
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2000 

Navigation of Satellite Clusters Navigation of Satellite Clusters 

Jeffrey S. Davis 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Astrodynamics Commons 

Recommended Citation Recommended Citation 
Davis, Jeffrey S., "Navigation of Satellite Clusters" (2000). Theses and Dissertations. 4771. 
https://scholar.afit.edu/etd/4771 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/223?utm_source=scholar.afit.edu%2Fetd%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4771?utm_source=scholar.afit.edu%2Fetd%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


NAVIGATION OF SATELLITE CLUSTERS 

THESIS 

Jeffrey S. Davis, Captain, USAF 

AFTT/GSO/ENY/OOM-Ol 

20000803 146 
DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

imC QUALITY I2J«?2C1S!X> 4 



The views expressed in this thesis are those of the author and do not reflect the official policy or position of 

the United States Air Force, Department of Defense, or the U.S. Government. 



AFrr/GSO/ENY/OOM-01 

NAVIGATION OF SATELLITE CLUSTERS 

THESIS 

Presented to the Faculty of the School of Engineering and Management 

of the Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Space Operations 

Jeffrey S. Davis, B.S. 

Captain, USAF 

March 2000 

Approved for public release; distribution unlimited 



AFU/GSO/ENY/OOM-01 

NAVIGATION OF SATELLITE CLUSTERS 

Jeffrey S. Davis, B.S. 
Captain, USAF 

Approved: 

ÜJJJU f- 1^- £^~ ™ 
Dr. William Wiesel, Ph. D. (Chairman) date 

On /icr-OCJ 

Captain Gregory Agnes, Ph. D. date 

Dr. Steven Tragesser, Ph. D. date 



Acknowledgments 

I would like to express my gratitude and appreciation to Dr. William Wiesel for his 

outstanding support over the duration of this effort. His assistance with my computer 

programs and understanding of the problem proved invaluable. However, I'm mostly 

thankful for never having left his office in despair. I would also like to thank Capt Greg 

Agnes and Dr. Steven Tragesser for their insights as well. 

My heartfelt thanks and love belong to my wife Kelly, daughter Brooke and son 

Austin. Their understanding, support and willingness to make sacrifices over the past 18 

months have made this a positive experience in our lives. 

Jeffrey S. Davis 

IV 



AFIT/GSO/ENYOO/M-01 
Abstract 

The relative position determination of a cluster of satellites in near circular orbit was 

investigated in previous thesis work. The purpose of this thesis is to extend the concept 

to cover absolute position determination. A Bayes filter is used for the estimator with 

dynamics based on the two-body problem extended to account for J2 perturbations. 

Measurements consist of combining Global Positioning System (GPS) data for each 

satellite and range data between the satellites. Simulations were conducted investigating 

the accuracy obtainable when combining the measurements for input into the filter. 

Performance results consist of comparing the magnitude of the true error to the filter 

covariance as a function of time. True errors are also compared to minimum accuracy 

requirements for a space-based radar. The filter encountered numerical difficulties due to 

the extreme accuracy requirements and proved unsuccessful in providing usable 

estimates. The results suggest separating the absolute and relative problems. 
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NAVIGATION OF SATELLITE CLUSTERS 

/. Introduction 

Background 

As the development of space-based radar technologies permits shifting missions such 

as Airborne Warning and Control System (AWACS) and Joint Surveillance and 

Targeting Attack Radar System (Joint-STARS) surveillance functions to the arena of 

space, the navigation and control of satellite clusters has become a prime area of interest. 

The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL) is one 

agency currently studying how a cluster of satellites each acting as an element of a radar 

antenna might perform such a mission. The TechSat 21 project envisions a cluster of 

satellites working together as a single virtual satellite while performing various functions, 

such as a space-based radar (Figure 1). Research is needed to determine how to fly the 

cluster in formation, so it acts like a single satellite. Before they can perform formation 

flying, the positions of the satellites relative to one another must be known with some 

degree of accuracy. Furthermore, in order to perform a variety of spaced-based radar 

applications, the positions should be known to within one tenth of a wavelength of the 

radar frequency being used; potentially to 1 centimeter (cm). The determination of this 

value can be found in Appendix A. 



Passive Radiometry Mission 
Cluster Augmentation £^(H&h accuracy geolaafcn) 

"on-demand" 

Radar Mission 
(AMTI/GMTI/SAR) 

Comm Mission    • 
(Narrow beanVwide area coverage) 

Figure 1.   Techsat 21 Missions (13: n. pag.) 

Using the Global Positioning System (GPS) to determine the position of the satellites 

with respect to each other offers a possible solution. Spaced-based GPS receivers may 

achieve improvement over the accuracy obtained from terrestrial receivers. The GPS 

constellation of 24 satellites orbits the earth at approximately 20,000 km providing 100 

percent coverage for a satellite cluster operating at typical space-based radar altitudes. 

This may enhance performance of the receivers due to improved satellite viewing 

geometry. The absence of tropospheric delays offers an additional improvement in 

performance. Results of postprocessed experiments using differential GPS showed 

baseline accuracies of approximately 5-10 cm (5:249). Although this level of accuracy 

may not be achievable with stand-alone spaceborne processing, accurate modeling and a 



well designed filter should make 1 meter (m) level accuracies possible (5:249). Although 

real time accuracy for authorized users of Precise Positioning Service (PPS) signals is 

currently about 5-10 meters (8:D-2), this study will assume 1-3 meter accuracy will be 

available for GPS data. However, even at 1 m level accuracy, performance does not meet 

the required centimeter level of accuracy for some radar applications. 

Several previous Air Force Institute of Technology theses studied the concept of using 

a recursive filter for relative position determination among a cluster of satellites without 

the use of GPS (4; 9; 14). They used a U-D covariance factorization Kaiman filter that 

operated on range data between the satellites determined from synchronized clock pulses. 

The relative position error approached a value of approximately 3 cm. The position is 

relative because only the distance between the satellites is known, not the direction. 

Combining the centimeter level accuracy of the range data with the meter level 

accuracy of GPS may provide a solution for the absolute positions of the satellites to the 

required accuracy. Applying estimation techniques, in the form of a Bayes filter, to this 

approach is the focus of this investigation. 

Objectives 

The purpose, and primary objective, of this investigation was to determine the possible 

accuracies for position determination among a cluster of satellites using a Bayes Filter. 

Several other objectives were accomplished in order to achieve the primary objective. 

First, simulating the orbits of the satellite cluster was necessary. Although future 

analysis should be accomplished for a full cluster (8-16 satellites), only two were used in 

this study. This was done under the assumption that what could be performed with two 



could be extended to many. The orbits were determined using the two-body equations of 

motion expanded to include the effects of the nonspherical earth. 

Next, a truth model was built to output the true state as well as the measurement data 

over selected time intervals for input into the filter. The truth model outputs consisted of 

the range data between satellites, and the GPS determined positions for each of the 

satellites. 

Finally, a Bayes filter was written to output an estimated state. The critical elements 

of the estimated state were compared to the true state to determine the filter's level of 

performance. 



77. Methodology 

Satellite Orbit Selection 

The first step towards the eventual development of a truth model is selecting the 

desired orbital parameters for the satellite cluster. The criteria is for the satellites to be 

approximately 500 meters apart, at their closest, and at an orbital altitude of about 1000 

nautical miles (1852 km). 

jeconfiguti 

S|g|[*  ± ,GMTI 

Cornm. Geolocation 

Radar Mode Geolocatiort Mode "Dial-In" Mission 

Figure 2.   Spacing Criteria for Different Modes. (13:n. pag.) 

In order to maintain the cluster integrity, and not drift apart, each of the satellites are 

required to have the same orbital period. From Kepler's laws, the orbital period of an 

elliptical orbit is a function of the semi-major axis of the orbit (1:33). Therefore, both of 

the satellites used in the model had the same semi-major axis. To keep things simple, the 

two satellites were placed in the same orbital plane of a near circular orbit with different 

perigee times used to maintain the desired separation. Although safety reasons might 

prevent placing any of the cluster's satellites this close when within the same along-track 



plane, it is not a concern for this study. The velocities of the satellites were calculated 

using 

Vcir = ^J (1) 
V  ' 

where 

Vdr = orbital velocity (circular) 

ß = 3.986005X10A14 km3/s2 (the earth's gravitational parameter) 

r = orbit radius (km) 

The time of perigee passage for one of the satellites was then adjusted to create a 500 

meter interval. The remaining orbital elements were arbitrarily chosen and entered into 

an existing program to determine the initial position and velocity vectors for the two 

satellites. 

Propagating the Orbits 

With the initial positions and velocities known, the next step was to develop a 

program to propagate each satellite through its orbit. The orbits were based on two-body 

orbital dynamics expanded to include the effects of the nonspherical Earth known as J2 

perturbations. Other perturbations, such as atmospheric drag, were neglected in part due 

to their negligible effects at the altitude of interest, 1852 km, and partly to simplify the 

equations. The desired output from the orbit propagator program was a state vector for 



each satellite which included the position and the velocity vectors as follows 

'^ 

X = 
(2) 

\ZJ 

The x, y, and z positions are with respect to an earth-centered inertial reference frame and 

defined in terms of distance units (DU), where 1 DU = 1678.135 km, or the radius of the 

Earth. To obtain the state vector, the equations of motion to describe the orbits were 

written and integrated. The equations of motion were just the time rate of change of the 

state vector, 

f \ 
x 

y 

x- z (3> 

y 



The equations of motion were derived from the gravitational potential function (1:419): 

r       2r 

( z2     ^ 

\ r      ) 
(4) 

where 

(I=3.986005X10A14 km3/s2 (the earth's gravitational parameter) 

re=6378.137 km (the earth's radius) 

J2=0.00108263 

The acceleration terms were found by setting the following equalities: 

dV 
x = — 

dx 

dV 
dy 

dV 

dz 

Solving each of these led to the following acceleration terms (1:421-422): 

x = — 
fj,x 

F3 1-7 Wfl* 

(5) 

(6) 

(7) 

(8) 

Hy 
l-Jiw w 2(   z2 

5^--l 
v   r2 

) 
(9) 

z - - 
jiz_ 
-3 1+/27T r^- w 3/r  \( z2^ 

r2j 

(10) 



where 

r=^x2 + y2 + z 

Along with the equations of motion, the state transition matrix, <E>, was used to propagate 

the differentials of the state as a function of time. The O matrix satisfies the equation 

