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Abstract 

Functionally-graded Titanium Matrix Composites (F/G TMCs) combine the ideal 

properties of titanium matrix composites with the more practical machining qualities of 

monolithic (unreinforced) alloy. This material shows great promise in application to 

aerospace structural components - even in parts whose design requirements have defied 

the use of composite materials in the past. Successful implementation of such a material 

would lead to enhanced aircraft performance. 

However, the basic properties of a functionally-graded titanium matrix composite 

need to be investigated. The composite/alloy transition region, or joint area, may be less 

strong than its constituents and therefore determine the overall performance of the 

material. Therefore, this work studied the properties (modulus of elasticity, failure 

strength) and mechanical behavior (fatigue and deformation/failure mechanisms) of the 

joint area as the first step in further testing and future evaluation of this material. The 

scope of this effort involved tension and fatigue testing. The results of this study found 

that the transition region was more robust than expected: the joint area shows a 

combination of the properties for the parent materials and is nearly as strong as the 

unreinforced alloy. The deformation mechanism of the joint area was determined to be 

plasticity, and not damage. As a result, the monolithic alloy proved to be the source of 

failure in fatigue loading. This indicates that strain values in the monolithic alloy play a 

key role in the fatigue life of the entire material. These findings encourage further 

evaluation of functionally-graded titanium matrix composites. 

xi 



MECHANICS OF A FUNCTIONALLY-GRADED TITANIUM MATRIX 

COMPOSITE 

1.   Introduction 

1.1.       Background 

Acceptance and implementation of advanced composite materials into both 

military and commercial aerospace systems has made considerable progress over the last 

fifteen years. In particular, composite materials (both polymer matrix and metal matrix 

composites) are desirable for use in high-performance aircraft (such as fighter jets) due to 

their high strength- and stiffness-to-weight ratios, superior fatigue properties, and crack 

growth resistance. For components subject to large out-of-plane loading (bending), metal 

matrix composites (MMCs) have found successful application. Using these new 

materials has reduced the weight of the airframe, thereby increasing the aircraft's speed, 

endurance, range, and payload. However, not all aircraft structural components are suited 

for composites. As considered from a fabrication and functional standpoint, there are 

many mechanical interfaces (bearing runs, seals, attachment points) in some structural 

components which are difficult areas for any composite material application. This is 

because machining or drilling into composite material invariably cuts through fibers, 



rendering the material weaker than the matrix material. Currently, the complexity of these 

components virtually precludes the use of composites and has therefore required the use 

of monolithic material. This has limited the application (and thus the weight-saving 

benefits) of advanced composite materials employed in high-performance aircraft. 

1.2.       Functionally-Graded Composites: A Possible Solution 

Titanium matrix composites (TMCs), reinforced with continuous silicon carbide 

fibers, have many of the attractive properties for composites listed above, including 

superior environmental resistance. TMCs have been employed successfully in several 

high-temperature applications in jet aircraft, including turbine blades. However, there are 

many potential applications in airframe structural components [1]. TMCs could provide 

an almost two-fold increase in structural efficiency as compared to unreinforced titanium 

alloys [2]. In terms of depot maintenance alone, a titanium composite landing gear 

system could save as much as $900k annually (as compared to a system of high-strength 

steel), since field experience has shown that TMCs are impervious to corrosion and do 

not require painting or special plating [3]. The fabrication processes for TMCs are 

proven and reliable [2]. Research and implementation of this material over the last 20 

years demonstrates that this material is technically feasible and "ready to deliver the 

projected benefits" [2]. However, as mentioned above, one of the major obstacles 

preventing widespread application of advanced composite materials is that of machining 

and mechanical interfacing. Past attempts to sidestep this drawback have included 



welding (or otherwise bonding) sections of monolithic titanium alloy to TMCs in order to 

incorporate the benefits of composite material. These attempts met with limited success, 

but encouraged further investigation of a part composite, part alloy (or "functionally 

graded") material that combined the attractive properties of composites with the 

machineability of metal. 

Recently, joining monolithic to composite material has been done using powder 

metallurgy techniques, in one step, during fabrication. This technique has been 

successfully applied to incorporate monolithic titanium sections into the ends of TMC 

landing gear cylinders [3], gas turbine engine shafts, and other components [2, 4] for 

welding/joining purposes. This new fabrication method could possibly remove the 

machineability barrier that has limited the application of TMCs (and composites in 

general) from aircraft structural components. However, there is a complete lack of 

mechanical characterization of this titanium alloy/composite, functionally graded 

material. Understanding the basic material properties of such a material is critical before 

any application can be made. 

1.3.       Objective 

As the first step toward a fundamental understanding of the mechanics and 

material properties of this material, the integrally fabricated joint connecting the 

monolithic alloy to the composite should be studied. The objective of this study is to do 

just that: to compare the properties of the joint interface to those of the monolithic alloy 



and pure composite and to make some basic characterizations of this functionally graded, 

titanium matrix composite (F/G TMC) material. An extensive literature search revealed 

no previous or current research concerning the properties of integrally fabricated joints 

between a composite and monolithic alloy. Therefore, the scope of this effort is to 

investigate the basic, fundamental properties of F/G TMC material under monotonic and 

fatigue loadings and compare them to those of the parent materials. Further, this study 

will be limited to room temperature condition, as it is focused to application of this 

material in aircraft structural components. 

This functionally-graded material employs a double scarf joint to transition from 

composite to monolithic titanium. This study uses scarf joints of two different taper 

angles to determine its effect on the overall mechanical behavior of the material. It has 

been theorized that a narrower taper angle will provide a stronger joint. However, a 

narrow taper angle requires a longer joint section which might not be practical for a small 

component, might not be feasible on a manufacturing standpoint, or may adversely affect 

machining/grinding characteristics [2]. Therefore, a tradeoff is involved to find the 

optimum taper angle resulting in an adequately strong joint that also satisfies functional 

constraints. This study will investigate two different taper angles as the first step in 

determining an optimal configuration. 

It may be possible to model the mechanics of the joint region in order to better 

understand and predict its behavior. Past research over the last 30 years has produced 

several finite element models (FEM) attempting to describe the mechanics of various 



composite materials. This study will compare the results of the joint region's behavior to 

previous models in the hopes that correlation may be found. 

1.4.       Potential Benefits 

This study will establish the basic properties of F/G TMCs. If the findings are 

encouraging, it will lead to further research and testing. This, in turn, may pay significant 

dividends towards the larger effort: acceptance and implementation of additional 

advanced composite materials (such as titanium matrix composites) in aerospace vehicles 

to increase performance. Therefore, although this work has a narrow, direct focus, it is 

nevertheless an essential part of a larger effort that may have significant benefits to the 

Air Force. 



2.   Previous Works 

2.1.       Introduction 

As explained in the previous section, the key feature (and the biggest unknown) in 

the functionally-graded titanium matrix composite (F/G TMC) material is the transition 

area, from composite to monolithic material. This joint region could be the potential 

"weak link", and determining its mechanical behavior and properties are essential in 

future evaluation and acceptance of such a material. In order to characterize the 

mechanics at the joint, it is first necessary to review previous research efforts in the 

parent materials, as well as that of the joint region. This section is therefore divided into 

three categories of previous work: (1) monolithic alloy (especially work done in powder 

metallurgy), (2) titanium matrix composites (especially the SCS-6/Ti family of 

materials), and (3) joint characteristics. Although research into the mechanical properties 

and failure characteristics of alloy-to-composite transition/joint region is practically 

nonexistent, there are many features of existing theories and past efforts in composite 

research that may prove insightful to the current work. These past theories and efforts 

form a foundation for understanding (and perhaps modeling/predicting) the joint 

characteristics under monotonic and fatigue loading. 



2.2.       Ti 6-4 Titanium Alloy 

The mechanical characteristic and material properties of Ti 6-4, under a variety of 

different fabrication techniques, are well-documented. Values such as Young's modulus, 

ultimate and yield strength, Poisson's ratio, and other basic properties have been studied 

carefully, since both the aviation and the biomechanical industries have used Ti 6-4 in the 

past as their titanium alloy of choice. The deformation mechanisms and damage modes 

are understood. Studies involving monotonic loading, fatigue loading (both tensile and 

compressive), and life prediction methodologies have been conducted since the mid- 

sixties and refined thereafter. The properties of Ti 6-4 formed by powder metallurgy 

(PM) techniques are also well-understood and represent an area of study since the early 

1980s and beyond. Early fabrication efforts in powder metallurgy were less than 

desirable since the consolidated material was not 100% dense, meaning that voids were 

present. These voids led to early crack growth and premature failure when compared to 

conventional fabrication methods. Later advances with using hot isostatic pressing (HIP) 

in the late 1980s and mid 1990s were able to produce material with virtually full density 

[5, 6]. 

Several studies have compared the mechanical properties [7] and the fatigue life 

curves [8, 9] of Ti 6-4 using various fabrication methods. Titanium parts fabricated using 

powder metallurgy techniques typically have a fatigue life curve lower than those parts 

produced from wrought processing but higher than parts made by casting [10]. 



2.3.       Titanium Matrix Composites (TMCs) 

Since the inception of TMCs in the eighties, "considerable development and 

progress have occurred towards their characterization, evaluation, and application in 

aircraft engines and structures" [11]. In terms of advances in fabrication and 

manufacturing, significant improvements have been made in the mechanical properties of 

TMCs when compared with material produced in the early 1980s [12]. For the most part, 

these advancements have led to a reduction in the number of defects such as matrix 

porosity and fiber distribution inhomogeneities. 

The mechanical behavior of TMCs is significantly different than for the 

monolithic alloy and has been the subject of intense study since early in this decade. 

There have been numerous studies of TMCs involving both experiments and analyses 

[11]. Research efforts include: tension-compression fatigue testing in cross-ply 

configuration [13], fatigue behavior at elevated temperatures under strain control [17], 

high temperature tension-compression fatigue [14], the effect of frequency on fatigue 

[15], the effect of elevated temperatures on fatigue [15], the effect of thermal cycling 

[16], and fatigue behavior in a cross-ply configuration [17]. These efforts have 

contributed to well-defined life prediction models for the class of TMCs using Ti 6-4 

alloy reinforced with monofilament silicon carbide fibers. 

