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Abstract

A layerwise geometrically nonlinear theory for a thick sandwich plate was developed by intro-
ducing assumptions on a variation of transverse strains in the thickness direction of the faces and
the core of the plate. An effect of transverse extensibility or compressibility of the core and the face
sheets is taken into account, and the terms associated with transverse shear strain of the face sheets
and the core are included into the expression for the strain energy. Displacements, obtained by
integration of the strain-displacement relations, depend nonlinearly on a coordinate in the thickness
direction, and are continuous at the boundaries between the face sheets and the core. The nonlinear
von-Karman strain-displacement relations are used in order to provide a representation of the mod-
erately large rotations. The in-plane stresses are computed from the constitutive relations in each
ply of the face sheets, using each ply’s material properties, and the transverse stresses are computed
by substituting the in-plane stresses into equations of motion and by integrating the equations of
motion. Such a method of computation of the transverse stress components allows one to obtain ac-
curate results, because this method leads to satisfaction of conditions of continuity of the transverse
stresses at the boundaries between the face sheets and the core, at the boundaries between the plies
of the face sheets, and allows one to satisfy stress boundary conditions at both the upper and lower
external surfaces.

A finite element formulation was developed for a sandwich cargo platform under its impact against
the ground, modelled as an elastic Winkler foundation. This formulation was done for a plate in
cylindrical bending, and a finite element program was written on the basis of this formulation,
with the capability of taking account of damage progression in time. The damage prediciton is
performed with the use of the Hashin’s and Tsai-Wu criteria by reducing, at each step of time
integration, the appropriate material characteristics of those plies within a finite element in which
failure occurs. The stresses and displacements, computed by this program, are shown to be in
good agreement with the known exact solutions of various static and dynamic problems. Example
problems of stress and failure analysis of sandwich cargo-delivery patforms during their impact
against the elastic foundations are considered. In these example problems, the stresses as functions
of time are computed at certain locations in the platforms with account of damage progression, i.e.
with account of degradation of material characteristics of the failing plies. The locations of the

failures, the modes of failures and the times of their occurence are defined by the program.

15




The theory of the sandwich plates, presented in the dissertation, does not require many degrees
of freedom in the finite element formulation and has a wide range of applicability. It can be used for
analysis of both thick and thin sandwich plates, with thick and thin face sheets, with transversely

rigid and transversely flexible faces and cores.

16




Chapter 1

Introduction

Thick sandwich composite panels have many Air Force applications. One such application is the
design of cargo delivery platforms that undergo extensive failure though ground impact. A study of
this phenomenon requires an analysis of the sandwich plates with the development of an exact state
of stress. A finite element analysis with the use of solid elements can provide information about
all stress components, but such an approach is often unacceptable for real structures, because it
requires many degrees of freedom. A computational cost can be reduced by using two-dimensional
plate formulations. The formulations of thick sandwich plates in the past, using two-dimensional
approaches, lack the ability to predict the necessary stress components that can lead to realistic
states of stress for use in failure analysis. The work developed in this dissertation overcomes the
shortcomings of the two-dimensionality by incorporating a method which contains the associated
conditions of through-the-thickness strains and failure response. In addition, this work takes into
account the appropriate equations of motion pertaining to the plate under the impact with an elastic
foundation.

The sandwich plates have a well pronounced zigzag variation of the in-plane displacements in the
thickness direction, due to their high ratios of thickness to in-plane dimensions and large difference
of elastic moduli of the face sheets and the core. Such characteristics of the sandwich plates make it
necessary to use a layerwise approach in their analysis, the idea of which is to introduce the separate
simplifying assumptions regarding through-the-thickness variation of either displacements, or strains
or stresses within each face sheet and the core. Besides, in order to achieve a high accuracy of stress

computation, in a model of the sandwich plate with a thick core and thick face sheets, it must be

17




CHAPTER 1 18

assumed that the in-plane displacements vary nonlinearly in the thickness direction of both the core
and the face sheets, and, in the expression for the strain energy, the transverse direct and shear
strains need to be taken into account not only in the core, but also in the face sheets.

The two-dimensional layerwise finite element formulations of this type, for analysis of thick
sandwich plates with transversely compressible or extensible cores and face sheets and with nonlinear
variation of the in-plane displacements in the thickness direction of both the core and the face
sheets, have not been presented extensively in literature so far. Development of such a finite element
formulation and its application to progressive failure analysis of sandwich cargo-delivery platforms
under their ground impact, is the objective of this dissertation.

To determine a load-carrying capacity and service life of a composite structure, it is necessary to
predict the initiation and evolution of the damage. When the stresses, as functions of time, in the
composite structure are known as a result of solving the plate-bending problem, then the onset of
failure can be predicted by applying an appropriate failure criterion. It has been observed that after
the initial failure in a single layer of a composite structure, loading can still be carried. Therefore,
the subsequent failure prediction is required to determine the dynamic response of the platform in
the presence of some damage. There are many proposed theories to predict the onset of failures
and their progression. A set of failure criteria that can predict modes of failures in the composite
laminates, and in which failures are due to the combination of in-plane and transverse stresses were
suggested by Hashin (1980). In our study these criteria are used for the face sheets of the sandwich
platform. For the core of the sandwich platform, we use the Tsai-Wu criterion.

It is possible to predict the first occurrence of failure (first-ply failure) in a composite laminate
without much difficulty (Reifsnider and Masters (1982), Highsmith and Reisfinder (1982), Talreja
(1985), Hashin (1985), Reddy and Pandley (1987), Reddy, Y.S.N. and Reddy, J. N. (1992), Daniel
and Ishai (1994), Barbero (1999)). But it is more difficult to predict the subsequent failures after the
initial damage has occurred, since the detailed stress analysis of a composite laminate with thousands
of small cracks becomes practically impossible. In the progressive failure analysis, this problem is
dealt with in an indirect way. It is assumed that the damaged material can be replaced with an
equivalent material with degraded properties, and the stress analysis of a composite laminate with
degraded properties is conducted without taking into account the singularities of the stress field near
the crack tips.

One of the first attempts to model the failure behavior of composite laminates by progressive

failure analysis was done by Petit and Waddoups (1969). They used the classical laminated plate
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theory for stress analysis and an incremental loading procedure for failure analysis. As the incre-
mental loading proceeded, the individual lamina elastic constants were updated. Ultimate failure of
a laminate was assumed to occur when the in-plane laminate stiffness matrix [A] became singular,
or when a diagonal term of [A] became negative.

Chang et al. (1984, 1987) performed progressive failure analysis of notched composite laminates
in tension and compression by using the finite element model based on the classical plate theory.
Stiffness reduction was carried out at the element level and a failure criterion originally proposed by
Yamada and Sun was used.

Tan (1991) included the effect of thermal residual stresses and hygroscopic stresses in his pro-
gressive failure model. The classical laminated plate theory was used for stress analysis, and the
Tsai-Wu criterion was used for failure prediction.

The progressive failure models, considered so far, were based on computation only of the in-plane
stresses and could not take into account the delamination type of failure. Ochoa and Engblom (1987)
used a higher order plate theory for stress analysis and computed the transverse shear and normal
stresses from the equilibrium equations. Stiffness reduction was carried out at Gauss points, and
Hashin’s failure criterion was used for the failure prediction.

Lee (1982) performed a fully three-dimensional failure analysis of biaxially loaded laminates with
a central hole. The finite element mesh consisted of 8-node brick elements, and a special kind of
loading condition was used that made it possible to analyze only a quarter of the entire laminate.
The stiffness reduction was carried out at the element level, taking into account three types of
damage models: fiber breakage, transverse cracking and delamination.

Sun (1989) performed progressive failure analysis of angle-ply laminates by using an iterative
three-dimensional finite element approach. The average stress in each element and the Hashin’s
failure criterion were used for failure prediction.

Tolson and Zabaras (1991) developed a seven degree of freedom finite element model for lami-
nated composite plates. The model utilizes three displacements, two rotations of normals about the
plate midplane, and two rotations of the normals to the datum surface. The in-plane stresses were
calculated from the constitutive equations, and the transverse stresses - from the three-dimensional
equilibrium equations. The maximum stress, Lee, Hashin, Hoffman and Tsai-Wu failure criteria
were used. The procedure for determining the strength of a laminate involved an incremental load
analysis. For a given load the stresses in each lamina were determined with respect to the material

coordinates. When failure in a lamina occurred, the stiffness was modified and the load increased
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until the final failure was reached.

Eason and Ochoa (1996) incorporated a shear deformable composite element with built-in pro-
gressive damage capability into a commercial finite element program ABAQUS, as a user element.
The constitutive equations were used for calculation of the in-plane stresses, and the equilibrium
equations were used to calculate the transverse shear and normal stresses. When a damage was
detected at a quadrature point, damage was accounted for by reducing stiffness of the lamina at the
quadrature point, in correspondence with the failure mode. The criterion with quadratic interaction
between stresses and the maximum stress criterion were used for failure prediction.

In all the above references, the material failure was considered for structures under static defor-
mations, and not much work has been done to study the influence of geometric nonlinearity and
transverse normal stress on the failure behavior of composite laminates subjected to bending loads.
In the present work the stress and failure analysis is conducted for a dynamic problem, and both
the geometric nonlinearity and the transverse normal stress are taken into account.

In the dynamic finite element program, that is developed for the analysis of our problem, the
damage progression is taken into account by reducing, at each step of time integration, the values of
appropriate material constants of those plies within a finite element in which failure occurs. After
that, the element and global stiffness matrices are recomputed, and the finite element analysis is
restarted at the same time step, i.e. stresses are calculated at the same moment of time with a
new stiffness matrix. If no failure occurs, analysis proceeds to the next time step. Otherwise, the
appropriate material constants are reduced again. The degraded material characteristics of a failed
ply within a finite element are assumed to be small fractions of the original material characteristics of
the undamaged material, but not equal to zero, in order to avoid ill-conditioning of the finite element
equations (large differences of relative magnitudes of terms in the stiffness matrix, that results in
large computational errors). The average stress in each element and the Hashin failure criterion for
the face sheets together with the Tsai-Wu criterion for the core are used for failure prediction. In
this work, all integrations required in the calculation of the element stiffness matrices are performed
in closed form, using programs for symbolic computation (MAPLE and "Scientific Workplace”). No
numerical quadratures were used. This feature leads to savings in computations, that is important
in this work, where the finite element method is used for nonlinear dynamic analysis, that requires
updating of the stiffness matrix in each step of time integration.

To study the impact-generated damage, it is important to get accurate information not only for

the in-plane stresses, but also for the transverse stresses, which are not negligible in thick sandwich
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panels. The transverse stresses play a significant role in the various modes of failure. Therefore,
we have a three-dimensional problem. Theoretically, one can model fiber composite structures with
three-dimensional finite elements, representing a thickness of each ply with a thickness of at least
one element. But practically this leads either to the elements with large aspect ratios, resulting
in ill-conditioning of the finite element equations, or to an excessively large number of degrees of
freedom in the model, if the large element aspect ratios are avoided by making in-plane dimensions
of the three-dimensional elements not much larger than their thickness. Therefore, the composite
structures are usually modeled by putting several plies into the thickness of one element. This
can be achieved by dividing the laminate into a number of sublaminates, each of which contains
several plies, and by introducing some simplifying assumptions regarding the through-the-thickness
distribution of displacements, strains or stresses within each sublaminate. This leads to the layer-
wise (or discrete-layer) plate theories, in which each sublaminate is analyzed as a single layer with the
averaged through-the-thickness material properties. In the post-processing procedure the stresses are
computed in each ply, using each ply’s material properties (not the averaged though-the-thickness
material properties). The layerwise theories of the laminated plates, beams or shells, based on
different assumptions, were developed, for example, by Whitney (1969), Mau (1973), Chou and
Carleone (1973), Swift, G. W. and Heller, R. A. (1974), Durocher and Solecki (1975), Seide (1980),
Di Sciuva (1984, 1986, 1987), Mukarami (1986), Ren (1986), Hinrichsen and Palazotto (1986),
Chaudhuri and Seide (1987), Reddy (1987). The layerwise theories can represent the zigzag variation
of the in-plane displacements in the thickness direction. This zigzag variation is more pronounced
for thick laminates, where the transverse shear moduli change abruptly through the thickness, and
it can be seen in the exact three-dimensional elasticity solutions, obtained by Pagano (1969, 1970),
Pagano and Hatfield (1972), Srinivas, Joga Rao and Rao (1970), Srinivas and Rao (1970), Noor
(1973), Pikul (1977), Savoia and Reddy (1992). The sandwich plate, that is considered in this
dissertation, has the characteristics that make the discrete-layer approach necessary, namely high
thickness-to-length ratio, and large difference in values of elastic moduli of the face sheets and the
core. In this layerwise model of the sandwich plate there are three sublaminates: the face sheets
and the core.

According to the existing exact three-dimensional elasticity solutions for composite laminates,
mentioned earlier, and the exact elasticity solutions for homogeneous isotropic beams and plates
(Saada (1993), Vlasov (1957) ) the strains, stresses and in-plane displacements in the plates vary

nonlinearly in the thickness direction of the plate. In two-dimensional plate or shell theories these




CHAPTER 1 29

nonlinear variations can be captured by maintaining the higher-order terms in the expansions of
displacements in the thickness coordinate. Such theories were proposed by Sun and Whitney (1973),
Lo et. al. (1977, 1978), Reddy (1984), Reddy and Liu (1985), Murthy and Vellaichamy (1987),
Hinrichsen and Palazotto (1986, 1988), Tessler (1991), Greer and Palazotto (1996) and others.
In all these references, except that of Greer and Palazotto (1996), the transverse displacement is
assumed to be constant in the thickness direction, or, in other words, the direct transverse strain
€., is assumed to be equal to zero. In our model of the sandwich plate, the in-plane displacements
vary quadratically in the thickness direction, and the transverse displacement varies linearly in the
thickness direction within the thickness of a sublaminate. This is achieved by assuming that the
transverse strains €,,, €z, and €, are constant in the thickness direction, and by integrating the
strain-displacement relations in order to obtain displacements in terms of the unknown functions
and the transverse coordinate (the unknown functions depend on the in-plane coordinates x and
y). In this procedure of integrating the strain-displacement relations the constants of integration
are chosen such that conditions of continuity of the displacements at the interfaces between the
sublaminates are satisfied.

In the plate theories, the transverse stresses, obtained from constitutive equations, turn out
discontinuous at the interfaces between the plies of a sublaminate with different material properties
(or between the plies of the whole laminate in single-layer theories), due to assumed continuity of
strains at the interfaces between these plies. This is a violation of the third Newton’s law. Therefore,
the accuracy of the transverse stresses, computed from the constitutive equations, is not sufficient
to use them in failure criteria.

That is why, many authors e.g. Lo et al. (1978), Lajczok (1986), Chaudhuri (1986), Chaud-
huri and Seide (1987), Reddy (1984), Barbero and Reddy (1989), Barbero et al.(1990), Byun and
Kapania (1991), obtained only the in-plane stresses from the constitutive relations, and expressed
the transverse stresses in terms of the in-plane stresses by integrating three-dimensional equilib-
rium equations (or equations of motion in dynamic problems). In this case, the continuity of the
transverse stresses can be enforced by defining the constants of integration from these conditions of

continuity.

Many researchers studied the sandwich plates with thick, vertically incompressible cores and thin
incompressible face sheets, using layerwise models. Most of the layerwise models of such structures

are based on the piecewise linear through the thickness approximations of in-plane displacement, in
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addition to constant (though the thickness) transverse displacements (Reissner (1948), Yu (1959),
Plantema (1966), Allen (1969), Kanematsu, Hirano et al (1969), Monforton and Ibrahim (1975),
Mukhopadhyay and Sierakowski (1990), Lee, Xavier et al (1993)).

The assumption of linear variation of the in-plane displacements in the thickness direction, i.
e. the assumption, that the cross-sections of the core and the face sheets remain plane after de-
formation, holds only for the cross-sections that are far from supports or locations of concentrated
and partially distributed loads. Therefore, the discrete-layer models with higher-order through-the-
thickness displacement approximations for each layer (Chan and Foo (1977), Gutierrez and Webber
(1980), Kutilowski and Myslecki (1991), Liu and Chen (1991), Herup (1996) ) produce more accurate
results. In all of the models of the sandwich plates discussed above, the transverse displacement
does not vary in the thickness direction, i.e. the plates are assumed to be incompressible in the
thickness direction.

The modern cores are usually made of plastic foams and non-metallic honeycombs, like Aramid
and Nomex. These cores have properties similar to those used traditionally (for example, metallic
honeycombs), but due to their transverse compressibility (i.e. ability of such cores to change height
under applied loads) the direct transverse strain €., becomes important. Therefore, the models
of the sandwich plates with the cores made of plastic foams or non-metallic honeycombs must not
exclude the change of height of the core. Frostig, Baruch et al (1992, 1996 ) developed a theory of a
sandwich beam with thin face sheets in which account is taken of transverse compressibility of the
core, and the longitudinal displacement in the core varies nonlinearly in the thickness direction. In
this theory the longitudinal displacement in the face sheets varies linearly in the thickness direction,
and the transverse displacement of the face sheets does not vary in the thickness direction (i. e
the transverse direct strain £, in the face sheets is assumed to be equal to zero in the expression
for the strain energy). The transverse shear strain ;. in the face sheets is also considered to be
negligibly small in the expression for the strain energy, that is used for variational derivation of the
differential equations for the unknown functions. The transverse shear stress in the face sheets can
be computed by integration of the pointwise equilibrium equation 04z ¢ + 0gz . = 0.

Under certain circumstances, when the face sheets are thick, when the plate is loaded by a
concentrated or partially distributed load, or when the plate is on an elastic foundation, taking
account of the direct transverse strain ¢, in the face sheets and the transverse shear strain e, in
the face sheets in the expression for the strain energy allows one to obtain a higher accuracy of the

stress computation. Besides, in order to achieve a high accuracy of stress computation in the thick
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face sheets, a model for such a plate must assume or lead to the nonlinear through-the-thickness
variation of the in-plane displacements not only in the core (as in the works of Frostig, Baruch et
al), but also in the face sheets.

Construction of a computational scheme that satisfies these requirements can be approached,
for example, with the help of the layerwise laminated plate theory of Reddy (1996), which is a
generalization of many other displacement-based layerwise theories of laminated plates. In this

theory the displacement field in the k-th layer is written as

m
u® (z,y,2,) = S ul? (z,5,8) 6" (2),

j=1
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where ugk) (z,v,t), vj(k) (z,y,t), wyc) (z,y,t) are the unknown functions and ng-k) (2) and 1/)§k) (2) are

chosen to be the Lagrange interpolation functions of the thickness coordinate, in order to provide the
required continuity of displacements and discontinuity of the transverse strains across the interface
between adjacent thickness subdivisions. This theory allows one to achieve a high accuracy of
computation of all stress components in the composite laminates, but for this purpose it requires a
large number of thickness subdivisions of the laminate. This leads to a large number of the unknown
functions and degrees of freedom in a finite element model. In effect, the finite element model, based
on this generalized layerwise laminated plate theory is equivalent to the three-dimensional finite
element model. In order to reduce a number of the unknown functions in the layerwise model
of a laminated plate, one can use a concept of a sublaminate, i.e. make the number of thickness
subdivisions less than the number of material layers, and deal with the material properties, averaged
through the thickness of a sublaminate. In a model of the sandwich plate it is natural to choose three
sublaminates: the two face sheets and the core. With such a small number of the sublaminates,
the nature of assumptions on the through-the-thickness variation of displacements can have a large
effect on the accuracy of the computed stresses. Therefore, in a layerwise model of the sandwich
plate with only three sublaminates, it is desirable to have a flexibility in the choice of the functions
that represent through-the-thickness variation of displacements.

Pikul (1995) suggested an approach to construction of a layered shell theory, based on represen-

tation of the transverse components of the strain tensor in the k-th layer of the shell in the following
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approximate form
k k
e® (2,9, 2,t) = {7 ()61 (2,9),

W (z,y, 2,t) = £ (2)65" (x,9),
e® (z,y, 2,t) = [ ()08 (2, ),

where ¢§k) (z,y) are the unknown functions of the tangential coordinates and fl(k) (2), fék) (2), fs(k) (2)
are some known functions that represent variation of the transverse strains in the thickness direction.
The differential equations for the unknown functions were derived from the boundary conditions on
one of the external surfaces and from the conditions of minimization of the discrepancy between the
assumed transverse strains and the transverse strains obtained from the strain-stress relations with
transverse stresses being expressed in terms of the unknown functions with the use of the equilibrium
equations. A finite element formulation based on this approach was not performed by this author.
In the dissertation, in order to construct a layerwise sandwich plate theory that takes account
of the transverse strains in both the face sheets and the core but has fewer unknown functions
(and therefore fewer degrees of freedom in the finite model) than the Reddy’s layerwise theory, a
computational scheme is constructed in which the simplifying assumptions, that lead to a plate-type
theory, are made for the transverse strains, similarly to the Pikul’s theory, but, unlike the Pikul’s
theory, these assumptions are introduced into the virtual work principle in order to construct a finite
element formulation. The assumptions are made with respect to the variation of the transverse
strains in the thickness direction of the faces and the core of the sandwich plate. The displacements
are then obtained by integration of these assumed transverse strains, and the constants of integration
are chosen to satisfy the conditions of continuity of the displacements across the borders between
the face sheets and the core. In such a method, the required continuity of the displacements in the
thickness direction is satisfied regardless of the assumed type of through-the-thickness distribution
of the transverse strains. This leads to a larger number of choices of simplifying assumptions about
the variation of strains (and, therefore, displacements) in the thickness direction, and, therefore
allows a better adjustment of the computational scheme to the conditions under which the sandwich
plate is analyzed by a layerwise method with only three sublaminates (being the face sheets and the
core). This allows one to achieve any desired degree of nonlinearity of the through-the -thickness
variation of the displacements without an increase of the number of the unknown functions, and,
therefore, without an increase of the number of the degrees of freedom in finite element models. The

transverse stresses are computed by integration of the pointwise equilibrium equations, that leads
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to satisfaction of conditions of continuity of the transverse stresses across the boundaries between
the face sheets and the core and satisfaction of stress boundary conditions on the upper and lower
surfaces of the plate.

In the present work, a model was developed based on the simplest of such assumptions that
do not ignore in the expression for the strain energy the transverse shear and normal strains in
both the face sheets and the core. It is assumed that the transverse strains do not vary in the
thickness direction within the face sheets and the core, but can be different functions of the in-plane
coordinates in the face sheets and the core. In the post-process stage, these first approximations of
the transverse strains can be improved by substituting the transverse stresses, obtained by integration
of the pointwise equilibrium equations into the strain-stress relations. The improved values of the
transverse strains depend on the z-coordinate (z-axis is in the thickness direction). In this model,
the transverse displacement, obtained by integration of the assumed transverse normal strain, varies
linearly in the thickness direction within a sublaminate, and the in-plane displacements, obtained
by integration of the assumed transverse shear strains, vary quadratically within the thickness of a
sublaminate.

The theory of the sandwich plate, presented in the dissertation, does not require many degrees
of freedom in the finite element formulation and has a wide range of applicability. It can be used for
analysis of both thick and thin sandwich plates, with thick and thin face sheets, with transversely
rigid and transversely flexible faces and cores. Besides, in the finite element analysis of the thin
sandwich plates, the shear locking phenomenon does not occur.

In our model we use the Green-Lagrange strain tensor and the energy-conjugate to it second
Piola-Kirchhoff stress tensor. Due to relatively high velocities of the platform when it hits the
ground, we need to provide the capability of the model to represent moderately large displacements
and rotations (displacements of the order of thickness of the platform, and rotations of the order
of 10-15 degrees). For the problems with such characteristics, in the strain-displacement relations
for the Green’s strain tensor, the non-linear terms (g—:)2 , (%—1;)2 (32) (‘2—1;) are not negligible as
compared to g—;—, g—:, g—g, g—;, %%, and all other non-linear terms in the strain-displacement relations
are negligible (von Karman (1910), Palazotto and Dennis (1992), Reddy (1996)). So, the strain-
displacement relations, used in our model, are (von Karman strains):

“wT8r  2\8x) TV 2\08y Oz 0z 0y )’




CHAPTER 1 27

_1(ou ow) o _ou 16w\’
B22=9\5z T8z ) W By " 2\ oy

1/6v Ow ow
Eyz = -2- (E + ?9—1/—) y €2z = gz‘ (1-1)

In our study the expressions for the transverse stresses in terms of the unknown functions,

obtained by integration of the pointwise equations of motion!

Ozz,z + Ozyy t 0sz,2 +F = ,DU, Oyz,x + Oyy,y + Oyz,z + Fy = p'ii,
0 0 ..
Ozz,p + Ozyy + Ozzz + 9z (OzzW,z + Oyzw,y) + 53/- (Ozy W + Oy wy) + Fr = pid, (1.2)

contain derivatives of the unknown functions of the order higher than the degree of the interpolation
polynomials, used in the finite element formulation. These higher order derivatives can not be
computed as derivatives of the piecewise? interpolation polynomials, used in the finite element
formulation, because such method would lead to vanishing of these higher order derivatives, that
can be wrong for a particular problem. Therefore, some numerical procedure is necessary to construct
these higher-order derivatives from the nodal values of the unknown functions, obtained as a result
of the finite element solution. Byun and Kapania (1991) used a least -squares global 3 polynomial
approximation of the nodal values of displacements?, and calculated various higher order derivatives
of the displacements as derivatives of these global approximation polynomials. The two types of
polynomials were used in the global displacement approximation: Chebishev polynomials and a

class of orthogonal polynomials, defined by the following recurrence formula:
Py(x)=1 P_;(z)=0, Pry1(z)=(x—ary1)Pr(z) - BrPr_1(z) (r=0,1,2,...), (1.3)
where
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ithese are equations of motion, variationally consistent with the Von-Karman strain-dispacement equations.
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(1.4)

2defined over a domain of a finite element
3defined over the whole area of the plate
4these nodal values of the unknown functions were taken directly from the finite element solution
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and a; are values of weighting functions at data points ;. The higher order derivatives, computed by
both methods were in good agreement with the values of derivatives obtained from exact solutions.

In this study, for computation of the higher order derivatives a finite-difference scheme was
applied, using the nodal data from the finite element solution. The numerical experiments showed
that, despite the simplicity of such a method, it can produce quite accurate values of the derivatives,
if the finite element mesh is sufficiently fine.

In the dissertation, we will consider a dynamic response of the cargo platform dropped on the
ground modelled as elastic foundation. The Winkler (1867) model of the elastic foundation is the
simplest model for expressing relationship of pressure and deflection of the foundation surface. This

relationship can be expressed as

p (zv y) = —kw (IL‘, y) ’ (15)

where k is a modulus of surface reaction with units of force per cubic length, and w(z,y) is a ground
surface displacement. The characteristic feature of this soil mechanics relationship is that it leads to
discontinuity of the surface displacement. It is obvious that a correction had to be found since the
surface displacement is present beyond the loaded region. Pasternak (1954) developed a relationship
in which some interaction between the spring elements occurred. The proposed response equation

was:
p(x,y) = —kw(z,y) —'GAQw (I,y)a (16)

where k and G are two foundation parameters, and A? is the Laplace operator. Unfortunately,
this relationship produces concentrated reactions along the free edges of the structure. Kerr (1964)
proposed a correction to the Pasternak model by adding a spring layer on top of a shearing layer,
that is considered more appropriate for elastic foundation analyses, but the expression is much more
complicated, resulting in a sixth order partial differential equation (Kneifati, 1985). It was decided
that as an initial attempt at representing the overall problem, we would only consider the simpler
Winkler foundation representation. It is possible to consider the more accurate expressions.

The subsequent chapters contain some preliminary considerations regarding construction of plate
theories, based on assumed transverse strains, development of the two-dimensional geometrically
nonlinear computational model of the composite sandwich plate with account of transverse stresses,
transverse flexibility and damage progression, development of a simplified model of the sandwich

composite plate and the corresponding finite element formulation, description of the finite element
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program based on this formulation and discussion of results for an example problem, obtained with

help of this finite element program.




Chapter 2

Preliminary Considerations
Regarding Construction of a Plate
Theory, Based on Assumed

Transverse Strains

In thick sandwich plates the transverse shear strains €z, €y and transverse direct strain ¢,, can be
not negligibly small as compared to the in-plane strains €zz, €yy, €xy (it is implied that the z-axis
is in the direction of the plate’s thickness, and x- and y- coordinates are in the plane of the plate’s
middle surface, as showﬁ, for example in Figure 2.1). This is especially true if the plate is on an
elastic foundation or is loaded by a partially distributed load, as it is in the case of a cargo platform,
dropped on the ground. The corresponding transverse stresses 0zz, Oy: and o, can also be not
negligibly small under the same conditions. Therefore, in analysis of such plates it can be important
that in the expressions for the strain energy density the terms 0464z, Oy26yz and 0,.€;. are taken
into account.
The two-dimensional computational models of plates are usually deduced from the three-dimensional

formulations by making some assumptions about through-the-thickness distribution of either dis-

placements or strains or stresses in the plates. We construct a plate theory of the sandwich plate
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by making assumptions on distribution of the transverse strains €,;, €z, and €, in the thickness
of the face sheets and the core, i.e. by assuming that these transverse strains are some known
functions of the z-coordinate within the face sheets and the core. Such method of constructing a
two-dimensional plate theory provides a convenient way to make displacements continuous across the
boundaries between the face sheets and the core: the expressions for the displacements are obtained
by integration of the strain-displacement relations and the constants of integration are chosen such
that the conditions of continuity of displacements are satisfied.

But before proceeding to the actual problem of the dissertation, we will study and compare, in a
simpler problem of cylindrical bending of a sandwich plate with homogeneous isotropic face sheets
and the core, the accuracy and computational efficiency of theories based on two different kinds of
assumptions on transverse strains:

1) the transverse strains are non-zero in both the face sheets and the core, do not depend on
z-coordinate within the face sheets and the core, but each of these strains is a different function of
the in-plane coordinate within each sublaminate (a face sheet or a core);

2) the assumed transverse strains in the face sheets, that enter into the expression for the strain
energy density, are equal to zero, and the assumed transverse strains in the core do not vary in
z-direction.

As it was mentioned in the first chapter, the transverse stresses will be computed by integration of
the pointwise equilibrium equations for each sublaminate. In this integration the number of constants
of integration is equal to the number of interfaces between the sublaminates plus one. Therefore,
these constants of integration can be chosen to satisfy the conditions of continuity of the transverse
stresses at the interfaces between the sublaminates and the boundary conditions on one of the
external surfaces (upper or lower). In this chapter it will be shown that if the governing differential
equations for the unknown functions have an exact solution, then the transverse stresses, obtained
by integration of the pointwise equilibrium equations, satisfy exactly the boundary conditions on
both the upper and lower external surfaces. Proving this fact requires less voluminous derivations
if a homogeneous plate is considered, rather than the sandwich plate. Therefore, this chapter is
started by considering a model of a homogeneous isotropic plate in cylindrical bending, based on
assumptions, similar to those that will be applied to the sandwich plates: the transverse strains will
be assumed to be non-zero and not dependent on the z-coordinate (not varying in the thickness
direction). In this chapter it will be shown also that if the unknown functions of the model of

the sandwich plate are computed by the finite element method (which is equivalent to approximate
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solving the differential equations for the unknown functions), then the boundary conditions on one of
the external surfaces (upper or lower) are satisfied approximately by the transverse stresses obtained
from the pointwise equilibrium equations, in addition to exact satisfaction of the boundary conditions
on the other external surface and conditions of continuity of the transverse stresses between the

sublaminates.

2.1 Cylindrical Bending of a Homogeneous Isotropic Plate

In this section we will consider construction of a theory of cylindrical bending of a homogeneous
isotropic plate, based on assumption that the transverse strains are not negligible in the expression
for the strain energy, and on the assumption that these strains do not vary in the thickness direction.
The purpose of this paragraph is to evaluate the accuracy of stresses, obtained from a computational
model based on such assumptions, and to determine if the boundary conditions on both the upper and
lower surfaces are satisfied exactly by the transverse stresses obtained by integration of the pointwise
equilibrium equations. It will be shown also that in this theory the stress boundary conditions on the
lateral surfaces are satisfied in the integral sense, i.e. conditions of static equilibrium are satisfied.
Using this theory, a problem of a simply supported plate under a uniform loading on the upper
surface will be solved and the solution will be compared with the exact elasticity solution. This
comparison will enable an assessment of the accuracy of the theory, based on the above mentioned
assumptions on the transverse strains.

Cylindrical bending implies the condition of plane strain, i.e.

ou ow

'U=0, 'a—y=0, a—y—:

0, (2.1.1)

which can occur if the plate’s dimension in the y-direction (that will be called width b) is much
larger than its dimension in the x-direction (that will be called length L) and the loadings on the
upper and lower surfaces of the plate do not vary in the y-direction (figure 2.1). The problem is
considered on the basis of linear elasticity, i.e. in the general form it is described by the following
equations:

equilibrium equations

Oij5 = 0; (2.1.2)
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strain-displacement relations

1

eij = 5 (wij +ig); (2.1.3)

constitutive equations

. E v
Oij = m <€ij + '1—_-—2—‘;60‘0161']‘) 3 (214)
boundary conditions
h
Oz, =0, 02, = ——% at z = —% (2.1.5)
h

2z =0, 0zz = gbﬁ atz=z, (2.1.6)

where ¢; and g, are projections on the z-axis of forces per unit length (%%) at the lower and upper
surfaces correspondingly (by ¢; and g, we denote not absolute values of forces per unit length, but
their projections on the z-axis, therefore values ¢; and g, can be positive or negative, depending on
direction of the forces);
conditions of static equilibrium !:

h/2

/ Ozz dz=0atzxz=0,L, : (2.1.7)

—h/2

h/2
/ Ozzzdz=0atz=0,L, (2.1.8)
—h/2

1None of the plate theories are capable of providing exact satisfaction of stress boundary conditions at the contour
of a plate, i.e. satisfaction of the stress boundary conditions at the contour of a plate at each value of z-coordinate
(coordinate in the thickness direction). Therefore, we require satisfaction of the stress boundary conditions only in
the integral sense, i.e. conditions of static equilibrium. Our “exact” elasticity solution, the purpose of which is to
evaluate the accuracy of the stresses, produced by our plate theory, will also satisfy the stress boundary conditions
only in the integral sense, unlike that of Pagano (1969), which satisfies the stress boundary conditions exactly. We
chose to require that our “exact” elasticity solution satisfies only the mitigated, integral stress boundary conditions,
because such requirement allows one to obtain analytical expressions for stresses. The truly exact solution of Pagano,
which satisfies the stress boundary conditions at each point of the plate contour, contains coefficients which can be
obtained only numerically, and it is too rigorous for our purposes, because its comparison with the solution, based on
the plate theory, will only reveal the fact that the plate theory can not take account of edge effects, that is known in

advance.
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h/2 L

b / [022 (L) — 022 (0)] dz = —/ (a1 + qu) dz . (2.1.9)

—h/2 0
In view of plane strain assumptions (2.1.1), the strain-displacement relations (2.1.3), take the

form:
Exz = Ug, (2.1.10)
1

Exz = '2' (u,z + w,z) y (2111)
Ezz = Wz, (2112)
€y =0, €4y =0, £y, =0, (2.1.13)

and the constitutive equations (2.1.4) become

E

7o = Ty @ (L) sl (2114
FE v

WE T+ (1-2)

(E:D:c +Ezz), (2115)

[Vese + (1~ v)ezz), (2.1.16)

Ozz =

(1+v)(1-2v)
Oy = _—_VEIz, (2-1.17)
Ozy =0, 0y =0. (2.1.18)

The equilibrium equations for the plane strain condition have the form

Ozx,x + 0zz,2 = 07 (2119)

Ozz,z + 02z, = 0. (2120)

In order to construct a plate theory, additional simplifying assumptions will be made regarding

dependence of the transverse strains, €;. and €., on the z-coordinate. The purpose of this chapter is
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to study the accuracy of a plate theory, based on the assumptions that €, and €, are independent

of the z-coordinate:

Exz = Exz(m), (2121)
€z = E22(T). (2.1.22)
Integration of equation (2.1.12) yields
w(z,2) — wl,_o = ow dz = /ezz(:c) dz =¢€,,(z) 2,
N o’ 0z
wo(z) O 0
where
wp(z) = W, - (2.1.23)
Therefore,
w(z, 2) = wo(x) + €22(T) 2. (2.1.24)
From equation (2.1.11), we receive
ou dw(z)
0z 2ez:() — dx

Integration of the last equation yields

w(z,z) — u = % dz = /(2693; we)dz=
—= 0 0
uo(x)

2
= /(2512 — Wo,z — Ezz,:zz) dz = (25:1:2 - wO,m)z - Ezz,x%‘ y

0

where
ul,_o = uo(2)- (2.1.25)
Therefore,
1
u(z, 2) = up(x) + [2e5.(2) — o,z (2)]z — Zez2(T)22. (2.1.26)

2
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So, we have four unknown functions in this problem:

up(x), wo(x), €22(2), €22()-

Let us express strains and stresses in terms of the unknown functions. Strain €5, can be found

by substituting expression (2.1.26) into the strain-displacement relation (2.1.10):

1
Ezz = Uh + (265, —wg) 2 — Es’z’zz2 . (2.1.27)

Here and further primes denote derivatives with respect to z-coordinates. Substitution of expression
(2.1.27) into constitutive relation (2.1.14) yields:

ol = (—1—1—1/71(%-_—55)- {(1 —v) [u{, + (2], —wg)z— -;-e;’zzz} + z/ezz} : (2.1.28)
Here the superscript H means that the stress was obtained from the Hooke’s law, as opposed to
stresses 0, and 0, which will be obtained from the equilibrium equations. To find expressions for
the transverse stresses in terms of the unknown functions, we integrate the equilibrium equations

(2.1.19) and (2.1.20), in which for stress 0z We take its expression (2.1.28), obtained from the

HOOke,S laW:
g +0:z:zz—0 Ozxz‘l"(’zzz—o
zT,x ) 3 y ) ‘

From the first equilibrium equation, we obtain
z

z
_ H
Ozz — Uzz|,=_h/2 = /a,zvz dz=— / Orzz 4%

Zn

where 0| __, , =0dueto the boundary condition (2.1.6). The substitution of expression (2.1.28)

=—h/
for o into the last equation yields

_ E(l —_ l/) 1" h 1 " " 9 h2 1 11 3 h3
Oz =~ T ) (1 - 20) [“0 (”2) +5 (2 ""0)(2 1) 5=\""%)|"

Ev , h
T 0 -) = (Z + 5) ' (2.1.29)

From the second equilibrium equation we obtain
z z

Oz — (7'zzlz=_h/2 = / Oz2z,2 dz = — / Ozz,x dz.
[

o ~h/2 —h/2

b
due to BC (2.1.5)
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Substitution of expression (2.1.29) for 0. into the last equation gives

_ 2 EQ-v) 1 o, m L, 2 (o _ IV
022 = "7 +——_———-(1+1/)(1—-2u) [8(22+h) U +24(z h)(2z + h) (25“ wp )
L (42% — 4hz + 38%) (22 + h)?elY | + Byl imeel (2.1.30)
384 22 | T T yr)(1-20)8 -

where the superscript IV means the 4-th derivative with respect to x-coordinate.
Expressions for the transverse stresses in terms of the unknown functions can also be obtained
from the Hooke’s law. Upon substitution of expression (2.1.27) for &5, into the constitutive equation

(2.1.16), we receive

H _ E 7 1 _ 17 _ l 17 2 _
e T {I/ {uo + (2Ezz wo) 2= 52 ] +(1-v) Ezz} . (2.1.31)

%= Trv)1-2v

We will also write the constitutive equation (2.1.17) in the form

H E

Opz = i—_'_—;é'zz. (2132)

We see that expressions (2.1.29) and (2.1.30) for the transverse stresses 0z- and o, in terms of the
unknown functions, obtained from the equilibrium equations, are different from the corresponding
expressions (2.1.32) and (2.1.31) for o and off, obtained from the constitutive equations. It was
already shown that the transverse stresses 0z and o,,, obtained from the equilibrium equations,
satisfy the boundary conditions (2.1.5) at the lower surface of the plate, and it will be shown later
that they satisfy also the boundary conditions (2.1.6) at the upper surface of the plate. Besides, as it
will be shown later, in composite plate theory the transverse stresses obtained from the equilibrium
equations (or equations of motion in dynamic problems) can be forced to satisfy also the conditions
of continuity of the transverse stresses at the interfaces between the plies with different material
properties. On the other hand, the transverse stresses obtained from the constitutive equations, do
not satisfy the boundary conditions either at the upper surface or at the lower one, and do not satisfy
the conditions of continuity of the transverse stresses at the interfaces between the plies in composite
plates. Therefore, the transverse stresses obtained by integrating the equilibrium equations are more
accurate.

Now, let us derive differential equations for the unknown functions up(z), wo(z), €z2(), €22(x)
and boundary conditions, using the principle of virtual work. The virtual work principle is a conve-
nient way of reducing the three-dimensional continuum mechanics problems to the two-dimensional

and one dimensional problems for the following reasons:
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1) It allows to formalize the process of derivation of the governing differential equations in terms of
the unknown functions and natural boundary conditions, i.e. boundary conditions on the part of
the surface, where the displacements are not imposed.

2) The number of boundary conditions, formally derived from the virtual work principle, is equal to
the order of the governing differential equations for the unknown functions. This can be not the case
if the differential equations for the unknown functions of the plate model are derived by averaging
(through the plate’s thickness) the pointwise equilibrium equations, due to contradictions between
the equations of elasticity, brought about by introducing the simplifying assumptions. An example
of such case is the boundary conditions at a free end of a plate in the classical plate theory based on
the Kirchhoff — Love assumptions (Saada, 1993). The use of a variational method allowed Kirchhoff
to obtain the free-end boundary conditions, consistent with the governing differential equations.

4) The level of accuracy of all equations of a plate theory, derived from the virtual work principle,
is the same and is consistent with the simplifying assumptions that lead to the plate theory.

5) The finite element formulation is most easily performed on the basis of the variational formula-
tion.

The virtual work principle is
U - &§W =0, (2.1.33)

where U is strain energy of the plate and §'W is virtual work of external forces, acting on the plate.
In the notation §'W the prime is used over the § because in case of nonconservative external loads,
the virtual work of external loads is not a variation of some state function W. Here we follow the
notation of Washizu (1982).

The expression for the strain energy has the form

1
U= 5/// 011;1162.’!3 + 20’:{:126:” +0'£z€zz + 0’;; Eyy + 20'£1y Exy + 205; Eyz dV = (2_1'34)
(V) 0 VO v vo VO
T
b L% Exx Orz
-2-// 2512 O'fz dz dz.
0 _

ol

€zz Uzz
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The constitutive equations (2.1.14), (2.1.16) and (2.1.17) can be written in the form

H
zz

H
31

H

zz

o2

g

o

1

E
+

Substitution of (35) into (34) yields:

2(1+1/ // 2z

In view of relation (2.1.27), we can write

Exx
26z,

EZZ

bE
U= 2(1+
where
1 0
4 z 0
C]= / -3z 0
-3 0 1
0 0

= o O O O

v

1—v

1-2v

0

T

O = O

\T

0 1—‘/21/
;0
0 11——2111
0 1—1/21/
1
3 0
0 11:2Vz/
200
10
01

€]

EJ:I

26,

E:L'I

P

Ezz

EZZ

264,

dz dz.

dz dz.

> dz ,

39

(2.1.35)

(2.1.36)

(2.1.37)

(2.1.38)
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v—1 0 2h?(1-v) 0 —v
0 L1h2(v-1) 0 0
h
=55 | 3a*(1-v) 0 Lhtw—1) 0  Hhw | (2.1.39)
0 0 0 v}
i -v 0 b 0 wv-1

The substitution of (2.1.39) into (2.1.38) yields

L
U= /U dz | (2.1.40)
0
where
~ " 7" bEh ’ 2 h (1 + I/) 7]
U (uo,em,e“,szz,szz,wo) A +) @ =1 [(1/ -1) (uo) + g Yotz
’ hz(ll—l) ’ i\ 2 h4(1/—1) v \2
2vugE,, + 1 (26“ - wo) + 320 (Ezz) +
h vV on 1 2 2
+— 13 Cxefee +4 ( 5) €z, +(v— 1)67_2] . (2.1.41)
So,

ou _ . 8U oy . au ou _
oU = / ( 6u0 + Bt — 6wy + aésn + _62266“ + 5—6—;65” + @55“) de . (2.1.42)

The integration by parts in the last expression yields

4 o0 U a U
U = — d auo Sug dz + — dup 6u0| d 26 —_— 611)0 dr + — B 6, 6w0|

~ L . > =
d aUu L oU d oU ou L
o sl s [ (8- ) s g el
0

L .

oU  d* U ou d aU

+/ (ae,h pr) —86'2'2> be,. dT + = 5, 5522|0 oo 57, 6Ezz| . (2.1.43)
0
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The virtual work of external forces has the form

L L
§W = /qu bwl|,_,,, dz +/q1 dw|,__,,, dz . (2.1.44)
0 0
According to equation (2.1.24),
Sw = bwp + z be,, . (2.1.45)
Therefore,
7 h i h
§W = /qu <6w0 + 3 55”) dx + /q; <5wo —3 65;;) dz. (2.1.46)
0 0

Upon substitution of expression (2.1.43) and (2.1.46) into the principle of virtual work, §U~6'W = 0,
and equating to zero the coefficients of the variations of the unknown functions ug, wo, €, €., and

the boundary terms, we receive the following differential equations and boundary conditions:

d 8U
. — = = <zr<
bug dz Qg (Ose<I),
d* au
;s =G <z<l),
dwp 3 5wl gutq (0<z<1I)
bezs : ou d oy =0 (0<z<IL),

Oez. dz e,

) d? 80 h
ou U _t-a) (©<z<1).

b, — e =
Ezz Oe,, dz? e, 2

Either 8_({ =0 or ug is specified at z =0, L .
Up

Either Ea—e—,U— = 0 or €, is specified at z =0, L .

Either —ag; = 0 or wy, is specified at z =0,L .~

Ow,

d
Either —a—U,, = 0 or wy is specified at z =0, L .
dz Ow,
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Either -a—,({ =0 or €, is specified at =0, L .
622

Either i—a,i =0 or &,, is specified at =0, L .
dzx

EZZ
The substitution of expression (41) for U into these equations yields the following differential equa-

tions and boundary conditions:

" h2 1 '

bup : (1-») (uo - 526“> +ve,,=0 (0<z<L), (2.1.47)

1-v bEh3 v "

: - = qy <z< ) 1.
T TR (wf -2) =qu+a (O0<z<L) (2.1.48)
h2 (]. - V) " "
zz * Tz Ta7/1 0.\ -2 zz) = <z < L , A
e € +12(1_2y)(w0 3 ) 0 0<z ) (2.1.49)
’ h2 1" h2 h2 1 i
Oezz v (uo - EZEzz) +{(1+v) [ezz + T (Eeﬁg — 3% )] (2.1.50)
1+v)(1-2v)
_ 1) (gu - <z<IL).
bE (u—a) (0<z<L)
’ h,2 "
Either (1 —-v) (uo - '225”) +ve,, =0 or g is specified at z =0, L . (2.1.51)
Either 2., — wg =0 or €, is specified at z =0, L . (2.1.52)
Either 2¢,, — wg = 0 or wy is specified at £ =0, L . (2.1.53)
Either 25’;2 —w, =0 or wy is specified at 2 =0, L . (2.1.54)
Either (1 -v) (ub - 43—0h2£:z) +ve,, =0o0r s;z is specified at z =0, L . (2.1.55)
. ” 3 9 1 1 . .

Either (1 —v){ uy — Eh €,, | +Ve,, =0o0r ¢, is specified at z =0, L . (2.1.56)
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Equations (2.1.47) and (2.1.48) can be derived, also, by substituting expressions (2.1.29) and
(2.1.30) for stresses 0, and 0, obtained from the equilibrium equations, into the boundary con-

ditions (2.1.6) at the upper surface of the beam. Indeed,

Eh ” h2 N7 ’
0= Uzz‘;:h/z = _m [(1 - V) (uO - ﬁszz> + Vezz] ’ (2157)
qu qr Eh2 " h2 v 1"
— =0, = —— 1- -y zz
e Y i S T ) [( V) (”0 23%x ) TV T

'

0
because of eqn. (56)

Eh3 1 - y IV 1"
—2eY 1.
2 0+0)(1-2) (wd” - 2¢7) (2.1.58)

Equations (2.1.57) and (2.1.58) are the same as equations (2.1.47) and (2.1.48), derived from the

principle of total potential energy. So, the principle of total potential energy produces differential
equations for the unknown functions such that their solution guarantees that the expressions for the
transverse stresses o, and o, (obtained from the equilibrium equations), in terms of the unknown
functions, satisfy the boundary conditions (2.1.6) at the upper surface of the plate. Satisfaction
of the boundary conditions (2.1.5) at the lower surface of the plate by the stresses 0. and o,
(obtained from the equilibrium equations) is guaranteed by the fact that these conditions were used
in the process of deriving expressions for 0, and o, from the equilibrium equations.

Let us express the conditions of static equilibrium (2.1.7)—(2.1.9) in terms of the unknown func-
tions ug, Wo, Ez2, Ezz. The substitution of expression (2.1.28) for fo into the conditions of static

equilibrium (2.1.7) and (2.1.9) yields

’ h2 "
(1-v)yy— 2252 +ve,,=0atx=0,L, (2.1.59)
%, —wy, =0atz=0,L. (2.1.60)

Let us substitute expression (2.1.29) for o, into the left-hand side of static equilibrium condition

(2.1.9)

" E(1-v) bh? L
1 el 24 1" 122
b / [Uzz(L)'—Uz’z(O)] dz = (—i—{-_l/)—(]_——QT)Té_ (25“*100) . —
—h/2
L
Ebh? (1-v) o iz_z_ “\ 4 e
2(1+v) (1 - 20) 07 9qfe | T VEu
~ ~ “lo

0
due to diff. eqn. (47)
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Using differential equation (2.1.48), we can write the right-hand side of the static equilibrium con-

dition (2.1.9) in the form

L L
E(-v) bh®/_ "
_/(q“+q‘) = a0 12 (25“ ~ %o ) .
0
h/2
From the last two equations it follows that the left-hand side b / [022 (L) — 0z (0)] dz of the static
—h/2
L

equilibrium equation (2.1.9) is identically equal to its right-hand side — / (gu + @) dz. Since the

static equilibrium conditions (2.1.7) and (2.1.8), being expressed in terms o(% the unknown functions of
our plate theory (equations (2.1.59) and (2.1.60)), are the same as the natural boundary conditions of
the plate theory (equations (2.1.51), (2.1.52) and (2.1.53)), and since the static equilibrium condition
(2.1.9), being expressed in terms of the unknown functions of our plate theory, is an identity, we
make a conclusion that our plate theory guarantees satisfaction of all the static equilibrium conditions
(2.1.7)-(2.1.9).

Now, let us solve a problem of cylindrical bending of a plate, simply supported at the
edges z = 0, L, under a uniform load gy, applied to the upper surface (figure 2.2). The results
will be compared with the exact elasticity solution.

The boundary conditions (2.1.51)—(2.1.56) for this problem take the form

’ h2 1"
(1-v) (uo - ﬁszz) +ve,,=0atz=0,L, (2.1.61)
%, —wy, =0atz=0,L, (2.1.62)
wo=0atz=0,L, (2.1.63)
’ 3 2 "

(1-v)|uy— Zah €y, ) +VEz=0atz=0,L, (2.1.64)

" 3 9 M [
(1—-v){uy— Z(ih €,, | tve,,=0atz=0,L. (2.1.65)

In addition, due to symmetry of the problem,

£22(0) = —€as(L), u (£> ~0. (2.1.66)
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Differential equations (2.1.47)—(2.1.50) can be written as the following independent sets of equations:
1) equation

hbE

mimz = —Qqu (0 S T S L) (2167)

with symmetry condition
Ea:z(O) = “‘5mz(L) H

2) equation

1-v bER3
Q+v)1-2v) 12

(wév - 252;) =¢q, (0<z<1L)
with boundary conditions
%, —wg =0, wo=0atz=0,L;

3) equations

17 h2 11 7
(1-v) (uo _'2—4'5zz> +ve,, =0 (0<z< L)
and
’ h2 " h2 h2 IV 1 1" (1+I/) (1“21/)
v (“o - '2_4522) +(1-v) [Ezz + g ("R)'Ezz ~ 3% )] =——%F (0<z<L)

with boundary conditions

2
1-v) (uo—;l—‘lezz) +ve,,=0atz=0,L,

17 h2 " 12
(1-v) (uo - QZE“) +ve,,=0atz=0,L

(H

For g, = const these equations have the following solution

and symmetry condition

up=~v(1+v) bq_Z'} (x - %) , (2.1.68)
wo = Mz (z—L)[(1-2v)(a® - Lz — L?) - 2R* (1 - v)] , (2.1.69)

T %R3(1—v)E
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_q(l+v)
Exz = —Wh— (L 21‘) : (2170)
o= (14+0)(1—v) 22 (2.1.71)

bE
Substitution of expressions (2.1.68)-(2.1.71) into the expressions (2.1.28), (2.1.29) and (2.1.30) for
Ozz, 0, yields

H
Ozz

6q.
ol = ~ s ” (z—L) =, (2.1.72)
oS80 (LY (2 P (2.1.73
2= bh3 2 1)’ 173)
Oas = ——2_ (22 + R)? (2~ h) (2.1.74)
2 = T Obh3 ' o

It can be verified that the conditions of static equilibrium

h
z L
b/ [022(L) — 022(0)] dz = —/qu dz, (2.1.75)
Zhn 0
2
h
2
/af; dz=0atz=0,L, (2.1.76)
Zn
2
N
2
/aﬂt z2dz=0atz=0,L (2.1.77)

are satisfied by the found stresses (2.1.72)-(2.1.74). The expressions (2.1.72)—-(2.1.74) for the stresses

satisfy the equilibrium equations

Ozzx + Ozz,2 = 0 (2 1 78)
Ozz,x + Ozz2,2 = 0

the boundary conditions

02: =0, 0,:=-%4 atz=-%
(2.1.79)
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and the conditions of static equilibrium (2.1.75)—(2.1.77). But the equation of compatibility in terms

of stress

ot &
('6? + b?) (0gz +0::) =0 (2.1.80)

is not satisfied by the expressions (2.1.72) and (2.1.74), obtained from the plate theory. Therefore,
the expressions for stresses (2.1.72)-(2.1.74), obtained from the plate theory, are not exact.

The exact elasticity solution (within a framework of linear elasticity) for the plate in cylindri-
cal bending (in plane strain condition), which satisfies the equilibrium equations (2.1.78), boundary
conditions (2.1.79), conditions of static equilibrium (2.1.75)-(2.1.77) and equation of compatibility

in terms of stress (2.1.80), is derived in Appendix 2-A. This solution is:

__ 6 dgu 2° 3quz
G LR S A WY (2181)
_Sau( L[ M (2.1.82)
Ozz = h3 b z 2 z 4 ? i
1 g
Ou = —gr5 2 (22 + 1) (2= ). (21.83)

Comparison of formulas (2.1.72)—(2.1.74) and (2.1.81)-(2.1.83) shows that the theory of a homo-
geneous plate, based on assumption €. = €2.(Z),€2: = €..(x), produces exact expressions for the
transverse stresses o, and o, if these stresses are calculated by integration of equilibrium equa-
tions (not from Hooke’s law). But expression (2.1.72) for the in-plane stress 0%, calculated from
the plate theory, differs from the corresponding exact stress (expression (2.1.81)).
Let us compare the exact stress 0, with the one obtained from the plate theory at a point
L h

T =%,2z=3,ie ata point, where, according to the plate theory, the stress o, is the highest.

From formulas (2.1.70) and (2.1.79) we find

2
U;;gate theory) _ _3_% (%) at = _'g_’ 2= E

3g (L\® 1gq L h
(emact) _ 21 [ -z == z=—
Ory 4b<h> + at x 2,2 .

So, a relative error in computation of ¢, produced by the plate theory, is

(ezact plate theory
Ozz ) O':S:a: )

U;ia:act) _125_ (%)2 +1 :




CHAPTER 2 48

Therefore, in order for relative error of the plate theory not to exceed 5%, the height to length ratio

of the plate must not exceed 0.44426 :
h
— < 0.44426.
7 < 0

This condition is met for the problem, which is the topic of the dissertation. So, a theory of
homogeneous plates, based on assumption that the transverse strains do not vary in the thickness
direction, produces sufficiently accurate values of all stresses, both in-plane and transverse. The
transverse strains, as unknown functions of the problem, which, according to the assumptions (2.1.21)
and (2.1.22), do not vary in the thickness direction, were found to be expressed by the formulas

(2.1.70) and (2.1.71). This is the first form of the transverse strains:

(1 _ qu(l1+v)

(€z2)" = 0B (L -2z), (2.1.84)

(€)= (1 +v)(1-v) 3_2 (2.1.85)

The more accurate expressions for the transverse strains (second form of the transverse strains)
can be found by substitution of the transverse stresses 0, and 0., obtained from the equilibrium

equations (expressions (2.1.73) and (2.1.74)), into the strain-stress relations

(es)"D = 1 ;"cru, (2.1.86)
(e2:)"" = 1%"1 (ou - 1= Vd;) . (2.1.87)
The substitution yields:
()P = 2 ;Vg% (w - -5—) <z2 - %—2-) , (2.1.88)
()1 = s (= 1) 22+ 1) (2 = h) + 6vz (2 — L) 2. (2.1.89)

For consistency of nomenclature, the stresses 0¥ and of,, obtained from the Hooke’s law, must be

called the first forms of transverse stresses:

ol = (azz)(l) , ag = (ozz)“) ,

and the stresses 0., and 0,,, obtained from the equilibrium equations, must be called the second

forms of the transverse stresses:

Oz = (022)" | 0.2 = (022)D
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In-plane strain €, and in-plane stress o, have only one form. The second forms of the transverse
strains and stresses are more accurate than the first forms. Stress oy, can be found by substituting
expressions for strains €5, and (ezz)(”)into the constitutive equation (2.1.15).

In this section we came to the conclusion that a theory of a homogeneous plate, based on the
assumption that the transverse stresses do not vary in the thickness direction, leads to sufficiently
accurate results if the thickness of a plate is much smaller than its length and width. In the next
section we will consider construction of a layerwise theory of cylindrical bending of a sandwich
plate, based on the similar assumptions: the assumed transverse strains (i.e. the first forms of the
transverse strains) do not vary in the thickness direction within a layer (a face sheet or a core) of a
sandwich plate, but can be different in different layers. Then we will consider a problem of cylindrical
bending of a simply supported sandwich plate under a constant load and compare a solution of the
problem, based on the plate theory, with the exact elasticity solution. This will enable us to evaluate
the validity of the assumptions on the transverse strains. In order to avoid the excessive complexity

of the problem, we will consider the material of the face sheets and the core to be isotropic.
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2.2 Cylindrical Bending of a Sandwich Isotropic Plate

2.2.1 Formulation of the Problem Based on Linear Elasticity

Let us consider cylindrical bending of a wide sandwich plate with isotropic face sheets and the core
(Figure 2.3). The upper and lower surfaces of the plate are under loads with intensity (force per unit
length) ¢, and ¢;. By ¢, and g, we denote not absolute values of the load intensities, but projections
of the load intensities on the z-axis, i.e. g, and g, can be positive or negative, depending on direction
of the load.

We will denote a number of a layer of the plate by a superscript & (k = 1,2, 3).

The equations of linear elasticity, as applied to this problem, have the form: equilibrium equa-

tions:
o) +ol), =0, (2.2.1)
o) +olk), = 0; (2.2.2)

Strain-displacement relations for plane strain are:

el = ul®), (2.2.3)
e® = w®), (2.2.4)

® L w,®
Ers = -é ('lt,z +w,x ) s (225)

The constitutive relations for plane strain can be stated as:

E®)
®) = ENCNROINORCIR
%2z T 1+ v (1 - 2v) [(1 v )fzz +v 8] (2.2.7)

E®)
k) = ENC\RCICROIR
7= = W+ o®) (1 - 20) [(1 v >€zz tv fu], (2.2.8)

E®)
W = k) 4 8 = (B (g(B) 4 5B,
Tw T @) (1 - 20®) (Em +6zz) =V (sz +o2; ) (2.2.9)
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k)
o = _ET (2.2.10)

o) = o) = 0; (2.2.11)
or, in the inverse form
— (V™2
(k) — 1- (%) (0(") - v® k))' (2.2.12)
Tz E(k) Tz 1-— V(k) zz ’ Al
w _ 1= (! ))2 w_ v w). 2
ey 0] oy — T e ) (2.2.13)
14 v®
a(r:l;.) Ek) U;:Z ) (2'2'14)
elf) =l =€l =0; (2.2.15)
The boundary conditions at the upper and lower surfaces are
ol) =0,0) = (V- _h =z (2.2.16)
b 2
h
a'g) =0, O'S;) = t—]bﬁ at z = 5 = 2y (2.2.17)

The continuity of displacements and stresses at the interfaces between the core and the face sheets

can be stated as:

u® = 4@ O = w(z),a'g:lz) = ng),crg) =o@ atz= —% = 23, (2.2.18)
1@ = u® @ =@ 2 =0 2 =5 at 2= % = z3. (2.2.19)
The conditions of static equilibrium yield:
h/2 L
b [ (Gulocs = urlece) d2= [ (@ +0) d,
~h/2 0
or
—~t/2 t/2 h/2

L
) dz+/<a§‘?
0 0

L
L L 1
/ (ng) 0 ) dz + / (Gﬁ) ) dz = *3/(qz+qu) dz . (2.2.20)
0

—h/2 —t/2 t/2
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The formulation of the problem includes also the boundary conditions at z = 0, L. For example,
for a plate, simply supported along the edges z = 0, L, the boundary conditions have the form:

mitigated (integral) stress boundary conditions, that can also be looked upon as conditions of static

equilibrium
—t/2 \
aélz) dz=0atz=0,L
—h/2
/2
/aﬁdz=0mx=QL = (2.2.21)
—t/2
h/2
/ag}) dz=0atz=0,L
t/2 )
h/2 3
0zz 2dz2=0atz=0,L
—h/2
or ; (2.2.22)
—t/2 t/2 h/2
/ 0',(52 zdz+ /0;21) zdz+ /agv) zdz2=0atz=0,L
~h/2 —t/2 t/2 y

and the displacement boundary conditions
w=0atz=0,L and 2=0. (2.2.23)

If the boundary conditions and the load are symmetric with respect to the plane z = —121, then we

also have a symmetry condition

u(£>=0 (2.2.24)

2.2.2 Construction of a Plate Theory for Cylindrical Bending of an Isotropic
Sandwich Plate, Based on Linear Elasticity

In order to construct a plate theory, we make an assumption that the transverse strains do not vary

in the thickness direction within a layer (a face sheet or a core) of a sandwich plate, but can be
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different in different layers:
el =el) (z), e =el () (k=1,2,3). (2.2.25)

These are the first forms of the transverse strains. To indicate that the assumed transverse strains

of equations (2.2.25) are the first forms of the strains, we will also use another notation:
0y
= (o) e = (o)

The notation (2.2.26), with the second upper superscript, will be used only when it is necessary

n
. (2.2.26)

to distinguish between the first and the second forms of the transverse strains.

The unknown functions of the problem are

up (z) = u(? = ul,_q, wo(x)= w? =w|,_g, sgi) (z), Egﬁ) (z) (k=1,2,3). (2.2.27)

z=0 z=0

So, there are 8 unknown functions in this theory of cylindrical bending of a sandwich plate.
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Expressions for displacements u(z,2), w(z, z) in terms of the unknown functions

Ug, Wo, E:(CI;)7 Eg’? (k = 1, 2, 3)
Let us integrate strain-displacement relations (2.2.4)
o =l

For the core of the sandwich plate (k=2), which contains plane z=0, we receive

w® (z,2) — w®

F4 z
(2)
M:/aw dz=/effz) (2,2) dz (22 <2<2),
0 0

0z
wo (z)
or
z
w® (z,2) = wo (z) + /effz) (z) dz (22 £ 2< 23). (2.2.28)
0
From equation (2.2.28) it follows
z2
w® =wo + / e? dz. (2.2.29)
Z=Z2 0
Integration of equation 59) = Q’% from z9 to z, where 2z belongs to the region of the lower face
sheet (21 < z < 29), yields
z 6 (l) z
w® — M =/ Y = /692) dz (21 <z< 2z). (2.2.30)
z=2z, 0z
22 z2
or, due to continuity condition w(!) |z=l22 = w® |z=z2,
z
w® = w® Lt /592 dz. (2.2.31)
2

22

If we substitute expression (2.2.29) for w(2)|z_z into (2.2.31), we receive
=2

22 z
w = wy + /E(zi) dz + ‘/592) dz (21 € 2z<2z). (2.2.32)
22
Analogously, if we integrate equation 59,) = th_;?_) and satisfy the continuity condition at the interface

between the second and the third zone, w(3)|z_z = w® |z_z , We receive
3 =3

z3 z

w® = wp + / e® ds 4 / e®de (25<2< ). (2.2.33)

%3
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Integration in equations (2.2.28), (2.2.32) and (2.2.33) yields

w) =wy+ Dz +ell) (2-2) (21 <2< ), (2.2.34)
w(2) = wO +E£i) zZ (22 S V4 S_ 23), (2235)
w® =wy+ePz+e® (2-23) (23<z<2). (2.2.36)

Now, let us find expressions for displacements u u® 4B in terms of the unknown functions.

From the strain-displacement relations (2.2.5) we receive

ul®) = 2e08) —w®). (2.2.37)
Integration of equation (2.2.37) yields
r 6u(®
u® (z,2) — u .= /agz / 25(2) 'w(2 dz (22 <2< 23), (2.2.38)
H'z_—, s o
Uy (z)
(1) r
u® (2, 2) — ul ‘9" /(25(1) f;)) dz (21 <2< 2), (2.2.39)
z (1) z
u® (z,2) — u® = /6761 dz = / (269) - w(zl)) dz (23 <2< 2). (2.2.40)
z=z4 z !

When we substitute expressions (2.2.34) — (2.2.36) for w),w® w® into expressions (2.2.38) -
(2.2.40), perform the integration in the resulting expressions and find the constants of integration

from the conditions of continuity of displacements u at the interfaces between the zones,

O =@

2

W@ = u®

3

Y
z=2z, 2=z, z=z 2=z,

we receive expressions for displacements v, u® u(® in terms of the unknown functions ug (z),

wo (z), e (z), e (2):

1
u(l) =1up+ (25:(122,2) - wO,I) 22 — _2'89:)1 29 + (26(1) - E(zz):z: Zg) (Z - 22)
- —Eilz):z: (z—2)" (a<z<2), (2.2.41)

2
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u® =g+ (262 ~wos)z- e, 2 (<2< ),

2 zz,x

1
u(3) =g+ (26:(22‘:) - wO,:r) 23— 565522)2: 2 (25-’(5:2") — Wo,z — Egz):r
- §E£z):c (z—2) (:3<z<z).

Expressions (2.2.41)—(2.2.43) can be written in the form

u® = g + 9z + 93 2,
u®) = w‘l(t%) + ’(,[)(2).2 + ,([)(2) 2

where

1
¥y =“0+222( G )—E(l)) 5% ( @ —Eglz):r)>

WD =2 o+ 22 (D, )

1 1
TP( )_ 2 ‘(zlz)an
1/1(0 = Uy,

(2
3 = 2@ —wy

9 1
w‘z(ﬂ) = “'2—597,),::3
1
1!11(;3) = up + 223 ( @ — (:i)) + 523 ( E:i):z: - 692:1:) )

v =269 — o 2 (2, — 2.,

3 = 1@

2 ZZI

)(z— 23)

56

(2.2.42)

(2.2.43)

(2.2.44)

(2.2.45)

(2.2.46)
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In-Plane Strains E&&EQ,E(&) in Terms of the Unknown Functions

u0$w095£:,;)35(z§) (k=1,2,3)

Substitution of the expressions (2.2.44)-(2.2.46) into the strain-displacement relations el =

8u™ vields
1 1 1
el = o0 + ol 2+ ¢l 22, (2.2.47)
2 2 2
@) = So(m)o +o8 2+ o 2, (2.2.48)
3 3 3
e = o + o0 2+ 0, 22, (2.2.49)
where
1
wilz’o = up,z + 222 (E;(,?z)‘z - e&lz),z) + 52% (55‘2” — sﬁlz)m) , (2.2.50)
1
‘P(z:c)l = 25:(:12),:5 — Wo,zx T 22 (Egz),zz - 55222),:1:.@) ) (2251)
(1) 1
Prz2 = _§Ezz,z:m (2252)
P2 = oz, (2.2.53)
o@D =262, —wo e, (2.2.54)
(2) 1 2)
Prz2 = _Efzz,zz’ (2255)
1
08 = uo s + 223 (Efz’,x - si‘"‘),z) +5% (Eﬁi{m ~ sﬁi’,m) , (2.2.56)
3
P =28, — woux + 23 (eﬁ,‘l{m - eﬁ’,”) : (2.2.57)
1
3
o)y = -2 (2.2.58)

9 2z, xx’
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Using the found expression for the in-plane strains in terms of the unknown functions, we can write
the following matrix relations, which will be useful in writing the expression for strain energy in
terms of the unknown functions
9@} =z@{fP @} *k=123), (2.2.59)
(3x1) (Bx8) " (5x1)

where

(W@} =4 2 b, (2.2.60)

0
o, (2.2.61)
1

( )
‘Pix)o

k
goz(rz)l

k) 3. (2.2.62)
20

el?

{£® @)}

]
B—

Expressions for In-Plane Stresses and the First Forms of Transverse Stresses in

Terms of the Unknown Functions uy, wo,E(x’?,egfz) (k=1,2,3).

We will distinguish between the two forms of expressions for the transverse stresses in terms of the
unknown functions: the first forms, #ol) = ( Vol and Ho® = Ng®) obtained from the Hooke’s
law by substituting into the stress-strain relations the assumed transverse strains (2.2.25), (which we
also called the first forms of the transverse strains and denoted as sgi) = (eg’?) @ , 52’2) = (eﬁ,‘z’) (])),
and the second forms of transverse stresses, obtained from the equilibrium equations (2.2.1) and
(2.2.2), which will be denoted as o8 = DG ang o) = UN6K) | We showed in the first section
of this chapter that in homogeneous plates the second forms of expressions for the transverse stresses

satisfy the stress boundary conditions at the upper and lower surfaces of the plate. We will show
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later that the same is true for the second forms of the transverse stresses in the sandwich plates.
Besides, the second forms of the transverse stresses in the sandwich plate satisfy the conditions
of continuity of the transverse stresses at the interfaces between the layers with different material
properties. The first form of the transverse stresses can not satisfy the mentioned boundary and
continuity conditions. Therefore, the second form of the transverse stresses is more accurate than
the first one. The expressions for the in-plane stresses a;(,’;) in terms of the unknown functions will
be determined only from the Hooke’s law and, therefore, these expressions will be denoted by H as(c’;).

Constitutive relations (2.27), (2.2.8) and (2.2.10) can be written in matrix form as follows

{Ho.(k)} - [C(k)] {gk)} (k=1,2,3), (2.2.63)
(3x1) (3x3) (3x1)
where
Hag(;;)
{Ha.(k)} ={ Hy® L (2.2.64)
Hafz’;)
) O
E(k) 11—211(“ O 1—21/(“)
(k)| — 1
[C’ ] T 0 1 0 , (2.2.65)
RO 1—p(k)
1—2u(® 0 1—2v(F)
el
{e(k)} ={ ol % (2.2.66)
el?
Using equation (2.2.59) we can write
{Ho)} = [c<k)][z(z)]{ ® (@)}, (2.2.67)
(3x1) 3x3) X% " (5x1)

Strain Energy of the Sandwich Plate

Strain energy of the sandwich plates consists of strain energies of the face sheets and the core.
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Therefore, it can be written as follows:

/// HoMe) 42 HoWeld) 4 HoWe® 4 HoM e 4o HoW ) 19 HoM e | av +
v W W
(V1) 0 0 0 0 0

1
L [[[ | Ho@e 2 mo@e+ Hoel 4 Foel) +2Molel) +2 MoDel) | 4V +
had N S~

(V2) 0 0 0 0 0

1
+ -2-/// He®eB) 4 9 He@®eB) 4 He@3)e®) 4 0(3)5(3) +92 0(3) @ ) +92 0(3)6(3) dv ,
v W \W
0 o 0 0 0
where V;, Vo, V3 are volumes of the lower face sheet, core and upper face sheet. The underbraced
terms in the above expression are equal to zero due to the condition of plane strain. Using definitions
(2.2.60) and (2.2.64), we can write the expression for the strain energy in the form

L z3

U=—b// (1) H (1) dz dz + b// 5(2) 0(2)} dz dz +

0z 0 22
L 24

2/ {M}T{W} e

0 23
Lz3

- —b// 1> {6(1)} dz dm+%b// {e<2>}T [C(2>] {g@)} dz dz +

0z 0 22

sy o) e

0 z3

One can substitute expression (2.2.59) into the last expression yielding

1 r r (7 T

o=yl (fearicea) b
1 L T 23

el (Jaricae) e

L 24
fiee) (Jeareeg ) (o

(1x5) (3x3) (5%1)
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or

L
=] () o] o} +{rm ) [o2) {10}
0

(1x5) (5x5) (5x1) (1x5) (5x5) (5%1)
T
+{ 7 (3:)} [D(3)] { 7@ (m)}) dz | (2.2.68)
(1x5) (5%5) (5x1)
where
z2
[p0] = 12" [c®](2()] d= =
4 (5x%3) (3%3) (3x5)
[ Q-wm)a=z La- Hozd 109 ) A% 0 noz |
Uay=1 2 )s= 3 (1-m) 5=t oy
2252 23_,3 1_,4 2_ 2
E %(1 _Vl) 2v,—1 %(1 _Vl) 2v1—1 %(1_1/1) ;ul—l 0 %Vl ;v;jl
_ 1 1 P A2t 5_.5 3_,3
T 1+um Ja-vm)z= s (-m)g 11-m) 33 0 H2E = '
0 0 0 %22 -3z 0
21—z 1, -2 1, H-% z1=z2
A Vigu—1 V13,01 3V, 0 Q-v) 5 |
(2.2.69)
23
[p®] = [1z)7[c®]i2 () d= =
JEx3) Yayay (3%9)
[ — 2z 2_z2 2323 Y — 2
-wm) g3 J0-wiEs J0-wEH o e
2_.2 2oz At 2222
B %(1_’/2) ;ug—zl %(1"’2) 2v5—1 %(1_”2) 2U2jl 0 %V22u2—1
_ 2 1 2323 1 224—'7'43 z;’—z,‘? f’z—- :ai
T 1+ F1l-m) = (1-wm)g 5 (L—w) 5=y 0 32351 '
0 0 0 J23— 322 0
_ 2232 3_,3 .
L O s DIZE e X T 0 (1-v2) 555 ]
(2.2.70)

24

[D(3>] = [1z@)" c(3>][2(z)] dz =
PGS P (3x5)
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B 2 2 3 3
(1—vg) 3322 1(1_,,)53:11 1(1_,,)51:& 0 Y 22524
3) 2uz—1 2 3/ 2u3—1 3 3) 2u5—1 32u5—1
2 2 3 3 4 4 2 2
11— Z3=2  1l(q Z3—2y 1l 23724 1, 237%
> ;(1-w) 5=t 3Q v3) =t 3 (1 v3) 3551 0 2V3%501
3 3_.,3 4_,4 5_.5 3_.,3
= 11 - Z3—Z  l(1_ Z3—Zy 1y Z3T2g 1,,287%
1+us | 3 (1-w) it (-w) it (-t 0 3V¥335—1
0 0 0 124 — 323 0
Yo ZATZ4 1, #Aozp 1, -z 0 (1 —vg) 222
33u3—1 2Y33%u3—-1 3Y32u5-1 3) 2u3—1
(2.2.71)

The expression (2.2.68) for the potential energy can be written in the form

L {f(l)} g [D(l)]{f(l)}

U=%b/ ) [D®] (7@} § de=
0 {f(3)} [D(S)] {f(3)}
(1x15) (15x1)
DO 0 (0 ]
. L {f(l)} (5%5) (5?5)) (5%5) {f(l)}
_ - 0 D 0
_2b/ {2 (5[><]5) [(5x5)] (5[x]5) {r&} ¢ d=,
(1x15) | (5x5) (5%5) (5x5) | (15%1)
(15%15)
or
1 7 T
U=3b[{f} [D] {f} du, (22.72)
2 (1x15)(15%15)(15x1)
where
{r@}
(AT =< {f®} ¢, (2.2.73)
(1x15)
{r®}

[DD] 0] (0]
(5x5) (5% 5) (5%5)
o] =| [0 [D®] o |, (2.2.74)
(15x15) (5%5) (5%5) (5%5)

[0] [0 [D®)]
| (5x5)  (5x3)  (5x5) |
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Virtual Work of External Forces in Terms of Variations of the Unknown Functions uo,

k k
wo, 6&2), E(ZZ)

Virtual work of loads on the upper and lower surfaces, g, and g, correspondingly, is

L
6'W=/(q, bwl,_, +qu bw|,_, ) dr=
0

L
=/(qz 5w‘1)‘ +qu 6w® ) d . (2.2.75)
o 1 Z=2q

In notation §W the prime is used because in case of nonconservative external loads, the virtual
work §'W is not a variation of some state function W.

