
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

Extensible Markup Language as a Weather Tool Extensible Markup Language as a Weather Tool

Michael J. Calidonna

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Meteorology Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Calidonna, Michael J., "Extensible Markup Language as a Weather Tool" (2000). Theses and
Dissertations. 4754.
https://scholar.afit.edu/etd/4754

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/190?utm_source=scholar.afit.edu%2Fetd%2F4754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholar.afit.edu%2Fetd%2F4754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4754?utm_source=scholar.afit.edu%2Fetd%2F4754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

EXTENSIBLE MARKUP LANGUAGE AS
A WEATHER TOOL

THESIS

Michael J. Calidonna, Captain, USAF

AFIT/GM/ENP/00M-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or the position of the Department of Defense or the U.S. Government.

AFIT/GM/ENP/OOM-02

EXTENSIBLE MARKUP LANGUAGE

AS A WEATHER TOOL

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Meteorology

Michael J. Calidonna, B.S.
Capt, USAF

March 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GM/ENP/OOM-02

Approved:

EXTENSIBLE MARKUP LANGUAGE

AS A WEATHER TOOL

Michael J. Calidonna, B.S.
Captain, USAF

Cecilia A. Miner (Chairman) Date

Michael K. Walters (Member) Date

Timothy M. Jacobs (Member) Date

AFIT/GM/ENP/OOM-02

Acknowledgments

I would like to take this time to thank the people that have helped me

through this endeavor. From an academic viewpoint I'd like to thank Lt. Col

Miner for her guidance, Lt Col Walters for his insight, and Lt Col Jacobs for

his patience. Without the support of these individuals I would not have had

either the willpower or the knowledge to complete the task at hand. I'd like

to thank my friends for keeping me on track, specifically Jimmy Trigg and

Tom Renwick for those necessary sanity checks and those needed respites.

I'd like to thank my family. My children for their understanding and

unconditional love, my brothers and sisters for their kindness, my mother

for, well, for being mom, and my father for loving me so much in life that I

can still feel it. Finally, I'd like to thank God for his sense of humor, who

else would create both an unpredictable system and people that want to

explain it.

Michael J Calidonna

IV

Table of Contents

Acknowledgments iv

Table Of Contents v

List Of Figures vii

List Of Tables And Screens viii

Abstract ix

I. Introduction 1

1. MOTIVATION 1
A. AFRL/IFEB Mission Statement 2
B. CMAPI Introduction 2

2. PROBLEM STATEMENT 3
3. SCOPE 4

A. Thesis Scope 4
B. Constraints 5

4. OVERVIEW 5

II. Background/ Literature Review 7

1. CHAPTER OVERVIEW 7
2. XML IN 7 POINTS 7
3. VARIOUS SOURCES 9
4. XML BIBLE, XML BY EXAMPLE, AND XML IN ACTION 12
5. SUMMARY 12

III. Methodology 14

1. CHAPTER OVERVIEW 14
2. BASIC TERMINOLOGY 15
3. USING XML 17
4. THE PROGRAM 31
5. SUMMARY 34

IV. Results Analysis 35

1. CHAPTER OVERVIEW 35
2. RESULTS 35
3. SUMMARY 39

V. Conclusions/Recommendations 41

1. CONCLUSIONS 41
2. RECOMMENDATIONS 42

3. SUMMARY 43

Appendix A: Code For MR_CAT 45

Appendix B: Code For Weather.Html 46

Appendix C: Code For Dashl.Xml 56

Appendix D: Types Of Attributes And Their Meanings 57

Appendix E: List Of Acronyms 58

Bibliography 59

Vita 60

VI

List of Figures

Figure Page

1. 3-1 Element Example 15

2. 3-2 Children Example 15

3. 3-3 Code Example with no style sheet 18

4. 3-4 Code Example with attached style sheet 21

5. 3-5 Sample style sheet 21

List of Tables and Screens

Table Page

1.3-1 Partial Document type definition 27

Screen Page

1. 3-1 Web page with no style sheet 19

2. 3-2 Web page with attached style sheet 22

3. 3-3 XML Notepad example 30

4. 3-4 Example of final output 33

5. 4-1 Dash-1 XML file example 36

6. 4-2 Web page output from dash-1 file 36

7. 4-3 Sample XML document 38

8. 4-4 Sample XML document with bases 39

Abstract

This thesis is a proof of concept work that will extend the Core Mapping

Application Program Interface (CMAPI) components to include weather data. The

CMAPI project is headed by Air Force Research Lab (AFRL)/ Information Directorate

Information Handling Branch (IFEB) at Rome labs in Rome, New York. This work

extends the CMAPI project in two distinct areas. The first goal is to figure out how to

overlay and display weather data on a dynamically linked Internet platform. This was

accomplished by incorporating existing data from the Air Force Weather Agency

(AFWA) into the CMAPI program in a static environment. The other goal is to learn

about the Extensible Markup Language (XML) and how it can contribute to

characterizing structured data (i.e., weather data output from AFWA). Once this tool can

be exploited, a dynamic interaction between the CMAPI program and all AFWA

products could be developed. The overall goal is to make it easy for the system, and the

application ofthat system, to ingest and manipulate data.

Extensible Markup Language

As a Weather Tool

I. Introduction

1. Motivation

The motivation for this project arose from the Air Force Research Lab's (AFRL)

work with emerging technologies in their Common Mapping Application Program

Interface (CMAPI) program. AFRL has been working on projects designed to improve

information visualization and web based applications of this visualization. This work has

served the intelligence community needs and could be formatted to fulfill some of the

needs within the weather community. As such a logical next step was to see if these new

technologies, specifically extensible markup language (XML) could be exploited to better

serve the needs of both the Air Force and the Air Force Weather Agency (AFWA).

AFRL was the driving force behind this project, and a design similar to the CM API

concept was the goal to strive for. Coincidentally this program acts to achieve objective

5 of goal 2 from the Air Force Weather Agency Strategic Plan, which reads, "Field an

automated, worldwide pilot briefing system that meets the needs of Total-Force

customers within 24 hours" (Air Force Weather Agency, hereafter referred to as AFWA,

1999).

From an operational viewpoint, this project will enable both the base level and the

regional forecasting centers to process information and maintain a higher level of

horizontal consistency than is currently available. Each entity will process information in

the same manner and utilize the same governing program.

A. AFRL/IFEB Mission Statement

"The Information Directorate Information Handling Branch (IFEB) at the Air Force

Research Labs (AFRL) in Rome, New York, seeks the advancement and application of

information systems science and technology for aerospace command and control and its

transition to air, space, and ground systems to meet customer need in the area of Global

Awareness, Dynamic Planning and Execution, and Global Information Exchange. The

directorate's areas of investigation include a broad spectrum of information and fusion,

communications, collaborative environment and modeling and simulation, defensive

information warfare, and intelligent information technologies. IFEB seeks to identify,

develop, prototype, transition, and support advanced technologies and approaches to the

acquisition, analysis and timely dissemination of intelligence information for the

intelligence community. These techniques will acquire, assimilate, and disseminate

intelligence products needed by decision-makers and warfighters to ensure battlespace

dominance. The Common Mapping Application Program Interface (CMAPI) was

developed to meet these needs." (Air Force Research Lab, 1999)

B. CMAPI Introduction

"The CMAPI components grew out of a Joint Reserve Intelligence Connectivity

Program (JRICP) sponsored effort to prototype a web based component for mapping"

(Air Force Research Lab, 1999). Upon reviewing the available products AFRL/IFEB

decided to develop their own vendor-independent product that could insulate application

developers from proprietary interfaces of off-the-shelf mapping products so they could

write to one interface and leverage multiple mapping products. The CMAPI components

achieve that goal.

The CMAPI components are significant for the following reasons:

1. They provide a static, documented, public interface that provides vendor-

independent access to off-the-shelf mapping products.

2. They enable application developers to write only one set of mapping calls while

being able to take advantage of multiple backside engines (driving programs

located outside the users access).

3. They enable sites already operating one supported mapping engine to leverage it

across multiple intelligence applications.

4. They leverage component and web technology to maximize ease-of-integration.

2. Problem Statement

This thesis was designed to develop a proof-of-concept program using the extensible

markup language (XML) as a vendor-independent, dynamically linked tool to manipulate

weather data. It also evaluated this program language for use as a platform independent

standard for weather visualization.

