
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

A Tabu Search for Scheduling and Rescheduling Combat Aircraft A Tabu Search for Scheduling and Rescheduling Combat Aircraft

Kevin M. Calhoun

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Management and Operations Commons

Recommended Citation Recommended Citation
Calhoun, Kevin M., "A Tabu Search for Scheduling and Rescheduling Combat Aircraft" (2000). Theses and
Dissertations. 4753.
https://scholar.afit.edu/etd/4753

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1311?utm_source=scholar.afit.edu%2Fetd%2F4753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4753?utm_source=scholar.afit.edu%2Fetd%2F4753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

A TABU SEARCH FOR SCHEDULING

AND RESCHEDULING COMBAT

AmCRAFT

THESIS

Kevin M. Calhoun, Captain, USAF

AFIT/GOR/ENS/00M-6

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STIC QUALITY WSPBCSED 4,

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2000
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

A TABU SEARCH FOR SCHEDULING AND RESCHEDULING COMBAT AIRCRAFT

6. AUTHOR(S)

Kevin M. Calhoun, Captain, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NI
Attn: Mr. John McMann
4040 Fairfax Drive
Suite 500
Arlington, VA 22203-1613 DSN: 426-9583

5. FUNDING NUMBERS

EN-00-186

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFir/GOR/ENS/00M-6

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

99 - 045

11. SUPPLEMENTARY NOTES

Prof. D. F. Deckro, ENS, DSN: 785-6565, ext. 4325 e-mail: richard.deckro@afit.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

A

ABSTRACT (Maximum 200 Words)
Scheduling an air campaign is time and labor intensive. Exacerbating the problem, combat planners use manual methods to accomplish much of this

daunting but critical task. While some work has been done to automate the process, the approaches used generate schedules that must undergo major modifications
before they are "flyable." Planners, therefore, distrust the results and use the automated features of the software sparingly.

Additional problems arise due to the lag time between the publication of the Air Tasking Order (ATO) and the start of the ATO day. During this time,
conditions change in the dynamic battlespace (aircraft break, runways are damaged, etc.). Current execution software performs a validation check against current
conditions, but yields no replanning options.

This research explores using heuristics to determine good solutions for the initial air campaign plan and extends previous work by including air-tasking priorities.
Additionally, the heuristics are adapted to generate replanning options for the ATO Execution Managers. Java was used for portability and for object reusability
elsewhere in the planning hierarchy. Furthermore, the method may be applied to other areas in commercial, government, and military organizations. The heuristic can
be modified for use in any enterprise where re-scheduling is common

14. SUBJECT TERMS
ATO, Replanning, Project Scheduling, Resource Constrained Project Scheduling, Generalized Precedence Constraints,
Multi-modal, Multi-modal Generalized Resource Constrained Project Scheduling, Critical Path Method, Re-scheduling,
CTAPS, Prioritized Targets, Target Nomination List, Java, Heuristics, Tabu Search, SQL, Goal Programming
17. SECURITY CLASSIFICATION

OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15 NUMBER OF PAGES
135

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U. S.

Government.

AFIT/ENS/GOR/00M-06

A TABU SEARCH FOR SCHEDULING

AND RESCHEDULING COMBAT AIRCRAFT

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Kevin M. Calhoun, B.S., M.Ed.

Captain, USAF

March, 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/OOM-6

A TABU SEARCH FOR SCHEDULING AND RESCHEDULING COMBAT
AIRCRAFT

Kevin M. Calhoun, B.S., M.Ed.
Captain, USAF

Approved:

Richard F. Deckro (Cti&iifflftr)) date

f James W. Chrissis (Member) date

James T. Mwre (Member) date

John C: Van Have {Member) si uta

Acknowledgments

My gratitude is extended to the following people for their support,

encouragement, and patience throughout my AFIT experience. To my Lord and Savior

Jesus Christ, without whom nothing would be possible. To my wife, Karen, for taking

care of my family, for taking up the slack during the countless nights I've been at school,

and for loving me no matter how grumpy I got. To my advisor, Dr. Richard F. Deckro,

for never giving up on me and for never just giving me the easy answer. To my

committee, Dr. James T. Moore, Dr. James W. Chrissis, and Dr. (Capt.) John Van Hove,

for their help and understanding along the way. Recognition is also in order for Lt. Chris

Cullenbine, who went beyond the call of duty in his efforts to help a friend and fellow

student. I wish to acknowledge the work of Lt. Robert Harder, whose Java savvy was

useful in the extreme. Finally, I'd like to thank the rest of my fellow students who all

have inspired me in some way. May God bless you all.

Kevin M. Calhoun

IV

Table of Contents

Page

Acknowledgments iv

List of Figures viii

List of Tables ■. ix

ABSTRACT xi

CHAPTER 1. INTRODUCTION 1
1.1. Background and Purpose 1
1.2. Scope 4
1.3. Objectives 5
1.4. Assumptions 6
1.5. Approach 8
1.6. The ATO Process 9

1.6.1. Strategic Development 11
1.6.2. Detailed Planning 11
1.6.3. ATO Production 17
1.6.4. ATO Execution 18

1.7. Advanced Planning System 18
1.8. Summary 21

CHAPTER 2. LITERATURE REVIEW 22
2.1. Scheduling Theory 22

2.1.1 Gantt Charts 24
2.1.2 Parallel Machine Models 24

2.1.2.1 Precedence Constraints 25
2.1.2.2 Critical Path Method 28
2.1.2.3 Critical Path Method Example 29

2.1.3 Resource Constraints 32
2.1.4 Unrelated Parallel Machines 34
2.1.5 Scheduling Heuristics 35
2.2.6 The Multi-Modal Resource Constrained Project Scheduling Problem36
2.2.7 The Generalized MMRCPSP 37

2.2.7.1 Doubly Constrained Resources 38
2.2.7.2 Multi-modal Activities 39
2.2.7.3 MMGRCPSP Formulation 40

2.3. Goal Programming 42
2.3.1 Lexicographic Goal Programming 44

2.3.2 Goal Interval Programming 45
2.3.3 Conventional Targeting Effectiveness Model 45
2.3.4 An Appropriate Heuristic for GP Models 46

2.4 Tabu Search 47
2.5.1 Tabu Search Description 47

2.5.1.1 Tabu Tenure 49
2.5.1.2 Intensification 49
2.5.1.3 Diversification 50

2.5.2 Benefits of Using Tabu Search 51
2.5.3 Steps in Applying a Basic Tabu Search 52
2.5.4 A Simple Example of Tabu Search 53

2.6 Object-Oriented Programming and Java 57
2.7 Chapter Summary 58

CHAPTER 3. METHODOLOGY 59
3.1 Initial Solution Heuristic 59
3.2 GP Model for the Air Campaign Planning Problem 63
3.3 Tabu Search for the Air Campaign Planning Problem 66

3.3.1 Solution Representation 66
3.3.2 Move Definition 68
3.3.3 Illustrative Neighborhood for Air Campaign Scheduling 69

3.4 Implementing TSACP 70
3.4.1 Initial Solution Application 71
Initial Solution Evaluation 74
3.4.2 Tabu Search Walkthrough 75

3.4.2.1 Move Manager 75
3.4.2.2 Move 76
3.4.2.3 Move Evaluation 80

3.5 Replanning 82
3.5.1 LGP Model for Replanning 83
3.5.2 Tabu Search for Replanning 85

3.6 Rescheduling 87
3.7. Summary 88

CHAPTER 4. Results 89
4.1 Problem Sets 89
4.2 TSACP Results 91
4.3 Case Study 99

CHAPTER 5. Conclusions and Recommendations 104
5.1 Research 104
5.2 Contributions 104
5.3 Recommendations for Future Work 106

VI

5.4 Summary 107

Appendix A. LIST OF ACRONYMS 108

Appendix B. Relational Databases and SQL 112

Appendix C. Description of the Case Study Problem 117

Bibliography 118

Vita 122

Vll

List of Figures

Page

Figure 1. ATO timeline (JAOSC Course Handout) 10

Figure 2. ATO Cycle (JAOSC Course Handout) 10

Figure 3. Sortie Flow 16

Figure 4. Simple allocation of aircraft to targets 20

Figure 5. Generalized Precedence Constraints [Koewler, p.14, 1999] 26

Figure 6. AOA precedence constraint graph [Pinedo, p. 66,1995] 27

Figure 7. AON network for CPM example displaying ES,EF,LS,LF 30

Figure 8. AON graph with dummy source and sink nodes (critical path bold) 32

Figure 9. RCPSP Formulation 33

Figure 10. Van Hove's adaptation of Boctor's MMRCPSP Formulation 36

Figure 11. Scenario for Generalized Precedence 38

Figure 12. Van Hove's complete MMGRCPSP model formulation [Van Hove, p. 49].. 42

Figure 13. Common Steps in a Tabu Search [Glover, p. 78,1990] 53

Figure 14. The MMGPRCPSP Goal Programming Model 66

Figure 15. Initial Solution Heuristic Flowchart 73

Figure 16. TSACP Flow Chart 79

Figure 17. Flow Chart for Evaluate Method 81

Figure 18. Flow Chart for Overall Application 82

Figure 19. Graph of TSACP Time for 1000 Iterations 96

Figure 20. Graph of Solution Time for Initial Heuristic 96

vm

List of Tables

Page

Table 1. Sample Problem: Target Requirements 19

Table 2. Sample Problem: Base Assets 19

Table 3. Early/Late Completion Times and Slack for CPM Example 30

Table 4. Terminology Associations [Koewler, p. 16,1999] 38

Table 5. Single Machine Example: Data 54

Table 6: Single Machine Example: First Schedule 54

Table 7. Single Machine Example: Second Schedule 55

Table 8: Single Machine Example: Third Solution 55

Table 9. Single Machine Example: Fourth Schedule 56

Table 10: Single Machine Example: Final Schedule 56

Table 12. Parameters and Variables for the MMGRCPSP formulation 65

Table 13. Partial Example of Solution Matrix 68

Table 14. Illustration of Improving Solutions for a GP Model 70

Table 15. TSACP vs. TSACR solution vector comparison 86

Table 16. Solution Statistics for 10-Job Problems 92

Table 17. Solution Statistics for 30-Job Problems 93

Table 18. Solution Statistics for 60-Job Problems 93

Table 19. Solution Statistics for 90-Job Problems 93

Table 20. Solution Time Statistics 95

Table 21. Linear Fit for TSACP Solution Times (1000 Iterations) 97

Table 22. Quadratic Fit for TSACP Solution Times (1000 Iterations) 97

IX

Table 23. Linear Fit for Initial Heuristic Solution Times 98

Table 24. Quadratic Fit for Initial Heuristic Solution Times 98

Table 25. Results of Applying TSACP to the Air Campaign Planning Scenario 102

ABSTRACT

Scheduling an air campaign is a time and labor intensive task. Exacerbating this

task is the fact that combat planners still make use of manual methods to accomplish

much of this daunting but critical effort. While some work has been done to automate the

process, the heuristics used generate schedules that must undergo major modifications

before they are "flyable." Combat planners, therefore, distrust the results and use the

automated features of the software sparingly.

An additional problem arises due to the lag time between the publication of the

Air Tasking Order (ATO) and the start of the ATO day. During this time period

conditions in the dynamic battlespace can, and often do, change (aircraft break, runways

may be damaged, close air support requests come in, for example). The execution

software currently in use will do a validation check against the current conditions, but

yields no options for replanning.

This research explores the use of tabu search (TS) to determine "good" solutions

for the initial air campaign plan. It extends previous work by including air-tasking

priorities. Additionally, this effort adapts the TS to focus on generating replanning and

re-scheduling options for the ATO Execution Managers (or Combat Operations Division

Duty Officers). The TS procedure was implemented in Java to be portable and to make

the objects available for reuse and adaptation elsewhere in the planning hierarchy.

Furthermore, the method that was developed in this research can be applied to other areas

in commercial, government, and military organizations. Re-scheduling is a critical

problem and the TS developed in this research can be modified for use in any enterprise

where re-scheduling is common.

XI

CHAPTER 1. INTRODUCTION

Even in today's technological, computer-driven environment, much of air battle

planning is done manually. Despite this, US Joint and Combined Air Operations have

accomplished amazing results. If the pace and size of the air battle increase, while the

size of our force and tail numbers decrease, planners may have increasing difficulty

meeting all the projected demands for air power. Even though some attempts have been

made to automate portions of air campaign planning, the results have not been completely

satisfactory. The planning process can be improved. The current Air Tasking Order

(ATO) (a list of acronyms is provided in Appendix A) cycle is 72 hours, 48 of which are

claimed by the planning phase, with the other 24 hours consumed by the execution phase

[AFI13-1AOCV3, pp. 38-39,1999]. Although much of this time is spent analyzing

intelligence, reaching agreement on the Joint Integrated Prioritized Target List (JJJPTL)

and other necessary time-consuming tasks, there are aspects of the ATO process that can,

and should, be streamlined through the use of computer resources. Automated support of

the planning process would serve two vital objectives: 1) significantly shorten the ATO

cycle [Gonzales, p. 28,1996] and, 2) improve the solutions generated in the process by

providing a list of good solutions that planners could use as a base.

1.1. Background and Purpose

During military operations such as Operation Desert Storm, the personnel

working in the Guidance, Apportionment and Targeting (GAT) cell translate the Joint

Forces Air Component Commander's (JFACC) guidance into the Master Air Attack Plan

(MAAP). The MAAP contains mission information such as target data and

weaponeering information. The MAAP is then passed on to the Combat Plans Division

(CPD) where detailed mission information such as number and type of aircraft, mission

numbers, and coordination are developed using the Advanced Planning System (APS) in

the Contingency Theater Automated Planning System (CTAPS). Finally, the ATO is

published and transmitted a minimum of 10 hours before the start of the effective period

of the ATO [AFI13-1AOCV3, p. 39,1999].

The units therefore should have at least that same 10-hour period for mission

planning and preparation. Generally, however, that has not been the case. Often,

missions are planned several hours before the actual production of the ATO. When the

ATO is published, there are certain missions that may no longer be flyable. The

execution management software, the Computer Assisted Force Management System for

X-windows (CAFMSX), performs a validation check against current conditions and

generates a text file containing all of the unflyable missions with the constraints that they

have violated. The combat operations duty officers (DOs) must then manually replan

these missions and targets. There are currently no software tools in the field that offer

automated replanning options for the DOs [JAOSC Course Handout, pp. 8E2L1 7-11,

1998].

Units charged with interdiction missions are particularly susceptible to the

consequences of target and timing changes. The GAT cell frequently makes changes to

the current ATO, often at the last minute. The GAT, in trying to adjust to continually

changing battlespace conditions, view these last-minute changes as the best way to

maximize the available sorties to strike higher-priority targets. However, pilots of the

affected aircraft are generally of the opinion that the quantity and late timing of the

changes resulted in reduced effectiveness and increased vulnerability to threats and

fratricide [Haas, p.30,1998, Cohen, p.230-232,1993]. Missions must be rescheduled and

re-coordinated with their packages, tankers and other support sorties. Again, this re-

scheduling task has been primarily accomplished through manual means.

Gonzales, in a study for the RAND Corporation, suggests two ways to make the

planning cycle more responsive [Gonzales, p.25-27,1996]. First, shorten the planning

cycle. Second, allow changes to the plan only at designated points in the cycle time line

(so-called time fences in industrial production scheduling). A combination of these two

suggestions appears to be the best overall choice. This research focuses on the first

suggestion, shortening the planning cycle. RAND's stated goal was to ultimately reduce

the planning cycle from 48 hours to 24 hours, thus allowing changes to be incorporated

into the next day's ATO. In this way, an attack strategy would still be responsive and the

number of last-minute changes would be minimized. If such a reduction could be

accomplished, it would only be necessary to carry out one planning process each day

(tomorrow's) instead of the two parallel processes (tomorrow and the day after) required

under the current system. The research in this thesis is a step in that direction.

Gonzales estimated that MAAP production time could be reduced from 11 hours

to five hours with automation [Gonzales, p.28,1996]. A start has been made in this area

with the advent of the JFACC Planning Tool (JPT) which uses the Conventional

Targeting and Effectiveness Model (CTEM) to help develop the draft MAAP. Two

Numbered Air Forces (NAFs) and the Air Ground Operations School employ JPT [Abt,

pp. 15-17,1997]. Current AF doctrine, however, calls for MAAP production to be done

manually [JAOSC Course Handout, p. 3G 5-7,1998].

As previously stated, the output from the MAAP (Target Planning Worksheets or

TPWs) is given to the CPD where the Advanced Planning System (APS) is used to

develop the mission details. APS possesses the ability to auto-plan combat missions.

However, since the greedy heuristic used for this function in APS is only marginally

successful [Van Hove, p. 4,1998], planners generally opt to plan the missions

themselves. An example of the APS auto-plan method is given in Chapter 2. This thesis,

therefore, is concerned with improving the automated solutions obtained when building

the mission details from the TPWs and on automating replanning options. A heuristic is

developed to obtain an initial feasible solution for the air combat scheduling problem

which is then improved upon by using a technique called tabu search (TS).

1.2. Scope

The scope of this research is limited to scheduling the attack aircraft for

suppression of enemy air defenses (SEAD) and interdiction (INT). Operationally, each

of these missions may also require support such as escorts (ESC missions), electronic

counter-measures (ECM missions), airborne command, control, and communications

(ABCCC), and aerial refueling (AR). Other direct attack mission types such as close air

support (CAS) and offensive and defensive counter-air (OCA and DCA) are not directly

addressed in this research; however, the procedure developed herein may be extended to

include these missions.

This research focuses on air campaign planning and replanning. This overall

problem can be formulated as a project scheduling problem (PSP). In order to obtain an

initial solution to the problem, a heuristic is developed based on key concepts and

heuristics from scheduling theory. A tabu search (TS) procedure that uses the result from

the initial solution heuristic and improves upon it is used to solve the PSP. The TS

procedure is tested by solving similar PSP problems with known optimal solutions. Once

tested, the TS is applied to the combat planning and replanning problem; it generates

options for combat planners and operations duty officers to schedule or re-schedule attack

assets to targets. A method to re-schedule ad hoc combat missions during the ATO day

is then developed.

A distinction is made between replanning and re-scheduling. Replanning, as

defined in this thesis, refers to that aspect of combat operations concerned with "fixing"

the schedule before the start of the flying day. Re-scheduling refers to re-assigning

missions to targets, as circumstances warrant, during the execution of the Air Battle Plan

(ABP) (i.e. during the flying day).

Since scheduling air assets against targets is similar to project planning, the

methodology developed here applies, in general, to program management as it relates to

project scheduling. Of particular interest in the industrial sector, though, is the technique

developed for re-scheduling projects; a critical operational concern to which little

previous work has been directly applied.

1.3. Objectives

The TS procedure developed for this research takes advantage of the structure of

the force-level air mission planning, replanning, and re-scheduling problems. This

research represents a two-pronged approach. First, it continues work done by Van Hove

and Koewler in finding better solutions to the initial ABP by applying a TS procedure to

the problem. The research then extends the effort of previous research by capturing

target priorities through the use of a goal programming (GP) model.

Secondly, a TS procedure for replanning is developed. Replanning has two

objectives. The first objective concentrates on the replanning that must be done prior to

the start of the ATO day. It suggests new ABPs based on the resources, assets and targets

currently available. In many respects the TS for replanning is similar to that used to

generate the initial plan. The second objective was to modify the TS to perform quick re-

scheduling of missions or packages during the execution of the ABP. For both

objectives, this approach applied a lexicographic goal programming formulation which

maximizes the number of high priority targets that are scheduled and then minimizes the

number of missions to be re-scheduled.

In all cases, whether planning, replanning or re-scheduling, the TS generates a list

of options for the planner to review. The planner may then select the best solution for the

current operational situation from the list. This process uses the options developed by the

heuristic, coupled with the decision maker's unquantifiable experience and knowledge, to

develop a plan. It is acknowledged that the methodology developed here is simply an aid

to be used by, not a replacement for, experienced combat planners. No computer tool can

incorporate in its approach the non-quantifiable insight or intuition of an experienced

human combat planner. The goal of this research was to rapidly provide improved

solutions to support the ultimate decision-maker.

1.4. Assumptions

In order to develop the TS procedure in this thesis, the following assumptions

were made:

1. Since the missions to be planned came from the Target Planning Worksheets (TPWs)

generated by the MAAP, the necessary combat resources (planes, people, fuel, bombs

and bullets) are in-theater and available.

2. Scheduling the attack missions first and then forming packages is suitable.

3. There are tankers available to refuel the strike packages as necessary.

4. Airborne Elements of the Theater Air Control System (AETACS) and the Ground

Theater Air Control System (GTACS) are in place and functioning.

