
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

A Comparative Analysis of Cockpit Display Development Tools A Comparative Analysis of Cockpit Display Development Tools

Matthew J. Gebhardt

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons, and the Systems Engineering and

Multidisciplinary Design Optimization Commons

Recommended Citation Recommended Citation
Gebhardt, Matthew J., "A Comparative Analysis of Cockpit Display Development Tools" (2000). Theses
and Dissertations. 4791.
https://scholar.afit.edu/etd/4791

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=scholar.afit.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=scholar.afit.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4791?utm_source=scholar.afit.edu%2Fetd%2F4791&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Jt #

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

A COMPARATIVE ANALYSIS OF COCKPIT
DISPLAY DEVELOPMENT TOOLS

THESIS

Matthew J. Gebhardt, Captain, USAF

AFIT/GE/ENG/00M-10

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the US Government.

AFIT/GE/ENG/OOM-10

A COMPARATIVE ANALYSIS OF COCKPIT
DISPLAY DEVELOPMENT TOOLS

THESIS

Matthew J. Gebhardt, Captain, USAF

AFIT/GE/ENG/00M-10

Approved for public release; distribution unlimited

AFIT/GE/ENG/OOM-10

A COMPARATIVE ANALYSIS OF COCKPIT
DISPLAY DEVELOPMENT TOOLS

THESIS

Presented to the faculty of the Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Matthew J. Gebhardt, B.S.

Captain, USAF

March 2000

Approved for public release; distribution unlimited

AFIT/GE/ENG/OOM-10

A COMPARATIVE ANALYSIS OF COCKPIT

DISPLAY DEVELOPMENT TOOLS

Matthew J. Gebhardt, B.S.
Captain, USAF

Approved:

~7V
Chairman, Lt Col Timothy Jacobs

^tt^^ O.T^CZ^i W*t

Dr. Thomas C. Hartrum

o W<L 2ood
date

^ Tn^A, ^<m>

date

$ /(„ 3*»'
date

Acknowledgements

I would like to express my sincere thanks to my faculty advisor, Lt Col Timothy

Jacobs, for his enthusiasm, fresh ideas, and continual guidance and support throughout the

course of this thesis effort. His experience and insight were greatly appreciated. I would

also like to thank the staff at the Advanced Architecture and Integration Branch of the

Information Systems Directorate of the Air Force Research Laboratory for acting as my

sponsor in my research effort. Heartfelt thanks go to Mr. Jesse Blair who was

instrumental in providing the necessary documentation for the F-22 Raptor. Special

thanks goes to Mr. Philip Powers and Mr. Derryl Williams for always being available to

answer my questions.

Most importantly, I would like to express my appreciation to my loving wife,

Tonya, whose continued support, understanding, and sacrifice has allowed me to make it

through the past 18 months of studies. Without her support, my time at AFIT would have

been much more difficult. Thanks Babes!

Matthew J. Gebhardt

AFIT/GE/ENG/OOM-10

Abstract

Currently, no standard methodology exists that enables cockpit display engineers

to evaluate software tools used in the development of graphical cockpit displays.

Furthermore, little research has been accomplished in comparing current software

development tools with traditional hand-coded methods. This research effort discusses a

framework for analyzing cockpit display software development tools and follows through

with a detailed analysis comparing today's hand-coding standard, OpenGL, with two of

today's cockpit display software development suites, Virtual Application Prototyping

System (VAPS) and Display Editor. The comparison exploits the analysis framework

establishing the advantages and disadvantages of the three software development suites.

The analysis framework is comprised of several detailed questionnaires that enable the

cockpit engineer to quantify important subjective criteria such as learning curve, user

interface, readability, portability, extensibility, and maintenance. The questionnaires

developed for each subjective criterion contain questions with weighted answers that

enable the cockpit engineer to evaluate graphical software development tools. The

questions were adapted from multiple sources including personal experience, display

experts, pilots, navigators, case tool, and text sources. In addition, the comparative

analysis evaluates several objective criteria with respect to development tools and the

displays generated with them such as update rate, development time, executable size, and

CPU/Memory usage level.

u

TABLE OF CONTENTS

Acknowledgements i

Abstract .ii

List of Figures v

List of Tables vi

I. INTRODUCTION 1

1.0 BACKGROUND 1
1.1 DISPLAY DEVELOPMENT PROCESS 7
1.2 PROBLEM STATEMENT 8
1.3 SUMMARY OF APPROACH 8
1.4 SCOPE OF RESEARCH EFFORT 10
1.5 RESEARCH ASSUMPTIONS AND LIMITATIONS 11
1.6 DOCUMENT OVERVIEW 12

H. LITERATURE REVIEW AND DEVELOPMENT TOOL DESCRIPTION 13

2.0 HISTORICAL PERSPECTIVES-WHY THE GLASS COCKPIT 13
2.1 THE INTERACTIVE GRAPHICS EDITOR 15
2.2 AIRBORNE GRAPHICS SOFTWARE SUPPORT SYSTEM (AGSSS) 17
2.3 THE OPEN GRAPHICS LANGUAGE (OPENGL) 20
2.4 VIRTUAL APPLICATION PROTOTYPING SYSTEM 23
2.5 SCS ENGINEERING'S DISPLAY EDITOR 29

m. EXPERIMENTAL APPROACH 32

3.0 INTRODUCTION 32
3.1 DEVELOPING DISPLAY REQUIREMENTS AND STANDARDS ...33
3.2 DESIGNING AND BUILDING DISPLAYS 35
3.3 IMMERSING DISPLAYS IN SIMULATION ENVIRONMENT 35
3.4 ANALYZING DEVELOPMENT TOOLSETS USING EVALUATION TECHNIQUES 38
3.5 EXECUTING DISPLAYS ACROSS DIFFERENT HARDWARE CONFIGURATIONS 39
3.6 SUMMARY40

IV. DISPLAY DEVELOPMENT METHODOLOGY 41

4.0 INTRODUCTION 41
4.1 REQUIREMENTS ANALYSIS 42
4.2 DESIGN PHASE 43
4.3 CODE GENERATION PHASE 45
4.4 TESTING PHASE 47
4.5 MAINTENANCE PHASE 48
4.6 THE DISPLAYS 49

in

V. DISPLAY DEVELOPMENT EVALUATION TECHNIQUES 57

5.0 INTRODUCTION TO THE Two EXPERIMENTS 57
5.1 DISPLAY DEVELOPMENT EXPERIMENT 59

5.1.1 Development Tool Learning Curve 60
5.1.2 Development Tool User Interface 62
5.1.3 Display Readability 63
5.1.4 Display Portability 66
5.1.5 Display and Development Tool Extensibility 67
5.1.6 Display Maintenance 68
5.1.7 Display Update Rate 69
5.1.8 CPU and Memory Usage 70
5.1.9 Display Executable Size 72
5.1.10 Display Development Time 73

5.2 EXPERIMENT #2-POST-DEVELOPMENT DISPLAY PERFORMANCE 74
5.3 SUMMARY AND OTHER CONSIDERATIONS 75

VL RESULTS AND ANALYSIS 76

6.0 INTRODUCTION 76
6.1 RESULTS AND ANALYSIS OF DISPLAY DEVELOPMENT EXPERIMENT 76

6.1.1 Learning Curve 77
6.1.2 User Interface 79
6.1.3 Display Readability 81
6.1.4 Display Portability 83
6.1.5 Display Extensibility 84
6.1.6 Subjective Criteria Summary 86
6.1.7 Display Development Time 87
6.1.8 Display Maintenance 88
6.1.9 Executable Size 89
6.1.10 Update Rates, CPUUsage, and Memory Usage Results and Analysis 90

6.2 HARDWARE CONFIGURATION EXPERIMENT 92
6.3 ANALYSIS SUMMARY 93
6.4 ANALYSIS SUMMARY FROM RESEARCH FIELD EXPERT 96

Vn. SUMMARY, CONCLUSIONS, AND FUTURE WORK 97

7.0 SUMMARY 97
7.1 RELATIONSHIP TO PAST EFFORTS 98
7.2 CONCLUSIONS ON DISPLAY DESIGN METHODOLOGY 99
7.3 CONCLUSIONS FROM COMPARATIVE ANALYSIS 100
7.4 CONCLUSIONS ON EVALUATION TECHNIQUES 101
7.5 FUTURE WORK 102

Bibliography 103

References 105

Vita 106

IV

List of Figures

Figure 1. Block Diagram of Interactive Graphics Editor 16
Figure 2. Block Diagram of the AGSSS Display Generator 18
Figure 3. Example Instrument Landing Display Generated Using AGSSS 19
Figure 4. The OpenGL Graphics Pipeline [9:3] 22
Figure 5. A simple Heading Indicator accomplished in OpenGL 23
Figure 6. VAPS Object Editor Simple Dial with Properties Window 25
Figure 7. VAPS Object Editor Plug Connections and Channel File 26
Figure 8. Driving a VAPS Object with another 28
Figure 9. Display Editor sample display of a simple dial 30
Figure 10. Stores-Management Display Created with Display Editor 30
Figure 11. ADI Pitch Line Textual Description [4:Section 10] 34
Figure 12. ADI Pitch Line Graphical Description [4:Appendix A] 34
Figure 13. OpenGL hand-coded Attitude Director Indicator 50
Figure 14. OpenGL hand-coded Horizontal Situation Indicator 51
Figure 15. VAPS developed Attitude Director Indicator 52
Figure 16. VAPS developed Horizontal Situation Indicator 53
Figure 17. Display Editor developed Attitude Director Indicator 55
Figure 18. Display Editor developed Horizontal Situation Indicator 56
Figure 19. Anti-Aliasing Example 64
Figure 20. Windows NT Task Manager 71
Figure 21. Summary of Subjective Criteria 86
Figure 22. Update Rates for displays in each hardware configuration from Table 18 93

List of Tables

Table 1. Three Hardware Configurations for Display Execution 39
Table 2. Five Phases of Linear Sequential Model 41
Table 3. Learning Curve Questionnaire 61
Table 4. User Interface Questionnaire 63
Table 5. Display Readability Questionnaire 65
Table 6. Display Portability Questionnaire 66
Table 7. Display Extensibility Questionnaire 67
Table 8. Three Hardware Configurations for Display Execution 74
Table 9. Learning Curve Questionnaire Results for Development Tools 78
Table 10. User Interface Questionnaire Results for Development Tools 80
Table 11. Display Readability Questionnaire Results for Development Tools 81
Table 12. Display Portability Questionnaire Results for Development Tools 83
Table 13. Display Extensibility Questionnaire Results for Development Tools 85
Table 14. Development times for displays in OpenGL, VAPS, and Display Editor 87
Table 15. MTTC Ratings for OpenGL, VAPS, and Display Editor 88
Table 16. Executable Sizes for OpenGL, VAPS, and Display Editor 90
Table 17. Update Rate in Open Loop Configuration 91
Table 18. Hardware Configurations for Update Rate Experiment 92
Table 19. Summary of Development Tool Results for Cockpit Displays 94

VI

A COMPARATIVE ANALYSIS OF COCKPIT

DISPLAY DEVELOPMENT TOOLS

I. Introduction

1.0 Background

The demand placed on pilots and aircrews has significantly increased with the

growing complexities of modern weapon systems and mission parameters. These demands

have often exceeded pilot and aircrew abilities and have caused degradation in mission

performance and even aircrew fatalities. Projected mission requirements and threat

situations in which pilots and aircrews will be involved require vast amounts of operating

data. This data can be provided to the pilot and aircrew through a vast network of

advanced avionics equipment and supporting ground systems that are essential for the

mission to be successful. In addition, the air vehicle, subsystems, and weapons are

themselves becoming more highly sophisticated to better support performance goals and

extended operating conditions. As a result, the pilots and aircrews are faced with

interpreting more data and information, giving more detailed instructions to their onboard

equipment, and having less time to perform these functions. The impending result is that

the new and improved weapon systems may not yield higher mission success rates if the

requirements of the new systems exceed the abilities of the aircrew.

In the past, pilots have been able to function very successfully at the operator level,

having direct control over many of the components and subsystems that comprise the

weapon system. In this environment, the pilot was able to perform the necessary functions

in real-time. Using raw data and information, the pilot was required to monitor, interpret,

translate, integrate, and evaluate multiple readouts in order to derive alternatives,

decisions and control actions needed to manage the aircraft and perform the required

mission. The raw data for these actions was typically obtained from dedicated

electromechanical instrumentation in alpha-numeric form. In the current complex

environment, this approach is no longer possible due to the ever-increasing amount of data

being sent to the pilot. It has become clear that the information processing functions of

man can limit the performance of the weapon system. Modern efforts toward cockpit

integration are dramatically enhancing the role of the crew, allowing the pilot to effectively

exercise appropriate aircraft and mission functions.

At the same time, the advancement of weapon systems with increased complexity

has created the technology advances that can be used to solve the problem. Many of the

raw data functions performed by the pilot can now be automated offering the pilot more

decision-level information for better system management. Mass storage and high speed

processing have also provided more and better information than the pilot could have

hoped to achieve manually. In addition, these developments have given the pilot greater

resources to determine what information is needed and when. Multi-function displays and

controls have given the crewstation designer and pilot greater flexibility in the cockpit,

allowing the displays to be tailored to pilot or mission requirements. Should the mission

need to be changed, the displays can be reconfigured to satisfy the given situation. The

ultimate goal of these displays is to increase pilot "situational awareness." The United

States Air Force defines situational awareness as "a pilot's continuous perception of self

and aircraft in relation to the dynamic environment of flight, threats, and mission, and the

capability to forecast, then execute tasks based on the perception" [10:1].

Advancements in technology have allowed the traditional electro-mechanical

cockpit instruments to be replaced by cutting-edge graphical displays using cathode ray-

tube (CRT) monitors. The use of CRT monitors for these graphical displays has become

known as 'glass cockpit' technology. These displays feature enhanced representations of

aircraft flight parameters enabling the pilot to make better decisions given the large

amounts of incoming data and thereby increasing the pilot's situational awareness.

The pilot's primary perceptions of his environment come through his visual

sensory channel. With this in mind, crewstation designers have focused on using graphical

formats for displaying critical flight information. The current state of the pilot's

environment is represented using a variety of colors, lines, and graphical shapes. In

addition to graphical objects, text can be displayed using an assortment of colors to

indicate to the pilot a wide range of information including warnings, current aircraft state,

and other information. By exploiting the visual sensory channel, crewstation designers

give the pilot critical information in a graphical format on a single display. This allows the

pilot to focus less on scanning multiple instruments and concentrate more on the

information received through a single display source.

Research in glass cockpit technology began as early as 1981. Early on, the focus

was on the hardware required to house the displays, not on the information being

displayed. Initially, the displayed information was simply a graphical representation of the

information already available through the electro-mechanical instruments. Crewstation

designers focused on converting the software in the aircraft into a generic graphical format

rather than trying to enhance the data for better representation. Little software research

was done to enhance the aircraft data to increase pilot situational awareness.

The early focus on hardware display technology led to the problem facing cockpit

and display designers today: hardware technology is advancing far more rapidly than

software technology. Hardware advancements in recent years have produced smaller

computers, consuming less power, and having far more computing capabilities and

memory capacity than ever before. These advances are being implemented in the high-

performance airborne displays of today's aircraft. The problem is that the software

support for these displays is so intricate that they require experts to program them [7:6].

While most initial research efforts focused on the hardware requirements for the glass

cockpit, some facilities, such as the Research Triangle Institute (RTI) and the Advanced

Architecture and Integration Branch of the Information Systems Directorate of the Air

Force Research Laboratory, made attempts at developing software tools allowing display

engineers to rapidly develop and reconfigure cockpit displays. RTI developed the first

such toolset in the early 1980's called the Interactive Graphics Editor (IGE). Successes

with the Interactive Graphics Editor effort by RTI sparked further research by the

Advanced Architecture and Integration Branch. Because the IGE was written in the C

programming language and aimed at commercial cockpit display design, it did not adhere

to government standards requiring the use of the Ada programming language. Teamed

with RTI, the Advanced Architecture and Integration Branch began researching a

government equivalent to the IGE called the Airborne Graphics Software Support System

(AGSSS). Using the Programmer's Hierarchical Interactive Graphics System (PHIGS) as

their graphical foundations, both the IGE and the AGSSS allowed an engineer to design a

cockpit display from start to finish. These early efforts revealed the need for a software

display development tool that could be easily used by an engineer, without the technical

ability to program in a higher order language like Ada or C++, to develop dynamic

graphical cockpit displays that have the potential to be rapidly reconfigured.

