
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2000

Generating Executable Persistent Data Storage/Retrieval Code Generating Executable Persistent Data Storage/Retrieval Code

from Object-Oriented Specifications from Object-Oriented Specifications

Steven R. Buckwalter

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Buckwalter, Steven R., "Generating Executable Persistent Data Storage/Retrieval Code from Object-
Oriented Specifications" (2000). Theses and Dissertations. 4749.
https://scholar.afit.edu/etd/4749

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F4749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4749?utm_source=scholar.afit.edu%2Fetd%2F4749&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

GENERATING EXECUTABLE PERSISTENT DATA

STORAGE/RETRIEVAL CODE FROM

OBJECT-ORIENTED SPECIFICATIONS

THESIS
Steven R. Buckwalter, Capt, USAF

AFIT/GCS/ENG/00M-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved for public release; distribution unlimited

20000815 167

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the

U. S. Government.

AFIT/GCS/ENG/OOM-02

Generating Executable Persistent Data Storage/Retrieval

Code from Object-Oriented Specifications

THESIS

Presented to the Faculty

Department of Electrical Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Steven R. Buckwalter, B.S. Computer Science

Capt, USAF

March, 2000

Approved for public release; distribution unlimited

AFIT/GCS/ENG/00M-2

Approved:

Generating Executable Persistent Data Storage/Retrieval

Code from Object-Oriented Specifications

Steven R. Buckwaltcr, B.S. Computer Science

Capt, USAF

ffatP. GsuJ&«-4 UML^^O
Maj. Robert P. Graham]/. Date
Committee Chair

Dr. Thomas C. Hart rum Date
Committee Member <-- j~~,

Maj. Michael L.Talbert '' Date
Com mitt cd M em ber

Acknowledgements

I wish to thank my thesis advisor, Maj. Graham, for always being available to encourage

and advise. He consistently urged me towards my best performance, much as a shepherd

leads his flock. I also thank my committee members, Dr. Hartrum and Maj. Talbert, who

often provided timely advice and insight. I would also like to thank the rest of the KBSE

group their support and for providing a sounding board for ideas.

I owe a debt of gratitude to my lovely wife and best friend, Patricia, and our two

children, Benjamin and Daniel. They were a constant source of encouragement and un-

derstanding through many late nights and working weekends.

Steven R. Buckwalter

in

Table of Contents

Page

Acknowledgements iii

List of Figures vii

List of Tables ix

Abstract x

I. Introduction 1

1.1 Background 2

1.2 Problem 2

1.3 Assessment of Past Effort 3

1.4 Scope 3

1.5 Contributions 3

1.6 Document Structure 4

II. Background 5

2.1 Introduction 5

2.2 Background Information on AFITtool 5

2.3 From GOM Through COIL to AWSOME 6

2.4 Transformation Methods Between Object-Oriented and Rela-

tional Methodologies 8

2.4.1 Informal Case Tools for Automated Development of

DDL 10

2.4.2 Informal Case Tools for Automated Development of

DML 12

2.4.3 Formal DML Transformation Tool 12

2.4.4 Conclusion 13

IV

Page

III. DDL Generation 15

3.1 Mapping Classes to Tables 17

3.1.1 wsAbstract and Class Persistence 17

3.1.2 Attributes 19

3.1.3 wsClassSuperclass and Specifying Inheritance 20

3.1.4 Transformation of Classes 22

3.2 Associations 24

3.2.1 Representation of Associations in AWSOME 24

3.2.2 Analysis of Association Implementations 26

3.2.3 Transformation of Associations 40

3.3 Associative Objects 42

3.4 Class/Associative Object Invariants 44

3.5 DDL Generation From AWSOME 46

IV. Generating Data Manipulation Language (DML) 49

4.1 Representation of Expressions in AWSOME 50

4.1.1 WsMethod 50

4.1.2 WsSubprogram 51

4.1.3 WsContainerFormer 51

4.1.4 Pattern Matching 53

4.2 Generating DML From AWSOME 56

4.2.1 Runtime Variables 57

4.2.2 Class and Instance Methods 57

4.2.3 Determining the Return Set 57

4.2.4 Expressing the Set Former Constraint 59

4.2.5 Aggregation 62

4.3 Summary of DML Generation 62

Page

V. Results, Conclusions and Recommendations 63

5.1 Results 64

5.1.1 Accomplishments 64

5.1.2 Obstacles 65

5.2 Conclusions 66

5.3 Recommendations for Future Work 67

5.4 Summary 69

Appendix A. School Specification in AWSOME Syntax Before DDL Trans-

formation 70

Appendix B. School Specification in AWSOME Syntax After DDL Transfor-

mation 74

Appendix C. DDL Generated From School Specification 80

Appendix D. DML Generated From School Specification 83

Bibliography 85

Vita 87

VI

List of Figures

Figure Page

1. Transformation Process: Formal Specification-to-Application Code 6

2. Examples of AWSOME Syntax 8

3. AST for AWSOME Function getStudentsAdvised() 9

4. Existence Dependence Diagram 11

5. School System Example 16

6. WsClass Specification 17

7. WsClass Structure 18

8. WsAttribute Structure 20

9. WsDataObject Structure 20

10. Single Inheritance Example 21

11. Example of a Class After Transformation 23

12. Example of Inheritance Subclass After Transformation 23

13. WsAssociation Structure 25

14. WsAssocEnd Structure 26

15. WsAssociation Syntax 26

16. 1-to-l Mandatory Example Design by Migrating Primary Key ... 28

17. 1-to-l Mandatory Participation Example Design by Associative Object 29

18. N-to-1 Both Mandatory Example Design by Migrating Primary Key 32

19. N-to-1 Both Mandatory Example Design by Associative Object . . 33

20. Aggregation Implementation Example 35

21. Associative Object Link Attribute Implementation 36

22. Qualifier Implementation 38

23. Ternary Association Implementation 39

24. M-to-N Association Transformed to Associative Object 41

25. Association Implemented by Migrating Foreign Key 42

vn

Figure Page

26. WsAssocObject Structure 43

27. Transformed Associative Object Without Qualifier 44

28. Class Invariant for Multiplicity Constraint of Association 45

29. DDL Code Automatically Generated From AWSOME 48

30. AWSOME Specification for Function: getMyFaculty() 50

31. WsMethod Structure 51

32. WsSubprogram Structure 52

33. WsContainerFormer Structure 52

34. WsLogicalVariable Structure 53

35. Pattern Matched in a Post Condition 54

36. Wsln Association Representation Example 55

37. DML for an Association Implemented as a Foreign Key 60

38. DML for an Association Implemented as an Associative Object . . 61

39. DML for Selected Component and Input Variable 61

vm

List of Tables

Table Page

1. AWSOME to Relational Type Conversion 47

IX

AFIT/GCS/ENG/OOM-02

Abstract

This research creates a methodology and corresponding prototype for the transfor-

mation of object-oriented (00) specifications to represent the corresponding relational

Schemas that are used to automatically generate database design language (DDL). The

transformation design decisions and specifications are then used to generate database ma-

nipulation language (DML) that can be embedded within the software application code

generated from the same 00 specifications. This concept of developing a model for pro-

ducing compilable and executable code from formal software specifications has long been

a goal of software engineers. Previous research at the Air Force Institute of Technol-

ogy (AFIT) has not focused on the representation of persistent data from 00 software

specifications. Relational databases are historically among the most popular methods of

managing persistent data associated with software systems. However, there is not an au-

tomated tool available that will create the DDL and DML from 00 specifications. This

research develops a framework for combining these separate processes into a single step.

Generating the relational database and the operations to manage data within the database

from the formal software system specification. When combined with software system code

generation, this research will allow the production of entire software systems to include

the application code and persistent data management in a relational database.

Generating Executable Persistent Data Storage/Retrieval

Code from Object-Oriented Specifications

/. Introduction

The ability to produce executable code from formal specifications has long been a goal of

software engineers. This concept is very enticing due to the high costs associated with

changes to specifications during software development, resulting in costly code rewrites

and extensive time overruns. Additionally, due to the high dollar and human expense

of maintaining software after a system is fielded, the ability to maintain a specification

and automatically generate the code is very attractive. Another benefit from formally

specifying requirements is the ability to mathematically prove the correctness of the spec-

ification and consequently the executable code generated through transformations of the

specification.

Many organizations and businesses use database systems to store and manage vast

amounts of data. Relational databases have been used for this purpose by both the military

and business communities for a considerable period of time. As a result, organizations

have invested heavily in software and training for relational databases. This, in turn,

affects the decisions for future software development. Traditionally, software and database

development occurs in separate steps. Software engineers build applications and database

administrators are responsible for the database. Links between the two systems must then

be built to save and retrieve data. This research developed a framework for combining these

separate processes into a single step. Generating the relational database and the operations

to manage data within the database from the formal software system specification does

this. When combined with software system code generation, this research will allow the

production of entire software systems to include the application code and persistent data

management in a relational database.

This chapter describes the motivation for automatically generating the structure to

support persistent storage of system data and the embedded code to access that data. It

gives information on the background of attempts to generate code using AFITtool. This

chapter also assesses past efforts and defines the scope of this research. The final section

gives an overview of the rest of this document.

1.1 Background

Research previously accomplished at the Air Force Institute of Technology (AFIT)

produced a domain model from formal specifications written in Z (pronounced zed) [19].

This research has included eliciting and harvesting design decisions from the designer based

upon information found in the domain model. In addition, work has been done to represent

both primitive and aggregate objects found in the domain model and to transform these

structures to Ada. This and other research has been incorporated for several years into an

ongoing research prototype referred to as AFITtool.

This work has not been extended to the identification, representation, or management

of persistent data. Currently, commercial-off-the-shelf (COTS) products such as Rational

Rose and ERwin produce Database Design Language (DDL) that, when exported to a

Database Management System (DBMS), can be used to create a database within the

DBMS [4,11]. These tools allow users to create Schemas for a database system in the

form of relations and associated indices via user-friendly interfaces commonly using point

and click technology. However, the capability to take a formal specification for a software

system and generate the DDL for defining a database and the Data Manipulation Language

(DML) for working with the data in a database has not been pursued. In order to reap

the benefits of automated code generation, the subject of persistence must be addressed.

1.2 Problem

The goal of this research was to demonstrate the ability to produce a design model

based upon the information found in the domain model for persistent data in a software

system, and produce DDL and DML from the design model using Knowledge Based Soft-

ware Engineering (KBSE) methods.

1.3 Assessment of Past Effort

The concept of producing executable source code from formal specifications is not

new. At AFIT, the AFITtool System is capable of producing source code from a specifica-

tion. This is done by incrementally transforming the user's original problem specification

into equivalent source code. The subject of persistent data was not addressed in previous

efforts. The previous work served as a base for this thesis as the ability to handle and

produce code for persistent data in a relational database was added.

1.4 Scope

This research effort was concerned with adding the ability to store and manage per-

sistent data to software systems generated from specification. The target for this research

was relational database management systems (RDBMS). Other means of storing persis-

tent data such as file structures and object-oriented database systems (OODBMS) were

not addressed. SQL is used to define relational databases and to manage the data they

contain. For this effort the target language was SQL92. SQL3, which contains many new

capabilities, was still being specified at the time of this research and had not been formally

released in a finished form. In addition, the relational portion of SQL92 is the base of

the relational portion of SQL3, and the proof of concept provided by this work should be

extendable, with minor modifications, to the relational portion of SQL3. The inclusion of

new SQL3 capabilities is left to future development of this research.

1.5 Contributions

This thesis implements a solution capable of generating SQL Code from a formal

specification using a limited number of expressions. It also deals with the need for persistent

data within software systems. It provides a framework for complete generation of SQL, to

include triggers and indexes, from formal specification. The implications of this research

indicate that through extensions to this methodology, a complete system for generating

executable source code with embedded SQL from specifications can be realized.

1.6 Document Structure

Chapter 2, Background, discusses background information on AFITtool and the new

AFIT wide spectrum object modeling environment (AWSOME) abstract syntax tree (AST)

structure. Started during the same time period as this thesis effort, AWSOME is the next

generation of AFITtool and is therefore used throughout this research. Transformation

methods between object-oriented (00) and relational methodologies are also presented.

Chapter 3, DDL Generation, examines the additions to the AWSOME structure needed to

represent and transform a specification for SQL code generation. In addition, an analysis of

associations and primary/foreign key implementations is depicted. Finally, physical DDL

generation and the transforms necessary to implement this goal are described. Chapter

4, DML Generation, describes further additions to the AWSOME structure needed to

represent the specification of operations. Also included is a description of how specification

patterns were matched and combined with DDL generation design decisions to generate

DML. Finally, Chapter 5, Results, Conclusions and Recommendations, summarizes the

findings of this research and lists areas for future research.

II. Background

2.1 Introduction

This chapter includes background information required to gain a basic understanding

of the concepts needed to generate embedded SQL automatically from a formal specifica-

tion. The first section is background information on AFITtool since it is this continuing

effort upon which this thesis is based. The second section discusses two new models used

during this research. The third section discusses object-oriented and relational designs and

methods of conversion between these two designs. Finally, existing tools for the automated

generation of SQL and their shortcomings are described.

2.2 Background Information on AFITtool

AFITtool was created to use formal methods of software development to transform

specifications to application code. This tool was built using Software Refinery in the

REFINE language. Domain and software specifications are parsed into AFITtool and

transformed into functional application code as shown in Figure 1. Currently Z is used

to represent the specification formally. Z was chosen because it is a formal declarative

language that is very useful for representing domains and specifications [16]. However, any

specification language could be used if the proper transformations were added.

A domain or specification written in Z is parsed into an AST called the Domain

Object Model (DOM) or domain AST. The DOM is a general representation that can store

any type of 00 specification. If a domain is parsed into this AST, it is then transformed

by the Elicitor Harvester system that helps the designer extract the specification from the

domain. This DOM to DOM transformation interactively refines the specification derived

from the problem requirements as represented in this AST [1]. The specification contained

in the DOM is then converted by a number of design transformations into the design AST

or the Generic Object Model (GOM). It is during this set of transformations that state

transitions and attribute constraints are changed into methods and the get/set methods

are created. Finally, the GOM-to-code transformation takes place [9,20]. Currently, Ada

Spec
Universal
Z Parser

Uzed-to-DOM
Transform

/ DOM \
'—W AST 1—►

Elicitor-H arvester
Specification Tool

Spec-to-Desigi
Transform

Design-to-Code
Transform

/ Refine \
—W Ada

V AST J

Figure 1. Transformation Process: Formal Specification-to-Application Code

code is being produced and an effort is underway to add Java. However, any language

could be produced with modifications to AFITtool's GOM-to-code transformations.

Currently, AFITtool has no way of representing persistent data. This implies that

all active object instances will be created during program operation and will cease to exist

when the program terminates. To be robust, a specification-to-code system must anticipate

the need for persistent data and generate code to organize, store, and retrieve that data

efficiently. One manner of performing these actions is with a relational database.

2.3 From GOM Through COIL to AWSOME

The DOM and GOM structure is a product of the integration of previous research

efforts. While this structure does work, it requires special logic and operational consider-

ations. A number of DOM to GOM transformations were required since they were not in

the same format and the GOM lacked some of the structure of the DOM. Additionally,

much straight copying of information from one to the other was required.

During this research, Graham developed a new, simple programming language called

the Common Object-Oriented Language (COIL) at AFIT [7]. This served a number of

purposes. Its primary focus was to act as a single common language for imperative pro-

grams written in other languages. It was also for reverse engineering and language trans-

lation. Another goal of this language was simplicity in that most commercial languages

are extremely complex and idiosyncratic. Since all imperative languages have certain core

features in common, this language captured those common aspects in an uncomplicated

manner. This language was small and simple, yet complete, and considered an excellent al-

ternative to previous research efforts. However, this language still required transformations

to the GOM for executable code generation as it was intended to replace the GOM.