5. The duration of a mission can be assigned an approximate value based on aircraft fuel

burn rates, flight profile, munitions carried (Standard Conventional Load, SCL) and

base and target locations. Mission duration consists of the sum of the travel time of

the outbound leg and the inbound leg, plus the turn time.

6. The airfield can accommodate the solution options generated.

7. If a choice must be made between a high priority target and a lower priority target,

the high priority target must be scheduled.

8. When finding a re-scheduling solution, a minimum of six hours notice must be given

to the pilot and support personnel for mission planning and re-arming [Cohen,1993].

9. Sortie allocations, SCL, target priorities, and probability of kill calculations have been

specified in the MAAP.

10. The combat airspace has already been deconflicted.

ILA target that must be attacked before other targets (a predecessor) must be of the

same target priority classification, or higher.

1.5. Approach

To best exploit the advantages of object-oriented programming, the heuristic

procedures developed in this thesis are written in Java. This makes the procedure

portable so that it can run on any platform—PC, Sun, Silicon Graphics, and so forth.

Although the workstations in the Aerospace Operation Center (AOC) have been

primarily Unix (Sun UltraSPARCs), a push is underway to migrate to PCs (Windows

NT) [TBMCS JPMR, 1997].

The data necessary to build an ABP is stored in the Air Campaign Database

(ACDB), an Oracle database, for this reason the procedures make Structured Query

Language (SQL) calls to the ACDB (see Appendix B for more on SQL). The use of

ANSI-compliant SQL augments the portability of these procedures. These queries pull

only the attributes from different tables in the ACDB that are necessary to solve the

planning problem (the ATO contains only a small subset of the information in the

ACDB). For this study, the desired data is stored in a Microsoft Access database for ease

of implementation on a PC. Since an Access database can be easily converted to an

Oracle database, the transition to an AOC-like environment (UltraSPARC) can be made

readily.

As noted earlier, the TS procedure results are compared for accuracy to the lower

bounds of a test set of scheduling problems. CPU processing times for the solutions are

reported for each problem to demonstrate how processing times grow with the size of the

problem. Inter-procedure comparison of processing times is of limited value because of

computer platform. Once the TS procedure was validated against these test cases, it was

modified and applied to sample air campaign planning, replanning and re-scheduling

problems. The quality of the solutions generated for these problems is measured using

heuristic testing procedures developed by Barr, et al [Barr, et al, 1995].

1.6. TheATO Process

This section will familiarize the reader with the ATO production cycle. It is

included in order to give the reader an idea of how complex the process can be so that he

or she can appreciate the value of automating part of the procedure. Section 1.7 presents

a description of the type of solution to expect from the APS auto-plan feature to reinforce

the need for an application that can produce quality solutions to the air campaign

planning problem..

The ATO is a written plan for the employment of the air assets of the deployed

forces. The lead-time required for development of an ATO is at least 48 hours. ATOs

are normally executed during a 24-hour period of time. The start time and end time for a

particular ATO can vary and is usually specified in the Operations Order (OPORD). A

typical time line for ATO production is shown in Figure 1 while the ATO cycle is

represented by Figure 2 where the starting point for a particular ATO is generally

considered to be at the top node, Strategy Development. The production of an ATO is a

step-by-step process wherein each step must be completed before the next one begins.

9

ouen« A|R TASK|NG ORDER

CONTINUUM
NATIONAL/
THEATER:

LONG
RANGE

PLANNING

COMBAT PLANS DIVISION

MASTER AIR
ATTACK

PLANNING

JFC
APPORTIONMENT

ALLOCATION
GAT >' TARGETING

MRS -Ai HRS -3E) HRS - 3J> HRS -24 HRS -18 HRS j

COMBAT OPS DIVISION

ATO
EXECUTION

ATO
JNATION START

AIRCREW
PLANNING^

-12 HRS -6 HRS OHRS +6dRS +12HRS+18^RS+24HRS
ill:::!

0600 1200 1800 2400 0600 1200 1800 2400 0600 1200 1800 2400 0600

Figure 1. ATO timeline (JAOSC Course Handout)

ATO CYCLE MODEL
AFDD-2

AFI13-AOCVOL3

STRATEGY
DIVISION

■^

r STRATEGY
t DEVELOPMENT

p ASSESSMENT "**i—i*
I & ANALYSIS

J
r $£$

f ATO
I EXECUTION

^

DETAILED
PLANNING

J
■-V-L ma

1
t ATO

4—It PRODUCTION

3ATPLAJ
IVISION

Figure 2. ATO Cycle (JAOSC Course Handout)

10

1.6.1. Strategie Development

The work of developing an ATO begins in the Strategy Division (SD). The SD is

involved in developing a part of an ATO referred to as Strategy Development. The task

of the SD is to ensure that the work being done by the rest of the ATO developers is in

compliance with the guidelines of the Joint Force Commander (JFC) and the other

components (land, naval, air, and special ops). The SD continually assesses how well the

air component is achieving the tasks and objectives assigned it by the JFC. They also

look at phases in the conflict and timing. Key questions such as the following are

considered:

Have we achieved aerospace superiority?
Have we met our strategic attack goals?
Do we need to concentrate on interdiction or close air support (CAS) as the battle
develops?

The Contingency Theater Automated Planning System (CTAPS) application called the

JFACC Planning Tool (JPT) assists the members of the division in resolving the answers

to these questions.

The output of the Strategy Division is specific guidance for target development in the

form of specific air tasks with accompanying measures of merit that will be implemented

by the planners in the next step of the ATO development. This specific guidance is not

developed in a vacuum; it is fully coordinated with the other components and the JFC's

staff so that the subsequent work on the ATO is synchronized with, and not in conflict

with, the battle plans of the other components.

1.6.2. Detailed Planning

Detailed Planning (DP) follows Strategic Development in the planning cycle and

contains three major phases: Guidance, Apportionment, and Targeting (GAT)

11

development, Weaponeering and Allocation, and the development of the Master Air

Attack Plan (MAAP). Members of the Combat Plans Division perform DP. Initial steps

in the planning process are the responsibility of the MAAP Core Team. Combat Plans is

organized into teams of workers with each team adding to the ATO as it makes its way

through the process towards dissemination to the units who ultimately execute it.

The first phase of Detailed Planning is the development of Guidance,

Apportionment, and Targeting by members of the MAAP Core Team. An understanding

of target generation is necessary to fully understand the work done by the GAT planners.

The service components each derive their operational objectives from the JFC's

objectives. Air component planners use the JFACC Planning Tool (JPT) to match up

potential targets with national, strategic, and tactical objectives. The planners then

examine the target database. Generally the target database for the Joint Task Force's

(JTF) area of responsibility (AOR) is a subset of the target database for the entire theater.

The JFC's intelligence staff normally maintains the database for the JTF AOR. This

database contains all possible targets that may be attacked in the AOR.

Representatives from each service component examine the database with their

operational objectives in mind. This allows for the identification of specific types of

targets in the database and target sets that, if attacked and destroyed or damaged, would

allow the component to achieve its objectives. Next, each component examines the target

sets that it must attack or destroy and verifies that it has the means to do so.

The GAT planners normally meet from 0600 to 1200 hours to begin constructing the

ATO. All components produce their nominations for ATO targeting which are then

grouped into categories of missions: strategic attack (SA), interdiction (INT), counter air

12

(CA) or offensive counter air (OCA), and close air support (CAS). These lists of targets,

called candidate target lists (CTL), are then prioritized.

During prioritization, members of each service component explain why their targets

are important and deserve to be placed high on the list. Ultimately, however, the GAT

inspects the CTLs and determines priorities based upon the guidance of the JFC.

Reviewing and ordering the lists normally takes most of the morning.

The results of the GAT are then briefed to the JFACC and, if accepted, go on to

the JFC for final approval. The targets, once approved, become the JFC's Joint Integrated

Prioritized Target List (JIPTL).

The next step in the cycle is force application and weaponeering. This is the

process of determining the quantity and type of lethal or non-lethal weapons required to

achieve a specific level of damage to a given target. The weaponeers consider target

vulnerability, weapons effect, munitions delivery accuracy, damage criteria, probability

of kill, weapons reliability, and operational capabilities and limitations [AFI13-

1AOCV3, p. 67,1999]. The end result of the weaponeers' work is a Target Planning

Worksheet (TPW) for each target on the Target Nomination List (TNL) that is produced

from CTAPS. The TPW identifies the desired mean point of impact (DMPI), its

measured location, and as many aircraft and weapons options as possible. The TPWs are

then forwarded to the planners who build the MAAP.

The other components notify the JFACC about the number and type of sorties they

will make available for JFACC tasking. All of the JFACC s sorties are then "allocated."

It is the management of these additional available sorties that is one of the jobs of the

JFACC. Any naval air assets that are not required for naval missions such as sea

13

surveillance, anti-submarine warfare, counter-shipping, fleet defense, and so on, are made

available to the JFACC for tasking. Through this practice, aerospace power is most

effectively employed and the use of valued assets is kept at a high level.

Finally, the planners stabilize on an effective number of targets in each mission

category that can be struck with the available assets. The draft plan is then re-examined

to determine if it will have the effect on the battlefield that the JFC intended when he

apportioned the missions. The list of targets included in this draft plan is called the

Target Nomination List (TNL).

Note that units have not been assigned to specific missions. This is an initial

allocation, not a final allocation. In the Master Air Attack Planning process, assets often

change missions from the original allocation plan for a variety of reasons. Only after the

MAAP has been developed has the final allocation of aircraft been established. At that

point a SORTIEALOT (sortie allotment) message is transmitted that notifies the

components and units about the employment of their assets. CAS planning, a separate

but related issue, is not addressed in this thesis.

The next step in the MAAP process is the most complex stage of ATO

development. The MAAP is the plan that contains key information that forms the

foundation of the joint ATO. The purpose of the MAAP is to translate the approved

JIPTL into a specific air attack plan that serves as the basis for the ATO [Joint Pub 3-

56.1,1994]. Master air attack planning typically lasts from 1800 to 2100 until 0600

hours. For this reason, it is often referred to as the "Night Targeting Cell" or simply the

"Night GAT".

14

Coordination is the key to putting together an effective plan. The development of

a package to hit OCA/INT targets will generate a requirement for suppressing enemy air

defenses (SEAD missions), airspace that may need to be deconfiicted and defensive

counter air (DCA) for escort. For example, Reconnaissance (RECCE) and Special

Operations may want to attach missions to the package to take advantage of the SEAD

and mutual support.

There is no correlation between the priority of targets and the sequence of the

packages. The first package may hit relatively low priority targets while the highest

priority targets may not be struck until late in the day. Note that at this time, specific

Times On Target (TOT) have not yet been determined. These times are determined by

developing a spreadsheet that tracks aircraft from different bases as they turn throughout

the day. As the spreadsheet is developed, planners must bear in mind that aircraft have

varying distances to travel to get to the target area. A map with the proposed airspace for

the day will show the proposed routing aircraft will take to reach their target area.

Additionally, aircraft travel at different speeds, have different loiter times in the target

area or on-station, and have different turn-around times after landing. A notional

example of such a flowchart or spreadsheet is given in Figure 3. This results in the

specific TOTs that are assigned to the targets.

15

Flight Plan
Normal

Alert c =i

On/off station times are Zulu

1 2 1 3 1 4 1 5 1 6 17 18 19 2 0 2 1 z

1EC130 3501

1EC130 3502

1 HC1305301 ■ I
1 1

2HH60 5311 i ■
1

1 UH60 5314 ^^^^ 1

1 E2C3530

2B1B4001 1
2 F16 4003 ■
2F164011 ■i
2 F16 4021

2 F16 4031 ■
2F152001 [1

2F152011 1

2 F15 2021 LZ1 i

2 F15 2031 i

2 F16 2056

2F162111

2 F16 2065

2 F16 2070

2F16 2061

2 F16 2063

2A10 0101 H
2A100111 ■i
2A10 0121

2A10 0131 ■■■
2A10 0141

2A10 0201 ■1
2A10 0211 ■
2A10 0221

2 A10 0231 H
2 A10 0301

4A10 0311 ^m
4 A10 0321 ■ ■
2 A10 0331

1KC135 5001

1KC135 5011

1KC135 5021

1KC135 5031

1KC135 5231

Figure 3. Sortie Flow

Finally, the planners must coordinate their missions with other elements of the

MAAP team. SEAD, DCA, airspace, and placement of surveillance aircraft must all be

coordinated. Master Air Attack Planning requires a great deal of coordination. In

16

addition to the MAAP for INT, OCA, SA, and CAS, and the Airspace Plan for the daily

ATO, several other plans are fleshed out during master air attack planning. The air

defense plan, communications plan, tanker plan, and command and control plan, to name

a few, are finalized at this time.

It is important to note that as master air attack planning ends, all of these plans

exist primarily on paper. In the next phase, ATO Production, these plans are put into

CTAPS and detail added to allow mission planning by the tasked units.

1.6.3. ATO Production

The main tool used during ATO Development is the CTAPS Advanced Planning

System (APS). All data generated during Master Air Attack Planning is input to APS.

At this time units are actually tasked with specific missions. Call signs and identification

friend or foe (IFF) codes are assigned to missions as well. Specific tankers are paired

with aircraft that require refueling in particular tanker tracks at explicit times. Normally

the ATO Development process takes approximately 12 hours, typically beginning 24

hours prior to the execution of the ATO.

Once all missions are coordinated, the APS Air Battle Plan (ABP) is sent to the

Computer Assisted Force Management System (CAFMS) in Combat Operations. It is

placed into the United States Message Text Format (USMTF) for an ATO. It is then

disseminated to the appropriate units. Normally the units are given 10 hours for crew

planning prior to the first time on target that signals the start of ATO execution [AFI13-

1AOCV3,1999].

17

1.6.4. ATO Execution

As the ABP travels from APS to CAFMS, it leaves the Combat Plans Division

and arrives in the Combat Operations Division. Personnel in Combat Operations are

responsible for monitoring the execution of the ATO during the phase of the ATO cycle

called ATO Execution.

The ATO Execution cycle begins, typically about 0600, with the following inputs:

the ATO, Airspace Control Order (ACO), and weather, intelligence, and friendly force

status briefings. Wing Operations Centers (WOCs) will inform Combat Operations of

takeoff and landing times as they occur, and mission success as it becomes known.

Personnel in Combat Ops monitor intelligence from all sources and stay in close touch

with liaisons from other services as well as allies and coalition partners.

At this point, if everything went exactly according to plan, Combat Ops would

have little to do—the ATO would simply be flown as scheduled. However, changes in

the enemy and friendly situations dictate changes to the ATO. Friendly airbases might be

attacked, or the weather may worsen. As a result, Combat Operations generates multiple

changes to the ATO and ACO, launches aircraft from alert onto immediate tasked

missions, and diverts aircraft from their preplanned missions onto ad hoc missions when

very high priority targets appear on the battlefield. Personnel in Combat Operations

constantly modify and change the plan developed in Combat Plans to "optimize" the

effect of aerospace power on the battlefield.

1.7. Advanced Planning System

APS assigns squadrons to targets in a. greedy fashion; it regards the initial assignment

of aircraft to targets as a set-covering problem [Van Hove, p. 4,1998]. At each decision

18

point, a greedy heuristic assigns the best available choice. APS simply examines each

target, in priority order, assigns the best available resources (nearest squadron possessing

appropriate assets) to it, builds a mission with that resource/target pairing and schedules

the mission at the first available time in the ATO day. APS allows the user to define

what makes a resource "best;" it may be maximize PK or minimize refueling

requirements, for example. For the sample problem in the following paragraph, "best" is

defined in terms of proximity. If a necessary resource for a particular target is not

available, no mission is planned for that target. This approach was selected for APS

because it takes less time than optimal-seeking methods [Van Hove, p. 4,1998]. It is

unlikely that the proposed missions represent all considerations in the allocation of

available resources; hence the need for combat planners to make major adjustments to the

proposed schedule in order to ensure all targets are assigned appropriate attack missions.

Consider the following simple problem illustrated by Figure 4, with target

requirements and available base assets contained in Tables 1 and 2. Note that this

straightforward example does not consider priorities or precedence relationships.

Table 1. Sample Problem: Target Requirements

Target Aircraft
l\pc

#of
\sscK

Aircraft
T> pL-

#of
Assets

Aircraft
Type

#of
Assets

1 Aircraft 2 4
2 Aircraft 2 2 Aircraft 1 4 Aircraft 3 4
3 Aircraft 2 4 Aircraft 1 6

Table 2. Sample Problem: Base Assets

Base Aircraft
Type

.Available \ircr.ift
Type

Available Aircraft
Type

Available

1 Aircraft 2 5 Aircraft 1 8
2 Aircraft 2 2 Aircraft 1 4 Aircraft 3 4

19

Target 1

Target 2

FLOT

Base 1 closer to Target i
for i= 1,2,3.

t
Base 2

Figure 4. Simple allocation of aircraft to targets

If proximity is defined as "best," APS's greedy heuristic would schedule four of

Aircraft Type 2 from Base 1 against Target 1 and then schedule four of Aircraft Type 1

from Base 1 against Target 2. When APS considers Target 3, there are not enough assets

at either base to schedule against it. Hence, no mission would be scheduled against

Target 3. An obvious solution to this small example would be to schedule four of

Aircraft Type 3 from Base 2 against Target 2, six of Aircraft Type 1 from Base 1 to

Target 3, and four of Aircraft Type 2 from Base 1 to Target 1. Another solution would

schedule two Aircraft Type 2 from Base 2 to Target 2, four Aircraft Type 2 from Base 1

to Target 1, and six Aircraft Type 1 from Base 1 to Target 3. While this scheduling

problem was simple enough to fix by inspection, the array of choices encountered with

hundreds of targets and thousands of sorties can become complex. Additionally, any

application that attempts to solve this scheduling problem must be work quickly, given

the number of missions that must be scheduled.

20

1.8. Summary

This chapter introduced the problem addressed in this research and the approach

that was used to solve it. Chapter 2 presents a review of the literature pertaining to

project management as it relates to scheduling. A summary of goal programming is

followed by an introduction to TS concepts. Chapter 3 details the development of the TS

procedure used to solve the GP models for air combat planning, replanning and re-

scheduling problems. Chapter 4 presents the results of using the TS procedure in a case

study that demonstrates the utility and unique capabilities that come with using a TS to

explore the solution space of a large problem. Chapter 5 provides a summary of the

research, the significant contributions to both military and civilian enterprises, and

recommendations for future work.

21

CHAPTER 2. LITERATURE REVIEW

This research presents a fast but effective approach for assigning allocated attack

aircraft to targets. Before describing the methodology employed, a review of the

pertinent literature is appropriate. Selected topics from scheduling theory are presented

to lay a foundation. The application developed in this research uses a goal programming

(GP) model similar to that in the Conventional Targeting Effectiveness Model (CTEM),

therefore a description of GP appears. The search method employed to solve the

resulting GP, tabu search (TS), is reviewed next. Finally, to enhance the portability of

the application developed in this research, the TS code is written in Java. Accordingly, a

section on object-oriented programming in general and Java in particular rounds out the

chapter. The chapter ends with a summary of the key points from the literature.

2.1. Scheduling Theory

This section introduces concepts from scheduling theory, especially as it relates to

project management and the targeting process. "Scheduling concerns the allocation of

limited resources to tasks over time. It is a decision-making process that has as a goal the

optimization of one or more objectives [Pinedo, p.l, 1995]." The scheduling process

exists in virtually all operational settings. It is key in the industrial sector with such items

as utilization of manufacturing and production systems to information-processing

systems. It is also spread throughout transportation and distribution systems [Pinedo, p.l,

1995]. Scheduling is widely used in military settings such as weapon system

development (acquisition) and flight scheduling.

22

The resources, tasks, and objectives that make up a schedule may take on a variety of

forms. Resources may be machines in a workshop, runways at an airport, aircraft in a

squadron, and so forth. Tasks may be operations on an assembly line, stages in a

construction project, or attacking targets on a Target Nomination List (TNL) for example.

Objectives include the minimization of the completion time of the last job (makespan),

minimization of the maximum tardiness (worst violation of the due dates), and

minimization of the total number of late tasks, to name a few [Pinedo, p.l, 1995].

A project is a systematic enterprise designed to accomplish some specific non-

routine or low-volume task [Shrub, et al, p. 1,1994]. For the purpose of this research, a

project is a finite set of activities that must be scheduled in agreement with certain

precedence requirements between activity pairs and with limited resources. Project

management, then, is the process of planning, scheduling, and overseeing the activities of

a project. In the context of this thesis, the project is the air tasking order [Van Hove,

1998, Koewler, 1999].