In addition to RTI and the Advanced Architecture and Integration Branch,

industry leaders in the graphics arena, such as Silicon Graphics, began developing graphics

packages for building graphical applications. One of the graphics packages developed by

Silicon Graphics is called the Open Graphics Language, or OpenGL. OpenGL has

become very popular in recent years and, due to its popularity among computer graphics

software designers, is widely viewed as the graphics standard. In fact, many entertainment

companies developing games, movies, and other interactive media use OpenGL as their

graphics language.

In the cockpit display environment, OpenGL is also viewed as the standard, but

many research facilities require more than what OpenGL can provide. Facilities like the

Advanced Architecture and Integration Branch are looking for a software graphics

package/tool that can be easily used by the non-programming cockpit engineer. OpenGL,

while a good graphics foundation, has an extremely limited user-interface and, with its

required knowledge of C or C++, has a relatively steep learning curve. Research facilities

are looking for a software tool with a graphical user interface (GUI) for developing

cockpit displays that are easily developed and rapidly reconfigurable.

In an effort to satisfy these facilities, several companies have developed software

tools that enhance the creation of graphical cockpit displays. One such company, Virtual

Prototypes, Inc. (VPI), has developed several tools that are used to build graphical

displays. Using tools such as VPFs Virtual Application Prototyping System (VAPS) and

VPFs C-Code Generator (CCG) the designer can create the displays using a point-and-

click environment by drawing squares, circles, text, and other shapes. The designer can

then animate the display, connect it to an outside application, or immerse it in a hardware-

in-the-loop simulation environment. By taking advantage of advancing PC technology and

the development of Windows NT, VPI has created a software tool for rapid display

development and implementation.

In addition to VPI, another company, SCS Engineering, Inc., has developed a

software tool that can also be used to build graphical cockpit displays. SCS's Display

Editor tool uses OpenGL as its foundation, but allows the engineer to design the "look" of

the display in a point-and-click environment similar to that of VAPS. Once the display is

drawn, the development team at SCS Engineering accomplishes the necessary animation.

Future releases will enable the display designer to fully define and implement the display

dynamics themselves.

This research effort will look at the tools developed by Virtual Prototypes and

SCS Engineering and compare them to the unofficial graphics standard of today, OpenGL.

1.1 Display Development Process

Several problems face cockpit display designers. First, the requirements of the

displays must be analyzed. The designers must determine the performance requirements

such as update rate, CPU usage, and memory usage. The displays must also satisfy

graphical requirements such as the size of the display, size of the objects within the

display, and the font sizes. The requirements are typically summarized in a standards

document forming a foundation for future display development.

The next problem facing cockpit display designers is hardware configuration.

Depending on the development environment, there may be several different hardware

configurations available. In the simulation environment alone, there are countless

hardware configurations that range from high-end workstations with multiple processors

to a simple, single-processor, personal computer (PC) running Microsoft Windows

(NT/95/98). The hardware that will be used for display development may be something

the display designer already has or they may want to purchase new hardware specifically

for developing and running the displays. In simulation environments, like the Integrated

Test Bed facility at the Advanced Architecture and Integration Branch, PC platforms act

as both display development station and simulation platform.

The final problem, and potentially the biggest decision, is the choice of software

graphics package to employ for display development. There is a broad range of graphics

packages available on the market today. OpenGL, VAPS, and Display Editor are only

three of these; however, these three graphics packages represent a solid cross section of

the toolsets available. OpenGL is widely used but was not engineered specifically with

cockpit displays in mind. VAPS was engineered as a human-machine interface (HMI)

development tool (cockpit displays are only one type of HMI). And finally, Display Editor

is being developed specifically for use in designing cockpit displays.

1.2 Problem Statement

Design, develop, and test two dynamic graphical displays using OpenGL, VAPS,

and Display Editor. Show that each development tool set satisfies the display

requirements for look and performance. Accomplish a comparative analysis of the three

tools by immersing the displays developed with each tool in a simulation environment

and executing the displays across several hardware platforms, revealing the advantages

and disadvantages of each.

1.3 Summary of Approach

The problem statement mentioned in Section 1.1 contains several objectives that

need to be accomplished. The first and foremost objective is developing the display

requirements and standards. These requirements will potentially come from several

different sources. Requirements from aircraft developers, such as Lockheed-Martin and

Boeing for the F-22, include such things as display layout, memory and CPU limitations,

and color. Additional requirements may come from simulation facilities, such as the

Advanced Architecture and Integration Branch, which include items like real-time

performance. The graphics package chosen for display development must satisfy these

display requirements. In addition, cockpit display designers have user-interface, code

maintenance, portability and other important requirements that must be met by the

development tool set. These requirements and their development will be discussed in later

chapters.

The second objective from the problem statement is to design and develop the

displays. For this research effort, two displays are developed: the Attitude Director

Indicator (ADI) and the Horizontal Situation Indicator (HSI) from the upcoming F-22

Raptor cockpit. These displays were chosen primarily for their dynamic characteristics

and requirements. The dynamic characteristics of the ADI and HSI test the ability of the

graphics package with which the display was developed. Both the ADI and HSI must

meet real-time performance requirements. For the purpose of this research, real-time

performance will be defined as:

• Real-time performance: A minimum data update rate of
16Hz with a desire for 30Hz or greater [6:11].

The real-time performance requirement leads us to the next objective. According

to the problem statement, the displays are immersed in a simulation environment. This

tests the ability of the displays to meet the display requirements using real aircraft data.

The simulation environment for this research is the Re-configurable Avionics Modeling

and Simulation System (RAMSS), developed by SCS Engineering Inc. The displays and

the simulation system run on a PC platform running Microsoft Windows NT.

The final objective is the cornerstone for this research effort. Once the displays are

developed and tested to ensure display requirements are met, the tools used to build the

displays are analyzed. This comparative analysis comprises all aspects of cockpit display

development such as toolset cost, display lifecycle, and display performance. Several

questionnaires and tests are used to analyze subjective and objective characteristics about

each development tool set. These questionnaires contain weighted questions that reveal

the advantages and disadvantages of each development tool set. Part of the final

objective, but a separate experiment altogether, is executing the displays using different

hardware configurations. This experiment reveals important characteristics of each

development tool set in different hardware environments.

The first three objectives are building blocks for the final objective. The

comparative analysis of the display development toolsets reveals characteristics that are

common with graphics applications. The questionnaires and tests, while applied only to

OpenGL, VAPS, and Display Editor for this research, can also be applied to other display

development graphics packages. The goal is not to establish the best tool, but instead to

provide a framework for analyzing display development graphics packages.

1.4 Scope of Research Effort

This research effort will not attempt to design, develop, nor test every possible

cockpit display that may be used in today's aircraft or aircraft of the future. Instead, it

10

focuses on the two displays mentioned above, the ADI and HSI, from the next generation

F-22 Raptor cockpit. The ADI and HSI displays are designed using OpenGL, VAPS, and

the Display Editor software toolset in accordance with standards established for the F-22

cockpit displays. These standards have been in development for several years and

continue to change to adapt to new threat situations. The standards document used for

display development for this research effort is titled F-22 Air Vehicle Cockpit Design

Description Document and dated July 1996.

1.5 Research Assumptions and Limitations

There are a number of assumptions that must be made when accomplishing the

research objectives discussed above. The first is that cost can be a limiting factor to

success in this research area. The OpenGL tool set is free to the public through the

Silicon Graphics website (http://www.sgi.com) while the other two development tools

incur license costs. VAPS and Display Editor were chosen because they were readily

available through the Advanced Architecture and Integration Branch at no cost.

The Advanced Architecture and Integration Branch at the Air Force Research Lab

Information Systems Directorate will provide all necessary hardware and software. The

hardware and software required consist of current OpenGL software libraries, the VAPS

toolset, the Display Editor toolset, several Windows NT platforms (with varying hardware

configurations), up to date versions of Microsoft Visual C++, and all appropriate licenses.

Finally, the Advanced Architecture and Integration Branch will provide all necessary

display standards documents from the F-22 design team at Lockheed-Martin and Boeing.

11

The comparative analysis answers several questions about the three specific

graphics packages used in this research. In addition, this research provides a foundation

for future analysis or comparisons of graphics packages. This research effort does not

answer every potential question about OpenGL, VAPS, or Display Editor. On a further

note, having some general knowledge about real-time simulation and cockpit displays

facilitates understanding. The questionnaires and tests used in the analysis for this

research can easily be adapted and applied to any generic graphics package for evaluation.

1.6 Document Overview

This document contains six chapters. Following this introductory chapter is a

chapter dedicated to familiarizing the reader with OpenGL, VAPS, and Display Editor. In

addition, the second chapter examines the past efforts of the Research Triangle Institute

and the Advanced Architecture and Integration Branch. The third chapter details the

objectives from Section 1.2 while Chapter 4 discusses the display design methodology and

the displays developed for this research effort. Chapter 5 presents a detailed discussion

about the questionnaires and tests used in the comparative analysis of the three

development toolsets. The next chapter, Chapter 6 presents the results and an analysis of

the questionnaire and test results and the final chapter consists of a summary, conclusions,

and potential research for the future.

12

n. Literature Review and Development Tool Description

2.0 Historical Perspectives - Why the Glass Cockpit

Advancing technologies in hardware have led to many changes in the traditional

cockpit. Computer technology has advanced to the point that the computers are much

faster, can compute more complex routines, and are small enough to be placed onboard

the aircraft. These computers have enabled the aircraft to automate many of the raw data

functions that the pilot had done in the past. By using the computers in this way, the pilot

can be presented with more decision level information rather than raw data [14:15]. Still,

however, the pilot is forced to scan multiple instruments in order to gather critical

information. Gathering information from these instruments may only take seconds, but

these seconds may mean life or death for the pilot and aircrew [5:1-2].

The glass cockpit concept was born out of efforts to put graphical displays in the

cockpit presenting more critical information on a single display, saving the pilot those

precious seconds it may take to read multiple displays. In addition, information can be

displayed in a more visual format (i.e. colored objects and lines instead of conventional

gray scale text and symbols), resulting in better decisions. Software technology has

advanced at a slower rate than hardware technology making these graphical displays time-

consuming and costly to develop because programming experts must code them by hand.

The Air Force and industry need tools to develop cockpit displays quickly, accurately, and

inexpensively.

13

The reason original displays were so expensive and time consuming to develop

was because they required an expert to program them. The programming was time

intensive and laborious. Furthermore, if a problem was found, whether it was syntactical

or semantic, it required the display to be reworked, costing even more time and money.

Finally, during the lifetime of the display, should it need to be added to or modified, more

often than not, it had to be entirely re-accomplished.

For these reasons, several companies and Air Force facilities began developing

software development tools for efficient creation of cockpit displays. Initial development

efforts, like that of the Research Triangle Institute and the Advanced Architecture and

Integration Branch, used the PHIGS graphics package. Their research provided a

stepping-stone for the research being accomplished today in the cockpit simulation field.

Silicon Graphics introduced the OpenGL software package in 1992 and it has been

adopted widely throughout the graphics industry. Virtual Prototypes, Inc. began

developing their VAPS software toolset in 1987. VAPS, dedicated to human-machine

interfacing, is being used by many Air Force facilities as well as some aircraft developers

like Lockheed-Martin and Boeing. In conjunction with the Advanced Architecture and

Integration Branch, SCS Engineering, Inc., began developing their Display Editor toolset

in 1998. While based on the OpenGL graphics package, Display Editor is designed

specifically for developing cockpit displays.

14

2.1 The Interactive Graphics Editor

In the mid 1980's, the Research Triangle Institute began developing a software

development toolset that could support the design and creation of 2D and 3D cockpit

displays while at the same time reducing the lifecycle costs of display development. This

toolset, called the Interactive Graphics Editor (IGE), was written in the C programming

language. The IGE supported the rapid prototyping of 2D and 3D cockpit display

formats, allowed a preview of their animation, and generated the source code for the

animation automatically [7:441].

The IGE is a hardware and software system supporting rapid development, testing,

and evaluation of cockpit display formats and the automated generation of source code.

Using IGE, a display designer can define cockpit displays without resorting to

conventional programming methods [7:441]. Developed for NASA, its primary goal was

to allow creation of cockpit displays pictorially rather than procedurally. Figure 1 shows a

block diagram of the Interactive Graphics Editor system.

The IGE consists of a PC-based front-end workstation and a display system

consisting of a Micro VAX II host computer and an Adage 3000 Programmable Display

Generator (PDG). The PC-based workstation controls all of the system inputs through

the use of the various input devices in Figure 1. The primary input device for the system is

the data tablet. With the tablet, the display designer can draw and define the various

objects within the display. Using the IGE menu-based interaction mechanisms, the display

designer can define the dynamic characteristics of objects within the display.

15

x-y
TABLET

PC

Zenith 248

MicroVAXE
Host System

ADAGE 3000

PDG
JOYSTICK L_r_

1

1
1
i
i

VIDEO

VOICE I Other
1

 W Display
1 Generator

MOUSE Video
Monitor

KEY-
BOARD slllip
■EMJfcM

WORKSTATION

Figure 1. Block Diagram of Interactive Graphics Editor

The IGE was written in the C programming language using graphics bindings from

the Programmer's Hierarchical Interactive Graphics System (PHIGS) language and was

intended to be a commercial product. The government, specifically the U.S. Air Force,

needed a toolset that used the Ada programming language since Ada was the underlying

standard for all Department of Defense technology. This led RTI, teamed with the

Advanced Architecture and Integration Branch, to begin research in an Ada-based

graphics editor toolset.

16

2.2 Airborne Graphics Software Support System (AGSSS)

The Airborne Graphics Software Support System (AGSSS) had its origin at Wright-

Patterson AFB, OH in the early 1980's. Developed by the Research Triangle Institute and

the then named Wright Laboratory (today the Air Force Research Laboratory), the

AGSSS software tool helped the engineer to design a cockpit display, define its dynamic

characteristics, and generate the code required to animate the display without knowledge

of any higher-level programming language, such as Ada or C++.

The software was modular in nature allowing the designer to test, modify, and

generate code throughout the development cycle. It was engineered using a Windows-

based environment with a point-and-click type of interface adapted from RTFs Interactive

Graphics Editor interface. The AGSSS software tool was developed using the

government standard Ada programming language and the bindings of the Programmer's

Hierarchical Interactive Graphics System (PHIGS) graphics language. The engineer

designs the display in one window and can see the code generated in another window.

The generated graphics code is then sent through a code converter to convert it into

Ada/PHIGS runtime code. The generated code could then run as a graphical display using

dedicated Avionics hardware. Figure 2 shows a block diagram of AGSSS and Figure 3

shows an example display generated using the AGSSS development toolset.

17

jMM4WWK^tj^4i«*si

i
Graphic

Interaction

w

(4

■■pr
sfp?s|

Static
Image
File

Static Image
And

Dynamic Linking

Dynamics
Definition

File

PHIGS Code
Generator

Ada/PHIGS
Graphics Hie

Ada Code
Generator

Ada Display
Source Code

CODE GENERATION SYSTEM I

Ada/PHIGS
Compiler

Ada
Compiler

Target
Compilers

Display
Graphics

File

Display
Host File

Figure 2. Block Diagram of the AGSSS Display Generator

The display designer, using the workstation in Figure 2, defines the dynamic and

static portions of the display. These image files are then sent through the code-generators

creating two source files. The first file is a graphics file defining the graphical image and

the other is the Ada source code that defines the dynamic movement of the display. These

source files can then be compiled, hosted, and executed on appropriate hardware

platforms.

The AGSSS and RTI display development environments demonstrated the ability

to build graphical cockpit displays without the need of technical programming knowledge.

Engineers lacking coding experience could use the tool to develop integrated graphical

displays that were dynamic in nature. These displays could also be reconfigured for

different missions with limited down time.

18

Figure 3. Example Instrument Landing Display Generated Using AGSSS

In fact, as revealed in the AGSSS final report, the development tool increased

productivity by a factor of 10 over that obtained through conventional display

development methods (e.g. hand-coding the displays in Ada/PHIGS) at the Advanced

Architecture and Integration Branch [7:3]. The report further states that even greater

benefits could come with fine-tuning of the AGSSS software. The research accomplished

on the AGSSS program proved that a software display development tool was beneficial

and cost effective.

