ + 1) (1 - 2v) \dx     dz J 

du     dw\ _ 

= E 
(1 + ^(1-21/)^ 

£[(-^,, = + ^)-.(^)™ (5-E.29) 

Ozz = > + 1) (1 - 2i/) 
v ' 02        9a; 

-(./+1)(1-2*)^Lv        d2      L      y   v L / 
(5-E.30) 

E       [du     dw_ 

°xz = 2(l + i/) Vö^ + to 
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where 

E   y d^{z)
+Xm(Z)^-)cos(^)T(t) 

dz 

d4>m {z) 
dz 

u ((=)"-«>§) 

(5-E.31) 

.exp    .y^T-OgW*«P    -,/(T)   -«"§ + 

m7r   //m7r\2 p   1 - 2i/ 

^W("),-",5«R  -s - wra'-0'-'1_" G2(l-!/) 

To simplify the subsequent derivations let us introduce the following notations: 

M = 
mir 

(5-E.32) 

(5-E.33) 

-yfi^r^—0)'-^J0ry (5-E34) 

In order to simplify computation of natural frequencies, we will write formulas (5-E.34) in the form 

(5-E.35) ^^^'■•-m^W^r 
where 

A = fi< (5-E.36) 

Then expressions for stresses take the form: 

&xx — 

dXm (z) 
 tL V   - ({l-v)(f>m{z)M + u-^- 
(l + ")(l-2")^iL    V dz 

sin (Ms) T (t) (5-E.37) 

ayy-E{l+ "){!-2»)^ ■E {z) M + *^£) ) Sin (Mx)T(t) (5-E.38) 
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JL V \((1 - u)^^- - ^M4>m(z)) sin (Mx)T (t) 
u)(l-2u)^AV dz J (1+ *)(!-2*)^ 

=—E—T 2(1 + *)^, ' m=l 

*%M + fe(2)Af) cos(Mi)T(t) 
dz ) 

where 

</>m(z) = rM[Aexp{rz) - Kexp(-rz)} + M[Cexp(sz) + Sexp(-sz)], 

Xm (z) = M2 [A exp (rz) + K exp (-rz)] + a [C exp (sz) - 5 exp {-sz)}, 
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(5-E.39) 

(5-E.40) 

(5-E.41) 

(5-E.42) 

Wm (*) = r2M [Aexp {zr) + Kexp (_2r)] + Ms [Cexp (zs) - 5exp (-«)], (5-E.43) 
dz 

dXm ^ = M2r [Aexp (rz) - ff exp (-rz)} + s2 [Cexp (sz) + 5exp (-sz)]. 
dz 

For stress-free upper and lower surfaces the boundary conditions are: 

crzz -axz = 0 at  z = 0 and z = h. 

Substitution of equation (5-E.39) for stress ozz into the boundary condition ozz 

the following equation: 

(5-E.44) 

(5-E.45) 

0  gives 
5=0 

1-2*.     ., 1^2«/        s2(l-*)-*M2
c | J»2(l-i/)-^M2

f,_0 (5.E46) 

*M Mr.z__^_Mr — K+ -^ -  , vM 

Substitution of equation (5-E.39) for stress ozz into the boundary condition crz 

equation 

1-2*   w rht      l-2*„,/f„_rh, -rMerM ■ -rMe-TnK + -M + 
vM 

„21 
es/lC + -M + (l-f)a 

*M 

21 

From boundary condition oxz — 0 we obtain: 
z=0 

(r2 + M2) A + (r2 + M2) K + 2sC - 2sS = 0. 

The boundary condition ax2 
0 gives equation 

z=h 

(r2 + M2) erhA + (r2 + M2) e~rhK + 2seshC - 2se-*hS = 0. 

= 0   gives 

e~shS = 0. 

(5-E.47) 

(5-E.48) 

(5-E.49) 
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Equations (5-E.46)-(5-E.49), written in matrix from, are 

.1-2^ 
vM 

83(l-l/)-l/M^ 
vM MT±=^ -Mrl- 

(r2 + M2) (r2 + M2) 

(r2 + M2) erh    (r2 + M2) e -rh 

2s 

2se3h 

-2s 

-2se~sh 

A 

K 

0 

0 
> = < 

C 0 

S 0 

(5-E.50) 

For a non-trivial solution of this problem the determinant of equation (5-E.50) must be equal to zero, 

and this yields the characteristic equation, the solution of which for each value of m (m = 1,2, ...oo) 

yields an infinite sequence of eigenvalues. 

Let E = 114.8 x 109^, v = 0.3, p = 1614^, L = Im, h = 0.06m . The MAPLE session that 

computes the second period of vibration, corresponding to m = 2, is shown below: 

>m:=2: pi:=3.14159: 

>Young:=114.8e9: nu:=0.3: rho:=1614: L:=l: h:=0.06: G:=Young/2/(l+nu): 

>M:=m*pi/L:r:=(M"2-lainbda"2)-(l/2): 

>s:=(M-2-lambda~2*(l-2*nu)/2/(l-nu)Hl/2): 

>all:=M*r*(l-2*nu)/nu: al2:=-M*r*(l-2*nu)/nu: 

>al3:=(s*2*(l-nu)-nu*M*2)/nu/M: al4:=al3: a21:=(l-2*nu)/nu*r*M*exp(r*h): 

>a22:=-(l-2*nu)/nu*r*M*exp(-r*h): a23:=al4*exp(s*h): a24:=al4*exp(-s*h): 

>a31:=r*2+M"2: a32:=a31: a33:=2*s: a34:=-2*s: 

a41:=(r-2+M"2)*exp(r*h): 