Research has shown that TMCs are sensitive to ply orientation. For example, a 

90°-ply TMC (where fibers are oriented perpendicular to the loading direction) have a 

lower fatigue life than does unreinforced titanium [13]. For this reason, most TMCs 

8 



employ 0°-ply laminates only. The possible significance of this finding toward the 

current work will be discussed later in this section. 

2.3.1. Fiber/Matrix Interface 

Jeng, Yang, and Yang studied the nature and properties of the fiber/matrix 

interface and determined it plays a "critical role in the performance and failure behavior 

of the composite" [18]. They conducted experiments in order to quantify the interfacial 

properties of several TMCs, including SCS-6/Ti 6-4 (which is similar to the material used 

in this effort). They found that the fiber/matrix interface reaction products were mostly 

TiC, with the other alloying elements (vanadium and aluminum) not involved in the 

reaction. This TiC-rich reaction "zone" surrounds the fiber and its extent into the matrix 

varies, from roughly 0.5 to 4 microns into the matrix. Their work found that the fiber 

strength decreases rapidly as a function of increasing reaction zone thickness, with the 

maximum allowable thickness being 0.93 microns without significantly degrading fiber 

strength. This relationship between fiber strength and reaction zone thickness is 

attributed to the formation of notches on the fiber surface. These notches are created by 

premature fracture in the reaction zone. The larger the reaction zone, the higher the 

occurrence of these fracture sites. They determined that this premature reaction zone 

fracture is influenced by such factors as fiber surface chemistry, matrix alloy 

composition, and residual stresses at the interface [18]. Clyne and Watson also report 

that a thick reaction layer in TMCs impairs composite performance [12], and other 



research also shows that the crack initiation energy decreases as the reaction zone 

increases [19]. 

Jeng et al. found that this TiC-rich reaction zone between the SCS-6 fiber and the 

titanium matrix is weaker and more brittle than the matrix. They found a large reaction 

zone not only weakens the fiber but also the tensile strength of the reaction zone. This is 

because "the probability of finding strength-limiting flaws increases as the thickness of 

the reaction zone increases" [20]. They also determined that the interfacial bonding 

strength affected the stress-strain response, damage initiation and growth, and the fracture 

behavior of the composite. Damage growth occurs from microcracks originating in the 

brittle reaction layer. They found that, for a tough matrix and high interfacial bonding 

strength (such as in the case of SCS-6/Ti 6-4), matrix microyielding leads to blunting of 

the crack. In such case, if the adjacent fiber is strong, the crack will not propagate along 

the fiber and cause debonding. The fracture of the composite is most likely caused "by 

fiber fracture, which occurs randomly throughout the composite because of the statistical 

scatter of the fiber strength" [20]. Previous studies show that the strength of TMCs with 

this type of failure mechanism is determined by the critical fiber length and stress 

concentration factor of the remaining intact fibers on the plane [21, 22]. 

Jeng et al. found that the critical defect size required to initiate brittle fracture of 

the SCS-6/Ti 6-4 composite is on the order of a few fiber diameters [20]. The failure of 

several adjacent fibers in the same plane may be sufficient to initiate failure of the 

composite. 

10 



2.3.2. Tension-Tension Fatigue Behavior 

The loading-unloading response of the material can provide valuable insights into 

the mechanics of deformation mechanisms and constitutive response of TMCs - not only 

because this behavior has been well documented, but also since this type of loading 

closely parallels most operating conditions [11]. Factors which affect fatigue life include 

ply orientation, loading type, temperature/environment, fiber volume fraction, and 

interface properties [23]. 

Studies for tension-tension fatigue testing of 0-ply laminates at room temperature 

conditions revealed that failure is either matrix-dominated, fiber-dominated, or due to 

fiber-matrix interfacial debonding/cracking [24].   Many researchers have described the 

failure mechanisms of TMCs by dividing the fatigue life diagram into distinct regions 

according to these three failure modes [13, 14, 17, 23, 25, 26, 40]. These regions can be 

classified as follows: matrix-dominated damage (below 1300 MPa maximum stress 

loading), fiber-matrix interfacial failure (between 1300 and 2200 MPa), and fiber- 

dominated damage (above 2200 MPa). Low-cycle fatigue life is controlled by several 

important mechanisms: crack initiation at the reaction layer or surface defects, crack 

propagation rate in the matrix, and fiber strength. High-cycle fatigue life is controlled by 

matrix properties such as matrix toughness, as well as crack initiation in the reaction 

zone. Beneath a certain loading, the material exhibits "infinite life" (greater than 106 

cycles) and will not fail even though it is saturated with matrix cracks. In this condition, 

the fibers essentially carry the entire load, since the matrix is virtually cracked completely 

through the cross section [25]. After the onset of matrix cracking, cracks nucleate and 

11 



grow throughout the matrix. However, the fibers act to retard crack growth by "bridging" 

both sides of the crack surface, preventing cracks from linking up. During fatigue crack 

growth, the TMC specimen will fracture if the maximum stress carried by the bridging 

fibers reaches the ultimate strength of the fiber (as determined by the in situ fiber bundle 

strength). If the fiber fracture criterion is not met, eventually the cracks will link up to 

the point that the merged cracks span the entire cross-section of the area, and the fibers 

are completely carrying the entire load [40]. 

Johnson, Lubowinski, and Highsmith, determined that heat treatment (16 hours, 

482°C) increased the yield strength, ultimate strength, and stiffness of the matrix. This 

heat treatment also caused a chemical reaction between the fiber and the matrix; they 

were among the first to term it the "reaction zone" [24]. However, further heat treatment 

is detrimental in that this reaction zone is more brittle than the matrix and can initiate 

cracks in both the fiber and the matrix. Jeng et al. report that the biggest factor in 

improving the fatigue life is to eliminate surface defects and to control the thickness of 

this reaction layer to be as small as possible [25]. 

2.3.3.        Monotonie Loading Behavior 

Monotonie tensile loading can be viewed as the extreme case of low-cycle 

fatigue: failure mechanisms are similar; both exhibit fiber-dominated failure. Once 

enough fibers fail in roughly the same plane perpendicular to loading, fracture will occur. 

Although the matrix plays little role in carrying the load as monotonic loading 

progresses towards failure, observing its deformation behavior may be important to the 

12 



present effort. During monotonic loading, matrix plasticity can occur before fiber-matrix 

debonding, with the region of highest plasticity located near the fiber-matrix interface as 

well as the expected region in front of matrix cracks [26]. However, cracks in the 

reaction zone form prior to matrix plasticity, and play a role in causing matrix plasticity 

[27]. 

2.3.4. Tension-Compression Fatigue Behavior 

Studies have investigated the effects of cyclic response at varying load ratios and 

frequencies. On a maximum stress (amax) basis, TMCs subjected to tension-tension 

fatigue testing have longer lives than for tension-compression [13, 14, 28]. On the other 

hand, using an overall stress range (amax - om\n) basis, tension-compression specimens 

have longer lives than that of tension-tension specimens. These divergent results are due 

to two different means of evaluating material characteristics. Tension-tension testing has 

a higher mean stress value and thus would be expected to have a shorter life based on this 

criterion, whereas tension-compression testing causes additional damage and plasticity 

when viewed on a maximum stress criterion [13]. The reduction in fatigue life in 

tension-compression over tension-tension testing (based on a maximum stress range) can 

be attributed to the creation of additional damage and plasticity sites caused by the 

loading conditions [13]. 

Dennis conducted tension-compression fatigue testing employing strain- 

controlled loading instead of the stress-controlled case on unidirectional TMC specimens. 

Such testing showed that the stress-strain curve exhibits three distinct regimes, very 

13 



similar to the behavior of crossply laminates.   Similar to that of stress-controlled loading, 

the fatigue curve (strain versus number of cycles) showed three similar regimes of 

fracture mechanisms: fiber failure dominated the first regime, followed by matrix 

cracking and matrix fatigue for the next two regimes [17]. Dennis reports that, for a 

higher strain loading, the strain-controlled specimens had a longer fatigue life than that of 

stress-controlled specimens at roughly the same loading [17]. 

2.4.       Joint Region - Functionally Graded Titanium Matrix Composite 

Although no research has been conducted specifically on the interface region of 

F/G TMCs, other studies provide valuable insights. The effect of the joint should be the 

same as a fiber end or discontinuity in a composite. Micromechanical analysis of TMCs 

identifies two main deformation/failure mechanisms: damage and plasticity. Damage 

mechanisms consist of cracks, either in the matrix, the fiber, or along the interface 

between them. Plasticity involves slip-band formation, dislocations, and void 

coalescence [23]. Several researchers have investigated both mechanisms. As will be 

shown, these mechanisms might be more pronounced at the fiber ends in the joint region. 

In addition, strain in the unreinforced alloy may be important to the fatigue life. Finally, 

there are several analytical models which may offer insights into the mechanical behavior 

at the joint. 
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2.4.1. Deformation by Damage 

Reaction Zone Effects: As mentioned previously, Jeng, Yang, and Yang studied 

the nature and properties of the fiber/matrix interface (or reaction zone) and its critical 

role in the performance and failure behavior of the composite [18]. They found that the 

reaction zone was much more brittle than the matrix: both the reaction zone and fiber 

strength decrease rapidly with increasing reaction zone thickness, since "the probability 

of finding strength-limiting flaws increases as the thickness of the reaction zone 

increases." Their work determined that damage growth occurs from microcracks 

originating in this brittle reaction layer. Therefore, it is possible that damage may occur 

along the fiber ends. 

