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Abstract 

This thesis demonstrates the potential for using time-delay neural networks to 

provide Launch Weather Officers (LWOs) at 45th Weather Squadron (45 WS) with 

advance warning of wintertime (November-March) peak wind speeds at the Atlas launch 

pad. The 45 WS provides weather support to the United States space program at Cape 

Canaveral Air Station, NASA's Kennedy Space Center, and Patrick Air Force Base. Due 

to the complex wintertime environment produced by the effects of friction and instability, 

45 WS LWOs consider wintertime launch pad winds their toughest forecast challenge. 

Neural networks were developed, trained, and tested using observations of 

wintertime peak wind speed, wind direction, and directional deviation collected from 

March 1995 through March 1999 by 45th Space Wing's Weather Information Network 

Display System. Using current and past values of the observed elements, the networks 

produced 16 forecasts of peak wind speed. The first forecast was valid for 30 minutes 

past forecast start time, the second for 1 hour past start time, etc., up to 8 hours past start 

time, for any start time. 

Network performance was compared to three other forecasting options: 

persistence, climatology, and randomly selecting wind speeds from a climatologically 

based distribution. For forecasts at the end of the forecast period, networks that were 

tested with data near in time to the networks' training data showed skill over the other 

forecasting options. 

xni 



A new confidence measure for neural network forecasts based on mean absolute 

error was also developed. Confidence for shorter forecast times was not necessarily 

higher than for longer forecast times. 

The results of this thesis provide a baseline for measuring future attempts at 

forecast improvements and establish the neural network approach as a potential means of 

enhancing peak wind speed prediction accuracy, especially for forecasts late in the 

forecast period. 
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A NEURAL NETWORK SOLUTION TO PREDICTING WIND SPEED 

AT CAPE CANAVERAL'S ATLAS LAUNCH PAD 

1. Introduction 

1.1 Background 

Six to eight hours before a rocket launch from the United States Air Force's Atlas 

launch pad (located in southeast Florida), mission controllers need wind forecasts for 

their launch and Mobile Service Tower rollback decisions. When the Mobile Service 

Tower is rolled back, the rocket is left unsupported and exposed to the wind, so Launch 

Weather Officers (LWOs) must be highly confident that peak wind thresholds will not be 

exceeded. The disastrous consequences of unexpected high winds are obvious, but false 

alarms lead to costly and time consuming launch scrubs. 

Figure 1.1 shows a time series of 20 consecutive days of 30-minute maximum 

peak wind speeds at 90 feet above the Atlas launch pad. The 30-minute maximum at a 

given time step is defined as the highest wind that occurred during the 15 minutes before 

and after the time step. Several rapid increases are evident in Figure 1.1 (around time 

steps 300,1500, and 2000, for example), as are at least two periods of relatively small 

changes in speed (time steps 900-1200 and 4600-4800). 

Time series of wind speed data are highly non-linear and do not represent 

analytical solutions of equations that describe the wind's behavior. For example, see 
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0 500 1000 1500        2000        2500        3000        3500        4000        4500        5000 
5-minute Time Steps 

Figure 1.1. 30-minute Maximum Peak Wind Speeds at 90 feet above the Atlas 
Launch Pad.   The non-linear nature of wind speed data is evident, but a low- 
frequency sinusoidal pattern is also apparent. 

Appendix A, which contains time series of the 5-minute peak winds observed during the 

data periods used in this study. Artificial neural networks, however, have proven capable 

of predicting future values of similar non-linear series (e.g., stock market indices [Saad et 

al. (1998)] and electricity demand [Khotanzad et al. (1997)] to a high degree of accuracy 

using only past series values. Eisner and Tsonis (1992) investigated a time series of sea 

surface temperatures and concluded that neural networks are capable of short-term 

predictions even if the underlying dynamics generating the data are chaotic. McCann 

(1992) put it this way: "A neural network is an artificial-intelligence tool that excels in 

pattern recognition. This tool can become another means of enhancing a forecaster's 

pattern-recognition ability." 
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The current research used a feed-forward back-propagation network with a three- 

step tapped-delay input. Unlike the recurrent network used by Storch (1999), which fed 

its intermediate forecasts back as inputs, the network trained and tested in the current 

study used only observed values of the predictor set as inputs. Using tapped-delay inputs 

incorporated the memory aspect intuitively necessary for improving on a persistence 

forecast. Moreover, the tapped-delay network avoided the incestuous nature of recurrent 

networks, which tend to propagate the effects of poor forecasts through several future 

generations of forecasts. 

1.2 Problem Statement 

Accurately predicting the elevated point peak wind speeds at the Cape Canaveral 

Air Station / Kennedy Space Center (CCAS/KSC) launch pads in winter is the 45 WS 

LWO's greatest short-term forecast challenge. A more accurate method of forecasting 

launch pad winds is necessary to ensure the safe, efficient employment of the nation's 

aerospace assets. 

1.3 Thesis Outline 

The following chapters detail efforts to address the problem of predicting 

wintertime launch pad winds using artificial neural networks. Chapter 2 summarizes 

applicable previous work in the area of neural nets. Chapter 3 presents a short 

introduction to artificial neural network theory. The specific neural network 

methodology used in this research can be found in Chapter 4. Chapter 5 summarizes the 

results and conclusions of this study and offers suggestions for further work on this 

problem. 
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2. Literature Review 

The literature is replete with the history, theory, and applications of artificial 

neural networks (also known simply as "neural networks" and "neural nets") covering a 

broad range of disciplines. Target recognition (Dean, 1994), voice recognition (Lindsey, 

1991), and pilot head movement prediction (Lindsey, 1991) are just a few of the areas 

where neural nets enjoy success. 

In the last several years, meteorologists have also recognized neural networks' 

inherent abilities to "learn" the rules associated with the non-linear mechanisms driving 

diverse atmospheric processes. Neural networks have been used successfully in 

predicting thunderstorms (McCann, 1992), tornadoes (Marzban and Stumpf, 1996), and 

precipitation amounts (Kuligowski and Barros, 1998 and Hall et al., 1999). 

Since this research focuses on predicting a time series, this literature review 

concentrates on similar forecasting work. Dewdney (1997) questions the validity of the 

neural net method and expresses concern for the apparent mystery surrounding neural 

networks. Other sources, however, present artificial neural networks as outstanding 

candidates for predicting nonlinear time series, suggesting similar success is possible in 

forecasting wind speed. 

In 1992, McCann stated,"... neural nets ... have the potential to solve pattern- 

recognition problems that other methods have not yet been able to solve," and "... the 

patterns associated with a particular weather phenomenon are not always easy to see." 

As Figure 1.1 suggests, wind speed data are good candidates for neural networks' 

pattern-recognition abilities. Any diurnal, synoptic, and seasonal signals that may be 
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present in the overall pattern often obscure each other, and the data take on an apparently 

random, patternless distribution. 

Time series of financial indices also frequently appear to have no pattern. Heim 

(1995), however, not only showed that a neural network can skillfully predict the motion 

of a financial index, but also developed a confidence table for assessing the validity of the 

network's predictions. While forecasting financial time series with a neural network that 

adapted its time delays as well as its connection weights, Gainey (1993) showed that even 

a highly chaotic system is predictable. 

Much of the criticism in the literature centers on the "black box" mystique 

surrounding neural networks. Not knowing exactly how neural nets arrive at solutions is 

troubling to some. Dewdney (1997), referring to the synaptic table of connection weights 

from a trained network, says, "The knowledge embedded in that table [is] inaccessible to 

science and therefore valueless as a scientific resource. Science is about accessible 

knowledge, not numerical hodge-podges." This, however, is a matter of form over 

function: Although a forecaster may not explicitly understand how a network obtains its 

predictions, the quality of the network's outputs is what matters. 

Good network forecasts are the only justification most meteorologists would need 

for using neural nets operationally, but the weight table of a trained network may contain 

scientific value and accessible knowledge after all. 

... neural networks ... are phenomenological in that they assess the qualitative 
characteristics of the underlying system's dynamics and make short-term 
predictions based on that knowledge without providing a physical understanding 
of the mechanisms that might be operating within the system. However, 
successful predictions with such models can lead to useful hypotheses concerning, 
for example, why certain inputs are associated with stronger connection weights 
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compared to others—which can readily be interpreted as a hypothesis concerning 
the physical nature of the system. (Eisner and Tsonis, 1992) 

Roadknight et al. (1997) even go so far as to extract rules from their neural network's 

weight tables to develop models of environmental processes. The authors synthesize 

prognostic equations using the network's connection weights that have the highest 

relative importance. 

Dewdney (1997) continues his concerns, noting, 

For the rest of us, neural nets have had a something-for-nothing quality, one that 
imparts a peculiar aura of laziness and a distinct lack of curiosity about just how 
good these computing systems are. No human hand (or mind) intervenes; 
solutions are found as if by magic; and no one it seems, has learned anything. 

Responding to these concerns, Roeder (1999) points out, "Interestingly enough, if one 

developed a set of highly stratified statistical regressions as a climatological application, 

these objections wouldn't be raised. But in essence, that is what a neural net does, a 

continuously stratified non-linear regression." Furthermore, humans obviously program 

the network and determine the functions the algorithm uses to adjust the connection 

weights. Moreover, if a neural network accurately predicts launch pad winds, the payoff 

is immediate and tangible, even if no one learns anything about the wind. 

McCann (1992) may have addressed this matter best: "... it is practically 

impossible to understand the 'black box.' The conclusions of this analysis are not very 

satisfying to scientists. Acceptance comes from how well the networks have learned real 

patterns." 
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3. Neural Network Theory 

3.1 Biological Basis 

Artificial neural networks are loosely patterned after the brain's neuronal 

connections. Neurons, the fundamental building blocks of the nervous system, are 

connected along dendritic and axonal paths at junctures known as synapses (see 

Figure 3.1). 

Axon (Carries 
signals away) 

\ 
11 V 1 

Deridrite   (Carries 
^ signals in) 

Synapse Synapse size changes in 
response to learning 

Figure 3.1. Schematic of a Biological Neuron. Axons carry signals from the neuron 
to other neurons; dendrites carry signals into the neuron from other neurons. 
Axon-dendrite junctions occur at synapses. (After NewWave Intelligent Business 
Systems, 1999.) 

A neuron receives inputs as chemical stimuli along its dendrites. Some inputs to 

the neuron are inhibitory and lower its electrical potential; some are excitatory and raise 

its potential. The neuron sums its inputs, and if the total exceeds the neuron's activation 
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threshold, the neuron fires and sends its own signal along its axon to other neurons. The 

brain's nervous system is highly interconnected, and the firing of billions of neurons and 

relaying of signals among neurons allow us to remember, learn, and create. 

Although a diagram of an artificial neural network's architecture shows neurons 

(also called "nodes") connected to other neurons, the resemblance to the human brain 

ends here. Neural nets, including the ones used in this research, are nothing more than 

mathematical algorithms designed to minimize certain error functions and thereby 

optimize the solution to a given problem. In fact, for small networks, the values in the 

weight/bias table determined during training can be used to calculate forecasts by hand. 

Rogers, et al. (1990) put it this way: "... beware of anybody who implies that his/her 

artificial neural network performs some function the way the brain does." 

Statements like, "The beauty of a neural network is that it is continually learning 

as it processes," and "It fixes its processes based on the data or knowledge it acquires," 

(Heim, 1995) mislead the uninitiated. Terms like "learning," "adapting," and "training" 

are normally used in the biological sense, but they have made their way irreversibly into 

the neural net jargon and are frequently applied to certain features of network processes. 

Although these terms are inaccurately anthropomorphic, they do provide a convenient 

way to describe many aspects of neural network behavior and will be used here. 

3.2 Network Architecture 

The architecture of a neural network defines how many inputs, "hidden" layers, 

and outputs the network has, as well as how many nodes each layer contains and how the 

layers and nodes interact with each other. Figure 3.2 shows a typical architecture for the 
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INPUTS 

l3 

wn 

HIDDEN 
LAYER 

tanh 

tanh 

tanh 

OUTPUT 
LAYER 

M Oj 

Figure 3.2. Typical Architecture of a Feed-Forward Neural Network with a 
Tapped-Delay Line. Top input (ii) corresponds to the current value of the input 
(predictor) series; i2 and 13 refer to previous values of the series after one and two 
delays, respectively. Lines with arrows indicate connection weights. For clarity, 
only two hidden layer weights, wu and W33, are shown. All three output layer 
weights, yu,y2i, and y3i, are shown. 

type of network used in this thesis. (The specific architecture for this research is 

discussed in detail in Chapter 4.) 

In the figure, all inputs are connected to the network's hidden layer, which is 

shown with three nodes (hi, h2, and /13). The hidden layer nodes sum the weighted 

contributions from each input, add a bias term (bk), and apply a sigmoidal transfer 

function (tanh) to the result. These intermediate results are then weighted and summed 

by the output layer neuron (oi). This final node, 01, applies a linear transfer function to 

the weighted sum and adds a bias term (B) to produce the network forecast. 
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The number of output nodes generally matches the number of values to be 

predicted. For example, this study requires 16 outputs, one for each half-hour forecast in 

the 8-hour forecast period. 

The term "hidden" for the middle layer of neurons is unfortunate, and this 

nomenclature perpetuates the aura of voodoo surrounding the neural network method. 

Calling the layer "hidden," however, simply means it has no interaction with the world 

outside the network. Any number of hidden layers is possible, but a two-layer network (a 

network with one hidden and one output layer) using enough hidden layer nodes can 

approximate any functional relationship between the input and output variables (Park et 

al., 1996). The current research uses a two-layer architecture with 10 neurons in the 

hidden layer. (The input set is not considered a layer.) 

3.3 Connection Weights 

Inputs are linked to hidden layer nodes via connection weights. Weights are 

initially set to random values between -1 and 1. As the first set of inputs is presented to 

the network, each input value z) is multiplied by the corresponding weight vv,* connecting 

ij to hidden layer node hk. All input-weight products ijWjk entering a hidden layer node are 

summed, and a bias term bk is added. The result is the value of the hidden layer node. 

For example, the value of hidden layer node hi in Figure 3.2 is calculated as follows: 

hi = iiwn + i2W2i + 13W31 + b] (1) 

where each 1) is an input value, each w/* is the connection weight from the input to the 

hidden layer, and b] is the bias term. 
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Just as there are weights connecting inputs to hidden layer nodes, there are 

weights connecting hidden layer nodes to network output nodes. The results of applying 

a non-linear transfer function to the hidden layer values become inputs in determining 

output values. Although several options for the transfer function exist, MATLAB's 

default for feed-forward tapped-delay neural nets, the hyperbolic tangent, was used in this 

research. The choice is not critical as long as the function is monotonically increasing 

and is bounded with upper and lower limits (Kuligowski and Barros, 1998). The 

requirement for a monotonic increase is to ensure a one-to-one mapping between hidden 

layer results and network outputs. 

The values of each hidden layer node after applying the transfer function are 

multiplied by each hidden node's corresponding weight connecting the node to the output 

layer. These products are then summed and another bias term is added. In Figure 3.2, 

the value of the output neuron is calculated as follows: 

01 = tanh(h1)y11 + tanh(h2)y2i + tanh(h3)y3] + B (2) 

where each hk is computed as in (1), each wu is the connection weight from a hidden 

layer node to the output node, and B is the output node's bias term. 

To summarize, the network output in Figure 3.2 is computed as follows: 

»,=I 
k=i 

tanh 
f 3 A 

j=i 

ykl   +  B (3) 

3-5 



3.4 Network Training 

The network's weights and biases, the keys to the network's ability to predict 

accurately, are determined during network training. Weights and biases are initially set 

to random values but are changed as the network is shown successive input-target pairs. 

The network compares its forecast to the given target value and computes a measure of 

the forecast error, typically the mean squared error between the forecast and the target. 

With each iteration or "epoch" of this process, the weights and biases are adjusted so as 

to minimize the error function. In a sense, the error is "back-propagated" through the 

network, hence the name "feed-forward back-propagation neural network." (The "feed- 

forward" part refers to the fact that prediction information only flows in one direction, 

from input to output.) 

Just as interactions among biological neurons allow us to learn and generalize, the 

interconnectivity among nodes of an artificial neural network is central to the network's 

ability to learn relationships and discern patterns among exemplar input-output pairs. 

Training results in a network that has "learned" the relationships between the inputs and 

targets. Given similar but new inputs, the network uses the weights and biases to predict 

new outputs. 
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4. Methodology 

4.1 Database Description 

The 45th Space Wing's Weather Information Network Display System (WINDS) 

includes 44 towers that record meteorological data every 1-5 minutes. This study only 

used peak wind speed, direction, and directional deviation data from the Atlas WINDS 

Tower (Space Launch Complex 36) at 90 feet above the ground. The recorded wind 

speeds, directions, and directional deviations are 5-minute averages of measurements 

taken every second. The peak wind speed is the highest of the 300 wind speeds measured 

during the previous 5 minutes. 

The neural networks used in this research predict the maximum peak winds that 

will occur within 16 thirty-minute periods centered at each forecast valid time. Valid 

times occur every half hour after forecast start time until 8 hours after forecast start time. 

For example, if forecast start time is 1200, the first forecast valid time is 1230. The 

neural net's first forecast is for the maximum peak wind that will occur between 1215 

and 1245. The second forecast is for the maximum peak wind between 1245 and 1315. 

The 16th forecast is for the maximum peak wind between 1945 and 2015. 

Maximum peak wind was chosen as the predictand because even one occurrence 

of peak wind speed over Cape Canaveral Air Station / Kennedy Space Center's 

(CCAS/KSC's) User Launch Commit Criteria puts the launch sequence in Condition 

Red. An average of expected peak winds, although possibly more representative of 

future conditions as a whole, might mask a predicted wind speed above the criteria 

threshold. 
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Since launch criteria differ among vehicles and even among configurations for the 

same vehicle, the neural networks were trained to predict actual peak wind speeds, not 

simply the likelihood of wind speed exceeding a certain threshold. 

Four years of wintertime (November-March) data from the WINDS tower at the 

Atlas launch pad were used to train feed-forward back-propagation neural networks. 

Roeder (1999) says a problem exists in the peak wind database collected before 1994. 

Therefore, this work uses data from March 1995 through March 1999. Since different 

atmospheric mechanisms cause hot and cold season winds, and hot season winds at 

CCAS/KSC are typically easier to forecast, only cold season winds were examined. 

Roeder explains that CCAS/KSC's summer winds are usually light and driven by 

subtle patterns. Such light and slowly changing winds are relatively easy to forecast. In 

winter, however, complex interactions among land- and sea-breezes, frictional and 

stability environments, and synoptic systems make predicting launch pad peak winds 

difficult. Figure 4.1 shows the complicated arrangement of land-water boundaries around 

CCAS/KSC. 

The database period of record encompassed 651 days, of which 179 (27.5%) 

contained gaps where one or more data fields were not recorded. (See Appendix B for a 

complete listing of data gaps.) Gaps ranged from 5 minutes (one time step) to 3V2 days 

(over 900 time steps). 