>a42:=(r"2+M~2)*exp(-r*h): a43:=2*s*exp(s*h): a44:=-2*s*exp(-s*h): 

>Young:=114.8e9: nu:=0.3: rho:=1614: L:=l: h:=0.1: G:=Young/2/(l+nu): 

>pi:=3.14159: m:=l: 

>M:=m*pi/L:r:=(M"2-lambda"2)-(l/2): s:=(M"2-lambda-2*(l-2*nu)/2/(l-nu))*(l/2): 

>all:=M*r*(l-2*nu)/nu: al2:=-M*r*(l-2*nu)/nu: al3:=(s*2*(l-nu)-mi*M*2)/nu/M: 

>al4:=al3: a21:=(l-2*nu)/nu*r*M*exp(r*h): 

>a22:=-(l-2*nu)/nu*r*M*exp(-r*h): a23:=al4*exp(s*h): a24:=al4*exp(-s*h): 

>a31:=r*2+M*2: a32:=a31: a33:=2*s: a34:=-2*s: 

>a41:=(r*2+M*2)*exp(r*h): a42:=(r*2+M*2)*exp(-r*h): a43:=2*s*exp(s*h): 

>a44:=-2*s*exp(-s*h): 
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>ar:=array([[all,al2,al3,al4],[a21,a22,a23,a24],[a31,a32,a33,a34],[a41,a42,a43,a44]]): 

>with(linalg): 

>f:=det(ar): 

>plot(f, lambda=0...0.5); 

>lamb:=fsolve(f=0,lambda=0..1); 

>T:=2.*pi/lamb*(rho/G)"(0.5); 

>ar:=array([[all,al2,al3,al4],[a21,a22,a23,a24],[a31,a32,a33,a34],[a411a42) 

>a43,a44]]): 

>with(linalg): 

>f:=det(ar): 

>plot(f, lambda=0...0.5); 

>lamb:=fsolve(f=0,lambda=0..1); 

>T:=2.*pi/lamb*(rho/G)"(0.5); 

>classical_period:=2*pi/M"2/h/(l/12*Y/(l-nu~2)/rho)-0.5; 

The last line of this MAPLE session is meant to compute the periods from the classical plate 

theory, based on Kirchhoff-Love assumptions. The results of computation are shown in the table: 

m Periods from elasticity solution (s) Periods from classical plate theory (s) 

1 0.00450462 0.00415740 

2 0.0010649 0.00103935 

3 0.000486968 0.000461936 

4 0.000284078 0.000259837 

5 0.000189665 0.000166296 

6 0.000137940 0.000115484 

7 0.000106384 0.0000848449 

8 0.0000856016 0.0000649594 

9 0.0000711066 0.0000513258 

10 0.0000605364 0.0000415740 

By equating the determinant of the system of equations (5-E.50) to zero, we make the number 

of independent equations in the system (5-E.50) one less. So, the system (5-E.50) of four equations 
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is reduced to the system of three equations with four unknowns Am, Km, Cm, Sm for each m: 

s2{i-u)-uM1 

vM 
s*U-v)-vM2 

vM 

(r2 + M2) (r2 + M2) 2s -2s 

0 
Km 

< f = i o > 
C'm 

0 
dm 

^           J 

(5-E.51) 

or 

,l-2i/ 
vM Mr^fz -Mr* 

^rMerh    -l^rMe~rh    (-M + Ü#) Ch 

(r2 + M2) (r2 + JW2) 2s 

A„ 

K„ 

2s 

(5-E.52) 

For each value of m we can express coefficients Am, Km, Cm in terms of the unknown coefficient 

"m : 

(r2 + M2) (r2 + M2) 

An 

if« 

a 2s 

i/A*a-J2(l-f) 

2s 

>S„ 

(5-E.53) 

For example, for m = 2. i.e. for fi = fi2 = jf = jWi _?JL_ 
088781 xlO"3 4943. 2 we find 

Ai 

C2 

.1-2»/ t3(l-i/)-i/M2 

I'M 

(r2 + M2) (r2 + M2) 2s 

vM* 111=21 

2s 

.11754 

.16028 

-.73144 

52. 

In general, coefficients Am, Km. Cm can be presented in the form 

* "mi 

Am a 

Km. > =  < ß 

(sm 0i 

(5-E.54) 
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where am,/3m,7m are known coefficients that depend on natural frequencies O, 

According to equation (5-E.25), 

J^ (m/Kx\       . . 

395 

(5-E.55) 

m—\ 

where 

<Pm {z) = rn 

T717T Am exp (rmz) - Km exp (-rmz) + mir 

L   [ 
Cmexp(smz) + Smexp(-smz)   , 

(5-E.56) 

Tm (i) = Qm cos Q.mt + Rm sin Vtmt. 

Substitution of equation (5-E.54) into equation (5-E.56), yields 

(5-E.57) 

0m {z) = { rm 
am exp (rmz) - ßm exp (-rmz) + 7ro exp {smz) + exp {-smz) 

mn 
<-5m- 

(5-E.58) 

If we substitute equations (5-E.57) and (5-E.58) into equation (5-E.55), we receive 

M)=E u[x,z,t) =   >    * r„ 
m=l 

am exp (rmz) - ^m exp (-rmz) + 7m exp (smz) + exp (-smz) 

x !^L cos (™) ( Qm cosfimt + Rm sin JW (5-E.59) 

In formula (5-E.59) the unknown coefficient Sm has been absorbed by the unknown coefficients Qn 

and Rm. These coefficients will be found from initial conditions. 