The AGSSS tool, although a moderate breakthrough in its own right, had its

drawbacks as well. Though it cut down the development cycle in both cost and time, it

was highly hardware and software dependent. Dr. Jorge Montoya in AGSSS: The

Airborne Graphics Software Support System describes these dependencies. He explains

19

that the AGSSS tool required the use of Micro VAX III workstations and ADAGE 3000

graphics processors. He also states that AGSSS required Ada and PHIGS compiler

licenses for the PC's, Micro VAX's, and ADAGE graphics computers used throughout the

display development lifecycle. Though the AGSSS boasted a refresh rate of 30-Hz,

Montoya explains, this was only accomplished using several ADAGE 3000 graphics

processors and a dedicated cockpit display interface [6].

Even though the AGSSS was a breakthrough in its time, hardware and software

have continued to advance in recent years, driving the need for a more advanced cockpit

display development tool. This need is being researched and met by commercial

companies who are developing new software tools to carry on what the AGSSS started.

2.3 The Open Graphics Language (OpenGL)

The Open Graphics Language was developed by the Silicon Graphics Corporation

and was first released in 1992. The Open Graphics Language, otherwise known as

OpenGL, is an applications programming interface (API) supporting the creation and

rendering of high-performance 2D and 3D graphics applications. An API is a standard

library for developing applications software and as such, API's typically simplify the

software development process and reduce development cost and time. OpenGL is a

platform independent API, with the ability to be written once and deployed on multiple

platforms [15: 2-3].

OpenGL has language bindings in many higher-order programming languages

including C, C++, Fortran, Ada, and Java [8:2]. It allows the rendering of simple

20

geometric primitives like points, lines, or polygons and highly complex shaded and

texture-mapped curved surfaces. Software developers can manipulate geometric

primitives, create display lists, and use OpenGL bindings for model transformations,

lighting, texturing, anti-aliasing, blending, and other functions. This research effort uses

the C++ programming language and common OpenGL functions for anti-aliasing,

blending, and transformations to accomplish cockpit display dynamics. The displays

created for this research are 2-dimensional and use display lists when appropriate.

The OpenGL API is available as freeware on several World Wide Web sites,

including the Silicon Graphics website (http://www.sgi.com). Licensing fees apply only

when the OpenGL source code is desired [8:5]. OpenGL runs on every major operating

system including Mac, OS/2, UNIX, Windows 95, Windows NT, Linux, OPENStep,

Python, and BeOS [9:3]. OpenGL also works with every major windowing system,

including Presentation Manager, Win32, and X-Window System. This research effort

focuses on the Microsoft Windows NT version of the OpenGL Libraries and header files

using the C++ programming language as mentioned previously.

OpenGL is designed using a pipelined architecture. Figure 4 shows the general

pipeline that OpenGL follows. As the figure depicts, the geometric vertices defined in the

application are unpacked. The operations on the vertices are then accomplished and

converted into screen geometry to be sent to the frame buffer for displaying. If display

lists are used, as this research does at times, the vertex operations are saved in a cache-

type buffer for later reuse. The use of display lists increases performance of applications

by reducing the number of vertex operations performed during runtime.

21

mmmmmmm

GEOMETRY
mmmximmmmm

Display Lists

UNPACK
I^RTiCESl

OPERATIONS
Texture

*5 GEOMETRIC

lJFra^^Qp|rsÜpöS:::

xz
Frame Buffer

■ mumm miinmmninii inn iiniiimiii

Figure 4. The OpenGL Graphics Pipeline [9:3]

This research effort focuses on cockpit displays using 2-dimensional

representations of objects, lines, and primitive polygons. Using the C++ bindings provided

by OpenGL, displays similar to that in Figure 5 can be produced. The display in Figure 5

is a simple bird's-eye view of the aircraft that depicts aircraft heading and steering point.

Though this display is quite basic, it shows that OpenGL has the ability to generate

dynamic cockpit displays.

22

Figure 5. A simple Heading Indicator accomplished in OpenGL

2.4 Virtual Application Prototyping System

In 1987, Virtual Prototypes, Inc. (VPI), out of Montreal, Canada, began

researching the development of a software tool environment in which the display engineer

could design, animate, and integrate a display from start to finish [2]. Of course, this

could be done using a graphics package like PHIGS or OpenGL, as discussed above;

however, VPI wanted to add one critical design feature, a simple point-and-click graphical

user interface (GUI). With a GUI in a windows environment, the display could be

23

designed with little or no knowledge of higher-level languages like C++. VPI introduced

their Virtual Applications Prototyping System (VAPS) in 1990.

Actually, VAPS is three individual tools rolled into a single development

environment. The three tools are the Object Editor, the Stateforms Editor, and the

Runtime Environment [12:6]. Breaking each stage of development into three separate

tools, VAPS facilitates easy modifications and changes to the display at any level of

display development.

The first stage of development is determining the look and feel of the display.

Typically, the general display design comes from standards documents and display

requirements, as is the case with this research effort. However, if standards and

requirements are not immediately available, the displays can be designed in a general

format that allows details to be added later. Once the general display design is decided

upon, the VAPS Object Editor (OE) can then be used to draw the display. The OE is a

window application using a point-and-click format. The OE allows the designer to draw

graphical primitives, such as lines, points and polygons (including text), and combine them

in such a way to generate the look and feel of the cockpit display. All of the objects

drawn within OE are selectable and groupable. Grouping objects together is one

important feature of the VAPS OE. In fact, the VAPS OE contains several predefined

objects that the designer can use to group primitives to form dials, switches,

potentiometers, and other devices that are commonly found in the human-machine

interface environment. Once grouped, the display designer must define the dynamic

characteristics of the object. Which object(s) within the group will move, where the initial

24

position of the grouped object is located, and the range of motion of the moving object(s)

are just a few of the characteristics that must be defined. Figure 6 shows a simple dial

defined using the Object Editor and the dial properties window showing the dial object

definitions.

Each grouped object also has several "plugs" that allow the object to consume and

produce data. Within the VAPS OE, the display designer must define a file called a

channel [1:4]. This channel contains variables that hold data values either produced or

consumed by the VAPS objects within the display. The OE allows the designer to connect

input sources within the display to the corresponding output sources using

'-NoName (Frame)"

£d& O&jccis ^tew Operations P«£«K)rt

llsSBOJtt::]l 00.00 J |screen <]|default 3 |-190.46.-137.16 '4 «ÜH

Figure 6. VAPS Object Editor Simple Dial with Properties Window

25

variables within the channel file. Consider the simple dial and potentiometer seen in

Figure 6. When the potentiometer is moved with the mouse, the pointer on the dial

rotates. The potentiometer object writes data to a producer plug while the dial reads data

from a corresponding consumer plug, updating its location accordingly. Figure 7 shows

the dial consumer plug and the channel file variable to which it is connected.

The potentiometer produces data that is stored in a shared memory location

(channel file variable) pointed to by the corresponding dial consumer plug. Figure 7

reveals only one side of the connection (consumer to channel). The other side of the

connection is identical, except it connects a channel file variable to a producer plug.

Without these connections, the VAPS objects would not be able to communicate with

each other. In fact, the channel file provides the mechanism for the VAPS created display

mi iiiiiiiii mmmm^m^m^^^^mmmmm^^^^^^^^^^mmmmm^mm II

!§lom £||llinH(l »Jjscreen 3idef,ult Z. j «b< 81. 200 27 'M &

Figure 7. VAPS Object Editor Plug Connections and Channel File

26

to communicate with an outside application, as accomplished in this research effort.

After all of the appropriate plugs have been connected, the designer develops a finite

state machine that describes the state of the interface at any given moment throughout the

lifecycle of the display. Put simply, should the display have several different modes (which

VAPS calls "frames"), the state machine definition will determine which frame to display.

Changes of state are defined within a small program, written in C or C++, and are based

on a conditional check, which is determined by the designer. For this research, the two

displays developed, the Attitude Director Indicator (ADI) and Horizontal Situation

Indicator (HSI), have only one operational frame. A state machine definition is used to

initialize some portions of the display. For example, with the ADI, the state definition

initialized a variable defining the time of day. This variable controls certain colors that are

loaded when the display is executed.

With the state machine defined, the designer uses the VAPS Runtime Environment

(RE) to analyze and test the display. The RE allows the designer to open and run the

display. Testing and analysis can be accomplished at this level to determine that the

display looks properly, contains the appropriate data types, and interacts properly among

its elements (i.e. the potentiometer in Figures 6 and 7 causes the dial to rotate properly).

So far, VAPS has been discussed in a stand-alone mode of operation without

interaction with outside applications like a cockpit simulation. The displays for this

research effort demand data from an aircraft simulation environment. In order to

accomplish this, VAPS provides the above mentioned channel file and several

communications subroutines. A small application written in C or C++ can pass data

27

through the channel file to the VAPS objects. Any consumer plugs connected to that

channel file member will read the data and update accordingly. Seen in Figure 8, a VAPS

object can be driven with another VAPS object or with a simulation system.

For example, instead of using the potentiometer to drive the dial (Method 1 in

Figure 8), a C++ application could be written to send data to the appropriate channel file

variable consumed by the dial (Method 2 in Figure 8). The C++ application acts as the

simulation and produces data, which is sent to the channel file. The dial can consume the

data from the same channel location as before. Using this capability, the display can be

immersed in a cockpit simulation environment reflecting appropriate aircraft data.

Method 1: VAPS ^ VAPS

VAPS Object
L (i.e. potentaoilaeter)

producer
>

f CHANNEL FILE ^

Memberl Float
Member2 Short
Member3 Double
Member4 Float
Member5 Float
Member6 Float

VAPS Object

Method 2: Simulation ** VAPS

C++
mwmmmBMm
Application

"mm
producer

f CHANNEL FILE ^

Memberl Float
Member2 Short
Member3 Double
Member4 Float
Member5 Float
Member6 Float

VAPS Object

Figure 8. Driving a VAPS Object with another
VAPS object or with a C++ Application

28

2.5 SCS Engineering's Display Editor

In 1997, the Advanced Architecture and Integration Branch awarded a Small

Business Innovative Research contract to SCS Engineering, Inc. out of Los Angeles, CA.

Under this contract, SCS Engineering would provide several software and hardware

simulation packages. The primary focus of the contract was to replace the legacy

simulation host in the Advanced Architecture and Integration Branch's simulation facility.

In addition to this replacement, the contract called for SCS Engineering to deliver several

Windows NT-based simulation stations under the name Reconfigurable Avionics

Modeling and Simulation System. These simulation stations run real-time aerodynamic

models for the A-7, F-15, and C-130 created by SCS Engineering, Inc. under a Small

Business Innovative Research (SBIR) contract.

As part of the final delivery, SCS Engineering was contracted to deliver a cockpit

display development tool. Display Editor was the result of this contract requirement.

Due to the timing of the contract, the Display Editor toolset has not yet been released to

the public and remains in Beta testing. The toolset is designed to use a point-and-click

window-based environment as seen in Figure 9. Currently, the display designer develops a

display using the windowed environment of Figure 9. Once all display objects and text are

created, the display is saved in its graphical format and run through a code generator

provided with the Display Editor toolset. The code generator creates a file (*.ogl file)

with OpenGL definitions for all objects and text within the created display. A sample

display generated by the Display Editor toolset is seen in Figure 10.

29

File Edit View Afgn Optiora About Display Editor

r^. 1 \| Dlcil | C|o| 1 =|D|D| 1 A|Q|

r\Ä±'.A±}fl<\<\As&A4*yis\

*J?^IHc*l
fi i»M <H**|*|j*i *|«»|f»|»»|j»|»»!^|^|
DlölSl | || |f| R|#| III | ,|,|-| ■

\
i \

\ i ! w
SI-1PLE DIfiL

iRcadji

Figure 9. Display Editor sample display of a simple dial.

&DP0002(LeftSMFD) BSE3f

100 dtöö

M* 6fi"®OTY

"Fli^T

Figure 10. Stores-Management Display Created with Display Editor

30

Once the code has been generated, the display designer has one of two options. They

could define the dynamics of the display themselves by hand-coding them using OpenGL

bindings or they could send the OpenGL file to SCS Engineering for dynamic definition,

providing a detailed description of the animation of the display as well. As mentioned

above, this is the current configuration of the Display Editor toolset. Future versions may

allow the display designer to develop the display and define its dynamic functionality using

the point-and-click windowed environment.

31

HI. Experimental Approach

3.0 Introduction

The approach taken for this research was briefly introduced in Chapter 1. This

chapter goes into more detail about the approach, giving an in-depth description of each

phase of research. This research effort will not attempt to determine which of the

development toolsets is better. Instead, this research focuses on the evaluation techniques

of cockpit display development software and the displays built using OpenGL, VAPS, and

Display Editor. As introduced in Chapter 1, there are 5 primary phases for this research.

I. Develop cockpit display requirements and standards.
II. Design and develop the two cockpit displays, the Attitude Director

Indicator (ADI) and the Horizontal Situation Indicator (HSI) using
OpenGL, VAPS, and Display Editor.

DU. Immerse cockpit displays (ADI and HSI) in a simulation environment
ensuring display requirements and standards are met including any
real-time performance requirements.

IV. Perform analysis of development tools determining advantages and
disadvantages of each using subjective and objective evaluation
techniques.

V. Test resulting displays across several hardware platforms.

The last two phases are the critical part of this research. The first three phases must be

accomplished in order to perform the last two. Each phase builds on the previous one,

culminating with the final analysis and platform testing. The resulting analysis will help

engineers make better decisions about hardware and software purchases for their cockpit

simulation environments. The next six sections go into greater detail about each of the

phases of research with the final section acting as a summary.

32

3.1 Developing Display Requirements and Standards.

Developing display requirements and standards can be extremely time consuming.

For a typical operational aircraft, like the F-22 Raptor, standards development may take

months or even years to accomplish. However, U.S. Air Force engineers and aircraft

contracting firms have already accomplished the standards and requirements development

work for this research. Briefly mentioned in Chapter 1, the cockpit displays used in this

research effort come from the cockpit design of the F-22 fighter being developed by

Lockheed-Martin and Boeing [4]. For the past several years, these two companies have

been researching all aspects of the aircraft including the cockpit layout and displays. The

exact look and feel of each display has gone through several cycles of design.

This research effort uses the F-22 Air Vehicle Cockpit Design Description

Document dated July 1996 [4]. This document, coupled with several appendices,

describes the exact location, dynamic motion, and appearance of object and symbols

within each cockpit display. For example, Figure 11 contains a detailed textual description

of the pitch lines for the Attitude Director Indicator (ADI) as described in the F-22 Air

Vehicle Cockpit Design Description Document.

In addition to the textual description, each display has a related appendix that goes

into pixel-by-pixel descriptions of the symbology located on that display. Figure 12 shows

the graphical description that goes along with the textual description seen in

33

Figure 11. For this research effort, the requirements and standards development was

simple because the personnel at Lockheed-Martin and Boeing had already accomplished

this work.

5PPYA013-01D
July 1.996

10.2.3 Pitch Ladrlar
[CKPT-AI«3OO-BI] The pitch ladder consists of the following: attitude bars, -2.5

degree dive bar, horizon line, ghost horizon line, and.zenith and nadir markers.
A color earth/sky background is also shown.

The pitch ladder is referenced to the waterline symbol. The pitch ladder
rotates and translates about the fixed waterline symbol to depict aircraft pitch
angle and aircraft bank angle. The pitch ladder represents a 360 degree
cylinder centered around the aircraft, and the attitude range of the ADI Display
is an instantaneous field of view of 45 degrees of this 360 degree pitch ladder.
The pitch ladder is drawn with a linear separation of attitude bars. Perspective
or spacing compression and expansion are not depicted.

Figure 11. ADI Pitch Line Textual Description [4:Section 10]

14 qd high
50 qd long

9qdx13qdfont
(0.16")

l20"

9qdx13qdfont rrr-
(0.16") 'JX>

I

All Lines are 2 qd thick

65 qd long
114 qd high

1

70 qd space
1

t

68 qd
space

Figure 12. ADI Pitch Line Graphical Description [4:Appendix A]

34

3.2 Designing and Building Displays.

Designing and building the displays is fairly straightforward. Initially, all of the

development toolsets have some sort of learning curve. This learning curve is influenced

by user experience with cockpit displays, software programming experience, or general

software background. Through the course of the research, the learning curve was

quantified to determine the learning curve for each development toolset. Since two

displays were designed with each development toolset, it makes sense that the second

display will be somewhat easier to accomplish since the user has some experience with the

tool and is more familiar with its capabilities. Nonetheless, the development times were

measured for both displays in each development environment to analyze objective timing

characteristics. When developing the displays using the three development tools, the same

set of standards was followed for each display as discussed in Section 3.1. This ensured

that each display had the same starting point and required functionality.