If equations (2.2.34) and (2.2.36) are used then

sw® = 6wp + 22 66D + (21 — 22) e,
Sw® = fwy + 23 55@ + (24 — 23) 552‘? . (2.2.76)
Z==24

The results of (2.2.76) can be substituted into (2.2.75) yielding

L
§FW = /ql [6w0 + 23 66D + (21 — 22) 655,?] dz +
0
L
+ /qu [&uo + 23 66D + (24 — 23) 655;?] dr . (2.2.77)
0

Finite Element Formulation for Static Problem of Cylindrical Bending of the

Sandwich Isotropic Plate

The column-matrices {f)}, defined by equation (2.2.62), can be written in the form

/ \ / \
<p£1x)0 U,z + 229 (5£:2z),z - E(mlz),a:> + %Z% (Egzz),mx - 5,(;2),:1:1:)

(1) 255:12)@ — Wo,zz + 22 (5‘(212),11: - 5522.1),1::)

‘ple
1)) — 1 _
=1 elh L=ﬁ 10 =
25;2) 25&12)

@ o
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{9} =

L €zz

—Zzz-dd—x
2%

0

2

0
(r®} =
_% .
R
0 0
0 0
L 0 0

3
‘P(u)o

3
‘P(zz)l

3
‘P(zx)2

26(132
(3)

1

(
Uug,z + 223 (5::2,:: - 512,::)

2¢e :(1:32), T

4 g pEE O
nis 0 -z 0
-1 0 0 0
0 0 0 0
1 0 0 0
' ‘Pgo ’ ' U,z
go(m‘i)l 26;22),1 — Wo,zz
1=l p
26 2%
A e
00 0 0 0]
002 o0 00
00 0 -1L 00
00 2 0 00
00 O 1 00|

2 (3)

+373
(3

1.(3
- EEgz),zz

2592

et

o O O O O

L

(

y

Uo

Wo
(1)

Exz

et

(2)

Exz

e

e

el?

(2)

(2)

Ug

wo

et

el

et?

el?

et

et?

— Wo,zz + 23 <5zz,mm - Ezz,zx>

(3 )
Ezz.xx — Ezzzx

64

(2.2.78)

(2.2.79)
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Up )
(2 0 00 22 13& -2ui 3]
0 -£& 00 0 -zt 2% 2y ;”1)
0o 0 00 0 0 0 —1& EZ{)>
0 0 00 O 0 2 0 -
0 0 00 0 0 0 S
|

Equations (2.2.78)-(2.2.80) can be written briefly in the form

{fM}y = [01] {F} ,

(5x1) (5x8)(8x1)

(1P} = (6] {F} ,

(5x1) (5x8)(8x1)
{f®} = [8s] {F} ,
(5x1) (5%8)(8x1)

or

(o) [ ey ]

(5x1) (5%8)

{(foy V| (&) | (F},

(5x1) (5%8) (8x1)

{f®} (0]

(5x1) ) L (5x8) J

where

( " )
Wo
el?
el

{F} =< )
(8x1) e

el

(3)

Ezxz

| @

65

(2.2.80)

(2.2.81)

(2.2.82)
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is column-matrix of the unknown functions of the problem and

) . ]
4 0 2z —%Z%E‘% 2z, % %253‘% 0 0
0 -& 24 s 0 -2 00
Pll=] 0 o0 0 -1.L 0 o o0/, (2.2.83)
(5x8)
0 0 2 0 0 0 00
0 0 0 1 0 0 00
4 0 00 0 0 0]
2
0 -& 002 0 00
@l=lo o 00 0 -1&L 00|, (2.2.84)
(5x8)
0 0 00 2 0 00
0 0 00 0 1 00
4 g 0 0 2zt 124 9,4 _1.248 ]
dz 34z 2°3dz? 34z 243 dz?
0 -£ 00 0 -zt 28 =nk
@l=[0 0 00 0 0 0 -1 (2.2.85)
(5%8)
0 0 00 O 0 2 0
0o 0 00 0 0 0 1
Thus, from the notation (2.2.73)
(7o)
{f} = @
(15x1) {f }
(1}
and the notation
[01]
(5%8)
g =| [0 |, 2.2.86
(1[5x]8) (5x8) ( )
(03]
L (5x8)
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One can write equation (2.2.81) in the form

{f} = 0] {F}. (2.2.87)

(15%1) (15%x8)(8x1)

The substitution of expression (2.2.87) into expression (2.2.72) for the strain energy yields

L
=%b / ( {F}) D) 18] {F) da (2.2.89)
0

15%x8)(8x1) 15x15)(15%x 8)(8x 1)

Strain energy of a finite element is

/ ( (6] {F}> (D) [8] {F} dz=

(15x8)(8x1)/  (15x15)(15x8)(8x1)
1 T
= / ( 0] {F}) D] 18] {F} dz, (2.2.90)
4 \(15x8)(8x1) (15x15)(15%8)(8x1)

where z; and z, are coordinates of the end-points of a finite element in a global coordinate system;
% is an x-coordinate in a local, element coordinate system (figure 2.4); | = 2o — z; is a length of a

finite element.

According to equation (2.2.77), virtual work of external forces, acting on a finite element of the

plate, is

!
oW = / @+ qu)6wo + (21 — 22) @ 6D + (22 @1 + 23 qu) 662 + (24 — 23) Gu 559;)] dz =
0

T o
5u0 ) 0 )
dwo q + qu
bell) 0
! 1

6 (1) — 2z

- /4 € IR (&1 = 22)a dT / § {F} {q} dz (2.2.91)

9 66( ) 0 a \(8x1) (8x1)
8 (22q1 + 23qu)
65(3) 0
L 6622 ) . (Z4 - z3)Qu
where {F} is defined by equation (2.2.82), and
T
{g} = [ (@+q) 0 (1—22)a 0 (22q+23q.) 0 (21— 23)qu J . (2.2.92)

(8x1)
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So, the principle of total potential energy for a finite element, 8U — 8'W = 0, takes the form

(15%8)(8x1) (15%15)(15x8)(8x1) (8x1) (8x1)

l T 1 T
%b 5 / ( (9] {F}) (D] 18] {F} dz - (6{F}) {q} dz=0. (2.2.93)
0 0

Now, we need to represent the unknown functions ug, wo, (—:gi),e(zﬁ) by interpolation polynomials.
The maximum order of derivatives of ug and of €§ckz) (k=1,2,3) , entering into the virtual work
principle (2.2.93), is 1, as observed from investigating equations (2.2.78)-(2.2.80). Therefore, inter-
polation polynomials for u¢ and e(mli) must be of at least first degree, and across boundaries between
elements there must be continuity of, at least, up and eé’? (continuity of derivatives of up and efcl‘;)
is not required). Therefore, we choose the first degree Lagrange polynomials to interpolate uo and

e (k = 1,2,3) as functions of Z:

uo = |M|{a} = [M Mz]{a} , (2.2.94)
e = () {9} = |ay ) {&V ], (2.2.95)
where
My=1-7, My=7, (2.2.96)
{a} = uol0) ; (2.2.97)
up(l)

. eX(0)
{e( )} - { 0 } (2.2.98)

In the same fashion, the maximum order of derivatives of wg and e® is 2. Therefore, interpolation
polynomials for wy and sg;) must be of at least second degree and must have derivatives, continuous
at the element boundaries up to the first order (i.e. wy, -%1,59? and %’2 must be continuous).
Therefore, we choose the Hermit polynomial of the third degree to interpolate wp and el (the

lowest degree of the Hermit polynomials is three):

wo = | N} {@} = |[N1 N2 N3 Ng| {0}, (2.2.99)
el = V] {E“’“’} = [Ny Nz N3 Na) {E(k)}, (2.2.100)
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where
3z 278
N 1= 1- —l'é— +

B

No=7T—

22 T

T e

wo(0)
wp(0)
wo(l)
wo(l)

e(zli)(O)

(0)

dz

e

(k)
Lz (1)

69

(2.2.101)

(2.2.102)

(2.2.103)

The column-matrix {F} of the unknown functions of the problem, defined by equation (82), now

can be written in the form:

10}
0]
0]
0]
0]
0]
| Lo)

LV
0]
0]
0]
0]
0]
0]

{F} =

0]

et

el
@

Exz

(2)

€zz2

(3

Ezz

(3)

€zz

0]
10
0]
0]
[M]
0]
0]
0]

0]
0]
0]
0]
0]
L)
0]
0]

0]
U
0]
10J
0]
0]
(M]
10J

M {@} )
LN {@)
|M ] {eD}
V] {eM}
|M ] {e®)}
V] {e®}
|M] {e®}
| (V] {e®}

10} |

0J
0]
10}
0]
10
0]
L]

(@
(@)
()
()
| (&)
()

()

J ey,

(2.2.104)
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or

where
M)
(1x2)
0]
0]
10]
Q =
(8x24) 10]
10]
Y
1]

0}
i
0}
10}
u
0}
0}
10}

{F}= [Q]

{d} ¥

(8x1) (8x24)(24x1)

0]
0]
4
0]
0]
0]
0]
0]

0}
0}
0]

|V]
(1x4)

0}
0]
10}
0]

0
0
0
0

(Llj\:rzj)
0
0
0

0]
0]
0]
0]
0]
2
0]
0]

0]
0]
0]
0]
0]
0]
LM

(1x2)

0]

0] |

0]
0]
0]
0]
0]

LV

(1x4) |

70

(2.2.105)

(2.2.106)
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is a matrix of shape functions, and

{}

(2x1)

{w}

(4%x1)

ey
(2x1) ( & )

(e

@y =¢ w0y (2.2.107)
(24x1) .

{£®}
(2x1)
day

{e®}
(4x1)

)

(2x1)

{£®}
L (4x1)

/

is a vector of nodal degrees of freedom of an element. In equation (2.2.107)

dy = ug(0), da =uo(l), ds=1wp(0), dy = wy (0), ds =wo (1), ds =wp (1),

deglz)
dr =D (0), dg =€l (1), do =V (0), dro = - (0), dix =€l (1),
delez) dagzz)
diz = —- (), diz=€2(0), dia =2 (), dis =2 (0), dig = Iz (0),
dESz%’.)
drr =@ (1), dis = 2= (1), dho = £ (0), dao = (1), dan = £ (0),
deg) dag)
doo = K(O)’ dos =€ (1), dog = — 1) . (2.2.108)
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These are the nodal degrees of freedom of an element.

Let us write expression (2.2.90) for the strain energy of a finite element in terms of the nodal

degrees of freedom:

N:lr—t

! T
b/( (8] {F(T)}) [D] [0] {F(z)}dT=
0

(15%x8) (8x1) (15%x15)(15x8) (8x1)

! T
b/ ( 0 Q@) {d}) D] 16 Q@) {d) dz=

4 (15x8) (8x24) (24x1) (15%x15)(15x8) (8x24) (24x1)

t\DIr—-l

N)Ir—l

T

{d} ( (6] [Q(f)]) (D] [0] [Q(7)] {d} dz=

J (1x24) \(15x8) (8x24) / (15x15)(15x8) (8x24) (24x1)
(24%15)

l T
=L@y |» / ( 0] [Q(fn) ol ol le@nar| 1) .

2 (1x24) (15%8) (8x24) 15%x15)(15x8) (8x24) (24x1)
(24x15)
or
- 1. .7 [~
U= ={d} k| {d} , (2.2.109)
(1x24) 5, 54)(24X1)
where
T
7] / ( G {Q(m)]> D] (6] [Q(®) d= . (2.2.110)
(15x8) (8x24) (15x15)(15%8) (8x24)

(24x24)
(24x15)

Let us write expression (2.2.91) for the virtual work of external forces, acting on a finite element

of the plate, in terms of variations of the nodal degrees of freedom:

[ (s) wmer - [ (g 2) ey

0
l

= {7 [1Q@) {¢(@)} dz ,

(1x24) 9 (24x8)  (8x1)
or
W= 6{d}T {r} , (2.2.111)
(1x24) (24x1)

where
1

7 = [1Q@) {a(@)} dz . (2.2.112)

(24x1) s (24x8) (8x1)
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Let us substitute expressions (2.2.109) and (2.2.111) into the principle of total potential energy
for a finite element, U —8'W =0 :

oo ] 0,) - 70, -
=% (s(a)7) H{d}+ @7 7] tay- (s(a)T) tr} - (2.2.113)
But
(s4a)7) [] tar =) [§] 614d} ,
therefore, equation (2.2.113) takes the form
(s4ay™) ([F] 4@y - 1) =

or

[75} @) = {7 . (2.2.114)

(24x24)(24>(1) (24x1)

This is equilibrium equation for a finite element in terms of the nodal degrees of freedom. For
convenience of representation of a load, acting on a wide plate in cylindrical bending, let us divide

the left-hand and the right-hand sides of equation (2.2.114) by b:

1 [~
R gt

(24x24)24% D) 24x1)
or
(k] {d} ={r} |, (2.2.115)
(24x24)(24x1) (24x1)
where
i T
W =3 [f] -/ ( 8] Q= ) D] (0] [Q(z) dz|, (2.2.116)
(24x24) (24x24) 0 (15x8) (8x24) (15x15)(15x 8) (8x24)
(24x15)
1
(1) =4 17 =4 [1Q@I"g@) az|. 22117
(24x1) (24x1) s (24x8)  (8x1)
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Matrices [k] and {r} are the stiffness matrix and load vector of a finite element. In
(24 24) (24x1)
equations (2.2.116) and (2.2.117) matrix [8] is defined by equation (2.2.86), matrix [Q]-by equation

(2.2.106), matrix [D]-by equation (2.2.74), matrix {q}-by equation (2.2.92).
The components of the element stiffness matrix were computed analytically, with the help of a
program for symbolic computation. Some components of the stiffness matrix are shown in Appendix

2-B.

. . k
Second forms of expressions for the transverse stresses in terms of wug, wo, a&) 52’?

After computing the unknown functions uo(z), wo (), ) (x), eh) (z) (k =1,2,3) as a result
of solving the finite element equations, we can find displacements, strains and stresses in the plate as
functions of x- and z-coordinates (there is no dependence on the y-coordinate because we consider
cylindrical bending). The displacements can be computed by formulas (2.2.34)-(2.2.36) and (2.2.41)-
(2.2.42), the in-plane strains 69(512, egi), 65(53;) - by formulas (2.2.47)-(2.2.49), the in-plane stresses rrglx),
aﬁ), o&";) - by formulas (2.2.67). The first forms of expressions for the transverse stresses in terms
of up(z), wo (x), k) (z), ek (z) (equations (2.2.67)), i.e. expressions for the transverse stresses
obtained from the constitutive relations, were used only for the purpose of expressing the strain
energy in terms of the unknown functions, which was used for the finite element formulation and
can also be used for deriving differential equilibrium equations in terms of the unknown functions. In
order to compute the transverse stresses, we will use the second forms of expressions for the transverse
stresses in terms of ug(z), wo (), el (z), e® (z) (denoted as o) = (aa(;'i))(”) o) = (ai’i)) (H)),
obtained from the equilibrium equations (2.2.1) and (2.2.2). As it was mentioned previously, the
second forms of the transverse stresses are more accurate than the first forms.

H_ (1) HU:S:%:), H )

First, let us write expressions (2.2.67) for the in-plane stresses “ o3z, ozz in expanded

form:

EM 1,0 1
Ho-a(v%r) = 1+ NOETDYE) |:’u'0,-’l’ + 222 (E:(tzz),a: - 5:(1:12),1:) + 5‘23 (E‘(zi),zz: - Eglz),xz):‘ +

EL L0
M o1—mm

e+

1 1
+ EQ 1,0 3 (6(1) _e® )] o
1+ v(1) 1 —2,(1) Tz,T T zz,xx zz,2T
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1 EM 1,0
- (1) 2
214 (M1 —p(1) 2222 20, (2.2.118)
2 2 9 2
Hy) _ E® 1-v3 “o +E() »2) o,
T T 14 1-2@ T 1+l -0 "

1 E® 1-,@ .
T 21 +v@1 -2 Egz),z:r Z (2.2.119)

+

E@ 1_,2 (

2) _
701 _0,@ \* wozz) 2

zz,T

EG®  1_,® 1
HU:S:SI) = 1+ l/(3) 1— 21/(3) [UO,I + 233 (E:gz),:t - E:(z:3z),z) + §z§ (Egz),zz - Efz:i),zx)] +

E® 0
o1 n®s: T

E® 1-—0)
+1 +00)1 - 203 {25;32),:5 ~ Wo,zz + 23 (Eg),xz - 5£2z),a:x>] z=

1 E® 1-,08
) 2
214+ 0@ 1200 ees 2 (2.2.120)

Now, let us find expressions for 03(5122 and 0922 by integration of equilibrium equations (2.2.1)

and (2.2.2). Performing integration of the first equilibrium equation for the lower face sheet of the

sandwich plate (k=1),
oD 4o =,

zx,x 2,2

with respect to z in the direction from the lower surface of the plate to its upper surface, we receive

o) = gl . —/ Hol) dz (21<2<2), (2.2.121)
1 ;]
0
where oY = 0 due to the first boundary condition (2.2.20). From (2.2.121) it follows that
zZ=2z
22
oV =T / Ho(), dz . (2.2.122)

21
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Integration of the first equilibrium equation for the core of the sandwich plate (k=2),

Tz,2

0@, +0@, =0,

from 2, to z, where 29 < z < z3, yields

z

o =o| - / Ho®  ds (2.2.123)

22
According to the continuity conditions (2.2.23) between the plies with different material properties

and according to equation (2.2.122), we have

22

=- / He() dz. (2.2.124)
Z=Z2

21

= (1)
_ - Uzz
2=2,

o

Substitution of (2.2.124) into (2.2.123) yields:
29 z

ol? = —/ HU;IZ)J dz — / He@) dz  (2p<2<23) . (2.2.125)

TT,T

Zy 22
For the upper face sheet (k=3) we receive analogously
z3 z3 FA
o® = —/ Hol) dz - / Ho@  dz - / Ho® dz  (z3<z<24) . (2.2.126)
F 22 23

Substitution of expressions (2.2.118)—(2.2.120) into expressions (2.2.121), (2.2.125) and (2.2.126)

yields the required second forms of expressions for the transverse stresses aé’? in terms of the

. k k
functions ug, wg, E;(z;z), 622)2

(ailz))(”) =ol) =

EMD 1M 1
= [uﬂ,xx + 222 (E:(z:%z),z:c - E:(z:];':),zz) + '2_23 (692),”:11: - Eglz),a:a:m)] (21 - Z) +

1+vM1 -2,

D L0
+ eV
140D 1 —2p1) 557

(21 - Z)+

1 EO 1-,M
T 13, M1 = 2sM [26;(;1)‘2: — Wo,zzz + 22 (592“:; - ggzz),um)] (2 - 2%) -
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1 1
1 E® 1-0

— 3_ .3
61+ l/(l) 1-— 21/(1)622,1'::1 (21 z ) ? (22127)

(an

ED  1-p®
T 1101 -20

1
[uﬂ,zz e (E(Ii)’zz - 5(I12)M) * §z§ (Egzz)’ru - Ef:lz)mr)] (21 — 22) +

EV 0
+1 +p11 - 2,1 €z, (21 - 22) +

1 EM 10
+§ 14011 -2,0) [26“(51‘3)’3’3 — Wo,zzz + 22 (Eglz),a::cm - 6222),1:951:)} (Zf - 2%) -

1 EQ 10 ) s
g 1+ 11— 21/(1)6‘(22),:5191 (21 - 22) +

e @ 2) 2
+ (1 - 21/(2)) (1 + V(z)) [(1 -V ) Ug,zz + V szz,z] (20 — 2) +
1 E® 1-,3 .
+§ 140321202 [(261(622),:51 - wO,zzz) (Zg - 22) — :0)_5‘(22:.'),1;:1:1 (zg _ 23)] ’ (22128)

(1)




CHAPTER 2 78

EM 10 1
= 1+ l/(l) 1— 21/(1) [uO,ZI + 222 (6:(z:2z),:c:c - Ezlz)z:r) + ZZ ( Ezzz T Eg?zmx)] (Zl - 22) +
EM ()

(1) —
1+2M 1= 2@ €22,z (Zl 22) +

(1 1,0
i %1 fl/(l) 11— 21;0)) 2., — wozas + 72 (€Wns — €@ )| (- 3) -
1 EM 1-M
61+ M1 -2, e eee (21
E®
" (1-20@) (1+03®) [(

1 E®@ 1-,0 1
+ 21+ 0@ 1 -2, [(2692{“ - wo’"’”) (zg - zg) - gggzz)z:w (zg - Zg)] +

E® 1_,0 1
[uo,m 422 (e, —e0,) 42 (e - gg)m)] (55— 2) +

+

- 22)

(2)) Ug,zz + v® sf})z] (20 — 23) +

T O SRy )

E® O g
+ 14031~ 21/(3) €ziz (23— 2) +
1 E® 1,6
2 1+ 1/(3) 1 - 2,,(3) [ .’L‘z zz — Wo,xzz + 23 (E(zsz),xzz: 5&3 sz)] (zg _ Z2)
1 E® 1-,®
ST @I gy nes () (2.2.129)

Integration of equilibrium equations

o), +0®, =0 (k=1,23)

yields
o = 0| _/ W ode (n<2<2), (2.2.130)
W—l’ z)
3
b
where oY = —%‘- due to a boundary condition (2.2.20),
Z=Zl
z, z
W=-L [0 di- [0l d: (n<z<a), (2.2131)
3! %2
2y Z3 z
o9 =% / o), dz / @) dz - / o®, dz (3 <z<) . (2.2.132)

Zl 22 23
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Substitution of (2.2.127)-(2.2.129) into (2.2.130)-(2.2.132) yields

(n
1 e - _%
(GZZ ) - JZZ b +

(1) _ (1) 3 3_(2) 3.(1) a.(2) i)
E 1-v )(2—21)2[%+2Z2<d—ez-‘dez~>+%zg<d6“~d€z">:l+

14001 -2,0 dz3 dz3 dax3 drt dz4
1 EM v » d2el)
ST 0 I—am ¢~ 2) g

1 EM 1,0
61+rM1—2,0

d3a(1) d*w d4€(1) d4€(2)
2 Tz 0 zz zz
(24 221) (=~ 1) lQW‘ el )|

1 EM 1,0
241+ M1 2,0

(2% + 2212+ 323) (z — z) (2.2.133)
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(rn q
(O’ﬁ)) = ngz) = _El- +

+

21+ M1 -2,

241+ M1 -2,0 (

O 1-v® o alduw Pel a1, (diel)  dleld
17012 27 dzd TP\ Tdrd T Tdz® | T A\ Tdxt T dat
1 EM e s 2d25§1)

2 1 de

1 E® 1-,M

3.(1) 4 4..(1) 4(2)
2 Exz d Wo d zz d zz
61+ M1 —200 (22 4 221) (22 = 21) [2 dz®  dzt T ( dzt  dzt )1 B

o diell)
d 4

1 EO 1M

B +2212 +322) (22— 21)° +

EQ 1,0 dBug
@ _
IO T-20 [ s T2 (5” e el) +

1 d45(22) d4E‘(z£)
52% ( dl‘i - d—$4 (21 - 22) (22 — Z) +

E® (1) d26£1)
14+ 001 - 200) dz? (21 — 22) (22 —2) +

1 E® 1-,0 [ @30  gtw e  @4e?
= - O 4o —22 - —22 (z2~22)(z2—z)—
21+ 1)1 —200) dx3 dz? dx? dxt 12

1 EMW 1M gteld)
61""1/(1) 1 —2001) dzt

E(Q) d3u d e )
—_ @ 0 (2) zz | 4 N2
(1-2v@) (1+v®) [(1 v ) i TV i ] 5(22—2)"+

1 E®@ 1-,0 [( 3@ gty

1 2
51 +v®1 - 20(2) dz3 - dzt ) g (222 + Z) (22 - z) —

(5 - 23) (22— 2) +

1dte? 1
3 dzt 4

(325 + 2252 + 2°) (22 = 2)2} : (2.2.134)
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(I1) q
(af;)) = 0'2,32) = __b!. +
E(l) 1-— I/(l) 2 d3u0 0 dgf:(z%z) d36(1) 1 d4££2’) d45glz)
1+ 1-2,0 (2—2)" o5 +20 | 5~ | tg2 | e~ g || T

EV L0 , 2

1

21+vM1-2,0 (2 = =) a2 T

1 E® 1,0 5 Bl dtw, drel) g1
61+ M 1—2s0 (22 +221) (22 = )" |2 a3 dzt 2\ Tdrd T Tdr a
1 EO 1-,0 0 5 dield

HMIT D120 (25 + 22122 + 322) (20 — zl) o

ED 1M [d3y
@ _ .
I 012 [ o 2 (B = o) +

1 d46(2) d4€£12)
52\ g || (@) ()

EQ L0 20
1+ 1—200) dz? (21 — 22) (29 — 23) +

1 E® 1,0 [ @30 gy, a4 ed)  @4e? s o
21+vM1-2,0 2 dz3  drt T2 dzt dxt (= - 2) (22~ z) -

1 E® 1,0 g4
61+vM1— 21/(1) dz* (

E(2) d3u d2€
— (2 L) 2z RY
* (1-2v@) (1+v@) [(1 v ) i TV a2 } 2 (22 — 23)" +

1 E®@ 1-,3 *e® gty
214 0@ 1- 202 dz3 dz4

?”23) (z2 — 23) +

) % (222 + 23) (22 — z3)% —

= (323 + 22023 + 23) (=2 — )’
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1+0vM01-200) | dxd dx3 dx3 272\ dzt dz?
E®) D d2€£12)
1+001 200 da? (51— 2
1 EM 1M [ Bl dhw, , (d“elez) d4e? )} ( 0
. &tz

)] _ () 3 3.(2) 3_(1) 4_(2) 4 (1)
ED 1-y [d W, (d e Lk 1, (@) @D\
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2
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(£ - 2) (23— 2) +

) +

Second forms of expressions for the transverse strains in terms of the unknown

functions

The first forms of the transverse strains egf,), sgf,) (k =1,2,3) are the unknown functions of the

problem, that can be found directly from the finite element solution, as the nodal variables. The
more accurate values of the transverse strains, the second forms of the transverse strains, can be
computed by substituting the second forms of the transverse stresses, formulas (2.2.127)—(2.2.129)
and (2.2.130)—(2.2.133) into the strain-stress relations (2.2.13) and (2.2.14):

NI 11— (k) é an (&)
()" = St [ )" - 125 )] (2245

(Ei‘?)(m _ lz%k) (G;f;))(”’ (2.2.137)
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(k=1,2,3).

The in-plane stresses oo , which enter into these formulas, are computed by formulas (2.2.118)-

(2.2.120).

Satisfaction of stress boundary conditions on the upper surface

In the process of derivation of the second forms of expressions for the transverse stresses in terms
of the functions g, wo, e B (equations (2.2.127)—(2.2.129) and (2.2.133)—(2.2.135)), we used
stress boundary conditions at the lower surface and the conditions of continuity of the transverse

stresses at the interfaces of the layers of sandwich plate:

q h
c® =0, = —?’ at 2= —o =213
o =0, ol =0 at s = -2 =z

0@ = ¢

t
z zz ) Ufzi)zag:i) atz=§=23;

Therefore, the second forms of the transverse stresses satisfy these boundary and continuity condi-
tions. When we considered a homogeneous plate, we showed that the second forms of the transverse
stresses satisfy also the boundary conditions at the upper surface of the plate. Now, let us show that
the same is true for the sandwich plate in cylindrical bending, i.e. the second forms of the transverse
stresses satisfy the boundary conditions at the upper surface. These boundary conditions, written

here again, are

h

c® =0 atz= 2 =2 (2.2.138)
h

o = % atz=g =2z (2.2.139)

Like in the case of homogeneous plates, this can be proven by showing that the differential equations
for the unknown functions, that result from substitution of the second forms of the transverse stresses

into the boundary conditions on the upper surface (equations (2.2.138) and (2.2.139)), are the same
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equations that follow from the virtual work principle?. But in case of the sandwich plates, or

laminated composite plates, such a proof requires very voluminous derivations. Therefore, for the

sandwich plates the same thing will be shown in slightly different way: it will be shown that the

differential equations in terms of force and moment resultants, that are derived by requiring that

the second forms of the transverse stresses on the upper surface are equal to the externally applied

loads on the upper surface, are the same equations that follow from the virtual work principle.
Substitution of expression (2.2.126) into the boundary condition (2.2.138) yields

22 23 24

/ Ho()  dz + / Ho®  dz+ / He®)  dz=0, (2.2.140)
2) 22 23
or
d T
= Hy - dz=0, (2.2.141)
zy
where
Hol)inz) <2< 2
Haxz = HO';(E2I) in 29 _<_ z < 23 (22142)
Hy) in 23 < 2 < zg
Introducing an in-plane force resultant, defined as
l 3 Fk+1
Nez = / Hopw dz = / Hyk) gz (2.2.143)
3 k=1 3

2Therefore, the system of differential equations for the unknown functions, that is derived from the virtual work
principle, contains those differential equations that can be derived also by substituting the second forms of the
transverse stresses into the boundary conditions (2.2.138) and (2.2.139) on the upper surface. Therefore the solution
of this system of differential equations for the unknown functions, derived from the virtual work principle, is such,
that being substituted into the expressions for the second forms of the transverse stresses in terms of the unknown
functions (field variables), this solution guaranteés that the second forms of the transverse stresses satisfy the boundary
conditions on the upper surface. More generally, the fact that the same differential equations for the unknown functions
(but not all of them) can be derived both from the boundary conditions on the upper surface and from the virtual
work principle, means that the virtual work principle contains information that the second forms of the transverse
stresses satisfy the boundary conditions on the upper surface. Therefore, the finite element formulation, based on
the virtual work principle, leads to the finite element solution for the field variables that guarantees the approximate
equality of transverse stresses (written in terms of those field variables) on the upper surface to the external loads

(per unit area) on the upper surface.
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we can write equation (2.2.141) in the form

dNgz

In =0.

Substitution of expression (2.2.132) into the boundary condition (2.2.139) yields

%y %3 z4
q q
_F’ - /aglz),r dz — /Uﬁ),z dz — /oii)z dz = —bi ,
L3 %y 23
or
¥4
d
'—/Uzz dz _|_ .q_“_l'_—t& 0 s
dx
(31
where

o inz <2<z

— 2) .
Ozz = a,«gz) inz <z<L 23

o in 23<2z< 2

Using definition of a transverse force resultant

%4 3 Fkht 3
_ k k
sz=/oxz dz =) / o) dz=7" QW ,
2 k=1 7 k=1
where
Zk+1

Qi’;) = / a;’;) dz,

Zx
we can write equation (2.2.148) in the form

szz qu + g,
dz T b

=0.
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(2.2.144)

(2.2.145)

(2.2.146)

(2.2.147)

(2.2.148)

(2.2.149)

Differential equations (2.2.144) and (2.2.149) are the stress boundary conditions at the upper surface

of the plate in cylindrical bending, expressed in terms of the force resultants. Equations (2.2.144) and

(2.2.149) express the statement that the second forms of transverse stresses® satisfy the boundary

conditions at the upper surface. The same equations follow from the principle of virtual work (

Appendix 2-C). Therefore, the virtual work principle contains information that the second forms

30btained from the pointwise equilibrium equations (2.2.1) and (2.2.2)
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of the transverse stresses 0z, 0 satisfy the boundary conditions (2.2.138) and (2.2.139) on the
upper surface of the layered plate. Therefore, the finite element formulation, based on the principle
of virtual work, guarantees that the second forms of the transverse stresses (expressions (2.2.127)-
(2.2.129) and (2.2.133)-(2.2.135) ), satisfy approximately the boundary conditions (2.2.138) and
(2.2.139) on the upper surface of the plate.
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2.3 Comparison of Results of the Plate Theory with Ex-
act Elasticity Solution for a Simply Supported Isotropic
Sandwich Plate in Cylindrical Bending under a Uniform
Load on the Upper Surface

Let us consider cylindrical bending of a symmetric sandwich plate with isotropic face sheets and the
core (Figure 2.3). The upper surface of the plate is under a uniform load with intensity (force per
unit length) q,. By g. we denote not an absolute value of the load intensity, but a projection of
the load intensity on the z-axis, therefore g can be positive or negative, depending on direction of
the load. Along the edges z = 0, L the plate is simply supported. The Young’s moduli of the face
sheets are equal and will be denoted by E; and the Young’s modulus of the core will be denoted by
E,. We will consider the Poisson ratio v to be the same for all layers.

A load vector of a finite element is defined by equation (2.2.117), written here again:

{r} =3 [Q @) {q(z (2.3.1)

(24x1) (24x8) 8><1)

where [Q)] is defined by equation (2.2.106), and {q} is defined by equation (2.2.92). Computations
give the following result for the load vector:
O 7‘2-—-0 r3 = lgb— T4=T%lzg#,T5=%l%)— 6=—11—21292;i,7'7=0,

17, gu
rg=0,79=0,710=0,711=0,712=0, 713 =0, 714 = 0, 115 = 5l23 %

1 152 _ _
T16 = 1512 % 23, 117 = §lzs %, rig = — 1515 % 23, 119 = 0, 720 =0,

1
T = 1% (24 — 23), Top = 75125 (20 — 23), 723 = 315 (24 — 23),

Tog = —1502% (24 — 23).

As an example, let us consider a sandwich plate with steel face sheets and an isotropic core,
made of foam. We assume the following properties of the face sheets and the core:

core: Young’s modulus E; = 1.0192 x 1082, v = 0.3, thickness t = 2 x 107?m, mass density
Pe=2x 102%‘73-;

face sheets: Young’s modulus E; = 1.9796 x 1011%, Poisson ratio v = 0.3, thickness of each

face sheet % - % =1 x 1073m, mass density p; = 7.8 x 103%‘{;.
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The total thickness of the plate is h = 2.2 x 10~?m. We will consider the lengths L of the plate,
varying in the range from 0.05m to 1.2m. In order to provide the condition of cylindrical bending,
we assume that the width b of the plate is much higher than its length L. The plate is under the
load & = —1 x 105;%’5 (directed downward, in the negative direction of z-axis). In this example
problem the plate is weightless, i.e. the intensity of gravity field is considered to be equal to zero.

We will compare the stress 05, obtained from the finite element solution, based on the plate
theory, and from the exact solution, presented in Appendix 2-E. The stresses will be evaluated at
T = % and at various values of z-coordinate. In this linear static problem, the transverse stresses o,
and o, are obtained by substituting the stress 0, into the equilibrium equations 0zz,s + 02z, = 0,
0222 + 022, = 0 and integrating these equilibrium equations. Therefore, if the in-plane stress 0z
is accurate, the transverse stresses 0., and o, must be accurate too, if the numerical procedures of
integrating the equilibrium equations are correct. Therefore, in this chapter, the purpose of which
is to evaluate the quality of the simplifying assumptions on which our plate theory is based, it is
sufficient to compare only the in-plane stress 0z, obtained from the finite element analysis, with
that of exact elasticity solution.

The tables below show the results of comparison.
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Table 2.1: Comparison of exact and finite element solutions for stress o;, in a simply supported

uniformly loaded sandwich plate with homogeneous isotropic face sheets and the core. Stress 0, is

computed at x = —I2=, thickness of the plate is h = 0.022m, thickness of each face sheet is 0.001m,

length L of the plate varies

L % Oz at z= —% Oye 8t 2= 53—'—5-51 Orz at z= %
) (10 2) (a0 25) (x1025)
exact plate exact plate exact plate
theory theory theory
0.05 | 0.44 1.556 1.555 —1.484 —1.481 —1.556 —1.585
error0.06 % error 0.2 % error0.06 %
0.1 0.22 6.222 6.221 —5.938 —5.922 —-6.222 6.221
error 0.02% error 0.3 % error 0.02%
0.2 0.11 24.887 24.875 -23.75 —23.69 —24.887 —24.875
error 0.05% error 0.25 % error 0.05%
0.3 | 0.07 55.99 55.97 —53.45 -53.23 —55.99 —55.97
error0.04 % error 0.4 % error 0.04 %
0.4 | 0.055 | 99.54 99.49 —95.02 —-94.64 —99.54 —99.49
error 0.05 % error 0.4 % error 0.05 %
0.5 0.044 155.5 155.4 —148.5 —147.91 —-155.5 —155.4
error 0.06% error 0.4 % error 0.06 %
0.6 0.037 223.97 223.75 -213.8 —212.74 —223.97 —223.75
error 0.1 % error 0.5 % error 0.1 %
0.7 0.031 304.85 304.69 —291.0 —289.3 —304.85 —304.69
error 0.05 % error 0.6 % error 0.05 %
0.8 | 0.0275 | 398.2 399.18 -380.1 —-378.3 —-398.2 399.18
error 0.2 % error 0.5 % error 0.2 %
0.9 0.024 503.9 504.5 —481.0 —477.5 -503.9 504.5
error 0.1 % error 0.7 % error 0.1 %
1 0.022 | 622.1 624.4 —-593.9 -587.55 —-622.1 —624.4
error 0.4 % error 1.1 % error 0.4 %
1.1 0.02 752.8 756.6 —718.58 —698.7 —752.8 756.6
error 0.5 % error 2.8 % error 0.5 %
1.2 0.018 895.9 873.2 —855.2 -790.85 —895.9 873.2
error 2.5 % error 7.5 % error 2.5 %
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Table 2.2: Comparison of exact and finite element solutions for stress o, in a simply supported
uniformly loaded sandwich plate with homogeneous isotropic face sheets and the core. Stress o, is

computed at z = % (L = 0.5m), thickness of the plate is h==0.022m, thickness of the face sheet 7

varies
T I Oz at z=-2 0z at z=%2FH Ozz at 2z=12
(m) (x10° ) (1025 (x10°2%)
exact plate exact plate exact plate
theory theory theory
0.001 | 0.045 | 155.5 155.4 —148.5 —147.8 —155.5 —155.4
error 0.06 % error 0.5 % error 0.06 %
0.002 | 0.09 85.60 85.48 —77.82 -T77.57 -85.60 -85.48
error 0.1 % error 0.3 % error 0.1 %
0.003 | 0.14 | 62.94 62.83 -54.35 —54.23 —62.94 —62.83
error 0.17 % error 0.2 % error 0.17 %
0.004 | 0.18 52.18 52.09 —42.69 —42.56 -52.18 -52.09
error 0.2 % error 0.3 % error 0.2 %
0.005 | 0.18 | 46.245 46.18 —-35.728 —35.67 —46.245 —46.18
error 0.14 % error 0.2 % error 0.14 %
0.006 | 0.27 | 42.76 42.67 -31.09 —30.98 —42.76 —42.67
error 0.2 % error 0.35 % error 0.2 %
0.010 | 0.45 38.78 38.69 -21.14 —-21.09 —-38.78 —38.69
error 0.2 % error 0.2 % error 0.2 %

So, we see, that the layerwise theory of the sandwich plates, based on assumptions of non-zero,
constant (in the thickness direction) transverse strains in the face sheets and the core, leads to highly
accurate values of the in-plane stresses. Therefore, the high accuracy of the transverse stresses can
also be achieved, if they are computed by integration of equilibrium equations (or equations of motion
in dynamic case), in which the in-plane stresses are substituted. But this approach to construction
of the sandwich plate theory leads to the finite element formulation with many degrees of freedom
per element: 24 degrees of freedom for a one-dimensional element for cylindrical bending. Therefore,
in the next section a simplified approach to construction of the sandwich plate theory, with fewer

degrees of freedom in the finite element formulation will be considered.

2.4 Simplified theory of a sandwich plate in cylindrical bend-
ing

If the thickness of the face sheets is much lower than the thickness of the core, then we can consider

the face sheets on the basis of the classical plate theory, i.e. set the first forms of the transverse
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strains (assumed transverse strains) in the face sheets equal to zero:
ef) =0,ell) =0,e{2 =0,62 =0, (241)

The accuracy of analysis with these additional assumptions will be verified in the end of this sec-
tion by comparing results of the finite element analysis, based on assumptions (2.4.1), with the
corresponding exact elasticity solutions. The assumptions (2.4.1) do not mean that the transverse
strains and stresses in the face sheets are completely ignored in this computational model. In the
post-process stage, the second form of the transverse stresses is computed by substitution of the
in-plane stress o, into the pointwise equilibrium equations 04z z +0z5,; =0, Oz + 0,2, =0, and
by integration of these equations. Then the second form of the transverse strains can be obtained by
substitution of the second form of the transverse stresses into strain-stress relations. So, the assumed
transverse strains, defined by equations (2.4.1), are used only in the expression for the strain energy,
that is used for the finite element formulation. If one needs the values of the transverse stresses in
the face sheets that counteract the external forces, and the corresponding transverse strains, one
has to use the second form of these strains and stresses.

The similar approaches to analysis of the sandwich plates with thin face sheets, in which either
transverse strains or transverse stresses in the face sheets are assumed to be equal to zero, are
adopted, for example, by Mead (1972), Markus and Nanashi (1981), Whitney (1987), Al-Qarra
(1988), Yu (1997) and other authors.

Besides, according to assumptions (2.2.25), we have
e® = (2), e®) =eP(a). (2.4.2)

If there are no external in-plane forces, applied to the plate, then, due to the fact that the Poisson’s

ratio of the core is usually small, we can set
ugp = 0. (2.4.3)

So, the unknown functions of the problem in our simplified theory of cylindrical bending of

sandwich plates are
wo (z), €& (2), €2 (a).

In an example problem we will show that this simplified approach to the analysis of the sandwich
plates, based on the additional assumptions (2.4.1) and (2.4.3) does not lead to a significant loss of

accuracy of stress computation if the face sheets are thin as compared to the core.
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In this simplified computational model all of the formulas of section 2.2 are applicable, if according

to the assumptions (2.4.1) and (2.4.3), we set eilz) =0, ef}) =0, 692) =0, ES? =0, ug = 0. In the

finite element formulation of the nonsimplified model, presented in section 2.2 of this chapter, the

nodal variables are (Figure 2.4):

M @) ®)
wo wp, B0 o o B o) @) @) g G (2.4.4)

dw rtxrzY T2z dm Y *xz Y Tzz) dx Y gz ez Y dl‘

In the simplified model, the nodal variables, associated with the unknown functions 592, 59), E;(,;E';),

E(zi), ug are to be set equal to zero:

1 1 dfglz) 3 3 dfgsz)
u=0,el) =0, =0, —= =0, e® =0,e8 =0, ——=0 (2.4.5)

So, the nodal variables of the simplified model of the sandwich pate in cylindrical bending are

@
wo, B0 @ @ =z

diL' ] E;pz) Ezz ) da; (246)

In order to find the accuracy of stress computation by the simplified model of the sandwich plates,
presented in this section, let us consider the same numerical example as in section 2.3 (page 2-71)
and compare the results with the exact ela.sticity solution (Appendix 2-E). The tables of comparison

are given below.
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Table 2.3: Comparison of exact and finite element solutions, based on the simplified model, for stress
04¢ in a simply supported uniformly loaded sandwich plate with homogeneous isotropic face sheets

and the core. Stress o, is computed at £ = —211, thickness of the plate is h = 0.022m, thickness of

each face sheet is 0.001m, length L of the plate varies

L 2 Ogze 8t z=-% Oz at z=2iH Ozz at z=15%
(m) (x106-2) (%108 2) (x10025)
exact plate exact plate exact plate
theory theory theory
0.05 | 0.44 1.556 1.555 —1.484 —1.476 —1.556 —1.555
error 0.06% error 0.5% error 0.06%
0.1 0.22 6.222 6.219 -5.938 -5.906 -6.222 —6.219
error 0.05% error 0.5% error 0.05%
0.2 0.11 24.887 24.865 —23.75 —23.63 —24.887 —24.865
error 0.09% error 0.5% error 0.09%
0.3 | 0.07 55.99 55.92 —53.45 -53.17 -55.99 -55.92
error 0.125% error 0.5% error 0.125%
0.4 0.055 99.54 99.38 —95.02 —94.52 -99.54 -99.38
error 0.16% error 0.5% error 0.16%
0.5 0.044 155.5 155.3 ~148.5 —147.68 —155.5 —155.3
error 0.13% error 0.55% error 0.13%
0.6 | 0.037 | 223.97 223.64 —-213.8 —212.57 | —223.97 —223.64
error 0.15% error 0.58% error 0.15%
0.7 | 0.031 | 304.85 304.58 —291.0 —289.1 —-304.85 —304.58
error 0.09% error 0.65% error 0.09%
0.8 | 0.0275 | 398.2 400.015 —380.1 -377.1 —398.2 —400.015
error 0.46% error 0.8% error 0.46%
0.9 0.024 503.9 505.0 —481.0 —476.4 -503.9 —505.0
error 0.2% error 0.96% error 0.2%
1 0.022 622.1 625.1 -593.9 —586.55 —-622.1 —-625.1
error 0.48% error 1.2% error 0.48%
1.1 0.02 752.8 744.5 —718.58 —-691.1 ~752.8 —744.5
error 1.1% error 3.8% error 1.1%
1.2 | 0.018 | 895.9 837.5 —855.2 —760.76 —895.9 —837.5
error 6.5% error 11% error 6.5%
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Table 2.4: Comparison of exact and finite element solutions for stress 0 in a simply supported
uniformly loaded sandwich plate with homogeneous isotropic face sheets and the core for stress 0z,

at z = £ (L = 0.5m). Thickness of the plate is h=0.022m, thickness of the face sheet T varies

for stress 0., at z = % (L = 0.5m), thickness of the plate is h=0.022m, thickness of the face

sheet T varies

I Oz at z= —% Oz at z=#fA Oec 8t 2=1%
(m) (x106-2) (x1082;) (x108 25)
exact plate exact plate exact plate
theory theory theory
0.001 | 0.045 | 155.5 155.3 —148.5 —147.68 | —155.5 —155.3
error 0.13% error 0.55% error 0.13%
0.002 | 0.09 | 85.60 85.39 —77.82 —77.48 —85.60 —-85.39
error 0.2% error 0.4% error 0.2%
0.003 | 0.14 | 62.94 62.78 —54.35 —-54.14 —62.94 —62.78
error 0.25% error 0.4% error 0.25%
0.004 | 0.18 52.18 52.04 —42.69 —42.52 —-52.18 —-52.04
error 0.27% error 0.4% error 0.27%
0.005 | 0.18 46.245 46.12 —35.728 -35.64 —46.245 —46.12
error 0.27% error 0.25% error 0.27%
0.006 | 0.27 | 42.76 42.63 -31.09 -30.97 —42.76 —42.63
error 0.3% error 0.4% error 0.3%
0.010 | 0.45 38.78 38.64 —21.14 —-21.07 -38.78 —38.64
error 0.4% error 0.3% error 0.4%

We see that with a simplified approach to construction of the sandwich plate theory, we have
achieved an accuracy of the stresses that is quite acceptable for practical analysis of thick sandwich
plates, though slightly worse than the accuracy of the stresses obtained with the non-simplified
approach, i.e. with non-zero assumed stresses in the face sheets. The advantage of the simplified
model of the sandwich pate, presented in this section, is a lower number of degrees of freedom in
finite element models. This conclusion allows to apply the similar simplified approach to modeling
the sandwich plates with the laminated composite face sheets and anisotropic core. The finite
element program for analysis of the sandwich cargo platforms, dropped on the ground, with account
of damage progression, presented in the chapter 5, is based on the simplified theory presented in

this section.
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2.5 Appendix 2-A
Exact solution for a simply supported homogeneous plate
in cylindrical bending under a uniform load on the upper
surface

This problem is solved in order to compare the stresses obtained from exact solution with the
stresses obtained from the plate theory, based on assumed transverse strains, presented in chapter 2,
equations (2.1.72)—(2.1.74). The exact solution for a wide simply supported uniformly loaded plate
in cylindrical bending (which is a plane strain problem with respect to the y-direction) presented in
this Appendix, is similar to the exact solution for a narrow rectangular simply supported uniformly
loaded beam (which is a plane stress problem with respect to the y-direction) presented in the book
of Saada (1993).

Let us consider the problem of cylindrical bending of a plate of length L, height h and width b.
Cylindrical bending implies that b > k. The plate is under the uniform load, acting on the upper
surface with intensity (force per unit length) g, (Figure 2.2). By g, we denoted not an absolute value
of the load intensity, but a projection of the load intensity on the z-axis, i.e. g, can be positive or
negative, depending on the direction of the load. The sides = = 0, L are acted upon by reaction forces
9'—55, and the longitudinal forces and moments at these edges are equal to zero. So, the boundary

conditions for this problem can be written in the form:

- ) = .
0z.=0and o,, = 5 at z 5 (2-A.1)
h
0z =0ando,,=0at 2= 5 (2-A.2)
A A
/am dz =0 and /om 2zdz=0atz=0, L. (2-A.3)

h

2

wiF

The boundary conditions for the edges z = 0, L are written on the basis of Saint-Venant principle,
according to which the substitution of the actual load by the statically equivalent load influences
the distribution of stresses only in the limited area around the place of application of the external

load.
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Let us write the equilibrium equations and the equation of compatibility in terms of stress:

00zz | 00z

R i (2-A.4)
00 002 _
o SR, (2-A.5)
0? 62
(527 + 521 e o) =0 (49

As a first approximation, we will assume that the stresses 0z4, 022, 0z, are defined by the known
expressions for beams from Mechanics of Materials courses. Then we will add to these expressions
some unknown functions and find these functions by requiring that the expressions for the stresses
satisfy the equilibrium equations (4) and the compatibility equation (5). The first approximation
for the stresses is

:M(.’E) :qum(L_x)z

Gaz =7, 0 oI,
T2z = 0 )
_ @S
Ozz = 1,0 )
where I, = T1-2—bh3 is a moment of inertia of rectangular cross-section with respect to y-axis, @ = %
b/2 h/2
is a shear force, S = / / zdzdy = —%b (22 - %2—) is the first moment of rectangular cross section
—b/2 =
above a line z = const. So, the first approximation for the stresses has the form:
6
Oz = —Ei%;im (z—L)=z, (2-A.7)
6 qu L o h?
sz:ﬁg—b_ (.’L"——2-> <2’ ——71- , (2—A8)
0. =0. (2-A.9)

These expressions for stresses do not satisfy the equilibrium equation (5). In order to satisfy the

equilibrium equation (5), let us find o, from this equation :

z

z
oo, 00,
Ozz — ozzlz:h/Z = = dz=— dZ,
—

0z oz
P R/2 h/2
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_ 1 qu 2
0=~ (224 B)2 (2 - R). (2-A.10)

Expression (10) satisfies the boundary conditions (1) and (2) for o2..

The equilibrium equation (4) is satisfied by the first approximations of o5z and 0, (expressions
(7) and (8)), but the compatibility equation (6) is not satisfied by the first approximation of oz and
0., (expressions (7) and (10)). To satisfy the compatibility equation (6) we use the fact that the
equilibrium equation (4) will still be satisfied, if we add to the expression (7) for 04z some function

of z:

Ogz = —%%—x(x——L)quf(z). (2-A.11)

If we substitute expressions (10) and (11) for 0, and 04 into the equation of compatibility (6), we

receive the differential equation

“3p 2 + Fr 0 (2-A.12)
the solution of which is
4qu 3
f(2)= PR + Cy1z+ Co. (2-A.13)
So, expression (11) for o, takes the form:
=—£—q—ux(.’c—L)z+iq—uZ3+C’1z+Cz. (2-A.14)

Ozz = 7337 PE)

The constants of integration C; and Cy must be found from the conditions (3). From (14) it follows

that
h
2
/O'mz dz = Cgh,
Iy
2
h
f 1gq 1 1g 1q
= —3up2 ., - 3__ w2, Zl¥ar
/ozzdz 20D +1201h 2bx+2me
4
Therefore, from conditions (3) we obtain:
Cy=0,
3
G=-2,
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and expression (14) for 0, takes the form:

= S% A3 34
Ooc = =757 z(z—L)z+ B B (2-A.15)

So, we found that expressions (8), (10) and (15) satisfy the boundary conditions (1)-(3), the equi-
librium equations (4), (5) and the equation of compatibility in terms of stress (6). Therefore,
expressions (8), (10) and (15) are the solution of the problem. Stress oy, can be found from the

following plane-strain relation:
Oyy =V (0zz + 022). (2-A.16)

So, the exact solution for stresses in a plate, in cylindrical bending, is

g Ba( L\(._ P
=T R b 2 4 /)’

_ 1 qu 2
02 = ~g33 7 (22 + Rh)* (2 - h),
__ 8 403 3
=gy t@ - L)zt gm s - s

Oyy =V (Ozz +0z2) .
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2.6 Appendix 2-B
Some components of an element stiffness matrix for an
isotropic sandwich plate, for an element with 24 degrees
of freedom

The components of the stiffness matrix were derived by exact integration with the use of sym-

bolic computation capabilities of the program ”Scientific Workplace”. In this Appendix only few

components of the stiffness matrix are shown, because of limitations on the size of the dissertation.

2] — 29— V21 + V2 —29+ 23+ V2o — V23 —23+ 24+ V23 — V24

kn=F - E. - E
NEMT Ay (2w - 1) 0 +v)(2v—1) T+ y)(2w-1)
21— 20 — V2 + V2o —29 + 23 +Vv20 — V23 —23+ 24+ V23 — V24
kig = —E E E
=BT ey TP TG @ -1 S i+ @ —1)
k13:0’

" __lg B2 -vd v} 1 —23+42f+vad —va 1z —22 + 23 v vzl — vz
WS T Ay (-1 2 2 1+ @-1) 2 i(1l+v)v-1)
k15:0’

12— —v4vad 1 —B+B v vz} 1 -4 v vz
kie = 5 Ea - 5E2 - 5E3 ;
2 I(1+v)(2v-1) 2 I(1+v)(2v-1) 2 Il+v)(2v-1)
ki = —E 22921 — 22 — 229v21 + va — 22+ I/zf
7 ! I(1+v)(2v—1) ’
k18=E122221—z%—2z2V21 +Vz§-—zf+uz%
I1+v)(2v-1) ’
k22=E121_22—V21+V22—E2_22+23+VZ2—Vz3—— 3—23+Z4+I/Z3—1/24

11+v) (v -1) Il+v)(2v—-1) A+ @2r-1)

ka3 =0,
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2 422+ vl — vz}
2422 tva—vad 1 —zi+2) 2
lpdnd tir _ipoaral 3 Il+v)(w-1)
=551 5P T ) (@ - D)
ke = 3B v - )
kos =0,
2 2422 4v2d vk 1 —z§+z§+uz§—uzf’
1 2%—Z%—VZ¥+V22 }_E2—22+ 3)(2,,2_1) 5E3 Lo
ko= 5B A @) T2 1A+
2
2zp2) — 22 — 229021 +VZ%—~Z%+I/21’
kor = B I(1+v)(2v —1)
2 _ 2 2
Qzpz) — 22 — 229v21 + V25 — 2] +1/z1,
kas = —Fn T +v) (20 —1)
3
3 — 23 —23 + 25 +vad — vz}
3_ B v v —23 4+ 23 + v V3 _4p, 5+ 2 i
o T B B1+v)(2v-1) B(1+v)
ko = 4By v — 1)
3
3 —23 25 42 — vz
3 —z3 3+1/z3—1/23_ 3+ 23 ’
2:13—23—1/21134'1/22 —2E2 222’123 )(21/2_1) 2E3 l2(1+y)(2l/_1)
ks = 2B, 2(1+v)(2v-1) 2(1+v
3 3 _ .8
3423 S — v —25 + 23 + vz i
23— 23 — vz} + v sp, 2t TV >+ 4Es B+v)(2v-1)
1y AT @ - 1)
kss = —4E 3 Y v — 1)
3
3 —23 4 23 4 vzl — vz}
3 B4 4 vad - v 3 4 23 |
zi’—zg—uz?+l/z2_2E2 222+z3)(23_1) — 2F; PO @ D)
kao = 2E1 2(1+v)(2v-1) 2Ql+v
k37=07
k38=07
3423 +vad vz}
BB vl v 4 25+ 2z 3 ’
tpdodotired 2 22+23;L(2u2-1)3‘§E3 IA+v)(@2v-1)
ks = 351 IA+v)(@v—1 3 ° 1(1+v
31,30 a3 _ 3
S+ 23 $ — v} —25 + 23 + vz i
223 —vad+va 2E—zz+z3+uz2— $ 4om, iy
By tak 2(1+v)(2v-1)
kas = —2B S oy o - 1)
3+ 23 vvad—v2
~B+ A +vad—va 2. -2+ 3 ’
I dodieg Zg, lefzzu)@f—n ~3bs 1(1+v)(2v—1)
ki = 351 Il+v)(2v—1) 3 1+
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ka7 = lEl 3292} — 23 - 3221/2% + Vzg — Zz*i5 + 2I/zi3
3 I(1+v)(2v—-1) ’
kag = —lE 3222% - z% - 322uzf —}-1/‘2"23 - 22% -{-21/2:13
4 371 IQ+v)(2v-1) ’
ks = 4E12§3_ 2B —va +vE 4E, —z§ +234vad —v 4E, —z§ + 23 + vzl — uzfi’,
B(+v)(2r-1) B+v)(2v-1) B(l+v)2v-1)
hes = —2F; 2:132— 2 —va + vz +2E2—zg + 2 4va —va 2E3—z§ +23 v — 1/22,
Z{+0) (20 - 1) A+ (2 - 1) 2+ @ 1)
ks7 =0,
ksg =0,
4 B-F-vd+vd 4 —B+ B 4v—va 4 —23 42§ +vad — vz}
kes = zE1 - B - zE3 )
3 I(1+v)(2v-1) 3 I(14v)(2v-1) 3 I(1+v)(2v-1)

1, 32922 — 25 — 320023 +v2s — 223 + 2v23
ker = —3 En
3 I(1+v)(2v—-1)

bl

32022 — 28 — 3zv2d +v2f — 228 + w2
[T+v) @ -1

1

1
keg = §E1
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2.7 Appendix 2-C
Remarks on variational principles and equilibrium equa-
tions for a plate in cylindrical bending in terms of force
and moment resultants

In chapter 2 we wrote the stress boundary conditions on the upper surface of the sandwich plate

03(532) =0 at z= % = 24. (eqn 2.2.141), 092 =2 at z= % =24 (eqn 2.2.142) 4

in terms of the force resultants® :

Nz _ 0, (equation 2.2.144),
dz
dQz: | ¢t g _ :
- + 7= 0  (equation 2.2.149).

It was stated in chapter 2 that equations (2.2.144) and (2.2.149) follow also from the virtual work
principle, and the reader was referenced to this Appendix. From this we will be able to make
a conclusion that the virtual work principle contains information that the second forms of the
transverse stresses satisfy the boundary conditions on the upper surface of the plate®. Therefore,
the finite element formulation, based on the virtual work principle, guarantees that the second forms
of the transverse stresses satisfy approximately the boundary conditions on the upper surface of the
plate.

Our finite element formulation of the problem of cylindrical bending of the sandwich plate is
based on the virtual work principle:

3

Z/// ( Holk) gek) 4 Hok) el 4 Holk) 652’?) av

k=1(V(k))

4where aﬁ’,’ and ag) are second forms of transverse stresses, obtained by integration of the pointwise equilibrium

equations 0zz,z + Ozz,z = 0,0zz,2 +0zz,2 = 0

24 3 Zh41 ] 3 Zk+1
5defined by formulas Qz: = /au dz = Z / o'g;) dz and Nzz E/ Hopr dz = Z / Hugfc) dz
M k=12, 0 k=12,

6in addition to satisfaction of the boundary conditions on the lower surface of the plate and conditions of continuity
of the transverse stresses at the the interfaces between the layers of the layered plate, that is guaranteed by the fact
that these boundary and continuity conditions were used in the process of integration of the pointwise equilibrium

equations Ozz,z + Ozz,z = 0and 0zz,2 + 022,z =01in order to obtain stresses 6z, and 02z
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L L
—/qu (6 w® ) dr — /q, (6 w®
0 e 0

where the superscript k denotes a number of a layer. The transverse stresses, that enter into equation

>dx=0, (2-C.1)

(2-C.1), are the first forms of the transverse stresses, i.e. they are expressed in terms of the unknown
functions with the help of the Hooke’s law, equations (2.2.63). If in equation (2-C.1) instead of the
first forms of the transverse stresses H 0;';), H a;’? we put the second forms of the transverse stresses
o), o) (equations (2.2.127)-(2.2.129) and (2.2.133)-(2.2.135) ), i.e. transverse stresses obtained
from the pointwise equilibrium equations, we obtain the virtual work principle, written in the form

3
3 / / / (#o® s +ol 6e + o) seld) av

k:l(v(m)

L L
——/qu (6 w® ) dz — /q, (6 w®
0 = 0

which is equivalent to the virtual work principle, expressed by equation (2-C.1). The equivalency

) dz=0, (2-C.2)

of variational equations (2-C.1) and (2-C.2) is in the sense that both of them produce the same
differential equations for the unknown functions ug, wo, sﬁ;’?, egi) and boundary conditions. This
idea is discussed at greater length in Appendix D.

Now, from the virtual work principle, written in the form of equation (2-C.2), let us obtain the
equilibrium equations for a sandwich plate in cylindrical bending in terms of force and moment

resultants. For this we need to substitute in equation (2-C.2) expressions (2.2.47)-(2.2.49) for e in

terms of the unknown functions ug, wo, 5&?, eff?, perform integration by parts in order to relieve the
variations of the unknown functions, collect the coefficients of variations of the unknown functions
and set them equal to zero separately. As a result of this, we receive the following equilibrium

equations of a sandwich plate in cylindrical bending in terms of force and moment resultants:

dNg;

Suo : = =0, (2-C.3)
d2ME.’E u

Swo oy g, (2-C.4)
dMLy)

sel:  —--Qu) =0 (k=123), (2-C.5)

2 p(2)
. 1L NGB0 (k=123). (2-0.6)

27 dz? 2z
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where the force and moment resultants are defined as follows:

24 k=3 *Ft!

Ngz = / Hsz dz = Z / HU:(z’;) dz,

2y k=1 2k
Zk+1

M@ = [ Hol 2
E

Z4 k=3 k41

k=3
Mm=/H0”zd:c=Z/ HJS?zdz:Z
k=1

k=1

z1 zZx
Zk+1
QW = [ ol de,
zx
24 3 Zk41
Qzz = /Jzz dz = Z ol®) dz =
P k=1 P
Zr41
R /a(k) 22 dz
£
Zp41
N = [ oD de
Zg

If we sum up equations (2-C.5), we receive

3 (k) 3
dM.
e (k) —
dx Z Qes’ =0,
k=1 k=1
or
szx
dz - Q:cz =0.
From equations (2-C.4) and (2-C.15) it follows:
dQz: | qut+4,

=0.

dm+ b

104

(2-C.7)

(2-C.8)

(2-C.9)

(2-C.10)

(2-C.11)

(2-C.12)

(2-C.13)

(2-C.14)

(2-C.15)

(2-C.16)
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Equilibrium equations (2-C.13) and (2-C.16), obtained from the virtual work principle, are the same
as equations (2.2.144) and (2.2.149), which express the statement that the second forms of the
transverse stresses satisfy the boundary conditions on the upper surface of the sandwich plate”.
Therefore, the virtual work principle contains information that the second forms of the transverse

stresses satisfy the boundary conditions on the upper surface of the plate

7Note that the transverse force resultants QS‘), which enter into the equation (2-C.16), are defined the same way
as Q(zkz) , which enter into the equation (2.2.149): they are defined in terms of agf,), the second forms of the transverse

(k)

shear stresses, not in terms of H Ozz
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2.8 Appendix 2-D
Equivalence of the virtual work principle for a plate with
transverse stresses obtained from the pointwise equilib-
rium equations, to the virtual work principle for a plate
with transverse stresses obtained from the constitutive
equations

In Appendix 2-C a statement was made (with a reference to the Appendix 2-D) that the virtual

work principle for a plate can be written in two equivalent forms:

/// (#0400 660 +2 Hogs 662z + P02z 8222) AV
)

L
_/Qu (6“}
0

) dz=0 (2-D.1)
z=2z)

L
) da:—/q, (611)
z=24 9

and

/// ( Ho'a:x b€z + 2022 0ezz+ 0z 6522) av

V)

L L
—/qu (610 )dm—/q, <6w
0 s 0

where in the first equation the transverse stresses Hg.., Ho,. are obtained from the constitutive

) dz =0, (2-D.2)
z=z,

equations, and in the second equation the transverse stresses o, and o, are expressed in terms
of the unknown functions by integration of the pointwise equilibrium equations oy;; = 0. The
equivalence of variational principles (2-D.1) and (2-D.2) is in the sense that both of these variational
principles produce the same differential equations and boundary conditions.

This statement was a necessary logical link in the proof that the finite element formulation, based
8

on the virtual work principle (2-D.1) guarantees that the second forms of the transverse stresses

satisfy the boundary conditions on the upper surface of the plate (pages 79 - 82).

8obtained by integration of the equilibrium equations 0zz,z + 0zz,z = 0, Ozz,x + Czz,2 =0.
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In this Appendix we will show that for homogeneous isotropic plates the virtual work principles
(2-D.1) and (2-D.2) produce the same differential equations and boundary conditions. For a sandwich
plate this can be shown in a similar fashion, but the derivation is much more voluminous.

The differential equations and boundary conditions for a homogeneous isotropic plate were de-

rived from the virtual work principle (2-D.1) in chapter 2 (equations (2.1.47)-(2.1.56)), and these

equations, written here again, are

(5110 .

" h2 1 ’
(1-v) (uo - EEZZ) +ve,,=0 (0<z<L) (eqn2.1.47),

1—-v bEh3 1"t
dwo : Axo(i-2) 12 (wév - 25m) =qu+q (0<z<L) (eqn2.1.48),

h2 1 e 1"t "
-y (w - 25:2) =0 (0<z<L) (eqn2.149),

bezy
&z €z ¥ To(1— 2wy \"0

7 h,2 1 hZ h2 1 "
e WV (uo — -ézezz> +(1+v) [Eu + 3 (Zésﬁg = 3% )] =

_a+ V)bg =) (gu-q) (0<z<L) (eqn2.1.50).

1 h2 1"
Either (1-—v) <u0 ~ 9g%

) + ve,, = 0 or ug specified at z =0,L  (eqn 2.1.51);
either 25:” — wg =0 or €, specified at z =0,L (eqn 2.1.52);
either 25;2 - wg =0or w(') specified at z =0,L (eqn 2.1.53);

either 25;;/, - wg' = 0 or wp specified at z=0,L (eqn 2.1.54);

either (1 —v) (u; - Z%h%:z) +ve,, =0or¢,, specified at z=0,L (eqn 2.1.55);

either (1 —v) <u0 - ——h%:;) +ve,, =0 or €, specified at z=0,L (eqn 2.1.56).

Now, let us derive differential equations and boundary conditions from the virtual work principle

(2-D.2). The expressions for the strain and the stresses in terms of the unknown functions uo(z),
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wo (), €xz (2), €22(z), that enter into the virtual work principle (2-D.2), were found in chapter 2.

These expressions are

w = wo(z) +€:2(z)z (eqn 2.1.24),

1
oo = U+ (2652 —wp) 2 — 56222’2 (eqn 2.1.27),

E 1
H __ _ / 1 _ - "2
Ope = ——————(1 =) {(1 V) [uo + (264 —wg) 2 5€ z ] + Vezz} (eqn 2.1.28),

_ E(l bt I/) " h 1 " " 2 h2 1 1" 3 h3
T2z = "M+ v)(1 - ) ["0 (Z+ 2) t3 (262 —ui ) (z 1) 8=\" "%/ "

Ev / h
m&fzz (Z -+ ‘2‘> (eqn 2129),

a E(l _ V) 1 2,1 1 2 " v
= — o e | =(2 R N
7 bt T+ -2v) [8( 2+ h)*ug’ + 57 (z — h) (22 + B) (2%2 w) )

Ev 1

1
+ (1+v)(1-2v)8

gy (45° —4hz+31%) (22 + h)? Eﬁl’] 2z +h)e.,  (2.1.30).

Substitution of equations (2.1.24), (2.1.27) — (2.1.30) into equation (2-D.2) yields:
L h/2
E / / " 1 ", 2
0=0b — (1 —-v) |ug+ (262 ~w0)z——-2—6zzz 4 VEz p X

A+v)(1-20)
0 —h/2

X [5% + (26e,," — bwg ) z — %65’;/2] dz dz+

1 " 1t 2 h2 1 " 3 h3
5(25“—“’0) (z ——4—) ‘gfzz <z +§ —

Ev , h
mfzz (2 + 5)}2 b€z, dz dz+

L h/2

/
of [ et e ()

0 —h/2

+b/ / {—q—b’ AT ) fg(’{ i)%) [%(22 +h)2ug + -2%4-(;: — h)(2z + h)? (251; ~ wg‘/)
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1 "
gy (45 — 4hz + 312) (22 + 1)’ ]+ (1+Vi';_zu)§(2z+h)2€”} P dr ot
L
f
0

Performing integration with respect to z in equation (2-D.3),

L
E 1
_ /___hz " 2 ' d
-——_———(1+u)(1—2y)hb_/[(1 u)(uo 2 ezz> + ve ] Sug dz+
0

(2-D.3)

o=

L
(@ — qu) (6€22) / q + qu) (bwo) dx.
0

we obtain:

L

_____E____—- 13 P ,

+(1-*-1/)(1—21/) (1-v) 6h b/ (2, —wy) be, dz
0

L

E " "
T 0/‘ <7 ub) v dot

L
E 1 1 1
_____——————— 1 —_ ' _____h2 " o . "
+(1 +v)(1-2v) / [( v) ( 2a%0 1 350 Ezz> Y ] oe’,, dx+
0

L

E 1 1" 1 " " 1 "t 1 !

B | A - 2 (e, —wo ) - phte| — vk )

Taroa-) /{ =) [2 Y712 ( - s ) i 522] vt 6“}2 bezs dzt
0

L

_gl_ E(].—'V) l 3 1 4 e v

+b/{ ST Ao 6" 0 2" (2ez: — wi )
0

1 5 IV Ev 1
ke, ]+(1+z/)(1—2u)6h5" be,, dx+

L

L
+ / R (@ - qu) (6esr) da— / (a1 + ) (6u0) dz. (2-D.4)

0 0

no

Integration by parts in equation (2-D.4) yields:
L

a:%:m[(l—u)(uo—ﬁhQ ") + uezz] (buo)|
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L
“Tri-m) (ERICEE:

1.3

+5h° E(-v)

1 3

E(1-

1.3 E(l1-v)

12 1+ (-2)

+—1—h3b E(l-v)

1,3

E 1
tTaoa —2u)h3b [(1 —v) <_ﬁ

1

bO/L{ 1—1/)[ h?u ”__ (

(1+1/

(1+v)(1-2v)

2
) 1—2 )/(5
(2

m (25;’2 - w'" (5100)

E( 7
T b(1+u) 1—21//
0

1
—— K2 ) = /
+ 320h € ) 241/622] (6€’.)

7”

E
ST [“'”) (~ami+

110

L e ) + ue;z] (6uo) dz+

wy') (0egz) dx

L

+
0

o) (8wp)

L

III _ wo (611)0) T

1 L

0

L

+
0

] (6€22)

1 2.1 1
320" ) 21"
1

1
'ﬁ’ﬂﬁi!) 24 ] (6622) dz+

1" 1 4 " 1 o !
_wO)_48h 622] V2h Ezz}Z(SExz dx+

24

L
qQ E(1-v) Liaw 1 4fam v
I Gl N o 5y L § P
+b/{ bh+(1+u)(1—2u) g U0 (Ew “’0)
0
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1 hSelV Ev 1,3 "
e 2 d
"% ] A+2)(1-20)6 06z dut

L L _
+ 0/ SRS 0/ (a0 + ) (wo) da. (2D5)

N>

From the last equation we obtain the following differential equations:

dug (1-v) ( -3 h2 ;’;) + vel,, =0, (2-D.6)
Rb  (1-v) v
: AN S S — 9" = 2) = -D.
8w E 0700 —2) (wp ene) — (@ +qu) =0, (2-D.7)
1 E(1-v) E
begs: — =hPb———t— (26, —wp') + ——————2b
Caz 6 (1+1/)(1—21/)( foz ~ )+(1-l-1/)(1—21/) X ,
1 1 1 1
x {——(1 - v) [Ehzug - —1—2-h3 (262, —wy') — Eh"e'z'f,_] - V§h2€'zz} =0, (2-D.8)
T e T | A A
2 1+v)(1-2v) |6 24
1 Ev
B3l 1.3 n
120 ] T ara-myet ot
E 1 1
— m|(1- o 2elV) — —ue | =0. -D.
HTED [( V) ( 28" * 330" c ) 24”E~Z] 0 (2-D.9)
After simple transformations, equation (2-D.8) can be written in the form
bezz (1 - l/) (uO - ﬁhz IH) + VEzz =0, (2'D8,)

and equation (2-D.9) can be written in the form:

h3b (1 - 1/) IV "
b€,z Eﬁ-m (wo 25“) — (@ +qu) +

N Eh%b (1=v) (ur - —h2 V) Ly | =0 (2-D.9)
4(1 +I/) (1 _ 21/) 0 24 2z . .

0 because of eqn (2-E.6)
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In summary, the differential equations that follow from the virtual work principle (2-D.2), are the

following:
bug:  (1-v) ( ug — 511 hza;';> + vel, =0, (2-D.6)
un: B2 Ol -2t~ ( a) =0 (2-D.7)
Sews : (1- ) (ug - ih%ﬁ) tve, =0, (2-D.8)
e B U2 (Vg (g g =0 (2D.9)

12 (14v)(1-2v)
We see that only two out of these four equations are independent, but these two equations are the
same equations that follow from the virtual work principle (2-D.1). As can be seen from equation
(2-D.5), the boundary conditions, that follow from the virtual work principle (2-D.2), are the same
as the boundary conditions that follow from the virtual work principle (2-D.1) (equations 2.1.51 -
2.1.56).