Since the neural network method requires continuous data series for mapping 

inputs to target outcomes, the 25 longest no-gap periods from the original database were 

used in developing, training, and testing the neural net used in this thesis. The longest 

no-gap period covered almost exactly 19 days (5,474 5-minute time steps); the shortest 
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ATLANTIC 

OCEAN 

Figure 4.1. Geography of the CCAS/KSC Area. Note the intricate system of land- 
water boundaries.  Land-, river-, and sea-breezes, although somewhat predictable if 
considered separately, combine to complicate the wind forecasting process. Land- 
water arrangements as complex as those depicted here make wind forecasting 
particularly difficult. Data for this study were taken from Space Launch Complex 
(SLC) 36, located at the lower right in the figure. 
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covered a little over 6 days (1,931 time steps). Although it would have been possible to 

synthesize missing observations using techniques like linear interpolation and cubic 

splines, this approach was rejected in favor of relying solely on "pure" data. Table 4.1 

summarizes the continuous data sets used in this research 

Table 4.1. Summary Statistics for Data Periods with No Gaps 

Subset Start Date End Date Time 
Steps 

Mean Peak 
Speed (kts) 

Std Dev of Peak 
Speeds (kts) 

Max Peak 
Speed (kts) 

2 Mar 95 12 Mar 95 2647 14.76 6.65 42.00 
19 Mar 95 26 Mar 95 2232 13.55 4.62 29.90 
5 Nov 95 13 Nov 95 2297 14.39 5.46 34.00 
28 Nov 95 5 Dec 95 1931 9.86 4.23 22.00 
11 Feb 96 21 Feb 96 2887 12.95 5.59 35.00 
15 Mar 96 31 Mar 96 4896 13.75 5.93 49.00 
14 Jan 98 23 Jan 98 2782 13.09 5.17 32.10 
30 Nov 98 8 Dec 98 2421 9.47 2.98 25.10 
2 Mar 99 21 Mar 99 5474 12.83 5.90 34.00 

2 24 Jan 96 1 Feb 96 2422 12.90 6.68 32.10 
2 14 Dec 96 22 Dec 96 2289 14.51 5.30 29.00 
2 6 Jan 97 21 Jan 97 4390 13.04 5.78 29.00 
2 25 Nov 97 2 Dec 97 2178 12.00 4.82 25.10 
2 4 Mar 98 18 Mar 98 4048 15.26 5.52 37.90 
2 8 Nov 98 17 Nov 98 2513 9.69 4.20 25.10 
2 14 Jan 99 20 Jan 99 1992 10.15 4.19 21.00 
2 21 Mar 99 31 Mar 99 2801 11.27 4.78 28.00 
3 5 Dec 95 13 Dec 95 2134 12.85 7.18 33.00 
3 23 Feb 96 7 Mar 96 4032 12.27 5.59 29.00 
3 24 Nov 96 8 Dec 96 3325 15.15 5.13 29.90 
3 29 Jan 97 6 Feb 97 2353 8.81 3.61 21.00 
3 1 Mar 97 10 Mar 97 2621 12.57 4.49 27.00 
3 2 Dec 97 13 Dec 97 3003 10.70 4.44 32.10 
3 5 Jan 98 11 Jan 98 1953 12.95 5.08 32.10 
3 

Overall 

25 Jan 99 4 Feb 99 2930 11.88 

12.61 

7.29 

5.68 

42.00 

49.00 72551 

Subset 1 27567 12.90 5.66 49.00 
Subset 2 22633 12.62 5.61 37.90 
Subset 3 

- 

22351 12.22 
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Each of the 25 data periods described above was randomly assigned to one of 

three subsets. The first subset (containing nine periods) was used to develop and test a 

preliminary neural network to determine the best architecture to use in the next phase, 

network training. The training phase used the second subset (eight periods) to determine 

weights and biases for a new network. Finally, the trained network was tested on data 

from the third subset (eight periods). 

After a description of the input and target data used in this study, the 

development, training, and testing of the network are described in detail below. 

4.2 Network Inputs 

The following elements were used to compute inputs to the neural networks: peak 

wind speed, time of day (UTC), wind direction, directional deviation, and 30-minute 

maximum peak wind. In winter, local time at CCAS/KSC is UTC minus 5 hours. 

One-hour moving averages of observed peak wind speed were chosen in an effort 

to minimize the turbulent noise in the peak wind input signal (Roeder, 1999). To capture 

the trend in the signal, previous one-hour averages were also included. Previous values 

of an input element are known as "delays," thus the network designator "time-delay 

neural network." The development phase (discussed in the next section) estimated the 

best number of delays to use. 

MATLAB's neural network software requires all inputs to use the same number 

of delays. Thus, current and delayed one-hour moving averages of all elements were 

used as network inputs. 
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Figure 4.2 shows a scatter plot of peak wind speed vs. time of day. The effects of 

the nocturnal temperature inversion are evident around 1200 UTC (0700 L). The 

inversion is well established by this time of day, creating a physical barrier that keeps 

stronger winds above the inversion. The 1200 UTC minimum in the scatter plot confirms 

this analysis. 
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Figure 4.2. Scatter Plot of Peak Wind Speed vs. Time of Day (UTC) for the 25 Data 
Periods Used. Lower peak speeds tend to occur during the morning. Time of day 
was included as a network input in an attempt to capture the diurnal effects on peak 
wind speed. 
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Values of time of day were normalized to [-1, 1] as follows: 

TIME = sin (2n77 2355) (4) 

where T is the four-digit military time from the original database. Normalization 

removed the time input singularity in going from 2355 to 0000 and avoided having high- 

magnitude values of time dominate the network input signal. 

Similar difficulties with input values of wind direction were corrected by 

normalizing the original values of direction 0to [-1, 1] using 

DIR = sin(27t0/36O) (5) 

Wind direction was included as an input because higher peak winds seemed to 

have preferred directions. Figure 4.3 shows a cluster of higher winds from the east- 

southeast (around 100 degrees). 

Figure 4.4 indicates the clear tendency for higher peak wind speeds to occur in 

conjunction with smaller directional deviations. Thus another network input was 

directional deviation, defined as the standard deviation over all the 1-second wind 

directions observed during the previous 30 minutes. 

Phase diagrams for various delays of 30-minute maximum peak wind speeds are 

displayed in Figure 4.5. At the shorter delays (5 minutes and 1 hour), the plots are fairly 

concentrated along the diagonal line. This suggests high correlations at short delays, so 

persistence forecasts were expected to show at least moderate skill for short forecast 

lengths. To take advantage of the high autocorrelation suggested by these plots, moving 

averages of 30-minute maximum peak winds (the forecasted element itself) were 

included as inputs to the neural network. 
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Figure 4.3. Scatter Plot of Peak Wind Speed vs. Direction for the 25 Data Periods 
Used. Most peak winds above 35 knots are from the east-southeast, but other 
clusters of high winds are evident from the west and north. Including wind 
direction as an input gives the network an opportunity to take advantage of 
directional influences on peak wind speed. 

At the 8-hour delay, the points are more widely dispersed around the diagonal, 

however, implying higher errors from using persistence late in the forecast period. Many 

of the plots of 24-hour delays are so far from the diagonal that using peak wind speed 

from the same time the previous day as a predictor would not be expected to contribute to 

forecast skill. 
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Figure 4.4. Scatter Plot of Peak Wind Speed vs. Directional Deviation for the 25 
Data Periods Used. Higher peak speeds tend to occur in conjunction with lower 
directional deviations, so directional deviation was chosen as a network input. 

The final input to the neural network incorporated a measure of the acceleration 

of the change in wind speed. A vector of the differences between successive values of 

peak wind speed was calculated. Successive differences of values in this new vector 

were then calculated to determine network inputs. The acceleration of wind speed 

differences was considered a viable predictor, because peak wind speed series generally 

do not gradually approach their maxima. 
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Figure 4.5. Phase Diagrams for 30-minute Maximum Peak Wind Speed. High 
autocorrelations in the peak wind time series is suggested by the close packing of 
plots around the diagonals in the top two diagrams (5-minute and 1-hour delays). 
At longer delays, however, the plots are more widely dispersed from the diagonals, 
as in the diagrams for 8- and 24-hour delays. 

Delays were chosen to correspond with the 1-hour interval associated with the 

moving averages for all input elements. For example, since the moving averages were 

computed over 1 hour, the current input was the most recent 1-hour average of the 

predictor element. The delay 1 input was the 1-hour average from 1 hour ago based on 

the 13th through the 24th previous data values. Likewise, the delay 2 input was the 1-hour 

A, -th. average from 2 hours ago based on the 25   through the 36   previous data values 
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Matching delay intervals to the moving average interval made training more 

efficient and avoided overlaps in the input data and potential redundancies introduced by 

correlations between different input vectors. Had smaller delay intervals been used, 

however, they may have improved the network's forecast skill by capturing any higher- 

frequency signals that may have been present in the data. 

4.3 Targets 

A neural network adjusts its weights after comparing its outputs to a set of target 

outputs. For this research the target sets were the 16 observed 30-minute maximum peak 

wind speeds that occurred starting 30 minutes after the current input time. In other 

words, the targets show the network the sets of maximum winds that occurred following 

each set of input conditions. The targets can be viewed as the right answers to the 

questions posed by the inputs. Following training, the network should generalize well 

enough to give correct answers (forecasts) to similar but different questions (inputs). 

4.4 Network Development 

The development phase was a miniature version of the whole process, 

incorporating network training and testing. (See the file "development.m" in Appendix C 

for the MATLAB code used in this phase.) The purpose of the development phase was to 

determine the optimal neural network architecture to use in the training phase. 

During development, networks using all possible combinations of 2, 3,..., 14 

neurons and the first, second, and third delays were separately trained on all data periods 

in Subset 1. Each network configuration could have only one value for its number of 

neurons (either 2 or 3 or 4, etc.), but for each given number of neurons, a separate 

4-11 



training run was generated for the current input value and the first delay, for the current 

input value and the first and second delays, and for the current input value and the first, 

second, and third delays. 

Due to prohibitively long processing times (over 5 hours on a 450-MHz processor 

for some configurations), configurations with 11-14 neurons were limited to 500 training 

steps. Configurations with 10 or fewer neurons, however, trained for 1,000 steps. The 

shorter training length for architectures with more neurons was not considered critical, 

since the objective of the development phase was to simply ascertain somewhat 

subjectively which architecture was most likely to result in the lowest mean absolute 

error between network forecasts and observed 30-minute maximum winds. 

After each of these development networks was trained on data from a given 

period, the network was tested on 500 independent inputs from the same data period. 

"Independent" means the network's training inputs, although drawn from the same period 

as the test inputs, could not be used again as test inputs. The 8,000 (500 x 16) forecasts 

generated using independent inputs were compared to the 30-minute maximum winds 

that occurred at the appropriate forecast valid time. 

For each period and configuration, the mean absolute error (MAE) between 

forecasted and observed winds was computed for each of the 16 forecast times (¥z, 1, 

IV2,..., 8 hours after forecast start time). Finally, the average of the 500 MAEs for each 

set of 16 forecast valid times was computed. The minimum average MAEs from all valid 

times determined for each configuration and period are listed in Table 4.2. 
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Table 4.2. Summary of Development Phase Results 

Period #of 
Neurons 

Min. avg. 
MAE (kts) 

# of Neurons in 
Configuration with 

min. avg. MAE 

# of Delays in 
Configuration with 

min. avg. MAE 
2-12 Mar 95 
2-12 Mar 95 
2-12 Mar 95 

11 -14 
2-6 
7-10 

4.76 
7.89 
8.76 

13 
4 
8 

1 
2 
2 

19-26 Mar 95 
19-26 Mar 95 
19-26 Mar 95 

2-6 
7-10 

11 -14 

3.98 
4.78 
9.39 

3 
10 
13 

1 
3 
3 

5-13 Nov 95 
5-13 Nov 95 
5-13 Nov 95 

7-10 
2-6 

11 -14 

3.75 
3.79 
6.90 

10 
2 

11 

3 
3 
2 

24 Nov - 8 Dec 95 
24 Nov - 8 Dec 95 
24 Nov - 8 Dec 95 

7-10 
2-6 

11 -14 

3.50 
4.15 
5.03 

9 
3 
14 

3 
1 
3 

11-21 Feb96 
11-21 Feb96 
11-21 Feb96 

2-6 
7-10 

11 -14 

5.73 
6.10 
7.49 

4 
10 
11 

3 
1 
3 

15-31 Mar 96 
15-31 Mar 96 
15-31 Mar 96 

2-6 
7-10 

11 -14 

5.12 
7.67 
8.90 

5 
7 
12 

2 
2 
1 

14-23 Jan 98 
14-23 Jan 98 
14-23 Jan 98 

7-10 
2-6 

11 -14 

4.51 
4.68 
6.88 

7 
2 

11 

1 
2 
3 

30 Nov - 8 Dec 98 
30 Nov - 8 Dec 98 
30 Nov - 8 Dec 98 

11 -14 
2-6 
7-10 

2.46 
2.68 
3.11 

12 
3 
7 

3 
3 
3 

12-21 Mar 99 
12-21 Mar 99 
12-21 Mar 99 

2-6 
7-10 

11 -14 

2.41 
2.44 
8.35 

3 
10 
11 

2 
3 
3 

usir 

Bas 

was 

Of the 27 network architectures tested, 14 produced minimum average MAEs 

ig all three delays. The lowest average MAEs occurred with 3, 10, and 11 neurons, 

ed on these results, a network architecture consisting of three delays and 10 neurons 

chosen for the training phase, which is described next. 
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4.5 Network Training 

Using the optimal architecture determined in the development phase (10 neurons 

and 3 delays, each delay containing 12 time steps), a neural network was trained on data 

from all eight periods in Subset 2 (see the MATLAB files "nntrain3.m" and nnnext.m" in 

Appendix C). 

Approximately the first 85% of input elements from each period were presented 

to the network for training. Following training on the first data period, the 

weight/biastable generated was retained and subsequently used as the starting point for 

the next period's training. This process continued until all periods in Subset 2 had been 

used, the network's weights and biases having received continuous adjustments from one 

period to the next. 

The method of continuous adjustment was deemed reasonable in order to provide 

the network with a cross section of wintertime conditions and thereby produce a robust 

neural network with wide operational applicability. As was mentioned earlier, however, 

the available data periods from the 25 longest continuous periods in the full database 

were assigned randomly to their three subsets. This was done to maintain a balance 

between thoroughly training on a variety of wind regimes and unfairly biasing the 

network for success by deliberately choosing training and testing periods containing only 

certain types of weather conditions. 

Each set of inputs was presented to the network for 20 epochs. During training, 

the mean squared error (MSE) between the network's internal forecasts and the target 

values generally started very high, but dropped quickly and settled near the MSE 

minimum after about 10 epochs. Mean squared error minima were usually in single 
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digits, representing close fitting of network outputs to the training data. Figure 4.6 shows 

a typical MSE pattern during network training. 

10 

10 

10 
CO 

10" 

10 
0 8    10    12 

Epochs 
14 16 18 20 

Figure 4.6. Typical Progression of Mean Squared Error (MSE) during Network 
Training. MSE generally started high (around 100 in this example), but dropped 
quickly to its minimum (about 2 here) midway through the training session. Note 
the logarithmic scale on the ordinate axis. 

Typically, training should occur over as many as several hundred epochs, but long 

processing times limited training to only 20 epochs. The decision to use 20 epochs was 

made after observing that MSE changed less than 0.01 after each epoch beyond 10 or so 

epochs, only a modest gain in performance. 

The result of the training phase was a set of highly adjusted weights and biases, 

updated after mapping approximately 20,000 input vectors to target outputs over a wide 

but representative range of conditions. 
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4.6 Network Testing 

During testing, 250 8-hour forecasts were generated for each of the eight periods 

in Subset 3 using the network trained in the development phase (see the MATLAB file 

"nntest.m" in Appendix C). To objectively measure forecast performance, each of the 

2,000 forecast start times was chosen randomly. 

Three competing forecast options—persistence, climatology, and random values 

from a climatologically based gamma distribution—were compared to the neural network 

forecasts. Persistence forecasting assumed the 30-minute maximum peak wind speed at 

all forecast valid times would be the same as it was at forecast start time. The 30-minute 

maximum, however, was defined using the 15-minute peak winds before and after each 

forecast valid time. Operationally, the 15-minute winds after the forecast start time 

would not be known, so persistence forecast values were calculated from the 30-minute 

period leading up to each forecast start time. 

Climatology forecasts assumed the 30-minute maximum peak wind speed at a 

given forecast valid time would be the mean value for that time of day from the entire 

database. In order to obtain more representative values, climatological means were 

computed from the entire period of record, without regard to data gaps. Figure 4.7 shows 

the 24-hour plot of climatological 30-minute maxima. Compare this figure to Figure 4.2, 

where the afternoon peak is also evident. 

Values for random forecasts were generated from a gamma distribution with a = 

4.9308 and ß = 2.5568. The gamma distribution was chosen because its shape resembled 

that of the histogram of 30-minute maximum peak winds from all data subsets (see 

Figure 4.8). 
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Figure 4.7. Climatological Values of 30-minute Maximum Peak Winds for All 
Wintertime Observations. Over the 4-year period of record, wintertime maximum 
winds vary only slightly. 

The parameters a and ß were computed using the mean fj. and variance o2 of the 

maximum wind speeds for the 25 data periods used in this study. For a variable with a 

gamma distribution (which the maximum winds were assumed to have), the following 

relations hold: \i = aß , and o2 = aß2. 

The following measures of forecast performance for the neural network and each 

of the forecast alternatives were computed: mean absolute error, mean squared error, and 

maximum error. These errors refer to the differences between the forecasted and 

observed 30-minute maximum wind. 
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Figure 4.8. Histogram of 30-minute Maximum Peak Wind Speeds for the 25 Data 
Periods Used. The shape of this distribution was justification for choosing the 
gamma distribution to generate random forecasts in the testing phase. Wind speeds 
are in knots. 

4.7 Variation on the Original Method 

A variation on the training and testing method just described was also developed 

(see file "nntest3.m" in Appendix C). In the original method, the randomly generated 

forecast start times may have placed the forecast period in a weather regime completely 

unrelated to the regime in effect when the training input data were collected. To see how 

well the neural network method performed when making predictions near in time to the 

training data, a separate but identically configured network (10 neurons, 3 delays) for 

each period in Subsets 2 and 3 was trained and tested. 
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Each period's network was trained on 1,000 data points (approximately 3'/2 days) 

near the beginning of the data period. Training required about 45 minutes per period. 

After training, each network was tested on 100 sequential forecast start points beginning 

50 time steps after the last training point. 

4.8 Reliability Intervals 

A confidence measure for the neural network forecasts from the previous section 

was also developed (see file "errsubplots.m" in Appendix C). The 100 MAEs at each 

valid time for each forecast generated in the variation described above were averaged and 

their standard deviations were computed. The sum of the average MAE and twice the 

normalized standard deviation of the MAE formed separate reliability intervals for each 

of the 16 forecast valid times. 

A reliability interval resembles a confidence interval, but it is not a true 

confidence interval in the strict statistical sense, because the sample MAEs were not 

distributed normally. Moreover, even if the MAEs had been distributed normally, the 

confidence/reliability intimated with the intervals computed in this study is that of the 

forecast accuracy, not of the forecast itself. Strictly speaking, a confidence interval is an 

interval of plausible values for the parameter being estimated. This definition implies 

that the parameter value is unknown, but in this research, the forecast value is known; the 

forecast itself is not being estimated. 

What remains unknown, however, is how accurate the given forecast is, i.e., how 

much does the forecast differ from the observed wind? The reliability intervals computed 

in this portion of the research represent an attempt to assign high confidence to the neural 
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network forecasts by determining upper and lower bounds within which the observed 

maximum wind should fall 95% of the time. 

