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AFIT/GCS/ENG/OOM-11 

Abstract 

With the advancement of computer hardware and software computer simulations are now 

able to run faster and track more elements than ever before burdening the analyst with more and 

more data to analyze. Air Mobility Command's (AMC) Airlift Flow Model (AFM) is the Air 

Force's logistics simulator that simulates multi-day mobility scenarios in a matter of minutes 

producing megabytes of output data. Because the analysts' needs for summaries, trends, and 

comparisons of the data have surpassed the capabilities of current desktop spreadsheet analysis 

techniques new tools are needed. 

This thesis looks at developing a robust information visualization architecture that 

integrates data processing, visualization, and user interaction, and supports reuse and component- 

based functions. This research develops a component-based 3-D visualization system for the 

AFM data. A domain-independent application framework is developed to support the 

component-based system design. This research also develops data reading objects, integrated 

data structures, and visual components as well as drill-down and user-interface components to 

produce an end-to-end visualization application for several aspects of the AFM data. 

The results of this research show that an application framework can support information 

visualization applications. The use of a stable underlying framework architecture provides high 

levels of design and code reuse for future component development. The component-based 

functionality frees future development to concentrate on visualizing data and not the systemic 

concerns handled by the framework. This enables AFM and others to get a better return on 

investment for future work. The representative applications completed in this research already 

provide AMC with unprecedented insight into the AFM data. 

IX 



AN INFORMATION VISUALIZATION SOLUTION 

FOR THE ANALYSIS OF THE 

MASS SIMULATION OUTPUT DATA 

1     Introduction 

1.1 Overview 

With the continued increase in computer capability, computer simulations have proven 

themselves an effective tool of operational analysis. Simulations test systems that in real 

conditions are cost prohibitive or too dangerous to test. Simulations can evaluate operational 

plans and contingencies, highlighting problems or issues before the real operation. Simulations 

also provide a means for supplementing real world activities at a reduced cost. For example, the 

use of flight simulators supplements the training of a pilot in the real aircraft, reducing training 

costs for fuel and maintenance. 

There are two types of simulations used to cover this wide range of needs. The first type 

are known as virtual simulations where real people operate simulated systems. In the second 

type, called constructive simulations, simulated people operate simulated systems [21]. 

Typically, constructive simulations use mathematical algorithms and other event manipulation 

techniques to transform the input data into results. An example of a constructive simulation is a 

stochastic, discrete event simulation used to simulate bombing a target. The simulation generates 

the bombs and their characteristics, as well as their effect on the target. The simulation uses 

mathematical algorithms to drop the bombs and calculate the damage to the target. 

Running constructive simulations with the latest computer technology increases the speed 

of the simulations, the accuracy of the models, and the number of items the simulations can track. 

For example, most constructive simulations run faster than real-time producing results faster then 

ever before. Time acceleration is a benefit to the analyst who needs an answer now, not weeks 
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from now.   The speed can even enable an analyst to make several different runs to compare 

results. Increased data collection can also help the analyst look at aspects never before tracked. 

Despite the advantages of new capability and constructive simulations there are some 

side affects of accelerating time and tracking so many objects. The most significant of these is 

the large quantities of data the simulations produce. The increase puts a burden on the user to 

process and analyze vast amounts of information. Often there is more data than current analysis 

methods can effectively process. For example, if constructive simulations can run a multi-day 

scenario in minutes, a real-world day's worth of data can be ready for analysis every few minutes 

instead of every 24 hours. If current analysis techniques take hours to conduct for each day's 

worth of data, the analyst will not keep up with the simulation's output. Additionally, at real- 

world speeds analysis can be done along the way to lead to a conclusion. In constructive 

simulations, the conclusion is available so quickly, along-the-way analysis is difficult and often 

overlooked. Analysts need some type of simulation "playback" for effective analysis. 

Information is power, so getting information from the data is key to operational success. 

As John Peterson of Object/FX says in The Visually Enabled Enterprise: Managing Information 

Through The Power of Visualization [17], even though "data has been 'liberated', the fact 

remains that 98% of data is never looked at more than once". The reasons that Peterson gives for 

the lack of data use are as follows: 

The amount of data available is overwhelming and continues to grow. 

It is difficult to see integrated views of disparate data. 

It is hard to see patterns and relationships with current desktop tools. 

Users have trouble "drilling down" to the information they need. 

Data lacks context. It's not in a "meaningful" form that allows users to make decisions 
quickly and confidently. 

Information visualization is one approach to help solve or at least reduce the problems 

associated with information overload.   Visualization is not new; the scientific community has 
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used it successfully for some time. Consequently, there are fairly good tool sets and 

documentation for scientific visualization. Information visualization, however, has less 

established standards and tools. Where scientific visualization is often developed for a single 

domain or algorithm, information visualization is much more broad and diverse. According to 

Judith Brown in her article on The Euro-American Workshop on Visualization of Information and 

Data, "Information visualization is different from statistical or scientific visualization in its effort 

to communicate the structure of information and improve access to large data repositories" [3]. 

Scientific visualizations typically have a single data set and form a static image or graph that can 

be directly analyzed. Most information visualizations are too large and complex for a single 

static image. As a result the complex images cannot be directly analyzed, so effective 

visualizations present the data in varying levels of detail. 

This visualization research examines ways of using visual displays to support the 

decision-making process by making sense of the large amounts of data today's simulations can 

produce. This research compares the use of information visualization techniques on simulation 

output with the previously used graphing and spreadsheet-based analysis routines. Conclusions 

are drawn about the viability of using information visualization as a tool to support the analysis of 

simulation data. A constructive simulation for military logistics is used for this research. 

1.2 Background 

The Air Mobility Command's (AMC) Mobility Analysis Support System (MASS), and 

specifically the Airlift Flow Model (AFM) portion of the system, is a simulation system that 

faithfully models AMC's global air transportation system. It simulates policies, procedures, 

operations, aircraft, airbases, cargo, passengers, airfield resources, and other aspects of the air 

transportation system [6]. The simulation is based on numerous input files that are derived from 

operational plans (OPLANS) describing the aircraft, aircrews, cargo, air refueling, and numerous 



other aspects of a mobility operation. MASS produces megabytes (MB) of data in the form of 

more than twenty output files, summary files, and reports depicting different aspects of the 

scenario. The output includes aircraft launch times, aircraft cycle times, maintenance statistics, 

airfield statistics, crew statistics and more. The output generated from AFM is diverse both in 

type and context and can be very large. For example, the aircrew output is a single file comprised 

of ASCII characters, strings, and floats, that accumulates approximately 1.5 MB of data per 

scenario day. For a 180-day scenario this file alone can be 270 MB or more [6]. 

The output from a simulation may represent a single answer to some question, but often 

it's just a large amount of data. For the analyst to fully understand the results and their origin, 

they need additional processing and correlation. For example, a portion of the MASS AFM 

simulation produces output data for each day of the scenario. To track and compare a single 

element of data for a 180-day scenario, which is typical for MASS, the analyst must correlate that 

value in each of the 180 instances of the data. Other portions of the output are recorded in one- 

hour increments, which means tens-of-thousands of entries for a 180-day scenario. 

The desktop analysis tools used today by the AMC analysts only provide spreadsheet 

type functions and mathematical charting. These tools can do sums, averages, and similar 

operations on a single set of data. These tools can also plot the sums and averages as line graphs 

or pie charts. These tools do not provide the needed capabilities such as correlation, integrated 

views, relationships, context, and drill down discussed by Peterson [17]. According to Judith 

Brown, the main theme behind information visualization is "to merge user interface, scientific 

visualization, and database disciplines to aid the decision-making process" [3]. Visualization 

systems can do the charting and mathematics like the desktop tools, but they can also provide 

these additional functions like correlation, context, and user interaction. 



Context is defined as the surrounding or supporting information used to present the 

information to the analyst or user. The context can be as simple as using dollar symbols when 

showing currency or as elaborate as plotting geographical based data on a map. The context 

enables direct correlation and comparison of entities by the human visual system. The 

visualization can also provide the context of time by enabling the user to step through the days of 

the simulation, providing that much needed "playback" capability. By providing a context for the 

visualization and providing the user a means to control the representation, the user's cognitive 

processes spend more energy on decision-making. 

The user interaction can range from user navigation through a scene to user control over 

what data is shown and when. The user interface can also enable the user to change the 

representation or control how much information is presented. A good visualization system will 

enable the user to view micro and macro levels of data, providing varying degrees of detail. For 

information visualization systems, this context and user interaction is critical and provides the 

biggest divergence from scientific visualization and current tools. 

Due to the broad audience and popularity of information visualization systems, they need 

to have architectures or frameworks that make the mixing and matching of data processing and 

application components straightforward. Scientific visualization systems are often monolithic 

and centered on a particular domain or data type, so the dynamics are not as critical. Information 

visualization systems must support various contexts, diverse data sets, and flexible interfaces. 

Even for a single simulation such as AFM, the diversity of the data forces the use of different 

visualization techniques in the same system. Therefore, the architecture must be able to support 

the mixing and matching of these techniques as they are developed. 



Having a broad audience means there is no guarantee the user of the information 

visualization system will be a scientist intimately familiar with the domain. The interface designs 

must support a variety of users. Supporting these diverse components and interfaces is what 

makes information visualization architectures robust. An architecture that is not robust forces 

developers to build new systems each time something changes. 

1.3 Problem Statement 

Develop a robust information visualization architecture that integrates data processing, 

visualization, user interaction, component-based functions, and supports reuse. Demonstrate the 

capabilities of the architecture by implementing component-based visualizations of the MASS 

AFM output. The applications must maintain the detail and accuracy of the simulation output 

data and must present this data in a manner that facilitates comprehension and exploration at all 

levels. This architecture must enable future information visualization researchers to concentrate 

on the visual aspects of the data and not on the underlying framework engine. 

1.4 Research Objectives 

The overall goal of the research is to show that information visualization improves 

analysis of simulation data. This improvement must include development as well as the use of 

new capability. If the visualizations are an improvement, but the only way to add the capability 

to the system is to rewrite the system, the development overhead will outweigh the visualization 

benefit. For this reason the first objective is to develop a robust information visualization 

architecture that supports component-based system development. The second objective is to 

develop specific application components for this framework that support reuse for future 

development. The third objective is to implement applications that visualize the AFM output to 



improve analysis of the data.   This visualization research uses these applications of the AFM 

output to show improvements in analysis and to validate the architecture. 

1.5 Scope and Limitations 

This AFM visualization research implements several visualization applications that 

represent a portion of the MASS output data. These applications are intended to determine the 

value of information visualization and demonstrate the dynamics of the architecture. These 

applications are not intended to be a visualization of the entire set of MASS output data. 

The data visualized in this AFM visualization research is actual unclassified MASS 

output data as produced by the system. No attempt has been made to correct or derive data 

beyond what is produced by the simulation execution. 

1.6 Methodology 

Several information visualization research/prototype systems exist today; however, none 

cover the requirements of the MASS visualization completely. These research efforts have 

positive aspects ranging from data structure usage to visualization techniques, but all of them lack 

the key element for this AFM visualization, which is showing relationships and drill down of the 

data. Therefore, the positive aspects of these current efforts were synthesized in the development 

of this visualization research. 

Based on the ideas of these current research efforts, the AFM information visualization 

system can be broken into three main areas 1) data processing (retrieval and population of the 

data structures), 2) graphics rendering, and 3) user interaction. This AFM research addresses 

these in data flow order, starting with data processing and proceeding through to user interface. 

The individual aspects of these three areas are further broken down into framework "modules" 



and application "components". This visualization research uses an iterative two step process. 

The first step is the framework development. The framework is the consistent visualization 

engine that is implemented in the form of modules for each of the three areas. The second step is 

the development of the application components. The application components plug into the 

system framework modules using defined interfaces. This approach puts emphasis on the 

development of a complete framework and further reinforces the idea of a component-based 

architecture by using it from the onset of development. 

For the first step of the development, the existing research ideas were reviewed and 

incorporated into an architectural framework design. This design includes module and interface 

definitions. The module and interface designs were then implemented in the form of framework 

modules and abstract base classes interfaces for the components of the second step. 

For the component level pieces, the second step requires the development of the data 

retrieval, storage, and indexing of the AFM output data as well as the contextual map data. It also 

requires the representation and user interaction for the data. The process for developing and 

implementing this second step is listed here. 

1. Select portions of the AFM output data set that will provide coverage for the framework 
success criteria. 

2. Produce AFM output files from a valid execution of the system.   Read and parse the 
selected output files into appropriate data structures. 

3. Develop visual representations for the AFM data.   This includes both the micro and 
macro level of detail as well as the drill-down displays. 

4. Develop the user interface appropriate for the exploration of the data and context. 

5. Validate the component's functionality with the other portions of the architecture. 

The theme of the objectives of this AFM visualization research is to demonstrate the 

benefits of this architecture through reuse and component independence. This is accomplished by 
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producing multiple visual applications for different aspects of the AFM output data. These 

different applications are used for metrics, comparison, and validation of the architecture. To 

measure the success of the AFM visualization research goals, the following metrics are used. 

1. One measure for the first objective is testing the capacity of the system to include or 
exclude components. Different combinations of the components are tested to make sure 
the framework and system still operate without problems. 

2. Another test of the first objective's criteria is evaluating the number of component classes 
that include other components directly. If the components are independent they 
communicate only through the documented interfaces of the architecture. 

3. For the second objective of code reuse, the reuse metric tracks the number of lines of 
code a new component uses from a previously completed component. This value is then 
compared with the total lines of code for the new component, to achieve a percentage of 
reuse. 

