
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

An Information Visualization Solution for the Analysis of the AFM An Information Visualization Solution for the Analysis of the AFM

Simulation Output Data Simulation Output Data

Stuart H. Kurkowski

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kurkowski, Stuart H., "An Information Visualization Solution for the Analysis of the AFM Simulation Output
Data" (2000). Theses and Dissertations. 4818.
https://scholar.afit.edu/etd/4818

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F4818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4818?utm_source=scholar.afit.edu%2Fetd%2F4818&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AN INFORMATION VISUALIZATION
SOLUTION FOR THE ANALYSIS OF THE

AFM SIMULATION OUTPUT DATA

THESIS

Stuart H. Kurkowski, Captain, USAF

AFIT/GCS/ENG/00M-11

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

DSIG %L^Juö:Y Il'gPSCTED 4

AFIT/GCS/ENG/OOOM-11

AN INFORMATION VISUALIZATION SOLUTION

FOR THE ANALYSIS OF THE

AFM SIMULATION OUTPUT DATA

THESIS
Stuart H. Kurkowski, M. S.

Captain, USAF
AFIT/GCS/ENG/00M-11

Approved for public release, distribution unlimited.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position on the Department of Defense or the U.S. Government

AFIT/GCS/ENG/OOM-11

AN INFORMATION VISUALIZATION SOLUTION

FOR THE ANALYSIS OF THE

AFM SIMULATION OUTPUT DATA

THESIS

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

Stuart H. Kurkowski, M. S.

Captain, USAF

March 2000

Approved for public release, distribution unlimited.

AFIT/GCS/ENG/OOM-11

AN INFORMATION VISUALIZATION SOLUTION

FOR THE ANALYSIS OF THE

AFM SIMULATION OUTPUT DATA

Stuart H. Kurkowski, M.S.
Captain, USAF

Approved:

Lt. Col. Timothy Jacobs (Chairman)

Mai. Mickael Talbert

^n^oo
Timothy Jacobs (Chairman) date

Dr. Thomas Hartrum date

 Z1fe& toco
Maj. Miciael Talbert * date

Acknowledgments

This visualization research was only possible with the help and support of many different

folks. I would like to thank God for allowing me to be here and have the health and dedication to

complete this monumental task. My family, especially my wife and daughter were the difference

in getting me through it with the right approach and attitude. Thanks also to my Father, Wife and

friend Tim Jeannette for help proofread this document. I would like to thank my advisor Lt Col

Tim Jacobs, who put his trust in me as a student to complete this research for Air Mobility

Command (AMC). His assistance and instruction provided me all of the skills I needed to run

with the research. I also want to thank Capt Lee Maynard who helped me with SC support. I

would like to thank my fellow students who kept me sane and focused on the task at hand. I

would also like to thank Mr. Dave Doak the system administrator for the lab used to complete the

research. Without Dave's support in configuring machines and getting software going, I would

not have been able to complete this research. I want to especially thank the AMC support of Capt

Tim Smetek and Mr. Gene Miller. Their effort in getting me up to speed on the Airlift Flow

Model got everything started. I would also like to thank the members of my committee, Dr.

Thomas Hartrum and Major Mike Talbert.

u

Table of Contents

Acknowledgments ii

Table of Contents hi

List of Tables v

Table of Figures vi

Table of Color Plates viii

Abstract ix

1 Introduction 1

1.1 Overview 1
1.2 Background 3
1.3 Problem Statement 6
1.4 Research Objectives 6
1.5 Scope and Limitations 7
1.6 Methodology 7
1.7 Document Overview 9

2 Background 10

2.1 Software Architectures 10
2.2 Visualization Tools 13

2.2.1 Visualization Toolkit 13
2.2.2 Visage 16
2.2.3 Swift-3D 18

2.3 Visualization Techniques 19
2.3.1 Information Murals 19
2.3.2 Information Glyphs 20

2.4 MASS Airlift Flow Model 23
2.5 Background Summary 24

3 Methodology 25

3.1 System Architecture 28
3.2 Component/Framework Interface Issues 29
3.3 Design Overview 31
3.4 System Design 33

3.4.1 Data Management Layer 34
3.4.1.1 Input Module 34
3.4.1.2 objReader Base Class 35
3.4.1.3 Reader Components 36

iii

3.4.1.4 objData Base Class 36
3.4.1.5 Data Components 37

3.4.2 Graphics Layer 37
3.4.2.1 Visual Module 38
3.4.2.2 objVis Base Class 40
3.4.2.3 Visual Components 41
3.4.2.4 objContext Base Class 41
3.4.2.5 The Context Component 42
3.4.2.6 Plot Module 43
3.4.2.7 objPlot Base Class 44
3.4.2.8 Plotting Components 45

3.4.3 User Interface Layer 46
3.4.3.1 Interface Module 47
3.4.3.2 objlnterface Base Class 49
3.4.3.3 Interface Components 50

3.5 Methodology and Design Summary 51

4 Implementations 52

4.1 Daily Airfield Statistics 52
4.1.1 Data Structures 54
4.1.2 Visual Display 55
4.1.3 Drill-Downs 58

4.2 Aircraft Tracking 59
4.2.1 Data Structures 60
4.2.2 Visual Display 63
4.2.3 Drill-Downs 65

4.3 Implementation Summary 66

5 Results 68

5.1 Objective Achievement 68
5.1.1 Architectural Framework 68
5.1.2 Reuse 72
5.1.3 Implemented Applications 74

5.1.3.1 ICAO Daily Statistics 75
5.1.3.2 Aircraft Tracking 77

5.2 Results Summary 78

6 Conclusions and Future Work 79

6.1 Conclusion 79
6.2 Future Work 80

Color Plates 82

Bibliography 89

Vita 91

IV

List of Tables

Table 1: Implementation Success Criteria 27

Table 2: Base Class Common Attribute and Method Descriptions 33

Table 3: Visual Module's Callback Methods Descriptions 39

Table 4: Interface Module's Callback Methods Descriptions 48

Table 5: Component Descriptions for Application #1 53

Table 6: Component Descriptions for Application #2 60

Table 7: Component to Coverage Criteria Mapping 67

Table 8: Framework Robustness Success Criteria 69

Table 9: Visualization #1 Inclusion and Exclusion Test results 70

Table 10: Visualization #2 Inclusion and Exclusion Test results 71

Table 11: Reuse Statistics for the 2nd Visualization Objects 73

Table of Figures

Figure 1: The VTK Visualization Pipeline 14

Figure 2: Sample Visage User Interface 16

Figure 3: Information Mural of Large Document Text Editor 20

Figure 4: Management Gylph 21

Figure 5: InfoBug Glyph 22

Figure 6: Example of Glyphs for Comparison 22

Figure 7: Framework Object Diagram 29

Figure 8: System Object Model 32

Figure 9: High-Level Data Management Layer Object Diagram 34

Figure 10: Input Module Object Diagram 35

Figure 11: High-Level Graphics Layer Object Diagram 37

Figure 12: Visual Module Object Diagram 38

Figure 13: Picture of Legend (Plate 2) 40

Figure 14: Screen Capture of Main Window with Map Context (Plate 1) 40

Figure 15: Picture of Plot Module Tab Book (Plate 3) 43

Figure 16: Plot Module Object Diagram 44

Figure 17: Picture of User Interface (Plate 4) 46

Figure 18: High-Level User Interface Layer Object Diagram 47

Figure 19: User Interface Framework Object Diagram 47

Figure 20: Application #1 Data Structure Diagram 54

Figure 21: Application #1 Micro View (Plate 5) 55

Figure 22: Visualization #1 Cumulative View (Plate 6) 56

Figure 23: Statistic Symbols (Plate 7) 56

VI

Figure 24: Cumulative Symbols (Plate 10) 57

Figure 25: Main Pop-up Window and Day Selection Window (Plate 11) 58

Figure 26: Application #2 Data Structure Diagram 61

Figure 27: App #2 Macro Symbol (Plate 8) 63

Figure 28: Application #2 Macro View (Plate 12) 63

Figure 29: App #2 Micro Symbol (Plate 9) 64

Figure 30: App #2 Micro View (Plate 13) 64

Figure 31: Application #2 Declutter Example (Plate 14) 65

Figure 32: App #2 Drill-down Windows (Plate 15) 66

Figure 33: Application #1 Screen Capture (Plate 16) 7g

Figure 34: Application #2 Screen Capture (Plate 17) 78

Vll

Table of Color Plates

Plate 1: Screen Capture of Main Window with Map Context 82

Plate 2: Picture of Legend 82

Plate 3: Picture of Plot Module Tab Book 82

Plate 4: Picture of User Interface 83

Plate 5: Application #1 Micro View 83

Plate 6: Visualization #1 Cumulative View 84

Plate 7: Statistics Symbols 84

Plate 8: App#2 Macro Symbol 84

Plate 9: App #2 Micro Symbol 84

Plate 10: Cumulative Symbols 85

Plate 11: Main Pop-up Window and Day Selection Window 85

Plate 12: Application #2 Macro View 86

Plate 13: Application #2 Micro View 86

Plate 14: Application #2 Declutter Example 87

Plate 15: Application #2 Drill-down Windows 87

Plate 16: Application #1 Screen Capture 88

Plate 17: Application #2 Screen Capture 88

V1I1

AFIT/GCS/ENG/OOM-11

Abstract

With the advancement of computer hardware and software computer simulations are now

able to run faster and track more elements than ever before burdening the analyst with more and

more data to analyze. Air Mobility Command's (AMC) Airlift Flow Model (AFM) is the Air

Force's logistics simulator that simulates multi-day mobility scenarios in a matter of minutes

producing megabytes of output data. Because the analysts' needs for summaries, trends, and

comparisons of the data have surpassed the capabilities of current desktop spreadsheet analysis

techniques new tools are needed.

This thesis looks at developing a robust information visualization architecture that

integrates data processing, visualization, and user interaction, and supports reuse and component-

based functions. This research develops a component-based 3-D visualization system for the

AFM data. A domain-independent application framework is developed to support the

component-based system design. This research also develops data reading objects, integrated

data structures, and visual components as well as drill-down and user-interface components to

produce an end-to-end visualization application for several aspects of the AFM data.

The results of this research show that an application framework can support information

visualization applications. The use of a stable underlying framework architecture provides high

levels of design and code reuse for future component development. The component-based

functionality frees future development to concentrate on visualizing data and not the systemic

concerns handled by the framework. This enables AFM and others to get a better return on

investment for future work. The representative applications completed in this research already

provide AMC with unprecedented insight into the AFM data.

IX

AN INFORMATION VISUALIZATION SOLUTION

FOR THE ANALYSIS OF THE

MASS SIMULATION OUTPUT DATA

1 Introduction

1.1 Overview

With the continued increase in computer capability, computer simulations have proven

themselves an effective tool of operational analysis. Simulations test systems that in real

conditions are cost prohibitive or too dangerous to test. Simulations can evaluate operational

plans and contingencies, highlighting problems or issues before the real operation. Simulations

also provide a means for supplementing real world activities at a reduced cost. For example, the

use of flight simulators supplements the training of a pilot in the real aircraft, reducing training

costs for fuel and maintenance.

There are two types of simulations used to cover this wide range of needs. The first type

are known as virtual simulations where real people operate simulated systems. In the second

type, called constructive simulations, simulated people operate simulated systems [21].

Typically, constructive simulations use mathematical algorithms and other event manipulation

techniques to transform the input data into results. An example of a constructive simulation is a

stochastic, discrete event simulation used to simulate bombing a target. The simulation generates

the bombs and their characteristics, as well as their effect on the target. The simulation uses

mathematical algorithms to drop the bombs and calculate the damage to the target.

Running constructive simulations with the latest computer technology increases the speed

of the simulations, the accuracy of the models, and the number of items the simulations can track.

For example, most constructive simulations run faster than real-time producing results faster then

ever before. Time acceleration is a benefit to the analyst who needs an answer now, not weeks

1

from now. The speed can even enable an analyst to make several different runs to compare

results. Increased data collection can also help the analyst look at aspects never before tracked.

Despite the advantages of new capability and constructive simulations there are some

side affects of accelerating time and tracking so many objects. The most significant of these is

the large quantities of data the simulations produce. The increase puts a burden on the user to

process and analyze vast amounts of information. Often there is more data than current analysis

methods can effectively process. For example, if constructive simulations can run a multi-day

scenario in minutes, a real-world day's worth of data can be ready for analysis every few minutes

instead of every 24 hours. If current analysis techniques take hours to conduct for each day's

worth of data, the analyst will not keep up with the simulation's output. Additionally, at real-

world speeds analysis can be done along the way to lead to a conclusion. In constructive

simulations, the conclusion is available so quickly, along-the-way analysis is difficult and often

overlooked. Analysts need some type of simulation "playback" for effective analysis.

Information is power, so getting information from the data is key to operational success.

As John Peterson of Object/FX says in The Visually Enabled Enterprise: Managing Information

Through The Power of Visualization [17], even though "data has been 'liberated', the fact

remains that 98% of data is never looked at more than once". The reasons that Peterson gives for

the lack of data use are as follows:

The amount of data available is overwhelming and continues to grow.

It is difficult to see integrated views of disparate data.

It is hard to see patterns and relationships with current desktop tools.

Users have trouble "drilling down" to the information they need.

Data lacks context. It's not in a "meaningful" form that allows users to make decisions
quickly and confidently.

Information visualization is one approach to help solve or at least reduce the problems

associated with information overload. Visualization is not new; the scientific community has

2

used it successfully for some time. Consequently, there are fairly good tool sets and

documentation for scientific visualization. Information visualization, however, has less

established standards and tools. Where scientific visualization is often developed for a single

domain or algorithm, information visualization is much more broad and diverse. According to

Judith Brown in her article on The Euro-American Workshop on Visualization of Information and

Data, "Information visualization is different from statistical or scientific visualization in its effort

to communicate the structure of information and improve access to large data repositories" [3].

Scientific visualizations typically have a single data set and form a static image or graph that can

be directly analyzed. Most information visualizations are too large and complex for a single

static image. As a result the complex images cannot be directly analyzed, so effective

visualizations present the data in varying levels of detail.

This visualization research examines ways of using visual displays to support the

decision-making process by making sense of the large amounts of data today's simulations can

produce. This research compares the use of information visualization techniques on simulation

output with the previously used graphing and spreadsheet-based analysis routines. Conclusions

are drawn about the viability of using information visualization as a tool to support the analysis of

simulation data. A constructive simulation for military logistics is used for this research.

1.2 Background

The Air Mobility Command's (AMC) Mobility Analysis Support System (MASS), and

specifically the Airlift Flow Model (AFM) portion of the system, is a simulation system that

faithfully models AMC's global air transportation system. It simulates policies, procedures,

operations, aircraft, airbases, cargo, passengers, airfield resources, and other aspects of the air

transportation system [6]. The simulation is based on numerous input files that are derived from

operational plans (OPLANS) describing the aircraft, aircrews, cargo, air refueling, and numerous

other aspects of a mobility operation. MASS produces megabytes (MB) of data in the form of

more than twenty output files, summary files, and reports depicting different aspects of the

scenario. The output includes aircraft launch times, aircraft cycle times, maintenance statistics,

airfield statistics, crew statistics and more. The output generated from AFM is diverse both in

type and context and can be very large. For example, the aircrew output is a single file comprised

of ASCII characters, strings, and floats, that accumulates approximately 1.5 MB of data per

scenario day. For a 180-day scenario this file alone can be 270 MB or more [6].

The output from a simulation may represent a single answer to some question, but often

it's just a large amount of data. For the analyst to fully understand the results and their origin,

they need additional processing and correlation. For example, a portion of the MASS AFM

simulation produces output data for each day of the scenario. To track and compare a single

element of data for a 180-day scenario, which is typical for MASS, the analyst must correlate that

value in each of the 180 instances of the data. Other portions of the output are recorded in one-

hour increments, which means tens-of-thousands of entries for a 180-day scenario.