In a similar fashion it can be shown that the same conclusions can be made for the layerwise
model of the sandwich plate. But for the layerwise model of the sandwich plate the proof is much

more voluminous.
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2.9 Appendix 2-E
Exact Elasticity Solution for a Simply Supported Isotropic
Sandwich Plate in Static Cylindrical Bending under a
Uniform Load on the Upper Surface

Let us consider cylindrical bending of a wide symmetric sandwich plate with isotropic face sheets and
the core (Figure 2.3). The upper surface of the plate is under a uniform load with intensity (force
per unit length) q. By g we denoted not an absolute value of the load intensity, but a projection of
the load intensity on the z-axis, i.e. g can be positive or negative, depending on the direction of the
load. Along the edges = = 0, L the plate is simply supported. We will denote a number of layer of the
plate by a superscript k& (k = 1,2,3). The Young’s moduli of the face sheets are different from that
of the core (E() = E® #£ E®), but the Poisson ratio is the same for all layers (v = v =),
The equations of linear elasticity, as applied to this problem, have the form:

equilibrium equations:

U:Ec’;:),x + U:S:IZ),z =0, (2-E1)

ol +ol). =0; (2-E2)

strain-displacement relations for plane strain:

et = ulf), (2-E.3)
e = wk), (2-E.4)
2e) = ul®) + ¥, (2-E.5)
eg;) = 575’;) = 6;’;) =0; (2-E.6)
constitutive relations for plane strain:
o) = (1—+1-§2kl)—_2y)— (1= v)el +veld)]; (2-E.7)




CHAPTER 2

E® :
olk) = A=) (8 +e) = v (o1 + o0

W 14v)(1-2v

o) = o) =

or, in the inverse form

1-12 v
el) = E®) (Ug;) 1 VU§§)> ;

boundary conditions:

w=0atz=0,L and z = 0;

—t/2
/ a,(rlz) dz=0atzxz=0,L

—h/2
t/2

/ag? dz=0atz=0,L r

—t/2
h/2

/aﬁ) dz=0atz=0,L

t/2 )

h/2
/amzdz=0ata:=0,L

—h/2
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(2-E.8)

(2-E.9)

(2-E.10)

(2-E.11)

(2-E.12)

(2-E.13)

(2-E.14)

(2-E.15)

(2-E.16)

(2-E.17)
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or
—t/2 t/2 h/2
/ oD 2z dz+ /U:(czx) zdz+ /US’T) zdz=0atz=0,L;
—h/2 ~t/2 t/2
h/2
/ Oz, dz—&‘-— at r =0,
~h/2
h/2
/ Oz dz:—qig atz=1
—h/2
or
—t/2 t/2 h/2
L
/ ol dz + / c@dz + /ag)dz = %u at x = 0;
—h/2 —t/2 t/2
~t/2 t/2 /2
L
/ aﬁ) dz + / aizz)dz-f— /crg)dz = _%5 atz = L;
—h/2 —t/2 t/2
of) = 0,0) =0at 2= —=;
h
ol =0,0 = -qb—u at 2 = 5

symmetry condition:

(§)-
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(2-E.18)

(2-E.19)

(2-E.20)

(2-E.21)

(2-E.22)

(2-E.23)

continuity of displacements and stresses at the interfaces between the core and the face sheets:

t
u® = 2@ WM = @ o) = 6O o) _ 5() ¢ , = 5

u? = u(3),w(2) = w(s),oﬁ) = Ug),og) = aﬁ"f) at z = -;—

(2-E.24)

(2-E.25)

We will find exact elasticity solution of this problem, following a procedure, suggested by Pikul

(1977) for a problem with different boundary conditions.
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Let us take shear strains of the layers in the form
e® = R (22 _ c<’°)) z, (2-E.26)

where R and c(*) are the unknown constants, which are to be defined. Upon substitution of (2-E.26)

into the constitutive relations (2-E.10), we receive

Ek)
(k) - = 2 _ k) -
Ozs =7 n VR (z c ) z. (2-E.27)

Let us substitute expression (2-E.27) into the equilibrium equations (2-E.1) and (2-E.2), and inte-

grate them with respect to = and z correspondingly:

E®*)
ol = —=—R[a% + ¥ ()], (2E.28)
(k) 3
o = _ 1E+ - [% oMy 4 p® (x)J , (2-E.29)

where ) (2) and ¥® (z) are the arbitrary functions of integration. Substitution of expressions

(2-E.28) and (2-E.29) into the constitutive relations (2-E.12) and (2-E.13) yields:

3

e = _(1-»)R [:v?z +o®(2) - : i ” (% —cFz 4 o) (z))] , (2-E.30)

e® = —(1-)R fi —c®z 4 ) () — (w22 + (0 (z)) (2-E.31)
zz 3 1—v ¥ . *

Substitution of (2-E.30) into (2-E.3) and integration of the resulting equation with respect to z

yields:

3 3
u® = _—(1-v)R [%—z+mga(k) (2) — 1 VV (i— - c(")z) x—

1-—v

Y / 8 (z) dz + x® (z)] : (2-E.32)

where x(® (2) is an arbitrary function of integration. Substitution of (2-E.31) into (2-E.4) and
integration of the resulting equation with respect to z yields

2
l1—-v 2

P ) 22
w® = _R(1-v) [—2 —c® 2y ® (g) -

Y / 0® (2) dz + A® (a:)] . (2-E.33)
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Upon substitution of expressions (2-E.32)and (2-E.33) for displacements into the strain-displacement

relation (2-E.5), we receive the second form of expression for e(xkz):

@ de(2) v (22 _ c(k)) o1 XE @)

(k) — _ _ il X &
€az R(1-v) 3 te dz 1-v &
dy®) (z) v, d\®)(2)
e P + - . (2-E.34)

Exact elasticity solution is possible if both expressions for e{), (2-E.26) and (2-E.34), are identically

equal:

3 do* dy(k)
R(z2~c(’°))m5 —R(1-v) [%— +z%z—)-—1—1—u (zz—c("))x—l—-kT(z)%—

L@ v, d® (x)]_ (2-E.35)

dzr —l_yz:): dzx

In order to find the functions ™ (z), ¥ (z), A(*¥) (z) and x® (z), which make the identity (2-E.35)
possible, let us represent the functions p(® (2), %) (z) and A® (z) in the form:
#® (2) = ¢ (2) + 08 (2) + ¢ (2) + o (2),
v (@) = 91 (@) + ¥ (@), (2-E.36)
A® () = A (2) + AP ().

Substitution of (2-E.36) into (2-E.35) yields

3 AP (z) det® (2) v 0 (22 —c®)z
o4 2 M _ _ (k) A Sl
<3+ )T i (B o) +

(k) (k) (k)
de"z () __Y e + xdﬁos (2) +zd¢l (z) +
dz v—1 dz dzx

dol (2) A dx® (2) | dpi (2)) _
(m P + e + P + 2z Ie =0. (2-E.37)

The identity (2-E.37) will take place, if each term in brackets in (2-E.37) is equal to zero. This leads us
to differential equations for the functions gogk)(z) (1=1,2,3,4), w;k) (z), wék)(a:), )\gk) (z), )\gc) (z).

When we solve these differential equations and substitute the found functions into expressions (2-
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E.36), we find
3 2
W) (= B -1 (2 4y, 2w Lk, 8
o' (2) T 3 ¢ +1_y3+ﬁ 2+f€ z+a'™,
2
¥ (@) = BRI T + ez 4 ), (2-E.38)
4
A® () = _75_2 _ _(k)$2 +d)
l 3

22
X (2) = __e(k)? + k()

where a(®), b(*) d(k) (®) () _(¥) and k(%) are constants of integration. Substitution of (2-E.38)
into (2-E.28), (2-E.29), (2-E.32) and (2-E.33) yields

EF) B-v)—-1
(k)__ 2 o S (k)
B 1 R[acz+ e (3 —c >+

+v
v 2’
v3

ﬂ(k) +-®F 74 a(k)] , (2-E.39)

(k) 3
3

2
R|Z= —c®z— ﬂ<’°>‘% +e®g 4 b(’“)] , (2-E.40)

3
® - —(1-)R| %t Lo 1) (22— 3
U (1 u)R[32+3(u 1)(2 3c )zm+

3 2
Y Zoq ﬁ(k)z_x +-® a4 a®q 4
1—-v 3
ﬂ“‘ k>” bz ) - e 2 + k®) (2-E.41)
l1—-v 2 2 ' )

z* 22 z? :
w® = —R(1-v) [— —c® 42 (—ﬂ(k)? +e®g 4 b(")) -

2
v xzzz_zﬂ( —V)-V(z_4_c(k)z_2>_ v? _2_4-‘
1-v 2 (1-v)? 12 2 (1-v)?12
v 23 v 22 z? z?
—ﬂ(k)‘ﬁ- - m”‘“; akp Va(k)z Vi S padl 2 + d(k)] (2-E.42)

Substitution of expressions (2-E.39)-(2-E.42) into the boundary conditions, symmetry conditions and
continuity conditions (2-E.16)-(2-E.25) yields equations for the constants of integration. Solving
these equations and substituting expressions for the constants of integration into expressions (2-
E.27), (2-E.39) and (2-E.40) for stresses, we receive

(1) 1 1
1) _ u 6F 2 1., 1 ]
Tes =% (BED — 3B 4 3E®) ("' 4h ) (33 2L) ) (2-E.43)
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0@ = & 6E®) . 1h2EW — 2E() 4 2E(2) )
b (h3E(1) —t3EM) 4 t3E(2)) 4 E@)
(e-3t)
6E) 1 1
(3) = 2 _ -p2 _ -
o, b (h3E(1) _$3g() +t3E(2)) (2 4h ) (z 2L>,
m
- % 6E _ 13 5
T =y (h3E(1)—t3E(1)+t3E(2)) {(L z)az =g 7 (RF+8%) + Rt 2+
2 , 1
=2 — —ht h t2+ h3
3° (h+6)- +h)}’
E®) 3
ol® = _ 3_ 3.2
Ozz b (hsE(l —tsE(l) +t3E(2)) [6 (L :l:) (L'z+4z 5t Z:' ,
o® =& 65 (L~z)zz - 13 (h* +1%) + ht| 2
T b (REM —3E() +{3E®) 5 14

2, 1 1,3 .3
+3z +15ht(t+h)+@(t +h)}

1
s _ T 65 la_Lpa, 1,3
b (RBEM —3EQ) + 3E@) \ 3" 4 12
50 _ 6E(?) 1 1RZEW — 2B 4 2 p(2)
7z b (WE® —#ED 1 3E®) [3° " 4 E®)
1 BPEW — 3D 4 3@
_12 E® ’
)
0‘£3) =L 65 lz3 - -1-h2z—— —l—h3
b (RBEM —3EM) +3E®@) [37 4 12
1 E®N ,
A (a-E0)e]
3(1-0?)
= w2 N L—
WEY e T TVER BB BB LT

6 2 24 5 41-v) E1h3 — Ejt3 + Eqt3

3 B (R2-1) E1~E2<t(h2—t2) I/t3>

TA4ERB—E3+ Et? 1—v E,  3E

2
x[z(x_g) N (MR L LY
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(2-E.44)

(2-E.45)

(2-E.46)

(2-E.47)

(2-E.48)

(2-E.49)

(2-E.50)

(2-E.51)

(2-E.52)
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If EO = E@ equations (2-E.43)-(2-E.51) give stresses in a homogeneous simply supported

plate under a uniform load, derived in Appendix 2-A.

6% (1 — v2) 12— 4(z - L)
)% s

~(1- 2y (E(l) —E® LY )t(h2 — ) v B3
- y z ——
2 [ha —(- m)ta] E®) 1-v 2 1-v12

v RS —2(1- E2 3(h2 — t2) PR C N L L L%
1—v 12 z[h (1__@),53] 12(1 - v) 1-v 2 4

5v h® — (1 -
1-v 20[h3 (

v h3_2(1 gi?i)t:i 3(h2_t2) . y 2h2 22
T 1-v 12 2[h (l_sw)ts] +( +1—1/) 4|2

R3S —2(1— EZ) 43 Q) _ m@ 2—42
+[ ( W) v (_E E (1+ v )t(h 2)

12 1-v E(®) 1—v 4

-8+ 1+

) EW - p@) v )t(h2 —t?) LY h3
] E® 1-v 2 1-v12

(2) (%
v E(l)h h3—(1—%)t3 v h3—2(1—§%>t3
T 1-VtE® 1 (h—)ED 12 i 12 z

EO - E® 3v v V2, o,
TTEO (1‘1-,,)(”1*,/)@(" )

2 t [ E@Y , EM® 3
e RIS UM
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62 (1 — v?) L2—4(z-L)" L2 +4(= 2)2 L? <8+ 5v )
Wo = — L
2T TR0 [h (1 _ %g) ts] 8 24 4 1-
BW--EZme (E“) - E(2)(1 o )t(h2 S
20 [hs (1- E(f;) ] E® 1-v 2 1—-v12

v k-2 En)s 3(h? — £2) L l4v o [ L\? I?
1-v 12 2[h (l_gﬂ)tg] 20-»- |12 \\""2) 7%

EM

8+ 51/) hs—(l—ng: t° _-(E(l)—E(Q)(1+ v )t(hz-—t2) v_h?
1-v 20[;13_(1_52?;)133] E(2) 1-v 2 1-v12

TR

4E(?)

oty B

3 _ _E®\ .3 (2
v v EMp h (1 Elm)t + E® [h3 (1 g(n) ts]
1-v | 1-vtE® + (h— t)E® 12 1-v 12E® o
(2-E.54)
6% (1 - v2) L2 —4(z- L) R e Ly 2 g 5
o = O
EW [h (1 _ Em) t:;] 8 24 4 1-
h® (1 B EW — E® v t(h?—t%) v K
T E@ 3] E@2) (1+1—I/) 2 +1—uﬁ
20|h% = (1 - 5wt ]
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v kS —2(1- B 3(h? — t2) NP PO T O o2
1-v 12 2[h3_(1_m)t3] 12(1 —v) 1-v 2 4

EM

g 5 hS — (1 — B2y EV-E® v k2 -t) v K
-8+ 1= o]\ B AtT)T 1-v 12
V' 99 [hs — (1 —_ E{T))ta] 14 v

vk —2(1- E )t3> 3 (h2 — )
1-v 12 2[,13_(1_%%%3}

v \2h2 22 B3 v ,EW _E@®) v t (h? —t2)
+(1+ — ) Tlg g ( 1+1

1 4° 2 12 1-v E@2) -V 4
(2)
v EMp h® — (1 - %(‘1’)) t® v k3 EM _ g@) 3u
11— vtE® 4 (h—t)ED) 12 TR T Ee < _I_—7>

1-v 32 T (1-v)2)2 12E®@)

(2) 3
2(h*-1%) 2 tE@RS —EM |p3 — (1- L5 )¢
><<1+ Y >—————~—(1 Y ) [ ( El) ] . (2-E.55)

N G

CE [me - (1- &3) &7

E

X

B-(1-E5)¢  [po - po ( v ) t(R2-12)
0w -(1-&5)e] [ B9 !

(2)
Bop  B-(1-E5)8 e Em_Em( v >t(h2—t2)
4

“IE® 1 (h—HED 12 *ha-nt T E® -

T ITUE®D + (h- HED 2 * 12 21— (1- B

v EMp h3—(1—-g—:—i)t3 h3—2(1—%(%)t3 3 (h? - 12)
E(f:) t3])
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2+ 15 v\ R EMW —E® v\ t(h?—1?)
3 2"+ (+1_V)4}z+————E(2) (+1~—u) 1

v pon W -(1-E5)E

T 1—v tE®@ + (h— t)EM 19 ; (2-E.56)

o S0 ([l 2 o)

E) [hs _ (1_ gg;)ts] 3 4 1-
y h? - (1‘ g;f;)ts [E(l)_E@) (1 y )t(h2~t2)
20 [h3—(1_gg;)t3] E@®) 1—v 9
E®@ 3
+ Y (l—m)t} [ B(Ew—ﬁ)) ] _2+T§;22+ Ly
1-v 6 9 |hs — (1 E2)43 3 1—
E,

P-(-f)e), Eon  K-(1-Fm)e ) 2E.57
" 2E% ? 1-vtE® 4+ (h-t)EW 12 ; (2-E.57)

up e - (e 5) (1= {[((m—%)2_L_2_(8+ 5v )

B0 [ - (1- £3) ¥

EQ _ g® y " (h'~’ _ tQ)
E(2) 2

N—
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(1+ %) '1 EW _ g® v\ t(h?—82)
+ 2+
( 1 z/) 4

(2-E.58)

v EMp h3 — (1 - gifi) £
" 1-vtE® 4+ (h—t)ED 12 ‘
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Figure 2.1

Wide plate under a load that does not vary in the width direction
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Figure 2.2
Wide simply supported plate under a uniform load on the upper surface
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Z
L
- —ﬁ N
upper face sheet, k=3
core, k=2 X
.
lower face sheet, k=1
h &
Z=—-=
2

Figure 2.3. The coordinate system and notations for the sandwich plate,
h is thickness of the whole plate, ¢ is thickness of the core
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Figure 2.4

The element coordinate system and nodal variables associated with one node
of a finite element
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Figure 2.5

The problem and element coordinate systems
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Chapter 3

Two-Dimensional Model of a
Composite Cargo Platform,

Dropped on Elastic Foundation

In this chapter we consider the problem of computation of stresses, strains and displacements in a
sandwich composite platform, loaded by a cargo on its upper face sheet, Adropped from the aircraft
on the ground , which is modelled as an elastic Winkler foundation. The sandwich plate is analyzed
with a layer-wise theory with three conventional layers representing the core and the upper and

lower face sheets (Figure 2.3).

3.1 Three-dimensional formulation of the problem

As work-conjugate measures of strain and stress, we use the Green-Lagrange strain tensor and the
second Piola-Kirchhoff stress tensor. We limit our research to a practically important case of small
strains, moderate displacements (of the order of thickness of the plate) and moderate rotations

(10° — 15°). This means that of all the higher order terms in strain-displacement relations
1
€ij = 5 (i + Uy + Us,itls,j) (3.1.1)

only u3 ous s (@, B = 1,2) are not negligible compared to u,; (@ = 1,2; i =1, 2, 3) (von Karman,

1910). Therefore, the strain-displacement relations for the k-th conventional layer (sublaminate)

130
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become
1
e = 2 (ulh +uf) +ufduf)) (@6=12) (3.12)
(no summation with respect to k),
1 .
) =5 (uf +uf) G=123) (3.1.3)

or, in unabridged form,

e®) = u(f) + % (wff))2, (3.1.2-a)

e = + (w®)", (3.1.2-b)

EfE’;) = % (uf;‘) + vff) + w,(fj)w,(p) (no summation with respect to k), (3.1.2-c)
el = % (u(f) + wff)) , (3.1.3-a)

el) = % (2 +u®), (3.1.3-b)

E(ZI:.) = wff). (3.1.3-¢)

Now we need to find the simplified equations of motion and boundary conditions, such that their
accuracy corresponds to the accuracy of the adopted von-Karman strain-displacement relations.
These equations of motion will be used for computation of the transverse stresses in the post-
processing stage of the finite element analysis.

One way to do this is to simplify the general non-linear equations of motion. Such an approach
is adopted in books by Novozhilov (1961), Stoker (1968), Ambartsumyan (1969) and other. Thus,
to find the equations of motion, corresponding to the von Karman strain-displacement relations,
Stoker (1968) retains in the general non-linear equations of motion those non-linear terms which
involve products of stresses and plate slopes w , and w,y, and neglects all other non-linear terms.

The resulting equations of motion are

Ozz,x + Ozyy + 0zz,2 +-Fz = pil, (3.1.4)
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Oyz,c + Oyyy + Oyz,z + Fy = pt, (3.1.5)

0
Ouzz t O0ayy + 0222 + _(Uz:r'w,:r + Uyzw,y)+

oz

3} 0 = .
+ég(”“ywv’5 + Oyywy) + 5;("“““ +0y:wy) + Fo = p0. (3.1.6)

Another known method of deriving the simplified non-linear equations of motion is the variational
method, based on substituting strain-displacement relations into the virtual work principle. Such
a method is adopted by Reddy (1984, 1996), Lu and Liu (1992), Yu (1997) and other authors for
deriving the two-dimensional equations of motion of plates, i.e. equations of motion averaged over
thickness of plates. Pikul (1985) used this method to derive nonlinear three-dimensional pointwise
equilibrium equations for shells, under assumed strain-displacement relations different from those,
which are used in the present work. Equations of motion and boundary conditions, obtained by
substituting strain-displacement relations into the virtual work principle, are called “variationally
consistent” with the strain-displacement relations (terminology of Reddy, 1984, 1996). Following
this idea, let us receive equations of motion and boundary conditions, variationally consistent with
the von-Karman strain-displacement relations (3.1.2) and (3.1.3).

Let us substitute variations of strains, defined by equations (3.1.2) and (3.1.3),

1
benp = 3 (6ua,p + bup o + Uz Sus g+ Uz 6Usa) (a=1,2; B=1,2), (3.1.7)

1
bei3 = 3 (buiz +6us;) (i=1,2,3) (3.1.8)

into the virtual work principle
/ / / 01y Beiy AV = / / / _ pits) bus dV + / / £, bu; dS (3.0.9)
V)

where F; is a known body force per unit volume, 1; is a known surface traction. Expression ;; é¢;;

can be presented in the form

0ij b€ij = 00p 6€ap + 2043 6€a3 + 033 bess (3.1.10)
(@=1,2; B=1,2; i=1,2,3; 1=1,2,3).
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When we substitute equations (3.1.7) and (3.1.8) into equation (3.1.10), we receive

1
0j 561']' = Uuﬁ'2‘ (611,,1,[3 + 5’!1,57& + U3 o 6U3,5 + ugz g 5113,0() +

1
20aa§ (6uq,3 + 6uza) + 033 buzz =

1
= 5 [0ap Sta,pt e Opa + Taplsa bus,p + 0pata,p Ous.al

+ 0a3 (bta,s + buga) + 033 6uzs
1
=3 [0ap bUa,p+ Oap SUa,g + Oaplis,a Suz g +0apU3 Su3 g)

+ a3 (btq 3 + bus o) + 033 Suss

1
= 5 [2Ua[3 6Uayﬁ + 20,5U3,0 5U3,5] + 0a3 (6ua’3 + 6'1/.3,&) + 033 5'[/43,3

= 0op OUa,p + 0ap U3 0u3p + 0a3 (6ua,3 + 8uszo) + 033 duz 3
= (0o OUia,s + 03 OUas + 030 OUsa + 033 6U33) + 0ap Us,a Suz g
=0 8ui,j + 0ap Us,a OUsp (3.1.11)

(=12 B=1,2%i=123 j=12.3).

Substituting expression (3.1.11) into the left-hand side of equation (3.1.9), we receive

///Uij 5Eij dV = // (O'ij 6ui,j + 0ap U3,o 5’!1,3,5) av
V)

V)

= /// [(aij bus) ; — 0,5 Oui + (0ap U3,a 6u3) 3 — (Oas U3a) g 6u3] dv
)

= // (04 nj 6ui + 0ap Us,e B bug) dS —
(5)

/ / / [0 8us + (0as 13.0) 5 bus| dv

V)

= / [Gaj n;j Sue + (O’3j71j + 0aB U3,a B ) 6U3] ds
(5)

B /// {U‘”’" Sua + ["‘W +(0as “3,u),a] 5u3} av (3.1.12)

W)
(a=1,2; B=1,2 i=1,2,3; j=1,2,3),

where n1, np and n3 are components of the outward unit normal vector to the surface. The substi-
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tution of expression (3.1.12) into the virtual work principle (3.1.9) yields

0= ///UuéeudV /// pu1 6u1dV+//t bu; dS

V)

= // [0a; nj 6ug + (03515 + Tap U, T ) bug] dS
(5)

- /// {O'aj,j buq + [USJ',J' +(ap ”3’“)43] 6u3} ad

)
/// pu, 6u1dV+//t bu; dS
(V)
= // [(0aj nj —Ta) bua dS+ (035 nj + 0ap us,anp — t3) bug] dS
(S)

- /// {(Uaj,j +Fqo — pilg) Su+ [Uzj,j + (0o u3,a) g+ Fa — Pﬁa] 5“3} av
V)

(@=1,2; f=1,2; j=12,3). (3.1.13)
If one equates to zero the coefficients of variations of displacements, one obtains the equations
of motion
Oojj + Fo = plia; 0355 + (0ap U3,a),5 +F3=pis (=12 §=1,2; 7=1,2,3) (3.1.14)
and natural boundary conditions
Ooj Mj =ta; 03 My +0ap Ugang=1ts at Sy (@=1,2 B=1,2; j=1,2,3), (3.1.15)

where S, is part of the surface on which displacements are not specified. Equations of motion

(3.1.14) in unabridged form are

Ozzx + Ozyy + 0gz2 + F, = pil, (3114-&)

Oyz,z + Oyyy + Oyz,z + Fy = pi, (3.1.14-b)

Osap + Osyy + sz + 5= (OuzWeo + OpaWy) +

9z

i} = ..
5 (Ozy Wz + Oy wy) + Fo= pib. (3.1.14-c)
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The boundary conditions (3.1.15) in unabridged form are

OugMa + OgyNy + 0221, =tz (3.1.15-a)
OyeNy + Oyyy + Oyzntz = 1y (3.1.15-b)
Orxz + TayNy + 022z + OggW oMy + OyyW Ty + Oy (wany +wyng) =t . (3.1.15-¢c)

We see that the third equation of motion, derived from the virtual work principle (equation 3.1.14-
¢), is different from the corresponding equation (3.1.6), obtained by simplification of the general
non-linear equations of motion, namely, in equation (3.1.14-c) the term 'aa_z (Ozz Wy + Oy Wy) is
not present. In single-layer theories of plates, if tangential components of surface tractions are
equal to zero, this term does not influence the two-dimensional (averaged over the thickness) plate
equations of motion (Whitney, 1987). But in the layer-wise theories, these terms influence the two-
dimensional equations of motion for individual layers, because stresses 0z, and oy do not vanish at
the interfaces between the layers. Therefore, a question arises: what simplified non-linear equations
of motion are to be used in our analysis.

To make such a decision one needs to keep in mind that the simplified non-linear equations
of motion must be consistent with a finite element formulation, that will be based on the virtual
work principle (3.1.9)!. In case of fully nonlinear Green-Lagrange strain-displacement relations, the
virtual work principle (3.1.9) is derived (Washizu, 1982) from the equilibrium equations? in terms

of the second Piola-Kirchhoff stress tensor
(6o + urp) On) o, + Fa—piia=0 (A=1,2,3) (3.1.16)

and stress boundary conditions

0ij(Bai +uri)n; —ta =0 (3.1.17)

11n case of elastic material and conservative external forces, that is the case in the problem of the dissertation, the
virtual work principle takes the form of the Hamilton’s principle: §(K = U — V) =0, where K is kinetic energy of the
system, U is strain energy of the system and V' is potential energy of the system in an external force field (potential

energy due to the load).
2In the dynamic problems, the term equilibrium equations implies dynamic equilibrium equations (or equations of

motion), i.e. implies that inertia forces are part of the body forces.
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as follows: first, the left-hand parts of the equilibrium equations (3.1.16) and stress boundary con-

ditions (3.1.17) are multiplied by variations of displacements and integrated:

/// 6,\#+u)‘#)0,w] +F, —pu,\} duy dV+// 045 (6xi + uni)n; -1, = ]5u,\dS 0,
(v) (81)
(3.1.18)
where Sy is part of the surface where the stresses are specified. Integration by parts in the equation

(3.1.18) yields

///cr,\,, [ u,\,,,+u#,,\+u,¢>‘u,¢,4]dV /// F,\—pu,\ 6u,\dV //t,\éu,\dS—O

V) (81)
(3.1.19)
In equation (3.1.19), the expression under the variation sign in the first term is recognizable as the
Green-Lagrange strain tensor. In a similar fashion, in order to derive the virtual work principle with

the von-Karman strains? , i.e. equation

[v//zzgm[ uw+uﬁa+u3auw]dv+///zg,3 [ (s + 15| ¥

) a=18=1 ) i=]1

/// F,\—pu,\ 6’1.1,)‘ av — /:/tA (S’LL)\ dsS = 0 (3120)

M (1)

it is necessary to use in the derivation such equilibrium equations, that they lead to the virtual work
principle (3.1.20) with von-Karman strains. Such equilibrium equations can be found by starting
from the virtual work principle (3.1.20) and performing the same derivations as those that led to
virtual work principle (3.1.19), but in the reverse order. This has been done already in this chapter,
with the result being equilibrium equations (3.1.14) and natural boundary conditions (3.1.15). If in
conjunction with the von-Karman strains some other equilibrium equations are used (for example,
equations (3.1.4)~(3.1.6)), then the virtual work principle (3.1.20) is non-existent. Then, the finite
element formulation on the basis of the virtual work principle (3.1.20) (i.e. with the von-Karman
strains) can not be made.

Therefore, in the post-processing stage of the finite element analysis, the computation of the

transverse stresses needs to be done with the use of the equations of motion (3.1.14-a), (3.1.14-b),

3given by equations (3.1.2) and (3.1.3)
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(3.1.14-c), variationally consistent with the von-Karman strains. This opinion is shared by other
authors. For example, according to Reddy (1984), “the correct forms of differential equations and
boundary conditions for any theory, based on assumed displacement field, are not known without
using the virtual work principle”.

The equations of motion (3.1.14) will be written for each of the three conventional layers: upper
and lower face sheets and the core. Besides, we will take into account that in our problem the
body force is the gravity force, therefore F; = F, = 0 and F; = —pg, where p is mass density and

g=9.81%.

o), 40l 4o, = pyk) (3.1.21)
Bt ol ol = P9I @122

7] .
o+, +0, + = (eWu® + 0w +
0 : .
o= (o) W) + o) w)) ~ pPg = pH™ (3.1.23)
Y
(k=1,2,3).

The boundary conditions (3.1.15) will be written for the upper and lower surfaces of the plate and
for the interfaces between the face sheets and the core, i.e. for the surfaces z =25, 2 =2, 2 = 2,
z2=123,2= z; and z = z4 (Figure 3.1). At these surfaces n, = n, =0, n; = £1. Therefore, in our

problem the boundary conditions (3.1.15) take the form:

at z=2 ol (21) =t;(21) =0, az(/lz) (z1) =ty (21) =0, oD (z1)n. (21) =t (z1).;  (3.1.24)
N e’

Iz

-1

atz=2; o) (25) =tz (25), ol (25) =1ty (23), oW (2) n.(25)=t.(23) ; (3.1.25)
1

at z=zF 0@ () =tz (25), 0P (F) =1, (), c@ ()n, (F) =t (2F) 5 (3.1.26)

-1
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at z =25 ol (23) =tz (235), 01(12:) (23) =ty (235), o (23)n, (z3)=t:(23) ; (3.1.27)

1
atz=27 o (2F) =to (7)), ol (aF) =1, (25), ol (z3)m. () =t (25) 5 (3.1.28)
N —’
-1
at z =24 0;32) (z4) =tz (24) =0, crz(f,) (24) =ty (24) =0, ag) (z4)n; (24) =, (2) . (3.1.29)
——r’

1

At each of the interfaces the absolute values of forces, acting at the adjacent layers, are equal:

T(z)=-7(), T (x5)=-7 (&), (3.1.30)
te (75) = —ta (23), ty (25) = —ty (2F), t-(25) = ~t= (27) (3.1.31)
to (55) = —t (28), 1y (55) = —t (&) t: (a7) = == (=) - (3.1.32)

Therefore, from equations (3.1.25) and (3.1.26) it follows that:

o (23) = 0@ (22), o) () = 0P (22), 0D (22) =0 (22) , (3.1.33)
and from equations (3.1.27) and (3.1.28) it follows that:

0@ (23) = 0D (23), 0 (23) = 0¥ (23), 02 (23) =0 (23). (3.1.34)

Equations (3.1.33) and (3.1.34) are conditions of continuity of the transverse stresses at the interfaces
between the face sheets and the core.

At the edges of the plate z = 0,L , where n; = F1, ny = n, = 0, the boundary conditions
(3.1.15) take the form:

FOpe =tz , FOyz =1ty , FOsx FOgz Wg FOys Wy =1, at z=0,L. (3.1.35)

At the edges of the plate y = 0, B (Figure 3.1.2), where n, = F1, n; = n; = 0, the boundary

conditions (3.1.15) take the form

FOpy =tsy, FOyy=ty, FOuyFOzy WasTFOyy wy=1, at y= 0,B. (3.1.36)
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For a plate with the edges free from loads, that is the case for a cargo platform dropped on the

ground,
t,=t,=t,=0atz=0,Landy=0,B. (3.1.37)

Therefore, the boundary conditions (3.1.35) and (3.1.36) in this case take the form:

Oz =0, Oyz =0, FO22F OzzWsF Oypwy=0atz= 0,L, (3.1.38)
e ~~
0 0
Ozy =0, Oyy =0, FOyF OzyWsTF Oyy wy=0 at y=0,B. (3.1.39)
\0/ ~—~
0

The stress boundary conditions at the edges z = 0, L and y = 0, B, namely the boundary conditions
expressed by equations (3.1.35) and (3.1.36), or (3.1.38) and (3.1.39), can not be satisfied exactly
within the framework of a plate theory, in which some simplifying assumptions are introduced in
addition to the 3-D formulation. In any plate theory the stress boundary conditions at the edges
z=0,L and y = 0, B are satisfied approximately, in the integral sense. The approximate, integral
stress boundary conditions at the edges of a plate can be derived from the Hamilton’s principle (or
virtual work principle), as natural boundary conditions, the same way as it was done in Chapter
2 for a homogeneous plate in cylindrical bending. In a problem of a cargo platform, dropped on
elastic foundation, the boundary conditions at the edges are the stress boundary conditions (3.1.38)
and (3.1.39). Therefore, the corresponding approximate boundary conditions, which follow from
the Hamilton’s principle, are the natural boundary conditions. When we solve the problem by
a finite element method, based on the Hamilton’s principle, the natural boundary conditions will
be automatically satisfied approximately, with no need to impose any constraints on the degrees
of freedom of nodes at the boundaries. Therefore, if we solve the problem by the finite element
method, based on the Hamilton’s principle, we do not have to derive the approximate stress boundary
conditions, as it was done for a problem of a homogeneous plate in Chapter 2, that was solved
analytically by solving differential equations with boundary conditions, equations (2.1.47)-(2.1.56).
In conclusion, let us write again those equations, which will be used in subsequent derivations:

strain-displacement relations

(wff))z (eqn 3.1.2-a),

| =

e = ul

: 1 2
e:;’;) = v,(:) + 2 (w(;)) (eqn 3.1.2-b),
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(ugj) + vff) + w,(f)w,(;)) (no summation with respect to k) (eqn 3.1.2-c),

™o =

) =

(uff) + wff)) (eqn 3.1.3-a),

N | =

o=
1
EL’? =3 (vff) + wf{j)) (eqn 3.1.3-b),

e® = wff) (eqn 3.1.3-c),
equations of motion

ok 4 a;’;),y +ol®), = p®i®)  (eqn 3.1.21),

T,

o® 4 k)

® 4ol ok =p®5®  (eqn 3.1.22),

0
(k) (k) (k) 4 Z (oK), (k) (k) (%)
o ‘0L, F 0t 37 (Umw,z + oWy )+

zz,z PR zz,z

0 ..
55 (08 w40 wl)) = Mg = oM (k=123 (ean 3.1.29)

stress boundary conditions on the lower and upper surfaces

atz=2 o =0, o =0, o)) =—t.(z1) (ean 3.1.24),

at z=12z4 o) =0, a'!(g) =0, 0¥ =t,(24) (eqn 3.1.29).
continuity of the transverse stresses at the interfaces between the face sheets and the core

otV (25) = 02 (22), o) (22) = o) (22), o) (22) =P (22) (eqn 3.1.33),

o (z3) = 0 (23), 02 (23) =0 (25), 0D (23) =08 (23) (ean 3.1.34).

In addition, continuity of displacements at the interfaces between the face sheets and the core is

required:
wD =@ 0 =@ D =@ af z=12, (3.1.40)
u® = y® D =@ @ = w® at 2z = z;. (3.1.41)

The formulation of the problem includes also the constitutive relations, that are demonstrated

in section 3.6 of this chapter.
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3.2 Simplifying Assumptions of the Plate Theory

In order to apply the failure criteria to sandwich composite structures, the full three-dimensional
state of stress must be known. A finite element analysis using three-dimensional elements could
provide this, however the effort is enormous and often not acceptable for real structures. The
computational cost can be cut down by reducing the problem to a two-dimensional one, i.e. by
using a plate formulation. The improved values of transverse stress components 0z, Oy:, Oz
can then be computed in a postprocessing procedure, utilizing equations of motion of a three-
dimensional continuum. To construct a plate theory, in addition to the three-dimensional formulation
of the problem we will make simplifying assumptions regarding distribution of the transverse strain
components in the thickness direction. In chapter 2 we considered the construction of a plate theory
of a sandwich plate in cylindrical bending, based on the assumption that the transverse strain
components do not vary in the thickness direction within a conventional layer of a sandwich plate
(a face sheet or the core), but can be different in different layers. This theory was based on linear
elasticity and its results were compared with the exact solution of linear elasticity. The comparison
showed the validity of these assumptions. Therefore, considering nonlinear dynamics of a sandwich
composite plate, we will make the similar simplifying assumptions, leading to a plate theory, i.e.
we will assume that within the face sheets and the core the transverse strains do not depend on
the z-coordinate, but they can be different functions of coordinates z, y and time ¢ in different face
sheets and the core:

5:(:? = 5:(1:1?2) (z,y,t) 3

k k
53(/2,) = 5§/z) (IC,ZU, t) ’ (3 9 1)
Elez) = Eg;) (.’I:,y, t)

(k=1,2,3),
where the superscript k denotes the number of a sublaminate: k = 1 denotes the lower face sheet,

k = 2 denotes the core and k = 3 denotes the upper face sheet. As in chapter 2, the assumed

transverse strains will be called the first form of the transverse strains, and they will be denoted

also as
(1)
e = (),
(I
Eg(/lfz) = E;’;) ’ (3.2.2)

(0]
0= ()"
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The assumed transverse strains (3.2.1), together with displacements of the middle surface of the
plate
Ug (2?, Y, t) = u(2) |z=0 )
o (z,y,8) = 0@, (3.2.3)
Wo (:I:a Y, t) = w(2)|z=0
are the unknown functions of the problem, which will be computed by the finite element method.

Therefore, all displacements, strains and stresses must be expressed in terms of these functions.
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3.3 Displacements in Terms of the Unknown Functions

In this section we will integrate strain-displacement relations for the transverse strains in order to

. . . . . k k k
obtain expressions for displacements in terms of the unknown functions 55“), E?(,z), e(zz), ug, Vg, Wo-

The von-Karman strain-displacement relations (3.1.2) and (3.1.3), written here again, are

e =u® + % (w,‘f’)2 , (3.3.1)

) = o+ 2 (wh), (3:3:2)

s;‘;) = % (u(s) + vff) + w’(:)w,(:‘)) (no summation with respect to k), (3.3.3)
E;’? = % (u,(f) + wff)> , (3.3.4)

e = 2 (o +u®), (3.3.5)

e =, (3.3.6)

where the superscript & is the number of a sublaminate (a face sheet or the core). Let us integrate

strain-displacement relation (3.3.6). For the core (k = 2), which contains the plane z = 0, we receive

z z
ow®
w? (z,y,5,t) — | = [——dz= /Eﬁ) (z,y,t) dz=eP (z,9,t) z (22<z< )
0 0
wo
(3.3.7)
or
w® (2,y,2,t) = wo (z,9,1) + &2 (z,0,1) 2, (3.3.8)
where
wo = w'? » (3.3.10)
Integration of equation E(zlz) = a—'g—(zl—)- from 2, to z, where z belongs to the lower face sheet (z; < 2 <
29), yields:
z z
Huw)
w® — w (z) =/ Q; dz = /eﬁ}) dz (21 €2< 2z), (3.3.11)
N e’ 2z

w(2)(z3) 22 22
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or, due to the continuity condition, w®D (29) = wP (22),
z
w® = w® () + /Eg) dz . (3.3.12)

z2

From equation (3.3.7), it follows that
23
w® (22) = wo + /e(zzz)dz . (3.3.13)
0

The substitution of (3.3.13) into (3.3.12) yields:

22 F4
w® (2,y, 2,8) = wo (2,5, 1) + / e@ (z,y,8) dz + / W (zyt) d2  (21<z<2),
0 22

or
2 (xvyy Z,t) = Wy (xvy)t) + €£2 (CU yvt) 22 + 5(1) (x,y> t) (Z - 22) (21 S z .<_ 22) . (3'314)

Analogously, integrating equation e ) =2 }‘;S) and satisfying the continuity condition at the interface

between the core and the upper face sheet, w® (23) = w(® (23), we receive

z3 z
w® (2,9, 2,8) = wo (2, 1,£) + / e® (z,y,1) dz + / e® (z,y0) dz (<z<2),
0 z3

or
w® (z,y, z,t) = wo (2,9,1) +5(2) (z,y,t) 23 +8( ) (z,y,t) (2 — 23) (23<2<2) . (3.3.15)

Now, let us integrate strain-displacement relations (3.3.4) and (3.3.5) in order to obtain expressions
for displacements u*¥)(z,y, z,t) and v (z,v, z,t) in terms of the unknown functions. In tensorial

notations relations (3.3.4) and (3.3.5) can be written as

1
e =5 (W +ufl) (a=12k=123. (3.3.16)

Integrating equations (3.3.16) with respect to z, we receive

z

c')u / (25&23) — ug a) dz (a=1,2; 20<2<23) . (3.3.17)

u® _

8 (1) T
ul) — ul)) (2p) = / gz dz = / ( 83) - ugli) dz (a=1,2; 21<2<2) . (3.3.18)
22

2
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z z
8 (3)
u® — ul® (23) =/ g: dz = / (25‘(133) - u&ﬂ) dz (a=1,2; 2, <z<2) . (3.3.19)
23 z3

The substitution of expressions (3.3.13)-(3.3.15) for wk) = ugk) into equations (3.3.17)-(3.3.19),
performing integration in these equations and finding the constants of integration from the conditions

of continuity of displacements u and v at the interfaces between the face sheets and the core

u (20) = u® (25), u® (23) = ul® (23), v® (2) = 0P (), v® (23) =v® (25),  (3.3.20)

(k) (k) _(K)
z

yields expressions for u®) and v®) in terms of ug, vo, Wo, €x7, Eys , €3+, Where ug = ul,_g,

vo = |,

1
=g b (262 ) 22— e, 2+ (2680 —wo — e, ) (- 2

2
1
_ -2—592)’1 (z—2)* (z1 <2< 29) , (3.3.21)
@ = ( (2) 1@ 2
u'¥ =y + (26,7 — wg,m) 2= 5€a 2 (20 <2< 23) , (3.3.22)

1
ul® = g + (25§u2z) - wO,:c) 23— e 3+ (25;32) — Wo,z — 592,&3) (z— z3)

9 zz.T

1
- 2B (z- 33)2 (23 € 2< 24) (3.3.23)

9 2%,x

1
v =y + (25§Zz) - wo,y> z2 — §€§2z),y 2+ (251(412) — Wo,y — E£2z),y Z2) (z — 22)

1

_ Esg{gy (z — 25)* (21 <2< 2) , (3.3.24)

1
v®) =y + (251(/22 — wo,y) z— §E(z2z),y 22 (22 <z<23) , (3.3.25)
3) = ( (2) 1o 2 (3) @)
v =+ (2657 —wo,y ) 23 — €32 %8 + (2Ey: — W,y — Ezz’y23) (z — 23)

1

_ isg{y (z — z3)° (23 <2< z) , (3.3.26)

Expressions (3.3.8), (3.3.14), (3.3.15) and (3.3.21)-(3.3.26) for displacements in terms of the unknown
functions ug, vg, Wo, s(ml? , 53(,12), eS,’,i,’ can be written in a more convenient form:

(k) (k) (k) (k)
u 1/)140 "pul wu2

v = {2 + Y1 z+ Y2 22 s (3.3.27)
w wwO "/)wl 0
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where

1 1
Yo = uo + 22 (E(fz - 653.3) + 52 (E‘fz’,z - eﬁi},z) , (3.3.28)
B =26 — o + 22 (0, -2, (3.3.20)

o_ 1w
dju? - _Eezz,x ’ (3330)
$& = o, (3.3.31)
$&) = 2e2) —woe (3.3.32)

2 _ 1
wu2 = _5627.,:1: ’ (3333)

1
W) = uo + 225 (2 - e@) + 523 (@, -e®.) (3.3.34)
1/’1(?1) =23 —wo s+ 23 (591 - Eg),z) ) (3.3.35)

@ _ _1 @
wuZ - _égzz,z ’ (3336)

1
9l = vo+ 22 (@ — ) 4+ 28 (2, - e®,) (3.3.37)
Y = 2 —woy + 22 (10, - @), (3.3.38)

a _ 1 (1)
Yz = 5y (3.3.39)
v =, (3.3.40)

¥\ =26 —woy (3.3.41)
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v@ = —%eﬁi’,y , (3.3.42)

1/;1(,%) = vy + 223 (51(422) - Eﬁ)) + %Zg (553:),;; - Eﬁ%) ) (3.3.43)
wﬁ) = 255? —woy + 23 (55;1)3, - E?z)y) ) (3.3.44)

v = _%5% , (3.3.45)

) = wy + 2 (6.32 _ 592) , (3.3.46)

O = e (3.3.47)

,'[,1(”23 =wyp , (3.3.48)

2@ =@ (3.3.49)

¥ = wo+ 2 (2 - ) (3350

¥ = (3.3.51)

Matrix equation (3.3.27) can be written in the form

ok
o) =[2]{¢<’°)}, (3.3.52)
w®) (3x8)
where
1 2 22 00 0 00
[2]= 00 0 122200 (3.3.53)
(38) 00 0 00 0 1 2
and

T

(P9} = v v o o v o wR el | (3.3.54)
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Then, displacements of the lower face sheet (k=1) can be written in the form

1
¥$o
1
%
(1)
u® Vuz
_ _ (1)
o L= (2] =[2]] % 1-
(1) (3x8) (8x1) wvl
v (1)
1/)112
Yoo
w
(1)
L wl )
.
ug + 222 (E':(c2z) - E.gclz)) + %z% (Egzz),x - Eglz),z
2E§:lz) — W,z + 22 (Eglz),:c - 5.(222),1
"‘%592),:1:
_ 2 v + 229 (E;zz) it E'E/lz)) + %Z% (55:22),11 — Ezz,y
(3x8) 25:9?) — Wo,y + 22 (Egz),y - E(zzz),y
"%5(212),14
o+ 52 (e - o)
k W
10 0 -2 0 -122 25, 0 3:3%2
00 -£ 2 0 g 0 0 -2
a
0 0 0 0 0 —%55 0 0 0
_ [Z] 01 wy 0 -2 -332 0 22 33%
a a d
(3%8) 0 0 ~ 3y 0 2 Z2’a—y 0 0 —-Zga—y
1398
0 0 0 0 0 ~2%y 0 0 0
0 0 1 0 0 —22 0 0 b))
LO 0 0 0 0 1 0 0 0
(8x12)

( 3

)

)

o ©O O o O o o o

1)

o O O o O o o o

)

)

-

o O ©o O o o o o

Uo

Vo

el

ey

ety

el

(2)

Eyz

el?

et

el

el

(12x1) ’
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or

u

o) =[Z][5(1> (i}, (3.3.55)
) (3x8) (8x12) (12¥1)
w S —
foin)
where matrix [ Z ] is defined by formula (3.3.53); [ 5(1)] is a matrix of differential operators, defined
as
10 0 -2, 0 —12Z 25 0 34Z 000
00 -& 2 0 =2 0 0 -2Z 000
00 0 0 o -iZ& o0 0 0 000
1,28 1,28
[5(1)]5 01 wo 0 ——22’2 —-2-25-6-5 0 222 52%55 0 0 O , (3356)
00 -2 o0 2 g 0 0 -2F 000
3
00 0 0 0 -3% 0 0 0 000
0 0 1 0 0 —2 0 0 2 0 00
(00 O 0 0 1 0 0 0 000
and {f} is a column-matrix of the unknown functions of the problem, defined as
T
(=] w w0 @ & @ 2 @@ P2 e

Displacements of the core (k = 2) can be written in the form

v
e
u® w%)
v =[] )= (2] 4
w® (3x8) (8x1) Vo1
e
¥R
v
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2e

2e

or

where

Ug
(2)

zz — Wo,x
1..(2
§5£z),1:
Vo

2
z(/z) — Wo,y

1.(2)

5€zz,y
Wo
(2)

€zz

(3x8)

o O O O O o o =
o O O O = O o O

o)
o)

w®

o O O O o O o =
o © O o = O o O
o

0
oy
0
1
0

o O O O o O o o

IQ’O og,lmo

O R O o

<

2] 5@
(3x8) (8x12

o O O O o o o o

o O O O o ©o o ©o
o O O O o o o o

o O O O o o o o

o O O O O N o

(8x12)

] i)

) (12x1)

{v®}

o O O O O o o o
o O O O O N o

0
(8x12)

O O O N O O O O

—_ o N o o MM o o
e

O O O N O O O O

)

o

o O O O o o o o

o ©O O O o o ©o o

o O O O o O O o

o O O O o o o o
L

Uo
Yo

Wo
(1)

EIZ

(1)

Eyz

ety

el

(2)

Eyz

el

(3)

€zz

(3

Eyz

eld

) (12x1)

o © O O o O o ©
o O O O o o o ©

(3.3

150

)

7

58)

, (3.3.59)

[ Z ] is a matrix, defined by equation (3.3.53), {f} is a column-matrix of the unknown functions of

the problem, defined by equation (3.3.57).
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The displacements of the upper face sheet (k = 3) can be written in the form

O O O O OO O

O OO O = O O O

3
vio
¥l

3

®) id
u
~ BN A
oo t=[2){po}=[2]§ %8 4 -
(3)
3x8) (8x1) %1
wi® ] 3)
wv?.

3
3

3

\ 1/)1(111) /
{
ug + 223 (6;(52;) - 5:(122)) + %2% (Egz),z - Eg),x
28 — wo,e + 23 (699,1 - Egzz),z)
‘%Eg:i),z
vg + 223 (61‘{‘? - Eg(/:i)) + %23 (Eg),y - Eg),y
255,‘1) — Wo,y + 23 (Egi)y - E(zzz)y>
3
“’%Egz),y
wo + 25 (62 ~ )
eld
\
0 00 23 0 32L& -2z 0
000 0 0 -zZ 2 0
000 0 O 0 0 0
000 0 23 3% 0 -2z
a
000 0 0 -zZ 0 2
000 0 O 0 0 0
000 0 O z3 0 0
000 0 O 0 0 0

4 3\

)

)

Up
Vg

Wo
1

612

o

€zz2
(2)

Exz

o

el

(3)

Exz

o

el
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or
where
1 0 0
00 -Z
0 0 0
[ 5(3)] _ 01 0
2]
(8x12) 00 “ By
0 0 0
00 1
0 0 0

o O O O O O o o

S ©O O O o O o o

152

u®
@ 8 =[Z][89] (£}, (3.3.60)
w® (3x8) (8x12j (121
$(®

0 223 0 3282 223 0 1222
0 0 0 -zZ 2 0 232
0 0 © 0 0 0o -1

1 a el
000 I gy 0 “2mogHy | (3.3.61)
00 0 -zmZ o0 2 g
0 0 0 0 0 0 -3&
0 0 0 =z 0 0 —23
0 0 0 0 0 0 1

[ Z ] is a matrix, defined by equation (3.3.53), {f} is a column-matrix of the unknown functions of

the problem, defined by equation (3.3.57).

In summary, the column-matrices of displacements in each of the sublaminates can be written

in the form:

\

e
) =[ZH5(‘) {f} , (3.3.62)
) (3x8) (8x12) (12x1)
w (S
{v 1}
u
e ,:[2][5‘” (), (3.3.63)
@) (3x8) (8x12) (12X1)
w N e’
{v@}
NOR
o® >=[Z [89] () (3.3.64)
3) (3x8) (8x12) (12x1)
w 7/
(3

where [ Z ] is a matrix, that depends only on z-coordinate; [ 5(1)], [ 5(2)] s [ 5(3)] are matrices of

differential operators; and {f} is a column-matrix of the unknown functions of the problem.
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3.4 In-Plane Strains in Terms of the Unknown Functions

In order to perform the finite element formulation, it is necessary to have an expression for the strain
energy in terms of the unknown functions ug, vy, wo, 5:(,12), 592, 6;32), a§,12, e?(,:;), 53(,32), 592), 5&22), 595).
This requires expressions for the strains in term of the unknown functions. The transverse strains
Eg(plz), sﬁ), 6,51), e§,?, 63(,22), 6532), 692), 6222), eg) are the unknown functions themselves. Therefore, it is
necessary to express the in-plane strains 59,2, egi), egi), e&ly), efy), 55;'”;) , e&}, E(yzy), 55;) in terms of the
unknown functions.

In order to find the in-plane strains 5&'2, sé’;) and E?(,Z) in terms of the unknown functions we will

substitute expressions (3.3.27), written here again,

(k) (k) (k) (k)

u wuo 'lr/)ul wu2
v =93 %o +94 Yu z2+9q Y2 2 (eqn 3.3.27)
w Yuwo Yuw1 Vw2
into the strain-displacement relations (3.1.2), written here again,
1 2
o =+ (w0’
0 — o 4 L ()
Eyy = Uy  + 3 (w,y ) ) (eqn 3.1.12)

1
Eg,';) =3 (u,(;f) + vff) + wff)w,(;)) (no summation with respect to k).

The result can be written in the form
(k) (k) (k) (k)

Exx Pzz0 Pzl Prz2

= 2
Eyy - Pyy0 + Pyyl z+ Pyy2 z7, (341)
261‘1} ‘szo ‘nyl So:cy2

where expressions for 4P:(c];:)m; Lpgzc:)m, So:(z:ky)rn (m=0,1,2) in terms of the unknown functions are (the

non-linear terms are underbraced):
o\ = o,z +222 (E:Erzz),a: - E:Sclz).a:) +

1
§z§ (65':22),:rz - E.(zlz),a:z) +

1 2
3 [wo,z + 29 (ef,i)z - Elez)x)] , (3.4.2)

~ 7
v
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Soz(clx)] = 2692),2 — Wo,zzx + 2 (Efz?z),m:c - ESzzz),zx) +
(0.0 +22 (e, - e®, )] e, (3.4.3)
1 1 2
Soil:c)Z = _5692),11 + § (Eg:iz),a:> ) (344)
—_——
= o+ 222 (2, — e, ) +
1
§z§ (Eg),yy - Eglz),yy) +
1 2
5 [wow +22 (2, - 0,)] (3.4.5)
1
‘p;y)l = 25512),1/ — Woyy + 22 (Egz),yy - egz),yy) +
[wo,y + 22 (Egz),y - Elez),y)] Eglz),y ) (3.4.6)
1 1 1 2
o= —5e®,, + 5 (0,) (3.47)
—_———
Sog;ly)o = ug,y + Vo,z + 2z (E:(z:2.z),y - Eg:lz),y + 63‘/27.),:5 - E;((/?,:x:) +
Zg (Egz),zy - Eg?,my) +
[wo,z + 29 (Eﬁ)yz - sglz),x)] [wo,y + 2 (Eg),y - 692)’3,)] ) (3.4.8)
Sos(cly)l = 2 (E:(clz),y + 51(/12),.1:) - 2w0,$y + 232 (Eglz),zy - Egz),xy) +
ey [wo,x + 22 (692),1 - Eglz),:c)] +ell, [wO,y + 29 (Eﬁi{y - eﬁlz{y)] : (3.4.9)

1
= el + el (3410
N, s’
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1
P =ug. + §(w0,z)2 ) (3.4.11)
——
D) =22, — wo a0 + woze?, (3.4.12)
——
2 1 1 2
‘10:(1:::)2 = _'2-625),11 + 5 (Egz),z) ) (3413)
[
2 1
‘p;f/y)() = g,y + 5 (wo,y)2 ’ (3414)
e ——’
() _ 9.2 _ )
Pyy1 = 22y — Wo,uy + Woy€zzy » (3.4.15)
N —

9 1 1 2
c,oiw)Q = _555522),.1114 +3 (Effz)y) ) (3.4.16)
N—_———
2 _
Pryo = U0,y + V0,z + WozWoy , (3.4.17)
N, o’
SO:(I:zy)l = 2 (Eézz),y + 6;5;22),:: - wO,Iy) + wO,ZJE.(zz;:),z + woymegz),y ? (3418)
2
Sofcy)2 = _—C—E’fz),a:y + E.(zzz),regz),y ’ (3419)
—_——
3 1
‘Pix)o = U0,z + 223 (Egz),x - Egcaz),z) + 523 (65127.),3:2: - 5&?,11:) +
1 2
5 [wow + 20 (2. - e@.)] ", (3.4.20)

e
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3
‘ngz)l = 25:(532),:: — Wo,zz + 23 (Egzz),:r:c - Egz),zz) +

['wO,z +2 (E‘Zi),z - Eﬁi’,m)] &, , (3.4.21)

~ s
v~

@ __l@ 1

2
Prz2 = 9 %%,7x 9 (Egz),x) ’ (3422)

3 1
‘pz(Jy)O = voy + 223 (egz),y - Egi)y) + —2-z§ (Egi)yy - Eg),yy) +

o+ 2 (=2 —<,)] (3.4.23)

J

v

3
Saz(ly)l =20, — wouy + 23 (552141/ - Egi)yy) +

[wo,y +23 (Eﬁ),y - Eﬁ‘?,;,)] e, , (3.4.24)
3 1 1 2

‘pgy)2 = mieg?z),yy + 5 (Eg:i),y) ) (3425)
N e

90:(13;)0 = U,y + Yo,z + 223 (55222),7; - 6:(15:?,1; + E§/2z),a: - Ez(;i),m) +
zg (Efz2z),xy - Eg:i),xy) +

[wo,m + 23 (Eg‘;)I - eg,)m)] [wo,y + 23 (Effz)y - ef,i{y)] , (3.4.26)

v

v

3
‘piy)l =2 [ga(ci),y + 5521 — Wo,zy +23 (Egi),zy - Eg:),zy)] +

e fwoy 20 (2, e, )] e, [wou 20 (R, -<R)] a2

3
P = @), + e, (3.4.28)
N e’
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3.5 Expressions for All Strains in Terms of the Unknown
Functions in Matrix Form

In performing the finite element formulation it is convenient to write the expression for the strain
energy in matrix form. Therefore, it is convenient to form column-matrices of strains of each

sublaminate as follows

T
{E(k)} = [_ 5:(cl;c) ESZ) 59:) 25:5/];) 26(:? 25;113) J (k=1,2,3), (3.5.1)
(6x1)

(where the superscript k denotes the number of a sublaminate) and to write the expressions for these

L . 1) 2 (3 (1) _(2
column-matrices in terms of the unknown functions wg, vo, we, Ez(cz), E;(z;z), 5;2), Eg(,z), eg), E:gsz), 592,

sS‘Q, £ in matrix form.
Then, using expressions (3.4.1) for the in-plane strains in terms of the unknown functions, one

can write

{e(k) =[Z] <p(’°>}, (3.5.2)
(6x1)  (6%12) (1951)

where

T
{so(’c’}zl (k) (R k) ) ) k) k) ) (k) g (R) g (K) (k)J :

Prz0 Pazzl Pzz2 Pyyo Pyyl Pyy2 Pxyo Pyl Pry2 yz €2z
(12x1)
(3.5.3)
and
(1 222000000 000]
00 0 1 2z 22000 000
00 0 00 0 0O O O0O01
(2] = (3.5.4)
(6x12) 00 0 00 O 0O O OTI1IO0
00 0 00 O OOOT1TTO0OTPO
] 00 0 00O 0 1 2 22000

In the column-matrix {c,o(k) }, the functions cpg;)o, cp(zkx)l, <p§’;)2, 90?9;)0, gogl;)l, tp;l;)z, w(zl;)o, (,og;)l, npg;)z are

expressed in terms of derivatives of the unknown functions by formulas (3.4.2)-(3.4.28). With the
help of a matrix of differential operators, let us express the column-matrices {cp("’)} in terms of a

column-matrix {f}, which contains only the unknown functions. Let us define the column-matrix
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of the unknown functions as follows:

) (1

{f} = { Up Vg Wo €zz Eyz Ezz
Then
1 — 1 1 1 1 1
(0} =] o o o o o)
(12x1)
Uug ¢ + 2z (5:(1:22),1 — Ezz,x
25§:12),x
vo,y + 222 (Egi),y -
= 4

(2)

2 (ef;lz),y

(

+ <
[wO,z + 2 (592),3: -

Eglz),y [w0,1 + 29 (Egz),:c - €

— Wo,zz + 29 (Ezz,x:r.

1
251(Jz),y = Wo,yy + 22 (Ezz,yy

1
Ug,y + Yo,z + 229 (Ezz,y - E:(x:z),y

+ {0z ) — 20,0y + 225 (

% [wo,z + 29 (5

2
1 1
‘P; y)2 ‘p(zy)O

(1)
(1

1_(1
_§5gz),:m:

Ez(/lz),y> + %z% (

e}

1.(1)
_§Ezzyyy

1
_Egz),xy

25(112
25512)

el

(2

(1)
(1

zz,

1‘)] + E(zlz),z

edaeldy

0
0
0

)+ (

Ez)] [wo,y + 2 (

(2

e2 3

xz

(1) (1)

‘p:cyl

(2 )

- 51(222),:1:1)
(2) (1)

- Egi),yy)

i3

Sozy2

Ezz,zx — 5::,::::::)

€zz,yy — 522,yy)

(2)

(1) (2)

@ \12

zz,x — €zzx

[wo,x + 2 (5,(z2z)a: - Eglz)m)] Eglz)z
3 (69;;),z>2

3 [0+ 22 (2 —e2,)]

[wo,y + 29 (69;)3; - Egi),y)] 6(2{,,),1,
% € S=lz)y i

(2)

€zz,zy — €zz,

Ezzyy — Ezzyy

)

(n

(2)

z

)]

[wO,y + 22 (Ezz,y — €22y

(1)

2 1
el = efle) 8 (s - e

(1)

O JT

2¢8) 261(,12) EQ)J

)

)

158

(3.5.5)

T
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£ oo 0 - 0 b ok o p& 000 w )
% 0 0 22 0 ndy 0 0 -—nf 000 v
0o o0 0 0 0 ~1& 0 0 0 000 wo
0 & o 0 g 4EH 0 mf M 000l &
0o 0 - 0 2 2dy 0 0 -=f 000 e
o o 0 0 0 -3y 0 0 0 00 0]] &
5 = 0 “2af 203 "2362; 208 2202 2355% 000 ﬁ e? ("
0 0 -28 22 22 2ngly O 0 ~225% 00 0| 2
0 0 0 0 0 -3% 0 0 0 000 ]| 2
o 0 0 2 0 0 0 0 0 000 e
o 0 0 0 2 0 0 0 0 00 0|]| 2
| 0 0 0 0 0 1 0 0 0 000 €2 |
( 3 [ + 22 (2 — )| 1
[m,: +2 (eﬁ"?,x - eﬁ‘),:)] s
3 (2.)°
3 [y + 22 (2 - 03]
[wo,y + 2 (ef‘?,y - e&lz’,y)] ey
. H(e)' .
D o (2 —e22)] s 2 (2~ o)
ety [wo,x + 29 (69:),: - 692,;)] +ete [wo,y +2 (E(z?z),y - 6£1z),y)]
ezeldy
0
0
( 0 )
So,
{6(1)}= (2] [am] (f} +{,,,m} , (3.5.6)

(12x1)

©ex1y 1] (2x12) (12x1)

fot}
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where
2
oz
a?
~ 827
0
0
0
o))
8
(12x12) oy
0
0
0
0
| o

{1} =

(12x1)

!

o 0o 0o o ©of © ©8p o o ©

(1)

€zzy

[wO.I + 22

[wO,:r + 22 (

(620 - 2] [0 + 22 (B — 82|

5(:22).:: - Eglz),z)] + Eg]z).z

et0oelly

0
0
0

2
[wo_y + 29 (E(zz),y -

matrix [Z] is defined by equation (3.5.4) and matrix { f}-by equation (3.5.5).

Analogously we obtain expressions for strains in th

160
2
ComE 0 13 2mE 0 & 00 0]
2
22 0 2y 0 0 -z 000
0 0 -1Z 0 0 0 00 0
2 - "
0 -2 132 0 2f 34L& 000
8 2 :
0 2'3—‘, 22%! 0 0 —22%7 0 0 0
0 0o -1, o 0 0 00 0
& 2
“2ng 223 '23%,; 2223% 220& zggf:—a; 0 00
3 el 2
2£ 2£€ 255 O 0 22282;1 000
a?
0 0 8z8y 0 0 0 0 00
2 0 0 0 0 0 000
0 2 0 0 0 0 0 00
0 0 1 0 0 0 000
(3.5.7)
2
b [wo.:c + 22 (Eg’.),x - €(zlz),:l:
[wo,z + 22 (5(22:),:: - e(zlz),:r)] E(zlz),:c
2
% E(zlz),::
2
5 [wo,y + 22 (Egzz),y - E.(:lz),y)]
[wo,y + 22 (5(22::).'_(; - ESzlz),y)] E(zlz),y
1 () L
2 \E220 . (3.5.8)

e second and the third sublaminates in terms
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of the unknown functions in matrix form:

where

© © o © Oof o © © © o FPe

{#@}=12]

(6x1) (6x12)

© © © © © P © © Qo o o o

v ©

b

> © O

Q|
g g
SO O O O O O O O o O o o

[en T s N o B

> © ©

«

[09] 11} +{n®}

(12x12) 12%1)  (19x1)
o)
00 0 O 0
0022 0 0
62
oo o o -i1Z
00 0 0 0
00 0 23% 0
00 0 0 -3z
00 0 O 0
0022 22 0
82
00 0 0 -—3%
00 2 0 0
00 0 2 0
00 0 O 1
%(w0,1)2
wO,:z:Egz),z
@ \*
‘;‘(Ezz,z)
%(wo,y)2

2
wo’yfgz))y
10,
2 2Z,Y

Wo,zWo,y
2)

wO,ysgz,x + Wo,z€zz,y

(2) (2

€zz,x€z2y

2

S © O O O O O O O O o o

S O O O O O O O O O o o

O O ©O O O O O O o o o o

161

(3.5.9)

, (3.5.10)

(3.5.11)
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and
{5(3)} =[Zz] [6(3)] (f) +{n(3)} , (3.5.12)
6x1) %12 | 12x12) B2 (121)
{o)
where
2 0 0 000 25% 0 3% -2mf 0 ~12g |
2
0 0 -Z 000 O 0 -z 2 0 .
0 0 0 000 O 0 0 0 0 -5
2
0 & 02 000 0 25& 4% 0 -2 -i2&:
_2 8? 8 2
0 0 Z 000 0 0 ~23% 0 22 238
a?
[a‘”]: 2 (; 0 000 08 0 02 0 0 -1
8 2
(12x12) 5 bz 02 00 0 238 2 iy -8 -22F -Hl
L) 8 2 2
0 0 =232 000 0 0 -2z5% 25 22 35255
82
0 0 0 000 O 0 0 0 0 -5
0 0 0 000 O 0 0 2 0 0
0 0 0 000 O 0 0 0 2 0
0 0 0 000 0 0 0 0 0 1
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( 1 @ _ . o\
3 [wO,x + 23 (Ezz,z: —Ezz,z
[wO,z + 23 (Egzz),z - Eg:sz),z)] E,(z:i),a:
2
% (E£3z),a:)
1 @ _ @\
2 |:'LU01y + 23 (Ezz,y —€zz,y
[w0,y + 23 (E‘(z2z),y - Egz),y)] 5.(z:i),y
1 (3 2
n“”} - 3\ L. (3.5.14)
(12x1) [w0,a: + 23 (Egz),a: - Egi),z)] [wo,y + 23 (Egzz),y - E(z:i),y):l
592),1 [wo,y + 23 (Egzz),y - Eg:az),y)] + Eg:i),y [wO,:c + 23 <E(z2z),z - ES?,::)]
ey
0
0
0
\ /

In summary, the column-matrices of strains {E(l)}, {5(2)}, {6(3)} in each of the three sublami-

nates (the face sheets and the core) are defined by the expressions

£

(6x1)

=1[Z]
(6x12)

{@}=12]

(6x1)
{9} =12]
(6x1) (6x12)

[a‘”] sy +{n} (eqn 3.5.6)
(12x12) 12X1  (12x1)
{e}
[8(2)] {7} +{n(2)} , (eqn 3.5.9)
(12x12) 2D (12x1)
o)
(eqn 3.5.12)

[09] 1) +{n®}

(12x12) (12x1)

o)

where [ Z ] is a matrix that depends only on the z-coordinate, [ oW ], [a® ], [8®) ] are the

(6x12)

(12x12) (12x12) (12x12)

matrices of differential operators, {f} isa column-matrix of the unknown functions of the problem,

(12x1)
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{nV}, {n®}, {n®} are the column-matrices of non-linear combinations of the unknown functions

(12x1) (12x1) (12x1)
of the problem.
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3.6 Stress-Strain Relations

The fiber-reinforced lamina of a composite material are orthotropic. In a material coordinate system
(z1,xe, x3), whose xz;-axis is parallel to the fiber direction of a lamina, the stress-strain and strain-

stress relations have the form

( \ [~ 9 4 3
on Cn Ci2 Ciz O 0 0 €1
022 Cia Cy Coz3 O 0 0 €22
o C C: C 0 0 0 €
< 33 | _ 13 Caz Cs3 ] €3 , (3.6.1)
093 0 0 0 C44 0 0 2623
013 0 0 0 0 055 0 2613
L 012 J ] 0 0 0 0 0 Csa It 2612 )
and
4 3\ - " 4 3\
€11 S Si2 Si3 0 0 0 o1
€22 Si2 S22 Sa3 0 0 O 099
€ S13 Sa3 S 0 0 0 o
| f: 13 S23 S33 ] 78 (3.6.2)
2e93 0 0 0 S44 0 0 023
2613 0 0 0 0 555 0 013
L 2512 ) | 0 0 0 0 0 Sﬁs 11 ag12 )

Quantities C;; and S;; are the stiffness coefficients and compliance coefficients in the material coor-
dinate system. The strain-stress relations in the principal material coordinate system can be written

in terms of engineering constants as follows

3 B 7 7 )

€11 ELI _%;A —%ii 0 0 0 011
€99 "%,2 "EIZ —'7'52;" 0 0 0 022
Jes \_| -8 -8 5 0 0 0 ))om]| (36.3)
293 0 0 0 & 0 0 023
%13 0 0 0 0 & 0 013
| 2e12 0 0 0 N T 192

If we invert the compliance matrix in equation (3), we receive the following expressions for the stiff-
ness coefficients C;;, in material coordinate system, in terms of engineering constants:

(E2 - V§3E3) El2

Cn =
E2E1 - E1V%3E3 - V122E§ - 2V12E21/231/13E3 - Vf3E2E3,

(3.6.4)
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(r12E2 + vo3v13E3) EyE

Ci2 = s 3.6.5
12 EgEl - E1V§3E3 - V%2E§ - 21/12E2V23V13E3 - V%3E2E3 ( )
(v12v23 + v13) E1EQEs
Ciz = , 3.6.6
13 E2E1 - E1V§3E3 - U¥2E§ - 2U12E2V23U13E3 - Z/?3E2E3 ( )
E1 - V2 E3 E2
On = pp (367)
2E) — E1v3;,F3 — Vi, E5 — 2112 Epva3vi3E3 — vis Eo B
(vesE1 + v13viaEa) EoEs
Coz = s 3.6.8
3 E2E1 - E1V§3E3 - U%zEg - 21/12E2U23I/13E3 - V%3E2E3 ( )
(E] bt I/%zEz) E2E3
Css = BBy = ByiBs — VA, B2 ~ 2uisE Es — V2, EsEy’ (3:6:9)
2L Vo33 — Vip L5 VigLiaVo3Vi3Lug — VigLoLig
Cas = Gas, (3.6.10)
Cs5 = Gis, (3.6.11)
Ces = G12. (3.6.12)

In the laminate coordinate system (z,y, z), whose axes are aligned with the sides of the plate (Figure

3.2), the stress-strain relations have the form (Reddy, 1996):

( 3\ - _ — — ( 3
Ozz Cin Ci2 Ciz3 O 0 Cis ] Exe
Oyy 6.12 Z;'-22 .C_23 0 0 626 Eyy
Oss Ciz Co C 0 0o C €2z
) [ _ 13 23 33 B B 36 ) - (3.6.13)
Oyz 0 0 0 044 045 0 2Eyz
Ty 0 0 0 645 _C—55 0 261;2
L Tzy ) L_C—lﬁ Cys C3zs O 0 Ces 1 2e5y )
or
{o}=[C]{e}, (3.6.14)

where C; are the transformed elastic coefficients, referred to the laminate coordinate system, which

are related to the elastic coefficients C;; in the material coordinate system by the following formulas:

611 = 01104 +2 (C12 + 2066) 252 + 02234, (3.6.15)
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Cia = Crac* + (C11 + Cao — 4Cgg) ¢?s* + Cras®, (3.6.16)
Ci3 = C13¢® + Ca3s?, (3.6.17)

Cis = (C11 — C1a — 2Ce6)c®s — 3C16¢2s% + (2Ce6 + Cr2 — Caa) cs°, (3.6.18)
Caz = Caac* +2(Cia + 2Cs6) ?s® + Crs*, (3.6.19)

Cas = Ca3c® + C135%, (3.6.20)

Cae = (Crz — Caz + 2Ce6) s + (C11 — C12 — 2Cgg)cs®, (3.6.21)
C33 = Cs3, (3.6.22)

Cs6 = (C13 — Ca3) cs, (3.6.23)

Caa = Caac® + Cs55%, (3.6.24)

Cy5 = (Cs5 — Caa)cs, (3.6.25)

Css = Cs5¢? + Cass®, (3.6.26)

Ces = (C11 + Caz — 2C12 — 2Ceg) c?s% + Cog (c* + 5*) (3.6.27)

where ¢ = cos#, s = sin#, 6 is an angle between a direction of fiber orientation in a lamina and the

z-axis of a laminate coordinate system, measured counterclockwise (Figure 3.2).
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3.7 Strain Energy of the Sandwich Composite Plate

In order to perform the finite element formulation, it is necessary to write the strain energy of the
sandwich plate in matrix form in terms of the unknown functions. The strain energy of the whole
sandwich plate consists of the strain energies of the face sheets and the core. Therefore, in this
section the expressions for the strain energies of the face sheets and the core are derived

Strain Energy of the Lower Face Sheet

The face sheets of the sandwich platform are composite laminated plates, which are built up of
fiber-reinforced plies. The orientation of the fibers can vary from ply to ply, and, therefore, values of
the stiffness coefficients C;; in the Hooke's law (referred to the laminate coordinate system) can vary
from ply to ply in the face sheets. Let us introduce the following notation for a stiffness coefficient

in the Hooke’s law for a ply of the lower face sheet, in the laminate coordinate system:

o) (3.7.1)

17 !

where the right superscript (1) denotes that a stiffness coefficient is associated with the first sub-
laminate (i.e. the lower face sheet), the left superscript « is a number of a ply in a lower face sheet,
subscripts ¢ and j denote a position of the stiffness coefficient in the stiffness matrix. The stiffness

—(1 .
matrix with components “C f ) will be denoted as

C 1) C(l) C(l) 0 0 C(l)

[—(1)] C’(l) C(l) C(l) 0 0 C(l)
0 0 0 ¢ Tl o

0 0 0 oCy Tl o

C(l) C(l) C(l) 0 0 C(l)

(3.7.2)

So, the strain energy of a lower face sheet’s ply with a number « is

U = /// (1) ]{ (1)} av (3.7.3)

(l)

where Va(l) is volume of a ply with number a, of the lower face sheet (Figure 9.1), and the column-

matrix of strains {5(1)} is defined as follows:

T
{5(1)}5{ e &) D 2l 2 255:13;)J - (3.7.4)
(6x1)
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Unlike the material coefficients “Ul(-;), the strains do not have a subscript «, which denotes the
number of a ply of the lower face sheet, because assumptions about through-the-thickness variation
of strains? are made for the whole lower face sheet, not for each individual ply of the lower face
sheet. Therefore, each strain in the lower face sheet, as a function of z-coordinate, is represented
with a single expression for all the domain 2; < 2 < 2 (Figure 2.3)

If one substitutes equation (3.5.6) into equation (3.7.3), one obtains

U = 1///{¢<1>}T 12]7[c) 12 {o} av . (3.7.5)

2(‘/(,)) (1x12) (12X6) “gxey (6%12) (15x1)

Let n be a number of plies in the lower face sheet and let

§1=21,62,83, . &n =22

be z-coordinates of the interfaces between the plies of the lower face sheet (Figure 3.3). A ply with

a number « is enclosed between the planes z = £, and z = £a41. Then expression (3.7.5) can be

written as
. B L s e
U = E/f{w} /[ 217 [T (2] d= | {0} dzay. (3.7.6)
00 o

The strain energy of the whole lower face sheet is

n L n fa
o= S0 [l | fror (o1 ae) (o) s
a=1 00 a=lEQ

B L
=L [0y o) o) e @
00

where

n 60-}-]

[D“)] = / [z]T [52}’] (Z] dz. (3.7.8)

(12x12) a=1 ¢

Matrix [D(l)] is symmetric and its components are
(12x12)

4section 3.2 of the chapter 3




CHAPTER 3

< ot 1 o oD
DS) = Z Y (£a+1 )v D§12) = 5 Z (€a+1 62) )

a=1 a=1
1 ¢ o “ om(D)
D =3 ) (€31 —€2), DI =D Tz (a1 —La).
a=1 a=1
1 1 ¢ (1) 1 (1)
D§5) = by (§a+1 5a) ( ) -3 Z (£a+l fg)v
a=1 oa=1
(D) oo (
D§17) = Z CIG (§a+1 - s = 2 Z Cig §a+1 5?1),
a=1 a=1

1 — 1
D =15 oo (e, - ), Dl =0,

n )
111—0 D1 12‘_“2 acgs (€as1 = &a),

a=1

1« a=(1) 1o 1
Df) = 3 Z Ciy (€41 —€2) D = 1 Z §1) (a1 -63),

a=1 a=1

1 e o= 1< (1
Déi) = 5 Z C12 ( oa+1 Ea)v é]é) = g Z ) (£a+1 &g) y

a=1 a=1

1o (1 1
D%) =1 Z ) (§a+1 £17) =3 Z aC( ) a+1 - 52) ;

a=1

1o
DS;) =3 z aclﬁ (5a+1 53)1 Dgle) =1 Z C(I:S) (5i+1 - 5&) ’

a=1 a=1

1 1
Dé 1)0 =0, Dé,l)l = 2 12 =

(1)
Z a1~ ) “Cuz,

er—a

n
1y _1 o 1 (1)
D:(ss) =z Z 11 (§a+1 §a ) :(34) =3 Z QC a+1 - 52)’
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n

R (1) 1 a(1)
Di(ils) = Z Z (£a+1 ga) (1) 5 Z (52—9-1 - 52) C12 ’

a=1 a=1

n

1 1 = 1
DI(SEI) =3 Z (524-1 éoz) 2(16)’ Di(ig) - 4 z QC( ) ( a+1 —Ei) ’

a=1 a=1

1y _ 1 o) !
DI(iQ) = 5 Z Cie (§g+1 —52) ’ :(31)0 =0,

a=1

1 1 (1)
D:(;,%l = §1)2 =3 Z *Ci3 §a+1 52) )
- o
1
Dyy = Z 2 (fat+1— &), Dy = 3 Z 0022 (€2.1-€2),
a=1

1w« gt i o
D‘(izi) = g Z C( ) (£a+1 ga) D‘(117) - Z C2 (£a+1 - éo:)
a=1

a=1

1 n
-1 chJ (=€), DR =33 “Ta (€ —€),

a=1

‘(111)0 =0, D((411)1 =0, D4 12 = Z QC( (63— &),

a=1
1~ (1) 1~ (1
Dy = 3 Y oCh (€341 €2 Dy = 2 > °Thy (€1 - 63),
a=1 a=1

1 « o 1«
DY) = 23" TH (2 - €2), DR =33 T (€1 - €0),

a=1 a=1

y_lem o
Dég) 1 Z C26 (5a+1 53‘) ) Déll)o =0, Dé11)1 =0,

a=1

1 1
Dg}z ) Z ( ) (§a+1 52) )

a=1
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o=1

1o 1w 1
D=2y T (€n-6), D=3 *Ta (€ -€2),
a=1

1 1 : 1w 1
DY = 33" “Th (€ —€), DY =53 “Tis (€41~ €2).,
a=1

a=1
1 1 (1)
Dé,30=0 D 11— t(51)2=3zac (€41-€),

- oW 1o oW (
D'(Tzl) = z (éa-}—l - éa D = 5 Z 66 £a+l gi) ’

a=1

o (l)
79—32 Ces a+1 53) D710—0

1 1 S a"‘(l)
D’(T,}l =0, D§,1)2 = Z Cse (Eat1 — o)

a=1

n n
1
Z 066 £a+l ga s Dgl) - Z Z €a+] 631) )
=(1)
Déll)O_Ov Dglzlzo DE(311)2=_2 QC a+1_€¢21)7

n
y 1 oW 1
Ds(zg) = 5 Z Ces (§a+1 52) ) Dé 1)0 =0,

a=1

1 (1)
D( )1 =0, D9 127 32 “Css §a+1 62),

"~ gl =~ or(D)
Dﬁ))lo - Z (§a+1 - fa) D:([:))u - Z C45 (§a+1 - fa)a

a=1 a=]

) —~ agtl)
Dgo)u =0, D11 1n= Z Cis (Cat1 —&a), Dﬁ)lz =0,

a=1
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D%),lz = Z (l) 3 (at1—&a)- (3.7.9)

a=1

The quantities DS ) characterize the averaged (through the thickness) material properties of the
lower face sheet. If failure occurs, the material constants "‘C’SJ), that characterize each individual ply
of the lower face sheet, change their values. Therefore, if the failure occurs, the averaged material
properties ijl ) change their values too. The method of reducing the values of the material constants

(k) . . . . . .
O‘Cfm) in case of the failure, is described in the subsequent sections.