4. For the third objective of visualization development, a subjective analysis is done to 
estimate the gain and ease of analysis with the visualization. This will determine if the 
visualization is more beneficial than current analysis techniques. 

1.7 Document Overview 

The first chapter describes the overall environment in which this thesis was developed 

and the role it plays in the analysis of MASS output data. Chapter 1 also defines the objectives of 

the research. Chapter 2 discusses the various visualization architectures and related research 

efforts being used in information visualization today, and then discusses visualization tools and 

techniques used in management and analysis visualizations. Chapter 2 also contains a detailed 

discussion of the MASS simulation. Chapter 3 contains the software design and methodologies 

used to achieve the first two objectives and the development process undertaken by this AFM 

visualization research. Chapter 4 discusses the two implementations completed for this AFM 

visualization research using the system framework. Chapter 5 summarizes the results of this 

visualization research and its impact on the MASS analysis. Chapter 6 discusses conclusions and 

recommendations for future research. 



2     Background 

The first part of this chapter looks at the architectural issues associated with the dynamic 

data types and visual representations in an information visualization system. The second section 

highlights architectures and data representation approaches of other research efforts and tools. 

The third section summarizes some of the current information visualization techniques. The 

final section discusses the details of the MASS AFM simulation. 

2.1 Software Architectures 

Software architecture defines the style used to organize a software system. This style 

helps to structure the flow of control throughout the system and defines which portions of the 

system handle each of the required tasks and computations [11]. An architecture also establishes 

standard techniques used for communicating and accessing data in the system [9]. By defining 

the architecture, designers and developers can have a better understanding of the system's 

operation, making development of additional system components easier. 

To set a basis for discussion of architectures Garlan and Shaw [9] use several key terms. 

The first is the idea that an architecture is broken down into pieces they call components. The 

communication between these components takes place through the architecture's system of 

connectors. Additionally, the behavior of the system must adhere to certain constraints, which 

are rules for combining the components and connectors. The constraints help decrease the 

system's complexity and improve basic understanding. Garlan and Shaw use these terms to 

discuss various architectural styles. 

The first of these styles is the pipe and filter style. In this style a component reads 

streams of data as input and produces streams of data as output [20].    These input/output 
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connectors represent the "pipes" of the style. The processing or transforming of the data by the 

component itself is the "filter" portion of the style. By its nature the pipe and filter architecture is 

a data flow type system. An advantage of the pipe and filter style is that viewing the system as a 

composition of filters makes the system easier to understand. Another advantage is that the filters 

can be reused in other systems as well as a different order in the same system. The only 

requirement is that consecutive filters agree on input and output formats. A disadvantage of the 

pipe and filter style is they usually are not good for interactive systems. It is difficult to interact 

with intermediate points along the flow, because a single data set flows from end-to-end. 

Another disadvantage is that pipe and filter styles are difficult to develop and often end up 

forming a batch sequencing system [20]. 

Batch sequencing is a style similar to pipe and filter in its structure, but it differs in 

execution, because each filter processes all of its input data before passing it on as output. Batch 

sequencing can be good or bad depending on the requirements. If the requirements for using a 

pipe and filter are to get the data flowing through the system, then a batch sequencing 

implementation is bad and will result in filters being idle. However, if batch sequencing parses 

up the data into meaningful pieces for faster processing, batch sequencing can be a benefit. 

Another style is the data abstraction/object-oriented architecture. This style is based on 

the idea of a component being an object that maintains the state and integrity of the resource. The 

component's methods are the connectors for this architectural style. The advantages of this style 

are the object-oriented benefits of encapsulation and information hiding. Additionally, a self- 

contained object lends itself to reuse. A disadvantage of the style is that for one object to 

communicate with another object, it must know the identity and interface of the other object [20]. 

Having to know the identity of the other object and include it in the compilation of an object can 

limit reuse and have rippling affects if changes are made to a shared object. 
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The fourth style is the layered systems style. "A layered system is organized 

hierarchically, each layer providing service to the layer above it and serving as a client to the 

layer below" [20]. Components in this style are the objects or structures that make up a layer. 

The connectors are the interfaces defined for each layer and its client or server. Some typical 

constraints are limiting interaction to adjacent layers. The classic example of a layered style is 

the International Organization for Standards (ISO) Open Systems Interconnection (OSI). The 

ISO OSI network protocol stack ranges from the lowest data link and physical layers to the 

highest application layer. One advantage of a layered style is that different implementations of a 

layer can exist, as long as it maintains the interface to the other layers. A disadvantage is that 

most systems cannot be divided up into layers. For example, performance requirements may 

even dictate combining layers, or coupling two non-adjacent layers so tightly that middle layers 

are ignored. This violates the principles of a pure layered style, making it hard to layer this 

particular example. 

The fifth style is the repository type architecture. "In a repository style there are two 

quite distinct kinds of components: a central data structure represents the current state and a 

collection of independent components operate on the central data structure" [20]. The interfaces 

in the style vary depending on the implementation. Some variations of this style provide means 

for operation-based components to directly access the data and execute on the data. Components 

operating at will against the data store make the data store behave like a database. Another 

variation is called "blackboard" where components operate based on triggers from the current 

state of the data store. Components have direct access, but operations are based on the current 

condition of the data store not the individual components. 

Garlan and Shaw conclude with the realization that most large systems are designed by 

combining more than one style. This heterogeneous style can take advantage of the positives of a 
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particular style and combine it with another style. This provides a means for the designer to use 

the positive aspects of one style to cover the negative aspects of another style [9]. 

2.2 Visualization Tools 

As mentioned in Chapter 1 of this paper, several visualization tools have been developed 

as a result of the demand for information visualization. These range from scientific visualization 

and medical visualization to general data analysis tools. This section discusses three of these 

relevant to this AFM visualization research. None of the three tools meet the needs of the MASS 

visualization in its entirety, but each one has many aspects that contribute to the final outcome of 

this research. The first one is The Visualization Toolkit, which highlights the use of a pipe and 

filter architecture and the extensive use of array data structures. The second tool is Visage, which 

utilizes an object-based repository style architecture and multi-dimensional data visualization. 

The third is a research prototype called SwiftSD, which has a batch sequence architecture, 

designed to handle large data sets. The SwiftSD research also provides the pattern for the basic 

module layout for this research. 

2.2.1 Visualization Toolkit 

The Visualization Toolkit (vtk) is a collection of text and software that "describe 

visualization algorithms and architectures in detail and provides a working architecture and 

software design for application of data visualization to real-world problems" [19]. The vtk 

software provides a variety of data readers with the capability to read straight ASCII, bitmaps, 

texture maps, and even binary data sets. The architecture used by vtk is true pipe and filter. 

Figure 1 shows how vtk implements the pipe and filter architecture. 
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Figure 1: The VTK Visualization Pipeline 

An application developed using vtk is defined by its unique combination of vtk readers 

and filters. The data in a vtk based application flows from the source at the left in Figure 1 

through the filters to the Mapper and Render classes for display. The readers are used at the left 

end of Figure 1 to read the source files and populate the data structures. Once the data structures 

in the data objects are populated they are passed to the right through filters before they are 

rendered on the screen. There are numerous filters ranging from ones which draw an outline 

around the outermost points, to ones which apply a glyph to each data point. There are over 95 

filters available today and custom filters can be added [19]. The output from the last filter is sent 

to a mapper object that translates the points into graphical primitives for rendering on the screen. 

The execution arrows, shown in Figure 1 between the objects, may seem to be going in 

the wrong direction, since they run counter to the data flow, but they are actually correct. As 

mentioned in the architecture discussion, pipe and filters can often be implemented incorrectly as 

batch sequence styles. Vtk ensures the true flow of data by utilizing an Execute () method for 

each object.  In vtk, the output data of an object is owned by that object.  When an object gets 
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some input data, the data, not the object knows where it came from. This keeps the filters 

independent of each other, but still enables vtk to run the pipeline on demand from the right end 

of the pipe. For example in Figure 1, the Render () method renders the image, to get its data, 

the Render object calls the Execute () method of the owner of its input data (Mapper). The 

Mapper in turn calls the Execute () method of the owner of its input data. This process 

continues to the left until the chain of requests gets to a source object. When the source object is 

reached, data is read in and the data flows back through the pipe. Each object processes the data 

in its Execute () method and then passes it on to the requester. The data finally ends up at the 

Render () method where it is displayed for the user [19]. 

There are two limiting factors that prevent vtk from being a complete solution for the 

MASS visualization. The first of these limitations is that vtk system, only handles 3-D Cartesian 

coordinate based data sets. Input format is constrained to three columns representing the x, y, and 

z coordinates followed by scalar data values depicting a single attribute for each point. For 

datasets like temperatures, wind velocities, or particle counts this is possible, but in AFM, the 

data is too diverse and abstract for this format. 

The second limitation is that vtk is geared toward the visualization of a single data set, 

with analysis of that data being done by the use of a combination of filters. To manipulate the 

display of the data in vtk requires the application developer to change the combination of filters 

compiled into the executable. This limits the visualization to a single static image of the data. 

There is no drill down capability or any way to directly relate two datasets. This also limits the 

user interface to basic rotation of the object and zooming in and out. 

The use of an "execute" method in each object minimizes memory usage by only running 

those modules that are needed.   It also keeps unused data from ever getting read in, saving on 
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memory and input/output time during execution. The AFM visualization research incorporates 

vtk's optimization of the execution path and pipe and filter architectural design to improve its 

efficiency. The AFM data sets are large, so optimization of their storage and execution is 

important to this research. 

2.2.2 Visage 

"Visage is a prototype user interface environment for exploring and analyzing 

information. It represents an approach to coordinating visualizations and analytical tools in data- 

intensive domains" [15]. Visage, like vtk, is based on a single data set, but it provides a means 

for the user to determine the display of the data, not the programmer. Figure 2 gives an example 

picture of the dynamic display that the user has in Visage.  Visage gives the user an interface to 
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Figure 2: Sample Visage User Interface 

display the data in numerous different display formats that are defined by frames. These frames 

range from spreadsheets, to bar and pie charts, to geographic renderings on a map context. For 

example, Figure 2 shows the representation of logistics data using map plots, bar charts and 

spreadsheets.   The user controls the display by opening a blank frame and then dragging a 
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visualization element into the display. For example, if the user wanted to see the logistics data in 

a bar chart, they open a new chart frame and drag the unit from the map to the chart frame. 

The system's use of data objects called visualization elements is the key to its ability to 

drag and drop the same data into different views. Each visualization element is present in the 

system as only one object in the repository. This enables the frames to stay consistent and 

accurate. For example, if the user changes the color of some element, it changes color on all of 

the frames that are currently displaying it [14]. Furthermore, each attribute of the element is set 

to display or not display based on the type of frame. When an object is dragged onto a frame, that 

frame object renders those attributes flagged for display in that type of frame. For example, in 

Figure 2, when the user has the logistics data in the outliner (the Visage spreadsheet interface) the 

object's "outliner" attributes are displayed in spreadsheet form. When the unit is dragged to a bar 

chart frame, the supply quantity attributes are plotted. In the map frame, the latitude/longitude 

attributes and the unit's symbol attribute are displayed. The user can change the attributes 

flagged for each frame with pull-down menus [15]. 

Visage is limited in that it is only a prototype and relationships between data are missing. 

Visage provides the user many different ways to look at the same data set, which aids in doing 

good comparisons and analysis of like data, but the user is limited to the current data set. It is 

difficult for the user to drill down on a piece of data and see what is behind it or see how it relates 

to another data set. Additionally, Visage uses databases as its data input and database queries to 

populate the visualization elements and their attributes. The AFM data would have to be 

modified to fit into this format. 

The use of data objects to support broader data types and visualize that data in many 

different ways are the main contributions of Visage to this AFM visualization research.   The 
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variety of visualizations helps satisfy some of Peterson's [17] issues with data context and 

integrated views. However, like vtk, Visage is still lacking the ability to see patterns and 

relationships, and drill down in the data. 

2.2.3 Swift-3D 

SwiftSD is a prototype visualization system being developed by AT&T Laboratories for 

the visualization of geographical telecommunications data. The system combines a data collector 

module, aggregator module, and visualization interface module to build a visualization 

application [12]. SwiftSD was developed for visualizing very large data sets with tens of 

gigabytes of data. To handle these large data sets SwiftSD uses a batch sequence architecture. 

SwiftSD also has a specialized data file format and query language to minimize the database 

management overhead. The data collector assembles the results of the query in a unique self- 

describing data-independent binary format. This binary format contains the sequence of records 

and a header that defines the record size, type, and data context [12]. The data set is then passed 

on to the aggregator for visualizing the data. Knowing that the data sets are going to be large, 

"the visualization module explicitly controls paging via memory-mapped files" [12]. 

SwiftSD is an example of a system that uses batch sequencing to its advantage. The 

large data sets are divided up into manageable pieces that can be quickly processed by the three 

system modules. For example, an hour's worth of telecommunications data can be divided up 

into small enough pieces that the system can render them in seconds. The batch sequencing 

enables the analyst to see the data faster than real-time, making simulation "playback" possible. 

Using menu selections the user can force different batches to be created on demand. 

The three-module architecture of SwiftSD is the basis for the design of this AFM 

research, however the proprietary areas of the AT&T research effort make it impractical as a 
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complete solution. By combining the idea of dividing the data into manageable pieces and 

utilizing the vtk "execute" method to process those pieces across the three system modules from 

Swift-3D, the AFM visualization research has a good basis for an architectural design. 