This section is intended to accomplish several goals. First, it introduces the reader to

key concepts from scheduling theory. Secondly, it lays the foundation for a heuristic

(described in Chapter 3) to obtain an initial solution for the ABP. This is done by

drawing analogies between air combat planning, project scheduling, and job shops. This

initial solution is then used by the TS as a starting point to search the solution space for

better solutions. Third, the section reviews the integer linear programming (ILP) model

developed by Van Hove to produce an optimal solution to the air combat-planning

problem. This model is introduced to demonstrate the vastness of the problem in terms of

the number of variables and constraints. The problem can take hours to formulate and

23

solve [Van Hove, p. 142,1998] for a mathematically optimal solution, justifying the need

for a quicker heuristic technique, albeit with the loss of guaranteed optimality.

2.1.1 Gantt Charts

One of the most widely used project management tools, the Gantt chart, is a bar

chart that graphically represents the relationship of activities over time [Shtub, et al,

p.302,1994]. Normally, each resource on the vertical axis is unique, for example if a

problem had three machines, the Gantt chart would have three rows of activities and a

different machine would service each row. Examination of a single row gives users an

intuitive feel for the resource usage for that particular machine.

Figure 3, Section 1.6.3, uses specialized Gantt charts to display sortie flow. Each

individual bar represents a mission, where the horizontal axis represents time and the

vertical axis shows the aircraft involved in each mission. Here, however, the same

resources might fly missions represented in different rows. APS has the capability to

generate the sortie flow for an ATO. The sortie flow resembles the grease boards and

spreadsheets that planners use today for scheduling missions.

2.1.2 Parallel Machine Models

A machine can be thought of as a finite resource required for completing a task, such

as a drill press in a job shop, cashiers in a checkout line, or attack aircraft in theater. In

scheduling theory, the simplest model is that of the single machine. Analysis of single

machine models has led to heuristics for more complicated machine environments

[Pinedo, p.26,1995]. However, in most real-world settings the occurrence of resources

in parallel is common [Pinedo, p.61,1995]. When parallel machines are present, joby

requiring processing on a single machine, may be processed on any one of the machines

24

in the shop. For example, if the job is to destroy a bridge, it can be accomplished by a

number of different methods (various combinations of aircraft and bombs, missiles, naval

gunfire, or even a ground-based demolition team), but, assuming a successful strike, the

bridge need only be destroyed once. Parallel machines may be identical (jobs are

processed at the same rate regardless of machine chosen) or unrelated (process time

depends on which machine is selected).

One of the most common objectives when working with parallel machine models is

that of minimizing the makespan, or completion time of the last job. Often schedulers

must deal with balancing the load across the machines in parallel; by minimizing the

makespan a good balance is ensured [Pinedo, p.61,1995]. Such is the case with ATO

planning.

Scheduling parallel machines may be considered a two-step process. First,

determine which jobs should be allocated to which machine. Second, determine the

sequence of jobs on each machine, subject to any precedence constraints [Pinedo,p.62,

1995]. The analogy to ATO planning is apparent.

2.1.2.1 Precedence Constraints

Precedence constraints define timing requirements between activity pairs within

projects. The most common type of precedence constraints are of the finish-start variety

and are used to specify that a predecessor activity must end before its successor activity

may start. Other common types of precedence constraints are start-finish, start-start, and

finish-finish [Shtub, et al, p.321,1994]. More complex activity timing requirements can

be expressed by generalized precedence constraints which dictate a minimum lag time

between an endpoint of a predecessor activity and an endpoint of a successor activity.

25

Figure 5 illustrates the four different types of generalized precedence constraint types

using Gantt charts where:

Hi H2

i i

-<-SS,->- MrSF^

,rj -■.-]' ■- ■

i i

H3
+FSy> H4

+FFü>
... j■;,,;/ j

Hi models a start-start activity pair relation with a lag of SSy

H2 models a start-finish activity pair relation with a lag of SFy

H3 models a finish-start activity pair relation with a lag of FSy

H4 models a finish-finish activity pair relation with a lag of FFy.

Figure 5. Generalized Precedence Constraints [Koewler, p.14,1999]

At times, the quantity of precedence constraints among activities in a project may

make the project hard to explain verbally or via a mathematical model. Therefore

graphical representations of precedence constraints are frequently used. [Shrub, etal,

p.321,1994]. One way to represent precedence constraints is by an activity on the arc

26

(AOA) diagram (Figure 6). In an AOA representation, a node designates an event in the

network and an arc is directed from node / to node,/ if and only if event i must be

completed before activities leaving nodey can begin. The duration of the activity is

indicated on the arc. The boldface arrows denote the critical path in Figure 6. The AOA

model is usually associated with critical path method analysis (see next section) and is

the basis for most computer implementations [Shrub, et al, p.338,1994].

Completion
time = 32

/ \ ^ Completion
time = 30

Figure 6. AOA precedence constraint graph [Pinedo, p. 66,1995]

Alternatively, precedence constraints may be represented by an activity on the

node network (AON). In an AON representation, a node designates an activity in the

network and may display information about the activity such as duration, early start (ES),

early finish (EF), late start (LS), and late finish (LF). Arcs depict precedence

relationships. A typical node in an AON network would be:

LS LF

Depending on the project parameters, some of the information displayed on the

node may not be required. The advantage of using an AON network is that the

calculations for project completion times may be performed and displayed directly on the

27

nodes by using the Critical Path Method (next section) forwards and then backwards

[Shrub, et al, pp. 337-338,1994]. The complete AON network representation for the

above AOA network is presented in the next section (Figure 7).

2.1.2.2 Critical Path Method

The Critical Path Method (CPM) for project scheduling uses either an AON or an

AOA network for graphically portraying the relationships between the tasks and

milestones in a project. Dupont and the UNI VAC division of Remington Rand

developed the CPM to schedule maintenance shutdowns in chemical processing plants.

CPM assumes the processing and set-up times are deterministic or "known" [Shrub, et al,

p.306,1994].

When the number of resources are unlimited, or at least as large as the number of

jobs, the CPM technique yields a schedule with an optimal makespan. The algorithm is

simply:

1. Schedule the jobs one at a time starting at time 0.

2. Whenever a job has been completed, start all jobs for
which all predecessors have been completed (i.e. all
schedulable jobs).

The critical path is the set of jobs that cannot be postponed without delaying the earliest

finish of the whole project. These jobs are called critical jobs while jobs not on the

critical path are called slack jobs. The length of the critical path (or any other path) is

equal to the sum of the durations of every activity on it. If the earliest finish equals the

due date, then duration of the entire project is equal to the length of the critical path

28

[Pinedo, p.65,1995]. A problem where only the precedence constraints and the

makespan are considered is called a classic project scheduling problem (PSP).

2.1.2.3 Critical Path Method Example

Consider nine jobs (activities) with no resource constraints [Pinedo, pp. 65-66,

1995], with the processing times as given below and with precedence constraints as

shown in Figure 6:

Jobs 1 2 3 4 5 6 7 8 9

Pi 4 9 3 3 6 8 8 12 6

The makespan is calculated by using the CPM algorithm. To find the critical path, apply

the CPM algorithm backwards. Start at the known makespan and work toward time 0,

while adhering to the precedence relationships. In this manner all jobs are completed at

their latest possible completion times and started at their latest possible starting times. If

there is no due date, the jobs whose earliest possible starting times are equal to their latest

possible starting times are the critical jobs and make up the critical path [Pinedo,p.65,

1995]. The remaining jobs have slack, that is there are periods of time where the

resources associated with these jobs are available. Total slack is the time that the

completion of an activity can be delayed without delaying the end of the project. Total

slack for an activity, *, is calculated as LF, - EF, (or equivalently, LS, - ES,) [Shrub, et al,

p. 333,1994].

Assuming no due date, the makespan, early start, early finish, late start and late

finish for the project can be calculated directly on an AON network using a forward and a

backward pass of the CPM algorithm (Figure 7).

29

_ 26 32
12 24

Figure 7. AON network for CPM example displaying ES,EF,LS,LF

The AON network provides the earliest completion times, C/, and the latest

completion times, C/', for each job as in Table 3. The makespan is 32 and is equal to the

completion time of job 7. The jobs whose earliest completion time equals their latest

completion time are the critical jobs and make up the critical path. The critical path

therefore is the chain 3—4—5—8—7 and is depicted in Figure 7 by the bold arrows.

Table 3. Early/Late Completion Times and Slack for CPM Example

Jobs 1 2 3 4 5 6 7 8 9

C/' 4 13 3 6 12 21 32 24 30
C," 7 16 3 6 12 24 32 24 32

slack 3 3 0 0 0 3 0 0 2

A linear programming (LP) model may be used to find the critical path (and hence

the optimal makespan) for a PSP. Ahuja's LP formulation of the longest path network

flow problem is given below [Ahuja, 1993].

30

Maximize Ltd*
(iJ)eP

-1 if/=1

Subject to !>*/- I>,*=- 0 VjeA-{l,n)
N(i,j)eP kV(j,k)eP 1 if/ = n

(1)

(2)

«/>0V(ij)eP (3)

^e{0,l} (4)

A is the set of all n activities in the project and P is the set of all (ij) activity pairs

where i must be completed beforey* can begin. Each ^decision variable represents the

quantity of flow along the arc from activity node i to activity node./ and T; is the

completion time of activitiy i. The model sends one unit of flow from source to sink in

the network representation of the PSP. The objective function, Equation (1), finds the

longest path through the network by maximizing the sum of the weights of the arcs that

make up this path. In other words, it finds the string of sequential activities that has the

longest duration—the critical path. The constraints in Equation (2) maintain conservation

of flow while those of Equation (3) restrict flow to be non-negative [Van Hove, p.l 1,

1998]. For this formulation, there must be one source (an activity with no predecessors)

and one sink (an activity with no successors). If this is not the case, dummy nodes may

be included in the model to satisfy the assumption. To illustrate, Figure 5 is modified

below with S0 and T0 as the dummy source and sink, respectively.

31

Figure 8. AON graph with dummy source and sink nodes (critical path bold)

2.1.3 Resource Constraints

In the above problem, the assumption was that there was adequate equipment so

no job had to wait for a machine. The simple PSP model does not account for limited

resources that are used by the activities. Hence, an optimal solution to a PSP may be

infeasible if other resource constraints are present. An expansion of the PSP model

developed to handle limited resources is the Resource Constrained Project Scheduling

Problem (RCPSP). The formulation of the RCPSP model in Figure 9 was developed by

Pritsker, Wärters, and Wolfe [Pritsker et al, pp.93-101, 1969] and adapted by Van Hove

[pp.12-13,1998].

32

Parameters:
A the set of all activities

K the set of all resources

P the set of all activity precedence pairs

n the last activity in the network

g the project deadline

T; the duration of activity i

ei the earliest completion time for activity i

h the latest completion time for activity i

r* the amount of resource k required by activity i

R/k the amount of resource k available in period/

Variables:
Xit equals 1 if activity i finishes in period t; 0 otherwise

Minimize ^ txnt - ^ txu (4)

*H *l

Subject to £,txjt -^txjt > rn V(z',n) G P (5)

7+r,.-l

X 2Vi, <^ V* GKandj = l,...,g (6)

'=«,

^ e {0,1} Vie A and t = 1,.. .,g

Figure 9. RCPSP Formulation

(7)

(8)

Since it is now necessary to have a series of binary decision variables for each

activity to account for per period resource consumption, there is a significant increase in

the number of decision variables in the RCPSP formulation vs. the PSP model. Recall

that the PSP formulation only required a single continuous decision variable for each

activity [Van Hove, p. 13,1998].

The objective function, (4), minimizes makespan and the precedence constraints

are stated in (5). Both (4) and (5) are more complex here than their counterparts in the

PSP model (finding the critical path is the dual of minimizing the makespan). The

33

constraints in (6) ensure that resource use stays within limits for each resource available

in each period. The constraints represented by (7) allow each activity to be completed in

only one of the possible time periods. Neither (6) nor (7) are represented in the classic

PSP [Van Hove, p. 13,1998]. Equation (8) forces each decision variable to be binary (0

orl).

2.1.4 Unrelated Parallel Machines

Thus far the parallel machines discussed were assumed to be identical. That is,

joby is processed in the same amount of time without regard to which machine it is

assigned. In an air combat environment, this would be analogous to a situation where all

attack aircraft are based at the same location and are all the same aircraft types, regardless

of SCL, fly at the same speed with an identical weapons capability. This would imply

that all aircraft would "process" a target in the same amount of time, assuming identical

bases. Clearly, the situation described above does not hold for any realistic combat

scenario.

Instead, the combat situation corresponds to an environment where the machines

have different performance profiles against different targets. That is, machine 1 maybe

able to process job 1 in a short time but may need a long time to process job 2, while

machine 2 may take a long time on job 1 but may be quite speedy on job 2. Plainly, if

Base 1 is much closer to Target 1 than to Target 2 then flight times of identical aircraft to

Target 1 will be shorter than to Target 2. In scheduling theory, this case is called

unrelated machines in parallel. For m machines, the notation is Rm [Pinedo,p.81,1995].

34

2.1.5 Scheduling Heuristics

The RCPSP integer linear programming (ILP) model from §2.1.3 will yield an

optimal solution if one exists. However, depending on the number of variables involved,

it can be time-consuming to solve. Therefore, decision makers are often interested in

techniques that will yield good, but not necessarily optimal, solutions quickly. These

techniques are called heuristics. In scheduling theory, these heuristics are often referred

to as priority rules [Pinedo, p. 142,1995].

A priority rule frequently used when jobs are subject to arbitrary precedence

constraints and arbitrary job processing times is the largest number of successors (LNS)

rule. This means that the job that has the largest number of total successors in the

precedence constraints graph has the highest priority and would be scheduled first,

subject to any additional constraints [Pinedo, p.71,1995].

When job j can only be processed on a subset of the available parallel machines,

other dispatching rules are used. One such rule is the least flexible job first (LFJ) rule.

Every time a machine is freed, the LFJ rule selects the job that can be processed on the

smallest subset of machines, with ties broken arbitrarily.

When multiple machines are freed simultaneously, the LFJ rule does not specify

which machine to consider first. One may expect that if a number of machines are free at

the same time, it may be advantageous to consider the least flexible machine (LFM) rule.

This rule assigns a job to the machine that can process the smallest subset of remaining

jobs [Pinedo, p. 71, 1995].

A combination of the preceding two rules gives priority to the least flexible jobs on

the least flexible machines. That is, for each time, t, the least flexible machine would be

assigned the least flexible feasible job. This heuristic (dispatching rule) is abbreviated as

35

the LFM-LFJ rule [Pinedo, p. 72,1995]. The heuristics discussed in this section were all

developed with the objective of minimizing the makespan of the project, but of course, no

guarantee of optimality should be inferred.

2.2.6 The Multi-Modal Resource Constrained Project Scheduling Problem

The RCPSP formulation maybe extended to include the situation where the

activities can be completed in one of a number of possible execution modes. The amount

and type of resources consumed and the processing time depend on the mode selected for

the activity. Van Hove [p. 19,1998] adapted Boctor's multi-modal model [Boctor, p.

350,1996].

Parameters
A the set of all activities
K the set of all resources
P the set of all activity precedence pairs

Mt the set of all execution modes for activity i
zim the duration of activity i in mode m
eim the earliest completion time for activity i
lim the latest completion time for activity i

rimk the amount of resource k for activity i in mode m
Rjk the amount of resource k available in period./

Variables
xim, - 1 if activity i finishes in period t using mode m

In

Minimize]T £fcc„m, (9)
mGMn t=en

Subjectto: £ ^(t-rjm)xjmt - £ ^tximt > 0 V(zJ) e P (10)
meMj t=ej meMl t=et

Z L I'Ä * R* v(M) (ID
ieA meMi t~j

zix--iwe^ (i2)
meMf t—ei

ximte {0,1} \/{i,m,t) (13)

Figure 10. Van Hove's adaptation of Boctor's MMRCPSP Formulation

36

Again, the objective function, (9), models the goal of minimizing the makespan.

The significant difference between this model and that for the RCPSP is the decision

variable, ximt vs. xit. This binary variable equals one if and only if activity i is executed in

mode m and completed in time t.

2.2.7 The Generalized MMRCPSP

In the IP formulations thus far, the precedence constraints were strictly start-to-

end. However, a PSP may employ another type of precedence constraint or, indeed, a

combination of types. The start-to-end constraints are not flexible enough to model

mission sequencing in air campaign planning. For example, start-to-end constraints force

mission./ to wait until all aircraft employed in mission / have landed and their turn time

has expired (here activity./ follows i). Certainly, this type of constraint is inadequate.

Generalized precedent constraints, by contrast, may be used to enforce any timing

requirement called for in an operational scenario and are therefore required. The

generalized MMRCPSP has the abbreviation, MMGRCPSP.

Consider the following diagram (Figure 11). If Target 1 were a Surface-to-Air

Missile (SAM) site, mission requirements may be such that Target 1 must be attacked

before subsequent missions that strike deep interdiction targets (Targets 2 and 3) may

cross the Forward Line of Own Troops (FLOT). This requirement may mean that the

missions to Targets 2 and 3 may have to delay their take off. This concept, minimum lag

time, is more fully covered in §3.3 along with its counterpart, maximum lag time.

Suffice it to say generalized precedence constraints must be included in the formulation.

37

Figure 11. Scenario for Generalized Precedence

2.2.7.1 Doubly Constrained Resources

Before continuing with the model formulation, the reader should have a clear

understanding of the connection between scheduling theory terminology and that of air

campaign planning. These associations are provided in Table 4.

Table 4. Terminology Associations [Koewler, p. 16,1999]

Scheduling Air Campaign Planning
Activities or jobs Targets or strike mission assigned

to a target
Mode Weaponeering and base selection
Processing time Mission duration
Precedence Constraint Mission timing requirement
Resource Squadron or unit
Asset An individual aircraft

In air campaign planning, the number of allocated aircraft assigned to a particular

squadron equals the limit on how many aircraft may be tasked during the same time

period. However, this is not the limit on how many aircraft may be tasked from this

squadron throughout the day. Generally, each aircraft in a unit can fly more than one

38

mission in an ATO day—provided that the crews, fuel, and ordnance are available.

Associated with each unit is a turn rate—the number of sorties an individual aircraft may

fly per day. The number of sorties a unit may fly per day is equal to the turn rate

multiplied by the number of allocated aircraft in the unit. For example, suppose a

squadron had 16 F-15Es allocated for interdiction with a turn rate of 2.5. Obviously, at

most 16 aircraft may be tasked at any one time while the turn rate indicates that 16 x 2.5

= 40 sorties may be flown throughout the day.

Let K be the set of units in the problem and k e K. The renewable aspect of k is the

limit Rk, the actual number of allocated aircraft assigned to the unit. Again, this means

that at any given time during the planned ATO day, no more than Rk units of resource k e

K may be in use [Van Hove, p. 43,1998].

Now let trk be the turn rate for unit k Then Nu, the number of sorties that unit k can

generate in an ATO day, is given by Nk = RkX tn truncated to the nearest integer. The

nonrenewable aspect of resource k is the limit dictated by Nu [Van Hove, p. 43,1998].

Each unit in the air campaign planning model is a doubly constrained resource. In

other words, the assets associated with the resource are both renewable and

nonrenewable.

2.2.7.2 Multi-Modal Activities

The TNL determines the activities for an air campaign planning scenario. The TNL

lists the JFACC-approved targets, along with weaponeering options for each target. The

information associated with an option includes the number and type of aircraft, SCL, and

the probability of kill (PK) or expected percent damaged (PD). A valid execution mode

39

for a target (activity) is given by the number and type of aircraft together with a unit

possessing the indicated type of aircraft.

The mission duration for an execution mode depends on the distance between the

target and the base and on the speed of the aircraft associated with the mode. A mission

route consists of several legs. For this research, a route consists of the following legs:

take-off to FLOT, FLOT to target (ingress), target to FLOT (egress), FLOT to landing.

Of course, mission planners at the Wing Operations Center would construct more

detailed routes. Since the AOC personnel generally do not know the exact routes the

aircraft will fly, these straight-line route legs can be used for ATO planning estimates.

The estimated time to complete each of the legs is then calculated using a nominal

airspeed for each aircraft type. The sum of these route times plus the aircraft turn-around

(prep time for the next mission) makes up the mission duration (processing time). If

necessary, a time window may be established during which a mission has exclusive

access to a target. This window is bounded by a time on target (TOT) and a time off

target (TFT). If this window were included, the mission duration would increase by the

length of this interval.

2.2.7.3 MMGRCPSP Formulation

In the formulation of the MMGRCPSP problem (Figure 12), the objective

function, (14), again minimizes the makespan of the schedule. Equation (15) enforces the

sortie rate limit (nonrenewable resource), while equation (16) enforces the limit on the

number of aircraft tasked per time period (renewable resource). The binary decision

variable, ximb is equal to one if activity / starts in period t and is executed in mode m.