Fiber Direction Effects: As mentioned previously, cross-ply TMCs have a much 

shorter fatigue life than unidirectional TMCs - or even monolithic titanium. In such a 

case, the fibers set perpendicular to the loading axis acts to weaken, and not reinforce, the 

material. Thus, TMC fatigue life is very sensitive to the loading direction [13]. This has 

a potential impact on the current effort. Laminates containing off-axis plies are subjected 

to premature failure along the fiber/matrix interface [29]. This occurs since the cracks in 

the brittle reaction zone in off-axis components are more in a Mode I (opening) fracture 

mechanism rather than a Mode II (sliding) mechanism (as in the case for fibers aligned 

with the loading axis). The fiber ends in the joint region may prove to have a similar (if 

not as magnified) effect as an off-axis ply, in that the reaction zone not only surrounds 

the fiber length, but the fiber ends as well. This reaction zone "cap" covering the fiber 

end would experience a Mode I (opening) mechanism should crack growth occur there. 
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2.4.2. Deformation by Plasticity 

Continuously-Reinforced TMCs: Majumdar and Newaz investigated whether 

plasticity or damage is the dominant mode of permanent (or inelastic) deformation in 

TMCs with continuous fiber reinforcement. Using such models as compliance changes 

(by loading beyond the elastic region, and then noticing any change in elastic modulus 

and residual stress), changes in Poisson's ratio, metallurgical evaluation, and finite- 

element modeling, they determined that matrix plasticity dominates inelastic deformation 

in unidirectional TMCs. They also found that reaction zone cracks played an important 

role in nucleating this matrix plasticity. For this reason, they stressed the importance of 

"optimizing the fiber-matrix interface, to retard the formation of reaction-zone cracks" 

[30]. 

Discontinuously-Reinforced TMCs: Several researchers have investigated crack 

propagation effects from fiber ends of TMCs with discontinuous (or chopped) fiber 

reinforcement. Studies involving the discontinuous (or chopped) fiber reinforcement are 

valuable in determining the effects of fiber ends in the matrix. Many micromechanical 

studies have been undertaken over the last several decades to determine the stress 

concentration and strain effects of discontinuous fibers in the matrix. Clyne and Watson 

determined that for most short-fiber MMCs "under most loading configurations, high 

tensile stresses build up at the fiber ends, and these can cause interfacial cavitation" [12]. 

This is especially true if the fiber is aligned parallel to the direction of loading. They 

report that, although it is uncertain how critical plastic strain is affected by different fiber 
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sizes, most researchers investigating this behavior are in agreement that "the fiber ends 

are the preferred location" for plastic strain and have used FEM computations in an 

attempt to model it [31]. The onset of failure in MMCs "is frequently provoked by 

cavitation linkup in the matrix adjacent to a fiber ends" [12]. It is thought that this 

cavitation at the fiber ends may lead rapidly to failure at the taper joint of the material 

used in this study by growth and link-up of these cavities. Whereas crack growth in the 

reaction zone parallel to the loading axis leads to debonding cracks analogous to Mode II 

fracture mechanics (sliding), cavitation in the reaction zone at the fiber ends leads to 

voids and cracking similar to Mode I fracture mechanics (opening) [12]. 

2.4.3. Combined Deformation Mechanisms 

The deformation/failure mechanism occurring in TMC material (damage versus 

plasticity) depends on the applied stress level, but may show interdependence: The 

formation of slip bands may nucleate cracks, or pre-existing matrix cracks can cause 

localized plasticity [23]. This finding of interdependence is especially important for a 

composite/monolithic joint, where damage in the composite and plasticity in the 

unreinforced alloy (due to higher strain values) may combine to make the joint region the 

weakest section of the test specimen. 
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2.4.4. Strain Effects 

The work of Majumdar and Newaz on varying the fiber volume has one incidental 

finding that may prove important to the present study. By testing samples with different 

fiber volume fractions, they found that strain range controls the fatigue life in the matrix- 

dominated failure region (Region II). This work verifies that the fatigue life of 

unreinforced (monolithic) metals is strain range-dependent [23]. During testing of F/G 

TMCs, the strain range will change significantly from the monolithic to the composite 

sections. This strain gradient over the joint region might affect its strength and fatigue 

life. 

2.4.5.        Analysis 

Finite element modeling (FEM) has been used to predict the effect of the interface 

region [30]. Aveston and Kelly pioneered some of the earliest work in modeling the 

mechanics of discontinuous fiber-reinforced materials nearly 30 years ago. They 

developed a model that sought to account for the bonding strength between the fiber and 

matrix, and investigated load transfer between these two elements. Their model was one 

of the first to capture debonding effects and the phenomenon of fiber bridging in their 

finite element model. They were among the earliest to document the effects of matrix 

cracking [32]. A shear-lag model has shown promise for predicting the stress-strain 

behavior of unidirectional ceramic matrix composites and could prove useful for TMC 

analysis as well [33]. Other important composite models include: Aboudi's continuum 

model [34, 35], the Ahmad-Nicholas model [35, 36], the Dvorak/Bahei-el-Din/Zuiker 
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model [37], the Hopkins-Chamis multi-cell model [38], the vanishing fiber diameter 

model [35, 38], and the concentric cylinder model [38]. 

2.5.       Similar Efforts 

Joining Dissimilar Alloy: In the early 90's, Anoshkin, Gelman, and Pavlov 

recognized the importance of joining dissimilar titanium materials to take advantage of 

the relative strengths and pursued research to that end [39]. Although their work 

consisted of joining unreinforced titanium alloys, it recognized the critical nature of the 

joint region and the potential benefits of linking materials to take advantage of their 

combined attractive qualities. 

Cladded TMCs: A somewhat similar research effort delved into the mechanisms 

of plasticity and damage in selectively reinforced composites. Ramamurty conducted 

research on Ti 6-4 TMC panels clad on both faces with a layer of monolithic alloy [40]. 

This arrangement varies distinctly with the material used in the current study; 

nevertheless, his work provides potential insights to the mechanics of the tapered joint 

region. Ramamurty also recognized the advantages of having a pure titanium region in a 

TMC component in order to simplify machining and joining to other materials, albeit his 

material had a surface layer of pure titanium (selective reinforcement) instead of a 

functionally graded material. He found that the performance and fatigue life 

characteristics of cladded TMC panels were "far inferior" to those of uncladded panels. 

The cladded metal served as a seedbed for early crack initiation when compared to all- 
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TMC panels. Cracks formed in the cladded alloy and grew large enough to suppress 

matrix cracking: all of the fracture energy went into the propagation of a single large 

crack that eventually caused complete fracture of the specimen. In other words, the 

larger the cladding thickness, the more fatigue life degrades. Ramamurty found that 

cladding had no effect on monotonic loading [40], since the fiber properties dominate the 

material under low-cycle fatigue. 

2.6.       Summary 

The research conducted into the mechanical properties and behavior of the 

"parent materials" (both monolithic titanium and for titanium matrix composite) is 

extensive and therefore provides valuable insights into the possible properties and 

behavior of the functionally-graded material. Applying past efforts to the current study 

indicates that the fiber ends in the joint region may have a detrimental effect on the 

overall strength of functionally-graded TMCs, whether by damage or plasticity. It is 

important to determine which of these mechanisms (or what combination of them) is 

dominant in order to characterize the F/G TMC material. 

It is not clear which deformation mechanism will be the primary cause of failure 

by comparing research on both mechanisms alone. Therefore, the test method for this 

study will seek to determine which of these failure/deformation mechanisms defines the 

behavior of F/G TMCs. 
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3.   Test Procedures 

3.1.       Objective 

The previous chapter identified two possible deformation modes: damage and 

plasticity. The current study seeks to determine the mechanical properties (yield and 

ultimate strength, elastic modulus) and the mechanical behavior (fatigue life, permanent 

deformation/failure modes) of functionally-graded titanium matrix composites as the first 

step in evaluating the material for future use. To this end, the tests described in this 

chapter were conducted. To understand the reasoning behind the testing method, it is 

first necessary to describe the test material in adequate detail. 

3.2.       Description of Test Material 

3.2.1. Fabrication Details 

Fabrication of a functionally-graded titanium matrix composite with the desired 

taper angle in the joint region is not a straightforward matter. Atlantic Research 

Corporation (ARC) has developed an innovative method for one-step fabrication of such 

a material. The process is proprietary and still immature, but follows many of the tried 

and proven methods for powder metallurgy. An informative description of the 

fabrication method is essential to this research effort. 
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Parent Materials: Titanium alloy Ti 6-4 is composed of 90% weight titanium, 6% 

weight aluminum, and 4% weight vanadium. Ti 6-4 is an a + ß dual-phase alloy 

typically fabricated by forging and/or cold-rolling with subsequent annealing to reduce 

residual stresses from working the metal. Grain sizes are of either three or ten microns in 

size, depending on the annealing treatment and selected according to the eventual 

function of the part. ARC used alloy with less interstitial content than commonly-used 

Ti-6-4 ELI (extra-low interstitial) material. The material was heat treated to the "dead 

soft" condition (annealed + slow furnace cool) [41]. For this study, the metal was 

fabricated by using the gas atomized process to render the bulk alloy into powder, and 

then consolidating the powder into the final product through the hot isostatic press (HIP) 

method. Powder metallurgy (PM) is an ideal method for fabricating parts made out of 

titanium. The ingot material (IM) is separated into powder particles 200-400 microns in 

diameter. This separation process is conducted in an inert medium such as nitrogen to 

prevent contamination. The powder is then transferred to a hopper where controlled 

amounts can be inserted and consolidated until the desired shape and thickness of the 

titanium part is obtained [5, 6, 7]. Titanium fabricated in such fashion typically has a 

modulus of elasticity of 110 GPa (16.0 Msi), an ultimate strength of 980 MPa (142 ksi), a 

yield strength of 883 MPa (128 ksi) a maximum strain value of 14%, and a density of 

4.43 g/cm3 (0.160 lb/in3). 

The Trimarc 1 fiber is very similar to the SCS-6 fiber used in previous studies. 

The overall diameter is 130 microns (5.07 mil). The silicon carbide is formed around a 

tungsten filament 18 microns (0.7 mil) in diameter through chemical vapor deposition. 
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Figure 3.1: ARC's lay-up/consolidation process for the panels used in this study 
(provided courtesy of ARC) 
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To finish fabrication of the Trimarc 1 fiber, it is coated with a carbon shell 2-3 microns 

(0.08-0.12 microns) thick to enhance fiber/matrix compatibility. The fiber has a modulus 

of elasticity of 420 GPa (61 Msi), an ultimate strength of 3447 MPa (500 ksi), maximum 

strain value of 0.8%, with a density of 3.15-3.24 g/cm3 (0.114-0.117 lb/in3). 