3.3 Immersing Displays in Simulation Environment.

After the displays are developed, they are embedded in a simulation environment

to ensure that the initial display requirements and standards are met. In some cases, this

phase can be time consuming. For example, one particular development tool may not be

able to meet a requirement or standard for a display, such as an update rate requirement.

Trade-offs must be made in these cases. The display designer can opt to use another

development tool, which may incur high penalties in both time and money, or the

requirement in question can be changed, modified, or simply ignored. For this research

35

effort, no trade-offs were required as each development toolset was able to meet or

exceed display requirements and standards.

Embedding the displays into a real-time simulation environment requires a sound

simulation environment. For this research effort, the Re-configurable Avionics Modeling

and Simulation System (RAMSS) is used. RAMSS uses a core tool set to simulate

particular aircraft flight models in real-time. Currently, SIMP AC contains the

aerodynamic flight models for the C-130, F-15, and A-7 aircraft. The RAMSS simulation

system runs in the Microsoft Windows NT environment using SIMP AC models written in

C and C++. The SIMP AC models also provide simple subroutines for embedding outside

applications into the RAMSS simulation environment. These subroutines allow an

application to register variable names with the SIMP AC models. These variables are used

to retrieve aircraft flight information necessary to update the cockpit displays.

Using the provided SIMP AC subroutines, the appropriate data is obtained. The

data is then converted to the proper format required by the particular display. For

example, consider the Attitude Director Indicator (ADI), which dynamically moves

according to aircraft roll. The actual aircraft model in SIMP AC uses units of radians

while the OpenGL developed ADI uses units of degrees. The aircraft roll must be

converted from radians into degrees for the OpenGL ADI to operate correctly.

At this point, the display is fully integrated with the simulation and is tested.

Display testing occurs in three formats. First, the displays are tested for proper look and

feel. This means that the ADI and HIS developed should look similar to the ADI and HIS

as depicted in the F-22 Air Vehicle Cockpit Design Description Document. The displays

36

should be executed sufficiently to test the entire range of motion of the displays ensuring

that they behave as expected.

Next, the displays are examined in detail ensuring that the display characteristics

match the requirements outlined in the F-22 Air Vehicle Cockpit Design Description

Document. This part of the testing checks colors, locations, and sizes of various objects

within the display. Small items that may have been overlooked can be extremely costly at

this stage in development. As an example, consider a display that is required to be sized at

640x480. All of the display standards are based on the pixel locations on the 640x480

display. If the display is developed using a 600x400 format, every object within the scene

will be placed according to the 600x400 window, which is incorrect. The display would

have to be redesigned in the correct 640x480 format, changing the location of all objects

within the scene. It is simple things like display size that can be overlooked in display

development costing significant delays and costs.

The final phase of testing ensures that the displays operate correctly. As discussed

above, this entails converting data into the proper formats expected by the display.

Furthermore, this part of the testing ensures that the dynamic movement of the display is

correct. For example, the heading of the aircraft must be correctly represented on the HSI

during flight. If the HSI rotates clockwise instead of counter-clockwise with increasing

aircraft heading, a simple sign error has occurred. These types of tests ensure correct

operation of the display. This final testing phase also ensures that real-time performance

requirements are also met. Recall that Chapter 1 defined real-time performance as a

minimum update rate of 16Hz with a desired update rate of 30Hz. The reason behind the

37

minimum of 16Hz is quite simple; the human eye can detect anything less than the 16Hz

refresh rate as a jitter or delay in the display [3:1]. Each display contains a small amount

of code (5 lines in C++) that calculates the display update rate. This data is output to the

screen of each display so that the update rate can be measured and recorded. Both the

ADI and HSI must run in real-time. If the display cannot run in real-time, it is modified to

do so. Modifications may include using display lists (an OpenGL and Display Editor

feature) or removing antialiasing algorithms (a feature in all three development toolsets).

Display modifications for this research effort were not required as the ADI and HSI

developed using the three development tools exceeded both the minimum 16Hz

requirement and the desired 30Hz update rate.

3.4 Analyzing Development Toolsets Using Evaluation Techniques.

Throughout the development lifecycle, each of the displays has information and

data recorded about the toolset used for its development. The data obtained are results

from evaluation techniques discussed in Chapter 5. These techniques evaluate both

subjective and objective criteria of the development toolsets. In addition to evaluating the

development tools, the displays themselves are also evaluated for performance

characteristics. Since the development process is largely subjective in nature, it is

important to quantify the subjective characteristics of the development process. A series

of questionnaires with weighted answers are used to quantify subjective criteria for each

development tool. These criteria include learning curve, readability, user-interface, and

maintenance. In addition, objective data is gathered from each developed display such as

38

refresh rate, executable size, and development time. All of the data collected is used in an

in-depth analysis to determine the advantages, disadvantages, and performance

characteristics of each development toolset.

3.5 Executing Displays Across Different Hardware Configurations.

In a second experiment, each display is executed on several hardware

configurations. This allows further characterization of the development toolsets and the

displays created using them. Table 1 below shows the three hardware configurations used

to test each of the displays generated using OpenGL, VAPS, and Display Editor.

Each configuration has unique characteristics that will test the individual displays

developed using OpenGL, VAPS, or Display Editor. For instance, the HP Kayak machine

has an OpenGL accelerated graphics processor that enables applications (i.e. displays)

using OpenGL graphics bindings to perform better. The hardware platforms also vary in

memory and CPU processing power. One might assume that the HP Kayak

Table 1. Three Hardware Configurations for Display Execution

Pentium
200-MHz

64MB ATI Rage
Pro Turbo

8MB
$2400
(1997)

HP Server
Dual Pentium

333-MHz
256MB

ATI Rage
Pro Turbo

8MB
$4500
(1998)

HP Kayak
Dual Pentium

500-MHz
400MB

HPFX-6
Video

18MB
$12500
(1999)

39

performs better than the other machine based on sheer processing power, which may be a

correct assumption, but this is not always the key to good performance. If the graphics

cards were to be switched out between the Kayak and the Micron it is possible that the

Micron would outperform the HP Kayak running certain OpenGL-based applications.

This is especially true since the ATI graphics cards on the Micron and HP Server do not

have OpenGL acceleration hardware on board its graphics processor.

The update rates are taken for each display running in each configuration. The

display update rate measurement is then used to characterize dependencies on certain

hardware devices (i.e. amount of memory, processing power, type of graphics board, etc.).

Chapter 5 goes into more detail about this experiment.

3.6 Summary

The results of the evaluation techniques discussed above and an analysis of these

results are presented in Chapter 6 with conclusions following in Chapter 7. The analysis

covers the advantages, disadvantages, and characteristics of each display and development

toolset. This research effort centers on this analysis providing engineers with critical

information concerning the different development toolsets, such as development lifecycle,

advantages, disadvantages, characteristics, and most importantly, cost. It is not meant to

determine which development environment is better, but instead, to help cockpit display

engineers make better decisions concerning hardware and software purchases for their

simulation facilities.

40

IV. Display Development Methodology

4.0 Introduction

Section 3.2 briefly touched on the development of the displays. This chapter goes

into greater detail about the design and development of the displays, the Attitude Director

Indicator (ADI) and the Horizontal Situation Indicator (HSI). The two displays are

designed using a linear sequential design model. Although this design process is directed

specifically at these two cockpit displays, it could be applied to any human-machine

interface type display development or, even more generally, to any software development

project. The linear sequential model is modeled after the conventional engineering cycle.

In fact, according to Roger Pressman in his book, Software Engineering: A Practitioner's

Approach, the linear sequential model is the most widely used paradigm for software

engineering. There are five activities in the linear sequential model. The five design

activities are described in Table 2.

In general practice, the development phases in Table 2 should be accomplished in

the order presented. It is typical in most software development environments that certain

phases be revisited to clarify problems and resolve issues discovered in later phases.

Table 2. Five Phases of Linear Sequential Model

Requirements Analysis Function, Behavior, Performance, and Interfacing
Design Structure, Architecture, Interface, Algorithm
Code Generation Convert design description into machine code-
Testing Statements, Externals, Results
Maintenance Changes, Upgrades, etc.

41

4.1 Requirements Analysis

In software engineering projects the requirements analysis phase determines the

function, behavior, performance, and interfacing requirements for the software to be

developed. With this in mind, the engineer (analyst) must be familiar with the information

domain of the software project. For this research, the information domain is aircraft

cockpit design and layout. When dealing specifically with Department of Defense

weapons system, the requirements analysis phase can be extremely time consuming, as the

typical production cycle on weapon systems is 8-15 years [4].

For cockpit displays, requirements analysis describes the low-level details including

such items as the size of objects, size of fonts, object colors and overall display size. The

requirements analysis phase focuses on two main classes of display characteristics, static

and dynamic. The static display characteristics represent the "look" of the display. These

characteristics include font type, font size(s), object colors, object sizes, object spacing,

scene size, etc. The dynamic display characteristics represent the "function" of the

display. These characteristics include animation requirements, re-configurable

information, warning lights, etc. There are also certain objects and messages that must

appear at critical times during flight. For example, on the ADI display, a -2.5° pitch line

must appear when the aircraft is accomplishing a landing or approach [4:Appendix A]. As

another example, warnings are required when the altitude or airspeed is low. These static

and dynamic display characteristics comprise the requirements analysis phase of the

display design process.

42

As discussed in Chapter 3, the development team at Lockheed-Martin and Boeing

has already accomplished the requirements analysis for the displays in this research. This

standards document, titled F-22 Air Vehicle Cockpit Design Description Document -

1187B, is dated July 1996 [4]. This document fully details the design, layout, and function

of every display to be used in the F-22 Raptor cockpit. The main document describes the

dynamic functionality of the cockpit displays using textual descriptions while several

appendices describe the "look" of the displays using pixel-by-pixel descriptions of display

symbology.

4.2 Design Phase

With the requirements document in hand, the design phase begins. This phase

centers on three attributes of the software program: data structure, software architecture,

and interface representations [11:31]. Since this effort uses three distinct development

environments, there are three separate design phases, one for each development toolset.

The OpenGL graphics package allows the designer great flexibility in deciding on

data structures, architecture, and interfacing. For example, OpenGL contains a data

structure called a display list. This data structure allows for a large number x>f graphical

object definitions to be stored in a list. They need only be defined once and can be

executed multiple times. For instance, since the structure of the ADI pitch ladder never

changes (only its location), a display list is used, increasing performance of the OpenGL-

based ADI. The architecture used for the OpenGL displays is structural in nature in that

they are self-contained in a single compilation unit. The main routine calls a display

43

subroutine, which in turn calls functions that update the dynamic characteristics of the

display. The display is packaged in a single structure encapsulating both data and the

processing that manipulates the data. As far as interfacing for the OpenGL displays, the

use of include-files and libraries enables a connection to the appropriate RAMSS

simulation variables (see Section 3.3) allowing simulated aircraft data to be sent to the

displays.

The VAPS development environment is windowed allowing the display designer to

use the point-and-click graphical user interface (GUI) to create the display. While the

display designer has control over the interface, the VAPS software controls the data

structures, architecture, and interfaces. The VAPS interfaces for this research use the

C++ programming language and a C++ data structure called a "struct". The struct is a

record-style structure that contains large amounts of heterogeneous information in a single

data structure. By using this structure, a one-to-one mapping with variables in the VAPS

channel file is achieved. The VAPS interface file is small (-150 lines of code) with one

main loop continually sending data through the VAPS channel file to the VAPS display.

Like the OpenGL interface, VAPS uses necessary include-files and libraries to connect

RAMSS simulation variables to corresponding variables in the VAPS channel file (through

the record data structure).

The Display Editor development toolset combines the function of both OpenGL

and VAPS. Using a point-and-click window, the display designer creates the display by

drawing primitives much like the VAPS toolset. Once drawn, the generated code is

modified to provide for dynamic motion, similar to the OpenGL toolset. In fact, the code

44

generated by Display Editor uses OpenGL graphics functions and libraries making it fully

OpenGL compatible. Display Editor uses the same data structures as OpenGL, making

use of OpenGL display lists as well as C++ array and record structures. Display Editor

uses an Object Oriented architecture encapsulating the data with the functions that

manipulate the data. Finally, Display Editor uses the same interfacing schemes as VAPS

and OpenGL, using the appropriate include-files and libraries to connect to the RAMSS

simulation variables.

It is important to note at this point that the design phase does not involve any

software coding. The above discussions reveal the decisions made in the design phase

concerning the different data structures, architectures, and interfacing schemes used for

this research effort. In practice, certain aspects of the design phase may be revisited for

errors, future upgrades, or general maintenance. The following phase, the code generation

phase, is concerned with converting the design decisions, in coordination with the

requirements analysis document, into machine-readable code.

4.3 Code Generation Phase

The code-generation phase for the displays uses the requirements and standards

document and results from the design phase. At this stage, OpenGL, VAPS, and Display

Editor begin to show major differences.

In many software engineering ventures, the code-generation phase can be

automated, provided the requirements analysis and design phases are performed in a

detailed manner. For this research, both VAPS and Display Editor take advantage of

45

automated code-generation. As discussed before, the VAPS toolset uses a point-and-

click, windowed environment. Once the display is drawn, dynamics defined, and the

channel file developed, the VAPS display can be sent through a code generator. This code

generator produces a C++ executable application. As seen in the design phase discussion

above, a separate interface application is also required in order for an outside application

(the RAMSS SIMP AC models) to communicate with the VAPS display. This interface,

written in C++, uses the necessary include-files and data structures decided upon in the

design phase.

Display Editor also uses automated code-generation techniques. The contract

under which Display Editor is being developed demands OpenGL compliance. With this

in mind, SCS Engineering developed a toolset that uses a code generator to generate

OpenGL code using C++ bindings. Using a similar point-and-click windowed

environment the display is drawn and the code generated from the drawing. The

generated code contains no dynamic OpenGL definitions, only primitive OpenGL object

definitions. The display designer must then add the dynamics and interfacing schemes to

the generated code. A slight difference between Display Editor and VAPS is that the

interface and dynamic definitions can be integrated with the generated code without

building a second interface application.

The OpenGL toolset has perhaps the simplest yet most time consuming form of

code generation. Displays developed using OpenGL are hand-coded. This research uses

the OpenGL bindings for C++ running in a Microsoft Windows NT environment. Armed

with the requirements analysis document and design phase decisions, the display designer

46

hand-codes the display, creating the primitive objects, dynamic definition, and interface all

in a single phase of code generation. Building an application by hand can be time

consuming, and even more so given the requirement of OpenGL bindings and the detail of

cockpit displays.

4.4 Testing Phase

Once the code has been generated, the testing phase begins. This portion of the

linear sequential model focuses on a line-by-line test of each coded program. In addition,

this phase tests the basic functionality of each program ensuring that defined input

produces results that are expected. For each of the displays, a line-by-line test would be

extremely time consuming, especially in terms of the volume of the generated code for the

displays developed in VAPS and Display Editor. Instead, a test method is developed for

each display that sends test data to the display to exercise the code, while at the same time

testing the display's functionality.

Since both the OpenGL and the Display Editor displays use OpenGL functions,

the test routines are also based on OpenGL. For example, OpenGL provides a keyboard

function that allows a key on the keyboard to be defined for some functionality. For the

OpenGL based displays the keyboard function used the keys on the number pad to define

such things as pitch and roll for the Attitude Director Indicator (ADI) displays. In

addition, the OpenGL mouse function was used to define a pop-up menu to allow for

switching between modes for the displays. On the ADI displays, the pop-up menu allows

the display to be switched from day to night mode, changing the colors used on the

47

displays. In this manner, the OpenGL and Display Editor displays were tested for

functionality as well as program correctness.

Testing for the VAPS displays is simpler than for the OpenGL and Display Editor

displays. Since the interface application simply takes input data from the RAMSS

simulation, converts the data, and then sends it on to the display, a test routine is defined

that replaces the simulation. The test routine simply increased and decreased values for

the variables to be sent to the displays to test the full range of values. Running the

interface with the test routine and the VAPS display allows the interface and display to be

tested for functionality and correctness.

