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Abstract 

Two deformable mirrors with finite conjugate ranges are investigated for 

compensating amplitude and phase distortions due to laser propagation through turbulent 

atmospheres. Simulations are performed based on Adaptive Optics (AO) for an Airborne 

Laser (ABL)-type scenario. 

The Strehl ratio, the number of branch points in deformable mirror (DM) controls, 

and the number of iterations to convergence are used as figures of merit to evaluate 

performance of the Sequential Generalized Projection Algorithm (SGPA) that generates 

mirror commands. The Strehl ratio and the number of branch points are plotted versus 

the log-amplitude variance (also known as the Rytov parameter), the conjugate range of 

the second deformable mirror, and the radii of the deformable mirrors. Also, the number 

of iterations is plotted versus the Rytov parameter and the conjugate range of the second 

deformable mirror. The results are ensemble averages over 32 realizations of the 

scintillated test fields for each value of the Rytov parameter within the test scenario. 

The Gaussian beam shape that optimizes the Strehl ratio is determined. The least 

squares two-DM Strehl, phase-only Strehl, least squares phase-only Strehl, and 

uncompensated Strehl are also determined for comparison. Finally, for the Strehl ratio 

versus Rytov parameter analysis the Strehl is also calculated beyond the telescope by 

propagating the pre-compensated laser wavefront back through the phase screens of the 

modeled atmosphere. 

A conclusion is that an AO transmission system with two DMs clearly improves 

theoretical performance (compared to a system with one DM) in delivering energy on 

xni 



AFIT/GEO/ENG/OOM-01 

target through atmospheric turbulence. Also, placing the second DM at a finite conjugate 

range minimizes energy lost outside the radius of the first deformable mirror and thus 

maximizes the Strehl ratio. Finally, it is also concluded that hidden phase contained in 

the branch points is critical to the performance of the SGPA algorithm. It is suggested 

that non-least squares methods and/or branch point number constraints could reduce 

hidden phase effects to further improve performance. 
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MULTI-CONJUGATE ADAPTIVE OPTICS FOR THE COMPENSATION 

OF AMPLITUDE AND PHASE DISTORTIONS 

1. Introduction 

A majority of Adaptive Optics (AO) research to date has focused on phase-only 

correction systems, where the primary goal is the improved imaging of space objects at 

observation angles near zenith. For laser communications or high-energy weapon 

systems such as the Airborne Laser (ABL), however, AO must also provide correction 

for scintillation in the amplitude of the transmitted field. This thesis explores the two- 

deformable mirror (DM), multi-conjugate configuration applied to full optic conjugation 

in order to correct for both phase and amplitude distortions in the transmitted beam. 

1.1 Problem Statement 

High quality telescope mirrors as large as 10 meters are available, but typically 

they can provide angular resolution no better than that of a 25 cm telescope at optical 

wavelengths due to atmospheric turbulence. The Hubble Space Telescope (HST) is one 

solution to this problem but is very expensive. Another solution is adaptive optics [1]. 

Adaptive optics systems can be broadly divided into two basic types, those 

designed for transmission and those designed for imaging. Examples of transmitting 

systems are tactical communications and high-energy laser weapons (e.g., ABL). 

Imaging systems are used mainly for astronomy or ground-based satellite surveillance. 
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Common to all AO systems, however, are the performance-hindering effects of 

atmospheric turbulence. 

For transmission systems, turbulence can result in degradation of the signal to 

noise ratio or in a decrease in energy on target. The goal addressed in this thesis is the 

evaluation of a deformable mirror control algorithm for a Multi-Conjugate Adaptive 

Optics (MCAO) system designed to compensate for strong turbulence due to propagation 

over long horizontal paths, where the second deformable mirror is conjugate to a finite 

distance from the telescope's collecting aperture. 

1.2 Document Organization 

Chapter two summarizes various background theories on which this research is 

based. Chapter three introduces the Fourier-transform-based phase screen generation 

method used to model atmospheric turbulence. Layered models together with a wave 

propagation algorithm are used to create test fields with varying degrees of scintillation in 

the amplitude profile. Statistics of both the individual phase screens and the scintillated 

test fields are calculated and compared with theory. Chapter four develops the algorithm 

used to obtain the deformable mirror commands and describes branch points and least 

squares reconstruction. Chapter five presents and discusses key results. Finally, chapter 

six summarizes the research effort and provides recommendations for further research. 
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2. Background 

2.1 Adaptive Optics 

It has long been known that the turbulence in the atmosphere distorts images of 

heavenly bodies as seen from earth. Operation of a single deformable mirror AO 

imaging system to compensate for these distortions is conceptually quite simple. Light 

from a distant point source is essentially a plane wave as it enters the earth's atmosphere. 

Propagating downward through the atmosphere, a spatially coherent planar wave 

encounters pockets of air that vary in temperature and therefore density, resulting in 

slight variations in refractive index. Different portions of the wavefront are thus subject 

to slightly different optical path lengths between the top of the atmosphere and the 

collecting aperture of a telescope. 

The distorted wavefront arriving at the telescope is often described as being 

wrinkled. These wrinkles, or distortions, can be monitored in real time by wavefront 

sensors. Popular designs include the Shack-Hartmann wavefront sensor and the shearing 

interferometer. Imaging the pupil plane of the telescope onto a deformable mirror that is 

controlled on a millisecond timescale allows these "wrinkles" to be removed, resulting in 

images of near diffraction-limited quality. A tip-tilt mirror is also normally included in 

the system to correct for overall tilt in the distorted wavefront, thus removing what 

appears as jitter to the human eye. 

2.1.1   Brief History 

Like many other ideas that were realized for the first time in the twentieth century 

due to technological/manufacturing advances, Adaptive Optics is not particularly new. 
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Horace Babcock was apparently the first to suggest, early in the 1950s, a system for 

improved astronomical imaging. His approach used an electrostatically controlled thin 

layer of oil to introduce corrective phase delays. In 1957, a Russian, Vladimir P. Linnik, 

independently described the same concept in a Soviet Journal. Several decades later, 

when the space programs of Russian and the U.S. were in full swing, the DOD took the 

lead in advancing AO technology. The first fully operational adaptive optics system was 

built and installed in a surveillance telescope at Haleakala Observatory on Maui, Hawaii, 

for the purpose of imaging Russian satellites launched during the cold war [1]. 

2.1.2   Single Deformable Mirror System 

A basic system diagram of a single deformable-mirror AO system applied to 

imaging is shown below in Figure 2.1. The incoming distorted wavefront is captured by 

the primary mirror, re-imaged onto the deformable mirror, and then passed on to a 

wavefront sensor. The Shack-Hartmann sensor actually measures wavefront slopes over 

an array of sub-apertures. This slope data is passed to a computer that employs an 

algorithm (such as least squares) to reconstruct the phase from the slopes, which is then 

used to provide control commands to the deformable mirror. The wavefront sensor is 

normally placed "downstream" from the deformable mirror so that the system can 

perform as a closed-loop control system. For observations near zenith the sensed 

wavefront contains primarily phase-only distortions, and thus near diffraction-limited 

results may be obtained. 
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Figure 2.1. Block Diagram for a Single Deformable Mirror Imaging System 

2.1.3    Two Deformable Mirror System 

The addition of a second deformable mirror to a transmitting system as shown in 

Figure 2.2 allows pursuit of full optic conjugation. Such conjugation is achieved by 

taking advantage of the fact that phase modulation followed by propagation results in 

changes to the light wave amplitude. By employing a deconvolution type algorithm, the 

second deformable mirror can be driven to a shape that results in an amplitude field equal 

to that of the sensed field after propagation of a laser from DM2 to DM1. A two-DM AO 

system with the second deformable mirror conjugate to infinity (i.e., the far-field) was 

previously studied by Roggemann and shown to provide an increase in on-target on-axis 

2-3 



light field amplitude by a factor of 1.4 to 1.5 as compared with a one-DM phase-only 

correction system [2]. 