3. Scope

A. Thesis Scope

AFRL would like to see if an XML program could be used to develop software that

could be accessed from various sources and accomplish the same task each time. This

type of software is referred to as a write once, use often type software to enable end users

the ability to view and manipulate all types of data from multiple sources. This project

focuses specifically on weather data. To achieve this goal two major steps have been

accomplished. First, a Document Type Definition (DTD) was developed, and secondly,

the scientific data has been transformed into a viewable format.

The scope of this work concentrates on utilizing XML as the Internet programming

language of choice. XML will allow any web-based browser to directly interact and

manipulate data in an efficient manner. To exploit XML for maximum efficiency a

thorough understanding of this language's abilities and limitations is needed. The

majority of this thesis will address the development of various tools used in XML for

data formatting, ingesting, manipulation and visualization.

XML is an emerging technology that is an extension of the familiar hypertext markup

language (HTML). The major difference is that where HTML has only predefined tags

for data formatting, XML has very few predefined tags. Tags are a way of assigning

variable specific values. In both HTML and XML tags are written inside the "< >"

symbols, and a closing tag is preceded by a "</ >" symbol. However, instead of the

limited set of abbreviated tags allowed by HTML, the tags in XML may be much more

expressive. For example <BASE_NAME> could have the value "Travis" and is closed

by a </BASE_NAME> declaration. XML is a language defined by the user. This makes

XML easy to use. XML allows the programmer not only to format the output, but also to

manipulate the output in ways not possible using HTML.

B. Constraints

XML is an emerging technology, and thus some of the functions do not work yet on

all web browsers. As this thesis is designed to develop a vendor independent tool,

Microsoft Internet Explorer (IE) 5.0 is the browser of choice. The areas where IE falls

short of the full capabilities of XML are highlighted. The shortcomings of IE 5.0 are

easily avoidable through proper manipulation of the data and a thorough understanding of

the incompatibilities between XML and IE 5.0.

4. Overview

This chapter outlined the importance of exploiting XML, an emerging technology, to

visualize scientific data, specifically the visualization of weather data. This work will be

an important step toward the understanding and utilization of XML as the standard for

web based manipulation of weather data.

The remainder of this work focuses on four specific aspects of the scientific process.

Chapter 2 provides additional background on work that has already been done. Chapter 3

is a detailed account of the methodology associated with this project's development.

Chapter 4 summarizes the progress made through this project. Chapter 5 provides

recommendations for areas of continued research and further project development. The

appendices provide a glossary of acronyms used, and a complete copy of the code

developed.

II. Background/ Literature Review

1. Chapter Overview

This chapter provides the background material for this project. As XML is an

emerging technology, the literature on this subject is sparse. Most of the papers written

deal mostly with what XML should be able to do, as opposed to what has already been

done with it. The fields of study encompass a wide range of topics, from financial

reporting, to manipulation of atomic structures, to analysis of baseball statistics. As such,

each of the background papers are covered independently and common themes are

summarized in the closing comments of this chapter.

2. XML in 7 Points (Bos, 1999)

The information in this paper gives a brief overview of XML. It is intended as a

stepping stone to more complicated uses of the language. This article explores seven

major benefits of using XML. Each of these points are summarized below.

1. XML is a method for putting structured data in a text file. All computer output is

stored as either binary data or textual data. XML is a set of rules designed to produce

files that are easy to generate and read, that are unambiguous, and that are platform

independent.

2. XML looks like HTML but isn't HTML. Like HTML, XML uses tags (words

bracketed by '<' and '/>') and attributes (of the form name = "value"), but while

HTML specifies what each tag and attribute mean, XML uses the tags only to delimit

pieces of data, and leaves interpretation of the data to the application that reads it.

3. XML is written word, but it isn't meant to be read. XML files are textual but only to

allow the programmers to debug them. The rules for XML are much stricter than for

HTML. HTML will "best guess" what a missing attribute should be; XML will stop

processing at the first ill-defined attribute. For this reason it is up to the program

developer to either force the data to be in the correct format, or prompt the user when

the data is not valid.

4. XML is a family of technologies. XML 1.0 is the parent specification of many

optional modules that provide sets of tags and attributes, or guidelines for specific

tasks. There is XLINK (still in development as of September 1999) which describes

a standard way to add hyperlinks and other inter-document relations to an XML file.

XPointer & XFragments (also still in development) are syntaxes for pointing to

parts of an XML document. Cascading Style Sheet (CSS), is the style sheet language,

and is applicable to XML as it is to HTML. XSL is the advanced language for

expressing style sheets. It is based on XSLT, a transformation language that is often

used outside of XSL as well, for rearranging, adding or deleting tags & attributes.

5. XML is verbose, but that is not a problem. Since XML is a text format it is nearly

always longer than comparable binary formats. The main advantages of textual files

are their ability to be read and understood by the user. While these files are

significantly bigger than similar binary formatted files, the advantages of textual files

far outweigh the size of the files. On most modern machines, disk space is really no

longer a problem, and modem protocols can compress files on the fly, thus saving

bandwidth as effectively as a binary format.

6. XML provides a new twist on an old theme. The World Wide Web Consortium

(W3C 1999) started developing XML in 1996, and it has been a standard since 1998.

XML grew out of such scientific visualization tools as standard general markup

language (SGML) and HTML. The developers simply took the best aspects of both

languages and produced something that is as powerful, yet easier to use.

7. XML is license-free, platform independent and well supported by most Internet

browsers. XML can be compared to Structured Query Language (SQL) in the

database vernacular, since users still have to build their own database and their own

programs/procedures that manipulate it, but there are many tools available. And since

XML is license-free, users can build their own software around it without paying

anybody anything. XML isn't always the best solution, but it is always worth

considering.

3. Various sources

There have been a number of papers published on XML in financial (Hoffman and

Kurt, 1999) and quasi-scientific journals (Bosak and Bray, 1999). These articles point to

XML as the Internet language of the new millennium (Hoffman and Kurt, 1999). At

present computer devices connected to the web can do little more than swap information

back and forth. Current HTML protocols convert your computer to an on line fax

machine. In other words, the information is transferred between systems, and the

computers simply swap information back and forth, not allowing any data manipulation.

The computer only sends and receives pages, one at a time (Garber, 1999). XML will

allow a great deal of processing on the spot. It does this through embedding objects

within the source code of the document to be viewed. In fact the only limitation is the

programmer's ability. XML lays down the ground rules that clear away a layer of

programming detail so people with similar interests can concentrate on the basic part -

agreeing on how they want to represent and visualize the data they're exchanging. To do

this the following must be agreed upon:

1. Which tags will be allowed

2. How elements may be nested within one another

3. How data should be processed

The first two are typically codified in the Document Type Definition (DTD).

XML is designed to make information self-describing. HTML uses predefined tags,

which generally have little meaning. For example: a <p> tag within HTML means a

paragraph; within XML you can use <p> to represent anything you want. Additionally

you can use the word <paragraph> (or <Satellite Image>, or <Forecast>) to represent

exactly what that tag means. " The current problem with web based technology is not the

modem or connection speed, it is often that speed of light networks often move along the

information highway in the slow, if not disabled, lanes" (Bosak and Bray, 1999). This

problem arises from the fact that HTML was never designed for dynamic interactivity

(Pardi, 1999). Generally you have to access a page, find what you want, go to the nest

page, fill in information, and continue ad nauseam. This also assumes everything is

written in the same language (English, Spanish, etc.).

10

XML provides part of the solution. XML requires tags to come in pairs. In other

words <Satellite Picture> must always be accompanied by </Satellite Picture>. The first

opens the tag and the second closes it. This may seem trivial but it allows XML to nest

tags in a tree like structure. HTML also has this feature but in a very limited capacity.

HTML has only basic hierarchical nesting. This XML nesting structure then follows

certain inheritance rules needed for data manipulation. Secondly XML relies on a new

standard called a Unicode (Bosak and Bray, 1999). In short this allows text to be written

in most of the world's languages. The importance of this becomes clear when we try to

retrieve a forecast or observations from, say, China. One of the first things declared in an

XML document is the language it is written in. Since XML provides for different

languages, the characters written in Chinese now have meaning when a program ingests

them in English.

A thorough understanding of HTML is not necessary for programming in XML.

XML is designed to be a stand-alone system capable of formatting, manipulating and

viewing most types of data formats (McGrath, 1999). Using XML in this capacity limits

the complete exploitation of the World Wide Web. XML should be seen as an extension

of HTML, keeping the good aspects of data formatting and imaging, while extending the

capabilities beyond their current ceilings. The advancement of HTML and scripting

languages, specifically JavaScript (Holzner, 1999), allows the programmer to easily

process large data sources to manipulate and extract needed information.