2.3 Visualization Techniques 

Because data in the world of information visualization is often abstract, data structures 

exist to hold the data, but visual objects don't always directly represent the data. Additionally, 

the data sets can be too large to display completely on a single screen. This section examines 

several different approaches to data visualization that attempt to address these issues. 

2.3.1 Information Murals 

Information Murals, introduced by Jerding in The Information Mural: Increasing 

Information Bandwidth, are a visualization concept used to increase the user's understanding of 

large data sets [10]. With information murals the user can examine details of the data within the 

context of the entire data set. According to Jerding, "being able to see some representation of the 

entire information space provides an initial gestalt overview and gives context to support 

browsing and search tasks." The information mural technique does not address the specific 

visualization of the data itself, but merely a way to give the user a sense of the information space. 

It is a positive step for helping users of information visualization systems get a handle on the 

magnitude of the data set. Especially if the data is abstract in nature, the context is a key element 

for the user's ability to understand and navigate the representation of the data. 

Because the screen size of today's computers is limited, not everything can always be 

shown clearly to the user. To address this problem "the mural creates a miniature version of the 

information space using visual attributes such as grayscale shading, intensity, color, and pixel 

size, along with anti-aliasing compression techniques" [10].  Figure 3 shows these techniques in 
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Figure 3: Information Mural of Large Document Text Editor 

use with a large document text editor. The entire document is shown in the slider on the left side 

of the window, while the currently viewed area is highlighted with a box, pointed to by the arrow. 

A limitation to the technique is that it compresses the original visualization based on the 

largest piece of the image. This means that if the original image has pieces relatively small 

compared to the largest piece, they may be hidden in the compression. For example, in the text 

editor of Figure 3 if the widest page of the document is a lot wider than another section, the 

smaller section could be very small when compressed proportional to the large section. 

Additionally, if the original visualization uses miniature representations of the data, the data 

points could very well be lost all together in the compression and anti-aliasing routines. 

2.3.2 Information Glyphs 

"Glyphs are graphical objects or symbols that represent data through visual parameters 

that are either spatial, retinal, or temporal" [5]. Glyphs can be as simple as bars in a chart, points 

on a scatter plot, or as abstract as the size of a circle on a map. In data visualization, glyphs are 
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intended "to expose patterns among sets of...artifacts and to help identify differences" [5].  The 

key to a glyph is encoding the data so comparisons can be drawn directly and easily. 

Mei Chuah, in Information Rich Glyphs for Software Management Data [5], outlines 

three rules to design an effective glyph. Her rules suggest using 1) small multiples, 2) established 

visualizations, 3) and information rich glyphs. "Small multiple designs contain small numbers of 

representations arranged on a grid and the designs are all based on the same structure" [5]. By 

utilizing small multiples, the density of the data points per inch of screen can remain high, while 

still enabling the user to make comparisons. Likewise if the structures are all the same, the 

human visual system can make the comparisons with minimal cognitive effort. Established 

visualizations are important, so the data being conveyed can be compared and used by the user. 

If interpretation of the glyph is difficult for the user, then it will detract from the presentation. 

Figure 4 and Figure 5 show some information rich glyph examples that highlight aspects 

of Chuah's material [5]. Both depictions are set up for small multiples and they are both 

information rich by the amount of data shown in a small space. The first management glyph 

(Figure 4) shows ten characteristics of a software development team in one concise glyph.  The 
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Figure 4: Management Gylph 
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second glyph (Figure 5) shows over eleven characteristics of a software component in a single 

glyph. Figure 6 shows how grouping a set of these information rich glyphs together enables direct 

comparison and analysis. It is much easier to compare these characteristics across all sixteen 
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Figure 6: Example of Glyphs for Comparison 
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software releases using these glyphs than having to flip through individual charts on each 

component. The glyphs enable immediate and direct comparison with little effort. 

2.4 MASS Airlift Flow Model 

The Airlift Flow Model (AFM) is the major portion of the Mobility Analysis Support 

System (MASS). The AFM simulates the movement of AMC Logistics resources during an 

operation. The system is a stochastic constructive simulation based on flat file inputs. The input 

files are generated from operational planners as well as planning documents like Time-Phased 

Force Deployment Data (TPFDDs) and operation plans (OPLANS). AFM generates a variety of 

output files based on switches set by the analyst at the beginning of the execution sequence. 

The format for the input and output files are defined in the AFM Baseline Document [1]. 

This format varies for each area of interest. For example, the location list file contains a four- 

character identifier for the International Civil Aviation Organization (ICAO), followed by a string 

of numbers representing the latitude, latitude minutes, longitude, longitude minutes, and initial 

constraints for four attributes. The leg information output file contains 20 different attributes per 

aircraft per stop per day. The data types in these files are diverse, ranging from character strings 

to integers, to floats. All of the output generated in the individual files is logged by each 

simulation day. The simulation also generates several summary and report files that attempt to 

consolidate the individual output files. The analyst must perform any final summations or 

accumulations, such as average, high, and low levels over the entire run. 

The key to a simulation run is the scenario file, which is unique to each scenario. The 

scenario file contains the information about the switch settings, the input file paths, the output 

file paths, the date to start the simulation, and the number of days for the scenario. The 

scenario file is needed by the visualization system to locate the input and output files and 
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parse them correctly.   For instance, the output data based on an ICAO's location must get the 

ICAO's latitude and longitude from the location list input file. 

2.5 Background Summary 

The visualization of data is much greater than passing the data to the graphics engine. As 

seen by the background discussion in this chapter, the architecture, the data structures, the 

visualization representations, and the user interaction with the display play a major role in the 

process. The Swift-3D three-module design provides the starting point for the design of this 

AFM visualization research. The Visage research highlights the notion of many contextual 

displays and common data objects. The vtk's use of the "execute" method to optimize the 

execution path is also a key contribution to this AFM visualization research. The chapter also 

highlights several ways to visualize the data itself within the system being designed, thus helping 

the user examine the data while not losing the surrounding context of the entire data set. 
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3     Methodology 

This Chapter discusses the methodology and design used to address the goals of this 

AFM visualization research. It outlines the methods used to reach the design and implementation 

of this research, as well as describing the success criteria for the research. The design portion of 

this chapter starts with a description of the system's architecture and a system design overview. 

The overview is followed by a detailed discussion of the research's implementation. 

All of the goals and objectives for this research contain reuse and decomposition. The 

first objective is to design a product that supports the decomposition of functionality into 

components. The second objective is to make the development of future functions largely an 

exercise in reuse of existing components. The third objective, a synthesis of the other two, is to 

develop actual components that improve on current analysis techniques for AFM. To meet these 

objectives the application must help the analysts view the data as well as help the programmer 

develop new functionality. An object-oriented approach was selected as the implementation 

method to best meet these AFM visualization research objectives. 

Object-oriented programming has three distinguishing characteristics: data abstraction, 

polymorphism, and inheritance. Like an abstract data type, an abstract class represents an 

interface behind which implementation can change. Polymorphism is the ability for a single 

variable or procedure parameter to take on values of several types. Inheritance makes it easy to 

derive new objects from other objects [7]. These characteristics increase the potential for reuse of 

software design and code. 

Although object-oriented programming techniques can increase the amount of reuse, this 

AFM visualization research needs more than this to satisfy its objectives. This research needs an 

application framework to organize and manage the objects in a useful application.    This 
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framework provides the basic modules and underlying structure of the AFM visualization 

architecture.     According to Fayad in Building Application  Frameworks:   Object-Oriented 

foundations of Framework Design: 

A framework describes the architecture of an object-oriented system; the kinds of objects 
in it, and how they interact. It describes how a particular kind of program...is 
decomposed into objects. It is represented by a set of classes (usually abstract), one for 
each kind of object, but the interaction patterns are just as much a part of the framework 
as the classes. [7] 

The benefit of using a framework is it "goes beyond code reuse, it provides reusable 

abstract algorithms and a high-level design that decomposes a large system into smaller 

components and describes the internal interfaces between components. These standard interfaces 

make it possible to mix and match components" [7]. Additionally, with defined interfaces, "new 

components that meet these interfaces will fit into the framework, so component designers also 

reuse the design of the framework" [7]. These added benefits are what this research needs to 

meet its objectives. 

Another benefit of frameworks is what is termed "inversion of control" [7]. In traditional 

software reuse, the programmer reuses components from a library by calling them from a custom- 

written main program. The programmer decides the overall structure and flow of control of the 

application. However, according to Fayad, "in a framework, the main program is reused and the 

developer decides what is plugged into it. The developer's code is called by the framework code. 

The framework determines the overall structure and flow of control of the program" [7]. For a 

visualization application this inversion of control frees the programmer from systemic concerns 

and lets the programmer concentrate on the system's application components. 

This research uses the object-oriented C++ programming language [13,16] and its 

Standard Template Library to implement the objects and framework.    The user interface is 
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implemented with the Fox C++ User Interface Library [8] and graphics are implemented with the 

OpenGL graphics library [22]. 

To fulfill the robust framework portion of the objectives, the system architecture provides 

a way to development independent reader, data, visual, drill-down, and user interface 

components. The specific areas of interest in the application framework that must be exercised 

and validated are listed in Table 1. For the first objective to be met, the third column of Table 1 

must be satisfied through the sample applications. Additionally, the ability to develop new 

components of each type and link the components into the system measures the system's 

capability to add new functionality. A robust framework only has to be re-linked to include a 

new component. 

Table 1: Implementation Success Criteria 

Type/Name Description Success Criteria 
Framework 
Interfaces 

(Internal) Layer to layer 
communication of the framework 

The framework can manage the applications and 
execution with the interfaces provided. 

(External) Component to framework 
communication 

Application can compile and execute with 
components only using defined framework interfaces. 

Data Data structures used in Data Objects Diverse data sets can be handled transparently by the 
framework and components 

Population of data structures Data objects can be populated in whole or 
incrementally by the framework and applications 

Reading of data and preprocessing Data can be read in directly or preprocessed 
transparently by the framework and application. 

Visual Micro and Macro views System can dynamically provide macro and micro 
levels of detail when the user selects it. 

Context based displays Complete data set viewing with a single context 
Pick items on the display User can select display items for drill-down 
Animation or time based display Display can handle changing of time of simulation 

Plot Single and Multi-tab books Display of single and multi-tab pop-up windows 
Pick items on pop-up windows User can select display items for drill-down 
Diverse drill-down windows The framework and applications can handle different 

formats display in the drill-down windows 
User 
Interface 

Menu additions with components The framework can handle menu additions to the 
"Accessories" and "View" menus. 

Time controls (sliders and buttons) Framework can handle the different user interface 
devices that change the current scenario time. 

Working window and status display Framework displays working window and "working" 
on status bar when doing lengthy background work. 
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To satisfy the second objective, design and code reuse must be achieved in the 

component development process. Reuse is calculated by determining how much code from the 

first application is reused in the second application. Design reuse is analyzed by comparison of 

the methods used in the various components of each type. Complete classes are not used, but if a 

majority of the methods are reused, then the design reuse is high. 

To fulfill the visualization portion of the objectives, this AFM visualization research uses 

techniques that show data context and provide micro and macro views of the data. The use of 

these techniques is compared to previous analysis efforts that use desktop spreadsheet routines. 

The amounts of data processed and level of detail available to the analyst are the key comparison 

factors for the two techniques. 

3.1 System Architecture 

The overall system architecture falls into the heterogeneous architecture category as 

described by Garlan and Shaw [20]. The architecture is a combination of object-based, batch- 

sequence, and layered architectures. This combination of architectural styles enables the system 

to take advantage of object-orient benefits, maintain execution control, and optimize the use of 

memory, while keeping the user from being overwhelmed with details. By using an object-based 

architecture the design supports abstraction, polymorphism, and inheritance, raising the potential 

for reuse. Objects make it easier to isolate different functions and package them into self- 

contained units supporting component-based design for the first objective. An execute method 

associated with each visualization component and framework module provides for common 

communication between the modules in the framework. This "execute" method ensures the 

framework can control the execution of the components, optimizing memory usage. This 

approach is similar to that used in the pipe and filter architecture of vtk [19]. The architecture is 

layered, because each module in the framework represents a type of client-server activity.  The 
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AFM visualization system's layers follow the pattern of the ISO OSI network layer stack [2]. For 

the system, data management is the lowest layer, the graphics rendering is the middle layer, and 

the user interface is the top layer. Figure 7 is a depiction of this layered concept. 
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Figure 7: Framework Object Diagram 

3.2 Component/Framework Interface Issues 

The first objective requires component-based functions to work with this stable- 

underlying framework through defined interfaces. There were three designs for the component to 

framework interface reviewed by this research: dynamic plug-ins with user inclusion and 

execution, programmer inclusion with user directed execution, and programmer inclusion with 

system controlled execution. In the dynamic plug-in approach the system knows nothing about 

the components at startup. The user adds the components dynamically at runtime, just by starting 

them external to the system and pointing the system to them.    In the second approach the 
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programmer lists all the components in a container class that the programmer links into the 

system's executable. The user picks and chooses which components to execute. In the third 

approach, the programmer includes the components in main () and links them into the 

executable. The difference from the second choice is what and how the user selects functionality. 

In this third approach the user selects functions not components. A function in this context 

represents a complete data representation from data input to display. 

The disadvantage of the first approach is the overhead the system requires to get the 

framework access to the components and vice versa. Communication requires sockets or some 

other external protocol, which would limit the amount of parameter and state information that 

would be exchanged. For this reason, this approach was not considered to be appropriate for the 

research. 