The desktop analysis tools used today by the AMC analysts only provide spreadsheet

type functions and mathematical charting. These tools can do sums, averages, and similar

operations on a single set of data. These tools can also plot the sums and averages as line graphs

or pie charts. These tools do not provide the needed capabilities such as correlation, integrated

views, relationships, context, and drill down discussed by Peterson [17]. According to Judith

Brown, the main theme behind information visualization is "to merge user interface, scientific

visualization, and database disciplines to aid the decision-making process" [3]. Visualization

systems can do the charting and mathematics like the desktop tools, but they can also provide

these additional functions like correlation, context, and user interaction.

Context is defined as the surrounding or supporting information used to present the

information to the analyst or user. The context can be as simple as using dollar symbols when

showing currency or as elaborate as plotting geographical based data on a map. The context

enables direct correlation and comparison of entities by the human visual system. The

visualization can also provide the context of time by enabling the user to step through the days of

the simulation, providing that much needed "playback" capability. By providing a context for the

visualization and providing the user a means to control the representation, the user's cognitive

processes spend more energy on decision-making.

The user interaction can range from user navigation through a scene to user control over

what data is shown and when. The user interface can also enable the user to change the

representation or control how much information is presented. A good visualization system will

enable the user to view micro and macro levels of data, providing varying degrees of detail. For

information visualization systems, this context and user interaction is critical and provides the

biggest divergence from scientific visualization and current tools.

Due to the broad audience and popularity of information visualization systems, they need

to have architectures or frameworks that make the mixing and matching of data processing and

application components straightforward. Scientific visualization systems are often monolithic

and centered on a particular domain or data type, so the dynamics are not as critical. Information

visualization systems must support various contexts, diverse data sets, and flexible interfaces.

Even for a single simulation such as AFM, the diversity of the data forces the use of different

visualization techniques in the same system. Therefore, the architecture must be able to support

the mixing and matching of these techniques as they are developed.

Having a broad audience means there is no guarantee the user of the information

visualization system will be a scientist intimately familiar with the domain. The interface designs

must support a variety of users. Supporting these diverse components and interfaces is what

makes information visualization architectures robust. An architecture that is not robust forces

developers to build new systems each time something changes.

1.3 Problem Statement

Develop a robust information visualization architecture that integrates data processing,

visualization, user interaction, component-based functions, and supports reuse. Demonstrate the

capabilities of the architecture by implementing component-based visualizations of the MASS

AFM output. The applications must maintain the detail and accuracy of the simulation output

data and must present this data in a manner that facilitates comprehension and exploration at all

levels. This architecture must enable future information visualization researchers to concentrate

on the visual aspects of the data and not on the underlying framework engine.

1.4 Research Objectives

The overall goal of the research is to show that information visualization improves

analysis of simulation data. This improvement must include development as well as the use of

new capability. If the visualizations are an improvement, but the only way to add the capability

to the system is to rewrite the system, the development overhead will outweigh the visualization

benefit. For this reason the first objective is to develop a robust information visualization

architecture that supports component-based system development. The second objective is to

develop specific application components for this framework that support reuse for future

development. The third objective is to implement applications that visualize the AFM output to

improve analysis of the data. This visualization research uses these applications of the AFM

output to show improvements in analysis and to validate the architecture.

1.5 Scope and Limitations

This AFM visualization research implements several visualization applications that

represent a portion of the MASS output data. These applications are intended to determine the

value of information visualization and demonstrate the dynamics of the architecture. These

applications are not intended to be a visualization of the entire set of MASS output data.

The data visualized in this AFM visualization research is actual unclassified MASS

output data as produced by the system. No attempt has been made to correct or derive data

beyond what is produced by the simulation execution.

1.6 Methodology

Several information visualization research/prototype systems exist today; however, none

cover the requirements of the MASS visualization completely. These research efforts have

positive aspects ranging from data structure usage to visualization techniques, but all of them lack

the key element for this AFM visualization, which is showing relationships and drill down of the

data. Therefore, the positive aspects of these current efforts were synthesized in the development

of this visualization research.

Based on the ideas of these current research efforts, the AFM information visualization

system can be broken into three main areas 1) data processing (retrieval and population of the

data structures), 2) graphics rendering, and 3) user interaction. This AFM research addresses

these in data flow order, starting with data processing and proceeding through to user interface.

The individual aspects of these three areas are further broken down into framework "modules"

and application "components". This visualization research uses an iterative two step process.

The first step is the framework development. The framework is the consistent visualization

engine that is implemented in the form of modules for each of the three areas. The second step is

the development of the application components. The application components plug into the

system framework modules using defined interfaces. This approach puts emphasis on the

development of a complete framework and further reinforces the idea of a component-based

architecture by using it from the onset of development.

For the first step of the development, the existing research ideas were reviewed and

incorporated into an architectural framework design. This design includes module and interface

definitions. The module and interface designs were then implemented in the form of framework

modules and abstract base classes interfaces for the components of the second step.

For the component level pieces, the second step requires the development of the data

retrieval, storage, and indexing of the AFM output data as well as the contextual map data. It also

requires the representation and user interaction for the data. The process for developing and

implementing this second step is listed here.

1. Select portions of the AFM output data set that will provide coverage for the framework
success criteria.

2. Produce AFM output files from a valid execution of the system. Read and parse the
selected output files into appropriate data structures.

3. Develop visual representations for the AFM data. This includes both the micro and
macro level of detail as well as the drill-down displays.

4. Develop the user interface appropriate for the exploration of the data and context.

5. Validate the component's functionality with the other portions of the architecture.

The theme of the objectives of this AFM visualization research is to demonstrate the

benefits of this architecture through reuse and component independence. This is accomplished by

8

producing multiple visual applications for different aspects of the AFM output data. These

different applications are used for metrics, comparison, and validation of the architecture. To

measure the success of the AFM visualization research goals, the following metrics are used.

1. One measure for the first objective is testing the capacity of the system to include or
exclude components. Different combinations of the components are tested to make sure
the framework and system still operate without problems.

2. Another test of the first objective's criteria is evaluating the number of component classes
that include other components directly. If the components are independent they
communicate only through the documented interfaces of the architecture.

3. For the second objective of code reuse, the reuse metric tracks the number of lines of
code a new component uses from a previously completed component. This value is then
compared with the total lines of code for the new component, to achieve a percentage of
reuse.

4. For the third objective of visualization development, a subjective analysis is done to
estimate the gain and ease of analysis with the visualization. This will determine if the
visualization is more beneficial than current analysis techniques.

1.7 Document Overview

The first chapter describes the overall environment in which this thesis was developed

and the role it plays in the analysis of MASS output data. Chapter 1 also defines the objectives of

the research. Chapter 2 discusses the various visualization architectures and related research

efforts being used in information visualization today, and then discusses visualization tools and

techniques used in management and analysis visualizations. Chapter 2 also contains a detailed

discussion of the MASS simulation. Chapter 3 contains the software design and methodologies

used to achieve the first two objectives and the development process undertaken by this AFM

visualization research. Chapter 4 discusses the two implementations completed for this AFM

visualization research using the system framework. Chapter 5 summarizes the results of this

visualization research and its impact on the MASS analysis. Chapter 6 discusses conclusions and

recommendations for future research.

2 Background

The first part of this chapter looks at the architectural issues associated with the dynamic

data types and visual representations in an information visualization system. The second section

highlights architectures and data representation approaches of other research efforts and tools.

The third section summarizes some of the current information visualization techniques. The

final section discusses the details of the MASS AFM simulation.

2.1 Software Architectures

Software architecture defines the style used to organize a software system. This style

helps to structure the flow of control throughout the system and defines which portions of the

system handle each of the required tasks and computations [11]. An architecture also establishes

standard techniques used for communicating and accessing data in the system [9]. By defining

the architecture, designers and developers can have a better understanding of the system's

operation, making development of additional system components easier.

To set a basis for discussion of architectures Garlan and Shaw [9] use several key terms.

The first is the idea that an architecture is broken down into pieces they call components. The

communication between these components takes place through the architecture's system of

connectors. Additionally, the behavior of the system must adhere to certain constraints, which

are rules for combining the components and connectors. The constraints help decrease the

system's complexity and improve basic understanding. Garlan and Shaw use these terms to

discuss various architectural styles.

The first of these styles is the pipe and filter style. In this style a component reads

streams of data as input and produces streams of data as output [20]. These input/output

10

connectors represent the "pipes" of the style. The processing or transforming of the data by the

component itself is the "filter" portion of the style. By its nature the pipe and filter architecture is

a data flow type system. An advantage of the pipe and filter style is that viewing the system as a

composition of filters makes the system easier to understand. Another advantage is that the filters

can be reused in other systems as well as a different order in the same system. The only

requirement is that consecutive filters agree on input and output formats. A disadvantage of the

pipe and filter style is they usually are not good for interactive systems. It is difficult to interact

with intermediate points along the flow, because a single data set flows from end-to-end.

Another disadvantage is that pipe and filter styles are difficult to develop and often end up

forming a batch sequencing system [20].

Batch sequencing is a style similar to pipe and filter in its structure, but it differs in

execution, because each filter processes all of its input data before passing it on as output. Batch

sequencing can be good or bad depending on the requirements. If the requirements for using a

pipe and filter are to get the data flowing through the system, then a batch sequencing

implementation is bad and will result in filters being idle. However, if batch sequencing parses

up the data into meaningful pieces for faster processing, batch sequencing can be a benefit.

Another style is the data abstraction/object-oriented architecture. This style is based on

the idea of a component being an object that maintains the state and integrity of the resource. The

component's methods are the connectors for this architectural style. The advantages of this style

are the object-oriented benefits of encapsulation and information hiding. Additionally, a self-

contained object lends itself to reuse. A disadvantage of the style is that for one object to

communicate with another object, it must know the identity and interface of the other object [20].

Having to know the identity of the other object and include it in the compilation of an object can

limit reuse and have rippling affects if changes are made to a shared object.

11

The fourth style is the layered systems style. "A layered system is organized

hierarchically, each layer providing service to the layer above it and serving as a client to the

layer below" [20]. Components in this style are the objects or structures that make up a layer.

The connectors are the interfaces defined for each layer and its client or server. Some typical

constraints are limiting interaction to adjacent layers. The classic example of a layered style is

the International Organization for Standards (ISO) Open Systems Interconnection (OSI). The

ISO OSI network protocol stack ranges from the lowest data link and physical layers to the

highest application layer. One advantage of a layered style is that different implementations of a

layer can exist, as long as it maintains the interface to the other layers. A disadvantage is that

most systems cannot be divided up into layers. For example, performance requirements may

even dictate combining layers, or coupling two non-adjacent layers so tightly that middle layers

are ignored. This violates the principles of a pure layered style, making it hard to layer this

particular example.

The fifth style is the repository type architecture. "In a repository style there are two

quite distinct kinds of components: a central data structure represents the current state and a

collection of independent components operate on the central data structure" [20]. The interfaces

in the style vary depending on the implementation. Some variations of this style provide means

for operation-based components to directly access the data and execute on the data. Components

operating at will against the data store make the data store behave like a database. Another

variation is called "blackboard" where components operate based on triggers from the current

state of the data store. Components have direct access, but operations are based on the current

condition of the data store not the individual components.

Garlan and Shaw conclude with the realization that most large systems are designed by

combining more than one style. This heterogeneous style can take advantage of the positives of a

12

particular style and combine it with another style. This provides a means for the designer to use

the positive aspects of one style to cover the negative aspects of another style [9].

2.2 Visualization Tools

As mentioned in Chapter 1 of this paper, several visualization tools have been developed

as a result of the demand for information visualization. These range from scientific visualization

and medical visualization to general data analysis tools. This section discusses three of these

relevant to this AFM visualization research. None of the three tools meet the needs of the MASS

visualization in its entirety, but each one has many aspects that contribute to the final outcome of

this research. The first one is The Visualization Toolkit, which highlights the use of a pipe and

filter architecture and the extensive use of array data structures. The second tool is Visage, which

utilizes an object-based repository style architecture and multi-dimensional data visualization.

The third is a research prototype called SwiftSD, which has a batch sequence architecture,

designed to handle large data sets. The SwiftSD research also provides the pattern for the basic

module layout for this research.

2.2.1 Visualization Toolkit

The Visualization Toolkit (vtk) is a collection of text and software that "describe

visualization algorithms and architectures in detail and provides a working architecture and

software design for application of data visualization to real-world problems" [19]. The vtk

software provides a variety of data readers with the capability to read straight ASCII, bitmaps,

texture maps, and even binary data sets. The architecture used by vtk is true pipe and filter.

Figure 1 shows how vtk implements the pipe and filter architecture.

13

Multiple Input
Source) ,-[Filter

Graphics interface
via RenderQ

Data Object ,«_' Data Object

Source 1 ,-(Filter 1 =| Filter

Data Object ^J Data Object +J Data Object

Mapper

Direction of data flow via Ex e cute Q

Figure 1: The VTK Visualization Pipeline

An application developed using vtk is defined by its unique combination of vtk readers

and filters. The data in a vtk based application flows from the source at the left in Figure 1

through the filters to the Mapper and Render classes for display. The readers are used at the left

end of Figure 1 to read the source files and populate the data structures. Once the data structures

in the data objects are populated they are passed to the right through filters before they are

rendered on the screen. There are numerous filters ranging from ones which draw an outline

around the outermost points, to ones which apply a glyph to each data point. There are over 95

filters available today and custom filters can be added [19]. The output from the last filter is sent

to a mapper object that translates the points into graphical primitives for rendering on the screen.

The execution arrows, shown in Figure 1 between the objects, may seem to be going in

the wrong direction, since they run counter to the data flow, but they are actually correct. As

mentioned in the architecture discussion, pipe and filters can often be implemented incorrectly as

batch sequence styles. Vtk ensures the true flow of data by utilizing an Execute () method for

each object. In vtk, the output data of an object is owned by that object. When an object gets

14

some input data, the data, not the object knows where it came from. This keeps the filters

independent of each other, but still enables vtk to run the pipeline on demand from the right end

of the pipe. For example in Figure 1, the Render () method renders the image, to get its data,

the Render object calls the Execute () method of the owner of its input data (Mapper). The

Mapper in turn calls the Execute () method of the owner of its input data. This process

continues to the left until the chain of requests gets to a source object. When the source object is

reached, data is read in and the data flows back through the pipe. Each object processes the data

in its Execute () method and then passes it on to the requester. The data finally ends up at the

Render () method where it is displayed for the user [19].

There are two limiting factors that prevent vtk from being a complete solution for the

MASS visualization. The first of these limitations is that vtk system, only handles 3-D Cartesian

coordinate based data sets. Input format is constrained to three columns representing the x, y, and

z coordinates followed by scalar data values depicting a single attribute for each point. For

datasets like temperatures, wind velocities, or particle counts this is possible, but in AFM, the

data is too diverse and abstract for this format.

The second limitation is that vtk is geared toward the visualization of a single data set,

with analysis of that data being done by the use of a combination of filters. To manipulate the

display of the data in vtk requires the application developer to change the combination of filters

compiled into the executable. This limits the visualization to a single static image of the data.

There is no drill down capability or any way to directly relate two datasets. This also limits the

user interface to basic rotation of the object and zooming in and out.

The use of an "execute" method in each object minimizes memory usage by only running

those modules that are needed. It also keeps unused data from ever getting read in, saving on

15

memory and input/output time during execution. The AFM visualization research incorporates

vtk's optimization of the execution path and pipe and filter architectural design to improve its

efficiency. The AFM data sets are large, so optimization of their storage and execution is

important to this research.

2.2.2 Visage

"Visage is a prototype user interface environment for exploring and analyzing

information. It represents an approach to coordinating visualizations and analytical tools in data-

intensive domains" [15]. Visage, like vtk, is based on a single data set, but it provides a means

for the user to determine the display of the data, not the programmer. Figure 2 gives an example

picture of the dynamic display that the user has in Visage. Visage gives the user an interface to

Ouilkter

ABM> COJW«

• !V ■ . ■. •.:.! K

-•i-l'.lr.' •! iM." -i

.-. ■■: ■ •

■>\-.\:

■-.■MI« i >■

:••-!: -■'<

_• iihii'v r-

3ÜDKJ3'

PWW.Ai«'

£

::&»t-
** **A&S &i*tt-ei#>>*»»tos*>*t™fais*>$#v*'

Figure 2: Sample Visage User Interface

display the data in numerous different display formats that are defined by frames. These frames

range from spreadsheets, to bar and pie charts, to geographic renderings on a map context. For

example, Figure 2 shows the representation of logistics data using map plots, bar charts and

spreadsheets. The user controls the display by opening a blank frame and then dragging a

16

visualization element into the display. For example, if the user wanted to see the logistics data in

a bar chart, they open a new chart frame and drag the unit from the map to the chart frame.