Another member of the KBSE research group proposed combining the COIL with

the functionality of the GOM. This new model, AWSOME, used the COIL as the base

language. COIL was then expanded to have the capability to capture the information

stored in both models. Under this new model, transformations take place within the same

representation thus deleting the need to create special syntactical transformations between

models. Additionally, AWSOME provides a robust environment for software synthesis and

reverse engineering while still providing a complete language [3].

AWSOME is capable of handling packages, declared classes, variables, associations,

methods, and other common programming constructs. The language model is intuitive

as it is broken down into packages that contain a series of declarations. These declara-

tions include data types such as classes, objects including variables and constants, and

subprograms that contain procedures and functions. Examples of the AWSOME syntax

are shown in Figure 2. While the syntax is simple and intuitive, the corresponding tree

structure, as captured in the AWSOME AST, is not as intuitive. An example of a simple

function is shown in Figure 3. The language supports object-oriented concepts such as

inheritance, aggregation and polymorphism. It does not support input/output as most

application languages handle this in ways that cannot be specified generically to meet the

language-specific intricacies that are often contained in very large complex libraries. This

research effort is done within the AWSOME environment.

As is depicted in Chapters III and IV, a significant portion of this research involved

the development of portions of the AWSOME AST and the development of transformations

that act upon it. This single tree representation allows not only transforms, but also the

capture of design decisions behind them that are necessary for the handling of persistent

data in a relational database.

type Integer is range -100000 to 100000;
type Date is array [1..9] of Char;
type StudentSet is Set of Student;

Class Person is
var lastname String;
var firstname String;
var initial String;
var birthdate Date;
var ssn String;
var height Integer;
var weight Integer;

end Class;

Class Faculty is Person with
var academicRank : String;

function getSt udentsAdvisedf) : StudentSet is

guarantees getStudentAdvised =
<s | (s : Student) s in

this.RAdvises.Advisee };

end Class;

Figure 2. Examples of AWSOME Syntax

2.4 Transformation Methods Between Object-Oriented and Relational Methodologies

Relational databases are commonly used as a means to store data throughout the

business world and the Air Force. This has been one of the primary methods to store data

that is to be queried and updated on a regular basis. The object-oriented methodology is a

primary technique taking the software development community by storm. Object-oriented

programming attempts to model software problems in terms of real world objects. Its

benefits include software reuse, inheritance, and encapsulation [13]. However, as new ap-

plications are built, rather than using an OODBMS designed specifically for 00 languages,

these applications often must use an RDBMS either because it is the tool of choice, or be-

cause of existing software and database investments. Traditionally, this type of software

development and its coupling with an RDBMS has proceeded along the following lines.

1. Design the application.

2. Devise a specific architecture for coupling the application to the RDBMS

3. Select a specific RDBMS (in reality, this step often occurs first).

4. Design the database with RDBMS code to set up the proper database structures.

Function:
getStudentsAdvisesO {Student}
guarantees: getStudentsAdvisesr {s I (s: Student) sinthij.RAdvises.advisee}

WsCkss

+wsQassOperations

WsMethod

+wsMethodSubprogram
Ws Subprogram*

I

WsFunction

WsName'
I

WsIdentifierRef
I

+wsDec!Name- getStudentsAdvises

+wsSubProgFormals - null

+wsSubProgLocals - null

+wsSubProgBcdy - null

+wsPostCondition

getStudmtsAdvkuQ = {f I (s: Süidmt) f it RAdvYesAdviiee}

WsExpression*

+wsFuntRetumType
WsBinaryExpressian*

StudoitSet

+wsBinOpl

WsExpression*
I

WsSubprogramCall

+wsSubprogramCallName\/ \+wsSubprogCallArgs

WsName*

I
WsIdentifierRef

I
gefSludetltiAdviies

^wsBinOp2

WsExpression*
I

Ws Contain erFarmer*
I

+wsContainerExpressians

WsExpression*
I

WsName*
I

WsIdentifierRef
I

S

vsConatinerDedaratians/

WsLogicalVariable

+wsLogVarName

WsHentifier
I

+wsLogVarType

I
WsName*

I

WsIdentifierRef

+wsBinOpl

WsExpression*

WsIdentifierRef
I

S

+w sS elCampName

WsName*

I
WsSelectedCompanent

+wsContait erCanstraints

WsExpression*
I

WsBinaryExpression*

(s it 1h»JlAdvjie*Advjiee)
I

Wsh

+wsBin0p2

WsExpression*
I

WsName*

I
Ws S electedComponent

WsIdentifierRef
I

Adviiee

+wsSelCompName

WsName*
I

*= ABSTRACT

+w sS elCampCamponent

WsIdentifierRef
I

RAdvita

Figure 3. AST for AWSOME Function getStudentsAdvisedQ

5. Write programming language code to compensate for RDBMS shortcomings; provide
a user interface; validate data; and perform computations.

6. Populate the RDBMS with data.

7. Run the software application. Query and update the RDBMS as needed [17].

A number of different automated or semi-automated formal methods have been pro-

posed to translate RDBMS to OODBMS [6,8]. However, there is not the same plethora

of methods for formal translation of 00 schema to relational schema as required for 00

programming language development with an RDBMS. This is because the 00 schema in-

cludes information that is not contained within the relational model, such as inheritance,

aggregation, and the inclusion of methods [5].

The cardinality of the relations has been shown to be equal to object-oriented as-

sociations' multiplicity constraints. These constraints can be mapped to four properties:

functional, injective, surjective, and total. Relationships whose cardinality does not map

directly, such as l-to-2, can be derived from these four properties [2]. Additionally, refer-

ential integrity deficiencies may be supplemented in RDBMS by using triggers. Triggers

may also be used to enforce complex business rules and to audit changes to data. They

are executed by the database when specific types of data manipulation commands are per-

formed on specific tables. These are transparent to the user and include commands such

as inserts, updates, and deletes. Triggers work individually or in groups. However, triggers

should be used only to supplement referential integrity and not as a substitute for it [10].

There are numerous informal case tools for designing the relational database as listed

in Step 4. There are also tools for developing the embedded SQL necessary for the software

and the RDBMS to function as mentioned in Step 6. In addition, there is an excellent

tool for finding mathematically equivalent SQL statements and replacing them with more

optimal functioning statements.

2.4-1 Informal Case Tools for Automated Development of DDL. ERwin by Logic

Works is a traditional entity-relationship design tool. This tool is representative of a whole

family of similar products. It combines a windows graphical interface and editors to define

database objects. ERwin helps design RDBMS using the standard IDEF1X diagramming

method developed by the US Air Force or an information engineering notation [11]. The

10

Existence-
Dependent

YES

Identification-Dependent
YES NO

NO

facility-id Identifying
Relationship

DEPARTMENT

facilffc-idlFK)
department-no

N/A

PROJECT
project-no

Mandatory
Nonidentifying
Relationship

empl-no

project-no (FK)

project-no Optional
Nonidentifying
Relationship

EMPLOYEE

empl-no

project-no (FK)

Figure 4. Existence Dependence Diagram

objective of this tool is to create an easy to understand graphic representation of the

relational schema. Once this is created, ERwin builds the physical database schema by

generating a DDL script for the selected commercial database. This tool requires the

designer to identify all objects and all corresponding key as well as non-key attributes.

Then the relationships between the objects are defined in terms of Existence Dependent

and Identification Dependent as shown in Figure 4. The cardinality of the relationship

must also be defined. Once all this is done, ERwin automatically generates the DDL to

create the physical database.

Rational Rose is another design tool. This tool is broader in scope as its purpose

is 00 software systems development. It allows development in Ada 95, Java, C++,

Corba/IDL, and database schema generation in DDL. Rose supports the Unified Mod-

eling Language (UML), Booch, and Rumbaugh notations, making it more flexible [4].

This tool requires the designer to identify all objects and the corresponding at-

tributes. Each attribute must then be defined in terms of type, length, nullability, primary

key, unique, composite unique, and constraints. Rose treats associations as bi-directional

relationships that denote a semantic dependency between two classes. If an association ex-

ists between two persistent classes, a relationship will exist between the resultant generated

tables. Multiplicity of the association is commonly used as the determining factor for the

creation of relations between classes. However, if he chooses, the designer can determine

the relation via the direction of the association regardless of multiplicity. In the case of

11

inheritance, the superclass always migrates its primary key to the subclass. For aggrega-

tion or containment, Rose adds a DELETE CASCADE constraint to the foreign key in the

database. For M-to-N associations, a link class/associative object, is used. However, the

user must create the link class as Rose will not make this logical conclusion on its own [15].

While this tool does allow the designer to create an informal 00 schema and generate

a corresponding relational database schema, it makes design assumptions that might not

be ones desired. Since the tool uses only the multiplicity of the association to determine

how to design the relation in the database, it is limiting and may not capture the true

nature of the relation. In addition, this tool is produces only the DDL portion of SQL.

2.4-2 Informal Case Tools for Automated Development of DML. There are

also numerous informal case tools that can be used to help semi-automatically generate

DML. These tools are designed to generate, test, and analyze embedded SQL. They have

similar operational requirements and attempt to make the creation of SQL simple for the

designer by using a series of pull-down menus and selection boxes. Using this interface,

the designer must select the tables on which the operation is to be performed. Next,

the type of operation is selected: SELECT, UPDATE, DELETE, or INSERT. Conditions

upon the fields such as equals, greater than, like, etc. can then be added. In addition, data

organization commands such as group-by and order-by may be placed within the operation.

Once ä given statement is completed, the tool then creates an embedded DML statement in

the language of choice and returns a sample result set. Often these tools will provide extra

data to the designer such as the order of operations, joins, unions, or specific indexes used

by the optimizer to get the result set. In this manner, the designer may visually determine

whether the statement is acting as desired. The designer can then determine whether the

DML statement meets the original software system specification. There is no mathematical

determination whether the statement is meeting a formal specification [14,18].

2-4-3 Formal DML Transformation Tool. LECCO SQL Expert by LECCO Tech-

nology Limited is a tool for automating SQL transformations. This product attempts to

automatically optimize SQL with transformation capabilities. It scans either application

files (text or binary) or database objects searching for SQL statements. Found statements

12

are then categorized as simple, complex, or offensive in that they are not valid statements.

Another LECCO capability is optimization of SQL statements. This option produces a list

of semantically equivalent SQL statements, through formal transformations, that provide

better performance. This tool uses a parser and artificial intelligence to guide the SQL

generation. When a statement is selected for optimization, the tool will indicate the num-

ber of equivalent statements it has found and tested that produced different optimization

plans. The only alternate statements which are kept are those that result in a unique

optimization plan. For one complex statement tested, the system investigated 180 equiv-

alent statements but only returned 80 of them. The other 100 were eliminated because

their optimization plans were already created. Also, all statements that took longer to

run than the original were eliminated without ever being added to the list of 180 equiv-

alent statements. A ranking was then produced according to oracle cost. This may not

be the best-cost option when operating on the actual software system. For instance, if

bind variables are used, the actual operating time may vary greatly. The only true way

to test the statements is to run them on the actual system to see which option executes

the fastest. This system transforms mathematically equivalent SQL statements once an

original statement is entered. However, this system is not capable of determining whether

the original statement was specified correctly. It can only operate on what is assumed to

be a correctly specified SQL statement [12].

2.4.4 Conclusion. The tools described fall short of the goal of this research to au-

tomatically add database capability to software systems generated from specification. The

tools such as ERwin and Rose help the designer develop the database schema. Other tools

provide simple user interfaces for developing database management operations. However,

in both cases, these tools look only at a small portion of the problem. The tools that help

write DML are particularly lacking as they only provide a user interface for developing

SQL. They do nothing to ensure the operations created meet specified requirements. It

is left completely to the designer to visually determine that the code generated performs

the operation specified. Finally, the formal tool by LECCO Technology can only create

equivalent statements of those already in place.

13

This research combines the capability of the DDL generation tools with the genera-

tion of DML from the specification. By combining these capabilities, the DML operations

can be guaranteed to meet the specified requirements. In addition, these previously sepa-

rate operations are combined into a single automated process. This allows the generation of

complete software systems to include the application code and persistent data management

in a relational database.

14

III. DDL Generation

The design of a relational database includes two main steps: denning the structure and

manipulating it to implement specified requirements or functions. The first is done in DDL

while the second is done in DML. This chapter covers DDL. In this research, the input is an

00 specification written in AWSOME. In order to generate DDL, this specification must

be transformed into its relational equivalent. As stated previously, DDL generation from

an informal specification has been performed and is generally available from numerous

COTS producers. However, since the design decisions from developing DDL are needed to

generate DML, DDL generation is a necessary part of this research. The DDL generation

is not meant to be competitive with COTS products. It is meant to produce executable

DDL code and document design decisions. This research generates DDL from formal

specifications while the COTS products do so from informal specifications.

The generation of DDL is performed in two phases. The first is to transform the

specification within the AWSOME AST. The second is to read the specification and design

decisions to generate a string that when applied to a database will create the correct

table structure. The first phase of transforming a specification from object-oriented to

relational schema is done by performing three groups of transforms on the specification as

represented in AWSOME. These transformations can be categorized as follows: the classes

are mapped to tables; the associative objects are mapped to tables; and the associations are

designed into database relations. For all of these transformations, additional information

is needed from the designer. These transformations are based on the assumption that the

specification is correct and properly parsed into the AWSOME tree structure.

The transformation of classes, associative objects, and associations can be an itera-

tive process depending upon the specification and the design implementation. For instance,

in the school system example, Figure 5, a number of classes, an associative object, and

an association must be transformed in order to transform the class Section. This class is

then used to migrate a key to the associative object, AssignedAO, as part of an association

implementation. The foreign key then becomes part of the primary key of the receiving

associative object. This small example shows the complex procedure of designing a spec-

ification to have persistent storage in a relational database. Once these design decisions

15

0. * +Teaches Teaching +Taugh _By 1..1

+Advisor +Advisee n ,
Assigned

n *
Faculty R Advises

1..1 0..*
Student Section

+Assignee H

1..1

+ls_ln

Member_Of

-Assignee _T°
+Actual 0.*

<J
Taught_As

Person +TheorY I..I

Offering

+0v

+Own

vner

edBy

0.1

Ow

0..

ns

0..* +Contains

Bicycle GradClass Course +Program +Time Quarter

n * Offering 0..*

Figure 5. School System Example

are made and recorded for future DML generation, DDL can be generated from the AW-

SOME structure. These transformations are destructive in that if reversed, they cannot be

guaranteed to return to the original specification, but only to a mathematically equivalent

specification.

After these transforms are performed, the specification as held in the AWSOME

structure is ready for the second phase of DDL generation. The specification is not trans-

formed further during this phase of DDL generation. Instead, the tree is traversed and DDL

is generated from the existing specification. The relations between all the class/associative

objects are examined to ensure there are no circular dependencies. If none are present,

each class/associative object is mapped to a table. Each object's attributes are mapped

to columns within its respective table. The datatype of each attribute is converted and

assigned to a datatype that the DBMS recognizes. Next, each attribute is checked to deter-

mine whether or not it is part of either the primary key or a foreign key. If so, statements

are added to the table definition to indicate this information. Once a definition of a table

is created as a string, it may be applied to the database. In this manner DDL is generated.

16

The AWSOME syntax for specifying the classes, associations, and associative ob-

jects as they relate to DDL generation is described in this chapter. The structural compo-

nents necessary to capture the specification and the design transformations are examined.

Object-oriented associations differ from the relations of RDBMSs. Since this difference

can cause many problems, an analysis of association implementation within an RDBMS is

performed. Finally, the implementation of DDL code generation is depicted.

3.1 Mapping Classes to Tables

The specification for a class, Figure 6, is contained within the AWSOME structure

WsClass as depicted in Figure 7. For this research, three items from this structure are of

interest: the attribute wsAbstract indicates whether the class is persistent or abstract;

the component wsClassDataComponents contains the attributes of the object; and the

component wsClassSuperclass names the superclass of the object.