So, the strain energy of the lower face sheet is

=;0// O o) o) -

T

%/B/L {f} +{"m} [D(l)] [3(1)] {/} +{77(1)} dedy,  (3.7.10)
00

(12x12) (12 D ex1) /) (exag) \ azxiz) 2D (q2x)
where the matrix [ oW ] of differential operators is defined by equations (3.5.7) , the column-matrix
{f} of the unknown functions is defined by equation (3.5.5), {17(1)} is the column-matrix of the non-
linear combinations of the unknown functions, and matrix [D(l)] is the matrix of material constants,
averaged over the thickness of the lower face sheet.
Strain Energy of the Upper Face Sheet
Let us introduce the following notation for a stiffness coefficient in the Hooke’s law for a ply of

the upper face sheet in the laminate coordinate system:

=(3)
(IC'LJ ,

(3.7.11)
where the right superscript (3) denotes that a stiffness coefficient is associated with the third sub-
laminate (i.e. the upper face sheet), the left superscript a is a number of a ply in the upper face
sheet, subscripts ¢ and j denote a position of the stiffness coefficient in the stiffness matrix. The

. . —=(3) _.
stiffness matrix with components acﬁj’ will be denoted as

a—C-§3) C(3) a@(i") 0 0 C(3)
gl T «TH 0 0 °C¥

—(3 3 3
_5(3) _ Cl3 aCég’) C() 0 0 C()
[ 3 ] = ) (3.7.12)
0 0 0 T oTd o
0 0 0 C“" GEQ‘;’ 0

L‘*Eﬁ';? oC® g® g 0 °TY
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So, the strain energy of a ply with a number «, of the upper face sheet, is

y® =1 / / / (3) 0(3’ {5(3)} (3.7.13)

v<3

where V) is volume of a ply with number «, of the upper face sheet. Let m be a number of plies

in the upper face sheet and let

Cl = 23, CZ’ CS, ey Cm =24

be z-coordinates of the interfaces between the plies of the upper face sheet.
Then, performing the same derivations as for the lower face sheets, one can obtain the following
expression for the strain energy of the upper face sheet

B L

U = % / / {30‘3)}T[D(3)] {go(S)} dz dy, (3.7.14)
0 (1x12) (12x12) (12x1)

where matrix [D(3)] is symmetric and its components are defined by the formulas similar to the

formulas that define the components of the matrix [D(l)] , for example:

3 1 (3) 3
(3) Z Ca+1 Ca) ] D§2) = 5 Z (Ca+l 2 ’ ( )

a=1 a=1

3

Z (l:i Coz+l Cg) .

(3.7.15)

wl'—‘

So, the strain energy of the upper face sheet is

U® = (3) D® O\ gz dy =
1) 5] ) e
B L T
=%0/0/< {f} +{ )}) [D(s)] ([a(s) }(1{2{<}1)+{n‘3)}) drdy,  (3.7.16)

(2x12) 12X 9x1) /| (12x12) \ (12x12) (12x1)

where matrices [ 8® |, {f} and {n{®} are defined by formulas (3.5.13), (3.5.5) and (3.5.14) respec-
tively and matrix [D(S)] is a matrix of material constants, averaged over the thickness of the upper
face sheet.

Strain energy of the core of the sandwich plate

The core of the sandwich plate is considered to be a homogeneous orthotropic medium. But the
failure in the core can be distributed nonuniformly in the thickness direction. As a result of this,

in the presence of failure the coefficients 553- of the stress-strain relation of the core can vary in the
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thickness direction. To take account of this, the core is nominally divided into the layers, paralle] to
the x-y—plane, such that within each layer the coefficients of the stress-strain relation do not vary in
the thickness direction. Therefore, the core is treated as a laminated plate, the same way as the face
sheets, and the expression for the strain energy of the core has the same form as the expressions for

the strain energy of the face sheets:

B L T
=3[/ ([ ](fzaaﬁ{n@)}) o] ([ Ll{z@n+{nm}) drdy, (377

(12x12) (12x1) (12x12) \ (12x12) (12x1)

where matrices [ 8® ], {f} and {n®} are defined by formulas (3.5.10), (3.5.5) and (3.5.11) respec-
tively. The matrix [D(z)] is a matrix of material constants, averaged over the thickness of the core.
It is defined analogously to the matrices [DV] and [D®)] .

Strain Energy of the Sandwich Plate

The strain energy of the sandwich plate is the sum of the strain energies of the core and the face

sheets:

U,=UD +U® +U® =

B L T
1 . - r -
=§// 00 ] (1) +{n®}] [p®] ([0 ] () +{nP}] dway+
20 \zxa2) 2D 1ax1) ) (zx13) \ (a2x12) WP (12x1)
B L T
1 [ 5@ ] @) @] [ [ 5@ ] @
+5 o (£} +{n®} [D ] 0| {1} +{n®}] drdy+
a0 \tzx12) 2D 1ax1) ) (2xi) \ (a2x12) D (12x1)
) B L T
+3 / / 09 ] (1} + {n®} (D& [[89] 1} +{n®}) dedy, (3718)
a0 \zx12) 2D 9x3) ) (zxa) \ azxz) PPN (2x)

where [D(l)], [D(Z)], [D(3)] are the matrices of material constants, averaged over the thickness
of the sublaminates; {f} is the column-matrix of the unknown functions of the problem; {17(1)},
{7](2) } {77(3)} are the column-matrices of the non-linear combinations of the unknown functions of
the problem and their spatial derivatives. All the functions, that enter into the expression (3.7.18)
for the strain energy of the sandwich plate, depend on coordinates z, y and time ¢. Therefore, this
expression is suitable for construction of the two-dimensional plate theory of the sandwich composite

platform.
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3.8 Strain Energy of Elastic Foundation

We shall model the ground, on which the platform is dropped, as a Winkler elastic foundation,
ie. we shall take the reaction forces of the elastic foundation to be linearly proportional to the
displacement of the platform in z-direction at the area of contact of the platform with the ground.
In such a model, the force per unit area, resisting the displacement of the platform, is equal to
-8 w(1)|z=zl , where the function s(z,y) is usually referred to as the modulus of the foundation.

Then the strain energy of the elastic foundation is

B L
1 2
Uy = 5//s(x, Y) [w“) (z,y, zl,t)] dx dy (3.8.1)
00
According to equation (3.3.14),
w® (2,5, 21,1) = wo + €@z + e (21 — 22) | (3.82)
or
w® (z,y,21,t) = { 00100 (z1—2) 00 2z 000 J {f}, (3.8.3)
where

T
{f}= [ uo v wo e e R 2 B 2 L L EQJ

is a column-matrix of the unknown functions of the problem. Then

o (o WT
0 0
1 1
0 0
0 0
[w(l)(m,y,zl,t)]2={f}T< acm )y AT L {f} =
0 0
0 0
2 2
0 0
0 0
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B (1{51}2)T(£21311)(1{2{<}1) ’ (384)
where
[ 0 0 0 00 0 00 0 0 0O ]
00 0 00 0 00 0 0 00
00 1 0 0 2z-2 00 29 0 00
00 0 00 0 00 0 0 00
0 0 0 00 0 00 0 0 00
(D] - 00 z1-20 00 (:n—-2)° 00 (n—2)2 000 (385)
00 0 00 0 00 0 0 00
00 0 00 0 00 0 0 0O
00 2 00 (z1—22)20 00 22 000
0 0 0 00 0 00 0 0 00
00 0 0 0 0 0 0 0 000
|00 0 00 0 00 0 0 0 0]
The substitution of equation (11.4) into equation (11.1) yields
=4[ L @20

This is the expression for the strain energy of the elastic foundation in terms of the unknown functions

D=l mo o e ) & B D D D]
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3.9 Potential Energy of the Platform and the Cargo in the
Gravity Field

Potential energy of the platform in the gravity field

We take a zero level of the potential energy of the platform in the position, in which the platform
touches the ground, but the ground is not compressed yet, or, in other words, it is assumed that
the potential energy of the platform in the gravity field is equal to zero at the initial moment of
interaction of the platform with the ground. Let us find an expression for the potential energy of
the lower face sheet. The projection on the z-axis of the gravity force per unit volume, acting on

the lower face sheet, is
GWM = —ply, (3.9.1)

where p(!) is mass density of the material of the lower face sheet, and g = 9.87 is the absolute value
of acceleration of free fall (absolute value of gravity force per unit mass). The projection M of
the gravity force on the z-axis is negative because the gravity force is directed downward, while the
z-axis is chosen to be directed upward. Therefore, we had to put the “ — " sign in the expression
(3.9.1). When the platform deforms as a result of its interaction with the ground, the gravity force
performs mechanical work, which for the lower face sheet has the form

z2

B L
w = ///Ggl) w) dV = /// — pWguw® dv = —p(l)g///w(l) dz dz dy. (3.9.2)
00

(V(l)) (V(l)) zy
Therefore, the potential energy of the lower face sheet, due to the gravity force, is

22

B L
ow=—_w = p(l)g///w(l) dz dz dy . (3.9.3)
00

Zy

According to equation (3.3.14), it was found that
w(l) (.’II, Y, 2, t) = Wo (‘Ta yvt) + E(z2z) (‘T’ Y, t) 22+ Eglz) (xv Y, t) (2 - z?) (Z] <z< 22) .

The substitution of the last expression into the expression (3.9.3) yields

BLzz

= o0 [ [ [ [ 0,8) + 62 @9,0) 2+ <2 (m08) (c = )] e ey
0 0z
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The integrating of the last expression with respect to z leads to

B L
1
o = p(l)g// [wo (22 — 21) +5( ) 29 (29 — 21) — 56( )(21 — 23) } dz dy . (3.9.4)
00

The potential energy of the core of the sandwich plate in the gravity field is

B L z3

o® = p(2)g///w(2) dz dz dy . (3.9.5)

0 22

According to equation (3.3.8),
w® (z,9,2,t) = wo (&, y,8) + €2 (@, 9,1) 2

Substituting the last expression into expression (3.9.5.5) and integrating with respect to z, one

obtains
B L 1
n® = p@yg / / [wo (23 — 29) + 255.,2) (3 — zg)] dz dy . (3.9.6)
00

The potential energy of the upper face sheet of the sandwich plate in the gravity field

B L 24
n® = pByg / / / w® dz dz dy . (3.9.7)
0 0 =23

Then one can incorporate equation (3.3.15),

is

w® (2,9, 2,8) = wo (z,y,1) + €2 (2,9,8) s+ (z.y.1) (2 —2)  (m<zs 24) -

into expression (3.9.7) and integrate with respect to z, yielding

B L
n® = p®g / / [wo 2 — 23) + €2 23 (24 — 23) + 5‘3)5 (24 — za)z] dz dy . (3.9.8)
00

The potential energy of the whole sandwich plate in the gravity field is

Opiatform = oM 4+ 0@ +0® =

BL
1
= P(l)Q// [wo 2 —2) e z(n—u)- 55(1) (21— 22)2} dz dy+
00
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BL
+p(2)g// [wo (23 — z0) + 269) (23 —zg)} dr dy+
00

B L
+p(3)g// [wo (24 — 23) + €2 23 (24 — 23) + eg) 5 (24 — 23) ] dz dy (3.9.9)
00
This expression can be written in matrix form as
B L
Uptatform = / / {£}7{Tp) dz dy, (3.9.10)
00

where

7=l w0 v wo e o) B @ O & O O O |

€zz yz zz f: 2 yz zz Tz yz zz

is a row-matrix of the unknown functions of the problem and

( )

0
0
[P (22 = 21) + p®) (23 — 22) + p©) (24 — 23)]
0
0

1M (y — 22
{Tp} =91 20 (21~ 22) S . (3.9.11)
0
0
[PW2z3 (22 — 21) + 3p® (25 — 23) + p® 23 (24 — 23)]
0

0

%9(3) (24 — Za)2

Potential energy of the cargo in the gravity field

Next, let the cargo of mass M on the upper surface occupy the region Sy of area Ag. We assume
that contact between the cargo and upper surface of the sandwich platform exists all the time.

During interaction of the platform with the ground, the displacement of the cargo is equal to the
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displacement of the region Sy of the upper surface, which is in contact with the cargo, i.e. the
displacement of the cargo is equal to w® (z,v, 24,t), where z and y belong to the region So. When
the platform deforms as a result of its interaction with the ground and the cargo, the gravity force,

acting on the cargo, produces mechanical work

Weargo = —//u g w® (z,y,24,t) dz dy

(So)
B L
—— [ [ro @y v @yt drdy, (3.9.12)
00
where
1 in region S
H(z,y) = Bion %0 (3.9.13)

0 otherwise

and p is the mass of the cargo per unit area of contact with the platform, i.e. a quantity such that

Mz//,udmdy.

(So)
If the mass of the cargo is uniformly distributed over the surface of the contact, then

_M
I'L—Ao‘

Then the potential energy of the cargo in the gravity field is
B L
Hcargo = _Wcargo bl //ﬂ g H(-T, y) w(3) (m,y,z4,t) dx dy N (3914)
00

According to equation (3.3.15),

w® (2,9, 24,t) = wo (z,y,t) + @ (z,y,1) 23+ (2,9,t) (24 — 23) . (3.9.15)

Substituting (3.9.15) into (3.9.14), one receives
BL
Heargo = / / pg H(z,y) [wo +e?) 23+ (20 - 23)] dz dy . (3.9.16)
00

Expression (3.9.16) can be written in matrix form as follows:

B L
_ T
Mo argo = 0/ / (AT, (3.9.17)
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where {f}7 = [ wo wo wo e e e B P e@ £ Y B Jisafo“’-matrix

of the unknown functions of the problem and
T
{Te}=pgH(=y)| 0 0100000 2 00 -z | (3.9.18)

Thus, the total potential energy of the platform and the cargo in the gravity field is

B L
Mytatform + Meargo = / / ()T (T} + {Te}) da dy =
00

B L
- / / {AAT{T} dz dy, (3.9.19)
00

where

{T} ={Tp} +{lc} =

0
0
g [P (22 — 21) + p@ (23 — 22) + p®) (24 — 23) + p H (2, )]
0
0
—3p Mg (a1 - )’ (3.9.20)
0
0
g [p(l)z2 (20— 1) + %p(” (23 - 23) + P 23 (24 — 23) + p H (z,y) 23]
0
0
g [pm% (24 — 23)° + 1 H (z,y) (24 — zs)] )
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3.10 Kinetic Energy of the Platform and the Cargo

In order to perform the finite element formulation on the basis of the Hamilton's principle, it is
necessary to have an expression for the kinetic energy in terms of the unknown functions. The
kinetic energy of the system under consideration consists of kinetic energies of the platform and the

cargo.

Kinetic energy of the platform

Considering the fact that the mass density of the face sheets is constant, kinetic energy of the

lower face sheet can be written as follows:

KO _ %p(n[v/)/ [(ﬂu)y 4 (i;(l)>2 4 (wm)z] 4V <

T
o ALY
1
= 5,;‘”/// (1) () av . (3.10.1)
V) w® wV

where dots over letters denote partial derivatives with respect to time.

T
According to equation (3.3.62), the column-matrix [ ELCO B CY Yty J can be written in the

form
D u
HD S = 9 o Vo [Z ] [ 5(”] {f} . (3.10.2)
ot Ot (13x1)
w(l) w(l) (3x8) (8x12)
Therefore,
T
(1) — (1) | = 7 z (1)
K p ///( 3 t(1{2{<}l)> [Z] [Z] ([ ]('3 1{2f}1
(8x12) (8x3) (3x8) \ (8x12) tazx1)
T
! =~
_ m/// 5] _t {f} [z] E 1>]5£ iy | av, (3.103)
) (8x12) (12x1) (8x8) (8x12) (12x1)
where
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1 0 O
z 0 O
2 0 0
1 2 22 00 0 00
0 1 0
= 00 0 1 2z 22 001|=
0 =z O
00 0 00 0 1 2
0 22 0
0 0 1
0 0 =z
1 2z 22 0 0 0 0 0
2 22 22 0 0 0 0 O
22 22 24 0 0 0 0 0
_ 0 0 0 1 =z 220 0 (3.10.4)
0 0 0 2z 22 250 0 o
0 0 0 22 28 22 0 O
0O 0 0 0 O 0 1 =
0 0 0 0 0 0 =z 2°
Now the kinetic energy can be written in the form
B L T [ 2 . 5
il (1an) (1] «) (21am) =
2 (8x12) (12><1) 2 ) (8x12) O (12xD)
B L T 5
2/7‘”// ” = {f}) {D‘”} ([8(”]5 {f} | dzdy, (3.10.5)
20 (8><12) 12x1) (8x12) (12x1)

where

z

[5<”]=/2[§} dz =

z1 (8x8)




CHAPTER 3 185
(1 2 2 0 0 0 0 0
z 22 2 0 0 0 0 0
2 22 22 0 0 0 0 0
Flo o 0 1 2 220 0
- / dz =
;] 0 0 0 =z 22 22 0 0
0 0 0 22 285 24 0 0O
6 0 0 0 0 0 1 =
I 0 0 0 0 0 0 =z 22
[ m-n 3 (E-A) E-4) o 0 0 0 0
1(#-4) 3(B-4) (-4 o0 0 0 0 0
3(B-4) $(B-2) §(z2-4) 0 0 0 0 0
0 0 0 -2z 3(Z-23) 3(B-23) 0 0
0 0 0 3(#-2) 3(2-4) j(#4-4) 0 0
0 0 0 3(#-4) 1(&#B-4) 1(B-4) 0 0
0 0 0 0 0 0 29 ~ 2 (-2
I 0 0 0 0 0 0 3(22-23) 3(z3 -2
(3.10.6)
Analogously, we can write the kinetic energy of the core and the upper face sheet:
B L T
x® =200 [ [ ( o) ) [52] ([ 592 (1) ) drdy . (3107)
J 4 (12x1) (812} t(12x1)
B L T
K® =% >//( {f}) [ ] ([23“(3)]% {f}) dedy | (3.10.8)
2 0 (8><12) tazxy) (8x12)  (12x1)

where

23

/7] «-

22 (8x8)

5]
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n-n 3(B-8) 1@-8) o 0 0 0 o
1(3-2) 3(3-4) LEA-4) o 0 0 0 0
1(4-4) 3(A-4) HA-4) o 0 0 0 0
0 0 0 n-n }(3-#) y#-4) 0 0
0 0 0 1#-#) §(RB-4) 1(H-4) o o |
0 0 0 3(#B-4) iA-4) iE#-8) o 0
0 0 0 0 0 n-n  }(3-2)
o 0 0 0 0 0 3(B-2) H#-3)
(3.10.9)
[5‘”]:/[?]@:
23 (8x8)
[ a-m 3(E-A) $(@-4) 0 0 0 o ]
J(2-2) 3(3-4) -4 o 0 0 0 0
1(3-4) 1-4) dE-4) o 0 0 0 0
0 0 0 -z 3(#-3) LEE-4) 0 0
0 0 0 3(#-A) 3E-H) 1G-4) o o |
0 0 0 3EH-A) i(A-4) -4 o 0
0 0 0 0 0 24~ 23 3(22-23)
| 0 0 0 0 0 J(2-4) 34 |
(3.10.10)

and [ 5@ ] and [ 8® ] are the matrices of differential operators, defined by formulas (3.3.59) and
(3.3.61).

So, the kinetic energy of the sandwich plate is

K,=KW 4+ K® + g =

T
([ 5(1)] %(1{2};}1)) [ Do ] ([ 5(1)] %(1{2{(}1)) dz dy+

(8x8) (8x12)

B L T
3o 0/ 0/ ([5‘2’]%(52£}1)) (5] ([5‘2)]%(1{2fx}1)) dz dy+

(8x8) (8x12)
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B L T
+ p<s>0/0/( t(1{2{<}1)> [5@)] ({5(3)]%“{2];}1)) dz dy . (3.10.11)

(8x12) (8x8) (8x12)

where matrices of differential operators [ o ] [ 5@ } [ 5(3)] are defined by equations (3.3.56),
(3.3.59), and (3.3.61); { f} is a column-matrix of the unknown functions, defined by equation (3.3.57);
and [D 1)], [ D(2)} and {D(Z‘)] are matrices of constants, defined by equations (3.10.6) (3.10.9)
and (3.10.10).

Kinetic energy of the cargo

The cargo of mass M on the upper surface is said to occupy the region Sy of area Ap. We
assume that a contact between the cargo and upper surface of the sandwich platform exists all the
time. During interaction of the platform with the ground, the velocity of the cargo is equal to the
velocity of the region Sy of the upper surface, which is in contact with the cargo, i.e. the velocity
of the cargo is equal to %w("‘) (z,v, 24,t), where z and y belong to the region Sy. Therefore, the

kinetic energy of the cargo is equal to

1 aw(3) (15711, Z43t) 2
5//# (._____at ) dz dy , (3.10.12)

(S0)

where y is the mass of the cargo per unit area of contact with the platform, i.e. a quantity such that

M= ///,L dz dy . (3.10.13)

(So)
If the mass of the cargo is uniformly distributed over the surface of the contact, then

M

M=Zg~

Equation (3.10.12) can also be written in the form

B L

ow® t
//u H(z,y) (-3’-——(;”—24)> dz dy , (3.10.14)
00

l\DIl—l

where

0 otherwise

1 in region S
H(z,y) = { Blon =0 (3.10.15)
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According to equation (3.3.15),
w® (z,y, 24,t) = wo + €2 23 + €3 (24 — 23) (3.10.16)
or
w® (2,y,24,8) = {f}" {0} , (3.10.17)
where
(i = [ w v wo e ) ) @ 2 B L ) Y J

is the row-matrix of the unknown functions of the problem and

{w}={0 01 0000TO0U=2 00 24——23JT- (3.10.18)
Then
200 ey = (10) )
and
w® (z,v, 24,1 2 0 T 0
(P=52) - (5) b @) -
(1x12) (12x1)
T
=<%{f}) [ﬁc] (% {f}), (3.10.19)
(1x12) (12x12) " (32x1)
where
(00 0 00000 0 0 0 0o |
00 0O 00000 0 0 0 0
00 1 00000 z3 0 0 24— 23
00 0 000O0GO0O 0 00 0
00 0 000O0O0O 0 0 0 0
[ﬁc]: 00 0 000O0O 0 00 0 (3.10.20)
Gz |00 0 00000 0 0 0 0
00 O 000O0O0TUO 0 00 0
00 23 0 060O0O0 22 0 0 23(24—23)
00 O 000O0O0TUO 0 0 0 0
00 0O 000O0UO 0 00 0
(00 25-23 0 0 0 0 0 z3(z4~2) 0 0 (24 — 23)° ]
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Substitution of expression (18) into the expression (13) yields

Ke=2 7 /L wHE (5 {f}>T (5] (g 10)day. (3.10.21)
00

(1x12)  (2x12) " (941

So, the total kinetic energy of the platform and the cargo is

K=K, +K.=
1 T 0
=3[ [ (la“)]gz {f}) B ] ( [50] o {f}> dz dy+
D e %02 ) g™ gy 20230
Vo [ [ )
300 [ [ ([5@)]& {f}) ER ( 5] 2 {f}> do dy+
5% \iexzj 7 012xD (s><8) (8x12) Faz
1 B L
+50% / / ([ - = {f}) [ D9 ] ( (6] = {f}) do dy+
2% (8x12) (12><1) (8x8) (8x12) (12><1)

2//"H(“’ v) (—{f}> [f%] (%{f})dw dy , (3.10.22)

ax12)  (12x12) " (19x7)

where [ 5(1)] , [ 82 ] [ (3)] are the matrices of differential operators, defined by formulas (3.3.56),
(3.3.59) and (3.3.61); {f} is a column-matrix of the unknown functions of the problem, defined
by formula (3.3.57); [ DM ], [ D@ ], [ D® ], [ D, ] are the matrices of constants, defined by
formulas (3.10.6), (3.10.9) and (3.10.10); p is the mass of the cargo per unit area of the contact with
the platform, defined by formula (3.10.13); H (z,y) is a function, defined by formula (3.10.15); p),

o), p®) are the mass densities of the lower face sheet, the core and the upper face sheet.
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3.11 Hamilton’s Principle for the Sandwich Composite Plat-
form with the Cargo on its Upper Surface, Dropped on
Elastic Foundation

As it was discussed in the chapter 2, the virtual work principle®

///O’ij 581'3' av = ///F1 6’U,1' dv +//q1- 5'&.; dS (3.11.1)
) (8)

)
contains information that the transverse stresses, obtained by integration of the pointwise equilibrium
equations (second form of the transverse stresses), satisfy the stress boundary conditions on both the
upper and lower surfaces of the plate®, i.e. the transverse stresses at the upper and lower surfaces
are equal to the externally applied loads per unit area. Therefore, the finite element formulation,
based on the virtual work principle, guarantees that the values of the unknown functions, computed
by the finite element method, are such that the second forms of the transverse stresses, expressed in
terms of the unknown functions, satisfy the stress boundary conditions on both the upper and lower
surfaces. In the chapter 2, the finite element formulation, on the basis of the virtual work principle,
for a plate in cylindrical bending was performed for a static problem. For the problem of the cargo
platform, dropped on the elastic foundation, which is essentially a dynamic problem, the dynamic
form of the virtual work principle will be used for the finite element formulation. In the dynamic
problems, by the use of the d’Alembert’s principle which states that a system can be considered
to be in equilibrium if inertial forces are taken into account, the principle of virtual work can be
derived in a manner similar to the static problems, except that the terms representing the virtual
work done by the inertial forces are now included (Washizu, 1982). The virtual work principle for

the dynamic problems has the form:

///Uij 6Eij dV = /// (Fi - pil,-)&ui dv + //qi bu; dS. (3.11.2)
(V) (S)

V)

5where F; are components of the body force per unit volume, g; are components of the surface force per unit

volume
6in addition to satisfaction of the conditions of continuity of the transverse stresses across the interfaces between

the plies of a laminated plate; this continuity is assured by the process of integration of the pointwise equilibrium

equations.
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In case of elastic bodies, the virtual work / / / oi; 6ei; dV of internal forces can be written as a

V)
variation of the strain energy

1 .
U= ///%Uij Eij dV = ///gcijmnsijfmn dv = // U dV, (3.11.3)
V) V) (V)

where Cijmn are elastic constants. Besides, suppose that the body forces F; and the surface forces

g; have the conservative and nonconservative parts:

nc 6‘7 nc c nc 8\7
o O LA L R

(me)
Fu et R (3.11.4)

where V is a potential energy density due to the body forces, and Visa potential energy density

due to the surface forces. Then, the virtual work principle (3.11.2) can be written in the form:

8T = / / / (F" — pi) 6us av + / / o™ 6u; ds, (3.1L.5)
% ©

where

nz{vf) Udv+///f/dv+(4/f/ds (3.11.6)

V)
is the total potential energy of the system. The dynamic virtual work principle (3.11.5) can be
integrated with respect to time between two limits ¢t = ¢; and t = t5. Through integration by parts
and by the use of the convention that the virtual displacements vanish at the limits, one can write

the dynamic virtual work principle in the form of the extended Hamilton’s principle (Meirovich,

1970)

6/ (T —TI) dt +/6’Wnc dt =0, (3.11.7)

ty t

T= %///p it dV (3.11.8)

(V)

to to

where

is kinetic energy of the system, and

5 We = / / / F)gu, av + / / o) $u; dS (3.11.9)
v)

(5)
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is the virtual work of the external nonconservative forces. In the notation §'W,,. the prime is used
in order to make it understood, that §W,,. is not a variation of some state function W}, (Washizu,
1982).

The mechanical system under consideration consists of the sandwich platform, the cargo on its
upper surface and elastic foundation. This system is not acted upon by any nonconservative surface
forces. The nonconservative body forces are the forces of internal friction that cause damping
(damping forces).

So, the Hamilton’s principle for the system that consists of the sandwich platform, the cargo on

its upper surface and the elastic foundation can be written as follows:

t2
6 / [(strain energy of platform) + ( strain energy of elastic foundation) +
t)

+ (potential energy of platform in gravity field) + (potential energy of cargo in gravity field)

— (kinetic energy of platform) — (kinetic energy of cargo)] dt

ta
- / (virtual work of damping forces ) dt = 0. (3.11.10)
t

In order to perform the finite element formulation, the Hamilton’s principle (3.11.10) needs to be
written in terms of the unknown functions for a finite element, and that allows to derive the element
stiffness matrix, mass matrix, damping matrix and load vector. In a finite element model of the
whole structure, these element matrices and vectors need to be assembled into the global matrices
and vectors. In general, the global damping matrix can not be constructed from the element damping
matrices, the same way as it is done for the mass and stiffness matrices, mainly because the damping
properties of the separate finite elements are difficult to measure experimentally, and because the
energy dissipation in a system depends on the properties of the whole system. Therefore, it is a
common practice to construct the global damping matrix as a linear combination of the mass matrix
and stiffness matrix of the complete element assemblage (Bathe, 1995 ). Therefore, for the purpose
of developing the finite element formulation, there is no need to include the virtual work of the
damping forces into the Hamilton’s principle, written for a finite element. The components of all

terms of the equation (3.11.10), except for the virtual work of the damping forces, were written in
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terms of the column-matrix of the unknown functions

T
{f}= [ wo v we e el e 2 [ O e ey 69:)J

in the previous sections of this chapter.
The Hamilton’s principle, written in the form of equation (3.11.10), is convenient for the finite
element formulation of the problem. A method of performing the finite element formulation for the

problem under consideration will be discussed in the following section.
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3.12 Some Considerations Regarding Finite Element Formu-
lation

The maximum order of derivatives of wo and el with respect to z and y in the Hamilton’s principle
is 2. Hence, the convergence of the finite element model will be ensured if, along the interelement
boundaries, interpolation polynomials for wg and Ei’? and their first derivatives in the directions
normal to the element boundaries (% dwo gnd %z )) are continuous. If finite elements satisfy these
requirements, they are called conforming elements with C! continuity. If interpolating poly-
nomials for wg and si’i) are continuous at the interelement boundaries, and their first derivatives
with respect to = and y are continuous at the nodes, but the normal derivatives ‘9—3"-’# and 6—5(1?—
at the interelement boundaries are not continuous, then the elements are called nonconforming
elements with C! continuity. Conformity of an element is not an indispensable requirement:
the non-conforming elements (i.e. the elements that lack the required level of continuity in order to
make the convergence most plausible) can still be successful (MacNeal, 1994). The nonconforming
elements can be even needed to model discontinuities of the first derivatives of the unknown func-
tions, that can appear in places of abrupt changes of plate thickness, or in places of abrupt in-plane
changes of material properties of a plate. But since the cargo platform, that we are modelling, does
not have such discontinuities, we expect that the conforming finite elements will produce more accu-
rate results. Therefore, we will use the conforming finite elements for the unknown functions wp and
Ezz . Besides, our finite elements will be rectangular, since the cargo platform has the rectangular
shape.

Let us consider, for example, interpolation of wg. The interpolation polynomial for rectangu-
lar four-node element, that provides continuity of wy and %—“{f along the interelement boundaries,

developed by Bogner, Fox and Schmidt (1965), has the form (Figure 3.4):

Wi%(g_l)?(gw) (g_lf(gm)womm
(G- (D) ()
AETEI e
+% G- - 1)2 (1 + g) (% - 1)2 (1 + %) abg:;; (A1) +
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(3 (E2) () (B2
w5 (30) 6-D () ()2
) G- () (D
A E) G E) €
i (3-0) () (o) (D)o
SGRIEDIGOICHE
5 (G-) G () ()i

S Y (Z) (B e a2 (4,
16 \ a a b b dzoy
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(3.12.1)

where T and 7 are the coordinates in the element (local) coordinate system. Each node of this

i : Bwy Bwg 2wy
element has the following degrees of freedom: wp, %22, R




CHAPTER 3 196

The interpolation polynomial wo and its boundary-normal derivative %ﬂnl are continuous along a
common boundary with another element because wp and %";—3 depend only on the degrees of freedom
of the nodes, that belong to the boundary. To verify this, let us find wo and %Q at the element
boundaries, i.e. at T = %a, § = +b.

At the edge A;As (¥ = —b)
f—12 Ty (A)+1 f—lz 1+3-3 %(A)"l-
a a wo s 4 \a a aax !

% (1 . %)2 (2 _ §> wo (Az) + % (1 + %)2 G - 1) a%‘;ﬂ (43). (3.12.2)

N

woly:—b =

Bwo (1, 1 11 g\ 8w 1 1. 1., 1 3\ 8%
07 lgas (4ax Fe R ) oo T 10717 %° T2t ) a0
3 _ 1 1 -3 Bwo 1 -3 3 _ 1 Bwo
+ (4am+ 5" 1a8” ) 57 (Ag) + (4 i 57 (A1) (3.12.3)

At the edge Az A3 (T = a):

1/(7 N\ (7 1/ .\ 7\ , Owo
Wolz—q =+ (—— ) (3+2)w0(A2)+Z(Z—1) (1+-5) b5y (42)

b
Y (75w (45) - = (¥ 41 (17 b0 (4 3.12.4
al3 o(43) = 71{3 k- 3), (3.12.4)
Bwo _ _1-_3 3_ 1 8w0 1 1__2 1 _3 1_ 62w0
o7 |oy (4b3y 4by+2) oz A (@7t ¥ 1Y) aagy (Y
1 1 -3 3_ 6w0 1 -3 1_ 1 1 ) 62'“10
+ (2 4b3y + 4by) 57 (As) + (4b2y - 41/" Zb+4—5y 9707 (As) . (3.12.5)

() -2 1) ()

AE )t ) () o

I
13
S
b S
&

|

|
-
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dwy _ (Ll 3_ 1\ 0w 1501 5 1 1 d%wy
57 | (4a3 “wtt 2) 57 At 2T Y T 1) ey T
1 1 _3 3 — Bwo 1 =3 _ i’2 1 _ l_ 62100
+ ('2- - ’4a—3 + 4a$> o7 As) + <4a2:r 4aI + 4(1 4:1: 9707 (Ag). (3.12.7)

At the edge A1A4 (T = —a)

= }1 (% - 1)2 (y +2> wo (A1)+% (% —1)2 (1+%) b%ﬂf (A7) +

wol

b
AT (2= a4 2 (T4 (T 1) 0% 4, (3.12.8)
1\b p ) O TG\ B b gy <V .
Owo (1 5 1, 1 13w 1,1 5 3 3 8w0
AN (Zﬁy @Y '4y+4b> oy A0t gt ? T Y) 5 A
1 1., 3.\ 0w 1 1__1 1 Bwo

We see that, indeed, wg and %1;’—1‘1 on the element boundaries depend only on nodal variables of
those boundaries at which wp and %“ﬁl are evaluated. Therefore, wg and %"f are continuous on a
common boundary with another element.

For the unknown functions k) (k = 1,2,3), we will use the interpolation polynomial of the same
type as (16.1), i.e. at each node the degrees of freedom will be e(k), Q%%-l, %2, %%%% and the shape
functions will be the same as in polynomial (16.1).

The maximum order of derivatives of the unknown functions uy, vo,eiﬁ) and 5,92) (k=1,2,3)
in the Hamilton’s principle is 1. Therefore, it is necessary that interpolation polynomials for these
functions are continuous at the interelement boundaries, but the derivatives of the interpolation
polynomials of these unknown functions at the interelement boundaries are not required to be
continuous. The four-node rectangular element, that has these properties, is called the bilinear

Lagrange element (Cook, Malkus, Plesha, 1989). Let us consider, for example, the unknown

function ug. The bilinear Lagrange element for ug has the form (Figure 3.4):

W= 2= (- w20+ (- Y wia
% (1-2) (14 ) o (4a). (3.12.10)

a
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This element has four degrees of freedom: the values of the interpolated functions at the nodes.
The combined finite element for all the unknown functions of the problem will have 96 degrees
of freedom: 4 degrees of freedom must be used for interpolation of each of the functions ug, vy, E(I,i),
egi) (k=1,2,3), and 16 degrees of freedom must be used for interpolation of each of the functions
Wy, e (k = 1,2,3). Each node of the combined finite element has 24 degrees of freedom The nodal

. . . 2 1) (2 (3
variables of each node of the combined finite element are ug,vo, wo, %‘l, "’aﬂy, ZT%%’ E;Z), Efm,;), E(x;) ,

LD 2 B ) oely oely 2%l (2) el 9l 8%l (9) 8 8elh 8%y
vz Eyz s Eyz s €22y TP v TPy 0 Bzdy ' ©F%r Tox 0 Oy  Bxdy ' “FFY Oz ' Oy ' Ozdy’

The finite element model, based on the layerwise plate theory presented in this chapter, allows
to analyze the sandwich composite plates with fewer degrees of freedom than the finite models
constructed with the use of three-dimensional finite elements. This is due to the fact that in the
three-dimensional finite element models it is necessary to represent the thickness of one ply of the
face sheets with a thickness of at least one three-dimensional finite element, in order to compute ac-
curately the through-the-thickness variation of displacements and stresses and in order to determine
damage in each ply; On the other hand, in the layerwise plate theory, discussed in this chapter, the
number of the finite elements, required to represent properly the through-the-thickness variation of
displacements and stresses and the damage in each ply, does not depend on the number of plies in
the composite face sheets’.

Let us consider an example problem and compare the number of the degrees of freedom in the
three-dimensional and layerwise plate finite element models. We will consider an example of a
sandwich plate with the following characteristics: thickness of the lower face sheet 0.01m, thickness
of the upper face sheet 0.005m, thickness of the core 0.05m, number of plies in the lower face sheets
is 100, number of plies in the upper face sheets is 50, in-plane dimensions 1m x 1m. Each ply of the
face sheets has the thickness of 1 x 10™*m.

Suppose this sandwich plate is modelled with the linear solid elements, i.e. the eight-node brick
elements. Each node of such an element has three degrees of freedom: the nodal displacements. In
order to avoid ill-conditioning of the finite element equations, the in-plane dimensions of these finite

elements must be not much larger than their size in the thickness direction. For the same reason,

7Though, with the increase of the number of plies in the face sheets, the number of the finite elements, required to
achieve convergence, increases. But this increase of the number of the elements in the layerwise plate model, dictated
by the convergence requirement, is not proportional to the number of plies and is very small as compared to the
increase of the number of the three-dimensional elements in the three-dimensional finite element models, dictated by

the requirement of representing the thickness of one ply with a thickness of at least one three-dimensional element.
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the sizes of adjacent elements must not be much different. Besides, the mesh in the core must be
sufficiently fine in order to determine the damage in the core, that can be distributed nonuniformly
in the thickness direction and in the in-plane directions.

Therefore, for the purpose of estimating a number of elements in this example problem, the finite
elements will be considered with in-plane dimensions five times larger than their thickness, and all
the elements will be chosen to be of the same size. If in the thickness of one ply there is one such
element, then the size of each element is 0.5mm x 0.5mm x 0.1mm, and the total number of the
elements in the whole model of the plate is 2000 x 2000 x 650 = 2.6 x 10%. The total number of the
nodes in this model is 2001 x 2001 x 651 ~ 2.6 x 10°, and the total number of degrees of freedom in
the whole three-dimensional model is 2.6 x 10° x 3 = 7.8 x 10°.

Now, let us evaluate the number of degrees of freedom in the layerwise plate FE model with a
50 x 50 FE mesh. The number of nodes in such a two-dimensional FE model is 51 x 51 = 2601,
and the number of degrees of freedom is 2601 x 24 = 62424. As it will be shown in the chapter 5,
the stresses, computed by the use of the layerwise plate FE model of the sandwich plates, including
the transverse stresses, are sufficiently accurate as compared with the stresses of exact elasticity
solutions , if the transverse stresses are computed by integration of the equilibrium equations.

So, we see that the use of the two-dimensional layerwise FE model of the sandwich plates,
presented in this chapter, allows to achieve a tremendous decrease of the number of degrees of
freedom, as compared to the three-dimensional FE model, without decrease of the accuracy of stress

computation.
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3.13 Post-processing Stage of the Finite Element Analysis:
Expressions for the In-Plane Stress Compohents and

the Second Forms of the Transverse Stress Components

. . k k
in Terms of the Unknown Functions vy, vg, wo, 55,52, 63(,2),

.

After the finite element solution for the unknown functions is obtained, the components of the stress
tensor need to be computed . As it was mentioned previously, the in-plane stress components will
be computed from the constitutive relations, i.e. by substituting the in-plane strains, expressed
in terms of the unknown functions, into the Hooke’s law for the in-plane stresses. The transverse
stress components will be computed not from the Hooke’s law, but by integration of the equations of
motion (3.1.21)-(3.1.23). The transverse stress components, obtained by integration of the equations
of motion (the second form of the transverse stresses) are more accurate than those obtained from
the Hooke’s law ( the first form of the transverse stresses), because, as it was shown in chapter 2,
the second forms of the transverse stresses, unlike the first forms, satisfy the boundary conditions
at the upper and lower surfaces of the sandwich plate and at the interfaces between the face sheets
and the core.

The expressions (3.4.1) for the in-plane strains in terms of the unknown functions, written here

again, are the following

(k) (k) (k) (k)
Exzzx Pxz0 Prxl Prz2
Eyy = Pyy0 4 ¢yn 2+ Pyy2 2, (3.13.1)
2e4y Pxy0 Pyl Pzy2

where the functions ¢ in the right-hand side of the equation (3.13.1) are expressed in terms of the

unknown functions by equations (3.4.2)-(3.4.28). The Hooke’s law for an orthotropic material (in a
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coordinate system, whose coordinate planes do not coincide with planes of elastic symmetry), is

( \ A —_ —_— p— T { A
Ozz Cip Ci2 Ciz O 0 Cis Ezx
Oyy Cia C;p Cis 0 0 Cx Eyy
2z C C C 0 0 C Ezz
! ,_ | G Cw s B T . (3.13.2)
Oyz 0 0 0 C44 C45 0 ZEyz
Ozz 0 0 0 645 —0_55 0 263;2
| Toy | L—éw Cyps Css O 0 Ces ] L 2y |

Therefore, the Hooke’s law for only the in-plane stresses is

(%) = W] €z
Hops Cin Ci2 Cis Cia
T €
Hayy =1 Cia Ca2 Cz Cu3 . v ) (3.13.3)
_ _ — _ €z
Oay Cis Ca Cess Css !
Ezz

where the left superscript H in notations for stresses means that the stresses are computed by the
Hooke’s law (in contrast to the second forms of transverse stresses 0z, 0y, and 0., that will
be computed by integrating the 3-D equations of motion). Substitution of equation (3.13.1) into
equation (3.13.3) yields

(k)

UII

Oyy =

Ho,

* (k) (k) (k)
—_ — —_ — k Pzz0 Pzl Prz2
Cn Ciz Cis Cis
— — — — Pyy0 Pyyl Pyy?2
=| Cip Ca2 C2 Cos i + " z+ v 21,
— — — — Pzy0 Pyl Pxy2
Cie C2 Ces Cse
Ezz 0 0

(3.13.4)

where the functions ¢ in the right-hand side of the equation (3.13.4) are expressed in terms of the
unknown functions by equations (3.4.2)-(3.4.28).
Now let us express the transverse stresses 0zz, Oy and o, in terms of the in-plane stresses and

displacements by integrating equations of motion (3.1.21)-(3.1.23). Then we can substitute into the
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resulting equations expressions (3.13.4) for the in-plane' stresses in terms of the unknown functions
and expressions (3.3.27) for displacements in terms of the unknown functions. Thus, the transverse
stresses can be expressed in terms of the unknown functions.

Performing integration of equation of motion (3.1.21) with k=1 (for the lower face sheet)

oM 4 oM 4o — WD

zr,T TY,Y T2,z

with respect to z in the positive direction of the z-axis, we receive:

z

o) = ol () + / (e - #ol), - Ho,) dz (21 <2< ), (3.13.5)
0 z
1

where o(y (z1) = 0 due to the fact that tangential components of the surface traction at the lower
surface of the platform is equal to zero (boundary conditions (3.1.24) ). From equation (3.13.5) it

follows that

22

cr;(rlz) (22) =/(P(1)ﬁ(1) - HUgc),m - Ha'a(cly),y) dz (3.13.6)
21
or
22
o () = [ (V0 = o, - Pol),) d, (3137
z)
because

o) (22) = 0¥ (22)

due to the first continuity condition (3.1.33).

Integrating equation of motion (3.1.21) with k=2 (for the core)

@ 4@

zT,T Y,y

+ofd), = o

from 25 to z, where 2 belongs to the interval 23 < z < 23, one can receive
z
0@ =0 (2) + / (pPa® — Ho®, — Hol) ) dz (<2< 2). (3.13.8)
z2
The substitution of equation (3.13.7) into equation (3.13.8) yields:
22

o) =/(p(1>ﬁ<1)_ Hol) _ Holh) ) dot

Y,y

Z1
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z
+/ (p(z)am) ~ He® Haéi)’y) dz (2 <z<z).
z2
One can receive in the same way the following for the upper face sheets (k=3):

z2
0, @ =/(p(1)ﬁ(1) _ He) Hagly)‘y) dz+

2y

23
+/ (p(z)il(z) - Haﬁ),z — Haa(ci,),y) dz+

22

. .
+ / (p(S)ﬁ(3) _ He® Ho.g),y) dr (5 <z<z).

23

Analogously, integration of equation of motion (3.1.22)

o)

yz,T

ol + ofe = o

with respect to z gives expressions for al(ff,):

z
o = o) )+ [ (090 - Ho, - all),) de (a1 <25 2)
N s

0 o

22
o =/(p M50 _ Ho® _ Ao ) dzt

21

z
+/ (p(2)0(3) - HU;:S?::),I - HUQ(;%;),y) dz (22 <z< 23)»

22

4]

0’1(}2) =/(p(l)i5(1) - Haéé)’m— Haw,y) dz+

21

z3
+/ (p(2)i5(2) - Hal(lzz)’z - Hcr!(ﬁy)’y) dz+

22

203

(3.13.9)

(3.13.10)

(3.13.11)

(3.13.12)
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z
+ f (p<3>i3(3) ~ He®) - H og{y) dz (23<z<24). (3.13.13)

23

Expressions (3.13.5), (3.13.9)-(3.13.13) for o) and or,(,l;) in terms of displacements and in-plane

stresses can be written in tensor notations as®:
k1 Zmitl z
B =3 / (o ~ HolRs) dz+ / (oMl ~ o)) dz (a=12 B=12)
m=1 2 Zk

(3.13.14)

in the interval zx < z < 241,

where the sum is considered to be equal to zero, if the upper value of the summation index m is
smaller than the lower value, l.e. ifk=1

Let us integrate equations of motion (3.1.23)

0
ag’;)’z + O’L’;),y + Uﬁﬁ?z + B (ag(,f;)w,(f) + J;‘;)w'(g)) +

0 ..
+ 59 (o) wl) +ofy) wl)) = pMg=pPu® (k=123

Doing this, one needs to take account of continuity conditions at the interfaces between the face

sheets and the core o) (z2) = o (22), o (23) = o (23) (equations (3.1.33), (3.1.34) ) and of

the boundary condition at the lower surface of the platform o) (z1) = —t: (z1) (the third equation
(3.1.24) ). The surface force per unit area t (1) in this problem is equal to —sw(® (21), where s
is a modulus of the elastic foundation. As a result, we receive the following expressions for stresses
o

z

o) = o (21) + f
e —r

)

. 0
[P(l) (w(l) +9) ~ %z (ng)w,(;) + Uz(llx)w,(;))
sw(l)(z;)

0
-2 (ool + o)) - o o] & (313.15)

81n equation (3.3.14) the following notations are implied: a&';) = ag(c’;), a'g:;) = crz(,';), and the upper index denotes

the number of a sublaminate (k=1 means the lower face sheet, k=2 means the core, k=3 means the upper face sheet).
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z2 a
o0 = a0 )+ [ 00 (09 +0) g (et + o)

Z]

0
- (o) +offul) o —oth] et

z . 0
+ /z [p(z) (w(z) + g) ~ % (a:(f,)wg) + ofj?wf?)

2

o
2 (ou@+ o@u) -0, - gg,zy] dz (3.13.16)
z2 a
o) [ (59 40) - £ (o2 2ot
Z1
0 (1), (1) 4 oWy — o — oW |4
"By (Uzy W' T Ty Wy ) — Ozze ~ Tayy| 4%
23 )
@ (5@ 2 2 (6@u@ 4 Dy@
+ /z2 [P (’LU +g> 5z (Ua:z Wi Tt Oy Wy )
8
-2 (oguld + ofuly) o2 ot e
T (g 0 (3,0 1 o®yu®
[ (0 50) - & (22 )
(3.13.17)

0
-2 (o +ofguly) ~oi2. ol o

Equations (3.13.15)-(3.13.17) can be written in tensor notations as follows:
Zm<+1

. (m)
/ [p""’ (™ +9) - (Mo u&’,’é)),[,—oé’;‘,l,] dz+

Zm

k-1
og;) = sw® (z1) + Z
m=1

+ / [p"“) (89 +9) - ("o0s uf) , - aé’;’,c.} dz (a=12 B=1.2) (3.13.18)

2k
in the interval z; < 2 < 2k+1

Substitution of expressions (3.13.14) for agi) (a =1,2) into equation (3.13.18) for aé’é) gives

. k) - . .
expressions for 0:(33) in terms of displacements and in-plane stresses:

k-1 ™ m=
o = d 5[ [ (5700 - (1o 42) = X [ (it o) &

Zm
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z

- / (P(m)ﬁfﬁz - HUSZ,)aa) dz| dz o+ / ["(k) (ﬁgk) +g) - (HUSZ’) ugki) 5

2k

— z
—Z/ (p(”) ug‘g— Hag;)yaﬁ) dz—-/(p(k) ug‘l‘—- Hogg,aﬁ) dz| dz (a=1,2; f=1,2)

n=1 2k

(3.13.19)

in the interval zx < 2 < 241

or

Zm+1 k—1 Zm4-1

k-1
0:(3’;) = sw® () + Z / p(m) (ﬁé"‘) +g> dz — Z / (HU((;Z) ug,,,;)) ; &z
m=1 Zm

+
m=1
Zm

k—1 m—1 Zm+12n+1

2 [ [ (i - o) dz ez

m=1n=1
Zm  *n

Zm+1 z

k-1
- Z / /(p(m)ﬁgﬁz - Hcr‘(:g?aﬂ> dz dz
By

Zm Zm

z z

+ / o (i) +g) da - / (7o o) | az

Zk 2k

k—1 271
S [ (k- Folag) de s
n=1

2k Zn

- / / (p(k) k), — Ha‘(:}),aﬂ> dzdz (a=1,2 B=1,2) (3.13.20)

Zk 2k
in the interval z; < z < 241 -

So, equations (3.13.14) and (3.13.20) express the transverse stresses in terms of displacements

u®), y(® k) and in-plane stresses Hok) H oi.';), H 0'3(,’;), which, in turn, are expressed in terms of
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the unknown functions ug, vo, Wo, e&’f), s;(,’i), eyi) by equations (3.3.27)-(3.3.51) and by equations
(3.13.4) together with equations (3.4.2)-(3.4.28). The explicit expressions for the transverse stresses
in terms of the unknown functions ug, v, Wo, E:(ckz), s§,’§’, 599 are not shown here because of their
large size.

The values of the in-plane and transverse stresses, computed by the formulas, derived in this
chapter, can be substituted into the failure criteria in order to take account of damage progression

in the sandwich platform. The methods of failure analysis will be discussed in chapter 5.
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Figure 3.1

Cross-sections of the face sheets and the core

core

lower face sheet
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Figure 3.4
A rectangular finite element and the element (local) coordinate system

-V
o




Chapter 4

A Simplified Approach to the
Analysis of Sandwich Plates

In this chapter, a simplified approach to modelling the sandwich plates will be considered. This
simplified approach is similar to the one presented in chapter 2, section 2.4, for the sandwich plate
in cylindrical bending with homogeneous isotropic face sheets and the core. It is based on assuming
that in the in the expression for the strain energy, the transverse strains in the face sheets are
negligibly small. The transverse stresses are computed by integration of equilibrium equations, and
they can be substituted into the strain-stress relations to obtain the second form of the transverse
strains, that are not equal to zero. As it was shown in section 2.4 of the chapter 2 for a sandwich plate
with homogeneous isotropic face sheets and core, the stresses produced by the simplified layerwise
mode] are sufficiently close to the stresses obtained from the exact elasticity solutions, though the
accuracy of stress computation is slightly lower than in the nonsimplified model presented in chapter
3. The advantage of this simplified model is that it has fewer unknown functions and fewer degrees

of freedom in the finite element formulation.

4.1 Simplifying assumptions and the unknown functions

We will assume that in the expression for the strain energy of the core the transverse strains do

not depend on the z-coordinate, and the transverse strains of the face sheets are negligibly

212
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small:
E:(zlz) =0, E(ylz) =0, e = ,
e =0, e =0, ¥ =0, (4.1.1)
5:(524:) = 5.’(1322) ('Ty Y, t} ) 61(;22) = E‘,S/zz) (17 Y, t) y Eg'.) = 55722) (377 Y, t) .

It is assumed also that at each point of the sandwich plate there is a plane of elastic sym-
metry parallel to x-z plane. This occurs if the sublaminates of the sandwich plate are cross-ply,
specially orthotropic or isotropic. Besides, an account will be taken of the fact that in the problem
of the cargo platform dropped on elastic foundation, there are no external in-plane forces, acting
on the platform, and the Poisson ratio of the core is small. Due to the last three limitations of
the problem, described in bold type, the in-plane middle surface displacements can be set equal to

Zero:
Ug = 0, Vg = 0. (4.1.2)
So, the unknown functions of the problem are:

wo (2,9,t), € (z,9,t), €2 (z,9,1), €@ (z,9,t) . (4.1.3)

z

4.2 Displacements in terms of the unknown functions

Setting the transverse strains in the face sheets (ea(clz), 63(,12), 692), 5;32), E,(,i) , eﬁ) ) equal to zero, one can

obtain from formulas of chapter 5 the following expressions:

w (z,y,t) = wy (2, y, +eP(z,yt)zs (1<2< 29) , (4.2.1)
w(2) (‘Ta Y, 2, t) = Wy (a:,y, t) + 6£22) ('1"7 y7t) z (22 S 4 S 23) 3 (422)
w(3) (.’l‘, Y, t) =Wy ((L', Y, t) + 692) (‘Tr Y, t) 23 (23 S z S 24) 3 (423)

1
u® (z,y,2,t) = (25(122) - woyz) 29 — —2—692)3, z% - (Eﬁ)z 22 +w0,x) (2=2) (21<2<2),

(4.2.4)
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1
u(Q) (IL‘, Y, 2, t) - (25;2‘,') — w(),a:) 2z — 5692),2 22

214

(22 <2< 23) (4.2.5)

1
u(S) (.’L‘, Y, 27"’) = (25£2z) - wO,I) 23 — —Eg’:),x Zg - (wO,I + €£2z),a:z3) (Z - 23) (23 <z< 24) s

2

(4.2.6)

1
v (z,y, 2,t) = (25&? - wo,y) 29 — 55‘(222),11 22 - (wo,y + Eg)’y 22) (z—22) (n1<2<2),

(4.2.7)
1
v (z,y,2,t) = (251(122) - wo,y) z— 552)’3/ 22 (20 <2< 23) , (4.2.8)
1
v®) (z,y,2,t) = (255‘;) - wO,y) 23 — §E£22)y 22— (wg,y + eg)’yzg) (2 — 23) (23 <2< 24) .
(4.2.9)
These relations can be written in the form:
u®
ok b= [ZW] [5“)] (£}  (k=1,2,3), (4.2.10)
(4x1)
w®
where
Wo
e
{5}= : (4.2.11)
ey
yz
e
1 2 000
[2(1)] - [2(3)] =001 20/, (4.2.12)
(3x5) (3x5) 0000 1
2 22 0 0 0 0
[2(2’] =100 2z 220 0|, (4.2.13)
(8x6) 000 0 1 =z
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0
2
5(1)] =1 0
(5x4) 8
dy
1
T8z
0
3
[5(2)] _| "o
(6x4) 0
1
0
0
.
g
]| o
(5x4) _ a8
oy
1

215

(4.2.14)

(4.2.15)

(4.2.16)
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4.3 Strains in terms of the unknown functions

Setting e =0, E;I];z) =0, =09 =0, eg.‘? =09 =0in expressions (3.5.6), (3.5.9) and
(3.5.12) we obtain

) _ [k (k) (k) -
e®l— |z oM (£} +{n k=1,23), 4.3.1
fe = 2] ([o] 1) + }) ¢ @
where
Wy
el
{f} = (2) b (4.3.2)
e
et
{E(n}g e b (4.3.3)
3x1
(3x1) 2¢8l)
1 222000 00
[Z“’]=[Z‘3)]= 00 0 12z 220 0], (4.3.4)
(x8)  (3x8) 00 000 0 1 2
r 2 7
0 202 0 122
0 0 0 -z
0 0 0 0
3 1.2 8%
o] = (22 0 2a3 ey | (4.3.5)
(8x4) T2 0 0 T237
0 0 0 0
2
0 2z25% 222;% z%%;
62 2
255, 0 0 —22283—311
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[} =4

(8x1)

SO O O O ==

(w(),z + 29 592),::) (

N

o O o o O

3 (wO,:z: + 29 €5

0
0

(2)

z,z

y

2
2
% (w()yy + 22 Egz)’y)

E<2)} = ¢

(6x1)

N

o O O O O
O O O = O

N

S O O O

0
0

0

(@)

Ezx

2
5§J

(2

€zz
265?

26&?

2
{ 26£J

N
N

o O O O
S O O o o

(6x12)

o © ©O o ©

o O O o o

N
N

S = O O O ©

(2) )

wo,y + 29 Ezz,y

(=R = = = =]

o O O = O
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(4.3.6)

(4.3.7)

(4.3.8)
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o] -
(12x4)

,,(2)} =

(12x1)

|

{5(3)} = E;(;;) )

2652
(3x1)

218

0 0 0 0
8° o
37 2% 0 0
o o o -1
0 0 0 0
a* 8
57 0 255 0
62
0 0 0 -3 (4.3.9)
0 0 0 0
82 a Il
dzdy 2'55 2'5; 0
0 R
0 2 0 0
0 0 2 0
0 0 0 1
\
%(wo,z)z
wO,zE,(z%,),m
2
%(E(zzz),a:)
3 (wo,y)?
wO,yfgz),y
2
1(.(2)
2 (E“’y) 3 (4.3.10)
Wo,zWo,y
wO,yE,(zzz),z + w(),xfgz),y
5‘(z2z),15$222),y
0
0
0 /
(12x1)
e

(4.3.11)
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0 232 0 122
-& 0 0 —zn s
0 0 0 0
8 1,2.8°
6] = 0 0 3 2% (4.3.12)
o p , 3.
(8x4) 772 0 0 T2y
0 0 0 0
2
0 223 '6% 223 'a% 22 ——af 5
8?2 8?
—25:55 0 0 ~223 5,5y ]
(8x4)
( 2 )
% (wO,a: + 23 5&22),1)
0
0
1 @ )2
s5\Wo,+23€
[nm] =4 2 ( Oy 28 BEmy . (4.3.13)
0
0
(w0,z + 23 6@,:) (wo,y + 23 Eff),y)
0
\ 7
(8x1)

The transverse shear strains in the core eg,zz) and s§,2,.), that enter into the expressions for the

strain energy (the first form of the transverse shear strains) are assumed to be constant through the
thickness of core. Therefore, the transverse shear stresses, computed from the stress-strain relations
(first form of the transverse shear stresses) are also constant in the thickness direction. On the
other hand, the same stresses computed in the post-processing stage by integration of the equations
of motion, vary nonlinearly in the thickness direction. Besides, it is well known from elementary
theory of homogeneous beams that the transverse shear stress varies parabolically through the beam
thickness. In composite laminated beams and plates, the transverse shear stresses vary at least
quadratically through layer thickness. This discrepancy between the transverse stresses computed
from the Hooke’s law on the one hand and from the equations of motion or exact solutions on the
other hand, is often corrected (especially in the first order shear deformation theory) by multiplying
the transverse shear strain energy by the shear correction coefficient. In the theory of the sandwich

plate discussed in this chapter, we will introduce a shear correction coefficient, which, at first, will be
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set equal to unity. If, with the shear correction coefficient equal to one, the results of the sandwich
plate theory for the transverse stresses obtained by integration of equilibrium equations turn out to
be close enough to the known exact elasticity solutions, then the further search for an optimal value
of the shear correction factor may not be necessary. Otherwise, the shear correction coefficient can
be determined by a method, presented in the paper of Whitney (1973).

In order to introduce the shear correction coefficient, it is convenient to divide the column-matrix

T
of strains in the core {5(2)} = l 55522 eé,zy) eg‘;) 25(y22) 263(522) 26&23,) J into two parts: a part that
(6x1)

T
contains the transverse shear strains: [ 251(,,{? 2¢2) J , and the part that contains all the other

T
strains in the core: l e g.ﬁ) e 25%) J . Then, equation (4.3.1) with k=2, i.e. equation

{e@} =[2®] ([0@] {f} + {nP}) can be written as two separate matrix equations:

23 0020 -
= (4.3.14)
2ez; 0 2 0 0| (ax1)
and
el
el - ~
i) (e e)). e
e (x10) \ (1ox4) 4D o
x1)
25%)
where
1z 2200 0 00 0O .
) 000 1222000 0 i
[z ]: , (4.3.16)
i) |00 0 00 000 01
00 0 00 0 1 2 220
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o] -
(10x4)

-
(10x1)

0 0 0
% 2 O
0 0 0
0 0 0
8% ki)

0 0 0
0 0 0
8? 2 F
~ 8zdy 28—y 25;
0 0 0
0 0 0

p

%(wo,x)‘l

2
wO,a:E(zz),z:
2
1 E(2)
3 \Ezzx
1 2
i(wo,y)
2
wO,yEgz).y
2
1 6(2)
2 zz,y
Wo,zWo,y
2
'UJO,yE(zz),a: + Wop,z€
(2) _(2)

Ez2x€zzy

0

3\

(2)

zz,y

221

(4.3.17)

(4.3.18)
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4.4 Stress-strain relations

For the lower and upper face sheets (k=1 and k=3), where, according to our assumptions, e =

e = eg,'i) =0 (k=1,3), the constitutive equations (3.6.13) take the form

(k) (k) (k)

Hamx C_'ll 012 C_'lﬁ Exx
Ho'yy = C_’12 C_'22 C-'26 Eyy (k =1,3),
Hazy Clﬁ C_’26 C_’66 25:cy
(k)
w | =
_ _ _ k
Hok) = [ Ciz Caz Cse J Eyy k=(1,3), (4.4.1)
2ezy

The constitutive equations for the core are

@ r (2 (2)

Ozz Cy Crz Cis Cie €zz
Oyy _ C:'lz C:'22 C:'23 C:'26 Eyy , (4.4.2)
Oz Ciz3 Ca Cs3 Cse €2z
Ozy i Cis Cos Cizs Ces 262y

(2) _ _ (2 (2)
o (| Cu Css 2 | (4.4.3)
Ozz C45 C55 25:1::
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4.5 Strain energy of the core

The strain energy of the core is defined by expression

Tr _ _ _ _ (2)
e?) Cu Ciz Ciz Cis e
B L z: — — — —
@ _ 1 e Ciz Ca2 Cz3 Cop evy
U = - @ _ _ _ _ @) dz dx dy+
20 & €2z Cizs Coz C33 Cse €2z
2
2%) Ci6 Caps Css Cés 2:2)

T
Cu Cgs 2eyz

B _ @) dz dz dy ,
Css Css 2657

Substitution of expressions (4.3.13) and (4.3.14) into the last expression yields

B L T
3]} (B
20 \(oxg) BN “qoxiy
(1x10)

B L z T
L PR 2
+oke / / / (@)
2ez-

0022

where k. is shear correction factor.

~ ~ ~ _ (2)
. Cu Ci2 Ciz Cie

frs Ciz Cn Gy C -

« /[2(2)] 12 C22 _23 —26 [Z(z) ]dz y

g Cis Cas Csz Css (4x10)

(10x4) Cis C2 C3s Ces

1) )
([(10><4)] (flﬁ) " [(lel)]) dr dy+

23

_ _ (2)

C. C 00 2 0

e dz | {f} dzdy,
Css Css 0 200 (4x1)

B L
+%kc0/0/{f}T

—
N O
o o v oo
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(4.5.1)

(4.5.2)
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where matrix [ AU ] is defined by expression (4.3.15), matrix [5(2)] - by expression (4.3.16) and
matrix [ 7(®) ] - by expression (4.3.17). So,

B L T
e =2 0/ 0/ ([5<2> Lﬁﬁf [7® ]) 5] ([ém ](3 f+ [ 7 ]) dz dy+

(10%4) (10x1) (10x4) (10x1)
(1x10)
. B L
sk [ [AnT[D®)] (1} deay. (453)
(4x1)
00
where
_ _ _ _ 1@
Cii Cr2 Ciz Cis
7 "1 G G Cu C
5o [[z@] | % % O | zole, s
(10x10) 2, Cizs Cas C33 Cse (4x10)
(10x4) Cis C2 Czs Ces
0 0
1o 2| [ 6w ]P0 0 2 0
[D@)]: / e dz . (4.5.5)
A 2 0 Css Css 0 2 0 O
00
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4.6 Strain energy of the face sheets

The strain energy of the face sheets is defined by expression

T _ o _ _
Log| €8 Cii Ci2 Cis e
—1 (k) Cp Coo C B % dzdrdy (k=1,3) (4.6.1)
2 Eyy 12 22 26 Eyy Y =1, .6.
Bk 2e :(tI;) Cie C26 Cos 2€ g;)
or
1 B L z2k+1 T
k) — = (k) [ (k)] (k) - . 6.
U 2/ {e } c {s }dzdacdy (k=1,3) (4.6.2)

0 0 2z (1x3) (3x3) (3x1)

Substituting (4.3.1) into (4.6.2), we obtain

B L T
oo -3 [l o) -

(8x4) (8x1)

o [ [2%) 7o [z
s (8x3)  (3x3) (3x8)

x ([a"“)] {f} + {W}) dedy (k=1,3) (4.6.3)

(8xa) X1 “gx1)

or

B L T
o4 (1) 0061 09 (1930, - (1)) e =

x8) \ (8x4) XV sx1)
(4.6.4)

where matrices [Z())]and [Z®)] are defined by equation (4.3.4), matrix [6(M)] - by equation (4.3.5),
matrix [0®] - by equation (4.3.12), [nV] - by (4.3.6), [7®] - by (4.3.13).
Like in chapter 3, a stiffness coefficient in the Hooke’s law for a ply of the lower face sheet, in

the laminate coordinate system, will be denoted by gl ) where the right superscript (1) denotes

l]’

that a stiffness coefficient is associated with the 1-st sublaminate (i.e. the lower face sheet), the left

superscript o is a number of a ply in the lower face sheet, subscripts ¢ and j denote a position of
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the stiffness coefficient in the stiffness matrix. The stiffness matrix with components D‘C’S) will be

denoted as [-58)] i. e.

ac(l) aC(l) C(l)

—=(1)] _ 1 1 1
[e) = | mcp ec) ety
~(1 ~(1

aClG “ és) “Céﬁ) i

Analogously, a stiffness coefficient in the Hooke’s law for a ply of the upper face sheet will be

ij

denoted by < C'( ) and the matrix of these coefficients - by [C(S) , 1. e
aé(3) ac_fl(g) ac_vg:é)
—(3 - —
[Ci >] =|eC® oo ocfd
C(3) o "é:é) o —é:é)
Let n be a number of plies in the lower face sheet and let

§1=21,62,83, s En =22

be z-coordinates of the interfaces between the plies of the lower face sheet (Figure 3.3). Also, let

m be a number of plies in the upper face sheet and let

C1 =23, 62, (3 ey G = 24

be z-coordinates of the interfaces between the plies of the upper face sheet. Then

z2 n Sot!
0] [l 2] [20)ee= 3 [ 20 [ 2]
(8x8) 2 (8x3)  (3x3) (3x8) a=1 ¢ (s><3) 3><3) (3x8)
En-f—l

n

-3 / [Z“) ]T [C*‘f,”] [Z(l)] dz (4.6.5)
a=lg,

and
24 T m Ca+1 T
9] - [[20] [0 [ 5 [ (2] ) 2=
(8x8) za (8x3)  (3x3) (3x8) a=1 ¢ (8x3) (3x3) (3x8)
Cn—fl

zzm: / [z<3>]T[5§”] [z<3)]dz. (4.6.6)

a=1 /. (8x3) (3x3) (3x8)
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4.7 Strain energy of the plate

Strain energy of the sandwich plate is the sum of the strain energies of the core and the face sheets:
Up=U® +U® +U® =

B L T
-0 0)) 122 (1)) o

(8x4) (8x1) (8x8) (8x4)

13 L ( 52 ~2) )T ~ ) ( - )
+20/0/ [(?0x4)](£ﬁ)+[(1770x1)] [D ] [(IOXJ(KE)-F [(lﬂxl)] dz dy+
(1x10)

(4x1)

B L
1 T [p®]
+3 0/ 0/ (A7 [02)] 1£) do ay+

B L T
Al () B (b)) oo o

ex4) AV (sx1) (8x8) \ (8x4) (8x1)

4.8 Strain energy of elastic foundation

The strain energy of the elastic foundation is defined by expression
B L
1 1 2
= 5//3(9:,1/) [w( )z, t)] dz dy. (4.8.1)
00

According to equation (4.2.1),

w® = wy + ag‘?zg (21 < 2 < 29)

or

(2)

wh=|1 00 a]{ o =100 =] - (482)
¢

el
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Then
1
2 0
(w®) = ()" 100 2 |
0
29
or
m)* TrH
(«®)" = (1 7[D] {5}, (483)
(1x4) (4x4)(4x1)
where
100 2|
— 0 00 O
[D]= (4.8.4)
0 00 O
29 00 Z%
Substitution of equation (4.8.3) into equation (4.8.1) yields
. B L
y=3 [ [+ (NT[D] (1) doay (485)
00 (1x4) (4><4)(4><1)

4.9 Potential energy of the platform and the cargo in the
gravity field

If we set e = s§, =el) =¥ = E(:i = = 0, equation (3.9.19) for potential energy of the

platform and the cargo in the gravity field takes the form

B L
leatform +Hcargo = //({f} {F} dr dy, (491)
00

1x4) (4x1)
where

Wo
(2)

=90

Eyz

el?