The results of the original neural network training and testing, the variation on the 

original method, and the reliability interval computations are presented in Chapter 5. 
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5. Results and Discussion 

5.1 Original Method 

Mean absolute error (MAE) was the primary measure of forecast skill, since MAE 

values were in units of knots. Mean squared error (MSE) and maximum error (Max 

Error) are also included in the following performance data tables, however. Appendix D 

contains tables for the periods not presented here. 

The neural networks developed using the original method performed somewhat 

worse than persistence overall. Exceptions to this poor performance are found in Tables 

5.1 through 5.4, which summarize the performances of the neural networks and each 

forecasting option. Neural network MAEs were comparable to or less than persistence 

MAEs for several forecast valid times covered by these tables. The network also 

frequently had the lowest maximum error of all forecast options during these periods. 

During the other forecast periods, the network did not fare as well. In particular, 

during the two periods in 1996 (Tables 5.5 and 5.6), most network forecasts were worse 

than random forecasts. 

In general, the neural network forecasts worsened later in the forecast period, as 

did persistence and climatology forecasts. The random forecasts, as one would expect, 

exhibited no general improvement or worsening with time, however. 

The dismal performance of the neural network developed using the original 

method prompted the change in approach that led to the variation on the original method, 

the results of which are described next. 
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Table 5.1. Results from 29 January - 6 February 1997 (Original Method) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Ciimo 
MAE 
(kts) 

Random 
MAE (kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 1.39 0.85 4.12 4.46 3.12 1.28 18.88 39.52 
1.0 1.51 1.01 4.16 4.44 3.55 1.79 18.92 30.64 
1.5 1.53 1.15 4.01 5.06 3.29 1.75 17.30 48.39 
2.0 1.69 1.11 4.07 5.41 3.72 1.84 17.68 53.48 
2.5 1.81 1.12 4.12 4.44 4.32 2.13 18.06 35.66 
3.0 1.87 1.22 4.00 5.34 4.47 2.72 17.04 52.76 
3.5 2.05 1.36 3.77 5.05 5.18 3.41 15.08 39.69 
4.0 2.25 1.48 3.66 5.07 5.79 3.65 13.93 47.27 
4.5 2.42 1.64 3.60 5.06 6.66 4.24 14.01 48.84 
5.0 2.76 1.93 3.88 5.21 8.83 5.73 17.39 49.83 
5.5 2.85 2.39 4.34 5.63 11.40 8.87 23.64 49.35 
6.0 2.81 2.85 4.58 5.45 13.88 11.98 27.71 53.97 
6.5 3.26 3.09 5.01 6.75 17.68 13.34 32.19 72.06 
7.0 3.56 3.26 5.12 6.15 20.38 14.21 33.26 63.53 
7.5 4.24 3.51 5.36 6.81 26.28 15.67 36.05 76.63 
8.0 4.75 3.76 5.55 6.64 31.05 17.68 38.19 76.87 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence 
Max 
Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 

Error (kts) 

0.5 3.60 2.20 6.58 30.02 
1.0 3.68 3.20 6.46 14.88 
1.5 3.58 3.20 6.14 29.74 
2.0 3.82 4.10 6.04 26.88 
2.5 3.86 4.10 5.96 20.48 
3.0 3.61 3.20 5.67 27.57 
3.5 3.57 4.10 5.29 18.47 
4.0 4.20 4.10 4.96 21.84 
4.5 4.64 4.80 8.50 24.53 
5.0 6.70 5.00 8.45 23.59 
5.5 7.16 7.00 10.65 16.92 
6.0 8.91 7.00 10.42 26.13 
6.5 9.15 7.00 10.61 28.32 
7.0 9.29 7.00 10.54 25.02 
7.5 9.84 8.00 10.53 22.60 
8.0 10.14 8.00 10.48 29.78 

5.2 Variation on the Method 

In the variation on the original method, each data period in Subsets 2 and 3 was 

assigned its own network for training and prediction. This alternate approach produced 

significantly better results than the original method late in the forecast period. 

5-2 



Table 5.2. Results from 1-10 March 1997 (Orij »inal Method' 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE (kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 2.47 1.31 2.28 4.97 10.41 3.08 7.01 43.04 
1.0 3.11 1.86 2.80 5.83 16.76 6.03 11.89 55.49 
1.5 3.94 2.55 3.28 5.62 24.86 9.60 17.16 50.17 
2.0 4.83 3.26 3.77 5.48 35.16 14.52 23.63 53.24 
2.5 5.69 3.96 4.25 6.08 45.62 19.18 29.42 53.13 
3.0 6.63 4.57 4.78 6.56 58.29 24.78 35.76 65.11 
3.5 7.48 5.04 5.08 7.27 70.05 30.10 38.80 76.42 
4.0 8.07 5.35 5.34 6.32 77.82 34.15 41.18 61.60 
4.5 8.57 5.76 5.54 7.21 85.24 39.47 42.31 71.57 
5.0 8.92 6.12 5.58 6.87 90.68 45.58 41.16 69.33 
5.5 9.34 6.33 5.28 7.36 96.24 50.56 36.90 74.47 
6.0 9.61 6.69 5.18 7.72 100.06 56.58 34.58 81.89 
6.5 9.69 7.01 5.18 7.49 100.22 61.19 32.95 80.06 
7.0 9.78 7.30 5.21 7.89 100.73 65.94 31.74 80.99 
7.5 9.74 7.47 5.37 8.15 99.58 69.46 32.64 86.35 
8.0 9.70 

Neural 

7.62 

Persist- 

5.15 

Climo 
Max 
Error 
(kts) 

8.35 98.38 70.98 29.34 88.24 

Forecast Net ence Random 
Valid Max Max Max 
Time Error 

(kts) 
Error 
(kts) 

Error (kts) 

0.5 1.13 3.20 2.90 20.47 
1.0 0.85 5.10 2.77 23.56 
1.5 0.62 5.10 2.73 21.99 
2.0 -0.57 4.10 1.79 24.76 
2.5 -0.76 4.10 1.79 10.11 
3.0 -1.00 4.10 1.73 20.10 
3.5 -1.16 4.10 2.00 12.01 
4.0 -1.17 4.10 2.13 13.41 
4.5 -2.36 2.90 1.15 14.13 
5.0 -2.30 2.90 1.57 17.83 
5.5 -5.09 0.00 -0.72 15.43 
6.0 -4.91 0.00 -0.26 16.91 
6.5 -4.67 0.00 0.08 13.96 
7.0 -4.47 -1.00 0.33 10.32 
7.5 -4.30 0.00 0.34 6.11 
8.0 -4.86 -1.00 -1.20 10.69 

A comparison of the tabulated results from each of the two methods shows the 

strength in the variation. Tables 5.7 through 5.10 summarize testing of the variation 

method for the periods summarized in Tables 5.1 through 5.4. In three of these periods, 

nearly all variation method average MAEs for forecast valid times beyond 6.5 hours are 
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Table 5.3. Results from 2-13 December 1997 (Original Method) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE (kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 1.98 2.03 2.19 5.67 7.09 7.49 8.51 53.26 
1.0 2.06 2.04 2.30 5.52 7.75 10.65 8.98 45.97 
1.5 1.92 2.42 2.32 4.98 6.40 13.06 8.92 36.20 
2.0 2.07 2.81 2.63 5.29 6.85 16.13 10.86 49.83 
2.5 2.30 3.03 2.81 4.75 8.13 20.03 11.87 38.01 
3.0 2.54 3.09 3.12 4.53 11.05 21.21 13.64 34.35 
3.5 3.20 2.73 3.59 5.62 15.00 13.89 17.17 50.74 
4.0 3.62 2.77 4.04 5.40 17.44 11.88 21.30 53.43 
4.5 3.70 2.80 4.61 5.13 18.56 13.23 27.45 42.39 
5.0 3.67 2.94 4.90 5.74 18.14 12.62 30.48 56.58 
5.5 3.29 3.04 5.32 5.47 15.22 13.48 35.44 47.29 
6.0 3.18 3.20 5.48 6.17 13.27 14.95 37.23 61.37 
6.5 3.40 3.51 5.91 5.02 14.52 15.77 42.66 44.68 
7.0 3.52 3.02 6.07 6.00 15.04 13.34 44.77 56.01 
7.5 3.55 2.68 5.86 5.47 15.27 10.35 40.93 60.10 
8.0 4.00 3.25 5.91 5.32 19.87 14.11 42.04 47.39 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence 
Max 
Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 

Error (kts) 

0.5 8.28 7.00 8.66 24.43 
1.0 8.51 8.20 8.79 19.25 
1.5 8.68 6.00 8.75 12.68 
2.0 6.43 8.20 8.92 27.12 
2.5 7.76 7.00 9.00 18.97 
3.0 8.71 7.00 9.18 19.00 
3.5 8.67 7.00 9.59 21.88 
4.0 8.85 8.20 10.06 25.02 
4.5 8.87 8.20 10.66 14.90 
5.0 6.81 7.00 10.87 22.08 
5.5 6.16 8.20 11.36 21.02 
6.0 6.19 8.20 11.43 22.38 
6.5 6.50 7.00 11.58 23.10 
7.0 6.63 8.20 11.80 31.00 
7.5 6.64 6.10 9.65 36.56 
8.0 9.77 6.10 12.77 19.98 

lower than the original method MAEs. All 8-hour average MAEs for the variation are 

lower than the original method MAEs. 

For 11 of the 16 variation method test periods, neural net forecasts late in the 

forecast period are more accurate than neural net forecasts early in the period. This 
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Table 5.4. Results from 25 January - 4 February 1999 (Original Method) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE (kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 4.37 2.02 3.02 4.79 26.56 7.58 11.12 34.55 
1.0 4.55 2.45 3.42 5.54 27.70 9.50 13.84 44.88 
1.5 4.65 3.02 3.83 5.51 28.20 15.51 16.51 42.97 
2.0 4.42 3.58 3.96 6.41 26.61 21.75 17.36 64.03 
2.5 4.33 4.46 4.30 6.08 25.88 28.85 20.63 49.17 
3.0 4.41 5.34 4.72 6.41 27.06 38.63 27.77 60.79 
3.5 4.14 5.91 4.88 5.23 24.51 49.25 29.86 44.70 
4.0 3.67 6.29 4.87 5.60 20.30 58.81 29.66 49.20 
4.5 3.25 6.66 4.88 6.52 17.64 61.05 29.70 65.74 
5.0 2.81 6.89 4.60 6.01 13.45 64.65 27.38 62.93 
5.5 2.62 7.08 4.37 6.57 11.79 67.49 25.82 69.50 
6.0 2.62 7.09 4.15 5.60 11.46 67.75 24.68 57.38 
6.5 2.77 7.01 4.09 5.91 12.05 65.63 24.49 66.09 
7.0 2.72 6.58 3.80 6.23 11.63 61.51 22.23 69.56 
7.5 2.89 6.68 3.75 5.72 12.87 60.41 22.26 62.37 
8.0 3.16 6.73 3.71 6.05 15.17 58.40 22.22 61.77 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence 
Max 
Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 

Error (kts) 

0.5 3.03 8.00 5.96 16.45 
1.0 2.75 8.00 5.68 20.71 
1.5 3.52 9.90 6.49 16.82 
2.0 3.33 9.90 6.55 26.97 
2.5 5.04 10.90 8.22 13.73 
3.0 8.90 10.90 12.51 18.21 
3.5 8.74 14.00 12.51 26.55 
4.0 8.73 16.90 12.43 17.89 
4.5 8.74 15.00 12.43 28.48 
5.0 8.80 16.90 12.31 23.90 
5.5 8.91 16.90 12.23 22.38 
6.0 9.09 18.10 12.24 31.89 
6.5 9.33 18.10 12.24 31.21 
7.0 9.53 16.90 12.04 23.31 
7.5 9.70 16.90 12.13 27.78 
8.0 9.87 16.90 12.18 23.92 

network skill late in the forecast period also manifests itself in eight of the periods 

examined, where the variation's neural net MAE is less than that of a persistence forecast 

for the last two to four forecast valid times (for instance, see Tables 5.7 and 5.9 through 

5.15). Appendix D contains performance data tables for the periods not presented here. 
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Table 5.5. Results from 23 February - - 7 March 1996 (Original Method) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE (kts2) 

0.5 8.11 0.81 10.86 10.56 66.21 1.14 118.44 133.65 
1.0 9.25 0.89 11.02 10.13 85.97 1.25 121.84 125.27 
1.5 10.33 0.81 10.85 10.57 107.27 0.99 118.26 132.47 
2.0 9.26 0.86 10.77 11.25 86.34 1.30 116.72 144.75 
2.5 9.10 0.71 10.56 10.20 83.57 1.26 112.28 127.35 
3.0 9.43 0.67 10.52 9.46 89.58 1.19 111.29 111.59 
3.5 10.21 0.80 10.29 10.18 104.93 1.16 106.65 122.03 
4.0 10.78 1.22 9.78 10.32 117.04 1.97 96.56 126.60 
4.5 11.79 1.01 9.13 9.78 139.87 1.75 84.19 119.86 
5.0 12.79 1.01 8.47 9.91 164.36 1.86 72.64 123.33 
5.5 14.08 1.00 8.15 9.82 199.04 1.99 67.26 118.85 
6.0 15.84 1.15 7.64 10.04 251.68 2.12 59.26 121.99 
6.5 16.53 1.00 7.63 9.76 274.29 1.67 59.15 119.48 
7.0 16.99 1.03 7.48 9.87 289.56 1.63 56.87 119.54 
7.5 16.76 1.15 7.31 10.05 282.26 2.10 54.67 125.99 
8.0 15.08 1.27 7.45 9.37 229.50 2.62 57.54 114.81 

Forecast 
Valid 
Time 

Neural 
Net 
Max 
Error 
(kts) 

Persist- 
ence 
Max 
Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 -6.57 1.90 -9.33 7.74 
1.0 -7.67 1.90 -9.44 9.27 
1.5 -8.79 1.90 -9.31 6.36 
2.0 -6.84 2.90 -8.35 3.05 
2.5 -6.72 2.90 -8.18 11.60 
3.0 -7.01 3.90 -8.10 4.05 
3.5 -7.84 2.00 -7.92 13.17 
4.0 -8.51 2.90 -7.51 6.25 
4.5 -9.70 2.90 -7.04 5.56 
5.0 -10.75 3.90 -6.44 3.80 
5.5 -12.16 2.90 -6.23 16.88 
6.0 -13.94 3.90 -5.74 10.38 
6.5 -14.58 2.90 -5.67 7.39 
7.0 -15.03 2.90 -5.52 12.28 
7.5 -14.76 3.90 -5.30 6.70 
8.0 -12.89 3.90 -5.25 5.79 

Figure 5.1 shows Subset 3 summary MAE results for both the original and 

variation methods as well as persistence MAEs for both methods. The plots were 

calculated by averaging each method's MAEs for each forecast valid time over all 

periods in data Subset 3. The original method's MAEs and both persistence forecast 

5-6 



Table 5.6. Results from 24 November - 8 December 1996 (Original Method) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 10.20 1.44 7.86 8.69 114.80 3.14 72.80 99.41 
1.0 10.78 2.11 8.22 9.25 127.54 5.92 78.83 114.52 
1.5 11.25 2.69 8.41 9.50 137.23 9.31 81.27 116.35 
2.0 11.73 3.12 8.80 9.15 146.87 13.48 86.43 107.08 
2.5 12.24 3.62 9.22 9.17 157.79 16.63 92.34 103.51 
3.0 12.61 4.06 9.41 9.47 166.24 20.72 94.86 117.85 
3.5 12.98 4.28 9.57 9.97 174.32 24.76 96.85 123.47 
4.0 13.30 4.22 10.06 9.36 180.82 26.26 105.16 117.95 
4.5 13.49 4.19 10.27 9.16 185.65 26.31 109.08 110.82 
5.0 13.57 4.27 10.26 11.47 187.60 26.44 108.71 163.30 
5.5 13.48 4.31 10.18 10.15 185.05 25.40 107.12 124.20 
6.0 13.25 4.10 10.10 10.55 179.24 23.91 105.56 134.51 
6.5 12.90 4.04 9.97 10.10 170.33 23.10 103.17 129.05 
7.0 12.53 3.79 9.91 9.90 160.83 19.55 101.43 122.24 
7.5 12.02 3.65 9.60 9.54 146.94 16.05 94.43 116.22 
8.0 11.61 3.46 9.62 9.65 136.65 14.49 94.39 115.31 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence 
Max 
Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 -4.97 3.10 -2.49 14.78 
1.0 -5.25 4.10 -2.59 11.14 
1.5 -5.48 5.00 -2.57 14.01 
2.0 -5.67 6.00 -2.62 8.23 
2.5 -6.72 5.10 -4.62 4.07 
3.0 -6.11 6.00 -4.67 9.18 
3.5 -7.84 7.90 -4.66 20.48 
4.0 -9.37 7.00 -6.06 12.33 
4.5 -9.36 6.00 -6.10 12.86 
5.0 -9.30 5.10 -5.97 11.20 
5.5 -9.19 4.80 -5.92 7.30 
6.0 -9.01 6.90 -5.95 4.99 
6.5 -8.77 6.00 -5.96 8.76 
7.0 -8.57 6.00 -6.08 11.27 
7.5 -8.40 5.10 -6.11 8.98 
8.0 -8.23 6.00 -6.33 11.93 

MAEs steadily rise from the beginning of the forecast period. The variation method's 

MAEs, however, after rising for the first three forecast valid times, show an almost 

continuous decline until the end of the forecast period. At 6.5 hours and beyond, 
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Table 5.7. Results from 29 January - 6 February 1997 (Variation) 

Forecast Neural Persist- Climo Random Neural Persist- Climo Random 
Valid Net MAE ence MAE MAE MAE Net MSE ence MSE MSE MSE 
Time (kts) (kts) (kts) (kts) (kts2) (kts2) (kts2) (kts2) 

0.5 5.89 1.89 6.68 7.09 44.31 5.65 47.80 81.01 
1.0 6.97 2.19 6.57 7.27 61.25 7.04 46.18 87.61 
1.5 6.00 2.21 6.38 8.49 45.85 6.36 44.66 97.51 
2.0 2.95 2.30 6.10 7.88 12.89 6.87 42.23 100.90 
2.5 1.54 2.62 6.13 7.08 3.97 9.24 42.63 79.21 
3.0 1.61 2.94 6.08 6.83 3.98 12.60 42.07 77.78 
3.5 3.00 2.84 6.23 7.28 12.56 13.13 43.93 78.84 
4.0 4.58 2.54 6.11 7.12 27.31 10.35 42.14 84.90 
4.5 5.11 2.37 6.08 6.38 32.58 9.65 40.90 71.82 
5.0 5.82 2.42 6.47 6.78 38.82 11.78 44.99 72.97 
5.5 6.31 2.50 7.22 6.63 43.19 11.62 55.17 72.43 
6.0 4.85 2.18 7.59 6.41 26.80 8.93 60.63 64.62 
6.5 1.87 2.09 7.77 6.82 5.78 6.93 62.59 74.72 
7.0 3.06 2.12 7.81 5.88 11.01 6.65 62.94 62.39 
7.5 3.56 2.11 7.80 6.63 14.82 6.75 62.74 68.41 
8.0 1.90 1.98 8.16 7.66 4.75 5.69 68.44 90.12 