The second approach minimizes execution size and memory, but greatly increases 

frustration for the user. If the container class lists all possible reader, data, interface, plot, and 

visual components, the developer has to convey the relationship between them to the user, or the 

user would have to know that information a priori. For example, if the user adds a new visual 

component, the user has to also select the reader and data objects supporting that component. 

Requiring the users to know component dependencies distracts from their analyzing the data. 

The third approach manages components for the user, so it was selected for this research. 

The difference between this approach and the second choice is the absence of the user selecting 

individual components. The user now selects from the list of data representations presented as 

menu items that the interface components provide. When the user selects an item the interface 

component sets the state so the management modules activates or updates the appropriate data, 

reader, visual, and plot components. 
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To implement this third approach the application developer selects the components for 

inclusion in a given executable by including them in the starter file's main () method. The 

starter file is the reused "main()" for the framework, discussed by Fayad [7], earlier in the 

methodology discussion in section 3. Inclusion in the starter file links the components into 

the executable, so the system knows about them. The framework controls when the system calls 

the component's execute () or its equivalent method. 

This approach satisfies the framework's objectives of making the data representations 

component-based, simple, and controlled. The application developer has ultimate control over 

which components he or she includes and excludes from an instance of an application and the 

framework controls execution in its "inversion of control" [7] discussed earlier in section 3. The 

memory is optimized because it only contains those processes and data objects the current user 

selections require. This approach also allows the component-to-framework interface to be 

defined by base object classes, instead of a socket or other interface. These interface objects are 

depicted in Figure 7 with their respective layer managers. 

3.3 Design Overview 

The entire system is divided into two parts, which both use object-oriented class 

implementations. The first part is the underlying modules and interfaces of the framework. The 

second part is the component portion, which implements specific applications. Because the 

system has two parts, the interfaces and interactions between them are critical to the component- 

based success of the system. This interfacing of the framework and component objects forces 

the overall system design to transcend both parts of the system. 

The system framework's high level design is derived from the Swifl-3D prototype 

developed by AT&T [12].    The Swifi-3D design uses three modules-data collector (data 
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manager), aggregator (visualization manager), and visualization interface (user interface 

manager). Initial design work on the AFM visualization research validated the need for each of 

these managers, but also revealed the need for a fourth. Because the AFM visualization research 

has a goal of letting the user select an entity and get amplifying data on that object, a fourth 

module is needed to manage the pop-up windows containing drill-down information. 

Management of these windows is significantly different from the main window, so the visual 

manager could not manage both. 

The four main objects for the AFM visualization framework are an input module 

(inputMod), visual module (visualMod), interface module (interfaceMod), and plot module 

(plotMod). Figure 8 shows a UML-based object model of the framework modules as well as the 

abstract base classes and application components. 
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Figure 8: System Object Model 
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There are six abstract base classes utilized for the framework to component interface. All 

of the classes in Figure 8 that start with "obj" are abstract base classes. The base classes maintain 

lists of the components derived from them and provide virtual functions for the components to 

implement. The base classes are unique to each type of application component and framework 

module they interface with, but there are still common methods and attributes in these classes. 

Table 2 provides a description of these common attributes and methods. The virtual methods 

provided by each base class are discussed in the next sections. 

Table 2: Base Class Common Attribute and Method Descriptions 

Attribute Name Description 
char * obj Name Character string containing components name identifier 
<object> * <objects> List of pointers of the object's type. This is the list of child components 

that each interface object maintains. 

Method Name Description 
getObjNameO Returns the components name identifier objName 
setObjNameO Sets the components name identifier and saves it in objName 
addObject() Adds the calling object to the base class's list of child components. 
Find() Takes in the name of a child component and returns a pointer to that 

child component if it is found in the base objects list. 

There are six categories of components, one for each abstract base class in the 

framework. The component categories are readers, data, visuals, context, plots, and interfaces. 

These components implement the virtual functions of their respective abstract base class. For this 

AFM visualization research the components' names replace the "obj" portion of the abstract base 

class's name. For example, the military "base" visual component would be baseVis. With 

this naming scheme components can be easily matched to a base class and management module. 

For example, baseVis is easily associated with objvis and in turn the visual module. 

3.4 System Design 

The next sections explain each layer in more detail. The management module or modules 

for each layer are discussed as well as the abstract base classes unique functionality used by the 
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module. The layer's application components used by a developer to implement an application are 

also discussed with each layer. 

3.4.1 Data Management Layer 

The Data Management Layer manages the data retrieval and storage for the rest of the 

system. The management module for this layer is the input module implemented as inputMod. 

Data input for the system is done by reader components that read the appropriate input file and 

then create and populate the data objects. Data components contain the data structures that store 

the data. The input module manages the reader and data components with two abstract base 

classes. Figure 9 shows the relationships between these objects. There is one abstract base class 

for readers and one for data objects. 

Data Management Layer 

inputMod ^ 

objReader ^^ objData 

Figure 9: High-Level Data Management Layer Object Diagram 

Having a central data manager provides a single point for all other objects to request and 

get data. This single manager design helps to ensure that multiple copies of a data set are not read 

into memory and only those levels needed are in memory. The design minimizes memory usage 

by controlling the presence of populated data objects. Having a data manager also hides the other 

components from the details of reading the files and populating the data. 

3.4.1.1 Input Module 

The input module is implemented as inputMod and uses two abstract base classes to 

interface with the application components.   Figure 10 shows the detailed object diagrams for 
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Figure 10: Input Module Object Diagram 

these objects. The input module provides two interfaces for the other layers: a getData () 

method and a getReader () method. These two methods provide the means for an object to 

request data from the input module by passing a name and data level to the getData () method. 

For the getData () method, if the requester asks for a data object populated at a particular 

percentage, the input module returns a pointer to the data object. If the data is not sufficiently 

populated, the input module retrieves the required reader and calls its execute () method. If a 

component in the visualization layer calls getData (), it only needs to pass the data object 

name and required population level. The input module interfaces with the other objects in the 

layer and returns a pointer to the appropriate data object if it is available. By returning pointers to 

the objects the system maintains only one instance of the object. 

3.4.1.2 objReader Base Class 

The  objReader  base class provides  the  common  base  class  methods  and  the 

DataReader methods as well.   DataReader is a vtk class that has methods for reading 
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everything from floats and integers to strings and characters. The ob j Reader class inherits 

from DataReader, to provide the reader components with common local methods for reading 

input data. This is another way to reduce duplication and increase reuse in the framework. 

3.4.1.3 Reader Components 

The reader components read the data files and populate the data objects. Each reader 

component is a child class inheriting from the ob j Reader class. The input module executes the 

reader by calling the virtual execute () method from the ob j Reader. Since the 

execute () method is a virtual method each component must implement this function. Each 

reader is unique, but in general the execute () method opens the input file, reads the data and 

populates the data structures in the data objects. The amount of data reading done by a reader is 

left up to the implementation of each reader. For some data files a call to the execute () 

method causes the reader to read the entire file. For other readers the integer value passed to the 

execute () method represents a limit to the amount of data read during an execution. The 

input module passes on the requester's populate level; what that represents to the reader, the data, 

and the requester of the data is independent of the input module. The framework will only call 

the reader if someone requests the data and the data object's population is less than what was 

requested. This approach gives the reader and data component developer control over 

implementation, while enabling the framework to maintain its generic, but reliable behavior. 

3.4.1.4 objData Base Class 

The base class for the child data objects (data components) is ob j Data. The 

getObjName () and getReaderName() methods return the child's name and it's 

corresponding reader's name. Child objects also maintain a populated attribute that reflects 

how much data has been read. The populated attribute is an integer, so it can be used in one of 
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several ways for a particular data object. If the data is populated in an all or nothing manner, a 

zero or one is used for a yes or no population status. If however, the reader can populate the data 

incrementally it can be used as a percentage value like 90 to represent 90% populated. The actual 

representation is left to the component designer. 

3.4.1.5 Data Components 

The data components are objects containing data needed by other parts of the system. 

The designer of the data object determines the data structure most appropriate for the data 

component. The data objects inherit from the ob j Data abstract base class. The data component 

does not have an execute () method, so the input module interface with these components is 

the objName and populated attributes. The input module uses these attributes to find the 

data object and compare its population levels with the needs of the requester. 

3.4.2 Graphics Layer 

The graphics layer manages the OpenGL rendering routines in the main window and 

drill-down windows. As mentioned in section 3.1 this layer has two managers to handle the 

displays. The first manager is the visual module implemented as visualMod in Figure 11. The 

visual module manages the context and data representations in the main window. This requires 

knowing the availability and status information of each visual component. Like the input module, 

the visual module interfaces with two abstract base classes objContext and objvis   in 

Graphics Layer 

visualMod plotMod 

^     N. 
;           obiContext                              objVis                                                          obiPlot 

Figure 11: High-Level Graphics Layer Object Diagram 
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Figure 11. The second manager for the Graphics Layer is the plot Module implemented as 

plotMod in Figure 11. The plot module manages the drill-down windows for the system. The 

plot module only interfaces with one base class, obj Plot. 

By utilizing a central visual module, the interface module only has one callback object 

for the main window. The central visual module enables a single object to coordinate the 

interaction of the user interface zooming and rotating with the context component and picking 

objects with the other visual components. A central plot module provides the interface module 

with a single object to handle the entire collection of drill-down requests made by the user. 

3.4.2.1 Visual Module 

The visual module is implemented as visualMod and uses two base classes to manage its 

components. Figure 12 is an object diagram for this portion of the graphics layer. The visual 

module has a large number of methods, but a majority of these methods are graphical user 
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Figure 12: Visual Module Object Diagram 
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interface event callback functions. Callbacks are methods that register for specific events with 

the framework's event loop. When that event occurs, the callbacks registered for that event are 

called. Table 3 gives a brief functional description of the callbacks in the visual module. 

Table 3: Visual Module's Callback Methods Descriptions 

Method Name Description 
CallBackDisplayFunc() Manages the calls to the three display methods of each of the visual 

components and draws the zoom box 
CallBackReshapeFunc() Updates the main window renderings and adjusts the size and 

scaling parameters when the window size or shape changes 
CallBackResetZoom() Resets the context and data display scales to their original settings 
CallBackUndoZoom() Undoes the last zoom operation input by the user 
CallBackZoomO Zooms in or out the context and data displays based on user input 
CallBackRecenter() Shifts the context and data display to center on the user input point 
CallBackLMouseDown() Starts drawing the zoom box when the user pushes left mouse 

button 
CallBackLMouseUp() Stops drawing the zoom box when the user releases the mouse 

button 
CallBackMotionFunc() Updates current location of moving mouse while button is down 

The visual module's execute () method acts like an initialization by starting the 

rendering, establishing the context drawing, and defining the window sizes. The 

pickObj ects () method is called by the interface module when the user selects an object from 

the main window display. This pickObjects () method calls each visual component's 

Display () method in SELECT mode to see if the mouse coordinates hit anything the 

component is displaying. OpenGL has two modes for rendering graphics primitives RENDER 

and SELECT. The RENDER mode sends the images to the screen. The SELECT mode sends 

the images to a buffer for processing. The processing in this case is checking the mouse click 

point with the existence of a graphics item. If an item is selected, the pickObj ects () method 

returns the information the plot module needs to process the selection. 

Another task accomplished by the visual module is rendering the legend.   The legend, 

Figure 13, is a gray box in the lower left corner of the display. To render the legend the visual 

39 



KC-l-35 

v @   C-5A : 

r •   Do» M/M no activity     ! 
i 

Base in constraint* 

Base out of comtraintc. 

Figure 13: Picture of Legend (Plate 2) 

module calls each visual component's DisplayLegend() method. The call passes the 

location of the lower left comer of the current line and the height of a line in the legend. The 

component's method returns the number of lines used, so the visual module can adjust the lower 

left corner for the next component. This process enables the visual module to continuously add 

other component's items to the legend with only minimal knowledge of what is being displayed. 

3.4.2.2 objVis Base Class 

The ob j Vis class is the abstract base class for all main window visual components. The 

main window canvas is the map and ocean area of Figure 14. Unlike the other base classes, the 

objVis class lacks a single execute ()   method.    Instead, there are three such methods 

Figure 14: Screen Capture of Main Window with Map Context (Plate \) 
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Display (), DisplayLabels (), and DisplayLegend (). The visual module calls these 

three virtual methods in the child objects based on the user's current selections. It is the 

responsibility of the component's implementation to execute the specific call. 

3.4.2.3 Visual Components 

The visual components convert the input data to computer graphics primitives for display 

on the main window. The visual components provide implementations for three virtual functions 

in the objVis base class: Display () , DisplayLegend (), and DisplayLabel (). 

The Display () method executes the OpenGL commands to render the objects shape and color 

for the display of the data. The "Legend" menu item from the "Accessories" menu activates the 

visual module call to DisplayLegend (). This method renders a representation of the 

visualization with a description in the legend area of the display (Figure 13). The "Labels" 

command from the "Accessories" menu activates the call to DisplayLabels (). This method 

displays labels for the data. The label itself is left up to the designer of the component. For the 

implementations in this AFM visualization research, the labels are text of the ICAO abbreviation. 

The visual components query the interface module to see if the menu item controlling 

their display is selected or not. To accomplish this visual components call the interface module's 

getstatus () method. These method returns true or false based on the current status. By 

calling the interface module for the status of the interface object, there is no component to 

component communication, keeping with the idea of using the framework interface exclusively. 