I
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g [pW (22 — 21) + p1 (23 — 22) + p®) (24 = z3) + p H (z,9)]

{ry = (4.9.2)

0
(4x1) 0
)

g [pWzz (22 — 21) + 1p (28 — 28) + p1®) 23 (24 — 23) + p H (2,7) 23]

4.10 Kinetic Energy of the Platform

The kinetic energy of the platform of the k-th sublaminate (k=1, 2, 3), i. e. the kinetic energy of

either one of the face sheets or of the core is

T
. B L zest (k) ul®)
KW = 2 / / / o®) o® S dz dz dy. (4.10.1)
00 z k) we
According to equation (4.2.10),
(k)
o [x] O
o0 4= [z(ﬂ] [a“)] = ) (4.10.2)
k)
Therefore,
BL T
KW = 2,0 a(k) f}) |[D®| | (8% 0 dz d 4.10.3
0 [ [ ([ zn) [B¥]([°] 501) deav.  @109)
00
where

[fy(k)] = 71[2<’°>]T [2“')] dz  (k=1,2,3). (4.10.4)

Substitution of (4.2.12) and (4.2.13) into (4.10.4) yields

100
2| 2 00 1 2000
[D‘”]=/ 010 001 2z 0/ de=
210 2 0 0000 1
00 1
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So, the kinetic energy of the whole sandwich plate is

K(l) +K(2) +K(3)

K,=
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. BL/( 5 T N
[ () el (i) =

1 7 ~ 0 ' ~ 0
[ (150) B9 (E15) =

(6x4)
B L T
1 ~a] O ~ ~
+5p / / ([8(3)]52{ f}) [D<3>] <[a<3>] o f}) dz dy. (4.10.8)
00 (5x4) (4x1) (5%5) (5x4) (4XI)

4.11 Kinetic energy of the cargo

According to equation (3.10.4), kinetic energy of the cargo is

1 7T ow® (z,y,t)

—_ = Y,

K. 2//-# H(x ( ) dz dy, (4.11.1)
00

where w® (z,y,t) is defined by expression (17.6), that can be written in the form

T

wo 1 1

@
€ 0

w® ={ ={f}T (411.2)

e 0

yz
Egz) z3 23

Then

[y

(252 - () { ¢ la oo s (Gun)-

ot

-(2 {f})T B (511) (4113)
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where
1 0 0 23
~ 0 00 O
[Dc} = (4.11.4)
0 00
zz 0 0 22

Substitution of (4.11.3) into (4.11.1) yields:
17 f d T 0
Ke=1 0/ 0/ wi@y (g10) [B](F10) i (4115)

4.12 Considerations regarding finite element formulation

The Hamilton’s principle used for the finite element formulation is discussed in chapter 3, and has

the form
ty
6 / [(strain energy of platform) + ( strain energy of elastic foundation) +

t)

+ (potential energy of platform in gravity field) + (potential energy of cargo in gravity field)

— (kinetic energy of platform) — (kinetic energy of cargo)| dt

ts

- / (virtual work of damping forces ) dt = 0. (eqn 3.11.10)

t)

All the considerations regarding the finite element formulation, presented in chapter 3, are also valid
for the simplified model of the chapter 4, except that the simplified model has fewer unknown func-
tions and, therefore, fewer degrees of freedom. The unknown functions of the simplified model are
wo (2,9, 1), €2 (2,9, 1), €y (T,9,t) and €:.(z,y, t). In the finite element formulation, the interpola-
tion polynomials for these functions will be the same as those discussed in section 3.12 of chapter
3. The combined finite element for all the unknown functions of the problem will have 40 degrees
of freedom: 4 degrees of freedom must be used for interpolation of each of the functions 6;(1;22), 5{,22),
and 16 degrees of freedom must be used for interpolation of each of the functions wg and 5&2,). Each

node of the combined finite element has 10 degrees of freedom: wy, %"5‘1, %ﬂyl, g%g—g, s(mzz), e§,22), eg),

A A i
—Z& &z Xz
dx ' Oy ' 8xdy°
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4.13 Post-processing stage of the finite element analysis: ex-
pressions for the in-plane stress components and the

second form of the transverse stress components in terms

of the unknown functions wy, 65522), 51(,22), 5&22).

To obtain expressions for the in-plane stresses in terms of the unknown functions for this simplified
model, one can use the corresponding expressions (3.13.4) of the nonsimplified model and set in
1 1y 1 3 38 3

them the functions wug, Vo, €z, Eyz, €27y Exzy Eyz 5 €22 equal to zero. Thus, one can receive:

H (k)

Ozx
HUyy =
Ho.
® (k) (k) (k)
— — — — k Pzz0 Pzl Prx2
Cii Ci2 Cis Cus
— — — — Pyy0 Pyyl Pyy2
=1 Ci2 Cxn Cz Coa3 v + v z+ v 21,
—_ — —_ — Pzy0 Pyl Pzy2
Ci6 C2% Ces Cas6
€2z 0 0
(4.13.1)
where
) @ ,lo2@ 1 @ \?
Preo — U0,z + 22252:z,$ + §z25zz,:tz + ’2' (wo,x + 22Ezz,z) ) (4132)
PO = ~wozs — 226, (4.13.3)
1
Plh =0, (4.13.4)
) @ ,l20@ 1 @ \?
Pyyo = Yo,y + 2208, + ~2-z2522‘yy + 3 (wo,y + zzszz,y) , (4.13.5)

v
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P = —Wo,uy — 2262y, , (4.13.6)
P =0, (4.13.7)
‘P;ly)o =22z (E;i)’y + 61(,22)’,,;) +22e®  + ('lUO,z + ZQE(ZZZ)E) (wo,y + zzsﬁ)y) , (4.13.8)
Pon = —2wo0y — 22262, (4.13.9)
P =0, (4.13.10)
gy 1
P2 = 5(woz)” (4.13.11)
N —
9091)1 = 255:22),1 — Wo,zzx + wO,IESv?z),z ) (41312)
(-
2 1 1 2
‘10:(51)2 = —‘5 ‘(':22)@:5 + 5 (69:),1) ) (41313)
|
@ _1 2
Pyy0 = 5 (Woy)” (4.13.14)
S —
2
Lo = 2600, — woyy + wo sy (4.13.15)
N’

2 1 1 2
¢§Iy)2 = _§Eg),yy + 3 (5(z2z),y) ’
———

(4.13.16)
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o2 = wozwo,y (4.13.17)
——
ol =2 (2, + s — woay) + woye e +unselly (4.13.18)
ol =—e?),, +e@ 2, (4.13.19)
P = 22362, + %23692,“ + é (wo.x J;zgsg?,,)i , (4.13.20)
@) = —wozx — 2362, (4.13.21)
02 =0, (4.13.22)
Py = 22562 + %%69),1,;, + % (wo,y i zze&i’,y)i : (4.13.23)
) = —wp gy — 2Py, (4.13.24)
P =0, (4.13.25)
o0 =225 (e, + 6@, ) + 25ey + fwo,x + Zsfg),x)v(wo,y + zseg%,{yl , (4.13.26)

(’0533'.:1)1 =2 (—'wO,zy + 23— Eg?,xy) ) (41327)
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D, =0, (4.13.28)

where the nonlinear terms are underbraced.

The formulas for the transverse stresses in terms of the in-plane stresses are the same as those

presented in section 3.13 of chapter3:

k—1 *mi! r
=Y [ (s - #oliy) det [ (Vi - Fol3) dz
m=1 Zk
(@=1,2; f=1,2% k=1,2,3) in the interval 2 <z < 241, (ean 31314

where the sum is considered to be equal to zero, if the upper value of the summation index m is

smaller than the lower value, i.e. if k =1;

k-1 Zmtl k—1 Zm+1
ol = sw® (21)+ / o (™ + g) dz - (Folp ) |, a:
m=1 Zm m=1 fmm ]
k—1 m—1 Zm+12n+1
XX [ [ (i olds) e
m=1 n=1 2 2

-2 / / (Pl = Holp)s) dz dz

Zm Zm
z z
K (500 H_(K) (k
+/p<) (i +9) dz—/( o) us,;),ﬁ dz
Zi Zk
k—1 Z Zn4)
—E// (p(") 'u‘(,t"()1 - Ha((x"ﬁ),aﬁ) dz dz
n=lzk Zn
z 2
- / / (9 i)~ Hol ) dedz (a=12% B=1% k=123) (eqn 3.13.20)

Zp 2k




CHAPTER 4 237

in the interval z; < z < zg47 -

In the next chapter, the computational model of the sandwich plate, presented in this chapter,
will be applied for stress and failure analysis of the cargo platform modelled as a wide beam (plate

in cylindrical bending), dropped on the ground modelled as elastic Winkler foundation.




Chapter 5

Stress and Failure Analysis of the
Sandwich Cargo Platform
Modelled as a Plate in Cylindrical

Bending

The problem of stress and failure analysis of the cargo sandwich platform dropped on elastic foun-
dation, as formulated in chapters 3 and 4, requires two-dimensional finite element analysis with
geometric nonlinearity and the equivalent of material nonlinearity, due to taking account of failure
progression. In doing a complex analysis of this type, analysts usually start from simple models
and do not attempt a complete solution all at once. A first step toward understanding the response
of the composite sandwich platform to the impact against the elastic foundation can be made by
solving a simpler problem of cylindrical bending of such a platform. Such a one-dimensional problem
has many similar features to the two-dimensional problem of interest, and allows one to discover
more easily the inaccuracies that may appear in the finite element formulation and program. The
analysis of the cargo platform as a plate in cylindrical bending will become a foundation for the

further analysis of the cargo platform with the use of two-dimensional finite elements.

238




CHAPTER 5 239

5.1 Some general considerations regarding cylindrical bend-
ing

Let us consider an anisotropic plate loaded by surface and body forces, acting in the z-direction, and

not varying along the y-direction (Figure 2.1). Let us call the dimension of the plate in x-direction

the length, and dimension in y-direction — the width. If the width of the plate is much larger than
the length, the displacements do not depend on the y-coordinate:

u=u(zr,z), v=v(z,2), w=w(z,2). (5.1.)

Such a condition is called generalized plane strain (Lekhnitskii, 1981). In this case, the compo-

nents of the Green’s strain tensor, associated with the y-direction, are:

ov 1 ou\? ov\? ow\?
fw—a+5Ka>+(a)+(a)]=Q 12

€ —-1 @+@'+@_@£+_6_UQE ?}ﬁ.aﬂ —QU_ (513)
T 9\fy Oz Ordy Ozdy Oxdy) 0Oz’ -
_i(ov, ow, outu suon owou) _ov -
f1: = 9\ 52 8y Oydz 0Oydz Oyoz) 0z 14)
If
u=u(z,2), w=w(zz2), v=const (5.1.5)

(or u = u(z,2), w=w(z,2), v=0, if rigid body displacements in y-direction are excluded from
consideration), then we have a condition of pure plane strain or simply plane strain. In this

case all strain components, associated with y-direction, are equal to zero:
Eyy =0, €5y =0, €4, =0. (5.1.6)

The condition of the generalized plane strain reduces to the condition of the pure plane strain if the
plate is isotropic, or if the plate is anisotropic and at each point of the plate there is a plane of
elastic symmetry parallel to x-z plane (Lekhnitskii, 1981).

If a deformed plate is in the condition of the generalized plane strain, then it is said to be in

cylindrical bending. A plate is in cylindrical bending if : 1) its width (dimension in y-direction) is
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much larger than its length (dimension in the x-direction), and 2) the load intensity does not vary
in the y-direction.

L and B are taken to be dimensions of a rectangular plate relative to the z— and y—axes. The
aspect ratio %, required to make the assumption of cylindrical bending for a laminated plate, depends
on laminate construction. For unsymmetrical laminates of the class [0°/90°], it has been shown
(Whitney, 1969, 1987) that the maximum deflection under transverse loading rapidly approaches
the maximum deflection of cylindrical bending, if the aspect ratio increases. For an aspect ratio
-'i— = 3 the plate center deflection was within 4% of the center deflection of an infinite strip. In the
case of angle-ply laminates the convergence to cylindrical bending with increasing aspect ratio is
less rapid.

Let us assume the cargo platform satisfies the conditions of cylindrical bending, described above,
i.e. the load of the cargo is uniformly distributed in one direction (y-direction), and the face sheets
are cross -ply laminates with aspect ratio % equal, at least, 3. Then in the platform there is,
approximately, the condition of the generalized plane strain, which occurs if the unknown functions
of the problem depend only on z-coordinate. If we do the simplified analysis, introduced in chapter
4, the unknown functions in case of cylindrical bending are wo, sg), 5,(,22), eﬁ) . As it was mentioned
in chapter 4, the middle-surface displacements ug and vy are considered negligible because, among
other reasons, the sublaminates of the sandwich plates are assumed to be either cross-ply, or specially
orthotropic, i.e. at each point of the plate there is a plane of elastic symmetry parallel to the z-z
plane. Due to the same assumption, the condition of the generalized plane strain reduces to the
condition of the pure plane strain (Lekhnitskii, 1981), i.e. u = u(z,2), w = w(z,2), v = 0 and,

therefore, €,, = 0. So, in the case of cylindrical bending, the unknown functions of the problem are

Wo (3:9 t) s 65:22) (SL‘, t) ’ 55:22) (‘Tv t) . (517)

5.2 Displacements in terms of the unknown functions
Equations (4.2.1)-(4.2.9) for a plate in cylindrical bending take the form:

wW (z,8) = wo (z,t) + P (2, )20 (21 £ 2< 23), (5.2.1)

w® (z,2,t) =wo (z,t) + €D (z,t) 2 (22 <2< z3), (5.2.2)




CHAPTER § 241

w® (z,t) = wo (z,8) + & (z,t) 23 (23 <2< 24), (5.2.3)

1
uM (z,2,t) = (25(;‘2 - wo,z) 29 — 5692), 22— (ag‘;)x 29 + wO,x) (z—20) (21<2<2), (5.24)

1
u® (z,2,t) = (25;22 - wo,x) z— =@ 22 (22 € 2 < 23), (5.2.5)

2 z2z,T

1
U(3) (:C, Z,t) = (25;22 - wg‘x) 23 — 56222)@ Zg - ('UJO,J: + 592),123) (Z - 23) (23 <z< 24) , (526)

o) = 4@ = o3 — . (5.2.7)

These equations can be written in matrix form as follows:

40 L a0 0 2z %z%f; Wy
o[ o 01 —L 0 —nd |2 1 (5.2.8)
w
(2x3) 1 0 29 E,(z2z)
(3x3) (3x1)
o, .
-= 2 0 "
2 2 1.d 0
u() _ z Zz 0 0 0 0 ~ 34z @)
— (5.2.9)
2 63:2 b -
w® 0 0 1 =2 1 0 0 @)
(2x4) €zz
| 0 O 1 (3x1)
(4% 3)
u(3) 1 2 0 0 223 %2‘%% Wo
@ (1o o1 N e? 3. (5.2.10)
w
(2x3) 0 =z e
(3x3) (3x1)

These equations can also be written in the form

u®

w®)

- [g(k)] [5(k>] (f} (k=1,2,3), (5.2.11)

where
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Wo
{fy=1 @ 4 (5.2.12)
L Eg)
- . 1 0
[Zm]:[z(s) - ‘ , (5.2.13)
(2x3) (2x3) 001
~ 2 00
@)= | * , (5.2.14)
(2x4) 0 0 1 =z
(2x4)
0 22 344
[3<1>]: L 0 -zd |, (5.2.15)
(3x3) 1 0 29
-£ 2 0
~ 0 0 -3&
[3(2)];. 2ds | (5.2.16)
ax3) 1 0 0
0 0 1
0 223 -12'21%%
[am]: ~L 0 -ng |- (5.2.17)
(3x3) 1 0 23

5.3 Strains in terms of the unknown functions

If we substitute expressions (5.2.1)-(5.2.6) for displacements into the strain-displacement relations
1 2
=+ L ()7,

we obtain

@ ,1,2.@ o1 @ \° 2
E(le) — 222 €zz,x + '2-2’2 Ezz,xx '2‘ ('UJO,a: + 29 5zz,:z:> . — (wo,:cm + 29 Efzz),zz) 2, (531)
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@) = 1(y )2 @) (2) Lo lre)?) 2
€2z = _2-(w071') + 25:z,z — Wo,px + Wo,x€szz | 2 + _§Ezz,:cz + '2° (Ezz,m) 2% (532)
N’ e —
3 @ 1,22 1 @ \?
E;z) = 223 Exz,x + 523 Ezz,xx 5 ('IUO,:C + 23 Ezz,z) — (wO,zz + 23 Efzzz),a::z) 2. (533)

In the last three equations the nonlinear terms are underbraced.
Using expressions (5.3.1)-(5.3.3), we can write strains in terms of the unknown functions as

follows:
e) = lZ(l)J ([am (£} +{,,<1)} , (5.3.4)
ax2) \ @x3) XD axi)
e® = {Z(”J ([aw)] (5} +{,7(3)} , (5.3.5)
ax2) \ (@x3) D Jaxi)
e - -
3 b= ([, +657)). 520
€£z) (3x1)
(2x4) \ (4x3) (4x1)
@=|01 0], (53.7)
(3x1)
where
wo
{f} =4 2 ¢, (5.3.8)
(3x1) 592
~ 1 2z 220
20)=]29|=|1 =], [29] , (5:3.9)
00 0 1
0 2Z—d— lz2 d2,
[am] P 2dz 2235: , (5.3.10)
(2x3) w 0 2z
0 2L 128
[3(3) _ | BE Bar | (5.3.11)
d 0 Y
(2x3) @zt 3 4z?
(2x3)
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0 0 0
2
[5‘”] _| 0 (5.3.12)
o o -i& |
(4x3) 2 dz?
0 0 1
(4% 3)
2
i wo,z + 2 5(%:):1:
{nu)}:{ 2( 0. 02 ) . (5.3.13)
(2x1)
2
1 (wop + 23 €2
{n‘3’}= 2( 0 03 ") , (5.3.14)
(2x1)
%(wO,m)2
~(2) wO,zsgzz),:z
[77 ]= L@ \2 (5.3.15)
(4x1) 2 (Ezm)
0
(4x1)

5.4 Constitutive relations

Ifell = 61(;12) =) = e = Eﬁ) =¥ = 0, then constitutive equations (3.6.13) for an orthotropic
material can be written for the face sheets and the core as follows:

for the upper face sheet:

Hol) =Tl (5.4.1)
lower face sheet:
o) =T e, (5.4.2)
core:
2 —=(2) =(2) 2
oy(cz) _ Cii Cis E(m) (5.43)
2 T e T ||

—=(2
0@ =Tl 2e?. (5.4.4)
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5.5 Strain energy of the plate in cylindrical bending

The strain energy of the sandwich plate consists of the strain energies of the face sheets and the

core, and it has the form:

L=z Lz
%b// ) Ho() gz dz + b// @) H53) dz do+t
0z 0z,
T Eza: ! H(T:S;?E) 1 L=
SV {12 ous] -
Hagz) 2
0 z,
Lz
1 (1 (1) (3) =(3)_(3)
= 5 I3 dz dz + b €rn C1i €5 dz dx+
0z 0z,
L %3 —=(2) =(2) @ L 2%
Cn C 27 1 _
"3 b/ / b @ =@ || o (FET Eb/ / 2T 22 dz do =
013 CSS Ezz 0

L T [z,
- %b/ ( [0®] {7} + {n‘”}) ﬂz<1>JTC‘§11’ |29 d ([a‘”] {f} + {n‘”}) do+
0 2

2x3) XD axi) (@x1) (1x2) 2x3) B o)

T 2,
%b /L ( 69 (5} + {,,(s)}) / [z(”JT cR|z®] dx ([a“‘)] {f + {n“"}) dr+
0 )

ex3) BV 2x1 5 (2x1) (1x2) 2x3) C*1) axay

2 2 (7 @17 5521) 553) 5
L b/( 5] 1) + o >]) [z [Cg) _C_(Z)}[z@)] iex

(ax3) C*1  ux1) s (4x2)

([a@)](gﬁ) . [“2’]) -

(4x3) (4x1)
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L 23 0
+:21-b/{f}T /2 110% 20 1 0 dz| () do (5.5.1)
(3x1)
0 z2 0
or
L T
-3 (1 600) o] (] + ) e
o\ (2x3) ®XD  “ax1) @x2) \ (@x3) XD ax)
L T
1
af (ol 1) 129 (=) oo
4 (2x3)(3’<1) (2x1) @x2) \ (2x3) XD ax)
L T
1 ~ ~
Al (g 6) B () gy ) o
0 (4x3)‘3"1) (4x1) (ax4) \ (4x3) &Y uxi)
1L
+5 / (" [D("’)] {f} dz, (5.5.2)
rd (3x3) (3x1)
where

[ﬁu)] —b za[z(g)r [ —C_ﬁ) 5(1?;) } [2(2)] ds =

2

* 2 2) 3= (2
f 20(11) 2C(n) 3Ch Cis d (5.5.3)
=b 2A @) 3= 4= = | %0 o
2 Cn Cii #'Ch Cis
2 2 —(2) —(2)
ng) ng) 22Cy;  Cg
%3 0
[D@)] = b/ c®2¢ 1 2[ 010 sz , (5.5.4)
(3x3) E 0
%y
T__
[D(U] =b[|z%) ci|2®) dz, (5.5.5)

(2x2) z; (2x1) (1x2)
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%4
[D(3)] =b \.Z(‘”JT c¥ [Z(3>J dz . (5.5.6)
(2x2) 7, (@x1) (1x2)

As in chapters 3 and 4, a stiffness coefficient in the Hooke’s law for a ply of the lower face
sheet, in the laminate coordinate system, will be denoted by "‘-C_S ), where the right superscript (1)
denotes a stiffness coefficient associated with the 1-st sublaminate (i.e. the lower face sheet), the
left superscript « is a number of a ply in the lower face sheet, subscripts ¢ and j denote a position
of the stiffness coefficient in the stiffness matrix. Analogously, a stiffness coefficient in the Hooke’s
law for a ply of the upper face sheet will be denoted by ""C'_t(-?). Let n be a number of plies in the

lower face sheet and let
§1 = 21, £2a 631 erey &n =22

be z-coordinates of the interfaces between the plies of the lower face sheet (Figure 3.3). Also, let m

be a number of plies in the upper face sheet and let

C1 =23, (2, (3 vy Gm = 24

be z-coordinates of the interfaces between the plies of the upper face sheet. Then

%9 n §at1
[D(l)] =b [Z(l)JT'C—gll) tz(l)J dz=bY agld) / lZ(l)JTlZu)J ds =
(2x2) 2z (2x1) (1x2) a=1 fa (2x1) (1x2)
n 1 2 2
—b 05(1) £a+1 - £a 2 (£a+l - §a) : (5'5.7)
2o 1€ -8) 18 -8)
24 r m Ca+1 r
[00] =3 [|200] €920 dz =03 T8 [ |20]" |29 a2 =
(2x2) z, (2x1) (1x2) a=1 Sa  (2x1) (1x2)

m _ (2  _ 2
=y T 1 C"z“ C"‘z : (Cz“ C‘;) (5.5.8)

a=1 2 (Ca—H - Ca) 3 (<a+l - Coz)

In absence of damage, the elastic constants of the core do not vary in the thickness direction, i.e.
do not depend on z-coordinate. But the damage, that can occur in the core as a result of impact,

can be distributed nonuniformly in the thickness direction, and, therefore, the elastic coefficients
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C(2 of the damaged core can depend on z-coordinate. This will be taken into account by dividing

the core into a number of nominal layers and by considering the elastic coefficients C'( ) of the core

independent of the z-coordinate within a nominal layer, but varying from layer to layer. A stiffness

coefficient in the Hooke’s law for a nominal layer in the core, in the laminate coordinate system, will

agi?)

be denoted by “C};",

where the right superscript (2) denotes a stiffness coefficient associated with

the second sublaminate (i.e. the core), the left superscript a is an ordinal number of a nominal layer

in the core. Let s be a number of nominal layers in the core, and let

T = 22, N2, N300y Ns = 23

be z-coordinates of the interfaces between the nominal layers of the core. Then

(2
T (flas1 = M)

—=(2 )
i | TR )
- —=(2)
a=1 cn ,33 (77a+1 712)
°C13 (Mas1 — 770:)

%3 —=(2) =(2)
[D(Z) =b [2(2)]T Cu Cu [2(2)]@ -
C(z) C(2)
z, (4x2) (2x4)
C(2) C(2) 0(2) —C_'%)
C(2) C(2) C(2) C(2) ;
z =
20(2) C(z) C(z) 0(2)
C(2) C(2) C(2) C(2)
a—(lzl) C(2) 22 aag'b;) a5(2) 1
LoD 2eT® peT® LeTh |
2o 3 g o? 2 o z2=
Qég) C(Z) 22 °‘C(2) C(2)
a@ml 2 _ .2 (2)1 3 3
12 ("/a+1 710) Ci 3 (7la+1 - 770) C (Ua+1 - Na)
=(2) c® R (2)
“Cn % (7)2:+1 - "72) Cn .1; (’7:.+1 4) Cis ; (77cx+1 - Ua)
=(2) =(2) am(2
°Ch % (o1 = ’7:) “Chn é ("70+1 ) Cm):]; ("Ta+1 ﬂ?x)
o~(2) (2)
Cis % (T}Z+1 - ’72) Cis 3; (Uu+1 ) Caa (Ma+1 = Na)
(5.5.9)
5| 0
2
=b[{ 2 TR |0 2 o]d

(3x3)

o]

2 0
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0

sl 2 %]0 2 0 /?:“ (2) dz =
0 %
0 0 0

Na+1

- (41)2 / o) dz)

0 0 0

5.6 Strain energy of elastic foundation

The strain energy of the elastic foundation is defined by expression

2
=—b/ w(l)xt] dz ,

where s () is a modulus of the foundation. According to equation (5.2.1),
w(l) =wp + Egzz)Zz (21 <z< 22)

or

Wo
w(”:[l 0 22J<5($2;) ={1 022J{f}'
e
Then
( 1
(wu))z:{f}ﬂ 0 [1 0 22J{f}
\ %2
or
(w®) = (17D 1),
(1x3) (3x3)(3x1)
where

1 1 0 2
[(Bl={o|[10=]=|000

29 zg 0 22
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(5.5.10)

(5.6.1)

(5.6.2)

(5.6.3)

(5.6.4)

(5.6.5)
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Substitution of equation (5.6.4) into equation (5.6.1) yields

- -b/ (@) () T[ D1/} do . (5.6.6)

(1x3) (3><3) (3x1)

5.7 Potential energy of the platform and the cargo in the
gravity field

In order to obtain the expression for the potential energy II of a wide beam and the cargo in the

gravity field, we need to set in expression (4.9.1) €§/2z) = 0. Then

L
=5/ {f}T{r} dz, (5.7.1)

4 (1x3) (3x1)

where

Wo

{(f1=4 2 ¢,

el

g [P (22 = 21) + p? (23 — 22) + p®) (24 — z3) + p H ()]

{T'} = 0 . (5.71.2)
(3x1) 1.(2) (,2 _ 2 3
g[pWz (22— z1) + 30 (23 - 23) +p®) 23 (24 — 23) + p H (2) 23]

5.8 Kinetic energy of the platform

The kinetic energy of the platform of the k-th sublaminate (k=1, 2, 3)

L zk+1
(k) ulk)
K® = E U”)b/ / dz dx . (5.8.1)
Wk w(k)

According to equation (5.2.11),

[} oo oo 52

where quantities, entering into equation (5.8.2), are defined by equations (5.2.12)-(5.2.17). Therefore,

K(’“)-— p®p / ( 5 —{f}) [1”)('0)]([5“)]%”}) dz | (5.8.3)
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where

Zk+1

[5®)] = / [z(k)]T[z(k)] dz

Zk

Substitution of (5.2.13) and (5.2.14) into (5.8.4) yields:

(k=1,2,3).

2y z | 1
[D(l)] - [Z(l)] [Z(l)] dz:/ z e
(3x3)  z, (3x2) (2x3) 3 0 01
n-zn  3(3-2) 0
=|3(-4) 3(8-4) 0 |
0 0 22— 2
] z 0
%3 2z, ) )
[5(2)]= [2(2)]T[2(2)] dz=/ 20|z 220
(4x4) 3, (4x2) (2x4) 2101 0 0 1
0 =z
5(A-4) §(x-2) 0 0
_|iGE-2) s(=-4) 0 0
: 0 m-m j(-4
0 0 3E-B) HE-2
%4 z, | 1 0
~ 1T =
[D(S)]z [2(3)] [Z(S)] dz = . 0 1 2 0
(3x3)  z, (3x2) (2x3) 401 0 01
-z g(#-4) 0
=136 3= o
0 0 24— 23
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(5.8.4)

(5.8.5)

(5.8.6)

(5.8.7)
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So, the kinetic energy of the whole sandwich plate is
K,= KU 4 g® 4 g6 =

L T
ol (1540) 129 (1) o
0

(3x3) (3x3) (3x3)

L T
o] (#15.0) 2] (1120 o+

(4x3) (axa) \ (4x3)
L T
o] ([(::] atg,{i)) ) ([(n)] 2 éﬁ)) 659
5.9 Kinetic energy of the cargo

According to equation (4.11.1), kinetic energy of the cargo is

2

L
1 ow® (z,y,1)
K.= 5b/y H(z) (“—E_) dz (5.9.1)
0

where w(® (z,y,t) is defined by expression (5.2.3), that can be written in the form

T \
Wo 1 1
w=3 B4 Lo d={f}T¢ 0 ¢ (5.9.2)
5(2) , (1x3)
zz L 3 ) z3
Then
'4 \
r| 1
aw<3>}‘2’ )
=|={fy] ¢ 0 |1 0 =z f
{ ot 6t(3x1) !‘ BJ t(gxi)

\ 23

T
_(2
-(340) 18 (32) oo




CHAPTER 5 253

where
1 1 0 23
[ﬁc] ={ 0 [1 0 2z j =|lo o o |- (5.9.4)
(3x3) 23 23 0 Zg

Substitution of (5.9.4) into (4.11.1) yields:

L T
1 0 ~ 0
K=zt [uH @ (Eéﬁ)) 5] (%ﬁf%) dz . (5.95)

0 (3x3)
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5.10 Finite Element Formulation for the Cargo Platform Mod-
elled as a Plate under Cylindrical Bending

5.10.1 Strain energy in terms of the nodal variables

Strain energy of the finite element that represents a platform is defined by expression (5.5.2),
if in this expression the total length of the platform L is substituted by a length ! of a finite element,

and z implies the local, element coordinate, not a global coordinate as in equation (5.5.2). This

expression is

o= 3 (1400 601) 0] (g0 1) o

(2x3) (2x1) 2x2) \ (2x3) XD ax1y

! T
A (1,07 o) ([, 7)) o

(2x3 (2x1) (2x2) \ (2x3) (2x1)

! T
+s / ({5@] ()} + [a@)]) (5] ([5<2>] )+ [ﬁw]) do-+

(ax3) C*1  4x1) (4x4) \ (4x3) (4x1)

/{f} Dm {f} dz, (5.10.1)
(3x3) (3x1)
where
Wo
{f} =¢ & (5.10.2)
(3x1) 52,2)

is a column-vector of the unknown functions,

4 1,24 d 1,24d°
[3(1)] _ 0 225 2237 [8‘3)] _ 0 223 2% (5.10.3)
a2 a2 ! 2 2 ’ ‘ ‘
(2x3) ~dz? 0 2235 (2x3) —fz’f 0 ‘23_7:;

0 0
d? d
- 4 24
[a‘”]: g;v d (5.10.4)
0
0 0
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are matrices of differential operators, also

2 2
1 2) 1 (2)
5 | Wo, +22€;,) 5 \Wo,z + 23 €zz,z
{nu)} =2 ( @ e , {n“”} ={ 2 ( Oz T <3 ) , (5.10.5)
(2x1) 0 (2x1) 0
%(wﬂ,z)z
(2)
Wo,z€z2z2,z
[;,m] = mm (5.10.6)
(4x1) 2 (5” 1)
0

are the column-matrices of non-linear combinations of the unknown functions of the problem. In

addition,
1)] — bz ac(l) fot1 — &a % (§a+l ‘5(21) ] (5.10.7)
(2x2) L % (£§+1 - EZ) % (§a+1 - 52) ]
m i ]
[D(3)] = bz aﬁﬁ) Cat1 = Ca % ( g+1 - C?x) (5.10.8)
(@x2)  a=l | 3G -) 3 (G- ) |
a75(2) a7(2) —_
Ty (ess =) Ty J(R =) CTHE (R =) °T13 (ass = 1)
5 o 7~(2) —
[5(2)} - bZ “Cy % (’Ia-n TI?;) Ch ‘15 (Tlgﬂ - 712) 521)3, (772’,+1 nf,) °C§23); (n'ﬁ_‘_] --qg)
— Cm](ﬂ 3) 05(2)1(4 .4 D1 (s 5 =(2)3
(4x4) a=l 1 3 a+1 ™ Ta 11 § \Mla+1 ﬂa) Ch 5 ("]a.,,l ) Cm 3 (77.::+1 173)
a _ a~(2) (2)
Cl3 (a1 = Ma) Cis ;’ ("lg.n - 71?;) Cis ;1; ("7a+1 ) °‘033 (Mat1 = Ma)
(5.10.9)
0 0 0]
s el
. 2
[D@)] =10 |4 / TP dz| 0. (5.10.10)
(3x3) a=1 n,
| 0 0 0

are the matrices of material constants, averaged over the thickness of a sublaminate.
Let us represent the unknown functions wy, 5&2), e by interpolation polynomials. The
general rules for choosing the interpolation polynomials are the following: if the Hamilton’s principle

contains derivatives of a field variable through order m, then an interpolation polynomial must satisfy
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the following requirements (Cook, Malkus, Plesha, 1989):

1) it must be a complete polynomial of degree m;

2) across boundaries between elements, there must be continuity of the field variable and its derivative
through order m — 1, therefore these derivatives must be carried as nodal variables.

The first requirement ensures that the m-th derivative of the interpolation polynomial does not
vanish in the Hamilton’s principle. The completeness of the interpolation polynomial is necessary
in order to make an element capable to represent a constant value of any of the m derivatives of the
field variable. The second requirement is due to the fact that if the Hamilton’s principle contains
derivatives of a field variable ¢ through order m, then the primary variables associated with this
field variable, are ¢, %, ey g%%{i, and the primary variables must be continuous at the interelement
boundaries (Reddy, 1993).

In the problem under consideration, the interpolation polynomials will be chosen to satisfy the
minimal requirements of general rules, presented above. In other words, the simplest allowable
elements will be used, which is a general practice in solving the transient and nonlinear problems
(Cook, Malkus, Plesha, 1989).

The maximum order of derivatives of eﬁ), entering into the Hamilton’s principle, is 1. There-

fore, an interpolation polynomial for e$?) must be of at least first degree, and across boundaries

between elements there must be continuity of, at least, 6:(622) (continuity of derivatives of s&"? is not

required). Therefore, we choose the first degree Lagrange polynomials to interpolate eg) (k=1,2,3)

as functions of z1:

e® = |M]{e} = | My Ms) (&} , (5.10.11)
where
Ml =1- 'aliy M2 = ':;:_7 (51012)
(2)
€xz (0
{#} = (2)( &y (5.10.13)
exz (1)

The maximum order of the derivatives of wgy and 5222 is 2. Therefore, interpolation polynomials for
wp and Egzz) must be of at least second degree and must have derivatives, continuous at the element

. . 2 (2 .
boundaries up to the first order (i.e. wp, %l,agz) and %’L must be continuous). Therefore, we

1Here and further in this section devoted to the FE formulation, it is implied for simplicity of notations, that z is

a coordinate in the element (local) coordinate system.
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choose the Hermit polynomial of the third degree to interpolate wo and E(z2z) (the lowest degree of

the Hermit polynomials is three):

e? = |N]{g} = | N1 Na N3 N4j {&}, (5.10.15)

where

322 22° 22 a8 3z2 223
7t Ne=ro Tt =T "B

Tt (5.10.16)

N=1-

{o}=¢ , (5.10.17)

(5.10.18)

\ dx

So, the combined finite element has 10 degrees of freedom. At each node there are 5 nodal variables:

d 2 2) del?
wo, 42, e, €82, 2=

Let us write expression (5.10.1) for the strain energy in terms of the nodal variables. First, we

will obtain an expression for [8(1)] {f} in terms of the nodal variables:

Wo
[0®] (5} = [oW]{ 2 ¢ =
(3x1)
(2x3) ey
2z
[N| {w} V] [0] (0] {w}
(1x4)(4x1) (1x4) (1x2) (1x4) (4x1)
= [a“)] M) {& %= [a(”] o] [M] |0 {e} 3=
(1x2)(2x1) (23] (1x4) (1x2) (1x4) (2x1)
X
V] {€} 0] 0] [N] {g}
(1x4)(4x1) L (1x4) (1x2) (1x4) ] (4x1)
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=[B<1) {d} (5.10.19)
(2x10) (10x 1)
where
[ )
\v) (o] 0]
(1x4) (1x2) (1x4)
[B(U]s[a“)] o) (M) (0] |=
(2x10) (2x3) (1x4) (1x2) (1x4)
o) 0] [N]
L (1x4) (1x2) (1x4) |
(3x10)
Ny N, N; N, 0 0 o 0 0 O
0 2% %z%f—;; o e
=| = 1lo 0o 0o 0o M Mm o 0 0 0=
% 0 —agp
0O 0 0 0 O 0 N N N3 Ny
[o 0 0 0 mdh g B gagh jagh ade
(5.10.20)
( )
d
{m) ’
(4x1) ds
d=¢ {&8 3= .10.
{d} S8 g \ (5.10.21)
{?}1
4
(4x1) L dl() }
In equation (5.10.21)
dy = ’wo(O), dy = ’U)B(O), ds = 'w()(l), dy = wé](l)’ ds = 52:22)(0) ds = E:(z?z)(l)’
de? de?
dy = €2(0), ds = —=(0), do = €2(1), dio = Zz ). (5.10.22)

These are the nodal variables of a finite element.

Now, let us obtain expression for {n{"}, defined by expression (5.10.5), in terms of the nodal

variables.
1 @ \* 1 {dwg\2 dwo de? | 1.9 [del? 2
5 |wo,c + 22 €222 S(G2) + 2P + 32 J)
{7](1)} _ { 2 ( ) } _ { 2 ( d ) 274z dz 2°2 ( dx ) (51023)
(2x1) 0 0
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Using representation of the unknown functions wp and ¢'? in terms of the nodal variables (equations

(5.10.14) and (5.10.15) ), one can obtain

dug _dIN] o0 ar dNIT @@ dIND g dINT
dzx d:l:) (4x1) (1x4) (4()1(.’1{) dz (1x4) (4x1) (1x4) (4><:Il:)
Therefore,
dwo \ 2 d|N|"d|N
(d_mo) _ @7 LdIJ cleJ{ . (5.10.25)
(1x4) @x1)  (1x4) (4x1)
de(z) T d [NJ d|N]|
i R (5.10.26)
(1x4) @x1)  (1x4) (4x1)
dwe de® d|N|Td|N
dwodez: 1 d|N] d|N] (&} . (5.10.27)

= {w}
dw dz (1x4) (4x:11:) (1><4) (4x1)

The substitution of expressions (5.10.24)-(5.10.26) into the expression %(d—""l)2 + 22@&1522 +

dz dxr dz
1.2 (de@\? .
523 (‘é") yields

(@ TN AN

1
2 (1x4) (4('1)(1,'1) (1d><:€1) (4x1) (1x4) dzx dz (@x1)

SUNEE
4x1

- Ly AN }+<22{w} +12 ) )‘”NJ LN ) -

(1x4) (4:31) (13c4) (4x1) (1x4) (1x4) (4‘131) (1x4) (4x1)

{w}
(4% 1)

- _
L T A a(@ T +14 () ) AR A 18 8 G-
(1x4)  (4x1) (1x4) (1x4) (1x4) (4><1) (1><4) (2x1)

{g}
(4x1)

[%{W}T-L-L"i"%? 0 0 (zz{w}T+%Z% (£} T) ﬂi—”—%’”J (d} . (51028)

(1x4) (4x1) (1x4) (1x4) (1x4) (4x1) (1x4) | (10x1)
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Therefore,
1 (dwo\?  , dwode® 10 (deld)’
{n(l)} =] 2 (G2) + 22 + 222( dz ) - [ﬂ(l) (d} , (5.10.29)
(2)(1) O (2)(10)(10)(1)
where
- -
1wy T A 00 (22 (w) T+ 122 (7} T | AL 4N
[ﬂ(l)] = (1x4) (4x1) (1x4) (1x4) (1x4) (4x1) (1x4)
(2x10) I.OJ
(1x10)
(5.10.30)
Column-matrices {@} and {£} can be written in the form
(1x4) (1x4)
{w}
(4%x1)
@ =[ 1 M] (e) :[m 0 | 1,
(4x1) (4x4)  (4x6) (2x1) (4x4)  (4x6) ] (10x1)
(4x10) -
{g}
(4x1)
(10x1)
{w}
(4x1)
m:[m m] G| =[m m]m,
@x1) L @ax6) @xa) | ] (2xD) (4x6) (4x4) | (10x1)
{e}
(4x1)
where
1000
100
[1] =
(4x4) 0 010
0 001
Then

(me)OO(mTM)
[ﬂ(l)} = (1x10) (10x4) (1x10) (10x4) _
(2x10) 10}

(1x10)
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1
= d T[ (@] [0] [\1/(1)]]
0 (l{xl}O) (10x4) (10x2)  (10x4) | (5.10.31)
(2x1) (10x10)
where
L Td|N|Td|N]
o =1 M [ ]
(l[Ox]4) 2[(4x4) {4x6) dz dr ’ (5.10.32)
(10x4) (4x1) (1x4)
T T r
- d|N|" d|N]
[ ] ? (4x4) (4x6) 222 (4x6) (4)(]4) dz dz (51033)
(10X (10x4) (10x4) (4x1)  (1x4)
So,
[6(1)] (£} +{,7(1)} = ([3(1)] 4 [ﬂ(l)] {d} (5.10.34)
(2x3) &1 Yax1) (2x10)  (2x10)/ (0XD)
where
Bo)=| o 4 0 0 2% 2m%h 1AEN (afk R4k jaCh
2 2 2 2 . ,
(2x10) - - - s 0 0 -22% -2%5 -—zz%vva —22%

1

}W[ @ o e,

(1x10) (10x4) (10x2) (10x4)
(10x10)

dz dz '

(4x1) (1x4)

1 o | ewTdLn]
(1[(;1:(]4) 2[ (4[><]'80 :‘;[X]G) ]

T T T
o) = 2, [ (o ] +122[ 0 1] } d\N]” d|N]
(4x4) (4x6) 2 (4x6) (4x4)
(10x4) (10x4) (10x4)

|V = [N1 No N3 NoJ,

(1x4)

|.MJ =M, M),
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32 228 222 o8 32 228 2 23
M=l-F it N=e-mtg =g - M=-7+7,
T
Ml_l—-l- M2 l
( @ T,
d) = | wo(0) wh(0) wold) wh(t) <20 £20) £20) L) 2@y L) | s
(10x

a column—matrix of the nodal variables.

So, the first term in the expression (5.10.1) for the strain energy of the finite element

of the plate is

. T
1

(1) 0 (1) ) -
o \ex3) XD o) 2x2) \ (2x3) XD axy)

_ = (1) (1) (1) (1) (1) —
s (1 o) 100 (50 o) e g
(1x10) (2><10) (2x10) (2x2) \ (2x10)  (2x10)

(10x2)

1
(leO /
0

> D(l) [B(1>] dr {d} +

10x2) (2><2) (2x10) (10x1)

> {a)

1x 10)

2(

5 {d}

(1x10)

+35 1d)

(1x10)

/ ﬂ(l) D

[l 2]

0 (10x2)

/ﬂ

0]

[B“ dz {d} +

(10x1)

(10x2) (2x2) (2x10)

l

M| dz {d} +

(2x2) (2x10)  (10x1)

D<1> [ﬂ(”] dz {d} . (5.10.35)

(10x2) (2><2) (2% 10) (10x1)

Matrix [k(l)] in the first term of expression (5.10.35) is part of the stiffness matrix of the linearly

formulated problem. Its components

are shown in Appendix 5-A. The last three terms in the

expression (5.10.35) are not quadratic with respect to the nodal variables. They lead to the part of
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the internal force vector, that is nonlinear with respect to the nodal variables. The components of
the nonlinear part of the internal force vector were derived with the use of MAPLE, a program for
symbolic computation. As an illustration, the first component of the nonlinear part of the internal
force vector is shown in Appendix 5-C2.

Now, let us write the second term in the expression (5.10.1) for the strain energy in

terms of the nodal variables. Analogously to equation (5.10.34), we obtain

Pl o) (Bl pl) o, w
2x3) D axy (2x10)  (2x10)/ 0%1)
where
[3(3)]_
(2x10)
(o 000 s gs pRE% adw gadn jaen

[89] = ' {d}T[ @ (o] [w)]}’
0 (1x10) (10x4) (10x2) (10x4)

(2x10) 2x1] (10x10)

k)

@] =§[ [0 ]T“NJT“NJ

(10x4) (4x4)  (4x6)

T T
(10x4) (4x1) (1x4)

T T T
ol =n | [ 0 0] +ge] O 0] | e

(10X4) (10%4) (10x4) (4x1) (1x4)
So, the second term in the expression (5.10.1) for the strain energy of the beam is
. T

(10,00 1) (1), ) -

0 (2x3) (2x1) (2x2) (2x3) (2x1)

2]n Appendix 5-C, the first component of the nonlinear part of the internal force vector is written in terms of

the nodal variables 6;, numbered, for convenience, in a different way than the nodal variables d;, as described in

subsequent text
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. T
T / ) 3 ) 6) 3) _
2(1{’?1}0) 0 (Lilol " Lﬂxlo])) [(lzsz)] (Eim} i ([fxm])> dz(l{oa’l‘}l)

(10x2)

“la T/I[B(?’)]T[D(:’)} (B9 dz {a} +

2(1x10) 0 (10x2)  (2x2) (2x10) (10x1)

v

[k

7[99 (0950 (@) +

2(1x10) o (10x2) (2x2) (ex10) (10x1)

l

1 T
+5 {4} T / B<3>] [D<3>] [ﬂ(3>] dr {d} +
(1x10) o (10x2) (2x2) (2x10) (10X

i@ l[ﬂ(i")r[pm] [ﬂ(")] dz {d} . (5.10.37)

2(1x10) o (10x2) (2x2) (2x10)  (10%1)
Matrix [k®] in the first term of expression (5.10.37) is part of the stiffness matrix of the linearly
formulated problem. Its components are shown in Appendix 5-A. The last three terms in the
expression (5.10.37) are not quadratic with respect to the nodal variables. They lead to the part of
the internal force vector, that is nonlinear with respect to the nodal variables. As an illustration,
the first component of the nonlinear part of the internal force vector is shown in Appendix 5-C.
Let us write the third term in the expression (5.10.1) for the strain energy in terms

of the nodal variables. First, we will obtain an expression for [5(2)] {f} in terms of the nodal

(4x3) (3x1)
variables:

IN] - [0] 0] {w}

Wo (1x4) (1x2) (1x4) (4%x1)
6] 17y = [0@] ¢ @ 3 =[6®]| 10} |M] o] & §=

(3x1) (1x4) (1x2) (1x4) (2x1)

(4x3) (4x3) 6(2) (4x3) _

0] [0] [N] {e}

L (1x4) (1x2) (1x4) ] (4x1)

(3x10) (10x1)
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{w}
(4x1)
=[§<2)] &t L= [BO®] (a}, (5.10.38)
(4x10) (2i1) (4x 10) (10%1)
{¢}
(4x1)
(10x1)
where
v 0] 0]
(1x4) (1x2) (1x4)
[B@] =[6®]| lo} M| 0] |
(1x4) (1x2) (1x4)
(4x10)  (4x3)
(o 0] [N]
| (I1x4) (1x2) (1x4) |
(3x10)
0 0 0
&2 d Ny Ny N3 Ny 0 0 0 0 O
a7 2% O
= 1 & 0 O 0 0 My My O 0 0 0 =
0 0 —-354=
0 0 0 0 0 0 N Ny N3y Ny
0 0 1
0 0 0 0 0 0 0 0 0 0
—Eh -G g Ll adh 2dL o 0 0 0
= 2 dsz 2 2
0000 0 0 5N pEm pem e
0 0 0 0 0 0 N N» N3 Ny
(5.10.39)

Now, let us obtain an expression for {77(2)}, defined by expression (5.10.6), in terms of the nodal

variables:
(1 (@) T AT AN gy )

%(U’O,x)2 (1x4) (4x1) (1x4)(4x1)

T d|N|" dIN] (=

wo e () T AN ()

[7'7\(2)] - @ = W (1x4) (4><1) (1><4)(4x1) \ =
(4x1) (5zzz> 1 { }T { )
0 (1>‘4) (4><1) (1><4)(4x])

0

(4x1) L )
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where

)

(4% 10)

where

y

{w)

(1x4)

266
T %YLJ’—”) 0] 1)
(4x1) (1x4) (1x2) (1x4) ‘ (w)
lo] 0] (m) " A W
(1x4) (1x2) (x4)  (4x1) (1x4) {e} 3=
. (2x1)
1 T d{N{T d|N
(0] 10 3 {8} T z
(1x4) (1x2) 2(1x4) (4‘3(1) (1‘14) (‘{13)
L0] 10] L0
(1x4) (1x2) (1x4) |
(4% 10)
~(2)
- 1] 1@,
(10x1)
(4x10)
., -
3wy T AZL AT ) l0) 0]
(1x4) (4x1) (1x4) (1x2) (1x4)
0] Lo} {w) T AR 4N
(1x4) (1x2) (1x4)  (4x1) (1x4) -
o] 0] ey T Apl
(1x4) (1x2) (1x4)  (4x1) (1x4)
0] 0] [0]
(1x4) (1x2) (1x4)
(4x10)
( {d} 7 (2] ) 0] 0]
(1x10) (10x4) (1x2) (1x4)
0] 0] 2 {d} T [9]
— (1x4) (1x2) (1x10) (10x4) , (5_10.40)
o] o] {d} T[v®]
(1x4) (1x2) (1x10) (10x4)
10] (0] 0]
(1x4) (1x2) (1x4) i
(4x10)
- 4T T
1 d|N| " d|N
@ =i m o | AN 4N
(10x4) | (4x4) (4x6) | dz dz
(10x4) (4x1) (1x4)
17 d(N)T d|N]
[\W)] == [ (@ | =2 (5.10.41)
(4x6)  (4x4) dz dzx
(10x4) - - (4x1)  (1x4)

(10x4)
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and [I] is a unit matrix:
(4x4)

1) =

0

0

(4x4) 1
0

-0 O O

0
1
0
0

(=B e B e

So, the third term in the expression (5.10.1) for the strain energy of the beam is

1 T
% 0/ ([5(2)](§ﬁ)+ [77‘2)]) 5] ([5(2)](§ﬁ) N [ﬁ(z)]) o —

(4x3) (4x1) (4% 4) (4x3) (4x1)
T
]
=%/ [ ‘2)] {d} +[ ] {d} [ﬁ(z)] [ (2)] (d) +[ (2)} (@ |ar=
o \(ax10) 0D 4 SOOI Sagy \ (axae) (0L 5 10D
(4x4)
T
2 ~ ~ —~
=30 / 5@ +[ﬂ( )] 5] [B<2>]+[ﬁ‘2)] dr {d) =
(1x10) (4x10)  (4x10) (axa) \ (4x10) (4010 (10x1)
(10x4)
/ T
TN |l ST
(1x10) J' f10x4) (4x4) (ax10)  (10%1)
[k
+3 ) /[ ) [6®][B®)dz {a) +
(1x10) o (10x4) (4x4) (4x10) (10x1)
+5 {d} /B D<2> [ﬂ ]da: {d} +
(1x10) (10x4) (4)(4) (4x10) (10x1)
{d} [ ] D‘2 [ﬂ ]dw {d} . (5.10.42)
2(1x10 (10x1)

0 (10x4) (4%4) (4x10)
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Matrix [E(Z)] in the first term of expression (5.10.42) is a part of the stiffness matrix of the linearly

formulated problem.

Its components are shown in Appendix 5-A. The last three terms in the

expression (5.10.42) are not quadratic with respect to the nodal variables. They lead to the part of

the internal force vector, that is nonlinear with respect to the nodal variables. As an illustration,

the first component of the nonlinear part of the internal force vector is shown in Appendix 5-C.

Let us write the fourth term in the expression (5.10.1) for the strain energy of the

wide beam in terms of the nodal variables. This term is

5 [ b®)] {5} de,
(1x3) (3x3) (3x1)
where
V) {@} (v] o] 10 {w}
wo (1x4)(4x1) (1x4) (1x2) (1x4) (4x1)
=l e Lo o g oo (0@
(3x1) @) (1x2)(2x1) (1x4) (1x2) (1x4) (2x1)
3 [N] {&} 0] 0] [N] {e}
(1x4)(4x1) L (Ix4) (1x2) (1x4) (4x1)
(v) o lo] (0]
(1x4) (1x2) (1x4)
| (o] M} 0] | {d} = [Q {(a}
(1x4) (1x2) (1x4) | (10x1) (3><1]0)(1{0><1)
oj 0] [N]
(1x4) (1x2) (1x4)
and [D®)] is defined by equation (5.10.10):
00 0 0 0
- —(2
[D<2>]=4b0§5’(z3—z2) 01 0 0o DY o
000 0 0 O
Therefore,
l 1
L (nT[p®) (1) de=3 1) 7 [ 1@ T[6] (@] dx {a) =
o (1x3) (3x3) (3x1) (1x10) o (10x3) 3><3) (3x10) (10x1)
(ko)

[T

{d} T [k®)
(1x10) (10x10)(10x1)

{d} ,

(5.10.43)

(5.10.44)

(5.10.45)
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where
1

k) = [ 1) *[6®] (@] de=

(10x10)  y (10x3) (5,557 (3x10)

(0000 O 0O 000 0]
0000 0 0 0000
0000 O 0 0000
0000 O 0 0000
_ {0000 ubf ubyE 0000 (5.10.46)
0000 D DG 0000 h
0000 O 0 0000
0000 O 0 0000
0000 O 0 0000
(0000 O 0 000 0]

is a part of the stiffness matrix.
Now, let us write the strain energy of the elastic foundation in terms of the nodal

variables. According to equation (5.6.6), the strain energy of the elastic foundation is

!
1 —
Uy = 30 [s(@) ) T[D] 41} de,
o (1x3) (3x3) (3x1)
where, according to equation (5.6.5),
1 0 29
[D]=}{0 0 0
z 0 22
and, according to equation (5.10.43),
{f} = [@Q {d},

(3x1) (3x10)(10x 1)
where
Ny Nb, N3z q 0 0 O 0 o0 O
@ =10 0 0 0 M My 0 0 0 O |,
(3x10)
o 0 O 0 0 Ny Ny N3 N,
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and {d} is a column-matrix of the nodal variables. So,

{

"D _1
bofsm (NTID1) do=g

(1x3) (3x3)(3x1)

d} T{kN| {d},
1x10) (10x10)(10x1)

Uy =

N =

where
]

[5] =b/su)[Q]Ty5][Q]dz

(10x10) o (10x3) (3x3) (3x10)
is part of the stiffness matrix of the system.
If s (z) =const, then
1 1 0 29
Wﬂ=w/mf 0 0 0 |[Qdz=
0 2 0 22
81 2512 1 -2 00 Bz i3z iz
512 sl =12 -5 0 0 2z Pz 22122,
1 2 %%l -2 00 -7—9517,2 3123—01222 Blz
—%12 _T7]1'613 —2—’11512 -1—](313 00 —2123—01222 —-i%lszg -;T’olzzg
—bs 0 0 0 0 00 0 0 0
0 0 0 0 60 0 0 0
%%122 %1222 795122 —-}5—01222 00 é—%lz% -2—]]]—01223 %lzg
Fglizo B2 B2z -l 00 2223 132 1223
%122 ‘—11%1222 %%lzz —-5%1222 0 0 -7—6lz'§' Zl%lzzg ;—%lzg
| —-4—15%1222 ﬁlszg — 5122 ﬁISZQ 00 —%lzz% —]31—01323 -2_]11612 2
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(5.10.47)

(5.10.48)
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(19.49)

The strain energy of the mechanical system under consideration is the sum of the strain energies of

the lower face sheet, the upper face sheet, the core and the elastic foundation. Therefore, according

to the equations (5.10.35), (5.10.37), (5.10.42), (5.10.45) and(5.10.47), the part of the strain

energy of the system that is quadratic with respect to the nodal variables?®, is

_ 1T
U= (d) [k

(1x10)  19x10

{d} ,

)(1x10)

3i.e. the strain energy of the linearly formulated problem

(5.10.50)
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where
[km] _ [km] n [kw)] + [;(2)] " [1}(2)] " [k(f)] , (5.10.51)

is the stiffness matrix of the linearly formulated problem. The part of the strain energy of the system

that is not quadratic with respect to the nodal variables?

-z {d} [ﬂ 1>] [D(l)] [B“)]dz {d} +

Zax10 o (10x2) (2x2) (2x10)  (10x1)

l

T
EUN / 5] [p0][s0] dz {d) +
(1x10) 4 (1oxg) (2x2) (2x10)  (10XD)

)T [ﬂ o] [p0)[s0] dz {a) +

2(1x10) 3 (10x2) (2x2) (2x10) 0D

L) / ,8(3) D<3 [B(3>]dx (d} +

2
(1x10) ¥ (10x2) (2x2) @2x10)  (0x1)

l

i@ / [B<3>]T[D(3>] [ﬂ<3>] dz {d} +

2 (1x10) o (10x2) (2x2) (2x10) 0%V

 {d) / 5] [p®][89] do {d) +

2(1“0 (10x2) (2x2) (2x10)  (10xD)

L / [ ”] [D(Z)] [§<2>]dm {d} +

2
(x10) J Coxg  (4x4) (4x10) (10x1)

{d} [B<2>]T[ﬁ(2)] ﬁ(z’] dz {d} +

1x10) (10x4)  (4x4) (4x10) (10x1)

l

T
1 ~(2 ~ ~(2
4= ) T [ﬂ() [5@] 2 ’] dz {d) . (5.10.52)
(1x10) g (10x4) 4% (4x10) (10x1)

4i.e. the part of the strain energy that appears due to nonlinear terms in the strain-displacement relations
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5.10.2 Kinetic energy in terms of the nodal variables

Now, we need to derive a matrix of inertia of a finite element. For this we need to derive an expression
for a kinetic energy of the system in terms of the time derivatives of the nodal variables. The kinetic
energy of the system is a sum of kinetic energies of the sandwich plate and the cargo. According to

equations (4.10.8) and (4.11.5), the kinetic energy of the sandwich plate and the cargo, over a finite

element, is
l T
1 ~ o ~
K= §p‘”b/ ([6‘”]§ {f} [Dm] ([am]— (5} ] dz +
o \x3) D @3x3) \ @x3) XD
! T
= )] @
+3 p@)b / ( 5 —{f}) [5@] ([6(2)]'52{” dz +
0 (4x3) (3)(1) (4x4) (4x3) (3x1)
! T
= 0
2o [ ([39] 2 51 ) [69]( [09] 55401 | ot
0 (3x3) (3x1) (3x3) (3x3) (3x1)
/# H (z) (—{f}) [5] <8t {f}> (5.10.54)
0t (3x1) (3x3) (3x1)
where
a-n  3@-4) 0
BV = 33— $E-4) o |
(3x3) 0 0 22
3(B-4) §(5-2) 0 0
] = i(#-2) 5(8-2) 0 0
(4x4) 0 23 — 29 _;_ (2;% _ zg) )
0 0 3E-) FE-
z—2z3 3(2-23) 0
6] = | 1= $6t-4 o |
(3x3) 0 0 I
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1 0 =z
[55] =lo 0o o |,
3x3) z3 0 22
0 229 %zga%
[5(1)] = —% 0 —22% 3
(3x3) 1 0 2
-4 2 0
1d
[5(2)] _ 0 0 —54 ’
(4x3) 1 0 0
| 0 o 1 ]
0 22z %z%%
8(3) = ‘—‘% 0 23 di ’
(3x3) 1 0 7

4 is a mass of the cargo per unit area of contact with the platform; H(z) is a function, defined as
follows:

H(z)=

1 in region of the upper surface, occupied by the cargo
0 in region of the upper surface, not occupied by the cargo

Wo
{f} =4 2
(3x1) g(z%,_)
According to equation (5.10.43),
{f} = [Q {d},

(3x1)  (3x10)(10x1)

where
Ny N N3 Ny O 0 0 0 0 o0
= o 0 0 0 My My O O O 0 |,

(3x10)
0O 0 0 0 0 N Ny N3 Ny




CHAPTER 6 274

and {d} is a column-matrix of the nodal variables.
Let us write the first term of the expression (5.10.54) for the kinetic energy in terms
al variables. This term is

T

1
: (1)1,0/ [a0) -—{f} (%] [3(1)]"(§Q) dz.

of the time derivatives of the nod

(3% 3) Bt 3x1) (3x3) \ (3x3)

In this expression

<1 @ ~1] @
9] 1) =[] 1@ (@) =
3x3) X D (3x3) (3x10)(10x1)

=[50 1@ 2 (@) = [67] (@) {d} -

(3x10) 0L (10x1) 5, 5y (3X10)(10,(7)

(3x3)
0 2Z2 %Z%jf; N1 N2 N3 N4 0 0 0 0 0 0
=l -4 0 -nf o 0o 0 0 M M 0 0 o 0 |{d=
1 0 2 000000N1N2N3N4“°""
(3x3) (3x10)
o 0 0 0 mMy 2mMy 334 JUR 3R bR
O e e A
M N, N3 N4 0 0 29Ny 29Ny 29N3 29Ny (10x1)
(3x10)
_ o] {4
6] {4}, (5.10.55)
(3x10) (10x1)
where
. 0 0 0 0 2mM; 2:M, 1AL 1Adh 129 A
— aN dN. dN Y ’
R e LI B s el
3x10
(3x10) M Ny N3 Ny 0 0 20Ny 20Ny 29N, 20N,

(3x10)
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- T
0 6z 5E 1-3% +25
0 _12—4:;,‘!1312 21 4+ Z "T
0 —6risz 3%} -2z
0 211-3: _z_lz_ + _7_:_
222 (1 - %) 0 0
— y . . (5.10.56)
22?
—322xinE 6200 RE 2 (1-3% + 2’75;)
%z% 12—47£+3z2 —2 12—47§+312 2 (z _ 2%3 n %3_)
33ziE 6205 29 (37_i - 2%;—)
¢ 3
—5225521 -3z 22:52’ -3z 2 (_le_*_%_) ]
Substitution of (5.10.55) into the first term of expression (5.10.54) yields
_pmb/ 3(1) {f} [D(l)] ([ 1)] ;’t ()
(3x3 Ot (3x1) (3x3) \ (3x3)  ©Gx1)
1 (T .
=5 {d} [m(l)] {d}, (5.10.57)
(1x10) (10x10)(10x1)
where
!
m<1> = pMp / G“) D [G(U] dz. (5.10.58)
(10x10) 0 10x3) 3><3) (3x10)

The components of the matrix [m(l)] are written in Appendix 5-B.
(10x 10)
Now, let us write the second term of the expression (5.10.54) for the kinetic energy in

terms of the time derivatives of the nodal variables. This term is
. T
1 ~ ~on] O
572 / ([a<2 E {f}> (5] ([a<2)] o {f}) de
o\ (4x3) t(3x1) (4x4) \ (ax3)  Bx1)

3] 2 (1) =[5 ] = (@) (@) =[39] (@ {4} =
(3x1) (ax3 (3%10)(10x1) (

(4x3) ax3)y 3X10)40,7)

In this expression
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-4 2 0
N, N, N3z NNy 0 0 0 0 0 O
0 o0 -14d _
— 2 dzx d _
0 0 0 0o Mm M 0 o o olff{d
1 0 0 (10x 1)
0 0 0 0 0 0 N N, N3y N,
0 0 1
—i SR SR - My 2Mp 0 0 0 0
dN 5 N dN,
o 0o 0 0 0 0 -3 -3 3% i {d) =
Ny No Ny Ny 0 O 0 0 0 0 o)
0 0 0 0 0 0 M N, N3 Ny
= [6®] {d}, (5.10.59)
(4x10) (10x1)
where
— R - -G 2y My O 0 0 0
1 dN aN dN- dN.
[Gm] _| 0 0 0 0 0 0 3 3% 1% T | _
(4x10) M N, N3 Ny 0 0 0 0 0 0
0 0 0 0 0 0 N N, N N,
[ 2 3 1T
—6r=h= 0 1-3% +2% 0
_12—47112312 0 m~211_2+ ch’:' 0
6z =l= 0 3% — 2% 0
—e =43 0 DA 0
222 0 0 0
= (5.10.60)
22 0 0 0
0 ~3z =kt 0 1-3% 425
2 _4zi4-3z2 2 23
0 — L Lotalas? 0 zo22 42
0 3z == 0 3% — 24,
=243z z2 3
| 0 ~go =24 0 -“TtE

Substitution of expression (5.10.59) into the second term of expression (5.10.54) for the kinetic
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energy yields

l T
i mon) )

(4x3) (4x4) (4x3)

_ _;_ {d} T[m(z)} {d'} , (5.10.61)

(1x10) (10x10)(10x1)

where

l
m@) = pMp / Gm D<2> [G@)] dz . (5.10.62)
(10><10) 0 10x4) (4x4) (4%x10)

The components of the matrix [m®)] are written in Appendix 5-B.
(10%10)
Now, let us write the third term of the expression (5.10.54) for the kinetic energy in

terms of the time derivatives of the nodal variables. This term is

! T

%p(”b/ [5(3)] (f) [15(3)] [3(3)]_ (7} | dz

5\ (3x3) t@x) (3x3) \ (3x3) t(3x1)

In this expression

39]2 1) = [9] 5 (@) 1@} =

(3x3) (le) (3x3) (3%10)(10x1)

-8, {4 -

(3x3) %19 10x1)

0 2z 3244 Ny N, N;Jh..N¢b O 0 0 0 0 0

~| -2 o -xg {0 0 0 0 M M O 0 0 O {d} =
1 0 oz o 0 0 0 0 ©0 N No Ny Ny |0
(3x3) (3x10)
0 0 0 0 2zaM, 223M3 ;zg%l %zgd—d'i-ﬁ %zgd—d’? %zg%i
L I e AU
N, Ny N Ny 0 0 23N, 23N, 23 N3 2N, 00D

(3x10)
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- [G“”] {d'} , (5.10.63)
(3x10) (10x1)
where
0 0 0 0 223M; 2z3M, ;zg% ;zg%z : 3% 1224
(69) = |~ g g g 0 0 ad nf ad ad |
(3x10) Ny N, Ns N 0 0 23Ny 2Ny zNs 23N,
5 2 3 I T
0 —6z == 1-3% + 2—%
0 - 12—47&3# T — 2:c —r
0 bz =k 3% - 2%
0 ——x—F_zf 3z —I,—2 + %":-
223 (1 - %) 0 0
= (5.10.64)
223% 0 0
322z == —6z3z=HE 23 (1 - 3%:— + 2%:—)
21) §l2—47£+3z —z 12—47£+312 23 (z _ 2# + %_)
—32350:—{5':—’3 ngx—_—f}'i 23 (3%2- - 2%:—
e e (g
ubstitution of (5.10. into the third term of expression (5.10. yields
Substituti f (5.10.63) i he third f i 5.10.54 1d
. T
L@ / [5(3)]% () [5(3)] [5(3)] (| de=
o \ (3x3)  ©Bx1) (3x3)  \ (3x3) t(3x1)
_ 1{d}T[ (3)] {d'} 5.10.65
= m , (5.10.65)
(1x10)(10x10)(10x 1)
where
/ T
[m<3>] = ¥ [0(3)] [15(3)] [G<3)] dz. (5.10.66)

(10x10) 0 (10x3) (3x3) (3x10)

The components of the matrix [m(3)] are written in Appendix 5-B.
(10x10)
Now, let us write the fourth term of the expression (5.10.54) for the kinetic energy in

terms of the time derivatives of the nodal variables. This term is

i
1 ~1(0
wforo(Gan) P (5g)

(3x3)
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where p is a mass of the cargo per unit area of contact with the platform; H(r) is a function, defined

as follows:

H(x):{

1 in region of the upper surface, occupied by the cargo

0 in region of the upper surface, not occupied by the cargo .

Let us consider a finite element, the upper surface of which is fully occupied by the cargo.

Then H(z) = 1 within this finite element. In this case the fourth term of the expression (19.54) for

the kinetic energy is

where

[DC] Q] {d‘} dr =
(3x10),

1 T
1 .
= 5”/# ( Q] {d}
0 (BXIO)(IOXI) (3x3) 10x1)

l
(7Pl 4 -

(1x10) (3% (10x1)
_ % {d-} T[m@)] {d'} , (5.10.67)
(1x10) (10x10)(10x1)
l
[m©] =t / w 1@ 7[B.] Q) da (5.10.68)

(10x10) o (10%3) (3,4)(3x10)

The components of the matrix [m(c)] are written in Appendix 5-B.

If the upper surface of a finite element does not have a cargo on it, then the fourth term of the

expression (5.10.54) for the kinetic energy is equal to zero.

So, kinetic energy of the system is

where

K= (5.10.69)

{4 {4}

[m] = [m“)] + [m(z)] + [m(s)] + [m(c)] . (5.10.70)
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5.10.3 Potential energy of the platform and the cargo in the gravity field

According to equation (5.7.1), potential energy of the platform and the cargo in the gravity field is

L
O=b/ {f}T{r} dz, (5.10.71)
(1x3) (3x1)
0
where
Wo
{f} = Ez(t.zz) )
e
g [PV (22 — 21) + p? (23 — 22) + p' (24 — 23) + p H (2)]
{r'} = 0 . (5.10.72)
(3x1)

g [P(1)22 (22— 21) + %P(z) (23— 23) + P 23 (24 — 23) + p H (z) 23]

Substitution of relation {f} = [@] {d} (equation (5.10.43) ) into (5.10.71) yields
(3x1) (3x10)(10x1)

{

m= (@ s Q] T(T} do=

(1x10) 4 (10x3) (3x1)

Ny 0 0
N 0 0
Ny 0 O
Ny 0 O
!
0 M O
= {d)} Tb ! {T}dz .
(1x10) 0 M, O (3x1)
0 0 N
0 0 N
0 0 Ns
0 0 N
Calculations give the following result
O=- {d} T {r}, (5.10.73)

(1x10) (10x1)
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where ?

{r} =-bg

(10x1)

110 (25 — z1) + $1pP (23 — 22) + 31p®) (24 — 23) + llu

if the upper surface of the finite element is fully covered by the cargo, and

{r}

(10%x 1)

LipW (2 — z) + Lp@ (23 — z0) + %lp(:‘) (z4 — 23)
E2pW (20 — 21) + H120P (23 — 22) + 75120 (24 — 23)
1pW (23 — 1) + 21p? (23 — 2) + 310D (24 — 23)
L1200 (21 — 29) + 120 (22 — 23) + 5120 (23 — 24)

0
0
%lﬂ(l)zz (22— 21) + %19(2) (23— 23) + %lp(3)z3 (24 — 23)
W2y (20 — 21) + Z12p) (22 - 23) + 120 23 (24 — 23)

LpW 2y (20 — 21) + 31p@ (22 — 23) + 310 23 (24 — 23)

E12pM (29 — 21) + F5120P (23 — 22) + 75 L120® (24 — 23) + 5171
2pW (22 — z1) + $1p® (23 — z2) + llp(s) (24 — 23) + %l,u
L1200 (2 = 2z0) + 120D (22 — 23) + 120D (23 — 24) — 35120
0
0
21pW 2 (22 — 21) + 11p® (23 - 23) + + 21pB®) 23 (24 — 23) + 3lpzs
L12pW 2 (20 — 21) + 3 L120@ (22 — 22) + 5120®) 25 (25 — 23) + 5% nzs
LpWzy (22 — z1) + 3P (25 — 23) + llp(3)z3 (24 — 23) + llpz;,
S2pWzy (21 — 20) + 5 120P (28 — 23) + 15120 23 (23 — 24) — 151%z3

| 2002, (21— 22) o 20D (F — ) + H12pDz3 (23— 1)
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(5.-10.74)

(5.10.75)

if on the upper surface of the finite element the cargo is totally absent. We do not consider the case

of the cargo occupying a part of the upper surface of the finite element, because a finite element

mesh can be created in such a way that some of the finite elements are totally covered by the cargo,

and the rest of the finite elements have totally free upper surfaces.

Svector {d} is shown in equation (5.10.22)
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5.10.4 Equations of motion in terms of the nodal variables

The Hamilton’s principle for the system, that consists of the platform, the cargo on the upper surface

of the platform and the elastic foundation, written in terms of the nodal variables, has the form:

7 (5 G (d)7 [K] {d}) 4 6Un 6 ({d}T {r}) _5 (% {d’}T [m] {d}) + {6d}[¢] {d}) dt =0,

ty

(5.10.76)
where [c] is an element damping matrix. It is difficult to determine the element damping matrix
experimentally because the damping characteristics of the plate depend on the properties of the
whole plate. For this reason, the global damping matrix is in general not assembled from element
damping matrices, but is constructed from the mass and stiffness matrix of the complete element
assemblage together with experimental results on the amount of damping in the whole plate. We
will use the Rayleigh damping model, in which the global damping matrix [C] is presented as a

linear combination of the global mass matrix [M] and the global stiffness matrix [K]
[C] =a[K] +B8(M], (5.10.77)

where a and 3 are constants to be determined from two given logarithmic decrements é; and é; that

correspond to two unequal frequencies of vibrations w; and wo by the formulas

61w1 - 62(4.12

= ——F—>5" 5.10.78
T (Wl - Wz) ( )
wiwy (Bawy — 1wa)

7 (Wi — wi)

8= (5.10.79)

The Lagrange equations of motion in terms of the nodal variables, that follow from the Hamilton’s

principle (5.10.76), are
o (3 wi) + 5 - 5 (@) + g (344 m{d))+

+1d {d} =0 (i=1,2,..,10) (5.10.80)

or in matrix notations

U, . .
a?d}( @’ Wd}) 6({Jdi 8{d} ({} {T}) Z;&T(%{d}T[m]{d})Jr
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+1e{d} = {0}. (5.10.81)
From equation (5.10.81) we obtain
(k] {d} + g% +[m] {d‘} +1d {d} = {r}. (5.10.82)

Part of the strain energy Uy is due to the nonlinear terms in the strain-displacement relations
(geometric non-linearity of the von-Karman type). Un, is not a quadratic form of the nodal variables,
therefore vector g%# is not linear with respect to the nodal variables. All the quantities that enter
into the equation (5.10.82), except the element damping matrix [c] , are defined in this chapter. But,
as it was written before, the element damping matrix is not required because the global damping

matrix will be constructed from the global mass matrix and the global stiffness matrix.

5.10.5 The more convenient numbering scheme for the local degrees of

freedom

So far, the nodal variables of an element were defined as follows, i.e. were given the following local

numbers (equation (5.10.22) ):

di = wo(0), dy = wh(0), ds = wo(l), ds = wi(l), ds =2(0),

de? de?
dxz (0), do =e2(), do = —

de = €D (1), d7 =e2(0), dg =

where, for example, wg (0) = wo|,_, is displacement at the left node of an element, or, which is the
same, at point T = 0, where T is local (element) x-coordinate; wo(l) = wolz_, is displacement at the
right node of an element, or, which is the same, at T = [, where [ is length of an element.

For the sake of convenience of assembling the global matrices, we will introduce a different local

numbering scheme of the nodal variables:

91 = 'LU()(O) = d],
d’wo
92 = E(O) - d2a

93 = E:(,zz)(()) = d5,

84 = £2(0) = dr,
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de?
05 = e (0) = ds,
96 = ‘Ll)o(l) = dg,
dwo
= — l ==
607 Ix () = da,

b = 5;2)(1) = ds,

99 = Egzz)(l) = dg,

dE(z2z)
dz

B10 = —== (1) = dho. (5.10.84)

These new nodal variables §; are more convenient for assembling of global matrices, because the
numbering order of §; is such that:
the first nodal variable of the left node (6;) is wo and the first nodal variable of the right node (6s)
is also wy;
the second nodal variable of the left node (65) is % and the second nodal variable of the right node
(87) is also dT“;ﬂ;
the third nodal variable of the left node (63) is 2 and the third nodal variable of the right node
(6g) is also E;Zz);
the fourth nodal variable of the left node (65) is ¢{? and the fourth nodal variable of the right node
(69) is also 592);
the fifth nodal variable of the left node (6s) is d—fgf-)— and the fifth nodal variable of the right node
(610) is also d—;%.
Such numbering scheme allows to establish the correspondence between the local and global notations

of the nodal variables by a simple formula

elem . #

1
(iel)
00D =0 n- (5.10.85)
1
ofd ot global %

of d.o.f.