Forecast Neural Persist- Climo Random 
Valid Net Max ence Max Max Error Max Error 
Time Error (kts) Error (kts) (kts) (kts) 
0.5 12.22 5.10 9.90 27.71 
1.0 13.82 5.10 9.77 32.11 
1.5 12.50 4.10 9.73 21.37 
2.0 7.65 4.10 9.72 28.21 
2.5 3.85 5.10 9.79 26.63 
3.0 3.76 6.10 9.73 26.88 
3.5 7.21 6.10 10.00 27.60 
4.0 10.61 6.10 10.02 32.93 
4.5 11.14 5.10 10.19 24.09 
5.0 11.26 5.10 10.75 25.09 
5.5 10.56 6.10 11.38 31.63 
6.0 9.42 6.10 11.78 21.06 
6.5 7.85 4.10 11.18 25.33 
7.0 5.46 2.00 9.17 23.38 
7.5 5.05 2.00 9.24 21.47 
8.0 5.28 2.00 9.60 34.85 

the variation neural net MAEs nearly equal the persistence MAEs, and at some points are 

even lower than the persistence MAEs computed during testing of the original method. 
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Table 5.8. Results from 1-10 March 1997 ( Variation) 

Forecast Neural Persist- Climo Random Neural Persist- Climo Random 
Valid Net MAE ence MAE MAE MAE Net MSE ence MSE MSE MSE 
Time (kts) (kts) (kts) (kts) (kts2) (kts2) (kts2) (kts2) 

0.5 2.77 1.10 1.77 4.54 10.59 2.07 4.16 33.42 
1.0 3.00 1.42 1.65 4.87 11.58 2.93 3.77 41.22 
1.5 3.74 1.56 1.42 4.51 15.01 3.75 2.96 30.24 
2.0 4.33 1.48 1.25 4.73 21.17 3.60 2.38 32.23 
2.5 4.31 1.24 1.12 5.09 23.59 2.63 2.02 37.63 
3.0 4.66 0.98 0.96 4.84 30.08 1.86 1.64 34.94 
3.5 5.18 0.94 0.93 4.97 36.85 1.41 1.51 38.48 
4.0 5.89 1.11 0.93 4.83 43.99 1.82 1.23 37.03 
4.5 6.66 1.26 0.95 4.87 50.68 2.41 1.19 32.57 
5.0 6.40 1.53 1.15 4.82 45.68 3.26 1.82 35.31 
5.5 5.18 1.61 1.46 5.22 29.56 3.58 2.70 41.88 
6.0 3.60 1.83 1.88 4.89 14.65 4.91 4.40 36.78 
6.5 3.10 2.25 2.03 4.88 11.21 7.57 5.78 35.44 
7.0 3.45 2.56 2.36 4.24 13.73 10.66 7.60 27.52 
7.5 3.62 2.90 2.57 4.85 15.34 14.20 9.11 38.76 
8.0 3.77 3.32 2.79 5.29 16.05 16.87 10.86 44.18 

Forecast Neural Persist- Climo Random 
Valid Net Max ence Max Max Error Max Error 
Time Error (kts) Error (kts) (kts) (kts) 

0.5 0.84 2.90 3.65 16.78 
1.0 0.16 3.90 3.65 22.31 
1.5 -1.46 3.90 3.50 13.88 
2.0 -1.59 3.90 3.40 13.26 
2.5 -0.84 2.90 3.22 20.19 
3.0 -0.89 2.00 2.96 19.03 
3.5 0.47 2.00 2.94 21.01 
4.0 1.41 1.00 2.60 19.00 
4.5 3.10 1.00 2.46 8.35 
5.0 1.65 2.00 0.96 17.33 
5.5 -0.36 2.90 0.61 18.80 
6.0 0.45 5.10 5.47 19.68 
6.5 1.73 7.00 5.55 20.16 
7.0 3.03 7.00 5.31 13.86 
7.5 2.94 8.00 5.34 23.45 
8.0 3.90 8.00 5.51 20.84 

Figures 5.2 through 5.17 show representative plots of the results of testing the 

networks trained with the variation on the original method. The plots show 100 forecasts 

for the indicated forecast valid times and provide a sense of how well the networks 

5-9 



Table 5.9. Results from 2-13 December 1997 (Variation) 

Forecast Neural     Persist-      Climo     Random Neural     Persist- 
Net          ence 

MSE         MSE 
(kts2)        (kts2) 

Climo Random 
Valid Net MAE ence MAE     MAE         MAE MSE MSE 
Time (kts)         (kts)         (kts)         (kts) (kts2) (kts2) 

0.5 3.67          1.99          3.61           4.35 18.99         8.63 19.36 30.29 
1.0 3.99          2.35          3.92          5.70 20.19        10.76 21.81 47.01 
1.5 4.69          2.49          4.15          6.11 28.80        12.08 24.08 54.21 
2.0 5.40          2.64          4.59          5.40 38.06        12.99 27.98 40.49 
2.5 5.22          2.88          4.58          5.79 36.12        12.15 26.90 48.17 
3.0 4.74          2.72          4.92          5.84 29.37        10.34 29.01 47.49 
3.5 3.95          2.93          4.96          6.04 20.75        12.09 28.63 50.67 
4.0 3.46          3.14          4.63          6.89 15.07        13.50 24.83 61.28 
4.5 3.12          2.96          3.91           5.52 12.17        11.57 18.08 44.23 
5.0 2.79          3.01           3.18          6.34 9.82         11.92 12.81 55.15 
5.5 2.86          3.38          3.03          6.61 10.68        16.67 11.55 62.73 
6.0 2.20          3.93          3.10          6.66 8.48         21.50 12.09 61.82 
6.5 2.16          3.99          3.07          6.55 7.28         20.48 11.92 60.03 
7.0 3.21           4.19          2.88          5.53 12.29        21.40 10.76 43.66 
7.5 3.96          4.05          2.89          6.00 18.02        19.98 10.95 51.94 
8.0 3.90          3.85          2.74          5.37 18.96        18.72 10.10 49.01 

Forecast Neural     Persist-      Climo     Random 
Valid Net Max  ence Max Max Error Max Error 
Time Error (kts) Error (kts)     (kts)         (kts) 

0.5 8.05          7.00          0.53         18.51 
1.0 8.20          6.00          0.52         15.32 
1.5 9.43          6.00          0.59         19.37 
2.0 11.46         6.00          0.47         12.92 
2.5 10.25         6.00          -0.20         11.76 
3.0 8.32          5.10          -0.18         21.65 
3.5 7.09          4.10          -1.91         14.28 
4.0 5.73          4.10          -1.35         10.91 
4.5 4.18          4.10          -0.88         13.52 
5.0 3.46          7.00          1.58         13.93 
5.5 5.11          10.20         5.13         24.41 
6.0 5.42         10.20         5.36         14.88 
6.5 5.86          8.00          5.43         27.15 
7.0 6.02          6.10          5.80          8.79 
7.5 6.18          6.10          5.71          23.18 
8.0 4.35          6.10          5.85         22.77 

forecasted with various lead times. The plots presented here are only a portion of those 

generated for this research. Plots for all 16 forecast valid times for all data periods in 

Subset 2 are available from the author. 
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Table 5.10. Results from 25 January - 4 February 1999 (Variation) 

Forecast Neural Persist- Climo Random Neural Persist- Climo Random 
Valid Net MAE ence MAE MAE MAE Net MSE ence MSE MSE MSE 
Time (kts) (kts) (kts) (kts) (kts2) (kts2) (kts2) (kts2) 
0.5 3.63 2.28 2.68 5.33 16.77 9.58 13.48 49.74 
1.0 4.00 3.12 2.14 5.34 21.23 15.16 6.73 51.19 
1.5 5.09 3.39 2.06 4.48 35.25 18.29 5.60 35.74 
2.0 5.58 2.99 2.01 4.51 45.97 17.16 5.30 38.62 
2.5 5.61 2.71 2.15 5.27 43.54 17.03 6.25 45.66 
3.0 4.91 2.74 2.25 5.11 33.56 16.33 6.81 47.49 
3.5 5.57 3.14 2.40 5.45 41.14 18.50 7.84 53.46 
4.0 6.89 3.45 2.90 4.47 53.76 23.43 10.87 35.76 
4.5 6.73 3.52 3.44 5.30 50.83 27.49 14.92 46.13 
5.0 3.87 3.27 4.16 4.57 21.42 26.15 20.34 31.90 
5.5 5.40 3.14 4.58 4.81 32.85 22.09 23.63 37.97 
6.0 9.82 3.08 4.94 5.50 121.30 17.78 26.45 56.61 
6.5 9.61 3.34 4.96 5.01 112.17 17.97 26.65 43.81 
7.0 5.26 3.33 5.27 4.65 33.03 20.75 29.88 45.09 
7.5 2.29 3.06 5.13 5.97 6.82 22.11 28.34 59.95 
8.0 2.51 2.91 5.12 5.08 7.77 21.29 28.46 44.68 

Forecast Neural Persist- Climo Random 
Valid Net Max ence Max Max Error Max Error 
Time Error (kts) Error (kts) (kts) (kts) 
0.5 6.47 5.00 11.63 20.30 
1.0 2.67 4.10 8.72 24.91 
1.5 2.70 6.00 5.69 19.06 
2.0 1.04 5.10 5.57 27.31 
2.5 2.12 4.10 5.90 16.88 
3.0 3.56 3.20 5.92 23.98 
3.5 5.24 5.00 6.09 23.44 
4.0 6.89 5.10 5.65 18.57 
4.5 8.55 5.10 6.12 19.63 
5.0 8.65 5.00 6.68 13.78 
5.5 8.42 4.10 7.03 18.19 
6.0 16.97 6.00 7.26 21.04 
6.5 16.53 6.00 7.33 17.61 
7.0 9.08 6.00 7.70 25.86 
7.5 4.55 5.10 7.61 23.22 
8.0 4.81 3.20 7.75 23.76 

The forecast plots in Figures 5.2 through 5.17 support the conclusion drawn 

earlier: The variation method shows skill late in the forecast period. Through 5 hours 

(Figures 5.2 through 5.11), the neural net plots are unimpressive. In many of these early 
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Table 5.11. Results from 5-13 December 1995 Variation ) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 8.08 2.15 3.43 5.63 78.70 6.65 19.36 51.70 
1.0 6.68 2.60 3.34 5.15 55.06 10.90 18.26 41.28 
1.5 6.79 2.78 3.15 5.64 53.98 12.97 15.87 56.26 
2.0 7.69 2.93 3.09 6.13 67.80 14.76 15.20 63.71 
2.5 8.37 3.71 3.19 5.11 81.40 18.95 16.63 45.90 
3.0 7.64 4.30 3.40 5.09 70.72 23.69 18.41 37.33 
3.5 6.43 4.74 3.49 5.63 52.84 27.22 18.99 60.29 
4.0 4.97 4.99 3.87 5.05 32.84 29.33 20.78 43.99 
4.5 3.29 4.90 3.98 5.70 14.63 29.46 21.31 56.25 
5.0 2.94 4.64 4.67 5.21 12.08 26.40 27.41 45.09 
5.5 3.13 4.30 4.97 5.17 13.22 23.28 30.16 44.45 
6.0 1.76 3.91 5.28 5.52 4.04 20.86 32.92 52.30 
6.5 1.95 3.31 5.68 4.81 7.09 18.03 36.55 41.94 
7.0 1.87 3.19 5.86 5.95 6.38 16.86 38.54 53.84 
7.5 1.53 3.16 6.09 6.31 4.10 14.80 40.87 75.34 
8.0 1.94 3.05 6.30 6.24 5.33 12.31 42.25 65.62 

Forecast 
Valid 

Neural 
Net 
Max 

Persist- 
ence 
Max 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

Time Error 
(kts) 

Error 
(kts) 

0.5 16.34 6.00 9.79 22.21 
1.0 14.04 6.00 9.75 17.05 
1.5 12.58 6.00 8.92 25.89 
2.0 12.61 6.00 7.80 24.49 
2.5 14.95 7.00 7.98 22.01 
3.0 15.68 7.00 8.39 14.46 
3.5 12.65 6.00 8.86 29.25 
4.0 9.18 7.00 7.56 17.92 
4.5 6.58 7.00 7.77 26.99 
5.0 6.23 6.10 8.26 19.94 
5.5 6.44 6.10 8.33 25.91 
6.0 3.59 5.00 8.48 21.46 
6.5 0.36 6.00 8.70 20.72 
7.0 0.52 6.00 8.75 22.61 
7.5 1.79 7.00 8.67 38.70 
8.0 4.41 6.10 8.60 19.96 

plots, the traces of network forecasts appear to wander aimlessly, with no inclination to 

match the verification line. 
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Table 5.12. Results from 23 February - - 7 March 1996 (Variation) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 4.62 0.71 2.80 4.60 27.24 1.33 10.27 38.06 
1.0 4.90 0.94 2.51 5.19 29.07 1.85 8.44 48.99 
1.5 6.40 1.30 2.23 4.38 60.97 2.91 6.91 32.45 
2.0 3.10 1.73 1.99 4.38 12.27 4.64 5.98 31.73 
2.5 2.90 2.08 1.75 4.99 10.09 6.65 4.81 40.04 
3.0 2.47 2.55 1.84 5.06 8.24 9.27 5.99 39.26 
3.5 4.23 3.06 2.11 5.53 30.73 12.76 8.41 47.84 
4.0 4.06 3.51 2.18 5.50 24.90 15.69 9.11 55.49 
4.5 2.85 3.83 2.37 4.81 11.97 17.96 10.58 35.89 
5.0 3.46 3.89 2.64 5.27 18.18 18.72 12.31 50.52 
5.5 3.00 3.72 2.74 5.83 14.83 18.18 12.42 59.23 
6.0 2.49 3.51 2.83 5.19 9.85 16.61 12.70 49.15 
6.5 2.18 3.24 2.86 4.75 7.44 14.33 12.58 36.04 
7.0 2.18 3.09 2.91 4.91 7.97 12.23 12.68 38.70 
7.5 2.67 2.89 2.95 4.78 9.74 10.35 12.74 43.51 
8.0 2.78 2.86 3.19 5.35 10.40 9.79 13.85 45.79 

Forecast 
Valid 
Time 

Neural 
Net 
Max 
Error 
(kts) 

Persist- 
ence 
Max 
Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 7.50 1.90 5.14 19.88 
1.0 8.95 1.90 4.94 25.21 
1.5 16.63 3.20 4.66 14.78 
2.0 8.52 4.10 4.32 16.95 
2.5 4.84 5.10 4.71 22.19 
3.0 4.37 6.10 6.47 19.64 
3.5 6.23 8.00 7.45 22.01 
4.0 5.71 8.00 7.21 28.00 
4.5 7.19 8.90 7.24 16.60 
5.0 8.37 7.90 7.41 26.33 
5.5 8.28 7.90 7.32 24.90 
6.0 7.17 7.00 7.33 25.78 
6.5 7.52 7.90 7.28 25.26 
7.0 7.32 6.00 7.18 17.86 
7.5 7.09 6.00 7.14 21.55 
8.0 6.34 5.10 7.14 20.73 

Starting with the 5.5-hour forecast (Figure 5.12), however, an improvement is 

evident, and most of the neural network forecasts follow the verification line. Where 

persistence produces a better forecast than the neural net, overall neural net MAEs are 
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Table 5.13. Results from 24 November - 8 December 1996 (Variation) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 2.96 1.38 3.66 5.67 10.44 2.81 14.97 44.98 
1.0 2.55 1.68 3.89 6.77 7.89 4.25 16.75 60.70 
1.5 3.67 1.83 4.32 6.48 15.33 5.38 20.82 57.08 
2.0 4.52 2.22 4.96 6.40 24.21 7.58 27.88 54.97 
2.5 4.03 2.56 5.81 7.27 20.63 9.26 38.20 70.85 
3.0 3.97 2.89 6.45 6.94 19.46 13.38 48.18 68.50 
3.5 3.86 2.98 6.86 7.52 17.96 17.14 56.16 80.35 
4.0 2.72 3.06 7.58 8.62 12.98 18.94 67.57 101.06 
4.5 2.91 3.53 7.80 7.98 13.79 21.97 71.46 87.54 
5.0 3.63 3.95 7.90 8.94 19.47 24.71 73.67 107.99 
5.5 3.52 4.22 8.24 8.89 20.07 25.83 79.10 103.13 
6.0 3.36 4.42 8.45 8.98 15.57 25.55 81.80 112.18 
6.5 2.96 4.58 8.87 10.19 12.12 25.35 87.29 124.45 
7.0 3.25 4.66 9.24 9.39 13.67 25.35 92.59 115.35 
7.5 4.39 4.55 9.42 9.76 23.96 24.91 94.93 122.34 
8.0 5.20 4.36 9.61 9.40 31.30 24.10 97.23 112.29 

Forecast Neural Persist- Climo Random 
Valid Net Max ence Max MaxError Max Error 
Time Error (kts) Error (kts) (kts) (kts) 
0.5 5.72 3.10 -0.96 11.51 
1.0 5.38 4.10 -1.16 14.45 
1.5 6.76 4.10 -1.44 16.06 
2.0 8.17 4.10 -1.78 7.82 
2.5 7.78 3.20 -2.29 9.86 
3.0 7.45 5.10 -2.53 17.55 
3.5 6.57 5.10 -2.45 7.68 
4.0 4.17 1.90 -2.69 6.19 
4.5 2.42 3.10 -2.66 15.72 
5.0 1.20 4.10 -2.49 12.03 
5.5 1.77 6.00 -2.58 11.61 
6.0 3.38 6.00 -2.57 11.86 
6.5 4.81 4.10 -2.62 16.05 
7.0 2.54 4.10 -4.62 3.03 
7.5 0.72 4.10 -4.66 12.08 
8.0 0.01 2.90 -4.66 15.77 

generally closer to persistence MAEs than earlier in the forecast period. Interestingly, 

although the neural net predicted negative wind speeds for some of the 7-hour forecasts 

(Figure 5.15), the difference between persistence and neural net MAE for this forecast 
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Table 5.14. Results from 14-23 January 1999 (Variation) 

Forecast Neural Persist- Climo Random Neural Persist- Climo Random 
Valid Net MAE ence MAE MAE MAE Net MSE ence MSE MSE MSE 
Time (kts) (kts) (kts) (kts) (kts2) (kts2) (kts2) (kts2) 
0.5 9.77 0.84 5.08 7.28 96.56 1.38 26.87 74.17 
1.0 11.72 1.24 5.05 7.46 140.35 3.08 27.36 73.48 
1.5 9.91 1.64 5.05 6.86 105.12 5.48 28.60 62.48 
2.0 7.68 2.10 5.02 6.26 69.81 8.46 29.49 55.28 
2.5 6.45 2.67 5.11 7.12 52.08 12.09 31.63 71.47 
3.0 6.76 2.89 4.96 7.00 58.75 14.82 31.46 67.15 
3.5 8.99 3.01 4.59 7.39 99.46 16.41 28.93 77.88 
4.0 10.81 3.09 4.50 6.05 136.62 17.58 29.15 52.25 
4.5 10.41 3.34 4.17 6.63 124.05 18.96 26.90 64.83 
5.0 9.29 3.49 3.71 5.89 98.21 20.06 23.70 46.24 
5.5 8.49 3.77 3.48 6.06 81.64 22.15 22.41 52.69 
6.0 7.78 4.05 3.16 5.63 69.17 23.21 19.68 48.29 
6.5 7.35 4.40 2.86 5.52 63.25 24.83 16.97 54.31 
7.0 5.84 4.76 2.47 5.61 43.27 27.98 13.61 47.91 
7.5 2.19 5.08 1.99 4.57 10.13 31.42 9.48 34.38 
8.0 2.35 5.59 1.64 5.72 7.02 35.91 6.45 48.46 

Forecast Neural Persist- Climo Random 
Valid Net Max ence Max Max Error Max Error 
Time Error (kts) Error (kts) (kts) (kts) 
0.5 -6.61 1.90 -4.06 6.74 
1.0 -5.02 6.00 -0.16 14.58 
1.5 -2.51 6.00 -0.44 11.53 
2.0 1.20 7.00 0.22 9.93 
2.5 3.95 7.90 0.61 14.70 
3.0 2.39 8.90 0.37 12.79 
3.5 -0.56 8.90 0.45 32.53 
4.0 -2.58 8.00 0.21 13.01 
4.5 -3.56 8.00 0.24 13.53 
5.0 -3.10 8.00 0.41 12.13 
5.5 -4.08 8.00 0.32 11.07 
6.0 -3.46 8.90 0.33 19.08 
6.5 -3.39 8.90 0.28 30.38 
7.0 -2.59 7.90 0.18 18.89 
7.5 2.05 8.90 0.14 14.75 
8.0 4.31 10.10 2.34 20.20 

valid time appears to be among the smallest of all the valid times. At 6, 7.5, and 8 hours 

(Figures 5.13, 5.16, and 5.17), overall neural net MAEs are less than persistence MAEs. 
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Table 5.15. Results from 21-31 March 1999 (Variation). 