11

4. XML Bible, XML by Example, and XML in Action

These books are the main source for learning XML as a language (Harold, 1999;

McGrath, 1999; Pardi, 1999). The authors take a step-by-step journey through the

process of what XML should be able to do. Their knowledge came about through

statistical research of various data mediums to include baseball statistics, financial

information, and basic web publications. They saw the complexity of inputting large

amounts of data into HTML and not being able to directly manipulate the data without

overtaxing a network server. It should be pointed out that the weakest link in the data

stream is communication with the server. Stand-alone machines do not have to compete

with a slow communications network. The more a system can do independent of a

network, the more efficient it is. The ultimate goal of XML is to make systems more

efficient. While these authors did not develop the standard for what typical XML

documents should look like, they consistently point out how to develop a well-formatted

XML document. These books are referenced throughout the methodology section of this

thesis.

5. Summary

It is obvious from all papers available that in order to exploit the Internet some

form of standardization is required. Incompatible software problems run rampant

through the worldwide web and detract from the ability to manipulate various data

formats. HTML has served as the standard for some time for most of the Internet home

12

pages. While this serves its purpose as a formatting tool, it falls short of most scientific

applications. SGML was then developed to allow scientific visualization of complicated

data sets. Again, SGML serves its purpose but is rather limited in scope. While different

programming languages, e.g., Java or Java3D, can help they do not alleviate the problem

of Internet accessibility. W3C then decided to develop a language to serve all purposes.

XML became the language of choice. To be of maximum use, XML must allow all types

of data to be input and manipulated. The broader the range of input allowed, the more

powerful the language. W3C decided to allow the users to format any and all data using

XSL style sheets. This allows the user to define all tags associated with the programs

they are using.

13

III. Methodology

1. Chapter Overview

This chapter provides a detailed description of the thesis work. A description of how

the program works is provided, but the emphasis is on how the weather community could

exploit XML for data dissemination. As stated earlier, this thesis is a proof-of-concept

designed to use XML as the primary data manipulation language. The goals of this work

were to learn and exploit XML in a web based application. This was accomplished using

two approaches, creating a stand-alone XML document, and combining XML, HTML,

and JavaScript. While the first method was necessary for understanding how XML

works, the second method produced results more in line with the needs of the Air Force.

A discussion of these methods, including the strengths and weaknesses of each, is

provided.

A necessary step to understanding how to best use XML is gaining some rudimentary

knowledge of HTML and some of the basic terminology associated with publishing a

web based application. Once this is in place, an understanding of what data will be

manipulated is needed. For this program the data will be textual only. The next phase of

the application is to see how XML uses the data and what properties are associated with

each step along the way. The final product is displayed using some tailor-made

JavaScript in an HTML format.

14

2. Basic Terminology

An explanation of terms like elements, children, nesting, inheritance, and embedding

follows.

A. Elements: An element is simply a piece of information within the program's

structure. One of the benefits of XML over HTML is that elements can be

named, or tagged, in a way that makes more sense to readers of the code. For

example a base's name can have a tag called " BASE_NAME", such as in Figure

3-1. Elements can then be placed in a tree like structure where the topmost

element is referred to as the root element.

<BASE_NAME> Wright-Patterson </BASE_NAME>

Figure 3-1 Element

B. Children: All elements in the structure that fall underneath the root elements are

children ofthat element, as the example in figure 3-2 shows. Children elements

may have children elements of their own adding to the tree like structure of the

data. This structure is prevalent in most programming languages. Until the

development of XML this structure has not been nearly as easily defined in web-

based applications.

<BASE>

<BASE_NAME> Wright-Patterson </BASE_NAME>

<BASE_LOCATION> Ohio </BASEJLOCATION>

</BASE>

Figure 3-2 BASE Element with two children

15

C. Nesting: Grouping elements together in a logical manner is nesting. This is an

important aspect of the program because it allows the user to follow the data

structure through some logical progression until the desired element is reached.

Figure 3-2 shows elements BASE NAME and BASEJLOCATION nested under

the BASE root element.

D. Inheritance: Just as in physical families, where children acquire certain traits

from their parents, child elements in XML inherit their parent's attributes. For

example, if BASE is the root element, and it is defined to be displayed in a bold

format with a font size of 20, it is necessary to program the computer to do just

that; the code looks like this: BASE {font-style: bold; font-size: 20pt}. The

benefit of inheritance is that all children elements of BASE will now be displayed

as bold 20 pt. From a pilot's viewpoint it would be effective if all weather tagged

with specific information (perhaps a ceiling below 200 ft) was displayed red.

From a programmer's side it is now easier to force all children elements to

conform to a specific input parameter.

E. Embedding: The basic premise behind embedded objects is keeping data

available to the computer but hidden from the user. The user may access this

information through some graphical user interface; for example a "click here"

button will display a list previously hidden. The ability of XML to embed

information allows the user to quickly access and manipulate all information

available to the computer.

16

3. Using XML

XML is designed to complement HTML, not replace HTML entirely. To begin the

process of understanding how to best manipulate XML, a stand-alone document was

written. This was done solely using XML as the data source and, initially, a cascading

style sheet (CSS). The XML Bible (Harold, 1999) uses baseball statistics as an initial

example. To follow the author's logic similar textual weather data was used. Prior to

explaining the utilization of XML a brief explanation of style sheets is in order.

XML stand-alone documents are written with three types of files. The fist file is the

XML document itself. This is the controlling document and contains all the elements

needed for the output. The second type of document is a style sheet. There are two basic

types of style sheets, a cascading style sheet (CSS), and an extensible style sheet

language (XSL). The final type of file is a document type declaration (DTD). XML does

not need all three types to produce output; however, each type of file has strengths and

weakness associated with it.

XML documents with no attached style sheets will simply display the program input.

Figure 3-3 shows a basic XML document with no attached style sheet, and screen 3-1

shows that same program as displayed with IE5.0. Notice the first line of the XML

document tells the browser what it is looking at, in this case XML version 1.0.

Additionally the browser uses the default settings to display the data, in this case notice

the text is bolded.

17

<?xml version ="1.0"?>

<WEATHER>

<BASE>

< LOCATION>California</ LOCATION>

< NAME>Travis</ NAME>

< ICAO>KSUU</ ICAO>

<FORECAST>

281313 24010KT 9999 BCFG FEW 020 FEW 080 QNH3000INS

BCMG 1819 24010G15KT 9999 NSW SCT080 QNH2998INS

</FORECAST>

</BASE>

</WEATHER>

Figure 3-3 XML Sample code

'3 l:\SCREEN3_1.XML - Microsoft Internet Explorer provided byAFIT i0B
Fife Ed) View Favorites Tools

. Baek
4

Rftvaid
9 a
Stop Refresh Home Search Fayoties History Mai Print . Ed) Discuss Del Home

Address g IASCREEN3J.XML ^Go Links>}

<?xml version="1.0" ?>

<WEATHER>

- <BASE>

<LOCATION>California</LOCATION>

<NAME>Travis</NAME>

<ICAO>KSUU</ICAO>

<FORECAST>281313 24010KT 9999 BGFG FEW 020 FEW 080 QNH3000INS BCMG 1819

24010G15KT 9999 NSW SCT080 QIMH2998INS</F0RECAST>

</BASE>

</WEATHER>

Screen 3-1 Web page with no attached style sheet

This type of file does not produce any useful output. It does highlight some

differences between XML and HTML. The first difference, and the most important, is

that the data is stored in tags that the programmer designs. The tags can be named for

what they represent for example, the name of the base is in the "BASE_NAME" tag.

This is different from HTML, which only has a set number of predefined tags (Darnel, et

al. 1997). The next difference is XML requires a closing tag. When programming in

HTML the browser often knows when the predefined tags should end. In XML this is

not the case. All elements must end in a "</ELEMENT_NAME>" tag; not having this

19

closing tag will produce an error on the page. Unfortunately, most browsers offer little

guidance as to what the error may be; they simply will not publish the document. Also

notice the root element, in this case <WEATHER>, contains no textual data. This is the

element that completely contains all other elements. The choice of <WEATHER> as the

root element will allow additional <B ASE> elements to be added at will.