Receiving and 
Transmitting Aperture 

Incoming Scintillated 
Field From Beacon 

Wave-Front 
Sensor 
 I~T  

Deformable 
Mirror 
Computer 

Actuator 
Commands 

Deformable 
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Deformable 
Mirror 2 

Beam Splitter 

Laser 

Figure 2.2. Block Diagram for a Two Deformable Mirror Transmission System 

2.1.4   Figures of Merit 

One of the primary metrics used to assess the performance of adaptive optics 

systems is the Strehl ratio, which is defined as the on-axis intensity in the far-field 

produced by a system with no aberrations divided by the on-axis intensity of the aberrant 

system. This ratio is expressed in terms of the incoherent imaging point-spread function 

(psf), 

c_ /<**(o,o) 
PsfWi,ho«,(0,0) 

(2.1) 
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where with indicates the aberrant system and without indicates the diffraction limited 

system. The amplitude psf describes a coherent imaging system and is simply the 

Fraunhofer diffraction pattern of the exit pupil, 

h(u,v) = —jjdxdyP(x,y)expl-i—(ux + vy)i    , (2.2) 

where A is a constant amplitude, A is the wavelength of light, zi is the distance between 

the exit pupil and image planes, P(x, y) describes the shape of the exit pupil, and (x, y) 

and («, v) are the coordinates in the exit pupil and image planes, respectively. The 

amplitude transfer function is simply the Fourier transform of Equation (2.2), which turns 

out to be simply a scaled version of the pupil function. Because the pupil function is 

normally symmetric the amplitude transfer function can be expressed as 

H{fx,fY) = P(Xzifx,Xzifr)    . (2.3) 

The Optical Transfer Function (OTF) describes an incoherent imaging system and is the 

normalized Fourier transform of the squared modulus of the amplitude psf, 

J J du dv\h (u, v)| exp[-j2n (fxu + fYv)] 

*{fx>fr) = — Z-z "     ■ (2.4) 
j J dudv A(w,v) 

With the help of Rayleigh's theorem, the OTF can also be expressed as the normalized 

autocorrelation function of the amplitude transfer function 

)]dxdyp{x+^,y + ^y{x-^,y. 
Wx,fr) = ^ ^ ~±A 2 2 

]]dxdy\P(x,yf 
(2.5) 
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For an aberrant system the psf is calculated in the same fashion after replacing P(x,y) 

with a generalized pupil function given by 

p(x,y) = P(x,y)exp[ikW(x,y)]    , (2.6) 

where W (x, y) describes the remaining aberrations present in the system after adaptive 

optics compensation. The OTF describing an aberrant system is thus 

*V*Jr>- P(O,O)*P'(O,O) (2J) 

The psf describing an incoherent imaging system can now be expressed as the inverse 

Fourier transform of the OTF given by Equation (2.7), 

psf(x,y) = ?-'{w{fx,fY)} (2.8) 

where ?"' represents the two-dimensional inverse Fourier transform. 

Equation (2.1) can be directly applied to single deformable mirror AO imaging 

systems, but it must be altered somewhat for application to the 2-DM laser transmission 

configuration. In order to reverse the effects of turbulence, the outgoing laser wavefront 

must have an amplitude profile identical to that of the sensed beacon field and a phase 

profile equal to the conjugate of the sensed wavefront. The far-field on-axis intensity is 

clearly proportional to the degree to which phase conjugation is successfully 

accomplished, or 

Ioc\jdrU0(r)Ub(r)2    , (2.9) 
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where UQ (r) = \ (r)e*°^ describes the field of the outgoing laser in the pupil plane and 

Ub (r) = Ab (r)e^r' describes the sensed beacon field in the pupil plane. In the best-case 

scenario the field of the outgoing laser is 

where A; is a constant. The maximum far-field on-axis intensity is now 

/ = \\drkAb{r)Ab{rt = \drk2A2 {r)\d/A2 {/) 
max 

The normalized far-field on-axis intensity is then 

\\drU0(r)Ub(r)2 

(2.10) 

(2.11) 

I = ; (2.12) 
\\drk2A2(r)\\jdrA2(r) 

The first factor in the denominator represents the energy contained in the field 

transmitted by the laser after modulation by DM2, propagation from DM2 to DM1, and 

modulation by DM1. Since the free-space propagation represented by Tz [•] conserves 

energy, the first factor in the denominator equals the energy in the original laser field 

(assuming no loss from the deformable mirrors), i.e., 

Energylaser=\drUl(r)u;{r) = \drA?{r)    . (2.13) 

Equation (2.12) is finally rewritten as 

\jdrU0(r)Ub(r)2 

jdrU,{r)U;{r) jdrUiirWir) 
(2.14) 
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2.2 Propagation of Optical Radiation 

2.2.1   Angular Spectrum and the Propagation Transfer Function 

The propagation of optical fields through homogeneous media can be formulated 

to allow the application of linear systems theory, which is an invaluable tool for analysis. 

A wave traveling in the positive z direction is described in any plane perpendicular to its 

path by its angular spectrum, which is simply the Fourier transform of the field with 

direction cosine terms substituted for the spatial frequency variables. This formulation 

indicates that any field can be described in terms of a weighted sum of plane waves 

traveling in various directions. If a field is known atz = 0, then the effects of propagation 

through the homogeneous media are described by the transfer function of wave 

propagation 

H{f,fy) = 
exp 

y < A    ,       (2.15) 
j2n^l-(Xfxf-(Xfyfj    JJ!7jy 

0 otherwise 

such that the field after traveling a distance z is 

A{fx,fy;z) = A(fx,fy;0)H(fx,fy)    , (2.16) 

where A(fx,fy;0^ is the two-dimensional Fourier transform 

A(fx,fy;0)=]jdxdyU(x,y,0)exV[-i27i;(fxx + fyy)]    , (2.17) 

and^xand/yare the spatial frequency variables in the x and y directions, respectively. 
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2.2.2   Fresnel Approximation to the Angular Spectrum Propagator 

A simple method for deriving the Fresnel approximation to the propagation 

transfer function applies a binomial expansion and approximation to the exponent of 

Equation (2.15). The binomial expansion of Vl -x is 

,1        1   2     1    3 

Using the first two terms of the expansion, the exponent is simplified, i.e., 

^-(^-(^„-Mt-M . (2,9) 

The Fresnel approximation to the angular spectrum propagator is thus 

H(fx,fy) = 
exp'fe exp[-inÄz(fx

2 +//)]     \Xfx\«1 and |A/X| «: 

0 otherwise 
(2.20) 

2.3 Statistics and Random Processes 

For linear time-invariant (LTI) systems and deterministic signals, the input, x(t), 

and output, y(t), are related by 

y(t) = x(t)®h(t)    , (2.21) 

where h(t) is the impulse response of the system and ® is the convolution operator. The 

input-output relation is expressed by straightforward multiplication in the frequency (i.e., 

Fourier Transform) domain 

Y{f) = X(f)H(f)    , (2.22) 
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where Y(f), X(f), and H(f) are the Fourier transforms of y(t), x(t), and h(t), respectively. 

Under certain conditions a similar relationship holds for stochastic signals. For Wide 

Sense Stationary (WSS) random processes, the power spectral density of the input and 

output of a LTI system are related by 

Sy{f) = Sx{f)\H{ft    , (2-23) 

where Sx(f) and Sy(f) are the power spectra of the input and output, respectively, and H(f) 

is again the Fourier transform of the system impulse response. Another special 

relationship exists between the autocorrelation function and power spectral density of a 

WSS random process: 

S(f) = 9{T(r)}   . (2.24) 

In general, the spatial autocorrelation function of a real-valued process 0 (r) is 

T,(rlJ2) = E{(t>(r1)(j)(r2)}   . (2.25) 

Several assumptions greatly simplify this expression. First, if the process is assumed to 

be homogeneous, then the statistics describing it are independent of location, and the 

autocorrelation is only a function of the separation vector r = r1-r2, i.e., 

M^M^M^)}   • (2-26) 

Second, if the process is also isotropic, then the statistics (i.e., properties of the medium) 

do not depend on direction, and the autocorrelation is a function only of the magnitude of 

the separation vector. 

Subsequent to propagation through atmospheric turbulence, the variance of an 

uncompensated distorted wavefront observed in a circular aperture is 
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o*      =1.0299 
(D>P 

vr°j 
(2.27) 

where D is the aperture diameter and r0 is the Fried parameter, which is related to 

turbulence strength [3]. Subsequent to piston and tilt removal, the variance is 

<W,„ =0.134 
rDV> 

vr°y 
(2.28) 

The corresponding expression for a square aperture is 

<W =0.1748 
fL\

5ß 

vr°j 
(2.29) 

where L is the length of a side of the aperture. 

Another statistical quantity used frequently to describe turbulence is the structure 

function 

^(^Hf^Hfc)]2}   • (2.30) 

For homogeneous media, the structure function is 

By expanding the argument of the expectation operator, Equation (2.31) can be rewritten 

as 

Z^(?) = ^(li)2-2*('i>('i-J;) + ^('i-?)a]}   • (2-32) 

The homogeneity assumption (i.e., E\f (#•)] = E[<j)2 (r2)]) allows further 

simplification: 
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^P)=^f*M2-*M*fr-')]} (2.33) 

Finally, using the definition of the autocorrelation function given by Equation (2.26), the 

structure function is 

^f) = 2[r,(o)-r,(?)]  . (2.34) 

For plane waves the phase structure function for Kolmolgorov turbulence is [4:34] 

Df(r) = 6.88 
fr\

51' 

vv 
(2.35) 

where r is the magnitude of the radial position vector in a plane perpendicular to the 

direction of propagation. 