The system's use of data objects called visualization elements is the key to its ability to

drag and drop the same data into different views. Each visualization element is present in the

system as only one object in the repository. This enables the frames to stay consistent and

accurate. For example, if the user changes the color of some element, it changes color on all of

the frames that are currently displaying it [14]. Furthermore, each attribute of the element is set

to display or not display based on the type of frame. When an object is dragged onto a frame, that

frame object renders those attributes flagged for display in that type of frame. For example, in

Figure 2, when the user has the logistics data in the outliner (the Visage spreadsheet interface) the

object's "outliner" attributes are displayed in spreadsheet form. When the unit is dragged to a bar

chart frame, the supply quantity attributes are plotted. In the map frame, the latitude/longitude

attributes and the unit's symbol attribute are displayed. The user can change the attributes

flagged for each frame with pull-down menus [15].

Visage is limited in that it is only a prototype and relationships between data are missing.

Visage provides the user many different ways to look at the same data set, which aids in doing

good comparisons and analysis of like data, but the user is limited to the current data set. It is

difficult for the user to drill down on a piece of data and see what is behind it or see how it relates

to another data set. Additionally, Visage uses databases as its data input and database queries to

populate the visualization elements and their attributes. The AFM data would have to be

modified to fit into this format.

The use of data objects to support broader data types and visualize that data in many

different ways are the main contributions of Visage to this AFM visualization research. The

17

variety of visualizations helps satisfy some of Peterson's [17] issues with data context and

integrated views. However, like vtk, Visage is still lacking the ability to see patterns and

relationships, and drill down in the data.

2.2.3 Swift-3D

SwiftSD is a prototype visualization system being developed by AT&T Laboratories for

the visualization of geographical telecommunications data. The system combines a data collector

module, aggregator module, and visualization interface module to build a visualization

application [12]. SwiftSD was developed for visualizing very large data sets with tens of

gigabytes of data. To handle these large data sets SwiftSD uses a batch sequence architecture.

SwiftSD also has a specialized data file format and query language to minimize the database

management overhead. The data collector assembles the results of the query in a unique self-

describing data-independent binary format. This binary format contains the sequence of records

and a header that defines the record size, type, and data context [12]. The data set is then passed

on to the aggregator for visualizing the data. Knowing that the data sets are going to be large,

"the visualization module explicitly controls paging via memory-mapped files" [12].

SwiftSD is an example of a system that uses batch sequencing to its advantage. The

large data sets are divided up into manageable pieces that can be quickly processed by the three

system modules. For example, an hour's worth of telecommunications data can be divided up

into small enough pieces that the system can render them in seconds. The batch sequencing

enables the analyst to see the data faster than real-time, making simulation "playback" possible.

Using menu selections the user can force different batches to be created on demand.

The three-module architecture of SwiftSD is the basis for the design of this AFM

research, however the proprietary areas of the AT&T research effort make it impractical as a

18

complete solution. By combining the idea of dividing the data into manageable pieces and

utilizing the vtk "execute" method to process those pieces across the three system modules from

Swift-3D, the AFM visualization research has a good basis for an architectural design.

2.3 Visualization Techniques

Because data in the world of information visualization is often abstract, data structures

exist to hold the data, but visual objects don't always directly represent the data. Additionally,

the data sets can be too large to display completely on a single screen. This section examines

several different approaches to data visualization that attempt to address these issues.

2.3.1 Information Murals

Information Murals, introduced by Jerding in The Information Mural: Increasing

Information Bandwidth, are a visualization concept used to increase the user's understanding of

large data sets [10]. With information murals the user can examine details of the data within the

context of the entire data set. According to Jerding, "being able to see some representation of the

entire information space provides an initial gestalt overview and gives context to support

browsing and search tasks." The information mural technique does not address the specific

visualization of the data itself, but merely a way to give the user a sense of the information space.

It is a positive step for helping users of information visualization systems get a handle on the

magnitude of the data set. Especially if the data is abstract in nature, the context is a key element

for the user's ability to understand and navigate the representation of the data.

Because the screen size of today's computers is limited, not everything can always be

shown clearly to the user. To address this problem "the mural creates a miniature version of the

information space using visual attributes such as grayscale shading, intensity, color, and pixel

size, along with anti-aliasing compression techniques" [10]. Figure 3 shows these techniques in

19

■--.1 '.rlx'ifir.'latiilui

iijdjsecfcioTKtbi 3oljfcl5ft>
!'".■..■■■.

c have ccvs„5g&^ a ncfefeo^ r:»r d&aploysBc ord <r.%'Ag%itri£ terse X
^tontabö-t spcoio -*3~r^' the multiple tyiv teefcya^w*. Bu~ wesx ^3

« irw *M Sesicn of milt isle-wiew brocsers: win<fcT>-£l.ii:*:M»t itt&tttff,
k&me® rmfi1iraM»rv ^rt' ?.M ty1nh?»1 vie® ir.«.ftifVr' -#{">1a^c;

' ;(itm-t ,'m itsaiijii »~ Ma- —■»!*•<)* »If« «t t Is- i«viij<il >■■■•
diSf.is«.». ite »11 ojir vie» of Isrs« in:«»rtien spaces {Ssn Xnfexaation-
•ab;;, is iessrij» Ü«-» i:s See sen 3 If. Set-lion 4 «e c-sctt»«

jwccw« cp>?JU.3£titm aria» vh;vc the ifi«nttti«r. nträjl» cjrs uxfjl* aid
;M(»cc cue tuttods vith edited wsrt in these cccaa.

[\««ction{^':itS 3Dso?utlöa HxuraL>

i* ira.lkasC it. Ui« f.is» 3<j.;U.un wte «is« u.* uux tVC SJXUCIS
ij™oiiiwti<:a>xtit*<eri93) rsaearch ur.volv« •/iswaliz'.ac U» «stKWtion >}E
bjo;t. atiar.tss JWJIKKS A3 a eoisp<>r.e«fc of ar. ir.tcgcateji ost
r vie??, »c 5tc dösacfTtiftä a diogLoy cfr the ac*öö££ö cnclisc.fsc 2£ts»een

«-»-Aon oi & {%■» o»} (i:«^':sn 'this «ctica
.on aural), foctsiMf su«ci;jesl^y en ta*

i.tofzvdäf ftäwisratief. ttptfc.UtUt- While th»
»rrf *«ntsl» all til« far.etjOTtCit" '

J

ll fill I.':
7 tui jeU&ils. t, X»» setUui fe-ll Ine

Figure 3: Information Mural of Large Document Text Editor

use with a large document text editor. The entire document is shown in the slider on the left side

of the window, while the currently viewed area is highlighted with a box, pointed to by the arrow.

A limitation to the technique is that it compresses the original visualization based on the

largest piece of the image. This means that if the original image has pieces relatively small

compared to the largest piece, they may be hidden in the compression. For example, in the text

editor of Figure 3 if the widest page of the document is a lot wider than another section, the

smaller section could be very small when compressed proportional to the large section.

Additionally, if the original visualization uses miniature representations of the data, the data

points could very well be lost all together in the compression and anti-aliasing routines.

2.3.2 Information Glyphs

"Glyphs are graphical objects or symbols that represent data through visual parameters

that are either spatial, retinal, or temporal" [5]. Glyphs can be as simple as bars in a chart, points

on a scatter plot, or as abstract as the size of a circle on a map. In data visualization, glyphs are

20

intended "to expose patterns among sets of...artifacts and to help identify differences" [5]. The

key to a glyph is encoding the data so comparisons can be drawn directly and easily.

Mei Chuah, in Information Rich Glyphs for Software Management Data [5], outlines

three rules to design an effective glyph. Her rules suggest using 1) small multiples, 2) established

visualizations, 3) and information rich glyphs. "Small multiple designs contain small numbers of

representations arranged on a grid and the designs are all based on the same structure" [5]. By

utilizing small multiples, the density of the data points per inch of screen can remain high, while

still enabling the user to make comparisons. Likewise if the structures are all the same, the

human visual system can make the comparisons with minimal cognitive effort. Established

visualizations are important, so the data being conveyed can be compared and used by the user.

If interpretation of the glyph is difficult for the user, then it will detract from the presentation.

Figure 4 and Figure 5 show some information rich glyph examples that highlight aspects

of Chuah's material [5]. Both depictions are set up for small multiples and they are both

information rich by the amount of data shown in a small space. The first management glyph

(Figure 4) shows ten characteristics of a software development team in one concise glyph. The

#-added-lines
(error)

„ , _ #-deleted-lines
#-of-people / _^ ^/\ (error)

' ^ » #-added-lines
#-lines-of-code {__ f \^"^ (new)

Userldl
-of-code 14 V

N/ Userldl *

-L A*- —. . _ . ..-deleted-lines
#-of-errorsH^\ f «s, (new)

^\ >/
u n(fita „u.„„„, . A_ "^— #-added-lines #-of-nle-cnanqes ^~>—*- , 3 (undefined)

#-deieted-lines
(undefined)

Figure 4: Management Gylph

21

■wty
_*0f

cMdrtn

Figure 5: InfoBug Glyph

second glyph (Figure 5) shows over eleven characteristics of a software component in a single

glyph. Figure 6 shows how grouping a set of these information rich glyphs together enables direct

comparison and analysis. It is much easier to compare these characteristics across all sixteen

^t4^L..4^V-^>
r«l«*s«-t r*lt»*«-2 r»U»«-3 r«Uut-4

i ■" X i --"*— v * -— v * ■*— x

r*lt«**-3 nl«ut-t r*lt«Jt-7 ptU«*«>t

-i TV <" iTV S

r*l««s*-9 ̂

»4^-4^-ill-
r«l«*««-tO

-Ji- -Ü> -%- -UL-
r«t«M«-l3 r*l««s«-M r*l«M«.t3 r«ltt*«-)6

Figure 6: Example of Glyphs for Comparison

22

software releases using these glyphs than having to flip through individual charts on each

component. The glyphs enable immediate and direct comparison with little effort.

2.4 MASS Airlift Flow Model

The Airlift Flow Model (AFM) is the major portion of the Mobility Analysis Support

System (MASS). The AFM simulates the movement of AMC Logistics resources during an

operation. The system is a stochastic constructive simulation based on flat file inputs. The input

files are generated from operational planners as well as planning documents like Time-Phased

Force Deployment Data (TPFDDs) and operation plans (OPLANS). AFM generates a variety of

output files based on switches set by the analyst at the beginning of the execution sequence.

The format for the input and output files are defined in the AFM Baseline Document [1].

This format varies for each area of interest. For example, the location list file contains a four-

character identifier for the International Civil Aviation Organization (ICAO), followed by a string

of numbers representing the latitude, latitude minutes, longitude, longitude minutes, and initial

constraints for four attributes. The leg information output file contains 20 different attributes per

aircraft per stop per day. The data types in these files are diverse, ranging from character strings

to integers, to floats. All of the output generated in the individual files is logged by each

simulation day. The simulation also generates several summary and report files that attempt to

consolidate the individual output files. The analyst must perform any final summations or

accumulations, such as average, high, and low levels over the entire run.

The key to a simulation run is the scenario file, which is unique to each scenario. The

scenario file contains the information about the switch settings, the input file paths, the output

file paths, the date to start the simulation, and the number of days for the scenario. The

scenario file is needed by the visualization system to locate the input and output files and

23

parse them correctly. For instance, the output data based on an ICAO's location must get the

ICAO's latitude and longitude from the location list input file.

2.5 Background Summary

The visualization of data is much greater than passing the data to the graphics engine. As

seen by the background discussion in this chapter, the architecture, the data structures, the

visualization representations, and the user interaction with the display play a major role in the

process. The Swift-3D three-module design provides the starting point for the design of this

AFM visualization research. The Visage research highlights the notion of many contextual

displays and common data objects. The vtk's use of the "execute" method to optimize the

execution path is also a key contribution to this AFM visualization research. The chapter also

highlights several ways to visualize the data itself within the system being designed, thus helping

the user examine the data while not losing the surrounding context of the entire data set.

24

3 Methodology

This Chapter discusses the methodology and design used to address the goals of this

AFM visualization research. It outlines the methods used to reach the design and implementation

of this research, as well as describing the success criteria for the research. The design portion of

this chapter starts with a description of the system's architecture and a system design overview.

The overview is followed by a detailed discussion of the research's implementation.

All of the goals and objectives for this research contain reuse and decomposition. The

first objective is to design a product that supports the decomposition of functionality into

components. The second objective is to make the development of future functions largely an

exercise in reuse of existing components. The third objective, a synthesis of the other two, is to

develop actual components that improve on current analysis techniques for AFM. To meet these

objectives the application must help the analysts view the data as well as help the programmer

develop new functionality. An object-oriented approach was selected as the implementation

method to best meet these AFM visualization research objectives.

Object-oriented programming has three distinguishing characteristics: data abstraction,

polymorphism, and inheritance. Like an abstract data type, an abstract class represents an

interface behind which implementation can change. Polymorphism is the ability for a single

variable or procedure parameter to take on values of several types. Inheritance makes it easy to

derive new objects from other objects [7]. These characteristics increase the potential for reuse of

software design and code.

Although object-oriented programming techniques can increase the amount of reuse, this

AFM visualization research needs more than this to satisfy its objectives. This research needs an

application framework to organize and manage the objects in a useful application. This

25

framework provides the basic modules and underlying structure of the AFM visualization

architecture. According to Fayad in Building Application Frameworks: Object-Oriented

foundations of Framework Design:

A framework describes the architecture of an object-oriented system; the kinds of objects
in it, and how they interact. It describes how a particular kind of program...is
decomposed into objects. It is represented by a set of classes (usually abstract), one for
each kind of object, but the interaction patterns are just as much a part of the framework
as the classes. [7]

The benefit of using a framework is it "goes beyond code reuse, it provides reusable

abstract algorithms and a high-level design that decomposes a large system into smaller

components and describes the internal interfaces between components. These standard interfaces

make it possible to mix and match components" [7]. Additionally, with defined interfaces, "new

components that meet these interfaces will fit into the framework, so component designers also

reuse the design of the framework" [7]. These added benefits are what this research needs to

meet its objectives.

Another benefit of frameworks is what is termed "inversion of control" [7]. In traditional

software reuse, the programmer reuses components from a library by calling them from a custom-

written main program. The programmer decides the overall structure and flow of control of the

application. However, according to Fayad, "in a framework, the main program is reused and the

developer decides what is plugged into it. The developer's code is called by the framework code.

The framework determines the overall structure and flow of control of the program" [7]. For a

visualization application this inversion of control frees the programmer from systemic concerns

and lets the programmer concentrate on the system's application components.

This research uses the object-oriented C++ programming language [13,16] and its

Standard Template Library to implement the objects and framework. The user interface is

26

implemented with the Fox C++ User Interface Library [8] and graphics are implemented with the

OpenGL graphics library [22].

To fulfill the robust framework portion of the objectives, the system architecture provides

a way to development independent reader, data, visual, drill-down, and user interface

components. The specific areas of interest in the application framework that must be exercised

and validated are listed in Table 1. For the first objective to be met, the third column of Table 1

must be satisfied through the sample applications. Additionally, the ability to develop new

components of each type and link the components into the system measures the system's

capability to add new functionality. A robust framework only has to be re-linked to include a

new component.

Table 1: Implementation Success Criteria

Type/Name Description Success Criteria
Framework
Interfaces

(Internal) Layer to layer
communication of the framework

The framework can manage the applications and
execution with the interfaces provided.

(External) Component to framework
communication

Application can compile and execute with
components only using defined framework interfaces.

Data Data structures used in Data Objects Diverse data sets can be handled transparently by the
framework and components

Population of data structures Data objects can be populated in whole or
incrementally by the framework and applications

Reading of data and preprocessing Data can be read in directly or preprocessed
transparently by the framework and application.

Visual Micro and Macro views System can dynamically provide macro and micro
levels of detail when the user selects it.