®{t,t0)=A(t) &(t,t0) (11) 

dX 
where A(t) = -==7-, and was obtained by numerically integrating the equations of variation 

oX 

in parallel with the equations of motion. The equations of variation account for possible 

variations in the desired orbit and are derived by solving the matrix 

d X 
dx 

dvx     dyx     dvx     dVx     dyx     dy 
dx dy dz dx dy dz 

dVy dVy dVy dVy dvy dVy 
dx dy dz dx dy dz 

dvz dVz dVz dvz dVz dVz 

dx dy dz dx dy dz 
dvx dvx 

dV. dV, dvx dyx 

dx dy dz dx dy dz 
tvy dV, 3V, dvy dv, tVy 

dx dy dz dx dy dz 
3VZ dVz dvz dvz dvz dVz 

dx dy dz dx dy dz 

(12) 



Calculating the partial derivatives will show A(t) to have the following form (15:78): 

A(t) = 4>   I 
A2x   (j) 

(13) 

where 

0 = 3X3 null matrix 

/ = identity matrix 

The A21 elements of A(t) are as follows: 

dVx 3x2-r- 
+ jj2flrl 

5r2z2-35x2z2     r2-5x2 

r9 (14) 

dVx     3/Llxy     15 2 

~dy~~~P~ +  2  3liir< 
7 xy z2     xy 
r9 + 

r1 (15) 

d V x     3\ixz     15_ 2 2xzf -1 x z      xz 
r9 f1 

(16) 

dVy     3jixy     15 2 

-dx~=~Tr~+^Jlßre 
1xy z      xy 

' +    _7 
f9 (17) 

dv 
dy 

•= n 3y2-f2 

r5 + jJ2^r] 
5z2r2-35y2

z
2     r2 - 5 y2 

f9 f1 
(18) 

dVy _3ßyz     15 2 

dz   ~    r5        2  •/2^re 

2>>zF2-7)>z^     vz 
-9 r r7 (19) 
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dVz     3/ixz     15^ 2 

"AT"   f5   + 2 y2/i/"e 
2JCZF  -7JCZ       XZ 

r9 ■ + -7 
(20) 

<9yz     3^z     15 2 

^T=-^+T72^ 
2yzr2-7yz

3     vz 
-9 +   -7 r r 

(21) 

dV. 
dz V 

3z2-r 
-5 r 

+ jJißr2
e 

105z4 75z
2r2 6r4 3r^ 15z2 

-9 r 
(22) 

The routines written to propagate the dynamics consisted of a main program and two 

subroutines. Changes to existing routines, most significantly the dynamics, were made to 

fit the scenario for this study. The source code for each routine is listed in Appendix B. 

The main program, moveit, is a simple dynamics propagator which takes the input state 

vectors and propagates their orbits from the initial time to the desired end time. It also 

outputs the state transition matrix, O, at the end time as well. The main program makes 

use of two subroutines, haming and rhs. Haming is an ordinary differential equations 

integrator. It is a fourth order predictor-corrector algorithm. The subroutine rhs is the 

routine that actually calculates the equations of motion and the equations of variation. 

Once the routines were created, they were verified using published scenarios (6:253-256). 

Once the test satellites were propagated to the proper times, the position and velocity data 

were input into a program written to output the classical orbital elements given the 

position and velocity. The J2 effect, if working correctly, should have produced a 

11 



regression of the ascending node as well as a rotation in the argument of perigee. The 

following equations used for general perturbation theory without numerical integration 

were used to verify the output (15:81): 

fl = flo- I ^2cosi'o(f-ro) (23) 
2ao  \\-eo) 

^•-d^fr1"2'»-2)-^ (24) 

The amount of nodal regression and argument of perigee rotation shown in the output of 

the classical elements agreed to several significant digits with the values calculated from 

the respective equations. The results can be found in Appendix C and were deemed 

satisfactory for use. The amount of nodal regression was also verified with published 

data for given inclinations and altitudes and was within reasonable limits (12:262-263). 

Truth Model 

The truth model needs to output the true state x and the measurements zt. The 

measurements are used by the estimation filter to output an estimated state Jc. The true 

state information, for each time step, is already available from the previous routines 

propagating the orbits. Additionally, the range data between the two satellites is desired 

and is computed using 

range(p) = ^(xi-xif + (v,-^)2 + (zi-za)* (25) 

12 



The measurement data consists of the position vectors of the two satellites along with the 

range between them. The resulting observation function, G(x,t), takes the form 

Z perfect 

r             -i 

P 
XSat\ 

y sat\ 

ZsatX • = • 

Xsatl 

ysal 2 

Zsatt _ 

yCti-x2) 
+{yi-y2) 

+\zx-zi) 
X\ 

>1 

Z\ 

Xi 

y2 

Zi 

(26) 

In order to represent the errors associated with obtaining the respective measurements, 

Gaussian noise is added to corrupt the perfect data captured above resulting in 

Z corrupt       Z perfect   '  O noise (27) 

The Zcomipt data is used to form the inputs to the estimator. The Gnoise is the Gaussian 

noise with an associated instrument covariance of Q. The noise is the representation for 

errors in computing the range measurements from clock pulses and the positions using a 

GPS receiver. The noise consists of random numbers created from a uniformly 

distributed random number generator manipulated to meet the proper covariances. The 

observation data vector, z,-, is output for each observation time-step U. 

Bay es Filter 

Now that the truth model can represent real world measurements, the estimation filter 

can be developed. Typically the choice between using a Bayes or Kaiman filter is 

determined by inspecting the rank of the state vs. the rank of the measurement data. If the 

rank of the state is greater, as in this case, then the Kaiman filter is the proper choice. 

13 



However, due to the very accurate data supplied by the instruments in use, the Kaiman 

filter provides poor response (15:107). Although there are methods to correct the 

response, it is simpler and more efficient to attempt the use of a Bayes filter for this study. 

The Bayes algorithm that follows is adapted from Modern Methods of Orbit 

Determination (15:96-97). The Bayes algorithm is initiated by bringing in a previous 

estimate of the state, jc(-), and its' covariance, P'\-), at the new epoch. The previous 

estimate becomes the reference by setting 

Xref = x{~) (28) 

for each new observation time tt. Next, the state vectors and <J> matrices are propagated to 

time U. The residual vector, r„ linearization matrix, H,-, and the observation matrix, T, are 

calculated and 

ri = Zi-G (29) 

As shown, the residuals are just the observed data supplied to the filter minus the 

predicted values calculated using equation (26). The H matrix is derived from taking the 

partials of G(x,t) with respect to the partials of the state X, where X is now 

X7 = {x\,yi,Zi,x1,y1,zl,x2,y2,Z2,x2,y2,z2) (30) 

14 



The H matrix is 

*1     -*2 

P 

yi-yi 
p 

Z,-Z2 

p 
0 0 0 ■*2    -*i 

p 
yi-yi 

p 
Zz-Zl 

P 
0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 

0 l 0 0 0 0 0 0 0 0 0 0 

H= 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 

(31) 

The observation matrix is found by setting 

Ti = Hlo(tnt0) (32) 

The observation covariance matrix is also required. The diagonal entries contain the error 

values of the instruments and the off-diagonal entries are zero. The zero values imply 

that the measurements are independent. This is probably not a valid assumption but is 

adequate for this study.   The observation covariance matrix is 

Q = 

2 
range 0 

0 2 
°GPS 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 

0 0 0 0 0 
.2 
GPS 0 0 0 0 

0 2 
°GPS 0 0 0 

0 0 _2 
°GPS 0 0 

0 0 0 2 
°GPS 0 

0 0 0 0 _2 

Continuing with the algorithm, sum additional terms 

GPS 

(33) 

(34) 
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Irre:1?, (35) 

Next, obtain the new covariance of the state correction: 

p-l(+) = p-'(-) + inQ:iTi (36) 
1=1 

Also obtain the estimate of the state correction: 

Sx(to)= />(+)[p-1(-)(^(-)-^e/)+I rfßr'r«,) (37) 

Finally, correct the reference solution and check for convergence: 

*re/ + iOo)= xref(t0)+Sx(fo) (38) 

If the algorithm fails to converge, the process repeats itself starting with the propagation 

of the state and O matrix. If the process converged, then jcre/+1 is the estimate with 

covariance P(+). 

16 



///. Performance Analysis 

The truth model and the Bayes filter have been developed. The necessary information 

for an initial assessment of the filter's performance can be obtained through multiple runs 

of the models. The information of interest is the true state xt, the estimated state x, and 

the covariance P. The remaining task is to convert the information into a useful output. 

The analysis will plot the true errors |e. | and covariances ■Jf^of the x, y, and z 

position estimates for each satellite over a period of 5 orbits. In addition, the magnitude 

of the true error for each satellite is plotted against the standard deviation of the 

covariance to get a feel for the overall position error. The magnitude of the true error is 

given by 

etrue = 4el + e) + el (39) 

where ei is the difference between the Ax, Ay, and Az components of the true state and 

the estimated state. The estimates' covariance, or standard deviation, is found by taking 

the square root of the sum of the squares of the eigenvalues associated with the position 

components of the estimated state, specifically 

C = Jeigenvalue] + eigenvalue^ + eigenvalue] (40) 

The purpose of the first test was to determine if the filter was stable and could provide 

a near perfect estimate if supplied with perfect data. The filter was initialized with the 

true state of the two satellites along with p~l (-) = 0. This eliminates the need for initial 

run of least squares to provide an input estimate (15:106). Next, the filter was fed perfect 

17 



data from the truth model. Figure 3 shows the results. Only satellite l's x position results 

are shown because they were all identical. The covariance remained stable and the true 

errors were for all purposes zero, as the raw data, in DU's, agreed to within 11-13 

significant digits. The raw data for this case are included in Appendix C. 
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Figure 3.   Comparison of true error (e;) and covariance ^Pit versus time, given perfect 

data. 