Let Ay, Ag, ..., Aneiq1 be the notations of the nodal points. Then, from relations (5.10.84), which

establish correspondence between the meaning of nodal variables and their local numbering, and
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from relations (5.10.85) (which establish correspondence between the local and global numbering of

the nodal variables) we obtain, for example,

for the first element:

for the second element:

wo (A;) =6 = @,

d
_duf(Al) =6y =0,

e (A1) = 65V = O,

eB(A) = 9‘(;1) = Oy,

det?
Z () =6 = &5,

wo(Ag) = 65 = B,

dw
—E?O(Aﬁ =6 = 0,

e®(A;) = ") = O,
e@(Ay) = 65" = O,

de gi)
dzx

(Ag) = 657 = O,

wo (Az) = 6 = B,

dw
E:g (A2) = 68 = @,

£®)(4y) = 6P = 0,

el (42) = 65" = 0,
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de ﬁ)

dzr

(A2) = 9§2) = O,

wo (A3) = 6((52) = 011,

dwo
dr

(As) = 9-(,2) = O12,

2 (A43) = 6P = 043,

e®(A3) = 6P = 014,

de gzz)
dz

(A3) = 653 = ©15.
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So, when we pass from local 6; to global ©; notations of nodal variables by formula (5.10.85),

each nodal variable, that belongs to both adjacent elements, is denoted as one and the same in

global notations, that is required for providing continuity of the nodal variables at the interelement

boundaries. For example, the nodal variable 9‘(31)

= wyg (A2), that belongs to the first element, and

the nodal variable 0§2) = wo(A2), that belongs to the second element, are both denoted as ©¢. The

numbering of nodal variables, can be presented as follows:

elem. #

wO(Aiel) =9 (iil) = 65(1c1-1}+l

dwo
dx

global
node #

l

global
node #

1
local #
global #
of d.o.f. of d.o.f.
clem.#

(Aiel) =0 (i;l) = es<ml»1)+2

I3
local #

of d.o.l. global #

of d.o.f.

elem . #

T
E(z%:)(AiEl) =0 (tgl) = es(ml-1)+a

global
node #

1
local #

of d.o.f. globnl #

of d.o.f.

elem . #

1
5(222)(Aiel) =0 (121) = es(mz.l)-H

global
node #

l
local #

of d.of. global #

of d.o.l.

or

or

or

or

elem . #

T
_ piel)
wo AiuH—l =4 6 = 65(1c1-1)+6
S !
Jocal # global #
global of d.o.f.
node #

elem.#

dx !
local #
glabul #
global of doo.f. of d.o.f.
node #
elem.#
(iel)
(2) _ ie _
€xz Ai<=1+l =0 8 - eﬁ(ml-l)-{—l‘
! 11
l 0?(_(;;.”.;%‘ global #
global of d.o.f.
node #
elem.#
(ie)
2) _ ie =
Egz Ay | =0 9 = Osict1)+9
=~ 1 v
local #
L of d.o.f. globul #
global of d.of.

node #

dw i
T (Aiﬁ_H»l ) =9 ( 71) = O 5(iet1)47
~— N~
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elem. #

2) 7

de(zz iel
—d;‘(Aiel) =4 (15) = eS(xel-lH-S
i o’
glulbnl (')‘(’Cd‘{“)f_ global #
node # of d.o.f.
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elem.#

() .
dey> A —gleh _g
d$ \iﬁl+], - 10 - 5{tel-11+10
k)c:il # v
of d.o.f global #
global of d.o.f
node #

The element stiffness matrix, mass matrix, damping matrix and force vector, corresponding to

the newly defined nodal variables 6;, will be denoted, respectively, as (], [mass], [¢] and {p} .

The correspondence between the components of the element force vector in old notations, r;, and

the components of the element force vector in new notations, p;, is the following:

Pr1=T1,P2=T2, P3=T5, P4 =T7, P5 = T8,

Pe = T3, P71 = T4, P8 = T6, P9 = T9, P10 = T10-

The correspondence between the components of the element stiffness matrix in old notations,

k;;, and the components of the element stiffness matrix in new notations, £i;, is given below:
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og = op oroly — oroly

mmw or'ey — e_.mu\ 66y — gu\

Ll
>
Il

_ wﬁ o_,m-.x — o_.uu\ 65y — omV\ Sy = wm«

v% = FNV orvy — o:.u\ vy — ohu\ Sty = wru\ Wy — E.u\
w% = cﬁ o_.m.v— = o_.ou\ 68y — acu\ S8y — w@V\ By — SUN 8By — oouN
m@ p— mmw oty — o_.mu\ £y — omu\ Sty = mmu\ ey — \.mVN £y — omu\ fty — mmu\

bm = va oLy — o_vu\ oLy — ov»\ SLy = vaN Ly = h«u\ 8Ly — ovUN Ly —= mvum Ly — vvu\
@@ = nﬁ 09y — o_.mQ 9y — mmU\ Oy = mn»\ vy = hmu\ ¥y = cnu\ 0y = mm& Oy = vmu\ N9y = nnuN

NQ = Nﬁ c_.NV~ = E.NVN 6Ty — amv\ STy = nNV\ Ty = hNu\ wNV— = w~u\ m~.v~

Il

mNu\ Ly = vNV\ Ty = muu\ Wy — NNM\

_Q = _ﬁ c_._.v— = o_._& sty — 0_0\ STy = m_u\ iy = b_u\ 8iy = c_u\ fly = m_u\ by — v_u\ Sy —= n_v\ Uy = N_VN 1y

5=7) [G=%] [6=7] [o=7] [a=7] [0=7) [a=7] [2=7] [2=7] [0

S|




CHAPTER 5 289

The correspondence between the components of the element mass matrix in old notations, m;;
and the components of the element mass matrix in new notations, (mass),;, is established in the

same manner.

So, the equation of motion of a finite element (5.10.82), written with the use of the new nodal
variables 8;, defined by equation (5.10.84), takes the form
AU , N
16} + gy + [mass] (B} +@{t} =t (5.10.86)
The first component of the nonlinear part of the internal force vector %’-g‘f is written explicitly

in Appendix 5-C. The other nine components are not written in Appendix 5-C due to the limitation

on the size of the dissertation.
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5.11 Post-Processing of Results of the Finite Element Anal-
ysis of the Cargo Platform, Modelled as a Wide Beam

5.11.1 Formulas for stresses in terms of the field variables

After computation of the nodal variables, the stresses need to be computed in the post-processing
procedure, in order to substitute them into the failure criteria. As it was written in the previous
chapters, the in-plane stresses o, will be computed from the constitutive relations, and the trans-
verse stresses 0, and o, - from the equations of motion in terms of the second Piola-Kirchhoff

stress tensor, equations (3.1.21)-(3.1.23). These equations, written here again, are

o) 4 o®) 4ol = fWyH) | (5.11.1)
U‘.l(/l;:),x + UZ(II;I),ZI + 052,2 = P(k)i}(k) ) (5'11‘2)

0
o), + o), +ol. + o (a;’;)wff) + a§§)wf§)) +

2T,% Y,y zz,2

0 : .
g0 (78wl + o) wd) — o9 = o (5.11.3)

(k=1,2,3).

In case of cylindrical bending these equations of motion take the form:

o)+, = p®u® | (5.11.4)
& o k) Oy, B k), () (R)
Ozge T 02z, + % ((TIJ: Wiy ) —pg=pw (5115)

(k=1,2,3).
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From the constitutive equations (3.6.13) and formulas (5.3.1)-(5.3.3) for the strains in terms of
the field variables wo(z, 1), e (z,t), €2 (z,t), we find the following expressions for the in-plane

stresses in terms of the field variables:

—= — —=(1 —=(1
Ho® =T + TR efy) + T el +0102 ) =
~~ ~ ~~

0 0 0

—(1 2
= Cgl) 229 592)1 + 22 E(zzz):z:z % (wo,:c + 29 Ez(zzz),x> - (wo,zx + 22 €£2z),z:c> z] ) (5'11'6)

Hg(2) 0(2) ) +C(2) (2) +C(2) @ +'C_’§?2 E(zzy) _
N2 ~~

0 0

2 1 1 2
C( ) [ ('UJ(] z)2 (2E§:2z),m — Wo,zz + wO,IE(z?z),z) z+ (_§E£?.),zx + 5 (E(z2:),:t) ) 22:| +

+T2@, (5.11.7)

H;(3) C(3 (3)+C(3 ® C(3)5(3) +C )2 e =
NG <= NG

0 0 0

—=(3 2
= Cll) [ 223 Ef(rzz)z + 5 2'3 592):”: —;— (’u)o’z + 23 E(zzz),x) - (’UJO,x:z + 23 Egzz)‘xm) Z:l . (5118)

Ho() = Tl e 4+ TF e +TWe® + T2 =
NG -~ NG

0 0 0

—(1) 2
=Cs | 225 e, + 122 €D +1 (wo,z + 2o egi)z) - (woim + 2z eﬁ)u) z] , (5.11.9)

=(2) =(2) =(2) ~(2)
Ho() = Trpell) +Ca e} +Cazel? + T 2¢() =
— —~

0 0
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2 1 2
=T [ Lupa)? + (2620 — w0z +woses) 2+ (—5692,” +5(2.) ) 22] +

102 (5.11.10)

zz )

Ho®) = T + T e + Tl e + Ty 26l =
~~ S~ ~~

0 0 0

_ 2 2 1 2
- [2zs e+ 38 Dzt 5 (w0 + 20 €B0) — (wpee +20 £Duc) z}, (5.11.11)

Ho) — TWel) 1+ Ty ) + TH e +Tig 2¢L) =
~~ ~ ~~

0 0 0

—(1 2
=Tl [ 9220 e+ 122 €0 +1 (wo,I + 2 5222,:) - (wo,m + 29 efﬁ,{m) z] . (5.11.12)

=(2) =(2) =(2) =(2)
Hol) =Cle e + Ty e2) +Cae 2 + Cis 2¢0) =

0 0
—(2) 1 (2 2 1 1 2 2
= CIG —2-(w0,1) 2Exz):i: wWo,zx + wO,zEgz),z z+ _25(22):2:: +3 2 (Efzz)z) 2%+
N J/ e I\ )
4T @ (5.11.13)

Ho® —TPe® 1 TR e® 4+ TR @ +TP2e® =
zy 26

0 Y 0

— 2 2 1 2
= C(l? 223 E(zz)g; + 23 Egz);;z 5 (wo,x + 23 59,),:) — (wo,u + 23 Eg)’m) z} . (5.11.14)

- 7
N
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Coefficients .C"(lll) , C'—ﬁ), Uﬁ’? and _C_ﬁ) depend on z-coordinate because they vary from ply to ply.

Now, let us find expressions for the transverse stresses 0. and o, by integrating equations of
motion. These expressions will be called the second forms of expressions for the transverse stresses,
in contrast with the expressions for the transverse stresses that can be found from the constitutive
equations.

In section 3.13 of chapter 3, the second form of expressions for the transverse stresses was found
by integrating the equations of motion (3.16)-(3.18). Now, let us use these formulas to express the
second form of the transverse stresses in terms of the nodal variables of a finite element, for the case
of cylindrical bending of the platform.

From formulas (3.13.5), (3.13.9), (3.13.10), (3.13.15), (3.13.16) and (3.13.17), one can receive the
formulas for the transverse stresses in the cylindrically bent plate by setting o5, = 0 and 0. =0
(the nonlinear terms are underbraced):

z

oll) = / (p(l)ﬁ(l) - Haa(ulz)ym) dz (21 <2< 2), (5.11.15)
2
22 z
e = / (pmﬁ(l) - HJ;II)’I) dz+/(p(2)il(2) - Haﬁ),z) dz (22 <2< 2) (5.11.16)
21 z2
22 23
0 = / (P - Fo),) dz+ / (/@i - Ho®,) a2
ES 22
+/(p(3)i1(3) - HU;S;{I) dz  (3<z2<2) (5.11.17)
23
1 1 1 a 1 9 1), (1
o) = oV () +/ [p( ) (w( ) + g) ~ 5 (aiz)w,(z)) - (rgi)x] dz, (5.11.18)
N —’ 23 T
swl(z))

where s is modulus of elastic foundation.

22
0@ = sw® (z) + / [pm (5 +9) - 535 (o) - 092,,] dz +

Z1

‘ 0
+/ [pm (1'[!(2) +g) - =— (Puw®) - ag)x] dz (5.11.9)
2 ) oz ( T ) :
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22
o = sw® (z)) +/

21

s " 0
w [T (@ 40) - g2 (oRut?) - o2, a:
22

z 0
+/ [p(3) o® +g) - — aa(ci)w,(g) - og)x] dz . (5.11.20)
L (59 6) — g (o242)

The substitution of expression (5.2.4) for u(!) (z,2,t) and expression (5.11.6) for ¥ o8l into

. 0
o (89949 - 57 (o2u) - o, | s

expression (5.11.15) for ol ylelds

U:S:lz) (iL‘, 2, t) =

(NN

= o0 (2 = ) | (282~ 0.) 2 - 322 o+ (B2 22+ i)

(220 — 21 — z)]

/Cn (2) d=+

[ 2Z2 51(1:22)1;;: + 22 Eg%z)xzz + (wO,I + 22 ngz)x) (wO,xz + 22 557,2» \TT

-

v

F4
—(
+ (’LUO,:rxz + 2 Egz{m) / ¢ (2) 2 da. (5.11.21)

If one substitutes equation (5.2.5) for «® and equation (5.11.7) for HoD into equation (5.11.16)

for ag(ci), one obtains:

() . 1 1 ,
o® = I, (z,t) + p@ [(2592) — wo,z) 3 (22 - 23) - 659‘)’” (2% - zg)] — wp ,Wo ”/C( ) dz

[N

~

z
1 -
- <_'2—Egz):cxz +Egz)mgfz2z)z:c> /C D Z dz — Egzz):c/cg) (Z) dz ’ (51122)

where
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. .. 1 . .. 1
= pM (25 — 2;) [(2 £ _ woyz) 29 — -2-592)1 2+ ([:‘92)': 29 + wo,x) 3 (29 — zl)]
[ 229 €20z + 123 e ea + (wo,z + 29 59;)1) (wo,m +z el } / C ) dz+
+ (wOvIII + 22 Ezz TTT / Cl z dz. (51123)

The substitution of equation (5.2.6) for u(®) and equation (5.11.8) for # o into equation (6.11.17)

for (r:(i) yields:

G:(z:i) = {2 (.’E,t) + I3 (17, tl+

sz)(za)
(3) ..(2) . 1 ..(2)
+p'% 23 (2 — 23) (QEM —Wo,z ) — -2-5“,123

1
—P(3)§ (2 — 23)? (wo «+ED, 3)

~

'

z
223 5:():27,),:1::5 + z3 Egz)m:m: + ( + 23 Efzz):c) (wO,:EJI + 23 Efz?z)mz) ] /ngi) (Z) d2+
23

z
—(3
+ (woyxm + 23 sgi)m) /Cgl) (z) zdz, (5.11.24)

where

I (z,t) = p® [(2592 — to,0)

DO =

z3

1 —(2

(23— 23) - 659), (25 - z3)] — WY,z Wo,zx /Cgl) (2) dz
N —

23
—(2
- (26;(;22),3:; — Wo,zzz + wO,:t:cggz),a: + w0,$€£2z),zz) /Cﬁl) (Z) zdz

—~

z3
1 (2 —
- <_'2—Egz):m::c + 6(z2z):x: S:zz)::x) /C(ll) (2) 22 dz — Cg?i)gzz x (23 2) . (51125)
N et

22
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From equations
ol =/(p(1)i3(1) - Hol), - HU}(IL)’y) dz (eqn. 3.3.11)

2]

where we set v = 0 and # aw‘y = 0 (because of cylindrical bending), and from equation (5.11.12)

for aglz), we obtain:

z
ayz) (z,2,t) = —/ Ha;;)’zdz =

Z1

4

= - [222 5:(1:2z),zz + %2% E(Z%z),xxz + (wO,z + 29 Eg‘;),z) (wO,zx + 22 52),2:::)] /a—%) (2) dz+-

2
Vv z;

~

+ (wo,m + 29 eff.,{m) / W () 2 de (5.11.26)
21

From equation
z2
ol = / (p(l)i)(z) -~ HoD) - Horwy) dz+

21

z
" / (P25 = Ho@_ — Ho® Vdz (eqn 3.13.12)

22

where we set v = 0 and derivatives with respect to y equal to zero (because of cylindrical bending),

and from equation (5.11.13) for 0'3(,21), we obtain:

2z E4
o @20 = [ (- Mo.)dz - [ o2, ds=
2) 93

H® (z,t)=0(} (22)

z

= H® (2,1) —wo,x'wo,m/ 5%) (2) dz
N e’

22
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(2)
(257622) cz — Wo,zzz + Wo mz—:fn), + 'wo zeg)n) / Cie z dz+

+ (%Egz):czm (zzz)z: E(zzz :r:a:) / C(2)( ) 22 dz — Eg:),z/a.'(jz) (2) dZ, (51127)
22 z2

where
23

E/(— Haz(llz)’z) dz =

H® (z,t) = Ug(llz)

=22 2y
= — |:2Z2 Ez:z)a:z + 22 55*.27,):czx (wo,a: + 22 ng)x) (wo,m + 29 Egi)m :I /C d2+
22
+ (woyzu + 29 eﬁ}z)m) /6%) (z) zd=. (5.11.28)

Analogously, from equation (3.3.13), where we set v = 0 and the derivatives with respect to y

equal to zero (because of cylindrical bending), and from equation (5.11.14) for ol¥ | we obtain:

Yz
01(,2;)(23)
> 23 S z
0'!(/‘2) (x,z,t):/(— al(li)x) dz+/( az(fx)z) dz+/(— Hal(fi)x) dz =
f) i2 ., %8
H(2)‘Z:c,t) H(;)Zz,t)

=H® (z,8) + H® (z,1)

223 E:(:z):cx + 23 Eg:):m::r ('IUO,x + 23 Egz):z) (wo zz + 23 Ezz zx ] /C(S) 2) dz+

-

N~
23

+ (wo,zxm +2 Eg,),zzr) /0(3) (z) z dz, (51129)
z3
where
H® (z,t) = ~wo,zwo,m/ -C—?s) (z) dz

22
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"

23
—(2
- (25:@,” — Wo,zzz + wO,I:l:Egi)’I + wo,xfg‘;)m) / Cgs) (2) zdz+

Z2

23 z3
1 — —
+ (-éegiim—sﬁi’,x sﬁ%m) / T (2) 2 dz— €@, / Tle (2) d=. (5.11.30)
z2

22

If one substitutes equation

w (z,t) = wo (z,t) + P (z,t) 22 (eqn 5.2.1)

into equation (5.11.6) for 0;2, and equation (5.11.15) for Ug(clz) into equation (5.11.18) for o;ﬁ‘), one

can receive:
aglz)(a:, z,t)=s [wo + 55222) 29 ] + p(l) ['L’Oo + é'g)zz + g] (z—2z1)

z

1 —(1
— {229 eg‘;)’mz + Ezg 6&22)@" + (wo,z + 29 Eﬁ)m) (w(),m + 29 eg‘;)m)] (woyz + EEQZ):C zz> /Cgl) (2) dz

~ /
n'e

—(1
+ (wov‘ﬂxz + 22 Egz),:tzx) (wO,I + egz),z 22) /Cgl) (Z) z dz

~ v
-~

z
1 1 2 (1
— [222 5:(c2z),x + '2_23 E(z%z),:r;r + 5 ('IU(),;, + 22 Egz),z) ] (woyzl + Egz),x:c 22) /Cgl) (Z) dz

1
- o~
v

z
—(1
+ (w0,$I + 22 Egz{zz) (wOYII + E‘(Z?Z),.’E.’E 22) /Cgl) (2) z dz
z)

- >
-~

1 - .. 1, 1 . "
_p(1)§ (21 - z)2 [(2 65‘.22),__” — ZU()Y;;::) 29 — 55222)’21 2’2 - § (221 + 2z - 322) (El(z?z)':cz 29 + ”LUQ'II):I

z 2
+ [ 229 gi"’z)‘mz + 323 eﬁ{mm + (wo,x + 29 z-:f,zz),m) (wo,xxa: + 2z ef,i),zm)} // 5511) (2) dz dz

21 2




CHAPTER § 299

(wo zzzz + 22 egz)mn // C(l) (2) zdzdz. (5.11.31)

2 %)

From equation (5.11.19) we receive:

1
O‘Z) (III, Z, t) = J2 (.’l:, t) + P(2) (z - 22) [5 (z + 22) 592) + 1.[70 + g]

~ (wo.x)” Woe / T2 (2) dz

22
~ —
v

— W,z (2E:(r.z) zz — Wo,zzz + wO,:D-”Ce(zz)a: + wo,fb’Egz),ma:) /5521) (Z) zdz

Ny i J

1 2
— W,z <_§Eggz),z:m: +Ez2z)z Eg?zx) /C( ) Z dz

~

- Egz)xwo,zwo,xx /6521) (2) zdz

2z

- 7
v

- E(z2z),:c (25:(::2z),zx — Wo,zzz + woy-’tzsgr),z + wo,ifgzz zz) /C( ) (Z) Z dz

E4)

- -

1
- Eizz)x <_§6£2~),xzz + 6(2) gzz)za:> ./C 2) 2 dz

.

2z
—(2
e . OB aree, @, [T 2 s

Z2 22
\ v

2
wOI wOII/C() ) dz+ = (ng ZZM/C2) ) zdz
z2

vl

N—
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. . 1
_p(Q) [(26:(1:22),2 - wO,zz) (Z + 222) Efzz)xz (22 + 2229 + 32%) Z]

[263322) b oo

i

dz

2
(25;2.-;)2 Wo,zz + Wo zE(zi)z wo u/C( ) zdz
Z2
=5(2)
(26(122)1 wO,zz +w0,zsg2z)’x) ii):ﬂx /Cll (z) 22

~

22

—

1
_ | 2e@ (2
[ 2522 Tz +

2 ZZ:L‘

~

] Wo xz/cll 22 dz

S

1 1 2 z—(z)
- [ 3eee 3 (+22) ] e [T (@) 2 s

22
~

v

) dz +ePe@

ZZ T

- 5(2)100 11/013

/

/C(z) zdz

@D,

>

((wO m:r) +w0 zWo,zzz //0(2) 2') dz dz

22 22

2 2 2
~ Wo,zzaz + wo,zzzf(zz)’z + 2w0»$1‘5§:z),:cx + wp 1:5( )

-

1
- Eegz) TTTIT

L@ @

ZZ T ZZ,ZI

L@ @

22 Z2

Z2 22

[« N

zz,zzmjl //6?1) (Z) zdzdz
zz,xz2 zzz) //ag? (Z) 22 dz dz

(2 - 22)2

300




CHAPTER 5 301

—@., / / ¥ (2) dz dz, (5.11.32)

22 22

where

Jo (z,t) = 0V (2) =

=38 [wo +el 2 ] +p [wo +&@)2 +g] (22 — 21)

2
1 —(1
- 222 Ea:z)zz + 222 Egz)z:cm + (’LU(),Z + 22 Egz),z) (wo,zx + 22 Egz{:zz)] (’U)()’;,; +E£3z),x 22) /Cgl) (2) dz
21

~ J

22

—=(1
+ (wO,Irz + 22 E?z),z:cz) (wO,I + 6222),1 22) /Cgl) (Z) zdz

Z1
N ~
v

1 1 2
- [2z2 sz‘.)x + 222 5£22)mx + '2' (wo,z + 22 Egzz),z) } ('U)O zz t Ezz zz /C

~

-~

1
+ (wo,zz + 22 Egzz),rx) (wO,II + Ezz e /C( ) (2) zdz

~

v

1 @ 1 .
_p(l)'z’ (21 - 22)2 [(2 eiz)z — Wo, x) 22 — 2692)1:1 Zg - 5 (221 - 232) ( Szz):cm z2 + wO,zz)]

+ (222 E:(zzz),:cx:c + 222 gzz)xz:c:c + (wO,I + 22 592),3;:;) (wO,mzz + 22 Ezz zTT :I // C dz dz
~ g Z) 2y
() o
(wo vozs + 22 €2 mz eV () 2 dz dz (5.11.33)
2] 21
and
oI (z,t)

ox
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. .. 1
= p<1) (22 - 21) [( E:(czz):t wO,xz) 22 — 2551{‘;)::: 23 + (592):::1: 22 + wO,zz) '2' (22 - 21):|

1
- (222 55:2&)sz+ 22 Egz):c:c:zz)/c( ) )

21

-

-~

F
- [(wO,II + 2z 592),::::) (wO,zz + 22 Eg),xa:) + (wO,I + 2z Egz),:c) (wO,xzz + 29 Egz),zzz):l / C§l) (z) dz +
21

+ (wo,mm +20 6@ / o\ (2) 2 do (5.11.34)

From formula (5.11.20) we receive:

ol (z,2,t) = Jp (x,) + J3 (z,8) +

+p®) (wo + &Pz + 9) (2 — z3)

1 3
_ (2z3 e:(c?z),m + -2-z§ sg)m) (wo,z +e@, z;,) / Cgl) dz

- /
-

- (wO,z + 23 Egzz),:c) (wO,II + 23 Eg’,),zz) ( 85223)1 z3 /C( dz

~ 7

—(3
+ (wo,xzx + 23 Eg?z{xxz) (woyI + 55222),:1: 23) /Cgl)z dz

z3
~ v
~

1 [ 3
- (223 E:(czz),:: + 523 592;;:) (wo,zx +E£22),$~T 23) /Cil) dz

~

=

z

1 2 —
- 5 (’U)o,,; + 23 6&2),1) (wO,II + 55222)@:1: 23) /Cﬁ) dz

23

——
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+ (wo,m +2 eii)m / Czdz

-

0 L(z,t) 8I3(z.t)
(Hrt e M) e

. ) 1
—p(3)§23 (Z - 23)2 [(255:22:0 - wO,:ta;) 2551:)33:: 3:'

1 . »el
+605 (2 = 20)° (i0ee +62.)

+ (2z3 €@ o + z Eﬁf?mz) / / Cu (2) dz dz

23 23

3
+ ('LUO,z:r + 23 Egz{zx) (wo,:nx + 23 Ezz zz /C( ) (2) dz

-

“v”

3
+ (wo,z + 23 Egz)x) (wo zzz + 23 Eii)zm //C( ) dz dz

23 23
R /

- (wo,xzzz + 23 Ezz TTTT //0(3) z 2 dz dz’ (5.11.35)

23 23

where

J3 (Ia t) =

1 . ..
= p® (23 - 23) [5 (23 + 22) €2 + g + g

z3

- (’wO,z)2 wO,zx/ C(z) ( )

22
N )
"~
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2 2 (2)
— W,z (26;2),11: - Wo,zzz + wO,IIEE?z),z + wO,IEzz :ca: /C z dz

- v
n'e

z3
1 .
— Wo,x (”ifgzz)zzz +Eg:),z S:?I:r) /C?l) (z) 22 dz

22
~ )

2
- Efzz)zwo .'L‘wo zz /C( ) z dz

22
~ v
v~

2
6.f'f,?z):zr: (25:(1:22)11 - wO»IIl‘ + woazmsgz),x + woyiEzz T /C( ) Z

~ s

23
1 (2)
_Eg-;)z (_565'3:)::::: +E£2z)x E(z2z)xa:) /C]] (Z) 23 dz

22
“ -’

-

1
2(w0I wo,m/Cn dz+2w01 69”,‘/0

23

2
(25;21 Wo,zz + Wo Iegz)z) wg,m‘/C( ) (2) zdz

Z2

A" o

2
(25(::‘.):1: — Wo,zz + wO,mezz .'t zz zx /C 2 dz

-




CHAPTER 5 305

1
- [“269‘:)1::: +5 2 Szzz):t ] Wo II/CI Z dz

—[ 3¢+ 5 (2.) ]eﬁ’im /C‘ (2) 2 dz

—Eg)wo zx/cl3 dz + 5(2)5@“/C( ) 2 dz

J/

0Ly (z,1)

oz (23 = 22)

. . 1
—P(2) [(255027.),:5 - wO,z:c) (33 + 222) - Egz):rz (Z + 2223 + 322) ] (23 - 22)2

1
6

((T.U() I:L') + W,z Wo,cxx //C(2) dZ dz

22 22

2
[2555221” Wo,zzzz + Wo Ims(zz = 1+ 2w szzz)m + wp, IEM x”] //C’( ) zdzdz

22 22

1 (2)
(3o + e+ <>) / / o (o) 2 dz

v

”sgzz)mz//cl dz dZ, (51136)

z2 22
and

0 I3 (:ll, t) _
or -
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.. 1 1
= o | (22 — inee) 3 (3 - ) - e (35 - )|
z3

2
- (wO,zrwo,m + wO,zwo,zzzz /C( ) ( )

-

22

(2)
- |:2E:(c2z),xa:m ~ Wo,zzzz T :wO,I-‘EIEgz),x + 2w0,$$€£22),a::r + wo zezz a:z:cil /C (z zdz

g

23
1 =(2)
- (_565227.)1112 +\Egz),zzsgz)za: +6‘(z?z):c5£2z)zzz> /Cll (Z) 22 dz

-—=(2
CTRe@,, (2 - ). (5.11.37)

5.11.2 Computation of spacial derivatives of the field variables

The formulas for the stresses contain derivatives of the field variables wg, s(xzz), 592). In the finite

2 are approximated by the Hermit interpolation poly-

(2

element formulation the functions wy and €3>

is approximated by the Lagrange polynomial of

8eD 822 93D g
5 5y 5%, 5o~ can be and

nomials of the third degree, and the function &5
the first degree. Therefore, the derivatives 220 e Q;—I—gﬂ, %;;Q,
will be computed as the derivatives of the interpolation polynomials that were used for the finite
element formulation.

The values of wq, 222 Bz: , eﬁ}?, 85(2’ —%z and 5&22) are most accurate at the nodes (because these variables ]
are carried as nodal variables), and they can be taken directly from the finite element solution. Let
A; and A;4; be the nodal points of the i—th element. Then the average (over the element) value of
%"ﬂ, that is used to compute an average stress in the element, will be computed as

% - 66“;" (A:) + %"7‘) (Am)] - % [wg, (0) + w) (z)] - %(d2 +di). (5.11.38)
According to the more convenient numbering scheme of the element degrees of freedom introduced

in equations (5.10.84), dy = 8;, dy = 07. Therefore,

1
5 (62 +7). (5.11.39)
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2
Similarly, the average (over the element) values of sﬁi’ , '—9%‘;- and 6;2;) are

e? = [692 (0) +¢2 (l)] = = (64 + 69), (5.11.40)

DO
[

8@ 1 [5e@ 9e2 1
e = 2 [£2 0 +@ )] = 3 (65 +60), (5.11.42)

The second derivatives Q(%";Q and %;—%i)— will be computed at the Gauss points , whose coordinates
in the local (element) coordinate system are Z; = (1 + 3v3) ! and 73 = (3 — 2v3) I, because at
the Gauss points (and maybe at some other points too), the derivatives %ﬂ and %2;5‘, computed
from interpolation i)olynomials used in the FE formulation, are most accurate (explanation of that
is in Appendix 5-D). Then, the average (over the element) value of 9;—;%9, that is used to compute
an average stress in the element, will be computed as

02w, 1 [8%wy _ 2wy
=g e+ S|, 5.11.43)

In the finite element formulation, the following polynomial approximation of the function wy was

used:
3z2 | 278 T
1=+ wo (0)
2z | 2 dw
T — =+ =L
wp = 52 l 2_‘.,77 = (egn 5.10.14).
T wo (1)
=2 =3
T4 2 ()
From the last equation we obtain
- T _NT
—¢ +12§ wp (0) ~5 +12% 6,
0w 1+6% 2w (0) -3+6% 6,
2 = 6 = = 6 — ) (5.11.44)
z T 12% Wo (l) = 12% 66

-2416% duo (1) -2 416% 07
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and, therefore, at the Gauss points T; = (% - 565) land Tp = (% + 36@> | we have

T T

~2¥2 61 23 61
O ) - % o () = % (5.11.45)
— (7)) = , — (Tg) = 11,
Ox? 243 0 Oz? —293 06
— —lj:l V3 6, 1_—_(:1343 97
Substitution of equations (5.11.45) into equation (5.11.43) yields:
T T
—2¥3 6, 23 6
Zw 1 _1_~L-IA§ 8, .\ =14V 0,
_2 — e =
0z 2 23 06 —2¥3 06
—1 3 97 111343 97
T
0 0,
-1 b2 | 1
= = (67— 6,). (5.11.46)
0 o [ !
1 67
The same way, from the polynomial approximation
o V7T
1- ir +Z e (0)
de(®
- & 42 = (0
€@ = - ! _T d(;) © (egn 5.10.18)
- ezz (1)
= =3 e(2)
T 2=
used in the finite element formulation, one can obtain
T T
0 e2(0) 0 04
(2
522 @ -1 L) -1 6
% = l (g)( R l P2 (610 — 65) . (5.11.47)
z 0 D) 0 B9 !
del?
1 =) 1 610

3 3 .(2)
The third derivatives %;—%Q and a—(,,;f{-, computed from the interpolation polynomials, used in

the FE formulation, are constant in the finte element, and they are most accurate in the middle of
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the finite element, at the point T = % and maybe at some other points too (explanation of that is

Appendix 5-D). From polynomial approximations (5.10.17) and (5.10.18) we obtain:

T T
% wo(0) %32' 6
Bw _ Fw _ B wp(0) _ 5 62 _
61‘3 6:1:3 _}_32 wo(l) _%52_ 96
# wp(l) & 6:
13 (91 06) T (92 +67) (5.11.48)
and
T T
¥ e (0) 2 04
T (2 e(2)
832 _ 8% _ 5 532’“(0) _ 5 05 _
0x3 Oz _ %32_ Eg) ) _ %32_ 6o
@
l_% dim (l) i% 0]0
12 6
= 75 (64 = 89) + 53 (65 + 610) - (5.11.49)

{(2)
The first derivative Q(%’j, computed from the interpolation polynomial, used in the FE formu-
lation, is constant in the finite element, and is most accurate in the middle of the finite element
and maybe at some other points too (explanation of this is in Appendix 5-D). From the polynomial

approximation (5.10.11) we receive:
T T

65(2) 651(1:22) _% E::z (0) —% 93 1
- = = =~ (63 — 63). 11
oz oz 1 @ (1) 1 6, 7 (65 — 05) (5.11.50)

2 (2
The derivatives &0 61_4 , —5-5&‘— and a—a-i-:-‘gi, taken as the fourth derivatives of the interpolation poly-
nomials, that were used in the finite element formulation, are equal to zero, that can be wrong for a

particular problem. Therefore, these derivatives are computed numerically at the nodal points by a

finite difference scheme, using the nodal values of wy, 52 z) and e;(czz), obtained from the finite element

solution. The average over the element values of these derivatives will be computed as

64100 _ 8 wWo

34w
T "3 | A

—— (A1), (5.11.51)
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e

ozt

922

Ox2

1 [ 94
2| Oox* )
1 [ 522
2| oz?

54e?

(A:) + rru (Ais1)

825(32)

(Ai) + W (Ai+1) .

310

(5.11.52)

(5.11.53)
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5.12 Damage Progression and Time Integration

When a failure occurs in a single layer of a composite laminate, a composite structure can still carry
a load. Therefore, a subsequent failure prediction is required to determine a dynamic response of
the structure in the presence of some damage. This problem is dealt with by assuming that within a
finite element where the damage occurs the original material characteristics of the damaged ply can
be replaced with degraded material characteristics. The degraded material properties are assumed
to be small fractions of the properties of the undamaged material, but not equal to zero, in order to
avoid ill-conditioning of the finite element equations. For example, a degraded value of the Young’s

modulus Ey of the damaged ply within a finite element is computed as

Eld = (S'I‘C) El, (5121)

where F; is an original value of the Young’s modulus and (src) is a stiffness reduction coefficient.
The stiffness reduction coefficient is set to be as small as possible, but its smallness is limited by the
need to avoid numerical difficulties that can be caused by the large difference of material constants
of adjacent finite elements. Such values of the stiffness reduction coefficients are found by numerical
experimentation.

The face sheets of the sandwich plate are made of laminated composite plates, that can fail
in different modes: due to matrix cracking, fiber fracture, fiber matrix debonds and delamination.
Therefore, for accurate prediction of failure in the face sheets, one needs to use a failure criterion
that takes account of the microstructure of the composite laminates and the variety of modes of
failure that can occur due to this microstructure. A set of failure criteria, designed for this purpose,
were suggested by Hashin (1980). Therefore, for the face sheets the Hashin’s criteria will be used in
this study.

The core of the sandwich plate, made of polymeric foam or a honeycomb structure, is modelled
as a homogeneous isotropic or transversely isotropic medium. Such a medium has fewer modes of
failure, namely crushing under compression and cracking under tension. Therefore, for the failure
analysis of the core, it is more appropriate to use a failure criterion that does not take account of
the microstructure of the material. One such criterion is the Tsai-Wu criterion, and it will be used
for the core in our study. The core, that is uniform before the beginning of the damage, becomes
nonuniform in the thickness direction (as well as in longitudinal direction) when the damage starts

to progress in the thickness direction. For this reason, we will divide the core into the nominal
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layers, and we will check the failure criterion in the middle of each such layer.

At each time step the average (over a finite element length) stresses in each element and in each
layer are used in the failure criteria. The expressions for stresses in terms of the variables wy, 65522),
592) and their derivatives were developed in subsection 5.11.1 of this chapter. In order to compute the
average (over the finite element’s length) stresses, the average values of the field variables and their
derivatives must be used in these expressions. The computation of the average (over the element)

values of the field variables and their derivatives is discussed in subsection 5.11.2 of this chapter.

5.12.1 The Tsai-Wu criterion

The Tsai-Wu failure criterion (Azzi and Tsai, 1965. Wu, 1974 ) is used for the core. Let X1, Yr, Z7
be the lamina normal strengths in tension along the (1, 2, 3) directions, X¢, Y¢, Z¢ - lamina normal
strengths in compression and Ss3, S13, S12 — shear strengths in the (23, 13, 12) planes respectively.

In the Tsai-Wu criterion, failure is assumed to occur if the following condition is satisfied:

6 6 6
F=Y Foi+y Y Fjo0;>1, (5.12.2)

i=1 i=1j=1
where
01 =011, Oy = 023, 03 = 033, 04 = 023, 05 = 013, 06 = 012, (5.12.3)
1 1 1 1 1 1
Fi=— y o= — =, F3= o — —,
! Xr X 2 Yr Yc s Zr  Zc
1 1 1
F = F. =
11 XTX s 4722 Y~Y- y 4°33 7z ZC,
1 1 1
Fys = -, Fss = -t E -
10 =5 Foo = 5, Foo = o~
1 1 1 1
Fipa=Fy = B e Fi3=F3 = s —m———,
VX1 XcYrYe 2 VXTXCZTZC
1 1
Fy3=F3 = — (5.12.4)

2VZ7ZcYrYe
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If the failure occurs, then the following expressions are used to determine the failure mode:

Hy = Fyoy + F102, Hy = Fy05 + Fo03, Hs = F303 + F3303,

H4 = F440'3, H5.= F550'§, HG = Fﬁsag. (5125)

The largest H; is selected as a quantity that determines the dominant failure mode, and the corre-
sponding engineering elastic constant is reduced. The correspondence between H; and engineering

elastic constants is the following:

H; — Ej,
Hj — Es,
Hj3 — Ej,
Hy — Gos,
Hs — Gis,

Hg — Ga,

The method of reduction of values of engineering elastic constants of the core, using
the Tsai-Wu failure criteria is descril()ied belovv.6
Compute the failure index F' = ZFicri + ZZF,;jU,'O‘j. If failure occurs, i.e. if F > 1, then in
i=1 i=1j=1

each layer of the core of each finite element, at each time step find the maximum of H;, Ha, Hj,

H4) H5) Hﬁ'

a) If H, is the maximum among H;, then set

Eyq = (src) By, (5.12.6)

where (src) is a stiffness reduction coefficient.
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b) If Hy is the maximum among H;, then set

Epy = (ST‘C) E;. (5127)

c) If H; is the maximum among H;, then set

E3d = (ST'C) E3. (5128)

d) If H, is the maximum among H; then set

G23d = (ST'C) G23. (5.12.9)

e) If Hs is the maximum among H; then set

G13d = (ST‘C) G13. (5.12.10)

f) If Hg is the maximum among H;, then set

G12d = (ST‘C) G12. (51211)

A value of the stiffness reduction coefficient needs to be chosen very small, but not lower than a
certain limiting value, below which the ill-conditioning of the finite element equations can occur.
This limiting value of the stiffness reduction coefficient can be found by numerical experiments with
a particular model. In the numerical example in the subsequent section 5.14, the stiffness reduction

coefficient (src) was chosen to be 0.001.

5.12.2 The Hashin’s criteria

The Hashin’s criteria ( Hashin, 1980) will be used for the face sheets. The Hashin's criteria and the
method of reducing the values of engineering elastic constants of the face sheets are described below.
The fiber failure in tension (fiber breakage) in the face sheets in a layer of a face sheet of a

finite element is predicted when
011, 012 +013

011 >0and — +

>1. 5.12.12
Xr Sz 7 ( )
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When fiber failure in tension is predicted in a layer, the load carrying capacity of that layer is
almost completely eliminated. Therefore, the values of all the elastic constants that characterize the
in-plane deformation of the plate in cylindrical bending are reduced to some very low values, ie. it

is set

Ejq = (s7¢) E1, Giaqg = (src) Gia, viza = (sr¢) 113, Viza = (s7C) V12, (5.12.13)

where (src) is a stiffness reduction coefficient. As it was mentioned earlier, the value of the stiffness
reduction coefficient is chosen to be as small as possible, but not lower than a certain limit value
under which the ill-conditioning of the FE equations occurs.

The fiber failure in compression in a layer of the face sheets of a finite element is predicted

when

2
11 < 0 and (f’—‘l) > 1. (5.12.14)
Xc

In the works of Schuerch (1966), Hermann, Mason, Chan (1967), Sadovski, Pu, Hussain (1967),
Karpenko, Terletzki, Liashchenko (1972), Greszczuk (1974) and other authors, the compressive fiber
mode of failure is interpreted as a failure caused by instability (buckling) of fibers in the matrix.
These and other works were included into the monographs of Broutman and Krock (1967), Rosen and
Dow (1975). More recently, the failure of composite materials under compression due to instability
of fibers was considered in the monograph of Guz (1989).

For compressive fiber failure, it is assumed that the material constants Fy, E3, G2, G13, re-
sponsible for transverse load carrying capacity, are reduced to some very low values. Therefore, it

is set:

E2d = (STC) Ez, Egd = (STC) E3, G12d = (STC) G]Q, Glgd = (STC) G13, (5.12.15)

where (src) is a stiffness reduction coefficient. Besides, it is assumed that if the buckling of the
fibers occurs, the layer still has some residual strength in the direction of the fibers. Therefore, the
original Young’s modulus in the fiber direction E; is replaced with some reduced value E14 by the

formula

Eia = (SRC) Ey, (5.12.16)
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where (SRC) is another stiffness reduction coefficient, whose value is larger than the value of the

stiffness reduction coefficient (src):

(src) < (SRC). (5.12.17)

The matrix failure in the face sheets is predicted when

2 2 2 2
Ft2 = (022 t USS) (23) 022033, (912)” +(013) >1and g9 + 033 > 0, (5.12.18)

Yr (S23)° (S12)?
or when
1 Yo \? (022 + 033)°
o) ] et
Yo [\ 252 } 4(Sa3)?

(023)2 — 022033 | (012)% + (013)°
(S23)” (S12)°

In this case, the degraded stiffness properties are:

>1and 092 + 033 < 0. (5.12.19)

+

E34 = (src) B3, Gazq = (s7¢) Gaz, Giaqa = (s7¢) G1s,
Esq = (src) Eg, G12a = (s7¢) G2,

V124 = (87C) V12, V930 = (87C) V3.

The delamination (separation of the plies) occurs when

2
(-(-723&) >1 and o33 >0. (5.12.20)

t

In this case, the degraded material properties are:

Es4 = (src) E3, Gaza = (sr¢) Gaz, G13a = (src) Gis, vazq = (s7C) Vas.

5.12.3 The algorithm of modeling the damage progression

Now, the algorithm of damage progression will be presented without the details of how it is imbedded

into the time integration scheme. These details will be discussed in the subsequent subsection.
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1) At each time step compute average (over an element length) stresses 0zz, Ozy, Oyy, Ozz, Oyz,
0. in the problem coordinate system in all finite elements, in the middle of each ply of the face sheets
(at z = E"—+§‘i‘—‘) and in the middle of each nominal layer of the core. The method of computing
the average (over an element length) values of derivatives of the field variables, that enter into the
formulas for the average stresses, was presented in section 5.11 of chapter 5.

2) Transform the stresses to the principle material coordinates, i.e. compute 011, 022, 033, 012,

013, 023 by formulas (Reddy, 1996):

011 = (0zg €080 + 0, 5in6) cos 0 + (04y cos b + s0yy) sin b, (5.12.21)

012 = — (0gg COSO + 0y sin ) sin B + (05 cos 6 + 0yy sin ) cos b, (5.12.22)
013 = Oy, cosf + 0y siné, (5.12.23)

099 = (0gg SINO — 04y cos B) sin b + (—504y + 0y cos B) cos b, (5.12.24)

093 = —0Oz.sinf + oy cos b, (5.12.25)

033 = Ozz; (5.12.26)

where 6 is angle of fiber orientation with respect to the z-axis of the problem coordinate system.
3) Substitute the stresses in the material coordinate system into the failure criteria. The Hashin
criteria will be used for the face sheets and the Tsai-Wu criterion will be used for the core. If the
failure occurs, reduce the appropriate engineering constants of the face sheets and the core, using
the methods, described above.
4) Using the modified values of engineering elastic constants, for each layer of each finite element

. . —=(k . . . .
that fails recompute elastic constants °C£j), element stiffness matrices, global stiffness matrix and
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restart the analysis at the same time step, i.e. return to the 1-st step.5
5) If failure does not occur, proceed to the next time step.
The analysis will continue for a time duration, specified by a user, or until all finite elements fail.

The flow-chart of this algorithm is presented in Figure 5.1

5.12.4 Time-history analysis by Newmark method with account of dam-
age progression

Let us introduce the following notations:

{0} = {©}, - vector of nodal variables, evaluated at moment of time t,, {©}
t=t,, t=tp, 41
{©},4, — vector of nodal variables, evaluated at moment of time t,,11, T = tp41 — tn.

Then, the Taylor expansion of {©} about a point t,, with four terms, evaluated at point t,1,

has the form:

{0} 1 ® {0}, + {é}n T+ % {9}n T2+ % 6y, ° . (5.12.27)

The quantity % {@}n in the last term can be written approximately as follows (Englemann, 1988):

% {6}, ~8 {@}”*‘; {e}", (5.12.28)

where 3 is a free parameter that controls the accuracy and stability of the method. Therefore,

equation (5.12.27) takes the form

(©}s ~ 10}, + {6} r41{6) r21pr ({é}n+1 - {@}n) ~
~Oher{e) +7(3-9) {8}, +0fe) . ema

Analogously, expanding the vector {@} in Taylor series, keeping three terms in the expansion

and evaluating {@} at moment of time .1, one can obtain (Englemann, 1988):

{6} ~{6} +{8} r+n ({é}m - {é}n) N

6 When failure occurs, the stress field changes instantly due to the change of material properties. This redistribution

of the stresses may cause additional failure to occur. Therefore, in case of failure, the time incrementation must be
stopped, and analysis must be run again for the same time interval to determine the new failure. If the new failure

does not occur, the analysis can go on to the next time step.
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~ {é}n+r(1-w) {é}n+7‘2’y{9}n+l, (5.12.30)

where « is another free parameter that controls the accuracy and stability of the method.
Equations of motion of the system in terms of the global nodal variables {©}, in which vectors

{e}, {9}, {@} are evaluated at a moment of time ¢,41, are

{6} +(c] ({c‘a}n+1 - {é}l) + K] {0} a1 + {QY s = (P} (5.12.31)

where {Q} is a nonlinear part of the internal force vector, whose components are defined as

where (Uni)

b

09,

system is the whole system’s part of the strain energy, that is not quadratic with respect
to the nodal parameters ©;. This part of the strain energy appears due to the nonlinear terms
in the von-Karman strain-displacement relations. In equation (5.12.31) the vector [K]{©} is a
linear part of the internal force vector, and, therefore, the matrix [K] is a stiffness matrix of a
geometrically linearly formulated problem. The stiffness matrix [K] does not depend on the nodal
unknowns. In equation (5.12.31) the load vector {P} is due to the gravity force, therefore it does
not depend on time. At the initial moment of time t;, when the platform touches the elastic foun-
dation, but the foundation is not compressed yet, the damping in the platform is absent. This is
taken into account by writing in equation (5.12.31) the term, responsible for damping, in the form
[C] ({é}nﬂ - {9}1), with initial velocity {9}1 subtracted from the velocity {@}n+1. As a
result of this, the equation of motion (5.12.31), written for the initial moment of time t;, takes the

form:

) {6} +[K] {0} +1Q}, = {P}. (512.52)
1 N s’

0
The internal force vector at the initial moment of time is equal to a zero-vector, because at the

initial moment of time all components of the generalized displacement vector {©} are equal to zero:
{©}, = {0}. (5.12.33)
Therefore, equation (5.12.32) takes the form:

[M] {é}l = {P}. (5.12.34)

The global vector of nodal parameters at the initial moment of time, {@} , computed from equation
1

(5.12.34), is such that those components of this vector, that are the second time derivatives of the
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nodal transverse displacements at ¢ = ti, W (t1), are equal to 9.87%, as it is expected to be.

If in equation (5.12.31) the term responsible for damping was written as [C] {@} instead of
n+1
[C] ({@} . {O}l>, then the initial acceleration g (¢;) would be computed from equation
n+

[M] {@}1 = {P} - [C] {9}1 and, therefore, would take on very high values, different from the

acceleration of free fall 9.8%7.

Substitution of equations (5.12.29) and (5.12.30) into equation (5.12.31) yields:

(M0 + €172y + (K] 728) {8} +{Qys +
rei(fe), +ra-m{s), - {6},)+
+ K] ({@}n +7 {G}n +77 (% — ﬂ) {é}n> = {P} (5.12.35)

From equation (5.12.29) we find

(6}, =25 @l =55 (4 7{8), 47 (3-0)f6},).  oasom

Substitution of equation (5.12.36) into equation (5.12.35) yields
(1) 25 +1C13 11 ) 1€ + (@
_;zl_ﬂ ({@}n +7 {G}n 472 (% - ﬁ) {é}n) ([M] +[C)m%y + K] 'r?ﬂ) +

wei({e), +ru-m{e)_ - {6}, )+

+[K] ({e}n +7 {e}n +7? (% - ﬂ) {é}n> —{P} ={0}. (5.12.37)

Now, assuming that we know the values of {©},, {@} ,and{@} , we need to find the values of

{©},41> {@}n+l,and{9}n+l. Components of vector {Q}, . ,, that enters into equation (5.12.37),
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depend nonlinearly on components of the vector of nodal parameters {©},.,1 - Therefore, equation
(5.12.37) is a nonlinear system of equations with respect to components of the vector {©}, .
These nonlinear equations will be solved by a direct iteration (Picard) method (Reddy, 1996). Let
us introduce the following notations:

1

[K] = (M) 55 +(C] % + K], (5.12.38)

(£}, =25 (101w {6), += (1-9) {8}, ) (par+iermr )

+[C] ({e}n +7(1—77) {é}n - {9}1 )+

+ [K<’>] ({@}n +7 {e}n + 72 (% - ﬂ) {é}n) —{P}, (5.12.37)

Then, equation (5.12.37) takes the form

[£] {0} nsr =~ {F} ~1Qhunr » (5.12.38)
or
(O} =~ [ff]—l ({F}n + {Q}n+1) (5.12.39)
The direct iteration method is based on computing a sequence of vectors
3, (032, e, (5.12.40)
by the recurrence formula
(o)t =- [f{]_l ({F}n + {Q}ffll) : (5.12.41)

where the vector {Q}gll is the vector {Q}, ., evaluated at {©},,, = {@}5;)1 The components

of the matrix [K ] and the vector {ﬁ'} do not depend on the unknowns, i.e. on the components

n
of the vector {©}, ;. If the sequence of vectors {@}f}ll , {@}531 , {9}513_11 ,.. converges to some

vector {é} , then this vector {(:)} is a solution of the system of equations (5.12.38). Since

n+1
the inversion of matrix [K ] is not an effective computational procedure, it is more convenient to find

n+1

each next term of the recurrence sequence (5.12.40) by solving a system of linear algebraic equations

[Kl1e)? = - {F} (@, (5.12.42)




CHAPTER 5 322

for the components of the vector {6}5:'11). The components of the vector {O}Sfll) found in each

iteration, are used to evaluate the nonlinear part of the internal force vector {Q},,  ,, which is then
used in the next iteration to obtain the next improved approximation of the vector {©},, ., . In other

words, in the next iteration the system of linear algebraic equations

(] en? == {7}, -1y (5.12.43)
is solved for the vector {G)}slflz). In the FE program, that is developed for the analysis of the
problem, the first term of the iteration sequence {@}fllll, {G)}ffll, {@}fﬂl, ... is set equal to a

zero-vector at all time intervals:

)1, = {0} (5.12.44)
for n=1,2,3,... . With such a choice of initial guess of the solution vector, the convergence of the

iteration sequence (5.12.40) is achieved successfully unless the number of the damaged plies is high.

But if the number of the damaged plies is large, the program needs to be stopped anyway. Iteration

is stopped if a norm of vector {9}5::11) -~ {0} ffll (a difference of solution vectors in two successive

approximations), divided by the norm of vector {@}gjll) is less than some number (tolerance):

[o)" ~ te)y
'I{@}(r+1)”

< tolerance (5.12.44)
n+1

As a norm of a vector, we used a square root of sum of squares of its components. Let (@i)fl?_l be
an i-th component of the approximate solution vector obtained in an iteration with a number r at
a moment of time with a number n + 1.Then the criterion (5.12.44) for stopping the iterations will

be written as follows:

\/[(ei)gj_ll) - (@i)fzr-zl]2

[(@i)ffff)]Q

< tolerance (5.12.45)

In the example problem in the subsequent section 5.14, the value of tolerance is chosen to be 0.001.
So, in the problems without damage progression taken into account, the algorithm of the Newmark
time integration scheme, combined with the direct iteration method of solving the nonlinear algebraic
equations, can be summarized as follows:

I) At the first time interval [t;, to]:
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Set the vectors of initial generalized displacements {©;} and velocities {©}, equal to the initial

conditions. In our finite element formulation we have the following nodal variables at each node:
(2) . e egs

wo, 68“; , 6&22), sg), agx . Therefore, for a platform, dropped on elastic foundation, at the initial

moment of time £ = ¢; we set at each node

@
wo = 0, %“;9_0 e® =0,6 =0, afx

=0 ; (5.12.46)

dwo _ . ... 9 (Bw _, 08 e 0 0e2\
—é-t—_zmtzal veocity, 3t<8x> 0, 5 =0, 5t =0, 5\ 9n =0 . (5.12.47)

The vector {@}1 of initial generalized accelerations is found from the equation (5.12.34), repeated

here as equation (5.12.48):
[M] {é}l = {P}. (5.12.48)

II) At the n-th time interval [, tn+1) the vectors {©},, {@}n, {@}n are known, and it is
necessary to find the vectors {©},, ., {é)}n+1, {é}n_“. For this purpose the following algorithm
is used.

1) Set iteration counter r = 1, and set the initial approximation for the vector of nodal parameters

at t=tn+1 as

{e}n+l {0}

2) Evaluate {Q}SL)H, ie. evaluate {Q},,, at {©},,; = {@}(T)1 and solve a linear system of
(r+1)

algebraic equations for the components of the vector {©},
[£] 1 = = {7}, - 1@,

Evaluate the acceleration vector of the current iteration by the formula

(o} = & ({e}flfﬁ’ - (e}, -r{6} - (% - ﬂ) {é}n> (5.12.49)

(equation (5.12.49) is obtained by expressing {@} " from equation (5.12.29) ). Evaluate the

velocity vector of the current iteration by the formula

{e}“*” = {6}n +7(1—n7) {é}n + 72y {é}(m) . (5.12.50)

n+1 n+1
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(equation (5.12.50) is obtained from equation (5.12.30).
3) Check if the vectors {9}5::11) and {@}f:ll satisfy the convergence criterion of equation
(5.12.45)

\/ (@) - ©a¢%]"
(el

If the convergence criterion is not satisfied, then begin a new iteration within this time interval,

< tolerance  (eqn 5.12.45)

i.e. set r = r + 1 and go to the step 2. If the convergence criterion is satisfied, go to the next step.
4) Set the vector of nodal parameters and the vectors of the first and second time derivatives
of the nodal parameters equal to the corresponding vectors obtained in the iteration at which the

convergence criterion of the step 3 was satisfied, i.e. set

O} = O, (5.12.51)

{é)} = {e}‘r“’ , (5.12.52)

n+1
(6},..- 8)7 sansn

for use in the next time step and for computation of stresses at t = t, 41 .

5) Compute average stresses in all plies of each finite element at ¢ = t,,;, using the vectors

{©},41s {€}n+l and {é}nH ,obtained in the 4-th step. Then set n = n + 1, i.e. go to the next
time interval.
Analysis goes on for all time steps, the number of which is specified by a user, or until all plies in all
finite elements fail. If a number of the damaged plies is large, the iterative procedure of solving the
nonlinear algebraic equations (5.12.43) can fail to lead to convergence of the sequence of approximate
solutions, i.e. the termination criterion (5.12.45) of the iteration process will not be satisfied. This
serves as an indicator that the number of the damaged plies is high and also leads to stopping the
finite element program.

If the damage is taken into account, then the 5-th step of the above algorithm will be modified
as follows:

5') Compute average stresses in all plies of each finite element at ¢ = ¢n41, using the vectors

{©}, +10 {@} : and {@} . ,obtained in the 4-th step. Substitute these stresses into the failure
n+ n+
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criteria. If failure occurs in a ply of a finite element, modify material elastic constants of this ply,
modify the element stiffness matrix [k} and the nonlinear internal force vector {1 = (%ﬁ-)n+l
of the finite element to which the damaged ply belongs and assemble the global stiffness matrix
[K] and global nonlinear internal force vector {Q},,,, with account of modifications to the element
stiffness matrices and element nonlinear internal force vectors due to the damage. Then go to the

step 2. If failure does not occur in any ply of any finite element, then set n = n + 1, i.e. go to the

next time interval.
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5.13 Verification of results of the finite element program

In this section we will consider some static and dynamic problems, for which exact elasticity solutions
exist, and compare results of these exact solutions with the results produced by the finite element

program, based on the layerwise theory of sandwich plates developed in this chapter.

5.13.1 Comparison of exact solution for a homogeneous isotropic simply
supported plate and the FE solution of the same problem, based

on the layerwise plate theory.

Let us consider a static problem of cylindrical bending of a simply supported homogeneous isotropic
plate of length L, height h and width b (Figure 2.2). The plate is under a uniform load, acting on
the upper surface with intensity (force per unit length) ¢,. By ¢, we denote not an absolute value
of the load intensity, but a projection of the load intensity on the z-axis, i.e. g, can be positive or
negative, depending on the direction of the load. Let %+ = Q = —1 x 105%, h =0.022m, L = 1m,
z = 0.5m, where g, is force per unit length on the upper surface, b is width of the plate. In this

problem, the exact solution for stresses is (Appendix 2-A):

Opz = 716-3-62 (x - %) <22 - }—z;) , (5.13.1)
0n = -2—}11559 (22 + h)? (2= h), (5.13.2)
Ozz = —%Qm (z—L)z+ %Qz3 - -E?—th. (5.13.3)

In the finite element model, 50 elements of equal length were used. The stresses were computed as
the average stresses over the length of the elements. The tables of comparison of stresses, obtained

from the exact and the finite element solutions, are shown below.
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Table 5.1: Comparison of exact and FE solutions for stress 0z, in a homogeneous isotropic simply

supported plate

x z sz U:l:.’!:
(m) | (m) (x10027) (%108 25)
exact plate
theory
0.5 | —0.011 154.98 154.87
error 0.07%
0.5 | —0.0105 | 147.93 147.84
error 0.06%
0.5 | —0.010 140.88 140.80
error 0.06%
0.5 | —0.008 112.69 112.64
error 0.04%
0.5 | —0.005 | 70.427 70.402
error 0.03%
0.5 | —0.002 28.169 28.164
error 0.02%
0.5 | 0.0 0 -0.026
0.5 | 0.002 —28.169 —28.164
error 0.02%
0.5 | 0.005 -70.427 | —70.402
error 0.04%
0.5 | 0.008 -112.69 -112.64
error 0.04%
0.5 | 0.010 —140.88 —140.80
error 0.06%
0.5 | 0.0105 —147.93 —147.84
error 0.06%
0.5 { 0.011 —154.98 —154.87

error 0.07%
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Table 5.2: Comparison of exact and FE solutions for stress o, in a homogeneous isotropic simply

supported plate

T Z Ox2 Oxz
(m) | (m) (x1000;)  (x1008%)
exact plate
theory
0.8 | —0.011 0 0.0
0.8 | —0.0105 | 0.1817 0.1882
error 3.6%
0.8 | —0.010 | 0.355 0.3677
error 3.6%
0.8 | —0.008 | 0.9636 0.998‘71
0.8 | —0.005 | 1.6228 1.6810
error 3.6%
0.8 | —0.002 1.9778 2.048
error 3.5%
0.8 | 0.0 2.0455 2.1188
error 3.6%
0.8 | 0.002 1.9778 2.048
error 3.5%
0.8 | 0.005 1.6228 1.6810
error 3.6%
0.8 | 0.008 0.9636 0.9981
error 3.6%
0.8 | 0.010 0.355 0.3677
error 3.6%
0.8 | 0.0105 0.1817 0.1883
error 3.6%
0.8 | 0.011 0 0.00002
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Table 5.3: Comparison of exact and FE solutions for stress o, in a homogeneous isotropic simply

supported plate

1 Oz Oz
(m} | (m) (x1042%) (x10t L)
exact plate
theory
0.8 | —0.011 0 0
0.8 | —0.0105 | —0.015261 | —0.0145
error 4.9%
0.8 | —0.010 —0.060105 | —0.0571
error 4.9%
0.8 | —0.008 —0.50714 —0.48}74
error 5%
0.8 | —0.005 —1.8257 -1.73277
error 5%
0.8 | —0.002 —3.6514 —3.4646
error 5.1%
0810 -5.0 —4.7434
error 5.1%
0.8 | 0.002 —6.3486 —6.0260
error 5.1%
0.8 | 0.005 —8.1743 -7.777
error 4.9%
0.8 | 0.008 —9.4929 —9.02(;6
error 5%
0.8 | 0.010 —9.9399 —9.4489
error 4.9%
0.8 | 0.0105 —9.9847 —0.4924
error 4.9%
0.8 | 0.011 -10.0 —9.5079
error 4.9%

So, the FE program allows one to achieve high accuracy of computation of the in-plane stress
o.» and satisfactory computational accuracy of the transverse stresses ¢, and o... The lower
accuracy of the transverse stresses is explained by the fact that these stresses are computed by
integration of the pointwise equilibrium equations, and this procedure requires computation of the
higher-order derivatives” by a finite difference scheme. The results of stress computation presented
in the tables above, confirm an idea discussed in chapter 2, that the transverse stresses obtained by
integration of the equilibrium equations, satisfy the boundary conditions on both the upper surface

and lower surface of the plate® despite the fact that the number of constants of integration is fewer

7of the order higher than the degree of the interpolation polynomials used in the finite element formulation
8i e. the transverse stresses at the external surfaces are equal to the loads applied at these surfaces
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than the number of the boundary conditions. The satisfaction of the stress boundary conditions
on the lower surface is exact, because these boundary conditions were used in integration of the
equilibrium equations, and the satisfaction of the stress boundary conditions on the upper surface is
approximate, because the field variables wy, eg), 5222 that enter into the formulas for the transverse
stresses (section 5.11 of chapter 5)° are computed approximately by the FE method.

Now, let us consider a dynamic problem of a plate falling on simple supports and compare the
values of the transverse displacement at the middle surface (z =0) and at z = %, as a function of
time, obtained from the exact and finite element solutions. In this example problem, the material
properties and geometric dimensions are

E =114.8 x 109%, v=03, p= 1614%, L =1m, h=0.06m.
The plate falls on simple supports with velocity —102. In this example problem, the exact elasticity
solution for wg, with 25 terms in the series expansion, is (Appendix 5-E):

wo =- 0.009128805307 sin( 1395.05t)+ 0.0003289319625 sin( 12902.7t)-

0.00007686926503 sin( 33127.8t)+ 0.00003079797019 sin( 59061.4t)-

0.00001601025860 sin( 88362.8t)+ 0.000009680766718 sin( 119567.0t)-

0.000006451456069 sin( 151811.0t)+ 0.000004598394395 sin( 184592.0t)-

0.000003441628335 sin( 217620.0t)+ 0.000002672743865 sin( 250724.0t)-

0.000002136375939 sin( 283800.0t)+ 0.000001747401522 sin( 316802.0t)-

0.000001456401848 sin( 349694.0t)+ 0.000001232994575 sin( 382460.0t)-

0.000001057703130 sin( 415098.0t)+ 0.0000009175877618 sin( 447610.0t)

- 0.0000008038299104 sin( 479992.0t)+ 0.0000007101573229 sin( 512252.0t)

- 0.0000006321067301 sin( 544398.0t)+ 0.0000005663630004 sin(576434.0t)-

0.0000005104607016 sin( 608364.0t)- 0.0000004625190558 sin( 640194.0t)

- 0.0000004210857347 sin( 671938.0t)-+0.0000003850322280 sin( 703586.0t)

- 0.0000003534568308 sin( 735156.0t)

The displacement wq as a function of time, obtained from the finite element analysis, is

Time w (z= 0, x=L/2)

.0000  .0000E+00
.0001 -.1024E-02

9these formulas for the transverse stresses are obtained by integration of the pointwise equilibrium equations
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0002 -.2303E-02
0003 -.3777E-02
0004  -.5104E-02
0005  -.6143E-02
0006  -.6904E-02
0007  -.7398E-02
0008  -.8021E-02
0009 -.8500E-02
0010  -.8823E-02
0011  -.9036E-02
0012  -.8918E-02
0013 -.8442E-02
0014  -.7760E-02
0015  -.6954E-02
0016  -.6246E-02
0017  -.5560E-02
0018  -.4632E-02
0019 -.3318E-02
0020  -.3200E-02
0021  -.3632E-03
0022 . 8289E-03
0023 .1855E-02
0024 .2018E-02
0025  .4228E-02
0026 .5522E-02
0027 .6531E-02
0028 .7404E-02
0029 .7953E-02
0030 .8301E-02
0031  .8549E-02
0032 .8706E-02
0033 .8852E-02
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.0034  .877T1E-02

.0035  .8389E-02

.0036  .7532E-02

.0037  .6491E-02

.0038  .5625E-02

.0039  .4854E-02

.0040  .3921E-02

.0041  .2786E-02

.0042  .1223E-02

.0043  -.2953E-03

.0044  -.1544E-02

.0045 -.2687E-02

.0046 -.3719E-02

.0047 -.4786E-02

.0048 -.5858E-02

.0049 -.6891E-02

.0050 -.7768E-02

.0051 -.8385E-02
The graphs of the exact and the finite element solutions for wy as a function of time are shown in
figure 5.4. These two graphs are close to each other.

Now, let us consider a dynamic problem of a plate falling on simple supports and compare the
values of the transverse displacement at the middle surface (2 = 0) and at ¢t = 0.0004s, as a function
of x-coordinate, obtained from the exact and finite element solutions. In this example problem, the

material properties and geometric dimensions are
N k

E=1148x10°—;, p=1614—, v =03, L = 1m, h = 0.06m.
m m

The plate falls on simple supports with velocity —10%. In this example problem, the exact elasticity
solution for wg, with 25 terms in the series expansion, is (Appendix 5-E):

wo = 0.0000005282171331 sin( 116.2389282x)+ 0.0000006388611505 sin(59.69026043x)

- 0.000001005826267 sin( 84.82300166x)- 0.004833771658 sin( 3.141592654x)

+ 0.0000005351651669 sin( 122.5221135x)-0.0000004744973290 sin( 91.10618697x)

+ 0.000005544528261 sin(40.84070450x)+ 0.00003073761580 sin( 21.99114858x)
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- 0.000001521866275 sin( 72.25663104x)-+ 0.000002731048304 sin( 53.40707512x)+
0.000006258042552 sin( 34.55751919x)- 0.00000002457121402 sin(97.38937227x)+
0.000004598192420 sin( 47.12388981x)- 0.00004861818949 sin( 15.70796327x)
- 0.0000008763241083 sin( 65.97344573x)+ 0.0000003719067811 sin( 147.6548547x)
+ 0.0000004560154750 sin(109.9557429x)- 0.000001452117018 sin( 78.53981635x)
+0.0000002829038361 sin( 103.6725576x)+0.0000003351240114 sin(153.9380400x)-
0.0000004621886845 sin( 135.0884841x)+0.00001134587104 sin( 28.27433389x)
+ 0.0002963728581 sin(9.424777962x)+ 0.0000004150847268 sin(141.3716694x)
+ 0.0000005062957414 sin(128.8052988x).

In this expression, the terms are written not in ascending order of coefficients of z under the
“sin” sign, i.e. not in ascending order of summation index k in the formula (5-E.74). The finite
element solution for the same problem is presented in the table below:

x-coordinate w (t=0.0004s, z=0)

0.0 0.00000E+-00;
0.05 -7.24664E-04;
0.10 -1.40675E-03;
0.15 -1.99268E-03;
0.20 -2.60446E-03;
0.25 -3.29689E-03;
0.30 -3.92329E-03;
0.35 -4.38506E-03;
0.40 -4.66854E-03;
0.45 -4.81039E-03;
0.50 -4.85239E-03;
0.55 -4.81161E-03;
0.60 -4.67059E-03;
0.65 -4.38700E-03;
0.70 -3.92346E-03;
0.75 -3.29359E-03;
0.80 -2.59886E-03;
0.85 -1.99009E-03;
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0.90 -1.43711E-03;
0.95 -6.87228E-04;
1.0 0.00000E+00;
The graphs of displacement wg (z) as a function of x-coordinate, obtained from the exact and
the finite element solutions, are shown in Figure 5.5. These two graphs are close to each other.
Now, let us consider again the problem of a plate falling on simple supports and compare the
values of the stress 0., at the upper surface (z = %) and at z = —é‘-, as a function of time, obtained
from the exact and finite element solutions. In this example problem, the material properties and
geometric dimensions are

kg

5 v=103, L=1m, h = 0.06m.
m

N
E =114.8 x 109;1—2, p = 1614

The plate falls on simple supports with velocity —10%. In this example problem, the analytical

solution for oz, with 25 terms in the series expansion, is (Appendix 5-E):

U:m: -

-307276473.2 sin( 1395.05t)+ 108412712.3 sin( 12902.7t)

-69200847.15 sin( 33127.8t)+ 53045550.32 sin( 59061.4t)

-44665057.84 sin( 88362.8t)+ 39735103.54 sin( 119567.0t)

-36639293.88 sin( 151811.0t)+34641592.27 sin( 184592.0t)

-33362189.14 sin( 217620.0t)+ 32597764.0 sin( 250724.0t)

-32217053.76 sin( 283800.0t)+ 32130246.4 sin(316802.0t)

-32286840.13 sin( 349694.0t)+ 32659958.90 sin( 382460.0t)

-33216080.31 sin( 415098.0t)+ 33947871.87 sin( 447610.0t)

-34841555.15 sin( 479992.0t)+ 35895713.33 sin( 512252.0t)

-37089957.48 sin(544398.0t)+ 38455409.80 sin( 576434.0t)

-39978697.92 sin( 608364.0t)-41658403.41 sin( 640194.0t)

-43517015.88 sin( 671938.0t)+ 45541253.86 sin( 703586.0t)

-47771451.41 sin( 735156.0t)

On the time interval 0 <t < 0.005 s, the above formula for the stress ¢,, can be represented by
the following least-square polynomial approximation (in order to smooth out the small oscillations

due to truncation of the Fourier series):

Orz = —5.16214 x 1011t — 9.09721 x 10'3¢2 + 3.51795 x 1017¢3
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The stress 0., as a function of time, obtained from the finite element analysis, is:

~1.26565 x 102%#* + 1.5273 x 10%2t® — 5.05268 x 10%3¢5.

time sigma_xx (x=0.5, 2=0.03)
0.0 0.0
1.0E-4 300590795.9
2.0E4 -136863991.1
3.0E-4  -285641192.0
4.0E-4  -231020454.7
5.0E-4  -368096028.6
6.0E-4 -310867463.8
7.0E-4 9814421.003
8.0E-4  -438507427.3
9.0E-4 -291994594.9
10.0E-4 -270109686.1
11.0E-4 -44108278.28
12.0E-4  -371968043.5
13.0E-4 -372064327.8
14.0E-4 -252926687.6
15.0E-4 -226476659.7
16.0E-4 -223540794.1
17.0E-4 -114323702.8
18.0E-4  -499221197.3
19.0E-4  -239680400.7
20.0E-4 -253103767.2
21.0E-4 44260144.22
22.0E4 -367739967.3
23.0E-4 -291313468.1
24.0E-4 34464105.86
25.0E-4 69105029.93
26.0E-4 504973155.0

335

(5.13.4)
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27.0E-4
28.0E-4
29.0E-4
30.0E-4
31.0E-4
32.0E-4
33.0E-4
34.0E-4
35.0E-4
36.0E-4
37.0E-4
38.0E-4
39.0E-4
40.0E-4
41.0E-4
42.0E-4
43.0E-4
44.0E-4
45.0E-4
46.0E-4
47.0E-4
48.0E-4
49.0E-4
50.0E-4

181440238.1
327516616.8
171564055.1
465921279.0
483077118.1
133516492.0
9867897.009
350106295.7
218206438.9
478119085.7
150719904.3
-53134854.76
31817117.24
255088912.6
313136614.6
122606780.4
-87272429.67
-124044299.8
86437846.18
-11355005.43
83989098.10

336

- 97318192.67

-60958656.28
-252631951.8

The least-square polynomial approximation of this data, produced by the FE program, is

+3.42043 x 1017¢% — 1.17946 x 10%°t* + 1.33736 x 1022t5 — 3.57798 x 10238,

—4.39327 x 10!t — 1.27106 x 102+

O.I.’II -

(5.13.5)

The graphs of polynomials (5.13.4) and (5.13.5), representing the analytical and FE solutions for

stress 05, as functions of time, are shown in Figure 5.6. These two graphs are sufficiently close to

each other.
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5.13.2 Comparison of exact and FE solutions for a simply supported

sandwich plate with isotropic face sheets and the core

Let us consider a sandwich plate with steel face sheets and an isotropic core made of foam. We
assume the following properties of the face sheets and the core:

core: Young’s modulus Ey = 1.0192 X 108%, Poisson’s ratio v = 0.3, thickness t = 2 x 10~%m,
mass density p. = 2 x 102£5;

face sheets: Young’s modulus E; = 1.9796 X 10“;%’2-, Poisson’s ratio v = 0.3, thickness of each
face sheet & — £ =1 x 107%m, mass density p; = 7.8 X 10° 2.
The total thickness of the plate is h = 2.2 x 10~2m. The plate is under the load %* = —1 x 105-7%’;.