4.5 Maintenance Phase

Software will inevitably go through changes following delivery to the user. If

errors are found, the functionality of the software must be changed to adapt to some new

environment, or the user may want to upgrade hardware or software to boost

performance. The maintenance phase is a continual execution of the previous phases of

the linear sequential model. A change or upgrade must go through requirements analysis,

design, code-generation, and testing, although it is typically small in scale compared to a

completely new software application.

For this research effort, the maintenance phase can only be assessed within the

limited amount of time provided for research. The evaluation techniques (discussed in

Chapter 5) reveal how the maintainability of the software can be quantified and evaluated

to a limited degree. For the OpenGL and Display Editor displays, changes or upgrades

48

for maintenance reasons are typically more time consuming, as the changes must be hand-

coded. With the VAPS displays, any upgrades or changes can simply be made in the

point-and-click window environment, taking significantly less time. The VAPS changes,

however, must also be reflected in the channel file and the interface application.

4.6 The Displays

Six crewstation displays were designed and developed following the Linear Design

Model outlined above. An Attitude Director Indicator (ADI) and a Horizontal Situation

Indicator (HSI) were designed using OpenGL, VAPS, and Display Editor. As discussed

above in the requirements analysis, the same F-22 documentation and military standard,

F-22 Air Vehicle Cockpit Design Description Document - 1187B, guided the design

assuring a consistent design and display format.

The OpenGL displays were hand-coded. Functions provided by the OpenGL

graphics libraries and the GL Utility Toolkit (GLUT Version 1.2) were used to create the

proper display formats and dynamic animation. All necessary files for the OpenGL

displays were obtained through the Silicon Graphics website (http://www.sgi.com). The

OpenGL developed ADI and HSI are shown below in Figures 13 and 14.

49

1 ••'! C:\Gebhardt\OpenGL_ADI\Debuq\OpenGL ADI.exe M-loixl
U1V

1

:

I 4 35 36 01
1

o 1
Jk

i

no I

m ILS
000 1 HI II 1

11 II 00000

ooo v

 1

V V

L

V

1 ■.
«

Pllls««llK§sf§lsP*i ^il!liiy^%l^llli^lll:-'
«?S 0000

M 0.00 -U> 1 I
— '— -V

W 00000

AOA 0.0
00000 LAW

!^^^^^^^^^^^

-20^. , J

I

L

S^^^^^^^^^^^B ,--' I
"^ ■■*

"*,$

Figure 13. OpenGL hand-coded Attitude Director Indicator

50

> Horizontal Situation Indicator

360/ 0BE00
360/ 0
WINDOÖÖ/ÖÖ

F15
082/52
25.4
0-SM
-125 Vc
7R/152 5S.2Hr

2 118/17.8
TDF 218/17.5

Figure 14. OpenGL hand-coded Horizontal Situation Indicator

The OpenGL and GLUT libraries provided all necessary functionality to meet the

display requirements established by the F-22 Development team at Lockheed and Boeing.

Although the Advanced Architecture and Integration Branch's simulation system does not

51

currently use all of the display objects and capabilities, the necessary functionality is in

place for future crewstation integration.

The VAPS software licenses (version 5.1) were obtained through Virtual

Prototypes, Inc. (VPI) with all the necessary functionality included in the package. Again

using the Linear Sequential Model, the two displays were developed. Seen in Figures 15

and 16, the ADI and HSI look very similar to the displays built using OpenGL.

1 ' mg adi BSE3
Die

iBlBlä
'S0 35

1 1

llljlllllllllllliiiiiiiiii

36 ei 'e
llllli

llllli

110 1
eeo

000 03000 1 wm.mm:m^mm
* i *

IKTirlffl **■*
>

• 1 • m

""""""'IBlBlffl&»»»&m
> » -<*>— — aaaaan

* •

n 0.00
*......•>>••' I - yy O

«

& <?.0
flOrt 0.0

0.00 -19 '

^^^^^^^^^BIB HHH ■■NH ̂̂ ^^^^^^^;^^^^^^

tte\" -20 ' MH
Figure 15. VAPS developed Attitude Director Indicator

52

i mg_hsi
File

^000/00B03E80
! 080/8000

BE Eif

Figure 16. VAPS developed Horizontal Situation Indicator

The most significant issue to come out of the VAPS development process dealt with

creation of display executables. VAPS companion package, the C-Code Generator

(CCG), required numerous phone calls to the technical support staff at VPI to correct

minor undocumented problems with configuration and support file requirements. As with

the OpenGL displays, all functionality is provided by the displays even though some of the

53

objects and capabilities will not be used in the Advanced Architecture and Integration

Branch's simulation system.

Finally, the Display Editor software licenses were provided through a Small

Business Innovative Research (SBIR) contract between SCS Engineering, Inc and the

Advanced Architecture and Integration Branch. In its present state, the Display Editor

toolset requires both a graphical automatic code generation interface and manual software

programmer interface to develop the displays. These displays were developed through the

Advanced Architecture and Integration Branch's SBIR contract with SCS Engineering,

Inc. The staff at SCS Engineering, Inc., while not participating in the actual drawing of

the displays, played an important part in dynamic display animation. For example, due to

its immaturity, the Display Editor tool did not have the functionality required to define the

Attitude Director pitch ladder. The solution was to send the drawn ADI display to the

staff at SCS and have them engineer the pitch ladder manually using OpenGL. The

resulting development times discussed later in Chapter 5 reveal this immaturity problem.

The Display Editor displays are shown in Figures 17 and 18.

The Display Editor tool is in its early stages of development and this research

revealed some problems that will be corrected with future versions. However, the current

version contains enough functionality to build the required capabilities for the two

displays.

54

Ä-DP0001 (PMFD)

Figure 17. Display Editor developed Attitude Director Indicator

55

Figure 18. Display Editor developed Horizontal Situation Indicator

56

V. Display Development Evaluation Techniques

5.0 Introduction to the Two Experiments

This research effort focuses on an in-depth comparative analysis of the three

cockpit display development tools; OpenGL, VAPS, and Display Editor. In order to

accomplish a thorough analysis, two experiments are accomplished. These experiments

were briefly introduced in Chapter 3. This chapter goes into detail about the two

experiments and how they are conducted.

The two experiments form a foundation for the analysis of the three development

tools. The first experiment examines both subjective and objective criteria for the cockpit

display development lifecycle, while the second focuses on the performance characteristics

of the developed displays. As discussed in Chapter 3 and Chapter 4, every cockpit display

goes through an initial requirement phase establishing the dynamic definition and

characteristics of the display. The two experiments examine how VAPS, Display Editor,

and OpenGL implement these characteristics as well as how the displays perform.

Chapter 4 discussed the development and design of the displays using the three

development toolsets. The first experiment gathers data throughout the display

development process. The goal of this experiment is to gather both subjective and

objective data for use in the analysis of the three development tools. Understandably,

subjective criteria cannot be easily measured or quantified. In order to quantify certain

subjective criteria about each development toolset, a set of questionnaires is generated.

The questions within each questionnaire contain weighted answers about key subjective

57

criteria such as learning curve, user interface, extensibility, portability, and readability.

Once complete, each question within the questionnaire is answered and given an

appropriate weight quantifying a particular subjective criterion for the development

toolset. Objective data is also collected for the first experiment to include criteria such as

tool cost, man-hours for development, executable size, update rates, CPU usage, and

memory usage. Together, the subjective and objective data gathered for each toolset form

a foundation for analyzing the effectiveness of the display development toolset as

discussed in Chapter 6.

The second experiment examines the displays after the development lifecycle is

complete. Data gathered for this second experiment is objective in nature. The cockpit

displays are executed on the three hardware configurations of Table 1 in Chapter 3. The

display update rates for each cockpit display, running in each configuration, are measured

and recorded. An analysis of the data, accomplished in Chapter 6, shows the hardware

performance characteristics and dependencies of the development toolsets.

The analysis of the data gathered in these two experiments reveals advantages,

disadvantages, and performance characteristics of the three development toolsets. Display

engineers can perform cost-benefit analyses for any cockpit display development software

using the questionnaires developed for the first experiment. The analysis and results also

provide key information about hardware configurations that best suit each of the

development tools. The analysis reveals the advantages, disadvantages, and performance

characteristics of the development toolsets. An engineer may accept certain disadvantages

of a development toolset in order to capitalize on specific advantages.

58

5.1 Display Development Experiment

As discussed previously, data gathered from this experiment is both subjective and

objective in nature. Subjective data is gathered in the form of weighted answers to several

questionnaires about key subjective criteria pertaining to the development lifecycle for

each toolset. The objective data is simply measured and recorded. This experiment

examines the effectiveness of each development toolset in meeting the requirements set

forth in the F-22 standards document.

Subjective criteria like tool learning curve, user interface, readability, extensibility,

and maintainability are examined throughout display development. The objective criteria

examined include development time, executable size, CPU usage, and memory usage.

Learning curve and user interface are primarily user requirements while other subjective

criteria are display requirements.

The questions developed for each individual subjective criterion questionnaire

come from several different sources. These sources include personal experience and the

personnel at the Advanced Architecture and Integration Branch and SCS Engineering.

The personnel at the Advanced Architecture and Integration are highly educated and

experienced in matters dealing with aircraft development, especially in the department of

aircraft and cockpit simulation. Lastly, sources such as Roger Pressman's book, Software

Engineering: A Practitioner's Approach, and its detailed discussions about function points,

provide an excellent source for criteria-based questions.

59

The data gathered from these subjective questionnaires and objective

measurements are used in the analysis to determine the advantages and disadvantages of

the OpenGL, VAPS, and Display Editor development environments. The results and

analysis of the data gathering are presented in Chapter 6, while conclusions from the

analysis follow in Chapter 7. The following sections go into greater detail about the

subjective and objective criteria and how each will be tested, quantified, or recorded.

Included with each criterion explanation is a table of the quantifying questions to be asked

about each development tool.

5.1.1 Development Tool Learning Curve

The learning curve of a software development tool can be one of the most

significant parts of a decision to use a particular tool. In fact, quantifying the learning

curve can be extremely difficult because it has many influences such as level of

programming experience, general code knowledge, general software background, online

help, and availability of examples. This is a difficult subjective criterion to quantify, but

also one of the most important. For this research, quantifying the learning curve is

accomplished through a series of questions about the influences on the learning curve.

Table 3 shows the 12 questions chosen to quantify the learning curve for each

development toolset.

60

Table 3. Learning Curve Questionnaire

W0: llPl: i3^: l^liSiS^
'iglitcd Ans«
-worst :>-be 9

IHi Is a user's manual/documentation available? 0 12 3 4 5
2
3
4

Is the documentation understandable? 0 12 3 4 5
Are examples included in software deliverable? 0 12 3 4 5
Are examples available elsewhere (i.e. web)? 0 12 3 4 5

jäl Are examples complete and well documented? 0 12 3 4 5
IpÖ Are courses available for the toolset? 0 12 3 4 5
HI Does analyst/designer have display experience? 0 12 3 4 5

Does analysts/designer have coding experience? 0 12 3 4 5
V Is knowledge of coding NOT needed? 0 12 3 4 5

pM Do Industry leaders use the development tool? 0 12 3 4 5
litlJ Is the software specialized or general? 0 12 3 4 5

12 Is help available online? 0 12 3 4 5
Is help available through software producer? 0 12 3 4 5

§ .i-i^'%\^äriv-: ■•""■''?"•?■' *-""'^«v"- ■ r-. SJBSS

These questions about such learning curve influences as experience, background,

documentation/users manual, courses available, examples available, tool specialization

level, and use in industry, are asked to quantify the influences on the learning curve for

each development tool. By asking questions about the influences on learning, one can

analyze the learning curve itself. One significant influence that is not included in Table 3 is

the user interface. The user interface is such an integral part of today's software

development tools that it has its own separate category for this experiment.

Documentation included with a software tool often has a great influence on the

learning curve. While some software development tools provide a hardcopy of a user's

manual, others provide the user's manual online. The ability to read and understand that

user's manual is important, especially if some feature of the tool is difficult to understand

61

or implement without it. In addition to the user's manual, another significant issue is the

availability of examples. Some software packages include examples with the software

deliverable, while others provide examples elsewhere, like the World Wide Web or

through additional software purchases. The extent of these examples contributes to ones

ability to learn the tool. OpenGL, for instance, has countless examples located throughout

the Internet. This is a testament, not only to OpenGL's broad use, but its breadth of

applicability. Finally, technical support and staff knowledge of common problems or

mistakes can make or break the effectiveness of the development tool.

5.1.2 Development Tool User Interface

Typically in today's software environment, the user interface is the most important

part of a software tool, playing a significant role in the learning curve. For this reason, the

user interface is a separate subjective criterion for this experiment. The questions in this

category (Table 4) are concerned with the extent of the user interface, understandability,

and the documentation included about the interface. One primary problem with software

tools is that they have very well thought-out user interfaces, but they fail to include the

appropriate documentation to help the user understand the functionality of the interface.

A software tool with a graphical user interface (GUI) can have great benefits to a

user. The tool can be extremely powerful while making it fairly simple for someone to

use. In the cockpit display environment, the graphical drawing of the objects for the

display is extremely helpful. Being able to draw a circle, square, triangle, etc. and even

62

Table 4. User Interface Questionnaire

Is the user interface graphical (GUI)? 0 12 3 4 5
Does tool contain standard graphical shapes (i.e.
circles, squares, etc.)?

0 12 3 4 5

Are tool bars for color, size, shape, etc. available? 0 12 3 4 5
Is there an object library (i.e. dials, tapes, etc.)? 0 12 3 4 5
Can projects be saved in graphical format? 0 12 3 4 5
Is there an online help engine? 0 12 3 4 5
Does the help engine provide examples? 0 12 3 4 5

color the objects using a point-and-click environment can lower the display development

time significantly.

Furthermore, the availability of an object library within the tool (library of defined

objects like dials, switches or lights, for example) can also help the user in developing

cockpit displays. Finally, the display designer benefits from the availability of a help

engine when problems are encountered or they don't quite understand a feature of the

interface or how to take advantage of it.

5.1.3 Display Readability

Readability is an essential requirement for cockpit displays. The pilot must be able

to quickly and easily read the information presented on the display. The choice of font(s),

font size(s), and the width and length of lines can be critical to readability. Since most

displays are dynamic in nature, the fonts, lines, objects, and entire scenes will rotate and

translate according to the dynamic definitions of the given display. For this reason, the F-

22 cockpit displays require the use of antialiasing for lines, polygons, and fonts.

63

Antialiasing can greatly reduce the jagged edges seen in a graphical scene. Figure 19

shows an example of antialiased lines and lines without antialiasing. The Attitude Director

Indicator, for example, contains a number of lines for the pitch ladder and as the aircraft

rolls, antialiasing smoothes the jagged edges of the pitch lines, making the display more

readable. Most graphics packages offer antialiasing algorithms that reduce the effects of

aliasing as seen above. OpenGL, VAPS, and Display Editor each have various options for

antialiasing. Objects that do not use antialiasing algorithms cause unwanted distortion of

fonts and lines that can lead to pilot error and eye fatigue.

64

Antialiasing, while an important requirement, is not the only measure of

readability. The number of fonts available, with the ability to scale them, is another

contributing factor. Selecting appropriate font sizes, line widths, and line lengths

contributes to the readability of a display. Once completed, the displays are examined for

general font and object clarity to answer questions 9, 10, and 11 in Table 5.

Table 5 does not reflect some other influences on display readability. Things such

as color and scale contribute, but these items will have already been decided in the

requirements analysis phase of display design. The development environment influences

readability by enabling object rotation and scaling. Answers to the above questions allow

for the readability of the displays developed with each development tool to be quantified.

Table 5. Display Readability Questionnaire

T<! fhnt anti-aliasinß a tool o ption? 0 12 3 4 5
Is line anti-aliasing a tool option?
Is polygon anti-aliasing a tool option?
Is implementing anti-aliasing easy?
Does the tool have a large # of fonts (i.e. > 15)?
Can lines, polygons, and objects be dynamically
resized (i.e. changing the properties of them)?
Are the fonts scalable (i.e. do they change with
window resizing)?
Are they vector fonts (i.e. do they rotate with the
display)?
Are display fonts clear and readable?

0 12 3 4 5
0 12 3 4 5
0 12 3 4 5
0 12 3 4 5

0 12 3 4 5

0 12 3 4 5

0 12 3 4 5

0 12 3 4 5
Are display objects clear (i.e. distinct edges)?