Next, the filter was adjusted for various values to explore the range of possible 

measured range errors versus GPS errors. The values were adjusted by varying the 

diagonal elements of the observation covariance matrix Q, defined in the previous 

chapter. Although the range measurement errors were approximately two to three times 

less than the achieved relative error of 3 cm (9:48), a conservative range measurement 

18 



error was arbitrarily defined as 3 cm. The initial case was set up to reflect the expected 

performance from GPS and the anticipated range measurement error, 1 m and 3 cm, 

respectively. The performance of the filter was unanticipated, as the filter failed to 

converge. Although the filter was fine given perfect data, the filter never met the original 

convergence criteria when supplied with corrupted data. The original criteria was set at 

A^O.OlV^ (41) 

where A^ represented the difference between a given component of the estimate and the 

observed component and ^/TTwas that component's covariance. The 0.01 factor was 

removed and the process was repeated. This time the filter met the criteria until the 3rd 

orbit. Upon inspection, following the first two orbits the changes to the components of 

the state remained at the same order of magnitude as the values for Jfl . In order to get 

an output for what the filter was doing with the estimates for subsequent orbits, the 

converging criteria was changed to 

A* < 12^ (42) 

The value 12 was determined from experimentation to see the approximate lowest value 

that could be entered which would allow the filter to converge. This indicates a change in 

the twelve sigma range. Figures 4-11 show the various results. The validity of the 

output as time progresses is questionable at best, but it lends insight into what is 

happening within the filter. The covariances remain steady while the estimates continue 

to worsen, and even when a very poor estimate of the state is entered after orbit 4, the 

covariance still indicates the data can be trusted. Orbit 5's true error is off the charts. At 

19 



that point the filter would not converge before the maximum number of iterations had 

been exceeded. The value plotted was the last best guess estimate the filter had prior to 

termination. 
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It appears that the Bayes filter may be experiencing problems similar to those that the 

Kaiman filter has been known to experience when processing very accurate data. With 

the data in terms of DU's, estimates are striving to be accurate on the order of 10~7 to 10"9, 

within meters to centimeters, respectively. The P values ranged from 10"11 to 10"16 , 

which not only represent P approaching zero but approach the limits of double precision 

capabilities as well. The problem arises when the initial residuals are small and P —» 0, 

and then as the residuals increase the filter ignores them. As p~l (-) becomes very large, 

N 

equation (36) shows that the Y jj Q~lTi term becomes negligible and p~'(+) = P_I(-). 
i=i 

Next, in equation (37), P(+) -> 0, thereby eliminating any correction to the previous 

state. 
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Prior to the failure of the filter, several other cases of interest were to be investigated 

as well. The cases of interest were when the accuracy provided by the range instruments 

weren't much better than the data provided by the GPS receiver, and the case where GPS 

estimates approached the accuracies obtained by post-processing, approximately 10 cm. 

Because each of these cases presented data within the same order of magnitude, they were 

run through the filter to see if the results were any different. Also, over short durations, 

maybe an orbit or so, the output still gives an indication of what accuracies might be 

obtainable if the filter was made to work. The results are shown in figures 12-21. As 

expected, the filter's performance resembles that of the previous data, although it doesn't 

diverge as quickly. 
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versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range 
data. 
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Figure 18.   Satellite 1 position (y) comparison of true error (eO and covariance ^JPU 

versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range 
data. 
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Figure 19.   Satellite 1 position (z) comparison of true error (e,) and covariance ^JPU 

versus time, with noise values of 10 centimeters for GPS and 3 centimeters for range 
data. 
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IV. Conclusion 

The Bayes algorithm as tested proved to be incapable of handling the accurate data 

simulated by the truth model. The covariances of the state were so small that the filter 

ignored any residuals, even as they increased in magnitude. Attempting to determine the 

absolute positions to such a small scale probably contributed to the failure. Trying to 

estimate positions to the accuracy of centimeters on such a large scale, =1850 km, not 

only tested the filter but stretched the limits of double precision computing as well. 

Investigating methods used with the Kaiman filter to account for similar limitations 

might be the next step. However, with respect to the double precision limits, it is 

recommended to look at the problem in terms of the satellite cluster's world. The 

problem might be split up between the absolute position of the cluster as a whole, and the 

relative position of the satellites within the cluster. For a cluster spread out over 1 - 2 km, 

centimeter accuracy would be to less significant digits. Also, depending on the 

application, the absolute position of the cluster would probably only require sub- 

kilometer accuracy. 

Solid conclusions cannot be drawn about the ability of the filter to meet the required 

accuracies of a space-based radar. However, if the early orbits can be used as a measure, 

estimates in the tens of centimeters were obtained, which still fell short for some 

applications. Also, the data was for a single trial, and performing multiple trials is 

necessary to get statistical data for achievable accuracies. 
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Appendix A: Satellite Precision Requirement 

This appendix describes the process used to determine the accuracy requirements for 

the Bayes filter. When functioning as a space-based radar, the requirements are based on 

many variables, most notably the type of application and the resolution desired. Several 

items to consider are described below, beginning with the methodology used in the 

previous thesis work. 

In order to form a cohesive image, the relative position of each satellite needs to be 

known to at least one-quarter wavelength (7:443). However, at this limit fogginess and 

loss of contrast can prevent finer resolutions. Therefore precision requirements were 

reduced to one tenth of a wavelength. The maximum wavelength is a function of the size 

of the antenna and was determined to be approximately 216.23 meters for a cluster at an 

altitude of 1000km (4:57). Therefore, the accuracy required by the filter is 21.6 meters. 

A pulsed Synthetic Aperture Radar (SAR) has much more stringent requirements. 

SAR is a technique that the cluster would implement for various applications, such as 

performing the role of Joint-STARS as discussed in the introduction. SAR requires that 

the positions and velocities between the elements are known such that the returns can be 

assigned with an accuracy that is better than the instrumental resolution for range and 

Doppler, typically 30 centimeters (8:16). 

If the cluster is tasked to perform as a phased array radar, other concerns arise which 

can affect the required precision. Large corporate-fed phased array antennas can 
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experience decreased performance due to structural distortions caused by the thermal and 

natural radiation environments. Distortions to the plane of the array cause random phase 

errors, decreasing antenna gain, when the error correlation interval is large with respect to 

a wavelength. To prevent significant losses, the planar distortion of the elements must be 

held to less than one tenth of a wavelength (2:495). For a radar operating at a wavelength 

of 10 cm, the plane of the array must remain within 1 cm to prevent distortion. Although 

the elements in a satellite cluster aren't physically connected, this distortion may still 

apply when the virtual plane is in effect distorted by inaccurate position determination. 

Obviously, there are many precision requirements dependent upon the application 

desired. In order to cover all bases, the precision requirements for this study will be set at 

1 cm. 
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Appendix B: Computer Source Code 

This appendix provides the Visual Basic source code used for the truth model and the 

Bayes filter. The framework for the routines was converted from FORTRAN source code 

provided by Dr. William Wiesel. Note, because the code was manipulated for different 

scenarios, such as during the tuning process, the code as printed may not produce all/any 

of the results presented in the analysis section. 

Orbit Propagator Routine 

'This program will propagate the orbit of a satellite 

Pub: 
Pub: 
Pub: 
Pub: 
Pub: 
Pub: 
Pub! 
Pub 
Pub 
Pub 
Pub 
Pub 
Pub! 
Pub 
Pub 
Pub: 
Pub: 
Pub: 
Pub: 
Pub: 
Pub: 
Pub: 
Pub: 
Pub: 
Pub: 

c x As Double 
c xl As Double 
c x2 As Double 
c y(42, 4) As Double 
c yl(42, 4) As Double 
c y2(42, 4) As Double 
c f(42, 4) As Double 
c fl(42, 4) As Double 
c f2(42, 4) As Double 
c errest(42) As Double 
c errestl(42) As Double 
c errest2(42) As Double 
c h As Double 
c n As Integer 
c mode As Integer 
c isw As Integer 
c iswl As Integer 
c isw2 As Integer 
cjsw As Integer 
cjswl As Integer 
cjsw2 As Integer 
c ql(7, 7) As Double 
c zpred(7) As Double 
c zpredn(7) As Double 
c hm(7, 12) As Double 

Sub Moveit() 
'Moveit is a simple dynamics propagator. 
'It takes input state vector y and propagates 
'it from tO to tf. The phi matrix is calculated 
'and output at tf. 

'Declare local variables 
Dim tO As Double 
Dim tf As Double 
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Dim TU2min As Double 
Dim phi 1(6, 6) As Double 
Dim phi2(6, 6) As Double 
Dim n3 As Double 

TU2min = 13.44686457 'conversion factor for TUs into minutes 

'Read input 

Open "C:\Test_move_in.txt" For Input As #1 
Input #1, yl(l, 1), yl(2, 1), yl(3, 1)       'satellite 1 initial position 
Input #1, yl(4, 1), yl(5, 1), yl(6, 1)        'satellite 1 initial velocity 
Input #1, y2(l, 1), y2(2, 1), y2(3, 1)      'satellite 2 initial position 
Input #1, y2(4, 1), y2(5, 1), y2(6, 1)        'satellite 2 initial velocity 
Input #1, yrl, monl, dayl, hrl, mini, seel       'start time 
tO = julday(yrl, monl, dayl, hrl, mini, seel) 'convert to modified Julian day 
tO = tO * (1440# / TU2min) 'convert from Julian day to TU 
Input #1, yr2, mon2, day2, hr2, min2, sec2       'finish time 
tf = julday(yr2, mon2, day2, hr2, min2, sec2) 'convert to modified Julian day 
tf=tf*(1440#/TU2min) 
Input #1, mode, nstp   'mode and number of steps for integration 

'Write input to output file 

Open "C:\Test_move_out.txt" For Output As #2 
Print #2, "initial time:"; Tab(5); tO 
Print #2, "final time:"; Tab(5); tf 
Print #2, "initial state vector for satellite 1:" 
Print #2, yl(l, 1); Tab(5); yl(2, 1); Tab(5); yl(3, 1) 
Print #2, yl(4, 1); Tab(5); yl(5, 1); Tab(5); yl(6, 1) 
Print #2, "initial state vector for satellite 2:" 
Print #2, y2(l, 1); Tab(5); y2(2, 1); Tab(5); y2(3, 1) 
Print #2, y2(4, 1); Tab(5); y2(5, 1); Tab(5); y2(6, 1) 

Open "C:\Observations.txt" For Output As #3 
'Open "C:\Truedata.txt" For Output As #4 

'Setup naming initialization 

'number of ODEs 

If mode =1 Then 
n = 42 

Else 
n = 6 

End If 

'initialize phil(tO) & phi2(t0) if necessary 

If mode =1 Then 
For i = 7 To 42 

yl(i, 1) = 0# 
y2(i, 1) = 0# 
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Next 
For i = 7 To 42 Step 7 

yl(i,l)=l# 
y2(i,l)=l# 

Next 
End If 

Timestep setup - also prevents plotting more than 
100 points if plotting routine is added/called 

Ifnstp<= 100 Then 
nl = nstp 

Else 
nl = 100 

End If 

n2 = 1 + nstp / nl 
n3 = nl * n2 
h = (tf-t0)/n3 
xl=t0 
x2 = t0 
nxtl = 0 
nxt2 = 0 

'Print time interval (h) to observation file for use by filter 

Print #3, h 

'initialize naming 

' setup haming for satellite 1 
x = xl 
nxt = nxtl 
For i = 1 To 42 

Forj= 1TO4 

y(i.j) = yi(i,j) 
Next 

Next 

Call Haming(nxt) 

'Retain settings for satellite 1 
xl = x 
For i = 1 To 42 

Forj = 1 To 4 
yl(i,j) = y(i,j) 