Context based displays Complete data set viewing with a single context
Pick items on the display User can select display items for drill-down
Animation or time based display Display can handle changing of time of simulation

Plot Single and Multi-tab books Display of single and multi-tab pop-up windows
Pick items on pop-up windows User can select display items for drill-down
Diverse drill-down windows The framework and applications can handle different

formats display in the drill-down windows
User
Interface

Menu additions with components The framework can handle menu additions to the
"Accessories" and "View" menus.

Time controls (sliders and buttons) Framework can handle the different user interface
devices that change the current scenario time.

Working window and status display Framework displays working window and "working"
on status bar when doing lengthy background work.

27

To satisfy the second objective, design and code reuse must be achieved in the

component development process. Reuse is calculated by determining how much code from the

first application is reused in the second application. Design reuse is analyzed by comparison of

the methods used in the various components of each type. Complete classes are not used, but if a

majority of the methods are reused, then the design reuse is high.

To fulfill the visualization portion of the objectives, this AFM visualization research uses

techniques that show data context and provide micro and macro views of the data. The use of

these techniques is compared to previous analysis efforts that use desktop spreadsheet routines.

The amounts of data processed and level of detail available to the analyst are the key comparison

factors for the two techniques.

3.1 System Architecture

The overall system architecture falls into the heterogeneous architecture category as

described by Garlan and Shaw [20]. The architecture is a combination of object-based, batch-

sequence, and layered architectures. This combination of architectural styles enables the system

to take advantage of object-orient benefits, maintain execution control, and optimize the use of

memory, while keeping the user from being overwhelmed with details. By using an object-based

architecture the design supports abstraction, polymorphism, and inheritance, raising the potential

for reuse. Objects make it easier to isolate different functions and package them into self-

contained units supporting component-based design for the first objective. An execute method

associated with each visualization component and framework module provides for common

communication between the modules in the framework. This "execute" method ensures the

framework can control the execution of the components, optimizing memory usage. This

approach is similar to that used in the pipe and filter architecture of vtk [19]. The architecture is

layered, because each module in the framework represents a type of client-server activity. The

28

AFM visualization system's layers follow the pattern of the ISO OSI network layer stack [2]. For

the system, data management is the lowest layer, the graphics rendering is the middle layer, and

the user interface is the top layer. Figure 7 is a depiction of this layered concept.

User Interface Layer

interfaceMod
•■ objlnterface

Graphics Layer

visualMod plotMod

^ N.
1 objContext objVis objPlot

1 r Data Management Layer

inputMod ^ |

objReader '^ ob j Data

Figure 7: Framework Object Diagram

3.2 Component/Framework Interface Issues

The first objective requires component-based functions to work with this stable-

underlying framework through defined interfaces. There were three designs for the component to

framework interface reviewed by this research: dynamic plug-ins with user inclusion and

execution, programmer inclusion with user directed execution, and programmer inclusion with

system controlled execution. In the dynamic plug-in approach the system knows nothing about

the components at startup. The user adds the components dynamically at runtime, just by starting

them external to the system and pointing the system to them. In the second approach the

29

programmer lists all the components in a container class that the programmer links into the

system's executable. The user picks and chooses which components to execute. In the third

approach, the programmer includes the components in main () and links them into the

executable. The difference from the second choice is what and how the user selects functionality.

In this third approach the user selects functions not components. A function in this context

represents a complete data representation from data input to display.

The disadvantage of the first approach is the overhead the system requires to get the

framework access to the components and vice versa. Communication requires sockets or some

other external protocol, which would limit the amount of parameter and state information that

would be exchanged. For this reason, this approach was not considered to be appropriate for the

research.

The second approach minimizes execution size and memory, but greatly increases

frustration for the user. If the container class lists all possible reader, data, interface, plot, and

visual components, the developer has to convey the relationship between them to the user, or the

user would have to know that information a priori. For example, if the user adds a new visual

component, the user has to also select the reader and data objects supporting that component.

Requiring the users to know component dependencies distracts from their analyzing the data.

The third approach manages components for the user, so it was selected for this research.

The difference between this approach and the second choice is the absence of the user selecting

individual components. The user now selects from the list of data representations presented as

menu items that the interface components provide. When the user selects an item the interface

component sets the state so the management modules activates or updates the appropriate data,

reader, visual, and plot components.

30

To implement this third approach the application developer selects the components for

inclusion in a given executable by including them in the starter file's main () method. The

starter file is the reused "main()" for the framework, discussed by Fayad [7], earlier in the

methodology discussion in section 3. Inclusion in the starter file links the components into

the executable, so the system knows about them. The framework controls when the system calls

the component's execute () or its equivalent method.

This approach satisfies the framework's objectives of making the data representations

component-based, simple, and controlled. The application developer has ultimate control over

which components he or she includes and excludes from an instance of an application and the

framework controls execution in its "inversion of control" [7] discussed earlier in section 3. The

memory is optimized because it only contains those processes and data objects the current user

selections require. This approach also allows the component-to-framework interface to be

defined by base object classes, instead of a socket or other interface. These interface objects are

depicted in Figure 7 with their respective layer managers.

3.3 Design Overview

The entire system is divided into two parts, which both use object-oriented class

implementations. The first part is the underlying modules and interfaces of the framework. The

second part is the component portion, which implements specific applications. Because the

system has two parts, the interfaces and interactions between them are critical to the component-

based success of the system. This interfacing of the framework and component objects forces

the overall system design to transcend both parts of the system.

The system framework's high level design is derived from the Swifl-3D prototype

developed by AT&T [12]. The Swifi-3D design uses three modules-data collector (data

31

manager), aggregator (visualization manager), and visualization interface (user interface

manager). Initial design work on the AFM visualization research validated the need for each of

these managers, but also revealed the need for a fourth. Because the AFM visualization research

has a goal of letting the user select an entity and get amplifying data on that object, a fourth

module is needed to manage the pop-up windows containing drill-down information.

Management of these windows is significantly different from the main window, so the visual

manager could not manage both.

The four main objects for the AFM visualization framework are an input module

(inputMod), visual module (visualMod), interface module (interfaceMod), and plot module

(plotMod). Figure 8 shows a UML-based object model of the framework modules as well as the

abstract base classes and application components.

o- 1 objlnterface
. interfaceMod ^_^> ► interface component •4 1

<

obj Context 1

r—*
visualMod

/
context component

J
starte
file

N objVis
1

M
r

visual component
^

objPlot

<3-

1

^ U: plotMod
—-»■ plot component

•4

obj Reader
1

^ inputMod reader component

objData

M

1

data component ^

Figure 8: System Object Model

32

There are six abstract base classes utilized for the framework to component interface. All

of the classes in Figure 8 that start with "obj" are abstract base classes. The base classes maintain

lists of the components derived from them and provide virtual functions for the components to

implement. The base classes are unique to each type of application component and framework

module they interface with, but there are still common methods and attributes in these classes.

Table 2 provides a description of these common attributes and methods. The virtual methods

provided by each base class are discussed in the next sections.

Table 2: Base Class Common Attribute and Method Descriptions

Attribute Name Description
char * obj Name Character string containing components name identifier
<object> * <objects> List of pointers of the object's type. This is the list of child components

that each interface object maintains.

Method Name Description
getObjNameO Returns the components name identifier objName
setObjNameO Sets the components name identifier and saves it in objName
addObject() Adds the calling object to the base class's list of child components.
Find() Takes in the name of a child component and returns a pointer to that

child component if it is found in the base objects list.

There are six categories of components, one for each abstract base class in the

framework. The component categories are readers, data, visuals, context, plots, and interfaces.

These components implement the virtual functions of their respective abstract base class. For this

AFM visualization research the components' names replace the "obj" portion of the abstract base

class's name. For example, the military "base" visual component would be baseVis. With

this naming scheme components can be easily matched to a base class and management module.

For example, baseVis is easily associated with objvis and in turn the visual module.

3.4 System Design

The next sections explain each layer in more detail. The management module or modules

for each layer are discussed as well as the abstract base classes unique functionality used by the

33

module. The layer's application components used by a developer to implement an application are

also discussed with each layer.

3.4.1 Data Management Layer

The Data Management Layer manages the data retrieval and storage for the rest of the

system. The management module for this layer is the input module implemented as inputMod.

Data input for the system is done by reader components that read the appropriate input file and

then create and populate the data objects. Data components contain the data structures that store

the data. The input module manages the reader and data components with two abstract base

classes. Figure 9 shows the relationships between these objects. There is one abstract base class

for readers and one for data objects.

Data Management Layer

inputMod ^

objReader ^^ objData

Figure 9: High-Level Data Management Layer Object Diagram

Having a central data manager provides a single point for all other objects to request and

get data. This single manager design helps to ensure that multiple copies of a data set are not read

into memory and only those levels needed are in memory. The design minimizes memory usage

by controlling the presence of populated data objects. Having a data manager also hides the other

components from the details of reading the files and populating the data.

3.4.1.1 Input Module

The input module is implemented as inputMod and uses two abstract base classes to

interface with the application components. Figure 10 shows the detailed object diagrams for

34

DataReader <1 objReader reader component

\l obj Reader * readers
char * objName

<3
objData * data
Execute()

is used by/^

getObjNameO
addObjectO
Find()
*Execute()

reader component

objData * data

InputMod uses/

usesv

ExecuteO

objData
Dooulates i
• ■ 1 r

getReaderO
getData()

data component
objData * datas
char * objName
char * readerName
int populated <t

array * data
is user! h\m

setPopulatedO
getPopulatedO
addObjectO
getObjNameO
getReaderNameO

populates^ f

data component

list * data

Figure 10: Input Module Object Diagram

these objects. The input module provides two interfaces for the other layers: a getData ()

method and a getReader () method. These two methods provide the means for an object to

request data from the input module by passing a name and data level to the getData () method.

For the getData () method, if the requester asks for a data object populated at a particular

percentage, the input module returns a pointer to the data object. If the data is not sufficiently

populated, the input module retrieves the required reader and calls its execute () method. If a

component in the visualization layer calls getData (), it only needs to pass the data object

name and required population level. The input module interfaces with the other objects in the

layer and returns a pointer to the appropriate data object if it is available. By returning pointers to

the objects the system maintains only one instance of the object.

3.4.1.2 objReader Base Class

The objReader base class provides the common base class methods and the

DataReader methods as well. DataReader is a vtk class that has methods for reading

35

everything from floats and integers to strings and characters. The ob j Reader class inherits

from DataReader, to provide the reader components with common local methods for reading

input data. This is another way to reduce duplication and increase reuse in the framework.

3.4.1.3 Reader Components

The reader components read the data files and populate the data objects. Each reader

component is a child class inheriting from the ob j Reader class. The input module executes the

reader by calling the virtual execute () method from the ob j Reader. Since the

execute () method is a virtual method each component must implement this function. Each

reader is unique, but in general the execute () method opens the input file, reads the data and

populates the data structures in the data objects. The amount of data reading done by a reader is

left up to the implementation of each reader. For some data files a call to the execute ()

method causes the reader to read the entire file. For other readers the integer value passed to the

execute () method represents a limit to the amount of data read during an execution. The

input module passes on the requester's populate level; what that represents to the reader, the data,

and the requester of the data is independent of the input module. The framework will only call

the reader if someone requests the data and the data object's population is less than what was

requested. This approach gives the reader and data component developer control over

implementation, while enabling the framework to maintain its generic, but reliable behavior.

3.4.1.4 objData Base Class

The base class for the child data objects (data components) is ob j Data. The

getObjName () and getReaderName() methods return the child's name and it's

corresponding reader's name. Child objects also maintain a populated attribute that reflects

how much data has been read. The populated attribute is an integer, so it can be used in one of

36

several ways for a particular data object. If the data is populated in an all or nothing manner, a

zero or one is used for a yes or no population status. If however, the reader can populate the data

incrementally it can be used as a percentage value like 90 to represent 90% populated. The actual

representation is left to the component designer.

3.4.1.5 Data Components

The data components are objects containing data needed by other parts of the system.

The designer of the data object determines the data structure most appropriate for the data

component. The data objects inherit from the ob j Data abstract base class. The data component

does not have an execute () method, so the input module interface with these components is

the objName and populated attributes. The input module uses these attributes to find the

data object and compare its population levels with the needs of the requester.

3.4.2 Graphics Layer

The graphics layer manages the OpenGL rendering routines in the main window and

drill-down windows. As mentioned in section 3.1 this layer has two managers to handle the

displays. The first manager is the visual module implemented as visualMod in Figure 11. The

visual module manages the context and data representations in the main window. This requires

knowing the availability and status information of each visual component. Like the input module,

the visual module interfaces with two abstract base classes objContext and objvis in

Graphics Layer

visualMod plotMod

^ N.
; obiContext objVis obiPlot

Figure 11: High-Level Graphics Layer Object Diagram

37

Figure 11. The second manager for the Graphics Layer is the plot Module implemented as

plotMod in Figure 11. The plot module manages the drill-down windows for the system. The

plot module only interfaces with one base class, obj Plot.

By utilizing a central visual module, the interface module only has one callback object

for the main window. The central visual module enables a single object to coordinate the

interaction of the user interface zooming and rotating with the context component and picking

objects with the other visual components. A central plot module provides the interface module

with a single object to handle the entire collection of drill-down requests made by the user.

3.4.2.1 Visual Module

The visual module is implemented as visualMod and uses two base classes to manage its

components. Figure 12 is an object diagram for this portion of the graphics layer. The visual

module has a large number of methods, but a majority of these methods are graphical user

visualMod

Execute()
zoom()
DisplayO
DisplayLegendO
CallBackDisplayFunc()
CallBackReshapeFuncO
CallBackResetZoom()
CalBackUndoZoom()
CallBackRecenter()
CallBackMoionFuncO
CallBackLMouseDown()
CallBackLMouseUpO

is used by

uses.

objVis

objVis * visuals
char * objName

getobjName()
addObjectO
displayLegend()
displayLabelO
DisplayO
GetPickO

<K

obj Context

Float origmaxX float maxX
Float origminX Float minX
Float origmaxY Float maxY
Float origminY Float minY
objContext * instance

DisplayO getmaxXO
getX() getminX()
getYO getmaxY()
reset() getminYO
getZoom() setlnstnce()
aptlnctanrpH

<}

visual component

displayLegendO DisplayO
displayLabelO GetPickO

visual component

displayLegendO DisplayO
displayLabelO GetPickO

context component

DisplayO
getX()
getYO
reset()
getZoom()

getmaxX()
getminX()
getmaxYO
getminYO
getlnstanceO

Figure 12: Visual Module Object Diagram

38

interface event callback functions. Callbacks are methods that register for specific events with

the framework's event loop. When that event occurs, the callbacks registered for that event are

called. Table 3 gives a brief functional description of the callbacks in the visual module.

Table 3: Visual Module's Callback Methods Descriptions

Method Name Description
CallBackDisplayFunc() Manages the calls to the three display methods of each of the visual

components and draws the zoom box
CallBackReshapeFunc() Updates the main window renderings and adjusts the size and

scaling parameters when the window size or shape changes
CallBackResetZoom() Resets the context and data display scales to their original settings
CallBackUndoZoom() Undoes the last zoom operation input by the user
CallBackZoomO Zooms in or out the context and data displays based on user input
CallBackRecenter() Shifts the context and data display to center on the user input point
CallBackLMouseDown() Starts drawing the zoom box when the user pushes left mouse

button
CallBackLMouseUp() Stops drawing the zoom box when the user releases the mouse

button
CallBackMotionFunc() Updates current location of moving mouse while button is down

The visual module's execute () method acts like an initialization by starting the

rendering, establishing the context drawing, and defining the window sizes. The

pickObj ects () method is called by the interface module when the user selects an object from

the main window display. This pickObjects () method calls each visual component's

Display () method in SELECT mode to see if the mouse coordinates hit anything the

component is displaying. OpenGL has two modes for rendering graphics primitives RENDER

and SELECT. The RENDER mode sends the images to the screen. The SELECT mode sends

the images to a buffer for processing. The processing in this case is checking the mouse click

point with the existence of a graphics item. If an item is selected, the pickObj ects () method

returns the information the plot module needs to process the selection.