Although necessary and instructive, the XML document alone will not produce a

useful web page. To do so, some form of style sheet is needed.

CSS's are the most basic types of style sheets. They contain information that tells the

browser how, and where, to display certain types of data. Figure 3-4 attaches a CSS to

Figure 3-3. Figure 3-5 shows the CSS, and Screen 3-2 shows the resulting output. This

overrides the browser's default settings and only displays the data associated with each

tag.

20

<?xmlversion="1.0"?>

<?xml-stylesheet type="text/css" href="3-l.css"?>

<WEATHER>

<BASE>

<ICAO>KSUU</ICAO>

<NAME>Travis</NAME>

<LOCATION>California</LOCATION>

<FORECAST>

281313 2401OKT 9999 BCFG FEW 020 FEW 080 QNH3000INS

BCMG 1819 24010G15KT 9999 NSW SCT080 QNH2998INS

</FORECAST>

</BASE>

</WEATHER>

Figure 3-4 Sample XML code with attached style sheet

BASE, ICAO, NAME, LOCATION { display:block }

FORECAST {font-weight: bold; background-color: Window }

Figure 3-5 Sample style sheet

21

'Hl:\SCREEN3_2XML - Microsoft Internet Explorer provided by AFIT HBÖ
File Edit View Favorites Jools Help

4- „ -► T <9
Back Forward Stop Refresh Home Search Favorites

Address <g\ l:\SCREEN3_2XML » ^>Go Links

California
Travis
KSUU
281313 24010KT 9999 BCFG FEW 020 FEW 080 QNH3000INS
BCMG 1819 24010G15KT 9999 NSW SCT080 QNH2998INS

"3

zl
Done SI Local intranet A

Screen 3-2 Web page with attached style sheet

While the previous example may seem rather simplistic it highlights some of the

advantages of using XML with cascading style sheets.

1. XML has no predefined tags. All of the data is self-describing.

2. The CSS can be anywhere. Notice in Figure 3-4 the second line reads

"<?xml-stylesheet type="text/css" href="3-l.css"?>". An "href is a specified

uniform resource location (URL) and is used the same as in HTML. The

"href could be a style sheet located anywhere, accessed by numerous

programs having the same tags. These tags are defined as either an absolute

location, one that gives the exact path to where the information is located, or a

relative location. This is a relative location; in other words this file is on the

22

same computer, in the same subdirectory as the XML file; as such the "href

line contains only the file name. If this were an absolute location the "href

would contain additional information, perhaps a URL or a location in another

directory on the same computer. A style sheet for displaying all forecasts

could be stored in one location and every forecast could access it. This would

ensure every forecast is displayed in the same manner and uses the write once

used often anthem present in computer sciences.

3. Adding additional bases is simple. Either create an additional XML file or

simply add additional bases to the existing file.

4. Notice the FORECAST tag has a font-weight attribute of bold in the style

sheet. Any information within this tag will be displayed bolded. In fact the

information can be displayed differently by accessing only the style sheet and

leaving the XML data alone.

CSS's can format information in all ways that HTML can. Using CSS's allows the

information to be displayed as required but does not allow for data manipulation. The

more advanced XSL allows more to be done with the data.

XSL operates in two different modes, formatting and transformation. Each of the

modes operates independently from the other. It is important to note that XSL is the

bleeding tip of this cutting edge technology. Not all browsers support XSL entirely, and

the standardization is still in the development stage. The program written for this thesis

started using XSL as the primary method for data manipulation but quickly ran into

displaying problems. The formatting aspect of XSL is fairly easy to comprehend and

serves as an extension of CSS. The program attempted to emulate programs written by

23

Elliotte Harold (Harold, 1999) but ran into compatibility problems. The programs as

written in XML Bible could not be reproduced using IE 5.0 on five different computers

both at personal residences and government owned computer labs. The programs were

run directly from the CD provided with the book, and still they could not be run on either

IE 5.0 or Netscape Navigator 4.7. The problem had to do with IE 5.0 and Netscape not

being able to process some of the XSL transformations. The solution seemed to be using

a third browser called Mozilla. This method was not used because Mozilla is not

standard on government computers. At this stage of development it was thought that

XML had some benefits but fell short of initial ideals. The last road to explore was the

DTD's.

DTD's provide a list of elements, attributes, notations, and entities, along with their

relationship to one another. This is the part of the file that tells the computer what to

expect and places limitations on those expectations. DTD's are useful for validating an

XML file. They make sure all tags fit within a pre-defined container. DTD's do little for

data manipulation. With this in mind a new approach was taken. This approach

consisted of incorporating XML into an HTML file.

The full functionality of XML was not exploited using only XML type of files.

Incorporating XML into an HTML document seemed the next logical step. Using HTML

by itself would not advance the needs of the Air Force. Combining JavaScript with

HTML really took advantage of the functionality of XML. While this is easy to

implement, it is difficult to fully exploit.

The program in its entirety is located in appendix B. At this point the program will be

described as it was written.

24

The biggest benefit to using XML is the ability to define any tags needed and

make these tags self-describing. The most effective way to do this is to understand the

structure of the data to be defined. In this example only the base ICAO, name, location,

and forecasts are displayed. All of this data is simply text, and there have been no

limitations on what data can be input. There needs to be some logical breakdown of the

data. In this example the root element BASE has been given the children ICAO, NAME,

LOCATION and FORECAST. To further illustrate the point the child FORECAST could

have two children: one tagged TAF, to represent the normal terminal forecast; and one

tagged AMD, to represent an amendment to the forecast. XML can then force the data to

be in a very specific format using the format tags associated with entity references.

Entity references are designed to allow the computer to process input in very

specific ways. This example has only included character data. In general anything inside

of the brackets (o) the computer treats as markup language and anything outside is

character data (CD AT A). Most of the times this is what is wanted; however, there are a

few exceptions to this rule. The less-than and greater-than signs must be treated as a

special case. These are input as "<" and ">". The general rules associated with this

syntax are referred to as "well formed." A well-formed XML document adheres to these

eight rules (Harold, 1999):

1. The XML declaration must begin the document.

2. Elements that contain data must have both start and end tags.

3. Elements that do not contain data and use only a single tag must end with a />.

4. The document must contain exactly one element that completely contains all

other elements.

25

5. Elements may nest but may not overlap.

6. Attribute values must be quoted.

7. The characters "<" and "&" may only be used to start tags and entity

references respectively.

8. The only entity references which appear are "&"; ">"; "&apos"; and

""".

It is important to note these rules do not apply to HTML. For example HTML

documents do not need close tags in all cases. While most browsers will process an

HTML document that is not well formed, this project adheres to these eight rules for both

the XML file and the HTML file.

The next phase in the program was developing a document type definition (DTD).

To accomplish this a complete list of all elements is needed. Table 3-1 contains an

example of some of the elements needed to display a forecast; this is not meant to be a

complete table, only a portion of the data that could be included.

26

ELEMENT Element it
Must contain

Elements it
May contain

Element in which
it must be
contained

Catalog Base

Base Name, Location,

ICAO, Forecast,

Observation

Catalog

Name Text Base

Location Text Base

ICAO Text Base

Forecast TAF|AMD Base

TAF|AMD Valid time

First time group

Second time group

Third time group

Etc

Forecast

Valid time Text TAF|AMD

First time group Clouds, visibility,

winds, cat

weather, Remarks TAF|AMD

Clouds Text Ceiling First time group

Visibility Text First time group

Winds Text First time group

Cat A|B|C|D|E First time group

Table 3-1 partial DTD

27

Now that the elements have been defined, the XML code can be written. The

options at this point are to write one file for each base and collect them at one central

point, or to write one extensive program containing all bases. For this effort one program

was written. Experimentation with multiple files proved possible but more an exercise in

JavaScript manipulation. For this program five bases were chosen as representative, and

the forecast was limited to one textual block as it is currently displayed through Air Force

Weather Information Network (AFWIN). An XML notepad was used to initialize and

populate the database. One hundred bases were input to prove it could be done. To

accomplish the same feat in HTML, the source code would have to be changed. The

bases would have to be input and formatted individually. To add these bases in XML,

they were simply added with the proper tags. Once assigned the proper tags, a single

formatting statement ensured uniformity. This highlighted a basic benefit of using XML

code.