According to equation (5-E.26), 

w(x ,z,t)=J2xm (z)sin (JY~) Tm (t), 
771=1 

where 

^W=(T) Am exp {rmz) + Km exp (-rmz) 

+ sm \cmexp(smz) - Smexp(-smz) 

+ 

(5-E.60) 

(5-E.61) 
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and Tm (t) is defined by formula (5-E57). Substitution of equation (5-E5.4) into equation (5-E.61) 

yields 

x. (.)-(=)' am exp (rmz) + ßm exp (-rmz) + 

+Sr, texp{smz) -exp(-5mz) &mi 

If we substitute equations (5-E.62) and (5-E.57) into equation (5E.60), we receive 

w 
oo     r r 

m—1 

am exp (rmz) + ßm exp {-rmz) + 

+sr, 7TO exp (smz) - exp {-smz) 

(5-E.62) 

1 sin (^) (Qm cos ümt + Rm sin nmt). (5-E.63) 

In equation (5-E.63) the unknown coefficient Sm has been absorbed by the unknown coefficients Qm 

and Rm. These coefficients will be found from the initial conditions. 

Vibrations of a plate in cylindrical bending dropped on simple supports 

In this case we have the following initial conditions for w{x,z,t), i.e.   conditions at moment 

t = 0, when the plate touches the simple supports: 

(5-E.64) w (x z,0) = 0    {0<x<L, 0<z<h), 

^(x,z,0) = const{x,z)     {0<x<L, 0 < z < h) 
dt 

(5-E.65) 

We will satisfy initial condition (5-E.65) approximately, i.e. instead of the initial condition (5-E.65) 

we will use initial condition 

dw (    h 
It 

(x, |, (A = v0 = const(x)    (0<x<L). 

From equation (5-E.63) and initial condition (5-E.64) we receive equation 

(5-E.66) 

0 = w(x,z,0)= Y,\ (x) 
771=1 

Qm exp {rmz) + ßm exp (-rmz) + 
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+Sr, 7m exp {smz) - exp {-smz) Wm] 

from which it follows that 

Qm=0. 

Now equation (5-E.63) for w {x, z,t) takes the form: 

w 
oo      I 

m=l 

m^y am exp (rm2) + 0m exp {-rmz) + 

(5-E.67) 

(5-E.68) 

sin(^p) Rmsm(ümt). (5-E.69) +sm 7m exp (smz) - exp (-smz) 

Prom equation (5-E.69) and initial condition (5-E.66) we receive the following equation 

+ t (x)2 
m=l   I 

am exp ( rm- j + ßm exp f-rm- 

+s„ 7mexp [ sm-j -exp^-57„2 sin ( —r- I fim^m = v0 Kir) 

The constant initial velocity v0 can be expanded into Fourier series as follows: 

2 ~ l-(-l)m   •   (m™\ 
OO 

m=l 

sin 
\—) 

(5-E.70) 

(5-E.71) 

If we substitute equation (5-E.71) into equation (5-E.70) and equate the coefficients of sin (=f£), 

express the constant of integration Rm in terms of known quantities: we can 

Rm — 
2[l-(-l)T>o 

(in-)2 Lme^h/2 + ßme-r™vA + sm(lmes^2 - e~^hf2j 

(5-E.72) 

mwClr, 

For even values of m the constants Rm are equal to zero. Therefore, in the series representations 

of displacements and stresses, only terms with odd values of m will be present. In view of this, the 

solution of the problem can be rewritten as follows: 

N        ^(2fc-l)7T_ 
u{x,Z,t) = 2_j ~ K(2k-1) 

fc=l 

T{2k-l) <*(2fc-i) exp (r(2fc_i)z) - ß(2k-\) exp {-r(2k-i)z) 
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+ 7(2fc-l) exp («(2fe-l)*) + exP (-s(2fc-i)z) 

X COS i -^ j sin (0(2*:-!)*), (5-E.73) 

2 r 

til 
+ 

fc=i {Xl 2,t)=£%,_!) | (^V^) h3*-1'exp {r{2k-i)z)+/3(a*"i) exp (_r(2fc-i)2) 

(2fc - ^ sin (fi(2fc_1)t) ,    (5-E.74) 
+S(2fc-1) 7(2fc-i) exp (*(2fc-l)*) - exP (-s(2fc-i)2) > sin 

L        J 

~   /(2fc-l)7r, 

fc=i v 

E(l-u) 

°xx ~     (1 + v) (1 - 2t/) 

r(2it-i)   "(2fc-i) exp (r(2fc-i)«) - 0(2fc-D exP (-'pfe-i)*) + 

+ 7(2fc-i) exp (s(2fc-i)z) + exp (-S(2k-i)*) > x 

x sin (?*^)8in(n(afc_1)t) + 

+
 (1 + ^)(1-2J/)

X 

OO 

X^i?(2fc-l) 
fc=i 

J /(2fc-1)TT\
2

   a(2fc_1)r(2fc_1} exp (r(2fc_D2) - ^2fc-i)r{2fc-i) exp (-r(2fc-i)^ + 

+ S(2fe-1) 7(2fc-l)«(2fc-l) exp (*(2fc-l)*) + S(2fc-D eXP (-S(2fc-D2) > sin | j^- ) sin (fy2fc-i)*), 

(5-E.75) 
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oo r 

"in, = ET, T7T-^EÄ(2fc-i)   7(2fc-i) exp {s(2k-i)z) + exp (-s(2k-i)*) 

2 ,   (2fc-l)7T 
S(2fc-D     I        L sin | r^— ) sin (fi(2fc-i)*) (5-E.76) 

0"x 5> 2 (i+")£; 
(2fc-l)" 

(2/C-1)TT 

+ (2, - I)2 g^-.e— + (2* - I)2 £^g££) - (^^) sin (<W) 