Forecast 
Valid 
Time 

Neural      Persist-      or          „     , 
Net          ence        Chmo     Random 

MAE         MAE         MAE         MAE 

(kts)          (kts)          <kts>          <kts> 

Neural    Persist-      ~..          0     . 
M„+        ~r,„«        Climo      Random Net        ence         ..ol-         ..OI_ 

MSE        MSE         J^SE         MSE 
(kts2)        (kts2)         <kts>         <kts> 

0.5 8.55           1.61           1.23           5.02 77.03        4.66           2.43          39.45 
1.0 5.74           2.33           1.25           4.61 41.89        8.56           2.68          31.94 
1.5 4.26           2.83           1.73           4.82 24.55       14.11          6.21          35.57 
2.0 5.22           2.95           2.05           5.43 41.99       16.31          7.96          44.62 
2.5 7.00           3.00           2.54           5.21 75.68       16.23         10.99         48.27 
3.0 8.89           3.23           2.58           3.84 113.75      16.59         11.31         23.74 
3.5 9.39           3.12           2.61           4.97 110.50      14.47         11.62         38.40 
4.0 8.36           3.07           2.67           4.41 80.52       14.51         11.97         32.07 
4.5 6.76           3.08           2.78           4.53 54.93       15.01         12.37         33.22 
5.0 5.79           3.27           2.85           4.81 45.64       15.30         12.35         37.14 
5.5 4.83           3.55           2.73           5.61 31.08       16.73         11.07         47.90 
6.0 3.82           3.75           2.77           5.01 18.64       18.90         10.95         45.87 
6.5 2.76           3.56           2.81           4.41 10.02       18.60         11.07         32.14 
7.0 2.21           3.50           2.57           5.12 7.51         18.33          9.43          42.38 
7.5 2.76           3.30           2.40           4.35 12.63       16.09          8.35          32.97 
8.0 4.22           3.00           2.05           4.43 

Neural      Persist-      Climo      Random 
Net Max   ence Max      Max          Max 

Error         Error         Error         Error 
(kts)         (kts)         (kts)         (kts) 

27.00       12.47          6.55          26.57 

0.5 13.11          4.80           4.78          20.62 
1.0 14.05          6.00           5.92          17.76 
1.5 11.49          9.90           8.26          15.37 
2.0 7.87           9.90           8.33          17.18 
2.5 4.96           9.00           8.70          28.99 
3.0 2.05           9.00           8.70          15.16 
3.5 -1.10          8.00           8.75          21.28 
4.0 -2.45          7.00           8.63          15.71 
4.5 1.16           8.00           8.59          18.21 
5.0 3.67           8.00           8.46          23.04 
5.5 7.05           6.10           8.14          20.05 
6.0 9.65           7.00           8.04          22.61 
6.5 6.96           8.00           8.04          20.42 
7.0 6.43           8.00           7.67          19.23 
7.5 8.99           8.00           7.40          24.09 
8.0 12.44          7.00           6.96          11.02 

This apparent skill of the neural network in forecasting for long lead times 

represents a potential enhancement to Launch Weather Officers' current forecast process. 

Persistence generally outperforms other methods for short lead times, so the neural net 
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7.5        8 

Figure 5.1. Mean Absolute Error (MAE) vs. Forecast Valid Time for Data Subset 3. 
Graph shows average MAEs for all data periods in Subset 3 for forecasts using the 
Original Method neural nets (dotted line), the Variation Method neural net (thick 
solid line), Variation Method persistence (thin solid line), and Original Method 
persistence (dashed line). 

approach may not add much value to the process of predicting for valid times early in the 

forecast period. Using a neural network to complement the methods in use for predicting 

winds late in the forecast period, however, could reduce errors in predicting peak winds 

for those forecast valid times. 

5.3 Reliability Intervals 

Displays of the reliability intervals described in Chapter 4 are presented in 

Figures 5.18 through 5.20. Each figure shows eight notional neural net 8-hour forecasts 

for random forecast start times in the indicated data period. Additional plots are 

presented in Appendix E. 
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Figure 5.2. Half-hour Forecasts from 24 January -1 February 1996 Using the 
Variation Method. Forecasts are plotted as solid lines, verifications as dotted lines. 
Mean absolute errors (MAEs) between forecasts and verifications are plotted as 
dashed lines, and the average MAE for all 100 forecasts is plotted as a series of +'s. 

The neural net forecast plots (dotted lines) in Figures 5.18 through 5.20 appear 

reasonable and closely track the verification plots (solid lines). Other forecasts, however, 

are wildly erratic and do not come close to the observed peak wind (see Appendix E). 

It was hoped that the reliability intervals would bound the majority of the 

verification plots, but this was not the case. A possible weakness in the method applied 

here may have been using too few samples to determine the statistics for the mean 

absolute errors in a particular network's forecasts. Perhaps several thousand samples of 

MAE should be analyzed, instead of only 100. 
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Figure 5.3. As in Fig. 5.2, but for 1-hour Forecasts during 5-13 December 1995. 

5.4 Operational Use 

The results of this research suggest the following operational use of a neural 

network: Nine hours before launch, train the neural net on data from the previous 3V2 

days, up to the current time. (During this research training a 10-neuron, 3-delay network 

on 1,000 data points [approximately 3Vz days] took about 45 minutes.) A few minutes 

before the pre-launch 8-hour window, use the trained network to generate a forecast with 

the most recent data available. (The neural net requires only a few seconds to generate its 

8-hour forecast.) Based on this study, wind forecasts for valid times later in the period 

will probably be the most accurate. 
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Figure 5.4. As in Fig. 5.2, but for 1.5-hour Forecasts during 14-22 December 1996. 

5.5 Further Study 

Limiting the neural network inputs to those elements recorded by the WINDS 

tower undoubtedly eliminated several potential predictor variables. Using the MATLAB 

code developed in this study, a researcher can incorporate additional data from other 

sources to potentially improve the network's forecast skill. Primary candidates for 

additional inputs would be measures of the local temperature and pressure gradients. The 

vertical temperature gradient and vertical wind shear would be particularly important and 

could be used as separate inputs or used to compute the Richardson number, which could 

be used as an input. 
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Figure 5.5. As in Fig. 5.2, but for 2-hour Forecasts during 23 February - 7 March 
1996. 

Pre-processing the input data candidates (using principle components analysis, for 

example) would provide insight into any redundancies in the inputs and indicate which 

inputs should be eliminated in order to avoid high correlations between input data pairs. 

Correlations between inputs can confuse the network into assigning high importance to a 

variable that is not really a valid predictor of the target element. For example, if inputs A 

and B are highly correlated and A is a good predictor of the target output, B will appear 

to be a good predictor too, and B's weights will be adjusted accordingly (but 

erroneously). B, a bogus predictor, would have undue influence on the network outputs, 

and other more valid predictors may not be permitted to contribute to the solution. 
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Figure 5.6. As in Fig. 5.2, but for 2.5-hour Forecasts during 6-21 January 1997. 

Other forms of data analysis may provide insight into the best training and 

architecture to use. In particular, an in-depth Fourier analysis of the peak wind signal 

may uncover a clue to the appropriate number of delays to use. If, for example, the 

power function of frequency indicated a strong signal at 30 minutes, half-hour moving 

averages of the peak wind may represent a better input than one-hour averages. 

A climatological stratification of various conditions may give insight into which 

inputs would serve as good predictors. Assuming different atmospheric mechanisms vie 

for control of the peak wind speed throughout the day, separate neural networks for 

different parts of the day could be developed. This approach could be extended to 
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Figure 5.7. As in Fig. 5.2, but for 3-hour Forecasts during 24 November 
8 December 1996. 

include stratifications based on synoptic regimes in place at certain times of the season. 

A suite of neural network architectures could be developed and kept on hand for 

immediate training when LWOs recognized a particular regime setting up. 

On the other hand, a form of ensemble forecasting may prove beneficial, 

regardless of which regime is in place at a particular time. Several forecast runs using 

different network architectures could be generated. The ensemble forecast average could 

be used as the final forecast. Alternatively, a given network architecture could be trained 

on the same set of inputs and targets several times, with weights and biases initialized to 
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Figure 5.8. As in Fig. 5.2, but for 3.5-hour Forecasts during 25 November 
2 December 1997. 

random values each time. This approach would permit several network attempts at 

finding the optimum weight and bias values. 

Theoretically, training only on specific types of wind events would produce a 

network capable of predicting similar events well. Although one of the strengths of 

neural networks is their ability to generalize, this feature is not limitless, and a neural net 

is only as good as its inputs. Instead of a one-size-fits-all approach like the one originally 

employed in this research, a suite of four or five networks, with each network tailored to 

forecast during a particular atmospheric regime, may provide the right balance between 
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Figure 5.9. As in Fig. 5.2, but for 4-hour Forecasts during 29 January - 6 February 
1997. 

robustness and accuracy. The improvements seen in using the variation of the original 

method used in this study confirm the need to carefully choose training criteria. 

The nuts and bolts of neural network development could also be adjusted. For 

instance, training a network with an architecture similar to the one used in this research 

for several hundred epochs instead of only 20 may allow the network to settle on a better 

set of weights and biases than those found here. Experimenting with different numbers 

of delays and hidden layer neurons may also uncover an architecture that generates more 

accurate forecasts. The MATLAB code developed in this study makes adjusting the 

numbers of delays and neurons easy. 
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Figure 5.10. As in Fig. 5.2, but for 4.5-hour Forecasts during 4-18 March 1998. 

Finally, using a neural network to post-process forecast data generated by other 

methods may prove beneficial. For example, the LWO's estimate of the peak wind, 

Model Output Statistics guidance, and climatology could be used as inputs to the 

network, which would take the best elements of the other forecasts and produce an 

optimal forecast. 

5.6 Conclusion 

To summarize the results of this study, neural networks represent a potentially 

viable forecasting alternative or addition to LWOs' current forecasting process. Despite 

the inconclusive results of the original neural network method and the reliability 
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Figure 5.11. As in Fig. 5.2, but for 5-hour Forecasts during 1-10 March 1997. 

measure developed in this thesis, the variation on the original method shows promise for 

wind forecasts late in the 8-hour forecast period. 

The variation method showed that greater accuracy was achieved by training a 

separate network for each data period instead of training one network on thousands of 

data points spread over several months. Further refinement of the method presented here 

may result in even better forecasts of wind speed. 
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Figure 5.12. As in Fig. 5.2, but for 5.5-hour Forecasts during 8-17 November 1998. 
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Figure 5.13. As in Fig. 5.2, but for 6-hour Forecasts during 2-13 December 1997. 
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Figure 5.14. As in Fig. 5.2, but for 6.5-hour Forecasts during 14-20 January 1999. 
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Figure 5.15. As in Fig. 5.2, but for 7-hour Forecasts during 5-11 January 1998. 
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Figure 5.16. As in Fig. 5.2, but for 7.5-hour Forecasts during 21-31 March 1999. 
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Figure 5.17. As in Fig. 5.2, but for 8-hour Forecasts during 25 January 
4 February 1999. 
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Figure 5.18. Forecasts and Reliability Intervals for 24 January - 1 February 1996. 
Variation method neural net forecasts are shown as series of dots, and reliability 
intervals are shown as +'s above and below the forecasts for each valid time. 
Observed peak wind speeds (solid lines) are shown for comparison. Each of the 
eight plots represents a different 8-hour forecast with a randomly selected start 
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Figure 5.19. As in Fig. 5.18, but for 4-18 March 1998. 
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Figure 5.20. As in Fig. 5.18, but for 8-17 November 1998. 
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Appendix A: Time Series of Peak Wind Speed 

This appendix contains plots of 5-minute peak wind speeds for all data periods 

used in this study. Data were collected at the Atlas Launch Tower 90 feet above the 

surface. 
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Figure A.l. 5-minute Peak Wind Speed, 2-12 March 1995. 
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Figure A.2. 5-minute Peak Wind Speed, 19-26 March 1995. 
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Figure A.3. 5-minute Peak Wind Speed, 4-13 November 1995. 
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Figure A.4. 5-minute Peak Wind Speed, 28 November - 5 December 1995. 
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Figure A.5. 5-minute Peak Wind Speed, 5-13 December 1995. 
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Figure A.6. 5-minute Peak Wind Speed, 24 January - 1 February 1996. 
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Figure A.7. 5-minute Peak Wind Speed, 11-21 February 1996. 
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Figure A.8. 5-minute Peak Wind Speed, 23 February - 7 March 1996. 
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Figure A.9. 5-minute Peak Wind Speed, 15-31 March 1996. 
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Figure A.10. 5-minute Peak Wind Speed, 24 November - 8 December 1996. 
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Figure A.ll. 5-minute Peak Wind Speed, 14-22 Decemberl996. 
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Figure A.12. 5-minute Peak Wind Speed, 6-21 January 1997. 
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Figure A.13. 5-minute Peak Wind Speed, 29 January - 6 February 1997. 
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Figure A.14. 5-minute Peak Wind Speed, 1-10 March 1997. 
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Figure A.15. 5-minute Peak Wind Speed, 25 November - 2 December 1997. 
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Figure A.16. 5-minute Peak Wind Speed, 2-13 December 1997. 
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Figure A.17. 5-minute Peak Wind Speed, 5-11 January 1998. 
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Figure A.18. 5-minute Peak Wind Speed, 14-23 January 1998. 
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Figure A.19. 5-minute Peak Wind Speed, 4-18 March 1998. 
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Figure A.20. 5-minute Peak Wind Speed, 8-17 November 1998. 
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Figure A.21. 5-minute Peak Wind Speed, 30 November - 8 December 1998. 
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Figure A.22. 5-minute Peak Wind Speed, 14-20 January 1999. 
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Figure A.23. 5-minute Peak Wind Speed, 25 January - 4 February 1999. 
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Figure A.24. 5-minute Peak Wind Speed, 2-21 March 1999. 
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Figure A.25. 5-minute Peak Wind Speed, 21-31 March 1999. 
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Appendix B: Period of Record Data Gaps 

This appendix contains a complete list of gaps in the database available for this study. 

The 25 longest periods with no gaps (marked with a * in the table) were used in this research. 

Table B.l. Period of Record Data Gaps 

Julian Date Time of Day #Gaps 
95045 0-415 52 
95045 1135-1145 3 
95045 1315-1335 5 
95051 1550-1855 38 
95053 1920-2355 45 
95054 0-2355 288 
95055 0-1725 211 
95057 35-45 3 
95057 1845-1950 14 
95058 0-2355 288 
95061 1620-2010 49 
* 

95071 55-115 5 
95074 2225-2355 19 
95078 525 1 
* 

95085 2330-2355 6 
95086 0-1110 133 
95086 1255 1 
95086 1300 1 
95086 1305-1315 3 
95086 1320-1930 75 
95087 1055-1255 24 
95087 1630 1 
95088 1330-1340 3 
95089 1440-1610 30 
95090 2325-2355 7 
95309 1425-1440 4 
* 

95317 1410-1430 5 
95321 2210-2355 46 
95322 0-130 19 
95325 1355-2355 121 

Julian Date Time of Day #Gaps 
95326 0-1335 163 
95328 855-2355 181 
95329 0-405 50 
95329 410-2355 238 
95330 0 1 
95330 1605-1620 4 
95331 1140-1210 7 
95332 2135 1 
* 

95339 1435 1 
* 

95347 30 1 
95349 1630-1645 4 
95350 1915-1925 3 
95353 1155 1 
95353 1840-2355 65 
95355 5-1130 137 
95361 0-255 37 
96001 1445-1535 11 
96004 1435-1450 4 
96004 1755-1805 3 
96004 1830-1845 4 
96006 1935 1 
96007 120 1 
96010 1305-1420 16 
96010 1425-1455 7 
96010 1500-2020 66 
96016 1420-1450 7 
96024 330 1 
* 

96032 1325-1340 4 
96032 1445 1 
96034 1330-1435 14 
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Julian Date Time of Day #Gaps 
96041 1325-2235 110 
96042 1705 1 
96042 2005-2320 40 
* 

96053 0-2355 288 
* 

96068 0-2355 288 
96072 2305-2355 11 
96074 2355 1 
* 

96312 1135-1140 2 
96312 1205-1210 2 
96315 1825-1850 6 
96315 1900-1910 3 
96316 2145-2210 6 
96320 355-430 8 
96321 815-1115 37 
96322 230 1 
96323 1915 1 
96327 1555 1 
96327 1855-2055 25 
96328 1845 1 
96331 0-2355 288 
* 

96343 1305-1340 8 
96346 0-2355 288 
96347 0-2355 288 
96349 1925 1 
* 

96357 1815-1820 2 
96357 2055 1 
96359 1740-1905 19 
96361 1010-2355 167 
96362 0-500 61 
96362 1700-1825 19 
96363 1950-2005 4 
96366 215-435 29 
96366 1700-1810 15 
97001 0-200 25 
97002 1525-1600 8 
97002 1730-1755 6 
97003 1555-1605 3 
97003 1615-1635 5 
97006 1725 1 

Julian Date Time of Day #Gaps 
* 

97021 2320 1 
97023 1400-1405 2 
97023 1430-1450 5 
97027 1530-1540 3 
97029 1230-1250 5 
* 

97037 1700 1 
97038 1355 1 
97038 1430-1445 4 
97044 5-300 36 
97044 1250-1300 3 
97044 1320 1 
97044 1335-1350 4 
97048 1525-2355 103 
97051 1415 1 
97053 1935-2010 8 
97054 1520-1650 19 
97057 1440 1 
97059 2315-2355 9 
97060 0-2100 253 
* 

97069 2330-2355 6 
97070 2355 1 
97073 1610 1 
97076 1225-1305 7 
97077 2100 1 
97082 5-120 16 
97085 1410-1420 3 
97085 1700-1725 6 
97311 1125-1215 11 
97315 900-1350 59 
97318 935-2355 174 
97319 0-600 73 
97321 1315-1330 4 
97327 115-120 2 
97328 35-2355 280 
* 

97336 1330-1345 4 
* 

97347 5-1415 171 
97350 1535-1605 7 
97356 1530 1 
97357 245-805 65 
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Julian Date Time of Day #Gaps 
97363 1325-1350 6 
98004 2250-2355 14 
* 