3.1.1 wsAbstract and Class Persistence. A table is created for each persistent

class. In this research, all classes were treated as persistent. However, in general, at the

class/object level, there must be a means to determine whether the class is persistent. In

the simplest case, tables are created to hold the instances of persistent classes. Otherwise,

no table is required, and the instantiation of these objects occurs only during execution of

the program. In case of a system crash, this data may not be recoverable. The boolean

flag, wsAbstract, was created within the WsClass structure to indicate whether an object

Class Person is
vac lastname : String;
var firstname : String;
var initial : String;
var birthdate : String:
var ssn : String;
var he i ght : Integer;
var we i ght : Integer;

function getHyE ikes 0 : BikeSet is

guarantees getMyBikes =
(b | b : Bi cycle) b in this.Owns.OwnedBy J;

end Class;

Figure 6. WsClass Specification

17

WsClass
«Abstract

T^X>1

+wsClassSuperclass
/ / \ \'
+wsClassOperations\ +wsDynamicModel \

/ / {Set} •>
/'♦wsClassDataComponents/ +^,nWiant

/{Set}
0.*/

WsName WsAttribute

0.. \ 0.. 1

+wsEventMaps
\{Set}

\ 0.. 1 0..

WsMethod WsExpression WsDynamic Model WsE vent Map

Figure 7. WsClass Structure

is persistent or abstract. The default value for this flag is false, indicating the class is

concrete. If the flag is true, the class is considered abstract, and a corresponding table

in the database is not created. There are situations however, that cannot be handled by

this attribute alone. If only some instances of a class are to be saved in the database

while others are not persistent, the software application needs to specify those instances

and include explicit data control operations such as database create commands or explicit

save options. This effort handles only the cases where all instances of a class are to be

persistent.

Additionally, a question arises at the class/object level. Does an abstract class with

attributes, that is not instantiated, need to be represented by a table within the database?

If the abstract class is part of an inheritance chain that leads to a concrete class, then it

should be represented by a table with a column for each attribute defined in that class.

Inheritance as a whole and its representation within the relational database are discussed

in this chapter. However, in this specific case, inheritance is represented in RDBMSs by

the first method described in Section 3.1.3. A relational JOIN of all of the tables in a

path to the root with the common key as the join parameter retrieves an instance of a

concrete subclass. By doing this, the inheritance structure is maintained while handling

abstract classes as a separate entity without blending their attributes into concrete classes.

This case should be handled by declaring the abstract superclass as concrete for RDBMS

18

purposes in the specification. The question of persistence for classes is handled in this

manner.

3.1.2 Attributes. Within the WsClass structure, the component wsClassData-

Components is implemented as a vector of WsAttributes. The class WsAttribute, Figure

8, is needed to capture the attributes of an object. Three of the four boolean flags in

this class are for DDL generation. wsUnique identifies whether the values within the

attribute's column in the object's table must each be unique. Any field with this identifier

is a candidate to be an alternate key. A simple primary key would also have this constraint.

However, if a field is part of a complex primary key, it may not have this restriction. The

complex primary key in this case would have an implied combined uniqueness constraint.

Another constraint that may be applied in conjunction with uniqueness, but may also

occur alone, is the possibility that a field can hold null for a value. Declaring the field

nullable with wsNullable fulfills this requirement. The final identifier needed to mark

whether a field is part of the primary key is the boolean element, wsPrimaryKey. This

indicates that the attribute is the primary key, or part of it, for the table representing the

data object being transformed.

The WsAttribute also contains two elements that are not boolean. wsAttribute-

HomeClass, a WsIdentifierRef, is a pointer to the class from which the attribute originally

came. This is a field specifically added for foreign keys. When a foreign key is added to a

class, this field indicates from which class the transfer originated. wsAttributeDataObject,

a WsDataObject, contains the name, datatype, and initial value of the attribute.

WsDataObject extends WsDeclaration and represents a data object. It is abstract

and is instantiated either as variable by WsVariable or as a constant by WsConstant. Ws-

DataObject inherits the element, wsDeclName, which is a Wsldentifier that holds the data

object's name. This structure also has two elements of its own as shown in Figure 9. The

element, wsDataObjectValue, is a WsExpression. This element is the value of a constant

or the initial value of a variable, depending on the instantiation. wsDataObjectType is a

WsName that references the data type of the attribute. Within the AWSOME structure,

it is possible to define subtypes with constrained ranges. Some RDBMSs allow a field to

19

WsAttribute
§?«vsPrimaryKey : boolean
SfcwsUnique : boolean
fijwsNullable: boolean
S^wsPrivate : boolean

/ 0.1

+wsAttribut eHomeClass

/0..1

\ 0.1 \ \ \
+wsAttributeDataObject

\
\ 1

WsldentiflerRef WsDataObject

Figure 8. WsAttribute Structure

be constrained to a certain range of values when the table is created. An example is that

the birth date on a driver's license must be at least 16 years prior to the entry date. If

this capability exists within the RDBMS, AWSOME attribute type constraints could be

transformed into column constraints. However, since syntax and the ability to use column

constraints are not global throughout all RDBMSs, this functionality is not implemented

in this effort.

3.1.3 wsClassSuperclass and Specifying Inheritance. Inheritance is often con-

sidered a meta-association in the object-oriented paradigm. If inheritance is present, the

element, wsClassSuperclass, a WsName, references the object's superclass. This Ws-

Name refers only to a single object since AWSOME only supports single inheritance.

WsDataObject

0..1 / \ 0 ..1

/ \
/ \

/ \
+wsDataObjectT\pe +wsData Object Value

/ \

V \
V

V*ldentifierRef WsEipression

Figure 9. WsDataObject Structure

20

MANY TO 1
REQUIRED REQUIRED

A
B C* \

A-prim ary
B-Prim ary (FK)

B-Primary

b-not-prim ary a-not-prim ary
P

A-primary

B-Prim ary (FK)
a-not-prim ary

B-Primary

b-not-prim ary
p

A B

1..* 1..1

Figure 10. Single Inheritance Example

There are more ways than one to transform inheritance. To give a full understanding of

the implications of the different methods, an analysis of these methods is performed.

The preferred method of handling single inheritance, as depicted in Figure 10, is

to migrate a key. In this case, each superclass and subclass maps to its own table, and a

foreign key from the superclass is added to the subclass. This method is the most common,

follows the normal forms, and logically follows the inheritance class structure. Another

advantage is that the number of different subclass objects can easily be changed without

affecting the rest of the database schema.

Another method is to move all the superclass's attributes to the subclass's table.

This method still requires a table for each subclass. The superclass table is absorbed into

each subclass table. This method could be used if the superclass has few attributes and

the subclass has many attributes. This approach may still enforce third normal form.

However, a problem with this method is the loss of the superclass/subclass structure. The

database schema loses this level of abstraction. Additionally, each table may need to be

searched separately when trying to locate an instance of an object. For example, when

the ID number of a piece of equipment is known, but not the nomenclature, which table

to search is unknown. Use of this method would depend strictly on the designer and the

application.

21

In the third method, the superclass table has all the subclass's attributes added into

its table. This method can be used if the superclass has many attributes and the subclass

has few attributes. This approach does not enforce third normal form. In addition, space

is wasted for the different subclasses because each inserts different fields. This method

should be used only when there are very few subclasses. The structure reflects differences

in types of objects by the fact that separate fields are null in different instances of the

object. As more subtypes are added, this method wastes more space due to null fields

for non-applicable instances. Of these choices, the first method is the only one employed

within this research for the reasons stated above.

3.1-4 Transformation of Classes. The instances of WsClass are transformed to

ensure the identification of a primary key and to implement inheritance if it exists. For

this effort, all classes are assumed to be persistent regardless of whether or not they are

abstract. Consequently, all classes have a table representation created during the DDL

generation phase. All defined classes are editable in that any attribute may be identified

as a primary key. If more than one attribute is identified, then the key is considered a

composite primary key composed of numerous fields. Any attribute identified may be a

native attribute or one imported as a foreign key from a different class as shown in Figure

11.

To transform each class, the primary key, simple or complex, must be identified from

the attributes of the class. To identify a primary key, the boolean attribute, wsPrimaryKey

of WsAttribute, is set to true. The designer accomplishes this by selecting the class to

be transformed and then individually selecting each attribute that is to be identified as

the primary key or part thereof. When the class being transformed has a superclass, the

inheritance is implemented by migrating the attribute identified as the primary key in the

superclass to the subclass. This foreign key will act as part of, or as the entire primary

key of the table generated from the subclass. An example of an inheritance subclass after

transformation, showing the key migration, is presented in Figure 12.

Additionally, if the class is involved in an identifying mandatory association that the

designer desires to implement by migrating a key, the class receiving the key should use

22

Before Transformation

The Attributes of the Class: Section

Primary Key Name HomeClass
0. false snumber null
1. false TaughtAs Offering_Course_cnum Offering
2. false TaughtAs Offering_Quarter_qname Offering
3. false Teaching Faculty_Person_ssn Faculty

After Transformation

The Attributes of the Class: Section

Primary Key Name HomeClass
0. false snumber null
1. true TauahtAs Offering Course cnum Offering
2. true TaughtAs Offering_Quarter_qname Offering
3. false Teaching Facuity_Person_ssn Faculty

Figure 11. Example of a Class After Transformation

Before Inheritance Transformation

The Attri butesoftheClass: Faculty

Primary Key Name HomeClass

0. false academicRank null

After Inheritance Transformation

The Attributes of the Class: Faculty

Primary Key Name HomeClass

0. false academicRank null
1. true Person_ssn Person

Figure 12. Example of Inheritance Subclass After Transformation

23

that key as part of, or as the entire primary key of that class. In this effort, mandatory

association is not checked. It is up to the designer to ensure that the association is not

redefined by assigning a key from a non-identifying or non-mandatory association as part

of or as the entire primary key. Furthermore, the mandatory or optional nature of the

association is not implemented through the use of the nullable field. Currently, the NO

NULL option is set by use of wsNullable only for parts of the primary key.

By performing these transformations, the designer has defined a primary key for

each table. In addition, migrating a mandatory key to the subclass automatically enforces

inheritance. The designer may need to perform other transforms first. For instance, if a

class's primary key comes from an association in which it is involved, the association must

be transformed first and then the primary key set. Other than in the case of inheritance,

it is totally up to the designer to select the foreign keys in a class.

3.2 Associations

Previous research by Kissack at AFIT modeled associations as binary Z relations.

These associations were specified over components of an aggregate class. The implemen-

tation of associations was limited to only associative objects [9]. In contrast, this research

models associations as stand alone entities. Their degree may be binary, ternary, or higher

order. Furthermore, these associations may be implemented by numerous methods.

3.2.1 Representation of Associations in AWSOME. The structure, WsAssocia-

tion, as depicted in Figure 13, is used to represent associations. This structure extends

WsDeclaration and is placed in the hierarchy tree at an equivalent level to WsClass. This

is a change from previous efforts. In AFITtool, a composite class containing complex at-

tributes of other classes declares an association between its complex attributes. In this

research, an association is not a component of any given class or datatype, but rather

shows a relationship between classes. By declaring an association as a separate entity, it

can be handled as a structural component much like a class. Under this model, aggregation

then becomes just another association. This implementation will be discussed later under

Association End.

24

WsAssociation

(

+wsAssoclmp

/

1.1 Q t\ 0..1

/ \
ement +wsAssociationEnds

{Sequence}

\2+

WsldentifierRef WsAssocEnd

Figure 13. WsAssociation Structure

wsAssociationEnds is a sequence of WsAssocEnd. This sequence must have at least

two members and represents the ends of an association. This allows for ternary or higher

order associations to be represented. wsAssocImplement is a WsldentifierRef. This pointer

is set, during the design transformations, to the object that implements the association.

WsAssocEnd represents the connections of an association. It has two boolean com-

ponents and four other elements. This is shown in Figure 14. WsOrder is a boolean that

indicates whether the end is ordered. WsAggregate indicates whether the association is an

aggregate relation. In this situation, setting the value to true indicates the Association End

that contains the aggregate. By using this flag, it can be determined whether an aggregate

association exists and which class has the aggregate component. wsAssocEndRole is a Wsl-

dentifier and is the role name of the association end. wsAssocEndClass is a WsldentifierRef

and points to the class to which the association end is connected. wsAssocEndQualif ier is

an optional WsldentifierRef that points to an attribute of an associative object that is act-

ing as a qualifier. This will only be present in associative objects and is explained in Subsec-

tion 3.2.2.6. Associations cannot have qualifiers in this model. wsAssocEndMultiplicity

is a set of WsIntegerType that is implemented as a vector. Each WsIntegerType has an

upper and lower bound. In this manner, the cardinality of the association end can be

determined. For instance, it could be 0-1 and 7-9. This structure allows for the inclusion

of ranges that are not continuous.

The AWSOME syntax for representing associations is intuitive and simple to read

as shown in Figure 15. The association is specified as a stand-alone entity. The name of

25

WsAssocEnd
<3>wsOrder: boolean
3>w;Aggregate : boolean

P 0
0..1 0..1

+wsConRole
/

0..1 o-l
\

»■wsConQualifier \

./
0.1

/
+wsConClass

t
1 /

\

o..i\

«-wsConM ultiplicity
{Set}

Wsldentifier WsldentifierRef WsldentifierRef WslntegerType

Figure 14. WsAssocEnd Structure

the association is not associated with any other object. In the declaration of the roles,

each end/role is self-contained in that all information including role name, object type,

cardinality, and aggregation are all present in a single statement. Each association is

required to have a unique identifier. However, the roles are only required to have unique

names within any given association. Any identifier may be used for a role name, but

custom dictates that the name makes logical sense within the context of the association.

3.2.2 Analysis of Association Implementations. Previous efforts at AFIT handled

all associations by making them into associative objects. In a relational schema, there are

other methods that may be employed such as migrating keys and combining tables. This

section examines the associations recognized by this effort and explains the options for

handling them.

3.2.2.1 1-to-l Associations. Previous research recognized three different

types of binary 1-to-l associations [9]. These are differentiated by the mandatory/optional

participation of members of the association. In these associations, direction was implied

Association RAdvised is
role Advisor : Faculty is oneTo 1;
role Advisee : Student is zeroToN;

end Association;

Figure 15. WsAssociation Syntax

26

by the order in which the members of the association were expressed, left to right, domain

to range. These associations include:

Partial Injection - Both Optional
Total Injection - One Optional, One Mandatory
Bijection - Both Mandatory

Current research no longer uses this representation. Rather than having an associa-

tion direction with a defined domain and range, the association is defined by its multiplicity

and purpose. Additionally, the ends use role names for class/associative object identifica-

tion and association traversal.

The primary method for representing 1-to-l associations between objects that will be

transformed into a relational database is to migrate the primary key from one object into

the other as a foreign key. Which object receives the migrated key can be recommended

by an automated system, but must be determined by the designer. This method works

well for queries on the association. However, the design decision of which object gets

the foreign key must be retained. Otherwise, there will be problems if the relationship

is queried in the wrong table. Depending on the association, this method may fail to

reflect the mandatory/optional participation in the association of objects without the use

of database triggers. Additionally, the 1-to-l association cannot be determined from the

resulting database structure alone. However, this method intuitively shows the association

between objects.

In an association that is optional for both objects, the primary key from either object

can be migrated into in the other object as a non-identifying key. This means the migrated

key is not part of the other object's primary key. Also, the migrated key must be nullable

so that the object in which it is present can exist alone without the association.