^JAre display objects readable (i ejvisuall
0 12 3 4 5

65

5.1.4 Display Portability

As a requirement for a simulation environment, developed cockpit displays must be

portable. This means that the software-coded display executable can be moved from one

hardware platform to another without major changes to the software. It is preferable that

the displays have the ability to be ported to the new platform without the need for the

display to be recompiled. OpenGL, VAPS, and Display Editor all have the ability to

generate an executable (.exe file) for a particular display. The requirements for creating

the executable, packaging it with any needed supplementary files, and running the display

on another platform all contribute to the display's portability. The questionnaire found in

Table 6 contains questions about the portability of the coded displays.

Table 6 shows that the portability measure for a display is influenced by a number

of factors. Recompiling an executable for the target is time consuming and expensive, as

compiler licenses are required. In addition, licensing issues for the development tool itself

can also be a factor influencing display portability.

Table 6. Display Portability Questionnaire

Can the display be built as a single executable? 0 12 3 4 5
Is executable generation simple and straightforward? 0 12 3 4 5
Are a small number of support files required (< 5)? 0 12 3 4 5
Can the display be ported without recompilation? 0 12 3 4 5
If recompiling required, are code changes simple and
straightforward (if not, enter 5)?

0 12 3 4 5

Are licensing issues avoided for portability? 0 12 3 4 5
ü

66

5.1.5 Display and Development Tool Extensibility

In addition to being portable, the software coded display needs to be extensible as

well. For this research, extensibility is defined as a measure of the development tool's

ability to allow the programmer to customize, reuse objects, add new functions, and

modify the behavior of a developed display. Once a display is completed, features may

need to be added or changed. An extensible development .environment allows for these

features to be added without difficulty. In addition, some objects within a display scene

have the potential to be reused in other displays. For example, the compass wheel on the

HSI may be reused as the heading indicator on a TACAN Display. The modularity and

reusability of the objects within the display contributes to the extensibility of the display

and development toolset. Table 7 shows the questions quantifying tool extensibility.

Table 7. Display Extensibility Questionnaire

Utt S4H«I

1 Can extensions and functions be added to the
display at the graphical level (i.e. point-and-click)?

0 12 3 4 5

Is object-oriented programming used (modularity)? 0 12 3 4 5
Is display modular (i.e. groupable and selectable
objects that can be copied)?

0 12 3 4 5

Does the display contain sufficient comments? 0 12 3 4 5
Do the comments have meaning? 0 12 3 4 5
Can objects in the display be reused? 0 12 3 4 5
Is reuse of objects simple (i.e. cut and paste)? 0 12 3 4 5
Is adapting the reused object simple and
straightforward (i.e. modifying size, color, etc.)?

0 12 3 4 5

67

Modification and extension using a graphical user interface (i.e. point-and-click) is

typically simple, straightforward, fast, and inexpensive. Development tools that have a

graphical user interface do not require code manipulation and programming knowledge

and are highly desired. In addition, object-oriented programming is a practice used in

many software development environments today. The practice of object-oriented

programming allows for easy code reuse because object-oriented code is modular by

definition. Meaningful comments also contribute to extensibility. Comments help readers

understand the functionality of the code and whether a particular piece of code can be

reused for other functions. Comments that lack meaning contribute little, other than code

separation.

5.1.6 Display Maintenance

Maintainability is the ease with which a display can be corrected if an error is

found, adapted if the environment changes, or enhanced if a new feature is required.

There is no way to measure maintainability directly, so a simple time-oriented metric is

used. The mean-time-to-change (MTTC) is the time it takes to analyze a change, design

the modification, implement the change, test it, and then integrate it [11:93]. On average,

displays developed using toolsets that have maintainable code have a lower MTTC than

those developed with tool sets that do not have maintainable code. The MTTC rating is

used to quantify the maintainability of the software-coded displays generated from

OpenGL, VAPS, and Display Editor.

68

For this research, the quantification of maintainability is limited to the overall time

period for the research. However, once the displays were developed, some changes were

required. Objects in the wrong location, incorrect sizes of fonts, and a required feature

not implemented are all types of changes that needed to be made. Using these necessary

changes, the MTTC was measured and recorded. For the OpenGL displays, several

measures were taken as more semantic errors were found. This is logical since the

OpenGL displays were hand-coded. Chapter 5 presents the errors encountered and the

MTTC rating for each development toolset.

5.1.7 Display Update Rate

Maintaining real-time performance of a display is important, especially in the

simulation environment where aircraft models are running. Update rates for most dynamic

cockpit displays, like the ADI and HSI, must maintain real-time performance. Referring

back to the Chapter 1 definition of real-time performance, displays must update at a

minimum of 16Hz with a desired update rate of 30Hz. Critical aircraft information must

be available to the pilot as fast as possible. There are some displays, however, that do not

require real-time performance, such as a general status page reflecting fuel load, weapons

load, and waypoint information. It is important to note that the display update rate will

change as the CPU executes more programs. Running the display by itself allows for the

maximum performance of the display. The most important update rate is the rate at which

the display updates when integrated with the RAMSS real-time aircraft models.

69

During development, a few lines of code are inserted into each display to calculate

the display update rate and output the result to the screen. After the display is tested and

immersed into the RAMSS simulation, the update rates are recorded. The displays are

executed at their maximum capable update rate. Running the displays at their maximums

is not recommended during operational activities. However, for testing and analysis

purposes, allowing the displays to update as fast as possible provides a good performance

measure of displays designed using a particular development tool. In the operational

environment, the displays will be throttled to appropriate levels (i.e. somewhere between

16Hz and 30Hz, depending on development requirements).

5.1.8 CPU and Memory Usage

The concepts of CPU and memory utilization are directly related to the update rate

of the display. In general, as the display update rate decreases, the CPU and memory

utilization decrease as well. Each display designed using OpenGL, VAPS, and Display

Editor has CPU and memory usage characteristics. These are measured using software

provided under the Windows NT operating system.

In the cockpit simulation environment, cockpit displays cannot hinder the

performance of the aerodynamic aircraft models (RAMSS SIMP AC models in this case).

The cockpit displays, while maintaining real-time performance, must use minimal amounts

of the CPU and memory. The amounts that the displays actually use are highly dependent

on the complexity of the display. The SIMP AC aero-models, running with an operational

flight program (OFP), currently use 41% of the CPU processing power on a dual Pentium

70

500-MHz machine and 35% of the available memory. Through consultation with the

personnel at the Advanced Architecture and Integration Branch and at SCS Engineering,

Inc., it was determined that the CPU and memory usages for cockpit displays should not

exceed 5%. This number allows multiple displays to execute concurrently, room for

future upgrades to the models, and more complex flight programs. Non real-time

displays, like a general status page, that has no real-time requirements, will generally use

less CPU time and memory than real-time displays.

CPU and memory utilization are difficult to see and measure. However,

administrative tools are available that allow CPU and memory usage to be monitored and

quantified. One such program, provided by the Microsoft Windows NT operating system

and seen in Figure 20, outputs the CPU and memory usages for the current state of the

system.

j3 Windows NT Task Managet

file Options $6ew Help

AppBcatians | Processes G^SSKSEPJ

pCPUUtajja—: -CPU

FIRES

MEM Usage -

-Totals—;
Handles
liillili

—— r Physical Memory (K)
1746 Total S4944
163 Available 20372

29 File Cache16424

Coransil C hage (M • • •• Kernel Memory (X)
Total 62676 ! Total 7758B
Uttft 156684: ! Paged 14576
Peak 123f7? ; Nonpagett 3012

Processes 29 CPU Usage: 7X Mem Usage, 62676K/156684K;

Figure 20. Windows NT Task Manager

71

THIS
PAGE

IS
MISSING

IN
ORIGINAL

DOCUMENT

(Synchronous DRAM). This memory, coupled with a single 300MHz Power PC

processor for each display, also maintains graphics and operating system software in

addition to display information [13:16-18].

Size and number of executables required for a display are important for this part of

the experiment. A display built into a single self-contained executable requires less

context-switching than with a display built using multiple executables. Context switching

between executables consumes precious time that can mean the life or death of a pilot.

5.1.10 Display Development Time

The amount of time spent in developing a display can be crucial in the simulation

environment due to time constraints and deadlines. Several issues factor into the display

development time. The choice of development tool is only one of them. Other items that

influence the time it takes to develop a display include personal experience with a toolset,

experience with cockpit displays, general programming experience, and display

complexity. In addition, two of the subjective criteria examined in this experiment,

learning curve and the user interface, influence the development time as well. Having said

this, it is difficult to get an accurate measure of the time it takes to develop a display using

the different development tools. For this research effort, the display development time is

measured and recorded upon completion of a display built with each development toolset.

A short development time, for example, is advantageous in the simulation environment

allowing many different missions to be run in a short period of time. Experience levels,

display complexity, and tool learning curve affect the recorded numbers, however,

73

measuring the development time gives a general idea of the time it takes to develop certain

types of displays.

5.2 Experiment #2 - Post-Development Display Performance

As briefly mentioned in the introduction of this chapter, this experiment examines

the displays and their performance characteristics when running in different hardware

configurations. Introduced in Chapter 3, the data shown in Table 8 shows the three

hardware configurations used to test the displays developed in OpenGL, VAPS, and

Display Editor.

This experiment further classifies each development tool with its potential hardware

dependencies. Each display developed is run on the three hardware platforms of Table 8

under the same operating conditions and the update rate of each is recorded. Running

each display in this manner allows for hardware influences on display performance to be

analyzed. Hardware influences such as the amount of system main memory,

Table 8. Three Hardware Configurations for Display Execution

Pentium
200-MHz

64MB ATI Rage
Pro Turbo

$2400
(1997)

HP Server
Dual Pentium

333-MHz
256MB ATI Rage

Pro Turbo
8MB

$4500
(1998)

HP Kayak
Dual Pentium

500-MHz
400MB

HPFX-6
Video

18MB
$12500
(1999)

74

amount of graphics memory, number and speed of CPUs, type of graphics card, etc. have

a large impact on display performance. The different hardware devices within each

platform range in price as well. Results from this experiment will help in choosing

appropriate cockpit display hardware to meet performance and budget constraints.

5.3 Summary and Other Considerations

License and hardware costs are also important in making the choice of display

development toolsets. Such items, however, factor into the analysis in Chapter 6. The

cost of the license to use the software is pretty much black and white. It is slightly more

difficult to look at the cost of required hardware. There are literally hundreds of hardware

options available for each of the development tools for this research effort. The amount of

memory, number of CPUs, and graphics cards, all affect display development. For this

reason, the hardware cost for the target platform is recorded (HP Kayak in Table 8), as

well as the other two hardware configurations in Table 8. These costs contribute to the

analysis in the following chapter.

75

VI. Results and Analysis

6.0 Introduction

This chapter presents the results of the experiments discussed in the previous

chapter and an in-depth analysis of these results. The results are presented separately for

each experiment with a summarizing analysis for each. The experiment results and

analysis are followed by an all-encompassing summary discussing the development tools

and their displays, advantages, disadvantages, and performance characteristics.

Concluding the chapter is a brief synopsis of comments from Mr. Jesse Blair, a former

Air Force pilot, crewstation graphics and display expert, and current Team Leader in the

Advanced Architecture and Integration Branch.

One important factor in this research is the sample size. Due to time and

availability factors, the researcher alone answered the questionnaires with direct support

from the staff at the Advanced Architecture and Integration Branch. With this added

support and direction, the answers to the questionnaires provided a solid foundation for

the development tool analysis.

6.1 Results and Analysis of Display Development Experiment

Chapter 5 discussed two experiments, the first of which contained several

questionnaires and tests about the display development lifecycle for OpenGL, VAPS, and

Display Editor. Individual sections are dedicated to the results for each questionnaire,

presented in tabular format, containing the answers to each question and a total score for

76

each criterion. Following each questionnaire table is an in-depth analysis of the results. It

is important to note that most of the results for the first experiment are subjective in nature

and may be different for other display designers. However, the extent of the questions and

the number of questionnaires should provide a solid foundation for analyzing cockpit

display development software consistent with the methods used in this research effort.

The results for the maintenance, update rate, CPU and memory usage, executable sizes,

and development time tests are combined into a single table followed by an analysis. The

same is true for the update rate, CPU usage, and memory usage tests. These objective

measurements, coupled with the subjective criteria results, form a solid basis for

evaluating the development potential for OpenGL, VAPS and Display Editor.

6.1.1 Learning Curve

Table 9 contains the answers to the questions pertaining to the learning curve

associated with OpenGL, VAPS, and the Display Editor development toolsets. While the

questions concern the influences on the learning curve, the results conclusively reveal that

the OpenGL and VAPS development environments have a learning curve advantage.

One advantage that the OpenGL environment has over the other tools comes

primarily from the fact that the tool is so widely used. There are countless examples

available in many different application categories. Furthermore, OpenGL is widely

considered as the graphics programming standard. For this reason, more and more

companies are ensuring that their applications and graphics hardware are OpenGL-

compliant. There are many books, papers, and tutorials available from people who have

77

used OpenGL as well as a detailed programmer's guide {OpenGL Programmer's Guide -

Second Edition). The single major disadvantage of OpenGL is the knowledge of software

programming that is required to program by hand without a user-friendly point-and-click

environment like that provided by VAPS and Display Editor.

The VAPS development tool has a couple of advantages over OpenGL.

The VAPS delivered software comes with a very detailed user's manual and associated

object library. Actually there are two manuals, one for the development environment

(Object Editor, Stateforms Editor, and Runtime Environment) and the other for the code

Table 9. Learning Curve Questionnaire Results for Development Tools

Is a user's manual/documentation available?

pMMMI.IMIMJ
Is the documentation understandable?

KM
Are examples included in software deliverable?

«jggpa Are examples available elsewhere (i.e. web)?
Are examples complete and well documented?
Are courses available for the toolset?

ilif
Does analyst/designer have display experience?
Does analyst/designer have coding experience?
Is knowledge of coding NOT needed?
Do industry leaders use the development tool?
Is the software used for other applications?
Is help available online?
Is help available through software producer?

Hare
46/65
(71%)

45/65
(70%)

27/65
(43%)

78

generation tool. In addition, the technical staff at Virtual Prototypes, Inc. is almost always

available to answer technical questions, something that OpenGL lacks. VAPS, however,

lacks a vast database of examples present in OpenGL.

The Display Editor development toolset has no real advantages over the other two

tools with one exception. Since the tool is being developed for the Advanced Architecture

and Integration Branch's simulation system, the small staff at SCS Engineering, Inc. is

available to answer technical questions and even make small changes to the tool or

interface to accommodate a desired feature. Because the Display Editor is in its infancy,

and yet unreleased as a commercial toolset, development examples are not available. A

users manual is currently in the works, but for this research effort, one did not exist. This

situation caused display development problems reflected in the development times using

the Display Editor environment.

6.1.2 User Interface

The data in Table 10 reveals the results of the user interface questionnaire. For

this test, the interfaces for OpenGL, VAPS, and Display Editor were examined throughout

display development. Answers to the questions reveal that the VAPS development

environment has the clear advantage over the other tools for its user interface.

The results for this criterion are clear. The VAPS development toolset has a

detailed graphical user interface (GUI) that takes advantage of a point-and-click

windowed environment giving it an advantage over OpenGL. In addition, VAPS contains

many predefined objects and library functions that allow the display designer to group

79

objects together to form such things as dials, switches, lights, buttons, and potentiometers

(to name only a few).

The Display Editor, while including a graphical user interface, lacks an object

library forcing the display designer to manually manipulate code to achieve the desired

functionality of a graphical object (dial, tape, button, etc.). However, since Display Editor

is OpenGL-compliant, it uses the same online help engine as OpenGL. This help engine,

provided by Microsoft Visual Studio Version 6.0, is highly detailed in C++ programming

techniques, but lacks OpenGL-specific help. The help engine provides numerous C++

examples and in-depth descriptions of C++ functionality, but nothing OpenGL-related.

OpenGL has no user interface except that which is provided through the C++ compiler

(Visual Studio 6.0). It also has no object library available. However,

Table 10. User Interface Questionnaire Resu ts for Development Tools

80

an object library could be created using proper object-oriented coding techniques. This

object library would be strictly code-oriented and have no graphical equivalent.