Equation (17) enforces the lag times between predecessor/successor activities. The

40

binary decision variable xjnt selectively enforces the applicable constraint and relaxes the

redundant constraints. As the delta (AyTO-„) can be positive or negative, both minimum and

maximum precedence constraints can be expressed by using this constraint twice, once

for precedence pair (i,j) and once for precedence pair (j,i) [Van Hove, 2000].

The model generates an optimal schedule in terms of makespan. It does not,

however, model target priority classifications, nor does it model maximum lag times or

replanning. Van Hove solved a relatively small 10-job problem to optimality in less than

one second, while the optimize-r, CPLEX, took almost 9 hours to solve. Van Hove's

case study sample problem (before preprocessing) required more than six million binary

decision variables and 80,000 constraints [Van Hove, p. 143,1998]. Using his hybrid

integer decomposition approach with an objective of minimizing makespan, Van Hove

was able to solve this problem to optimality in less than an hour [Van Hove, p. 142,

1998]. By contrast, solving this same problem to optimality would have required over a

century using the CPLEX optimizer [Van Hove, 2000]. Van Hove's hybrid integer

program decomposition approach increased the size of problems that can be realistically

solved to optimality from 10 activities(targets) to 100 activities (targets). There are,

however, operational problems that exceed this 100-target limit.

41

Parameters:

A the set of all activities
d the index of terminal activity

e,„ the earliest completion time for activity i in mode m
lim the latest completion time for activity i in mode m
Mi the set of all execution modes for activity i
vm the duration of activity; in mode m
Si the set of generalized successors of activity i

AiJm„ the minimum lag between the start time of activity i in mode m and the start

time of activity j s St in mode n
K the set of all double constrained resources

rimk the amount of resource k required by activity i when being executed in mode m
Rk theperperiod availability of resource k
Nk the total amount of resource k available
g the deadline for the project under consideration

Variables:
xim, = 1 if activity i starts in period t and is executed in mode m

Minimize]T ^{t + Tdm)xdmt (14)
meMj t=edm

Subjectto: £ £ ZlvA * Nt V* e K (15)
leA meM, t=e,m

ZZ IXä, ^** Vte*,j«i...g (16)
teA meMj t~j-Tim+l

j" / \ im' JM"U

EE(V„-^ + E^ * £ £ä VieA,VjeS,m'eM/ (17)
n<=M,t=e,„ t=eim. m4.Mi\m')t=eim

II^=1W^ (18)
neM, /=eim

x;mre {0,1} V(z,m,0 (19)

Figure 12. Van Hove's complete MMGRCPSP model formulation [Van Hove, p. 49]

2.3. Goal Programming

Goal programming (GP) was developed to solve multiple objective decision

making problems (MODMP), has been successfully used to solve numerous applications

of real-world problems, and has been accepted as a basic mathematical programming

method for solving MODMP [Baykasoglou, p. 960,1999]. GP first appeared in the

42

nineteen fifties to obtain "constrained regression" estimates for an executive

compensation problem [Charnes, Cooper, & Ferguson, 1955]. The purpose of GP is to

simultaneously satisfy several goals relevant to the decision making problem [Romero, p.

2,1991].

The first step in formulating a GP model is establishing a set of goals. Each goal

is a combination of an attribute together with its corresponding aspiration level. Whether

this aspiration level may be required to be satisfied exactly, surpassed, or not exceeded

must be indicated [Romero, p. 2,1991]. To accomplish this, deviational variables need

to be introduced into the model. A positive deviational variable, ct, indicates the number

of units by which a goal's aspiration level has been surpassed. A negative deviation, d,

indicates the number of units by which a goal's aspiration level is lacking. Clearly, at

least one of the variables must be zero; if the goal is surpassed, the negative deviational

variable must be zero and vice versa. If the goal is met exactly, both (t and d are zero

[Romero, p. 2,1991].

Algebraically, the z'th goal is expressed as:

f,(x) - d? + dl = bi

where x is the vector of decision variables and btis the aspiration level for the rth goal, d{

is the over-attainment of bit and df is the underachievement of goal /. If it is desirable

that the Ith goal meet or exceed the aspiration level (fr(x) > bi), then df must be as small as

possible (minimize df). Alternatively, if it is preferred that goal attainment level not be

exceeded, (f;(x) < bf), then d? must be as small as possible (minimize dt). If the f goal

should be achieved exactly (fj(x) = bf), then both deviational variables must be as small as

possible (minimize dt + df). While a single goal could be expressed as an inequality

43

without deviations, deviations are required to trade off between goals if all goals cannot

be simultaneously satisfied.

The two most common types of GP are preemptive weighted GP and non-

preemptive weighted GP. Preemptive weighted GP models (commonly referred to as

lexicographic goal programming (LGP)) satisfy goals in ordinal order of importance.

Non-preemptive weighted GP models may have weights, developed by the decision-

maker, assigned to the goals and are referred to as weighted goal programming models

(WGP). In WGP models, all goals are considered simultaneously [Baykasoglu, p. 960,

1999]. There are other GP variants, but WGP and LGP contain the most common, basic

features of GP. However, because of the difficulties associated with assigning weights to

target priorities, a preemptive GP is appropriate for this research.

2.3.1 Lexicographic Goal Programming

In LGP, once goals, target levels, and the deviational variables to be minimized

have been determined by the decision-maker, the specific level of priority must be

assigned to each goal or group of goals. In other words, the decision-maker must rank his

goals from the most important (goal 1) to the least important (goal n).

An objective function must be determined for the LGP model. The objective function

coefficient for the variable representing goal / is the preemptive weight Pt, and it is

assumed Pi»>P2>»P3>».. .»>P„. Because of the nature of LGP, P, is "infinitely"

greater than P,+; [Deckro and Hebert, p. 150,1988]. This weighting ensures that the goal

program first tries to satisfy the decision-maker's most important goal. Then, among all

points that satisfy goal 1, the decision-maker tries to come as close as possible to

satisfying goal 2, and so forth. The process continues until the only way to draw closer to

44

satisfying a goal is to increase the deviation from a higher-priority goal [Winston, p. 778,

1994].

2.3.2 Goal Interval Programming

One variant on LGP is called Goal Interval Programming (GIP). Often, standard GP

techniques using preemptive weightings and deviations from a target value are overly

constrained in their requirements [Charnes et al, p. 351,1976]. LGP models are

incapable of considering trade-offs involving the satisfaction of goals that are associated

with different priority levels [Deckro and Hebert, p. 150,1988]. Replacing an original

stipulated goal with a goal interval is one way to allow a decision maker to assess the

feasibility of an inter-goal trade-off. The GIP model makes it possible to focus on one

activity at a time while allowing for departures from goals (or goal intervals) within

limited ranges [Charnes et al, p. 357,1976].

In GIP, a goal is considered to be satisfied if the deviation of the corresponding

variable from the desired level is within a pre-determined range [Charnes et al, 1976].

GIP would be appropriate for the air campaign planning problem especially in the realm

of intra-class trade-offs. Targets are usually assigned broad target priority classifications

(i.e. Priority 1, 2, 3, 4 for example). Within these classifications are sub-categories (1A,

IB, 1C, and so on). A planner may be willing to roll a target with a 2B classification into

a future ATO if it meant picking up, say, four 2C targets for today's ATO.

2.3.3 Conventional Targeting Effectiveness Model

The Conventional Targeting Effectiveness Model (CTEM) was developed for HQ

USAF/XOOC (Checkmate) for analysis of current operations [Cotsworth, 1993]. CTEM

is a conventional weapons version of the Arsenal Exchange Model (AEM) which has

45

been the standard force structure analysis tool for some time [Yost, p. 55,1996]. CTEM

is typically used as a preemptive goal program where targets are grouped into classes that

must be attacked in a certain priority order [Yost, p. 55,1996]. Solution times for CTEM

range from one to three hours, depending on scenario. Experience with CTEM and AEM

show that a goal-orientation is much easier for users than a target-value orientation [Yost,

p. 58,1996].

CTEM is now used to aid in MAAP production within the JFACC Planning Tool

(JPT). A great deal of aggregation and several assumptions must be made in order for the

problem to be solvable by CTEM in a reasonable amount of time [Haas, p. 57,1998]. If

input data needs to be corrected, the entire run of the model must be redone and this may

be time prohibitive under air campaign planning conditions [Haas, p. 59,1998].

Based on the precedent set by CTEM, a LGP model for detailed mission planning

seems appropriate. Additionally, a method that can yield good, quick solutions to the

model would be of great benefit. Indeed, such a method may well serve in MAAP

production as a proxy for solving the CTEM model to optimality, especially under

conditions where a rerun of the CTEM model is required.

2.3.4 An Appropriate Heuristic for GP Models

There are pitfalls with using deterministic search algorithms (like simplex and

branch and bound, for example) for solving GP models. Like all methods, they may

encounter difficulties with local optima when searching for a global or near-global

optimum solution. Moreover, since they always move in an improving direction it may

be difficult to escape the trap of local optima. They also require the analytic form of the

model, without which solving the problem is impossible. In real-world problems,

46

however, the analytic form of some objectives may not be available [Baykasoglu, p. 960,

1999].

Stochastic search methods such as genetic algorithms, simulated annealing and tabu

search, on the other hand, have built-in mechanisms that offer a more robust methodolgy

for trying to escape local optima. They are generally problem independent and can

handle any kind of constraint or objective function, and do not require an exact analytic

form [Baykasoglu, p. 960,1999]. The TS solution method involves working with

neighborhoods (more than one solution at a time) which gives it the ability to deal with

multiple goals (objectives) easily [Baykasoglu, p. 960,1999]. The next section presents

TS in some detail.

2.4 Tabu Search

Tabu search (TS) is a meta-heuristic procedure for solving large combinatorial

optimization problems. Meta-heuristics guide other heuristic procedures to escape the

trap of local optima. TS has proven to be extremely successful in solving to optimality or

near-optimality a variety of classical and practical problems [Glover, p. 74,1990].

2.5.1 Tabu Search Description

Tabu search uses recency (short-term memory) and frequency (long-term

memory) to search a solution space efficiently by prohibiting the search from remaining

in regions found to be locally optimal and forcing the exploration of other regions

(perhaps even infeasible) not yet encountered. Specifically, the search examines a

neighborhood of a given solution. This neighborhood is defined to be the set of all

solutions one move away from the current solution. The move must be defined for each

type of problem. For example, in a traveling salesman problem (TSP), a move may be

47

defined as swapping the order of two nodes [Nowicki and Smutnicki, p. 800,1996]. The

appropriate move for a given problem is usually established through experimentation

[Glover and Laguna, p. 80,1993]; several different moves may be tried to see which one

(or which combination) produces the best results.

The search utilizes the k most recent moves to classify moves that are tabu

(restricted,), which keep the search from undoing the k previous moves (where k is some

pre-defined integer). Once a move is made, reversing that move is classified as tabu and

recorded on the tabu list (of length k). The tabu list keeps track of recent moves and is an

example of what is meant by recency or short-term memory. Moves classified tabu may

still be selected if they pass what is known as the aspiration criteria. An aspiration

criterion is defined as a condition that must be met in order to allow a tabu move to take

place. Permitting a tabu move to be chosen only if the move gives the best solution

found so far is an example of an aspiration criterion [Glover and Laguna, p. 76,1993].

The tabu search may (unknowingly) encounter the optimal solution for a problem

in a shorter time than classic methods. However, the TS, by itself, neither guarantees

optimality nor can it usually tell if the best solution obtained is optimal. An exception to

the latter is Nowicki and Smutnicki's algorithm (labeled TSAB) for job shops that can

detect an optimum under certain specific conditions [Nowicki and Smutnicki, p. 803,

1996]. Likewise, if TS were applied to a GP model and all of the goals were satisfied,

then optimality will have been achieved and the TS would recognize this as well by

simply checking the current solution against the target deviation vector. A typical TS,

even if it finds the optimal solution, continues to search until a pre-specified stopping rule

is met (exception: TSAB). Candidate stopping rules include:

48

1. The time limit has expired.
2. The maximum number of iterations has been reached.
3. The current solution is within some s (epsilon) of a lower bound (upper bound for

a maximization problem).
4. There has been no improvement in the solution for n iterations.

As long as the set number of iterations or the time limit is established at a

reasonable value, the TS generally yields an excellent solution quickly [Nowicki and

Smutnicki, p.799,1996]. It is possible to integrate TS with algorithms that guarantee

optimality (such as branch and bound) and this is an avenue of research worthy of

investigation [Glover, pp. 82-83,1990], but not within the scope of this research.

2.5.1.1 Tabu Tenure

Tabu tenure is the number of iterations that a move is classified as tabu (also the

length of the tabu list). The tabu tenure that achieves the best results is experimental;

different values are tried and compared. Glover suggests that in several applications of

TS, a tabu list size of seven represents a highly effective value and that the best tabu

tenures consistently fall in the interval from five to 12 [Glover, p. 83,1990].

2.5.1.2 Intensification

TS uses flexible memory for intensification and diversification. If the search

encounters a "good" solution, it may be desirable to intensify the search within the local

area in hopes of finding an optimum (local or even global). Reduction of the tabu tenure

is a basic intensification strategy. An intensification phase is initiated after a pre-set

number of iterations. A record of the best (elite) solutions found so far is kept and the TS

re-starts (with a shorter tabu tenure) from each of these in turn. The justification for re-

starting from these best solutions is simple—they have a high probability of being close

to a local (and perhaps global) optimum. The search may not have found these optima

49

because the moves that would have led in the direction of the optima may have been on

the tabu list. By reducing the tenure, some of those moves may drop off the tabu list, thus

allowing the search to proceed towards the nearby local optima (if it exists). After a

certain number of non-improving iterations, the intensification phase begins anew from

the next solution on the elite solution list. Once the intensification phase has been

completed, the TS may terminate, start a diversification phase, or continue searching with

its original tabu tenure from the current solution or from the last solution encountered

before the intensification phase was begun [Glover and Laguna p. 47-50,1997].

2.5.1.3 Diversification

At times, the TS continually returns to an attractive region of the solution space

(the trap of local optima). This means that the TS has reached an attractive area of the

solution space and the moves selected tend to keep the TS in this region. Quite possibly,

when a tabu move has achieved its tenure and comes off the list, it is immediately chosen

as the next move. The TS can use one of many diversification strategies to escape this

trap.

If a diversification phase were desired, the simplest strategy would be to lengthen

the tabu tenure, which may cause the search to move to unexplored regions. Often, an

attractive variable, once in the solution, remains in the solution. It may never be selected

to be dropped since it may never be the choice for "least un-improving move." However,

if the tabu tenure were longer such that all of the other decision variables currently in the

solution were tabu, then this attractive variable may be considered for leaving and one of

the less frequently used variables may enter. This is an example of using recency for

diversification.

50

Another simple diversification strategy would employ frequency or long-term

memory. Keeping track of the number of iterations that the decision variables are in the

solution and then penalizing the objective function for keeping an attractive variable in

the solution is one way to diversify. Alternatively, the TS could track the number of

times a variable has been toggled during the search. It could then penalize the objective

function for selecting a variable that has been often added or dropped, thus allowing less

frequently selected variables to be chosen. Diversification generally employs long-term

memory to expand the search to an unexplored area. Other diversification strategies are

available such as path relinking and strategic oscillation, but like all TS strategies and

parameters, experimentation is in order to find the best combination for a problem

instance. At the completion of the diversification phase, the tabu tenure will revert to its

original value and the search proceeds as before [Glover, p. 47-50,1997].

2.5.2 Benefits of Using Tabu Search

The advocates of TS suggest it makes use of memory, both long and short term, to

maximize the depth (intensification) and breadth (diversification) of the neighborhood

search. Additionally, intelligent use of candidate lists can speed up the search by forcing

an evaluation of a fractional subset of the neighborhood. The tools at the disposal of an

effective tabu search will, in most cases, find a very good solution (often better than the

accepted standard for a class of problems) in a relatively short time [Glover, p. 75,1990].

TS was chosen as the method for this research because it has been shown to be

effective for solving many types of combinatorial optimization problems (of which the

problem being addressed by this research is one). For example, Laguna, Barnes, and

Glover developed a TS application that obtained optimal solutions to all test problems for

51

which optimality could be verified. Moreover, their application obtained solutions within

a few percent of an optimality bound for larger problems that branch-and-bound methods

could not solve in a reasonable time [Laguna, Barnes, and Glover, 1989]. Since tasking

aircraft to targets can involve hundreds or even thousands of targets and aircraft, the

problem can be very large. Bearing in mind the size and type of the problem and TS's

performance record, research using TS for this type of problem seems appropriate.

Scheduling provides one of the most fruitful areas for modern heuristic techniques

in general and for tabu search in particular [Glover, p. 127,1993]. Nowicki and

Smutnicki tested their TSAB application for job shop scheduling against a benchmark set

of problems and compared their results to those of a shifting bottleneck heuristic and

simulated annealing. Their procedure outperformed the other methods with respect to

(adjusted) CPU time and the quality of the generated makespans [Nowicki and

Smutnicki, p. 808. 1996].

2.5.3 Steps in Applying a Basic Tabu Search

Figure 13, taken from Glover (1990) illustrates the basic steps involved in a TS.

These steps are common to all tabu searches; however the details (candidate lists, tabu

tenure, aspiration criteria and so forth) will differ depending on the problem and on the

phase of the search (such as diversification or intensification). Custom procedures not

listed here are used to tailor the TS to specific problems.

52

Begin With a Starting Current Solution

Obtain the solution from initialization or from an

Create a Candidate List of Moves

(If applied, each move would generate a new
solution from the current solution)

Choose the Best Admissible Candidate

(Admissibility is based on the tabu restrictions and aspiration criteria.)
Designate the solution obtained as the new current solution. Record it as the

T\ J n 1

Stopping Criterion

Stop if a specified number of iterations has elapsed in
total or since the last Best Solution was found.

Stop Continue

Terminate Globally or Transfer

A transfer initiates intensification or
diversification phase embodied in an
intermediate or long-term memory

component.

Update Admissibility Conditions

Update Tabu Restrictions and
Aspiration Criteria

Figure 13. Common Steps in a Tabu Search [Glover, p. 78,1990]

2.5.4 A Simple Example of Tabu Search

TS has been used successfully on various optimization problems including

traveling salesman problems, vehicle routing problems, and job shop scheduling [Glover,

p. 75,1990]. This section demonstrates how TS works with a simple job shop-

scheduling problem. Advanced principles of TS are not demonstrated through this

example.

53

Consider a shop with one machine and four jobs [Pinedo, pp. 151-152,1995].

The processing time, due date and weight for each job is given in Table 5. The objective

is to minimize the total weighted tardiness (in scheduling notation this is a 1 || Ew/Ti

problem).

Table 5. Single Machine Example: Data

•Mis Sill ■TA 2 If»?. ' 4
pi (processing times) 10 10 13 4
d,- (due dates) 4 2 1 12
Wj (Weights) 14 12 1 12

The neighborhood for this problem contains all schedules that can be obtained

from the current schedule through adjacent pairwise interchanges. The tabu list is a list

of pairs of jobs (ij) that were swapped within the last two moves (i.e. tabu tenure, k, is

two) and cannot be swapped again unless the swap satisfies the aspiration criterion or it

has left the tabu list. The aspiration criterion is the value for a move that would allow the

tabu restriction to be overridden. Initially, the tabu list is empty.

As a first schedule, the sequence Si = 2,1,4,3 is randomly chosen; the

corresponding value of the objective function is 500 (see Table 6). The aspiration

Table 6: Single Machine Example: First Schedule

läo&s'iiÄ |i^S;late:^ i!$a?wK it).to Qby. EuBCi:,
2 8 96
1 16 224
4 12 144
3 36 36
Total 500

criterion for a move on the tabu list is that its objective function value be less than the

best known objective function value (in this case, the best objective function value

54

obtained so far is 500). There are three schedules in the neighborhood of Si, 1,2,4,3;

2,4,1,3; and 2,1,3,4. The respective values of the objective functions are 480,436, and

652. Selection of the best non-tabu sequence, with a value of 436, results in S2 = 2,4,1,3.

The aspiration criterion is now 436 (see Table 7). The tabu list is updated and contains

(1,4).

Table 7. Single Machine Example: Second Schedule

ÄÄ! ■BIlliH ■<3ollPovObliüticil
2 8 96
4 2 24
1 20 280
3 36 36
Total 436 |

There are three schedules in the neighborhood of S2,4,2,1,3; 2,1,4,3; and 2,4,3,1.

The respective values of the objective functions are 460, 500, and 608. The best move at

this point is the first one. Note that the second schedule (move) is tabu since the swap

(1,4) is on the tabu list. Therefore, even if it was the best move, we could not use it

unless the aspiration criterion was met and we could override the tabu restriction. The

selection of the first move increases the current objective function value (see Table 8).