Another task accomplished by the visual module is rendering the legend. The legend,

Figure 13, is a gray box in the lower left corner of the display. To render the legend the visual

39

KC-l-35

v @ C-5A :

r • Do» M/M no activity !
i

Base in constraint*

Base out of comtraintc.

Figure 13: Picture of Legend (Plate 2)

module calls each visual component's DisplayLegend() method. The call passes the

location of the lower left comer of the current line and the height of a line in the legend. The

component's method returns the number of lines used, so the visual module can adjust the lower

left corner for the next component. This process enables the visual module to continuously add

other component's items to the legend with only minimal knowledge of what is being displayed.

3.4.2.2 objVis Base Class

The ob j Vis class is the abstract base class for all main window visual components. The

main window canvas is the map and ocean area of Figure 14. Unlike the other base classes, the

objVis class lacks a single execute () method. Instead, there are three such methods

Figure 14: Screen Capture of Main Window with Map Context (Plate \)

40

Display (), DisplayLabels (), and DisplayLegend (). The visual module calls these

three virtual methods in the child objects based on the user's current selections. It is the

responsibility of the component's implementation to execute the specific call.

3.4.2.3 Visual Components

The visual components convert the input data to computer graphics primitives for display

on the main window. The visual components provide implementations for three virtual functions

in the objVis base class: Display () , DisplayLegend (), and DisplayLabel ().

The Display () method executes the OpenGL commands to render the objects shape and color

for the display of the data. The "Legend" menu item from the "Accessories" menu activates the

visual module call to DisplayLegend (). This method renders a representation of the

visualization with a description in the legend area of the display (Figure 13). The "Labels"

command from the "Accessories" menu activates the call to DisplayLabels (). This method

displays labels for the data. The label itself is left up to the designer of the component. For the

implementations in this AFM visualization research, the labels are text of the ICAO abbreviation.

The visual components query the interface module to see if the menu item controlling

their display is selected or not. To accomplish this visual components call the interface module's

getstatus () method. These method returns true or false based on the current status. By

calling the interface module for the status of the interface object, there is no component to

component communication, keeping with the idea of using the framework interface exclusively.

3.4.2.4 objContext Base Class

The objContext class is the abstract base class for the context components. Figure 14

is an example of a global map context. The objContext class is different from the other base

41

classes, because it does not maintain a list of context objects and it has many more virtual

methods. No list is maintained, because there is only one context component for an application.

The context component object uses the setlnstance () method to register as the single

context instance. The other methods like getX (), getY () , and reset () are all virtual

methods used by the visual module to convert from screen coordinates to the context-based

coordinates. These conversions are necessary for zooming, scaling, re-centering, and picking.

3.4.2.5 The Context Component

The context component provides the system with the contextual background display for

the visualizations. The designer of the context object determines the context for the visualization.

The context component inherits from the abstract base class obj Context. The component's

implementation of the virtual Display () method is similar to the Display () method of the

visual components. The Display () method gets its data from the input module and then

renders the graphics primitives for the context object. The visual module uses a graphical display

list to render the context. The display list maintains the graphical commands in memory, thereby

supporting rapid redraws, since the context object's graphics primitives do not change.

Beyond the Display () method, the context component has little similarity with other

visual components. The methods getX () and getY () both take in a screen coordinate and

return a context-based coordinate. For the map context in this AFM visualization research they

return a latitude and longitude value. The reset () and getZoom() methods adjust the

current corners of the display when the user resets to the original or zooms a certain percentage.

The visual module calls these methods when the user draws a zoom box or selects an item from

the "Zoom" menu. The visual module calls the context component's "get<Attribute>" methods to

access the coordinate values after the previous reset () and zoom () methods finish executing.

42

The context component inherits two groups of attributes (current value and original value

holders) that represent the coordinates of the four sides of the display. The four starting with

"orig" in the name, store the starting values. The other four attributes are used by the methods

discussed in the previous paragraph to change as the user changes the view of the scene. For

example, the zoom() method changes the second group by the percentage of zoom selected by

the user.

3.4.2.6 Plot Module

The Fox graphical user interface libraries [8] provide the windows and interface devices

in this AFM visualization research. In the Fox hierarchy of window management, managing the

main window is separate from managing the pop-up windows. This separation forces the

introduction of another visualization layer module in the framework: the plot module,

implemented as the plotMod. This plot module manages all the component objects providing

drill-down information on a picked object. A common thread between all of the objects in this

AFM research is they are all "plots" of data; hence the name "plot module".

The plot module implements a tab book (Figure 15) for the drill-down window when a

user selects an object for amplification. It is called a tab book, because it is like the pages of a

;,nicAoinfo -!D;X
: KGRKJ KGRK Day 41 KGRK Cumulative Stats

Tons:

[*ax:

Patient:

Fuel:
,-M 111111111IIII1IIIIIIIIIIIIIIHIIIIIIIIIIIIIII
°*t 5 , JO J5_Jfl- £5_J3<L 35 40 45.

Figure 15: Picture of Plot Module Tab Book (Plate 3)

43

book that the user looks through by selecting the tab of interest. When a tab is selected, that

page's information is brought to the front of the display. This design optimizes screen real estate

and provides the user a means to control what information is shown. The plot module uses a

single abstract base class called obj Plot to manage the plot components. Figure 16 shows the

relationship between plotMod and ob j Plot.

objPlot plotMod

- char * objName int time
bool plotting string pick

plot component int noPlots
char * currentObj
string currentPick <

getobjName() setPickO
addObject() getPick()
setTimeO getPlottingO
getTime() updatePickO
ExecuteO pickObjects()

updatePickO
ExecuteO display Title()

CallBackPickedO

Figure 16: Plot Module Object Diagram

The plot module provides the interface module a single callback for all drill-down data

requests. The CallBackPicked () method checks to see if a component matching the picked

object's handle is currently showing or if a new window needs to be opened. For example, if the

user picks an ICAO from the main window, the interface module calls CallBackPicked ()

and passes it the object that was picked (ICAO), the current time, and the picked information

string. The plot module loops through the list of components to check if any are registered for the

handle "ICAO". If a component is registered, the plot module checks to see if the component is

currently plotting. If the component is plotting, the plot module updates the component's current

data. If a component is not plotting, the plot module sets up a new tab book for the component

3.4.2.7 objPlot Base Class

The objPlot class is like the other base classes, except the child class names have two

uses. This child object name is not only the means for the plot module to identify the component,

44

it is also the message handle passed by a picked object. The time attribute contains the scenario

hour the object was picked. The currentPick attribute contains the information the

component uses to get the additional data needed to display the drill-down information. The data

type of the currentPick attribute is a string, so the plot module can pass anything encoded in

a string to the components. The currentPick string can contain anything like an aircraft tail

number, a base name, or even a cargo description. For example, if the user picks an aircraft from

a visual component, the component includes the aircraft's tail number and the current base's

ICAO in the string. The values the string contains are the keys the plotting component needs to

find the data in the appropriate data structure. The component developer determines the string's

contents. Using this string enables the interface to remain common among all plot components,

but yet individualized for each data set's keys. Whether the key is a database key, a single

character, or even an index number, the plot module's interface remains the same. The Boolean

attribute plotting conveys the current plotting status of the component. The plotting

attribute is true if the object is currently displayed and false if it is not being displayed.

3.4.2.8 Plotting Components

The plotting components render drill-down information in the pop-up windows when a

user picks an object. Each plotting component is a child class inheriting from the objPlot

class. The plot component implements the virtual methods execute () and updateTime ().

The plot module sets the currentPick attribute and calls the execute () method when the

plot component is being displayed in a new window. The updatePick () method is similar to

the execute () method, except the display does not have to be created. Since the plot

component is already displaying a tab book, the plot module updates the currentPick and

time attributes and the updatePick () method queries for the new data and updates the tab

books values.

45

3.4.3 User Interface Layer

The User Interface Layer creates the windows, manages the user interface devices,

initiates the plot windows, and coordinates all of the input from the user. The interface module

uses the Fox interface libraries to provide a Fox main window, sub-windows for plotting and

most importantly, an event loop for user interaction. Figure 17 shows a screen capture of the

display and points out the main interface items. The main interface window contains the majority

of the user interface items. Default framework menus, rotation dials for tilting the display for 3-D

viewing, day and hour controls, and text fields of the zoom level and macro cutoff levels are all

part of the main window interface. The time controls for the user include a day slider and auto-

advance buttons for automatically advancing the day and hour to animate the visualization

through the scenario.

Component menus

Frameworl
menus

Visualization
module window

Plot tab book
window

Legend

Zoom and macro
Level indicators

Rotation
!/Dial

Day slider Auto advance buttons

Figure 17: Picture of User Interface (Plate 4}

46

Interface components add menu items to the "Accessories" and "View" menus that are

part of the framework. The components add to the interface by inheriting from the abstract base

class ob j Interface. Figure 18 shows the high-level object model for the interface layer.

User Interface Layer

interfaceMod
objlnterface

Figure 18: High-Level User Interface Layer Object Diagram

3.4.3.1 Interface Module

The interface module is implemented as interfaceMod and uses a single abstract base

class to interface with the application components. Figure 19 shows a detailed object module of

interfaceMod

int zoom
int curr_day
int currjiour
bool macroOn

int angle
bool showLegend
bool showLabels

drawSceneO
newPlot()
onLMouseDown()
onLMouseUpO
onMouseMoveO
onRMouseDown()
onExposeO
onReshape()
onCmdZoomO
onUpdZoom()
onCmdXYZDialO
onUpdXYZDialO

onCmdAutoDayO
onCmdDayO
onCmdHourO
onCmdAutoHourO
onUpdAutoHourO
onUpdCurrentZoomO
onUpdMacroLevelO
onCmdAccess()
onUpdAccessO
onCmdFrontO
onUpdFront()
onCmdAbout()

uses
is used by
 ►

objlnterface

objlnterface * interfaces
bool viewSttaus bool AccessStatus
char * objName int overallStatus

getobjNameO addObject()
executeView() executeAccess()
getaccessStatusO getviewStatus()

ZT
interface component

executeView()
executeAccess()
onCmd<menu label>()

Figure 19: User Interface Framework Object Diagram

this relationship. As is typical in any user interface class, a majority of the methods in the

interface module are user interface callbacks. These callbacks implement the functions registered

with the Fox event loop to handle specific user interface events. Table 4 lists and describes each

of these callback functions found in the interface module.

47

Table 4: Interface Module's Callback Methods Descriptions

Method Name Description
onExpose() Calls DrawScene() any time the main window is being uncovered, at start

up and when another windows is move from on top of the Fox window.
onReshape() Updates the window attributes when the window size or shape is changed
onLMouseDown() Handles left button events calling the visualMod's CallBackLMouseDown
onLMouseUp() Handles left button events calling the visualMod's CallBackLMouseUp
onMouseMove() Handles left button events calling the visualMod's CallBackMouseMotion
onRMouseDown() Processes the picking of objects by the user calling the visualMod's

PickObject() method and then the NewPlot() method if one is picked.
oriCmdZoom() Handles selection of "Reset Zoom" button, sets the zoom level back to

100% and then calls visualMod's CallBackResetZoom()
onUpdZoom() Monitors zoom levels to gray out "Reset Zoom" button when not zoomed
onCmdFront() Handles user selection of the "Front" button, which returns all of the x,y,

and z rotation angles to zero, sot he display is straight up and down again.
onUpdFront() Monitors angles to gray out "Front" button when display not rotated
onCmdAbout() Displays the About pop-up window when the user selects the

"HelplAbout" menu.
onCmdAccess() Handles selection of the "Accessories" menu items and sets

showLegend () and showLabels () attributes.
onUpdAccess() Monitors "View" menu overallStatus, because "Accessories" menu is

grayed out if no "View" items are currently selected.
onUpdCurrentZoom () Updates the "Zoom Level" text field when the level changes
onUpdMacroLevel() Handles the user selection zoom level to switch from macro to micro view
onCmdXYZDial() Updates the angle values when the user rotates the dials to rotate the scene
onUpdZYXDial() Resets the dial settings after the user resets the rotation of the scene
onCmdAutoDay() Steps through the days one at a time until the end of scenario or user input
onCmdDay() Handles user inputs from the day slider and updates the curr_day attribute
onCmdHour() Handles inputs from the day slider and updates the curr_hour attribute
onCmdAutoHour() Steps through the hours by ones until the end of scenario or user input

The newPlot () method in the interface module communicates with the plot module's

CallBackPicked() method. The interface module calls the CallBackPicked() to

determine if a new pop-up window needs to be created or if the current plot windows are

sufficient. As discussed in Section 3.4.2.6, if the user selects an object that is not currently

plotting, the plot module creates a new tab book for the component. If the plot module needs a

new window the interface module creates a new sub-window and passes it to the plot module for

the new tab book for the plot component. Once the interface module creates the window or the

plot module returns with existing window for the object, newPlot () is complete.

48

The onUpdScene () method works with the drawScene () method to communicate

with the visual module. The drawScene () method calls the visual module's

CallBackDisplayFunc () method to force a re-rendering of the scene in the main window.

The Fox event loop calls this method to update the scene continuously if no other activity is

running. This is a problem with complex scenes like those in the AFM visualization research. To

reduce this problem, the interface module uses the onUpdScene () method to respond to the

Fox event loop's request for an update. The onUpdScene () method scans the interface

module's attributes like angle, zoom, and time to see if any have changed. The onUpdScene ()

method only calls the drawScene () method when one or more of these attributes have

changed. This approach greatly increases the systems performance, by freeing up the processor

from constantly re-rendering the scene.

3.4.3.2 objlnterface Base Class

The executeView() and executeAccess () methods of objlnterface are

virtual functions the interface component classes must implement. The implementations are

unique to each class, but in general these methods add the menu item to the interface module's

"View" and "Accessories" menus and register an ID for the menu item with the Fox event loop.

The viewStatus and accessStatus attributes contain the current status of the menu items;

either selected or unselected. The static class-wide integer attribute overallStatus tracks

how many current menu items are selected. When the user selects a component's menu, it

increments overallStatus and when the user de-selects the item, it decrements

overallStatus. The "Accessories" menu uses the overallStatus attribute to determine

if its menu items should be accessible or grayed-out. The "Accessories" menu is only enabled if

the user selects one or more of the items on the "View" menu.

49

3.4.3.3 Interface Components

As a general rule, the interface components are the smallest components for a new

application since they only add menu items to the main window interface. The addition of other

interface items such as buttons and dials is an area for future research. The additional menu items

give the user more control over what the display presents. The interface components are child

classes that implement the objInterface abstract base class. The interface components

represent the top layer of the hierarchy, the point of interaction with the user. They are the

starting points for activating the data representation in the system.

The interface components inherit attributes viewStatus, accessStatus, and

objName. The Booleans viewStatus and accessStatus attributes are set to true if the

respective menu item is currently selected or false if it is not currently selected. The interface

components also increment the obj Interface' s overallstatus static attribute when

the user selects the menu item. It decrements the obj Interface ' s overallstatus static

attribute when the user de-selects the menu item.

The interface components also implement the execute () virtual method of the

obj Interface abstract base class. In general this execute () method establishes the name

of the menu entry, the help information for the item, and the callback ED for the menu. The

interface component's onCmd<menu label> () method is the callback method it registers for

each menu item. The callback ID and onCmd<menu label> () callback method are the

interface to the Fox event loop. Selecting the menu item causes the Fox event loop to initiate the

call to this method. This method sets the viewStatus or accessStatus and

overallstatus attributes as discussed in the object interface section above.

50

3.5 Methodology and Design Summary

The methodology for this AFM visualization research is to develop a component-based

system that runs on an application framework. This AFM visualization application framework is

based on a four module layered architecture. The main interfaces to the framework are the six

abstract classes for the components. The components implement the virtual methods of the

abstract base classes. The programmer, by including or excluding the component in the starter

file, controls the mixing and matching of functions in an application. The inversion of control by

the framework manages the actual execution from there. This methodology supports the meeting

of the goals and objectives of this AFM visualization research.

51

4 Implementations

To test the objectives of this research, two applications were designed and implemented.

These applications are the source of the metrics presented in the results section of this document.

The applications validate the architecture, the framework's interfaces, and the reuse of source

code in component development. Their use of the entire framework with different data structures

and visualizations was the main reason for implementing these applications for the AFM analysts.