The program is designed to simulate a pilot preparing their flight plan. This is a

fulfillment to AFWA's strategic plan goal 5 (AFWA, 1999). Part of the planning process

involves requesting weather for take-off, landing, and alternate locations. When the

weather is fine (ceilings above 3000 ft, visibility above three miles, winds less than 15

knots) this part of the process is easy. When the weather is less than splendid it is time

consuming for the pilots to search for bases that meet their specific weather requirements.

AFWIN has very similar capabilities. The difference is that all the information is

contained within the program accessed. Current programs simply access different pages

to acquire different bits of the information. This program allows the pilot to search many

28

bases in an efficient way. As the technology progresses the program will be able to find

bases based on specific criteria.

This program contains two important files. First there is the HTML code. This

tells the browser what to do. Part of this HTML code is a JavaScript, which tells the

computer to open certain XML files and embed that information within the HTML file.

The other important file is the XML code. This is where all the actual information is

stored. The benefit of storing the data separate from the source code is that any change to

the data does not require a change to the code itself. As long as the tags are the same,

name information can be added either manually or automatically. The following section

demonstrates how additional bases could be added. A program called XMLNotepad was

used to manipulate the XML code as shown in screen 3-3.

This example will demonstrate how, with the proper tags, information can be

added to a web page without changing the HTML source. Using appendix A as the XML

source code, the code for the HTML is located in appendix B. To add another base to

this code another element is added with the tag <BASE> and all the same children. As

the HTML code cycles through the XML document it simply finds the new <BASE> tag

and processes it like it did the previous one. This process is continued until no new child

elements are found. The ease with which new elements can be added maximizes the

utility of using XML as the preferred data storage medium.

29

§i Untitled - XML Notepad HHE3
File Edit View Insert Jools Help '.'..

D i^y o jyjte|n ** -Pss «■ I ♦ ♦ I * + - p n #
Structure I Values

B "^ Weather
S-Q BASE
Ö-D BASE

■X ICAO
■X LOCATION
■X NAME

■-X FORECAST

KSUU
California
Travis
281313 2401OKT 9999 BCFG FEW020 FEW080 QNH3000INS

B-D BASE
B Q BASE
B-Q BASE
B Q BASE

For Help, press F1 ^■'•■^■:-^-r : |CAP;|NUM | ^

Screen 3-3 XMLNotepad

XML is still in the development stage. All of the capabilities of this language

cannot be exploited. Microsoft Internet Explorer 5.0 offers most of the functions;

however, it falls short in a few key areas, for example in trying to incorporate the

IATTLIST function. This function is designed to describe attributes of an element within

the DTD. The use is <!ATTLIST Element_name Attribute_name Type

Def ault_value>. Where Elernent_name is the element possessing the attribute,

Attribute_name is the name of the attribute; Type is the kind of attribute (one of the

10 in appendix D); and Def ault_value is the value the attribute takes on if no other

is specified. An unspecified error was encountered each time the IATTLIST function

was used. Currently to incorporate this function the Mozilla browser could be used. This

is just one example of where the idea of XML has not caught up to the application of

XML. The work around to this and other problems was to be the use of some scripting

30

language. This program uses JavaScript to accomplish all of the data manipulation. A

brief explanation of the program is now in order. Refer to appendix B for the code itself.

4. The Program

The first part of the program is simply the declarations. It is in this portion where the

browser sets the standards. The next declaration tells the browser to use JavaScript as the

scripting language. The various files are then loaded into the system and given distinct

variable names. This is where the XML files are loaded. The next section contains a

number of functions responsible for displaying and manipulating the data as needed.

These functions are discussed in the next few paragraphs. The final section, the

<BODY> tag, is really the controlling area of the program. This is where the display

properties are established and the buttons are described. This is also where the functions

are called. These functions are explained in the order of their appearance.

The first function call is to the "updateList ()" function. This function will check

to make sure the input, in this case the aircraft call sign, has been entered. If no value has

been added an alert message will appear. If a value has been added this function calls the

"addtoList ()" function. The "addtoList ()" function will check to see if the call sign is a

new one, or one that has already been input. This function was the trickiest to get just

right. The basic premise is that a pilot will enter a call sign and select forecasts from

various bases. This function has been designed to be as smart as possible. It checks to

make sure a base has been selected, it makes sure bases are not selected twice, and it only

displays the forecast for that call sign. For example, if Orca 50 is taking off from Travis

AFB and going to Wright-Patterson with alternates of Scottt AFB and Tyndall AFB, only

31

those four forecasts will be displayed. This function walks through the main XML

source document, in this case Mr_Cat.xml, and gets all the appropriate information. This

function then writes the information to the new file, in this case dash-1 .xml.

The information from the new document can then be displayed. This function

calls the "showList ()" function. The "showList ()" function incorporates the new data in

the dash-1.xml file into a table. This table shows all bases requested for the active

aircraft call sign. It checks again to make sure bases haven't been selected twice. This

function only shows the base ICAO and the current date. The next button, the

ShowXML data button, was incorporated from a program written by William J. Pardi

(Pardi, 1999). Its basic design is to simply display the data being written to the XML file.

The Bases button activates the "doMenu ()" function. The "doMenu ()" displays the

entire list of bases in the original XML file. For the purposes of this program the number

of bases has been limited. The bases could then be broken into specific theaters and

tailored to some specific criteria. This function displays a table with all the bases'

ICAO's, then writes out the forecast of the highlighted base. Color could be integrated

into this aspect to show certain set minimums, ceiling, visibility, category, etc. The final

few lines are simple links written as any link would be in HTML.

Screen 3-2 shows the final screen for aircraft call sign Orca 50 flying from Travis

AFB, CA (KSUU), to Misawa AB, Japan (KKQQ), with an alternate Kadena AB, Japan

(RODN).

32

1 Be E* Sew Favorit« look tWp | | Addiess|Q J:\calidtjnna\xml\vteathei.hlm _zl i^B" E

| 4r !>**. . + . (Q J2| j^ j (g|s<*»ch [^Favorite. S^jHistoo. | [jg^ ,gj ggj - §j ^S

^J
Location: Ohio Q^

Name: Wright-Patterson : A

ICAO: KFFO B

FORECAST: 281616 22010KT 9999 SCT080 QNH2992 K

K]

1 Sign: |0RCA 50
id Hi | Show XMC Data |

ase Date

3XJU 2/29/2000 '■■:'■■
=FO 2/29/2000 \.,

; Bases] i Forecast l|

281313 24010KT 9999 BCFGFEW020 FEW080 QNH3000INS
BCMG 1819 24010G15KT 9999 NSW SCT080 QNH2998INS

;jz

281616 22010KT 9999 SCT080 QNH2992

Sattelite Picture simple link Radar Summary simple link
'Mi

Screen 3-4 the final product

The program as designed contains five possible bases to choose from with the

entire forecast written out in one textual block. Adding additional bases with textual

forecasts is simply a matter of replicating applicable tags and inputting appropriate values

within the XML source code. From the XML viewpoint adding additional lines to the

forecast to point at specific time groups is also very easy. The difficulty arises when the

data sets are written in an HTML format. Additional work and potential endeavors will

be discussed in the subsequent chapter.

33

5. Summary

In this chapter the basics of XML were reviewed. From this knowledge it was shown

that developing a well-formed XML document was a matter of following eight rules.

Once the data to be ingested has been defined, XML provides various mechanisms for

processing that data. Using a JavaScript language it was shown how an XML document

could be traversed to glean pertinent information from a lengthy data set.

34

IV. Results Analysis

1. Chapter Overview

This chapter provides a proof that XML can be exploited to view and manipulate

weather data. It also provides a description of where current technology limits the uses of

XML, along with some work arounds for those same problems. Most importantly it

shows proof that, with proper forethought, XML can improve the way AFWA ingests and

displays data.

2. Results

The most obvious result obtained was that yes, XML can be used to display weather

data. This can either be done in a stand-alone XML document, where the data is all

stored in XML files or linked to either CSS's or another type of document called

extensible style language (XSL), or through some scripting language. Both of these

processes were researched and JavaScript was chosen as the scripting language. The

stand-alone XML document types are difficult to understand and not very extensive in

their ability. The scripting language allows the program to transcend and manipulate the

data thoroughly.

Stand-alone documents are best used for very simplistic programs. XML documents

are displayed as simply text without any style sheets attached. Screen 4-1 shows an

example of an empty dash-1 .xml document with no style sheet attached. Screen 4-2

shows the same code with a style sheet attached. It should be noted that the style sheet

used for screen 4-2 is the same one used for screen 3-1.