(5-E.77) 

Ei/ 
f22 = 

(1 + v) (1 - 2i/) 

fc=l x ' 

x < r(2fc-i) Uafc-i) exP (r(2fc-i)2) - /fyfc-D exP (-r(2fc-D2) 

+ 7(2fc-i) exP (s(2fc-i)2) + exP (-«(2fc-i)z) 

x sin 
^(2fc-l)irx^sin(n(2fc_i)f) + 

ff (1 - i/) 
+ (l + ^)(l-2i/)X 
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x^i?(2fc_i) I I- j-— J     ö(2fc-i)»"(2fc-i)exp(r(2fc-i)Ä) -/3(2fc-i)r(2A-i)exp(-r(2fc_1)z) + 

+«(2fc-l) 7(2*-l)s(2Jfc-l) exp (s(2Jc-l)z) + S(2fc-I) exp (-«(2fc-l)z) 
(2k - l)7ri\       ._ . 

sin |  r  I sin (fi(2t_i)t). 

(5-E.78) 

The circular frequencies fim, that enter into the formulas (5-E.73)-(5-E.78), are computed for 

each value of m (m = 1,2,3...) as solutions of the nonlinear equation 

Mmrm
l-=^ -Mmr, 

\-2v 2  (I.   ,A-.»2 

I'M,, 
£^(l-l/)-l/M. »j,(l-i/)-i>M4 

1-2" r    M e^    _l=termAfme-'fc    (-Mm + <^gf) e'»h    (-Afm + ^gf) e" 

(rl + Ml)erh    {rl + Ml)e-r-h 2sme^h -2*me-mh 

•sm/t 

where 

Sm — 

Quantities am, ßm, 7m, are computed as follows: 

Mm = —, r„ 
//m7r\2 

J£ 
/3   1-2^ 

G2(l-i/)' 

(5-E.79) 

(5-E.80) 

A. 
7r> 

>  = 

Mri^ -Mr^ s2(l-f)-fM2 

(r2 + M2) (r2 + M2) 2s 

-l vM--s2(\-v) 
vM 

I 2s 

(5-E.81) 

and coefficient Rm is computed by the formula 

2[l-(-l)m]»0 
Rm — 

<™.f (ame^hl2 + ßme-T^2j + sm (lme*-hl2 - e-^hl2\ 

(5-E.82) 

m7rfin 

For verification of results of the finite element program, we will consider an example with the 

following numerical data: 

E = 114.8 x 109-^,v = 0.3,p = 1614%L = lm,h = 0.06m, v0 = -10-. (5-E.83) 
m" m° 



401 
CHAPTER 5 

The MAPLE session that is used to compute the values of the constants Qm, rm, sm , am, ßmi 

lm, IU for these numerical values of material constants, geometric dimensions and for m = 3   is 

shown below: 

>Digits:=10: 

>m:=3: Young:=114.8e9: nu:=0.3: rho:=1614: L:=l: h:=0.06: G:=Young/2/(l+nu): w_dot:=- 

10: 

>pi:=3.141592654: 
>M:=m*pi/L:r:=(M-2-lainbda-2)-(l/2):s:=(M-2-lambda-2*(l-2*nu)/2/(l-nu))*(l/2): 

>all:=M*r*(l-2*nu)/nu: al2:=-M*r*(l-2*nu)/nu: a13:=(s*2*(l-nu)-nu*M-2)/nu/M: al4:=al3: 

>a21:=(l-2*nu)/nu*r*M*exp(r*h):a22:=-(l-2*nu)/nu*r*M*exp(-r*h):a23:-al4*exp(s*h): 

>a24:=al4*exp(-s*h): a31:=r-2+M*2: a32:=a31: a33:=2*s: a34:=-2*s: 

> a41:=(r*2+M"2)*exp(r*h): 

>a42~(r"2+M-2)*exp(-r*h): a43:=2*s*exp(s*h): a44:=-2*s*exp(-s*h): 

>ar:=array([[all,al21al3>al4],[a21,a22,a23,a24],[a31,a32>a33,a34],[a41la42>a43,a44]]): 

>with(linalg): 

>f:=det(ar): 

>lamb_classical:=M"2*h*(Young/(l-nu"2)/12./G)-0.5; 

>lamb:=fsolve(f=0,lambda=48..60); 

>Digits:=6: T:-2.*pi/lamb*(rho/G)"(0.5): Omega:=2*pi/T: 

>M:=m*pi/L:r:=(M"2-lamb-2)"(l/2): s:=(M-2-lamb-2*(l-2*nu)/2/(l-nu))-(l/2): 

>all:=M*r*(l-2*nu)/nu: al2:=-M*r*(l-2*nu)/nu: al3:=(s"2*(l-nu)-nu*M"2)/nu/M: al4:=al3: 

> 
>inv:=inverse(array([[all,al2,al3],[a21,a22,a23],[a31,a32,a33]])): 

>bll:=(nu*M~2-s"2*(l-nu))/nu/M:b21:=(M-(l-nu)*s-2/nu/M)*exp(-s*h): b31:=2*s: 

>bil:=array([[bll],[b21],[b31]]): 

>alpha-beta.gama:=multiply(inv, bil): 

>alpha:=alpha.beta_gama[l,l]: beta:=alpha.beta.gama[2,l]: gama:=alpha.beta_gama[3,l]: 

>numerator:=2*(l-(-l)~rn)*w-dot: 

>denominator:-((m*pi/L)-2*(alpha*exp(r*h/2)+beta*exp(-r*h/2))+s*(gama*exp(s*h/2)-exp(- 

s*h/2)))* 
>m*pi*Omega: R:=numerator/denominator: 