The exact analytical solution for stresses in a static simply supported isotropic sandwich plate,
loaded uniformly on the upper surface, has the form of equations (2-E.43) - (2-E.51) of Appendix
9-E. The tables below show the results of comparison of the stresses, obtained for this problem by

exact analytical method and by the FE method.
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Table 5.4: Comparison of exact and FE solutions for a simply supported sandwich plate with

isotropic face sheets and the core for stress ;, at = = % Thickness of the plate is h = 0.022m,

thickness of each face sheet is 0.001m, thickness of the core is ¢ = 0.02m, length L varies.

L 2 Oxz at z=-2 0z at z=Zf: Oz at z=2
(m) (XIOG;NT) (xloﬁﬁy) (xlOG;NT)
exact plate exact plate exact plate
theory theory theory
0.05 | 0.44 1.556 1.555 —1.484 —1.481 —1.556 —1.555
error0.06 % error 0.2 % error0.06 %
0.1 | 022 6.222 6.221 -5.938 —5.922 —6.222 6.221
error 0.02% error 0.3 % error 0.02%
0.2 0.11 24.887 24.875 -23.75 —-23.69 —24.887 —24.875
error 0.05% error 0.25 % error 0.05%
0.3 0.07 55.99 55.97 —53.45 -53.23 —55.99 —-55.97
error0.04 % error 0.4 % error 0.04 %
0.4 0.055 99.54 99.49 —-95.02 —04.64 —99.54 —99.49
error 0.05 % error 0.4 % error 0.05 %
0.5 0.044 155.5 155.4 —148.5 —147.91 -155.5 —155.4
error 0.06% error 0.4 % error 0.06 %
0.6 | 0.037 | 223.97 223.75 —213.8 —-212.74 —-223.97 —223.75
error 0.1 % error 0.5 % error 0.1 %
0.7 | 0.031 304.85 304.69 —291.0 —289.3 ~304.85 —304.69
error 0.05 % error 0.6 % error 0.05 %
0.8 | 0.0275 | 398.2 399.18 -380.1 —-378.3 —398.2 399.18
error 0.2 % error 0.5 % error 0.2 %
0.9 | 0.024 503.9 504.5 ~481.0 —477.5 -503.9 504.5
error 0.1 % error 0.7 % error 0.1 %
1 0.022 622.1 624.4 —593.9 —587.55 —622.1 —624.4
error 0.4 % error 1.1 % error 0.4 %
1.1 0.02 752.8 756.6 —718.58 —698.7 —752.8 ~756.6
error 0.5 % error 2.8 % error 0.5 %
1.2 | 0.018 | 895.9 873.2 —855.2 —790.85 —895.9 —873.2
error 2.5 % error 7.5 % error 2.5 %

This table shows that the finite element program allows one to achieve a high accuracy of compu-

tation of the in-plane stress o,. As the thickness-to-length ratio decreases, the accuracy of 0z,

computed by the FE program decreases slightly, but remains acceptable for a very wide range of the

thickness-to-length ratios. The upper faces are under compression (stress o is negative), and the

lower faces are in tension (stress o, is positive) as expected.
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Table 5.5: Comparison of exact and FE solutions for a simply supported sandwich plate with
isotropic face sheets and the core for stress oz at = = !2‘— (L = 0.5m). Thickness of the plate is

h=0.022m, thickness of the face sheet T varies

T I Oz 8t z= —-’25 Oz at z= 2fH Ozz 8t z=2%
() (10 ) (10" %) (102
exact plate exact plate exact plate
theory theory theory
0.001 | 0.045 | 155.5 155.3 —148.5 —147.68 | —155.5 -155.3
error 0.13% error 0.55% error 0.13%
0.002 | 0.09 | 85.60 85.39 ~77.82 ~77.48 —85.60 -85.39
error 0.2% error 0.4% error 0.2%
0.003 | 0.14 | 62.94 62.78 —54.35 —-54.14 —62.94 —62.78
error 0.25% error 0.4% error 0.25%
0.004 | 0.18 | 52.18 52.04 —42.69 —42.52 —52.18 —52.04
error 0.27% error 0.4% error 0.27%
0.005 | 0.18 | 46.245 46.12 -35.728 -35.64 —46.245 —46.12
error 0.27% error 0.25% error 0.27%
0.006 | 0.27 | 42.76 42.63 -31.09 -30.97 —42.76 —-42.63
error 0.3% error 0.4% error 0.3%
0.010 | 0.45 38.78 38.64 —21.14 -21.07 —-38.78 —38.64
error 0.4% error 0.3% error 0.4%

From the last table we see that as the relative thickness of the face sheets increases, the accuracy of
the in-plane stress 0, decreases slightly, but remains sufficiently high in a wide range of the ratios

of the face sheet’s thickness to the total thickness of the plate.
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Table 5.6: Comparison of exact and FE solutions for a simply supported sandwich plate with
isotropic face sheets and the core. Variation of stress 0., in the thickness direction at z = L/2of a

plate with length L = 1m, thickness of each face sheet 7 = 0.001m, thickness of the core t = 0.02m

z Ozz Ozz

(m) | (m) (x100-2)  (x1008%)
exact plate
theory
0.5 | —0.0110 622.14 619.27
error 0.46%
0.5 | —0.0108 610.83 609.51
error 0.22%
0.5 | —0.0106 599.52 598.21
error .022%
0.5 | —0.0104 588.21 586.91
error 0.22%
0.5 | —0.0102 576.9 574.17
error 0.47%
0.5 | —0.0100 565.59 564.30
error 0.23%
0.5 | —0.009999 | 0.29119 0.28%3
0.5 | —0.0060 0.1747 0.1662
error 4.9 %
0.5 | —0.0020 0.05823 0.0556
error 4.5%
0.5 1 0.0 0 —0.006
0.5 | 0.0020 -0.05823 0.0556
error 4.5%
0.5 | 0.0060 -0.1747 —0.1664
error 4.7%
0.5 | 0.009999 -0.29119 | —0.2836
error 2.6%
0.5 | 0.0100 -565.59 -565.30
error 0.05%
0.5 | 0.0102 -576.9 —-575.6
error 0.22%
0.5 | 0.0104 -588.21 —586.91
error 0.22%
0.5 | 0.0106 -599.52 -598.21
error 0.22%
0.5 | 0.0108 -610.83 —609.513
error 0.22%
0.5 | 0.0110 -622.14 —622.44
error 0.05%
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This data is shown graphically in Figure 5.7. This comparison shows that the in-plane stress o, in
the face sheets is computed by the finite element with high accuracy. In the core, the relative error
in computation of the stress 0z, is higher, but is acceptable. The values of the stress o in the
core are very low, and this is the reason why the relative error is higher in the core than in the face
sheets, despite the fact that the absolute error in the core is small. At the middle surface of the
plate (z = 0), the exact value of 0., is equal to zero, and this leads to the infinite relative error at
this location regardless of the smallness of the approximate solution. This suggests that if the exact

values of stresses are very small, the relative error can be not a good measure of accuracy.
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Table 5.7: Comparison of exact and FE solutions for a simply supported sandwich plate with

isotropic face sheets and the core for stress o,, at x = 0.8L. Thickness of the plate is h = 0.022m,

thickness of each face sheet is 0.001m, length L varies

L L 0z: 8t z= APz 0z, at z= &tz Or: At z=Zf:
(m) (10° %) (10°5%) (10°2%)
exact plate exact plate exact plate
theory theory theory
0.05 | 0.44 0.0365 0.0338 0.0714 0.0660 0.0365 0.03376
error 7.4% error 7.5% error 7.5%
0.1 |0.22 0.0730 0.0675 0.1429 0.1321 0.0730 0.0678
error 7.5% error 7.5% error 7.4%
0.2 0.11 0.1459 0.1357 0.2857 0.2654 0.1459 0.1382
error 7.0% error 7.1% error 5.3%
0.3 | 0.07 0.2189 0.2191 0.4286 0.4289 0.2189 0.2123
error 0.09% error 0.07% error 3.0%
04 | 0.065 | 0.2918 0.2725 0.5715 0.5331 0.2918 0.2892
error 6.6% error 6.7% error 0.9%
0.5 | 0.044 | 0.3648 0.3649 0.7144 0.7143 0.3648 0.3625
error 0.03% error 0.01% error 0.6%
0.6 | 0.037 | 0.4378 0.4409 0.8573 0.8630 0.4378 0.4502
error 0.7% error 0.7% error 2.8%
0.7 | 0.031 0.5107 0.5172 1.0001 1.0127 0.5107 0.5320
error 1.3% error 1.26% error 4.2%
0.8 | 0.0275 | 0.5837 0.5681 1.1430 1.1126 0.5837 0.5715
error 2.7% error 2.6% error 2.1%
0.9 | 0.024 | 0.6566 0.6756 1.2859 1.3229 0.6566 0.6800
error 2.9% error 2.8 % error 3.6%
1 0.022 | 0.7296 0.7367 1.4288 1.4426 0.7296 0.7391
error 0.9% error 1.0% error 1.3%
1.1 0.02 0.8026 0.7879 1.5716 1.5429 0.8026 0.7902
error 1.8% error 1.8% error 1.5%

The accuracy of computation of the transverse shear stress 0, is good in the wide range of the

thickness-to-length ratios. For very short plates (high thickness-to-length ratios), the relative errors

are larger than 7%, despite the fact that the absolute errors are small. This is due to the fact that

in short plates the exact values of the stress o, are very small, and, as it was mentioned earlier,

the relative error in computation of small values can be not a good criterion of accuracy.
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Table 5.8: Comparison of exact and FE solutions for a simply supported sandwich plate with
isotropic face sheets and the core for stress o, at * = 0.8L (L = 1m). Thickness of the plate is

h = 0.022m, thickness of the face sheets 7 varies.

T F Oz, at z=2aim 0z, at z= iz 0z: at z=f:
(m) (x10° %) (x10°2%) (x10° 25)
exact plate exact plate exact plate
theory theory theory
0.001 | 0.045 | 0.72961 0.7367 1.4288 1.4426 0.72961 0.7391
error 1.0% error 1.0% error 1.3%
0.002 | 0.09 | 0.78439 0.7986 1.4956 1.5227 0.78439 0.8051
error 1.8% error 1.8% error 2.6%
0.003 | 0.14 | 0.84451 0.8662 1.5663 1.6068 0.84451 0.8148
error 2.6% error 2.3% error 3.5%
0.004 | 0.18 | 0.91077 0.9401 1.64 1.6949 0.91077 0.9512
error 3.2% error 3.3% error 4.4 %
0.005 | 0.18 | 0.98365 0.9985 1.7154 1.7405 0.98365 1.0299
error 1.5% error 1.5% error 4.7%
0.006 | 0.27 1.0634 1.0723 1.7912 1.8010 1.0634 1.1123
error 0.84% error 0.54% error 4.6%
0.010 | 0.45 1.438 1.4767 2.0301 2.0843 1.438 1.4835
error 2.7% error 2.7% error 3.4%

The accuracy of computation of stress o, is good for a wide range of ratios of the face sheet’s
thickness to the total thickness of the plate. The closer to the upper surface of the plate, the lower
the accuracy. This is due to the fact that expressions for the stress o, in the face sheets and the

core are found by integration of equilibrium equations:

Z

eV =) (z) +/ (p(l)ﬁ(l) — H(ri.lm),r - Hogy),y) dz (1 <2<2), (5.13.6)
N e’
0 z)
z
c? = 0® (23) +/ (p(l)ﬁ(z) - Hag),z - Hag),y) dz (22 £ 2<z3), (5.13.7)
Z2
o83 =0 (23) +/ (p“)il(g) - Hel) — Ho;:;)‘y) dz (23 <2< z), (5.13.8)

23

The integration is performed in the direction from the lower surface to the upper surface. This leads

to exact satisfaction of the boundary condition at the lower surface (ag) (21) = 0) regardless of
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accuracy of computation of the in-plane stresses, and to approximate satisfaction of the boundary
conditions at the upper surface (og? (24) = 0), if the in-plane stresses are computed approximately.
Therefore, the accuracy of computation of the transverse stresses 0., deteriorates slightly as the ob-
servation point moves from the lower surface to the upper surface of the plate. Besides, the accuracy
of the transverse stress 0., computation is lower than the accuracy of the in-plane stress compu-
tation. This is due to the fact that the computation of the transverse stresses by the integration
of equilibrium equations requires computation of the derivatives of the field variables of the order
higher than the degree of the interpolation polynomials. This is done by a finite difference scheme
applied to the nodal values of the field variables. But with the increase in the order of a derivative,
the accuracy of numerical differentiation is reduced. To overcome this deterioration of accuracy of
computation of the higher order derivatives, a large number of elements must be used. The same is

true for the transverse stress ¢, as will be seen in the subsequent text.




CHAPTER § 345

Table 5.9: Comparison of exact and FE solutions for a simply supported sandwich plate with isotropic
face sheets and the core. Variation of stress o, in the thickness direction for a plate with length

L = 1m, thickness of each face sheet 7 = 0.001m, thickness of the core t = 0.02m, at z = 0.8L.

xr 2 Oz Oz
(m) | (m) (x108:0)  (x108 L)
exact plate
theory
0.8 | —0.0110 0 0
0.8 | —0.0108 0.29591 0.29?;
0.8 | —0.0106 0.58640 0.59%;
0.8 | —0.0104 0.87145 0.87?3
0.8 | —0.0102 1.1511 1.16%%
0.8 | —0.0100 1.4253 1.43?8
0.8 | —0.009999 | 1.4253 1.43?8
0.8 | —0.0060 1.4275 1.44};
0.8 | —0.0020 1.4286 1.4412;1
0.8 | 0.0 1.4288 1.44%9
0.8 | 0.0020 1.4286 1.44%471'
0.8 | 0.0060 1.4275 1.44%5;
0.8 | 0.009999 1.4253 1.43?((7)
0.8 | 0.0100 1.4253 1.44%9
0.8 | 0.0102 1.1511 1.1654
error 1.2%
0.8 | 0.0104 0.87145 0.881227
0.8 | 0.0106 0.5864 0.5943
error 1.3%
0.8 | 0.0108 0.29591 0.301055ly
0.8 | 0.011 0.0 0.0012

This data is shown graphically in Figure 5.8. This comparison shows that the through-the-
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thickness variation of the stress o, is accurately computed by the FE program. The accuracy
of the stress o, computation deteriorates slightly as the observation point moves from the lower
surface to the upper surface for the reason mentioned above. Besides, the accuracy of the stress
0y, is somewhat lower than the accuracy of the in-plane stress 0;. The reason of this (as it was
mentioned above) is the need to evaluate the higher order derivatives of the field variables by a finite

difference scheme in order to compute the stress o,.
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Table 5.10: Comparison of exact and FE solutions for a simply supported sandwich plate with

isotropic face sheets and the core for stress 0, at x = L/2. Thickness of the plate is h = 0.022m,

thickness of each face sheet is 0.001m, length L varies

L % 0, at z = —-’% 0., at =z 52% Ozs at z= %
(m) (x10° ) (x105 2 ) (x10° 2%)
exact plate exact plate exact plate
theory theory theory
0.05 | 0.44 0 0 -0.5 -0.5004 | -1 —1.0466
error 0.08% error 4.7%
0.1 §0.22 0 0 -0.5 —-0.4997 | -1 —1.0451
error 0.06% error 4.5%
0.2 |011 0 0 -0.5 -0.5077 | -1 —1.0413
error 1.54% error 4.1%
0.3 | 0.07 0 0 -0.5 —0.5043 -1 ~1.0438
error 0.9% error 4.4%
04 0.0565 0 0 -0.5 —0.5162 -1 —1.0490
error 3.2% error 4.9%
0.5 0.044 0 0 -0.5 —0.4862 -1 -1.0162
error 2.8% error 1.6%
0.6 0.037 0 0 -0.5 —0.4993 -1 —1.0435
error 0.1% error 4.35%
0.7 | 0.031 0 0 -0.5 —0.4942 -1 —1.0329
error 1.2% error 3.29%
0.8 0.0275 | O 0 -0.5 —0.5147 -1 —1.0457
error 2.9% error 4.6%
09 (0024 |O 0 -0.5 —0.5026 -1 —1.0406
error 0.5% error 4.1%
1 0.022 |0 0 -0.5 —0.4859 -1 —1.0156
error 2.8% error 1.6%
1.1 | 0.02 0 0 -0.5 —0.4953 -1 —1.0352
error 0.9% error 3.5%
1.2 10018 |0 0 -0.5 —-0.5001 § -1 —1.0453
error 0.02% error 4.5%

This comparison shows the following tendencies: the thickness-to-length ratio has little influence

on the accuracy of the stress o, computation; the accuracy decreases as the observation point moves

from the lower surface to the upper surface (the reason of this was discussed above);




CHAPTER 5

Table 5.11: Comparison of exact and FE solutions for a simply supported sandwich plate with

isotropic face sheets and the core for stress o, at £ = L/2 (L=1m). Thickness of the plate is

h = 0.022m, thickness 7 of each face sheet varies

So, the accuracy is higher for the plates with thinner face sheets.

T I 0, at z= —-2’5 0,. at z=%xin Czz at z=12
(m) (x10° ;) (x10%2%) (x105-8;)
exact plate exact plate exact plate
theory theory theory
0.001 | 0.045 [ O 0 -0.5 —-04859 | -1 —-1.0156
error 2.8% error 1.56%
0.002 1009 |0 0 -0.5 —0.4932 -1 —0.9855
error 1.4% error 1.45%
0.003 | 0.14 0 0 -0.5 —0.5031 -1 -1.024
error 0.6% error 2.4%
0.004 | 0.18 [ O 0 -0.5 —0.4879 -1 —1.031
error 2.4% error 3.1%
0.005 | 0.18 0 0 -0.5 —-0.5003 | -1 —1.039
error 0.06% error 3.9%
0.006 | 0.27 |0 0 -0.5 —0.4845 -1 —1.046
error 3.1% error 4.6%
0.010 { 0.45 0 0 -0.5 -0.4849 -1 -1.071
error 3.0% error 7.1%
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Table 5.12: Comparison of exact and FE solutions for a simply supported sandwich plate with
isotropic face sheets and the core. Variation of stress o in the thickness direction of a plate with

length L = 1m, thickness h = 0.022m, thickness of each face sheet 7 = 0.001m, thickness of the core

t = 0.02m.

N
T z Oz
(m) | m) ()
exact plate
theory
0.5 | —0.0110 0 0
0.5 | —0.0108 —98.94 —96.13
error 2.8%
0.5 | —0.0106 -393.35 —382.18
error 2.8%
0.5 | —0.0104 —879.6 —854.65
error 2.8%
0.5 | —0.0102 —1554.1 1510.02
error 2.8%
0.5 | —0.0100 —2413.2 —2344.78
error 2.8%
0.5 | —0.009999 | —2417.9 —2354.90
error 2.5 %
0.5 § —0.0060 ~92.1433 x 10* | —2.0832 x 10*
error 2.8%
0.5 | —0.0020 —4.0475 x 10* | —3.9335 x 104
error 2.8 %
0.5 | 0.0 —5.0 x 104 —4.8590 x 10*
. error 2.8%
0.5 | 0.0020 —5.9525 x 10* | —5.7846 ><17104
error 2.8%
0.5 | 0.0060 —7.8567 x 10* | —7.6349 X7104
error 2.8%
0.5 | 0.009999 —9.7582 x 10* | —9.4826 x 104
error 2.8%
0.5 | 0.0100 —9.7587 x 10* | —9.4837 x 104
error 2.8%
0.5 | 0.0102 —9.8446 x 10* | —9.5641 x 10*
error 2.8 %
0.5 | 0.0104 —9.9120 x 10* | —9.6266 X¢7104
error 2.9%
0.5 | 0.0106 —9.9607 x 10* | —9.6708 ><94104
error 2.9%
0.5 | 0.0108 —9.9901 x 10* | —9.6963 x 104
error 2.9%
0.5 | 0.011 ~1.0 x 10° —-1.0156 x 10°
error 1.6 %
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This data is shown graphically in Figure 5.9. The accuracy of computation is sufficiently high.

The comparison of the exact and finite element solutions made in this section, shows that 1)
the simplified layerwise theory of the sandwich plate, developed in this chapter, leads to sufficiently
high accuracy of stress computation for a wide range of geometric dimensions; 2) the finite element
program developed on the basis of the simplified layerwise theory of the sandwich plates in cylindrical
bending is a reliable tool for analysis of the sandwich plates if the conditions of cylindrical bending
are met. ‘

In the next section, this finite element program will be applied to stress and failure analysis of
a composite cargo platform dropped on elastic foundation. It will be assumed that the conditions

that allow the platform to be in cylindrical bending, are met.
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5.14 An Example Problem: Finite Element Analysis, with
Account of Damage Progression, of a Composite Sand-
wich Cargo Platform Dropped on Elastic Foundation

Let us consider a sandwich platform with laminated composite face sheets, made of AS4/3501-6
material, and a honeycomb core, made of Nomex HRH10-1/8-4.0. Both face sheets have the same
thickness 0.0025m, and each of them consists of 25 plies with 0°/90° layup. The thickness of the core
is 0.04m. The cargo of mass 500 kg on the upper surface is located symmetrically with respect to the
middle of the plate’s span, and has the length 0.2m. The moduli of the elastic Winkler foundations,
considered in the example problems, are 6.7864 x 107% and 6.7864 X IOSENE. We will consider a
plate falling on the elastic foundation with the initial velocities —175 and —307%. The values of
coefficients a; and as in the proportional damping matrix [C] = oy [K] + a2 [M] were chosen to be
e = 0.002, a; = 0.2. In this example problem we will compute all stresses as functions of time
at the middle of the plate’s span (ie. at z = % = 0.5m) and at the plate’s lower surface (i.e. at
z=—%=-00225).

First, a nonlinear dynamic finite element analysis will be performed and a comparison will be
made of stresses and the transverse displacement, obtained from the finite element program with
damage analysis capability activated and deactivated, with different initial velocities. The input

data (in SI units) can be summarized as follows:

Number of elements in FE mesh........ =40
Panel length ....coooceereiecvvniiiinniinne = 1.00
Panel width ....ccoovvviiiiiniinniininn, = 5.00
Total number of nodes in FE mesh....= 41
Number of DOF per node ................ =5
Number of plies in each face .= 25

Number of core plies ......... =10

Face ply Core ply
material properties material properties
El = .145E+12 E1 = 0.804E+-08
E2 = .970E+10 E2 = 0.804E+08

E3 = .970E+10 E3 = 0.101E+10
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G12 = .600E+10
G13 = .600E+10
G23 = .360E+10
Nul2 = .300E+4-00
Nul3 = .300E+00
Nu23 = .300E+00

XT = .217E+10
XC = .172E+10
YT = .538E+08
YC = .206E+-09
ZT = .538E+08
ZC = .206E409

S12 = .121E+09
S13 = .121E+09
523 = .893E+4-08

G12 = 0.322E+08
G13 = 0.120E+09
G23 = 0.758E+11
Nul2 = 0.250E+4-00
Nul3 = 0.200E-01
Nu23 = 0.200E-01
XT = 0.100E407
XC = 0.100E+07
YT = 0.100E+4-07
YC = 0.100E+07
ZT = 0.383E+-07
ZC = 0.383E+07
S12 = 0.178E4-09
S13 = 0.178E+09
S23 = 0.142E+09

Face mass density = 0.161E+04

Face thickness =

0.100E-03

Core mass density = 0.139E+03

Core thickness =

Rigid body mass =

Coordinates of the beginning and the end of the cargo:

X1 =04
X2=10.6

0.400E-01
0.500E+-03

Foundation modulus = 0.679E+08

Time increment ........

Total time ................

= 0.10000E-03
= 0.40000E-01

Initial displacement ..= 0.00000E+00
Initial velocity........... =-1.0
Initial acceleration ...= 0.98100E+01

352
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Parameters of proportional damping matrix:
Alphal ............... = .20000E-02
Alpha2 ..............= .20000E+00

Parameters of the Newmark method:

Gamma ......cceeeus =0.5

Beta ..ccoouenen. = 0.25

Figures 5.10-5.14 show results of analysis with initial velocity —12 and a foundation modulus
6.7864 x 107 % (sand). In this case no damage occurs, therefore, the graphs of the stresses and
the transverse displacement, computed with and without account of damage, coincide. Figure 5.13
shows the transverse displacements of the upper and lower surfaces as a function of time. In the
first half-period, the absolute value of the transverse displacement of the upper surface is larger than
the absolute value of the transverse displacement of the lower surface, that means that in the first
half-period the thickness of the plate is smaller than its thickness in the undeformed state. In the
second half-period the thickness of the plate is larger than its thickness in the undeformed state.
This change of the plate’s thickness was captured due to the fact that the direct transverse strain
€,, was not assumed to be equal to zero.

Figures 5.15-5.18 show stresses and the transverse displacement in the platform that has initial
velocity —30™ and falls on the same elastic foundation (with modulus 6.7864 x 107%). Under this
initial velocity the damage in the plate occurs at the moment of time ¢ = 0.14 X 10~2s (Figure 5.20).
In the finite elements, that are located directly under the mass on the upper surface (for example
the element #11, Figure 5.19) the damage occurs in both the core and the face sheets. The picture
of damage progression in the thickness direction of the eleventh element is shown in Figure 5.20.
We see that the failure of the core occurs first,and this failure is due to the vertical compression
(crushing) of the core. This is due to the fact that the compression strength of the Nomex core in
the thickness direction is the lowest as compared to all other strength characteristics of the faces
and the core. At the moment of time ¢t = 0.14 x 10~2s, when the damage starts to progress, there
also occurs the tensile matrix failure in the ply of the lower face that is adjacent to the core.

As the failure in the 11-th element progresses with time in the thickness direction, the plies in
the lower face sheets with 90-degree orientation experience the tensile matrix failure. (Figure 5.20).
This occurs mainly due to the tensile (positive) stress o4, (022 for the plies with 90-degree fiber

orientation) in the plies that are closer to the lower surface.
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As the failure in the 11-th element progresses further, the fiber failure in compression occurs in
the plies of the upper face with the 0-degree fiber orientation. This mode of failure starts closer to
the upper surface and progresses downward as the compressive stress 0, (responsible for this mode
of failure according to the criterion (5.2.14)) increases with time

The next mode of failure is the fiber failure in tension that occurs (according to the criterion
(5.12.12)) in the lower face sheet in the plies with the 0-degree fiber orientation that are closer to
the lower surface. This mode of failure occurs closer to the lower surface, that suggests that it is
mainly due to the tensile stress 0z, but the stress o, also contributes to the breakage of the fibers.

The last mode of failure in the 11-th element is matrix failure in compression (matrix crushing)

in the 90-degree plies of the upper face sheet, that is predicted by the criterion (5.2.19)

The graphs in Figures 5.15 -5.18 show stresses and the transverse displacement in the 11-th
element of the plate dropped on the sand foundation, computed with and without account of damage,
in order to study the changes in the structural response due to the damage progression. When the
failure of the face sheets and the core occurs and begins to progress, the stress 0z, in the lower face
sheet, in a finite element that contains the damaged face sheet (at a point z = L/2, z = —h/2, Figure
5.15), begins reducing rapidly with time until it reaches the zero value. This result is expected, since
in this problem there are no external forces in the x-direction, acting on the plate. The stress oz
in the face sheets is due to the strains that appear in the face sheets because of bending, and is
computed from the constitutive equations. Therefore, if the values of the stiffness coefficients in the
constitutive equations reduce because of fiber failure in tension, the stress o, also reduces.

The amplitude of stress 0., does not change significantly when the failure occurs, because it
depends mainly on the external forces in z-direction, that do not change abruptly when the failure
occurs. But the amplitudes of the stress o, in the presence of damage (Figures 5.16) shift in the
graphs to right, because the frequencies of vibration decrease, due to the decrease of the plate’s
stiffness.

The graphs of stress o, as a function of time have the same shape as the corresponding graphs
of the stress 0z, but the values of o,, are much lower than the values of o5 at the same moments
of time. This can be explained as follows. From the constitutive equations (3.6.13), we receive the

following stress-strain relations in case of plane strain (cylindrical bending) :

Oz = -C_llfa::z: +—C_1352z 3 (5141) »
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Ozz = _0—2511 + 5335zz , (5142)

Oyy = 612611 +623En . (5.14.3)

If we express strains ¢, and €, in terms of stresses from equations (5.14.1) and (5.14.2), and

substitute the resulting equations into the equation (5.14.3), we receive

1 — = = —
Oy === =2 [ (C12Css — C23C13) 02z + (C23Cn1 — C12C13) azz] : (5.14.4)
Cllc33 - Cls

In a ply with zero-degree fiber orientation, according to equations (3.6.4) - (3.6.9),

(612533 —C23C13) =

_ (vi2B2 + vasv13Es) (E1 — v E) EyE2E3 — (vo3 E1 + vigvizEz) (viaves + 113) E\E2E?
(E2E1 - E] I/§3E3 - l/io'QEg - 21/12E21/23V13E3 - 1/123E2E3)2
(5.14.5)

and
(C23C11 — C12C3) =

(V23E1 + v13v12E) (B2 — v33E3) E}EyEs — (V2 By + va3v13Es3) (V12v23 + vi3) E3E3Es
(E2E1 El 1/23E3 - 1/12E2 - 2V12E21/23I/13E3 - V13E2E3)

(5.14.6)

Therefore, in equation (5.14.6), coefficients of 0., and 0 are of the same order of magnitude, but
the stress 0,, on the lower surface of the plate is much lower than the stress o, , according to
Figures 5.15 and 5.16. Therefore, according to equation (5.14.4), the stress oy, is proportional to
the stress 0zz.

The transverse displacement w (Figure 5.18), computed with account of damage, has larger
amplitudes than w, computed without account of damage, that is expected, because the damage

leads to reduction of the plate’s stiffness.

Figures 5.22-5.25 show the stresses and the transverse displacement of the plate that falls with
the same initial velocity on the elastic foundation with a higher modulus. Comparing the graphs of

Figures 5.22 and 5.15, we see that with the increase of the modulus of elastic foundation, the stress
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o.x decreases, that is expected because the plate on the elastic foundation with higher modulus
has smaller curvature. The stress 0. in the plate, falling on a stiffer foundation, is higher (Figures
5.23 and 5.16), as expected, because deceleration of the plate interacting with the stiffer foundation
occurs at a higher rate, that leads to the larger forces of interaction of the plate with the cargo and
with the foundation. The transverse displacement of the plate on the stiffer foundation is lower {
compare Figures 5.25 and 5.18). When the plate falls on the stiffer foundation, the modes of failure
and the sequence of occurrence of failure in time are approximately the same, but the failure begins
earlier in time, as can be seen by comparing the Figure 5.26 to 5.20, Figure 5.27 to 5.21.

The developed finite element program allows to perform both linear and nonlinear analyses,
based on linear strain-displacement relations and the von-Karman strain-displacement relations.
Therefore, it is interesting to compare the stresses and displacements obtained from these two kinds
of analysis. The question of appropriateness of such a comparison is discussed in Appendix 5-F.
The results based on linear and nonlinear analyses (Figures 5.28 — 5.31) are somewhat different: the
nonlinear analysis predicts a higher rate of decrease of the stresses 0z and 0y, due to the failure

and slightly higher amplitudes of the stress 0,, and the transverse displacement w.
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5.15 Appendix 5-A. Components of the stiffness matrix of
the linearly formulated problem

Matrix [k()] = [k(l)]T in the first term of expression (5.10.35) has the following components:
1 1 1 1 1 1 1 1
kgl) = %D£2), k%z) = %Dgz)a k§3) = _%Déz): k( )= TDéz)v

(1) 1
Ky =0, Ky =0, k§17)=—622—uT-lezD Tl

(1 _ (1) (1) _agp() (1) _opfl)
k&) =32 ng”l 2Dy D]2 2Dy’ k§11)0 = —32 nglzl 2Dz
1 1 1 1 1 1 1 1
KD = 4p® kY =-&DY, kY =20y, kK =-2%Df),
(1) _gpD) (1) (1)
ké:i) =<7 Dg)v ké}{') = —32 2D 72 2D s kéé) = —22z 220 o[ 2D )

22
(1 ) 1 o
(1) _ o, z2D—2D (1) 2D} —2D
k 3zg =—i—22, k2 10 = —zp =2,

1 1 1 1 1
kés) = %‘Dgz)a k:(s4) =-p Déz)» kas) =0, k:(ss) =0,
(1) _optV) (1) _gpQ)
kD) = 62 zlezl 20 ) = 35, zlez 2D}
%D —2Dg) (1) _ g, ng(lzl’—2D2(12)

1
k:(sg) = —622———"27r—22-, 510 = 322 . ,

bl

(1) _o (D

KD = 4D, kY =22D3, ki = —22p{l)| kY = -3z, 2Pzl
(1) _ (1) 1) _ (1) (1) _ 1)

k‘g) N, D”l 2D} ’ kfl:,) — 32 zzD”r 2Dy} ’ kigo = 22 zlezl 2D} ’

1 1 (1 1) _ 1) _ -z, D{{'+2D{}
kt(ss) D11 ) k( ) = %Z%Dn)a k§7) =0, kgs) = ”Zg s T )

1) _ 1) —zD{+2D{}
kég) = 0: ké 10 = z% . T ,

) (1
k(l) 4 2D(1) k(}’) =0, k(l) 2 22D111+2D]2) ké})) — 0,

T 2+711 )

RO —zD{'+2D{}
6,10 — 22 7 )

NUNNPEE i ST, AT R I W B e CL R L S

- 2 13 ] 78 2%2 12 ]
2 (1 1

k(l) 3z2—z§D§,’+4z29§2’-4D§‘2> K0 3.2 ~qu§‘l’+4z2D“’ —4DSY

2 I » K710 222 I )

k(l)z_ﬁ( D(1)+422D(1> 4D(1)>, KD = 322 z%Di‘R+47§Dii>—4DéQ,

]
€ = ~4% (~ 3D + 42Dy - 4D).
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ks(;;) = 322 —z§D§}’+4ZI§D§;’—4D;;” k(lm _ % g—z2D§§’+47§D§F,’—4@Q
2
Ko = —% (-0 + 42D - aply)).

Matrix [k®] =

)

[k(3)] T in the first term of expression (5.10.37) has the following components:

KO- B0Y. WY - pR. WY =-Ro, k- #0f)

3 @ _ (a)
k§5) =0, k(s) =0, k(s) = —623-—““——22'de . = 2D ,

3 D _ap® (3) _op(d (3) _opn(3)
kgs): 23 ,2 22 (3) 63;317,2 2D, , kl ), = 323z3D”122022’

3 (3 (3) _ (3) _ (3) (3) _ (3)

k() Dzz): kos = _TD22, kyy = $D3y, kg5 = —2%3Dpy

@) _ (3) <s_ <3)

RS I v e )

3 D{) -2D§) 3 D{ —2D{Y

kég) =322 ] ) ké,l)o = -2z I )

R i L

3 D —2D§ 3 D& —2psY)

IR

3 D® _apl¥ D® _2p)

k:(‘Q) - _62331_1.21_3__22_’ ks 1o = 32 fE_.LZ_Z_JL ,

3 3 3 3 4 (3 3 D® —2p{®
K= 1D, KD —23DY. HY = 23D, MY = -gn 22zl

D3 —2Df) 3 Dy 2D 3 aD'Y —2D)
ki = —z 222 ' ig) = 323 =2k, kfm)o = —2z3 %2 zw '
(@) Lo p(3)

KO = 1209, k= 42D, k) =0, K =-A==PuERR
KD =0, k), = =D 42D

9 =Y FR510= I ;

(3 (3)

KD = 1409, MY =0, K = geasianl 4

3 _ —z D +2D%}
ks,}o—_zg . T )

(O _ g2 =D tasD@ 4D @) _ 32D +ennld -4nl

7 = 3 = y g8 = 73 ) )

kD = 322 -z§D§T+4ﬁD§2’—4D§;” kK8, = -3 g—zqoﬁj +4zl;D§‘;)——4D;;),

3 2 3 3 3 3 —22D® 4425 D) —4DEY
KO = i (_z§D§1)+4z31)§2)—4D§)), k() = 3,3 mmali Dy, ,
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3 2 3 3) 3
K = ~3% (-4DE) + 42D - 4D)) |
k(3) 322 0—22D §‘}‘+4qu§§’—413§§‘ K3 3, 9 —22D¥ 442,03 4D
Ik » K910 = 2 23 72 J

2
Ko = —% (-#4DY +42D() - 4Df).
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Matrix [’15(2)] = [’]E(z) in the first term of expression (5.10.42) has the following components:
2 2) (2 2) (2 2 2 =2 (2
k%l) = ‘TDéz)’ k§2) = ﬁpéz): k§3) = “%D£2)» k( )= TszDéz)a kg ) = 0, k(a) =0,
2 5D +DF1 (2 3002 +DE 12 7@ DP+DP 12 (2 3013‘2)+13<2’z2
k§7) = 6_23"'—24_7 kgs) = Ilﬁ_—zazT‘L’ k§9) = _g B ’ “0 = '1'16 I )

~2 (2 2 (2 2) N ~(2
k22 = Dzz: kés)z_%Déz)v k()— Déz)» kés Z_%Déz), kés)=%D§2)’

B = L30DEnbi ¢ g 2) 50\ 2@ _ _ 1 3B +DE
kyp =157 7 VR =& (DR +15D8)), R = - TeniRur,

7@ _ _1 —30B53 + D1
2,10 — T 30 1 ’
~ ~(2) (2
(2 12 (2) 72 _ ~2) 72 _ (2) _ _65D33+D, 1
kas) 7Dy, ki —;D22, kss =0, kyg =0, kg7 =-3 3 J
7@ _ _1 30D(2)+D(2)12 7@ _ 6 5D5Y + D12 7@ _ 1 30D + D2
38 — T 10 ] y R399 = § 13 ) 3,10 — T 10 ] ’

~@2 =(2 2 (2 2 ~(2 2 3002+ D212
=D, R =10, R = DR, B - pubpmle

~2) —301)2(?,)+fo,’12 ~2) 30D +11BP 12 @) _ (2) ~(2)

k‘(is) = -3 1 , kig =—15 Z » kio= 151 Dy +15Dy5 ),
~@2 ~2) (2 =~2) (2 ~2) (2 6D +DENE 22) ~(2

kés) = %Déz)’ kgs) = —%Déz)’ k57) =—Dyy, ksg = —Els“—nz_“_a ksg = —D24),
7@ _1 6D+ D212

510 — 6 1 3

70 _4p@ 7@ - p® @ _ 1 GD§§’+D§§>12 7@) _ 3@ 70 1605 +D3)12
keg' = TD22 y kez Dy, keg keg = Dyy’, k6,10 =76 ] )

R = g (2D + 105D + 136D}, ® = s (126D + 315D + 14D,

351
R = 785 (—28De - 700§ +314DY), ko= -7k (-42D@1 — 630D +131D),
R = o (14082 +105DF) + DY), R = b (—42D§12 - 630D +131°DL7)
#2 = — ks (14D — 210D +314DF)

Y = s (42D‘2)12 +105D% + 131@5&’) R R (12613§i’12 +315D% + 111413;?) ,

R = 1 (14DR2 +105DF) + 1#DY)

Matrix [£(?], that enters into the expression (5.10.45) for the strain energy of the core, has the

form
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(0000 0 0
0000 © 0
0000 O 0
0000 0 0
i) = | ° 0 00 %lfi’%) %11:753)
aoxi) {0 0 0 0 DY LDf)
0000 0 0
0000 O 0
0000 O 0
0000 0 0

o O O ©O O O o o o O
o O O O O O o o o ©
o O O O O O O o o O
o O O O O o O ©o ©o o

361

If the modulus s of the elastic foundation is constant, matrix [k{/)] in the expression (5.10.47)

for the strain energy of the elastic foundation has the form :

[k(f)] -

13 192 9 13 13
35! 7100 76 sl 00 35l22
1 2 a1 13 72 a3 12
716! 105 26! w0 0 55l
1 =02 31 -5 0 0 Fixn
13 72 g8 Al LB A3 2
- w5/ — 145! 3161 105! 00 a5l 22
. 0 0 0 0 0 0 0
S
0 0 0 0 00 0
13 12 o _Bp 13),2
33122 2101 29 70122 4201 22 00 5122
11 g2 a3 132, _ 13 112
760 22 T0sl 22 w6l %2 w2 0 0 g55lcz
0 132 13 _up 9.2
7—0-l22 4201 29 35122 2)01 29 0 0 70l22
13 52 P 2 Al 2 113 _ 132
—mol %2 wil 22 —ameb 22 tslz 00—l

The the stiffness matrix of the finite element is

)« ) )« 2]«

R
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5.16 Appendix 5-B. Mass matrix.

The first term of expression (5.10.54) for the kinetic energy is (expression (5.10.57) )
. T

onf (1210 9] (]84 « -

o\ (3x3) Ot 3x1) 3Bx3) \ (3x3) XV

1) [ (0

(1x10) (10x10)(10x1)

where components of the matrix [m(l)] are

mgll — p(l)b( 2% - 21) 14z§+14z|zg+1312+14zj,

m(llz) 210p(l)b (20 — 21) (723 + Tz122 + 1112 + 72%),

m%) ——%p(l)b(zg _ ) 2822+28z1zlg—912+28211

m{) = LpMb (25 — 21) (1423 + 142125 — 1312 + 1427),
m{l) = 1pMbz, (22 — 22), miy = §pMbzy (28 — 23),

mgl_[) — Op(l)bZQ (22 — 21) 722+7z122-l|-28z'f+26l2,

m(118) — 840p(1)bz2 (22 — 21) (722 + Tz120 + 2821 + 44[2)

(1) 1 722472, 22 —912 42822
Mg = — _P( Yozg (22 — 21) =44 +

mglio = 840p(1 b2y (22 — 21) (722 + Tz12 + 2822 — 261%),

mgy) = 1260P(1)bl (22— 21) (1423 + 142120 + 912 + 1421)
mfy = ~LpWblz; (5 - 22),
myg = HpMblze (2 — 22),
mg) = 515p Wbz (22 — 1) (723 + Ty 20 + 2823 + 4417),
%) = esop(l)bzzl (22— 21) (723 + T2z + 282% + 61%),
my = — 55 Vb2 (20 — 21) (725 + Tz12p + 2828 — 261%),

mglgo mp(l)bzgl (20— 21) (723 + Tz122 + 2822 + 1812),

1 _ 1) 1423 1423 4132,12—131%2,
myy = ggp b= '

(1) _p(l)b[ (z _ 22) + 21012 (21 — 29) ] ,

362
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m$y) = —1pWbzy (22 — 21) (22 + 21),

myg = —5pWbzy (23 — 21) (22 + 21), .

m§17) — ____p(l)b22 (22 — 21) 722+7z1z21+28z1—91 ’

m;(;g) = 840p(1)bz2 (22 — z1)2(7z§ + 7z1222 +2282f — 2612),
m%) = L Wbz, (25 — 21) 7z2+721z2-:-28z1+261 ,

miy = ———p(”bzz (72— 21) (T2 + Tar2g + 2822 + 4412),

2 2 2
miy) = g=pMWbl (20 — 21) (1423 + 14212 + 3% + 1421),

mil) = LpWblzy (23 — 21) (22 + 21),

miY) = —5pWblzy (22 — 21) (22 + 1), . \
m4(117) = —ghspWbzy (22 — 21) (=725 — T 22 — 282; + 2612)’
mig = — 5P Vblg (20 — 21) (725 + Tz122 + 2827 + lil )
m%) = —gh5pWbzs (20 — 21) (723 + Tz120 + 2823 + 4421 ),
m{o = shspVblzs (22 — 21) (723 + Tea 22 + 2823 + 612),
mf—,ls = 3pMbl2 (22 — 1),
mil) = —2pMblz3 (—25 + 21),
(1)
mglg) = —p(l)blzlzz (=22 + 21),
mll) =

mglio = —-—p(l blZIZ2 ( z9 + 21)$

2p(1)bzlz2 (22 — 21),

p(l)bzle (=22 + 21),

méls) = —ip(l)blzg (—22 4+ 21),

(1 = %p(l)bZIZZ ( 22 — 21)7

ms‘s’ = oMbl (22 - =),

(1)

mélzo = 2P(1)b12122 (21 — 22),

30Mb2122 (21 — 22),

2
m$) = ghpMb23 (22 — 1) (282F — 142021 + 4407 + 723),

2
miy = ghpVb23 (22 — 1) (725 — 142122 + 441° + 2821),

—722 4142, 20 +91° — 2822
1) 1 — 2
miy = 76P 1023 (22 — 1) ! ’

2 2 _ 9822
mﬂo = —g5p 1023 (22 — =) (=723 + 1dz1 2 + 261 282),

2 2
i) = ghopbizE (20 — 2) (723 ~ 1zsz + 61+ 2823)
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mgy = 84010(1 b22 (zg — 21) (—728 + 142125 + 261 — 28z2),

mglgo = — 3355 s pMbl22 (20 — 21) (723 — 142120 + 1817 + 2822),

(1) _ 1 722142, 22+26!° +2823
mly) = £pMb23 (2 — 21) :

mglgo = — 5P Vb23 (20 — 21) (723 — 142125 + 441% + 2822),

b

m%),w = sh5p Vb2 (22 — 21) (723 — 142120 + 612 + 2823) .
The second term of expression (5.10.54) for the kinetic energy is (expression (5.10.61))

T

—p<2>bj 5] 2 1) ) [6%] { [62)5 11} | do=
0

(4><3) Ot 3x1) (4x4) \ (4x3) t(ax1)

=5 {4} "[m] {d}.
(1x10) (10x10)(10x1)

where components of the matrix [m(z)] are

1 1423 — 1423 + 131225 — 13122,
m(121) = ﬁpmb 3 2 l )

@ _ @) 1 s, Hp 1.,
Mz = (30 322" 30 37 0" 2

1 —92823 + 2823 + 91223 — 9122
m(l?i = 70p 2)b 3 2 1 2 27

1 1 13 13
mﬁ) = p(z)b( 3 —zg -2+ ——l222)

307 30 420 420

@) _l_p(z)b2lz§ — 2124 + 260222 — 261222
140 { ’
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1 1 11
mig = pb (_”g 80 gJ“Zm_ol2 42012 2)

4 4 2,2 2,2
™y = 1457 0 ! ’

\ 1, 1, 13 13
m®, = p®p <_zg — oot~ gt + gl ).

2 1
2 = o0 (L1t~ 2id 4 ki - ),

537527105 105
@ _ @p(_Lpe, L, 18, 18,
My =P b( 203732 T @ 2k 2
@ oLy, s L, lp
Mys =P b( 08+ 5% Tt Bt 1t )

@ _ oy (Lpa_Lpay L 1s
Mog = p b< lz3 &0 22 + 510 210 )

1, 1, 13 13
myg = pPb (‘gazg t 5%t el 3 50t A 2)

@ _ ey~ Ly g 3 3,
2,10 b( 2253 T 330 280é % + 2sol :

@_ 1 (2)b14z§' — 1428 + 131223 — 13122,

&
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1 1
= pPb <*‘§2§ + §Zg> ;

m@ _ 3 (Q)b—7z§ + 724 + 31222 — 31222
™S = 140 ! ’

) _ (2 _i4 14 L3_22 1322
M3 =P b( s+go% el BT gag 2

1 2124 — 21 4 2,2 _ 2,2

(2)_(2)b_l4 _1_4 112 _1_1_22
3,10 =F (8023+8022 w0 3T ml %)

2 1
mﬁ) =p@p (45lz3 - El >+ T(Els 3= Tﬁ%l 22)

1
miy) = p@b ( 123 — Télz%) :

1 1
m) = p®b (—1—123 + 18122>

1, 1, 13 13
miz = p®b (@ZS’ ~h i At —-1222) :

@ _ oy Lpay Lya Tz, L
Mg =P ( 210'% T 3% ~ 350t % agpt 2 )

) 1, 1 11
o =p(2)b( 7 57~ R 2)
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1 —
210

1
60

% )

1
+ ——lszg -

23 + 535

(2)

4
m4 .10 lzg —

= p@p (

4 4
m® = p@p (§Iz§ - 5123) ,

2
9123) ,

2

mfg = pb (glz§ -3

1
2
mé7) = -S-p(z)b (zg1 - zg) ,

1
mi = 5lo®b (- 4),
2 1
miy = gp(z)b (25 — 23),
1
iy = L1 (4 - 4),
m® 4 @1 (3 - 23)
66 9/’ 23 —23),
1
m) = gp(z)b (25— 23),
m® = 1 @y (25 — 23)

1
7”5329) = gp(z)b (23 - Zg) )
2
me(s,%o = —‘48/0(2)”1 (Zg - Zg) )

1 (5),6325 — 6325 + 1301223 — 13012
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3
2

m® —
7771050 l
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9 1 1 11
mie = P (ng’ 2005+ Eéﬁl2 630l222> ’

T2 4 T3 1223 — 512 3
m%) _ :_3%6’)(2)1) Tz + T2y +l5 23 22’

(2 _ (2 1 5 _}_5 13123 13 23
M1,10 =P b(zoo 500°2 ~ 1260 3 T 1260 2

. 1 1
me =1 (2)b(150lz3 15012§+§1—5-l3 ~3E0 %)

m = p® ___1_5 1 13 2,3 _ 13123
b( 700% * 200 T 1260’ @~ 1360" °

CINPCTY (SR TN A W B I 1323
Ms,10 = P ( 600'% * 500’ ~ qm0" +420 !

@ _ 1,632 — 6325 +1300°23 — 1300°3

M99 = 7050 1 ’
oy L Mg g
p ( 5007+ 200% ~ 630' %t 30! 2)

() @y _l_ls__l_ls ————l33 1l33
=P (150 502 V3 B T3 )

The third term of the expression (5.10.54) for the kinetic energy is (expression (5.10.65))

1 e '
onf (i) B (180, -
-1 0] (3

(1% 10)(10x 10)(10x 1)
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where components of the matrix [m(®] are

m

(3 _ _ip(g)b—lélzg + 142::;3 — ‘1312;:4 + 13l2z3
T3 ] :

1
mfy) = 5P @b (4 = 2) (723 + Tzsza + 1P 4 7:)

1 —2822 — 282324 + 912 — 2822
mff) = 6D (24 = z) A g

l Y

1
mgi) = —E(-)-p(:”b (24 — 23) (—14z§ — 142324 + 13012 - 14z§) ,

1
) = 200 (s 29 2+ 0,

1
m{y) = §/’(3)b23 (24 — 23) (24 + 23)

1 2822 + T2324 + 2612 + 722
i) = o p Dbz (2 - z5) T :

1
m(l? - mpm)bzs (24 — 23) (2823 + 232y + 440° + 723) ’

1 —-21 2 _ 3 3 _ l2 2
mﬁ;) _ _?6‘)(3)1)23 2325 — 123 + 2l8;;4 91224 + 91 z3’

1
m‘f,‘io = ‘8—4—0/)(3)b23 (24 — 23) (—2822 — Tz3z4 + 261° — 723),

1
mgaz) = —3—1-5p(3)bl (24 — 23) (1422 + 142324 + 312 + 14z§) ,

1
mg;) = mp(:‘)b (24 — 23) (—1427 — 142324 + 131% — 1423)

1
mé‘i) = ~%p(3)bl (24 — 23) (14zz + 142324 + 92 + 14z§) ,
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i) = - pblzg (24 - 2) (24 + 20).
mg(’i) = 1—12-p(3)bz3l (24 — 23) (24 + 23),
m{¥ = —1—-p(3)bz3 (24 — 23) (2822 + Tzgzy + 4412 + 723)

T840

1
mg;) = ——p® b2yl (24 — 23) (2822 + 72324 + 6% +723) ,

630
1
m(g?;) = —%p(z)b":g (24 - 23) (2822 + 7Z3Z4 - 26[2 + 72%) N
1
m{y = “mpw)bzsl (24 — 23) (2822 + Tzgzg + 181% + 723)
1 1422 + 142524 + 1312 + 1423
mg = 530(3)13(24 — z5) —* 3 4! 3.
1
m§y = —2—1'6/3(3)1’ (24 — 23) (722 + Tzgzg + 1112 4+ 723)

1
miy = —§P(S)b23 (24 — 23) (24 + 23)

(3) _

1
M3 —'2'p(3)b23 (24 - 23) (24 + 23) y

2822 4 Tzzzg — 2 + 722
l b

1
myy = “7—0/0(3)523 (24 — 23)

1
m) = — — pbzg (=24 + 23) (—T28 — Tza2 — 2823 + 261) ,

840

1 722 + Tzgzs + 2822 + 2612
) = b Oy (2 4 2 T T2 4208

bl

1
mg%o = %P(s)b% (—za + 23) (723 + Tza23 + 2827 + 441%)
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1
miy = —315p(3)bl (—24 + 23) (1425 + 12z + 31° + 1427) ,
1
Mys = —ﬁp(s)blzg (—24 + 33) (23 + 24) ’
1
My = ﬁp(:})blz;; (—24 4 23) (23 + 24)

1
Myy = §4_Op(3)b23 (—2a+ 23) (=725 — Tza23 — 2825 + 261%) ,

1
m$S) = —— p®blzy (—2q + 23) (725 + Tza2s + 282% +181%)

1
mfzo = —éﬁp(s)blZ;g (—24 + 23) (7z§ + 72423 + 2822 + 6l2) !

4
m® = —gp“‘)blzg (—24 + 23),

2
m?e) = —gp(s)bl‘zg ("‘24 + 23) 3

1
mé-':’;) — _§p(3)bz§z4 (—24 + 23) )

1
mgas) = Ep(s)blZ§Z4 (—z4 + 23) )

1
mfy = §P(3)b2§24 (=24 +23),

1
m5,10 = —1—2-p(3)blZ§Z4 ('—24 + 23) )
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4
m((s:é) — _gp(:’»)blzg (—24 + 23),

1
m® = —5pPbza (~z4 + 23),

1
iy = bz oz + ),

1
m® = Loty (a1t 20),

1
il = ez 2+ ),

723 — 142425 + 261 + 282}

1
9 = -0 (st 1
@ _ L @2 sy ) (722 — 142425 + 2823 + 441%)
Meg = —840,0 23 4 3 3 443 4 s
(3) 1 (3)p.2 —72% + 142423 + 92 — 2823
m79 = -—7—Op b23 (—24 + 23) l 3

1
milo = gy 028 (—2a + 28) (=724 + 142420 + 261° — 2827),

1
(3) _ —@p@)blzg (—24 + 23) (723 — 142423 + 2822 + 61°)

Mgy
1
mg;) = _54_Op(3)bz§ (=24 + 23) (725 + 142425 + 261° - 282) ,

1
mi0lo = 5P Wbz (2 + 20) (728 — Mzgzg + 2825 +188)
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722 — 142423 + 2612 + 2822
l Y

1
mg;) = -—7—0-p(3)bz§ (—24 + 23)

@) L 0p22 Loy 4 25) (722 — 142425 + 4417 + 2823) |

9,10 = 840
1
m%),m = —%p(s)blzg (=24 + 23) (723 — 142423 + 61> + 2822) .

If the upper surface of a finite element is completely covered by the cargo, and the weight of the
cargo is evenly distributed over the length of the finite element (u = const), then the fourth term

of the expression (5.10.54) for the kinetic energy is (expression 5.10.67)

! T
1 0 ~ 0
aon [ (a(gzz)) 2 (zﬁéﬁ))

0 (3x3)

L) [ {4

(1x10) (10x10)(10x1)

where
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[m©] =

by

The mass matrix of a finite element is

OOOOOOOOOO
OOOOOOOOOO

[m] = [mu)] n [m(z)] 4 [mm] + [m<°>]

374
795133 —%2%1223 w
1%1223 —ﬁlsz:;
311%123 —-2-17]51223
—5%1223 1—&1323
0 0
0 0
%lzg —%l%lzzg
T]'j_olzzg —ﬁlszg
%—‘glzg *%1223’
_5111_0122:? llﬁlszg ]
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5.17 Appendix 5-C. Expressions for the 1-st component of
the nonlinear part of the internal force vector

In this appendix, the first component of the nonlinear part of the internal force vector Z—L{f-g}i, that
enters into the equation of motion (5.10.85) of a finite element, is written explicitely in terms of the
nodal parameters 6; and the material characteristics of the sandwich plate. The other components
of the vector g—({]g}L are not written here due to the limitation on the size of the dissertation. The
expression presented in this appendix was derived by the program for symbolic computation MAPLE,
and it was transformed automatically into the FORTRAN format. The quantities s;, s2,etc. are
the auxiliary quantities that allow to break up a very lengthy expression for Qa%l‘i into a number of
shorter expressions.

So, the expression for the first component of the nonlinear internal force vector q; = —aa—%% in
FORTRAN format is:

s3 = 1/1**2%(1008*thetad**2*]-12*thetal 0**2*1**3-1008*1*thetad**2+

#12%theta5**2*1*¥*3-24*theta5***2*theta9-24*thetad*|**2*thetal0+192

#*theta0*I**2*thetal0+192*thetad *I**2*theta5)*D2HAT 42/3360

s4 = 1/1¥*%2*(1008*thetad*thetal*]-216*thetal0*1**2*thetal+216*thet

Ha5***2*thetal +1008*theta9*thetal*1+192* theta9*theta2*1**2-12*thet

#a10*1**3*theta7-36*thetal0*1**3*theta2-24*thetaQ*theta7*I**2+12*th

Hetab*1**3*theta2+216*thetal0*1**2*theta6+36*theta5*1**3*theta7-216

#*theta5*[**2*theta6-1008*thetad*|*thetab+192*thetad*theta7*1**2-10

#08*theta9*1*thetab-24*thetad*theta2*1**2)*D2HAT .41/3360+(1/1**2*(-

#504*thetad*thetal0-+168*thetal0**2*]-168*theta5**2*]-504*theta9*the

#ta5+504*thetad*theta5+504*theta9*thetal0)/3360-+1/1**2*(1008*thetad

#*thetal0-336*thetal0**2*1+-336* theta5**2*14+-1008*thetad*theta5-1008*

#thetad*theta5-1008* theta9*thetal0)/3360)*D2HAT .32

s2 = s3+s4

s1 = s2+1/1¥*2*(504*thetad*theta7-504*theta9*theta7+-504*theta9*the

#ta2+1008*thetal0*theta6-1008*thetab*theta6-504*thetad*theta2+336*t

#hetab*I*theta7+168*thetal0*1*theta7-168*theta5*1*theta2+1008*theta

#5*thetal-336*thetal0*|*theta2-1008*thetal0*thetal)*D2HAT 31/3360+1

#/l**2*(1008*theta4**2*1—12*theta10**2*l**3-1008*l*theta9**2+12*the
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Ftab**2¥|¥*3-24*theta5*1**2*theta9-24* thetad *1**2*thetal0+192*theta
H#9¥1¥*¥2*thetal0+192*thetad*1**2*theta5)*D2HAT 24/3360+-(1/1**2*(-504
#*thetad*thetal0+168*thetal0**2*1-168*theta5**2*1-504*theta9* thetad
#+504*thetad*theta5+504*theta9*thetal0) /3360+1/1**2*(1008*thetad*th
#etal0-336*thetal0**2*1+336*theta5**2*1+-1008*theta9* theta5-1008*the
#tad*thetab5-1008*theta9*thetal0)/3360)*D2HAT 23

§3 = s1+1/1*¥*%2%(-1008*thetad*theta7-+1008*theta9*theta7-1008*thetad
#*theta2-2016*thetal0*theta6+2016*theta5*theta6+1008*thetad*theta2-
#4032*theta3*thetad+4032*theta8*thetad-4032*theta8*thetad+4032*thet
#a3*theta9-672*theta5**theta7-336*thetal0*1*theta74-336*theta5*1*th
#eta2-2016*theta5*thetal-336*theta3*1*thetal04-336*theta8*1*theta5+3
#36*theta8*1*thetal04+672*thetal0**theta2-336*theta3**theta5+-2016*
#thetalO*thetal)*D2HAT 22/1680

2 = s3+1/1%*%2%(-336*theta3*|*theta7-4032*theta3*thetal-336*theta3d
#*1*¥theta2+336*theta8*1*theta7+4032*theta3*theta6+4032*theta8*theta
#1-4032*theta8*theta6+336*theta8*1*theta2)*D2HAT 21/3360+1/1**2*(10
#08*thetad*thetal*]-216*thetal 0*1**2*thetal+216*theta5*1**2*thetal +
#1008*theta9*thetal*l+192*theta9*theta2*1**2-12*thetal 0*1**3*theta?
#-36*thetal0*1**3*theta2-24*theta9*theta7*I**2412*theta5*1**3*theta
#2+216*thetal0*1**2*theta6+36*theta5*1**3*theta7-216*thetad*1**2*th
#etab-1008*thetad*1*theta6+192*thetad*theta7*1**2-1008*theta9*1*the
#ta6-24*thetad*theta2*1**2)*D2HAT -14/3360

s3 = s241/1¥*%2%(504*theta4*theta7-504*thetad*theta7+-504*thetad™the
#ta2+1008*thetal0*theta6-1008*theta5*theta6-504*thetad*theta2+336*¢
#heta5*I*theta7+168*thetal0*1*theta7-168*theta5*1*theta2+1008*theta
#5%thetal-336*thetal 0*I*theta2-1008*thetal0*thetal)*D2HAT 13 /3360
s4 = s3+1/1*¥*%2%(-336*theta3*|*theta7-4032*theta3*thetal-336*thetad
#*1*theta2+336*theta8*|*theta7+4032*theta3*theta64-4032*theta8*theta
#1-4032*theta8*theta6+336*theta8*1*theta2)*D2HAT 12/3360

sb = s4

s8 = 1/1**2/60

s11 = 6*theta2*1*theta5*z3**2+412*thetab*z3**2**theta8-12*theta5*z
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#3*¥2¥*theta3-12*theta2*1*23*theta3+12*theta2*1*23*theta8+12*theta
#10*23%*2¥*theta8-12*theta7*1*theta5*z3**2-6*theta7*1*23**2*thetal
#0+12*theta7*1*z3*theta8-12*theta7*1*23*theta3-12*thetal 0%23**2*1*¢
#heta3-18*theta2*z3**2*theta9+18*theta9*z3**3*thetad+18*thetad*23**
#3*thetal0-18*thetad*23**3*theta5+18*theta2*z3**2*thetad+144*thetad
#*23*¥*2*thetal

s10 = s114+6*theta5**2*23**3*1+144*theta6*z3*theta3-6*thetal0**2%z3
#%*3*%]4 36*thetab*theta5*z3**2-36*thetab*z3**2* thetal04 18*theta7*23*
#*2*theta9-18*theta7*23**2*thetad-18*theta9*z3**3*thetal0+144*theta
#4%23%¥*2*theta8-144*thetad*z3**2*theta3-144*theta9*z3**2*theta8-144
#*theta6*z3*theta8+12*theta2*1*23**2*thetal0-144*thetal*23*thetad+1
#44*thetal*z3*theta8-36*thetal *theta5*23**2+36*thetal*23**2*thetal0
sl1 = D3.11

s9 = s10%s11

s7 = s8%*s9

s9 = 1/1%%2/60

s12 = 36*thetal*z2**2*thetal0+144*theta6*z2*theta3-144*theta6*2z2*¢
#heta8+144*thetal*z2*theta8-6*thetal0**2*22**3*]-144*theta9*22**2*¢
#heta8+144*thetaQ*z2**2*theta3-18*theta2*2z2**2*theta94-6*theta5**2*z
#2¥*3*¥]-18*theta9*22**3*thetal0-144*thetal*z2*theta3+144*thetad*z2*
#*2*theta8-36*thetal *theta5*22**2-144* thetad*22**2*theta3-18*thetad
#*22%*3*theta5-36*theta6*22**2*thetal0+36* theta6*theta5*z2**2

s11 = s12+18*thetad*z2**3*thetal0+18*theta2*z2**2*thetad-18*theta?
#*22¥*¥2*thetad+18*thetad*z2**3*theta5+18*theta7*22**2*theta9-12*the
#taT**theta5*z2**24-12*theta5*z2**2*]*theta8+4-12*theta2*1*22*theta8-
#12*thetab*z2**2**theta3+12*theta2*1¥22**2*thetal0+12*thetal0*z2**
#2**theta8-12*thetal0*z2**2*1*theta3-6*theta7*[*22**2*thetal0+6*th
#eta2**theta5*z2%*2-12*theta7*1*22* theta3+12*theta7*1*22*theta8-12
#*theta2*1*z2*theta3

s12 = D1.11

510 = s11*s12

s8 = s9*s10
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s6 = s7+s8
ql = s5+s6

5.18 Appendix 5-D. Location of the error-minimal points for

computation of spacial derivatives of the field variables

In order to calculate the stresses, there is a need for accurate estimates of the derivatives of the field
variables wp, E(z? , sgi). In the finite element formulation, the functions wy and ES‘Q are approximated

by the Hermit interpolation polynomials of the third degree, and the function 6(127,) is approximated by

the Lagrange polynomial of the first degree. The derivatives %ﬂzl, a;:’ , %’%ﬂ, %2, —3%;%2‘)-, Q%—i%i)—, 6—2%?—
will be computed as the derivatives of the interpolation polynomials that were used in the finite
element formulation. In this appendix we will discuss a question of location in a finite element of
optimal points that give the most accurate estimates of these derivatives. In this discussion, the
ideas of Akin (1987) will be used.

The values of primary variables (those variables that are involved in specification of the essential
boundary conditions, and whose values at the nodes are used as the nodal parameters in the finite
element formulation) are most accurate at the nodal points, in some problems even exact (Reddy,

1993, page 206). In our problem, the nodal parametrs are wp (z,1), Qw%—(;ﬂ, eﬁ"?, 6—552-2‘1 and 6(122).

x
Therefore, the values of %ﬂzl, 592), 3—;(‘}1 and 6;22), that enter into the expressions for the stresses,
must be computed at the nodes and can be taken directly from the finite element solution.

Now, let us consider the computation of the second derivative %2%"59. In the finite element
formulation, displacement wy is approximated by a polynomial of the third degree. If the exact
solution for wp is a polynomial of the same or lower degree (or if the exact solution can be best
approximated by a polynomial of the third or lower degree), then the finite element solution for wy
will be exact at each point of the finite element (or very close to exact, if the exact solution can be
best approximated by a polynomial of the third or lower degree). In this case the second derivative
(with respect to z) of the interpolation polynomial for wg will coincide with %"% obtained from the
exact solution, at each point of the finite element. But such situations occur very rarely. Now, let

us consider a situation, when the exact solution for wy is a polynomial of the fourth degree, and let

the superscripts e and f denote the exact and the finite element solution, respectively:

w((,f) =ap+ 01T + aF + as@, (5-D.1)
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wl® = by + b1 T + boT? + byT° + byT*. (5-D.2)

As it was mentioned previously, the computed values of the primary variables are most accurate
at the nodal points. For simplicity we will assume that the values of the primary variables at the

nodes are exact:

w§’ (0) = wl? (0), (5-D.3)
aw((,f) _ 8w((f)

5e 0 =5, (0), (5-D.4)
w () =w ), (5-D.5)

aw(f) aw(e)
a; () = a:: (0). (5-D.6)

If we substitute equations (5-D.1) and (5-D.2) into equations (5-D.3)-(5-D.6) we obtain, respectively

ag = by, (5-D.7)

a1 = by, , (5-D.8)

ao + lay + 2ay + Bag = by + Iby + 12by + 133 + *by, (5-D.9)
ay + 2las + 31%a3 = by + 2lby + 31%b3 + 413b,. (5-D.10)

Let zo be an optimal point for computation of a—;;—"él, i.e.

82wt 52w
——6';2— (1?0) = E’%—- (1130) . (5—D11)
Substitution of equations (5-D.1) and (5-D.2) into equation (5-D.11) yields:
2a; + 6zgaz = 2by + 6xobs + 12z3bs. (5-D.12)

Solving equations (5-D.7)—(5-D.10) and (5-D.12) simultaneously for ao, a1, a2, as and g, we obtain:

1 1
ag = by, ay = by, a3 =b3 + 2lby, as = —l2b4 + by, g = (5 + 6\/5) [, (5-D13)
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So, if the exact solution for wo is a polynomial of the fourth degree, then the coordinates of the

2
optimal points for computing %—;"QQ are

1
) = G + %\/5) 1=0.78868 | and =) = (% - 6‘/§> =0.21132 L. (5-D.14)

These are the Gauss points of the third-degree polynomial.

Now, let us consider a situation, when the exact solution for wg is a polynomial of the fifth

degree:
w(()e) = bo + blf + b2§:—2 + b3-3_73 + b45:-4 + bS-I_s (5—D15)

Then equations (5-D.3)—(5-D.6) and (5-D.11) lead to the following equations:

ag = by
ay = bl
ag + la; + l2a2 + 13a3 =bo+ by + l2b2 + l3b3 + l4b4 + l5b5 > (5—D16)

a1 + 2las + 312a3 = by + 2lby + 31%b3 + 413b4 + 51%bs
2a9 + 6xgaz = 2by + 6xgbs + 12:1:31)4 + 2(}1‘31)5

From the first four equations of the system (5-D.16) we obtain:
ag = —l2b4 — 2lab5 + b, a3 = bz + 2lby + 3[2{)5. (5-D17)

If we substitute expressions for ag and a3 into the last equation of the system (5-D.16), we obtain

(122l — 20% — 1222) by + (—41® + 1812y — 20z3) bs = 0. (5-D.18)

Equation (5-D.18) can be satisfied for arbitrary b4 and b if coefficients of by and b5 are equal to

zero. This leads to the following two equations for the coordinate g of the optimum point:

12zl — 212 — 1223 = 0, (5-D.19)

—413 + 1812z — 2023 = 0. (5-D.20)
The solutions of equation (5-D.19) are

eV = (1 + %x/ﬁ) 1=0.78868 | and z{’ = (1 -

1
5 5 5\/5) 1=0.211321 (5-D.21)
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The solutions of equation (5-D.20) in the element’s domain 0 <z < [ are
2 =0.80771, z{" =0.237021 . (5-D.22)

So, if the exact solution for wg is a polynomial of the fifth degree, then the coordinates of the optimal

. 2
points for computing a—ai'%ﬂ are

1
2 = (% + -(1;\/5) 1=0788681, zi) = (5 - %\/5) 1=0.211321,

=) =0.80771, z{) =0.23702 L. (5-D.23)

Coordinates xgl) and x((,2) are the Gauss points.

If the exact solution for wg is a polynomial of the sixth degree, then, in a similar manner, we
find the following coordinates of the optimal points for computation of %"gﬂ :

) = (% + %\/5) 1=0.78868 1, i = (% - %ﬁ) 1=0.21132 1,

2 =0.8077 1, 2§ =0.23702 1,

o = 0822741, 2P =0.25531 L. (5-D.24)

So, regardless of the degree of a polynomial of exact solution, the Gauss points xél) = (% + %\/@) l=
0.78868 [ and x?) = (3 - }v/3)1=10.21132 [ are the coordinates of the optimal points for compu-
tation of %:—;”g‘l (but there may exist other optimal points, in addition to the Gauss points).

Now, let us consider computation of the third derivative %‘3‘1. Let us consider a situation,
when the exact solution for wy is a polynomial of the fourth degree (equation (2) ). Let zp be a
point where the finite element solution and the exact solution for %"3“ are the same. Then

aaw(()f )
Ox3

0©
(50 = 22 (a0). (D.25)

If we substitute equations (5-D.1) and (5-D.2) into equations (5-D.25), we receive

60,3 = 6b3 + 24370b4. (5-D26)
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Equations (5-D.7)-(5-D.10) and equation (5-D.26) make the following system:

\

ap = bOa
a; = bla
ag + la; + l2a2 + l3a3 =bg +Iby + l2b2 + l3b3 + l4b4, ’ (5-D27)

ai + 2las + 3l2a3 = by + 2lby + 3l2b3 + 4131)4,
6(13 = 6b3 + 24$0b4.

If we solve this system of equations for ag, a1, az, az, To, we receive
1
ag = by, a1 = by, ay = —12bg + by, a3 = by + 2lbs, 2o = 5t (5-D.28)

So, the if the exact solution is a polynomial of the fourth degree (or if it is best approximated by
the polynomial of the fourth degree), then the finite element solution for ngl“g‘l is equal to the exact
solution (or is the closest to the exact solution) in the middle of tﬁe element, at the point zp = % .

Let us consider a situation, when the exact solution for wg is a polynomial of the fifth degree
(equation (5-D.15) ). Then equations (5-D.3)—(5-D.6) and (5-D.25) lead to the following equations:

)

ap = bOa
a; = blv
ap +la; + l2a2 + l3a3 =by+ by + l2b2 -+ lsbg -+ l4b4 + lsbs, (5-D29)

a; + 2las + 3l2a3 = by + 2lby + 312b3 + 4l3b4 + 5l4b5,
6as = 6b3 + 24xobg + 60{17(2)b5

From the first four equations of the system (5-D.29) we obtain:
as = —2b; — 23bs + by, a3 = bz + 2lby + 31%b5. (5-D.30)

If we substitute expressions (5-D.30) for ap and as into the last equation of the system (5-D.29), we

obtain the following equation:
(121 — 24) by + (181% — 60x3) bs = 0. (5-D.31)

Equation (5-D.31) can be satisfied for arbitrary by and bs if coefficients of by and bs are equal to
zero. This leads to the following two equations for the coordinate zg, at which the finite element

3 . .
and the exact solution for %—:’gﬂ coincide:

121 — 24z = 0, (5-D.32)
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1812 — 60z3 = 0. (5-D.33)
The solutions of these equations in the element’s domain 0 <7 < [ are

!
2V = 5 2 =0.54772 1 (5-D.34)

So, if the exact solution for wg is a polynomial of the fifth degree, then the finite element solution
for %"3‘1 is equal to the exact solution at the points :c(()l) = é, x(()z) =0.54772 l.

In a similar manner it can be shown that if the exact solution for wo is a polynomial of any
degree higher than three, then the finite element solution for %1%‘1 is equal to the exact solution for
%‘f-ﬁ at the point xf,l) = % (and at some other points, if the exact solution is a polynomial of a
degree higher than four).

The interpolation polynomial for sﬁf.) is the same as for the wg. Therefore, all conclusions
regarding computation of spatial derivatives of wy are also valid for the computation of spatial
derivatives of €2

Now, let us consider location of error-minimal points for computation of 2 and a_g%’_' Strain

(2) (2)

e\2) is one of the primary variables of the problem, and in the finite element formulation e, is

approximated by the Lagrange polynomial of the first degree:

@ (f) _
(eu ) =ag + 17 (5-D.35)
Therefore, the most accurate values of E(:zz) are at the nodes.

Let us consider a situation, when an exact solution is a polynomial of the second degree:
@) % + byZ?
(au) = bo + 01T + by7?, (5-D.36)

. . (2) ..
and let zo be a point, where the finite element and the exact solution for 6—2‘;—‘- coincide:

§) (e)
8 () 8(2)
From equation (5-D.35) — (5-D.37) we obtain:
a; = by + 2bsxyg. (5—D38)

Since the most accurate values of €2 are at the nodes, at points T = 0 and T = [, we can write

)] < (@) | (@)
(zz) (:cz) (.’rz) (:rz)

T=l

(5-D.39)

z=0 z=0 T=l
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Substitution of equations (5-D.35) and (5-D.36) into equations (5-D.39) gives the following equations:

ag = bo (5—D .40)

ap + a1l = by + byl + bal? (5-D.41)
The solution of equations (5-D.38), (5-D.40) and (5-D.41) with respect to ag, a1, Zo is:
ag=bg, a1 =by + bal, g = %l (5-D.42)

Therefore, if the exact solution is a polynomial of the second degree, then the finite element solution

@ o ] )
for %?— coincides with exact solution in the middle of the element, at the point o = %l.