98011 1845-1850 2 
98012 10 1 
98012 45 1 
98012 1320-1335 4 
98013 1455-2355 109 
* 

98023 1550 1 
98024 2040 1 
98027 1320-1345 6 
98027 1510-1630 17 
98028 1300-1315 4 
98029 1215 1 
98031 310-350 9 
98032 1525-2355 104 
98033 0-1440 178 
98033 1600-1700 13 
98037 1845-2355 63 
98038 0-1510 183 
98039 135 1 
98042 1205-1230 6 
98043 1415-1445 7 
98046 1910-1950 9 
98046 2045 1 
98050 1010-1025 4 
98055 1710-2000 35 
98061 1700-1955 36 
98062 1500 1 
98063 1320-1400 9 
* 

98077 1525-1540 4 
98079 1045-1135 11 
98079 1625-1715 11 
98079 1735 1 
98080 2355 1 
98081 2355 1 
98084 1305-1420 16 
98085 1300-1315 4 
98085 2335-2355 5 
98090 5-230 31 
98308 1215-1310 12 
98312 1815-1835 5 

Julian Date Time of Day #Gaps 
* 

98321 1230-1325 12 
98325 2035 1 
98325 2350-2355 2 
98326 0 1 
98326 15 1 
98327 1150-2355 146 
98328 0-2355 288 
98329 0-2355 288 
98330 0-2355 288 
98331 1420-1425 2 
98331 1810-1840 7 
98333 2030 1 
98334 1220-1410 23 
* 

98343 0-2355 288 
98345 1310-1330 5 
98349 1535-1555 5 
98349 1625-1650 6 
98352 1120-1150 7 
98356 1120-1140 5 
98358 1325-1415 11 
99005 1900 1 
99005 2000 1 
99009 1355-1425 7 
99009 1540-1735 24 
99013 0-2355 288 
* 

99020 2200-2245 10 
99020 2300 1 
99020 2315-2355 9 
99023 1410 1 
99023 1825-1845 5 
99023 1910 1 
99023 1935-1940 2 
99023 2025-2030 2 
99023 2050-2110 5 
99023 2350 1 
99024 230 1 
99024 835 1 
99024 1830-1840 3 
99025 1345 1 
* 

99035 1800-1940 21 
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Julian Date Time of Day #Gaps 
99036 1210-1225 4 
99036 1815-1835 5 
99036 2005 1 
99036 2025-2100 8 
99039 0-2355 288 
99041 2110-2125 4 
99041 2205-2335 20 
99042 5-1605 193 
99042 1635 1 
99042 2000 1 
99042 2020-2030 3 
99042 2230-2305 8 
99042 2335-2355 5 
99043 0-230 32 
99043 1235 1 
99043 1255-1305 3 
99043 1320-1405 10 
99043 1530 1 
99045 1820 1 
99046 1755 1 
99048 2155 1 
99050 1315-1330 4 
99051 1240-1315 8 
99051 1515-1605 11 
99053 1600-1615 4 
99056 1325 1 
99056 2305 1 
99057 2000-2130 19 
99061 1700-1755 12 
* 

99080 1810 1 
* 

99090 1140-1200 5 
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Appendix C: MATLAB Program Codes 

This appendix contains the five MATLAB "m-file" programs used to develop, train, test, and 

evaluate the neural network. 

% development.m      Capt Kenneth P. Cloys 8 Jan 00 

loadtx96075_91.txt; 
transfer = tx96075_91; 

sinetime = sin(transfer(:,2)*2*pi/2355)'; sinedir = sin(transfer(:,3)*2*pi/360)'; 

speed = transfer(:,4)'; pk = transfer(:,5)'; dirdev = transfer(:,6)'; 
deltal = diff(pk); delta2 = diff(deltal); 

b = (l/12)*ones(l,12); 
smpk = filter(b,l,pk); smdir = filter(b,l,sinedir); smdirdev = filter(b,l,dirdev); 
smdeltal = filter(b,l,deltal); smdelta2 = filter(b,l,delta2); smtime = filter(b,l,sinetime); 

for j = l:length(transfer)-9 
mx30(j) = max(pk(j+3:j+9)); 

end; 

minneurons = 11; maxneurons = 14; mindelays = 12; maxdelays = 36; 

trainstart = 50; trast = trainstart; 
% Specifies time step at which to start training. 
% If neither delta is used, 'trainstart' must be at least d+1; 
% if only dl used, at least d+2; if delta2 used, at least d+3. 

blocksize = 250; bs = blocksize; 
% Specifies how many time steps to train with during each training iteration. 

numblocks = 2; 
% Specifies how many training iterations to make. 
% Alternatively, 'trainlength' can be specified and 'numblocks' 
% computed with 'numblocks = trainlength/blocksize'. 
% If 'numblocks' is to be computed, however, it must follow 
% the line specifying the value of 'trainlength'. 

trainlength = blocksize*numblocks; 
% Specifies how many total time steps are to be trained on. 

C-l 



% If 'blocksize' & 'numblocks' are specified, 'trainlength' is computed from them. 
% If computing 'numblocks' from 'trainlength', 'trainlength' must be evenly divisible by 
% 'blocksize'. 
% 'trainstart+trainlength' must be less than length(transfer), 
% the last time step of the input vector. 

teststart = 1100; tstst = teststart; 
% Specifies time step at which to start testing the net on new inputs. 
% See notes above for 'trainstart' regarding minimum value. 

testlength = 500; 
% Specifies how many total time steps are to be tested. 

testend = teststart + testlength; 
% Specifies time step at which to stop testing. 
% Must be less than length(transfer)-9. 

fcstperiods = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16]; fp = fcstperiods; 
%Specifies which half-hour periods to forecast for. 

row = 1; 

for i= 1:16 
verify{i} = mx30(tstst+6*(i-l):testend+6*(i-l)); 

end; %Creates verification vector for comparison with forecasts and persistence. 

pers = mx30(teststart-9:testend-9); 
% Creates persistence vector for comparison with verification. 

for d = mindelays: 12:maxdelays; 
for n = minneurons:maxneurons; 

net = newfftd([minmax(pk); minmax(smdeltal); minmax(smdelta2);... 
-1 1; -1 1; minmax(smdirdev)], [0:12:d],[n 16],{'tansig' 'purelin'}); 

net.trainParam.epochs = 10; net.trainParam.goal = .1; net.trainParam.show = 1; 

for nb = 1: numblocks 
A = (nb-l)*bs+trast; 

Pi = con2seq([smpk(A-d:A-l); smdeltal(A-d:A-l); smdelta2(A-d:A-l);... 
smdir(A-d:A-l); smtime(A-d:A-l); smdirdev(A-d:A-l)]); 

P = con2seq([smpk(A:A+bs-l); smdeltal(A:A+bs-l); smdelta2(A:A+bs-l);... 
smdir(A:A+bs-l); smtime(A:A+bs-l); smdirdev(A:A+bs-l)]); 
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T = con2seq([mx30(A:A+bs-l); mx30(A+6:A+bs+5); mx30(A+12:A+bs+ll);... 
mx30(A+18:A+bs+17); mx30(A+24:A+bs+23); mx30(A+30:A+bs+29) 
mx30(A+36:A+bs+35); mx30(A+42:A+bs+41); mx30(A+48:A+bs+47) 
mx30(A+54:A+bs+53); mx30(A+60:A+bs+59); mx30(A+66:A+bs+65) 
mx30(A+72:A+bs+71); mx30(A+78:A+bs+77); mx30(A+84:A+bs+83) 
mx30(A+90:A+bs+89)]); 

format compact; 
['neurons ','delays ','blocknumber'] 
[int2str(n),' of ',int2str(maxneurons),' ',int2str(d),' of ',int2str(maxdelays),... 

' ',int2str(nb),' of ',int2str(numblocks)] 

net = train(net,P,T,Pi); 
end; 

Ri = con2seq([smpk(tstst-d:tstst-l); smdeltal(tstst-d:tstst-l); smdelta2(tstst-d:tstst-l); 
smdir(tstst-d:tstst-1); smtime(tstst-d:tstst-1); smdirdev(tstst-d:tstst-1)]); 

R = con2seq([smpk(tstst:testend); smdeltal(tstst:testend); smdelta2(tstst:testend); 
smdir(tstst:testend); smtime(tstst:testend); smdirdev(tstst:testend)]); 

Y = sim(net,R,Ri); y = seq2con(Y); 

numfcsts = length(fp); 

for s = 1: numfcsts 
fcst{s}=y{l}(s,:); 
rep96075_91wx(row,l 
rep96075_91wx(row,2 
rep96075_91 wx(row,3 
rep96075_91 wx(row,4 
rep96075_91wx(row,5 
rep96075_91 wx(row,6 
rep96075_91wx(row,7 
rep96075_91wx(row,8 
rep96075_91wx(row,9 
[fm,fb,rep96075_91wx 

= n; 
= d; 
= s*.5; %Time. 
= mae(fcst {s} -verify {fp(s)}); 
= mae(pers-verify{fp(s)}); 
= mse(fcst{s}-verify{fp(s)}); 
= mse(pers-verify {fp(s)}); 
= max(fcst{s}-verify{fp(s)}); 
= max(pers-verify{fp(s)}); 

(row, 10)] = postreg(fcst{s},verify{fp(s)}); 
[pm,pb,rep96075_91wx(row,ll)] = postreg(pers,verify{fp(s)}); 
row = row+l; 

end; 
save report96075_91wx2 rep96075_91wx 
printmat(rep96075_91wx,'nü',int2str(l:row-l),... 

'neurons delays vt fcstmae persmae fcstmse persmse fmaxerr persmaxerr fcstr persr') 
end; end; 
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% nntrain3.m       Capt Kenneth P. Cloys     8 Jan 00 

% For more training run 'nnnext.m' after this. 

load tx99025_35.txt; 
transfer = tx99025_35; 

sinetime = sin(transfer(:,2)*2*pi/2355)'; 
sinedir = sin(transfer(:,3)*2*pi/360)'; 

pk = transfer(:,5)'; dirdev = transfer(:,6)'; 
deltal = diff(pk); delta2 = diff(deltal); 

forj = l:length(transfer)-9 
mx30(j) = max(pk(j+3:j+9)); 

end; 

b = (l/12)*ones(l,12); 

smpk = filter(b,l,pk); smdir = filter(b,l,sinedir); smdirdev = filter(b,l,dirdev); 
smdelta2 = filter(b,l,delta2); 
smtime = filter(b,l,sinetime); smmx30 = filter(b,l,mx30); 

neurons = 10; n = neurons; 
delays = 36; d = delays; 

trainstart = 51; trast = trainstart; 
% Specifies time step at which to start training. 
% If neither delta is used, 'trainstart' must be at least d+1. 
% If only deltal, at least d+2; if delta2 used, at least d+3. 

blocksize = 250; bs = blocksize; 
% Specifies how many time steps to train with during each block of training. 

numblocks = 4; 
% Specifies how many training iterations to make. 

% Alternatively, 'trainlength' can be specified and 'numblocks' 
% computed with 'numblocks = trainlength/blocksize'. 

% If 'numblocks' is to be computed, however, it must follow 
% the line specifying the value of 'trainlength'. 
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trainlength = blocksize*numblocks; 
% Specifies how many total time steps are to be trained on. 

% If 'blocksize' & 'numblocks' are specified, 'trainlength' 
% is computed from them. 

% If computing 'numblocks' from 'trainlength', 'trainlength' 
% must be evenly divisible by 'blocksize'. 

% 'trainstart+trainlength' must be less than 'length(transfer)-99'. 

net = newfftd([minmax(mx30); minmax(pk); minmax(smdelta2);... 
-1 1; -1 1; minmax(smdirdev)], [0:12:d],[n 16],{'tansig' 'purelin'}); 

net.trainParam.epochs = 20; net.trainParam.goal = .1; net.trainParam.show = 1; 

for nb = l:numblocks 
A = (nb-l)*bs+trast; 

Pi = con2seq([smmx30(A-d-6:A-7);smpk(A-d:A-l);... 
smdelta2(A-d:A-l); smdir(A-d:A-l); smtime(A-d:A-l); smdirdev(A-d:A-l)]); 

P = con2seq([smmx30(A-6:A+bs-7); smpk(A:A+bs-l);... 
smdelta2(A:A+bs-l); smdir(A:A+bs-l); smtime(A:A+bs-l); smdirdev(A:A+bs-l)]); 

T = con2seq([mx30(A:A+bs-l); mx30(A+6:A+bs+5); mx30(A+12:A+bs+ll);... 
mx30(A+18:A+bs+17); mx30(A+24:A+bs+23); mx30(A+30:A+bs+29);... 
mx30(A+36:A+bs+35); mx30(A+42:A+bs+41); mx30(A+48:A+bs+47);... 
mx30(A+54:A+bs+53); mx30(A+60:A+bs+59); mx30(A+66:A+bs+65);... 
mx30(A+72:A+bs+71); mx30(A+78:A+bs+77); mx30(A+84:A+bs+83);... 
mx30(A+90:A+bs+89)]); 

net = train(net,P,T,Pi); 
end; 

netn = net; 
save config99025_35 net; 
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% nnnext.m 8 Jan 00 Capt Kenneth P. Cloys 

% For training NN on inputs beyond those used during NN set-up and initial training 
% in 'nntrain3.m'. 

% Training starts with weights and biases obtained with 'nntrain3.m' or previous runs 
% of the present file and updates the weights and biases as often as the present file is run. 

% To train on different data files, substitute desired data file name in next line. 

load tx96024_32.txt; transfer = tx96024_32; 

sinetime = sin(transfer(:,2)*2*pi/2355)'; sinedir = sin(transfer(:,3)*2*pi/360)'; 
% Normalizes values of time and wind direction between -1 and 1. 
% Removes problem of jumping 2355->0 and 355->0. 

pk = transfer(:,5)'; dirdev = transfer(:,6)'; deltal = diff(pk); delta2 = diff(deltal); 
% 'deltal' is vector of differences in successive values of peak wind speed. 
% 'delta2' is vector of differences in successive values of 'deltal'. 

b = (l/12)*ones(l,12); 
% Denominator in first parenthesis and last number in second parenthesis 
% (which must be the same number)specifies number of time steps to average over 
% in creating the moving-average 'sm ' input vectors below. 

smpk = filter(b,l,pk); smdir = filter(b,l,sinedir); smdirdev = filter(b,l,dirdev); 
smdeltal = filter(b,l,deltal); smdelta2 = filter(b,l,delta2); smtime = filter(b,l,sinetime); 

for j = l:length(transfer)-9 
mx30(j) = max(pk(j+3:j+9)); 

end; 
% Creates vector of 30-minute maximum peak winds. Used to generate target vector. 

trainstart = 100; trast = trainstart; 
% Specifies time step at which to start training. 
% If neither 'deltal' nor 'delta2' is used, 'trainstart' must be at least 1 more than the 
% number of delays used. If only 'deltal' is used, 'trainstart' must be at least 2 more than the 
%number of delays; if 'delta2' is used, at least 3 more than the number of delays. 

blocksize = 250; bs = blocksize; 
% Specifies how many time steps to train with during each training iteration. 
% Dividing the training set into smaller blocks helps keep the processor from bogging down 
% or locking the system completely. 

numblocks = 8; 
% Specifies how many training iterations to make. 
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trainlength = blocksize * numblocks; 
% Total number of time steps to be used in updating the net. 

% Alternatively, 'trainlength' can be specified and 'numblocks' 
% computed with 'numblocks = trainlength/blocksize'. 

% If 'numblocks' is to be computed, however (as opposed to being specified by the user), 
% it must follow the line specifying the value of 'trainlength', 
% which must be evenly divisible by 'blocksize'. 

% If 'blocksize' & 'numblocks' are specified, 'trainlength' is computed from them. 

% 'trainstart + trainlength' must be less than (number input file time steps - 99) 
% in order to avoid trying to compute 'mx30' values from outside the range of data. 

netn.trainParam.epochs = 20; netn.trainParam.goal = .1; netn.trainParam.show = 1; 
for nb = 1: numblocks 

A = (nb-l)*bs+trast; 
% A' is an algebraic convenience. 
% Its use permits more compact specifications for 'Pi', 'P', and T. 

Pi = con2seq([smpk(A-d:A-l); smdeltal(A-d:A-l); smdelta2(A-d:A-l);... 
smdir(A-d:A-l); smtime(A-d:A-l); smdirdev(A-d:A-l)]); 

% Initial input delay values. 

P = con2seq([smpk(A:A+bs-l); smdeltal(A:A+bs-l); smdelta2(A:A+bs-l);... 
smdir(A:A+bs-l); smtime(A:A+bs-l); smdirdev(A:A+bs-l)]); 

% Training inputs: Moving averages of various elements measured directly 
% by WINDS or derived from such measurements. 

T = con2seq([mx30(A:A+bs-l); mx30(A+6:A+bs+5); mx30(A+12:A+bs+ll);... 
mx30(A+18:A+bs+17); mx30(A+24:A+bs+23); mx30(A+30:A+bs+29); 
mx30(A+36:A+bs+35); mx30(A+42:A+bs+41); mx30(A+48:A+bs+47); 
mx30(A+54:A+bs+53); mx30(A+60:A+bs+59); mx30(A+66:A+bs+65); 
mx30(A+72:A+bs+71); mx30(A+78:A+bs+77); mx30(A+84:A+bs+83); 
mx30(A+90:A+bs+89)]); 

% Target vectors associated with training input vectors specified above. 
% 'T' is comprised of 16 30-minute maximum peak winds centered at 0:30, 1:00, 
% 1:30,..., 8:00 from the current 'P' input. 

netn = train(netn,P,T,Pi); 
% Updates previous network (weights and biases) using new inputs and targets, 

end; 
% For further training, this file can be run repeatedly with the same input data file 
% with (a) different data file(s). 
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% nntest.m     Capt Kenneth P. Cloys     8 Jan 00 

load tx95339_47.txt; transfer = tx95339_47; load climo_mx30.txt; period = '95339_47'; 
sinetime = sin(transfer(:,2)*2*pi/2355)'; sinedir = sin(transfer(:,3)*2*pi/360)'; 
pk = transfer(:,5)'; dirdev = transfer(:,6)'; deltal = diff(pk); delta2 = diff(deltal); 

b = (l/12)*ones(l,12); smpk = filter(b,l,pk); smdir = filter(b,l,sinedir); 
smdirdev = filter(b, 1,dirdev); smdelta2 = filter(b,l,delta2); smtime = filter(b,l,sinetime); 

for j = 1 :length(transfer)-9 
mx30(j) = max(pk(j+3:j+9)); 

end; 

testlength = 250; 
% Specifies how many total time steps are to be tested. 

teststart = 49+unidrnd(length(transfer)-testlength-149) 
tstst = teststart; 
% Generates random time step at which to start testing the net on new inputs. 

% If neither delta is used, 'teststart' must be at least d+1; 
% if only dl used, at least d+2; if delta2 used, at least d+3. 

% This is to avoid trying to compute input vectors using values from 
% before the period covered by the database. 

timeofday = transfer(tstst,2) 
climoseed = find(climo_mx30(:,l)==timeofday) 
% Index (row number) in 'climo_mx30' corresponding to time-of-day of 'teststart'. 
% Specifies "current" time in 'climo_mx30' and determines which values 
% in 'climo_mx30' to use as climatological forecasts. 

% 'climo_mx30' repeats itself after 2355, so 'teststart' values corresponding to times near the 
% end of the day do not present a problem for creating the 'climo' vector later. 