2.4 Atmospheric Turbulence Modeling 

One of the effects of turbulence on the propagation of light through the 

atmosphere is image blurring, which is due primarily to the negative effects of turbulence 

on phase. For a plane wave entering the Earth's atmosphere with an arbitrarily large 

spatial coherence, propagation over a distance L through the turbulent atmosphere results 

in degraded spatial coherence in the aperture plane of a collecting telescope. This 

degradation is measured by the transverse coherence length [5], 

Po = 
2.91 

*2J><?(*) 
-3/5 

yfXL < p<L0 

Po = 
3M„ rpVi 

/><?(*) 
-1-3/5 

P</0 

(2.36) 

(2.37) 
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where p is the magnitude of the radial position vector in the plane of the aperture, po is 

the separation distance beyond which two points on the wavefront in the aperture are 

uncorrelated, lo is the inner scale which corresponds to the smallest eddy size, Lo is the 

outer scale which corresponds to the largest eddy size, and k is the optical wavenumber 

(2%/X). Two key relationships should be noted based on Equations (2.36) and (2.37). 

First, the transverse coherence length is proportional to X6/5, and therefore image 

degradation due to turbulence is somewhat less in the infrared region than in the visible. 

Second, po is proportional to the integrated turbulence strength. The factor C2
n (z) is the 

refractive index structure constant and is a measure of the strength of turbulence, but it is 

not truly constant and varies with time, geographic location on the earth, and altitude. 

Since much of the turbulence occurs at lower altitudes, major observatories around the 

world are built on high mountaintops to effectively reduce the integrated turbulence 

strength. 

A much more common parameter that describes the negative effects of turbulence 

on spatial coherence is the atmospheric coherence length (also known as the Fried 

parameter) ro, which is a translation of the transverse coherence length from the aperture 

plane to the focal plane. This parameter was defined in 1966 by David Fried to be the 

largest aperture within which the total root mean square (rms) wavefront irregularity is 

less than one radian (or Ä/2rc) [1]. The Modulation Transfer Function (MTF) in the focal 

plane [6] is 

MTF(v) = exV[-3A4(Xfv/r0f]    , (2.38) 

2-13 



where/is the focal length of the system, v is the spatial frequency, and r0 is the 

atmospheric coherence length, which is related to the transverse coherence length by r0 
: 

2.1 po. The atmospheric coherence length is thus 

[L -1-3/5 

k2]o dzC2
n(z)\     ,4hL<p<L0 (2.39) 

r0 =1.5167 

-,-3/5 

I J>c»00 , p<h (2.40) 

The effective MTF of an optical system looking through a turbulent atmosphere is simply 

the product of the system MTF and the MTF describing the atmosphere. Therefore 

turbulence has the effect of a low pass filter. The elimination of higher frequencies then 

results in blurring of the image. 

The amplitude and intensity of the scintillated field are usually modeled as log- 

normal random variables. The log amplitude covariance function [5:181] is 

K2(L-n) 
Cx(p,L) = 4n2k2j d7]\ dKKJ0{rcp)sm2 

2k 
0(K,ri) (2.41) 

where p is the magnitude of the radial position vector, L is the propagation length, k is the 

optical wavenumber (2n/X), Kis the three-dimensional spatial wavenumber, r\ is the 

variable of integration along the propagation path, and 0(K,ID is the power spectral 

density (PSD) of turbulence. The simplest PSD used to describe fluctuations in the index 

of refraction in the atmosphere is the Kolmogorov spectrum [4:30], 

<D„(x:) = 0.033C„V11/3    , (2.42) 
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where Cn is the refractive index structure constant and K"is the three-dimensional spatial 

wavenumber. The spectrum of phase fluctuations is expressed in terms of r0 and spatial 

frequency [4:35]: 

-11/6 
%(fx,fr) = 0.023r0^(fx+fiy (2.43) 

Several other forms of the PSD of turbulence have been introduced [5:174], 

mostly for reasons of mathematical convenience. The following PSD [7] allows for 

inclusion of a finite inner scale: 

O„(7c) = 0.033C„V11/3exp 
f_e\ 

\ K>» ) 

(2.44) 

where K2
m = 5.92//0 and k is the inner scale. The von Karman spectrum [5:174] allows 

for inclusion of a finite outer scale, 

O„(<) = 0.033C„
2
(K

2
+K0

2
)"

1V6
    , (2.45) 

where K0 = 2n/L0 and L0 is the outer scale. Finally, the modified von Karman spectrum 

[5:174] allows for both finite inner and outer scales, 

11/6 
®n(K) = 0.033C2„(K2 + K2

Qy' exp 
r_K2^ 

KL 
(2.46) 

An expression for the modified von Karman spectra that describes phase fluctuations is 

®Afx,fY) = 0.023rc 
-5/3 

f   !     f 

Khj 
exp "(/>/,2)2 

\2>1 

0.942 
. (2.47) 

Returning to the discussion of scintillation statistics, the log-amplitude variance is 

expressed in terms of the propagation length by assuming the Komologorov spectrum for 
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the PSD and evaluating the covariance function (Equation (2.41)) at p = 0. The required 

integration is performed numerically with the following variable substitutions: 

L-ri 
a = A '-K   , 

tr (Z48) 
da = J -dx   , 

V 2k 

which results in the simplified covariance function 

a] (L) = (0.132)TT
2
 (2)~5/6k1'6^ch](L-T]f6 C2 (^[dcca*'3 sin2 (a2)   . (2.49) 

The integral over a is now performed numerically, and to four decimal places it is equal 

to 0.7701. Combining constants in front of the remaining integral results in a final 

expression for log-amplitude variance: 

al(L) = (0.563l)k-"6fodi1(L-i1fc2
n(i1)    . (2.50) 

Equation (2.50) describes the variance of the log of the amplitude in a plane wave after 

propagating a distance L. For the log-amplitude variance of an optical field at the earth's 

surface due, for example, to an observed star, the point r\ = 0 corresponds to the location 

at which the plane wave enters the earth's atmosphere and the point 77 = L is determined 

by the thickness of the atmosphere traversed. This equation can also be expressed so that 

the zero-point corresponds to the location of a ground-based observer. In this case the 

integration is carried out from the ground up to a desired altitude: 

C7l(L) = (0.563l)k^jL
odß(ßfcl(ß)    . (2.51) 

The important physical interpretation of the expressions for log-amplitude variance is that 

for a given point along the integration path through the atmosphere, the strength of 
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turbulence is weighted by a factor proportional to the remaining distance to the 

observation point on the ground. For astronomical imaging at near zenith, mild 

turbulence is often modeled by a single phase screen at the telescope pupil. For extended 

turbulence that results in scintillation in addition to a wrinkled phase profile, the phase is 

distorted at some distance from the pupil (or target), which means that the individual 

tilted portions of wavefront eventually interfere with each other. The resulting 

destructive and constructive interference is termed scintillation. 

2.5 Sampling Theory 

There are two critical relationships that involve sampling and the Discrete Fourier 

Transform (DFT). First, for N samples of a signal in the spatial (or temporal) domain 

separated by Ax, the frequency domain signal obtained by taking the DFT is also repeated 

every N samples, or 1/Ax in terms of frequency. Conversely, N samples in the frequency 

domain separated by A^ correspond to a spatial domain signal which repeats every N 

samples, or 1/A^ in terms of space (or time) units. These relationships are illustrated in 

Figure 2.1. 
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Figure 2.3. Sampling and the Discrete Fourier Transform 

The other critical relationship pair relates the spacing in one domain to the sampling 

parameters in the other: 

1 
A£ 

NAx 

which is also 

Ax = - 
NA% 

(2.52) 

(2.53) 

The matrices used in the propagation algorithms are setup as in Figure 2.4. Here 

values inside the matrix indicate pixel distance from the origin. The Fresnel 

approximation to the free space propagation transfer function (Equation (2.20)) is used 

for all simulations. Note that to avoid aliasing of the propagator, for a generic phasor the 

separation between samples of the phase angle must be less than or equal to K. The phase 

angle of the Fresnel propagator is a quadratic function of spatial frequency, and thus the 

largest difference between adjacent pixels occurs at the four corners of the matrix. 
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Figure 2.4. Propagation Matrix Setup 

