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AFIT/GOA/ENS/00-01 

Abstract 

Air Mobility Command (AMC) uses the Airlift Flow Model as their primary 

tool to estimate the amount of cargo delivered in a Time Phase Force Deployment 

Document (TPFDD). The primary objective of this research was an exploratory 

investigation in the development of a metamodel to predict the amount of cargo 

delivered from a TPFDD by AMC into a theater. In creating a valid metamodel the 

analyst would be able to quickly provide the decision maker with accurate insights 

should input parameters change. This would save valuable time and replace the need 

to physically alter the input parameters and re-run the simulation. Techniques that 

were applicable to create this metamodel include DOE, RSM, and Linear Regression. 

Using the techniques outlined in this research, a second metamodel was constructed 

using a separate set of data to validate the procedure. In both cases, the results sub- 

stantiated good predictive capability between the simulation and metamodel. The 

analysis procedures outlined in this effort allows the researcher to identify the salient 

factors to the metamodel in a timely, efficient manner. Once the metamodel has been 

constructed and validated, it may be possible to optimize it using integer program- 

ming techniques or some other software package. By doing this, it may be possible 

to examine the difference between the optimal solution and your current solution. 

This difference may be the decisive factor that warrants further experimentation of 

the system or provides additional verification that you are operating within some 

pre-established tolerance level. 

IX 



Using RSM, DOE, and Linear Regression to 

Develop a Metamodel to Predict Cargo Delivery 

of a Time Phase Force Deployment Document 

/.   Introduction 

1.1    Background 

Since its birth, strategic airlift has been one of the main functions of the United 

States Air Force. Aircraft then carried much less and flew shorter distances than 

today's fleet. Consequently, in the past we have had to maintain many more en 

route air bases to service this fleet. With the advancement of the aircraft, i.e. the 

jet engine, we can fly much further and carry greater payloads. As a result of being 

able to fly farther and faster, the Air Force has lost many of its en route bases. 

This loss in en route infrastructure has forced the Air Force to be more effective and 

efficient in the scheduling of its assets. 

Air Mobility Command Headquarters (AMC) located at Scott AFB, IL im- 

plements a simulation tool, which falls under the Mobility Analyst Support System 

(MASS). MASS is an umbrella of models designed to give decision-makers a quick 

look at different problems. One of the models that fall under this umbrella is the 

Airlift Flow Model (AFM). AFM is a FORTRAN based stochastic model (which is 

being converted to an object oriented design) designed to transport the airlift por- 

tion of a Time Phased Force Deployment Document (TPFDD) to its final offload 

location - for instance in Southwest Asia. 

There are volumes of output that can be obtained from this simulation. One 

statistic that is output is total tons delivered per day, meaning how much cargo was 
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actually delivered in theater on that day. It is from this output that we can see 

how delivery is affected by numerous factors such as the addition or subtraction of 

airframes, capacity of en route bases, and the positioning of aircrews to name a few. 

Even with our reduced footprint of overseas en route bases, and an even smaller 

working MOG1 for our offload delivery locations, the amount of cargo that we can 

deliver is fairly linear - to a point. With the addition of more aircraft you reach a 

point where you level off and can actually deliver less cargo than a scenario with fewer 

aircraft. Why does this happen? It happens, in part, because AFM is a campaign 

level model; therefore, individual details are left out or more elegantly put, they 

are aggregated into the stochastic process. In fact, individual detail for moving an 

entire TPFDD would be very difficult to achieve, thus difficult to program without 

using distributions to aggregate the minuscule tasks that need to be accounted for 

and not assumed away. 

Another reason that cargo delivery begins to taper off is because of the amount 

of airframes that are in the system. With few aircraft in the system, scheduling (for 

the simulation) is relatively easy. There are enough resources available (e.g. working 

MOG, fuel, material handling equipment, etc.) to efficiently service the aircraft in 

the system. Also, if we follow the path of a single aircraft from its home station in 

a sparsely populated aircraft scenario, we see that when it lands, it is immediately 

serviced due to the fact that there are few other aircraft competing for the resources 

at its current base. After it completes its ground time, it departs and heads to 

its next station. AFM plans missions from recovery base to recovery base. This 

sequence of events occurs until the aircraft reaches its offload destination, off-loads its 

cargo, then flies to the recovery station and is ready to receive either a new mission 

or if the simulation can find no new mission, the aircraft is routed back to its home 

station. 