An association that has mandatory participation for only one of the objects can be

expressed in one of three manners. If that object is identification dependent, the primary

key from the other object makes up part of the complex primary key for the dependent

object. The second choice is a non-identifying association. In this case, the mandatory

object has a unique key that does not require the addition of the other object's primary

key. The primary key is placed as a normal, non-nullable attribute within the receiving

27

1 TO 1
REQUIRED REQUIRED

A B

1.1 1.1

A B
(a n ■ V

A-primary
4

B-Primary
A-primary (FK)

a-not- primary b-not-primary

B
A

t

B-Primary
A-primary

A-primary (FK)
b-not-primary a-not-primary

A-primary
B-Primary (FK)

a-not-primary

B
B-Primary

b-not-primary

A-primary

B

•
B-Primary

B-Primary (FK)
a-not-primary b-not-primary

1

Figure 16. 1-to-l Mandatory Example Design by Migrating Primary Key

object. The third option is to have the mandatory object's primary key placed as a non-

identifying foreign key in the other object's table. This option, however, does not reflect

the necessary participation in the association by the mandatory object.

In an association where both objects have mandatory participation, the association

can be expressed in one of four ways as shown in Figure 16. If one object is identification

dependent, then the primary key from the other object makes up part of the complex

primary key for the identification dependent object. The second choice is non-identifying

association. In this case, one object has an identifying key that does not require the

addition of the other object's primary key to be unique. The primary key is placed as

a normal, non-nullable field within the receiving object's schema. The third and fourth

options are the same as previously described with the objects exchanging roles.

The next best method to represent 1-to-l associations, and method of choice in

certain circumstances, is to use an associative entity, Figure 17. An associative entity is

created by taking the primary keys from both of the objects in the association to form a

28

1 TO 1
REQUIRED REQUIRED

1..1 \ /..1

1..1 \

/
\ /
\ /

i / "
AB

B
A-primary

a-not-prim ary

AB

B-Primary

b-not-prim ary

A-primary (FK)
B-Primary(FK)

Figure 17. 1-to-l Mandatory Participation Example Design by Associative Object

complex primary key for the new object. Generally, this is the primary method used when

the association has attributes or when the association has a qualifier. These situations

will be covered in depth in their specific subsections. Each instance of the associative

object represents one instance of the association between the primary objects. This table

promotes easy association retrieval by searching the associative object and then using the

results to search the primary tables. This method requires more overhead than the first

method, as a third table must be maintained. Consequently, all association queries that

require more data than the primary keys require at least two table lookups. Furthermore,

very little information concerning the type of relationship represented by the associative

object can be deduced from the table structure without the use of triggers.

The last choice is to use a single table to represent both primary tables and the

association. This method requires the least code to create. However, it lacks association

29

structure and the application software must handle all management. Also, this method is

a poor choice because it results in Schemas which violate lower normal forms, and if data

entry errors are not detected, cycles in the data dependencies could be created. However,

there is one case in which this method might be used. This case is the 1-to-l mandatory

association since there is no wasted space in the table. Either primary key could be used

or both together. If this method is chosen, then the association might need to be examined

to ensure that there are actually two objects with a mandatory 1-to-l association and not

just a single object. This option is not used in this research.

3.2.2.2 N-to-1 Associations. In previous research, N-to-1 associations de-

pended, much like 1-to-l associations, upon the direction of the association and the op-

tional/mandatory participation of the objects [9]. Four different binary association types

were recognized as N-to-1 associations. These are differentiated by the mandatory/optional

participation of members of the association. These associations include:

Partial Function - Both Optional
Total Function - N Mandatory, One Optional
Partial Surjection - N Optional, One Mandatory
Total Surjection - Both Mandatory

Current research no longer uses this representation. Rather than having an associa-

tion direction with a defined domain and range, the association is defined by its multiplicity,

cardinality, and purpose. The ends use role names for identification and association traver-

sal. In addition, the Total Function and Partial Surjection are considered the same case

in this research.

The primary method for representing these four associations between objects that

will be transformed into a relational database is to migrate the primary key from the 1

cardinality to the N cardinality object as a foreign key. The designer must determine

whether the migrated key is placed into the N cardinality's primary key, thus forming

a complex primary key, or in the attribute section. This can be recommended by an

automated system depending upon the particular association. This method works well in

queries asking for the association from the 1-to-N as well as from the N-to-1. If a query

is processed for an object that is not a member of the association, an empty set will be

30

returned. This method reflects the mandatory/optional nature of the association from its

structure in the database. However, the 1-to-N representation cannot be determined from

the structure alone.

In the association where participation is optional for both objects, the key from the

single object's table must be placed as a non-identifying attribute, not part of the primary

key, in the multiple cardinality object's represented schema. Additionally, the migrated

key must be nullable so instances of the object can exist without being in the association.

Since membership is optional for both objects, the association is modeled as a 0-1 to 0-N

entity relationship.

In an association where the N object has mandatory participation, the association

can be expressed in one of two ways. If the N object were identification dependent, then

the primary key from the 1 object would make up part of the complex primary key for the

N object. The other option is a non-identifying association. In this case, the N object has

an identifying key that does not require the addition of the 1 object's primary key to be

unique. The 1 object's primary key is placed as a normal, non-nullable field within the N

object's table. In the inverse case where the association is mandatory for the 1 cardinality

object and optional for the N cardinality object, the primary key from the 1 object is

placed as a non-identifying nullable foreign key in the N object's table.

For the mandatory participation of both objects, the association can be expressed

in one of two manners as shown in Figure 18. If the N object is identification dependent,

then the primary key from the 1 object makes up part of the complex primary key for the

N object. The other alternative is non-identifying association. In this case, the N object

has an identifying key that does not require the addition of the 1 object's primary key to

be unique. The 1 object's primary key is placed as a normal, non-nullable field within the

N object's table.

The second choice of method for representing N-to-1 associations is Associative Ob-

ject. This is depicted for an N-to-1, both mandatory association in Figure 19. This is

the method of choice when the association has attributes or when the association has a

qualifier. This will be discussed further in Subsections 3.2.2.5 and 3.2.2.6. This method

31

MANY TO 1
REQUIRED REQUIRED

A B

1..* 1..1

A-primaty
B-Primary(FIC) |

B-Primary

b-not- primary
a-not-prim ary P

A-prim ary

B-Primary(FK)
a-not-prim ary

B-Primary

b-not- prim ary
p

Figure 18. N-to-1 Both Mandatory Example Design by Migrating Primary Key

can also be used when the association is optional for both objects. Each instance of the

associative object represents one instance of the association between the primary objects.

This table promotes easy association retrieval by searching the associative object and then

using the results to search the primary tables. An associative object requires more over-

head than migrating a primary key. Consequently, all association queries requiring more

data than the primary keys must include at least two table lookups. Furthermore, very

little information concerning the type of relationship represented by the associative object

can be deduced from the table's structure. The primary key from the N cardinality object

will occur at most one time in the associative table. Meanwhile, the primary key from the

1 cardinality object may occur none, one, or many times in the table, depending upon the

type of association.

The last choice for N-to-1 associations is the use of a single table to represent both

primary tables and the association. This method requires the least code. It is best used

when the association is very dense because both the object instances are held in a single

tuple. When the association is sparse, much space is wasted because only one object's

attributes are filled in any given record. However, for every instance of the association,

the 1 cardinality object's fields are duplicated, still causing a waste of space. Further-

32

MANY TC
REQUIRED

1
REQl I IRE

/

D

A B

1..1 \

\
\ \ \

\

/-

AB

A B
A-prim ary B-Primary

a-not-prim ary

1
» <

P

b-noU primary

AB
'

(A
B

primary (FK)
Primary (FK)

\

\

Figure 19. N-to-1 Both Mandatory Example Design by Associative Object

33

more, this method lacks association structure, and the application software must handle

all management.

3.2.2.3 M-to-N Associations. Many-to-many associations are implemented

as associative objects regardless of whether the object's participation is mandatory or

optional. This is the only method that preserves third normal form. This method does

not allow the possibility of circular data dependencies. Migrating a primary key from

one object to another can cause duplication in the primary key unless the association is

mandatory for both objects and the migrated key helps form a complex primary key. A

single table can easily have duplications of key value pairs and circular data dependencies.

3.2.2.4 Aggregation. Each has-part relationship is handled individually

according to the relationship's properties. These are determined by the cardinality of the

relationship and whether the component object can exist alone or only as part of the ag-

gregate. Aggregations often exhibit existence dependency in the component objects as

Frame does in Figure 20. The implementation of these relationships, as with the associa-

tions defined earlier, requires designer input. These are often implemented by migrating

a primary key from the composite object into the component object. This key must at

least be part of the primary key for the component object if it is identity dependent. It

is also acceptable to implement this association by creating an associative object. This is

determined by the particular association and the designer.

3.2.2.5 Special Case: Link Attributes. Link attributes are attributes that

are not part of either entity in an association, but rather, the association itself. The

link attributes can occur in 1-to-l, N-to-1, and M-to-N associations. In this research,

an association having a link attribute must be declared as an associative object in the

specification. This is the preferred method of implementation, and associations do not

have attributes in the AWSOME structure. However, there are two methods that can

handle link attributes in an association in general.

The associative object method, Figure 21, can be used for 1-to-l, N-to-1, and M-to-N

associations. This object is created by taking the primary keys from all the objects in the

34

Bicycle

0..1

V
0..1 1..1 0..1

Wheel

0..1 1..1 0.

Seat Frame Light

Bicycle

NSN

-W

Seat Frame

NSN (FK)

NSN(FK)
Light

NSN(FK)

Figure 20. Aggregation Implementation Example

35

STUDENT OFFERING

^>SSN 3>ID-NUM
0.* 1 Q*

1

ENROLLMENT

^>Grade

STUDENT OFFERING

SSN

ENROLLRÄIT

ID-NUM

SSN
ID-NUM

Grade

Figure 21. Associative Object Link Attribute Implementation

association to form a complex primary key for the new object. The link attributes can

then be placed within the associative object as normal object attributes. Each instance

of the associative object represents one instance of the association between the primary

objects. Searches for link attributes are performed by a single search in the associative

object table. Additionally, this table promotes easy association retrieval by searching the

associative object and then using the results to search the primary tables. This method

requires additional overhead as a third table must be maintained. Consequently, all asso-

ciation queries requiring more than the primary keys or link attributes will require at least

two table lookups. This structure reveals the nature of the link attributes by the table

construction. Associative object is the preferred choice for this relationship. This method

gives more inference of the relationship from the table structure. It clearly shows the link

attributes as related to both objects.

Another method migrates a primary and embeds the link attribute in one of the

objects of the association. In all three cardinality situations, the link attribute is placed in

the object that receives the migrated key. The link attribute field must be nullable since

it will not have a value unless the association exists. This method hides the fact that the

36

link attribute is related to the association. Instead, it identifies the attribute as a member

of the object in which it is placed. This method breaks normal forms, and when queried,

the object receiving the foreign key must be known.

An additional method is to use a single table to represent both primary tables and

the association. It embeds the link attribute of the association and both objects into

one object. The single table method requires the least code to create. However, it lacks

association structure and the application software would handle all management. This

method breaks first normal form for the M-to-N and possibly in the N-to-1 associations.

This could be corrected by using a unique, system-generated primary key in these cases.

However, in all cases second normal form would be broken. The table's structure does not

imply any information concerning the association.

If a design decision other than associative object is wanted, embedded link attribute

is the second choice, however poor it may be. This method loses the ability to infer

information about the original object-oriented association from the table structure. Also,

the loss of normal forms and the additional overhead of determining which object contains

the link attributes make this method a poor alternative.

Single Joint Table is the least preferred choice. This method works best when the

association is very dense, and takes the least code to implement. This method is a poor

choice because it does not conform with lower normal forms. It drops the individuality of

the objects involved and the structure of the link attributes.

3.2.2.6 Special Case: Qualifiers. A qualified association, as shown in

Figure 22, relates two object classes and a qualifier. The qualifier is an attribute that

reduces the effective multiplicity of an association in M-to-N and N-to-1. For N-to-1

associations, the qualifier is placed on the N cardinality object.

Associative Object is the only acceptable method used in this effort for a qualified

association. The primary keys of both objects and the qualifier form the new associative

object's complex primary key. This method shows the identity dependence of the associ-

ation upon the qualifier. Also, this method retains third normal form for the association

relation and the structure of the table shows the qualified association.

37

Company Building
Office

COMPANY Ri nn

Name 1 BLDG-Num |

1 |

M

1

C ompanyyc 3

Office Symbol
BLDG-Num(FK)
Name(FK)

Figure 22. Qualifier Implementation

3.2.2.7 N-ary: Ternary and Higher Order Associations. These associations

may be of different degrees. They are rare and are handled as an oddity. Associations

may be binary, ternary, or of higher order. In practice, the vast majority are binary

or qualified. Higher order associations are more complicated to draw, implement, and

think about than binary associations and should be avoided if possible. Many associations

between three or more classes can be decomposed into binary associations or phrased as

qualified associations. If a term in a ternary association is purely descriptive and has

no features of its own, it is a link attribute of a binary association. An example of a

ternary association is "Quarterback plays for team during year". This association cannot

be decomposed without losing information.

Since ternary and higher order associations are encountered so infrequently, only one

method for transforming them is recommended in this research. This method, as shown

in Figure 23, is to implement the association as an associative object. It captures the

association structure in the database as the dependent object's table receives a portion of

its primary key from each of the other tables involved in the association.

38

Quarterback

Team Year

Ternary Association
with Link Attribute s

Team

Comp
Int

Quarterback Year

a SSN

P

T Y Q

Yr |

Yr(FK)
SSN (FK)
Id(FK)

Comp
Int

Figure 23. Ternary Association Implementation

39

3.2.3 Transformation of Associations. Associations can be implemented in a

number of different ways. Based upon the analysis in the previous section, two methods

were found to be the most versatile and have the fewest negative side effects. For this

research effort, only those two methods, the creation of an associative object or the mi-

grating of a primary key, were allowed. Once a primary key is migrated, it may be assigned

as a part of or as the primary key for the receiving class. It is left to the designer not to

change the meaning of the association. Although it is strongly discouraged, for an N-to-1

association, the designer may migrate a primary key from the N-cardinality association

end to the 1-cardinality association end. This foreign key is normally implemented the

other way. In this case, it is again left to the designer to make an intelligent, informed

decision concerning the design of the database.

In some cases, the association implementation decision is made by the system. As-

sociations that have more than two participant objects are automatically transformed to

associative objects. This is done by checking the number of elements in the WsAssociation

element, wsAssociationEnd. Additionally, if the association has a cardinality of M-to-N,

the association is automatically transformed into an associative object, Figure 24. Any

association not transformed by the first check of degree is now assumed to be a binary

association. In this case, the element, wsAssocEndMultiplicity, in each association end

is checked. Each WsIntegerType in the sequence for a given end is checked. If the highest

upper bound for an association end is greater than 1, the cardinality ofthat association end

is treated as N cardinality for this check. If both ends have N cardinality, the association

is transformed into an associative object.

An association that does not have cardinality greater than two or is not M-to-N, has

its transformation directed by the designer. When the designer selects an association, the

cardinality of the two association ends is given. The designer then decides to implement

the association with an associative object or by migrating a primary key.

If the associative object method is selected, a new WsAssocObject is created. Both

WsAssocObject and WsAssociation extend the abstract class WsDeclaration. The name

of the association is concatenated with the string, AO, to name the new Associative Object.

An example of this is the association, Assigned, that lends its name to the new associative

40

The association end Student is Optional
with a cardinality of N

The association end Section is Optional
with a cardinality of N

The association has a cardinality of N-to-N
and must be handled as an associative object

The association Assigned is implemented as the
AssocObject: AssignedAO

The Transformed Attributes of the Associative Obj ect: AssignedAO

Primarv Kev Name HomeClass
true Student Person ssn Student
true Section_Offering_Course_ctype Section
true Section_Offering_Course_cnum Section
true Section_Offering_Quarter_qname Section

Figure 24. M-to-N Association Transformed to Associative Object

object, AssignedAO. This naming convention makes it easy to recognize associative objects

created as a result of an association transformation. The element, wsAssocObjectEnd, is

set to the association's wsAssociationEnd. Finally, the association's element, wsAssoc-

Implement, is set to the WsIdentifierRef that points to the new associative object's name.