Taking the lower right corner as an example, the difference between pixel (N, N) and 

pixel (N-l, N-l) must satisfy the previously stated requirement. This outermost diagonal 

distance clearly contains the greatest adjacent change. The squared spatial frequency in 

any one of the four outermost corners is, in general, 

N-2^   (N-2' 

LV   2    )\   2    . 
(A£)2 (2.54) 

The squared spatial frequency in the immediately adjacent pixel along the diagonal is 

'N-2     * 

v 
+i£2-i 

J 
m (2.55) 
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Taking the difference between Equations (2.54) and (2.55), the maximum difference in 

squared spatial frequency is now 

'N-2"t   fN-4^' 
AtC=W) (2.56) 

The condition imposed on the complex exponential describing Fresnel propagation is 

A0=^z2(A£)2 (N-2^   [N-4^2 

I    2    J 
<K     . (2.57) 

Using equation (2.52), the aliasing constraint is 

2Xz(N-3) 

(NAxf 
(2.58) 

If N is much larger than 3 then the (N-3) term in the numerator can be replaced by N, 

which allows Equation (2.58) to be expressed in a simpler form: 

2Xz 
N>- 

(Ax)2 (2.59) 

Here N is normally at least 128 for propagation simulations such as those reported here, 

and thus, the above assumption is valid. 

Note that Equation (2.59) can be interpreted as a requirement that N be greater 

than the number of pixels that would fit into the main lobe of the Fraunhofer diffraction 

pattern resulting from a square aperture of dimensions equal to the pixel spacing Ax. 

Along one dimension in the plane containing such a diffraction image, the width of the 

central intensity lobe is 

XR 
x = - (2.60) 
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where the x and y axes are in the plane of the diffraction pattern located a distance z from 

the aperture, R is the straight-line distance from the center of the aperture (atz = 0) to the 

point in the diffraction pattern, and a is the dimension of the square aperture. For small 

angles between the vector defined by R and the optic axis, Equation (2.60) clearly 

simplifies to 

Xz 
x = —    , (2.61) 

a 

which is easily recognized as the distance from the origin to the first intensity null in the 

diffraction pattern from a narrow slit of width a. Comparing Equations (2.61) and (2.59), 

the aliasing constraint is interpreted as a requirement that the number of pixels along one 

dimension of the propagator matrix must be at least equal to the number of equally sized 

pixels that would fit into the diffraction pattern created by a single pixel located at a 

distance z from the propagator. 
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3. Phase Screen Generation 

3.1 Creation of Test Fields 

The atmosphere is often modeled by a set of discrete turbulence layers [8:66-67]. 

This layered approach is used to create scintillated test fields, which are then used to 

evaluate the performance of the two deformable mirror phase conjugating system. The 

log-amplitude variance is employed to drive the other parameters of the layered model. 

A discrete version of Equation (2.51) is needed to create the model: 

M 

a2(Z) = 0.5631^2zfC>Az,.    > (3-D 
1=1 

where Mis the number of layers in the model, L is the thickness of the atmosphere being 

traversed, z,- and Az,. are the height and thickness of a specific layer, respectively, and C2
n 

describes the strength of turbulence in a given layer. To further simplify this expression 

the strength of turbulence in each layer is expressed as a fraction of the total integrated 

turbulence, 

Wc^C2^    , (3.2) 

where Ic is the total integrated value of C2
n and Wt is a weighting factor corresponding to 

M 

the relative strength of turbulence in a given layer such that ^T Wt = 1. Equation (3.2) 
i=i 

can now be employed to rewrite Equation (3.1) as an expression for Ic as a function of 
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'*{*:)■■ M 

(0.5631)Ä:7/6X^f/6 

The same approach may be used to modify Equation (2.39): 

(3.3) 

r0= 1.6769 
M 

(=1 

VÄZ <p<L0    . (3.4) 

Using the fact that the weight vector Wt sums to one and substituting Equation (3.3) for 

the total integrated turbulence, the atmospheric coherence diameter may be expressed as 

a function of log-amplitude variance: 

■ K)= 
1.1881 

*Jk 

1      M 
.5/6 

(=1 

3/5 

, VXZ<p<L0 (3.5) 

For the turbulence strength profile given below, values of ro and Cl are obtained 

based on az
x values of 0.1, 0.2 ... 1.0. Once these values are produced a series of 

scintillated test fields are created using an outer scale value of L0 = °°. The phase 

screens through which a wavefront is propagated to created scintillated fields are created 

using the well-known FFT approach [9] and the Kolmolgorov spectrum. The 

Kolmolgorov PSD is obtained from the von Karman PSD given by Equation (2.47) by 

letting the outer scale (L0) go to infinity and the inner scale (lo) go to zero, 

^(^,77) = 0.023r0-
5/3(f+77

2)-1,/6    , (3.6) 

where B, and r\ are the spatial frequency variables along x and y, respectively. The 

atmospheric phase screens are generated by filtering complex white Gaussian noise with 

the square root of the Kolmorgorov power spectrum, which serves to force the power 
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spectrum (and autocorrelation) to match that of the Komolgorov spectrum. The phase 

screens are generated numerically with the aid of the DFT, 

(j) (»Ax, mAx) = Ke{DFT{<JP(p, q) [a(p,q) + ib (p, <?)]}} 

or (3.7) 

<l>(nte,mte) = Tm{DFTyP(p,q)[a(p,q) + ib(p,q)]}} 

where Ax is the phase screen sample spacing, ?(p,q) is the power associated with the 

spatial frequency £ =pA^ and r\ = qAb,, Ai; is the sample spacing in Fourier (frequency) 

space (see Equation (2.52)), and a and b are pseudo random numbers generated from a 

Gaussian distribution with zero-mean and unit-variance. The power associated with each 

sample in Fourier space is 

P(p,q) = Ot{pAZ,mA£)AS2 (3.8) 

Using Equations (3.6), (3.8), and (2.52), the phase screen is now described by 

( r V/6 

<j)(nAx,mAx) = 0.1517 -      KQy>FT^2+ri2)~nn\a{p,q) + ib(p,qj^\ 

or (3.9) 
VV 

0 (»Ax, mAx) = 0.1517 
'zf6 

Jm^DFT^Wy^laip^ + ib^q)]}} 

3.1.1   NOP Test Scenario 

In support of the ABL program, test data have been collected recently at North 

Oscura Peak (NOP) in New Mexico. A "beacon" laser was fired from an aircraft to a site 

atop NOP. Another laser, modified using adaptive optics driven by the sensed beacon 

field, then was fired back toward the aircraft. The data collected from the NOP 

experiments may represent the actual engagement conditions anticipated for ABL. Three 

3-3 



different aircraft-NOP radial distances were used for collecting data: 35, 42, and 54 km. 

For the purpose of the NOP simulations reported here, a propagation distance of 50 km is 

used. The turbulence experienced along that path is modeled using ten phase screens. 

For the simulation scenario, the screen furthest from NOP is placed at a horizontal 

distance of 50 km, and the remaining screens are spaced evenly between the peak (0 km) 

and the final screen. The strength of turbulence is assumed to be equal at each of the 

screens, resulting in the following weight vector: 

w   =["-*-  -i-J--L.i--L-L-L-L-i-l mm 
"NOP     LIO     10     10     10     10     10     10     10     10     IOJ     ■ K°-Lyj) 

Also, an optical wavelength of 1 urn is used for all simulations, which is representative of 

the ABL system. Table 1 summarizes the NOP test scenario simulation parameters. 

Table 1. NOP Test Scenario Simulation Parameters 

< C„2(xlO-12nT2/3) r0 (cm) 2AZ/Ax2 (pixels) 

0.1 0.42488 30.884 16.77 

0.2 0.84977 20.376 38.54 

0.3 1.27465 15.976 62.69 

0.4 1.69953 13.443 88.54 

0.5 2.12442 11.758 115.72 

0.6 2.54930 10.540 144.03 

0.7 2.97418 9.609 173.29 

0.8 3.39907 8.869 203.41 

0.9 3.82395 8.264 234.29 

1.0 4.24883 7.758 265.86 
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3.2 Comparison of Simulated Phase Screen Statistics to Theory 

Several statistics of the FFT-generated random phase screens are measured and 

compared to theory in the following section. For all of the following statistical analyses, 

a value of 10 cm is used for the Fried parameter, and the sampling interval is set to \r0 

(2.5 cm). A sample screen is plotted as a three-dimensional surface in Figure 3.1 and as a 

bitmap in Figure 3.2. 