35

3 F:\Final Design\dash-1.xml ... WS 13

File Edit View Favorites Ti>y

Back Forward Stop

»

Address *m FAFinal De ▼ ^>Go Links »

<DD175-1>

- <FLIGHT>

<CALL_SIGN />

<BASE_NAME />

<FORECAST />

<DATE />

</FLIGHT>

</DD175-l>

Do J§|, My Computer A

Screen 4-1 Dash-l.xml output

"3 FAFinal Design\dash-4-1.xml - Microsoft Internet Explorer HIlIEi

I File Edit View Favorites Tools Help

vj-"

Back
■■ ™\:'■■'■■

Forward
&
Stop Refresh Home

:»:»:

Search

Address «9> FAFinal Design\dash-4-1.xml]▼]' ^Go (j Links »

H? 11

ORCA 50 Travis Clear 12 Oct 99

Done My Computer ^

Screen 4-2 with the style sheet

36

All browsers can manipulate basic XML documents. At this level of complexity

it is nearly impossible to see the advantages of using XML over HTML. In fact it

becomes apparent that displaying data is often times more difficult using XML. The

benefit of XML comes from its fluidity and the ability to incorporate other programming

languages.

This program uses JavaScript. It could have just as easily been programmed

using a computer language such as C++ or Java. JavaScript was chosen due to the ease

of integration within an HTML document. The following results are based on the

program as shown in appendix B.

The exploitation of emerging technologies is bound to keep the Air Force running

smoothly throughout this century. However, as new technologies emerge there is, at

times, an associated paradigm shift. The decrease in overall manning and the emphasis

shifted to a smaller more well-rounded work force has, as of late, required forecasters to

become experts in many, non-weather areas. For example, at base weather stations a

forecaster is often sacrificed to additional duties, which include developing local web

pages. At this point, however, the work force is reaching saturation, and standardization

is key to reducing workload, both for the forecasters and the customers. With one

standardized format every base could have the same web page, displaying the same

information in the same format. A pilot flying through the system would not have to

waste time figuring out many local home pages at the cost of flight safety. To further

exploit XML, the hub concept could generate one database for all areas they are

concerned with and display that information in one click of a button. Finally, with the

demise of the automated weather dissemination system, or at least the proposed demise of

37

said system, AFWA is becoming increasingly reliant upon web based technologies for

data transfer.

This effort demonstrates one such web based program for data delivery using XML

for maximum control. The following is a simulated example of some possible features.

1. The Hub at Scott AFB is responsible for putting out forecasts for bases A-G.

Team 1 forecasts for bases A, B, & C. Team 2 handles the others.

2. The code to display the data is similar to that in appendix B.

3. The following XML code is generated and available on a LAN system in

Microsoft XMLNotepad, as displayed in screen 4-2.

|£jj Untitled- XML Notepad ■■Unlxl
(file Edit View Insert Jools Help

Da?y o&üfeßiffljFis +++++- nln] #j
Structure I Values'

t B-"*5 Weather h.
l!
Is

j For Help, press F1 r~r *WM | A

Screen 4-3 a sample XML document

4. Under the Tools menu there is a function to duplicate additional child elements so

as many bases are added as needed.

5. The weather is input into the proper tag as shown in screen 4-3.

38

\ß Untitled- XML Notepad HIalD
File Edit View insert Tools Help

D a?y _^oj& mm 41 JPl£ ♦♦♦♦ + - f=II #
Structure 1 Values

: Eh"^ Weather
E-Q BASE

El D BASE

I :
-■X ICAO

• X LOCATION
■X NAME
-X FORECAST

KKBB
Ohio
BaseB
Set 200 7 24012)

1 Ö-Q BASE
E-Q BASE
B-Lj BASE
El-Q BASE

For Help, press Ft NUM ^

Screen 4-4 a sample with 5 bases

6. This file is saved and loaded into the proper HTML document.

7. Any change in the forecast, that is additional bases, amended forecasts, or new

forecasts, are done in the XML document. The HTML code is never changed.

This is exactly how this program was developed. The pilot, or forecaster, can

then request any bases needed and display those queries as needed.

3. Summary
This chapter showed that XML could be used to display weather data in a textual

format. The stand-alone type documents and the more complicated embedded files

were discussed. It was shown that through proper data definitions and the correct use

of standardized tags, along with a thorough knowledge of a scripting language, data

39

could be manipulated to suit the needs of the user. Overall it is obvious that XML is

a more efficient way to handle tree-like input.

40

V. Conclusions/Recommendations

1. Conclusions

The results presented in chapter 4 support the use of XML as an extension of HTML.

The ease with which XML data can be manipulated far exceeds the current limitations

placed on HTML. Again, it is important to note that XML is not meant to replace

HTML, only to complement the functionality of HTML. The most useful programs were

developed using a combination of HTML, XML and JavaScript.

XML will eventually have enough capabilities to be used throughout the weather

community. The current status of these capabilities does not fully support widespread

implementation. It is important to note that XML is still in the development stage. In

fact, the guidance received from AFRL at the project's inception is different than the

guidance received at the conclusion. The basic premise that less is more applies to the

rules of XML. With only eight governing rules the possibilities seem limitless. As the

technology of the language and browsers continues to advance, it would behoove the Air

Force to develop programs using this tool. In particular, XML has shown utility in the

access and display of weather data. The Air Force Weather Agency can use XML

programming to enhance the data delivery through web-based applications. AFWA

clearly saw this as a need and made this one of its goals. XML shows the ability to see

those goals to fruition. Through proper manipulation XML can eliminate the need for

multiple data delivery systems and streamline the dissemination process through a pre-

existing medium—the Internet.

41

2. Recommendations

The ends to which technology may take us are impossible to predict. If XML stays in

its current form or at least pretty similar, improving on this initial concept would be cost

effective. There are at least three areas to consider in the near future. First, a quality

assurance routine should be developed. Once there is confidence in the data, AFWA

would be well served to develop one standardized web page for every weather flight.

Finally an upper air routine could be developed to store the basis for all upper air plots.

The first avenue of exploration would be along the quality assurance path.

Obviously flight safety is of paramount importance, and a good starting point is to ensure

the pilots are given the most current data. This could be accomplished by placing time

group tags within the source document and only accessing the latest one. This could also

be accomplished through some other type of governing tag, perhaps an enumerated type,

again ensuring only the latest one is displayed. The other quality checks could be

incorporated as the browsers gain capabilities, for example, forcing the wind direction to

be between 0 arid 360 degrees using the ! ATTLIST attribute. Inherently these quality

checks are difficult to initially program; however, once in place they need never be

changed, again exploiting the write once, use often concept. Once confidence in the

system has been achieved Air Force wide dissemination is possible.

Given a known system with predefined tags for every type of input, development of a

standard local weather web page, dynamically linked to the central hub, is possible. This

42

would improve the base weather station operations in two distinct ways. First, it would

free up a forecaster from the additional duty of web master and put that individual back to

station operations. This would alleviate some of the stress put on forecasters for duties

not associated with station operations. Secondly, it would assure pilots continuity

throughout the system. If every base had its weather displayed in the same format with

the same options, pilots could spend less time searching for data and more time focussing

on the mission-planning phase.

The final recommendation is to incorporate an XML program into the upper air

plotting process. The data from soundings could be stored in an XML file with tags

unique to each level. The mandatory reporting levels could have one set of tags and the

significant levels another. Once the data is stored in this format it is possible to generate

code to display the flight level winds from a three dimensional aspect. This would

require some additional programming in languages like JAVA3D or OpenGL. This

certainly would highlight the utility of predefined tags. For example, many different

programs could access the 800-mb tag for multiple purposes. The only limitation to this

would be the programmer's ability to process the data.

3. Summary

In conclusion, this proof-of-concept effort demonstrates the usefulness of XML in

data manipulation and dissemination. The current limitations on exploiting XML are a

function of the language's newness. Strong support from the Worldwide Web

Consortium ensures XML will mature into a new standard of data dissemination. The

Air Force Weather Agency has a golden opportunity to incorporate this emerging

43

language of choice into an ever expanding set of web based weather applications and lead

the way in web exploitation.

44

APPENDIX A
Code for MR CAT.XML

-This is XML code written by Captain Michael J Calidonna, last updated
07 Jan 00. It is designed to store data for different bases.