Composite Panel Fabrication: ARC fabricated the composite material using their 

tapecast method. The specifics are proprietary, but the basic method is as follows [42]. 

The starting materials are Trimarc 1 fibers (5.07 mil diameter silicon carbide fiber) and 

gas-atomized titanium powder in "green form" (before consolidation). The tapecast 

method uses a large diameter drum as the key to ensuring proper fiber alignment. The 

drum is wrapped in aluminum foil and the foil is coated with polyisobutylene (PIB) 

adhesive. The adhesive keeps the fibers in place during subsequent operations and 

handling. A single Trimarc 1 fiber is wound around the drum (fiber traverses at fixed 

speed while drum rotates) so that there are 125 windings per inch. Once the overall 

winding width on the spool reaches the desired ply width, the fiber is cut perpendicular to 

the winding direction along the entire length of the drum. This results in a mat of fibers, 

each fiber aligned parallel to one another and of the same length. 

The mat of fiber mat and aluminum foil, still held together by the adhesive, are 

removed from the drum and laid flat. This fiber mat has the same fiber spacing as on the 

drum: 125 fibers per inch. More PIB adhesive is applied to the mat, and a layer of dry Ti- 

6-4 powder is spread on its surface. The adhesive not only helps ensure proper fiber 

alignment but also helps bind the alloy to the fibers. The alloy and mat are then coated 

with layer of polymethylmethacrylate (PMMA). The PMMA coating does not dissolve in 
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the PIB adhesive; its purpose is to keep fiber/powdered alloy in place during subsequent 

powder application. This application of PIB adhesive, alloy powder, and PMMA coating 

are repeated until the resultant tapecast mat fiber volume fraction is 37 percent (the 

overall fiber volume for the consolidated lay-up panel is 35 ± 1 percent). 

The fiber mat/powdered alloy sheet is then cut into appropriately sized plies, the 

foil is removed and the plies are placed in the lay-up tool. The total lay-up consists of 

eight plies, with a Ti 6-4 foil placed on the top and bottom surfaces of the lay-up. To 

prevent the lay-up panel from bonding to the mild steel lay-up tool, the inside surface of 

the cover sheets and inside walls are coated with boron nitride stop-off.   Once the lay-up 

panel is in place inside the lay-up tool, the tool is then made airtight (hermetic seal) so 

that it will not leak when evacuated. 

The lay-up and tool assembly is then evacuated and heated at control ramp rates 

up to 450°C (850 F). The assembly is held at this state until all binders (PIB and PMMA) 

are driven off ("outgassed"). A residual gas analyzer (RGA) and mass spectrometer 

analyze the effluent species to verify complete removal of the PIB and PMMA. The 

eight ply lay-up panel is then consolidated using the hot isostatic press (HIP) method: the 

panel is heated to 900°C (1650 F) and pressurized at 100 MPa (15 ksi) for 2 hours. 

Afterwards, the lay-up panel is removed from the tool and the panel is trimmed to size. 

Monolithic Panel Fabrication: The monolithic alloy panels were made similar to 

the composite panels, in that it consists of eight plies consolidated in the lay-up tool. The 

internal plies are cast similar to tapecast plies: titanium powder layers are cast on to 

aluminum foil until desired metal loading is achieved. However, the surface sheets are 
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molybdenum foil instead of titanium, and the layers are laid up directly in the tool. The 

purpose of the molybdenum and titanium foils is to prevent the monolithic lay-up from 

reacting with the lay-up tool during consolidation (these foil layers will be nitric etched 

and chemically milled afterwards to remove the molybdenum and molybdenum-titanium 

interaction zone, respectively). The PIB and PMMA binders are removed in the same 

manner as described previously, and HIP consolidation uses the same values as before. 

Afterwards, the molybdenum zone is removed from the panel and the panel is trimmed to 

size. 

Functionally Graded Material: The plies were formed as described above, but this 

time the positioning of the fiber ends in each ply was carefully controlled to create the 

desired scarf joint transition region between the monolithic section (see Figure 3.1 and 

Figure 3.1). ARC used a proprietary method to ensure that the monolithic section would 

have the same cross-sectional area as the composite section after consolidation. 

3.2.2. Test Panel Description 

As stated in Chapter 1, the objective of this effort is to characterize the 

alloy/composite functionally graded material (especially the transition/joint region) and 

compare it to the parent materials. To meet this objective required test specimens from 

four different panels. Panel A consisted of [0]8 Trimarc/Ti 6-4 titanium matrix composite 

(TMC) transitioning into monolithic Ti 6-4 alloy using a double-scarf joint with a 4:1 

taper angle (see Figure 3.1). Panel B also consisted of the same TMC transitioning into 

pure alloy, but with a 20:1 taper angle. Specimens cut from monolithic Ti 6-4 alloy 
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Figure 3.1: Joint Region - Taper Angle Geometries 
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(Panel C) and from monolithic [0]g Trimarc/Ti 6-4 composite (Panel D) were also tested 

at the same levels as Panels A and B. Conducting the same monotonic and fatigue tests 

on all-alloy or all-composite specimens allowed for direct comparison of results with 

specimens cut from the functionally graded (F/G) material. 

3.2.3. Specimen Dimensions 

The dimensions of the specimens depended not only on the type of material but also on 

the type of test (see Figure 3.1). For monotonic and tension-tension fatigue testing of the 

functionally graded material (Panels A and B), straight-sided specimens were considered 

appropriate, since the specimens were expected to fail in the transition region (scarf 

joint). However, specimens cut from monolithic alloy or composite (Panels C and D) 

required samples with a wider grip area than the gage area (this type of specimen profile 

is commonly referred to as a "dogbone" due to its shape). This profile is necessary to 

ensure fracture occurs at the gage section, and not in the grip area: the compression on 

the gripped material may create a biaxial stress field in the grip area whose magnitude is 

larger than the axial stress in the gage area. Decreasing the gage area (and thus 

increasing the axial stress in this area) prevents premature failure at the grip. 

The exact radius used to transition from the gage to the grip width is a matter of 

importance. Monolithic composite specimens are very sensitive to shear stresses in the 

shoulder region. To prevent premature failure in the shoulder region of TMCs due to 

shear stress, Majumdar and Newaz determined that the ratio of shear stress to axial stress 

must be 0.06, and that a radius of curvature of 317.5 mm (12.5") in the shoulder region 
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Figure 3.1: Actual-Size Test Specimen Dimensions for (a) tension-compression tests 
(from F/G material, 4:1 taper), (b) F/G material (both 4:1 and 20:1 taper), (c) Ti 6-4 alloy, 
and (d) Trimarc/Ti 6-4 composite 
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ensures this ratio. They arrived at this value through previous experience using specimens 

of varying notch radii [23]. Meeting these criteria for a test specimen requires a difficult 

balance. As stated by Kraabel, "The key to designing the dogbone specimen is to achieve 

maximum reduction in area within the gage length while maintaining a large enough 

radius of curvature so that failure does not occur in the shoulder region due to high shear 

stresses" [14]. The TMC samples used in this study had a radius of 305 mm (12") as the 

optimum balance between large radius of curvature and sufficient straight section for the 

grip area. For monolithic alloy specimens, a radius as small as 19 mm (0.75") in the 

shoulder region is acceptable: the alloy is not as sensitive to notching as the composite. 

3.3.        Test Specimen Preparation 

3.3.1. Machining and Polishing 

Since the functionally graded (F/G) material specimens do not require a dogbone 

profile, all specimens were cut from Panels A and B into strips 8mm (0.3") wide using a 

diamond-encrusted blade (except for the tension-compression test specimens as explained 

previously). In order to cut all of the dogbone specimens to the required dimensions, an 

arc-wire cutter was used since a diamond blade has difficulty in machining curved 

specimens. Regardless of the machining process, all specimens used in this study were 

polished along the machined surfaces to remove any resulting burrs, pitting, or scratches 

due to cutting. It was important to remove these defects as they may provide crack 

initiation points and would thus skew the test results. Polishing was accomplished using a 
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Strewers radial polisher, first with a 120-grit abrasive pad and followed by a 240-grit 

finish.   To prevent rounding of the specimen edges during polishing, the samples were 

sandwiched between Aluminum samples with identical dimensions as the samples and 

secured in a vise at the grip end area. 

3.3.2. Tabbing Procedure 

Initial fatigue testing revealed that Ti 6-4 is very sensitive to fretting. Early 

attempts at testing functionally graded (F/G) specimens resulted invariably with 

premature failure in the grip section on the pure alloy end. Similar results occurred for 

specimens cut from the pure Ti 6-4 alloy (Panel C) as well. Subjecting the grips to 

diagnostic alignment tests proved that the grips were adequately aligned; therefore, the 

failure was not caused by grip-induced bending moments. Observing the gripped surface 

of the tested specimens under an optical microscope led to the suspicion that fretting was 

the factor. Consulting with technician Ken Goeke of AFRL/ML, appropriate tab fixtures 

were constructed to test this hypothesis. The tab fixtures consist of a lay-up of 0.025" 

brass shim and plumber's cloth (both with the same dimension as the specimen grip area) 

placed between the brass and the specimen. This prevented localized stress raisers on the 

alloy grip surface, while yet providing enough friction so that the specimen did not slip. 

(The tab fixture was only placed on the alloy end of the F/G specimen and not the TMC 

end, since TMC material has a much higher tolerance for fretting). This tabbing method 

remedied the problem: Not a single F/G or pure alloy specimen failed in the grips after 

this method was implemented. 
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3.4.       Testing Method 

3.4.1. Monotonie vs. Interrupted Tension Tests 

Monotonie Testing: Monotonie tension tests on specimens of each material 

(Panels A through D) were conducted first to measure the overall failure strength and 

elastic modulus specific to the parent materials. All tests were conducted in room 

temperature conditions, as dictated by the scope of this research (see Chapter 1). 