This chapter discusses these two applications in terms of reason for selection, data structures,

displays, and drill-down capabilities. The chapter concludes with a mapping of these two

applications to the success criteria outlined in Chapter 3 of this AFM research.

4.1 Daily Airfield Statistics

The first application tracks daily activity and constraints of an airfield in the area of short

tons of cargo, patients, pax (civilian passengers), and fuel. The daily data for each category is

found in the summary file produced by AFM for each airfield. The location information for the

airfields is found in the f25_l AFM input file. This initial effort only required development of

two readers, one data object, three plot components, and two visual components. This simple

data requirement was the reason for selecting this information to visualize in the first application.

Table 5 shows the components comprising this application and the module they support,

interfaces they exercise, and other items exercised. For example the loc_listReader

component is a reader component that implements the obj Reader base class. The

loc_listReader class uses the objReader' s addObject () method and implements

the execute () method called by the inputMod. Some of the additional items this class

exercises are the DataReader object's methods to read floats, integers, and char strings.

Another example from the table is the airf ieldcumVis class, which implements the objVis

52

Table 5: Component Descriptions for Application #1

Name Type Framework interfaces Other items
loc_listReader objReader objReader - addObject(), execute() floats, integers, char
loc_listDataMap objData objData - addobject() "map" data structure
summaryReader objReader objReader - addObject(), execute() large file read
summaryobjData objData objData - addObject() array data structure
mapReader objReader objReader - addObject(), execute() builds multiple data objs
landData objData objData - addObject() large array data structure
waterData objData objData - addObject() large array data structure
mapContext objContext objContext - all methods, inputMod -

getData()
Display lists and large data sets
for graphics engine

baseVis objVis objVis - DisplayO, DisplayLabel(),
DisplayLegendO inputMod-getData(),
interfaceMod - getStatus()

single point display, view menu,
and object picking

airfieldstatVis objVis objVis - DisplayO, DisplayLabel(),
DisplayLegendO inputMod-getData(),
interfaceMod - getStatus()

micro/macro level display, view
menu, object picking, colors, and
day-based time

airfieldcumVis objvis objVis - DisplayO, DisplayLabel(),
DisplayLegendO inputMod-getData(),
interfaceMod - getStatus()

statsVis items and does data
processing by correlating data.

basePlot objPlot objPlot - execute(), updatePick(), and
inputMod - getData()

tabbook, Fox textfields

statsPlot objPlot objPlot - execute(), updatePick(), and
inputMod - getData()

tabbook, Fox textfields, and
OpenGL based bar charts.

cumPlot objPlot objPlot - execute(), updatePick(), and
inputMod - getData()

statsplot items and plot window-
based obj picking

baselnterface objlnterface objlnterface - execute Vie w() Fox event loop, view menu
statslnterface objlnterface objlnterface - executeView() Fox event loop, view menu
cumlnterface objlnterface objlnterface - executeView() Fox event loop, view menu

abstract base class. This class exercises the DisplayO, DisplayLabel () , and

DisplayLegend () methods called by the visualMod. It also exercises the inputMod' s

getData() method and the interfaceMod's getStatus() method. Additionally,

AirfieldcumVis populates the view menu, provides different micro and macro level views,

uses colors, and is also the only visual component to do data processing by correlating the data

received from the summaryobjData data object.

The application is based on two AFM files, the f25_l file and the summary file. The

f25_l input file is read by the loc_listReader and contains a list of the International

Civilian Air Organizations (ICAOs), their latitude, longitude, and initial constraints in cargo,

patients, pax, and fuel. The summary output file is read by the summaryReader and lists

53

several attributes of aircraft and airfields on a daily basis. The summary file lists the ICAO

designator and the daily activities and constraints in the four categories of cargo, patients, pax,

and fuel, for each ICAO.

4.1.1 Data Structures

For the daily airfield statistics application, the queries into the data was based on an

ICAO designator and a particular scenario day. This need for a two-key index for the data meant

there needed to be a multilevel data structure for the ICAO location data. Figure 20 gives a brief

depiction of the multilevel data structure. The day-based array was chosen, as the top level of the

Day-based
array

ICAO-indexed
map

1
2

f "AR14"
"KDOV"
"LEMO"
"RRVK"

AR14.32000,1400,95,145673200
KDOV,2400,1210,75,346532592
LEMO,l 100,1502,79,325098543
RRVK,900,999,71,234859687

3
4 ^\ ^-^H
5

K.
6
••

"ARM" I APIA ^9finn i4nn CK i4<^7T?nn I *"^A 'K^-wuu, A-ruv,y^, IT^U / ^iV/U [

Figure 20: Application #1 Data Structure Diagram

data structure, because the queries in this application are day-to-day based not ICAO-to-ICAO

based. If they were ICAO-to-ICAO based, the data structure would have had the ICAOs at the

top and an array under each containing the different days' data. For the second level of the data

structure, the C++ Standard Template Libraries (STL)[13] contain a "map" data structure whose

content type and index key are programmer defined. For this application the index is defined as

the ICAO four-character designator and the data structure holds the ICAOs' locations and

constraint information.

54

As the user steps through the days in the application the visual components increment

through the top-level array. Then to iterate through the ICAOs with status for that day, the map's

iterate () method is used. When drill-down information is needed for a particular airfield,

the day is used to index the array and the airfield's ICAO designator is used to access the data in

the second level "map" directly.

4.1.2 Visual Display

The display of the daily statistics was implemented in two forms with a micro and macro

view for each. The first form (Figure 21) shows the airfield's statistics for the current day. The

second form (Figure 22) shows an accumulation of the statistics from the first day. Both forms

use the same color-coded approach of blue symbols for no activity for the day, green for activity

within constraints, and red for activity that exceeded constraints.

No Activity

Within
constraints

Figure 21: Application #1 Micro View (Plate 5)

55

Exceeded
Constraint

Within
Constraints

No Activity

Figure 22: Visualization #1 Cumulative View (Plate 6)

The daily form uses a color-coded box representing the airfield on the map (top of Figure

23). At the macro level this box represents a summary of the activity in the four categories. For

Exceeded
Constraint

Within
Constraint

No activity

aero Status
AO label

Short tons
pax

atient
fuel

Figure 23: Statistic Symbols (Plate 7)

example, in Figure 23, the box is red meaning at least one category exceeded constraints for the

day. For the micro view a four-runway airfield-like glyph (bottom of Figure 23) is used to

represent the four individual categories of activity. For each day the respective runways are

56

color-coded to show the status. In Figure 23, the micro view shows cargo exceeded constraints,

pax and fuel were within constraints, and patient was inactive. For the status of a single data

category in the scenario this provides the analyst a great deal of information in one picture.

However, as the analyst changes the day for simulation playback, the symbols appear to merely

flicker, preventing any trend analysis or comparison from day to day. Therefore, an additional

display of the data was needed, so the cumulative visual component was developed.

The cumulative display is a total of the daily status, providing the trend analysis and

comparison the analyst needs. This cumulative form uses the same symbols as the first, except

the current days statistics are added to the previous day's statistics. The analyst can now get a 3-

dimensional bar-type glyph growing out of the airfield on the map representing the statistics.

Figure 24 shows the micro and macro view of the cumulative status. In Figure 24, the ICAO

Exceeded
Constraint

-Within
Constraint

-No activity

Figure 24: Cumulative Symbols (Plate 10)

exceeded constraints one day for short tons of cargo. When a day's status is added to the

cumulative symbol, like status is grouped together for easier comparison between ICAOs. This

allows the analyst to compare airfields directly from the map (Figure 22). An analyst can easily

compare the number of days an ICAO is inactive, active, or exceeds constraints.

57

4.1.3 Drill-Downs

The drill-downs provided in this first visualization are a single tab book with three tabs

(shown in the upper left corner of Figure 25). The first tab represents a detailed display of the

Pop-up from selecting day 41
from Cum stats tab

Pop-up from selecting KGRK
(Cum stats tab selected)

Figure 25: Main Pop-up Window and Day Selection Window (Plate 11)

location data for the selected airfield. The second tab displays a bar chart comparison of the

constraints and activities of the selected airfield for the current day in each of the four categories.

The final tab displays a bar chart comparison of the cumulative statistics of the selected airfield

from day one to the current day (upper left Figure 25). The user can also select a specific day

from the cumulative drill down by selecting the day on the bar itself. This selection of a day on

the bar causes a pop-up window like the second tab of that day's specific statistics to display.

Figure 25 shows the selection of the red status day in the left pop-up and the specific day

information in the right pop-up.

58

4.2 Aircraft Tracking

The second application was chosen for its complex data structure requirements, its

hierarchy of drill-down information, and its use of additional user interface devices. In AFM,

aircraft tracking involves working with several different files and coordinating the data in these

files. The aircraft and missions generated for the scenario are input files for the simulation. The

current location of an aircraft is recorded in the leg information output file. By comparing the

aircraft's leg information at a given time with the mission information from the mission

information file, the aircraft's location and statistics can be determined. This application involves

the development of more readers and a mix of hierarchical data structures. This application also

highlights the correlation capability, not just the summary capability of the applications data

structures.

This application shows the total volume of aircraft at a particular base at a given hour.

The fact that the data in this application is hour-based and will exercise all of the hour-based user

input devices was another reason for choosing it. The first application did not exercise these

devices, so it complements the first application to give coverage of all the devices. This

application also contains more integrated drill-downs than the first application, including lists, bar

charts, and tables.

The components comprising this application and the abstract base classes they

implement, interfaces they exercise, and other items exercised are shown in Table 6. For

example, the leg_inf oReader implements the ob jReader for the inputMod. It exercises

the addobjectO and execute () methods of the ob j Reader class. It also is different

from other readers in that it preprocesses the data as discussed below in the data structure section,

rather than just reading data and putting it straight into the data object. Another example of a new

59

item is the msn_inf oPlot component, which implements the ob j Plot class, but it also is the

only component to use the inputMod' s getData () method with incremental reading.

Table 6: Component Descriptions for Application #2

Name Type Framework interfaces Other items
loc_listReader obj Reader objReader - addObject(), execute() floats, integers, char

loc_listDataMap objData objData - addobject() "map" data structure

leg_infoReader objReader objReader - addObject(), execute() data post procexxing

aircraftLocData obj Data objData - addobject() maps and list data structures

msn_infoReader objReader objReader - addObject(), execute() incremental reading

msn_infoData obj Data objData - addobject() incremental array population

mapReader objReader objReader - addObject(), execute() builds multiple data objs

waterData obj Data objData - addObject() large array data structure

landData objData objData - addObject() large array data structure

mapContext obj Context objContext - all methods, inputMod -
getData()

Display lists and large data sets for
graphics engine

declutterVis objVis obj-Vis - DisplayO, DisplayLegend(),
inputMod - getData()

Visual component update of data
used by other components

aircraftLocVis objVis objVis - DisplayO, DisplayLabel(),
DisplayLegend() inputMod-getData(),
interfaceMod - getStatus()

single point display, view menu,
one-hour increments, and object
picking

aircraftlCAOPlot objPlot objPlot - execute(), updatePick(), and
inputMod - getData()

tabbook, and large OpenGL based
selectable bar charts

tailsPlot objPlot objPlot - executeO, updatePick(), and
inputMod - getData()

tabbook, and large OpenGL based
selected text lists

leg_infoPlot objPlot objPlot - execute(), updatePick(), and
inputMod - getData()

tabbook, Fox textfields

msn_infoPlot objPlot objPlot - execute(), updatePick(), and
inputMod - getData()

tabbook, Fox textfields and
exorcises incremental data reads

aircraftlnterface obj Interface objlnterface - executeView() Fox event loop, view menu
declutterlnterface obj Interface objlnterface - executeAccess() accessories menu additions

4.2.1 Data Structures

The leg information file has an entry for an aircraft each time it reaches an ICAO. This

entry lists the aircraft's current leg information to include arrival and departure time. When an

aircraft record is read, it is added to the ICAO's list of aircraft from arrival hour to departure

hour. However, when an aircraft terminates a mission, it is shown as an entry at the ICAO with

no departure time. If that aircraft gets a new mission, a whole new entry will show up at that

same ICAO with the correct arrival time, but now with a departure time. This new aircraft entry

supercedes the terminated mission entry. The problem is the terminated mission and the new

60

mission are not linked in the file. This forces the leg_inf oReader to take a second pass

through the data checking for the terminated mission and new mission entry for the same aircraft.

Without this check the terminated mission entry erroneously shows the aircraft parked at the

ICAO for the remainder of the scenario.

The optimization of this two-pass problem and the displays needed for a total number of

aircraft at a particular base per hour required an hour-based array at the top level of the data

structure. Figure 26 is a depiction of this hierarchy where each hour (index of the array) contains

a list of the airfields with aircraft, indexed by ICAO designator. Each airfield in the list

Hour-based
array

ICAO-indexed
"list"

Aircraft Type-indexed "list"
of info arrays

A.

6

"AR14"
y m-

"KDOV" • A

"AR13"
A, '

"AR14"
/ m-

"KDOV •

C-5B 1 2 3
238 114 54

/ 11 18 34

/ AR14 AR14 AR14

/ 1 1 1

(3 5 5

C-17 1 2 3 4

r->
WBC • 1 2

v w C-5A • 1

Figure 26: Application #2 Data Structure Diagram

represents a list of aircraft types at the airfield. Each aircraft-type list entry is an array of the

individual aircraft information. This hierarchy allows the display of aircraft quantities to step

through the array getting the list size for each airfield. When the quantities of the different types

are needed for the micro view, the size of the aircraft type array is all that is needed. The

hierarchy and easy size calculations keeps searches and passes through the data structure to a

minimum, because the most frequently needed data is available at the top of the hierarchy.

61

By using an array at the top level and using a second temporary list of mission-terminated

aircraft, the leg_infoReader component can optimize its overall execution time. The

leg_inf oReader's temporary list of terminated aircraft can be used to reduce the second pass

through the data to specific indexed checks at those hours and ICAOs with terminated aircraft

instead of a complete pass. The checker portion of the leg_inf oReader merely picks the first

aircraft off of the temporary list and looks at the ICAO's list until it finds another instance of that

aircraft with a departure time. If another is found it deletes the entry from the temporary list

knowing the new mission superceded it. However, if another entry is not found, the terminated

mission must be inserted at the ICAO from the arrival time to the end of the scenario. This

enables the checker to jump in at the point of a terminated aircraft and not repeatedly look for

conflicts at all ICAOs for all hours. The trade off of maintaining the additional lists far out

weighed the initial slow execution time of leg_inf oReader.

Another optimization of the leg_inf oReader is with the implementations used for

the lists. The mixed data structure and use of a temporary list improved the readers performance

over the initial solution, but the execute () method was still taking several seconds due to the

size of the data files. The first implementation of this array and list mixture used the C++ STL

"list" classes for the lists, but the performance of the STL was very slow. The final

implementation of this data structure uses purpose-built linked lists. This change decreased the

execute time for the leg_inf oReader by almost 60% for a 90-day scenario.

The msn_inf oReader reads the mission information file and populates a single array

of mission data. The missions for a scenario are indexed with a unique mission number.

Research of the data revealed that the list of mission numbers has missing numbers, but the

density of the numbers is sufficient to make an array the most effective data structure. Each array

entry is a record of the mission information including the onload and offload airfield, cargo sizes

62

and weight, and arrival and departure information. This simple array is also justified by the need

for direct access to the mission information.

4.2.2 Visual Display

This application has both a micro and macro view of the aircraft data. Both of these

views can be used to "playback" the MBs of data on an hour-to-hour basis from the same window

and scene. The macro view (Figure 27) of the data shows a single bar whose height represents

the total quantity of aircraft at an ICAO at that hour. This macro level view enables the analyst to

2 Aircraft ► ■

5 Aircraft.

ICAO label <d
Figure 27: App #2 Macro Symbol (Plate 8)

directly compare the quantities of aircraft at the different ICAOs directly from the map (Figure

28). To aid in the direct comparison at the macro level the bar is striped with five aircraft per

colored stripe. This view alone provides the analyst a display of MBs of data in a single scene.

m

Figure 28: Application #2 Macro View (Plate 12)

63

The micro view uses a spider-like glyph showing the quantities of aircraft by aircraft type

at the ICAO (Figure 29). The AFM simulation can support up to fifteen different types of aircraft

in a scenario, so this glyph is designed with that in mind. Each color-coded leg of the spider

Quantity of ^ ?
each type ^"""-^.^V j

V '
Total at ICAO ==»

\

Figure 29: App #2 Micro Symbol (Plate 9)

represents a different type of aircraft as listed in the aircraft types file of the AFM input. The

quantity of each type of aircraft is reflected in the presence and length of each leg. Figure 29

shows the test case of a quantity of 20 aircraft of all fifteen types of aircraft. Additionally the

fullness of the green center body of the spider represents the total number of aircraft at the ICAO.