Next 
Next 
For i = 1 To 42 

Forj = lTo4 
fl(i,j) = f(i,j) 

Next 
Next 
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For i = 1 To 42 
errestl(i) = errest(i) 

Next 
nxtl = nxt 
iswl = isw 
jswl =jsw 

'setup haming for satellite 2 
x = x2 
nxt = nxt2 
For i = 1 To 42 

Forj = lTo4 
y(i,j) = y2(i,j) 

Next 
Next 

Call Haming(nxt) 

'Retain settings for satellite 2 
x2 = x 
For i = 1 To 42 

Forj = 1TO4 

y2(i,j) = y(i,j) 
Next 

Next 
For i = 1 To 42 

Forj= 1TO4 

f2(i,j) = f(i,j) 
Next 

Next 
For i = 1 To 42 

errest2(i) = errest(i) 
Next 
nxt2 = nxt 
isw2 = isw 
jsw2=jsw 

'Numerical Integration Loop - one timestep per call 

For i = 1 To nl 
Forj = lTon2 

' setup haming for satellite 1 
x = xl 
nxt = nxtl 
isw = iswl 
jsw= jswl 
For s = 1 To 42 

For t = 1 To 4 
y(s, t) = yl(s, t) 

Next 
Next 
For s = 1 To 42 
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For t = 1 To 4 
f(s, t) = fl(s, t) 

Next 
Next 
For s = 1 To 42 

errest(s) = errestl(s) 
Next 

Call Haming(nxt) 

'Retain settings for satellite 1 
xl =x 
For s = 1 To 42 

For t = 1 To 4 
yl(s, t) = y(s, t) 

Next 
Next 
For s = 1 To 42 

For t = 1 To 4 
fl(s, t) = f(s, t) 

Next 
Next 
For s = 1 To 42 

errestl(s) = errest(s) 
Next 
nxtl = nxt 
iswl = isw 
jswl =jsw 

'setup haming for satellite 2 
x = x2 
nxt = nxt2 
isw = isw2 
jsw = jsw2 
For s = 1 To 42 

For t = 1 To 4 
y(s, t) = y2(s, t) 

Next 
Next 
For s = 1 To 42 

For t = 1 To 4 
f(s, t) = f2(s, t) 

Next 
Next 
For s = 1 To 42 

errest(s) = errest2(s) 
Next 

Call Haming(nxt) 

'Retain settings for satellite 2 
x2 = x 
For s = 1 To 42 
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For t = 1 To 4 
y2(s, t) = y(s, t) 

Next 
Next 
For s = 1 To 42 

For t = 1 To 4 
f2(s, t) = f(s, t) 

Next 
Next 
For s = 1 To 42 

errest2(s) = errest(s) 
Next 
nxt2 = nxt 
isw2 = isw 
jsw2 = jsw 
tob = x2 

Next 
Call Obser(nxt) 

'Introduce gaussian noise 

For iii = 1 To 7 
zpredn(iii) = zpred(iii) + randg / Sqr(ql(iii, iii)) 

Next 

'Print observation data 
Print #3, tob; zpredn(l) 
Print #3, zpredn(2); zpredn(3); zpredn(4) 
Print #3, zpredn(5); zpredn(6); zpredn(7) 

'Print truth data 
'Print #4, tob; zpred(l) 
'Print #4, zpred(2); zpred(3); zpred(4) 
'Print #4, zpred(5); zpred(6); zpred(7) 

Next 

'Write final state vector to output file 

Print #2, "Satellite 1 state vector at tf:" 
Print #2, yl(l, 1); Tab(5); yl(2, 1); Tab(5); yl(3, 1) 
Print #2, yl(4, 1); Tab(5); yl(5, 1); Tab(5); yl(6, 1) 

'Do we print phi also?? 

If mode = 0 Then 
Exit Sub 

Else 
For irow = 1 To 6 
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For jcol = 1 To 6 
phil(irow, jcol) = yl(6 * jcol + irow, nxt) 
Print #2, phi 1 (irow, jcol); 

Next 
Print #2,"" 
Next 

End If 
Print #2, "Satellite 2 state vector at tf:" 
Print #2, y2(l, 1); Tab(5); y2(2, 1); Tab(5); y2(3, 1) 
Print #2, y2(4, 1); Tab(5); y2(5, 1); Tab(5); y2(6, 1) 

'Do we print phi also?? 

If mode = 0 Then 
Exit Sub 

Else 
For irow = 1 To 6 

For jcol = 1 To 6 
phi2(irow, jcol) = y2(6 * jcol + irow, nxt) 
Print #2, phi2(irow, jcol); 

Next 
Print #2,"" 
Next 

End If 
Close #1 
Close #2 
Close #3 
'Close #4 

End Sub 
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Ordinary Differential Equations Integrator 

Static Sub Haming(nxt) 
'Haming is an ordinary differential equations integrator. 
'It is a fourth order predictor-corrector algorithm, 
'which means that it carries along the last four 
'values of the state vector, and extrapolates these 
'values to obtain the next value (the prediction step). 
'It then evaluates the equations of motion at the predicted point 
'and then corrects the extrapolated value to find a 
'new value for the state vector(the correction step). 

'The value nxt in the call specifies which of the 4 values 
'of the state vector is the "next", or current, one. 
'nxt is updated by haming automatically, and must be zero on 
'the first call. 

'The user must supply a main program 
'and the external routine rhs(nxt) which 
'evaluates the equations of motion. 

'Declare variables 

'Dim y(42, 4) As Double 'state vector (4 copies of it) with nxt pointing at next one 
'Dim f(42,4) As Double 'equations of motion (4 copies) 
'Dim errest(42) As Double 

' Dim x As Double        'independent variable (often time) 
Dim xo As Double 

' Dim h As Double        'time step 
Dim hh As Double 

' Dim mode As Integer    '0 for just EOM, 1 for EOM and EOV 
1 Dim n As Integer       'number of equations being integrated (6 or 42) 

tol = 0.000000000001 

'Check if this is the first call 

If nxt = 0 Then 

'This is a forwards Picard iteration (slow and expensive) 
'to step forwards in time three steps to get the 3 next points. 
A successful startup returns nxt=l, and time has not been incremented. 
'If startup fails, nxt will be returned as zero. 
xo = x 
hh = h / 2# 
Callrhs(l) 
For 1 = 2 To 4 

x = x + hh 
For i = 1 To n 

y(i, 1) = y(i, 1 - 1) + hh * f(i, 1 - 1) 
Next 
Call rhs(l) 
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x = x + hh 
For i = 1 To n 

y(i,l) = y(i,l-l) + h*f(U) 
Next 
Call rhs(l) 

Next 
jsw = -10 
isw= 1 
For i = 1 To n 

hh = y(i, 1) + h * (9# * f(i, 1) + 19# * f(i, 2) - 5# * f(i, 3) + f(i, 4» / 24# 
If (Abs(hh - y(i, 2)) < tol) Then 

isw = isw 
Else 

isw = 0 
End If 
y(i,2) = hh 
hh = y(i, 1) + h * (f(i, 1) + 4# * f(i, 2) + f(i, 3)) / 3# 
If (Abs(hh - y(i, 3)) < tol) Then 

isw = isw 
Else 

isw = 0 
End If 
y(i, 3) = hh 
hh = y(i, 1) + h * (3# * f(i, 1) + 9# * f(i, 2) + 9# * f(i, 3) + 3# * f(i, 4)) / 8# 
If (Abs(hh - y(i, 4)) < tol) Then 

isw = isw 
Else 

isw = 0 
End If 
y(i,4) = hh 

Next 
x = xo 
For 1 = 2 To 4 

x = x + h 
Call rhs(l) 

Next 

'If something was out of tolerance, perform more, up to 10, iterations 

Do While isw <= 0 And jsw < 0 
jsw=jsw+ 1 
isw= 1 
For i = 1 To n 

hh = y(i, 1) + h * (9# * f(i, 1) + 19# * f(i, 2) - 5# * f(i, 3) + f(i, 4)) / 24# 
If (Abs(hh - y(i, 2)) < tol) Then 

isw = isw 
Else 

isw = 0 
End If 
y(i, 2) = hh 
hh = y(i, 1) + h * (f(i, 1) + 4# * f(i, 2) + f(i, 3)) / 3# 
If (Abs(hh - y(i, 3)) < tol) Then 

isw = isw 
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Else 
isw = 0 

End If 
y(i, 3) = hh 
hh = y(i, 1) + h * (3# * f(i, 1) + 9# * f(i, 2) + 9# * f(i, 3) + 3# * f(i, 4)) / 8# 
If (Abs(hh - y(i, 4)) < tol) Then 

isw = isw 
Else 

isw = 0 
End If 
y(i, 4) = hh 

Next 
x = xo 
For 1 = 2 To 4 

x = x + h 
Call rhs(l) 

Next 
Loop 

'If in tolerance, exit 

If isw <=0 Then 
Exit Sub 

'Otherwise provide error estimate 

Else 
x = xo 
isw= 1 
jsw= 1 
For i = 1 To n 

errest(i) = 0# 
Next 
nxt= 1 
Exit Sub 

End If 

'Normal propagation Loop 

Else 

'A call to naming with nxt=-nxt, after a successful startup, will 
'will turn off the second evaluation of the equations of motion following the corrector step. 
'This can save on run time 

IfnxKlThen 
jsw = 2 
nxt = Abs(nxt) 

Else 
jsw= 1 

End If 

'This is the predictor corrector algorithm... 
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'First the indices are permuted 

x = x + h 
npl = (nxt Mod 4) + 1 
Ifiswo2Then 

If nxt = 1 Then 
nxt = npl 
Exit Sub 

Elself nxt = 2 Then 
nxt = npl 
Exit Sub 

Elself nxt = 3 Then 
nxt = npl 
Exit Sub 

Else 
isw = 2 
nm2 = (npl Mod 4) + 1 
nml = (nm2 Mod 4) + 1 
npo = (nml Mod 4) + 1 

'...then the predictor part is run to find an extrapolated value of 
'the state vector at the new time... 

For i = 1 To n 
f(i, nm2) = y(i, npl) + 4# * h * (2# * f(i, npo) - f(i, nml) + 2# * f(i, nm2)) / 3# 
y(i, npl) = f(i, nm2) - 0.925619835 * errest(i) 

Next 

'the equations of motion are evaluated at the 
'extrapolated value of the state vector... 

Callrhs(npl) 

'and the corrector algorithm is used to add this 
'new information and obtain a better value of the 
'new state vector... 