Obtaining these values for the failure strength and elastic modulus were important, in that 

they established (1) a baseline for later testing and comparison of the F/G TMC 

specimens, and (2) the maximum stress levels used in the fatigue tests. For the 

monolithic alloy and all-composite (Panels C and D) specimens, the test profile was 

monotonic, or the typical "pull to failure" tests usually conducted, with loading rate of 

4.45 kN/min (1000 lbf/min). 

Interrupted Testing: The tension test profile of the functionally graded material 

(Panels A and B) specimens used a "interrupted" profile which deserves explanation. 

The test profile first applied 20% of the expected ultimate strength for Ti 6-4 at a rate of 

4.45 kN/min (1000 lbf/min). The profile then proceeded to 30% of the ultimate strength 

again at 4.45 kN/min (1000 lbf/min) and then back to the 20% level at the same loading 

rate.   Then the profile increased the load to 40% and again returned to a 20% loading 

level in the same manner. The profile continued in like fashion to the 50% level, 60% 

level, 70% level, and so forth (each time returning to the 20% level), until the specimen 
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failed. The reason for conducting tests with such a "interrupted" profile was twofold. 

This test would both compare the elastic modulus of the joint before and after 

deformation, as well as capture any progression of damage in the fiber ends of the joint 

area. After each loading increment, the test returned to the 20% loading level and paused 

there long enough to permit a remote microscopic image (50x to 200x magnification) of 

the alloy/composite interface region in the order to document any crack growth from the 

fiber ends. In addition to the interrupted tests, two standard monotonic tension tests were 

conducted on F/G samples of both taper angles in order to compare the results. These 

monotonic tests were used to determine the yield and fracture strength of the F/G 

samples. 

3.4.2. Tension-Tension (TT) Fatigue Testing 

After the tensile tests were conducted on the all-composite, all-alloy, and both 

types of F/G specimens, several specimens of all four panels were fatigue tested at values 

ranging from 80 to 33 percent of the respective ultimate strength values. These tests took 

place at room temperature conditions using an R-value of 0.1: that is, the ratio of the 

maximum stress to the minimum stress equaled 0.1 for each cycle. The test used a 

sinusoid profile alternating between the minimum and maximum load at 10 Hz. A 

remote microscopic imaging system (Questar camera) captured images of the interface 

region of many of the samples as the fatigue tests progressed. Pictures of the fiber ends 

were taken at 103, 104, and 105 cycles (and every set of 105 cycles thereafter for the high- 

cycle tests) in an effort to capture and document any crack growth in the joint area. 
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3.5.       Test Equipment 

3.5.1.        Apparati 

The Material Test System (MTS) 810 unit, equipped with a 100 kN (22 kip) load 

cell, served as the servo-hydraulic test stand for all test cases. This test stand works in 

conjunction with the MTS TestStar IIs controller, with the related test and interface 

software loaded on an IBM-compatible computer with a Pentium ® processor (see Figure 

3.1). The test stand/controller/computer assembly (the test system) was capable of 

performing all the load profiles required in this study, as well as collecting the necessary 

output data from the extensometers and strain gages. 

Capturing the strain measurements at the interface region of the F/G specimens required 

two different types of extensometers, depending on the taper angle. A specimen with 4:1 

taper angle has a transition region of about 4 mm (0.16"), whereas a specimen with a 20:1 

taper angle has a transition region of roughly 20 mm (0.8"). Therefore, to measure the 

average strain at the joint region, an extensometer with an 8 mm (0.3") gage length was 

used for the 4:1 taper angle specimens, and one with a 25 mm (1.0") gage length for the 

20:1 taper angle specimens. Note that extensometer placement on the joint area is a 

sensitive matter, in that the strain value varies over the length of the joint, as it transitions 

from alloy to TMC. Therefore it is only possible to measure the average strain at the 

joint. For the tensile tests of the F/G samples, strain gages were attached in both 
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Figure 3.1: Overall view of test setup 

Figure 3.2: Detail view of setup for tensile (monotonic and interrupted) testing and 
tension-tension (TT) fatigue testing 
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the pure alloy and pure TMC regions in order to compare the strain values in the 

monolithic material to that of the interface region (see Figure 3.2). 

The Questar remote microscope imaging system includes a 50x optical lens 

housing with a digital camera, an IBM-compatible 486 computer with related software as 

the controller and data collector, and a black-and-white monitor to show the real-time 

image from the camera. A fluorescent lamp was used to enhance the quality of the 

image. After failure, a Scanning Electron Microscope (SEM) was used to inspect the 

fracture surface of most specimens in order to determine the fracture mechanisms 

involved. 

3.5.2.        Data Collection 

During each test, the MTS controller collected the load value (every 0.1 sec for the 

tensile tests, or every 5 sec for the fatigue tests), the corresponding strain voltage (as well 

as the cycle number for fatigue tests), and stored this data as a text file in the attached 

computer. These data were converted to stress and strain values, respectively, and 

graphed using the Microsoft Excel spreadsheet software. Image data was taken during 

testing using the Questar imaging system and saved at various stages during both the 

interrupted tensile tests and the fatigue tests. Each image was stored as a TIFF file on the 

computer dedicated to the Questar camera. The SEM Image data for the fracture surfaces 

was also saved using the TIFF format. 
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4.   Results and Discussions 

4.1.       Tensile Testing 

A summary of the results of tensile testing is listed below. 

Table 4.1: Tensile Test Results 
Spec 

# 
Type of 
Material 

Modulus of 
Elasticity (E) 

Failure Strength 
(<Tf) 

Fracture 
Location 

A5 F/G(4:l) 157 GPa (22.8 Msi)* 965MPa(140ksi) Joint Area 
(tip) 

199 F/G(4:1)J 156 GPa (22.6 Msi)* 960MPa(139ksi) Joint Area 
(tip) 

203 F/G(20:l) 146 GPa (21.2 Msi)* 945MPa(137ksi) Joint Area 
(tip) 

204 F/G (20:1)| 150 GPa (21.8 Msi)* 920MPa(133ksi) Joint Area 
(midsection) 

C2 Alloy 110 GPa (16.0 Msi) 1000 MPa (146 ksi) Gage Area 

D4 TMC 210 GPa (30.5 Msi) 1655 MPa (240 ksi) Gage Area 

% Denotes interrupted tensile test       * Denotes modulus at the joint area 

4.1.1. Discussion of Results (Parent Materials) 

The moduli values and the ultimate strength for the alloy are similar to other 

researchers' findings for Ti 6-4 produced via powder metallurgy [7, 8, 9, 10, 43, 44, 46, 

47, 48]. In like manner, the values for the composite specimens are in agreement with 

past research [1, 11, 19, 20, 40]. This set of findings is not important in and of itself. Its 

purpose is only to verify that the experimental data matches other independent findings. 

This correlation in turn lends confidence to the experimental data collected for the F/G 

specimens, since the parent specimens were fabricated in the same way in order to 

perform a direct comparison between these materials. 
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4.1.2. Discussion of Results (Functionally-Graded Material) 

Fracture Location: The F/G specimens invariably failed at the "tip" of the joint 

area (the bottom of the "V" created by the taper angle). However, the fracture surface did 

not follow the taper angle: it failed from the tip of the joint and out through the 

unreinforced alloy at an angle of 45° from the loading axis. In addition, the fiber ends 

showed no sign of cracks developing when viewed by the remote microscope. 

Strength Values: The F/G specimens with both tapers failed at nearly the same 

stress level: 920 MPa (139 ksi). This value only slightly below the failure strength of the 

monolithic Ti 6-4 alloy from monotonic test: 1000 MPa (146 ksi). The joint strength 

under tensile testing is much more robust than expected (see Figure 4.1 and Figure 4.2) 

Strain Values: From Figure 4.1 and Figure 4.2, the strain values for specimens of 

both taper angles are nearly the same: elastic strain has a value of 0.006, and failure strain 

is roughly 0.012. 

Elastic Modulus: The modulus for the joint area was expected to be the average of 

the parent materials, or 155 GPa (22.5 Msi), based on the following modified rule of 

mixtures formula: 

Ejo-m = caEa + ccEc = caEa + cc (vfEf + vmEm) 

Where Ea and Ec are the moduli and ca and cc are volume correction factors for the 

monolithic alloy and composite, respectively. Since the modulus of elasticity for the 

matrix is the same as for the alloy (Em = Ea), the equation simplifies to 
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Ejote = (ca +ccvm)Em+(ccvf)Ef 

For a double scarf joint (regardless of taper angle), the volume for both the alloy 

and composite sections are both one-half of the total volume. Therefore the values for cc 

and ca are 0.5 in this study (note that the sum of the volume correction factors is always 

unity, similar to the volume fractions). By using the composite material values (fiber and 

matrix volume fractions and respective moduli) and the parent material values (volume 

correction factors and moduli of elasticity), the modulus value for the joint roughly 

matches the experimental value. 

As for the elastic moduli of the all-alloy and all-composite sections of the F/G 

specimens, the strain gages mounted on the specimens give values of 110 GPa (16 Msi) 

and 210 GPa (30 Msi), respectively. These values are similar to the ones found for 

specimens from the parent, as would be expected 

Deformation Mechanism: From the stress-strain curves of the monotonic tensile 

test, it is evident that deformation in the joint area occurs at the same load as plastic 

deformation in the alloy section of the material, even though their moduli are different. 

This finding indicates that plasticity is the deformation/failure mechanism. Apparently, 

even if damage mechanisms nucleated cracks from the fiber ends, plasticity in the 

matrix/monolithic alloy caused yielding and then eventual failure. As further evidence, 

the interrupted tensile test for the 20:1 taper angle material (Specimen #204) captures the 

initial elastic modulus and the modulus after deformation but before failure (see Figure 

4.2). Note that these values are both roughly the same: 150 GPa (21.8 Msi). According 

to Majumdar and Newaz, this is one of the ways to determine that plasticity is the 
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deformation mode: damage would result in a significantly lower modulus if cracking had 

been the failure mode [30]. 

Summary: These results would indicate that, although the joint area initiated 

failure under tensile testing, its strength is nearly that of the unreinforced alloy. The joint 

area elastic modulus is the average of the moduli for the parent materials. It appears that 

deformation occurs through plasticity, and not damage. 