>Omega; r; s; alpha; beta; gama; R; 



>gama[7]:=-0.28112: R[7] 

>Omega[9]:=88362.8: r[9] 

>gama[9]:=-0.20036: R[9] 

CHAPTER 5 4°2 

The values of constants Qro, rm, sm, am, ßm, Im, Rm for m ranging from 1 to 49, corre- 

sponding to the numerical data in equations (5-E.83), are listed in the following MAPLE session for 

computation of displacements: 

>Omega[l]:=1395.05: r[l]:=3.13025: s[l]:=3.13835: alpha[l]:=0.257: beta[l]:=0.335474: 

>gama[l]:=-0.81: R[l]:=-0.0604307: 

>Omega[3]:=12902.7: r[3]:=9.09620: s[3]:=9.33207: alpha[3]:=0.06258: beta[3]:=0.108231: 

>gama[3]:=-0.5706: R[3]:=-0.000630021: 

>Omega[5]:=33127.8: r[5]:=14.3745: s[5]:=15.3388: alpha[5]-0.028100: 

>beta[5]:=0.0665388: gama[5]--0.3985: R[5]:=-0.0000389700: 

>Omega[7]:=59061.4: r[7]:=18.8706: s[7]:=21.1466: alpha[7]:=0.015724: beta[7]:=0.0487995: 

:=-0.705011e-5: 

i:=22.6721: s[9]:=26.7935: alpha[9]:=0.009998: beta[9]:=0.0389726: 

-0.211367e-5: 

>Omega[ll]:=119567.0: r[ll]:=25.9160: s[ll]:=32.3251: alpha[ll]:=0.0069103: 

>beta[ll]:=0.0327202: gama[ll]:=-0.14378: R[ll]:=-0.849163e-6: 

>Omega[13]:=151811.0: r[13]:=28.7319: B[13]:=37.7791: alpha[13]:=0.0050624: 

>beta[13]:=0.0283808: gama[13]:=-0.103648: R[13]:=-0.411960e-6: 

>Omega[15]:=184592.0: r[15]:=31.2268: s[15]:=43.1832: alpha[15]:=0.0038677: 

>beta[15]:=0.0251832: gama[15]:=-0.074947: R[15]:=-0.227776e-6: 

>Omega[17]:=217620.0: r[17]:=33.4840: s[17]:=48.5562: alpha[17]:=0.0030471: 

>beta[17]:=0.0227199: garoa[17]:=-0.054291: R[17]:=-0.138566e-6: 

>Omega[19]:=250724.0: r[19]:=35.5678: s[19]:=53.9109: alpha[19]:=0.0024567: 

>beta[19]:=0.0207555: gama[19]:=-0.039376: R[19]:=-0.906374e-7: 

>Omega[21]:=283800.0: r[21]:=37.5273: s[21]:=59.2561: alpha[21]:=0.0020147: 

>beta[21]:=0.0191453: gama[21]:=-0.028570: R[21]:=-0.627758e-7: 

>Omega[23]-316802.0: r[23]:=39.3995: s[23]:=64.5974: alpha[23]:=0.0016738: 

>beta[23]:=0.0177959: gama[23]:=-0.020738: R[23]:=-0.455232e-7: 

>Omega[25]:=349694.0: r[25]:=41.2125: s[25]:=69.9382: alpha[25]:=0.00140390: 

>beta[25]:=0.0166439: gama[25]:=-0.015051: R[25]:=-0.342883e-7: 

>Omega[27]:=382460.0: r[27]:=42.9876: s[27]:=75.2808: alpha[27]:=0.00118645: 

>beta[27]-0.0156453: gama[27]:=-0.0109241: R[27]:=-0.266530e-7: 

>Omega[29]-415098.0: r[29]:=44.7415: s[29]:=80.6272: alpha[29]:=0.00100798: 
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>beta[29]—0.0147686: gama[29]:=-0.0079256 

>Omega[31]—447610.0: r[31]:=46.4863: s[31] 

>beta[31]:=0.0139904: gama[31]:=- 0.0057491 

>Omega[33]—479992.0: r[33]—48.2306: s[33] 

>beta[33]:=0.0132939: gama[33]:=-0.0041686 

>Omega[35]:=512252.0: r[35]:=49.9846: s[35] 

>beta[35]—0.0126649: gama[35]:=-0.0030224 

>Omega[37]:=544398.0: r[37]:=51.7494: s[37] 

>beta[37]—0.0120936: gama[37]:=-0.0021908 

>Omega[39]:=576434.0: r[39]:=53.5313: s[39] 

>beta[39]:=0.0115715: gama[39]:=-0.0015873 

>Omega[41]:=608364.0: r[41]:=55.3335: s[41] 

>beta[41]:=0.0110923: gama[41]:=-0.0011497: 

>Omega[43]:=640194.0: r[43]:=57.1586: s[43] 

>beta[43]—0.0106502: gama[43]:=-0.0008322 

>Omega[45]:=671938.0: r[45]:=59.0076: s[45] 

>beta[45]:=0.0102407: gama[45]:=-0.0006024 

R[29]:=-0.212841e-7: 

=85.9778: alpha[31]:=0.00085998: 

R[31]:=-0.173918e-7: 

=91.3329: alpha[33]:=0.00073588: 

R[33]:=-0.144991e-7: 

=96.6942: alpha[35]:=0.00063115: 

R[35]:=-0.123007e-7: 

=102.060: alpha[37]:=0.00054211: 

R[37]:= -0.105991e-7: 

=107.430: alpha[39]—0.00046613: 

R[39]:=-0.925917e-8: 

=112.806: alpha[41]:=0.00040105: 