Pixels 

128 

Figure 3.1. Surface Plot of One Realization of a Random Phase Screen (Using 
Kolmolgorov Spectrum with Ax = 10 cm and r0 = 2.5 cm) 
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128 

Figure 3.2. Bit-map of One Realization of a Random Phase Screen (Using 
Kolmolgorov Spectrum with Ax = 10 cm and r0 = 2.5 cm) 

3.2.1   Phase Variance (Tilt Removed) vs. Aperture Size 

In order to verify correct operation of the FFT-based phase screen generator, 

several realizations were created to measure statistical properties. The mean phase 

variance versus square aperture width (normalized to r0) is plotted in Figure 3.3 for 100 

phase screen realizations generated using the Kolmolgorov spectrum. The mean phase 

variance versus circular aperture diameter (normalized to r0) is also plotted in Figure 3.4 

for 100 phase screen realizations generated using the Kolmolgorov spectrum. In both 

cases the variance is calculated for a set of increasing aperture dimensions by extracting 

the pixels captured by a given aperture (mask), removing piston and Zernike tilt, and 
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calculating the variance of their values. One hundred vectors containing variance versus 

aperture size are thus created and averaged. 
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Figure 3.3. Phase Variance vs. L/ro for a Square Aperture 
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Figure 3.4. Phase Variance vs. d/ro for a Circular Aperture 
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3.2.2   Autocorrelation 

The mean autocorrelation of the phase is plotted in Figure 3.5 for 100 phase 

screen realizations generated using the Kolmolgorov spectrum. The autocorrelation of a 

single realization tends to deviate significantly from the smooth surface shown in Figure 

3.5 near the outer portions of the discretely sampled surface due to the fact that fewer 

data points are available to average as the magnitude of the separation vector r 

approaches one-half the diagonal distance across the matrix. 

-16    -16 

Figure 3.5. Phase Autocorrelation Function 

3.2.3   Phase Structure Function vs. d/ro 

The mean phase structure function is plotted in Figure 3.6 as a three-dimensional 

surface (using Equation (2.34)) for 100 phase screen realizations generated using the 

Kolmolgorov spectrum. The averaged cross section of this surface is displayed in Figure 
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3.7. One of the documented reasons for the disparity between the theoretical and actual 

phase structure functions is the loss of low frequency content due to sampling of the 

Kolmolgorov spectrum [10]. The lowest frequency in the sampled spectrum is l/x, where 

x the physical width represented by an array of samples. This negative effect can be 

offset to some degree by increasing the number of samples (for a constant spacing), but 

this remedy obviously imposes greater computational requirements. 

150 

100 

Figure 3.6. Mean Phase Structure Function (Surface Plot) 
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Figure 3.7. Mean Cross-Section of the Phase Structure Function 

3.3 Comparison of Simulated Scintillated Amplitude Field Statistics to Theory 

3.3.1   Log-Amplitude Variance 

The mean log-amplitude variance (Rytov parameter) values for an ensemble of 32 

independent realizations are displayed in Figure 3.8. The saturation of the actual Rytov 

parameter for the simulated fields agrees with empirical data [5:186-7]. 
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4. Sequential Generalized Projection Algorithm (SGPA) 

4.1 Physics-Based Algorithm Development 

Following the earlier discussion on wavefront propagation, the operator Tz [•] 

indicates Fresnel propagation (given by Equation (2.20)) of a field over a distance z, and 

T* [•] indicates propagation in the opposite direction. The new field at the plane defined 

by z is then 

UAr) = Tz[U0(r)] = T>{?[U0(r)y^2}   , (4.1) 

where 7 denotes the two-dimensional Fourier transform, z is the distance of propagation 

between the two deformable mirrors, r is the position vector in the plane at z = 0, and r1 

is the position vector in the plane at z = z. The on-axis far-field intensity of the laser 

beam is proportional to the degree to which optical phase conjugation is achieved. The 

outgoing field after reflection from DM2 is 

t/,(r/) = C//(F')elfc(r)    . (4.2) 

The outgoing field after reflection from DM1 is 

U9(r) = Tt[Ut(r^]^ = Tt[u,(7^^^]e^    . (4.3) 

Again, the far-field intensity of the beam is proportional to the degree to which phase 

conjugation is achieved, i.e., 

I~\SdrUb(r)U0{r)\2    . (4.4) 

Substituting Equation (4.3) into Equation (4.4) and applying a scale factor so that /ranges 

from 0 to 1 yields 
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I~\jdrUb(7)u;(7)\\ldr'Ul(r')U;(r')\    ' ^ 

Now the goal is to determine phase commands that maximize /when applied to DM1 and 

DM2. A local maximum is located by iteratively solving for the values of fa and fa that 

maximize /(with all other values fixed). Clearly, the numerator of Equation (4.5) is 

maximized if the phase of the laser wavefront is the conjugate of the phase of the 

incoming beacon field. This condition requires the integration of a purely real number. 

With all other values fixed, the ideal value for fa is 

A =aigfcr(F)2;r^(rOe*wT}   . (4.6) 
/max I L -1  J 

An expression for fa is found with the aid of a generalized form of Rayleigh's theorem 

(i.e., the energy theorem, Parseval's theorem, or Plancherel's theorem), 

\yaf{a)g{a) = \yßF(ß)G*{ß)   , (4.7) 

plus a basic property of Fourier transforms: 

f(±x)^F*(+^)    . (4.8) 

Applying Equation (4.7) twice and invoking Equation (4.8) to simplify results, the 

formula for / is 

|f^,(F>*^rrtf4(F)e*wf 
I = -H=- ^ =L    . (4.9) 

\jdrUb(r)U;(rJi\jdr'Ul(7)U;(r)l 

A relationship for manipulating these expressions is formulated using Equation (4.8) and 

the fact that for energy projection applications the inversion of coordinates is 

inconsequential. Thus 
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{TM[ujf=r[ir] (4.io) 

or 

{TZ[U*]}*=T;[U)    . (4.11) 

From Equation (4.9) the optimal value of (j)2 with all other quantities fixed is 

Ä=aigk(^)rr^(r)e*«T}   . (4.12) 
/max I *- -l  J 

The above algorithm derivation was originally developed by Ellerbroek [11,12]. 

4.2 Branch Points and Least Squares Reconstruction 

Wavefront sensors normally provide data that indirectly describe the wavefront 

phase. In the case of the Shack-Hartmann sensor, quantities proportional to wavefront 

slopes are obtained. The slopes are related to the phases by 

g = GO    , (4.13) 

where G is a matrix describing the geometrical configuration of wavefront sensor 

positions and phase determination positions [4:258]. In a closed-loop implementation, 

where G includes the effect of a deformable mirror, G is often referred to as the influence 

ox poke matrix. The least squares estimate for the phase is 

6 = (GrG)_1Gg    .• (4.14) 

The propagation of a coherent monochromatic optical field through a turbulent 

atmosphere (where the field is subject to spatially varying phase perturbations) results in 

constructive and destructive interference in the amplitude (or intensity) of the field. 

Locations in the field where the amplitude goes to zero indicate the presence of a branch 
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point.  In practice, branch points in an optical field are located by summing the principal 

value gradients around the smallest possible closed contour, where the principal value 

operator PV[-] simply produces an equivalent phase in the range -% to %. If a branch 

point is enclosed, then the contour integral of principal value phase gradients equals 

±2n . Likewise, if a branch point is not enclosed then the contour integral equals zero. 

The least squares estimator for the phase does not correctly reconstruct the phase if 

branch points are present because of the underlying assumption, made by the least 

squares estimator, that the measured slopes are indicative of the gradient of a scalar phase 

function. Actually, the function describing the gradient of the perturbed phase must be 

treated as the sum of the gradient of a scalar potential and the curl of a vector potential, 

i.e. 

g(r) = Vs(r) + VxH(r)    , (4.15) 

where r is a position vector of x and y components, s(r) is a scalar potential, and H(r) is a 

vector potential. Since g(r) only has components in the x and jy directions, H(r) clearly 

has non-zero components only in the z direction. 

In going from a discrete space to a continuous formulation, the G matrix above 

can be equated to the gradient operator, GT can be equated to the divergence operator, 

and G G can be equated to the laplacian operator. This formulation allows additional 

insight into the operation of the least squares reconstructor. Equation (4.14) describing 

the least squares estimate is recast in a continuous space formulation as 

V2<f>(r) = V-[Vs(r) + VxH(r)]    . (4.16) 
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Recalling the vector identity stating that the divergence of the curl of a vector is equal to 

zero, Equation (4.16) becomes 

V20>(r) = V-[Vs(r)]    , (4.17) 

which indicates that the least squares estimate for the phase has completely ignored the 

contribution from the vector potential. The actual phase can now be defined as 

0(r) = 0» + 0hid(r)    , (4.18) 

where </w(r) is the "hidden" phase unaccounted for in the least squares reconstruction 

[13]. 