In this manner, the design decision for the association is recorded for later use in DML

generation.

If migrating a primary key is the method selected as shown in Figure 25, the designer

is reminded of the cardinality of the association ends. The designer then selects which class,

referenced by the association ends, will migrate its primary key. The selected class has

clones created from the attributes that make up its primary key. These attributes are

given new names to ensure uniqueness. The new name consists of the association name,

two underscores, the name of the class giving the key, a single underscore, and the original

attribute name. This naming convention ensures that different associations between the

same objects have unique names that act as a road map for the designer when trying later

to determine the origin of a field. These are imported to the attribute list of the class

referenced by the other association end. These attributes are not identified as part of the

primary key for that table. The association's element, wsAssodmplement, is set to the

41

Association: MemberOf

The association end Student is optional
with a cardinality of N

The association end GradClass is optional
with a cardinality of 1

The association MemberCf is implemented by
passing a foreign key to Student

The Attributes of the Class: Student

Primary Key Name HomeClass

false gpa null
true Person_ssn Person
false MemberCf GradClass designator GradClass
false RAdvises Faculty_Person_ssn Faculty

Figure 25. Association Implemented by Migrating Foreign Key

WsIdentifierRef that points to the class that received the migrated key. In this manner,

the design decision for the association is recorded for later use in DML generation. Error

checking is performed prior to implementation to ensure that the class giving the key has

been transformed. If a class has not been transformed, the primary key cannot be imported.

If the foreign key is to entirely compose or be part of the receiving class's primary key, the

designer must transform that class to identify the primary key.

3.3 Associative Objects

Associative objects occur under two circumstances. The designer can choose to

implement an association as an associative object, in which case the transformation of the

newly created associative object occurs automatically. The other situation occurs when

the associative object is declared in the specification. This can occur for numerous reasons.

If an association has attributes, methods, and/or a qualifier, or it participates in another

association, it must be declared in the specification as an associative object. Additionally,

the designer may choose to represent an association as an associative object without any

of the criteria listed above. WsAssocObject, Figure 26, represents the associative object

42

WsAssocObject

/" o'l "1 0.1 OK \

♦wsAssocObjectEnd^"''" / / \ N\ ^\^wsAssocOb|ec1E«ntMap
{Sequence} ^'^ ,,''+wsAssocObjectOperations\ \s '\ {Set}

^ . ^,. ■*' , /{Set} \ +\wAssocObjectDynamlcMode! --.
^ +wsAssocObjectComporent / \ *'- \

^' --'{set} / +wsAssocObjec1lroariant \
2 * ••"' A..' /"■■' \0.1 \ni \0..*

WsAssocEnd WsAttrlbute WsMethod | WsExpresslon | WsDynamicMocJel] WsEventMap

■ 1 — I

Figure 26. WsAssocObject Structure

in AWSOME. It has all the elements of a class except superclass and has the additional

element of a sequence of association ends. The associative object will reference at least two

identifying classes through the association ends. This is because an associative object has

all the capabilities of both a class and an association. The associative object is assumed

to be persistent and concrete in this research effort.

In order to transform the associative objects into structures from which DDL is gen-

erated, the instances of WsAssocObject are first identified to the designer. Each instance

is then automatically transformed into a form from which DDL may be generated. These

structures could be further transformed into classes. However, in order to maintain the

design decisions of the process, this effort does not make this next transformation, but

rather, generates the DDL from associative objects. By doing this, the associative object

maintains all the functionality of both an association and a class.

This transformation has two steps. First, all the association ends of the associative

object are examined to determine the class to which each particular association end refers.

New attributes, clones of the attributes that make up each referenced class's primary key,

are then imported to the attribute list of the associative object. These attributes are

all identified as part of the primary key for the table that is to represent the associative

object. This is shown in Figure 27. Error checking is performed to ensure the referenced

classes have been transformed. If a class has not been transformed, the primary key cannot

be imported. Additionally, the associative object is checked to ensure it has not already

been transformed. This prevents the attempt to add an attribute that has already been

imported.

43

The Transformed Attributes of the Associative Object:
Offering

Primary Kev Name Home Class
false code null
true Cours e _ctype Course
true Cours e cnum Course
true Quarter _qname Quarter

Figure 27. Transformed Associative Object Without Qualifier

The second step is to determine whether there is a qualifier. For this effort, any

association with a qualifier must be defined in the specification as an associative object.

Additionally, the qualifier must be declared as an attribute of the associative object rather

than an attribute of one of the classes referenced by association ends. To determine whether

a qualifier is present, the association ends of the associative object are examined. If the

association end element, wsAssocEndQualif ier is not null, the WsIdentifierRef will indi-

cate the WsAttribute of the associative object that is the qualifier of the association end.

This attribute is located in the associative object's element, wsAssocObjectComponent,

and the WsAttribute's field, wsPrimaryKey, is set to true. This indicates that the selected

attribute acts as an identifier and is placed as part of the primary key for database relation

that is generated from the associative object. These two steps complete the transformation

of associative objects for the generation of DDL.

3.4 Class/Associative Object Invariants

The use of class/associative object's invariants is necessary to avoid losing informa-

tion during conversion to DDL. This is because various software languages and databases

have differing capabilities in the use of invariants. In this research, the multiplicities of

the associations are captured and placed within the class/associative object's invariants.

This research does not utilize these invariants further, but rather, recognizes their value

and preserves this information for future use.

The multiplicity of an association, 1-to-l, 2-to-100, etc., whether expressed as an

associative object or association, is recorded in the association ends under WsAssocEnd,

44

wsAssocEndMultiplicity. These multiplicity constraints are currently not used by the

transform system other than to inform the designer of the association multiplicity and

mandatory or optional nature during the design process. These constraints could be put

to further use with additional development of this research.

Many database systems allow the use of triggers. These triggers define actions the

database should take when some database-related event occurs. Triggers may be used to

supplement declarative referential integrity, enforce business rules, or to audit changes to

data. Triggers execute within the database when data manipulation commands such as

inserts, updates, and deletes are performed. The capability to use triggers and the syntax

for declaring them differ between database systems.

This effort does not currently implement triggers. However, it is realized that the

constraint data is important and could be enforced by a specific database plug-in or in

the software application itself. To capture this information, these multiplicity constraints

are saved within the AWSOME structure during transformation. When an association is

transformed by migrating a primary key, the multiplicity of each object's participation in

the association is placed within each object's class/associative object constraint.

This constraint, as shown in Figure 28, uses the predefined AWSOME function,

size. The argument passed to size is this.Association Name.Role Name. This argu-

ment states the inclusion of the current class in the association with its role name. This

function call is then paired with the upper and lower multiplicity bounds of the WsAs-

socEnd, wsAssocEndMultiplicity. This preserves for future use the association multiplicity

constraint within the classes that participate in the association.

Student, wslnvariant

size(this.RAdvises.advisee) >= 1 and
size(this.RAdvises.advisee) <= 100000

Figure 28. Class Invariant for Multiplicity Constraint of Association

45

3.5 DDL Generation From AWSOME

Once the specification has been parsed into AWSOME and the previously explained

transformations are performed, DDL for creating the relational database structure can be

generated automatically. This is performed by first checking all the classes, associative

objects, and associations to ensure that they have been transformed. The designer will be

informed of all objects that have not been transformed. The automated system cannot

guarantee that the software system is designed in the most efficient manner or that the

designer has not made mistakes as human decision is part of the design process. The

system can determine whether any given class/associative object has a primary key and

whether all associations have a referenced implementation.

If all objects are determined to be transformed, all classes and associative objects are

checked for circular dependencies. If a situation exists where a number of objects create

a circular dependency through the migrating of keys, the designer is informed of those

offending objects and the process cannot continue until the errors are fixed. If there are no

circular dependencies, each object will be examined to create a string that, when passed to

the relational database, will create a corresponding table. These objects are each processed

in an order that will not create a dependency error by attempting to reference a table that

is yet to be generated. The components of the WsAssocObjects and WsClasses are read

and interpreted to create a string. This string is then passed to the RDBMS to create a

corresponding table. In this process, the name of the object is used as the name of the

table. The name of each attribute is used as the name for a column in the table.

It is very important to ensure that the domain for a database's column matches

the datatype of the AWSOME attribute. Errors in this transformation could cause the

entire software system to fail. However, an issue exists that makes this conversion very

challenging. Each database system uses a different set of native datatypes. These datatypes

are basically the same; however, each database uses slightly different parameters and names

to define them. For instance, Oracle uses VARCHAR20 to represent a string of fixed

length. Sybase uses CHAR() and Microsoft Access uses String. This difference means that

in a robust application, each supported database requires a different plug-in.

46

The AWSOME structure holds information that makes the conversion to any database

possible. Strings can be represented in AWSOME as arrays of Char with a denned length.

This gives the string length. Integer types in AWSOME have upper and lower bounds.

These could be passed as column constraints for those databases accepting them. Another

option is to check these constraints against the upper and lower bounds of database number

types when column constraints are not allowed. Similar checks could be done for real/float

and date types also. Due to differences among RDBMSs, the problem was avoided in this

research by hardcoding the basic types defined in the School domain to those of the target

database of the prototype, Oracle. Currently, the basic types, String, Char, Integer, Float,

Date, and boolean, are checked and assigned according to Table 1. As previously men-

tioned, in a robust implementation, a separate plug-in would be needed for each database.

Additionally, transforms would be needed to convert complex specification-defined types

into native database datatypes.

Specification in AWSOME Oracle Native Datatype

String VARCHAR2(25)
Char VARCHAR2(1)

Integer INTEGER
Float NUMBER
Date DATE

boolean VARCHAR(l)

Table 1. AWSOME to Relational Type Conversion

After type conversion, the next step in DDL generation is checking which attributes

are part of the primary key. Those attributes making up the primary key are identified

as NOT NULL. Additionally, each element is checked to see whether it is also part of a

foreign key. All the foreign keys are then listed in table constraints indicating the table

from which they came and the attribute they reference. Finally, the primary key for the

table is identified. This string, as shown in Figure 29, is then sent to the database and the

table is created.

These transformations on the specification parsed into the AWSOME structure pro-

vide the framework to generate DDL. By preserving the transform decisions, DML that

will interface properly with the DDL produced from the specification can be generated.

47

CREATE TABLE Section (
snumber INTEGER,
TaughtAs Offering_Course_cnum INTEGER NOT NULL,
TaughtAs Offerin g_Quar t e r_ qname VARCHAR2(25) NOT NULL,
Teaching Faculty Person ssn VARCHAR2(9),

FOREIGN KEY
(TaughtAs Offering_Course_cnum ,
TaughtAs Offering_Quarter_qname)

REFERENCES Offering(Course_cnum , Quarter_qname),
FOREIGN KEY (Teaching Faculty_Person_ssn)

REFERENCES Faculty(Person ssn),
PRIMARY KEY

(TaughtAs Offering Course cnuiti ,
TaughtAs Offering Quarter qname))

Figure 29. DDL Code Automatically Generated From AWSOME

The importance of wise design decisions by the designer in the implementation of the asso-

ciations cannot be overemphasized. An automated system can make recommendations or

blanket decisions such as transforming all associations to associative objects. However, the

best decisions still require human intervention as intent and personal preferences cannot

always be specified in a logical manner. Embedded DML from the specification can only

be generated if the design decisions are recorded.

48

IV. Generating Data Manipulation Language (DML)

In order to generate DML from a formal, object-oriented specification, one must know

the design decisions used to build the RDBMS structure. Since the table structure alone

does not reflect the inheritance, associations, and aggregation, one must also know the

way these object-oriented entities are implemented. Chapter 3 describes the process of

capturing the software system specification in the AWSOME AST structure. The steps for

extracting the persistent data structure, transforming the object-oriented schema into a

relational database schema, and preserving the design decisions are also described in detail

in Chapter 3. After these actions are completed, it is possible to proceed with the second

main step of designing an RDBMS, that is, the implementation of specified requirements or

functions. Generating executable DML code to retrieve and manipulate data, as specified,

does this. This research deals only with the retrieval of data. The manipulation of said

data is left for the further development of this effort.

This chapter describes the process of recognizing database retrieval operations and

implementing them in code. This is done by recognizing expression patterns, interpreting

their content, and generating the mathematically equivalent database statements. The

post condition of the operation is the part of interest. The specification for the post

condition only describes the state that should exist after the operation occurs. It does

not tell how this operation is to be executed. This research develops a methodology for

determining how to correctly implement the post condition in the form of DML. Another

important point is that SQL statements return sets of records. The set may only contain

one tuple or none at all; however, it is still a set. Consequently, the post condition defines

the return set. As a result, the methodology of this research determines how to return the

specified set.

This chapter first describes how the post condition expressions used in the prototype

of this research are represented in AWSOME. The process of pattern matching and its use

to determine whether the operation can be converted to DML code is explored. In this

conversion, the post condition expression is evaluated to determine what should be returned

from the operation. The constraint that defines the data to be returned is interpreted. This

information is then compiled and translated into DML. Finally, this chapter explains how

49

function getHyFaculty(InputQname : in String) : FacultySet is

guarantees getHyFaculty(InputQname) -
< f | (f : Faculty, s : Section, o : Offering, q : Quarter

3 in f.Teaching.Teaches and
o in s.Taught_As.Theory and
q in o.Offering.Time and
q.qname = InputQname and
this in o.Assigned.Assignee);

Figure 30. AWSOME Specification for Function: get My Faculty ()

the previously transformed inheritance and association requirements are used to ensure

that the correct information is retrieved by the DML.

4-1 Representation of Expressions in AWSOME

Before the methodology for generating DML can be understood, one must have a

knowledge of how methods, such as the one shown for the class Student in Figure 30,

are represented in AWSOME. Since these methods must be used for the generation of

application code as well as DML, all actions dealing with the specifications in this research

are nondestructive in that they do not alter the structure but merely read it in its current

form. An extension not pursued in this effort is the transformation of methods that are

not in an interpretable form into a form that can be interpreted by the automated DML

generator.

4-1-1 WsMethod. Both classes and associative objects can have methods. This

is expressed in WsClasses by the component, wsClassOperations, and in WsAssocObject

by the component, wsAssocObjectOperations. In both cases, these components are sets

of WsMethod as shown in Figure 31. WsMethod has two boolean attributes and one

component. The boolean attribute, wsPrivate, indicates whether the method is private

or public. In the AWSOME structure, methods cannot be declared as protected. The

boolean attribute, wsClassMethod, indicates whether the method is a class or instance

method. This attribute is used in DML generation and will be discussed further in Section

4.2.2. Finally, the component, wsMethodSubprogram, is represented by the AWSOME

structure WsSubprogram.

50

Ws Method

wsPrivate: boolean
wsCIassMethod: boolean

+wsMethodSubprogram

1

WsSubprogram

Figure 31. WsMethod Structure

4-1-2 WsSubprogram. WsSubprogram, Figure 32, extends WsDeclaration. As a

result of this inheritance, wsDeclName is used as the name of the operation. WsSubpro-

gram has a number of components that are used for DML generation. The component,

wsSubprogFormals, is a sequence of WsParameter. These are the arguments passed to the

operation. They may be classified as IN, OUT, or IN OUT parameters. wsSubprogLocals

is a set of WsDataObject. This structure represents the local variables and constants de-

clared within the operation. wsPostConditions is a WsExpression. The WsExpression

hierarchy is by far the most complex structure within AWSOME and is used repetitively

throughout the specification of methods. In fact, a large portion of the DML generation

involves evaluation of this structure. wsPreConditions is also a WsExpression. However,

in this research the precondition is assumed true and consequently is not used. The re-

maining component, wsSubprogBody, and the boolean attribute, wsExternal, are not used

in DML generation. WsSubprogram is an abstract class that is implemented by WsPro-

cedure and WsFunction. WsFunction has a return component, wsFunctReturnType, that

is a WsName. WsProcedure does not have any components.