% 'teststart' value --> input vector time-of-day --> 'climo_mx30' time-of-day --> 'climo_mx30' 
% value 

testend = teststart + testlength-1; 
% Specifies time step at which to stop testing. Must be less than length(transfer)-99 in order to 
% avoid trying to compute 'mx30' values from after the period covered by the database. 

fcstperiods = [l;2;3;4;5;6;7;8;9;10;ll;12;13;14;15;16];fp = fcstperiods; 
%Specifies which half-hour periods to forecast for. 

% numfcsts = length(fp); 
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row = 1; 

pers = mx30(teststart-9:testend-9); 
% Creates persistence vector for comparison with verification. 

Ri = con2seq([smpk(tstst-d:tstst-l); smdeltal(tstst-d:tstst-l); smdelta2(tstst-d:tstst-l); 
smdir(tstst-d:tstst-1); smtime(tstst-d:tstst-1); smdirdev(tstst-d:tstst-1)]); 

R = con2seq([smpk(tstst:testend); smdeltal(tstst:testend); smdelta2(tstst:testend); 
dir(tstst:testend); smtime(tstst:testend); smdirdev(tstst:testend)]); 

Y = sim(netn,R,Ri); y = seq2con(Y); 
for s= 1:16 

randum = gamrnd(4.9308,2.5568,l,testlength); 
verifyjs} = mx30(tstst+6*(s-l):testend+6*(s-l)); 
climo(s,l:testlength) = climo_mx30(climoseed(l)+6*s,2); 

% Creates verification and climatology vectors for comparison with 
% forecasts and persistence. 
fcst{s}=y{l}(s,:); 

rep95339_47(row,l) = n; 
rep95339_47(row,2) = d; 
rep95339_47(row,3) = s*.5; % Forecast Time. 
rep95339_47(row,4) = mae(fcst{s}-verify {fp(s)}); 
rep95339_47(row,5) = mae(pers-verify{fp(s)}); 
rep95339_47(row,6) = mae(climo(s,:)-verify{fp(s)}); 
rep95339_47(row,7) = mae(randum-verify (fp(s)}); 
rep95339_47(row,8) = mse(fcst{s}-verify{fp(s)}); 
rep95339_47(row,9) = mse(pers-verify{fp(s)}); 
rep95339_47(row,10; 
rep95339_47(row,ll 
rep95339_47(row,12 
rep95339_47(row,13 
rep95339_47(row,14 
rep95339_47(row,15 

= mse(climo(s,:)-verify{fp(s)}); 
= mse(randum- verify {fp(s)}); 
= max(fcst{s}-verify{fp(s)}); 
= max(pers-verify {fp(s)}); 
= max(climo(s,:)-verify{fp(s)}); 
= max(randum-verify{fp(s)}); 

[fm,fb,rep95339_47(row,16)] = postreg(fcst{s},verify{fp(s)}); 
[pm,pb,rep95339_47(row,17)] = postreg(pers,verify{fp(s)}); 
%   [cm,cb,rep95339_47(row,l_)] = postreg(climo(s,:),verify{fp(s)}); 
[rm,rb,rep95339_47(row,18)] = postreg(randum, verify {fp(s)}); 

pictures; 
row = row+l; 

end; 

printmat(rep95339_47,'nü',int2str( 1 :row-1),... 
'neurons delays vt fcstmae persmae climomae randommae fcstmse persmse climomse 

randommse fcstmaxerr persmaxerr climomaxerr randommaxerr fcstr persr randomr') 
save testrep95339_47 rep95339_47 -ascii 
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% pictures.m 

figname = ['Fig' (period)'_' int2str(s)]; 

subplot(2,2,l); plot(fcst{s},'k'); hold on; 
plot(verify{s},'k:'); 
plot(abs(fcst{s}-verify{s}),'k--'); 
plot( 1 :testlength,mean(abs(fcst {s} -verify {s} )),'k+') 
%legend('Fcst','Obsv7Abs Err',-1); 
xlabel('Forecasts'); ylabel('knots') 
titletf'Neural Net(-), Verification(..), MAE(--),'... 

'mean MAE(+), Forecast Hour:' num2str(s*.5)]) 

subplot(2,2,2); plot(pers,'k'); hold on; 
plot(verify{s},'k:'); 
plot(abs(pers-verify{s}),'k~'); 
plot( 1 :testlength,mean(abs(pers-verify {s} )),'k+') 
%legend('Fcst','Obsv','Abs Err',-1); 
xlabel('Forecasts'); ylabel('knots') 
title(['Persistence(-), Verification(..), MAE(-),'... 

'mean MAE(+), Forecast Hour:' num2str(s*.5)]) 

subplot(2,2,3); plot(climo(s,:),'k'); hold on; 
plot(verify{s},'k:'); 
plot(abs(climo(s,:)-verify{s}),'k—'); 
plot(l:testlength,mean(abs(climo(s,:)-verify{s})),'k+') 
%legend('Pers','Obsv','Abs Err',-1); 
xlabel('Forecasts'); ylabel('knots') 
title(['Climatology(-), Verification(..), MAE(-),'... 

'mean MAE(+), Forecast Hour:' num2str(s*.5)]) 

subplot(2,2,4); plot(randum,'k'); hold on; 
plot(verify{s},'k:'); 
plot(abs(randum-verify{s}),'k—'); 
plot( 1 :testlength,mean(abs(randum- verify {s} )),'k+') 
%legend('Pers','Obsv','Abs Err',-1); 
xlabel('Forecasts'); ylabel('knots') 
title(['Random(-), Verification(..), MAE(~),'... 

'mean MAE(+), Forecast Hour:' num2str(s*.5)]) 

print ('-dmfile', figname) 
print ('-deps', '-tiff, figname) 
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% nntest3.m 5/6 Jan 

load tx99025_35.txt; transfer = tx99025_35; 
load climo_mx30.txt; period = '99025_35'; 
sinetime = sin(transfer(:,2)*2*pi/2355)'; sinedir = sin(transfer(:,3)*2*pi/360)'; 
pk = transfer(:,5)'; dirdev = transfer(:,6)'; deltal = diff(pk); delta2 = diff(deltal); 

for j = l:length(transfer)-9 
mx30(j) = max(pk(j+3:j+9)); 

end; 

b = (l/12)*ones(l,12); 

smpk = filter(b,l,pk); smdir = filter(b,l,sinedir); smdirdev = filter(b,l,dirdev); 
smdeltal = filter(b,l,deltal); smdelta2 = filter(b,l,delta2); 
smtime = filter(b,l,sinetime); smmx30 = filter(b,l,mx30); 

testlength = 100 
% Specifies how many total time steps are to be tested. 

teststart = 1100; tstst = teststart; 
% Generates time step at which to start testing the net on new inputs. 
% If neither delta is used, 'teststart' must be at least d+1; if only dl used, at least d+2; 
%if delta2 used, at least d+3. 
%This is to avoid trying to compute input vectors using values from 
%before the period covered by the database. 

timeofday = transfer(tstst,2); climoseed = find(climo_mx30(:,l)==timeofday) 
% Index (row number) in 'climo_mx30' corresponding to time-of-day of 'teststart'. 
% Specifies "current" time in 'climo_mx30' and determines which values 
% in 'climo_mx30' to use as climatological forecasts. 
% 'climo_mx30' repeats itself after 2355, so 'teststart' values corresponding to 
%        times near the end of the day do not present a problem for creating the 
%        'climo' vector later. 
% 'teststart' value --> input vector time-of-day --> 
% --> 'climo_mx30' time-of-day —> 'climo_mx30 value' 

testend = teststart + testlength-1 
% Specifies time step at which to stop testing. 
% Must be less than length(transfer)-99 in order to avoid trying to compute 
%  'mx30' values from after the period covered by the database. 

fcstperiods = [l;2;3;4;5;6;7;8;9;10;ll;12;13;14;15;16];fp = fcstperiods; 
%Specifies which half-hour periods to forecast for. 

% numfcsts = length(fp); 
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row = 1; 

pers = mx30(teststart-9:testend-9); 
% Creates persistence vector for comparison with verification. 

Ri = con2seq([smmx30(tstst-d-6:tstst-7); smpk(tstst-d:tstst-l); smdelta2(tstst-d:tstst-l); 
smdir(tstst-d:tstst-1); smtime(tstst-d:tstst-1); smdirdev(tstst-d:tstst-1)]); 

R = con2seq([smmx30(tstst-6:testend-6); smpk(tstst:testend); smdelta2(tstst:testend); 
smdir(tstst: testend); smtime(tstst: testend); smdirdev(tstst: testend)]); 

Y = sim(net20n,R,Ri); y = seq2con(Y); 

for s= 1:16 
randum = gamrnd(4.9308,2.5568,l,testlength); 
verifyfs} = mx30(tstst+6*(s-l):testend+6*(s-l)); 
climo(s,l:testlength) = climo_mx30(climoseed(l)+6*s,2); 
% Creates verification and climatology vectors for comparison with forecasts and persistence. 

fcst{s} = y{l}(s,:); 
= 20.99025; 
= s*.5; 
= std(abs(fcst {s} -verify {s} ))/sqrt(testlength); 
= mae(fcst {s} -verify {fp(s)}); 
= mae(pers-verify{fp(s)}); 
= mae(climo(s,:)-verify{fp(s)}); 
= mae(randum-verify{fp(s)}); 
= mse(fcst{s}-verify{fp(s)}); 
= mse(pers-verify{fp(s)}); 

= mse(climo(s,:)-verify{fp(s)}); 
= mse(randum-verify {fp(s)}); 
= max(fcst{s}-verify{fp(s)}); 
= max(pers-verify{fp(s)}); 
= max(climo(s,:)-verify{fp(s)}); 
= max(randum-verify{fp(s)}); 

[fm,fb,rep_320_99025_35(row, 16)] = postreg(fcst {s}, verify {fp(s)}); 
[pm,pb,rep_320_99025_35(row,17)] = postreg(pers,verify{fp(s)}); 
[rm,rb,rep_320_99025_35(row,18)] =postreg(randum, verify {fp(s)}); 
pictures; 

row = row+l; 
end; 
prmtmat(rep_320_99025_35,'nil',int2str(l:row-l),... 

'period vt stdmae fcstmae persmae climomae randommae fcstmse persmse climomse 
randommse fcstmaxerr persmaxerr climomaxerr randommaxerr fcstr persr randomr') 
save test320rep99025_35 rep_320_99025_35 -ascii 

rep_320_99025_35(row, 1 
rep_320_99025_35(row,2; 
rep_320_99025_35(row,3 
rep_320_99025_35(row,4; 
rep_320_99025_35(row,5 
rep_320_99025_35(row,6 
rep_320_99025_35(row,7 
rep_320_99025_35(row,8 
rep_320_99025_35(row,9 
rep_320_99025_35(row, 10; 
rep_320_99025_35(row,l 1 
rep_320_99025_35(row, 12; 
rep_320_99025_35(row, 13 
rep_320_99025_35(row, 14 
rep_320_99025_35(row, 15 

C-12 



% errsubplots.m   Capt Kenneth P. Cloys     8 Jan 00 

% Forecasts are generated for each period in data subsets 2 and 3. Proxy error bars are 
% determined from MAEs previously computed during program 'nntest.m' and are added to plots 
%of forecasts. 
% Verification plots are overlayed to see if the forecasts and Error Bars bound the observations. 

meanMAE = rep_320_99025_35(:,4); stdMAE = rep_320_99025_35(:,3); 
numtests = 32; 
% Specifies number of random start times for which to test NN forecast and error bars against 
% observed 30-minute maximum peak winds. Must be a multiple of 8. 

for g = 1 :numtests/8 
fore =1:8 

teststart = 1150+unidrnd(length(transfer)-1255); tstst = teststart; 
% Specifies random time step at which to start testing the net on new inputs. 
% If neither delta is used, 'teststart' must be at least d+1; 
% if only dl used, at least d+2; if delta2 used, at least d+3. 

clear verify; 

for i= 1:16 
verify(i) = mx30(tstst+6*(i-l)); 

end;   % Creates verification vector for comparison with network forecasts. 

Ri = con2seq([smmx30(tstst-d-6:tstst-7); smpk(tstst-d:tstst-l); smdelta2(tstst-d:tstst-l); 
smdir(tstst-d:tstst-l); smtime(tstst-d:tstst-l); smdirdev(tstst-d:tstst-l)]); 

R = con2seq([smmx30(tstst-6); smpk(tstst); smdelta2(tstst); smdir(tstst);... 
smtime(tstst); smdirdev(tstst)]); 

Y = sim(net20n,R,Ri); y = seq2con(Y); 

subplot(4,2,c); 
plot(.5:.5:8,y{l},'k.');holdon; 
plot(.5:.5:8,y{ 1} + meanMAE + 2*stdMAE,'r+') 
plot(.5:.5:8,y{ 1} - meanMAE - 2*stdMAE,'r+') 
plot(.5:.5:8,verify','g') 
axis tight; %ylabel('kts'); xlabel('Forecast Period (half-hr. increments)') 
hold off; 

end; 
print ('-dmfile',['errplot320_99025_35_' int2str(g)]) 
print ('-deps','-tiff ,['errplot320_99025_35_' int2str(g)]) 

end; 
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Appendix D: Performance Tables 

This appendix contains the performance tables not shown in the text. Values in 

Original Method tables are averages computed over 250 forecasts; values in Variation 

tables are averages computed over 100 forecasts. 

Table D.I. Results from 5-13 December 1995 (Original Method) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 4.08 0.83 6.84 6.28 17.36 1.11 47.62 61.73 
1.0 4.28 0.90 6.79 5.64 19.00 1.54 46.80 54.74 
1.5 4.41 1.16 6.87 6.35 20.22 2.14 47.91 72.43 
2.0 4.69 1.42 6.56 5.86 22.88 2.87 43.85 65.23 
2.5 4.86 1.28 6.29 6.73 24.52 2.90 40.38 91.64 
3.0 4.83 1.12 5.76 5.55 24.31 2.39 33.98 48.67 
3.5 4.61 1.19 5.29 5.44 22.06 2.00 28.62 51.98 
4.0 4.46 1.06 4.93 5.54 20.61 1.79 25.03 53.29 
4.5 4.27 1.23 4.85 5.78 19.23 2.16 24.53 60.13 
5.0 4.08 1.26 4.53 6.28 17.78 2.21 21.64 62.78 
5.5 3.75 1.25 4.65 6.68 15.62 2.33 22.82 78.57 
6.0 3.41 1.10 4.60 5.67 13.67 1.93 22.38 55.96 
6.5 3.39 1.10 4.47 5.18 13.29 1.67 21.29 49.07 
7.0 3.28 1.01 4.36 5.49 12.23 1.48 20.17 58.38 
7.5 3.47 1.19 4.18 5.34 13.10 2.10 18.69 49.79 
8.0 3.67 1.33 4.09 5.33 14.49 2.55 17.93 45.77 

Forecast 
Valid 
Time 

Neural 
Net 
Max 
Error 
(kts) 

Persist- 
ence 
Max 
Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 6.08 2.00 9.04 20.38 
1.0 6.31 2.00 8.94 23.96 
1.5 6.49 2.90 8.94 27.81 
2.0 6.69 3.80 8.57 29.12 
2.5 6.94 3.90 8.30 36.52 
3.0 8.12 4.80 7.86 18.18 
3.5 7.26 3.90 6.68 22.78 
4.0 6.20 2.90 6.49 25.57 
4.5 6.08 2.00 6.55 28.42 
5.0 5.91 2.90 6.32 19.99 
5.5 5.87 2.00 6.51 45.62 
6.0 5.72 2.90 6.51 23.65 
6.5 5.60 2.90 6.43 20.68 
7.0 5.51 1.90 6.43 31.92 
7.5 5.52 1.90 6.31 18.10 
8.0 5.67 2.90 6.23 16.84 
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Table D.2. Results from 5-11 January 1998 (On ginal Method) 

Forecast Neural Persist- Climo Random Neural 
Net 

MSE 
(kts2) 

Persist- 
Climo Random 

Valid Net ence MAE MAE ence 
MSE 
(kts2) 

MSE MSE 
Time MAE (kts) MAE (kts) (kts) (kts) (kts2) (kts2) 

0.5 9.14 1.71 9.38 11.53 89.27 3.90 90.78 156.15 
1.0 8.78 1.87 9.37 11.89 83.94 5.86 90.03 166.27 
1.5 8.99 1.58 9.53 11.66 88.28 5.33 93.02 161.40 
2.0 9.10 1.81 9.55 11.70 87.93 5.15 93.44 160.10 
2.5 8.51 2.05 9.63 11.84 76.10 5.47 95.19 166.45 
3.0 8.76 2.17 10.00 12.22 79.82 7.79 102.22 178.49 
3.5 8.64 2.34 9.99 11.98 77.58 9.12 102.02 174.14 
4.0 9.10 2.46 9.96 11.07 85.45 9.46 101.27 147.76 
4.5 9.49 2.27 10.03 12.01 92.33 7.38 102.15 167.60 
5.0 9.88 2.22 10.23 11.23 99.87 6.46 106.18 154.26 
5.5 9.54 2.35 10.45 11.43 93.06 7.54 110.52 158.41 
6.0 9.71 2.46 10.68 11.28 96.91 8.86 115.58 155.21 
6.5 9.05 2.54 10.58 10.92 85.09 8.70 113.60 147.63 
7.0 9.44 2.38 10.51 10.18 91.64 7.74 111.88 129.41 
7.5 9.47 2.11 10.63 10.86 91.69 6.87 114.18 141.58 
8.0 9.52 1.96 10.42 10.50 93.17 5.95 109.85 132.63 

Forecast 
Valid 
Time 

Neural Persist- Climo Random 
Net Max ence Max Max Max 

Error Error Error Error 
(kts) (kts) (kts) (kts) 

0.5 -4.56 3.10 -6.39 6.42 
1.0 -3.83 4.10 -6.25 10.08 
1.5 -2.60 4.10 -6.37 8.05 
2.0 -3.20 3.10 -6.42 10.05 
2.5 -3.28 2.90 -6.54 6.64 
3.0 -3.97 4.10 -6.86 9.98 
3.5 -3.73 4.10 -6.96 3.44 
4.0 -5.40 4.10 -7.04 12.05 
4.5 -5.73 4.10 -7.33 3.51 
5.0 -6.54 4.10 -7.71 13.34 
5.5 -7.16 5.00 -8.04 8.17 
6.0 -5.87 6.00 -8.40 13.68 
6.5 -4.76 6.00 -8.45 4.99 
7.0 -5.25 4.10 -8.45 10.32 
7.5 -6.70 5.00 -8.68 7.54 
8.0 -6.12 6.00 -8.49 4.15 

D-2 



Table D.3. Results from 24 January -1 February 1996 (Variation) 

Forecast Neural Persist- Climo Random 
Neural 

Net 
MSE 
(kts2) 

Persist-       ~,. Climo Random 
Valid Net ence MAE MAE 

ence                HOC 

MSE          Jfl 
(kts2)          <ktS ) 

MSE 
Time MAE (kts) MAE (kts) (kts) (kts) (kts2) 