Let us consider a situation, when an exact solution is a polynomial of the third degree:
( @\® - =2 =3
EIZ) = bo + by T + byZ® + b3T°. (5-D.43)
Then, from equations (5-D.35), (5-D.43) and (5-D.37) we receive
ay = by + 2bexo + 3b3l‘g (5-D.44)
From equations (5-D.40) and (5-D.41) we obtain
a; = bl -+ b2l (5-D45)

Substitution of equation (5-D.45) into equation (5-D.44) yields:

by (I — 2xp) — 34bszd = 0, (5-D.46)
from where we find
l
2N = 5 ) =0, (5-D.47)

L . . . ; @
i.e. if the exact solution is a polynomial of the third degree, then the finite element solution for %ﬁ‘-

coincides with exact solution in the middle of the element, at the point :n(()l) = %l, and at the left

end of the element, at the point xf,z) = 0.

In a similar manner it can be shown that if the exact solution for 5&22) is a polynomial of any

(2)
degree higher than one, then the finite element solution for a—g’zﬁﬂ- is equal to the exact solution for

@
a—%g‘ at the point xf,l) = é (and at some other points, if the exact solution is a polynomial of a

degree higher than two).
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5.19 Appendix 5-E. Verification problem for finite element
program: exact analysis for vibration of simply-supported
homogeneous isotropic plate in cylindrical bending

An exact analysis for vibration of a simply-supported rectangular plate was performed by Srinivas,
Joga Rao and Rao (1970). In this chapter we will find natural frequencies fof the simply-supported
plate in cylindrical bending, following the method of Srinivas, Joga Rao and Rao. The plate is
considered to be homogeneous and isotropic. Besides, we will find transient response of such plate,
dropped on the simple supports. The solution, that we obtain in this chapter, has the form of the
infinite series, and it is exact in the sense that

1) each term of the series for the displacements satisfies the equations of motion of linear elasticity,
written in terms of displacements, with no additional assumptions about through-the-thickness
variation of displacements, strains or stresses;

2) each term of the series for the displacements satisfies boundary conditions of a simply supported
plate.

The displacements of the solution, represented by the finite number of terms in the series, satisfy the
initial conditions approximately, but with any desired accuracy, that is achieved by taking sufficient
number of terms in the expansion. In other words, the series that represent the displacements and
their time derivatives at the initial moment of time, converge to the initial displacements and initial
velocities.

Let us write equations of motion for a plate in cylindrical bending in terms of displacements:

%u(z, 2,t)  0%u(z,z,t) 1 0%u(z,z2,t) 1 Pw(z,zt) _ p 0u(z,z,1) 5 E1
Oz? 022 1-2v 022 1-2v 0z0z G 0Ot? (B
8%w(x,z,t)  O*w(z,z,t) N 1 0%u(z,zt) 1 w(z,zt)  p 0wz, 21) .
Oz 022 1-2v 0z0z 1-2v 022 -G ot (5-E.2)

To separate variables we seek solution in the form:
u(z,2z,t) =U(z,2)T(t) , (5-E.3)
w(z,2z,t) =W (z,2)T(t) . (5-E.4)

Substitution of equations (5-E.3) and (5-E.4) into equations (5-E.1) and (5-E.2) yields:
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9%U(z,2) N 82U (z.2) 4 1 0%U(z,2) 1 0*°W(z,2) 1
oz? 022 1-2v Oz? 1-2v 0Oz0z Ul(z,2)
_p 1 OTE) _ Py
=eTH @ - G (5-E:3)
0’W (z, 2) N 0’W (z, 2) 1 0%U(z,z) 1 8*°W(z,2) 1
oz? 822 1-2v 0z0z 1-2 022 Wz, z)
_p 1 PT(H) _ P
=Gt o - o (5-E:6)

Therefore, we have the following differential equations for the functions U(z, z), W(a, z) and T (t):

1—v 82U (z,2) 0%U(z,2) 1 W (z,2) P2
1-2v Oz? t o Y1220 o102 + 59 Ule,2) =0, (5-E.7)
1-v 8°W(z,2) 0°W(z,z2) 1 0%U(z,2) P
1-2v 022 T2 Y120 0102 + 50 W(z,2) =0, (5-E-8)
@PT() | o2
—_— t) = 0. -E.
2 +Q°T(t)=0 (56-E.9)
The solution of equation (5-E.9) is the following
T (t) = Q cos Ut + Rsin M, (6-E.10)
where Q and R are constants of integration.
The boundary conditions for a simply supported plate are
w(z,z,t)=0and 0,z =0 atz= 0and z = L. (5-E.11)
But, according to Hooke’s law
E ou ow
Ozz = Tr =) [(1 -v) e + 1/—5-;} . (5-E.12)
Therefore, the boundary conditions for the functions U (z,z) and W (z, 2) are
U (z, W (z,
W (z,2) =0and (1-v) U (z,2) +1/a (z,2) =0 at z=0and z= L. (5-E.13)

oz 0z
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These boundary conditions are identically satisfied by setting

Zd)m cos (mm) ) (5-E.14)

Wz, 2)= ixm (2) sin (mzrx) . (5-E.15)
m=1

Substitution of equations (5-E.14) and (5-E.15) into equations (5-E.7) and (5-E.8) yields:

= 1- 2 o dx
> |21 () om0+ bnld) T =) 4 L0760 (2)| cox () =0

E [, 1-v &xm(2) 27r2 1 wdd)m(z) P o . (mmrxy
2[21—21/ e PG R e L + G am(?) S‘“( )“0‘

(5-E.17)

Equating to zero the coefficients of cos (2f= 2) and sin (2) in equations (5-E.16) and (5-E.17), we

obtain the following differential equations for the functions ¢m (2) and xm(2):

P ¢m (2) 1 mmdxm(2) P A2 l—v /mm B

dz? +1—2VT dz +[—G—Q —21_2V(L)]¢m( z) =0, (5-E.18)
1-v d2Xm(Z) 1 mn d¢m (Z) P ~2 mr 2

2o 42 1w L d [59 - ( 2 ) ]xm(z) =0. (5-E.19)

The non-trivial solution of these differential equations is the following:
mm\ 2 p mm mm 2 p mm 2 p
= MmN _ 2 AN _ o2l - (Y 2
¢m (2) (L) CeT [Ae"p( (L> QGz> Kexp( (L) et

mm mm 2 p 1-2v mm 2 p 1—2v
2 [ ([ -ert ) 450 () (E) o267

(5-E.20)
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Xm(z)=(—‘ <A3Xp( “QzG )+Kexp (— (%r-)z—ﬂ?_g.z))_f_
mm\2
o =k
o (con (5 -8 22) - o (- () - ) )

(5-E.21)
where A, K, C, S are the constants of integration.
Now, let us write the stress-displacement relations:
. \ - - \
Ozz Entim ~Egrfsm —Emmim 0 0 0 &
Oyy -Egri Entn— -Ezris 0 0 0 %ﬁ
< 0zz - “Ez,ﬂ:.,_l -Egris Tugj-] 0 0 0 %_f g
Oy: 0 0 0 sy E 0 0 ey e
Oz: 0 0 0 0 mg‘ 0 fu gw
| Oz i 0 0 0 0 0 ﬁ}_ﬁE 1 —g% + & )
(5-E.22)

In case of cylindrical bending, when v = 0 and derivatives with respect to y are equal to zero, the

stress-displacement relations take the form:

[ -1
Ozz EEQVTV——T _E2u5-:v—1 0 du
3z
ow | _ | “Bwim ~Pamm O o (5-E-23)
-~ —E ¥ Eo#d 0 o .
zz 2vi4y—1 202 4v~1 Ou Sw
g 0 0 s E o o
zz L 2(14v) i
Oy =0, 0zy=0 (5-E.24)

Substitution of expressions for displacements

u(z,z,t) =U(z,2)T (t) = Zd)m (2) cos (m;/ra:> T(t), (5-E.25)
m=1
w(z,2t)=W(g,2)T({t)= Y Xm(2)sin (?) T (t) (5-E.26)
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into the stress-displacement relations (5-E.23) yields

Ou ow
Ozz = (1—_'_—1—/7‘%;/—:-1—) [(1/—1)5;—1/-&-] =
= mﬁg‘_jﬂi K(l 1) fm (2) T uél’g;(z—)) sin (Z5) T (t)] , (5-E.27)

where ¢, (2) is defined by equation (5-E.20), and, according to equation (5-E.21),

tunte) _ (o)’ (2 et

X {Aexp (\/ (%/1)2 - 92%z> — Kexp (—\/(mz%; - Q2—g—> z)] +
(5 -2b5mg)

mm\ 2 p 1-2v mm\ 2 p 1-2v
X \:Cexp (\/(7—3) ——Qzam Z) +Sexp (—\/(7-—11—) —9252(1_1/) Z)i\ ) (5—E28)

o = E v gtﬁ+6w _
w4+ (1-2v) \Oz Oz -

et o (o0 25 (P T0) B
E ow 0
Ozz = ——_———_(V+1)(1—21/) [( —V)—a—z—-l—ugz-} =
- (771)%—_2752 [((1 — ) d—xg-zi’-’l ~ v (z)) sin (22 7 (t)] , (5-E.30)

2= 5N +v)\0z 0z
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=3 (lE-;— ” i [(d(ﬁ;z(z) + Xm (2) Tg) cos (—WLLH) T (t)] , (5-E.31)

where

i) (22 )
X [Aexp <z (77_21)2 — 92%> + K exp (—-z (-nZ—W)z —92-8—)} +
o () -0

mm\2 p 1-2v mm\ 2 p 1-2v
X [Cexp (Z\/(T> —Qz—ém> —Sexp (—Z\/(T> -925-27-:—5)} (5—E32)

To simplify the subsequent derivations let us introduce the following notations:

M=, (5-E.33)

G w5 by R

In order to simplify computation of natural frequencies, we will write formulas (5-E.34) in the form

m7r m7r - 2v
\ / — )2, 5= \/7 1 — u) (5-E.35)
A= Q\/E. (5-E.36)

Then expressions for stresses take the form:

where

Q

B E — [ (/1 _ s dxm (2)\ .
au-—————(lw)(l_m;[ (@ =r)om (2214 v 25 )sm(Mx)T(t)], (5-E.37)

Oyy = E(1 Y 1 5, ni: [( M+ %@) sin (Mx)T(t)} , (5-E.38)
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- de (2) :
Opz = (1 ) 1 Y :L; [( (1-v) == —vMom (z)) sm(M:c)T{t)] , (5-E.39)
E < [(d¢m(2)
Opz = mﬂ; K_Ez_' + Xm (2) M) cos (Mz) T (t)] : (5-E.40)
where
bm (2) = TM [Aexp (rz) — K exp (-rz)] + M [Cexp (sz) + Sexp (—sz)], (5-E.41)
Xm (2) = M?* [Aexp (rz) + K exp (—rz)] + s[Cexp (sz) — Sexp (—s2)], (5-E.42)
d¢';2(z) =12 M [Aexp (2r) + K exp (—2r)] + Ms[Cexp (zs) — Sexp (—2s)], (5-E.43)
i%@ = M?r[Aexp(rz) — Kexp(-r2)] + s%[Cexp (sz) + Sexp (—s2)]. (5-E.44)

For stress-free upper and lower surfaces the boundary conditions are:

0,,=0z,=0 at z=0and z=h. (5-E.45)
Substitution of equation (5-E.39) for stress 0. into the boundary condition o =0 gives
=0
the following equation: :
2v 1-2v s2(1—-v)—vM? s2(1-v)—vM?
A— K =0. -E.
” Mr ” + M C+ M S=0 (5-E.46)
Substitution of equation (5-E.39) for stress o, into the boundary condition o, = 0 gives
=h
equation :
1-2 1-2 1-v)s? 1-v)s?
YMeh A - ——ZrMe MK + [—M + (—-—”ls—] ehC + [—M + (———”)—S] e~ S =0.
v v vM vM
(5-E.47)
From boundary condition o4, = 0 we obtain:
z=0
(2 + M2) A+ (r® + M?) K +25C — 255 = 0. (5-E.48)
The boundary condition o = ( gives equation
z=h

(P + M) e A+ (r* + M?) e ™K + 2se™*C — 2s¢7*"S = 0. (5-E.49)
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Equations (5-E.46)-(5-E.49), written in matrix from, are

—2v —2v 2(1—-v)—vM? 2(1 ) mp M2
Mrl=2e ~Mriz £a-povM 20— A 0
—v)s? —u)s? _
zppert —is2eMemh (MUY (cpa OsS e | L k[0
(r? + M?) (r? + M?) 2s —2¢ c 0
(r? + M?)e™ (r? + M?) e~ Th 2se*h —92ge™%h S 0
(5-E.50)

For a non-trivial solution of this problem the determinant of equation (5-E.50) must be equal to zero,
and this yields the characteristic equation, the solution of which for each value of m (m = 1,2,...00)
yields an infinite sequence of eigenvalues.

Let E = 114.8 x 109%, v=03,p= 1614;—';%, L =1m, h = 0.06m . The MAPLE session that
computes the second period of vibration, corresponding to m = 2, is shown below:

>m:=2: pi:=3.14159:

>Young:=114.8e9: nu:=0.3: rho:=1614: L:=1: h:=0.06: G:=Young/2/(1+nu):

>M:=m*pi/L: r:=(M"2-lambda"2)"(1/2):

>s:=(M"2-lambda"2*(1-2*nu)/2/(1-nu))"(1/2):

>all:=M*r*(1-2*nu)/nu: al2:=-M*r*(1-2*nu)/nu:

>a13:=(s"2*(1-nu)-nu*M"2)/nu/M: al4:=al3: a2l:=(1-2*nu)/nu*r*M*exp(r*h):

>a22:=-(1-2*nu) /nu*r*M*exp(-r*h): a23:=al4*exp(s*h): a24:=al4*exp(-s*h):

>a3l:=r"24+M"2: a32:=a31: a33:=2%s: a34:=-2%s:

adl:=(r"2+M"2)*exp(r*h):

>a42:=(r"24+M"2)*exp(-r*h): a43:=2*s*exp(s*h): a44:=-2%s*exp(-s*h):
>Young:=114.8e9: nu:=0.3: rho:=1614: L:=1: h:=0.1: G:=Young/2/(1+nu):
>pi:=3.14159: m:=1:

>M:=m*pi/L: r:=(M"2-lambda"2)"(1/2): s:=(M"2-lambda"2*(1-2*nu)/2/(1-nu))"(1/2):
>all:=M*r*(1-2*nu)/nu: a12:=-M*r*(1-2*nu)/nu: al3:=(s"2*(1-nu)-nu*M"2)/nu/M:
>ald:=al3: a21:=(1-2*nu)/nu*r*M*exp(r*h):

>a22:=-(1-2*nu) /nu*r*M*exp(-r*h): a23:=ald*exp(s*h): a24:=al4*exp(-s*h):
>a3l:=r"2+M"2: a32:=a31l: a33:=2%s: a34:=-2%s:

>adl:=(r"2+M"2)*exp(r*h): a42:=(r"2+M"2)*exp(-r*h): a43:=2*s*exp(s*h):
>add:=-2%s*exp(-s*h):
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>ar:=array([[a11,a12,a13,a14],[a21,a22,a23,a24],[a31,a32,a33,a34],[a41,a42,a43,a44]]):
>with(linalg):

>f:=det(ar):

>plot(f, lambda=0...0.5);

>lamb:=fsolve(f=0,lambda=0..1});

>T:=2.*pi/lamb*(rho/G)"(0.5);
>ar:=array([[a11,a12,a13,a14],[a21,a22,a23,a24],[a31,a32,a33,a34],[a41,a42,
>ad3,a44]]):

>with(linalg):

>f:=det(ar):

>plot(f, lambda=0...0.5);

>lamb:=fsolve(f=0,lambda=0..1);

>T:=2.*pi/lamb*(rho/G)"(0.5);
>classical_period:=2%pi/M"2/h/(1/12*Y /(1-nu"2) /rho)"0.5;

The last line of this MAPLE session is meant to compute the periods from the classical plate

theory, based on Kirchhoff-Love assumptions. The results of computation are shown in the table:

m  Periods from elasticity solution (s)  Periods from classical plate theory (s)
1 0.00450462 0.00415740
2 0.0010649 0.00103935
3 0.000486968 0.000461936
4 0.000284078 0.000259837
5 0.000189665 0.000166296
6 0.000137940 0.000115484
7 0.000106384 0.0000848449
8 0.0000856016 0.0000649594
9 0.0000711066 0.0000513258
10 0.0000605364 0.0000415740

By equating the determinant of the system of equations (5-E.50) to zero, we make the number

of independent equations in the system (5-E.50) one less. So, the system (5-E.50) of four equations
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is reduced to the system of three equations with four unknowns A,,, K. Crn, Sm for each m:

Am

Mrl-—-2v _Mr1—2u szgll—ul)w—uM2 s"‘!l—u!—-uM2 0
v v v vM
—-—J_VQVTMerh ——-——l—uguf‘Me_rh (—M + __)_(]:1‘:4’2_) et (__M + (l:;:}s’) e=sh Km _ 0
Cm
(T2+M2) (7‘2+M2) 2s -9 s 0
(5-E.51)
or
M,’.]—2v _MTI—QU 52!1—:M!—UM2 Am VMZ_:I;(]_")
]—V2urMerh __l-u2u,rMe-rh (—M+ gl-;x},z)e,h K. = (M— (]:K}sz>e"h S,
(rP+ M%) (4 M) 2s Com 2s
(5-E.52)

For each value of m we can express coefficients Am, K, Cry in terms of the unknown coefficient

Sm ¢

Am Mr]'y2u ~Mr 1—‘/21' s’!l--]:lh"!—I/M2 -1 UMQ-;SI;!]—VZ
Ko = 1-u2u1_Merh __l—u2u,rMe—rh (—M—I— !1:;}5:) esh (M _ !l:xdzs'z)e—sh Sm~
Cm (r? + M?) (r? + M?) 2s 2s
(5-E.53)
For example, for m =2, ie. for Q =y = %’ = Wsaz;h?io——? = 4943.2 we find
A2 Mriz iz focnownt 17N wieaey
v v 14 vM
K, p=| EZrMe™ — =2 pfeTh (-M + S_L1:;’152> esh (M - L—L]:"MSQ> e=sh 3 S =
Cy (r? + M?) (r* + M?) 2s 2
.11754
= .16028 » S».
—.73144
In general, coefficients A,,, Km. Crn can be presented in the form
Am Qm
Km (=9 Bm [ Sm, (5-E.54)

Cm Im
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where am, Bm, ¥m are known coefficients that depend on natural frequencies Q.

According to equation (5-E.25),

u(z, z,t) Zqﬁm (2) cos( )T (), (5-E.55)

where

Om (2) = 7'm I [A €Xp (T'mz) K exp(—rmz)] + 'nl'L”i [Cm €xXp (sz) + Spm exp (_sz)} )

(5-E.56)

T (t) = Qm €08 Qnt + R sin Qmt. (5-E.57)

Substitution of equation (5-E.54) into equation (5-E.56), yields

om (2= {Tm [am exp (rmz) = fm eXp("Tmz)] + [’Ym exp (smz) + exp (—smz)]} W—ZLSm.

(5-E.58)
If we substitute equations (5-E.57) and (5-E.58) into equation (5-E.55), we receive
u(z,z,t) = Z {'rm [am exp (Tm2) — Bm exp(—rmz)] + [’ym exp ($m2) +exp(—smz)}} X
m=1
mm mmz .
X T cos ( 7 ) (Qm cos Ot + Ry, sin th) . (5-E.59)

In formula (5-E.59) the unknown coefficient Sy, has been absorbed by the unknown coefficients Qm
and R,,. These coefficients will be found from initial conditions.

According to equation (5-E.26),

(z,2,1) = ZXm sin (7= ) T (8) (5-E.60)
where
m(2) = (_"7%71)2 [Am exp (Tmz) + Kmexp (—'[‘mz)] +

+ Sm [C’m exp (Sm2) — Sm exp (—smz)] , (5-E.61)
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and T, (t) is defined by formula (5-E57). Substitution of equation (5-E5.4) into equation (5-E.61)
yields

mm

Xm (2) = { (T)Z [am exp (Tm2) + Bm exp(—rmz)} +

+8m ['ym exp (8m2) — exp (—smz)] } Sm, (5-E.62)

If we substitute equations (5-E.62) and (5-E.57) into equation (5E.60), we receive

w(z,z,t) = f: { (%)2 [am exp (Tm2) + Bm exp(—rmz)] +

m=1

mnx

+8m ['ym exp (Smz) — exp (——smz)] } sin (T) (Qm €08 Ut + R sin Qt) . (5-E.63)

In equation (5-E.63) the unknown coefficient S,, has been absorbed by the unknown coefficients Qm

and R,,. These coefficients will be found from the initial conditions.

Vibrations of a plate in cylindrical bending dropped on simple supports

In this case we have the following initial conditions for w (z, z,t), i.e. conditions at moment

¢ = 0, when the plate touches the simple supports:

w(z,2,0)=0 (0<z<L, 0<z<h), (5-E.64)

%1:- (z,2,0) = const(z,2) (0<z<L, 0<z< h) (5-E.65)

We will satisfy initial condition (5-E.65) approximately, i.e. instead of the initial condition (5-E.65)

we will use initial condition

88—1: (x, %’ O) =vy=const(z) (0<z<L). (5-E.66)

From equation (5-E.63) and initial condition (5-E.64) we receive equation

0=w(z,20)= i { (TLI-)z [am exp (rmz) + Bm exp (—rmz)] +

m=1
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+8m [’ym exp (8m2) — exp (—smz)] } Qm, (5-E.67)
from which it follows that
Qm=0. (5-E.68)

Now equation (5-E.63) for w (z, 2,t) takes the form:

w(z,2,t) = i {(7—‘%71)2 [am exp (Tmz) + Bm exp(—rmz)] +

m=1

+8m [’ym exp (Smz) — exp (—smz)] sin (mzrm

) Ry sin (Qmt) - (5-E.69)

From equation (5-E.69) and initial condition (5-E.66) we receive the following equation

n;i;l {(%)2 [am exp (Tm%) + Bm exp (—rmg>] +

h h
+5m [%n exp (sm—2-> — exp (—sm§>] sin (T-g—x) Rl = o (5-E.70)
The constant initial velocity vy can be expanded into Fourier series as follows:
21—~ (-1)" . mnz
vo = Vo Z - sin ( T ) . (5-E.71)
m=1
If we substitute equation (5-E.71) into equation (5-E.70) and equate the coefficients of sin (™F2),

we can express the constant of integration R,, in terms of known quantities:

R == 201~ (=1)7w . (5ET2)

(mzzr_f (amermh/2 + 5me—rmh/2) + s, (,Ymesmhﬂ _ e—smh/2> mrl,,

For even values of m the constants R,, are equal to zero. Therefore, in the series representations
of displacements and stresses, only terms with odd values of m will be present. In view of this, the

solution of the problem can be rewritten as follows:

oo

2k— )7

u(z,z,t) = Z-(-—L—)—R(zk—l) T(2k—1) [a(2k—1) exp (T(zk—l)z) - ﬁ(zk—l) €Xp (_T(Zk—l)z):\
k=1
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+ ['7(2k-1) exp (3(2k—1)2) + exp (—$(2k—1)2)]} X

X €OS ((—2—16—%1)—%{> sin (Qze-1)t) (5-E.73)

& 2k — 1)\’
w(z, 2, t) = ZR(2k—l) (—T—> [a(2k—1) €xp (7'(2k—1)2) + ﬁ(zk-l) exp (—7'(2&—1)2)] +

k=1

. 2k—1)mz\ .
+S(2k_1) li’)’(gk__l) exp (S(zk_l)z) — €Xp (——S(zk_l)z)] sin (L_Tl_—) sin (Q(gk_l)t) y (5—E74)

E(1-v)
(1+v)(1-2v)

Ozz = —

2 ((2k-1)m
Xz (( ) R(2k—-1) T(2k—1) [a(Zk—l) €xp (T(zk—l)z) - 5(2k—1) exp (-T(zk—l)z)] +

k=1

+ [7(%—1) exp (S(2k—1)z) +exp (“5(2}:—1)2)] x

X sin (Qtfl—m) sin (Qak—-1t) +

I LA
(1+v)(1-2v)

2k-1)mw
XZR(u 1) {(( L ) ) [a(2k—1)r(2k—1) exp (T(zk—l)Z) - ﬂ(2k—1)7”(2k—1) exp (—7'(2k—1)2)] +

. 2k—-1D) 7wz .
+5(2k-1) [’Y(zk—l)s(zk-n exp (s(2k—l)z) + S(2k—1) €XP (_3(2k—1)z)] sin (L—L—Z—> sin (Q(2k—1)t) )

(5-E.75)
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v o0
Oyy = Em;&zk—l) [7(%—1) exp (5(%—1)2) + exp (”S(zk—l)z)] X

2% —1)7m\?| . [(2k—-1)nz\
X [S%Zk—l) - (E——L—l—> } sin <(———L-—)——) sin (Q2r-1)t) » (5-E.76)
(2k — 1)
Ozz 2(1+ )Z 2k-1)"
7 o erek-n% 412 Par-1 +2s 65(2}:—1)2_2_.__5(2k__1)
(2k—1)*(2k-1) (2k—1) grak—n = (2k—1)7Y(2k—1) cPan17

T r 2 2 T2 Bak-1 2k — Vmz\ .
+(2k — 1)2 I —502k—1)€ (@k-1% 4 (2k — 1) EE%{—_%) cos (L—T)——> sin (Q(gk_l)t) ,
(5-E.7T)

Ev
A+ (1-20)

2 ((2k-1)7
XZ( ) ) R(Qk_l)x

k=1

Ozz =

X 4§ T(2k—1) [a(%—l)exp (rak—1)2) — Bak—1) €XP (_7'(2k—1)2)}

+ [7(%—1) exp (3(‘2k—1)z) + exp (—3(2k—1)z)] } x

2k -1
X sin (g-———L—‘)_W—I‘) sin (Q(gk_l)t) +

+ E(1-v) 9
1+v)(1-2v)
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e 2k -1)m\°
XZR(%_I) (———L—— Q(2k-1)T(2k—1) €XP (T(zk—l)z) - 5(2k—1)7‘(2k—1) €xp (_T(2k—l)z)} +
k=1

+8(2k-1) [W(Zk—1)5(2k—1)exp (s(2x-1)2) + S(2-1) exp (—5(21:-1)2)] sin ((—2—’{:1;—1)2> sin (Qak-1)t) -
(5-E.78)

The circular frequencies €, that enter into the formulas (5-E.73)-(5-E.78), are computed for

each value of m (m = 1,2,3...) as solutions of the nonlinear equation

My 52 M i3 g llrita
l—VZu TmMmerh __l—l/2u,rmMme—rh ("Mm + (1;}:;)52 ) esmh (—Mm + (111—1;)52 ) e—smh
m m - O,
(7 + M) (r + M2) 25m ~25m
(2 + M) e (rh+ M7 ) e " 2smesmh ~25me=omh
(5-E.79)
where
mm mm\ 2 p mm\ 2 p 1-2v
o e [0 e [ by o
m=TT L mg: om J2 e Gaa =) (5-E.80)
Quantities m, Bm, ¥m, are computed as follows:
-2 -2 2(1—v)—vM? -1 2_42(1_
Qm MTluu __M,rluu s%( :M) v vM U.ngl v)
B o= | EZrMe™h —15ZrMe (—M + .(1:_K4E3> esh (M — Ll%"ME) e—ch \
Ym (r? + M?) (r?* + M?) 2 %
(5-E.81)

and coefficient R, is computed by the formula

Ry = 201 = (=) v . (5-E.82)

(InL_,,)z (amermh/Z + ﬂme—rmh/2> +s,, (,ymes,,,h/z _ e—smh/2> mnQd,,

For verification of results of the finite element program, we will consider an example with the

following numerical data:

N k
E=1148x10°—,v=03,p= 1614m—%,L = 1m, h = 0.06m, v = —10?. (5-E.83)




CHAPTER 5 401

The MAPLE session that is used to compute the values of the constants Qm, Tm, Sm ; Qm, Bm.,

~Ym, Rm for these numerical values of material constants, geometric dimensions and for m = 3 is

shown below:

>Digits:=10:

>m:=3: Young:=114.8e9: nu:=0.3: rho:=1614: L:=1: h:=0.06: G:=Young/2/(1+nu): w.dot:=-
10:

>pi:=3.141592654:

SM:=m*pi/L: r:=(M"2-lambda"2)"(1/2): s:=(M”2-lambda"2*(1-2*nu)/2/(1-nu))“(1/2):

>all:=M*r*(1-2%nu) /nu: al2:=-M*r*(1-2*nu)/nu: a13:=(s"2*(1-nu)-nu*M"2)/nu/M: al4:=al3:

>a21:=(1-2*nu) /nu*r*M*exp(r*h): a22:=-(1-2*nu) /nu*r*M*exp(-r*h): a23:=ald*exp(s*h):

>a24:=ald*exp(-s*h): adl:=r"2+M"2: a32:=a3l: a33:=2%s: a34:=-2%s:

> adl:=(r"2+M"2)*exp(r*h):

>a42:=(r"24+M"2)*exp(-r*h): ad3:=2*s*exp(s*h): add:=-2*s*exp(-s*h):

>ar:=array([[a11,a12,a13,a.14],[a21,a22,a23,a24],[a31,a32,a33,a34],[a41,a42,a43,a44]]):

>with(linalg):

>f:=det(ar):

>lamb._classical:=M " 2*h*(Young/(1-nu"2)/12./G)"0.5;

>lamb:=fsolve(f=0,lambda=48..60);

>Digits:=6: T:=2.*pi/lamb*(rho/G)"(0.5): Omega:=2%pi/T:

>M:=m*pi/L: r:=(M"2-lamb"2)"(1/2): s:——~(M"2-lamb“2*(1-2*nu)/2/(1—nu))”(1/2):

>all:=M*r*(1-2%nu) /nu: a12:=-M*r*(1-2*nu)/nu: al13:=(s"2*(1-nu)-nu*M"2)/nu/M: ald:=al3:

>

>inv:=inverse(array([[all,al2,a13],[a21,a22,a23],[a31,a.32,a33]])):

>b11:=(nu*M"2-s"2*(1-nu))/nu/M: b21:=(M-(1-nu)*s"2/nu/M)*exp(-s*h): b31:=2%s:

>bil:=array([[b11},[b21},[b31]]):

>alpha_beta.gama:=multiply(inv, bil):

>alpha:=alpha_beta_gama([1,1]: beta:=alpha_beta_gama(2,1]: gama:=alpha_beta_gama/[3,1]:

>numerator:=2*(1-(-1) "m)*w_dot:

>denominator:=((m*pi/L)‘2*(alpha*exp(r*h/Z)+beta*exp(-r*h/2))+s*(gama*exp(s*h/,‘l)-exp(-
s*h/2)*

>m*pi*Omega: R:=numerator/denominator:

>Omega; 1; 5; alpha; beta; gama; R;




CHAPTER 5 402

The values of constants Qm, Tm, Sm, Qm; Bm, Yms R,, for m ranging from 1 to 49, corre-
sponding to the numerical data in equations (5-E.83), are listed in the following MAPLE session for
computation of displacements:

>Omega[1]:=1395.05: r(1}:=3.13025: s[1}:=3.13835: alpha(1]:=0.257: beta[1]:=0.335474:

>gama(1]:=-0.81: R[1]:=-0.0604307:

>Omega[3):=12902.7: r[3]:=9.09620: s[3]:=9.33207: alpha(3]:=0.06258: beta[3]:=0.108231:

>gamal3]:=-0.5706: R[3]:=-0.000630021:

>Omegal5]:=33127.8: 1{5]:=14.3745: s[5]:=15.3388: alpha[5]:=0.028100:

>beta[5]:=0.0665388: gama[5]:=-0.3985: R{5):=-0.0000389700:

>Omega|7]:=59061.4: 1[7):=18.8706: s[7]:=21.1466: alpha([7]:=0.015724: beta(7]:=0.0487995:

>gamal[7]:=-0.28112: R[7]:=-0.705011e-5:

>Omega[9):=88362.8: r[9]:=22.6721: s[9):=26.7935: alpha[9]:=0.009998: beta[9]:=0.0389726:

>gamal9):=-0.20036: R[9]:=-0.211367e-5:

>Omega[11]:=119567.0: r[11]:=25.9160: s[11]:=32.3251: alpha[11]:=0.0069103:

> beta[11]:=0.0327202: gamal11):=-0.14378: R{11]:=-0.849163¢-6:

>Omega[13]:=151811.0: r[13]:=28.7319: s[13]:=37.7791: alpha[13]:=0.0050624:

> beta(13]:=0.0283808: gamal13]:=-0.103648: R[13):=-0.411960e-6:

>Omega(15]:=184592.0: r[15):=31.2268: s[15]:=43.1832: alpha[15]:=0.0038677:

>beta[15]:=0.0251832: gama[15):=-0.074947: R[15):=-0.227776e-6:

>Omega[17]:=217620.0: 1[17):=33.4840: s[17]:=48.5562: alpha[17]:=0.0030471:

>beta[17]:=0.0227199: gamal[17):=-0.054291: R[17):=-0.138566e-6:

>Omega[19]:=250724.0: r[19]:=35.5678: s[19]:=53.9109: alpha[19]:=0.0024567:

>beta[19]:=0.0207555: gama[19]:=-0.039376: R[19]:=-0.906374e-T7:

>Omega[21):=283800.0: r{21):=37.5273: s[21}:=59.2561: alpha[21):=0.0020147:

>beta[21]:=0.0191453: gama{21):=-0.028570: R[21]:=-0.627758e-T:

>Omega|[23]:=316802.0: r[23]:=39.3995: s[23]:=64.5974: alpha[23]:=0.0016738:

> beta[23):=0.0177959: gama[23]:=-0.020738: R[23):=-0.455232¢-7:

>Omega[25):=349694.0: r[25):=41.2125: s[25]:=69.9382: alpha[25]:=0.00140390:

>beta[25):=0.0166439: gama[25]:=-0.015051: R[25]:=-0.342883e-7:

> Omegal27):=382460.0: 1[27]:=42.9876: s[27]:=75.2808: alpha[27):=0.00118645:

> beta[27):=0.0156453: gama[27):=-0.0109241: R[27):=-0.266530e-7:

>Omegal20]:=415008.0: 1[29]:=44.7415: 5[20]:=80.6272: alpha[29]:=0.00100798:
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>beta[29]:=0.0147686: gama[29]:=-0.0079256: R[20]:=-0.212841e-T:
>Omega[31]:=447610.0: r[31]:=46.4863: s[31]:=85.9778: alpha([31):=0.00085998:
>beta[31]:=0.0139904: gama[31):=-0.0057491: R[31]):=-0.173918e-T:
>Omega[33]:=479992.0: r[33]:=48.2306: s[33}:=91.3329: alpha[33}:=0.00073588:
>beta[33]:=0.0132939: gama[33]:=-0.0041686: R{33]:=-0.144991e-T:
>Omega[35]:=512252.0: 1[35]:=49.9846: s[35]:=96.6942: alpha[35]:=0.00063115:
>beta[35):=0.0126649: gama[35]:=-0.0030224: R[35]:=-0.123007e-7:
>Omega[37]:=544308.0: 1[37):=51.7494: s[37]:=102.060: alpha[37]:=0.00054211:
>beta37):=0.0120936: gama[37]:=-0.0021908: R[37]:=-0.105991e-T:
>Omega(30]:=576434.0: 1[39]:=53.5313: 5[39]:=107.430: alpha{39]:=0.00046613:
>beta[39]:=0.0115715: gama[39]:=-0.0015873: R[39]:=-0.925917e-8:
>Omega[41]:=608364.0: r[41):=55.3335: s[41]:=112.806: alpha[41]:=0.00040105:
>beta[41]:=0.0110923: gama[41]:=-0.0011497: R[41]:=-0.818892e-8:
>Omega[43]:=640194.0: 1[43]:=57.1586: s[43]:=118.188: alpha[43]:=0.00034503:
>beta[43]:=0.0106502: gama[43}:=-0.0008322: R[43]:=0.732472e-8:
>Omega[45):=671938.0: r[45]:=59.0076: s[45):=123.574: alpha[45]:=0.00029694:
>beta[45):=0.0102407: gama[45]:=-0.0006024: R[45}:=-0.661695e-8:
>Omega|47]:=703586.0: r[47]:=60.8810: s[47]:=128.965: alpha[47]:=0.00025546:
>beta[47]:=0.00986046: gama[47]:=-0.00043587: R[47):=-0.603312¢-8:
>Omegal49):=735156.0: r[49):=62.7790: s[49]:=134.359: alpha[49]:=0.00021987:
>beta[49]:=0.00950587: gamaf49]:=-0.00031551: R[49]:=-0.554492e-8:
>pi:=3.141592654:

>L:=1: h:=0.06: Y:=114.8¢9: nu:=0.3:

>x:=L/2: z:=h/2: t:=0.002:

>m:=2%k-1:

>w:=sum(R[m]*((m*pi/L)"2* (alpha[m]*exp(r[m|*z)+beta[m]*exp(-r[m]*z))
>+s[m]*(gama[m]*exp(s[m]*z)
>-exp(-s[m]*z)))*sin(m*pi*x/L)*sin(Omega[m}*t) k=1..25):

The graphs of variation of transverse displacement at the middle surface (i.e‘ wo = w

z=h/2>
L

as a function of x-coordinate at t=0.002s, and as a function of time at z = 5 are shown in figure

5.2 and figure 5.3.
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5.20 Appendix 5-F
Some considerations regarding comparison of displace-
ments and stresses, obtained from geometrically linear
and nonlinear models

Our finite element program is based on two models: geometrically linear model (small displacement

gradients), with strain-displacement relations being

. . 1 .
Eg;n) =Uzg, 5;2”) = 9 (v +wg), Eglzm) =W,z (5-F.1)

and geometrically nonlinear model, with von-Karman strain-displacement relations (moderately

large displacement gradients)

1 1
E:(z}:zf) =ugz+ 5 (w,z)2 ) E:(zlz{) = 5 (u,z + w,I) , Eglz{) =W,z (5'F2)

In both strain-displacement relations (5-F.1) and (5-F.2), derivatives are taken with respect to
material coordinates, and the stress measure in both models, geometrically linear and nonlinear,
is the second Piola-Kirchhoff stress tensor. Let us show that for both strain measures being used,
equations (5-F.1) on the one hand and equations (5-F.2) on the other hand, the engineering elastic
constants in the constitutive equations are the same.

Let us consider at first the Young’s modulus F,. It is defined as a ratio %::, measured in a
unidirectional tension test. In such a test the displacement gradient g—’;’ is equal to zero, therefore

the components of the von-Karman and linear strain tensors are equal:

Bu

0 = e = &

(5-F.3)
Therefore, the Young’s modulus E, that relates oz, and e&’j) is equal to the Young’s modulus that
relates 0, and e;‘;'"). The other elastic constants in our linear and nonlinear models are, obviously,
equal too.

Besides, it can be shown that in deformations that involve moderately large rotations of line

segments of a material (that is the case in our model), the von-Karman strain e can be interpreted

as a better approximation of a unit extension!® 4—‘%, than the linear strain e\ (Cook, Malkus,

10Here dS denotes a length of a line segment after deformation, ds denotes the length of a line segment before

deformation.
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Plesha, 1989, page 430).
Therefore, the geometrically nonlinear model based on the von-Karman strains, in which the
elastic constants are the same as in the geometrically linear model, can be compared in a meaningful

manner with the linear model, and can be regarded as more accurate than the linear model.

In our opinion, the comparison of the model based on the fully nonlinear Green-Lagrange strain—
displacement relations with the geometrically linear model would have been inappropriate. Indeed,

the axial component of the Green-Lagrange strain tensor is

e =u,+ % [(u,m)2 +(v2)® + (w,m)z] : (5-F.4)

and in a unidirectional tension test for definition of the Young’s modulus, this strain component

takes the form:

1
e =ust 5 (we), (5-F.5)
while the same component of the linear strain tensor is different!!: elim) = u,g. Therefore, the

Young’s modulus that relates 0, and e(g) is not equal to the Young’s modulus that relates o, and

143 . . . . li
ea(;;n). Moreover, in a material with linear dependence between o, and E(x;n) = u 4, there must be

a nonlinear dependance between o, and Eﬁ) =uz+ % (u,z)“).
But in our geometrically nonlinear model, based on the von-Karman strains, the comparison

with the linear model is appropriate.

11 Assuming that there is a uniform state of strain in the test sample, and denoting the length of the sample before

deformation as [, and the length of the sample after deformation as L, we find that the axial component of the linear

I 1 — dz+u y dz)—dz -
strain is o) = ugz = L=, because u,z = ( e ) = (d“'j‘:‘) dz

= %, where dX is a length of a

small line segment after deformation. For the same component of the Green's strain in the test sample we receive:

G 5 L2_s2 2 (dztug do)®=(de)® _ (dz+du)—(dz)? _ (dX)?-—(dz)?
&9 o, + 1 (ug)? = 2 2 because u g + 1 (uz)? = (d= 2(;32 = z+21(13z)2( z)? ¢ 2)(41§2z)
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Figure 5.1
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~-0.0005-

-0.007

-0.001 5

-0.002

Figure 5.2

Transverse displacement wp as a function of x-coordinate (from exact elasticity solution)

at a moment of time t=0.0002s for a wide beam dropped on simple supports.

In this example problem the material properties and geometric dimensions are: E = 114.8 x

10°0;, v = 0.3, p=16142%, L = Im, h = 0.06m, the initial velocity is —10Z
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0 0.002 0.004 0.006 q.n’us 0.01 /0.012 0.014

-0.004+¢
-0.006+
-0.008+¢

Figure 5.3
Transverse displacement wy as a function of time (from exact elasticity solution) at = = !2‘-

for a wide beam dropped on simple supports.

In this example problem the material properties and geometric dimensions are: E = 114.8 x

1092, v = 0.3, p = 161428 L = 1m, h = 0.06m, the initial velocity is —102.

meo m3
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Figure 5.4. Exact and FE solutions for displacement of the middle surface of the plate, L=1m
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3

Figure 5.5. Displacement Wo as a function of x-coordinate at t=0.0001s

410

x-coordinate (meters)

x 10
!
FE isolution iis shown by "o", exact solution - by "x"
: |
\ ]
N
|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9




CHAPTER 5 411
Figure 5.6

Least-square polynomial approximation of finite element

and analytical solutions for stress sigma_xx at x=L/2, z=h/2

stress sigma_xx (N/m”"2)

O exact solution
—— finite element solution

| I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (seconds) x 107
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z—coordinate (m)

Figure 5.8
Comparison of exact elasticity solution and the finite
element solution (based on the plate theory) for variation
of stress sigma—xz in the thickness direction.
The exact solution is shown by 'x',
the FE solution is shown by ‘o'
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z—coordinate (meters)

Figure 5.9

414

Comparison of exact elasticity solution and the finite
element solution (based on the plate theory) for variation

of stress sigma—zz in the thickness direction.
The exact solution is shown by solid line.
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Figure 5.10

Stress sigma—xx iat x=|c_/2, z=—h/2) as a function of time
in a sandwich platform dropped on elastic foundation with

initial velocity —1m/s. The foundation modulus is 6.7864e7 Pa/m (sand).
No damage occurs under this initial velocity, therefore the
results of analyses with and without account of damage coincide.
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—zz (N/m=*x2)

sigma

Figure 5.11

Stress sigma—zz ict x=L/2, z=—h/2) as a function of time
in a sandwich platform, dropped on elastic foundation

with initial velocity —1m/s. The foundation modulus is 6.7864e7 Pa/m (sand).
No damage occurs under this initial velocity, therefore the

results of analyses with and without account of damage coincide.
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Figure 5.12

Stress—yy (at x=L/2, z=—h/2) as a function of time

in a sandwich platform, dropped on elastic foundation

with initial velocity —1m/s. The foundation moduius is 6.7864e7 Pa/m (sand).
No damage occurs under this initial velocity, therefore the

results of analyses with and without account of damage coincide.
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Figure 5.13
Transverse displacement (at x=L/2) as a function of time
in a sandwich platform dropped on elastic foundation
with initial velocity —1 m/s. The foundation modulus is 6.7864e7 Pa/m (sand).

The solid line represents the displacement of the lower surface,
the dashed line — displacement of the upper surface.
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Figure 5.14

Transverse displacement (at t=0.005 s) as a function of
x—coordinate in a sandwich platform dropped on

elastic foundation with initial velocity =1 m/s.

The foundation modulus is 6.7864e7 Pa/m $sond).

The solid line represents the dispiacement of the lower surface,
the dashed line — displacement of the upper surface.
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Figure 5.15

Stress sigma—xx (at x=L/2, z=—h/2) as_a function of time

in a sandwich platform, dropped on elastic foundation

with initial velocity —30 m/s. The foundation modulus is 6.7864e7 Pa/m (sand).
The dashed line represents results of analysis without

account of damage, the solid line — with damage included.
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Figure 5.16
Stress sigma—zz iot x=L/2, z=—h/2) as a function of time
in a sandwich platform dropped on elastic foundation
with initial velocity —30 m/s. The foundation modulus is 6.7864e7 Pa/m (sand).

The dashed line represents results of analysis without
account of damage, the solid line — with damage included.
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Figure 5.17

Stress sigma—yy (tat x=L/2, z=—h/2) as a function of time
in a sandwich platform dropped on elastic foundation

with initial velocity —30 m/s. The foundation modulus is 6.7864e7 Pa/m

The dashed line represents results of analysis without
account of damage, the solid line — with damage included
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Figure 5.18

Transverse displacement w (at x=L/2, z=—h/2) as a function

of time in o sandwich platform dropped on elastic foundation

with initial velocity —30 m/s. The foundation modulus is 6.7864e7 Pa/m (sand).
The dashed line represents results of analysis without

account of damage, the solid line — with damage inciuded.
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Figure 5.22
Stress sigma—xx (at x=L/2, z=—h/2) as _a function of time
in a sandwich platform, dropped on elastic foundation
with initial velocity —30 m/s.
The foundation modulus is 6.7864e8 Pa/m (clay).

The dashed line represents results of analysis without
account of damage, the solid line — with damage included.
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Figure 5.23

Stress sigma—zz (at x=L/2, z=—h/2) as a function of time
in a sandwich platform dropped on elastic foundation

with initia! velocity —30 m/s.

The foundation modulus is 6.7864e8 Pa/m (clay).

The dashed line represents results of analysis without
account of damage, the solid line — with damage included.
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Figure 5.24

Stress sigma—yy (at x=L/2, z=—h/2) as a function of time
in @ sandwich platform dropped on elastic foundation

with initial velocity —30 mis.

The foundation modulus is 6.7864e8 Pa/m (clay).

The dashed line represents results of analysis without
account of damage, the solid line — with "damage included.
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Figure 5.25

Displacement w (at x=L/2, z=—c/2) as a function

of time in a sandwich platform dropped on elastic foundation
with initial velocity —30 m/s.

The dashed line represents results of analysis without
account of damage, the solid line — with damage included.
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Figure 5.28

Stress sigma—xx iot x=L/2, z=—h/2) as a function of time
in o sandwich platform, dropped on elastic foundation

with initial velocity —30 m/s.

The foundation modulus is 6.7864e7 Pa/m (sand).

The dashed line represents results of linear analysis

with damage taken into account, the solid line —

nonlinear analysis with damage.
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Figure 5.29

Stress sigma—zz got x=L/2, z=—h/2) as a function of time
in a sandwich platform, dropped on elastic foundation

with initial velocity —30 m/s.

The foundation modulus is 6.7864e7 Pa/m (sand).

The dashed line represents results of linear analysis

with damage taken into account, the solid line —

nonlinear analysis with damage.
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Figure 5.30

Stress sigma-—yy (tct x=L/2, z=—h/2) as a function of time
in a sandwich platform, dropped on elastic foundation

with initial velocity —30 m/s.

The foundation modulus is 6.7864e7 Pa/m (sand).

The dashed line represents results of linear analysis

with domage taken into account, the solid fine —

nonlinear analysis with damage.
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Figure 5.31

Displacement w (at x=L/2, z=—h/2) as a function of time
in a sandwich platform, dropped on elastic foundation

with initial velocity —30 m/s.

The founation modulus is 6.7864e7 Pa/m (sand).

The dashed line represents results of linear analysis

with damage taken into account, the solid line —

nonlinear analysis with damage.
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Summary and Conclusions

In order to develop a dynamic two-dimensional finite element formulation for stress and progressive
failure analysis of a thick sandwich plate with transversely compressible or extensible core and face
sheets, a new layerwise geometrically nonlinear theory of the sandwich plate was developed by in-
troducing assumptions on a variation of transverse strains in the thickness direction of the faces and
the core of the sandwich plate. Displacements, obtained by integration of the strain-displacement
relations, depend nonlinearly on a coordinate in the thickness direction, and are continuous at the
boundaries between the face sheets and the core. The nonlinear von-Karman strain-displacement re-
lations are used in order to provide more accurate representation of the moderately large rotations as
compared with linear strain-displacement relations. The assumptions on the transverse strains, that
lead to the layerwise theory, allow one to reduce a three-dimensional problem to a two-dimensional
one and provide a proper method of averaging the material properties of the laminated composite
face sheets and the core ! over their thickness. The in-plane stresses are computed from the consti-
tutive relations in each ply of the face sheets, using each ply’s material properties (not the averaged
through the thickness material properties). The transverse stresses are computed by substituting
the in-plane stresses into the equations of motion and by integrating the equations of motion. Such
a method of computation of the transverse stress components allows one to obtain accurate results,
because this method leads to satisfaction of continuity conditions of the transverse stresses at the
boundaries between the face sheets and the core, at the boundaries between the plies of the face

sheets, and allows one to satisfy stress boundary conditions at both the upper and lower external

!material properties of the core vary in the thickness direction because of failure
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surfaces. It was shown in chapter 2 that the transverse stresses, computed by integration of equa-
tions of motion, at both the upper and lower surfaces of the plate are equal to the external loads at
these surfaces, despite the fact that the number of constants of integration is not sufficient to satisfy
the stress boundary conditions at both the upper and lower surfaces. Thus, the adopted approach
to the analysis of the sandwich plate allows one to compute accurately all six stress components,
despite the reduction of the three-dimensional problem to the two-dimensional one.

A finite element formulation for the sandwich cargo platform, modelled as a plate in cylindrical
bending, was done, and a finite element program was developed on the basis of this formulation with
the capability of taking account of damage progression in time, that occurs in the platform during
its interaction with the elastic foundation and the cargo on the upper surface. The stresses and
displacements, computed by this program, are shown to be in good agreement with the known exact
solutions of various static and dynamic problems. This finite element program for cylindrical bending
is a necessary step in development of the finite element program based on the two-dimensional
formulation, and it can be used by designers of the cargo platforms if the conditions of cylindrical
bending are satisfied approximately. According to an estimate made in chapter 3 of the dissertation,
the two-dimensional finite element program will allow one to compute all six stress components,
needed for the progressive failure analysis, with a much smaller number of the degrees of freedom

than a finite element model based on the three-dimensional finite elements.




Bibliography

(1] Abrate, S. “Impact on Laminated Composite Materials”. Applied Mechanical Reviews, 44(4),
155-190, 1991.

[2] Abrate, S., “Impact on Laminated Composites: Recent Advances”. Applied Mechanics Re-
views, 47(11), pp. 517-544, 1994.

[3] Akin, J.E., Finite Element Analysis for Undergraduates, Academic Press, 1987.

[4] Al-Qarra, H. H. “Geometrically Nonlinear Finite Element Analysis of Sandwich Panels”.
Aeronautical Journal, 92, pp. 356-364, 1988.

[5] Allen, H. G. Analysis and Design of Structural Sandwich Panels. Pergamon Press, Oxford,
UK, 1969.

[6] Ambartsumyan, S. A. Theory of Anisotropic Plates. Technomic, Stamford, CT, 1969.

{7] Averill R. C. and Yip Y. C. “Thick Beam Theory and Finite Element Model with Zig-Zag
Sublaminate Approximations”. AIAA Journal, Vol. 34, No 8, August 1996, pp. 1627-1632.

[8] Azzi, V. D. and Tsai, S. W. “Anisotropic Strength of Composites.” Ezperimental Mechanics,
1965, 5, pp. 283-288.

[9] Barbero, E. J. Introduction to Composite Materials design. Taylor and Francis, Inc., 1999.

[10] Barbero, E. J., Reddy, J. N. and Teply, J. L. “An Accurate Determination of Stresses in Thick
Laminates Using a Generalized Plate Theory”. International Journal of Numerical Methods

in Engineering, 1990, 29, pp. 1-14.

[11] Barlow, J. “Optimal Stress Locations in Finite Element Models”. International Journal of

Numerical Methods in Engineering, 1976, 10 (2), pp. 243-251.

439




440

[12] Bathe, K.-J., Finite Element Procedures, Englewood Cliffs, N, J.: Prentice-Hall, Inc., 1995.

[13] Bogner, F. K., Fox, R. L., Schmidt, L. A. “The generation of Interelement-Compatible Stiffness
and Mass Matrices by the Use of Interpolation Formulas”. Proceedings of the Conference on
Matriz Methods in Structural Mechanics, Air Force Institute of Technology, Wright-Patterson
Air Force Base, Ohio, pp. 397-443 (1965).

[14] Broutman, L.J., Krock, R.H. Modern Composite Materials, Reading, Mass., Addison- Wesley
Pub. Co., 1967

[15] Byun, C. and Kapania R. K. “Prediction of Interlaminar Stresses in Laminated Plates Using
Orthogonal Interpolation Polynomials”. Enhancing Analysis Techniques in Laminated Plates,

NDE-Vol. 10, ASME 1991.

[16] Chan, H. C., Foo, O., “Buckling of Multilayered Sandwich Plates by the Finite Strip Method”.
International Journal of Mechanical Science, 19(8), pp. 447-456, 1977.

[17] Chang, F. K., Scott, R. A. and Springer, G. S. “Failure Strength of Nonlinearly Elastic Com-
posite Laminates Containing a Pin Loaded Hole”. Journal of Composite Materials, 1984, 18,
pp.464-477.

[18] Chang F. K. and Chang K. Y. “A Progressive Damage Model for Laminated Composites
Containing Stress Concentrations”. Journal of Composite Materials, 1987, 21, pp. 834-855.

[19] Chaudhuri, R. A. “An Equilibrium Method for Prediction of Transverse Shear Stresses in a
Thick Laminated Plate”. Computers and Structures, 1986, Vol. 23, No. 2, pp. 139-146.

[20] Chaudhuri, R. A. and Seide, P. “An Approximate Semi-Analytical Method for Prediction of
Interlaminar Shear Stress in an Arbitrary Laminated Thick Plate”. Computers and Structures,

1987, Vol. 25, No. 4, pp. 627-636.

[21] Chaudhuri, R. A. and Seide, P. “Triangular Finite Element for Analysis of Thick Laminated
Plates”. International Journal for Numerical Methods in Engineering. 1987, 24, pp. 1203- 1224.

[22] Chou, P. C. and Carleone, J. “Transverse Shear in Laminated Plate Theories”. ATAA Journal,
1973, pp. 1333-1336.

[23] Cook, R. D., Malkus, D. S., Plesha M. E. Concepts and Applications of Finite Element
Analysis. 1989, John Wiley and Sons.




441

[24] Daniel , I. M. and Ishai, O. FEngineering Mechanics of Composite Materials, 1994, Oxford

University Press.

[25] Di Sciuva, M. “A Refined Transverse Shear Deformation Theory for Multilayered Anisotropic
Plates”. Atti della Academia delle Scienze di Torino, 1984, 118, pp. 269-295.

[26] Di Sciuva, M. “Bending, Vibration and Buckling of Simply Supported Thick Multilayered
Orthotropic Plates: An Evaluation of a New Displacement Model”. Journal of Sound and
Vibration, 1986, pp. 425-442.

[27] Di Sciuva, M. “An Improved Shear-Deformation Theory for Moderately Thick Multilayered
Anisotropic Shells and Plates”. Journal of Applied Mechanics, 1987, 54(3), pp. 589-596.

[28] Durocher, L. L. and Solecki, R., “Bending and Vibration of Isotropic Two-Layer Plates”.
AIAA Journal, 1975, 13, pp.1522-1523.

[29] Eason, T. G. and Ochoa, O. O. “Modeling Progressive Damage in Composites: a Shear
Deformable Element for ABAQUS”. Composite Structures, 1996, 34, 119-128.

{30] Engelmann , B.E., “Dynamics of Structures: Solution Techniques”. Finite Element Analy-
sis for Engineering Design, edited by Reddy, J.N., Krishnamoorthy, C.S., Seetharamu K.N.,
Springer-Verlag, 1988

[31] Frostig, Y., Baruch, M., Vilanay, O., Sheinman, I., “High-order Theory for Sandwich Beam
Behavior with Transversely Flexible Core”. Journal of Engineering Mechanics, 1992, 118(5),
pp. 1026-1043.

{32] Greer, J. M. and Palazotto A. N. “Non-linear Finite Element Analysis of Isotropic and Com-
posite Shells by a Total Lagrangian Decomposition Scheme”. Mechanics of Composite Mate-

rials and Structures, 1996, 3, pp. 241-271.

[33] Greszczuk, L. B. “Microbuckling of Lamina-Reinforced Composites”, Composite Materials:

Testing and Design (3-rd Conf.) ASTM STP N 546, Philadelphia (Pa.), 1974, pp.5-29.

{34] Guz, A.N. Fracture Mechanics of Composite Materials in Compression, 1989, Kiev, Naukova,
Dumka (in Russian).

[35] Gutierrez, A. J., Webber, J. P. H. “Flexural Wrinkling of Honeycomb Sandwich Beams with
Laminated Faces”. International Journal of Solids and Structures, 16(7), pp. 645-651, 1980.




442

[36] Hashin, Z.-H. “Failure Criteria for Unidirectional Fiber Composites”. Journal of Applied
Mechanics, 1980, 47, pp. 329-334.

[37] Hashin, Z.-H. “Analysis of Cracked Laminates: A Variational Approach”. Mechanics of Ma-
terials, 1985, 4, pp. 121-136.

[38] Herrmann, L.R., Mason W.E., Chan S.T.K. “Response of Reinforcing Wires to Compressive
State of Stress”. Journal of Composite Materials, 1967, pp. 212-226.

[39] Herup, E. J. Low- Velocity Impact on Composite Sandwich Plates, 1996, Ph.D. Dissertation,
Air Force Institute of Technology, WPAFB, Ohio.

[40] Highsmith, A. L. and Reifsnider, K. L. “Stiffness Reduction Mechanisms in Composite Lam-
inates”. Damage in Composite Materials, STP 775, K. L. Reifsneider, Ed. , American Society
for Testing Materials, Philadelphia, 1982, pp. 103-117.

[41] Hinrichsen, R. L. and Palazotto, A. N. “Nonlinear Finite Element Analysis of Thick Composite
Plates Using Cubic Spline Functions”. AIAA Journal, 1986, 24, 1836-1842.

[42] Hinrichsen R. L. and Palazotto A. N. “Use of a Cubic Spline Function in Finite Elements”.
Mathl., Comput. Modeling, 10(1), pp. 37-47, 1988.

[43] Hornbeck, R. W. Numerical Methods, 1975, New York: Quantum Publishers, Inc

[44] Kanematsu, H. H., Hirano, Y., Iyama, H. “Bending and Vibration of CFRP-faced Rectangular
Sandwich Plates”. Composite Structures 10(2), pp. 145-163, 1988.

[45] Karpenko, L.I., Terletzki, V.A., Lyashchenko B.A., “About one Mechanism of Fracture of
Oriented Plastics”. Strength of Materials, 1972, vol. 1.

[46] Katona, M. G. and Zienkiewicz, O. C. “A Unified Set of Single-step Algorithms, Part 3:
the Beta-m Method, a Generalization of the Newmark Scheme”. International Journal for

Numerical Methods in Engineering, 1985, 21(7), pp. 1345-1359.

[47) Kerr, A. “Elastic and Viscoelastic Foundation Models Journal of Applied Mechanics”, ASME,
31, pp. 491-498, 1964.

[48] Kneifati, M., “Analysis of Plates on a Kerr Foundation Model”, Journal of Engineering
Mechanics, ASCE, 111(11), pp. 1325-1342, 1985.




443

[49] Kwon, Y. W. and Bang , H. The Finite Element Method Using MATLAB. Boca Raton: CRC
Press, 1997

[50] Laicok, M. R. “New Approach in the Determination of Interlaminar Shear Stresses from the

Results of MSC/NASTRAN”. Computers and Structures, 1986, 24(4), pp. 651-656.

[51] Lee, J. D. “Three Dimensional Finite Element Analysis of Damage Accumulation in Composite

Laminate”. Computers and Structures, 1982, 15(3), pp. 335-350.

[52] Lee, K. H, Xavier, P. B., Chew, C. H. “Static Response of Unsymmetrical Sandwich Beams
Using an Improved Zig-Zag Model”. Composite Engineering, 3(3), pp. 235-248, 1993.

[53] Liu, F. L., Chen, H., “A General Bending Theory of Composite Sandwich Plates and its
Application in Aircraft”. Composites: Design, Manufacture and Application (Proc. 8th Int.
Conf. On Composite Mat.), 1991, Tsai, S. W. , Springer, G. S. (eds), SAMPE, Covina CA, 3-
C-1 to 3-C-8.

[54] Lo, K. H., Christensen, R. M. and Wu, E. M. “A High-Order Theory of Plate Deformation.
Part II: Laminated Pates”. ASME Journal of Applied Mechanics, 1977, 44, pp. 669-676.

[55] Lo, K. H., Christensen R. M. and Wu, E. M. “Stress Solution Determination for High-Order
Plate Theory”. International Journal of Solids and Structures, 1978, 14, pp. 655-662.

[56] Lu, X. and Liu, D. “An Interlaminar Shear Stress Continuity Theory for Both Thin and Thick
Composite Laminate”. ASME Journal of Applied Mechanics, 1992, 59, pp. 502-509.

[57] Malvern , L. E. Introduction to the Mechanics of a Continuous Medium, 1969, Englewood

Cliffs, New Jersey: Prentice-Hall, Inc.
[58] MacNeal, R. Finite Elements: Their Design and Performance, 1994, New York: M. Dekker

[59] Markus, S. and Nanasi, T. “Significance of In-Plane Inertia Forces in the Vibration Analysis

of Three-Layered Circular Plates”. Journal of Sound and Vibration, 1981, 763, pp. 421-441.

[60] Mau, S.T. “A Refined Laminate Plate Theory”. Journal of Applied Mechanics, 1973, 40, pp.
606-607.

[61] Mead D. J. “The damping properties of elastically supported sandwich plates”. Journal of
Sound and Vibrations, 1972, 243, pp. 275-295.




444

[62] Meirovitch, L. Methods of Analytical Dynamics, 1970, McGraw-Hill Book Co., New York.

[63] Mukarami, H. “Laminated Composite Plate Theory with Improved In-Plane Responses”.
Journal of Applied Mechanics, 1986, 53, pp. 661-666.

[64] Mukhopadhyay, Sierakowsky. “On Sandwich Beams with Laminate Facings and Honeycomb
Cores Subjected to Hydrothermal Loads: Part I, Analysis”. Journal of Composite Materials,
24, pp. 382-400, 1990.

[65] Monforton, G. R., Ibrahim, I. M. “Analysis of Sandwich Plates with Unbalanced Cross-Ply
Faces”. International Journal of Mechanical Sciences, 17, pp. 227-238, 1975.

[66] Murthy, A. V. K. and Vellaichamy, S. “On Higher-Order Shear Deformation Theory of Lam-
inated Composite Panels”. Composite Structures, 8, pp. 247-270, 1987.

[67) Noor, A. K. “Free Vibrations of Multilayered Composite Plates”. AIAA Journal, 11, pp.
1038-1039, 1973

[68] Novozhilov, V. V. Theory of Elasticity. Pergamon Press, 1961

[69] Ochoa, O. O. and Engblom J. J. “Analysis of Progressive Failure in Composites”. Composite
Science and Technology, 28, pp. 87-102, 1987.

[70] Pai P.F. and Palazotto A. N. “Polar Decomposition Theory in Nonlinear Analysis of Solids
and Structures”. Journal of Engineering Mechanics, 121(4), pp. 568-581, 1995(a).

[71] PaiP.F. and Palazotto A. N. “Nonlinear Displacement-Based Finite-Element Analyses of Com-
posite Shells- A New Total Lagrangian Formulation”. International Journal of Solids and

Structures, 1995(b), 32(20), pp. 3047-3073.

[72] Pagano, N. J. “Exact Solutions for Composite Laminates in Cylindrical Bending”. Journal of

Composite Materials, 3, pp. 398-411, 1969.

(73] Pagano, N. J. “Exact Solutions for Rectangular Bidirectional Composite and Sandwich

Plates”. Journal of Composite Materials, 4, pp. 20-34, 1970.

[74] Pagano, N. J. and Hatfield, S. J. “Elastic Behavior of Multilayered Bidirectional Composites”.
AIAA Journal, 1972, 10, pp.931-933.




445

[75] Palazotto, A. N. and Dennis, S. T. Nonlinear Analysis of Shell Structures. 1992, AIAA
Educational Series. Washington, D. C.: American Institute of Aeronautics and Astronautics,

Inc.

[76] Pasternak, P. “ On a New Method of Analysis of an Elastic Foundation by Means of Two
Foundation Constants” (in Russian). Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I

Arkhitekture, Moscow, USSR, 1954.

[77] Petit, P. H. and Waddoups, M. E. “A Method of Predicting the Nonlinear Behavior of
Laminated Composites”. Journal of Composite Materials, 1969, 3, pp. 2-19.

(78] Pikul V. General Technical Theory of Thin Elastic Plates and Shallow Shells , M: Nauka,
1977 (in Russian).

[79] Pikul, V. “Physically Correct Models for Material of Elastic Shells”, Mechanics of Solids,
30(2), pp. 94-99, 1995.

[80] Plantema, F. J., Sandwich Construction. John Wiley, NY,1966

{81] Reddy, J. N. Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press,
1996.

[82] Reddy, J. N. An Introduction to the Finite Element Method, McGraw-Hill, 1993.

[83] Reddy, J. N. and Liu, C. F. “A Higher Order Shear Deformation Theory of Laminated
Composite Shells”. International Journal of Engineering Science, 1985, 23 (3), 319-330.

[84] Reddy, J. N. “A Simple Higher-Order Theory for Laminated Composite Plates”. Journal of
Applied Mechanics, 1984, 51, pp. 745-752.

[85] Reddy, J. N. and Pandley, A. K. “A First Ply Failure Analysis of Com posite Laminates”.
Computers and Structures, 1987, 25, pp. 371-393.

[86] Reddy, Y. S. N. and Reddy, J. N. “Linear and Non-Linear Failure Analysis of Composite
Laminate with Transverse Shear”. Composite Science and Technology, 44, 1992, pp. 227- 255.

[87] Reifsnider K. L. and Masters J. E. “An Investigation of Cumulative Damage Development

in Quasi-Isotropic Graphite/Epoxy Laminates”, in Damage in Composite Materials, ASTM




446

STP 775, K. L. Reifsnider, Ed., American Society for Testing and Materials, Philadelphia,
1982, pp. 40-62.

(88] Reissner, E., “Finite Deflections of Sandwich Plates”. Journal of Aeronautical Science 15(7),

pp. 435-440, 1948.

[89] Ren, J. G. “A new Theory of Laminate Plate”. Composite Science and Technology, 26, pp.
225-239, 1986.

[90] “Research Interests and Broad Agency Announcement 97-17, BAA announced by AFOSR

[91] Rosen B.U., Dow N.F., “Fracture Mechanics of Fiber Composites”, Fracture, an Advanced
Treatise, vol. 7, Fracture of Nonmetallic and Composite Materials, edited by Liebowitz, H.

[92] Saada, A. S., Elasticity Theory and Applications. New York: Pergamon Press, 1993.

[93] Sadovski M.A., Pu S.L., Hussain M.A. “Buckling of Microfibers” Jbid., 34(4), pp.295- 302,
1967.

[94] Savoia, M. and Reddy, J. N. “A Variational Approach to Three-dimensional Elasticity Solu-
tions of Laminated Composite Plates”. Journal of Applied Mechanics, 59, S166- 5175, 1992.

[95] Schuerch, H. “Prediction of Compressive Strength in Uniaxial Boron Fibermetal Matrix Com-

posite Material”, ATAA Journal, 4(1), pp.102-106, 1966.

[96] Seide, P. “An Improved Approximate Theory for Bending of Laminated Plates”. Mech. Today,
1980, 5, pp. 4561-466.

[97] Sierakowski R. L., Chaturvedi S. K. Dynamic Loading and Characterization of Fiber- Rein-
forced Composites. John Wiley and Sons, Inc., 1997.

[98] Shim V. P. W. and Yap K. Y. “Modeling Impact Deformation Of Foam-Plate Sandwich Sys-
tems”. International Journal of Impact Engineering, Vol. 19, No 7, pp. 615-636, 1997.

[99) Srinivas, S., Joga Rao, C. V. and Rao, A. K. “An Exact Analysis for Vibration of Simply
Supported Homogeneous and Laminated Thick Rectangular Plates”. Journal of Sound and

Vibration, 12, pp. 187-199, 1970.




447

(100] Srinivas, S., and Rao, A. K. “Bending, Vibration and Buckling of Simply Supported Thick
Orthotropic Rectangular Plates and Laminates”. International Journal of Solid and Structures,

6, pp. 1463-1481, 1970.
[101] Stoker, J. J. Nonlinear Elasticity, Gordon and Breach Science Publishers, 1968.

[102] Swift, G. W. and Heller, R. A. “Layered Beam Analysis”. Journal of the Engineering Me-
chanics Division, ASCE, 100, pp. 267-282, 1974.

[103] Sun, C. T. “Failure Analysis of Laminated Composites by Using Iterative Three Dimensional
Finite Element Method”. Computers and Structures, 33, pp. 41-47, 1989.

[104] Sun, C. T. and Whitney, J. M. “Theories for the Dynamic Response of Laminated Plates”.
AIAA Journal, 11(2), pp. 178-183, 1973.

[105] Talreja, R. “Transverse Cracking and Stiffness Reduction in Composite Laminates”. Journal

of Composite Materials, 19, pp. 355-375, 1985.

[106] Tan, S. C. “A Progressive Failure Model of Composite Laminates Containing Openings”.
Journal of Composite Materials, 25, pp. 556-577, 1991.

[107] Tay, T. E., Lam, K. Y. and Cen Z. “Analysis of Composite Structures with Distributed and
Localized Damage by the Finite-Element Method”. Composite Structures, 37, pp. 135-143,
1997.

[108] Tay, T. E. and Lim, E. H. “Analysis of Stiffness Loss in Cross-Ply Composite Laminates”.
Composite Structures, 25, pp. 419-425, 1993.

[109] Tolson, S. and Zabaras, N. “Finite Element Analysis of Progressive Failure in Laminated

Composite Plates”. Computers and Structures, 38, pp. 361-376, 1991.

[110] Tsai, C. T. and Palazotto, A. N. “On the Finite Element Analysis of Non-Linear Vibration
for Cylindrical Shells with High-Order Shear Deformation Theory”. International Journal of
Non-Linear Mechanics, 26(3/4), pp. 379-388.

[111) Ugural A. C., Fenster, S. K. Advanced Strength and Applied Elasticity. 1995, Prentice Hall.

[112] Vlasov, B. F. “About One Case of Bending of Rectangular Thick Plate”. Bulletin of the
Moscow State University, Mathematics and Mechanics.1957, No. 2




448

[113] von Karman, T. “Festigkeitsprobleme in maschinenbau”. Ency. der. Math. Wissenschaften,

Vol. IV/4C, pp. 311-385. Teubner, Leipzig,1910.
[114] Washizu, K., Variational Methods in Elasticity and Plasticity, Oxford, Pergamon Press, 1982.
[115] Winkler, G. “Die Lehre von der Elasticitaet und Festigkeit”. Prog. Dominicus, 1867.

[116] Whitney, J. M. Structural Analysis of Laminated Anisotropic Plates. Technomic Publishing
Company,1987.

[117] Whitney, J. M. “The Effect of Transverse Shear Deformation in the Bending of Laminated
Plates”. Journal of Composite Materials, 3, pp. 534-547, 1969.

[118] Whitney, J. M. “Shear Correction Factors for Orthotropic Laminates Under Static Loading”.
Journal of Applied Mechanics, 40, pp. 302-304, 1971.

(119] Wu, E. M., “Phenomenological Anisotropic Failure Criterion”. Composite Materials, 2, pp.
353-431, 1974.

[120] Yamada, S. E. and Sun, C. T. “Analysis of Laminate Strength and its Distribution”. Journal
of Composite Materials, 12, pp. 275-284, 1978.

[121] Yu, Y.Y. Vibrations of Elastic Plates, Springer, 1997.

[122] Yu, Y. Y. “A New Theory of Elastic Sandwich Plates. One-dimensional Case”, Journal of
Applied Mechanics, 26, pp. 415-421, 1959.




449

Vita

Victor Y. Perel was born 'm-in Ukraine. He graduated from a high school in Rovno, Ukraine
in 1979 and entered the Dnepropetrovsk State University in Dnepropetrovsk, Ukraine. He graduated
from the university in 1984 with a degree of Master of Science in Physics. After graduation he worked
in the Ukrainian Institute of Water Engineering in Rovno, Ukraine, where he was a physics instructor
and was involved in research in analysis of composite structures. In January 1994 he entered the
graduate program of the University of Dayton where he graduated with a Master of Science degree
in Engineering Mechanics in December 1995. In June 1996 he entered the Ph.D. program of the Air
Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, where he graduated with a

Doctor of Philosophy degree in Structural Mechanics in June 2000.




Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penaity for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
12-06-2000 Ph.D. Dissertation May 1998 -- Jun 2000

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Three-Dimensional Dynamic Stress Analysis of Sandwich Panels 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR 5d. PROJECT NUMBER

Perel, Victor 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640

WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS 10. SPONSOR/MONITOR’S ACRONYM
AFOSR/NA AFIT/DS/ENY/00-02

Dr. Steven Walker

801/ N. Randolph Street, Room 732 11. SPONSOR/MONITOR'’S REPORT
Arlington, VA 22203-1977 NUMBER

(703) 696-6962 AFIT/DS/ENY/00-02

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A layerwise geometrically nonlinear theory for a thick sandwich plate was developed by introducing assumptions on a variation of transverse strains in
the thickness direction of the faces and the core of the plate. An effect of transverse extensibility or compressibility of the core and the face sheets is
taken into account, and the terms associated with transverse shear strain of the face sheets and the core are included into the expression for the strain
energy. Displacements, obtained by integration of the strain-displacement relations, depend nonlinearly on a coordinate in the thickness direction, and
are continuous at the boundaries between the face sheets and the core. The non-linear von Karman strain-displacement relations are used in order to
provide a representation of the moderately large rotations. The in-plane stresses are computed from the constitutive relations in each ply of the face
sheets, using each ply's material properties, and the transverse stresses are computed by substituting the in-plane stresses into equations of motion
and by integrating the equations of motion. Such a method of computation of the transverse stress components allows one to obtain accurate results,
because this method leads to satisfaction of conditions of continuity of the transverse stresses at the boundaries between the face sheets and the core,
at the boundaries between the plies of the face sheets, and allows to satisfy stress boundary conditions at both the upper and lower external surfaces.
A finite element formulation was developed for a sandwich cargo platform under its impact against the ground, modeled as an elastic Winkier
foundation. This formulation was done for a plate in cylindrical bending, and a finite element program was written on the basis of this formulation, with
the capability of taking account of damage progression in time. The damage prediction is performed with the use of the Hashin’s and Tsai-Wu criteria
by reducing at each step of time integration the appropriate material characteristics of those plies within a finite element in which failure occurs. The
stresses and displacements, computed by this program, are shown to be in a good agreement with the known exact solutions of various static and
dynamic problems. Example problems of stress and failure analysis of sandwich cargo-delivery platforms during their impact against the elastic
foundations are considered. in these example problems, the stresses as functions of time are computed at certain locations in the platforms with
account of degradation of material characteristics of the failing plies. The locations of the failures, the modes of failures and the times of their
occurrence are defined by the program. The theory of the sandwich plates, presented in the dissertation, does not require many degrees of freedom in
the finite element formulation and has a wide range of applicability. It can be used for analysis of both thick and thin sandwich plates, with thick and thin
face sheets, with transversely flexible and transversely rigid faces and cores.
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