4-1.3 WsContainerFormer. There is an additional structure that must be de-

scribed. WsContainerFormer, Figure 33, is used as part of the post condition for pattern

matching. Specifically, it is the concrete extension of this abstract class, WsSetFormer,

whose components define the set that the operation is to return and constrain the in-

formation within the system to only that which is desired. However, WsSetFormer does

51

WsS ubprogram

vusExternal : boolean

0 .<pn "V\c ..1

/0..1/0.. 1

/ /
+wsSubprogFormals / /

0..1\ \
\ \
\ \

{Se ,uence} / / +«*SubproBBod* ^Postconditions
/ / {Sequence} \ \

/+rasSubprogLocals +iAsPre Condi« on^,

/ r \ \
/ \ \ / 0..' °" \ ! \1

WsParameter WsDataObject WsStatement WsExpression WsExpression

y / /
Will not exist in Domain h. Used for Domain l\ Used for Domain L\

Model. Will be Specification. Will Specification. Will

instantiate d to co ntain th e "go away" when "go away" when

"results" of a design transformation design transformation
transformation of pre/post complete complete

conditions.

Figure 32. WsSubprogram Structure

not have any additional components or attributes. WsContainerFormer, which extends

WsExpression, has three attributes, all of which are used within this research to generate

DML.

wsContainerExpression is a WsExpression. This expression defines the items that

make up the return set. For this research, this expression was limited to a class or an

attribute of a class. Complex structures created with multiple attributes from a single class

WsContainerFormer

■WsContainerExpression

A
/

P <
/ /

«sContain
{Seq<

> \
\

srDeclarati
ence}

\+wsContainerConstraint
\

o ns \

\
WsExpression WsLogicalVariable WsExpression

I

Figure 33. WsContainerFormer Structure

52

WsLogicalVariable

+wsLogV

/
arName -HvsLogVarType

\
Wsldentiüer WsName

Figure 34. WsLogicalVariable Structure

or numerous classes were not implemented. To do so would require the definition of tuples

made from the components that this research does return. Specification of complex tuples

is possible within the AWSOME structure. For a more robust application, this research

could be extended to include complex tuples. wsContainerConstraint is a WsExpression.

This constraint provides the meat of the DML queries and is where the return set is

constrained in terms of association participation and attribute values. It may contain

logical and mathematical operations over multiple classes, associative objects, attributes,

associations, variables, and constants.

wsContainerDeclarations is a sequence of WsLogicalVariable. WsLogicalVariable,

as shown in Figure 34, has two components. wsLogVarName is a Wsldentifier. This is the

name of the logical variable. wsLogVarType is a WsName. This is the data type of the

logical variable. These logical variables are used only within the container former in both

the container declaration and constraint.

4-1-4 Pattern Matching. The post condition of an operation in AWSOME is

a WsExpression. As stated earlier, WsExpression is the most complex structure within

AWSOME. In order to determine whether DML could be generated from a post condition,

the structure of the post condition was evaluated to see whether it was in a format that

could be recognized by the DML generation program. Developing transformations from

unacceptable formats to acceptable formats was not part of this research. This effort only

determined whether the post condition was in a format that could be evaluated. Since

database queries for data, not including functions such as COUNT, MAX, MIN, etc.,

return a set, a standard condition format was used. This format of WsSubprogramCall =

53

Ws Subprogram Call = WsSetFormer

WsExprssion*
I

WsBinaryExpression*
I

WsEquals

wsBinOpl-/ \. wsBinOp2

WsExpression* WsExpression*

I .1
WsSubProgramCall WsContainerFormer*

I
* = Abstract Clas s WsSetForm er

Figure 35. Pattern Matched in a Post Condition

WsSetFormer is shown in Figure 35. The WsSubprogramCall refers to the operation being

defined, and the WsSetFormer describes the set that is returned by the operation.

Another pattern that is matched in DML generation is the Wsln structure within

WsSetFormer wsContainerConstraint. Figure 36 shows the AWSOME representation of

a Wsln statement with abstract inheritance levels in the diagram that the AST lacks. In

this case, the Wsln is used to indicate the participation of objects within an association.

When a Wsln is detected, the components are checked. wsBinOpl should be a WsThis

or a WsIdentifierRef that points to a variable with a datatype of a class/associative ob-

ject. WsBin0p2 is a selected component. The selected component's element, wsSelComp-

Component, should be a WsIdentifierRef that points to an association role name. The el-

ement, wsSelCompName, is another selected component. The second selected component's

element, wsSelCompComponent, should be a WsIdentifierRef that points to an association.

The second selected component's element, wsSelCompName, is a WsThis or a WsIdenti-

fierRef that points to a variable with a datatype of a class/associative object. From this

pattern, association participation can be interpreted. By using the design decisions re-

tained from the DDL transforms, the corresponding DML substring that correctly reflects

the specification can be generated.

54

(s in this.RAdvisies.advisee)

WsExpression*

I
WsBinaryOperation*

I
Wsln

-hvsBinOpl / x. +wsBinOp2

WsExpression* WsExpression*

I I
WsName* WsName*

I I
WsIdentifierRef WsSelectedComponent

I
S

-HvsSelCompName /^-wsSelC >mpComponent

WsName* WsIdentifierRef

I I
WsSelectedComponent advisee

-HvsSelCompName / \+wsSelCompComponent

WsName* WsIdentifierRef

I I
Wslhis RAdvises

* = Abstract Class

Figure 36. Wsln Association Representation Example

55

Pattern matching can be extended to other instances. Often certain components are

expected, and the various options are given to match an executable pattern. When none

of the known patterns can be matched to a portion of the specification, transforms must

be created to adjust the specification to a mathematically equivalent form that can be

matched to the pattern. Pattern matching is not perfect. In fact, there may be patterns

that cannot be matched or a specification that cannot be transformed to a recognizable

pattern. A simple example of this is X = X' * X'. In this case, we are looking for the square

root of X. However, very few pattern matching programs would recognize this operation

unless this pattern were specifically predefined as a special operation.

4.2 Generating DML From AWSOME

With an understanding of the AWSOME structure that holds the specification for

methods to be transformed into DML and how patterns are used to determine whether an

operation is transformable, one is equipped to discuss DML generation. To generate DML,

each class and associative object is individually examined for the presence of methods.

Each operation is then checked against the WsSubprogramCall = WsSetFormer pattern.

Any operation meeting this requirement is ready for further examination.

The DML statement is broken into three fragments: a select statement, a from

statement, and a where clause. The select statement tells the database what set of

records to return. The from statement indicates which tables are to be used in the query.

Finally, the where clause constrains the operation to only the data required. For this

effort, these three statements are built in parallel and then concatenated when finished to

form a single DML statement for each operation. There are numerous other functions that

could be included such as group by, order by, max, min, count, etc. This research uses a

limited implementation and does not contain all SQL functions. Rather, it is limited to

simple queries. These queries may not be optimized for query execution. However, most

RDBMSs have an internal query optimizer. In addition, there are COTS products such as

those discussed in Chapter 2 that are expressly designed to optimize SQL queries. This

research does produce mathematically correct queries. Further developments of the SQL

functions and query optimization are left to later expansions of this research.

56

4-2.1 Runtime Variables. There are numerous variables that are not known until

the application code is run. Passed parameters and local variables, whose values depend

upon other input and the attributes of the instance that calls the operation are all unknown

until time of execution. Respective RDBMSs handle these variables in different manners

and syntaxes. Since there is no one way to represent these situations correctly, a different

package with this information is needed for each RDBMS. To handle this situation, any

time an instance attribute is called for, it will be represented in the DML string by the

form, this.attribute name. This method identifies the instance, and the attribute name

indicates the attribute whose value would be used. In a case where the variable is a formal

argument or a local variable to the operation, its existence is represented by the variable

name. Another option is to leave a placeholder in the DML statement and to also provide

a vector of the runtime variables. However, to make the code more readable and more

easily understood for academic purposes, the first method described was chosen for this

research.

4-2.2 Class and Instance Methods. The WsMethod boolean attribute, wsClass-

Method, is checked to determine if the operation is an instance or class method. If it is

a class method, no action is taken. However, if it is an instance method, the instance is

associated with the DML where clause. This is done by adding the instance's primary

key to the return set constraint as expressed in the where clause. The form of this

statement is this.primary key = object.primary key. The string this.primary key

is the primary key field of the instance calling the operation. The string obj ect. primary

key is the name of the object containing the operation that corresponds to the table name

and the name of the attribute that is the primary key. If the primary key is a composite

key, then the individual statements for each part of the key are anded together. In this

manner, the instance is included in the return set constraint.

4-2.3 Determining the Return Set. There are two locations that specify the

return set in the operation specification. In the operation declaration, if it is a function,

there is a return type declared. However, the datatype could be defined in basic types such

as string or integer. It might not necessarily reflect the actual fields being returned such as

57

the ssn attribute of the class Person. This would be even more evident if this work were

extended to include complex records with fields from different tables. The other option

is to use the set former to determine the actual make-up of the return set by the actual

classes and attributes. This is the option taken in this research.

Once the post condition has been checked to determine that it is in the correct form,

the WsSetFormer is examined. The component, wsContainerExpression, is captured.

This field points to a logical variable that is represented in AWSOME by the structure

WsLogicalVariable. Once the logical variable has been located, it is evaluated to determine

its datatype. For this research, the datatype is limited to a class/associative object or an

attribute of a class/associative object in the form object, attribute.

If the datatype is a class or an associative object, the object is found and its attributes

are added to the select statement. The name of the object is then added to the from

statement. If this object is a class that extends a superclass, it is involved in an inheritance

hierarchy. In order to return the entire object, including inherited attributes, the superclass

is recursively examined until a level is reached that has no superclass. At each level,

the superclass's attributes are added to the select statement and the from statement

receives the name of the object. The primary key/foreign key relationship defined during

DDL transformations is added to the where clause in the form, superclass primary

key = subclass foreign key from superclass. An example of this is Person, ssn =

Student.Person_ssn. If at any level of this recursive procedure an associative object is

encountered, the process ends at that level because an associative object cannot have a

superclass.

When the datatype is an object.attribute, a similar procedure is followed. At

each level of the superclass hierarchy between the object listed in the specification and

the class that holds the attribute, each object's name is added to the from statement,

and the tables are linked through the primary key to foreign key relationship in the where

clause. The superclass object and attribute are added to the select statement. Once

this process is finished, the select statement is complete. The three strings are returned

and the DML generator is ready to examine the set former constraint.

58

4-2.4 Expressing the Set Former Constraint. In the WsSetFormer, the component

wsContainerConstraint is a WsExpression. This expression can be very complex and

have many components connected by the structures, WsAnd and WsOr. To process this

expression, this research recursively broke it down into smaller pieces, translated them

individually, and then combined them to create the completed from statement and where

clause. The purpose of this implementation was to break the expression into atomic parts

that were simple and interpretable. This is a form of pattern recognition that breaks a

complex statement into portions the patterns of which can be accepted.

4-2.4-1 Binary Expressions. WsBinaryOperation is an abstract class that

extends WsExpression. A binary operation has two components, wsBinOpl and wsBin0p2,

both of which are WsExpressions. This class is instantiated by numerous concrete classes.

The following are implemented in this research: WsAnd, WsOr, WsGreaterThan,

WsLessThan, WsGreaterThanOrEqual, WsLessThanOrEqual, WsEqual, WsNotEqual,

WsAddition, WsSubtraction, WsMultiplication, and WsDivision. For each of these ex-

pressions, parentheses are placed around the resulting DML code and the component ex-

pressions are recursively evaluated. Wsln is a binary operation that is implemented in this

research. However, it is handled in a different manner and will be discussed separately in

Section 4.3.4.3.

4-2.4-2 Unary Expressions. There are two unary expressions in the AW-

SOME structure, WsMinus and WsNot. Both have a component of type WsExpression.

The unary minus sign and the key word not are both common in RDBMSs and are trans-

lated directly into the where clause with the component expression placed in parentheses.

The component expression is then recursively evaluated.

4-2-4-3 Wsln Expression. The Wsln expression is treated as a special pat-

tern that is checked for format as described in Section 4.2. After the pattern has been

confirmed, the components are evaluated to determine whether they express participa-

tion in an association. The Wsln has the following format, opl in op2 where op2 =

object.association.role name. Next, Opl and the object position of op2 are eval-

59

uated. They will be the pointers to the objects involved in the association and will be

represented by WsThis and/or WsIdentifierRef. If the WsThis is present, it indicates the

instance calling the method. The WsIdentifierRef reflects a variable whose datatype will

be a class or associative object. The association and role name are also captured. The

named objects are then checked to determine whether they participate in the association

indicated. If an object is not present in the association as specified, then its superclass

structure is recursively checked until the exact location of the association participation

is located. During this process, at each level, the from statement is checked to see if

the object name is already listed. If not, it is added. The where clause is checked to

determine whether the superclass primary key to subclass foreign key relation is already

represented. If not, it is added. After the participation in the association is ascertained,

the DDL implementation of the association is evaluated. If the association is implemented

by a foreign key, the primary key of the giving object table and the corresponding foreign

key are placed in an equality statement which is added to the where clause if it is not

already present. An example of this is shown in Figure 37.

If the association is implemented as an associative object, the from statement is

checked to see whether it includes the participating objects' names and the name of the

associative object. If any of the names are not present, they are added to the statement.

Next, the objects that participate in the association are linked by their foreign keys to the

associative object and this statement is added to the where clause if it is not already

present. An example of this is shown in Figure 38.

4-2.4-4 Extensions of WsName. WsName is an abstract class that extends

WsExpression. It has three concrete instantiations that are encountered in the recursive

evaluation of the set former constraint. Within this research, these three structures are at

s in this.RAdvises.advisee

where ...

Faculty.Person_ssn = Student. RAdvises Faculty_Person_ssn

Figure 37. DML for an Association Implemented as a Foreign Key

60

this in o.assigned.assignee

where ...

this.Person.ssn = AssignedAO.Student_Person_ssn and
AssignedAO.Offering_Section_Course_cnum = Section.Qffering_Course_cnum and
AssignedAO.Offering_Section_Quarter_Qname = Section.OfFering_Quarter_qname

Figure 38. DML for an Association Implemented as an Associative Object

the bottom of the recursion. They are converted directly to portions of the DML code.

These instances are in relational statements as shown in Figure 39.

WsThis is only present in instance methods. It is handled by printing the object's

name in the where clause. If it is not already present, the object's name will be added

to the from statement. WsSelectedComponent is a selected component that is not part

of nor does not contain another selected component. In this case, the wsSelCompName

will be a WsName that references an associative object or class. wsSelCompComponent is

a WsName that references an attribute of the object from wsSelCompName. The string,

object name. attribute name, is added to the where clause. If the object name is not

already present, it is added to the from statement. WsIdentifierRef is a structure that

points to a logical variable, formal variable, local variable, or an object of type class or

associative object. If the WsIdentifierRef indicates a logical variable, its datatype should

be a class or associative object the name of which is printed to the where clause and

then to the from statement if it is not already present. If the WsIdentifierRef indicates

a formal or local variable, the variable's name is printed in the where clause. If the

WsIdentifierRef points to an associative object or a class, the object's name is printed in

the where clause and then in the from statement if it is not already present. These

three structures are only recognized by themselves in the instances described. If other

q.qname = Input Variable

where ...
Quarter.qname = InputV arable

Figure 39. DML for Selected Component and Input Variable

61

values are present, the pattern is not recognized, and a DML string cannot be created for

this operation.