0.5 11.00 3.13 13.93 14.10 144.22 18.40        246.65 249.23 
1.0 10.63 4.44 14.70 15.60 128.18 40.06        261.65 305.43 
1.5 9.05 5.44 15.53 15.76 91.35 60.03        273.21 295.47 
2.0 9.00 6.02 16.43 16.74 90.57 76.24        289.67 321.15 
2.5 10.78 6.32 17.23 17.76 124.88 86.87        304.24 351.06 
3.0 13.04 7.10 17.60 16.97 180.55 99.15        313.60 317.13 
3.5 15.37 7.73 17.67 17.63 245.29 105.78       315.74 341.54 
4.0 19.50 8.12 17.50 18.48 391.30 109.24       310.91 370.28 
4.5 21.54 8.43 17.22 16.55 478.58 112.65       302.11 307.36 
5.0 18.96 8.62 16.93 16.65 371.20 114.30       293.36 317.34 
5.5 16.66 8.84 16.29 16.51 291.13 117.51        273.83 300.86 
6.0 15.00 9.13 15.64 14.33 241.26 120.39       254.94 248.16 
6.5 13.01 9.37 15.15 15.28 185.94 120.65       241.06 268.49 
7.0 13.06 9.47 14.62 13.45 191.35 116.76       224.82 212.46 
7.5 14.11 9.56 14.25 14.02 223.15 112.67       213.38 229.81 
8.0 13.94 9.39 13.89 13.89 220.80 107.82       201.36 223.34 

Forecast 
Valid 
Time 

Neural Persist- Climo Random 
Net Max 

Error 
ence Max 

Error 
Max 
Error 

Max 
Error 

(kts) (kts) (kts) (kts) 
0.5 7.35 7.00 1.21 14.33 
1.0 7.35 9.00 1.24 7.28 
1.5 8.72 10.90 1.41 25.91 
2.0 7.66 10.90 1.32 8.96 
2.5 -3.80 5.10 -8.57 -1.37 
3.0 -6.16 6.10 -10.52 5.89 
3.5 -8.23 6.10 -13.72 -0.28 
4.0 -12.52 6.10 -13.76 -2.72 
4.5 -11.83 8.20 -11.66 2.29 
5.0 -10.98 9.20 -10.86 4.30 
5.5 -9.08 10.10 -9.90 2.73 
6.0 -6.26 11.10 -8.82 12.48 
6.5 -4.19 10.10 -8.82 5.11 
7.0 -5.44 11.10 -8.85 11.92 
7.5 -5.06 10.10 -8.87 2.74 
8.0 -4.94 11.10 -9.01 9.46 

D-3 



fable D.4. Results from 14-22 December 1996 (Variation) 

Forecast Neural Persist- Climo Random 
Neural 

Net 
MSE 
(kts2) 

Persist- Climo Random 
Valid Net ence MAE MAE 

ence 
MSE 
(kts2) 

MSE MSE 
Time MAE (kts) MAE (kts) (kts) (kts) (kts2) (kts2) 

0.5 5.19 1.48 1.48 5.19 44.54 3.54 3.11 41.82 
1.0 6.12 1.69 1.57 5.34 61.51 4.33 3.53 41.29 
1.5 6.42 1.40 1.81 4.40 65.92 3.18 4.51 27.19 
2.0 5.62 1.48 1.71 4.51 50.43 3.53 3.77 30.29 
2.5 4.29 1.74 1.78 4.42 31.50 4.67 4.10 29.91 
3.0 3.32 1.76 1.61 4.98 19.59 5.25 3.46 41.22 
3.5 3.04 2.09 1.59 5.59 15.51 6.60 3.36 47.36 
4.0 2.63 2.35 1.47 5.65 10.27 7.65 2.93 47.34 
4.5 2.30 2.24 1.35 4.71 6.61 6.64 2.61 34.59 
5.0 2.12 1.95 1.38 5.31 5.98 5.05 2.65 42.59 
5.5 1.93 1.74 1.44 4.68 5.62 4.68 2.67 31.63 
6.0 2.22 1.64 1.43 4.46 7.95 5.15 2.63 29.80 
6.5 2.87 1.53 1.40 5.16 12.50 4.09 2.56 38.28 
7.0 2.89 1.49 1.57 5.14 12.66 3.23 3.31 44.27 
7.5 2.35 1.78 1.71 4.86 8.53 4.37 3.94 36.05 
8.0 1.29 1.76 1.61 4.08 2.45 4.53 3.51 28.26 

Forecast 
Valid 
Time 

Neural Persist- Climo Random 
Net Max ence Max Max Max 

Error Error Error Error 
(kts) (kts) (kts) (kts) 

0.5 13.46 3.80 4.43 19.41 
1.0 15.86 4.80 4.44 20.40 
1.5 16.60 3.80 4.80 16.99 
2.0 14.30 4.80 3.58 17.75 
2.5 11.01 4.80 3.65 16.90 
3.0 8.91 4.80 3.50 20.56 
3.5 8.38 4.80 3.47 20.23 
4.0 7.39 4.80 3.22 19.24 
4.5 5.20 3.80 2.96 15.02 
5.0 4.46 2.90 2.94 18.06 
5.5 5.13 2.90 2.74 13.27 
6.0 5.54 1.90 2.46 16.04 
6.5 6.72 1.90 2.12 16.68 
7.0 6.68 2.90 1.61 28.26 
7.5 6.18 3.80 1.37 21.46 
8.0 3.26 3.80 1.45 15.81 
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Table D.5. Results from 6-21 January 1997 (Variation) 

Forecast Neural Persist- Climo Random Neural 
Net 

MSE 
(kts2) 

Persist- 
Climo Random 

Valid Net ence MAE MAE ence 
MSE 
(kts2) 

MSE MSE 
Time MAE (kts) MAE (kts) (kts) (kts) (kts2) (kts2) 

0.5 7.22 1.66 2.17 5.53 62.32 4.14 7.12 48.98 
1.0 8.30 2.00 2.68 4.78 95.65 6.35 10.43 39.29 
1.5 9.99 2.24 3.15 5.87 143.47 8.06 14.01 50.29 
2.0 10.61 2.45 3.71 5.19 169.26 8.66 18.35 41.12 
2.5 10.00 2.53 4.22 5.36 148.09 9.38 22.43 53.78 
3.0 11.17 2.72 4.42 4.90 178.85 10.33 24.32 37.30 
3.5 10.63 3.06 5.10 5.28 154.95 12.09 30.15 49.09 
4.0 8.85 3.54 5.29 5.80 112.40 15.28 31.32 55.51 
4.5 8.78 3.65 5.43 5.04 108.97 16.50 32.54 45.25 
5.0 9.31 3.68 5.32 4.49 124.81 16.39 31.20 35.13 
5.5 8.37 3.54 5.40 5.49 93.81 16.09 31.94 53.85 
6.0 8.78 3.79 5.16 5.29 82.11 18.42 29.38 49.58 
6.5 9.91 3.82 4.96 4.61 113.39 20.89 27.27 37.39 
7.0 11.52 3.85 5.06 4.16 170.32 23.17 27.81 32.31 
7.5 14.70 4.03 4.98 5.47 263.28 25.70 26.59 49.53 
8.0 15.13 3.89 4.65 4.71 303.23 25.20 23.48 44.91 

Forecast 
Valid 
Time 

Neural Persist- Climo Random 
Net Max 

Error 
ence Max 

Error 
Max 
Error 

Max 
Error 

(kts) (kts) (kts) (kts) 
0.5 13.17 4.10 6.67 28.19 
1.0 17.99 5.10 7.28 19.65 
1.5 20.29 6.10 7.74 17.58 
2.0 22.87 6.10 8.08 19.53 
2.5 20.16 7.00 8.33 34.74 
3.0 23.56 6.00 8.34 16.27 
3.5 20.83 7.00 8.70 21.56 
4.0 18.26 7.00 8.68 22.08 
4.5 19.54 7.00 8.75 23.02 
5.0 22.00 8.20 8.60 18.30 
5.5 19.19 8.00 8.57 27.60 
6.0 13.54 7.90 8.32 25.74 
6.5 16.31 8.90 8.06 17.02 
7.0 19.24 9.90 8.04 21.59 
7.5 21.61 10.90 7.84 19.90 
8.0 26.58 10.90 7.56 30.83 
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Table D.6. Results from 25 November - 2 December 1997 (Variation) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 5.69 0.64 6.95 6.52 40.76 0.88 49.59 64.95 
1.0 5.88 1.08 6.74 6.36 43.91 1.92 46.76 66.25 
1.5 7.31 1.55 6.35 5.72 67.03 3.43 42.24 57.39 
2.0 7.33 1.92 5.89 6.23 67.22 4.76 37.06 62.86 
2.5 6.49 2.00 5.34 6.00 56.72 5.52 31.04 63.04 
3.0 6.68 2.11 5.22 5.51 56.55 6.47 30.03 52.80 
3.5 6.94 2.19 5.37 6.91 62.47 7.51 31.75 81.00 
4.0 5.89 2.26 5.20 6.71 48.17 8.12 30.08 84.60 
4.5 5.83 2.13 5.12 6.47 41.00 7.59 29.24 71.16 
5.0 5.69 1.95 5.18 5.76 40.52 6.80 29.73 49.11 
5.5 5.00 1.92 4.98 6.15 35.34 6.06 27.57 64.02 
6.0 5.00 1.81 4.88 5.39 32.98 5.21 26.45 50.31 
6.5 5.01 1.77 4.82 5.60 33.33 4.68 25.87 49.69 
7.0 4.91 1.81 4.84 6.38 34.06 4.77 26.38 67.08 
7.5 4.72 1.82 4.92 6.33 32.67 4.51 27.44 71.67 
8.0 4.95 1.63 4.96 6.26 33.06 3.35 27.91 60.74 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence Max 

Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 9.52 1.90 8.94 25.81 
1.0 10.65 2.90 8.74 24.14 
1.5 13.82 3.10 8.46 28.91 
2.0 12.87 4.10 8.12 28.19 
2.5 13.58 4.10 7.61 26.26 
3.0 11.38 4.10 7.37 22.10 
3.5 12.32 4.10 7.45 41.22 
4.0 16.23 5.10 7.21 35.51 
4.5 14.79 5.10 7.24 28.30 
5.0 14.89 5.10 7.41 17.86 
5.5 15.51 5.10 7.32 21.62 
6.0 13.46 6.00 7.33 22.03 
6.5 10.56 4.10 7.28 22.75 
7.0 10.44 4.10 7.18 25.57 
7.5 10.72 4.10 7.14 23.94 
8.0 9.98 4.10 7.14 30.07 
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Table D.7. Results from 5-11 January 1998 (Variation) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 7.50 2.31 4.42 5.34 73.55 8.60 26.56 48.58 
1.0 9.92 3.12 4.88 5.70 128.36 14.24 32.89 55.98 
1.5 10.75 3.44 5.09 6.19 150.15 17.70 35.13 62.08 
2.0 11.26 3.85 5.09 6.46 148.02 23.55 34.33 70.30 
2.5 6.24 4.01 4.65 5.19 64.30 24.80 29.46 47.97 
3.0 7.58 3.96 4.44 5.63 66.68 24.69 27.33 58.65 
3.5 12.38 3.37 4.45 5.79 195.15 19.32 27.48 56.65 
4.0 5.58 3.22 4.22 5.86 43.28 17.58 25.23 59.91 
4.5 4.22 2.92 4.31 5.39 25.28 15.68 25.97 51.05 
5.0 5.69 3.02 4.54 5.67 41.15 13.70 27.96 55.04 
5.5 5.60 2.94 4.50 5.91 38.04 13.94 27.37 66.29 
6.0 4.19 3.26 4.75 5.88 23.07 16.27 29.13 55.13 
6.5 4.45 3.65 4.86 6.14 26.78 21.90 29.53 64.01 
7.0 5.54 3.79 4.90 5.52 43.09 27.43 29.19 55.18 
7.5 6.40 3.71 4.82 5.86 54.00 30.63 28.49 55.73 
8.0 6.64 3.75 4.83 7.04 62.02 32.92 28.56 86.04 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence Max 

Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 17.87 8.90 14.04 23.91 
1.0 17.73 8.90 13.84 24.11 
1.5 21.43 8.90 13.56 20.64 
2.0 21.66 13.00 13.22 26.14 
2.5 19.51 11.10 12.71 19.91 
3.0 16.39 11.10 12.47 27.56 
3.5 25.97 9.90 12.55 22.31 
4.0 16.28 9.90 12.31 29.13 
4.5 10.59 8.90 12.34 28.89 
5.0 13.33 8.00 12.51 21.29 
5.5 14.91 8.90 12.42 28.73 
6.0 11.40 8.90 12.43 19.06 
6.5 8.07 12.10 12.38 21.69 
7.0 10.89 15.00 12.28 21.48 
7.5 9.48 15.00 12.24 18.57 
8.0 5.41 15.90 12.24 31.95 

D-7 



Table D.8. Results from 4-18 March 1998 (Variation) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 5.39 1.51 12.01 11.96 38.44 3.64 158.15 174.38 
1.0 4.73 1.89 12.46 12.99 31.22 5.56 169.71 196.87 
1.5 4.32 2.46 13.03 12.06 27.47 8.41 182.73 181.99 
2.0 4.65 2.90 13.36 12.03 30.70 12.82 189.69 175.11 
2.5 5.18 3.39 13.60 13.36 37.50 16.01 194.63 214.61 
3.0 6.08 3.71 13.97 14.17 47.50 20.73 203.26 237.19 
3.5 7.94 4.05 14.24 14.93 70.94 24.78 209.65 251.13 
4.0 9.33 4.34 14.39 14.74 93.29 27.68 212.77 251.64 
4.5 8.91 4.83 13.98 15.65 82.88 32.48 199.58 280.10 
5.0 7.27 5.20 13.87 15.41 56.03 36.02 195.65 268.69 
5.5 6.64 5.63 13.44 14.89 47.14 40.04 183.64 253.24 
6.0 6.38 5.79 13.45 16.28 43.47 42.22 183.52 289.47 
6.5 6.51 5.75 13.34 14.78 44.61 43.03 180.39 253.89 
7.0 7.03 5.59 13.08 15.81 52.07 41.37 173.60 276.03 
7.5 7.48 5.26 13.08 15.39 59.70 41.25 173.63 271.57 
8.0 7.35 5.06 12.99 15.55 57.78 38.36 171.24 267.52 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence Max 

Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 0.84 4.80 -5.31 6.33 
1.0 2.62 3.90 -5.21 4.41 
1.5 1.42 3.00 -7.45 8.37 
2.0 0.72 3.90 -8.27 9.58 
2.5 1.14 3.90 -8.10 13.95 
3.0 -0.22 3.00 -7.92 4.39 
3.5 -2.11 3.00 -7.65 9.81 
4.0 -3.70 1.90 -9.24 3.52 
4.5 -4.93 2.90 -9.42 1.00 
5.0 -2.47 3.90 -9.16 7.23 
5.5 -3.73 4.80 -9.65 8.81 
6.0 -3.50 3.00 -10.77 8.22 
6.5 -3.37 3.90 -10.62 15.52 
7.0 -2.56 2.00 -10.40 4.11 
7.5 -2.70 2.00 -10.35 1.05 
8.0 -2.45 2.90 -10.35 11.06 
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Table D.9. Results from 8-17 November 1998 (Variation) 

Forecast 
Valid 
Time 

Neural 
Net 

MAE 
(kts) 

Persist- 
ence 
MAE 
(kts) 

Climo 
MAE 
(kts) 

Random 
MAE 
(kts) 

Neural 
Net 

MSE 
(kts2) 

Persist- 
ence 
MSE 
(kts2) 

Climo 
MSE 
(kts2) 

Random 
MSE 
(kts2) 

0.5 4.55 1.27 6.41 6.81 29.22 2.73 45.75 79.54 
1.0 5.06 1.99 6.68 6.49 35.84 5.44 50.32 82.71 
1.5 5.00 2.49 7.17 6.60 36.07 7.55 58.08 71.47 
2.0 5.11 2.74 7.63 6.30 35.28 9.85 65.12 69.09 
2.5 5.50 2.95 7.93 6.80 36.13 12.48 69.64 80.58 
3.0 5.89 3.05 8.28 7.06 38.44 13.41 74.32 81.53 
3.5 6.04 3.20 8.46 6.85 39.41 14.24 76.40 75.54 
4.0 6.20 3.30 8.82 8.13 40.02 14.27 81.35 96.22 
4.5 6.05 3.42 8.97 7.88 38.14 15.63 83.61 99.39 
5.0 5.79 3.62 8.88 8.03 35.90 17.04 81.39 98.07 
5.5 5.34 3.72 8.91 7.50 32.74 18.40 81.63 81.46 
6.0 5.10 3.62 8.70 7.88 30.31 18.46 77.63 102.20 
6.5 4.93 3.59 8.63 8.07 28.57 17.82 76.10 103.38 
7.0 4.96 3.48 8.04 7.76 28.96 17.24 66.69 90.12 
7.5 4.87 3.49 7.57 8.54 28.17 16.98 59.85 103.83 
8.0 4.81 3.43 7.21 7.34 26.69 16.26 54.79 85.85 

Forecast 
Valid 
Time 

Neural 
Net Max 

Error 
(kts) 

Persist- 
ence Max 

Error 
(kts) 

Climo 
Max 
Error 
(kts) 

Random 
Max 
Error 
(kts) 

0.5 10.45 2.20 11.35 31.72 
1.0 11.65 3.10 11.43 46.52 
1.5 10.55 4.10 11.58 24.65 
2.0 10.30 4.10 11.80 22.49 
2.5 9.51 5.10 11.85 35.72 
3.0 8.97 5.10 11.85 26.48 
3.5 8.96 6.00 11.70 34.58 
4.0 9.28 6.00 11.60 23.89 
4.5 9.14 8.20 11.42 32.25 
5.0 8.77 8.20 11.16 24.15 
5.5 10.11 8.20 11.14 20.36 
6.0 8.81 8.20 10.80 34.03 
6.5 10.01 8.20 10.66 33.32 
7.0 9.37 7.00 10.16 22.56 
7.5 8.35 6.00 9.81 24.85 
8.0 8.12 8.20 9.57 27.12 
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Appendix E: 8-hour Forecasts with Reliability Intervals 

Included in this appendix are eight notional operational 8-hour forecasts for each 

of the periods in database Subsets 2 and 3. During network testing, 32 such forecasts 

were generated for each period, so only a sample for each period is shown here. The plots 

incorporate the reliability intervals computed for the 100-sample forecasts displayed in 

Figures 5.2 through 5.17. 

Each set of forecasts shown here was generated by a neural network trained only 

on data from the same period as the forecast. Forecast start times were chosen at random 

from among the points not used in training the network. 

In all figures, the solid line depicts the observed 30-minute maximum wind speed, 

and the dotted line represents the neural network's forecast for the 30-minute maximum 

wind speed. The +'s mark the reliability intervals described in Chapter 4. 
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Figure E.l. Forecasts and Reliability Intervals for 5-13 December 1995. 
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Figure E.2. Forecasts and Reliability Intervals for 14-22 December 1996. 
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Figure E.3. Forecasts and Reliability Intervals for 23 February - 7 March 1996. 
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Figure E.4. Forecasts and Reliability Intervals for 6-21 January 1997. 
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Figure E.5. Forecasts and Reliability Intervals for 24 November - 8 December 1996. 
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Figure E.6. Forecasts and Reliability Intervals for 25 November - 2 December 1997. 
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Figure E.7. Forecasts and Reliability Intervals for 29 January - 6 February 1997. 
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Figure E.10. Forecasts and Reliability Intervals for 5-11 January 1998. 
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Figure E.ll. Forecasts and Reliability Intervals for 14-20 January 1999. 
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Figure E.12. Forecasts and Reliability Intervals for 21-31 March 1999. 
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