For i = 1 To n 
y(i, npl) = (9# * y(i, npo) - y(i, nm2) + 3# * h * (f(i, npl) + 2# * f(i, npo) - f(i, nml))) / 8# 
errest(i) = f(i, nm2) - y(i, npl) 
y(i, npl) = y(i, npl) + 0.0743801653 * errest(i) 

Next 
If jsw = 1 Then 

Callrhs(npl) 
nxt = npl 
Exit Sub 

Elself jsw = 2 Then 
nxt = npl 
Exit Sub 

End If 
End If 

Else 
nm2 = (npl Mod 4) + 1 
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nml = (nm2 Mod 4) + 1 
npo = (nml Mod 4) + 1 

'...then the predictor part is run to find an extrapolated value of 
'the state vector at the new time... 

For i = 1 To n 
f(i, nm2) = y(i, npl) + 4# * h * (2# * f(i, npo) - f(i, nml) + 2# * f(i, nni2)) / 3# 
y(i, npl) = f(i, nm2) - 0.925619835 * errest(i) 

Next 

'the equations of motion are evaluated at the 
'extrapolated value of the state vector... 

Call rhs(npl) 

'and the corrector algorithm is used to add this 
'new information and obtain a better value of the 
'new state vector... 

For i = 1 To n 
y(i, npl) = (9# * y(i, npo) - y(i, nm2) + 3# * h * (f(i, npl) + 2# * f(i, npo) - f(i, nml))) / 8# 
errest(i) = f(i, nm2) - y(i, npl) 
y(i, npl) = y(i, npl) + 0.0743801653 * errest(i) 

Next 

'finally, the equations of motion are reevaluated 
'at the better value of the state vector... 
'this can be suppressed 

If jsw = 1 Then 
Callrhs(npl) 
nxt = npl 
Exit Sub 

Elself jsw = 2 Then 
nxt = npl 
Exit Sub 

End If 
End If 

End If 
End Sub 
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Equations of Motion/Variation Calculator 

Private Sub rhs(nxt) 
'rhs calculates equations of motion and/or not equations of variation 
'The state vector is split out as 
'y(l-3,nxt) are x,y,z components of position vector 
'y(4-6,nxt) are x,y,z components of velocity vector 
'y(7-42),nxt) is the state transition matrix, stored as 
'columns of phi end to end 

'Declaration of variables 

Dim a(6, 6) As Double 
Dim err(42) As Double 
Dim rl As Double 
Dim r2 As Double 
Dim r3 As Double 
Dim J2 As Double 

r2 = (y(l, nxt) * y(l, nxt) + y(2, nxt) * y(2, nxt) + y(3, nxt) * y(3, nxt)) 
rl = r2 A 0.5 
r3 = r2A1.5 

'Constants 
mu = 1# 'DUA3/TUA2 
re = 1#    'DU 
J2 =1082.64* 10 A-6 

'Equations of motion 

'position dot = velocity vector 

f(l,nxt) = y(4, nxt) 
f(2, nxt) = y(5, nxt) 
f(3, nxt) = y(6, nxt) 

'velocity dot = gravity acceleration including J2 effects 

f(4, nxt) = (-mu * y(l, nxt) / r3) * (1# - J2 * 1.5 * ((re / rl) A 2#) * (5# * ((y(3, nxt) * y(3, nxt)) /12) - 1#)) 
f(5, nxt) = (-mu * y(2, nxt) / r3) * (1# - J2 * 1.5 * ((re / rl) A 2#) * (5# * ((y(3, nxt) * y(3, nxt)) / r2) - 1#)) 
f(6, nxt) = (-mu * y(3, nxt) / r3) * (1# + J2 * 1.5 * ((re / rl) A 2#) * (3# - (5# * (y(3, nxt) * y(3, nxt) / 

i2)))) 

'check to see if only interested in eom 

If mode - 0 Then 
Exit Sub 

Else 
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mode = mode 'benign command to null loop 
End If 

'equations of variation 
'calculate a matrix 

For i = 1 To 6 
Forj = lTo6 

a(i, j) = 0#       'Fill matrix with zeros 
Next 

Next 
a(l,4)=l# 
a(2, 5) = 1# 'create identity matrix in upper right 3X3 
a(3, 6) = 1# 

'diagonal terms in lower left 3X3 

a(4, 1) = (-mu * r3 + 3# * mu * y(l, nxt) * y(l, nxt) * rl) / (r2 A 3#) + (15# * J2 * mu * (re A 2#) * y(3, 
nxt) * y(3, nxt) * (r2 A 3.5) - 105# * J2 * mu * (re A 2#) * y(3, nxt) * y(3, nxt) * y(l, nxt) * y(l, nxt) * (r2 A 

2.5)) / (2# * (r2 A 7#)) - (3# * J2 * mu * (re A 2#) * (r2 A 2.5) -15# * J2 * mu * (re A 2#) * y(l, nxt) * y(l, 
nxt) * r3) / (2# * (r2 A 5)) 

a(5, 2) = (-mu * r3 + 3# * mu * y(2, nxt) * y(2, nxt) * rl) / (r2 A 3#) + (15# * J2 * mu * (re A 2#) * y(3, 
nxt) * y(3, nxt) * (r2 A 3.5) - 105# * J2 * mu * (re A 2#) * y(3, nxt) * y(3, nxt) * y(2, nxt) * y(2, nxt) * (r2 A 

2.5)) / (2# * (r2 A 7#)) - (3# * J2 * mu * (re A 2#) * (r2 A 2.5) -15# * J2 * mu * (re A 2#) * y(2, nxt) * y(2, 
nxt) * r3) / (2# * (r2 A 5)) 

a(6, 3) = (-mu * r3 + 3# * mu * y(3, nxt) * y(3, nxt) * rl) / (r2 A 3#) - (6# * mu * J2 * (re A 2#) * (r2 A 2#) 
- 75# * mu * J2 * (re A 2#) * y(3, nxt) * y(3, nxt) * r2 + 105# * mu * J2 * (re A 2#) * y(3, nxt) * y(3, nxt) * 
y(3, nxt) * y(3, nxt)) / (2# * (r2 A 4.5)) - (3# * J2 * mu * (re A 2#) * (r2 A 2.5) - 15# * J2 * mu * (re A 2#) * 
y(3, nxt) * y(3, nxt) * i3) / (2# * (r2 A 5)) 

'off diagonal terms in lower left 3X3 

a(4, 2) = (3# * mu * y(l, nxt) * y(2, nxt) * rl) / (r2 A 3#) - (105# * J2 * mu * (re A 2#) * y(3, nxt) * y(3, 
nxt) * y(l, nxt) * y(2, nxt) * (r2 A 2.5)) / (2# * (r2 A !#)) + (15# * J2 * mu * (re A 2#) * y(l, nxt) * y(2, nxt) 
* r3) / (2# * (r2 A 5#)) 

a(5,l) = a(4,2) 

a(4, 3) = (3# * mu * y(l, nxt) * y(3, nxt) * rl) / (r2 A 3#) + (30# * J2 * mu * (re A 2#) * y(l, nxt) * y(3, 
nxt) * (r2 A 3.5) -105# * J2 * mu * (re A 2#) * y(l, nxt) * y(3, nxt) * y(3, nxt) * y(3, nxt) * (r2 A 2.5)) / (2# 
* (r2 A 7#)) + (15# * J2 * mu * (re A 2#) * y(l, nxt) * y(3, nxt) * r3) / (2# * (r2 A 5#)) 

a(6, 1) = a(4, 3) 

a(5, 3) = (3# * mu * y(2, nxt) * y(3, nxt) * rl) / (r2 A 3#) + (30# * J2 * mu * (re A 2#) * y(2, nxt) * y(3, 
nxt) * (r2 A 3.5) - 105# * J2 * mu * (re A 2#) * y(2, nxt) * y(3, nxt) * y(3, nxt) * y(3, nxt) * (r2 A 2.5)) / (2# 
* (r2 A 7#)) + (15# * J2 * mu * (re A 2#) * y(2, nxt) * y(3, nxt) * r3) / (2# * (r2 A 5#)) 

a(6, 2) = a(5, 3) 
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'a matrix now calculated 
'now calculate phi dot = a * phi and put into last 
'32 slots of f matrix 

For ii = 1 To 6 
For j j = 1 To 6 

ipos = 6 * ii + jj 
f(ipos, nxt) = 0# 
For kk = 1 To 6 

jpos = 6 * jj + kk 
f(ipos, nxt) = f(ipos, nxt) + a(ii, kk) * yGpos, nxt) 

Next 
Next 

Next 

End Sub 
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Observations Relation Processor 

Sub Obser(nxt) 
' Observation relation processing 
' Calculates predicted observation zpred, 
' H Matrix H, and Q inverse matrix ql. 

'Public ql(4, 4) As Double 
'Public zpred(4) As Double 
'Public hm(4, 12) As Double 

'Declare local variables 

'Dim tob As Double 'Time of observation 

' Q inverse matrix 

Sigmagps = 1 'm 
Sigmarange = 3 'cm 

qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
ql 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
qi 
ql 
qi 
qi 

= (1 / ((Sigmarange / 637813500)A 2)) 'DUA2 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= (1 / ((Sigmagps / 6378135)A 2)) 'DUA2 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= (1 / ((Sigmagps / 6378135)A 2)) 'DUA2 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= (1 / ((Sigmagps / 6378135)A 2)) 'DUA2 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= (1 / ((Sigmagps / 6378135)A 2)) 'DUA2 
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ql(5, 6) = 0 
ql(5,7) = 0 
ql(6, 1) = 0 
ql(6, 2) = 0 
ql(6, 3) = 0 
ql(6,4) = 0 
ql(6, 5) = 0 
ql(6, 6) = (l/((Sigmagps/6378135)' * 2)) 'DUA2 
ql(6, 7) = 0 

ql(7, 1) = 0 
ql(7, 2) = 0 
ql(7,3) = 0 
ql(7,4) = 0 
ql(7, 5) = 0 
ql(7, 6) = 0 
ql(7, 7) = (l/((Sigmagps 7 6378135)' v2)) 'DUA2 

'predicted data vector 
'Range part 

zpred(l) = Sqr((yl(l, nxt) - y2(l, nxt))A 2# + (yl(2, nxt) - y2(2, nxt)) A 2# + (yl(3, nxt) - y2(3, nxt)) A 2#) 

'GPS position x,y,z for satl (yl) and sat2 (y2) 

zpred(2) = yl(l,nxt) 
zpred(3) = yl(2, nxt) 
zpred(4) = yl(3,nxt) 
zpred(5) = y2(l,nxt) 
zpred(6) = y2(2, nxt) 
zpred(7) = y2(3, nxt) 