4.2.       Tension-Tension Fatigue Testing 

4.2.1. Introduction 

In contrast to the tensile testing results, the results of fatigue testing were more 

complex and unexpected. As a result, this section will require much more detail to 

describe what the results were, why they were unexpected, and what insights the results 

provide. Although the results were not as expected, they nevertheless provide an 

increased understanding of the mechanical behavior for F/G TMC material. 

4.2.2.        Discussion of Results (Parent Materials) 

As was expected, the composite S-N curve is substantially higher than the S-N 

curve for the alloy specimens, and matches the values given by others [40]. However, the 

S-N curve for the alloy specimens has values lower than expected and do not match what 

others have typically found for Ti 6-4 fabricated by powder metallurgy techniques. 
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Table 4.1: Tension-Tension Fatigue Test Results (R=0.1,10 Hz, T«20 °C) 

Spec 
# 

Type of 
Material 

Loading 
cw(MPa) 

Cycles to 
Failure 

Fracture 
Location 

Ki 
(MPaVm) 

200 F/G(4:l) 450 71,629 cycles Interface 31 

201 F/G(4:l) 540 30,071 cycles Alloy region 11 

Al F/G(4:l) 225 2,000,000 cycles (no fracture) -- 

A2 F/G(4:l) 360 469,699 cycles Interface 8.6 

A3 F/G(4:l) 630 10,536 cycles Alloy region 9.2 

Bl F/G(20:l) 360 100,941 cycles Alloy region 7.6 

B2 F/G(20:l) 450 28,485 cycles Alloy region 12 

B3 F/G(20:l) 540 31,631 cycles Alloy region 10 

C3 Alloy 360 226,917 cycles Gage Area 8.7 

C4 Alloy 450 39,297 cycles Gage Area 9.6 

C5 Alloy 540 29,368 cycles Gage Area 11 

D3 TMC 1075 5,808 cycles Shoulder _.. 

El TMC 1240 3,839 cycles Gage Area 

E2 TMC 580 1,000,000 cycles (No failure) __ 

E3 TMC 910 57,575 cycles Gage Area —— 

E4 TMC 745 114,623 cycles Gage Area 
"" 
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These lower values are not due to differences in fabrication or heat treatment of the 

material. Testing F/G samples provided even more unexpected results. 

4.2.3. Discussion of Results (Functionally-Graded Materials) 

Fracture Location: Except on two occasions, the F/G specimens failed in the alloy 

section of the material in apparently random locations. Two of the specimens failed at 

the joint area, but this difference will be discussed later. 

Fatigue Life: The S-N curves for the F/G specimens were nearly identical 

(regardless of taper angle) and fall within the same band of values as the monolithic alloy 

samples. The S-N curves for the functionally graded specimens were expected to be even 

lower than for the monolithic alloy due to the inherently weaker joint section. Instead, 

the S-N curve for the functionally graded material is not significantly different than for 

the alloy (see Figure 4.1). The 20:1 taper angle functionally graded material was 

predicted to have a longer life since the steeper taper angle supposedly does not facilitate 

void link-up and crack growth as much as the 4:1 taper angle samples. 

Summary: The F/G samples did not break at the joint area, the expected weak 

section of the material. Instead, the fractures were randomly distributed throughout the 

alloy section. The fatigue curves for the F/G samples were much lower than expected, 

were independent of the taper angle, and closely matched the S-N curve for the alloy 

samples. In Figure 4.1, the S-N curves for the F/G and monolithic specimens are 

combined to show that, allowing for statistical scatter, they all fall on the same curve. 
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Considering these unusual results led to the suspicion that something was causing the 

samples to experience premature failure. 

4.2.4. Fracture Surface Inspection 

Microscopic Imaging: Inspection of the fracture surfaces using a low-power 

optical microscope identified possible flaws in the functionally-graded material (see 

Figure 4.1). No such impurities were identified on the composite specimen fracture 

surfaces. Inspection of the monolithic alloy specimen fracture surfaces, however, 

identified impurities very similar to those in the F/G samples. This would indicate that 

the fracture mechanics for the functionally graded material are the same as for the all- 

alloy material and would explain the F/G materials having the same S-N curve as for the 

alloy. 

Electron Imaging: Using a secondary electron microscope (SEM) confirmed the 

existence of inclusions on the fracture surface which initiated crack growth. The fracture 

surfaces were examined using SEM and backscattered electron imaging. All of the 

fracture surfaces in the alloy section contained inclusions that initiated crack growth and 

eventual fracture (see Figure 4.1). These inclusions were surrounded by a reaction zone 

of part impurity, part titanium, which confirmed that they were present during 

consolidation of the material, and not a subsequent deposit on the fracture surface. Also, 

the fracture centered on the inclusion, showing crack growth radiating from the impurity. 

This indicates that the inclusion was present at the time of material consolidation and not 

deposited after the specimen fractured. The inclusions varied in length from 20 to 200 
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Figure 4.1: Specimen B3 (F/G, 20:1 taper) fracture surface: fatigue testing at 540 MPa 
(78 ksi). Note flaw at center of surface. Failure occurred at 31.6k cycles 
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Figure 4.2: Specimen B3 fracture surface (close-up view of flaw) using (a) secondary 
(SEM) and (b) backscattered (RBS) electrons. The flaw consists of a calcium, silicon, 
and magnesium compound. 
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microns, with 100 microns being the average size (see Figure 4.2). As for the two 

samples which did fail at the joint region, the fiber ends did not cause fracture. In both 

cases, SEM imaging showed that fiber shards (lying perpendicular to the loading axis, 

similar to a crossply fiber) initiated cracks and caused specimen failure. For a complete 

review of all the fracture surfaces, please refer to Appendix B. 

Effect of Calcium Inclusions in the Alloy: The fracture surface for Specimen C4 

(monolithic alloy) shows the debilitating effect of these tiny inclusions (see 

Figure 4.3). Failure occurred after fatigue testing at 450 MPa (65 ksi) for 39k cycles. It is 

evident from the images that the failure-causing crack propagated from the inclusion. A 

close-up view of the flaw on the Specimen C4 fracture surface using (b) secondary 

(SEM) and (c) backscattered (RBS) electron imaging reveals the overall geometry of this 

flaw. Note that the RBS image shows the inclusion as the white area (calcium-based 

material). At this magnification it is evident that the inclusion is shaped like a flake, with 

the surface perpendicular to the axis of loading, maximizing its potential for crack 

propagation. Its closeness to the specimen surface put the inclusion in a plane stress 

condition, further aggravating crack growth. Higher magnification of the calcium-based 

inclusion on the Specimen C4 fracture surface flaw reveals its brittle nature (see 

Figure 4.4). Note the cracks in inclusion (white area), part of which has chipped away to 

expose the reaction zone with the titanium alloy (dark, rough area) underneath. 

Effect of Magnesium Inclusions in the Alloy: The fracture surface for Specimen 

B2 (20:1 taper F/G) shows the effect of another type of inclusion. This specimen failed 

after fatigue testing at 450 MPa (65 ksi) and failure at 28.5k cycles. Note flaw at center 
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secondary (SEM) and (c) backscattered (RBS) electron imaging of the inclusion 
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Figure 4.4: Specimen C4 fracture surface - detail view of the calcium-based inclusion 
using SEM (above) and RBS (below) imaging. 
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of surface as shown in Figure 4.5. The inclusion is shown in greater detail in SEM and 

RBS imaging as well. This type of inclusion was very rough, porous, and granular. The 

reaction zone between the inclusion and the matrix was full of voids, which probably 

help initiate the cracks leading to fracture (see Figure 4.6). 

Effect of Fiber Shards at the Joint Area: The fracture surface for Specimen 200 

(4:1 taper F/G) shows that failure occurred in the joint area (see Figure 4.7). However, 

close inspection shows that the fiber ends did not cause fracture. Complete and detail 

view of after fatigue testing. The specimen was subjected to 450 MPa (65 ksi) fatigue 

testing and failed after 71.6k cycles. Note the smooth section in lower left of specimen. 

This shows crack nucleation near the surface of the specimen face and propagation 

through the monolithic section and into the fiber section. The tilted view of the same 

surface (centered on the flaw) shows the terrain features of the fracture. Note how the 

large smooth crack started in the alloy and grew until it linked up with matrix cracking in 

the upper section. Note how this matrix cracking occurred on a different plane than the 

large crack. Also note fiber bridging effects, in that the large crack did not extend into 

the monolithic section at the top of the image. A close-up of the crack initiation site 

shows that the inclusion in this case is a fiber shard measuring 200 microns long (see 

Figure 4.8 and Figure 4.9). This was evidently a fiber remnant that was deposited during 

fabrication. It shows that fibers, if placed perpendicular to the loading direction, causes 

the material to have a shorter fatigue life than unreinforced titanium alloy. 

Specimen A2 (4:1 F/G) was the only other specimen to fail at the joint area; 

again, this was most likely caused by fiber shards. This specimen was subject to fatigue 
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Figure 4.6: Specimen B2 - detail view of the magnesium-based inclusion using (a) SEM 
and (b) RBS imaging 
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Figure 4.7: Specimen 200 (4:1 taper) fracture surface (a) complete view (b) tilted view 
of the same surface, centered on flaw, to show the terrain features of the fracture 
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Figure 4.8: Specimen 200 (4:1 F/G) - close-up of the failure-causing flaw (fiber shard) 
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Figure 4.9: Specimen 200 (4:1 F/G) - detail view of the inclusion (the light-colored areas 
in the RBS image are remnants of the tungsten filament in the Trimarc 1 fiber) 
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Figure 4.10: Specimen A2 (4:1 F/G) fracture surface. Complete view (above) and close- 
up view (below). Specimen was subject to tension-tension testing at 360 MPa (52 ksi) 
and failed at 470k cycles. 
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testing at 360 MPa (52 ksi) and failed at 470k cycles (see Figure 4.10). Note relative 

flatness of the monolithic section at upper right, showing little matrix cracking. This 

indicates that a crack nucleated in the monolithic alloy and propagated into the fiber- 

reinforced section, totally suppressing matrix cracking. Note fiber bridging effects in the 

composite section. Note that the bottom edge and left side show more signs of surface 

roughness associated with matrix cracking. Note fiber shard at lower edge of surface, 

which may have helped propagate the fracture surface. 