4-2.5 Aggregation. Aggregation was implemented in the DDL portion of this

research. However, it was not implemented in the DML portion. Traditionally, applica-

tions that use RDBMSs for persistent data management do not contain large amounts

of aggregation. The inability to handle aggregation well is often considered a weakness of

RDBMSs. This is partially due to the unknown format of the return set and the large num-

ber of possibilities it could contain when querying an object with aggregate components.

An aggregation might have optional parts present in one instance and not in another. In

strong typed languages, the return set's structure needs to be known because a type needs

to be built for each possible return. Another alternative is for the entire return set to be

treated as a string and then parsed into proper components. The representation of aggre-

gation implemented in this research does not allow all parts of an object to be found if the

structure of an aggregate object has loops. For instance, if an object has aggregate com-

ponents and one of these components has a superclass that links back into the inheritance

tree of the original object, the recursive calls used to create the DML string could get into

an infinite loop. This structure would need to be implemented by a different method such

as a tree. Due to these difficulties, the representation of aggregation in DML is left to be

an extension of this research.

4-3 Summary of DML Generation

This research shows the ability to generate DML from formal specifications for specific

cases where the post condition expression is in an interpretable format. As more patterns

and transformations to those patterns are added, the set of DML statements that can be

generated will increase. Some issues such as the handling of aggregation and difference of

datatypes and interfaces for different RDBMSs will still need to be resolved.

62

V. Results, Conclusions and Recommendations

This research effort began with the primary objective of automatically generating the

structure to support software system persistent data and the embedded code to access

that data through the use of a relational database system. The hypothesis proposed from

the beginning and pursued throughout this research was that if the design decisions for

converting an object-oriented schema to a relational schema implemented in DDL could be

captured, those design decisions could be used to automatically generate the corresponding

DML operations as specified.

To support this endeavor, object-oriented associations and techniques for represent-

ing the relational equivalent were examined. Once a set of transformations was developed,

a structure was needed to capture the initial object-oriented specification and the design

decisions made during transformation. This significant effort focused on the AWSOME

structure with specific attention directed to classes, associations, and associative objects.

Once the structure and transforms capable of producing a relational schema in executable

DDL were defined, the research turned to DML generation.

Two challenges were immediately encountered: how to represent operation require-

ments in the AWSOME structure as pre and post conditions and how to comprehend

those specifications so that corresponding DML code could be generated. Use of the set

former notation to define the result set of queries solved the problem of specifying query

results. Expressing post conditions as set formers is a fundamental technique that is quite

common in data-intensive applications. Pattern matching techniques were used to limit

the scope of possible expression formats and to facilitate the interpretation of post condi-

tion specifications. With all this in place, DML generation became a task of transforming

specifications in set former notation and using the design decisions to determine relational

schema negotiation. The result of this effort is a process for relational database design

with corresponding data access code from a formal object-oriented specification.

63

5.1 Results

First and foremost, this endeavor demonstrated the feasibility of a means for gen-

erating DDL and DML for a software system from that system's specification. Other

significant accomplishments worthy of mention were achieved. Additionally, numerous un-

foreseen obstacles outside the scope of this research were identified. These issues are also

presented in this section.

5.1.1 Accomplishments. In light of the differences between associations and

relations, one of the major challenges in this research was to represent the 00 associations

as relations. To do this, a thorough examination of different implementation methods was

documented. The effects of different methods were compared to the intent of the association

and the side effects that occur when it is transformed to a relation. This evaluation provided

insight into individual transformations and the need to model associations as a separate

structure that exists at the same level as classes.

This analysis was implemented as three groups of transforms on the specification as

represented in AWSOME. These transformations were categorized as follows: the classes

were mapped to tables; the associative objects were mapped to tables; and the associa-

tions were designed into database relations. For all of these transformations, additional

information was required from the designer. The design decisions of all three categories of

transforms were captured and retained for use in DML generation.

Methods were implemented for transforming inheritance and associations that cap-

ture the design decisions. These decisions were used to generate DML. For inherited at-

tributes, the DML was automatically generated to link subclass attributes with superclass

attributes throughout the entire inheritance hierarchy. Transform decisions for associa-

tions were used to implement association participation between objects. If a superclass of

an object participated in an association, the DML was automatically generated to allow

the subclasses to also participate in the association. This allowed data to be retrieved by

traversing associations between objects and allowed objects to inherit associations as well

as attributes.

64

This research resulted in a prototype application that fills the gap left by COTS

products. By combining the ability to generate both DDL and DML from a specification,

the DML operations can be guaranteed to meet the specified requirements. The prototype

application is capable of generating DML query strings that return either entire records or

specified fields from a table. The specification for a method must be represented as a set

former structure. However, the constraint within the set former can be complex as it may

be composed of multiple associations, classes, associative objects, variables, attributes,

and constants. Additionally, a number of logical and mathematical operations over these

objects are supported.

5.1.2 Obstacles. Numerous issues outside the scope of this effort were encoun-

tered. One issue, not fully explored, was the evaluation of complex operation post con-

ditions. Pattern matching was used to recognize pieces of the post conditions. If an

expression could not be evaluated, it was recursively broken down until the pieces could be

recognized. However, this was done for a limited number of situations. The complexity of

expressions within AWSOME did not allow full pattern recognition to occur. As a result,

operations such as updates, inserts, deletes, and some types of complex queries could not

be readily interpreted.

An assumption of this research was that post conditions were in a format that could

be interpreted. This was a prohibitive constraint that limited the operations performed.

This area requires more attention. Specifically, a series of mathematically equivalent trans-

forms of the expression needs to be developed. If expressions could be transformed into a

more easily interpreted form, DML generation capabilities would be greatly enhanced.

Aggregation was flattened and represented in DDL. However, this process needs fur-

ther research to implement a robust solution for DML. The possibility of loops, circular

referential dependencies in the data structure, was beyond the capabilities that the recur-

sive pattern matching used to generate DML. This was because aggregation is logically a

tree structure that in this research was being stored as a tuple. Since an aggregate object

may have a varied structure due to optional parts, the composition of the return set of a

query could not be retrieved in a simple query.

65

The issue of datatypes also needs further research. Although the AWSOME structure

is capable of holding the specifications of user-defined datatypes and subtypes, application

languages and RDBMSs have different syntaxes and native datatypes. Inconsistencies in

this area prohibit a universal solution for output to all databases and languages. Also, the

handling of return sets by application languages is considerably different depending on the

strong typing requirements of the language. Transforms are needed to convert complex

specification-defined types into native database datatypes. A possible solution would be

to have different packages of special type conversion functions for different languages and

RDBMSs.

This research produced a DML string for each operation. However, a way to embed

the DML back into the AWSOME structure or a target language was not addressed.

Additionally, variables were represented by printing their names into the DML. Differences

in application languages limit solutions to these deficiencies. One possible solution would

be to save the DML in a tree structure rather than a string. This would allow easier code

manipulation for different languages.

5.2 Conclusions

It is possible to generate DDL and corresponding DML from specification. However,

DML generation requires additional research to be fully implemented. Before complex

data retrievals or operations requiring multiple queries can be performed, a number of

obstacles must be overcome. Specifically, a way must be devised to handle aggregation

when object structures contain loops. Also, additional patterns will need to be identified

and transforms created to convert expressions into interpretable forms.

The majority of challenges encountered dealt with matching object-oriented concepts

and capabilities to relational schema. Since object-oriented objects attempt to model

complex, real-world objects, expression of these objects and their properties relationally

requires a flattening or simplification of the data structure. This creates a problem in that

this simplification can produce a large and equally complex series of tables; yet this is still

not enough to fully accomplish the task.

66

00 associations cannot be expressed as relations without the use of triggers within

the relational database to help enforce referential integrity, multiplicities, and other con-

straints. Foreign keys can be used to provide paths for tracking inheritance and traversing

associations. However, the relational structure alone does not define and enforce these

00 concepts. Application software and triggers are needed to fully enforce specification

compliance. The relational structure can provide a map for gathering data and provid-

ing operations on that data. However, this structure can become very complex as tables

become large with overhead from many complex foreign keys and the number of tables

increases from implementing associations as associative objects.

Until this research is extended to solve the problems identified, a robust industrial

strength DDL/DML generator will not be possible. In the interim, if the capability to

generate 00 application code exists, it is recommended that an object-oriented database

be used. In this case, classes need only be declared as persistent, and the OODBMS will

take care of the management that must be explicitly built into relational database. This

solution bypasses the problems associated in matching 00 and relational schema.

5.3 Recommendations for Future Work

Relational database systems are matter-of-fact for the foreseeable future due to ex-

isting applications and monetary investment. As a result, there are numerous areas in

which this research could be extended. This research was specifically limited to recogniz-

ing a small number of expression patterns and performing only simple queries. A direct

expansion of this effort would greatly enhance the automated 00 to relational matching.

Particular attention should be directed to three main focus points: aggregation, enhanced

operational capability, and datatypes. Transformation of aggregation is required to create

a robust 00 to relational application. Current research leaves two problems to be solved

in this area. The relational structure that represents an aggregation may contain loops not

interpretable by this research. A methodology needs to be devised to either traverse these

loops or represent aggregation in a manner that eliminates them altogether. The results

of aggregation queries are random in that the result set may vary in composition for any

67

given object with optional aggregate components. Some strong typed languages cannot

handle this situation.

Another limitation of this research was the confined query capability that was devel-

oped. In order to support an object-oriented application with a relational database, full

data management capabilities are required. This includes inserting, deleting, and updat-

ing records as well as providing complex query capabilities. In order to accomplish these

tasks, numerous areas need to be explored. Methods for representing these requirements

need to be developed. Since the AST representing expressions is so complex, transforms

to the specifications are needed to represent these requirements in a manner that can be

converted to DML. The pattern matching of expressions should be expanded. The limited

format used works only for simple query operations. It does not handle updates, inserts,

or deletes of object instances or association participation.

Since different languages and databases use different and sometimes unique datatypes,

additional research could develop a methodology for identifying and converting datatypes

between different languages and databases. It should include conversion of simple datatypes

between applications as well as conversion of complex datatypes to simple ones. The differ-

ences in datatypes between relational databases and the complex, user-defined datatypes

available in 00 languages are significant. Research in this area would solve a problem that

requires direct human conversions and work-arounds to make systems interoperate.

Triggers are required to implement referential integrity, business rules, and con-

straints, and to perform operations within the database system. A significant area still to

be developed is the identification of requirements for triggers. Based on such analysis, a

methodology could be developed for building and implementing triggers on different sys-

tems to enforce integrity and other constraints as well as to perform operations required

by the software specification. This would greatly enhance the automated 00 to relational

conversion.

68

5.4 Summary

This research effort provides a solid foundation for representing and transforming

object-oriented specifications into relational database DDL and DML. Although there are

still hurdles to be overcome, the ability to design application code and persistent relational

storage in a single process rather than two separate and distinct undertakings is an achiev-

able goal for which a need will exist as long as object-oriented applications are paired with

relational databases.

69

Appendix A. School Specification in AWSOME Syntax Before DDL Transformation

This appendix contains a sample specification written in AWSOME syntax. The specifi-
cation is represented in its original form before any DDL transformations are performed.
This example contains declarations of types, classes, associative objects, and associations.
The classes contain both attributes and methods. Figure 5 in Chapter 3 is a graphic
representation of the structure of this example.

type zeroToN is range 0 to 100000;
type oneToN is range 1 to 100000;
type zeroTol is range 0 to 1;
type oneTol is range 1 to 1;
type Integer is range -100000 to 100000;

type Date is array [1..9] of Char;

type StringSet is Set of String;
type FacultySet is Set of Faculty;
type StudentSet is Set of Student;
type BicycleSet is Set of Bicycle;

Class GradClass is
var program : String;
var year : Integer;

var graddate : Date
var designator : String;

end Class;

Class Quarter is
var qname : String;
var year : Integer;
var qstart : Date;
var qend : Date;

end Class;

70

Class Course is
var ctype
var cnum
var ctitile
var cdesc
var creditHours
var lectureHours
var abetDes
var abetSci
var abetMath
var abetOther

end Class;

String;
String;
String;
String;
Integer;
Integer;
Integer;
Integer;
Integer;
Integer;

Class Section is
var snumber

end Class;

Integer;

Class Bicycle is
var bikeSerialNum

end Class;

String;

Class Person is
var lastname
var firstname
var initial
var birthdate
var ssn
var height
var weight

end Class;

String;
String;
String;
String:
String;
Integer;
Integer;

71

Class Faculty is Person with
var academicRank : String;

function getStudentsAdvisedO : StudentSet is

guarantees getStudentAdvised =
{si (s : Student) s in this.RAdvises.Advisee };

function getStudentsAdvisedSSN () : StringSet is

guarantees getStudentsAdvisedSSN =
{ s I (s : Student.ssn) s in this.RAdvises.Advisee };

function getMyBikes 0 : BikeSet is

guarantees getMyBikes =
{ b I (b : Bicycle) b in this.Owns.OwnedBy };

end Class;

Class Student is Person with
var gpa : Integer;

function getMyFaculty(InputQname : in String) : FacultySet is

guarantees getMyFaculty(InputQname) =
{ f | (f : Faculty, s : Section, o : Offering, q : Quarter)

s in f.Teaching.Teaches and
o in s.Taught_As.Theory and
q in o.Offering.Time and
q.qname = InputQname and
this in o.Assigned.Assignee};

end Class;

AssocObject Offering is
var snum : Integer;

role Program : Course is zeroToN;

role Time : Quarter is zeroToN;

end AssocObject;

72

Association Assigned is

role Assignee
role AssignedTo

end Association;

Student
Section

is oneTol;
is zeroToN;

Association MemberOf is

role isln
role Contains

end Association;

Student
GradClass

is zeroToN;

is zeroTol;

Association RAdvised is
role Advisor
role Advisee

end Association;

Faculty
Student

is oneTol;
is zeroToN;

Association TaughtAs is

role Actual :
role Theory :

end Association;

Section
Offering

is oneToN;
is zeroTol;

Association Teaching is
role Teaches
role TaughtBy

end Association;

Faculty
Section

is oneTol;
is zeroToN;

Association Owns is
role Owner
role OwnedBy

end Association;

Faculty
Bicycle

is zeroTol;
is zeroToN;

73

Appendix B. School Specification in AWSOME Syntax After DDL Transformation

This appendix contains the specification from Appendix A after DDL transformations in
AWSOME syntax. All classes and associative objects have attributes assigned as primary
keys. The association declarations have been designed as associative objects and as at-
tributes passed from one class to another as foreign keys. The manner that the association
was implemented is indicated in the association structure. Additionally, the multiplicities
of the associations are represented as class/associative object invariants.

type zeroToN
type oneToN
type zeroTol
type oneTol
type Integer

is range 0
is range 1
is range 0
is range 1

to 100000;
to 100000;

to 1;
to 1;

is range -100000 to 100000;

type Date is array [1..9] of Char;

type StringSet is Set of String;
type FacultySet is Set of Faculty;
type StudentSet is Set of Student;
type BicycleSet is Set of Bicycle;

Class GradClass is
var program
var year
var graddate
var designator

String;
Integer;
Date
String is PrimaryKey;

invariant

end Class;

(size(this.MemberOf.Contains) >= 0 and
size(this.MemberOf.Contans) <= 1);

Class Quarter is
var qname
var year
var qstart
var qend

invariant

end Class;

: String is PrimaryKey;
: Integer;
: Date;
: Date;

(size(this.Offering.Time) >= 0 and
size(this.Offering.Time) <= 100000);

74

Class Course is
var ctype
var cnum
var ctitile
var cdesc
var creditHours
var lectureHours
var abetDes
var abetSci
var abetMath
var abetOther

String;
String is PrimaryKey;
String;
String;
Integer;
Integer;
Integer;
Integer;
Integer;
Integer;

invariant

end Class;

(size(this.Offering.Program) >= 0 and
size(this.Offering.Program) <= 100000);