Regardless, S3 = 4,2,1,3 and the tabu list now consists of (1,4) and (2,4).

Table 8: Single Machine Example: Third Solution

Si^iÄiiÄ^lii^^
4 0 0
2 12 144
1 20 280
3 36 36
Total 460

There are three schedules in the neighborhood of S3,2,4,1,3; 4,1,2,3; 4,2,3,1. The

respective values of the objective functions are 436,440, and 632. The best move is the

55

first one, but this move is on the tabu list and the aspiration criterion has not been met.

We must therefore choose the second move (see Table 9). S4 is 4,1,2,3 and the tabu list

contains (2,4) and (1,2).

Table 9. Single Machine Example: Fourth Schedule

isim !;||aysll^|. Mxmafa0$fäSbiB&i
4 0 0
1 10 140
2 22 264
3 36 36
Total 440 |

The neighborhood of S4 consists of 1,4,2,3; 4,2,1,3; and 4,1,3,2 with respective

values of 408,460, and 586. The best move is the first one (see Table 10), which is not

tabu and, in any case, meets the aspiration criterion. S5 is 1,4,2,3 and the tabu list

consists of (1,2) and (1,4). In this case, S5 is optimal. Generally, the TS generally does

not know when a solution is optimal. The search would continue in this fashion until one

of the stopping rules is fulfilled.

Table 10: Single Machine Example: Final Schedule

^^^ÜS^l^^^to^lm^l
i 6 84
4 2 24
2 22 264
3 36 36
Total 408

For this simple problem, complete enumeration of all the possible combinations

would not be prohibitive. Since there are only four jobs, each with only one operation,

and each job must be processed on one machine, the total number of combinations is 4!

or 24. Here a heuristic search, such as TS, would not be necessary. But suppose each job

56

had three operations with each operation to be processed on one of two machines. Now

there are up to [(4*3/2)!]2 or 518,400 feasible schedules to enumerate and evaluate

[Scheduling Theory Course, 1999]. For even relatively small job shop-scheduling

problems, complete enumeration maybe cumbersome. In such a setting TS, as well as

other search procedures, which evaluate some small fraction of the possible

combinations, are often advantageous.

2.6 Object-Oriented Programming and Java

Objects are essentially reusable software components that model items in the real

world. Most software developers find that using a modular, object-oriented design and

implementation approach can make software development more productive than with

previous popular programming techniques such as structured programming because

object-oriented programs are easier to understand, correct, and modify [Deitel and Deitel,

p. 12,1998]. Many different programming languages have been developed that are

object-oriented. Among these are Smalltalk and Java, while the popular language C^ is

a hybrid—it is possible to program in a structured programming style or an object-

oriented style or in a combination of both [Deitel and Deitel, p. 12,1998].

Java was selected as the object-oriented language for this research for several reasons.

First, Sun has announced its Java Database Connectivity (JDBC) standard. This is

intended for developers of heavy-duty database applications (see §2.3). Second, because

Java was developed to fully utilize and exploit the Internet and the World Wide Web, it

was purposely built to be platform independent. A Java application will run just as

readily on a Sun SPARCstation as it will on a PC. Third, Java is based on C and C4-1" and,

57

as such, programmers who are familiar with those languages can understand and modify

Java applications with minimal cross training.

2.7 Chapter Summary

This chapter began by providing background on the ATO process. Some key

elements of scheduling theory and project management were outlined including network

diagrams, the critical path method, scheduling heuristics. A discussion of various project

scheduling problems was followed by the formulations of mathematical models used to

solve them to optimality. Selected concepts of goal programming were presented and

then a detailed look at the meta-heuristic, tabu search, was provided.

58

CHAPTER 3. METHODOLOGY

This chapter details how the topics and methods from Chapter 2 were applied to

the interdiction aircraft assignment problem. An explanation of the heuristic used to

provide an initial solution to the problem is provided. The goal programming model and

formulation for the planning and the replanning problems are then presented. The chapter

finishes with a detailed look at the TS application developed to provide combat planners

and operations duty officers with scheduling and re-scheduling options.

3.1 Initial Solution Heuristic

As this research focuses on improving the APS solution, it is appropriate to

investigate generating a better initial solution that considers precedence and flexibility.

Recall the largest number of successors (LNS) rule from Section 2.2.5. Under this rule,

the job with the most successors has the highest priority [Pinedo, p. 69,1995]. For

example, a Surface-to-Air Missile (SAM) site has to be downgraded before any

succeeding missions could ingress the immediate area. This mission obviously would

have a high priority under the LNS rule.

Recall the LFM-LFJ heuristic (Section 2.2.5) [Pinedo, pp. 71-71,1995] and

consider the earlier example from Section 2.2.7. If the aircraft are the "machines" and

the targets are the "jobs", then the heuristic would select Aircraft Type 3 from Base 2

first (it is the least flexible; it can only be used against one target) and assign it to Target

2. Aircraft Type 1 from Base 1 would be selected next and assigned to Target 3. Finally

Aircraft Type 2 from Base 1 would attack Target 1.

59

A comment is required concerning tie breaking—suppose Aircraft Types 1 and 2

could both be used against all three targets. Once Aircraft Type 3 has been scheduled,

either type could be considered next. One tie-breaking rule might be to choose the

aircraft type that has the most available assets in-theater. For this example, there are

twelve Aircraft Type 1 and seven Aircraft Type 2, so a planner would schedule Aircraft

Type 1 next. Another possibility for a tie-breaker is to choose the most rested unit, or

other considerations and commander's preferences.

This tasking of air assets is closely related to a machine shop with the following

features: unrelated machines in parallel, precedence relationships, and each job can only

be processed on a subset of the available machines. The objective is to minimize the

makespan (the amount of time it takes to process all the jobs). This suggests a heuristic

to generate an initial solution for tasking allocated attack aircraft to targets. The heuristic

is a combination of the LNS rule and the LFM-LFJ rule (referred to as the LNS-LFM-

LFJ rule). The LNS-LFM-LFJ rule provides a sound "first cut" initial solution.

Before the steps of the heuristic can be outlined, there is another important

consideration, that of lag times. In the earlier example, a SAM site should be

downgraded before subsequent targets in the area (or deeper targets where the assigned

missions must fly within range of the SAM) can be attacked. For this research,

predecessor missions must attack before successor missions are permitted to cross the

FLOT (crossing the FLOT is known as egress on the outbound leg and ingress on the

inbound leg of the mission). This gives rise to a minimum lag time which may constrain

the take-off time for successor missions. This concept is illustrated with a simple

example (Table 10).

60

Table 11

Take-off to FLOT (minutes) FLOT to Target
Predecessor (Mission #1) 60 15
Successor (Mission #2) 85 15
Successor (Mission #3) 55 15

Table 11 contains sample missions and mission times. If Mission #1 takes off at

0000, it would strike its target at 0115 (75 minutes later). Missions 2 and 3, since they

are successors to Mission #1, cannot ingress until this time. The time from base to FLOT

for Mission #2 is 85 minutes, so no lag would be necessary. However, Mission #3 would

need to delay its takeoff by 20 minutes so that it would ingress no earlier than (NET)

0115.

To be more precise, the above example is a demonstration of generalized

precedence constraints. To ensure that the successor missions do not ingress before the

predecessor hits its target, two generalized precedence constraints must be defined, one

between each predecessor/successor pair, (1,2) and (1,3). Let S,- be the start time for

mission i. The constraints may be formulated as follows:

S2>Si-10

S3 > Si + 20.

Negative 10 and 20 are the notional lag values associated with the general precedence

constraints. Suppose Mission 1 takes off at 0800. The constraints on the successors are

found as follows:

S2>Si-10^ S2>0800-10-> S2>0750

S3 > Si + 20 -» S3 > 0800 + 20 ■* S3 > 0820.

61

Observe that the start times of the successors are constrained by the start time of the

predecessor. Mission 2 is constrained to take off no sooner than 10 minutes prior to the

start time of Mission 1, while Mission 3 is constrained to start no sooner than 20 minutes

after the start of Mission 1. The formulation of these generalized precedence constraints

can get considerably more complex with the addition of multi-modal activities.

Consider a successor target that must be attacked no later than (NLT) a specific

number of minutes after its predecessor. For example, suppose a SAM site can become

operational again an hour after being struck with a particular weapon. In this case, a

successor must egress within at most 60 minutes of the TOT of the predecessor. This

illustrates the concept of a maximum lag time that may either delay the take-off of the

predecessor or hasten the take-off of the successor. Taken together, the minimum and

maximum lag times make up a time window for the successor mission.

The technique developed in this research incorporates lag times to model

staggered missions and suggests take-off times. This automated feature is not currently

available within CTAPS. The suggested times may be changed by the unit as long as

campaign objectives are met.

If a target with many successors were assigned a mission with a late TOT, then a

condition known as a bottleneck might occur. That is, all of the successor missions

would be "on hold" until this target is attacked. For this reason, the initial solution

heuristic assigns missions with short base-to-target duration times to targets with many

successors. Finally, to be a good initial solution for the GP TS, the heuristic strives for a

solution that satisfies the goals of the GP. Therefore, the heuristic presented below

considers the targets in priority order.

62

Step 1. Starting with the highest priority unscheduled targets, order the
appropriate modes for each target by the LNS rule.

Step 2. Within priorities sort the modes first by LFM (least flexible mission) then
by LFJ (least flexible job or target).

Step 3. Further sort the modes by ascending mission duration times. This ensures
that the modes with the quickest completion times are paired up with the targets
that have the most successors. This step will eliminate most bottlenecks.

Step 4. Schedule each target in the resulting order (from steps 1,2, and 3).

Step 5. After scheduling the highest priority unscheduled targets, repeat steps 1,
2, 3, & 4 for the next highest priority targets. Continue until all targets are
scheduled or until there are no more assets available.

This heuristic is a "pseudo-GP" as it maximizes coverage of each target priority

(goal) in descending order. In other words, the heuristic attempts to schedule missions

against all first priority targets before moving on to second priority targets. It then

attempts to schedule all second priority targets before considering third priority targets.

Finally it tries to schedule all third priority targets. It provides a feasible, good starting

solution for the TS application of the GP model. It does not explicitly consider

makespan. Makespan is implicitly captured via the LFM-LFJ heuristic which is a

heuristic for minimizing makespan. The sorting of mission duration times was done to

attempt to eliminate situations where missions are waiting for long periods for

predecessors to attack their targets (a bottleneck). This simple heuristic corresponds with

the common sense planners have used for years

3.2 GP Model for the Air Campaign Planning Problem

For the examples tested in this research, there are three target priority categories:

Priority 1 (PI), Priority 2 (P2), and Priority 3 (P3), although the procedure developed in

this thesis is not limited to three priority classes. The commander may desire more target

63

priority classifications or sub-classifications, which can be incorporated into the model.

Moreover, the commander may re-arrange the goals so that they correspond to his

operational objectives (makespan may be more important than target coverage, for

instance). The target priority classifications may be preemptive or non-preemptive.

Likewise the sub-classifications within a priority class may be preemptive or be

differentially weighted.

For this GP model, the three priorities are assumed to be preemptive. In other

words, the most important goal is to schedule missions against the Priority 1 (PI) targets,

to the exclusion of all other considerations. A schedule that assigns missions to all of the

PI targets and none of the P2 or P3 targets is considered "better" than a schedule that

assigns missions to all of the P2 and P3 targets and all but one of the PI targets (see

Table 5, §3.5). The objective function for the LGP model of this research minimizes the

deviation from complete target coverage for each of the target priority classifications in

order, and then minimizes the makespan of the schedule (see Figure 14). The objective

function, Equation (20), minimizes the deviation from the goals in lexicographic order. It

ensures that P, targets are considered before Pi+i targets are considered (i = 1,2,3) and that

complete target coverage is attempted before trying to minimize the makespan.

Equations (21), (22), and (23) give the constraints on the deviations, d,. It is possible that

all of the ximt variables equal zero for activity i, making the dx; variable equal to one. This

condition would occur for targets that have no missions assigned to them; obviously no

resources would be assigned to these targets. The d, variables are therefore constrained to

be equal to the number of priority i targets that do not have missions scheduled against

them in the optimal solution. The rest of the model is identical to Van Hove's

64

MMGRCPSP formulation (Figure 12) except that his objective function becomes the

constraint in Equation (24) that defines Goal 4, minimizing the makespan of the

generated schedule.

Table 12. Parameters and Variables for the MMGRCPSP GP Formulation

Parameters:
Ai
A2

A3

A
d

Hm

M,

St
&ijmn

K
fimk

Rk
Nk

g
Variables:

Ximt

Pi
di
d4

the set of all priority one targets
the set of all priority two targets
the set of all priority three targets
the set of all activities (Ai + A2 + A3)
the index of the terminal activity
the earliest completion time for activity i in mode m
the latest completion time for activity i in mode m
the set of all execution modes for activity i
the duration of activity i in mode m
the set of generalized successors of activity i
the minimum lag between the start time of activity i in mode m and the start time of
activity j € Si in mode n
the set of all double constrained resources
the amount of resource k required by activity i when being executed in mode m
the per period availability of resource k
the total amount of resource k available
the deadline for the project under consideration

= 1 if activity / starts in period t and is executed in mode m, 0 otherwise
The weight of goal i, with P,- >» P;+i
of Priority i targets not covered, i = 1,2,3
The makespan of the schedule

65

Minimize P^ + P2d2 + P3d3 + P4d4 (20)

Subject to: di,+ X Hximt =1 \/ieA1 anddi, € {0,1} V* e Ax zcaAdx= ^du (21)

'fa

d2,+ X Xx™/ =1 VieA2 andd2(e {0,1} Vie.A2 and</2 =]>V2l. (22)

'™

d3,+ X 2Üx'm' =1 V?'e^3 andd3! € {0,1} V/ e A3 andrf3= ^J3; (23)
meM: t=eiir ieA,

Z £& + ^>*r-d«-0 (24)

',>
EZZV- £NtV*e* (25)
ieA meM-, t=ein

j

EX 2>«** ^** V^j = l...g (26)
j*Si4 meMj t=j-Tim+\

/,„

IZ^-^+Z0«^ £ I>- VieA.VjeS, (27)
/=eta. me{M,\m')t=elm

L.

I5X, =lV!'^ (28)

^(e5 (29)
Figure 14. The MMGPRCPSP Goal Programming Model

3.3 Tabu Search for the Air Campaign Planning Problem

TS implementation is problem-specific. The details of the TS for this research are

provided in this section.

3.3.1 Solution Representation

Each legitimate combination of aircraft number, aircraft type, base (unit), and target

was given a code in the notional database. For example, 2T1B11 means 2 Type 1 aircraft

from Base B (here aircraft type also determines the unit) against target 11. These

solution codes were sorted by the SQL query that created them in accordance with the

66

initial solution heuristic. This pre-sorting allows the heuristic to perform quickly since no

sorting is done while the application is running. These codes are representations of the

decision variables in the model formulation.

Associated with this resulting column of codes is a matrix of information (Table

13) which is the primary output of the application. The first column in the matrix

consists of zeroes and ones; if combination i is in the solution, then element i in this

solution vector is set to one. On the other hand, if combination i is not in the solution,

then element i in the solution vector is set to zero. It is this solution vector that is acted

upon by the TS move. The remaining columns in the solution matrix disclose the target

priority classification, and convey mission timing information such as take off time, leg

completion times, and mission completion time. The columns associated with timing are

updated with every move.

Table 13 shows a few rows of the solution matrix. For example, the first row

states that 4 aircraft of notional mode Type 1 is taking off at time zero from base B. It is

scheduled to hit target #26, a Priority 1 target, at time 28. The aircraft associated with

the mission will be available for assignment again at time 107. The last column tells

which targets are covered. Since the mission in the first row attacks target #26, rows

corresponding to all missions that could attack target #26 have the value in this column

set to one (observe, for example, row 2). The matrix contains other columns such as time

off target and landing time, that, for the sake of brevity, are not shown in the example.

67

- Table 13. Partial Example of Solution Matrix

Solution
Vector

Solution
Code

Take
Off

Time on
Target

Completion
Time

Target
Priority

Is Target Scheduled?
1 if yes, 0 if no

1 4T1B26 0 28 107
0 4T1A26 0 0 0
1 2T1A53 0 36 123
0 2T1B53 0 0 0
0 4T2B26 0 0 0
0 4T2C26 0 0 0
1 4T1A54 10 46 133
0 4T1B54 0 0 0
1 2T2B27 3 29 126
0 2T2C27 0 0 0
0 2T2B54 0 0 0
0 2T2C54 0 0 0
1 4T1A3 0 24 99
0 4T1B3 0 0 0
1 4T1B80 0 60 171
0 4T1A80 0 0 0
1 2T1A7 0 21 93
0 2T1B7 0 0 0
0 4T2B3 0 0 0
0 4T2C3 0 0 0
1 2T2C76 0 36 143
0 2T2B76 0 0 0

3.3.2 Move Definition

Glover states that a good TS move for a particular application can only he

determined through experimentation [Glover and Laguna, p.80,1993]. One common

move type is apairwise interchange (also known as a swap or 2-opt move). For a

problem with binary decision variables, this move consists of turning off one variable

(setting it to 0 if it was 1) while turning on a different variable (setting it to 1 if it was 0).

Another move type, and the one chosen for this research, is the toggle. Toggling

consists of taking one of the elements in the binary solution vector and switching it to the

68

opposite position; this may be the easiest type of move to implement. Employing a

toggle will allow targets that were not initially scheduled to rotate into the ATO.

To demonstrate the toggle move, consider the solution vector (1,0,0,1,1) to a

problem with five binary decision variables. The neighbors to this solution using the

toggle move are (0,0,0,1,1), (1,1,0,1,1), (1,0,1,1,1), (1,0,0,0,1) and (1,0,0,1,0). It is easy

to see that there are n neighbors for any solution of an «-variable problem. While the

toggle move may seem simplistic, successive toggles achieve results similar to other

move types. For example, two applications of the toggle move, where one move toggles

a variable off (sets it to 0) and the subsequent move switches another variable on, has the

same result as a swap. The drawback to using the toggle move is that it takes more

iterations to achieve the same results as a more complex move. A move is chosen from a

neighborhood if it is the most improving move or the least unimproving move and it is

not on the tabu list (unless it meets the aspiration criterion).

3.3.3 Illustrative Neighborhood for Air Campaign Scheduling

To demonstrate the evaluation of a neighborhood of a solution for the GP model

of the air campaign scheduling problem, suppose Table 14 displays five neighbors to

some current solution. The goal deviations for each priority are given in the table.

Solution #1, with a goal deviation vector of (1,0,0,1000) is the least desirable choice

because it leaves one PI target unassigned. Since the remaining neighbors each have a

PI deviation of zero, P2 deviations are examined. Only solutions 4 and 5 cover all of the

P2 targets, and these are examined for the best P3 deviation. Solution #5 has the best P3

deviation and thus would be selected as the new solution.

69

Table 14. Illustration of Improving Solutions for a GP Model

Solution # Goal 1 Deviations/ Goal2 Deviations/ Goal 3 Deviations/ Makespan
(PI Targets (P2 Targets (P3 Targets of
Covered) . Covered) Covered) Schedule

1 1/(59) 0/(25) 0/(15) 1000
2 0/(60) 25/(0) 15/(0) 1000
3 0/(60) 1/(24) 0/(15) 1000
4 0/(60) 0/(25) 14/(1) 1000
5 0/(60) 0/(25) 5/(10) 1100

ÖJ0 c

1
1.1
a o

"■+2
O

If the best known solution had a deviation vector of, say, (0,0,4,1000) then no

new best solution is recorded. On the other hand, if the best known deviation vector was

(0,0,5,1200), then the makespans (goal 4) of the solutions would be compared. Since the

new solution has a smaller makespan, then a new best known solution would be recorded.

3.4 Implementing TSACP

This section describes the TSACP application starting with the initial solution

heuristic and continuing through an iteration of the tabu search. Flowcharts are provided

that portray the overall process as well as details on the specific components.

Before the initial solution method is invoked, the application makes its calls to the

database to retrieve and store the data required to solve the planning problem instance.

The data is stored as objects which are easily passed from method to method, as

necessary, so that multiple calls to the database are unnecessary. After the planning data

is retrieved, a dialog box appears and the user selects from either the planning or the

repianning applications. If the user selects "Replan" then an additional call is made to the

database to retrieve the solution vector for the current plan. This solution vector is used

for comparison against the repianning solution vector (discussed more fully in Sections

3.4 and 3.5).