This micro view enables the analyst to compare airfield aircraft quantities by aircraft type directly

from the context map (Figure 30). The fullness of the spider body provides total quantity

MAM- l#i«hWV%—""" '- L""- k<" ■srr "Vgrgr* ^jv **£ ., "0
^3 jte fgui {tteavuvltt J>*w> w.» - .f <

slsl .v-om i<r*<*. |> ■ i<K:.: MKrafitaei» jro ■•

- ^T"

_y j p.

w • iir*
W00§^^&M^^^MM

j^UgM^Wnu^a

1 ■-1
S"'

|

jgmk 1

ii * <""% „ *.^9HNH6S99 ■HttHM^^^^H
■ _JO - WsSiSllam :

OjtrmtDafj:» Oay*l{ J 4& ftmnayMw 1 OvrcatM» rjozz c iwattoHt* \

"" : — ' " j|l

Figure 30: App #2 Micro View (Plate 13)

64

comparison like the bar length of the macro view. The spider-like legs provide type-quantity

comparisons at the global level without drill-down.

In addition to these aircraft tracking displays, this second application also has a

declutterVis component that is added to the "Accessories" display. The left-hand picture of

Figure 31 shows a regular view of the aircraft data in the Northeastern US. The right-hand

Figure 31: Application #2 Declutter Example (Plate 14)

picture shows this same data with the declutter function turned on. The declutter function

replaces the ICAO's location with new coordinates and renders a line pointing back to the

original location. This enables the viewer to get a clearer picture of the glyphs. The original

ICAO location is saved and replaced when the declutter function is deactivated.

4.2.3 Drill-Downs

The drill-downs start with the user selecting an ICAO's bar from the micro or macro

level. The drill-downs for this particular application provide several levels of analysis for the

user. Figure 32 shows the three drill-down windows. Selecting a striped bar from the context

view pops-up a window with a bar chart listing the quantity of aircraft by type for that ICAO

(upper left Figure 32). The user can further drill-down by selecting an aircraft type, so a pop-up

65

-WlSi" jft.:JhH'UAH^W» t
l«c £>um Accessories». Jäetf

Bar chart of quantities by A/C typ«
iad

Figure 32: App #2 Drill-down Windows (Plate 15)

window will appear with a list of tail numbers of the aircraft comprising that type at the ICAO

(upper right Figure 32). These tail numbers can be explored by drilling-down on a tail number.

Selecting a tail number will show the current leg information and mission information for the

aircraft at that time (lower pop-up Figure 32).

4.3 Implementation Summary

The daily airfield statistics and aircraft tracking applications were both able to provide

the coverage needed to meet the criteria outlined in Chapter 3 of this research. Table 3 on the

next page shows the mapping of the components implemented in these two applications to the

criteria discussed and listed in the methodology section of this AFM visualization research. Each

application exercised the framework for objective #1, which was to develop a robust information

visualization architecture. They also validated the designs for the components for objective #2,

which was to develop reusable components for future visualization applications. Both

66

applications successfully produced visual representations for improved analysis for objective #3,

which was to implement visualization applications to improve AFM analysis capabilities. In

addition, they both implemented different levels and types of data structures, visual depictions,

drill-downs, and user interactions. As shown by the coverage of the framework success criteria

listed in Table 7, the two applications were able to validate the framework and produce the results

discussed in the next chapter.

Table 7: Component to Coverage Criteria Mapping

Obj Type/
Area

Criteria App
#1

App
#2

Fr. Interface objReader — addObject(), execute • S
Fr. Interface objData — addObject(), fully populate S y
Fr. Interface objData — addObject(), incremental populate y
Fr. Interface objContext — addObject(), all interfaces V V
Fr. Interface objVis — addObject(), Display(), DisplayLabel(), DisplayLegend() V s
Fr. Interface objPlot — addObject(), updatePick(), execute() </ s
Fr. Interface objlnterface — addObject(), executeView() y </
Fr. Interface objlnterface — addObject(), executeAccess() s
Fr. Interface inputMod — getData() s y
Fr. Interface visualMod — Callbacks and execute() s Y
Fr. Interface plotMod -- CallbackPicked() s Y
Fr. interface interfaceMod — getStatus() s s
Data Array data objects </ s
Data C++ STL based data objects </ y
Data list data objects y
Data Hierarchical data objects V
Visual Micro/Macro view s v
Plot Multi-tab tab book s
Plot Pick items on drill-down window s •

1/2 Plot Bar chart drill-down window y y
1/2 Plot Text fields and data values •/ Y
1/2 Plot Text lists s
1/2 User Interface View menu additions </ y
1/2 User Interface Access menu additions V
1/3 User Interface Day button and slider s
1/3 User Interface Hour button and slider V

User Interface Working Window y s
3 Visual Global summary of data set s V
3 Visual Context global comparison of data from the data set ■/ V
3 Visual "Playback" of scenario day by day or hour by hour </ ■/

3 Visual Data processing or enhancement for better analysis s

67

5 Results

This chapter examines the AFM visualization research results and analyzes them with

respect to the stated objectives. The first section discusses the achievement of the objectives by

reviewing the objective and discussing the success of the research in meeting that objective. This

chapter discusses the specific validations of the framework, the design and code reuse levels, and

improved analysis capability provided by the two sample applications. The chapter concludes

with a summary of the results.

5.1 Objective Achievement

A measure of research success is the degree to which it satisfies the objectives and its

goals. In this AFM visualization research the primary objectives were to develop a component-

based architecture that supported reusable components. The use of these two objectives in

implementing application components was an integral part of satisfying the third objective of

producing an improved AFM analysis tool in the form of a successful visualization of the

simulation's output.

5.1.1 Architectural Framework

This first objective was to develop a robust information visualization architecture that

supported a component-based system implementation. To achieve a component-based

architecture for the system a stable underlying "engine" or framework was needed. This

framework provides the common functionality and defines the interfaces for the components.

This AFM visualization research designed and implemented a four-module application

framework, consisting of input, visual, plot and interface modules. This architecture was tested

and validated with the development of two visualization applications.

68

The architecture was initially validated by the fact that these two sample applications

could successfully operate on the same four modules and interfaces. These two applications

represented diverse aspects of the AFM data and the compliment of the two applications covered

all aspects of success criteria outlined in the methodology section of this thesis and listed here in

Table 8. The specific component to criteria mapping is provided in the end of Section 4.3 of this

research.

Table 8: Framework Robustness Success Criteria

Type/Name Description Success Criteria
Framework
Interfaces

(Internal) Layer to layer
communication of the framework

The framework can manage the applications and
execution with the interfaces provided.

(External) Component to framework
communication

Application can compile and execute with
components only using defined framework interfaces.

Data Data structures used in Data Objects Diverse data sets can be handled transparently by the
framework and components

Population of data structures Data objects can be populated in whole or
incrementally by the framework and applications

Reading of data and preprocessing Data can be read in directly or preprocessed
transparently by the framework and application.

Visual Micro and Macro views System can dynamically provide macro and micro
levels of detail when the user selects it.

Context based displays Complete data set viewing with a single context
Pick items on the display User can select display items for drill-down
Animation or time based display Display can handle changing of time of simulation

Plot Single and Multi-tab books Display of single and multi-tab pop-up windows
Pick items on pop-up windows User can select display items for drill-down
Diverse drill-down windows The framework and applications can handle different

formats display in the drill-down windows
User
Interface

Menu additions with components The framework can handle menu additions to the
"Accessories" and "View" menus.

Time controls (sliders and buttons) Framework can handle the different user interface
devices that change the current scenario time.

Working window and status display Framework displays working window and "working"
on status bar when doing lengthy background work.

The framework design enabled the two applications to be implemented with 36

independent components. Through the course of developing the 36 different components, the

interfaces provided by the framework proved to be complete and made direct component-to-

component communication unnecessary. All uses of a component by another component are

69

done exclusively through the interfaces of the framework. This further satisfied the component-

based design portion of the objective, because independent components means that they can

easily be mixed and matched as well as included or excluded from the system.

This independence of components and robust application framework were further

validated by including and excluding different components from the two applications. The

exclusion of a particular component tested the other components' independence at two levels.

The first level was the compilation of the executable itself and the second was running the

application.

Table 9 and Table 10 show a list of the components that make up each application and

which components were excluded for each test and the outcome. For example, the first test

Table 9: Visualization #1 Inclusion and Exclusion Test results

Visualization #1 components:
Readers: Visualizations: Plots: Interfaces:
scenarioReader baseVis basePlot baselnterface
mapReader airfieldStatVis statsPlot statslnterface
loc_listReader airfieldCumVis cumPlot cumlnterface
summaryReader
Excluded Result
1 scenarioReader

mapReader
loc_listReader
summaryReader

Main window came up correctly, but blank. No visualizations were possible,
because no data was present. Error messages for each data not found as the
visualizations were picked.

2 mapReader Everything worked except the map, display was blank blue main window.
3 scenarioReader error message: "no scenario data, to find input directories and sizes"
4 loc_listReader No visuals display, they are all based on the locjist data, map still worked correctly.
5 baseVis No affect, when selecting on "ICAO" menu item, nothing is drawn
6 airfieldStatVis Like baseVis, selecting menu, nothing rendered. Cumulative stats render correctly.
7 AirfieldStatVis

airfieldCumVis
Neither daily statistics nor cumulative statistics render when their menu items are
selected. No error messages, worked as expected.

8 basePlot BasePlot's tab not present in tab book of an ICAO selection. Everything else works
9 basePlot

statsPlot
cumPlot

When and ICAO is selected, the error message "no ICAO plots found" appears and
no drill-down window is rendered. Everything else works as expected.

10 baselnterface
statslnterface
cumlnterface

None of the interfaces can be selected, because the menu items are not present on
the menu. Everything else worked as expected.

70

Table 10: Visualization #2 Inclusion and Exclusion Test results

Visualization #2 components:
Readers: Visualizations: Plots: Interfaces:
scenarioReader aircraftLocVis aircraftAtlCAOPlot aircraftlnterface
mapReader tailsPlot
loc_listReader leg_infoPlot
legJmfoReader msn_infoPlot
menjnfoReader
Excluded Result
1 scenarioReader

mapReader
loc_listReader
leg_infoReader
msn_infoReader

Main window came up correctly, but blank. No visualizations were possible,
because no data was present. Error messages for each data not found as the
visualizations were picked.

2 mapReader Everything worked except the map. Everything displayed on a blank blue main
window.

3 scenarioReader error message: "no scenario data, to find input directories and sizes"
4 leg_infoReader
5 msn_infoReader The msn_plot data tab was not included in drill-down, because msn_info data

could not be found. Everything else worked as expected.
6 aircraftLocVis Nothing is drawn or even read in when the menu item is selected
7 aircraftAtlCAOPlot No drill-down window comes up when you pick on an ICAO.
8 tailsPlot

leg_infoPlot
msn_infoPlot

Drill-down window for ICAO comes up, but there is no response to further
drill-downs on that window, because no component is registered for those
handles.

9 Leg_infoPlot When clicking on a tail number, nothing happens as expected.
10 aircraftlnterface Aircraft visualization could not be selected. Everything else worked.

excluded all of the reader components required by the application. Compiling and producing an

executable without the components means the included components are truly independent of

these readers at that level (none of them "#include" any of these). Running the application with

these components missing resulted in the main window and interfaces coming up correctly,

however, there was no map context present in the window. Any interaction by the user resulting

in components requesting data resulted in error messages being produced by the input module

reflecting the fact that the data was not available. Additional tests isolated the various other

components to test the framework and application's ability to handle the absence.

All of the tests shown in Table 9 and Table 10 were successful from two standpoints.

First, the components were again found to be independent and easily included or excluded by the

71

developer in the starter file. Secondly, the framework handled the different configurations by

not exiting prematurely. As expected the resulting system behavior is not what the user would

want visually, but the system handled the events gracefully and did not crash.

The user interface is another aspect of the application framework that was successfully

implemented in this research effort. Information visualizations are used by a wide array of users,

so the interface must be intuitive and yet robust. The interface in this research provides that

effective interface for the analyst looking for summaries and playbacks. The interface is

straightforward, gives a majority of the real estate to the task at hand in the display window, and

all devices have hints that display in the status bar. At the same time, the user interface is robust

enough to support the serious analyst wanting details at all levels.

The architectural objective of providing a common framework that supported the

development of independent component-based applications was met. The robustness of the

architecture is sufficient to support the AFM visualizations. The interfaces were also sufficient to

support the demands of the requirements of AFM and other visualization applications.

5.1.2 Reuse

The second objective of this research was to develop components that support reuse for

future component development. In object oriented programming the number of reused classes is

a common measure of reuse, but in this research every component is a complete class, so the

reuse of a complete class would be almost zero. So, this research looked at design and

specifically code reuse levels.

Although classes as a whole were not reusable in this research, the design of each class

was reused for each subsequent component of the same type. For example, visual components all

72

providing implementations for the obj Vis abstract base class have the same design. This reuse

of design ultimately led to the high source code reuse numbers found in this AFM visualization

research.

Source code reuse is calculated by determining how much code from the first application

was reused in the second application. Table 11 shows the amount of reuse from the first

application to the second application. Each object in the second application is listed with the

lines of code for the object, followed by the reused lines of code, and finally the percentage of

reuse for the object. The average reuse percentage for the components is 84.4%. The total

overall percentage of reuse from the first application to the second application was 83.8%, much

higher than originally anticipated.

Table 11: Reuse Statistics for the 2nd Visualization Objects

Object Name LOC Reused LOC %
legJnfoReader 424 308 73%
aircraftLocData 103 95 92%
aircraftlCAOMap 176 166 94%
aircraftAtlCAO 192 162 84%
leg_Info 114 102 89%
msn_infoReader 492 420 85%
msn_infoData 102 99 97%
msn_info 174 104 60%
aircraftLocVis 415 355 85%
aircraftlCAOPlot 793 738 93%
tailsPlot 569 509 89%
leg_infoPlot 456 293 64%
msn_infoPlot 563 467 83%
aircraftlnterface 160 150 94%

Total: 4,733 3,968 84%

One note on the exceptionally high level of reuse is the similarities between the

visualizations of the AFM output data. Initial review of the data revealed diversity in the AFM

data, but in the design and implementation of the different applications it was discovered that

most of the components are similar from the aspect of design and execution, just not necessarily

73

data types. Because the design is so generic and yet affective, the percentage of code used for the

unique graphics rendering and data structure is small compared with the stable framework

interface code. As a result, this high amount of reuse is not unreasonable for visualization of the

AFM output,. The design will yield comparable results even with a system other than AFM.

This high level provides further support for showing the completeness of the framework and its

ability to support the visualization of data.

Another tangible byproduct reinforcing reuse is the difference in development time for

the two visualizations. The 11 components of the first visualization required approximately 50

hours to implement. The second visualization required approximately 20 hours. With 14 classes

in the second visualization, the average development time was 1.42 hrs/object compared with

4.54 hrs/object in the first visualization.

The high level of reuse and the large improvement in development time both show

measurable results of satisfying the second objective; which is using components that support

high reuse levels for future development. The structure of the framework supports the use of

independent components and the framework's defined interfaces make the design as well as the

source code of those components reusable. The levels of reuse are projected to be high, because

the common design-patterns between the components enables reuse of all but the specific data

and graphics portions of the components.