R[41]:=-0.818892e-8: 

=118.188: alpha[43]—0.00034503: 

R[43]:=0.732472e-8: 

=123.574: alpha[45] —0.00029694: 

R[45]:=-0.661695e-8: 

=128.965: alpha[47] —0.00025546: >Omega[47]:=703586.0: r[47]:=60.8810: s[47] 

>beta[47]:=0.00986046: gama[47]:=-0.00043587: R[47]:=-0.603312e-8: 

>Omega[49]:=735156.0: r[49]:=62.7790: s[49]:=134.359: alpha[49]—0.00021987: 

>beta[49]:=0.00950587: gama[49]:=-0.00031551: R[49]:=-0.554492e-8: 

>pi:=3.141592654: 

>L:=1: h:=0.06: Y:=114.8e9: nu:= 0.3: 

>x:=L/2: z:=h/2: t:=0.002: 

>m:=2*k-l: 

> w:=sum(R[m]* ((m*pi/L)" 2* (alpha[m] *exp(r[m] *z) +beta[m] *exp(-r [m] *z)) 

>+s[m]*(gama[m]*exp(s[m]*z) 

>-exp(-s[m]*z)))*sin(m*pi*x/L)*sin(Omega[m]*t),k=1..25): 

The graphs of variation of transverse displacement at the middle surface (i.e. w0 = w 

as a function of x-coordinate at t=0.002s, and as a function of time at x 

5.2 and figure 5.3. 

:=h/2 

\ are shown in figure 
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5.20    Appendix 5-F 

Some considerations regarding comparison of displace- 

ments and stresses, obtained from geometrically linear 

and nonlinear models 

Our finite element program is based on two models: geometrically linear model (small displacement 

gradients), with strain-displacement relations being 

4'r>=ux, 4':n) = \ («.*+«>,*) - 4'in) = w,z- (5-F.I) 

and geometrically nonlinear model, with von-Karman strain-displacement relations (moderately 

large displacement gradients) 

4f=^ + ^Kx)2,    eW = \{uz + w,x),    e{?=w,z. (5-F.2) 

In both strain-displacement relations (5-F.l) and (5-F.2), derivatives are taken with respect to 

material coordinates, and the stress measure in both models, geometrically linear and nonlinear, 

is the second Piola-Kirchhoff stress tensor. Let us show that for both strain measures being used, 

equations (5-F.l) on the one hand and equations (5-F.2) on the other hand, the engineering elastic 

constants in the constitutive equations are the same. 

Let us consider at first the Young's modulus Ex. It is defined as a ratio f^, measured in a 

unidirectional tension test. In such a test the displacement gradient ^ is equal to zero, therefore 

the components of the von-Karman and linear strain tensors are equal: 

e(K)=    (lin) = du 

Therefore, the Young's modulus Ex that relates axx and dbP is equal to the Young's modulus that 

relates axx and exx
nK The other elastic constants in our linear and nonlinear models are, obviously, 

equal too. 

Besides, it can be shown that in deformations that involve moderately large rotations of line 

segments of a material (that is the case in our model), the von-Karman strain exx   can be interpreted 

as a better approximation of a unit extension10 dS^s
ds, than the linear strain exx    (Cook, Malkus, 

10Here dS denotes a length of a line segment after deformation, ds denotes the length of a line segment before 

deformation. 
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Plesha, 1989, page 430). 

Therefore, the geometrically nonlinear model based on the von-Karman strains, in which the 

elastic constants are the same as in the geometrically linear model, can be compared in a meaningful 

manner with the linear model, and can be regarded as more accurate than the linear model. 

In our opinion, the comparison of the model based on the fully nonlinear Green-Lagrange strain- 

displacement relations with the geometrically linear model would have been inappropriate. Indeed, 

the axial component of the Green-Lagrange strain tensor is 

r(G) = 
1 

4x' = «,* + 2 [uxf + («,*) + to*)' (5-F.4) 

and in a unidirectional tension test for definition of the Young's modulus, this strain component 

takes the form: 

£? = «,. + £ to.)2, (5-F-5) En       ->*•  ■   9 

while the same component of the linear strain tensor is different11: exx — uiX. Therefore, the 

Young's modulus that relates axx and eW is not equal to the Young's modulus that relates axx and 

£xi
nK Moreover, in a material with linear dependence between axx and exx = uiX, there must be 

a nonlinear dependance between axx and exx  =utX + \ (u:X) . 

But in our geometrically nonlinear model, based on the von-Karman strains, the comparison 

with the linear model is appropriate. 
11 Assuming that there is a uniform state of strain in the test sample, and denoting the length of the sample before 

deformation as I, and the length of the sample after deformation as L, we find that the axial component of the linear 

strain is e£"> = u,x = ±fi, because u,, = (d*+»-*/*H* = {**+%-** = -2-te, where dX is a length of a 

small line segment after deformation.  For the same component of the Green's strain in the test sample we receive: 
(G) 1 /        ^2        L2-l2    u ,    1 I        \2        (dx+u,x dxf-(dx)2   _  (dx+du)2-(dx)2   _  (dX)2-{dx)2 

six' = u,x + \ {uxf = ±tft-, because ux + i (ux)   = i ^j =   2(ix)'/        -      2'(dl)a 
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Figure  5.1 

Flow-chart of  the damage progression 
algorithm 
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o- 

0.0005- 

-0.001- 

0.0015- 

-0.002 

t )                               0.2 O.A 0.6 0.8                               1 

Figure 5.2 

Transverse displacement wo as a function of x-coordinate (from exact elasticity solution) 

at a moment of time t=0.0002s for a wide beam dropped on simple supports. 