3.4.2.4 objContext Base Class 

The objContext class is the abstract base class for the context components. Figure 14 

is an example of a global map context. The objContext class is different from the other base 
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classes, because it does not maintain a list of context objects and it has many more virtual 

methods. No list is maintained, because there is only one context component for an application. 

The context component object uses the setlnstance () method to register as the single 

context instance. The other methods like getX (), getY () , and reset () are all virtual 

methods used by the visual module to convert from screen coordinates to the context-based 

coordinates. These conversions are necessary for zooming, scaling, re-centering, and picking. 

3.4.2.5 The Context Component 

The context component provides the system with the contextual background display for 

the visualizations. The designer of the context object determines the context for the visualization. 

The context component inherits from the abstract base class obj Context. The component's 

implementation of the virtual Display () method is similar to the Display () method of the 

visual components. The Display () method gets its data from the input module and then 

renders the graphics primitives for the context object. The visual module uses a graphical display 

list to render the context. The display list maintains the graphical commands in memory, thereby 

supporting rapid redraws, since the context object's graphics primitives do not change. 

Beyond the Display () method, the context component has little similarity with other 

visual components. The methods getX () and getY () both take in a screen coordinate and 

return a context-based coordinate. For the map context in this AFM visualization research they 

return a latitude and longitude value. The reset () and getZoom() methods adjust the 

current corners of the display when the user resets to the original or zooms a certain percentage. 

The visual module calls these methods when the user draws a zoom box or selects an item from 

the "Zoom" menu. The visual module calls the context component's "get<Attribute>" methods to 

access the coordinate values after the previous reset () and zoom () methods finish executing. 
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The context component inherits two groups of attributes (current value and original value 

holders) that represent the coordinates of the four sides of the display. The four starting with 

"orig" in the name, store the starting values. The other four attributes are used by the methods 

discussed in the previous paragraph to change as the user changes the view of the scene. For 

example, the zoom() method changes the second group by the percentage of zoom selected by 

the user. 

3.4.2.6 Plot Module 

The Fox graphical user interface libraries [8] provide the windows and interface devices 

in this AFM visualization research. In the Fox hierarchy of window management, managing the 

main window is separate from managing the pop-up windows. This separation forces the 

introduction of another visualization layer module in the framework: the plot module, 

implemented as the plotMod. This plot module manages all the component objects providing 

drill-down information on a picked object. A common thread between all of the objects in this 

AFM research is they are all "plots" of data; hence the name "plot module". 

The plot module implements a tab book (Figure 15) for the drill-down window when a 

user selects an object for amplification.  It is called a tab book, because it is like the pages of a 
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Figure 15: Picture of Plot Module Tab Book (Plate 3) 
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book that the user looks through by selecting the tab of interest. When a tab is selected, that 

page's information is brought to the front of the display. This design optimizes screen real estate 

and provides the user a means to control what information is shown. The plot module uses a 

single abstract base class called obj Plot to manage the plot components. Figure 16 shows the 

relationship between plotMod and ob j Plot. 

objPlot plotMod 

- char * objName   int time 
bool plotting         string pick 

plot component int noPlots 
char * currentObj 
string currentPick < 

getobjName()      setPickO 
addObject()         getPick() 
setTimeO            getPlottingO 
getTime()           updatePickO 
ExecuteO            pickObjects() 

updatePickO 
ExecuteO display Title() 

CallBackPickedO 

Figure 16: Plot Module Object Diagram 

The plot module provides the interface module a single callback for all drill-down data 

requests. The CallBackPicked () method checks to see if a component matching the picked 

object's handle is currently showing or if a new window needs to be opened. For example, if the 

user picks an ICAO from the main window, the interface module calls CallBackPicked () 

and passes it the object that was picked (ICAO), the current time, and the picked information 

string. The plot module loops through the list of components to check if any are registered for the 

handle "ICAO". If a component is registered, the plot module checks to see if the component is 

currently plotting. If the component is plotting, the plot module updates the component's current 

data. If a component is not plotting, the plot module sets up a new tab book for the component 

3.4.2.7 objPlot Base Class 

The objPlot class is like the other base classes, except the child class names have two 

uses. This child object name is not only the means for the plot module to identify the component, 
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it is also the message handle passed by a picked object. The time attribute contains the scenario 

hour the object was picked. The currentPick attribute contains the information the 

component uses to get the additional data needed to display the drill-down information. The data 

type of the currentPick attribute is a string, so the plot module can pass anything encoded in 

a string to the components. The currentPick string can contain anything like an aircraft tail 

number, a base name, or even a cargo description. For example, if the user picks an aircraft from 

a visual component, the component includes the aircraft's tail number and the current base's 

ICAO in the string. The values the string contains are the keys the plotting component needs to 

find the data in the appropriate data structure. The component developer determines the string's 

contents. Using this string enables the interface to remain common among all plot components, 

but yet individualized for each data set's keys. Whether the key is a database key, a single 

character, or even an index number, the plot module's interface remains the same. The Boolean 

attribute plotting conveys the current plotting status of the component. The plotting 

attribute is true if the object is currently displayed and false if it is not being displayed. 

3.4.2.8 Plotting Components 

The plotting components render drill-down information in the pop-up windows when a 

user picks an object. Each plotting component is a child class inheriting from the objPlot 

class. The plot component implements the virtual methods execute () and updateTime (). 

The plot module sets the currentPick attribute and calls the execute () method when the 

plot component is being displayed in a new window. The updatePick () method is similar to 

the execute () method, except the display does not have to be created. Since the plot 

component is already displaying a tab book, the plot module updates the currentPick and 

time attributes and the updatePick () method queries for the new data and updates the tab 

books values. 
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3.4.3 User Interface Layer 

The User Interface Layer creates the windows, manages the user interface devices, 

initiates the plot windows, and coordinates all of the input from the user. The interface module 

uses the Fox interface libraries to provide a Fox main window, sub-windows for plotting and 

most importantly, an event loop for user interaction. Figure 17 shows a screen capture of the 

display and points out the main interface items. The main interface window contains the majority 

of the user interface items. Default framework menus, rotation dials for tilting the display for 3-D 

viewing, day and hour controls, and text fields of the zoom level and macro cutoff levels are all 

part of the main window interface. The time controls for the user include a day slider and auto- 

advance buttons for automatically advancing the day and hour to animate the visualization 

through the scenario. 

Component menus 
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module window 

Plot tab book 
window 
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Level indicators 

Rotation 
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Figure 17: Picture of User Interface (Plate 4} 
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Interface components add menu items to the "Accessories" and "View" menus that are 

part of the framework. The components add to the interface by inheriting from the abstract base 

class ob j Interface. Figure 18 shows the high-level object model for the interface layer. 

User Interface Layer 

interfaceMod 
objlnterface 

Figure 18: High-Level User Interface Layer Object Diagram 

3.4.3.1 Interface Module 

The interface module is implemented as interfaceMod and uses a single abstract base 

class to interface with the application components. Figure 19 shows a detailed object module of 
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Figure 19: User Interface Framework Object Diagram 

this relationship. As is typical in any user interface class, a majority of the methods in the 

interface module are user interface callbacks. These callbacks implement the functions registered 

with the Fox event loop to handle specific user interface events. Table 4 lists and describes each 

of these callback functions found in the interface module. 
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Table 4: Interface Module's Callback Methods Descriptions 

Method Name Description 
onExpose() Calls DrawScene() any time the main window is being uncovered, at start 

up and when another windows is move from on top of the Fox window. 
onReshape() Updates the window attributes when the window size or shape is changed 
onLMouseDown() Handles left button events calling the visualMod's CallBackLMouseDown 
onLMouseUp() Handles left button events calling the visualMod's CallBackLMouseUp 
onMouseMove() Handles left button events calling the visualMod's CallBackMouseMotion 
onRMouseDown() Processes the picking of objects by the user calling the visualMod's 

PickObject() method and then the NewPlot() method if one is picked. 
oriCmdZoom() Handles selection of "Reset Zoom" button, sets the zoom level back to 

100% and then calls visualMod's CallBackResetZoom() 
onUpdZoom() Monitors zoom levels to gray out "Reset Zoom" button when not zoomed 
onCmdFront() Handles user selection of the "Front" button, which returns all of the x,y, 

and z rotation angles to zero, sot he display is straight up and down again. 
onUpdFront() Monitors angles to gray out "Front" button when display not rotated 
onCmdAbout() Displays the About pop-up window when the user selects the 

"HelplAbout" menu. 
onCmdAccess() Handles selection of the "Accessories" menu items and sets 

showLegend () and showLabels () attributes. 
onUpdAccess() Monitors "View" menu overallStatus, because "Accessories" menu is 

grayed out if no "View" items are currently selected. 
onUpdCurrentZoom () Updates the "Zoom Level" text field when the level changes 
onUpdMacroLevel() Handles the user selection zoom level to switch from macro to micro view 
onCmdXYZDial() Updates the angle values when the user rotates the dials to rotate the scene 
onUpdZYXDial() Resets the dial settings after the user resets the rotation of the scene 
onCmdAutoDay() Steps through the days one at a time until the end of scenario or user input 
onCmdDay() Handles user inputs from the day slider and updates the curr_day attribute 
onCmdHour() Handles inputs from the day slider and updates the curr_hour attribute 
onCmdAutoHour() Steps through the hours by ones until the end of scenario or user input 

The newPlot () method in the interface module communicates with the plot module's 

CallBackPicked() method. The interface module calls the CallBackPicked() to 

determine if a new pop-up window needs to be created or if the current plot windows are 

sufficient. As discussed in Section 3.4.2.6, if the user selects an object that is not currently 

plotting, the plot module creates a new tab book for the component. If the plot module needs a 

new window the interface module creates a new sub-window and passes it to the plot module for 

the new tab book for the plot component. Once the interface module creates the window or the 

plot module returns with existing window for the object, newPlot () is complete. 
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The onUpdScene () method works with the drawScene () method to communicate 

with the visual module. The drawScene () method calls the visual module's 

CallBackDisplayFunc () method to force a re-rendering of the scene in the main window. 

The Fox event loop calls this method to update the scene continuously if no other activity is 

running. This is a problem with complex scenes like those in the AFM visualization research. To 

reduce this problem, the interface module uses the onUpdScene () method to respond to the 

Fox event loop's request for an update. The onUpdScene () method scans the interface 

module's attributes like angle, zoom, and time to see if any have changed. The onUpdScene () 

method only calls the drawScene () method when one or more of these attributes have 

changed. This approach greatly increases the systems performance, by freeing up the processor 

from constantly re-rendering the scene. 

3.4.3.2 objlnterface Base Class 

The executeView() and executeAccess () methods of objlnterface are 

virtual functions the interface component classes must implement. The implementations are 

unique to each class, but in general these methods add the menu item to the interface module's 

"View" and "Accessories" menus and register an ID for the menu item with the Fox event loop. 

The viewStatus and accessStatus attributes contain the current status of the menu items; 

either selected or unselected. The static class-wide integer attribute overallStatus tracks 

how many current menu items are selected. When the user selects a component's menu, it 

increments overallStatus and when the user de-selects the item, it decrements 

overallStatus. The "Accessories" menu uses the overallStatus attribute to determine 

if its menu items should be accessible or grayed-out. The "Accessories" menu is only enabled if 

the user selects one or more of the items on the "View" menu. 
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3.4.3.3 Interface Components 

As a general rule, the interface components are the smallest components for a new 

application since they only add menu items to the main window interface. The addition of other 

interface items such as buttons and dials is an area for future research. The additional menu items 

give the user more control over what the display presents. The interface components are child 

classes that implement the objInterface abstract base class. The interface components 

represent the top layer of the hierarchy, the point of interaction with the user. They are the 

starting points for activating the data representation in the system. 

The interface components inherit attributes viewStatus, accessStatus, and 

objName. The Booleans viewStatus and accessStatus attributes are set to true if the 

respective menu item is currently selected or false if it is not currently selected. The interface 

components also increment the obj Interface' s overallstatus static attribute when 

the user selects the menu item. It decrements the obj Interface ' s overallstatus static 

attribute when the user de-selects the menu item. 

The interface components also implement the execute () virtual method of the 

obj Interface abstract base class. In general this execute () method establishes the name 

of the menu entry, the help information for the item, and the callback ED for the menu. The 

interface component's onCmd<menu label> () method is the callback method it registers for 

each menu item. The callback ID and onCmd<menu label> () callback method are the 

interface to the Fox event loop. Selecting the menu item causes the Fox event loop to initiate the 

call to this method. This method sets the viewStatus or accessStatus and 

overallstatus attributes as discussed in the object interface section above. 
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3.5 Methodology and Design Summary 

The methodology for this AFM visualization research is to develop a component-based 

system that runs on an application framework. This AFM visualization application framework is 

based on a four module layered architecture. The main interfaces to the framework are the six 

abstract classes for the components. The components implement the virtual methods of the 

abstract base classes. The programmer, by including or excluding the component in the starter 

file, controls the mixing and matching of functions in an application. The inversion of control by 

the framework manages the actual execution from there. This methodology supports the meeting 

of the goals and objectives of this AFM visualization research. 
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4     Implementations 

To test the objectives of this research, two applications were designed and implemented. 

These applications are the source of the metrics presented in the results section of this document. 

The applications validate the architecture, the framework's interfaces, and the reuse of source 

code in component development. Their use of the entire framework with different data structures 

and visualizations was the main reason for implementing these applications for the AFM analysts. 