1MOG stands for Maximum on Ground. There are several different types of MOG - parking, 
working, fueling, etc. For my research I will refer only to Working MOG, which is the number of 
planes that may land on an airfield and be immediately serviced 
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When you add more aircraft to the scenario bottlenecks occur. That one 

aircraft that we followed around the system is now going head to head with other 

aircraft all vying for the same base resources of which fuel and working MOG short- 

ages seem to be the driving factors. Figure 1.1 below, illustrates the problem. As 

the flow of aircraft leaves the CONUS through the pipeline, they are constrained by 

the few number of en route bases that they can land and be serviced at. This limits 

the amount of aircraft that can be effectively put into the system and ultimately 

impedes cargo delivery. 

Figure 1.1     AMC's Through-put pipeline 

1.2   Problem Statement 

As stated before, AMC's concern is the amount of cargo that is delivered in 

theater per day. This is proposed to be a linear function until the transportation sys- 

tem becomes saturated with aircraft at which time it is believed that cargo delivery 

stagnates and may even become nonlinear. 
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1.3 Objective 

The purpose of my research will be to develop a metamodel that can be used 

to predict a response (in this case amount of tons delivered in theater) when certain 

parameters are changed. By adjusting these parameters, an analyst will be able to 

predict the total cargo delivered for the scenario without re-running the simulation. 

An offshoot of this research will be to propose a method to optimize the metamodel. 

Optimization, however unlikely, will provide an upper bound to the problem. 

1.4 Methodology Overview 

The problem was attacked in the following way. First, and most importantly, 

the variables for the experiment were defined. These variables were scaled down 

from: number of aircraft, amount of fuel, en route MOG, and offload MOG, to just 

varying the amount of aircraft utilized. The reason for this is the allotted overseas 

MOG and fuel available to AMC will be dictated to AMC. The only factor in AMC's 

control is the amount of aircraft used in the scenario. Within the aircraft variable lie 

the sub variables of aircraft types. This thesis effort focuses on the following types 

of aircraft: Wide Body Passenger (WBP), Wide Body Cargo (WBC), and Narrow 

Body Passenger (NBC) all of which make up the Civil Reserve Air Fleet (CRAF). 

On the military side of the house, C-5s, C-17s, KC-10s, KC-135s, and the ultra heavy 

airlifter (UHA) make up the organic portion of the airlift system. The UHA is a 

proposed aircraft that will help to bridge the gap between airlift and sealift. The 

C-141B will not be used in this study as it is being retired and will be phased out 

of service completely by the year 2006. 

The next step performed was to design a ten seed 25 full factorial central 

composite design with ten axial runs and 8 center runs. This design would be used 

as a template to run the simulation and conduct a normal linear regression on the 

data. The reason for this is simple, if the linear process shows a good fit, then there 

is no need to attempt nonlinear regression.  However, if there is not a good linear 
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fit to the data, then an investigation of either a transformation of variables, or a 

nonlinear approach would be examined. 

The second step that would be performed would again involve using regular 

linear regression, but this time with transformed data. This procedure will only be 

necessary if the non-transformed data proves to be a poor fit for the linear regression 

model. This will produce different results than using the data without transforma- 

tion. If the residual error decreases after fitting the data to a least squares regression 

line then further scrutiny of this approach may be explored. 

If non-linearity seemed to be prevalent in the data, the next step would try a 

piecewise linear or nonlinear regression approach to the problem. Unless the data is 

unmanageable, such as some sort of exponential function, we should be able to use 

a transformation technique to make the data linear. 