The components of Equation (4.18) are plotted in Figures Figure 4.1 through 

Figure 4.6 for the phase of one realization of a scintillated test field with a theoretical log- 

amplitude variance of 0.3. Figure 4.land Figure 4.2 show a bitmap and a three- 

dimensional surface of the wrapped phase, respectively. Figure 4.3 and Figure 4.4 show 

the least squares reconstruction of the phase; this continuous surface is a form that is 

realizable by a continuous facesheet deformable mirror. The hidden phase (containing 

the branch points) is displayed in Figures Figure 4.5 and Figure 4.6 and contains abrupt 

changes that are difficult for a continuous facesheet deformable mirror to realize in 

practice. 
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Figure 4.1. Wrapped Phase Map for One Scintillated Test Field with a Log- 
Amplitude Variance of 0.3 (Bitmap) 
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Figure 4.2. Wrapped Phase Map for One Scintillated Test Field with a Log- 
Amplitude Variance of 0.3 (Surface) 
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Figure 4.3. Least Squares Reconstruction of a Wrapped Phase Map for One 
Scintillated Test Field with a Log-Amplitude Variance of 0.3 (Bitmap) 
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Figure 4.4. Least Squares Reconstruction of a Wrapped Phase Map for One 
Scintillated Test Field with a Log-Amplitude Variance of 0.3 (Surface) 
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Figure 4.5. Hidden Phase Contribution of a Wrapped Phase Map for One 
Scintillated Test Field with a Log-Amplitude Variance of 0.3 (Bitmap) 
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Figure 4.6. Hidden Phase Contribution of a Wrapped Phase Map for One 
Scintillated Test Field with a Log-Amplitude Variance of 0.3 (Surface) 
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5. Results and Analysis 

Scintillated beacon fields are created using FFT-based phase screen generation 

and Fresnel propagation to evaluate the performance of the SGPA algorithm. All 

simulations are accomplished using MATLAB version 5.3. The test set is based on an 

ABL-type scenario and North Oscura Peak (NOP) testing in support of ABL. A total of 

32 fields (and the corresponding 10 screen atmospheric models) are created for Rytov 

parameter values of 0.1, 0.2, ...,1.0. The outer scale (L0) is set to °° for all simulations. 

Intensity plots of one scintillated field realization for each Rytov parameter value are 

provided as a visual reference in Appendix A. 

For comparison the phase only Strehl, least squares phase only Strehl, least 

squares 2-DM Strehl, and uncompensated Strehl are plotted in addition to the 2-DM 

Strehl versus the Rytov parameter. Furthermore, all five Strehls are computed both 

inside the telescope and beyond the telescope at the "top" of the atmospheric model for 

the Strehl versus Rytov parameter analysis. The "outer" Strehl is computed in four 

different versions corresponding to increasing levels of realism. 

5.1 Strehl Ratio vs. the Gaussian Laser Beam Profile 

As stated previously, the input aperture of the telescope is set to 31 pixels in 

radius for all simulations. The optimal shape of the Gaussian amplitude profile is 

analyzed by plotting Strehl ratio versus location of the 1/e point in the Gaussian 

amplitude field. It is assumed that the appropriate optics would be available in an actual 

hardware implementation such that the location and size of the beam waist could be 
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manipulated; therefore, the shape of the beam is optimized in the plane of the input 

aperture. This method eliminates any dependence of the optimized value on the 

conjugate range of DM2. Also, to further limit the influence of other parameters on the 

results of this simulation, the total energy in the Gaussian beam is kept constant for all 

beam shapes. This is easily accomplished by examining the standard equation describing 

the amplitude of a Gaussian beam [14:70]: 

E(x,y,z) 

E0 

_wo exp 
w 

i r \ 

L   KWJA 

(5.1) 

where wo is the beam waist and w is the radial location of the 1/ e point in the amplitude 

field (which is a function of distance z in an actual Gaussian beam). For the purpose of 

the modeling at hand, a "default" beam waist (w0) is arbitrarily chosen to be 31 pixels in 

radius. Actually, the beam waist is the closest the 1/e point ever gets to the axis of 

propagation, but for the simulations the 1/e point was allowed to range from 5 to 60 

pixels, thereby covering nearly all of the 128 x 128 beacon field. Setting the waist to a 

constant simply maintains a constant energy in the beam. The appropriate scaling of the 

peak amplitude by Equation (5.1) accomplishes this task mathematically, maintaining a 

constant value of the integrated intensity. 

Note from Figures 5.1 to 5.3 that the variation of Strehl with location of the 1/e 

point decreases with increasing Rytov parameter. From this perspective stronger 

turbulence is advantageous because system performance is less dependent on the degree 

and accuracy to which the Gaussian beam profile can be controlled. The peak value of 

the curves tends to increase with strength of turbulence to some extent, which doesn't 

correctly describe the actual performance of the system as scintillation increases. The 
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next step toward a more realistic analysis would be to penalize the Strehl for laser energy 

under the Gaussian curve not accounted for by the finite propagation matrix, which 

becomes significant as the waist approaches the edge of the matrix. 
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Figure 5.1. 2-DM Strehl Ratio (Inside Telescope) vs. Gaussian Laser Beam Waist 
Size (in Pixels) for Log-Amplitude Variance Values of 0.1 - 0.5 
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Figure 5.3. Optimal Gaussian Laser Beam Waist Size in the Plane of the Input 
Aperture vs. Log-Amplitude Variance 

5.2 Strehl Ratio vs. the Conjugate Range of the 2ndDM 

Using a beam waist of 28 pixels and a step-size of 2 km, the mean Strehl (over 32 

realizations) is plotted versus the conjugate range of the second deformable mirror in 

Figure 5.4 and Figure 5.5. The conjugate range corresponding to maximum Strehl 

steadily decreases with increasing turbulence strength (Rytov parameter), which is clearly 

shown in Figure 5.6. This result seems non-intuitive at first glance; one would think that 

the opposite might be true because a greater propagation distance provides an increased 

ability of phase modulation at DM2 to modulate the amplitude profile at DM1. One 

possible explanation is that as the turbulence strength increases, the locations of regions 

of significant amplitude in the sensed beacon field vary to a greater extent. This effect 

requires a more severe modulation of the phase at DM2, which in turn increases the 
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energy loss due to the finite telescope aperture. The optimal range must therefore 

decrease with increasing turbulence in order to overcome the energy loss. The impact of 

energy loss due to the scattering caused by DM2 was first discussed by Roggemann [15]. 

30 40 50 BO 70 

Conjugate Range of 2nd DM (km) 

80 90 100 

Figure 5.4. Mean 2-DM Strehl vs. the Conjugate Range of the 2nd DM for Log- 
Amplitude Variance Values of 0.1 through 0.5 
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5.3 Number of Branch Points vs. the Conjugate Range of the 2   DM 

The conjugate range of DM2 corresponding to the maximum number of branch 

points in DM1 steadily decreases with increasing turbulence strength but saturates near 5 

km for Rytov values of 0.5 and greater; see Figure 5.7 and Figure 5.8. The point of 

saturation resembles that of the actual Rytov versus theoretical Rytov shown in Figure 

3.8. Initial inspection of Figure 5.9 and Figure 5.10 indicates a much larger number of 

branch points in DM2 versus DM1. The branch points in DM2, however, are counted 

over the entire propagation matrix whereas DM1 only contains branch points in a circular 

area 31 pixels in diameter; recall that DM1 is conjugate to the collecting aperture of the 

telescope (which acts as a mask on DM1 during iterations of the SGPA). The sudden 

jumps in the number of branch points in DM2 are due to the fact that the matrix 

dimension is allowed to jump from 128 x 128 pixels to 256 x 256 pixels when required to 

avoid propagator aliasing. The overall trend in the number of branch points in DM2 is 

decreasing with increasing conjugate range of DM2. 
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5.4 Number of Iterations to Convergence vs. the Conjugate Range of the 2   DM 

The mean number of iterations to convergence of the SGPA (to within 0.0005) is 

plotted versus the conjugate range of the second DM in Figure 5.11 and Figure 5.12. The 

peak number of iterations per Rytov value varies between approximately 60 and 80 and 

the location of the peak decreases with increasing turbulence strength. The general 

shapes of the curves are very similar to the shapes describing the number of branch points 

in DM1; see Figure 5.7 and Figure 5.8. This would seem to indicate that a larger number 

of SGPA iterations results in a larger number of branch points in DM1. 
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5.5 Strehl Ratio vs. the Rytov Parameter 

Using a finite input aperture of 31 pixels and a beam waist size (in the plane of 

the input aperture) of 28 pixels, the mean Strehl ratio is determined over an ensemble of 

32 realizations for each value of the Rytov parameter. Both DMs are assumed to be 

"infinite" in size for this simulation. The conjugate range of the 2nd DM is set to 50 km 

except for the case of ox
2 - 1.0 in which a conjugate range of 48 km is used due to 

limited computing resources. To avoid propagator aliasing ranges greater than 48 km 

require a matrix size of 512 x 512 or greater for Gz
2 = 1.0, which increases the required 

computing time significantly. 