70

3.4.1 Initial Solution Application

After all of the essential information is retrieved and stored, the Initial Solution

method is invoked. The primary features of this method are: 1) a loop that repeats until

either all of the targets have a mission scheduled against them or no further missions can

be planed with the remaining resources and 2) a timeWindow array for each unit of length

equal to the absolute latest completion time of the ATO and 3) the array of solution codes

discussed in Section 3.3.1. Each element of timeWindow is initially set equal to the

number of attack aircraft allocated to the unit.

Within the method are a series of loops that check to see if, for an element i of the

array of solution codes, the target associated with code i has a mission assigned to it. If

no mission is assigned to that target, a check is made first to see which, if any,

predecessor missions are already scheduled. If there are any, then earliestStarffime for

the mission under consideration is set to the maximum of the start time of all assigned

predecessors plus their associated lag times. A check for available aircraft times is then

made against timeWindow. This check determines at what point (starting at

earliestStartTime) there are sufficient consecutive elements (equal to the duration of the

mission plus turn time) of the array such that the number of aircraft available is greater

than or equal to the number of aircraft required for the mission. If a time window is

found that does not violate any successor constraints, the mission is scheduled with a

take-off time equal to the index of the first element t of the time window. The mission

leg times are set equal to t + dkg (where J/egis the leg duration for the mission as specified

in the database). If no suitable window is found, the mission is not assigned and code i +

1 is inspected in like manner. Figure 15 is a flowchart illustrating this process.

Notional example:

71

Unit 1A has 4 attack aircraft assigned to it, its initial time Window array is given in

the second row of the following table:

Time period 0 1 2 3 4 5 6 7 8 9 10 11 12
Available a/c 4 4 4 4 4 4 4 4 4 4 4 4 4 ...

The unit is considered for assignment to some target, a. If this target has no

predecessors, the mission can start at time 0. If the mission has a completion time

of 4 and requires two aircraft, then time Window becomes:

Time period 0 1 2 3 4 5 6 7 8 9 10 11 12
Available a/c 2 2 2 2 4 4 4 4 4 4 4 4 4 ...

Next, the unit is considered for assignment to target b which is a successor to a.

The a/b mode combination selected has a minimum lag of 2 and 2 aircraft are

required to fly the mission, which has a completion time of 4. The resulting

timeWindow becomes:

Time period 0 1 2 3 4 5 6 7 8 9 10 11 12
Available a/c 2 2 0 0 2 2 4 4 4 4 4 4 4 ...

Examination of the array shows that no missions requiring 3 or 4 aircraft can take

off before time period 6 (the first element of the array is time 0). Additionally,

missions requiring 1 or 2 aircraft can take off at time period 4 and, if the

completion time is by the end of the second time period, such a mission could

take off at time 0, assuming no precedence relationship violations.

The timeWindow array is used only to keep track of the renewable resource, per

time period aircraft utilization. The non-renewable resource, total sorties, is tallied

elsewhere. It is assumed for this research that a unit will not be considered for

assignment if it has flown all of its allocated sorties. Other mission attributes, such as leg

72

times, are recorded in the solution matrix. The output of this method is a feasible

solution to the planning (replanning) problem.

Yes

Initial
Solution
Method
Invoked,
time = 0

■> ►
Get next

code

Yes

Yes

Find time window for
the mission. Check for

successor violation.

No

_^f Terminate J

Yes

Assign mission.
Perform
calculations.

No

Figure 15. Initial Solution Heuristic Flowchart

73

Initial Solution Evaluation

The Evaluate method is used to appraise the output of the Initial Solution method

to see how well it achieved the goals of the objective function. When the Initial Solution

was invoked, an array, numTarg initialized at zero, was created with length equal to the

number of targets in the problem instance. When a mission is scheduled, the element of

numTarg corresponding to the target associated with the mission is set to 1.

To judge how well the initial solution covers the targets, the Evaluate method

simply scans the numTarg array for zeros. When a zero is encountered, the priority of its

associated target is obtained and the deviation vector of the corresponding goal is

incremented by one. For example, if a zero is encountered at i = 20, then the priority

classification of target # 19 is retrieved (the first element of an array is zero, hence target

equals i -1). If target # 19 is Priority k, then the deviation vector for goal k is

incremented.

Goal four in the planning problem is to minimize makespan. To determine the

makespan, the Evaluate method passes the "Mission Duration" column of the solution

matrix to the Maxim method. This method returns the value of the largest integer in the

array.

The output of the Evaluate method is an array of four integers. For instance, if

the initial solution covered all of the PI targets, all but one of the P2 targets, and all but

five of the P3 targets, while achieving a makespan of 550 minutes, then the objective

function vector would be [0,1,5,550].

74

3.4.2 Tabu Search Walkthrough

The initial solution heuristic provides a robust solution that can be used on its

own, but is intended as a good starting point for TSACP. Parameters for TSACP such as

tabu tenure and total number of iterations must first be specified. The aspiration criterion

is the best objective function value found. The initial solution is passed to the tabu search

engine and TSACP starts.

3.4.2.1 Move Manager

The first consideration for TSACP is the move neighborhood. In other words, a

decision must be made concerning which of the missions in the current solution are

eligible for toggling; the set of missions that are considered eligible is called the

candidate list. By restricting the candidate list to those missions that stand a good chance

of improving the objective function, the neighborhood of the current solution will be

smaller, there will be fewer moves to evaluate in each iteration, and the tabu search will

be faster.

The Move Manager method selects the candidate list. This method considers

missions associated with only one specific target category at a time for inclusion on the

candidate list. The target category under consideration alternates at each iteration; only

PI targets may be considered at iteration 1, P2 targets for iteration 2, and P3 targets for

iteration 3, then the cycle repeats. The reasoning behind this strategy is: if targets from all

categories were included on the candidate list and an unimproving move was necessary (a

mission must be turned off), then only missions associated with P3 targets would be

selected. The tabu search would never select a mission to a P2 target or PI target to

toggle off if a mission to a P3 target was available. In essence, the candidate list would

75

then only consist of all missions to P3 targets and only those PI and P2 targets that do not

currently have missions assigned to them. This would result in little or no inter-modal

swaps and an overly restrictive neighborhood.

The Move Manager selects missions to PI targets for inclusion on the candidate

list if one of the following criteria is met: either no mission is currently assigned to the

associated target (a mission must be toggled on, thereby improving the objective

function) or, if the mission under consideration is an assigned mission (and would be

toggled off), its mission completion time is equal to the makespan of the schedule. A

move that selects a mission to a PI target to be toggled off is the worst kind of

unimproving move (the deviation variable for goal one would increase by one).

Therefore allowing this type of move to be included in the candidate list must require a

very good reason. Selecting (for toggling off) a mission to a PI target only if it is

associated with the makespan decreases the size of the candidate list while allowing for

the possibility to decrease the makespan. The decision maker can change the candidate

list inclusion criteria if a goal interval is specified, for example.

Selecting move candidates among missions to P2 and P3 targets is less complex.

A mission is placed on the candidate list if either the target associated with the mission

has no mission assigned to it (the mission may be toggled on) or if the mission is an

assigned mission and would be toggled off.

3.4.2.2 Move

Each element of the candidate list is operated upon by the Move method. First,

the mission is toggled (turned off if it was previously on and vice versa). Next, the

Solution Modifier method is called. This method's primary components are two IF-

76

blocks; if the mission is set to "on" the statements of the corresponding IF-block are

executed, otherwise the statements of the other IF-block are performed.

This method performs quickly because there are no loops within it. It only

calculates the marginal change resulting from the move under consideration. For

example, consider a potential move where a mission is toggled off; its corresponding

element in the solution vector is changed to zero. When this occurs, each of the

corresponding elements in the timing columns are also set to zero. Additionally, the

timeWindow array for the unit is updated. The final array in the example in Section 3.4.1,

was:

Time period 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

Available a/c 2 2 0 0 2 2 4 4 4 4 4 4 4 ...

If the mission to target a was toggled off, the array would become:

Time period 0 1 2 3 4 5 6 7 8 9 10 11 12
Available a/c 4 4 2 2 2 2 4 4 4 4 4 4 4 ...

Finally, the number of sorties flown by the unit is decremented.

For the circumstance where the mission was toggled on, the method checks to see

if there are enough sorties left in a unit to fly that mission. If not, the method skips to the

next mission on the list. If so, an attempt is made to locate a time window for the mission

in a similar fashion as was done in the Initial Solution method. The difference during the

tabu search is that if successor violations exist, the time window is assigned to the

mission, a penalty is placed upon the objective function, and the next move is evaluated.

This is done to keep the search from "bogging down" by looking overly long for time

windows for any one move.

77

If a move is chosen that does violate any successor constraints, the successors that

are in violation are the only moves allowed on the candidate list until all violations are

reconciled. For example, say elements 5,12, and 21 of the solution code array are

successor missions and all three are violating precedence constraints. On the next three

moves, only these three elements will be on the candidate list. Once these are all dropped

from the schedule, TSACP can proceed choosing its candidates as before. Figure 16 is a

flowchart that illustrates this process.

78

Initiate TSACP

Yes
Terminate TSACP, report results,

store solution in database

Move Manager
generates

candidate list

Move method
toggles next
mode on list

/ Mode >v

Yes N^

No

Solution Modifier
unassigns mission,

updates
timeWindow, and
sorties remaining

Solution Modifier
assigns mission,

updates timeWindow
and sorties remaining,

calculates mission
times

Move Lag
enforces lag

times for mode

Move Evaluation
calculates objective
function value for

current move

Tabu List method
determines if
move allowable

Select best
candidate, iteration

complete

Yes No

Figure 16. TSACP Flow Chart

79

3.4.2.3 Move Evaluation

When the Move method toggles a mission to a PI target on, a flag changelnPl is

set to negative one. Similar flags are set to one for missions to P2 and P3 targets. If a

mission was toggled off, then the value of the changelnPj variable is set to one. The value

of the appropriate variable is sent to the Evaluate Move method; the value is then added

to the corresponding element of the current objective function vector. For example,

suppose the current solution has an objective function vector [0,1,5,550] and the current

move consists of a mission to a P3 target being toggled off. changeInP3 is set to one and

Evaluate Move adds changeInP3 to the third element of the objective function vector

giving the new objective function vector [0,1,6,550]. The makespan of the current move

is evaluated as before by sending the mission completion time column of the solution

matrix to the Minim method.

After the current move is evaluated, it needs to be inspected by the Tabu List

method to determine if it is an allowable move. In other words, is the move tabu? If so,

is the aspiration criterion met? If the move is deemed admissible, the index of the move

and its objective function value are stored until all the moves on the candidate list are

operated upon and evaluated in like manner. When this is accomplished, the best move is

selected and a new iteration is begun. Figure 17 is a flowchart that illustrates the move

evaluation method while Figure 18 is a flowchart of the overall process discussed in this

section (3.4).

80

Initiate the Evaluate
Method

Get next mode

No

Yes

Increment assigned
targets for

appropriate target
category

No

Yes

Subtract assigned
modes from number of
targets for each priority

class

Calculate latest
mission

completion
time

Report objective function
-►V vector and terminate method

Figure 17. Flow Chart for Evaluate Method

81

Initiate
Application

Get Current
Solution

Invoke Initial
Solution
Method

Evaluate
Initial

Solution

Start TSACRS

Start TSACP Start TSACR

C End J.

Figure 18. Flow Chart for Overall Application

3.5 Replanning

Replanning often occurs during the ATO process. The ABP is handed over to the

Combat Operations Division approximately 10 hours before the start of the ATO day

[AFI13-1AOC V3,1999]. This time is required for crew planning before the start of

ATO execution. Should any changes occur to the ATO during this time, the missions

82

affected by the changes may have to cope with a shortened mission preparation time.

Therefore, the impact of any change should be minimized.

Suppose, for example, a high priority target originally scheduled for tomorrow must

be attacked today instead. Assume that there are no more available sorties nor are there

missions available that can "squeeze in" another target. In this case, a lower priority

target may have to be rolled into the next day's ATO to free up assets to attack this new

target.

3.5.1 LGP Model for Replanning

A slightly modified LGP model is appropriate for replanning. Consider the LGP

for planning. It consisted of four goals:

Goall Maximize PI target coverage
Goal 2 Maximize P2 target coverage
Goal 3 Maximize P3 target coverage
Goal 4 Minimize makespan of the schedule

These goals, however, are not sufficient for the replanning application. An additional

goal has been inserted between goal 3 and goal 4 (although it could be inserted wherever

the commander feels it is appropriate). In order to minimize the impact of a change to the

ATO, the number of missions affected should be minimized.

For example, suppose that by reassigning one mission (and its support package)

currently scheduled against a P3 target, the new PI target can be attacked. This might be

operationally more desirable (although not necessarily mathematically more desirable)

than a replanning schedule that shuffles several missions around while trying to minimize

makespan. Therefore, a goal designed to minimize the number of missions changed is

added as goal 4 (with the former goal 4 becoming goal 5). As the primary goals of target

83

coverage remain unchanged, the heuristic developed for the planning application will be

used to find the initial replanning solution. The heuristic would, in essence, find a new

initial plan but with the current target and resource sets. Additionally, the planner may

decide to lock in critical missions that employ extremely valuable or sensitive assets so

that they cannot be changed (such as B-2 missions).

Goall Maximize PI target coverage
Goal 2 Maximize P2 target coverage
Goal 3 Maximize P3 target coverage
Goal 4 Minimize number of changed missions
Goal 5 Minimize makespan of the schedule

Baykasoglu stated that in real-world problems, the analytic form of some

objectives may not be available [Baykasoglu, p. 960,1999] or may be too time-

consuming to be worthwhile. Constructing the analytical form for the new goal is an

example of such a case. The mathematical model would require an initial vector of

special ordered sets (ximt variables) to use in its formulation of this new goal four. Such

an objective would be difficult to formulate comprehensively.

However, if an LGP formulation were available for the replanning problem, it

would be similar to that for the planning problem. The only difference would be the

inclusion of a new variable in the objective function to account for the insertion of the

goal to minimize the number of changed missions. Since reassigning one mission may be

operationally desirable, this deviation variable has a target value of 1 and so the

constraint, J4 > 1 (or 1 - d4 < 0) would be included to define this deviational variable.

This target value may be set by the decision-maker at a level of his or her choosing or it

could be parameterized (i.e. a Goal Interval Program approach may be used). This means

84

that solutions maybe determined with varying values for d4 to see if an acceptable trade-

off of changed missions vs. makespan exists.

3.5.2 Tabu Search for Replanning

Since the theoretical formulation of the LGP model for replanning is similar to that

for planning, the same move definition was used for the replanning TS, the toggle move.

Likewise the tabu tenure and aspiration criterion are identical. The only change that

needed to be made to the TSACP application to obtain the Tabu Search for Air Campaign

Replanning (TSACR) was to incorporate the fifth deviational variable and its

corresponding constraint.

When TSACP was used to solve each planning problem instance, a copy of the best

solution obtained was saved to the database. For TSACR, an initial solution based on the

current scenario situation is obtained using the LNS-LFM-LFJ heuristic. This initial

solution is evaluated just as in TSACP, but with one difference. The solution vectors

from the TSACP best solution and the TSACR initial solution are compared to one

another. Each time the value of element / in one vector differs from the value of element

* in the second vector, the value of the deviational variable associated with goal 4 is

incremented by one. As the TSACR progresses, at each iteration every neighbor to the

current solution is likewise compared to the TSACP best solution; the TSACR attempts

to minimize this value as well as the values for the other goals.

To illustrate this vector comparison, consider Table 15. The first column in this

notional table consists of the binary solution vector from the saved TSACP best solution

for a problem instance, while the second column is the solution vector for some neighbor

to the current solution of the replanning problem. As the two vectors are compared, the

85

cumulative value of the deviational variable for goal 4 is displayed in column 4 of the

table.

Table 15. TSACPvs.TSAC

TSACR cu^^l
solution

R solution vector comparison

l.s\(Pbdi£<]
solution 111

Comparison Cumulative value
of goal lour

1 1 equal 0
0 0 equal 0
0 0 equal 0
1 1 equal 0
0 1 unequal 1
1 0 unequal 2
0 0 equal 2
0 1 unequal 3
0 0 equal 3
1 1 equal 3
1 0 unequal 4
0 0 equal 4
0 0 equal 4
1 0 unequal 5

This approach allows for a rapid comparison of the replanning solution against the

original plan. By minimizing the value of the deviational variable associated with goal

four, the operational impact to the schedule is decreased. If this number is small, most of

the missions in the ATO can fly as scheduled.

Only the differences between the TSACP and TSACR methods will be discussed.

After the user selects "Replan" from the initial dialog box, the solution vector of the

current solution is retrieved from the database and a Boolean variable in the main method

is set to true. This Boolean variable tells the Initial Evaluation and the Evaluate methods

that a new goal is to be inserted into the objective function vector. A conditional FOR-

loop now is executed. Within this FOR-loop each element of the two solution vectors are

compared and the goal four deviation vector is incremented by one every time the two

86

respective elements are unequal. Goals one, two, and three are identical to TSACP; goal

four of TSACP now becomes goal five of TSACR. All of the other methods discussed in

Section 3.4 function as before.

3.6 Rescheduling

Rescheduling is defined in this research as re-assigning missions, as circumstances

warrant, while the Air Battle Plan (ABP) is already in the state of execution. It differs

from replanning by the amount of time planners have available to find a solution and,

subsequently, by the amount of time that the pilots and crews have available to rearm (if

necessary), develop new detailed mission routes and times, and view the imagery

associated with a new target. This means that an application for rescheduling must work

rapidly. The solution obtained should, if possible, impact the ATO to an even lesser

extent than that for replanning.

The rescheduling application developed for this research reduces operational

impact by liberally using a feature mentioned in §3.5—"locking in" missions. While a

combat planner may selectively lock in specific missions, for this research all remaining

assigned missions to priority one and two targets were locked, thus allowing only

missions currently assigned to priority three targets to be considered for re-assignment.

Should the magnitude of the rescheduling situation be such that reassigning all of the

missions assigned to priority three targets not be sufficient to cover all priority one

targets, some or all of the priority two targets could be unlocked.

The rescheduling problem is solved by using a modified TSACR, Tabu Search for

Air Campaign Rescheduling (TSACRS). By locking in a quantity of missions, the value

of the deviational variable corresponding to goal four is already quite small; thereby

87

presenting a good starting solution for a tabu search for rescheduling. In addition, the

candidate list becomes quite small, thus allowing the tabu search to function extremely

rapidly. This extra speed may well be necessary in a combat rescheduling environment.

3.7. Summary

This chapter presented the methodology for solving the air campaign planning

problem. Chapter 4 explains how the methodology was tested and the results of the

testing. The chapter also contains a case study problem that resembles an air campaign

planning scenario. The case study was used to demonstrate not only how the planning

application would be used in an operational environment, but also to demonstrate how the

replanning application would be used.

88

CHAPTER 4. Results

This chapter presents the outcome of applying TSACP to several MMGRCPSP

problems having known optimal or lower bound solutions. In addition, the generation of

a sample combat planning problem is described in detail and the results of applying the

TSACP and TSACR applications are provided.

4.1 Problem Sets

The problem sets used for testing TSACP were generated using the ProGen

problem generator [Kolisch, et al, 1992,1995]. After the problem sets were generated,

they were put in a format that could be imported into the Access database and used by

TSACP. A total of five 10-job problems, three 30-job problems, three 60-job problems,

and two 90-job problems were used for testing.

The test problems are analogous to the air campaign planning problem; jobs are

targets, resources are units, and activities are missions. Each of the jobs in the 10-job

problems could be executed in three different modes; each mode uses different quantities

and types of resources and has different processing times. The 30- 60- and 90- job

problems consisted of jobs that are executed in a particular mode from a choice of one,

two, or three possible modes. Again, each mode uses different resources and processing

times. The doubly constrained resources among the problem sets each carried varying

quantities of renewable and non-renewable assets. The problems within each set also

differed in their network configuration and complexity. The number of successors and

predecessors for each job (target) were varied among the problems to give an array of

network structures.

89

The lag times between a predecessor/successor pair depends on the mode

combination being used. For example, predecessor job Jl executed in mode A followed

by successor job J2 executed in mode A would have a different lag time than predecessor

job Jl executed in mode A followed by successor job J2 executed in mode B. Random

maximum (negative value) or minimum (positive value) lag times were generated for

each predecessor/successor mode combination. The lag times were uniformly

distributed, randomly generated integers restricted to be in the range from negative one-

half the duration of the predecessor activity to the duration of the predecessor activity.

For example, if the predecessor activity had a duration of 10, then the lag times

associated with this activity would be in the interval [-5,10].

Due to the computational burden coupled with limited time and resources, optimal

solutions were unavailable for all but one (Van Hove's small 10-job problem, pp. 73 -75)

of the 10-job problems and none of the larger problems. However, relaxed optima, using

only the non-renewable resource constraint, were obtained for the remaining 10-job

problems and for one of the 30-job problems. The true optima for the doubly constrained

problems cannot be less than the relaxed solution, hence the relaxed optima serve as

lower bounds on the fully constrained problems. For the first phase of testing of the

initial solution heuristic and the general tabu search heuristic, goals were not considered.