6.1.3 Display Readability

Table 11 shows the results for the readability questionnaire. This test examined

several features of OpenGL, VAPS, and Display Editor, such as anti-aliasing algorithms,

which contribute to display readability. The results reveal that OpenGL, VAPS, and

Display Editor have similar capabilities in generating readable displays. However, the

VAPS toolset has a slight advantage in certain areas over both OpenGL and Display

Editor.

itlS
Table 11. Display Readability Questionnaire Results for DevelopmentTools

Is font anti-aliasing a tool option?
Is line anti-aliasing a tool option?
Is polygon anti-aliasing a tool option?
Is implementing anti-aliasing easy?
Does the tool have large # of fonts?
Can lines, polygons, etc. be dynamically
resized?
Are the fonts scalable (i.e. do they change with
window resizing)?
Are they vector fonts (i.e. do they rotate with
the display)?
Are display fonts clear and readable?
Are display objects clear (distinct edges)?
Are display objects readable(visually pleasing)?

43/55
(78%)

51/55
(93%)

32/55
(58%)

81

The data in Table 11 show that all of the tools have the ability to anti-alias fonts,

lines, and polygons. VAPS has the advantage of using any one of its 34 pre-defined font

styles. True type fonts, available on the World Wide Web, can also be downloaded for

free and easily converted into a format recognized by the VAPS toolset using a conversion

routine provided with the toolset. In addition, objects defined within VAPS (including

predefined objects like dials, switches, etc.) can be resized with a simple click-and-drag of

the mouse, something OpenGL lacks. OpenGL does provide a related function, the

"scale" command, however, programming knowledge is required to take full advantage of

its potential and it still lacks the point-and-click functionality provided under VAPS.

Readability is the single most distinctive characteristic of the displays, from the

pilot's point of view. A pilot will refuse to use a display that does not have clear, readable

text and objects with clear edges that are visually pleasing. The Display Editor toolset

uses line drawing to create the text seen on a display. For this reason, the text appears

blurry and unclear during execution, resulting in a score of 2 for font clarity and

readability. The OpenGL displays use predefined stroke fonts to implement the text

allowing for clear anti-aliased text. The results of this test show that no one tool has a

clear advantage as far as capability, however, text on both the VAPS and OpenGL

displays was clearer and easier to read.

82

6.1.4 Display Portability

Table 12 contains the answers to the questions pertaining to portability of the

displays generated by the three development toolsets. The questions concern

characteristics that contribute to display portability including such things as number and

size of executables, recompilation requirements, and licensing issues. Results for this

criterion show that OpenGL has a portability advantage.

The single most distinguishing item in Table 12 is licensing issues. OpenGL was

defined and developed by Silicon Graphics free of charge. The only license fees charged

by Silicon Graphics are for source code purchases, which are unnecessary in almost all

OpenGL graphics applications, including the display development in this research. Both

VAPS and Display Editor require license purchases for their use. Display Editor uses a

per-machine fee and VAPS is a per-user fee. This means that the licenses for Display

Table 12. Display Portability Questionnaire Results for Development Tools

Can the display be built as a single executable?
Is executable generation simple?

1 II Are a small number of support files required?
Can the display be ported without recompiling?

Is If recompiling required, are code changes
simple and straightforward (if not, enter 5)?
Are licensing issues avoided for portability?

llilo
(90%)

18/30 23/30
(77%Jj

83

Editor are associated with each machine on which it is installed while a single VAPS

license can be installed on several machines allowing only a single user at any one time.

The other, less distinguishing piece of information in Table 12 is that the VAPS

tool requires two executables for each display. One executable is the graphical definition

of the display while the second is the interface between the display and the aircraft models.

In the simulation environment, having two executables is not significant as a simple batch

file can be used to execute both. However, in the real cockpit environment, there is

limited memory and a single context switch between executables can mean life or death for

a pilot.

6.1.5 Display Extensibility

Table 13 shows the questionnaire results for the display extensibility criterion.

This test examined the modularity, reusability, and the general code and comments of the

displays designed with OpenGL, VAPS, and Display Editor. Recall that extensibility

means that a development tool has the ability to customize, reuse objects, add new

functions, and modify the behavior of a developed display. The results reveal that the

VAPS tool has the extensibility advantage.

The objects within the VAPS toolset are highly reusable. A simple point and click

within the graphical user interface copies an object from one display to another,

maintaining the object's integrity. For example, if a predefined dial is copied into a new

display, it will still be a dial, with the same properties and functionality as before (the

interface will have to be re-established, as expected). In addition, properties such as the

84

size, location, and color of the copied objects are easily changed and incorporated into the

new display using the Object Editor's properties window.

Display Editor allows objects to be reused in a similar manner. However, without

an established object library with predefined objects, the properties and functionality of the

copied objects are lost and must be regenerated. VAPS allows a dial to be copied from

one display to another, preserving the properties that define the object as a dial. Display

Editor lacks this functionality but does allow the pictorial representation of the object to

be copied.

With this in mind, Display Editor has a slight extensibility advantage over OpenGL

because it uses a GUI and can manipulate objects at the graphical level. However, the

displays developed in OpenGL (hand-coded) may have meaningful

Table 13. Display Extensibility Questionnaire Results for Development Tools

Can extensions and functions be added to
display at graphical level (i.e. point-and-click)?
Is object-oriented programming used?

I Is display modular (i.e. groupable and selectable
objects that can be copied)?
Does the display contain sufficient comments?
Do the comments have meaning?
Can objects in the display be reused?

i reuse of objects simple (i.e. cut and paste)?
Is adapting the reused object simple and
straightforward (i.e. changing size, color, etc.)?

m-m iiüa
(53%)

113/40
(83%)

26/40
(65%)

85

comments that make it easier for a display designer to cut, paste, and adapt sections of

code for other display use. These comments are detailed descriptions of procedures and

functions within a display that have the potential to be reused in other displays.

6.1.6 Subjective Criteria Summary

The subjective criteria scores are summarized in Figure 21. The chart shows the

total score for each development toolset in the various subjective categories. The VAPS

toolset has the highest average score while the Display Editor toolset has the lowest.

B OpenGL nVAPS O Display Editor

3
O

o
o

Learning Curve User Interface Readability Portability Extensibility Average Score

Figure 21. Summary of Subjective Criteria

86

From the subjective criteria perspective, the data in the chart shows that the VAPS

toolset has a greater potential for successfully developing graphical cockpit displays.

While the OpenGL toolset has advantages in portability and learning curve, the VAPS

toolset scores consistently higher across the board. The Display Editor toolset

consistently scored poorly by comparison to VAPS and OpenGL.

6.1.7 Display Development Time

Development times for each display built using OpenGL, VAPS, and Display

Editor were recorded following completion of each display. Each display was built from

start to finish without working on any other display. This ensured that the time spent on

each display was dedicated solely to that display and that the toolset did not have to be

relearned each time the tool was used. Table 14 shows the development times for each

display using OpenGL, VAPS, and Display Editor.

The displays developed using the VAPS development toolset were accomplished

the fastest. Hand-coding with the OpenGL toolset took the longest, while the Display

Editor toolset fell in between. The Display Editor timing results include changes made to

able 14. Development times tor displays in UpenCJL, VAPS, and Display Edit«
*• : '''wkl^'-^">jä.v;% tSsEr

'■;>'•?:■ '^T^jf •-."'T^^M^y^K-^ : ir* "^.v •" ""** s**^ " * ^""M'
' •&• Jb& *"•' ^^iäS-iä}^^&'■ M.**?£? " KV'Xllpf -Ha?

ADI - OpenGL 80-85 hrs
ADI - VAPS 20-22 hrs
ADI - Display Editor 40-45 hrs
HSI - OpenGL 50-55 hrs
HSI - VAPS 10-12 hrs
HSI - Display Editor 38-39 hrs

87

the tool throughout the display development lifecycle. As mentioned earlier, the display

designer simply drew the displays, while the staff at SCS Engineering, Inc., accomplished

the dynamic animation. Clearly, the results show that hand-coding a display requires much

more development time than using a windowed point-and-click environment such as that

provided in VAPS or Display Editor.

6.1.8 Display Maintenance

The maintenance measurements were recorded as an average time to accomplish

changes or updates for the displays built using the three development environments.

Types of required changes included adding a simple text field to output information or

adding a switch that allowed the changing of display mode of operation. An example of

this can be seen in the ADI display. It has two modes of operation; day mode and night

mode. In day mode, the sky is blue, the ground is green, and lines colors are white. In

night mode, the sky is gray, the ground is black, and line colors are green. Adding a mode

switch such as this was considered maintenance for this research effort. The mean-time-

to-change (MTTC) numbers can be seen in Table 15.

Tab e 15. MTTC Ratings for OpenGL, VAPS, and Display Editor
Dcvclopnii
Knviromu

wr~"--fM^j
s of Chan
Irquirat

not.

K-iil^MSfi^ -. \\\a\ .'<

OpenGL Day/Night Switch, ILS & TACAN
Functions, Add Simple Text Field (l1/2 + 4 + 1/4)/3 = 1.9Hrs

VAPS Day/Night Switch, ILS & TACAN
Functions, Add Simple Text Field 0/2 + V/i + V2)/3 = 0.83 Hrs

Display Editor Color Changes, Pitch Ladder Changes,
Add Simple Text Field (l+4 + i/2)/3 = 1.83Hrs

88

The VAPS toolset has a clear advantage over the other two toolsets. The ability

to use the VAPS point-and-click windowed environment to make all necessary changes

reduced the system down time significantly. The OpenGL environment required hand

coding of the changes. The current state of the Display Editor environment required the

changes to be made in both its point-and-click code generation environment and its

manual OpenGL programming interface. The data from Table 15 shows that the point-

and-click environment provided by the VAPS toolset reduces maintenance down time due

to upgrades or changes to the displays. These numbers correlate nicely with the results

seen for the development times in Table 14 above.

6.1.9 Executable Size

Each display in the F-22 Raptor has limited memory (32MB SDRAM - no hard

drive) for storage of the display executable, the graphics processing software, and the

operating system software [13:16-18]. With this in mind, the displays developed for this

research effort were examined for executable size and runtime memory usage. Table 16

shows the sizes for the executables required for the displays while the following\sections

covers the runtime memory usages.

The OpenGL environment has a clear advantage in executable size. The OpenGL

executables in Table 16 are nearly 10 times smaller than those produced using Display

Editor or VAPS. In fact, the VAPS toolset requires a second, smaller executable to

89

 Table 16. Executable Sizes for OpenGL, VAPS, and Display Editor

IBllIii'' 'W.1 ■■ P * * M***- tu Sliijuiyy^ ^ SSf*t^j * ^ '**''' ' / ""V'^MpT^dH^-*-: Bllli ^'^.s-'X^^^P» ^^^HkMMniM^sA . .ür.
ADI - OpenGL 1 137K
ADI - VAPS 2 1.95MB+ 494K
ADI - Display Editor 1 1.45MB
HSI - OpenGL 1 205K
HSI - VAPS 2 1.85MB+ 495K
HSI - Display Editor 1 1.45MB

interface between the simulation environment and the display, adding to its overall

executable size. As is common with code generators, both VAPS and Display Editor

generate large amounts of software code. Since they use a point-and-click environment,

the VAPS and Display Editor code generators must incorporate required point-and-click

functions associated with the generated code. When compiled and linked, these large

amounts of code equate to larger executables, as seen in Table 16.

6.1.10 Update Rates, CPU Usage, and Memory Usage Results and Analysis

As noted in Chapter 5, the display update rate is one of the most important criteria

by which a display is measured. Due to the limited space and processing power in the F-

22 cockpit, the CPU and memory usages are also important display criteria. To get an

accurate measure of the maximum display performance, each was executed while

embedded in the RAMSS simulation environment and allowed to run open loop. In the

case of the OpenGL and VAPS development environments, the update rate was measured

using a small piece of software code that when executed, displayed the update rate in the

lower left or right corner of the display. For the Display Editor toolset, the update rate

90

was measured using a tool provided by the RAMSS simulation environment called

Monitor that output the update rate for the display on a text page. The display update

rates are shown in Table 17.

The displays were then throttled down to an appropriate level for measuring the

CPU usages. The data in Table 17 reflects CPU usages for each display running at 16Hz

and 30Hz update rates. The memory usage was measured using the 30Hz-throttled

displays. All CPU and memory usages were measured using the Windows NT Task

Manager (see Figure 20) and then recorded.

All of the displays meet the real-time update rate requirements established in the

standards document. In fact, all of the displays built using OpenGL, VAPS, and Display

Editor nearly quadruple the minimum 16Hz requirement. The displays built by hand using

the OpenGL environment have the smallest CPU and memory usages while the VAPS

toolset has the largest usages. The displays built with smaller executables (OpenGL) tend

to use less of the CPU during execution (1-2%). Since VAPS uses two larger executables

during execution, a larger CPU usage is seen (2-4%).

Table 17. Update Rate in Open Loop Configuration
U Usag
'(ill/.)

API - OpenGL
ill

3408 Kb
ADI - VAPS 52.9 4% 3% 5176 Kb
ADI - Display Editor 59.9 6% 5% 4936 Kb
HSI - OpenGL 59.2 2% 1% 3808 Kb
HSI - VAPS 52.8 3% 2% 4908 Kb
HSI - Display Editor 51.3 7% 5% 4264 Kb

91

6.2 Hardware Configuration Experiment

The second experiment executed the displays in several hardware configurations.

Table 18 reviews the hardware configurations used for this experiment. The displays were

run in an open loop configuration to establish the maximum display performance in each

hardware platform in the table. The update rates for the displays were then recorded for

each configuration.

One important note is that the HP Kayak machine (#3 in Table 18) contains an HP

FX-6 graphics card, which has built-in OpenGL acceleration on-board the graphics

processor. Figure 22 shows the update rates for each display in each hardware

configuration from Table 18.

These results clearly show that OpenGL acceleration is an absolute must when

using OpenGL or Display Editor. The HP Kayak, with its OpenGL acceleration, far

outperforms the other two hardware configurations. The HP Server, containing more

memory, more CPU power, and the same graphics card as the Micron, performs only

slightly better. From the results seen in Figure 22 it is concluded that the ability of the

Table 18. Hardware Configurations for Update Rate Experiment

92

100 f 93 2

90

80-

70-1

<D 60-1
13
<r
«> 50
<o
-a

5" 40-

30

20-i

10-

0-

m HP Kayak {$ 12500) n HP Server ($4500) □ Micron ($2400)

59 9 -ISA-i

\

OpenGL ADI VAPS ADI Display Editor ADI OpenGL HSI VAPS HSI Display Editor HSI

Figure 22. Update Rates for displays in each hardware configuration from Table 18

graphics processor is the dominant factor. While more memory and CPU power improve

performance slightly, adding an OpenGL graphics accelerator increased performance by a

factor of nearly 5 for VAPS, 10+ for OpenGL, and 50+ for Display Editor.

6.3 Analysis Summary

The experiments conducted during this research effort revealed the advantages and

disadvantages of the OpenGL, VAPS, and Display Editor cockpit display development

tools. Table 19 summarizes the results for all of the criteria in the first experiment.

93

Table 19. Summary of Development Tool Results for Cockpit Displays

»ztjVr WiES ssiSii«n™^P3
' .tU.lt * w*w*** ;i ^jifKä^mWW^S,

Learning Curve A A N
mm User Interface D A N
^■>1Ü Readability A A N

Portability A D N
Extensibility D A N

[' '"' Development Time D A D
Executable Size A D D

■El Maintenance D A N
Update Rate A A A

|l?> CPU/Memory Usage A N D
i3jp\8-^ 6 7 I

1 i sIV)AU^VHI 4 : 3
■ ■My* .E ■, • ^'^»W8?f$?t¥s_ 1 o l 6

Based on the data in the chart, the VAPS toolset has the best advantage to

disadvantage ratio at 3.5. The OpenGL toolset has a higher ratio (1.5) than that of the

Display Editor software (0.33). These results reflect the applicability of each software

development toolset in developing cockpit displays. Other designers using these tools

should weight their results according to the application for which they are being used.

The Display Editor's primary disadvantage is simply its immaturity. Technically

not yet released to the public, the toolset lacks functionality and features that are normally

present in similar software tools like the VAPS toolset. Upon initial release to the public,

the tool will more than likely change some of the neutrals in Table 19 to advantages and

increase its advantage to disadvantage ratio. As a distinct advantage, SCS Engineering,

94

Inc. is easily contacted and extremely helpful in clarifying Display Editor components and

features making the toolset easier to use.