'H Matrix 

hm(l, 1) = (yl(l, nxt) - y2(l, nxt)) / zpred(l) 
hm(l, 2) = (yl(2, nxt) - y2(2, nxt)) / zpred(l) 
hm(l, 3) = (yl(3, nxt) - y2(3, nxt)) / zpred(l) 
hm(l,4) = 0 
hm(l,5) = 0 
hm(l,6) = 0 
hm(l, 7) = (y2(l, nxt) - yl(l, nxt)) / zpred(l) 
hm(l, 8) = (y2(2, nxt) - yl(2, nxt)) / zpred(l) 
hm(l, 9) = (y2(3, nxt) - yl(3, nxt)) / zpred(l) 
hm(l, 10) = 0 
hm(l, 11) = 0 
hm(l, 12) = 0 
hm(2, 1) = 1 
hm(2, 2) = 0 
hm(2, 3) = 0 
hm(2, 4) = 0 
hm(2, 5) = 0 
hm(2, 6) = 0 
hm(2, 7) = 0 
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hm(2, 8) = 0 
hm(2, 9) = 0 
hm(2, 10) = 0 
hm(2, 11) = 0 
hm(2, 12) = 0 
hm(3, 1) = 0 
hm(3, 2) = 1 
hm(3, 3) = 0 
hm(3, 4) = 0 
hm(3, 5) = 0 
hm(3, 6) = 0 
hm(3, 7) = 0 
hm(3, 8) = 0 
hm(3, 9) = 0 
hm(3, 10) = 0 
hm(3, 11) = 0 
hm(3, 12) = 0 
hm(4, 1) = 0 
hm(4, 2) = 0 
hm(4, 3) = 1 
hm(4, 4) = 0 
hm(4, 5) = 0 
hm(4, 6) = 0 
hm(4, 7) = 0 
hm(4, 8) = 0 
hm(4, 9) = 0 
hm(4, 10) = 0 
hm(4, 12) = 0 
hm(5, 1) = 0 
hm(5, 2) = 0 
hm(5, 3) = 0 
hm(5, 4) = 0 
hm(5, 5) = 0 
hm(5, 6) = 0 
hm(5, 7) = 1 
hm(5, 8) = 0 
hm(5, 9) = 0 
hm(5, 10) = 0 
hm(5, 11) = 0 
hm(5, 12) = 0 
hm(6, 1) = 0 
hm(6, 2) = 0 
hm(6, 3) = 0 
hm(6,4) = 0 
hm(6, 5) = 0 
hm(6, 6) = 0 
hm(6, 7) = 0 
hm(6, 8) = 1 
hm(6, 9) = 0 
hm(6, 10) = 0 
hm(6, 11) = 0 
hm(6, 12) = o 
hm(7, 1) = 0 
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hm(7, 2) = 0 
hm(7, 3) = 0 
hm(7, 4) = 0 
hm(7, 5) = 0 
hm(7, 6) = 0 
hm(7, 7) = 0 
hm(7, 8) = 0 
hm(7, 9) = 1 
hm(7, 10) = 0 
hm(7, 12) = 0 

End Sub 
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Random Number Generator 

Private Function randg() 

'Gaussian pseudo random number generator 
'unit variance, zero mean 
'Uses central limit theorem with 10 iterates 
'emperical constant for sigma 

r = 0 
Randomize 'Initialize random number generator 
For i = 1 To 10 

r = r + Rnd 
Next 

randg = 1 * (r - 5#) 

End Function 
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Bayes Filter 

'Non-linear Bayes Algorithm 

Public x As Double 
Public xl As Double 
Public x2 As Double 
Public y(42, 4) As Double 
Public yl(42,4) As Double 
Public y2(42,4) As Double 
Public f(42, 4) As Double 
Public fl (42, 4) As Double 
Public f2(42, 4) As Double 
Public errest(42) As Double 
Public errestl(42) As Double 
Public errest2(42) As Double 
Public h As Double 
Public n As Integer 
Public mode As Integer 
Public isw As Integer 
Public iswl As Integer 
Public isw2 As Integer 
Public jsw As Integer 
Public jswl As Integer 
Public jsw2 As Integer 
Public ql(7, 7) As Double 
Public zpred(7) As Double 
Public hm(7, 12) As Double 

Sub BayesRoutineO 

'Observation Storage Buffers 
Dim dt As Double 
Dim timeob(3000) As Double 
Dim allobs(7, 3000) As Double 

'time interval for naming 
'times of observations 
'observations 

'Internal Buffers 

Dim tmat(7, 12) As Double 
Dim z(7) As Double 
Dim dx(12) As Double 
Dim r(7) As Double 
Dim tob As Double 
Dim yminus(12) As Double 
Dim pminus(12, 12) As Double 
Dim yref(12) As Double 
Dim htql(12, 7) As Double 
Dim htqlr(12) As Double 
Dim pinv(12, 12) As Double 
Dimp(12, 12) As Double 
Dim tepoch As Double 
Dim phi(12, 12) As Double 
Dim phip(12, 12) As Double 

'observation matrix T 
'current observation 

'State Estimate 
'residuals vector 
'current observation time 

'previous estimate of state vectors 
'previous inverse covariance matrix 

'reference vector(equal to previous guess) 
'matrix product T transpose Q inverse 
'matrix product 
'state inverse covariance at epoch 

'state covariance at epoch 
'initial time of state vector 

'phi matrix for both satellites 
'phi * p 

54 



'Matrix inverter variables 

Dim pnorm As Double 
Dim pmax As Double 
Dim toler As Double 
Dim pp As Double 
Dim xx(12) As Double 
Dim irr 1(12) As Double 
Dim ir As Integer 
Dim iss As Integer 
Dim id As Integer 
Dim ier As Integer 

'READ IN PREVIOUS ESTIMATE 

Open "C:\Bayes_in.txt" For Input As #1 
Input #1, tepoch 
Input #1, yminus(l), yminus(2), yminus(3)    'satellite 1 initial position 
Input #1, yminus(4), yminus(5), yminus(6)    'satellite 1 initial velocity 
Input #1, yminus(7), yminus(8), yminus(9)    'satellite 2 initial position 
Input #1, yminus(lO), yminus(ll), yminus(12) 'satellite 2 initial velocity 
Input #1, maxit 'max allowed iterations 
Input #1, reject 'residual rejection criteria (# sigmas) 
Input #1, nstp 
Fori = lTol2 

For j = 1 To 12 
Input #1, pminus(i, j) 

Next 
Next 

'FIRST GUESS IS PREVIOUS ESTIMATE 

For i = 1 To 12 
yref(i) = yminus(i) 

Next 

'WRITE INPUT TO OUTPUT FILE 

Open "C:\Bayes_Output.txt" For Output As #2 
Print #2, "Epoch Time:"; Spc(5); tepoch 
Print #2, "Previous Estimated State Vector(Sat 1 Position, Velocity; Sat 2 Position, Velocity)" 
Print #2, yminus(l); Spc(5); yminus(2); Spc(5); yminus(3) 
Print #2, yminus(4); Spc(5); yminus(5); Spc(5); yminus(6) 
Print #2, yminus(7); Spc(5); yminus(8); Spc(5); yminus(9) 
Print #2, yminus(lO); Spc(5); yminus(ll); Spc(5); yminus(12) 
Print #2, "Reject if sigma greater than:"; Spc(5); reject 
Print #2, "Maximum Iterations:"; Spc(5); maxit 

'READ IN OBSERVATIONS 

Open "C:\Observations.txt" For Input As #3 
Input #3, dt 
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iob=l 
Do Until ((EOF(3)) Or (iob = 3000)) 

Input #3, timeob(iob), allobs(l, iob) 
Input #3, allobs(2, iob), allobs(3, iob), allobs(4, iob) 
Input #3, allobs(5, iob), al!obs(6, iob), allobs(7, iob) 
iob = iob + 1 

Loop 

'SET LAST PASS FLAG — LAST ITERATION; AND # OBSERVATIONS 
nob = iob -1 
idone = 0 

'BEGIN ITERATION LOOP 

For iter = 1 To maxit 

'Prepare true data file for later comparison with estimate 
Open "C:\Estimates.txt" For Output As #4 

'REINITIALIZE NUMERICAL INTEGRATION VARIABLES 
t = tepoch 
mode = 1 
n = 42 

'BREAKOUT SATELLITE 1 & 2 FOR CALL TO HAMING 
'ics ARE NEW REFERENCE ORBIT GUESS 

For i = 1 To 6 
yl(i, l) = yref(i) 
y2(i, 1) = yref(i + 6) 

Next 
For i = 7 To 42 

yl(i, 1) = 0# 
y2(i, 1) = 0# 

Next 
For i = 7 To 42 Step 7 

yl(i, 1)=1# 
y2(i, 1) = 1# 

Next 

'Timestep setup 

Ifnstp<= 100 Then 
nl = nstp 

Else 
nl = 100 

End If 

n2= 1 +nstp/nl 
n3 = nl * n2   'not needed ? 
h = dt 'time interval needs to be same as truth model 
xl=t 
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x2 = t 
nxtl = 0 
nxt2 = 0 

'initialize haming 

'setup haming for satellite 1 
x = xl 
nxt = nxtl 
For i = 1 To 42 

Forj = lTo4 
y(i,j) = yl(i,j) 

Next 
Next 

Call Haming(nxt) 

'Retain settings for satellite 1 
xl = x 
For i = 1 To 42 

Forj = lTo4 
yl(i,j) = y(i,j) 

Next 
Next 
For i = 1 To 42 

Forj = lTo4 
fl(i,j) = f(i,j) 

Next 
Next 
For i = 1 To 42 

errestl(i) = errest(i) 
Next 
nxtl = nxt 
iswl = isw 
jswl =jsw 

'setup haming for satellite 2 
x = x2 
nxt = nxt2 
For i = 1 To 42 

Forj = lTo4 
y(i,j) = y2(i,j) 

Next 
Next 

Call Haming(nxt) 

'Retain settings for satellite 2 
x2 = x 
For i = 1 To 42 

Forj = 1 To 4 
y2(i,j) = y(i,j) 

Next 
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Next 
For i = 1 To 42 

Forj = 1 To 4 
£2(i,j) = f(i,j) 

Next 
Next 
For i = 1 To 42 

errest2(i) = errest(i) 
Next 
nxt2 = nxt 
isw2 = isw 
jsw2=jsw 

'INITIALIZE BUFFERS FOR MATRIX PRODUCT ACCUMULATION 

'initialize htqlr to pminus*(yminus-yref) 
'initialize pinv to pminus 

For i = 1 To 12 
htqlr(i) = 0# 
For j = 1 To 12 

pinv(i, j) = pminus(i, j) 
htqlr(i) = htqlr(i) + pminus(i, j) * (yminus(j) - yref(j)) 