The Strehl ratios computed inside the telescope are plotted versus the Rytov 

parameter in Figure 5.13, including the 2-DM Strehl, 2-DM least squares Strehl, 1-DM 
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(i.e., phase only) Strehl, 1-DM least squares Strehl, and the uncompensated Strehl. For 

the Strehl ratios computed inside the telescope, the 2-DM Strehl remained above 0.9 for 

all values of log-amplitude variance. The performance of the 1-DM system gradually 

decreases from a Strehl of 0.75 to slightly less than 0.6 for Rytov values of 0.8 through 

1.0. 
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Figure 5.13. Mean Strehl Ratio Inside Telescope vs. Log-Amplitude Variance 

In order to provide a more realistic evaluation of the performance of the 2 DM 

AO system, the Strehl ratio is also calculated outside the telescope by propagating the 

pre-compensated outgoing laser beam back through the original set of phase screens. 

This "back-propagated" Strehl is calculated in several ways (to provide increasing levels 

of realism) and is plotted in Figures 5.14 to 5.17. 
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First, the back-propagated Strehl is calculated using the original laser profile as 

the "ideal" field. Second, the laser field is propagated to the top of the atmosphere for 

use as the "ideal" field. Third, the laser is propagated to the telescope aperture, through 

the aperture, then to the top of the atmosphere. Finally, the most realistic approach is 

identical to the previous one with one exception; the Strehl ratio is penalized for energy 

lost due to the finite aperture. As expected, this last approach results in the lowest Strehl 

ratios. All 2-DM Strehl ratios calculated beyond the telescope, however, follow a similar 

trend and decrease monotonically with increasing turbulence strength. The system 

performance predicted by this assessment is significantly worse than that predicted by the 

in-telescope Strehls. However, even the most critical analysis indicates a performance 

increase of approximately 0.1 Strehl over the 1-DM system for the worst turbulence 

scenario. 

Ul Not Propagated 
1 

0.9 

0.8 

0.7 

0.6 

'a 
S    0.5 
o 

1    0.4 

0.3 

0.2 

0.1 

I           I           j           I           I           I           I           I           I 

iT^f—4z_l__^ III! 
i T'^TT'^H'^^H^ 
i          i         i         i ""•^•^.    i         !          i          i    ~~^ 
:           :           :           :           i           :     ~ - -su ..      :           : :::::::     '-&_        : 
L          L          L         J          J          :          ;          :   ~--i&-. 

■ r"v^x r 

-B- 2 DM Strehl 
—o— Least Squares 2 DM Strehl 
- -D-  1 DM (Phase Only) Strehl 
- o- Least Squares 1 DM Strehl 
--A-- Uncompensated Strehl 

 | | - 

 .<?_' L....S...L I               I               !               ! 

1           :         ^^       j           j          j          !          ■           ! 

i       !       i      T~--4-,   i       ;       i       i 
fc^TTTT^ «—.—^^^....M...-.T..it.:.-:.-A-.-.-.-.±.-.-.-.^.iL-'.--.u 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Log-Amplitude Variance (a2) 
0.8 0.9 

Figure 5.14. Mean Strehl Ratio Outside the Telescope vs. Log-Amplitude Variance 

5-13 



1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Ul Propagated 

]           I          ]           I           I          I          I          I           I 

i.        t—-—^ i           I          ;          j          ■           j 

 i. [ .'.s-.^ ..   i          I         j         I         $•—- 
i           :          i           i    ~"~<p-.-      i          :          i 

 L L L J J... _'r-..-di j ; 
;           :          :          :           :          :    ~ - -e- _      :           : 

;             ;             ;             ; !               !               !               ! 
!             !             !             ! -a- 2 DM Strehl 

—e— Least Squares 2 DM Strehl 

■o-  1 DM (Phase Only) Strehl 
- -o-  Least Squares 1 DM Strehl 
--A--  Uncompensated Strehl 

-—| - 
:           :          !           ! 

 r "/«;         r :  

 k L....X..J J  ■              II> 

i           i          i. ^       j           i           i          i          i           i 

|          i         i        T--4.^    !         !         S          i 
Xrrrrrr^, i_-—J^,^- — a—--T.:fr::.----^:.-: - t -------<i^.-.-.-.ii 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Log-Amplitude Variance (a ) 

Figure 5.15. Mean Strehl Ratio Outside Telescope vs. Log-Amplitude Variance 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Ul Propagated Through Aperture 

i ^^-3 

!!!!!! 

'--.      : ^_i           i           :           i 

L i r~_:H-.~^..J j .TT^T^ML 
i           i         i1-^      i          i         T~^—i 
i           i           i     ~^-o-._    i          i 
j          i          j          i          {     ~   -rä-  
'!!! *- "i 
-a- 2 DM Strehl 

—e- Least Squares 2 DM Strehl 
- Q-  1 DM (Phase Only) Strehl 
- o- Least Squares 1 DM Strehl 

-Ar-  Uncompensated Strehl < 

1 ;  \  

\     i !                 !                ! 
V            i               i               i 

!    ^        !               1               ! 
 L -\>-J. J J J 

* ̂ Trrrr^ 
i               i              ?"--.       i 

t——» .*- A ?.:ft-..-.-.-.4< \^:-K:~:A i----.--.r--11 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Log-Amplitude Variance (o ) 

Figure 5.16. Mean Strehl Ratio Outside Telescope vs. Log-Amplitude Variance 

5-14 



1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Ul Propagated Though Aperture (with Penalty for Energy Loss) 

I              I              |              i              |              ]              |              I              I 

? ^"^-i-~___   i          i          i          i          i          i          i 

- j- i- --<£.-;;-- 
"~^~^~—L        i         i         i          i 

i           i          i          i           :     ~   -4»— -     :          i           i ^^, 
!           :          :           :           :          :       "-?-^      :           : 

 L L : : :  :             :      " — A            : 
111! I     ~'~^~-^ 

-B- 2 DM Strehl 
—e— Least Squares 2 DM Strehl 
- a-   1 DM (Phase Only) Strehl 
- o-  Least Squares 1 DM Strehl 
--£--  Uncompensated Strehl 

—| |  

i          i         >L         i          i          !          i          i          i 

t^^-A            a A —-■^■-A-!.*-?!-'ft:---n---it---.-.~A--.-.-.-JLr:.-.-J--ii 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Log-Amplitude Variance (o2) 

0.9 

Figure 5.17. Mean Strehl Ratio Outside Telescope vs. Log-Amplitude Variance 

Figures 5.18 to 5.22 plot the different Strehl ratios by type of AO system using 

both the in-telescope and beyond-telescope approaches. For all systems the first and 

second methods for calculating the Strehl ratio beyond the telescope yield nearly identical 

results. This result is not surprising given the fact that the Fourier transform of a 

Gaussian is another Gaussian. Furthermore, the divergence angle characterizing the 

Gaussian beam is not incorporated into this analysis. 
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Figure 5.21. Mean Least Squares 1-DM Strehl Ratio vs. Log-Amplitude Variance 
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Figure 5.22. Mean Uncompensated Strehl Ratio vs. Log-Amplitude Variance 

5.6 Number of Branch Points vs. the Rytov Parameter 

The numbers of branch points in each of the deformable mirror commands are 

plotted versus the log-amplitude variance in Figure 5.23 and Figure 5.24. The number of 

branch points in the beacon field or, conversely, in the 1-DM system mirror commands 

are plotted versus Rytov parameter in Figure 5.25. The number of branch points in the 

DM1 commands for the 2-DM system is nearly 600 branch points for the weakest 

turbulence, but decreases to about 240 branch points for Rytov values of 0.9 and 1.0. The 

numbers of branch points in the DM2 commands are orders of magnitude greater for log- 

amplitude variance values above 0.5. Once again, this is due to counting branch points 

over a larger grid; a 256 x 256 pixel propagation matrix is required for Rytov values 
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greater than or equal to 0.6 and propagation distances greater than or equal to 50 km. 