The VAPS toolset's largest drawback is the licensing fees. At roughly $35K per

license, the VAPS tool is very expensive. However, the added benefits of the VAPS

toolset more than make up for the high cost. Using a windowed point-and-click user

interface, VAPS allows for easy display creation, quick maintenance, and painless

extensions. Also, having a built in library of defined objects makes creating cockpit

displays simple and straightforward.

The OpenGL tool's biggest drawback is the requirement of programming

knowledge. If a user has no programming knowledge, the learning curve becomes

lengthy. OpenGL has a broad user base and countless examples available throughout the

industry, providing any non-programmer with example code to speed learning.

Furthermore, OpenGL has a distinct portability advantage over the other toolsets as

described in the Display Portability section with its many potential operating

environments.

The test across varying hardware configurations revealed one major point. The

graphics card chosen to drive the graphics applications in any hardware configuration is

crucial. The results in Table 19 show that the addition of a graphics card with on-board

OpenGL acceleration provides a significant boost to performance for displays built using

all three development toolsets. This point is important to understand as simply adding

CPU power and memory may not achieve desired performance increases.

95

6.4 Analysis Summary from Research Field Expert

Mr. Jesse Blair, Display Expert, Former Pilot, and Team Leader in the Advanced

Architecture and Integration Branch, reviewed the above results and analysis. This section

briefly summarizes his comments and observations.

After reviewing the above results and analysis, Mr. Blair states, "After careful

review of the researcher's results, it is clearly demonstrated that the graphics community is

finally able to use automated code generating toolsets for both research and production

aircraft avionics systems." He goes on to state that while the VAPS toolset has slightly

lower performance characteristics than OpenGL, it is now an acceptable development

toolset for most applications. Mr. Blair suggests, "Because OpenGL manual software

generation still has many advantages over a toolset like VAPS, probably the best near term

approach to crewstation display format development is to use a combination of manual

OpenGL and VAPS." He continues to say that when high performance requirements need

to be met, the OpenGL toolset could be used, and for all others, the VAPS automatic

code generation system. He further observes that "prototyping using the VAPS toolset

and then using manual OpenGL software generation only where performance dictates

seems like a logical conclusion from this research."

96

VII. Summary, Conclusions, and Future Work

7.0 Summary

This research effort had three primary objectives. First was developing the

displays using OpenGL, VAPS, and Display Editor. Using the standards and requirements

established by the F-22 Raptor design team at Lockheed-Martin and Boeing, the three

development toolsets were used to build both an Attitude Director Indicator and

Horizontal Situation Indicator. Meeting the first research objective ensured that OpenGL,

VAPS, and Display Editor were each able to meet the ADI and HSI display standards and

requirements established in the F-22 Standards Document [4]. Had one of the tools been

unable to meet the requirements, it would have to have been ruled out of any analysis

comparison, degrading the remaining research objectives.

The second objective established a foundation for analyzing development tools and

the displays built using them and provided evaluation techniques that can be used in

analyzing future cockpit displays and development toolsets. The questionnaires

established in Chapter 5 went into detail on how a development toolset meets the

requirements and standards for a display. In addition, examining key objective criteria

allows for further characterization of development toolsets. While these techniques are

applied specifically to the display development arena, they could be adapted to evaluate

any general graphics package by massaging the questions slightly to broaden the scope of

the evaluation.

97

The final objective determined the performance characteristics of OpenGL, VAPS,

and Display Editor and their cockpit display development potential. While this research

did not determine the better of the three toolsets, it was clear in assigning advantages and

disadvantages to the three toolsets with respect to cockpit display development. It would

be inappropriate to compare the new and unreleased Display Editor toolset with two of

today's well-established cockpit graphics toolsets, OpenGL and VAPS. A comparison,

revealing the advantages and disadvantages of the three toolsets, allows future display

designers to weigh these advantages and disadvantages when developing graphics

applications for the cockpit or elsewhere.

7.1 Relationship to Past Efforts

Like the AGSSS discussed in Chapter 2, these three development tools

significantly reduce the lifecycle of display development. While OpenGL still requires

extensive programming experience, the number of examples available provides

inexperienced programmers with needed tips, tricks, and tools. The VAPS and Display

Editor environments take key concepts from early efforts, like the AGSSS development

tool of the early 1980's. Both tools provide a windowed, point-and-click environment

similar to the AGSSS, but much more extensive and user-friendly. The VAPS and Display

Editor environments allow for faster, easier, and more cost effective creation of cockpit

displays than conventional hand coding.

98

7.2 Conclusions on Display Design Methodology

This research effort focused on developing cockpit displays using a linear

sequential design model. The five steps of the linear sequential model, shown in Table 2,

were easily adapted to the development of cockpit displays. The requirements analysis

document from the first phase of the model equated directly to the F-22 standards

document created by the F-22 design team at Lockheed-Martin and Boeing. The function,

behavior, performance, and all interfacing requirements were established in the F-22

standards document and applied to each display during development.

The design phase of the linear sequential model used the Requirements Analysis

document (F-22 standards document) to develop the necessary data structures and

interfaces that would be used in the displays. The design phase for this research effort was

fairly simple as the displays built were typically a single piece of software (i.e. only one or

two executables with limited interfacing requirements). The design phase was important,

however, in determining the appropriate interface variables from the simulated aircraft

models (RAMSS).

The code generation phase was very simple using the generators provided under

VAPS and Display Editor. These two tools use the point-and-click environment to create

the graphical displays and allow the corresponding code to be generated with the simple

click of a mouse button. Using the OpenGL toolset, on the other hand, required the entire

display to be coded by hand, lengthening the OpenGL code generation phase significantly.

The testing phase entailed developing a test routine that would exercise the

display. In each environment, this routine sent generic data to each display to test the look

99

and functionality of the display ensuring that display objects were within operating

parameters. This phase is separate from the research objective that immerses the displays

in the RAMSS simulation environment. The testing phase of the linear sequential model is

used to simply test the displays for correct operation and function using generic data.

Finally, the maintenance phase of the model is still in effect. Once developed, the

displays required changes resulting from errors or added functionality requirements.

While some of these changes were accomplished for the maintenance analysis, others will

be implemented in later maintenance efforts. The maintenance of software deliverables is

an ongoing process, which has only just begun for the display developed in this research

effort.

7.3 Conclusions from Comparative Analysis

The comparative analysis accomplished in Chapter 6 revealed numerous

advantages, disadvantages, and performance characteristics of OpenGL, VAPS, and

Display Editor. Some readers may make conclusions that one tool is better than the

others based on the analysis results, while other readers may conclude that a different tool

is the best. The analysis results allow a display designer to examine the characteristics of a

development toolset and determine if it is the right tool for their needs. Since different

development facilities have vastly different requirements, one tool may not suit one facility

while it may be the perfect toolset for another. The comparative analysis reveals the

necessary characteristics of OpenGL, VAPS, and Display Editor allowing the best

possible choice for a display design team.

100

Though the VAPS toolset has a number of advantages that the other tools do not

have, it is not without its limitations. VAPS was designed to accomplish displays that are

currently being used in today's aircraft. This presents a problem to facilities and

contractors that wish to create highly complex and advanced displays. For example,

developing a display in 3-dimensional space is impossible in VAPS because it simply is not

a design feature. VAPS is designed around current cockpit instrumentation (i.e. tapes,

dials, buttons, lights, etc.). OpenGL, on the other hand, is highly generalized and has the

ability to be programmed in 3-dimensional space.

7.4 Conclusions on Evaluation Techniques

The analysis conducted in Chapter 6 involved only three graphics packages and

their capabilities for building cockpit displays. The evaluation techniques used, however,

can be applied to virtually any graphics packages in a wide variety of capabilities. Several

of the evaluation techniques center on specific cockpit display characteristics but could

easily be adapted to a general display/scene characteristic. The readability criteria, for

example, could be applied to any type of graphics application that requires the resulting

graphical display or scene to be clear and readable. The questionnaires for learning curve

and user interface could be used directly in evaluating other graphics packages such as

Multigen or Corel Draw. The evaluation techniques are not all inclusive. There are other

points of interest that could have been examined such as toolset simplicity or feedback.

The evaluation techniques used in this research effort have a direct impact on the

development toolset chosen to build cockpit displays.

101

7.5 Future Work

Several items of interest have arisen from this research effort. Since the Display

Editor is a new development toolset and will mature with time, a future analysis may

reveal enhancements to the tools abilities. OpenGL and VAPS are mature and well

established in industry and will continue to grow and evolve, however, Display Editor has

greater room for growth because of its immaturity.

This research effort focused on only two F-22 cockpit displays. There is potential

for research into other F-22 displays as well as other aircraft cockpit displays. There is

also potential research into the Head-Up type displays for both the cockpit environment

and the simulation environment. One display that has yet to be examined in detail is the

idea of a Moving Map display. The potential for OpenGL, VAPS, or Display Editor to

develop an F-22 Moving Map display is under consideration, but as of yet, no research or

development has begun.

Finally, the need for graphical software development is clear. Most engineers have

little programming experience and desire tools that do not require extensive coding

experience. Since OpenGL is rapidly becoming an industry standard, research into a

windowed, point-and-click, OpenGL code-generating development environment has only

just begun. Companies like SCS Engineering, Inc, with their Display Editor, are venturing

into OpenGL-based windowed environments to facilitate graphics software development.

102

Bibliography

1. Bennett, Paul A. "Applications of Display Prototyping and Rehosting Tools to the
Development of Simulator, Flight Training Device, and Cockpit Displays". American
Institute of Aeronautics and Astronautics, 1996.

2. Bennett, Paul A. Rapid Development and Rehosting of Dynamic Graphical Interfaces.
Montreal, Quebec, Canada: Virtual Prototypes, Inc. October 1997.

3. Edwards, R. J. G. "The Presentation of Static Information on Air Traffic Control
Displays," Proceedings of Advisory Group for Aerospace Research and Development
(AGARD) no. 255. London: Technical Editing and Reproduction Ltd, 1980.

4. "F-22 Air Vehicle Cockpit Design Description Document," CDRL-AO17.
OT-90-34230. Contract F33657-91-C-006 with Lockheed-Martin. July 1996.

5. Krell, Tim A. "Perils of the Glass Cockpit: The Human Factor of Computer Graphics."
CS-360 Mini Report, http://www.npl.com/~tkrell/writings/aviation/glass-cockpit.html.
February 1997.

6. Montoya, R. Jorge, et al, AGSSS: The Airborne Graphics Software Support System.
WL-TR-91-1042. Wright-Patterson AFB OH: Wright Laboratory Avionics
Directorate, September 1991.

7. Montoya, R. Jorge, et al, "An Interactive Graphics Editor for Computer Generated
Cockpit Displays," Proceedings of the 9th Annual Digital Avionics Systems
Conference. 441-446. 1990.

8. "OpenGL Frequently Asked Questions," Excerpt from unpublished article, 10 pages,
http ://www. sgi. com/soft ware/opengl/faq. html.

9. "OpenGL Data Sheet," Excerpt from unpublished article, 10 pages,
http ://www. sgi. com/software/opengl/datasheet. html.

10. "Pilot Situational Awareness," Excerpt from unpublished article, 2 pages.
http://www.brooks.af.mil/HSC/products/doc50.html.

11. Pressman, Roger S. Ph.D. Software Engineering: A Practitioner's Approach. New
York: The McGraw-Hill Companies, Inc. 1997.

12. Sullivan, Wilf and Bennett, Paul A. COTS Products Provide Rapid Development and
Deployment of Avionics and Vetronics Displays. Katana, Ontario, Canada: DY 4
Systems, Inc. July 1996.

103

13. "VAPS Users Final," F-22 'Raptor' Air Dominance Fighter. CD-ROM. Avionics
Analysis and Integration, Advanced Development Lab, Lockheed-Martin. 1999.

14. Way, T.C., 3-D Imagery Cockpit Display Development.
WRDC-TR-90-7003. Wright-Patterson AFB OH: Cockpit Integration Directorate,
August 1990.

15. Woo, Mason and others. OpenGL Programming Guide: Second Edition. Reading,
Massachusetts: Addison Wesley Longman, Inc. 1997.

104

References

1. Bailey, D. C. "F-22 Cockpit Display System," Proceedings of the SPIE Conference.
157-165. Washington: SPIE-The International Society for Optical Engineers, 1994.

2. Barbato, Gregory J. and Boucek, G. Scott. Integrating Cockpit Technologies to
Improve Aircrew Situational Awareness and Performance in Ground Attack Mission.
Wright-Patterson AFB OH: Vehicle-Pilot Integration Branch, 1996.

3. Benning, Stephen L., et al, Pave Pillar In-House Techinical Report Demonstrations I
and IA. WRDC-TR-90-1157. Wright-Patterson AFB: Avionics Laboratory, July 1990.

4. Braaten, Alan J. A Graphics Environment Supporting the Rapid Prototyping of
Pictorial Cockpit Displays. MS Thesis, AFIT/GCS/MA/86D-1. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1986
(AD-A178636).

5. Integrated Test Bed, Advanced Architecture and Integration Branch, Interface Control
Document for the Mission Operation Sequence. GSTB-1280228. Wright-Patterson
AF OH: Air Force Research Laboratory, 1994.

6. Jauer, Richard A. and Grasso, Joseph A. Graphics Processor Definition II.
WL-TR-91-7003. Wright-Patterson AFB OH: Wright Laboratory, June 1991.

7. Kanko, Mark A. Geometric Modeling of Flight Information for Graphical Cockpit
Display. MS Thesis, AFIT/GCE/ENG/87D-6. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1987 (AD-
Al 90484).

8. Veitch, William A. and Atkinson, Robert. An Advanced Concept for Avionics Testing.
Excerpt from published White Paper, 6 Pages, Virtual Prototypes, Inc.
http://wwwl .virtualprototypes.ca/VSD/press/cst_acat.html. July 1999.

9. Virtual Prototypes, Inc., VAPS 5.1 User's Guide. Copyright 1999.

10. Virtual Prototypes, Inc., VAPS 5.1 Conceptual Overview, Copyright 1999.

11. Way, T.C., et al, Pictorial Format Display Evaluation. AFWAL-TR-84-3036. Wright-
Patterson AFB OH: Flight Dynamics Directorate, May 1984.

105

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

A COMPARATIVE ANALYSIS OF COCKPIT DISPLAY DEVELOPMENT TOOLS

6. AUTHOR(S)

Matthew J. Gebhardt, Captain, USAF

FUNDING NUMBERS

EN - if funded, enter funding number

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFTT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GE/ENG/OOM-IO

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRI7IFSC
Attn: Mr. Jesse L. Blair
2241 Avionics Circle
WPAFB OH 45433-7765 DSN: 785-4827 x3337

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Lt Col Timothy Jacobs, ENG, DSN: 785-3636, ext. 4279

12a. DISTRIBUTION /AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT (Maximum 200 Words)
Currently, no standard methodology exists that enables cockpit display engineers to evaluate software tools used in the development of graphical cockpit displays.

Furthermore, little research has been accomplished in comparing current software development tools with traditional hand-coded methods. This research effort
discusses a framework for analyzing cockpit display software development tools and follows through with a detailed analysis comparing today's hand-coding standard,
OpenGL, with two of today's cockpit display software development suites, Virtual Application Prototyping System (VAPS) and Display Editor. The comparison
exploits the analysis framework establishing the advantages and disadvantages of the three software development suites. The analysis framework is comprised of
several detailed questionnaires that enable the cockpit engineer to quantify important subjective criteria such as learning curve, user interface, readability, portability,
extensibility, and maintenance. The questionnaires developed for each subjective criterion contain questions with weighted answers that enable the cockpit engineer
to evaluate graphical software development tools. The questions were adapted from multiple sources including personal experience, display experts, pilots, navigators,
case tool, and text sources. In addition, the comparative analysis evaluates several objective criteria with respect to development tools and the displays generated with
them such as update rate, development time, executable size, and CPU/Memory usage level.
14. SUBJECT TERMS
Cockpit Displays, Software Evaluation, Cockpit Display Analysis, Display Editor, Interactive Graphics Editor, Airborne
Graphics Software Support System, VAPS, OpenGL, Subjective Evaluation, Objective Evaluation, hand-coded, automated
code generation, case tools, graphics, cockpit graphics, dynamic graphics, heads-down, process metrics, process evaluation.

15. NUMBER OF PAGES
118

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	A Comparative Analysis of Cockpit Display Development Tools
	Recommended Citation

	/tardir/tiffs/a381233.tiff