4.2.5. Investigation of Premature Failure Source 

Elemental Composition: X-ray spectroscopy determined that most of the 

inclusions consisted of magnesium- or calcium- based substance, or a mix of the two. 

Their size, along with their composition would indicate that the inclusions are not silicon 

fiber shards but some other material not ordinarily present during fabrication. As for the 

fiber shards, they were indeed silicon carbide. For additional information about the 

composition of the inclusions, and for a copy of the x-ray spectroscopy charts, please 

refer to Appendix C. 

Contamination Source: The origins of the fiber shards are self-evident and will 

not receive much attention as their remedy involves better handling procedures for the 

fibers. However, the inclusions in the matrix need further investigation. From the 

beginning of powder metallurgy processing, researchers identified that "an extreme 

degree of cleanliness is critical" to the overall performance and acceptance of this 

fabrication method [43]. In the early eighties, Eyon et al. identified one of the major 
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contributors to premature crack initiation in titanium powder metallurgy products to be 

inclusions of "mostly Ca with some Si and Mg." - identical to the inclusions identified in 

this study [10]. Many other researchers found similar results as well; the source of these 

inclusions proved to be airborne particulate matter (dust) [7, 8, 9, 44]. When personally 

reviewing the fracture surface inclusions found in this study, Dr. Eylon was certain they 

were dust particles [45]. 

Explanation: In the mid-1990s, advances in material preparation and fabrication 

in ultra-clean facilities has essentially eliminated dust as a contamination source [46, 47, 

48]. However, due to the immature nature of this new fabrication technique, the 

manufacturer is still perfecting the fabrication and quality processes. Atlantic Research 

Corporation (ARC), has evaluated the findings presented above and agrees that the 

material was contaminated by dust during fabrication [49]. Other all-composite panels 

fabricated using the same powder but using different techniques showed no signs of 

inclusions, which would indicate that the starting powder was not contaminated. 

According to ARC, "this implies that the most likely source of the inclusions is from 

foreign material being deposited on the surface of the monolithic and fiber reinforced 

tapecast mats at some point during processing of the panels" [49]. As mentioned in 

Chapter 3, the fabrication process for this material uses adhesive to ensure the powder 

binds to the fibers before consolidation. As a result, the surfaces of the lay-up mats are 

tacky which would also bind fast to any airborne particulates. 

Solution: The fabrication method used for these panels employs innovative 

techniques that ARC had not used previously in quite the same manner. As a result, this 
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fabrication method exhibits the risk inherent to cutting-edge techniques. It is hoped that 

this fabrication method will increase in refinement and reliability with time. According 

to ARC, "Since these panels were fabricated, ARC has modified the filtering system for 

their clean rooms and instituted procedural changes in their fabrication and storage 

processes to prevent a reoccurrence of this type of contamination. To date, no other 

material produced by ARC has shown signs of these inclusions" [49]. 

4.2.6. Lessons Learned 

Although the presence of these inclusions was unfortunate and unwanted, this 

circumstance nevertheless reveals much about the nature of the joint region. The very 

fact that inclusions are more detrimental to the fatigue life than the joint region is a very 

important finding by itself, and would not be intuitively apparent without this experience. 

The fracture surface of one 20:1 F/G specimen (Specimen B2) provides a poignant 

illustration of this fact. The fracture surface reveals an inclusion and a short fiber 

segment (with its accompanying reaction zone) are both exposed. Upon viewing the 

surface, it is immediately apparent that the inclusion, though much smaller than the fiber 

segment, nucleated the failure-causing crack and not the fiber or its reaction zone (see 

Figure 4.1 and Figure 4.2). 

This indicates that the inclusions are indeed more detrimental to the F/G fatigue 

life than is the joint region. Whereas before the fatigue life for the joint was unknown, it 

is now established that it is better than the well-understood and well-documented 

situation: Ti 6-4 material with inclusions. 
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Figure 4.1: Specimen A3 (4:1 taper) - complete view of the fracture surface and close-up 
view of the fiber shard on fracture surface 
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Figure 4.2: Specimen A3 (4:1 F/G) - detail view of the inclusion using (a) secondary and 
(b) backscattered electron imaging. This enlarged view reveals the sharp, angular nature 
of the inclusion (dark areas) and the brittle reaction zone that surrounds it. 
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4.2.7.        Determining the Fatigue Life of Functionally-Graded Material 

As mentioned in the previous section, the joint region is stronger than the 

presence of inclusions during fatigue testing. This finding is important because the effect 

of inclusions on the fatigue life are well-known and well-documented, whereas the effect 

of the taper joint is not. Since the taper joint is stronger than inclusions in the alloy, this 

establishes the lower bound for the fatigue life of an F/G TMC without inclusions. And, 

since the functionally-graded material cannot have a longer fatigue life than that of the 

titanium matrix composite, the TMC material establishes the upper bound for the fatigue 

life of an F/G TMC without inclusions. Therefore, the S-N curve for the F/G material 

will fall somewhere in between the S-N curve for the test samples which failed due to 

inclusions in the alloy (both F/G samples and the monolithic alloy samples) and the S-N 

curve for the TMC test samples (see Figure 4.1). 

But besides merely bounding the S-N curve, there are other efforts mentioned in 

Chapter 2 (Previous Works) that may allow an accurate fatigue life prediction to be made 

for F/G material. This prediction is made on the following premise: if the inclusions had 

not been present in the material, the F/G samples would have either (1) still failed in the 

alloy section due to higher strain values, or (2) failed in the joint region due to the fiber 

ends. 

To determine which scenario is more probable, two specific research efforts will 

be employed to this end. The first is by Eylon et al. in characterizing the fatigue life for 

Ti 6-4 fabricated by powder metallurgy (PM) without inclusions. The second is by 
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Ramamurty in characterizing the effects on the fatigue life of cladding TMCs with thin 

layers of monolithic alloy. Both used tension-tension fatigue testing. Therefore, 

although the inclusions prevent obtaining direct values for the S-N curve, there are 

possible methods for determining the fatigue life. 

4.2.8. Fatigue Life: Lower Bounds (Inclusion-Free Titanium) 

Studies have compared the mechanical properties [7] and fatigue life curves [8, 9, 

10] of Ti 6-4 using powder metallurgy methods, and the effect of inclusions. Inclusions 

do not significantly affect monotonic tensile testing [7], but become more critical in 

tension-tension cyclic loading. The inclusions significantly degrade the fatigue life. 

Eylon et al. determined an S-N curve showing the effects of calcium- and magnesium- 

based inclusions in Ti 6-4 test specimens as well as the S-N curve for Ti 6-4 specimens 

free of inclusions [10]. See Figure D.2 in Appendix D for a copy of the curve they 

derived. 

Superimposing the S-N curve for the alloy with inclusions (from the work of 

Eylon et al.) onto the combined S-N curve for the test samples that failed due to 

inclusions (from the current work) shows a nice correlation (see Figure 4.1). This 

indicates that the S-N curve from Eylon et al. for inclusion-free alloy would be an 

accurate representation for how the monolithic test samples would have behaved if there 

had been no inclusions. 

Making the hypothesis that the joint of the F/G specimens would have been 

stronger than the inclusion-free monolithic alloy section means therefore that failure 
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Figure 4.1: Comparison of the S-N curves derived from Eylon et al. (Ti 6-4 material with 
high levels of contaminants and Ti 6-4 with low level of contaminants) 
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would still have initiated in the alloy. If this is true, then the S-N curve for inclusion-free 

alloy from the work of Eylon et al. would also be an accurate representation of the S-N 

curve for F/G TMC material. This curve is placed alongside that of the upper and lower 

bounds (the S-N curves for TMC and inclusion-containing alloy, respectively) for the 

sake of comparison (see Figure 4.1) 

4.2.9. Fatigue Life: Upper Bounds (Alloy-Clad Titanium Matrix Composite) 

As mentioned in Chapter 2, Ramamurty researched the effects of cladding TMC 

with layers of monolithic alloy. He studied tension-tension cyclic loading and 

constructed S-N curves for this material. Although the geometry of Ramamurty's 

samples was quite different (they did not have a joint region with fiber ends), it is not 

altogether improper to view this material as having an infinitely long joint region (0:1 

taper angle). To review, he found that adding even a small layer of alloy on the surface 

of the TMC significantly degraded the overall fatigue life of the sample. This is due to 

several factors, which occur as follows. (1) The cladded alloy experiences slightly higher 

strain values than does the TMC. (2) The alloy therefore nucleated cracks. (3) The 

cracks in the alloy grew since there were no fiber bridging effects as in the TMC section. 

Finally, (4) the alloy cracks then extended into the TMC region, entirely suppressing 

matrix cracking and causing failure. 

Ramamurty also baselined this work by testing TMC samples without any 

cladding, and included the corresponding S-N curve in his report. This S-N curve was 
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superimposed on the S-N curve for TMC test samples used in the current study (see 

Figure 4.1). It is evident that there is good correlation between the curves. 

Making the hypothesis that the F/G samples would have failed at the joint had 

they been free of inclusions means that the failure mechanism would have been similar to 

the cladded material studied by Ramamurty. The one significant difference is the 

presence of fiber ends: cracks would more likely initiate from the fiber ends and grow 

simultaneously outward into the monolithic alloy as well as into the TMC section. For 

the time being, fiber end effects are neglected; as will be explained, this difference does 

not detract significantly from the hypothesis. With these assumptions in mind, the S-N 

curve for cladded material indicates what the fatigue life for the F/G samples would have 

been if there were no inclusions present. This S-N curve is also placed alongside the 

upper and lower bounds for the fatigue life curve for the sake of comparison (see Figure 

4.1). 

4.2.10.       Comparison and Discussion of S-N Curves 

From Figure 4.1, comparing the S-N curve for inclusion-free alloy to that of 

alloy-clad TMC shows that the fatigue curve for the alloy is appreciably lower than for 

the cladded TMC.   This indicates that for inclusion-free functionally-graded material, the 

limiting factor for fatigue life will be monolithic alloy. This claim is supported by 

several factors. 