The objective in these tests was to minimize makespan. Goals are considered in the case

study, however.

The remaining 30-job, 60-job, and 90-job problems had no obtainable lower

bounds within the limited time and resources available. Results of TSACP for these jobs

are reported in this research for two primary reasons: first, to determine how problem

90

size affects solution time and second, to measure the performance of the initial solution

heuristic vs. the tabu search.

4.2 TSACP Results

Barr, et al, suggest the following experimentation steps for heuristics [Barr et al,

page 11-28,1995]:

1. Define the goal of the experiment.
2. Choose measures of performance and factors to explore.
3. Design and execute the experiment.
4. Analyze the data and draw conclusions.
5. Report the experiment's results.

The goal of the testing for this research is to show that the tabu search and initial heuristic

perform quickly and provide reasonable solutions when compared to a lower bound on

the makespan for the problem. Barr et al's remaining steps are explained as this chapter

progresses.

The relaxed (no renewable constraint) integer programs were solved using

HyperLingo® Version 5.0 on a Pentium II with a clock speed of 400MHz and 256

megabytes of memory. TSACP was run on a Pentium II with a clock speed of 300MHz

and 128 megabytes of memory. Only makespans were compared for the test problems.

The times reported for TSACP were all for 1000 iterations and a tabu tenure of 13. As

there was potential value inherent in the initial solution heuristic itself, solution times and

values were recorded for the initial heuristic as well as for TSACP.

The results are presented in Tables 16 through 19. The statistics for the 10-job

problems are reported in Table 16 where the "delta" column is the raw difference

between the solution obtained via the specified heuristic approach and the lower bound.

The "% delta" column is the percentage away from the lower bound for the specified

91

heuristic (i.e. (delta/lower bound)%). Table 19 contains data including minimum,

maximum, and mean solution times as well as the standard deviations and confidence

intervals for each size problem.

Table 16. Solution Statistics for 10-Job Problems

Job Size Method CPU time
(seconds)

Cmax delta % delta jobs not
scheduled

10
Problem 1 Lower Bound 83.00 10 .. «a. 0

Relaxed Initial Soln 0.03 10 0 0% 0

Relaxed TS 10.80 10 0 0% 0

Fully Const. Init. Soln. 0.03 13 3 30% 0

Fully Const. TS 14.90 11 1 10% 0

Problem 2 Lower Bound 64.00 11 — ~ 0

Relaxed Initial Soln 0.03 19 0 73% 0

Relaxed TS 11.20 11 0 0% 0

Fully Const. Init. Soln. 0.02 27 16 145% 0

Fully Const. TS 11.40 15 4 36% 0

Problem 3 Lower Bound 569.00 9 — « 0

Relaxed Initial Soln 0.03 11 2 22% 0

Relaxed TS 12.00 11 2 22% 0

Fully Const. Init. Soln. 0.03 18 14 78% 0

Fully Const. TS 11.00 18 9 78% 0

Problem 4 Lower Bound 81.00 9 — ~ 0

Relaxed Initial Soln 0.03 13 4 44% 0

Relaxed TS 10.50 9 0 0% 0

Fully Const. Init. Soln. 0.02 13 4 44% 0

Fully Const. TS 10.60 9 0 0% 0

Problem 5 Lower Bound 182.00 9 — 0

Relaxed Initial Soln 0.02 18 9 100% 0

Relaxed TS 10.50 11 2 22% 0

Fully Const. Init. Soln. 0.03 18 9 100% 0

Fully Const. TS 12.50 12 3 33% 0

delta = heuristic solution - lower bound % delta = (delta/lower bound)%

92

Table 17. Solution Statistics for 30-Job Problems

Job Size Method CPU time Cmax
(seconds)

delta % delta jobs not
scheduled

30
Problem 1

Lower Bound
Relaxed Initial Soln
Relaxed TS
Fully Const. Init. Soln.
Fully Const. TS

2734.00 26
0.12 44

34.20 28
0.11 60

36.80 57

18
2
34
31

41%
7.90%
131%
119%

0
0
0
1
0

Problem 2 Relaxed Initial Soln
Relaxed TS
Fully Const. Init. Soln.
Fully Const. TS

0.12 21
27.00 23
0.08 41
30.62 41

1
0
1
0

Problem 3 Relaxed Initial Soln
Relaxed TS
Fully Const. Init. Soln.
Fully Const. TS

0.08 39
29.50 23
0.08 21

33.18 39

1
0
1
0

Table 18. Solution Statistics for 60-Job Problems

Job Size Method CPU time
(seconds)

Cmax jobs not
scheduled

60
Problem 1 Relaxed Initial Soln 0.86 32 0

Relaxed TS 110.10 30 0
Fully Const. Init. Soln. 0.67 40 0
Fully Const. TS 137.40 40 0

Problem 2 Relaxed Initial Soln 0.26 32 0
Relaxed TS 111.70 30 0
Fully Const. Init. Soln. 0.26 60 0
Fully Const. TS 130.00 32 0

Problem 3 Relaxed Initial Soln 0.26 32 0
Relaxed TS 108.80 30 0
Fully Const. Init. Soln. 0.26 50 0
Fully Const. TS 111.20 50 0

Table 19. Solution Statistics for 90-Job Problems

Job Size 90
Method CPU time

(seconds)
Cmax jobs not

scheduled
Problem 1 Relaxed Initial Soln

Relaxed TS
Fully Const. Init. Soln.
Fully Const. TS

1.57
253.55

1.64
264.30

29
30
46
46

2
0
3
0

Problem 2 Relaxed Initial Soln
Relaxed TS

.62
227.90

33
30

0
0

Fully Const. Init. Soln.
Fully Const. TS

.54
255.60

44
41

0
0

93

For the 10-job problems, the relaxed TSACP achieved optimality three times,

while the initial heuristic attained the relaxed optimum twice. On one occasion, the

solution found by TSACP for the fully-constrained problem was equal to that of the

relaxed optimum and therefore was the fully-constrained optimum. TSACP was able to

improve the solution obtained with the initial heuristic three out of five times (on the

other two occasions, the initial heuristic found the relaxed optimum and so TSACP could

not improve its solution). TSACP improved the fully-constrained initial solution for all

but one of the five 10-job test problems.

Only one lower bound was available for a 30-job problem. For this one problem,

TSACP for the relaxed problem was within 8% of the optimum. In all but two of the

larger problems, TSACP was able to improve the initial solution. For the cases where the

initial solution heuristic failed to schedule all of the jobs, TSACP was able to find a

solution where all jobs were scheduled, sometimes with a subsequent longer makespan,

but since makespan is a lower priority goal, these solutions are still an improvement. All

solutions were checked for feasibility.

94

Table 20. Solution Time Statistics

'7 '"•:." ' .,'. ''''';:'•''■

Iid<iäl*Sol!ution rsACP
(1000 iterations)

10 Jobs*
Min 0.02 10.4
Max 0.03 14.9
Mean 0.027 11.53
St. Deviation 0.00483 1.360596
95% Conf. Int. (0.024,0.029) (10.686,12.373)

30 Jobs*
Min 0.08 27
Max 0.12 36.8
Mean 0.0983 31.65
St. Deviation 0.0204 3.475
95% Conf. Int. (.082,0.115) (28.869,34.431)

60 Jobs*
Min 0.26 110.2
Max 0.861 137.4
Mean 0.429 118.2
St. Deviation 0.268 12.2727
95% Conf. Int. (0.214,0.643) (108.38,128.02)

90 Jobs*
Min 0.541 227.9
Max 1.642 264.3
Mean 1.0934 250.338
St. Deviation 0.594 15.667
95% Conf. Int. (0.270,1.917) (234.984, 265.691)

* As there was no statistical difference between the
mean solution times of relaxed vs. fully constrained
problems within a job size, the statistics are pooled for
each job size.

95

Figure 19. Graph of TSACP Time for 1000 Iterations

Figure 20. Graph of Solution Time for Initial Heuristic

Solution times for the test problems naturally increased as the problem size

increased. Graphs of the TSACP (Figures 19 and 20) and the initial heuristic times show

that they follow similar, although very different scaled, curves. The initial heuristic is

very fast for the problem sizes tested. Regression analysis results are presented in Tables

20 through 23.

96

Table 21. Linear Fit for TSACP Solution Times (1000 Iterations)
sol time = -31.074 + 2.825 job size
Summary of Fit
RSquare 0.936
RSquare Adj 0.934
Root Mean Square Error 22.255
Mean of Response 77.587
Observations (or Sum Wgts) 26

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 175104.15 175104 353.550
Error 24 11886.60 495 Prob>F
C Total 25 186990.74 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -31.074 7.242 -4.29 0.0003
job size 2.825 0.150 18.80 <0001

Table 22. Quadratic Fit for TSACP Solution Times (1000 Iterations)

sol time = 7.839 - 0.009 job size + 0.030 job size2

Summary of Fit
Rsquare 0.991
RSquare Adj 0.990
Root Mean Square Error 8.492
Mean of Response 77.587
Observations (or Sum Wgts) 26

Analysis of Variance
Source DF Sum of Squares
Model 2 185332.11
Error 23 1658.64
C Total 25 186990.74

Parameter Estimates
Term Estimate
Intercept 7.840
job size -0.009
job size 0.030

Mean Square F Ratio
92666.1 1284.982
72.1 Prob>F

<.0001

Std Error t Ratio Prob>|t|
4.279 1.83 0.0799
0.245 -0.03 0.9726
0.003 11.91 <.0001

97

Table 23. Linear Fit for Initial Heuristic Solution Times
Initial soltime = -0.170 + 0.012 job size
Summary of Fit
RSquare 0.652
RSquare Adj 0.637
Root Mean Square Error 0.270
Mean of Response 0.300
Observations (or Sum Wgts) 26

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 3.279 3.279 44.9407
Error 24 1.751 0.073 Prob>F
C Total 25 5.030 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -0.170 0.088 -1.93 0.0651
job size 0.012 0.001 6.70 <.0001

Table 24. Quadratic Fit for Initial Heuristic Solution Times
Initial soltime = 0.051 - 0.004 job size + 0.0002 job size2

Summary of Fit
RSquare 0.717
RSquare Adj 0.693
Root Mean Square Error 0.249
Mean of Response 0.300
Observations (or Sum Wgts) 26

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 3.608 1.804 29.1798
Error 23 1.422 0.062 Prob>F
C Total 25 5.030 <.0001

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.051 0.125 0.41 0.6889
job size -0.004 0.007 -0.54 0.5964
job size2 0.0002 0.0001 2.31 0.0304

Regression analysis shows that the tabu search solution times are linearly related

(for the problems sizes tested). The adjusted r-square value given in the linear analysis of

variance (ANOVA) table, .936, indicates a strong linear tendency (see Table 21). The

adjusted r-square value of .990 for the quadratic ANOVA table (Table 22), however,

indicates an even stronger quadratic tendency. An F-ratio comparison between the linear

98

and the quadratic regression (353.55 vs. 1284.92, respectively) also reveal that the

solution times are better modeled by a quadratic equation.

Regression analysis of the initial solution heuristic shows that these solution times

also have a slightly stronger quadratic tendency than a linear one (Tables 23 and 24). A

comparison of the adjusted r-square values between the linear and the quadratic

regression (.637 vs. .693) and the verify this statement.

Overall, the initial solution heuristic and the tabu search both gave rapid, feasible

answers to the job shop problems on which they were applied. The initial solution

heuristic gives feasible answers in a very short time. The tabu search generally gives

solutions with better objective function values, taking somewhat longer than the initial

solution heuristic but is substantially faster than optimization. Since the solution times

for both methods grow as the number of jobs increase, testing the methods against larger

problems is essential.

4.3 Case Study

The case study for this research is the 100 target, 4 unit, 296 mode air campaign

planning scenario described in detail in Van Hove's dissertation [Van Hove, Chapter 7,

1998] and described briefly in Appendix C. It was adapted for this research by designing

and populating a database to store all of the scenario data. Queries were then written

within the database, which were read and used by TSACP when operating. Additionally,

all enemy air defense targets were classified as priority one targets, as were several

interdiction targets. Other interdiction targets were randomly assigned priority

classifications of two or three.

99

This problem is considerably larger than even the 90-job problems discussed in

the previous section. In the 90-job problems, each target (job) could be attacked

(executed in) one mode from a selection of from one to three modes, resulting in roughly

530 predecessor/successor mode combinations—the real driving force behind the size of

the problem. In Van Hove's [1998] scenario, each target could be attacked by one mode

from a selection of either two or four modes, resulting in 999 predecessor/successor mode

combinations—almost double the size of the earlier 90-job problems.

The TSACP application actually performs more rapidly on this larger problem

because of the use of candidate lists as described in Section 3.4.2. Since TSACP only

operates on one priority classification at each iteration, the neighborhoods tend to be

smaller than for the 90-job problems where only one target priority classification was

defined. Intelligent use of candidate lists will be crucial when the scenarios achieve two

to three thousand sorties as was the case during Operation Desert Storm [Cohen, 1993].

The objective function in Van Hove's model was to minimize makespan, while

the objective of TSACP is threefold: maximize target coverage, minimize operational

impact (for replanning/rescheduling), and minimize makespan. One of Van Hove's

assumptions for his model was that adequate aircraft are available to implement the plan,

and at the earlier stages of the ATO process that may certainly be the case. Optimization

is valid in pre-hostility planning to shape force requirements. However, the battlespace

conditions change as hostilities commence and the campaign wears on, including the

availability of air-worthy fighter aircraft. By the time the process reaches detailed

planning (or even after ATO dissemination) new solutions may be needed. Therefore,

TSACP was applied to the scenario as it was originally designed by Van Hove, but also

100

with varied amounts of air assets. The results of applying TSACP to the air campaign

planning scenario follow.

The first application of TSACP was against a scenario with sufficient renewable

and non-renewable assets as Van Hove planned. The number of aircraft in-theater and

the sortie rate were set arbitrarily high, thus relaxing the resource constraints. This was

done to obtain a baseline case to see how the solutions would be affected by varying the

quantities of each, in turn. Table 20 shows that tightening the non-renewable resource

constraint had little impact on the solution, while tightening the renewable constraint

made a considerable impact on the solution. Interestingly, TSACP was unable to

improve the initial solution for the non-resource constrained problem instance.

The levels of both types of resources were then set at the "threshold" level—the

quantities used by Van Hove in his scenario. TSACP was applied to the scenario at this

level and then at resource levels of 95%, 90%, 85%, and 80% of the threshold level of the

non-renewable resource (total sorties). At the 95% level, and every subsequent level,

targets were uncovered (goal deviations began to become non-zero), but in each case,

TSACP was able to improve the initial heuristic solution.

Two replanning scenarios were run, one with the attrition of four aircraft from the

first unit, and the other with an entire unit unable to participate in the day's battle. Recall

that the fourth goal in TSACR is to minimize the impact of any changes in the overall

plan. In both cases TSACR was able to reduce the number of missions needing to be

replanned vs. the solution obtained by the initial heuristic. All of the results are

summarized in Table 25.

101

Table 25. Results of Applying TSACP to the Air Campaign Planning Scenario

Renewable

Times . Goal One Goal Two Goal rhrce

Deviation

Goal Four Goal Five

beviationjf

(makespan)
Nmi-ik-ricvk.ihli Method f (Seconds) Deviation Dcv iation Deviation

infinite infinite

Initial Solution 1.70 0 0 0 NA 389

TS 1000 Iters. 152.05 0 0 0 NA 389

infinite 330

Initial Solution 1.64 0 0 0 NA 471

TS 1000 Iters. 145.62 0 0 0 NA 389

120 infinite

Initial Solution 1.69 0 0 0 NA 728

TS 1000 Iters. 139.73 0 0 0 NA 648

"Threshold"

120 330

Initial Solution 1.77 0 0 0 NA 748

TS 1000 Iters. 179.6 0 0 0 NA 677

120 314

Initial Solution 1.61 0 1 1 NA 635

. TS 1000 Iters. 180.47 0 0 4 NA 568

120 298

Initial Solution 1.54 0 4 2 NA 687

TS 1000 Iters. 197 0 3 0 NA 593

120 282

Initial Solution ,1.51 0 5 2 NA 670

TS 1000 Iters. 203.25 0 3 3 NA 552

120 266
Initial Solution 1.48 0 7 4 NA 666

TS 1000 Iters. 211.1 0 5 4 NA 518

Replan Attrit 4 aircraft from first unit
116 324

Initial Solution 1.98 0 0 1 10 748

One runway TS 1000 Iters. 184.5 0 0 0 6 736

Lost

84 250

Initial Solution 1.76 0 0 10 50 755

TS 1000 Iters. 204.52 0 0 10 40 735

102

The goal of this research has been to present air combat planners with an

automated planning capability. Van Hove's optimality-seeking approach is well suited

for the pre-hostility phase of an air war. The methods presented in this thesis allow

planners to obtain extremely fast, reasonable solutions by using the initial solution

heuristic. This kind of solution would be useful when an "instant" answer is necessary

(such as when air superiority has not been achieved). Planners also have the ability to

use the tabu search to find good solutions in a reasonable time, when more time is

available during ATO planning.

103

CHAPTER 5. Conclusions and Recommendations

This chapter summarizes the research in this thesis. The key points are re-

emphasized, the significant contributions are outlined, and recommendations for future

research are suggested.

5.1 Research

The research conducted for this thesis was pursued along three primary lines of

investigation. First, the nature and scope of the problem were determined by examining

how the air campaign planning process worked and what dynamics were involved in

producing an Air Tasking Order. Second, the research investigated scheduling theory

concepts in order to find parallels to the air campaign planning problem. The third line of

investigation delved into meta-heuristics, specifically tabu search, to help develop an

application that could be used by air combat planners within a dynamic, time-critical air

battle environment. This research, and the resulting application, have commercial value

as well—any situation that undergoes rapid change needs fast planning solutions together

with options for replanning solutions.

5.2 Contributions

Several important contributions were provided through this research. The first

contribution is a fast heuristic approach for the air campaign planning problem

incorporating aspects of the air war such as target priority classifications and generalized

precedence constraints, as well as specialized aircraft (least flexible machine) and

specialized targets (least flexible job). Previous efforts within combat planning tools

such as APS allow the user to define a "best" attribute to use within its greedy heuristic

104

approach. The initial solution heuristic developed here considers more aspects of the air

battle plan. This heuristic, as well as the tabu search, reads from a database similar to

that used in the Aerospace Operations Center so as to more closely replicate conditions in

that operational environment. Options allow specific missions to be "frozen" and priority

classes of targets to be considered.

While the initial solution heuristic was designed to improve the tabu search by

providing a good starting solution, as a stand-alone application it works well. Indeed, the

quality of the solutions obtained by the initial solution heuristic were such that, on several

of the test problems, the tabu search was unable to improve upon its starting solutions.

The initial solution heuristic found the optimal solution on two of the test problems.

Moreover, this heuristic works very quickly, obtaining good solutions in a fraction of a

second for the smaller problems (up to job size 60) and in less than two seconds for the

larger problems, including the case study. Given the dynamics of combat planning, this

could be a valued asset.

Another contribution of this research is the construction of a tabu search that

operates on a goal programming formulation of the air campaign planning problem. The

tabu search yielded good solutions with consideration to target priority classification, and

generalized precedence relationships. A list of the best k solutions offers options for air

combat planners to use during the planning process. The tabu search worked quickly,

even on the larger test problems and the case study, therefore proving its potential to

operate within the AOG as a planning tool.

The methods developed in this research were applied to the problem of

replanning. In many situations, a great deal of time, money, and personnel hours are

105

spent up front generating a comprehensive plan of operation. Should the plan break

down due to unforeseen circumstances, planners frequently have no option but to cobble

together an ad hoc fix, especially when time is a critical factor. These quick fixes to the

overall plan may mean extensive replanning by the commanders and managers of the

individual jobs and tasks. By using TSACR, planners can generate new solutions with

regard to the current situation while attempting to minimize the impact of changes

throughout the system.

5.3 Recommendations for Future Work

The research contained within this thesis may be extended in a number of

directions. Some of these are:

1. Improve the application by incorporating more advanced tabu search

features, such as diversification and intensification phases.

2. Investigate using alternative move definitions within the tabu search.

3. More rigorous testing is necessary. Optimal solutions to the fully

constrained test problems should be obtained for comparison against the

tabu search solutions. Additionally, TSACP needs to be applied to a fuller

range of test problems. Testing against APS and actual ATO's would be

highly desirable.

4. Formulate the goal programming model in HyperLingo®, or some other

matrix generator/solver for direct comparison with the goal programming

solutions given by TSACP.