This chapter discusses these two applications in terms of reason for selection, data structures, 

displays, and drill-down capabilities. The chapter concludes with a mapping of these two 

applications to the success criteria outlined in Chapter 3 of this AFM research. 

4.1 Daily Airfield Statistics 

The first application tracks daily activity and constraints of an airfield in the area of short 

tons of cargo, patients, pax (civilian passengers), and fuel. The daily data for each category is 

found in the summary file produced by AFM for each airfield. The location information for the 

airfields is found in the f25_l AFM input file. This initial effort only required development of 

two readers, one data object, three plot components, and two visual components. This simple 

data requirement was the reason for selecting this information to visualize in the first application. 

Table 5 shows the components comprising this application and the module they support, 

interfaces they exercise, and other items exercised. For example the loc_listReader 

component is a reader component that implements the obj Reader base class. The 

loc_listReader class uses the objReader' s addObject () method and implements 

the execute () method called by the inputMod. Some of the additional items this class 

exercises are the DataReader object's methods to read floats, integers, and char strings. 

Another example from the table is the airf ieldcumVis class, which implements the objVis 
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Table 5: Component Descriptions for Application #1 

Name Type Framework interfaces Other items 
loc_listReader objReader objReader - addObject(), execute() floats, integers, char 
loc_listDataMap objData objData - addobject() "map" data structure 
summaryReader objReader objReader - addObject(), execute() large file read 
summaryobjData objData objData - addObject() array data structure 
mapReader objReader objReader - addObject(), execute() builds multiple data objs 
landData objData objData - addObject() large array data structure 
waterData objData objData - addObject() large array data structure 
mapContext objContext objContext - all methods, inputMod - 

getData() 
Display lists and large data sets 
for graphics engine 

baseVis objVis objVis   -   DisplayO,   DisplayLabel(), 
DisplayLegendO    inputMod-getData(), 
interfaceMod - getStatus() 

single point display, view menu, 
and object picking 

airfieldstatVis objVis objVis   -   DisplayO,   DisplayLabel(), 
DisplayLegendO    inputMod-getData(), 
interfaceMod - getStatus() 

micro/macro level display, view 
menu, object picking, colors, and 
day-based time 

airfieldcumVis objvis objVis   -   DisplayO,    DisplayLabel(), 
DisplayLegendO    inputMod-getData(), 
interfaceMod - getStatus() 

statsVis items and does data 
processing by correlating data. 

basePlot objPlot objPlot - execute(), updatePick(), and 
inputMod - getData() 

tabbook, Fox textfields 

statsPlot objPlot objPlot - execute(), updatePick(), and 
inputMod - getData() 

tabbook, Fox textfields, and 
OpenGL based bar charts. 

cumPlot objPlot objPlot - execute(), updatePick(), and 
inputMod - getData() 

statsplot items and plot window- 
based obj picking 

baselnterface objlnterface objlnterface - execute Vie w() Fox event loop, view menu 
statslnterface objlnterface objlnterface - executeView() Fox event loop, view menu 
cumlnterface objlnterface objlnterface - executeView() Fox event loop, view menu 

abstract base class. This class exercises the DisplayO, DisplayLabel () , and 

DisplayLegend () methods called by the visualMod. It also exercises the inputMod' s 

getData() method and the interfaceMod's getStatus() method. Additionally, 

AirfieldcumVis populates the view menu, provides different micro and macro level views, 

uses colors, and is also the only visual component to do data processing by correlating the data 

received from the summaryobjData data object. 

The application is based on two AFM files, the f25_l file and the summary file. The 

f25_l input file is read by the loc_listReader and contains a list of the International 

Civilian Air Organizations (ICAOs), their latitude, longitude, and initial constraints in cargo, 

patients, pax, and fuel.   The summary output file is read by the summaryReader and lists 
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several attributes of aircraft and airfields on a daily basis. The summary file lists the ICAO 

designator and the daily activities and constraints in the four categories of cargo, patients, pax, 

and fuel, for each ICAO. 

4.1.1 Data Structures 

For the daily airfield statistics application, the queries into the data was based on an 

ICAO designator and a particular scenario day. This need for a two-key index for the data meant 

there needed to be a multilevel data structure for the ICAO location data. Figure 20 gives a brief 

depiction of the multilevel data structure. The day-based array was chosen, as the top level of the 
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Figure 20: Application #1 Data Structure Diagram 

data structure, because the queries in this application are day-to-day based not ICAO-to-ICAO 

based. If they were ICAO-to-ICAO based, the data structure would have had the ICAOs at the 

top and an array under each containing the different days' data. For the second level of the data 

structure, the C++ Standard Template Libraries (STL)[13] contain a "map" data structure whose 

content type and index key are programmer defined. For this application the index is defined as 

the ICAO four-character designator and the data structure holds the ICAOs' locations and 

constraint information. 
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As the user steps through the days in the application the visual components increment 

through the top-level array. Then to iterate through the ICAOs with status for that day, the map's 

iterate () method is used. When drill-down information is needed for a particular airfield, 

the day is used to index the array and the airfield's ICAO designator is used to access the data in 

the second level "map" directly. 

4.1.2 Visual Display 

The display of the daily statistics was implemented in two forms with a micro and macro 

view for each. The first form (Figure 21) shows the airfield's statistics for the current day. The 

second form (Figure 22) shows an accumulation of the statistics from the first day. Both forms 

use the same color-coded approach of blue symbols for no activity for the day, green for activity 

within constraints, and red for activity that exceeded constraints. 

No Activity 

Within 
constraints 

Figure 21: Application #1 Micro View (Plate 5) 
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Exceeded 
Constraint 

Within 
Constraints 

No Activity 

Figure 22: Visualization #1 Cumulative View (Plate 6) 

The daily form uses a color-coded box representing the airfield on the map (top of Figure 

23). At the macro level this box represents a summary of the activity in the four categories. For 

Exceeded 
Constraint 

Within 
Constraint 

No activity 

aero Status 
AO label 

Short tons 
pax 

atient 
fuel 

Figure 23: Statistic Symbols (Plate 7) 

example, in Figure 23, the box is red meaning at least one category exceeded constraints for the 

day. For the micro view a four-runway airfield-like glyph (bottom of Figure 23) is used to 

represent the four individual categories of activity.   For each day the respective runways are 
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color-coded to show the status. In Figure 23, the micro view shows cargo exceeded constraints, 

pax and fuel were within constraints, and patient was inactive. For the status of a single data 

category in the scenario this provides the analyst a great deal of information in one picture. 

However, as the analyst changes the day for simulation playback, the symbols appear to merely 

flicker, preventing any trend analysis or comparison from day to day. Therefore, an additional 

display of the data was needed, so the cumulative visual component was developed. 

The cumulative display is a total of the daily status, providing the trend analysis and 

comparison the analyst needs. This cumulative form uses the same symbols as the first, except 

the current days statistics are added to the previous day's statistics. The analyst can now get a 3- 

dimensional bar-type glyph growing out of the airfield on the map representing the statistics. 

Figure 24 shows the micro and macro view of the cumulative status.   In Figure 24, the ICAO 

Exceeded 
Constraint 

-Within 
Constraint 

-No activity 

Figure 24: Cumulative Symbols (Plate 10) 

exceeded constraints one day for short tons of cargo. When a day's status is added to the 

cumulative symbol, like status is grouped together for easier comparison between ICAOs. This 

allows the analyst to compare airfields directly from the map (Figure 22). An analyst can easily 

compare the number of days an ICAO is inactive, active, or exceeds constraints. 
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4.1.3 Drill-Downs 

The drill-downs provided in this first visualization are a single tab book with three tabs 

(shown in the upper left corner of Figure 25).  The first tab represents a detailed display of the 

Pop-up from selecting day 41 
from Cum stats tab 

Pop-up from selecting KGRK 
(Cum stats tab selected) 

Figure 25: Main Pop-up Window and Day Selection Window (Plate 11) 

location data for the selected airfield. The second tab displays a bar chart comparison of the 

constraints and activities of the selected airfield for the current day in each of the four categories. 

The final tab displays a bar chart comparison of the cumulative statistics of the selected airfield 

from day one to the current day (upper left Figure 25). The user can also select a specific day 

from the cumulative drill down by selecting the day on the bar itself. This selection of a day on 

the bar causes a pop-up window like the second tab of that day's specific statistics to display. 

Figure 25 shows the selection of the red status day in the left pop-up and the specific day 

information in the right pop-up. 
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4.2 Aircraft Tracking 

The second application was chosen for its complex data structure requirements, its 

hierarchy of drill-down information, and its use of additional user interface devices. In AFM, 

aircraft tracking involves working with several different files and coordinating the data in these 

files. The aircraft and missions generated for the scenario are input files for the simulation. The 

current location of an aircraft is recorded in the leg information output file. By comparing the 

aircraft's leg information at a given time with the mission information from the mission 

information file, the aircraft's location and statistics can be determined. This application involves 

the development of more readers and a mix of hierarchical data structures. This application also 

highlights the correlation capability, not just the summary capability of the applications data 

structures. 

This application shows the total volume of aircraft at a particular base at a given hour. 

The fact that the data in this application is hour-based and will exercise all of the hour-based user 

input devices was another reason for choosing it. The first application did not exercise these 

devices, so it complements the first application to give coverage of all the devices. This 

application also contains more integrated drill-downs than the first application, including lists, bar 

charts, and tables. 

The components comprising this application and the abstract base classes they 

implement, interfaces they exercise, and other items exercised are shown in Table 6. For 

example, the leg_inf oReader implements the ob jReader for the inputMod. It exercises 

the addobjectO and execute () methods of the ob j Reader class. It also is different 

from other readers in that it preprocesses the data as discussed below in the data structure section, 

rather than just reading data and putting it straight into the data object. Another example of a new 
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item is the msn_inf oPlot component, which implements the ob j Plot class, but it also is the 

only component to use the inputMod' s getData () method with incremental reading. 

Table 6: Component Descriptions for Application #2 

Name Type Framework interfaces Other items 
loc_listReader obj Reader objReader - addObject(), execute() floats, integers, char 

loc_listDataMap objData objData - addobject() "map" data structure 

leg_infoReader objReader objReader - addObject(), execute() data post procexxing 

aircraftLocData obj Data objData - addobject() maps and list data structures 

msn_infoReader objReader objReader - addObject(), execute() incremental reading 

msn_infoData obj Data objData - addobject() incremental array population 

mapReader objReader objReader - addObject(), execute() builds multiple data objs 

waterData obj Data objData - addObject() large array data structure 

landData objData objData - addObject() large array data structure 

mapContext obj Context objContext - all methods, inputMod - 
getData() 

Display lists and large data sets for 
graphics engine 

declutterVis objVis obj-Vis - DisplayO, DisplayLegend(), 
inputMod - getData() 

Visual component update of data 
used by other components 

aircraftLocVis objVis objVis   -   DisplayO,    DisplayLabel(), 
DisplayLegend()    inputMod-getData(), 
interfaceMod - getStatus() 

single point display, view menu, 
one-hour increments, and object 
picking 

aircraftlCAOPlot objPlot objPlot - execute(), updatePick(), and 
inputMod - getData() 

tabbook, and large OpenGL based 
selectable bar charts 

tailsPlot objPlot objPlot - executeO, updatePick(), and 
inputMod - getData() 

tabbook, and large OpenGL based 
selected text lists 

leg_infoPlot objPlot objPlot - execute(), updatePick(), and 
inputMod - getData() 

tabbook, Fox textfields 

msn_infoPlot objPlot objPlot - execute(), updatePick(), and 
inputMod - getData() 

tabbook, Fox textfields and 
exorcises incremental data reads 

aircraftlnterface obj Interface objlnterface - executeView() Fox event loop, view menu 
declutterlnterface obj Interface objlnterface - executeAccess() accessories menu additions 

4.2.1 Data Structures 

The leg information file has an entry for an aircraft each time it reaches an ICAO. This 

entry lists the aircraft's current leg information to include arrival and departure time. When an 

aircraft record is read, it is added to the ICAO's list of aircraft from arrival hour to departure 

hour. However, when an aircraft terminates a mission, it is shown as an entry at the ICAO with 

no departure time. If that aircraft gets a new mission, a whole new entry will show up at that 

same ICAO with the correct arrival time, but now with a departure time. This new aircraft entry 

supercedes the terminated mission entry.   The problem is the terminated mission and the new 
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mission are not linked in the file. This forces the leg_inf oReader to take a second pass 

through the data checking for the terminated mission and new mission entry for the same aircraft. 

Without this check the terminated mission entry erroneously shows the aircraft parked at the 

ICAO for the remainder of the scenario. 

The optimization of this two-pass problem and the displays needed for a total number of 

aircraft at a particular base per hour required an hour-based array at the top level of the data 

structure. Figure 26 is a depiction of this hierarchy where each hour (index of the array) contains 

a list of the airfields with aircraft, indexed by ICAO designator.    Each airfield in the list 
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Figure 26: Application #2 Data Structure Diagram 

represents a list of aircraft types at the airfield. Each aircraft-type list entry is an array of the 

individual aircraft information. This hierarchy allows the display of aircraft quantities to step 

through the array getting the list size for each airfield. When the quantities of the different types 

are needed for the micro view, the size of the aircraft type array is all that is needed. The 

hierarchy and easy size calculations keeps searches and passes through the data structure to a 

minimum, because the most frequently needed data is available at the top of the hierarchy. 
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By using an array at the top level and using a second temporary list of mission-terminated 

aircraft, the leg_infoReader component can optimize its overall execution time. The 

leg_inf oReader's temporary list of terminated aircraft can be used to reduce the second pass 

through the data to specific indexed checks at those hours and ICAOs with terminated aircraft 

instead of a complete pass. The checker portion of the leg_inf oReader merely picks the first 

aircraft off of the temporary list and looks at the ICAO's list until it finds another instance of that 

aircraft with a departure time. If another is found it deletes the entry from the temporary list 

knowing the new mission superceded it. However, if another entry is not found, the terminated 

mission must be inserted at the ICAO from the arrival time to the end of the scenario. This 

enables the checker to jump in at the point of a terminated aircraft and not repeatedly look for 

conflicts at all ICAOs for all hours. The trade off of maintaining the additional lists far out 

weighed the initial slow execution time of leg_inf oReader. 