Fiber End Effects: The fiber ends will cause the joint region to have an S-N curve 

lower than that for the cladded material. This is also true for the monolithic alloy: the 
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"tip" of the scarf joint can be considered as extending into the alloy section. This means 

that the unreinforced alloy section will have an S-N curve lower than that of the low- 

contaminant alloy as reported by Eylon et al. The S-N curve for the alloy section should 

approach (but never attain) the S-N curve for typical titanium due to the presence of fiber 

ends. Since fiber ends will affect both the joint area and the unreinforced alloy, this study 

would indicate that the unreinforced alloy section will still remain the weakest part of the 

material. Therefore, its fatigue life will determine the fatigue life for the entire material. 

Strain Effects: During fatigue testing of F/G material, the joint region is stiffer 

overall than the monolithic alloy. This stiffness varies linearly over the length of the 

scarf joint. Near the composite section, the stiffness is similar to that of TMC and 

gradually decreases to the same stiffness as the alloy at the "tip" of the scarf joint. 

Therefore, the strain value during loading will vary as well. The monolithic section 

experiences higher strain values than in the composite section or even the joint region. 

Therefore, the alloy is more sensitive to crack growth due to the higher strain value. In 

fact, the tip of the scarf joint will experience the same strain value as the alloy section, 

but with the drawback of having a row of fiber ends present. Strain effect may prove to 

be the determining factor for fatigue life. Therefore, the maximum strain value could be 

more important than the maximum stress value in determining other fatigue life 

properties for F/G TMCs in future testing. 

Fracture Location: It then follows that fracture in inclusion-free F/G TMCs should 

initiate at the tip of the joint region or in the monolithic alloy section adjacent to the tip of 
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the joint. The joint region and the composite section both benefit from fiber bridging 

effects and from a lower strain value. Both of these factors act to retard crack growth.. 

Fatigue Life: Now the bounds for the expected S-N curve for the inclusion-free 

can be refined. Before, the bounds for the material were the inclusion-containing alloy 

and the TMC S-N curves, with three orders of magnitude as a gap between them. From 

the analysis performed above, it is expected that the F/G material S-N curve will fall 

between that of the inclusion-containing curve derived in this study, and the low- 

contaminant curve derived from the work of Eylon et al. There is only one order of 

magnitude between these curves, which is a far better range of resolution than three 

orders of magnitude. In addition, it is also expected that the inclusion-free F/G S-N curve 

will approach that of the low-contaminant curve in future testing. 

4.3.       Fracture Toughness 

As a final item of discussion, the inclusions provide an opportunity to determine 

the fracture toughness of the alloy to verify it matches the values that others have 

determined for titanium fabricated by powder metallurgy. If for some reason the material 

used in this study had a lower fracture toughness value, it might invalidate the 

conclusions stated previously. Therefore, a quick investigation of fracture toughness 

values is in order. For an embedded circular crack, Sneddon arrived at the following 

equation to describe the stress concentration factor [50]. 

n 
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The shape of the inclusions on most of the fracture surfaces in this study is roughly 

elliptical rather than circular. Based on the work of Green and Sneddon [51], Irwin 

derived a useful expression for the stress field around an ellipsoidal cavity [52]. 

Kj 
cr^na r 

O 

\ 
l 

•    2 a 2 SHI   ^ + -yCOS  cp 

V C J 

Where a and c are the semi-minor and semi-major axes length of an ellipsoid, 

respectively, and O is an elliptical integral of the second kind, given by 
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The elliptical integral can be approximated by taking the first two terms of the expansion 

series, given by: 

o = 
(      2^ 

v     c J 

Irwin found that the stress intensity was the largest at the ends of the minor axis (where 

(p=7l/2). 

K I(<p=nl2) 

Approximating the inclusion shapes to be twice as long as they are wide (a=2c), then 

a2/c2 = 4, and O = 7%/S. Therefore the max Ki value (at cp=7t/2) is equal to 

K l(q>=nll) 
IK 
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Now compare the max Ki evaluated over the length of each inclusion at the 

appropriate loading value for each sample. This value should be larger than AKth for the 

material if the crack from the inclusion is to propagate through the sample. 

Eylon and Froes studied the toughness for titanium powder metallurgy and found AKth to 

be roughly 6.6 to 11 MPaVm (6 tolO ksiVin), and Kic to be 66 MPaVm (60 ksWin) [6]. 

Refer to Figure D.l in Appendix E for a copy of the diagram used in the Eylon and Froes 

article. Table 4.1 shows that the toughness values for the alloy at the inclusion sites fall 

within these values. 

73 



5.   Conclusions and Recommendations 

5.1.       Conclusions 

Although the characteristics of the functionally-graded titanium matrix composite 

(F/G TMC) joint region were not determined in as much detail as hoped, this study 

nonetheless provides valuable insight as to the mechanical properties and behavior of F/G 

TMCs in general. 

• Under tensile loading, the joint region will initiate failure. The deformation 

mechanism of plasticity in the alloy plays a greater role in failure than does damage 

in the brittle reaction zone along the fiber ends. 

• Although the joint region initiates failure under tensile loading, the properties for the 

joint are similar to the alloy. Yield and ultimate strength are roughly identical to the 

monotonic alloy section; whereas the modulus of elasticity is the average of the two 

parent materials, as determined by the following formula: 

^ joint  = Ca^a +Cc^c 

That is, the modulus is equal to the sum of one-half the modulus of the alloy and one- 

half the modulus of the composite. 

• The exact fatigue properties for the functionally-graded titanium matrix composite are 

bounded by the S-N curves established in this research: fatigue life will not be lower 
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than the inclusion-filled alloy, and not be higher than for an all-composite material. 

In addition, the fatigue life of the monotonic alloy section is expected to determine 

the overall fatigue life of inclusion-free functionally-graded material. 

• The joint region is more robust than was expected. The functionally-graded material 

is more sensitive to strain values in the monolithic alloy section than to fiber ends in 

the joint region. 

• Since the weakest part of the functionally-graded material is the monolithic alloy 

section, the taper angle has little effect on the overall properties of the material. 

5.2.       Recommendations 

Some slight design modifications to the test material may prove beneficial to 

future testing of this material. The current material has the joint at the midsection of the 

panel. As was demonstrated, even a tiny inclusion anywhere in the length of the 

monolithic section can propagate failure. A better plate design, having a smaller 

monolithic section (offset the joint so that the panel is 80% composite, 20% monolithic 

alloy), will reduce the probability of an inclusion in the monolithic section (see Figure 

5.1). This would yield stronger material and allow better examination of the joint area 

properties. 

It may be beneficial to conduct future testing of this material using the strain- 

controlled condition rather than the load-controlled condition in order to determine if 

strain effects in the alloy do indeed determine the overall fatigue life of this material. 
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Although the fatigue life curve was not directly determined due to the effect of 

inclusions, this study nevertheless revealed basic mechanical properties and behavior for 

the joint region as well as for the overall material. This study has set the foundation for 

further research. Will future fabrication improvements or other material vendors yield a 

more suitable material? Even with better material, will the premise that the alloy section 

determines the fatigue life (and not the joint region) hold true? And with inclusion-free 

material, can previous analytical models accurately describe and provide insights onto the 

behavior of functionally-graded material? Additional research should be conducted to 

answer these questions. 

Figure 5.1: F/G TMC Test samples, (a) current design, and (b) a design less sensitive to 
inclusions in the monolithic section. Decreasing the volume for the monolithic section 
also decreases the statistical probability of encountering a failure-causing inclusion. 
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Appendix A: Additional Graphical Results of Tensile Testing 
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Figure A.l: Stress-strain curve for the 20:1 taper hybrid (Specimen #203) as compared to 
the stress-strain curves for TMC and monolithic alloy (monotonic tensile testing) 
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Appendix B: Additional SEM Images of Fracture Surfaces 

Figure B.l: (a) SEM and (b) RBS Close-up of the silicon shard on the Specimen A2 
fracture surface, showing that it did not propagate a single large crack. Note roughness 
of matrix material, indicating matrix cracking. 
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Figure B.2: Close-up of the magnesium-titanium transition region on the Specimen B2 
fracture surface flaw under (a) SEM and (b) RBS. 
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Figure B.3: Detail view of upper right corner of Specimen 200 fracture surface. Note 
that these fiber shards in the monolithic section did not initiate cracks, as did the other 
shard, since they were aligned with the loading direction. 
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i^l: 

Figure B.4: (a) Overview of Specimen C5 (monolithic alloy) fracture surface. Specimen 
was fatigue tested at 360 MPa (52 ksi) and failed at 227k cycles. Note crack propagated 
from near the top right corner. Neither the inclusion site nor crack radiation are markedly 
apparent in (b) SEM imaging, but both are very noticeable using (c) backscattering 
imaging. 
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Figure B.5: Close-up of flaw on C5 fracture surface using (a) SEM and (b) RBS 
imaging. What appears to be a void in SEM is revealed as an inclusion (rough, dark gray 
area) of calcium. The white flecks in the inclusion are tungsten. 
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Figure B.6: Overview and detail view of Specimen Bl (20:1 taper) fracture surface, 
subject to 360 MPa (52 ksi) tension-tension fatigue testing. Failure occurred at 101k 
cycles. A close-up of the crack nucleation site shows that the conclusion fell out after 
fracture. Trace amounts of calcium and magnesium were evident in the reaction zone left 
behind 
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Appendix C: X-ray Spectroscopy of Inclusions 
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Appendix D: Comparison of Toughness and Fatigue 
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Figure D.l: (a) Scatterband comparison of room temperature fatigue crack growth rate 
(FCGR) of. cast or cast+HIP T1-6A1-4V with beta-annealed wrought material. 
(b) Comparison of FCGR of PM PA and IM Ti-6A1-4V (taken from Froes F. H. and 
Eylon, E, "Application of HIP-ing to Titanium-Based Materials, Proceedings of 4th 

International Conference on Isostatic Pressing, 1990, pp. 16-1 to 16-24). 
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