Class Section is
var snumber
var TaughtAs Offering_Course_cnum

var TaughtAs Offering_Quarter_qname

var Teaching Faculty_Person_ssn

Integer;
String is PrimaryKey
from Offering;
String is PrimaryKey
from Offering;
String from Faculty;

invariant (size(this.TaughtAs.Actual)
size(this.TaughtAs.Actual)
(size(this.Assigned.AssignedTo)
size(this.Assigned.AssignedTo)
(size(this.Teaching.TaughtBy)
size(this.Teaching.TaughtBy)

>= 1 and
<= 100000) and
>= 0 and
<= 100000) and
>= 1 and

<= 1);
end Class;

Class Bicycle is
var bikeSerialNum
var Owns Person_ssn

String is PrimaryKey;
String from Person;

invariant

end Class;

(size(this.Owns.OwnedBy) >= 0 and
size(this.Owns.OwnedBy) <= 100000);

75

Class Person is
var lastname
var firstname
var initial
var birthdate
var ssn
var height
var weight

String;
String;
String;
String:
String is PrimaryKey;
Integer;

Integer;

invariant

end Class;

(size(this.Owns.Owner) >= 0 and

size(this.Owns.Owner) <= 1);

Class Faculty is Person with
var academicRank : String;
var Person_ssn : String is PrimaryKey from Person;

invariant (size(this.Teaching.Teaches) >= 1 and
size(this.Teaching.Teaches) <= 1)
(size(this.RAdvises.Advisor) >= 1 and
size(this.RAdvises.Advisor) <= 1);

and

function getStudentsAdvisedO : StudentSet is

guarantees getStudentAdvised =
{ s I (s : Student) s in this.RAdvises.Advisee >;

function getStudentsAdvisedSSN () : StringSet is

guarantees getStudentsAdvisedSSN =
{ s I (s : Student.ssn) s in this.RAdvises.Advisee };

function getMyBikes () : BikeSet is

guarantees getMyBikes =
{ b I (b : Bicycle) b in this.Owns.OwnedBy };

end Class;

76

Class Student is Person with

var gpa
var Person_ssn

var MemberOf GradClass_designator
var RAdvises Facutly_Person_ssn

Integer;
String is PrimaryKey
from Person;
String from GradClass;
String from Faculty;

invariant (size(this.Assigned.Assignee) >= 0 and
size(this.Assigned.Assignee) <= 1)
(size(this.MemberOf.Isln) >= 0 and
size(this.MemberOf.Isln) <= 100000)
(size(this.RAdvises.Advisee) >= 0 and
size(this.RAdvises.Advisee) <= 100000);

and

and

function getMyFacultydnputOname : in String) : FacultySet is

guarantees getMyFaculty(InputQname) =
{ f | (f : Faculty, s : Section, o : Offering, q

s in f.Teaching.Teaches and
o in s.Taught_As.Theory and
q in o.Offering.Time and
q.qname = InputQname and
this in o.Assigned.Assignee};

Quarter)

end Class;

AssocObject Offering is
var snum
var Course_cnum
var Quarter_qname

Integer;
String is PrimaryKey from Course;
String is PrimaryKey from Quarter;

invariant (size(this.TaughtAs.Theory) >= 0 and
size(this.TaughtAs.Theory) <= 1);

role Program : Course
role Time : Quarter

end AssocObject;

is zeroToN;
is zeroToN;

77

AssocObject AssignedAO is
var Student_Person_ssn

var Section_TaughtAs Offering_Course_cnum

var Section_TaughtAs Offering_Quarter_qname

: String is PrimaryKey
from Student;

: String is PrimaryKey

from Section;
: String is PrimaryKey
from Section;

role Assignee : Student
role AssignedTo : Section

end AssocObject;

is oneTol;
is zeroToN;

Association Assigned is
role Assignee : Student
role AssignedTo : Section

implemented by AssignedAO;
end Association;

is oneTol;
is zeroToN;

Association MemberOf is
role isln : Student
role Contains : GradClass

is zeroToN;
is zeroTol;

implemented by Student;
end Association;

Association RAdvised is
role Advisor : Faculty
role Advisee : Student

is oneTol;
is zeroToN;

implemented by Student;
end Association;

Association TaughtAs is
role Actual : Section
role Theory : Offering

implemented by Section;
end Association;

is oneToN;
is zeroTol;

78

Association Teaching is
role Teaches : Faculty is oneTol;
role TaughtBy : Section is zeroToN;

implemented by Section;
end Association;

Association Owns is
role Owner : Faculty is zeroTol;
role OwnedBy : Bicycle is zeroToN;

implemented by Bicycle;
end Association;

79

Appendix C. DDL Generated From School Specification

This appendix contains the DDL strings generated from the transformed specification in

Appendix B. A table declaration statement represents each class and associative object. In

its entirety, this database schema represents the relational persistent data storage structure

for the 00 original specification. The database defined below will act as the target for

DML statements generated from the methods of the specification.

CREATE TABLE GradClass (
program
year
graddate
designator

PRIMARY KEY (designator))

VARCHAR2(25),
INTEGER,
DATE,
VARCHAR2(25) NOT NULL,

CREATE TABLE Course (
ctype
cnum
ctitle
cdesc
creditHours
lectureHours
abetDes
abetSci
abetMath
abetOther

PRIMARY KEY (cnum))

VARCHAR2(25),
INTEGER
VARCHAR2(25),
VARCHAR2(25),
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,

NOT NULL,

CREATE TABLE Person (
lastname
midinitial
firstname
birthdate
ssn
height
weight

PRIMARY KEY (ssn))

VARCHAR2(25),
VARCHAR2Q),
VARCHAR2(25),
DATE,
VARCHAR2(9)
INTEGER,
INTEGER,

NOT NULL,

80

CREATE TABLE Bicycle (
bikeSerialNum
Owns Person_ssn

FOREIGN KEY (Owns__Person_ssn)
PRIMARY KEY (bikeSerialNum))

VARCHAR2(25) NOT NULL,

VARCHAR2(9),
REFERENCES Person(ssn),

CREATE TABLE Faculty (
academicRank
Person_ssn

FOREIGN KEY (Person.ssn)
PRIMARY KEY (Person.ssn))

VARCHAR2(25),
VARCHAR2(9) NOT NULL,
REFERENCES Person(ssn),

CREATE TABLE Quarter (
qname
year
qstart
qend

PRIMARY KEY (qname))

VARCHAR2(25)
INTEGER,
DATE,

DATE,

NOT NULL,

CREATE TABLE Student (

gpa
Person_ssn
MemberOf GradClass_designator
RAdvises Faculty_Person_ssn

FOREIGN KEY (Person_ssn)

INTEGER,
VARCHAR2(9) NOT NULL,
VARCHAR2(25),
VARCHAR2(9),
REFERENCES Person(ssn),

FOREIGN KEY (MemberOf__GradClass_designator) REFERENCES GradClass(designator),
FOREIGN KEY (RAdvises__Faculty_Person_ssn) REFERENCES Faculty(Person_ssn),
PRIMARY KEY (Person_ssn))

CREATE TABLE Offering (
code
Course_cnum
Quarter_qname

FOREIGN KEY (Course.cnum)
FOREIGN KEY (Quarter_qname)
PRIMARY KEY (Course_cnum , Quarter_qname))

VARCHAR2(25),
INTEGER NOT NULL,
VARCHAR2(25) NOT NULL,
REFERENCES Course(cnum),

REFERENCES Quarter(qname),

81

CREATE TABLE Section (
snumber INTEGER,
TaughtAs__Offering_Course_cnum INTEGER NOT NULL,
TaughtAs__Offering_Quarter_qname VARCHAR2(25) NOT NULL,
Teaching__Faculty_Person_ssn VARCHAR2(9),

FOREIGN KEY
(TaughtAs Offering_Course_cnum , TaughtAs Offering_Quarter_qname)

REFERENCES Offering(Course_cnum , Quarter_qname),
FOREIGN KEY (Teaching__Faculty_Person_ssn)

REFERENCES Faculty(Person.ssn),
PRIMARY KEY

(TaughtAs Offering_Course_cnum , TaughtAs Offering_Quarter_qname))

CREATE TABLE AssignedAO (
Student_Person_ssn VARCHAR2(9) NOT NULL,
Section_TaughtAs__Offering_Course_cnum INTEGER NOT NULL,
Section_TaughtAs__Offering_Quarter_qname VARCHAR2(25) NOT NULL,

FOREIGN KEY (Student_Person_ssn)
REFERENCES Student(Person_ssn),

FOREIGN KEY
(Section_TaughtAs Offering_Course_cnum,
Section_TaughtAs Offering_Quarter_qname)

REFERENCES
Section(TaughtAs Offering_Course_cnum,

TaughtAs Offering_Quarter_qname),

PRIMARY KEY
(Student_Person_ssn , Section_TaughtAs Offering_Course_cnum,
Section_TaughtAs Offering_Quarter_qname))

82

Appendix D. DML Generated From School Specification

This appendix contains a listing of methods from the original specification in Appendix A.

After each method, a corresponding DML string is listed. The DML strings were generated

by interpreting the post conditions of the methods and referencing the design decisions of

the transformed specification shown in Appendix B. These DML statements are intended

to be embedded in application code and applied to the database declared in Appendix C.

function getStudentsAdvisedO : StudentSet is

guarantees getStudentAdvised =
is I (s : Student) s in this.RAdvises.Advisee >;

SELECT Student.*, Person.*
FROM Student, Person, Faculty
WHERE this.Person_ssn = Faculty.Person_ssn and

Student.Person_ssn = Person.ssn and
Faculty.Person_ssn = Student.RAdvises Faculty_Person_ssn

function getStudentsAdvisedSSN () : StringSet is

guarantees getStudentsAdvisedSSN =
{ s I (s : Student.ssn) s in this.RAdvises.Advisee };

SELECT Person.ssn
FROM Student, Person, Faculty
WHERE this.Person_ssn = Faculty.Person_ssn and

Student.Person_ssn = Person.ssn and
Faculty.Person_ssn = Student.RAdvises Faculty_Person_ssn

function getMyBikes () : BikeSet is

guarantees getMyBikes =
{ b I (b : Bicycle) b in this.Owns.OwnedBy };

SELECT Bicycle.*
FROM Bicycle, Faculty, Person
WHERE this.Person_ssn = Faculty.Person_ssn and

Faculty.Person_ssn = Person.ssn and
Person.ssn = Bicycle.Owns Person_ssn

83

function getMyFaculty(InputQname : in String) : FacultySet is

guarantees getMyFaculty(InputQname) =
{ f | (f : Faculty, s : Section, o : Offering, q : Quarter)

s in f.Teaching.Teaches and
o in s.Taught_As.Theory and
q in o.Offering.Time and
q.qname = InputQname and
this in o.Assigned.Assignee};

SELECT Faculty.*, Person.*
FROM Faculty, Person, Section, Offering, Quarter, Student, AssignedAO
WHERE this.Person_ssn = Student.Person_ssn and

Faculty.Person_ssn = Person.ssn and
(Faculty.Person_ssn = Section.Teaching Faculty_Person_ssn and
(Offering.Course_cnum = Section.TaughtAs Offering_Course_cnum and
Offering.Quarter_qname = Section.TaughtAs Offering_Quarter_qname and
(Quarter.qname = Offering.Quarter_qname and

((InputQname = Quarter.qname) and
Student.Person_ssn = AssignedAO.Assigned Student_Person_ssn and

Section.TaughtAs Offering_Course_cnum =
AssignedAO.Assigned Section_TaughtAs Offering_Course_cnum and

Section.TaughtAs Offering_Quarter_qname =
AssignedAO.Assigned Section_TaughtAs Offering_Quarter_qname))))

84

Bibliography

1. Anderson, Gary L. An Interactive Tool for Refining Software Specifications from a
Formal Domain Model. MS thesis, Air Force Institute of Technology, Wright-Patterson
AFB, OH, March 1999. DTIC Number: ADA361745.

2. Bourdeau, Robert H. and Betty G. C. Cheng. "A formal Semantics for Object Model
Diagram," IEEE Transactions on Software Engineering, 21(10) (November 1995).

3. Cornn, Gary L. A Common Object-Oriented Repository for a Software Synthesis Sys-
tem. MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, March
2000. AFIT/GCS/ENG/00M-05.

4. Corporation, Rational Software, "Rational Rose 98 Product Information," July 1999.
http://www.rational.com/products/rose/prodinfo.html.

5. Date, C. J. An Introduction to Database Systems (sixth Edition). New York, New
York: Addison-Wessley, 1995.

6. Fong, Joseph. "Converting Relational to Object-Oriented Databases," SIGMOD
Record, 26(1) (March 1997).

7. Graham, Robert P. Jr. Common Object-Oriented Imperative Language. Air Force
Institute of Technology, 1999.

8. Hodges, Julia and Shekar Ramanathan. "Extraction of Object-Oriented Structures
from Existing Relational Databases," SIGMOD Record, 26(1) (March 1997).

9. Kissack, John A. Transforming Aggregate Object-Oriented Formal Specifications to
Code. MS thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH,
March 1999. DTIC Number: ADA361759.

10. Koch, George and Kevin Loney. Oracle: The Complete Reference. Berkley, California:
McGraw-Hill, 1997.

11. Logic Works, Inc. Getting Started Guide, 1996.

12. Oracle, "Oracle Developer: Automating SQL Transformation," July 1999.

13. Pressman, Roger S. Software Engineering: A Practitioner's Approach (Fourth Edi-
tion). New York, New York: McGraw-Hill, 1997.

14. Products, Platinum, "SQL-Ease," July 1999.

15. Rational Software Corporation. Rose 98 User Guide, 1998.

16. Reasoning Systems Inc. Refine User's Guide, 1980.

17. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs,
New Jersey: Prentice-Hall, 1991.

18. Shanley, Linda. Streamlining Query Generation. The Client Server. Bently Systems,
Inc., April 1998.

85

19. Spivey, J.M. Understanding Z: A Specification Language and its Formal Semantics.
Cambridge: Cambridge University Press, 1988.

20. Tankersley, Travis W. Generating Executable Code from Formal Specifications of Prim-
itive Objects. MS thesis, Air Force Institute of Technology, Wright-Patterson AFB,
OH, March 1999. DTIC Number: ADA361722.

86

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-016

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions
for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
8 March 2000

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE
Generating Executable Persistent Data Storage/Retrieval Code from Object-
Oriented Specifications

6. AUTHOR(S)
Steven R. Buckwalter, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/00M-02

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/IFTD
Attn: Mr. Roy F. Stratton, Jr.
525 Brooks Rd.
Rome, NY 13441-4505
(315)330-3004

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Maj. Robert P. Graham, Jr.
(937) 255-3636 x4595
Robert.Graham @ afit.af. mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

ABSTRACT (.Maximum 200 Words)
This research creates a methodology and corresponding prototype for the transformation of object-oriented (OO) specifications to
represent the corresponding relational Schemas that are used to automatically generate database design language (DDL). The
transformation design decisions and specifications are then used to generate database manipulation language (DML) that can be
embedded within the software application code generated from the same OO specifications. This concept of developing a model for
producing compilable and executable code from formal software specifications has long been a goal of software engineers. Previous
research at the Air Force Institute of Technology (AFIT) has not focused on the representation of persistent data from OO software
specifications. Relational databases are historically among the most popular methods of managing persistent data associated with
software systems. However, there is not an automated tool available that will create the DDL and DML from OO specifications. This
research develops a framework for combining these separate processes into a single step. Generating the relational database and the
operations to manage data within the database from the formal software system specification. When combined with software system
code generation, this research will allow the production of entire software systems to include the application code and persistent data
management in a relational database.
14. SUBJECT TERMS

Software engineering, Transformation systems, Code generation, Relational database, DDL, DML
15. NUMBER OF PAGES

100
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Generating Executable Persistent Data Storage/Retrieval Code from Object-Oriented Specifications
	Recommended Citation

	/tardir/tiffs/a380801.tiff