Another optimization of the leg_inf oReader is with the implementations used for 

the lists. The mixed data structure and use of a temporary list improved the readers performance 

over the initial solution, but the execute () method was still taking several seconds due to the 

size of the data files. The first implementation of this array and list mixture used the C++ STL 

"list" classes for the lists, but the performance of the STL was very slow. The final 

implementation of this data structure uses purpose-built linked lists. This change decreased the 

execute time for the leg_inf oReader by almost 60% for a 90-day scenario. 

The msn_inf oReader reads the mission information file and populates a single array 

of mission data. The missions for a scenario are indexed with a unique mission number. 

Research of the data revealed that the list of mission numbers has missing numbers, but the 

density of the numbers is sufficient to make an array the most effective data structure. Each array 

entry is a record of the mission information including the onload and offload airfield, cargo sizes 
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and weight, and arrival and departure information. This simple array is also justified by the need 

for direct access to the mission information. 

4.2.2 Visual Display 

This application has both a micro and macro view of the aircraft data. Both of these 

views can be used to "playback" the MBs of data on an hour-to-hour basis from the same window 

and scene. The macro view (Figure 27) of the data shows a single bar whose height represents 

the total quantity of aircraft at an ICAO at that hour. This macro level view enables the analyst to 

2 Aircraft ► ■ 

5 Aircraft. 

ICAO label <d 
Figure 27: App #2 Macro Symbol (Plate 8) 

directly compare the quantities of aircraft at the different ICAOs directly from the map (Figure 

28). To aid in the direct comparison at the macro level the bar is striped with five aircraft per 

colored stripe. This view alone provides the analyst a display of MBs of data in a single scene. 

m 

Figure 28: Application #2 Macro View (Plate 12) 
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The micro view uses a spider-like glyph showing the quantities of aircraft by aircraft type 

at the ICAO (Figure 29). The AFM simulation can support up to fifteen different types of aircraft 

in a scenario, so this glyph is designed with that in mind.   Each color-coded leg of the spider 
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Figure 29: App #2 Micro Symbol (Plate 9) 

represents a different type of aircraft as listed in the aircraft types file of the AFM input. The 

quantity of each type of aircraft is reflected in the presence and length of each leg. Figure 29 

shows the test case of a quantity of 20 aircraft of all fifteen types of aircraft. Additionally the 

fullness of the green center body of the spider represents the total number of aircraft at the ICAO. 

This micro view enables the analyst to compare airfield aircraft quantities by aircraft type directly 

from the context map (Figure 30).   The fullness of the spider body provides total quantity 
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Figure 30: App #2 Micro View (Plate 13) 
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comparison like the bar length of the macro view.   The spider-like legs provide type-quantity 

comparisons at the global level without drill-down. 

In addition to these aircraft tracking displays, this second application also has a 

declutterVis component that is added to the "Accessories" display. The left-hand picture of 

Figure 31 shows a regular view of the aircraft data in the Northeastern US.   The right-hand 

Figure 31: Application #2 Declutter Example (Plate 14) 

picture shows this same data with the declutter function turned on. The declutter function 

replaces the ICAO's location with new coordinates and renders a line pointing back to the 

original location. This enables the viewer to get a clearer picture of the glyphs. The original 

ICAO location is saved and replaced when the declutter function is deactivated. 

4.2.3 Drill-Downs 

The drill-downs start with the user selecting an ICAO's bar from the micro or macro 

level. The drill-downs for this particular application provide several levels of analysis for the 

user. Figure 32 shows the three drill-down windows. Selecting a striped bar from the context 

view pops-up a window with a bar chart listing the quantity of aircraft by type for that ICAO 

(upper left Figure 32). The user can further drill-down by selecting an aircraft type, so a pop-up 
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Figure 32: App #2 Drill-down Windows (Plate 15) 

window will appear with a list of tail numbers of the aircraft comprising that type at the ICAO 

(upper right Figure 32). These tail numbers can be explored by drilling-down on a tail number. 

Selecting a tail number will show the current leg information and mission information for the 

aircraft at that time (lower pop-up Figure 32). 

4.3 Implementation Summary 

The daily airfield statistics and aircraft tracking applications were both able to provide 

the coverage needed to meet the criteria outlined in Chapter 3 of this research. Table 3 on the 

next page shows the mapping of the components implemented in these two applications to the 

criteria discussed and listed in the methodology section of this AFM visualization research. Each 

application exercised the framework for objective #1, which was to develop a robust information 

visualization architecture. They also validated the designs for the components for objective #2, 

which  was  to  develop  reusable  components  for future  visualization  applications.     Both 
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applications successfully produced visual representations for improved analysis for objective #3, 

which was to implement visualization applications to improve AFM analysis capabilities. In 

addition, they both implemented different levels and types of data structures, visual depictions, 

drill-downs, and user interactions. As shown by the coverage of the framework success criteria 

listed in Table 7, the two applications were able to validate the framework and produce the results 

discussed in the next chapter. 

Table 7: Component to Coverage Criteria Mapping 

Obj Type/ 
Area 

Criteria App 
#1 

App 
#2 

Fr. Interface objReader — addObject(), execute • S 
Fr. Interface objData — addObject(), fully populate S y 
Fr. Interface objData — addObject(), incremental populate y 
Fr. Interface objContext — addObject(), all interfaces V V 
Fr. Interface objVis — addObject(), Display(), DisplayLabel(), DisplayLegend() V s 
Fr. Interface objPlot — addObject(), updatePick(), execute() </ s 
Fr. Interface objlnterface — addObject(), executeView() y </ 
Fr. Interface objlnterface — addObject(), executeAccess() s 
Fr. Interface inputMod — getData() s y 
Fr. Interface visualMod — Callbacks and execute() s Y 
Fr. Interface plotMod -- CallbackPicked() s Y 
Fr. interface interfaceMod — getStatus() s s 
Data Array data objects </ s 
Data C++ STL based data objects </ y 
Data list data objects y 
Data Hierarchical data objects V 
Visual Micro/Macro view s v 
Plot Multi-tab tab book s 
Plot Pick items on drill-down window s • 

1/2 Plot Bar chart drill-down window y y 
1/2 Plot Text fields and data values •/ Y 
1/2 Plot Text lists s 
1/2 User Interface View menu additions </ y 
1/2 User Interface Access menu additions V 
1/3 User Interface Day button and slider s 
1/3 User Interface Hour button and slider V 

User Interface Working Window y s 
3 Visual Global summary of data set s V 
3 Visual Context global comparison of data from the data set ■/ V 
3 Visual "Playback" of scenario day by day or hour by hour </ ■/ 

3 Visual Data processing or enhancement for better analysis s 
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5     Results 

This chapter examines the AFM visualization research results and analyzes them with 

respect to the stated objectives. The first section discusses the achievement of the objectives by 

reviewing the objective and discussing the success of the research in meeting that objective. This 

chapter discusses the specific validations of the framework, the design and code reuse levels, and 

improved analysis capability provided by the two sample applications. The chapter concludes 

with a summary of the results. 

5.1 Objective Achievement 

A measure of research success is the degree to which it satisfies the objectives and its 

goals. In this AFM visualization research the primary objectives were to develop a component- 

based architecture that supported reusable components. The use of these two objectives in 

implementing application components was an integral part of satisfying the third objective of 

producing an improved AFM analysis tool in the form of a successful visualization of the 

simulation's output. 

5.1.1 Architectural Framework 

This first objective was to develop a robust information visualization architecture that 

supported a component-based system implementation. To achieve a component-based 

architecture for the system a stable underlying "engine" or framework was needed. This 

framework provides the common functionality and defines the interfaces for the components. 

This AFM visualization research designed and implemented a four-module application 

framework, consisting of input, visual, plot and interface modules. This architecture was tested 

and validated with the development of two visualization applications. 
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The architecture was initially validated by the fact that these two sample applications 

could successfully operate on the same four modules and interfaces. These two applications 

represented diverse aspects of the AFM data and the compliment of the two applications covered 

all aspects of success criteria outlined in the methodology section of this thesis and listed here in 

Table 8. The specific component to criteria mapping is provided in the end of Section 4.3 of this 

research. 

Table 8: Framework Robustness Success Criteria 

Type/Name Description Success Criteria 
Framework 
Interfaces 

(Internal) Layer to layer 
communication of the framework 

The framework can manage the applications and 
execution with the interfaces provided. 

(External) Component to framework 
communication 

Application can compile and execute with 
components only using defined framework interfaces. 

Data Data structures used in Data Objects Diverse data sets can be handled transparently by the 
framework and components 

Population of data structures Data objects can be populated in whole or 
incrementally by the framework and applications 

Reading of data and preprocessing Data can be read in directly or preprocessed 
transparently by the framework and application. 

Visual Micro and Macro views System can dynamically provide macro and micro 
levels of detail when the user selects it. 

Context based displays Complete data set viewing with a single context 
Pick items on the display User can select display items for drill-down 
Animation or time based display Display can handle changing of time of simulation 

Plot Single and Multi-tab books Display of single and multi-tab pop-up windows 
Pick items on pop-up windows User can select display items for drill-down 
Diverse drill-down windows The framework and applications can handle different 

formats display in the drill-down windows 
User 
Interface 

Menu additions with components The framework can handle menu additions to the 
"Accessories" and "View" menus. 

Time controls (sliders and buttons) Framework can handle the different user interface 
devices that change the current scenario time. 

Working window and status display Framework displays working window and "working" 
on status bar when doing lengthy background work. 

The framework design enabled the two applications to be implemented with 36 

independent components. Through the course of developing the 36 different components, the 

interfaces provided by the framework proved to be complete and made direct component-to- 

component communication unnecessary.   All uses of a component by another component are 
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done exclusively through the interfaces of the framework. This further satisfied the component- 

based design portion of the objective, because independent components means that they can 

easily be mixed and matched as well as included or excluded from the system. 

This independence of components and robust application framework were further 

validated by including and excluding different components from the two applications. The 

exclusion of a particular component tested the other components' independence at two levels. 

The first level was the compilation of the executable itself and the second was running the 

application. 

Table 9 and Table 10 show a list of the components that make up each application and 

which components were excluded for each test and the outcome. For example, the first test 

Table 9: Visualization #1 Inclusion and Exclusion Test results 

Visualization #1 components: 
Readers:                               Visualizations:                     Plots:                             Interfaces: 
scenarioReader                     baseVis                                basePlot                         baselnterface 
mapReader                           airfieldStatVis                      statsPlot                         statslnterface 
loc_listReader                      airfieldCumVis                     cumPlot                         cumlnterface 
summaryReader 
# Excluded Result 
1 scenarioReader 

mapReader 
loc_listReader 
summaryReader 

Main window came up correctly, but blank. No visualizations were possible, 
because no data was present. Error messages for each data not found as the 
visualizations were picked. 

2 mapReader Everything worked except the map, display was blank blue main window. 
3 scenarioReader error message: "no scenario data, to find input directories and sizes" 
4 loc_listReader No visuals display, they are all based on the locjist data, map still worked correctly. 
5 baseVis No affect, when selecting on "ICAO" menu item, nothing is drawn 
6 airfieldStatVis Like baseVis, selecting menu, nothing rendered. Cumulative stats render correctly. 
7 AirfieldStatVis 

airfieldCumVis 
Neither daily statistics nor cumulative statistics render when their menu items are 
selected. No error messages, worked as expected. 

8 basePlot BasePlot's tab not present in tab book of an ICAO selection. Everything else works 
9 basePlot 

statsPlot 
cumPlot 

When and ICAO is selected, the error message "no ICAO plots found" appears and 
no drill-down window is rendered. Everything else works as expected. 

10 baselnterface 
statslnterface 
cumlnterface 

None of the interfaces can be selected, because the menu items are not present on 
the menu. Everything else worked as expected. 
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Table 10: Visualization #2 Inclusion and Exclusion Test results 

Visualization #2 components: 
Readers:                               Visualizations:                     Plots:                                Interfaces: 
scenarioReader                     aircraftLocVis                      aircraftAtlCAOPlot           aircraftlnterface 
mapReader                                                                        tailsPlot 
loc_listReader                                                                   leg_infoPlot 
legJmfoReader                                                                  msn_infoPlot 
menjnfoReader 
# Excluded Result 
1 scenarioReader 

mapReader 
loc_listReader 
leg_infoReader 
msn_infoReader 

Main window came up correctly, but blank. No visualizations were possible, 
because no data was present. Error messages for each data not found as the 
visualizations were picked. 

2 mapReader Everything worked except the map. Everything displayed on a blank blue main 
window. 