5.1.3 Implemented Applications

The third objective of this research was to develop and implement AFM visualization

applications that improved analysis capability by addressing those problems of data context, drill-

down, correlation, and integrated views mentioned by Peterson in The Visually Enabled

Enterprise: Managing Information Through The Power of Visualization [17]. To show that this

74

visualization system could provide these capabilities missing in previous analysis tools, two

distinct applications that visualized AFM output data were implemented. These two

visualizations were chosen for their representation of the different types of data present in the

AFM output and their coverage of the framework's success criteria. This section looks at the

success of these two applications.

5.1.3.1 ICAO Daily Statistics

The first implementation displayed the individual ICAO's daily constraints and activities

in the areas of short tons of cargo, patients, pax, and fuel. Constraints represent the limit on the

amount of that item that an ICAO can handle in a day. Activities represent the amount of that

item that the ICAO received for that day. Using the display of these daily values the analyst can

look at a particular day's worth of data and immediately compare it to all of the ICAOs across the

globe for that same day. User control of the micro/macro level cutoff enables the analyst to get a

summary of the ICAO as a whole or as the four individual parts of cargo, pax, patients, and fuel.

This complete global view of a day's worth of data coupled with drill-down capability is

magnitudes faster and more direct than previous efforts to analyze the same data. Previous efforts

involved exporting the data to a spreadsheet tool, manually stripping off the extra data fields in

the data file, selecting the right fields to draw a bar chart of a single day's activity and manually

correlating the constraints with activities. Drill-down and geographical comparison capabilities

were non-existent. With this research's first application, a day's activities are one click away and

drill-down information is a second click away.

Beyond this new daily comparison capability, the first application has a cumulative

display of the same data. With this cumulative display the analyst can perform trend analysis and

instant comparison of all ICAOs across the globe for the entire simulation run. Figure 33 shows

how the global view with drill-down windows can aid the analyst. The background of Figure 33

75

shows the cumulative bars as they appear in the main context display. These bars group like

status together so the ICAOs can be compared directly. To see the actual order in which the status

occurred, the user selects one of the ICAOs. A drill-down window like the left-hand one in Figure

33 pops up containing the status ordered by day. If an analyst wants the details of a single day,

they right-click on that day's bar and the window on the right of Figure 33 comes up, showing the

specific day's numbers.

^jr*=3sm

f -K

Figure 33: Application #1 Screen Capture {Plate 16)

Based on the limited spreadsheet capability of the previous analysis efforts for AFM, the

cumulative global comparison is impossible. Previous efforts have written small programs to

parse the data and display charts of specific information, but these programs were limited in

scope. This cumulative display provides the analyst never before seen capability to summarize

and playback entire MBs of scenario data in a simple integrated manner.

76

5.1.3.2 Aircraft Tracking

The second application, aircraft tracking, was chosen for its complex data structures and

its additional coverage of the framework success criteria. The aircraft tracking application is a

graphical depiction of the correlation of AFM's leg and mission information files. With this

aircraft tracking application an analyst can see the quantities of aircraft at an ICAO for a

particular hour or for the entire scenario by incrementing time. Utilizing the automatic increment

capability for scenario time provides an analyst a virtual playback of the aircraft movement

around the globe. While viewing this summary and playback, the analyst is only a mouse click

away from detailed aircraft information. This playback correlation, and link to drill-down

capability is unprecedented in AFM analyst efforts. Previous efforts have provided the ability to

sort the leg information file and group all of the entries by tail number. This grouping was then

used to manually step through the entries of the aircraft to analyze the mission items. No

geographical or time correlation was possible in these groupings.

The drill-down capability of the aircraft tracking application alone is beyond any

previous analysis capability for the AFM, because there was no automatic link between the leg

and mission information files. Now with this application the bars of aircraft totals at an ICAO

can be selected to show the quantities of aircraft by type. The type of aircraft can then be picked

to see the tail numbers of the aircraft making up that quantity. From there a tail number can be

selected to show the aircraft's specific leg and mission information. Figure 34 shows several of

these drill-down windows. The left-hand drill-down is a count of aircraft at "KDOV" ICAO by

type. The upper right-hand window in Figure 34 is a list of C-5B tail numbers that were

requested by clicking on the C-5B bar in the first window. The bottom window in Figure 34 is

the detailed information on tail number 266. This window also contains mission information on

the other tab.

77

Figure 34: Application #2 Screen Capture (Plate 17)

5.2 Results Summary

This AFM visualization research achieves and exceeds all of its objectives. These results

were achieved with integrated data structures and by leveraging good software engineering of the

application framework. The application framework and its interfaces are robust, reliable and

consistent. Significant reuse of component design and code greatly reduces development efforts.

The applications developed in this research are unparalleled by any previous AFM analysis

techniques. These applications provide the analyst with clear and concise summaries and

playbacks of tens of thousands of data records in a simple intuitive user interface. At the same

time the applications' drill-down capability provides a means for the analyst to delve deeper into

the details of the data.

78

6 Conclusions and Future Work

6.1 Conclusion

Air Mobility Command's (AMC) Airlift Flow Model (AFM) is a modern simulation that

takes advantage of advancing computer technology. This simulation runs multi-day mobility

scenarios in a matter of minutes producing megabytes of output data. Because the analysts' needs

for summaries, trends, and comparisons of the data have surpassed the capabilities of desktop

spreadsheet routines, new tools are needed. Information Visualization is one of these new tools.

Liberating the information contained in the large volumes of data and visualizing it was the

central goal of this AFM research. The result was a robust component-based visualization

application framework for AMC.

This AFM visualization research required the creation of a robust application framework

and several component-based data visualizations utilizing the framework. The four-part

application framework consists of an input, visual, plot, and interface module and successfully

provides the reuse, flexibility, and component support needed to meet the AFM visualization

research objectives. These four modules handle all the management and execution of the

system's component-based implementations. The object-oriented nature and thorough design of

the framework, interfaces, and components give the research effort higher than expected levels of

reuse. With the stable visualization engine provided by this framework the application developer

can concentrate on the task at hand and not deal with the underpinnings of the system.

Two component-based visualization applications were implemented for this research.

These two representative applications show that information visualizations can help with those

concerns of data context, drill-down, correlation, and integrated views mentioned by Peterson in

The Visually Enabled Enterprise: Managing Information Through The Power of

79

Visualization[ll]. Both displays provide integrated views and global comparison capability in a

single display with a map context. Drill-down and micro/macro levels of detail are also present.

These two visualizations are integrated in the same display, so an analyst can view the different

data together in the same context. The straightforward user interface enables the analyst to

manipulate the data for their needs.

These capabilities contribute to better analysis tools for the AFM simulation model. As a

result of this research, the AFM analyst has a powerful analysis tool that can be easily extended to

meet additional needs. Demonstrations already conducted with AMC personnel have liberated

parts of the AFM output data that had never been directly analyzed. This capability will provide

AFM analysts and system designers a way to answer our leaders' mobility questions for years to

come.

6.2 Future Work

There are three areas where future work can be completed with this information

visualization framework. The first is to enhance the framework to support more dynamic user

interface widgets. The ability to add other interface widgets like dials and buttons with interface

components would improve the robustness of the application framework. Future applications of

this framework in areas other than AFM will require this dynamic capability.

The second area for future work is using the framework with another application or

domain. The AFM simulation analysis was the main requirement for this research, but the

framework was designed to support the needs of all information visualizations not just AFM. The

validation of the framework and the reuse results in this research show that the framework is a

good solution for any visualization effort. The interfaces and design are generic enough to

support other applications. Exploring other applications would be beneficial follow on research.

80

The third area of future work is with additional applications for AFM analysis. A large

portion of this effort was spent on the design and development of the underlying framework.

Two representative applications were developed to visualize portions of the AFM output, but

there is a great deal more to visually represent. Additionally, AFM data with different contexts

exist. Data such as crew information, weather, and aircraft parking patterns need to be visualized

with contexts other than a map. Developing visualization applications for this portion of AFM

data is needed by AMC. With the application framework completed, this work would deal more

with the actual visualization of the data.

81

Color Plates

Plate 1: Screen Capture of Main Window with Map Context

• c-t? j

• C-5A |

• 8we *-.:h no B--1IVU |

£ Base in constraints

• Swartöf«ratraM

*3 ICAO mfo

KGRK] KGRK Day 41 KGRK Cumulative Stats j

=1S)'.*

Tons:

Pax:

Patient:

Kiel:
llllllllllllllllllllllllilllllllilllliiliiilll
m.,.,ßr.. 10 ..,.,1520. 25 30 35 40 45

Plate 2: Picture of Legend Plate 3: Picture of Plot Module Tab Book

82

Component menus

Framework
menus

Visualization
module window

Plot tab book
window

Legend

Zoom and macro
Level indicators

Rotation
/Dial

Day slider Auto advance buttons

Plate 4: Picture of User Interface

No Activity

Within
constraints"

WtSSVamUMiitiApptteilhn

Plate 5: Application #1 Micro View

83

Exceeded
Constraint

Within
Constraints

No Activity

Plate 6: Visualization #1 Cumulative View

Exceeded
Constraint

Within
Constraint

No activity

aero Status
AO label

Short tons
pax

atient
fuel

Plate 7: Statistics Symbols

2 Aircraft ^- ■

5 Aircraft ^C^^

ICAO label *
1

Quantity of
each type

Total at ICAO

Plate 8: App#2 Macro Symbol Plate 9: App #2 Micro Symbol

84

Exceeded
Constraint

. Within
Constraint

■ No activity

Plate 10: Cumulative Symbols

"jlCAOhj

KGRKTKGRK Day 41 KGRK Cumulative Stats]
Pop-up from selecting day 41
from Cum stats tab

Pop-up from selecting KGRK
(Cum stats tab selected)

Constraint

Activity

Plate 11: Main Pop-up Window and Day Selection Window

85

r^_i:--.::-JT7'^-

ii""f: .'."'": ■* ^piyAdy j Owrwit How JBZI fluto Hour AW I : V: ■.ÄtTTr?

P/ate 72; Application #2 Macro View

uJ.,0!*. ©»w accessories H»w

j<:;::current Day J35 iiDays 1

*^r/7:':'''':::::^ :''■..'■:''■■;

Ü :!« Auto Day Atv I current Hour |822 - AitoHourMv I IV: KtTOT

Plate 13: Application #2 Micro View

86

Plate 14: Application #2 Declutter Example

Plate 15: Application #2 Drill-down Windows

87

mss VtotMßai)loRfit>pac#hn
&o Qwm öccessortet atew gg_,,,,.

I ;GRK Cumulativestats

^

1632
Ttois:

1740 ^2
5858 ft«:
430 i

Patient
0

■■■: loooooooo
Fuel: ■■'

26097? 1

3*> , «iloO»y*lv | OirrentH»»(J55i «jti, HourAk. i V; BU..I ,j,"i.'.i

Plate 16: Application #1 Screen Capture

Plate 17: Application #2 Screen Capture

88

Bibliography

1. Air Mobility Command, Scott AFB, Illinois. Airlift Flow Model (Version 10.0)
Baseline Document, Appendix A: Input & Output Files, 1999.

2. American Institute. Reference Manual: Hands-On Internetworking in a LAN
Environment. American Institute, Inc. 1994.

3. Brown, Judith R. and T. Todd Elvins, 1997. "Euro-American Workshop on
Visualization of Information and Data," Computer Graphics, pg. 31 (November
1997).

4. Causse, Sylvain, Frederic Juaneda, and Michel Grave. "Partitioned Objects
Sharing for Visualization in Distributed Environments" in Scientific
Visualization: Advances and Challenges, pp. 286-305, Rosenblum, 1994.

5. Chuah, Mei C. and Stephen G. Eick. "Information Rich Glyphs for Software
Management Data". IEEE Computer Graphics and Applications: July/August
1998. Pp.24-29.

6. CIO-SP-1351D018. Transition and Maintain the Mobility Analysis Support
System (MASS) as Department of Defense High-Level Architecture (HLA)
Compliant Simulation, Airlift Flow Model Version 10.0 Baseline. Boeing
Corporation, Virginia, 16 Oct 1998.

7. Fayad, Mohamed E., Douglas C. Schmidt, and Ralph E. Johnson. "Building
Applications Frameworks", Wiley Computer Publishing, New York, 1999.

8. Fox GUI Libraries, http://www.cfdrc.com/fox. 1999.

9. Garlan, David and Mary Shaw, "An Introduction to Software Architecture" in
Advances in Software Engineering and Knowledge Engineering. Vincenzo
Ambriola and Genoveffa Tortora, World Scientific, New Jersey, 1993.

10. Jerding, Dean F. and John T. Stasko. "The Information Mural: Increasing
Information Bandwidth" in Visualizations: Technical Report, October, 1996.
GIT-GVU-96-25. Atlanta, GA: Graphics, Visualization, and Usability Center,
College of Computing, Georgia Institute of Technology, 1996.

11. Kayloe, Jordan. "Easy-Sim: A Visual Simulation System Software Architecture
with an ADA 9X Application Framework. MS Thesis, AFIT/GCS/ENG/94D-11.
School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1994 (AAL4614).

12. Koutsofios, Eleftherias E., Stephen C. North, and Daniel A Keim. "Visualization
Blackboard: Visualizing Large Telecommunication Data Sets," IEEE Computer
Graphics and Applications, 16-19, IEEE Press, May/June 1999.

13. Liberty, Jesse. C++ Unleashed. SAMS, Indianapolis, IN., 1998.

89

14. Lucas, Peter and Steven F. Roth. "Exploring Information with Visage" in IEEE
Computer Graphics and Applications, 32-41, IEEE Press, July/August 1997.

15. and Christina C. Bomberg. "Visage: Dynamic Information Exploration".
Maya Corp. Excerpt from unpublished article. 1998
http://www.maya.conWisage/base/papers/mayaDemo.htm.

16. Perry, Greg. "Moving From C to C++: The Ins and Outs of Object-Oriented
Programming". SAMS, Indianapolis, IN., 1995.

17. Peterson, John. "The Visually Enabled Enterprise: Management Information
Through The Power of Visualization," ObjectFX Corp. Excerpt from
unpublished article, http://www.obiectfx.com. 1998.

18. Rosenblum, L. and others. Scientific Visualization: Advances and Challenges.
Academic Press, New York, 1994.

19. Schroeder, Will, Ken Martin and Bill Lorensen. The Visualization Toolkit: An
Object Oriented Approach to 3D Graphics. Chapter 5, Prentice Hall, 1997.

20. Shaw, Mary, and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, New Jersey, 1996, pp. 1-3.

21. Sikora, Jim and Phil Coose. "What in the World is ADS?" PHALANX: The
Bulletin of Military Operations Research. Vol. 28, No. 2, June 1995.

22. Woo, Mason, Jackie Neider and Tom Davis. OpenGL Programming Guide. 2nd

Ed. Addison-Wesley, California, 1998.

90

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions
for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

AN INFORMATION VISUALIZATION SOLUTION FOR THE ANALYSIS OF THE AFM
SIMULATION DATA

5. FUNDING NUMBERS

6. AUTHOR(S)

Stuart H. Kurkowski, Captain, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFTT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFTT/GCS/ENG/00M-11

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ AMC/XPY
Attn: Maj. Robert T. Brigantic
402 Scott Drive, Unit 3L3
SCOTT AFB, IL DSN: 576-8713

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Lt. Col. Timothy Jacobs, ENG

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT (Maximum 200 Words)
This thesis looks at developing a robust information visualization architecture that integrates data processing, visualization, and user interaction, and supports reuse

and component-based functions. This research develops a component-based 3-D visualization system for the AFM data. A domain-independent application
framework is developed to support the component-based system design. This research also develops data reading objects, integrated data structures, and visual
components as well as drill-down and user-interface components to produce an end-to-end visualization application for several aspects of the AFM data.

The results of this research show that an application framework can support information visualization applications. The use of a stable underlying framework
architecture provides high levels of design and code reuse for future component development. The component-based functionality frees future development to
concentrate on visualizing data and not the systemic concerns handled by the framework. This enables AFM and others to get a better return on investment for future
work. The representative applications completed in this research already provide AMC with unprecedented insight into the AFM data.

14. SUBJECT TERMS
Information Visualization, Software Architecture, Simulation Analysis, Computer Graphics, Visualization Architectures

15. NUMBER OF PAGES
104

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	An Information Visualization Solution for the Analysis of the AFM Simulation Output Data
	Recommended Citation

	/tardir/tiffs/a380559.tiff