Furthermore, the branch points in the DM1 commands are effectively limited to the area 

within a circular aperture of radius equal to 31 pixels due to the fact that DM1 is 

conjugate to the collecting aperture of the telescope. The large numbers of branch points 

explains the extremely poor performance (only slightly better than uncompensated) of the 

least squares 2-DM system, as seen in Figure 5.19. The hidden phase for these numbers 

of branch points clearly contains a significant portion of the information for the DM 

controls. The relatively small number of branch points in the 1-DM system mirror 

commands (i.e., beacon field) is one reason that phase-only correction is able to maintain 

significant performance increases over an uncompensated system even at the worst 

turbulence strengths. 
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Figure 5.23. Mean Number of Branch Points in DM1 vs. Log-Amplitude Variance 
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5.7 Number of Iterations to Convergence vs. the Rytov Parameter 

The number of iterations of the SGPA algorithm required to converge to within 

0.0005 Strehl decreases rapidly with increasing Rytov parameter up to a Rytov value of 

0.5; see Figure 5.26. The saturation of the required iterations near 27 occurs at about az
2 

= 0.5, which roughly corresponds to the value of theoretical Rytov past which a 

saturation in measured Rytov (see Figure 3.8) occurs. The decrease in required iterations 

may be due to the fact that as scintillation becomes worse there is less integrated 

amplitude in the beacon field (to which the SGPA must reshape the Gaussian laser beam 

against). 
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Variance 

5-21 



5.8 Strehl Ratio vs. the Radii of the Deformable Mirrors 

To model the impact of energy loss (due to finite DM size) on the Strehl ratio, the 

radii of both DMs are varied simultaneously. This is accomplished in two ways: 1) by 

masking the field (not just the phase), which is analogous to forming a finite mirror for 

which the entire surface is deformable and 2) by masking the phase, which is analogous 

to forming an infinite flat surface mirror for which only a finite center portion is 

deformable. A real system would probably mask the phase (i.e., use a large DM but only 

control a central section). However, the results presented here indicate only a very minor 

difference in Strehl for the two approaches. Both approaches are used to plot the 2-DM 

Strehl, the least squares 2-DM Strehl, the 1-DM Strehl, and the least squares 1-DM Strehl 

in Figure 5.27 for a Rytov value of 0.1. The results are so similar, in fact, that only the 

first (most conservative) approach is used for the remaining simulations in this section. 
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The SGPA is run once for each beacon field realization per Rytov value, and thus 

the subsequent Strehl ratios (for a given beacon field realization) are all calculated with 

one set of phase commands with varying mirror sizes. The results are plotted in Figures 

5.28 to 5.37. As expected, the Strehl of the 1-DM system reaches an absolute maximum 

as the radius of the single DM equals the radius of the input aperture. This outcome is 

due to the fact that the 1-DM system can only impact the outgoing field in the plane of 

the telescope's collecting aperture. The 2-DM system, however, achieves a significant 

increase in Strehl for DM radii that increase beyond the size of the input aperture. This 

result also makes sense due to the fact that phase modulations at any point in the outgoing 

field in the plane of DM2 can affect the amplitude of the field at (theoretically) any other 

point in the field after propagation to DM1. 
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Figure 5.28. Strehl Ratio (Inside Telescope) vs. Radii of the Deformable Mirrors for 
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Figure 5.32. Strehl Ratio (Inside Telescope) vs. Radii of the Deformable Mirrors for 
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5.9 Number of Branch Points vs. the Radii of the Deformable Mirrors 

The numbers of branch points in each of the DMs is plotted versus log-amplitude 

variance in Figures 5.38 to 5.47. As with the phase-only correction system, the numbers 

of branch points in the controls for DM1 reach an absolute maximum at DM radii equal 

to and greater than that of the input aperture. This result is due to the fact that the first 

deformable mirror can only effect the phase of the outgoing laser in the area limited by 

the collecting aperture of the telescope. This fact is expressed mathematically in the 

SGPA phase iterative update equation for DM1 commands in Equation (4.6). The 

numbers of branch points in the commands for DM2 undergo a sharp increase for radii 

near 45 pixels for all levels of turbulence strength. 
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Log-Amplitude Variance of 0.2 

5-29 



2500 

2250 

2000 

1750 

■  1500 

f  1250 
c 
E 
co  1000 

750 

500 

250 

  Number of Branch Points in DM1 
  Number of Branch Points in DM2 

i                  i                  i 

:::!!/ 

:                  ■                  ■            /    ■ 

i                          i                          i              /         ! 

i                  :                  : /            ! 

i                  i                  i 
0 20 30 40 

Radii of Deformable Mirrors (Pixels) 

50 60 

Figure 5.40. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 0.3 
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Figure 5.41. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 0.4 
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Figure 5.42. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 0.5 
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Figure 5.43. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 0.6 
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Figure 5.44. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 0.7 
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Figure 5.45. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 0.8 
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Figure 5.46. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 0.9 
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Figure 5.47. Number of Branch Points in 2-DM Commands vs. Radii of DMs for a 
Log-Amplitude Variance of 1.0 
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6. Conclusions and Recommendations 

The addition of a second deformable mirror to the two-DM AO transmission 

system clearly improves theoretical performance (over a single DM system) for 

delivering energy on target through atmospheric turbulence. Strehl ratios calculated by 

back-propagating the modulated laser beam through the atmosphere, however, indicate a 

less significant improvement over the single DM system (compared to Strehl ratios 

calculated inside the telescope). 

The hidden phase contained in the branch points is critical to the performance of 

the SGPA, as indicated by the two-DM least squares Strehl ratio results. The DM 

commands generated by the SGPA are corrupted by a large number of branch points, and 

this problem has at least two possible solutions. One solution is the use of a phase 

reconstruction scheme other than least squares, and another solution is the use of a new 

two-DM algorithm that imposes constraints on the number of branch points in the DM 

commands. An effective real-world solution will probably combine both approaches, and 

work is underway toward this end. 

Allowing the conjugate range of DM2 to be finite minimizes the energy lost at 

DM1 due to scattering caused by the phase modulation at DM2. For this reason the two- 

DM system with the second DM conjugate to a finite range should outperform the system 

with the second DM conjugate to the far-field (infinity). 

Recommendations for further research are provided below. 
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First, track computing time per SGPA iteration. Such tracking could be done for 

all of the analyses accomplished in this thesis, with the final result being an average 

number of seconds per iteration. 

Second, perform the Strehl versus Gaussian beam waist size optimization with the 

inclusion of a penalty to the Strehl ratio calculation for energy in the Gaussian laser beam 

lost (i.e., unaccounted for) outside the finite propagation matrix. 

Third, execute the Strehl versus DM radii analysis while keeping track of the 

amount of energy lost outside the finite DMs. The amount of lost energy should increase 

with decreasing DM size and with increasing turbulence strength. Similarly, the Strehl 

versus conjugate range of DM2 analysis could be accomplished while keeping track of 

the amount of energy lost outside of DM1. The energy lost will most likely increase with 

increasing conjugate range of DM2 and increasing turbulence strength. 

Finally, complete the number of branch points in DM2 versus both Rytov value 

and the conjugate range of DM2 analyses while constraining the area within which 

branch points are counted to the size of the finite collecting aperture of the telescope. 

This extension would provide a basis for fair comparison of the number of branch points 

in DM1 with the number of branch points in DM2, due to the fact that the numbers of 

branch points in DM1 are inherently counted only within an area equal to the size of the 

collecting aperture, as DM1 is conjugate to that plane. Another approach would be to 

normalize the number of branch points to some unit area. The locations of branch points 

could also be investigated. It has been reported in the literature that branch points tend to 

occur more often in regions of lower intensity [12]. 
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In summary, the more critical Strehl ratio analysis performed by back-propagating 

the pre-compensated laser beam through the atmospheric models indicates that a two-DM 

AO system provides increased performance over that of a one-DM system. Accounting 

for the hidden phase contained in the branch points corrupting the mirror commands 

(produced by the SGPA algorithm), however, is critical to successful implementation of 

the SGPA. 
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Appendix A. Fields Used for Testing SGPA Algorithm 
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Figure A.l. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.1 
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Figure A.2. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.2 
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rn = 0.160 m,cT = 0.3 

Figure A.3. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.3 
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Figure A.4. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.4 
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Figure A.5. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.5 
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Figure A.6. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.6 
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Figure A.7. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.7 
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Figure A.8. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.8 
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Figure A.9. Intensity Plot of One Realization for a Log-Amplitude Variance of 0.9 
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