Next 
Next 

'PRINT FIRST OR LAST PASS RESIDUAL HEADERS WHEN NECESSARY 

If(iter=l)Then 
Print #2, "First Pass Residuals:" 

End If 
If (idone= l)Then 

Print #2, "Last Pass Residuals:" 
End If 
If ((idone = 1) Or (iter = 1)) Then 

Print #2, "Time TU"; Spc(5); "Range DU"; Spc(5); "Position Data" 
End If 

'OBSERVATION PROCESSING LOOP 

For iob = 1 To nob        'extract this observation 
tob = timeob(iob) 
For i = 1 To 7 

z(i) = allobs(i, iob) 
Next 

'NUMERICALLY INTEGRATE STATE AND PHI TO OB TIME 

'Numerical Integration Loop - one timestep per call 
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Forjj = lTon2 
' setup haming for satellite 1 
x = xl 
nxt = nxtl 
isw = iswl 
jsw=jswl 
For s = 1 To 42 

For t = 1 To 4 
y(s,t) = yl(s,t) 

Next 
Next 
For s = 1 To 42 

For t = 1 To 4 
f(s, t) = fl(s, t) 

Next 
Next 
For s = 1 To 42 

errest(s) = errestl(s) 
Next 

Call Haming(nxt) 

'Retain settings for satellite 1 
xl = x 
For s = 1 To 42 

For t = 1 To 4 
yl(s, t) = y(s, t) 

Next 
Next 
For s = 1 To 42 

For t = 1 To 4 
fl(s, t) = f(s, t) 

Next 
Next 
For s = 1 To 42 

errestl(s) = errest(s) 
Next 
nxtl = nxt 
iswl = isw 
jswl = jsw 

'setup haming for satellite 2 
x = x2 
nxt = nxt2 
isw = isw2 
jsw=jsw2 
For s = 1 To 42 

For t = 1 To 4 
y(s, t) = y2(s, t) 

Next 
Next 
For s = 1 To 42 

For t = 1 To 4 
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f(s, t) = f2(s, t) 
Next 

Next 
For s = 1 To 42 

errest(s) = errest2(s) 
Next 

Call Haming(nxt) 

'Retain settings for satellite 2 
x2 = x 
For s = 1 To 42 

For t = 1 To 4 
y2(s, t) = y(s, t) 

Next 
Next 
For s = 1 To 42 

For t = 1 To 4 
f2(s, t) = f(s, t) 

Next 
Next 
For s = 1 To 42 

errest2(s) = errest(s) 
Next 
nxt2 = nxt 
isw2 = isw 
jsw2=jsw 

Next 

'OBTAIN MATRICES FOR THIS OBSERVATION 

Call Obser(nxt) 

'MATRIX CALCULATIONS — THIS OBSERVATION 

'Form residual vector, test for rejection 

irej = 0 
For i = 1 To 7 

r(i) = z(i) - zpred(i) 
If (Abs(r(i)) > (reject / Sqr(ql(i, i)))) Then 

irej = 1 
End If 

Next 

'PRINT FIRST PASS & LAST PASS RESIDUALS ONLY 

If ((iter = 1) Or (idone = 1)) Then 
If (irej = 0) Then 

Print #2, tob; Spc(2); r(l); Spc(2); r(2); Spc(2); r(3); Spc(2); r(4); Spc(2); r(5); Spc(2); r(6); 
Spc(2); r(7) 

Print #2,"" 
Else 
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Print #2, "REJECTED"; Spc(2); tob; Spc(2); r(l); Spc(2); r(2); Spc(2); r(3); Spc(2); r(4); Spc(2); 
r(5);Spc(2);r(6);Spc(2);r(7) 

Print #2,"" 
End If 

End If 

'IF THIS IS THE LAST PASS, CONVERGENCE ACHIEVED, SKIP MATRIX CALCULATIONS 
'ALSO, IF THIS OBSERVATION WAS REJECTED, CAN SKIP MATRIX CALCULATIONS 

If ((idone <> 1) Or (irej = 0)) Then   'otherwise perform calculations 

'initialize phi matrix(12X12), then extract in normal form 

For i = 1 To 12 
For j = 1 To 12 

phi(i,j) = 0# 
Next 

Next 

'upper left 6X6 portion contains Sat 1 phi matrix 

For i = 1 To 6 
Forj = lTo6 

phi(i,j) = yl(6*j+i, nxt) 
Next 

Next 

'lower right 6X6 portion contains Sat 2 phi matrix 

For i = 1 To 6 
Forj = lTo6 

phi(i + 6, j + 6) = y2(6 * j + i, nxt) 
Next 

Next 

'form matrix product tmat 

For irow = 1 To 7 
Forjcol=lTo 12 

tmat(irow, jcol) = 0# 
For k = 1 To 12 

tmat(irow, jcol) = tmat(irow, jcol) + hm(irow, k) * phi(k, jcol) 
Next 

Next 
Next 

'form matrix product T transpose Q inverse 

For irow = 1 To 12 
For jcol = 1 To 7 

htql(irow, jcol) = 0# 
For k = 1 To 7 

htql(irow, jcol) = htql(irow, jcol) + tmat(k, irow) * ql(k, jcol) 
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Next 
Next 

Next 

'form product T transpose Q inverse T, adding result to whats already there... 

For i = 1 To 12 
For j = 1 To 12 

For k = 1 To 7 
pinv(i, j) = pinv(i, j) + htql(i, k) * tmat(k, j) 

Next 
Next 

Next 

'form product T transpose Q inverse r, adding result to whats already there... 

Fori=lTol2 
Forj = lTo7 

htqlr(i) = htqlr(i) + htql(i,j)*r(j) 
Next 

Next 

'END OF MATRIX CALCULATIONS FOR THIS OBSERVATION 
End If 

Print #4, x2 
Print #4, yl(l, nxt); Spc(3); yl(2, nxt); Spc(3); yl(3, nxt) 
Print #4, y2(l, nxt); Spc(3); y2(2, nxt); Spc(3); y2(3, nxt) 

'CONTINUE TO LOOP BACK FOR MORE DATA 
Next 

'IF LAST PASS RESIDUALS HAVE PRINTED, FINISHED WITH ITERATIONS 

If(idone=l)Then 
iter = maxit + 1 'end iteration loop 

Else 
'data is processed...improve estimate 

'invert matrix H transpose Q inverse H to find covariance p 

'BEGIN MATRIX INVERTER CODE 
'load identity matrix in p 

For i = 1 To 12 
For j = 1 To 12 

p(i,j) = 0# 
Next 

Next 
For i = 1 To 12 

P(i, i) = 1# 
Next 

'calculate inverse 
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'find max norm of p 

pnorm = 0# 
Fori=lTol2 

For j = 1 To 12 
If (Abs(pinv(i, j)) > pnorm) Then 

pnorm = Abs(pinv(i, j)) 
End If 

Next 
Next 

'set tolerance = 2A(- number of binary digits in mantissa) 

toler=l A-12# 
ier = 0 
id = 1 
For i = 1 To 12 

irrl(i) = 0 
Next 

Do While (id <= 12) 
ir=l 
iss = 1 
pmax = 0# 

'find max pivot 

For i = 1 To 12 
If(irrl(i) = 0)Then 

For j = 1 To 12 
pp = Abs(pinv(i,j)) 
If ((pp - pmax) > 0) Then 

ir = i 
iss=j 
pmax = pp 

End If 
Next 

End If 
Next 

'singularity test 

'If ((pmax / pnorm) <= toler) Then 
'   ier=129 
'End If 

'forward elimination 

irrl(ir) = iss 
Fori=lTol2 

If(ioir)Then 
pp = pinv(i, iss) / pinv(ir, iss) 
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For j = 1 To 12 
pinv(i, j) = pinv(i, j) - pp * pinv(ir, j) 

Next 
pinv(i, iss) = 0# 
For j = 1 To 12 

p(i,j) = p(i,j)-pp*p(ir,j) 
Next 

End If 
Next 
id = id + 1 

Loop 

'back substitution 

Forj = lTol2 
Fori=lTol2 

ir = irrl(i) 
xx(ir) = p(i, j) / pinv(i, ir) 

Next 
Fori=lTol2 

p(i,j) = xx(i) 
Next 

Next 

'END MATRIX INVERTER CODE 

'multiply p by T transpose Q inverse r to get correction to state 

For i = 1 To 12 
dx(i) = 0# 
Forj = lTol2 

dx(i) = dx(i) + p(i,j)*htqlr(j) 
Next 

Next 

'CHECK CONVERGENCE 

ifail = 0 
Fori=lTol2 

If (Abs(dx(i)) < Sqr(Abs(p(i, i)))) Then 
ifail = 1 

End If 
Next 

'print iteration 

Print #2,"" 
Print #2, "Iteration:"; Spc(15); iter 
Print #2, "State Corrections:" 
Print #2, dx(l); Spc(2); dx(2); Spc(2); dx(3); Spc(2); dx(4) 
Print #2, dx(5); Spc(2); dx(6); Spc(2); dx(7); Spc(2); dx(8) 
Print #2, dx(9); Spc(2); dx(10); Spc(2); dx(ll); Spc(2); dx(12) 
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'add in state corrections 

For i = 1 To 12 
yref(i) = yref(i) + dx(i) 

Next 

'print current best guess 

Print #2,"" 
Print #2, "Current state vector:" 
Print #2, yref(l); Spc(5); yref(2); Spc(5); yref(3) 
Print #2, yref(4); Spc(5); yref(5); Spc(5); yref(6) 
Print #2, yref(7); Spc(5); yref(8); Spc(5); yref(9) 
Print #2, yref(10); Spc(5); yref(ll); Spc(5); yref(12) 

'convergence achieved? 