3 scenarioReader error message: "no scenario data, to find input directories and sizes" 
4 leg_infoReader 
5 msn_infoReader The msn_plot data tab was not included in drill-down, because msn_info data 

could not be found. Everything else worked as expected. 
6 aircraftLocVis Nothing is drawn or even read in when the menu item is selected 
7 aircraftAtlCAOPlot No drill-down window comes up when you pick on an ICAO. 
8 tailsPlot 

leg_infoPlot 
msn_infoPlot 

Drill-down window for ICAO comes up, but there is no response to further 
drill-downs on that window, because no component is registered for those 
handles. 

9 Leg_infoPlot When clicking on a tail number, nothing happens as expected. 
10 aircraftlnterface Aircraft visualization could not be selected. Everything else worked. 

excluded all of the reader components required by the application. Compiling and producing an 

executable without the components means the included components are truly independent of 

these readers at that level (none of them "#include" any of these). Running the application with 

these components missing resulted in the main window and interfaces coming up correctly, 

however, there was no map context present in the window. Any interaction by the user resulting 

in components requesting data resulted in error messages being produced by the input module 

reflecting the fact that the data was not available. Additional tests isolated the various other 

components to test the framework and application's ability to handle the absence. 

All of the tests shown in Table 9 and Table 10 were successful from two standpoints. 

First, the components were again found to be independent and easily included or excluded by the 
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developer in the starter file. Secondly, the framework handled the different configurations by 

not exiting prematurely. As expected the resulting system behavior is not what the user would 

want visually, but the system handled the events gracefully and did not crash. 

The user interface is another aspect of the application framework that was successfully 

implemented in this research effort. Information visualizations are used by a wide array of users, 

so the interface must be intuitive and yet robust. The interface in this research provides that 

effective interface for the analyst looking for summaries and playbacks. The interface is 

straightforward, gives a majority of the real estate to the task at hand in the display window, and 

all devices have hints that display in the status bar. At the same time, the user interface is robust 

enough to support the serious analyst wanting details at all levels. 

The architectural objective of providing a common framework that supported the 

development of independent component-based applications was met. The robustness of the 

architecture is sufficient to support the AFM visualizations. The interfaces were also sufficient to 

support the demands of the requirements of AFM and other visualization applications. 

5.1.2 Reuse 

The second objective of this research was to develop components that support reuse for 

future component development. In object oriented programming the number of reused classes is 

a common measure of reuse, but in this research every component is a complete class, so the 

reuse of a complete class would be almost zero. So, this research looked at design and 

specifically code reuse levels. 

Although classes as a whole were not reusable in this research, the design of each class 

was reused for each subsequent component of the same type. For example, visual components all 
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providing implementations for the obj Vis abstract base class have the same design. This reuse 

of design ultimately led to the high source code reuse numbers found in this AFM visualization 

research. 

Source code reuse is calculated by determining how much code from the first application 

was reused in the second application. Table 11 shows the amount of reuse from the first 

application to the second application. Each object in the second application is listed with the 

lines of code for the object, followed by the reused lines of code, and finally the percentage of 

reuse for the object. The average reuse percentage for the components is 84.4%. The total 

overall percentage of reuse from the first application to the second application was 83.8%, much 

higher than originally anticipated. 

Table 11: Reuse Statistics for the 2nd Visualization Objects 

Object Name LOC Reused LOC % 
legJnfoReader 424 308 73% 
aircraftLocData 103 95 92% 
aircraftlCAOMap 176 166 94% 
aircraftAtlCAO 192 162 84% 
leg_Info 114 102 89% 
msn_infoReader 492 420 85% 
msn_infoData 102 99 97% 
msn_info 174 104 60% 
aircraftLocVis 415 355 85% 
aircraftlCAOPlot 793 738 93% 
tailsPlot 569 509 89% 
leg_infoPlot 456 293 64% 
msn_infoPlot 563 467 83% 
aircraftlnterface 160 150 94% 

Total: 4,733 3,968 84% 

One note on the exceptionally high level of reuse is the similarities between the 

visualizations of the AFM output data. Initial review of the data revealed diversity in the AFM 

data, but in the design and implementation of the different applications it was discovered that 

most of the components are similar from the aspect of design and execution, just not necessarily 
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data types. Because the design is so generic and yet affective, the percentage of code used for the 

unique graphics rendering and data structure is small compared with the stable framework 

interface code. As a result, this high amount of reuse is not unreasonable for visualization of the 

AFM output,. The design will yield comparable results even with a system other than AFM. 

This high level provides further support for showing the completeness of the framework and its 

ability to support the visualization of data. 

Another tangible byproduct reinforcing reuse is the difference in development time for 

the two visualizations. The 11 components of the first visualization required approximately 50 

hours to implement. The second visualization required approximately 20 hours. With 14 classes 

in the second visualization, the average development time was 1.42 hrs/object compared with 

4.54 hrs/object in the first visualization. 

The high level of reuse and the large improvement in development time both show 

measurable results of satisfying the second objective; which is using components that support 

high reuse levels for future development. The structure of the framework supports the use of 

independent components and the framework's defined interfaces make the design as well as the 

source code of those components reusable. The levels of reuse are projected to be high, because 

the common design-patterns between the components enables reuse of all but the specific data 

and graphics portions of the components. 

5.1.3 Implemented Applications 

The third objective of this research was to develop and implement AFM visualization 

applications that improved analysis capability by addressing those problems of data context, drill- 

down, correlation, and integrated views mentioned by Peterson in The Visually Enabled 

Enterprise: Managing Information Through The Power of Visualization [17].  To show that this 
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visualization system could provide these capabilities missing in previous analysis tools, two 

distinct applications that visualized AFM output data were implemented. These two 

visualizations were chosen for their representation of the different types of data present in the 

AFM output and their coverage of the framework's success criteria. This section looks at the 

success of these two applications. 

5.1.3.1 ICAO Daily Statistics 

The first implementation displayed the individual ICAO's daily constraints and activities 

in the areas of short tons of cargo, patients, pax, and fuel. Constraints represent the limit on the 

amount of that item that an ICAO can handle in a day. Activities represent the amount of that 

item that the ICAO received for that day. Using the display of these daily values the analyst can 

look at a particular day's worth of data and immediately compare it to all of the ICAOs across the 

globe for that same day. User control of the micro/macro level cutoff enables the analyst to get a 

summary of the ICAO as a whole or as the four individual parts of cargo, pax, patients, and fuel. 

This complete global view of a day's worth of data coupled with drill-down capability is 

magnitudes faster and more direct than previous efforts to analyze the same data. Previous efforts 

involved exporting the data to a spreadsheet tool, manually stripping off the extra data fields in 

the data file, selecting the right fields to draw a bar chart of a single day's activity and manually 

correlating the constraints with activities. Drill-down and geographical comparison capabilities 

were non-existent. With this research's first application, a day's activities are one click away and 

drill-down information is a second click away. 

Beyond this new daily comparison capability, the first application has a cumulative 

display of the same data. With this cumulative display the analyst can perform trend analysis and 

instant comparison of all ICAOs across the globe for the entire simulation run. Figure 33 shows 

how the global view with drill-down windows can aid the analyst. The background of Figure 33 
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shows the cumulative bars as they appear in the main context display. These bars group like 

status together so the ICAOs can be compared directly. To see the actual order in which the status 

occurred, the user selects one of the ICAOs. A drill-down window like the left-hand one in Figure 

33 pops up containing the status ordered by day. If an analyst wants the details of a single day, 

they right-click on that day's bar and the window on the right of Figure 33 comes up, showing the 

specific day's numbers. 

^jr*=3sm 

f -K 

Figure 33: Application #1 Screen Capture {Plate 16) 

Based on the limited spreadsheet capability of the previous analysis efforts for AFM, the 

cumulative global comparison is impossible. Previous efforts have written small programs to 

parse the data and display charts of specific information, but these programs were limited in 

scope. This cumulative display provides the analyst never before seen capability to summarize 

and playback entire MBs of scenario data in a simple integrated manner. 
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5.1.3.2 Aircraft Tracking 

The second application, aircraft tracking, was chosen for its complex data structures and 

its additional coverage of the framework success criteria. The aircraft tracking application is a 

graphical depiction of the correlation of AFM's leg and mission information files. With this 

aircraft tracking application an analyst can see the quantities of aircraft at an ICAO for a 

particular hour or for the entire scenario by incrementing time. Utilizing the automatic increment 

capability for scenario time provides an analyst a virtual playback of the aircraft movement 

around the globe. While viewing this summary and playback, the analyst is only a mouse click 

away from detailed aircraft information. This playback correlation, and link to drill-down 

capability is unprecedented in AFM analyst efforts. Previous efforts have provided the ability to 

sort the leg information file and group all of the entries by tail number. This grouping was then 

used to manually step through the entries of the aircraft to analyze the mission items. No 

geographical or time correlation was possible in these groupings. 

The drill-down capability of the aircraft tracking application alone is beyond any 

previous analysis capability for the AFM, because there was no automatic link between the leg 

and mission information files. Now with this application the bars of aircraft totals at an ICAO 

can be selected to show the quantities of aircraft by type. The type of aircraft can then be picked 

to see the tail numbers of the aircraft making up that quantity. From there a tail number can be 

selected to show the aircraft's specific leg and mission information. Figure 34 shows several of 

these drill-down windows. The left-hand drill-down is a count of aircraft at "KDOV" ICAO by 

type. The upper right-hand window in Figure 34 is a list of C-5B tail numbers that were 

requested by clicking on the C-5B bar in the first window. The bottom window in Figure 34 is 

the detailed information on tail number 266. This window also contains mission information on 

the other tab. 
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Figure 34: Application #2 Screen Capture (Plate 17) 

5.2 Results Summary 

This AFM visualization research achieves and exceeds all of its objectives. These results 

were achieved with integrated data structures and by leveraging good software engineering of the 

application framework. The application framework and its interfaces are robust, reliable and 

consistent. Significant reuse of component design and code greatly reduces development efforts. 

The applications developed in this research are unparalleled by any previous AFM analysis 

techniques. These applications provide the analyst with clear and concise summaries and 

playbacks of tens of thousands of data records in a simple intuitive user interface. At the same 

time the applications' drill-down capability provides a means for the analyst to delve deeper into 

the details of the data. 

78 



6     Conclusions and Future Work 

6.1  Conclusion 

Air Mobility Command's (AMC) Airlift Flow Model (AFM) is a modern simulation that 

takes advantage of advancing computer technology. This simulation runs multi-day mobility 

scenarios in a matter of minutes producing megabytes of output data. Because the analysts' needs 

for summaries, trends, and comparisons of the data have surpassed the capabilities of desktop 

spreadsheet routines, new tools are needed. Information Visualization is one of these new tools. 

Liberating the information contained in the large volumes of data and visualizing it was the 

central goal of this AFM research. The result was a robust component-based visualization 

application framework for AMC. 

This AFM visualization research required the creation of a robust application framework 

and several component-based data visualizations utilizing the framework. The four-part 

application framework consists of an input, visual, plot, and interface module and successfully 

provides the reuse, flexibility, and component support needed to meet the AFM visualization 

research objectives. These four modules handle all the management and execution of the 

system's component-based implementations. The object-oriented nature and thorough design of 

the framework, interfaces, and components give the research effort higher than expected levels of 

reuse. With the stable visualization engine provided by this framework the application developer 

can concentrate on the task at hand and not deal with the underpinnings of the system. 

Two component-based visualization applications were implemented for this research. 

These two representative applications show that information visualizations can help with those 

concerns of data context, drill-down, correlation, and integrated views mentioned by Peterson in 

The    Visually    Enabled    Enterprise:    Managing    Information    Through    The    Power    of 
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Visualization[ll]. Both displays provide integrated views and global comparison capability in a 

single display with a map context. Drill-down and micro/macro levels of detail are also present. 

These two visualizations are integrated in the same display, so an analyst can view the different 

data together in the same context. The straightforward user interface enables the analyst to 

manipulate the data for their needs. 

These capabilities contribute to better analysis tools for the AFM simulation model. As a 

result of this research, the AFM analyst has a powerful analysis tool that can be easily extended to 

meet additional needs. Demonstrations already conducted with AMC personnel have liberated 

parts of the AFM output data that had never been directly analyzed. This capability will provide 

AFM analysts and system designers a way to answer our leaders' mobility questions for years to 

come. 

6.2 Future Work 

There are three areas where future work can be completed with this information 

visualization framework. The first is to enhance the framework to support more dynamic user 

interface widgets. The ability to add other interface widgets like dials and buttons with interface 

components would improve the robustness of the application framework. Future applications of 

this framework in areas other than AFM will require this dynamic capability. 

The second area for future work is using the framework with another application or 

domain. The AFM simulation analysis was the main requirement for this research, but the 

framework was designed to support the needs of all information visualizations not just AFM. The 

validation of the framework and the reuse results in this research show that the framework is a 

good solution for any visualization effort. The interfaces and design are generic enough to 

support other applications. Exploring other applications would be beneficial follow on research. 

80 



The third area of future work is with additional applications for AFM analysis. A large 

portion of this effort was spent on the design and development of the underlying framework. 

Two representative applications were developed to visualize portions of the AFM output, but 

there is a great deal more to visually represent. Additionally, AFM data with different contexts 

exist. Data such as crew information, weather, and aircraft parking patterns need to be visualized 

with contexts other than a map. Developing visualization applications for this portion of AFM 

data is needed by AMC. With the application framework completed, this work would deal more 

with the actual visualization of the data. 
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Plate 1: Screen Capture of Main Window with Map Context 
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Plate 14: Application #2 Declutter Example 

Plate 15: Application #2 Drill-down Windows 
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