In this example problem the material properties and geometric dimensions are: E = 114.8 x 

109-^, v = 0.3, p = 1614;%, L=lm,h = 0.06m, the initial velocity is -1021 
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Figure 5.3 

Transverse displacement w0 as a function of time (from exact elasticity solution) at x = ^ 

for a wide beam dropped on simple supports. 

In this example problem the material properties and geometric dimensions are: E = 114.8 x 

109-^, v = 0.3, p = 1614^, L = \m, h = 0.06m, the initial velocity is -102?. 
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Figure 5.4. Exact and FE solutions for displacement of the middle surface of the plate. L=1m 
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x -| Q-3    Figure 5.5.   Displacement Wo as a function of x-coordinate at t=0.0001 s 
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Figure 5.6 

x10° 

Least-square polynomial approximation of finite element 

and analytical solutions for stress sigma_xx at x=L/2, z=h/2 
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Figure 5.8 
Comparison  of exact elasticity solution  and the finite 
element solution  (based  on the  plate theory) for variation 
of stress sigma-xz in the thickness direction. 
The  exact solution  is shown  by Y, 
the  FE solution  is  shown  by 'o'. 

0.015 -i 

0.010 

0.005 - 

(D 

O 
.E   0.000 - 
"O 

o 
3 -0.005 - 

N 

-0.010 - 

-0.015 

+-* 
upper face 

core 

lower face 

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 

0.0E+000      5.0E+005      1.0E+006      1.5E+006      2.0E+006 

stress  sigma-xz   (N/m**2) 



CHAPTER   5 414 

Figure 5.9 
Comparison  of exact elasticity solution and  the finite 
element solution  (based  on the  plate theory) for variation 
of stress sigma—zz  in the thickness direction. 
The  exact solution  is shown  by solid  line. 
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Figure 5.10 

Stress sigma-xx  (at x=l_/2,  z=-h/2)  as a function  of time 
in  a  sandwich  platform  dropped  on  elastic foundation  with 
initial  velocity -1m/s. The foundation  modulus is  6.7864e7  Pa/m  (sand). 
No damage  occurs  under this initial velocity, therefore the 
results of analyses  with  and  without account of damage  coincide. 
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Figure 5.11 

Stress sigma-zz (at x=L/2, z=-h/2) as a function of time 
in  a  sandwich  platform,  dropped  on  elastic foundation 
with initial velocity — 1m/s. The foundation  modulus is 6.7864e7 Pa/m  (sand). 
No damage occurs  under this initial velocity, therefore the 
results of analyses with  and without account of damage coincide. 
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Figure  5.12 

Stress-yy  (at x=l_/2,  z=-h/2)  as a  function  of time 
in  a  sandwich  platform,  dropped  on  elastic foundation 
with initial velocity -1m/s. The foundation  modulus is 6.7864e7 Pa/m  (sand). 
No damage occurs under this initial velocity, therefore the 
results of analyses with and without account of damage coincide. 
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Figure  5.13 

Transverse displacement (at x=L/2)  as a function of time 
in a  sandwich  platform dropped  on  elastic foundation^    „^^^ _  _    ,      ,       .» 
with initial velocity -1   m/s. The foundation modulus is 6.7864e7  Pa/m  ^sand;. 
The solid  line  represents the displacement of the lower surface, 
the dashed  line  - displacement of the  upper surface. 
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Figure  5.14 

Transverse displacement (at t=0.005 s) as a function of 
x-coordinate in a  sandwich  platform dropped on 
elastic foundation with initial velocity -1   m/s. 
The foundation  modulus is 6.7864e7  Pa/m  (sand). 
The solid  line represents the displacement of the lower surface, 
the dashed  line - displacement of the upper surface. 
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Figure 5.15 

Stress sigmo-xx  (at x=L/2, z=-h/2)  as a function of time 
in a sandwich  platform,  dropped on elastic foundation 
with  initial  velocity -30  m/s. The foundation  modulus is  6.7864e7  Pa/m  (sand). 
The  dashed  line  represents  results of analysis without 
account of damage, the solid  line -  with damage included. 

3E+009 

-2E+009 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 

0.00 0.01 0.02 0.03 0.04 

time   (seconds) 



CHAPTER   5 421 

Figure 5.16 

Stress sigma-zz (at x=L/2,  z=-h/2) as a function of time 
in a sandwich  platform dropped on elastic foundation 
with initial velocity  -30  m/s. The foundation  modulus  is  6.7864e7  Pa/m  (.sand;. 
The dashed  line  represents  results  of analysis  without 
account of damage,  the solid  line  -  with  damage  included. 
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Figure 5.17 

Stress sigma-yy (at x=L/2, z=-h/2) as a function  of time 
in a  sandwich  platform  dropped  on  elastic foundation 
with  initial velocity  -30  m/s. The foundation  modulus  is  6.7864e7  Pa/m  (,sand;. 
The  dashed  line  represents  results  of analysis  without 
account of damage, the solid  line -  with damage included 
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Figure  5.18 

Transverse  displacement w  (at x=L/2, z=-h/2)  as a function 
of time in  a  sandwich  platform dropped  on elastic foundation 
with initial  velocity -30 m/s. The foundation  modulus is  6.7864e7  Pa/m  (sand). 
The dashed  line represents results of analysis without 
account of damage, the solid  line -  with  damage included. 
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Figure 5.22 

Stress sigma-xx  (at x=L/2,  z=-h/2)  as a function  of time 
in  a  sandwich  platform,  dropped  on  elastic foundation 
with  initial velocity -30  m/s. 
The foundation  modulus is  6.7864e8  Pa/m  (clay). 
The  dashed   line  represents results  of analysis  without 
account of damage, the solid  line  -  with damage included. 
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Figure 5.23 