If(ifail = 0)Then 
idone = 1 

End If 
If (iter =1) Then   'ensure residuals get computed in the event convergence 

idone = 0        'on the first iteration 
End If 
If (idone = l)Then 

Print #2,"" 
Print #2, "CONVERGENCE ACHIEVED" 

End If 
End If 
Close #4 

Next 

'Failure to converge....max iterations exceeded 

If (idone = 0) Then 
Print #2,"" 
Print #2, "MAXIMUM ITERATION LIMIT EXCEEDED WITHOUT CONVERGENCE" 
Exit Sub 

End If 

'CONVERGENCE ACHIEVED SUCCESS 

'Print covariance matrix 

Print #2,"" 
Print #2, "Covariance Matrix:" 
For i = 1 To 12 

For j = 1 To 12 
Print#2,p(i,j) 

Next 
Next 

'Print state at time of last observation 
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Print #2,"" 
Print #2, "State at Time:"; Spc(5); x2 
Print #2, yl(l, nxt); Spc(3); yl(2, nxt); Spc(3); yl(3, nxt) 
Print #2, yl(4, nxt); Spc(3); yl(5, nxt); Spc(3); yl(6, nxt) 
Print #2, y2(l, nxt); Spc(3); y2(2, nxt); Spc(3); y2(3, nxt) 
Print #2, y2(4, nxt); Spc(3); y2(5, nxt); Spc(3); y2(6, nxt) 

'Calculate and print covariance at last observation time 

'Extract phi matrix at last observation time 
'upper left 6X6 portion contains Sat 1 phi matrix 

For i = 1 To 6 
Forj = 1 To 6 

phi(i,j) = yl(6*j+i, nxt) 
Next 

Next 

'lower right 6X6 portion contains Sat 2 phi matrix 

For i = 1 To 6 
For j = 1 To 6 

phi(i + 6, j + 6) = y2(6 * j + i, nxt) 
Next 

Next 

'Propagate covariance to last observation time phi*p*phi transpose 

'matrix product phi*p 

Forirow=lTo 12 
Forjcol=lTo 12 

phip(irow, jcol) = 0# 
Fork=lTol2 

phip(irow, jcol) = phip(irow, jcol) + phi(irow, k) * p(k, jcol) 
Next 

Next 
Next 

'matrix product p(tf) = phi*p*phi transpose 

For irow= 1 To 12 
For jcol = 1 To 12 

p(irow, jcol) = 0# 
Fork=lTol2 

p(irow, jcol) = p(irow, jcol) + phip(irow, k) * phi(jcol, k) 
Next 

Next 
Next 

'Print covariance at last observation time 

Print #2, "" 
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Print #2, "Covariance at last observation time:" 
Print #2,"" 
For i = 1 To 12 

For j = 1 To 12 
Print #2, p(i, j) 

Next 
Next 

Close #1 
Close #2 
Close #3 

End Sub 

67 



Appendix C: Selected Raw Data Products 

Truth Model Output for Orbit 2 

initial time: 
8461.2110018206 

final time: 
8461.2970036412 

initial state vector for satellite 1: 
-0.807449485606805 

0.917352165803769 
0.413919205101727 

-0.396178531841325 
-0.585459860822974 
0.524732402555635 

initial state vector for satellite 2: 
-0.835243767960277 

0.873683715226178 
0.451538231365086 

-0.368379283527986 
-0.615769355460676 
0.510086148766103 

Satellite 1 state vector at tf: 8461.2970036414 
-0.808838486343198 

0.912786114275322 
0.421234624201552 

-0.393570770973196 
-0.589633865125067 
0.522009673332486 

480.577373282127  257.921262697018 -128.964356675411 -68.3403511238056 
-340.401792105648 -87.8013 019349703 
-205.878643672641  422.620069929954  179.365909051149 -141.790630738411 
205.6141103 69458 -28.9586823055503 
14.3019515555513 -223.654655449614  480.428285208729 -148.633081605652 

143.454326037708 -204.81193572584 
303.261544988212 -115.82343649243  24.0568071736197  164.332281736282 
112.860621845208 -5.40085740426988 
209.646061983969  353.300685295701 -201.564617994986 -111.067422883437 

355.292284057802  48.4275189548983 
-76.2559976897607  81.3723624228136  331.080367841402  63.4949512022829 
-146.349941978495  188.159442871016 
Satellite 2 state vector at tf: 8461.2970036414 
-0.836249729543309 

0.869145346443746 
0.458380675246369 

-0.365932506957397 
-0.619570857669331 
0.507231445003974 

477.132118640815  261.328304488368 -127.150898523712 -53.4514602983594 
-344.90500757 6405 -99.2776966243231 
-202.299298106043  426.017193507838  175.187861081162 -146.401900992092 
183.954113742627 -18.2612068837798 
16.0629255887217 -227.705314791095  480.002331850661 -160.091524258117 

154.096334500806 -198.02322145518 
299.279066920866 -117.702054211957  28.0005693757757  165.176799314882 
104.425374448143 -3.60520161721907 
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207.656956898063  360.307857445641 -202.029635125231 -119.431949262868 
3 57.7863 6353 6246  54.89653 02024613 
-72.2826318580823  80.8253005927596  327.704954406332  65.2745017162923 
-139.821652 57 8574  184.545186620933 
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Bayes Output Given Perfect Data Orbit 2 

Epoch Time:      8461.2110018206 
Previous Estimated State Vector(Sat 1 Position, Velocity; Sat 2 
Position, Velocity) 

0.917352165803733 0. 
-0.585459860822997 0. 
0.873683715226187 0. 

-0.615769355460671 0. 

-0.807449485606819 
-0.396178531841321 
-0.835243767960266 
-0.368379283527978 

413919205101737 
52473240255562 
451538231365091 
510086148766113 

Reject if sigma greater than: 3000000000000 
Maximum Iterations: 
Iteration: 
State Corrections: 
2.87285732712223E-13 

4.17020449632066E-13 
1.45704230493225E-13 

-9.04683211939617E-14 
-2.9741683800975E-13 
4.37082523673406E-13 

20 
1 

1.00430511833367E-13 

4.82864976887204E-13 

-3.74977313758039E-13 

3.28892913792534E-13 

-2.58341951034324E-13 

-1.29744090399336E-13 

Current state vector: 
-0.807449485606532 
-0.396178531840904 
-0.835243767960524 
-0.368379283528353 

0.917352165803834 
-0.585459860822851 
0.873683715226097 
-0.615769355460801 

0.413919205102066 
0.524732402556103 
0.451538231364794 
0.510086148765676 

Iteration: 
State Corrections: 
-3 .28409049240736E-13 
4.81703529017439E-13 
-1.70887778537404E-13 
1.04133538781725E-13 
3.36628729508717E-13 

4.92278896813915E-13 

-1.1668328394017E-13 

-5.5261827297025E-13 

4.29768869635027E-13 

-3 .78347144825244E-13 

2.93831069796362E-13 

1.5409660132409E-13 

Current state vector: 
-0.80744948560686 
-0.396178531841386 
-0.83524376796023 
-0.368379283527923 

0.917352165803717 
-0.585459860823022 
0.873683715226201 
-0.615769355460647 

0.413919205101688 
0.52473240255555 

0.45153823136513 
0.510086148766168 

CONVERGENCE ACHIEVED 

State at Time: 
-0.80883848634329 
-0.393570770973226 
-0.836249729543363 
-0.365932506957233 

8461.2970036414 
0.912786114275213 
-0.589633865125153 
0.869145346443611 

-0.619570857669404 

0.421234624201559 
0.522009673332384 
0.458380675246549 
0.507231445003982 

Covariance at last observation time: 

3.559612 95646376E-15 
-6.04190990689082E-16 
-4.3763 5987738259E-16 
-2.32321171255428E-14 
-1.05559629217239E-14 
-2.49451458682546E-14 
1.26020620515404E-15 
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42177391073885E-16 
96039519924639E-16 
4770142221766E-14 
26729638615292E-14 
10941037008875E-13 
04190990677784E-16 

3.50167136275538E-15 
6.01412685396743E-16 
21980060330065E-13 
56747311293194E-14 
44744104782683E-13 
52038968393451E-16 
70688291754669E-15 

8.94265412584334E-16 
7.24067541576481E-14 
2.526543 83168722E-14 
7.92728603016871E-14 
4.37635987734037E-16 
6.01412685413672E-16 
31477675142907E-15 
03307335722966E-13 
81290712204025E-14 
16109305619094E-13 
60974927933848E-16 
53374585847039E-16 
08971686251968E-15 
66621908270316E-14 
4136029582959E-15 
21708026036415E-14 
32321171202714E-14 
21980060334784E-13 
03307335716847E-13 
7911961711063E-11 
06436997008439E-11 

6.66971107426677E-11 
9.92062430767437E-14 
6.413 62279631304E-14 
2.2596178643069E-14 
2.05517465989558E-11 
7.19758037363317E-12 

3590807208132E-11 
05559629198485E-14 
56747311310157E-14 
81290712182452E-14 
06436997008516E-11 
36663782695102E-12 
37689510121156E-11 
4389488633077E-14 
22372884766814E-14 
66166128014696E-15 
20269010081148E-12 
52836945902903E-12 

8.26144057132013E-12 
2.49451458621858E-14 
1.44744104788078E-13 
1.16109305612014E-13 
6.66971107426435E-11 
2.37689510120981E-11 
7.68391343936988E-11 
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1.15829705179862E-13 
6.94616796723774E-14 
2.89669547805619E-14 
2.35612798565654E-11 
8.2437194320819E-12 
70667384491708E-11 
26020620516359E-15 
5203896839827E-16 
60974927944771E-16 
92062430742856E-14 
4389488632191E-14 
1582970517707E-13 
52821724473578E-15 
53039948379394E-16 

3.81110243230369E-16 
1.58482990273088E-14 
8.01156122194304E-15 
71521777354177E-14 
42177391077851E-16 
70688291752262E-15 
533745858605E-16 
41362279721556E-14 
22372884798946E-14 
94616796827986E-14 
53039948392177E-16 
61714550896765E-15 
75785526577777E-16 
0531628321155E-13 
95866553445845E-14 
26184145982678E-13 
96039519920156E-16 
94265412585229E-16 
08971686252128E-15 
25961786398108E-14 

7.66166127899457E-15 
2.89669547768184E-14 
3.8111024321846E-16 

75785526574117E-16 
2860285548987E-15 
08104205889536E-13 
99321048521931E-14 
21983408703971E-13 

9.47701422259559E-14 
7.24067541577124E-14 

66621908324485E-14 
05517465981921E-11 
20269010053483E-12 
3561279855696E-11 
58482990267038E-14 
05316283215556E-13 
08104205886204E-13 
0292684138035E-11 
14784131535652E-11 
9404503126605E-11 
26729638630173E-14 
52654383168954E-14 
41360296020299E-15 
19758037336669E-12 

2.52836945893248E-12 
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8.24371943177858E-12 
-8.01156122172119E-15 
3.95866553459834E-14 
3.99321048510136E-14 
2.1478413153567E-11 
7.65987086628976E-12 
2.47179441019669E-11 
1.10941037013697E-13 
-7.9272 8603 018071E-14 
-2.21708026099069E-14 
2.35908072072292E-11 
8.26144057099322E-12 
2.70667384481427E-11 
-1.71521777347361E-14 
1.26184145987293E-13 
1.21983408700155E-13 
6.94045031265938E-11 
2.4717944101961E-11 
7.99169220971994E-11 
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Nodal regression and argument of perigee rotation checks. 

Method Nodal Regression Argument of Perigee 
Rotation 

Integated Result 1.82333045601071 0.290799017174425 
Non-integrated Result 1.82308895252 0.292121126222 
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