<CATALOG>
<BASE>

<LOCATION>California</LOCATION>
<NAME>Travis</NAME>
<ICAO>KSUU</ICAO>
<FORECAST>Forecast for KSUU</FORECAST>

</BASE>
<BASE>

<LOCATION>Ohio</LOCATION>
<NAME>Wright-Patterson</NAME>
<ICAO>KFFO</ICAO>
<FORECAST>Forecast for ffo</FORECAST>

</BASE>
<BASE>

<LOCATION>Arizona</LOCATION>
<NAME>Davis-Monthan</NAME>
<ICAO>KDMA</ICAO>
<FORECAST>forecast for dma</FORECAST>

</BASE>
<BASE>

<LOCATION>Japan</LOCATION>
<NAME>Misawa</NAME>
<ICAO>KKQQ</ICAO>
<FORECAST>Forecast for kkqq</FORECAST>

</BASE>
<BASE>

<LOCATION>Japan</LOCATION>
<NAME>Okinawa</NAME>
<ICAO>RODN</ICAO>
<FORECAST>Forecast for RODN</FORECAST>

</BASE>
</CATALOG>

45

APPENDIX B
Code for Weather.HTML

—This HTML code incorporates William J. Pardi's code for a virtual flower
shop. Captain Michael J. Calidonna extended this code to include XML
data for different bases. This code uses HTML, XML, and JavaScript as
programming languages. Last updated 07 Jan 00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>

<!—This sets up all the initial field -->

<HEAD>
<STYLE>

.category {font-weight:bold; font-size: 14}

.fdata {font-size: 16; color:#000099}

.pdata {font-size: 14; font-weight:bold}

.cdata {font-size: 16; color:#993300}
</STYLE>

<!—This initializes the scripting language and opens the needed files -->

<SCRIPT LANGUAGE="JavaScript" FOR="window" EVENT="onload">
var xmlDso = xmldso.XMLDocument;
xmlDso.load("Mr_Cat.xml");
var xmlDso2 = xmldso2.XMLDocument;
xmlDso2.1oad("dash-l .xml");

</SCPJPT>

<SCPJPT SRC-ShowXML.js>
</SCRIPT>

<SCPJPT LANGUAGE="JavaScript">

<!—This toggles the menu on and off -->

function doMenu()
{

if (fmenu.style.display == "none")
fmenu.style.display ="";

else
fmenu.style.display = "none";

}

46

->

function doForecastMenu()
{ alert ("doForecastMenu")

if (forecastmenu.style.display == "none")
forecastmenu.style.display = "";

else
forecastmenu.style.display = "none";

}

<!—This sets up all the bases to be displayed

function goRecord(indexNum)
{

var row = window.event.srcElement;
var c = row.recordNumber -1;
xmldso.recordset.MoveFirst();
while (c > 0)

{
xmldso.recordset.MoveNext();
c = c - 1;
}

doMenu();
}

<!—This is left for future development of some specified criteria --:

function goCat()
{
alert ("Hello")
}

function mouseHover(state)
{
var row = window.event.srcElement;
var colorChange = ((state = "over") ? "#ffffOO" :"");
row.style.backgroundColor = colorChange;
}

<!—This sees if there is an aircraft number assigned to the record —>

function updateList()
{
var acVal = acName.value;
if(acVal = "")

alert ("You must enter a call sign.")
else

>

47

addToList();
}

<!—This adds aircraft to the output file as needed -->

function addToList()
{

var pmatch = 0;
var cmatch = 0;
var rootElem = xmldso2.XMLDocument.documentElement;
var rootChild = rootElem.childNodes;
var childNum = rootChild.length;
var currDate = new Date();
fullDate = (currDate.getMonth() + 1) + "/";
fullDate += currDate.getDate() + 7";
fullDate += currDate.getYear();

for (i = 0; i < childNum; i++)
{

var currNode = rootChild.item(i);
if (currNode.nodeName = "FLIGHT")

{
var acChild = currNode.childNodes;

var call_signNode = acChild.item(O);
var base_nameNode = acChild.item(l);

var forecastNode = acChild.item(2);
if (call_signNode.text = acName.value)

{
cmatch = 1;
}

else
{
cmatch = 0;
}
if (basenameNode.text == icao. innerText)
{
pmatch = 1;
}

else
{
pmatch = 0;
}

}
if (cmatch = 1 && pmatch = 1)

48

{
xmldso2 .recordset .mo veFirst();

for (ds = 0; ds <= i; ds++)
{
if(ds!=i)

{
xmldso2.recordset.moveNext();
}

}
break;
}

}

if (cmatch != 1 && pmatch != 1)
{
xmldso2.recordset.AddNew();
xmldso2.recordset("CALL_SIGN") = acName.value;
xmldso2.recordset("BASE_NAME") = icao.innerText;

xmldso2.recordset("FORECAST") = forecast.innerText;
xmldso2.recordset("DATE") = fullDate;
}

else
{

if (cmatch =1 && pmatch =1)
{

alert ("base already selected")
}

else
{

if (cmatch != 1)
{
xmldso2.recordset.AddNew();
xmldso2.recordset("CALL_SIGN") = acName.value;
xmldso2.recordset("BASE_NAME") = icao.innerText;

xmldso2.recordset("FORECAST") = forecast.innerText;
xmldso2.recordset("DATE") = fullDate;
}
else
{
if (cmatch == 1)

{
xmldso2 .recordset. AddNew();
xmldso2.recordset("CALL_SIGN") = acName.value;
xmldso2.recordset("BASE_NAME") = icao.innerText;

xmldso2.recordset("FORECAST") = forecast.innerText;

49

xmldso2.recordset("DATE") = fullDate;
}

}
}
}

showList();
}

function showList()
{
var hold = 0;
var rootElem = xmldso2.XMLDocument.documentElement;
var rootChild = rootElem.childNodes;
var childNum = rootChild.length;
var purTable = "<TABLE CELLSPACING='5'><THEAD ALIGN='center'>" +

"<TH>Base</TH><TH>Date</THx/THEAD>,,

for (i = 0; i < childNum; i++)
{
var currNode = rootChild.item(i);
if (currNode.nodeName = "FLIGHT")

{
var acChild = currNode.childNodes;
var acNum = acChild.length;
for (ci = 0; ci < acNum; ci++)

{
var currAcNode = acChild.item(ci);
if (currAcNode.nodeName = "CALL_SIGN")

{
var currAcName = acName.value;
if (currAcNode.text = currAcName)

{
hold=l;
}

else
{
hold = 0;
}

}
if (currAcNode.nodeName = "BASE NAME")

{
if(hold=l)

{
purTable = purTable + "<TR ALIGN='center'><TD>" +

currAcNode.text + "</TD>";

50

}
}

if (currAcNode.nodeName = "DATE")

{
if (hold ==1)

{
purTable = purTable +"<TD>"+ currAcNode.text +"</TR>";
}

}
}

}
}

purTable = purTable + "</TABLE>"
PTData.innerHTML = purTable
}

<!—This shows all the forecasts selected with a particular aircraft~>

function showForecast()
{
var hold = 0;
var rootElem = xmldso2.XMLDocument.documentElement;
var rootChild =rootElem.childNodes;
var childNum = rootChild.length;
var fctTable = "<TABLE CELLSPACING ='5'>" +

"<THEAD ALIGN = 'center'>"+
"<TH>Base:</TH><TH>Forecast:</TH></THEAD>"

for (i = 0; i < childNum; i++)
{
var currNode = rootChild.item(i);
if (currNode.nodeName = "FLIGHT")

{
var acChild = currNode.childNodes;
var acNum = acChild.length;
for (ci = 0; ci< acNum; ci++)
{
var currAcNode = acChild.item(ci);
if (currAcNode.nodeName = "CALL_SIGN")

{
var currAcName = acName.value;
if (currAcNode.text = currAcName)
{
hold=l;

}
else

51

{
hold = 0;
}

}
if (currAcNode.nodeName == "BASE_NAME")
{

if(hold=l)
{

fctTable = fctTable + "<TR ALIGN = 'center'><TD>"+
currAcNode.text + "</TD>";

}
}

if (currAcNode.nodeName == "FORECAST")
{
if(hold=l)

{
fctTable = fctTable + "<TD>" + currAcNode.text + "</TR>";

}
}

}
}

}
fctTable = fctTable + "</TABLE>"
FCTData.innerHTML = fctTable

} <!— end showForecast —>
</SCRIPT>

<TITLE>Weather Using XML</TITLE>
</HEAD>

<BODY>

<OBJECT WIDTH="0" HEIGHT="0"
CLASSID="clsid:550dda30-0541-l Id2-9ca9-0060b0ec3d39"
ID="xmldso">