Stress sigma-zz  (at x=L/2, z=-h/2) as a function  of time 
in a  sandwich  platform  dropped  on  elastic foundation 
with initial velocity -30 m/s. 
The foundation  modulus is  6.7864e8 Pa/m  (clay). 
The  dashed  line represents results of analysis without 
account of damage, the solid  line -  with damage included. 
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Figure 5.24 

Stress sigma-yy (at x=L/2, z=-h/2)  as a function  of time 
in a sandwich platform dropped on elastic foundation 
with  initial  velocity —30  m/s. . 
The foundation modulus is'6.7864e8 Pa/m  (clay). 
The dashed  line represents results of analysis without 
account of damage, the solid  line -  with  damage  included. 
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Figure 5.25 

Displacement w  (at x=L/2,  z=-h/2)  as a  function 
of time  in  a  sandwich  platform  dropped  on elastic foundation 
with initial velocity -30 m/s. 
The dashed  line  represents results of analysis without 
account of damage, the solid line -  with damage included. 
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Figure 5.28 

Stress sigma-xx (at x=L/2, z=-h/2)  as a function  of time 
in a  sandwich  platform, dropped  on  elastic foundation 
with  initial velocity -30 m/s. 
The foundation  modulus is 6.7864e7  Pa/m  (sand). 
The dashed  line  represents results of linear analysis 
with  damage taken into account, the solid  line  - 
nonlinear analysis  with  damage. 
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Figure 5.29 

Stress sigma-zz  (at x=L/2,  z=-h/2)  as a function  of time 
in  a sandwich  platform,  dropped  on elastic foundation 
with  initial velocity -30  m/s. 
The foundation  modulus  is  6.7864e7  Pa/m  (sand). 
The dashed  line  represents results of linear analysis 
with  damage taken into account, the solid  line - 
nonlinear analysis with  damage. 
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Figure 5.30 

Stress sigma-yy (at x=L/2, z=—h/2) as a function  of time 
in a  sandwich  platform,  dropped  on elastic foundation 
with  initial velocity -30 m/s. 
The foundation  modulus is  6.7864e7  Pa/m  (sand). 
The  dashed  line  represents  results of linear analysis 
with  damage taken  into account,  the solid  line  - 
nonlinear analysis with damage. 
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Figure 5.31 

Displacement w  (at x=L/2, z=-h/2) as a function  of time 
in  a sandwich  platform,  dropped  on  elastic foundation 
with  initial velocity -30 m/s. 
The founation  modulus is  6.7864e7  Pa/m  (sand). 
The dashed  line represents results of linear analysis 
with  damage taken  into  account, the solid  line  - 
nonlinear analysis with  damage. 
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Summary and Conclusions 

In order to develop a dynamic two-dimensional finite element formulation for stress and progressive 

failure analysis of a thick sandwich plate with transversely compressible or extensible core and face 

sheets, a new layerwise geometrically nonlinear theory of the sandwich plate was developed by in- 

troducing assumptions on a variation of transverse strains in the thickness direction of the faces and 

the core of the sandwich plate. Displacements, obtained by integration of the strain-displacement 

relations, depend nonlinearly on a coordinate in the thickness direction, and are continuous at the 

boundaries between the face sheets and the core. The nonlinear von-Karman strain-displacement re- 

lations are used in order to provide more accurate representation of the moderately large rotations as 

compared with linear strain-displacement relations. The assumptions on the transverse strains, that 

lead to the layerwise theory, allow one to reduce a three-dimensional problem to a two-dimensional 

one and provide a proper method of averaging the material properties of the laminated composite 

face sheets and the core ! over their thickness. The in-plane stresses are computed from the consti- 

tutive relations in each ply of the face sheets, using each ply's material properties (not the averaged 

through the thickness material properties). The transverse stresses are computed by substituting 

the in-plane stresses into the equations of motion and by integrating the equations of motion. Such 

a method of computation of the transverse stress components allows one to obtain accurate results, 

because this method leads to satisfaction of continuity conditions of the transverse stresses at the 

boundaries between the face sheets and the core, at the boundaries between the plies of the face 

sheets, and allows one to satisfy stress boundary conditions at both the upper and lower external 
1material properties of the core vary in the thickness direction because of failure 
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surfaces. It was shown in chapter 2 that the transverse stresses, computed by integration of equa- 

tions of motion, at both the upper and lower surfaces of the plate are equal to the external loads at 

these surfaces, despite the fact that the number of constants of integration is not sufficient to satisfy 

the stress boundary conditions at both the upper and lower surfaces. Thus, the adopted approach 

to the analysis of the sandwich plate allows one to compute accurately all six stress components, 

despite the reduction of the three-dimensional problem to the two-dimensional one. 

A finite element formulation for the sandwich cargo platform, modelled as a plate in cylindrical 

bending, was done, and a finite element program was developed on the basis of this formulation with 

the capability of taking account of damage progression in time, that occurs in the platform during 

its interaction with the elastic foundation and the cargo on the upper surface. The stresses and 

displacements, computed by this program, are shown to be in good agreement with the known exact 

solutions of various static and dynamic problems. This finite element program for cylindrical bending 

is a necessary step in development of the finite element program based on the two-dimensional 

formulation, and it can be used by designers of the cargo platforms if the conditions of cylindrical 

bending are satisfied approximately. According to an estimate made in chapter 3 of the dissertation, 

the two-dimensional finite element program will allow one to compute all six stress components, 

needed for the progressive failure analysis, with a much smaller number of the degrees of freedom 

than a finite element model based on the three-dimensional finite elements. 
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