5. Extend TSACP to include package planning, multi-target tasking, and the

ability to land at a base other than the take-off base.

106

6. Investigate whether tabu search could be used within an optimality-

seeking framework, such as Van Hove's hybrid decomposition approach,

to speed up the search for an optimal solution.

7. Investigate whether the initial solution heuristic could also be used within

an optimality-seeking framework.

8. Rigorously test the initial solution heuristic as a stand-alone for very fast,

feasible solutions to the air campaign planning problem or similar

applications in industry.

9. Extend this research by applying the technique to corporate scheduling

and re-scheduling problems.

10. Expand the analysis to include more constraints in the air campaign

problem, including available munitions, tankers, theater air control system

resources, and crew rest. Such an approach might incorporate large scale

techniques.

11. Incorporate the initial solution heuristic and the tabu search within existing

applications.

5.4 Summary

A method for finding good solutions, quickly, to the air campaign planning

problem was developed during the course of this research. The method can be applied to

other military and civilian project planning situations as well. The application was

extended to incorporate aspects of replanning as it relates to operational impact.

107

Appendix A. LIST OF ACRONYMS

ABCCC Airborne Command, Control, and Communications

ABP Air Battle Plan

ACDB Air Campaign Database

ACO Airspace Control Order

AETACS Airborne Elements of the Theater Air Control System

AOA Activity on the Arc

AOC Aerospace Operations Center

AON Activity on the Node

APS Advanced Planning System

AR Aerial Refueling

ATO Air Tasking Order

CAFMS Computer Assisted Force Management System

CAFMS-X Computer Assisted Force Management System for X-Windows

CAS Close Air Support

COD Combat Operations Division

CPD Combat Plans Division

CPM Critical Path Method

CTAPS Contingency Theater Automated Planning System

CTEM Conventional Targeting Effectiveness Model

CTL Candidate Target List

DCA Defensive Counter Air

DO Duty Officer

108

DP

ECM

ESC

FLOT

GA

GAT

GIP

GP

GTACS

IFF

INT

IP

JDBC

JFACC

JFC

JIPTL

JPT

JTF

LFJ

LFM

LGP

LNS

LP

Detailed Planning

Electronic Counter-measures

Escort

Forward Line of Own Troops

Genetic Algorithm

Guidance, Apportionment, and Targeting

Goal Interval Programming

Goal Programming

Ground Theater Air Control System

Identification Friend or Foe

Interdiction

Integer Programming

Java Database Connectivity

Joint Forces Air Component Commander

Joint Forces Commander

Joint Integrated Prioritized Target List

JFACC Planning Tool

Joint Task Force

Least Flexible Job

Least Flexible Machine

Lexicographic Goal Programming

Largest Number of Successors

Linear Programming

109

MAAP

MIDB

Master Air Attack Plan

Military Intelligence Database

MMGRCPSP Multi-Modal Generalized Precedence Resource Constrained
Project Scheduling Problem

MMRCPSP Multi-Modal Resource Constrained Project Scheduling Problem

NAF

NET

NLP

NLT

OCA

ODBC

OOP

PD

PK

PSP

RCPSP

RDB

RECCE

SAM

SCL

SD

SEAD

SQL

TBMCS

Numbered Air Forces

No Earlier Than

Non-linear Programming

No Later Than

Offensive Counter Air

Oracle Database Connectivity

Object Oriented Programming

Percent Damaged

Probability of Kill

Project Scheduling Problem

Resource Constrained Project Scheduling Problem

Relational Database

Reconnaissance

Surface to Air Missile

Standard Conventional Load

Strategy Division

Suppression of Enemy Air Defenses

Structured Query Language

Theater Battle Management Core Systems

110

TFT

TNL

TOT

TPW

TS

TSACP

TSACR

TSACS

USMTF

WOC

Time off Target

Target Nomination List

Time on Target

Target Planning Worksheet

Tabu Search

Tabu Search for Air Campaign Planning

Tabu Search for Air Campaign Replanning

Tabu Search for Air Campaign Rescheduling

United States Message Text Format

Wing Operations Center

111

Appendix B. Relational Databases and SQL

The Air Campaign Database (ACDB) is a relational database (RDB). This is an

elegant and efficient way to store and manipulate massive amounts of data. There are a

number of commercial RDB packages on the market—three common packages are

Oracle, Sybase, and Microsoft Access. The ACDB is an Oracle database and this,

together with the Military Intelligence Database (MIDB), a Sybase database, stores

nearly all the data used in the Aerospace Operations Center.

A RDB allows users to manage all of the available information from a single

database file. Within the file, the data is divided into separate storage containers called

tables (often referred to as entities). The database applications mentioned above

generally give users the ability to view, add, and update table data using online forms,

find and retrieve only the data needed using queries, and analyze or print data in a

specific layout using reports.

To store data in an RDB, one table is created for each type of information tracked.

Relationships are defined between tables in order to bring data from multiple tables

together in a query, form, or report. A query is required to find and retrieve just the data

that meets specific conditions, including data from multiple tables. A query can also

update or delete multiple records at the same time, and perform built-in or custom

calculations on the data [Microsoft Access on-line documentation, 1996].

The Structured Query Language (SQL) is used to access relational databases. This

efficient, flexible, fourth-generation language (4GL) contains features designed to

manipulate and examine relational data. 4GLs describe what needs to be done, but not

how to do it [Urman, p.2,1997]. SQL is easy to learn and "English-like."

112

For example, assume a database contained a table called Targets. In this table there

are five columns with column headers (or attributes): TargetID, Target_Type,

TargetSNumber, TargetXCoord, and TargetYCoord. If a user were interested in

the location of all targets of a specific type, such as hardened shelters, then a simple

query to examine just those targets would look like this:

SELECT TargetJD,
TargetXCoord,
TargetYCoord

FROM Target

WHERE TargetJType = "Hardened Shelter";

If the user wanted all the columns and all the rows the query would simply be:

SELECT * FROM Target;

One of the key features of using a RDB and SQL is the ability to gather information from

multiple tables in a single query. This ability is engendered through the use of the

relationships defined between the tables. Even where there is no specific relationship,

SQL is powerful enough to create relationships between tables "on the fly."

Continuing with the example, suppose a user wished to find out the distance and

estimated flying time between a unit and a target. Assume there was a table called "Unit"

containing the following attributes: Unit_ID, Unit_Name, Unit_Base_Name,

Unit_Aircraft_Type, Unit_Aircraft_Qy, Unit_Utilization_Rate, and UnitSortieRate.

Additionally, there exists a table called "Base" with the attributes BaselD, Base_Name,

BaseXCoord, and Base_Y_Coord and a table named "Aircraft" with the attributes

Aircraft_ID, AircraftJSfame, Aircraft_Nominal_Speed, and Aircraft_Turn_Time. A

query returning the BaseJSfame, the Unit_Name, the TargetJD, the distance from each

113

base to each target, and the estimated straight-line travel time for each unit from base to

target might look like the following:

SELECT DISTINCT
Base.Base_Name,
Unit.Unit_Name,
TargetTargetlD,
Sqr(POWER((Target_X_Coord - Base_X_Coord),2) +
POWER((Target_Y_Coord - Base_Y_Coord),2)) AS Distance,
Distance/Aircraft_Nominal_Speed AS Time_to_Target
FROM Target, Aircraft, Unit, Base
WHERE Aircraft.Aircraft_Name = Unit.Unit_Aircraft_Type
AND Unit.Unit_Base_Name = Base.Base_Name;
ORDER BY Base.Base_Name,
Unit.Unit_Name,
TimetoTarget

The preceding query employs SQL built-in functions to perform calculations within

the query. The standard arithmetic operators such as + (addition), - (subtraction), *

(multiplication), and / (division) are incorporated into SQL as well as various other

functions. The expression, "Sqr(POWER((Target_X_Coord - Base_X_Coord),2) +

POWER((Target_Y_Coord - Base_Y_Coord),2)) AS Distance" is the simple Euclidean

distance function employed in elementary algebra (i.e. ^/(x2 - xl)
2 + (y2 -y^)2)• The

SQL function Sqr(arg) finds the square root of arg, the function POWER(x,y) calculates

the y01 power of x. The distance is divided by the nominal speed of the aircraft to

determine the flying time to the target in the expression,

"Distance/Aircraft_Nominal_Speed AS Time_to_Target." SQL performs the

calculations in the expressions and the columns are given the aliases, "Distance" and

"Time_to_Target," by the AS phrases. Any distance formula and duration calculation

that was appropriate could be used.

114

A JOIN combines records from two tables whenever there are matching values in a

common field. The WHERE clause in this example specifies that the Aircraft table and

the Unit table be joined whenever the Aircraft_Type_Name from the Unit table matches

the Aircraft_Name from the Aircraft table. It also joins the Unit and Base tables

whenever the Unit_Base_Name from the Unit table matches the Base_Name from the

Base table.

If tables in a query were not joined, either directly or indirectly, then SQL would not

know which records are supposed to be associated with each other. Should this occur,

SQL will return every possible combination; this is called the Cartesian product (or cross-

product) between the two tables. For example, if one table had 200 records (or rows) and

the other had 100, then a query with no join would return 20,000 (200 x 100) records.

The problem is compounded for each additional table in the query. Such a query would

take longer to run and the information might be useless [Microsoft Access on-line

documentation, 1996].

The ORDER BY clause sorts the information retrieved. In the example, the records

are put in alphabetical order first by Base_Name, then by Unit_Name. Then the records

are put in order of increasing time to target. If the user wanted the records sorted in order

of decreasing time to target, then "DESC" would be appended to the ORDER BY clause:

ORDER BY Base.BaseName,
Unit.Unit_Name,
Time_to_Target DESC.

The RDB can store saved queries as views (pseudo-tables) in the database file.

These views already have the user-specified calculations, relationships, filters, and

sorting preferences, thus it could be said that the data is pre-processed. Making SQL

115

calls to these views from within an application rather than making complex calls to the

original tables shortens the time required for the application to perform an iteration.

116

Appendix C. Description of the Case Study Problem

Three components are necessary to formulate the combat planning scenario:

activities, resources, and precedence relations. Van Hove's scenario consists of 40 target

locations, half of them enemy air defense targets and the other half interdiction targets.

Each target location includes two or three separate targets that must be attacked by

separate missions. There were 100 total targets in his scenario with a corresponding total

of 100 activities in the problem formulation. Either 2 or 4 aircraft must be planned for

each mission, resulting in an ATO of 200-400 sorties.

The resources used in the scenario consisted of four units located at three different

bases: one at base A, two at base B, and one at Base C. Each unit possesses one of two

aircraft types, AC-1 and AC-2. One AC-1 unit is located at base A, the other at base B.

One AC-2 unit is located at base B, the other at base C. Each unit owns a different

quantity of resources. Modes and resource requirements for targets were assigned

randomly; every activity (target) has either two or four execution modes.

Base and target locations, along with the aircraft's nominal airspeed dictate leg

durations. Each aircraft type also has a different turn time. The average round trip

distance between the bases and targets is approximately 120 distance units. A nominal

airspeed of 1.0 distance units per minute makes the average flight time for a mission

equal to 2 hours. This, taken with an average turn time of 1 hour, means that the average

mission ties up assets for approximately 3 hours. AC-2 is given a faster nominal airspeed

in exchange for a smaller turn rate and a longer turn time. Generalized precedence

constraints were formulated to enforce mission timing.

117

Bibliography

Air Force Instruction 13-1AOC Volume 3: Operational Procedures—Aerospace
Operations Center, HQ USAF/XOCE 1 June 1999.

Air Force Manual 1-1: Basic Aerospace Doctrine of the United States Air Force, II, U.S.
Government Printing Office, March 1992.

Battlestaff Training School, Joint Air Operations Staff Course (JAOSC), Course
Handout, USAF Air Ground Operations School, Hurlbert Field, FL, Jan 98.

Joint Pub 3-56J: Command and Control for Joint Air Operations, Washington:
Department of Defense, November 1994.

Microsoft Access 97 On-line Help, Microsoft Corporation, (1996).

Scheduling Theory: Course notes, Deckro, Richard, Air Force Institute of Technology,
Wright-Patterson Air Force Base, OH Summer, 1999.

Theater Battle Management Core Systems (TBMCS) Joint Program Management Review
(JPMR), Working Group Handout, Lockheed Martin Command and Control Systems,
Colorado Springs, CO, November, 1997.

Abt, Paul E., "Air Campaign Planning," Theater Battle Management Core Systems
Newsletter, Vol. 3 No.l 15-17 January 1997.

Ahuja, R., Magnanti, T., Orlin, J. Network Flows: Theory, Algorithms, and Applications,
New Jersey: Prentice Hall (1993).

Barbarosoglu, G. and D. Ozgur "A Tabu Search Algorithm for the Vehicle Routing
Problem," Computers and Operations Research, Vol. 26: 255-270 (1999).

Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.Jr., "Designing and
Reporting on Computational Experiments with Heuristic Methods" Journal of
Heuristics, Vol. 1 No. 1 p. 9-32, (Fall 1995).

Barnes, J.W. and W.B. Carlton "Solving the Vehicle Routing Problem with Time
Windows Using Reactive Tabu Search," presented at the Fall INFORMS National
Meeting in New Orleans, Louisiana (1995).

Battiti, Roberto, "Reactive Search: Toward Self-tuning Heuristics," Modern Heuristic
Search Methods. Ed. Rayward-Smith V. et al., Chichester, UK: John Wiley and Sons,
(1996).

Baykasoglu, A., "Solution of Goal Programming Models Using a Basic Taboo Search
Algorithm," Journal of the Operational Research Society, Vol. 50 No. 9 pp. 960-973,
(Sep 1999).

Boctor, Fayez F. "A New and Efficient Heuristic for Scheduling Projects with Resource
Restrictions and Multiple Execution Modes," European Journal of Operational
Research, P0(2):349-361 (April 1996).

118

Carlton, W. and Barnes J., "A Note on Hashing Functions and Tabu Search Algorithms,"
European Journal of Operational Research, Vol. 95:237-239 (1996).

Carruthers, JA. and A. Battersby. "Advances in Critical Path Methods," Operations
Research Quarterly, 17:359-380 (1966).

Charnes, A., W. Cooper, R. Ferguson, "Optimal estimation of Executive Compensation
by Linear Programming," Management Science, Vol 1:138-151(1955).

Charnes, A., Cooper, W., Harrald, J., Karwan, K., Wallace, W. "A Goal Interval
Programming Model for Resource Allocation in a Marine Environmental Protection
Program," Journal of'Environmental Economics and Management, 3:347-362 (1976).

Cohen, Eliot A., Gulf War Air Power Survey: Planning and Command and Control,
Technical Report AD-A279741, Department of the Air Force (1993).

Colletti, Bruce W., Group Theory and Metaheuristics, Dissertation, University of Texas,
Austin, TX (May 1999).

Cotsworth, W.L., The Conventional Targeting Effectiveness Model (CTEM) User's
Manual, AEM Services, Inc., S-93-006-DEN, (31 December 1993).

Deckro, Richard and John Hebert, "Polynomial Goal Programming: A Procedure for
Modeling Preference Trade-Offs," Journal of Operations Management, Vol. 7, No.
4:149-164 (December 1988).

Deitel, H., and P. Deitel, Java: How to Program, Prentice Hall, (1998).

DelPAmico, M. and Trubian, M. "Applying Tabu Search to the Job-shop Scheduling
Problem" Annals of Operations Research, Vol. 41: 231-252 (1993).

Desrochers. M., J. Desrosiers, and M. Solomon "A New Optimization Algorithm for the
Vehicle Routing Problem with Time Windows," Operations Research, Volume 40:
342-354 (1992).

Gandibleux, X.; Mezdaoui, N.; Freville, A. "A Tabu Search Procedure to Solve
Multiobjective Combinatorial Optimization Problem" Lecture notes in economics and
mathematical systems. Vol. 455: (1997).

Garcia, B.L., J.Y. Potvin, and J.M. Rousseau "A Parallel Implementation of the Tabu
Search Heuristic for Vehicle Routing Problems with Time Window Constraints,"
Computers and Operations Research, Vol. 21: 1025-1033 (1994).

Glover, Fred. "Tabu Search: A Tutorial" Interfaces, Vol. 20:4 pp. 74-94, July-August,
1990.

Glover, Fred and Manuel Laguna. "Chapter 3: Tabu Search," Modern Heuristic
Techniques for Combinatorial Problems, ed. Colin R. Reeves, John Wiley & Sons,
Inc, (1993).

Glover, Fred and Laguna, Manuel Tabu Search, Boston: Kluwer Academic Publishers,
(1997).

Gonzales, Daniel R. Evolution of the Air Campaign Planning Process and the
Contingency Theater Automated Planning System (CTAPS). Technical Report MR-

119

618-AF, 1700 main St., P.O. box 2138, Santa Monica, CA 90407-2138: RAND,
1996.

Haas, William R., An Operational Review of Air Campaign Planning Automation, Thesis,
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, March
1998.

Jensen, Paul A., "Integer Programming." Integer Programming course handout. School
of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, July
1994.

Jozefowska, J., Waligora, G. and Weglarz, J. "A Tabu Search Algorithm for Some
Discrete-Continuous Scheduling Problems" Modern Heuristic Search Methods, Ed.
Rayward-Smith, V., Osman, I., Reeves, C. and Smith, G. Chichester, UK: John
Wiley and Sons, (1996).

Kelley, James E. "Critical-Path Planning and Scheduling: Mathematical Basis,"
Operations Research, 9(3):296-320 (May-June 1961).

Koewler, David A., An Approach for Tasking Allocated Combat Resources to Targets,
Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH,
(March 1999).

Kolisch, Rainer, Sprecher, and Drexl, Characterization and Generation of a General
Class of Resource-Constrained Project Scheduling Problems. Manuskripte aus den
Instituten fur Betriebswirtschaftslehere, No. 301, University of Kiel, Germany
(December, 1992).

Kolisch, Rainer, Sprecher, and Drexl, "Characterization and Generation of a General
Class of Resource-Constrained Project Scheduling Problems," Management Science,
41(11):1693-1703 (1995).

Laguna, M., J. Barnes, and F. Glover, "Scheduling Jobs with Linear Delay Penalties and
Sequence Dependent Setup Costs Using Tabu Search," research report, Department
of Mechanical Engineering, University of Texas-Austin (April 1989).

Lokketangen, A. and F. Glover, "Solving Zero-one Mixed Integer Programming
Problems Using Tabu Search," European Journal of Operational Research, Vol. 106:
624-658 (1998).

Mooney, E. and Rardin, R. "Tabu Search for a Class of Scheduling Problems" Annals of
Operations Research, Vol. 41: 253-278 (1993).

Nowicki, E, and C. Smutnicki, "A Fast Taboo Search Algorithm for the Job Shop
Problem" Management Science, Vol. 42, No. 6: 797-813 (1996).

Pinedo, Michael Scheduling Theory, Algorithms, and Systems, New Jersey: Prentice Hall,
(1995).

Pritsker, A., L. Wärters, and P. Wolfe, "Multi-Project Scheduling with Limited
Resources: a Zero-One Programming Approach," Management Science, itf(l):93-108
(September 1969).

120

Rangaswamy, B., Jain, A. and Glover, F. "Tabu Search Candidate List Strategies in
Scheduling" Advances in Computational and Stochastic Optimization, Logic
Programming and Heuristic Search. Ed. Woodruff, D., Boston: Kluwer Academic
Publishers (1998).

Romero, Carlos, Handbook of Critical Issues in Goal Programming, Pergamon Press,
(1991).

Shrub, A., J. Bard, S. Globerson, Project Management Engineering, Technology, and
Implementation, New Jersey: Prentice Hall, (1994).

Slowinski, Roman et al., "DSS for Multiobjective Project Scheduling," European Journal
of Operational Research, 79:220-229 (1994).

Urman, Scott, Oracle8 PL/SQL Programming, McGraw-Hill, Berkeley, CA, 1997.

Van Hove, John C, Personal E-mail, Air Force Logistics Management Agency, USAF,
Maxwell AFB, Gunter Annex, (16 March 2000).

Van Hove, John C, An Integer Program Decomposition Approach to Combat Planning,
Dissertation, Air Force Institute of Technology, Wright-Patterson Air Force Base,
OH, (October 1998).

Winston, Wayne L. Operations Research: Applications and Algorithms (3r edition).
Belmont, CA: Wadsworth Publishing Company, (1994).

Yost, Kirk A., "Consolidating the USAF's Conventional Munitions Models," Military
Operations Research, Vol. 2, Number 4:53-71 (1996).

121

	A Tabu Search for Scheduling and Rescheduling Combat Aircraft
	Recommended Citation

	/tardir/tiffs/a378261.tiff