</OBJECT>

<OBJECT WIDTH="0" HEIGHT="0"
CLASSID="clsid:550dda30-0541-lld2-9ca9-0060b0ec3d39"
ID="xmldso2">

</OBJECT>

<TABLE STYLE="position:absolute; left: 10; top: 10"
CELLSPACING="6" ID="catalog">

52

<TR>
<TD ALIGN="right" CLASS="category">Location:</TD>
<TD><DIV CLASS="fdata" ID="location"
DATASRC=#xmldsoDATAFLD="LOCATION">

</TD>
</TR>

<TR>
<TD ALIGN="right" CLASS="category">Name:</TD>
<TD><DIV CLASS="fdata" ID="name"
DATASRO#xmldso DATAFLD="NAME">

</TD>
</TR>

<TR>
<TD ALIGN="right" CLASS="category">ICAO:</TD>
<TD><DIV CLASS="fdata" ID="icao"

DATASRC=#xmldso DATAFLD="ICAO">
</TD>

</TR>

<TR>
<TD ALIGN="right" CLASS="category">FORECAST:</TD>
<TD><DIV CLASS="fdata" ID="forecast"
DATASRC=#xmldsoDATAFLD="FORECAST">

</TD>
</TR>

</TABLE>

<DIV STYLE="position:absolute; left:300; top:20">
Call Sign:
<INPUT TYPE="Text" NAME="acName">

<INPUT TYPE="Button" NAME="SL" VALUE="Add It!"
onClick="updateList()">

<INPUT TYPE="Button" NAME="Show" VALUE="Show XML Data"
onClick="ShowXML(xmldso2.XMLDocument);">

<DIV ID=PTData></DIV>

</DIV>

<INPUT TYPE="Button" NAME="Bases" VALUE="Bases"

53

STYLE="position:absolute; left: 10; top: 170"
onClick="doMenu()">

</DIV>

<DIV STYLE="position:absolute; left:200; top:170">
<INPUT TYPE="Button" NAME="Forecast" VALUE = "Forecast"

onClick-'showForecast()">
<DIV ID=FCTData> </DIV>

</DIV>

<TABLE ID="fmenu"
STYLE="position: absolute; left: 10; top: 192;
display:none; cursor:hand"

DATASRC=#xmldso
CELLSPACING="0" CELLPADDING="0" BORDER="l"
onMouseOver = "mouseHover('over')"
onMouseOut = "mouseHover('out')"
onClick = "goRecord()">

<TR>
<TD><DIV DATAFLD=ICAO></TD>

</TR>
</TABLE>

<TABLE ID="forecastmenu"
STYLE="position:absolute; left:200; top: 192;
display:none; cursor:hand"
DATASRC=#xmldso2
CELLSPACING="0" CELLPADDING="0" BORDER="l"
onMouseOver = "mouseHover('over')"
onMouseOut = "mouseHover('out')"
onClick = "goCat()">
<TR>

<TD>
<DIV DATAFLD=FORECAST>
</TD>

</TR>
</TABLE>

<B
R>

Sattelite Picture

simple link
Radar Summary

54

simple link
</BODY>

</HTML>

55

APPENDIX C
Code for Dash_l.xml

This code is an XML program designed to be updated through the code
found in appendix B. It was written by Captain Michael J. Calidonna, last
updated 07 Jan 00.

<DD175-1>
<FLIGHT>

<CALL_SIGN/>
<BASE_NAME/>
<FORECAST/>
<DATE/>

</FLIGHT>
</DD175-l>

56

APPENDIX D

Types of attributes and their meaning

Attribute Type Meaning

CDATA Character Data - anything not instructions to the
computer

Enumerated A list of possible values from which one will be
chosen

ID A unique name
IDREF The value of an ID type attribute of an element in

the document
IDREFS Multiple Ids of elements separated by white

space
ENTITY The name of an entity declared in the DTD
ENTITIES The names of multiple entities declared in the

DTD, separated by white space
NMTOKEN An XML name
NOTATION The name of a notation declared in the DTD
NMTOKENS Multiple XML names separated by white space

57

APPENDIX E
Acronyms

AFRL Air Force Research Labs
AFWA Air Force Weather Agency
AFWIN Air Force Weather Information Network
AMD Amendment
CD ATA Character Data
CMAPI Core Mapping Application Program Interface
CSS Cascading Style Sheet
DTD Document Type Definition
HTML Hypertext Markup Language
ICAO International Civil Aviation Organization
IE 5.0 Microsoft Internet Explorer (version 5.0)
IFEB Information Handling Branch
JRICP Joint Reserve Intelligence Connectivity Program
SGML Standard General Markup Language
SQL Structured Query Language
TAF Terminal Airdrome Forecast
XFragments Extensible Markup Language's Fragmenting Language
XLink Extensible Markup Language's Linking Language
XML Extensible Markup Language
XPointers Extensible Markup Language's Pointing Language
XSL Extensible Style sheet Language
W3C World Wide Web Consortium

58

Bibliography

Air Force Research Labs. AFRL Mission Statement Rome Labs. Rome Labs, 1999.

Air Force Weather Agency (AFWA). Air Force Weather Agency Strategic Plan.
AFWA, 1999.

Bos, Bert. XML in 7 points http://www.w3.org/XML/1999/XML-in-10-points,
20 Sep 1999

Bosak, Jon and Bray, Tim. "How XML beats HTML," Scientific American;
89-93 (May 1999)

Darnel, Rick and others. HTML4 The Comprehensive Solutions Package! Unleashed.
Sams.net Publishing, 1997.

Garber, Lee.. "Newsbriefs," Computer 20-22, (May 1999)

Harold, Elliotte R. XML Bible. IDG Books Worldwide, 1999.

Hoffman, Charles and Kurt, Christopher. "The XML Files," Journal of Accountancy;
71-77 (May 1999)

Holzner, Steven. JavaScript Complete. McGraw-Hill Companies, Inc., 1998.

McGrath, Sean. XML by Example Building E-Commerce Applications.
Prentice Hall, 1999

Pardi, William J. XML in Action Web Technology. Microsoft Press, 1999.

World Wide Web Consortium. Extensible Markup Language 1.0.
http://www.w3.org/TR/1998/Rec-xml-19980210.html, 10 Feb 1998

59

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

EXTENSIBLE MARKUP LANGUAGE AS A WEATHER TOOL

6. AUTHOR(S)
Calidonna, Michael, J., Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER
AFIT/GM/ENP/00M-2

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Michael Mayhew
26 Electonic Pkwy
Rome Labs AFRL/IFEB
Rome, NY 13441

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Chairman: Lt Col Cecilia A. Miner, ENP, DSN:785-3636 ext.4645
Member: Lt Col Michael K. Walters, ENP, DSN:785-3636 ext.4681
Member: Lt Col Timothy M. Jacobs , ENG, DSN:785-3636 ext.4279

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT (Maximum 200 Words)
This thesis is a proof of concept work that will extend the Core Mapping Application Program Interface (CMAPI) components to
include weather data. The CMAPI project is headed by Air Force Research Lab (AFRL)/ Information Directorate Information
Handling Branch (IFEB) at Rome labs in Rome, New York. This work extends the CMAPI project in two distinct areas. The first
goal is to figure out how to overlay and display weather data on a dynamically linked Internet platform. This was accomplished by
incorporating existing data from the Air Force Weather Agency (AFWA) into the CMAPI program in a static environment. The other
goal is to learn about the Extensible Markup Language (XML) and how it can contribute to characterizing structured data (i.e.,
weather data output from AFWA). Once this tool can be exploited, a dynamic interaction between the CMAPI program and all
AFWA products could be developed. The overall goal is to make it easy for the system, and the application ofthat system, to ingest
and manipulate data.
14. SUBJECT TERMS

XML, Extensible Markup Language, JavaScript, HTML, Meteorology, Internet
15. NUMBER OF PAGES

66

16. PRICE CODE

17. SECURITY
CLASSIFICATION

OF REPORT
UNCLASSIFIED

18. SECURITY
CLASSIFICATION

OF THIS PAGE
UNCLASSIFIED

19. SECURITY
CLASSIFICATION

OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

62

	Extensible Markup Language as a Weather Tool
	Recommended Citation

	/tardir/tiffs/a383831.tiff