Dave Merrill from HQ AMCSAF remarks that if you give him a rickshaw and 

an infinite amount of time, he can deliver an entire TPFDD. Well, time is the one 

luxury that AMC does not possess. When the balloon goes up and bombs and 

bullets are needed in Theater X, unless there is a good pre-positioning system in 

place, it takes too long for the current air lift system to move the required amount 

of personnel and equipment from their home station or aerial port of embarkation 

(APOE) to the aerial port of debarkation (APOD). It takes a ship approximately 

18-20 days to go from the Continental United States to a sea port of debarkation in 

theater. More amazing is the fact that one Large Medium Speed Roll-on Roll-off 

(LMSR) ship can carry approximately 175-185 C-5 loads. At present there are 19 

LMSR's in the naval inventory. If we assumed that 10 of these were ready and 

available to be used for any scenario, and they are loaded immediately, then by day 

20 there could be anywhere from 1,750 - 1,850 C-5 loads of cargo in theater just 

from sealift. Which equates to about 113,750 to 120,250 tons. If we look at what 

AMC delivers in those same 20 days we would see that the total amount of cargo 
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moved by air is right around 175,000 tons. How can we get much needed troops and 

equipment in place in a shorter amount of time? 

Enter the UHA. The UHA is a proposed aircraft that will have the capacity 

of eight to ten C-5s and will require as much as four to eight times the amount of 

parking space. This MOG capacity will severely limit where the UHA can offload its 

cargo since the MOG at most of the off-loads in theater are not capable of supporting 

more than two or three C-5s. Fuel and maintenance requirements are undisclosed at 

this time. 

Since en route MOG, offload MOG, and fuel variables are going to be predeter- 

mined no matter what scenario is run, those variables were treated as constants and 

therefore, not varied. This study did not concern MOG efficiency or fuel consump- 

tion. Rather it looked at aircraft utilization. After the factors were determined, a 

design of experiment using response surface methodology techniques was formulated. 

Even though there are actually eight factors, only a 35 design of experiment was pre- 

pared. The reason for this is that the total number of NBC aircraft that are allotted 

to AMC are insignificant to the problem. Also left out were the KC-10s and KC-135s 

because their role would change depending on the severity of the conflict. What 

this means is that for smaller contingencies some of these aircraft would be used for 

cargo utilization capabilities. For larger contingencies, more aircraft (fighters and 

cargo) would need to be ferried across the ocean, thereby reducing the numbers that 

could be used for cargo delivery. This leaves only five aircraft, the C-5, C-17, UHA, 

WBC, and the WBP to be evaluated. 

1.5   Summary 

Even though the presence of overseas en route bases has dwindled from 39 to 

13, the requirement to carry out the mission of the Air Force has grown. The need 

to get people and equipment to austere locations in an expedited manner still exists. 

But, is throwing all available aircraft into the system the answer?   More may not 
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necessarily be better. The purpose of this research was to devise a metamodel that 

will be able to predict cargo throughput. As a by product of this research, the 

number of aircraft that gives the greatest amount of delivery will be disclosed. 
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i7.   Literature Review 

2.1 Introduction 

The purpose of this research is to develop a metamodel that can be used to 

estimate the tons of cargo delivered for a TPFDD without re-running the simula- 

tion. The approach implemented to achieve this objective uses the following tools: 

computer simulation, verification and validation of the computer simulation, design 

of experiments (DOE), response surface methodology techniques (RSM), linear re- 

gression, construction of a metamodel, and finally, validation of the metamodel. 

2.2 Computer Simulation 

A computer simulation model often portrays the dynamic behavior of a sys- 

tem over time. Models are constructed to provide information about real systems 

when conditions prevent the real system from being exercised. Examples of these 

conditions include but are not limited to: the cost of running an actual experiment, 

vastness of the system that is being studied (for instance trying to study the effects 

of changing a company's overseas shipping routes), or when an experiment is haz- 

ardous to the environment such as a nuclear explosive test. Virtually any system 

may be simulated via a computer. Although the more complex the simulation, the 

more likely you are to omit detail in favor of stochastic representation. Consider, for 

example, a manufacturing situation with the goal of maximizing production. What 

if management has narrowed the decision on increasing production to two options? 

Option one is to purchase new, more efficient, equipment. And option two is to hire 

a third shift for 24^hour plant operation. Management would like a cost effective way 

to analyze the pros and cons of both actions. These options may be evaluated two 

ways. First, compare the two alternatives by altering the actual system. This would 

entail hiring a third shift of employees, training them and evaluating their output 

once they have been trained. But profit could only be measured after all expenses for 
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the new employees have been deducted. Once a steady state in production has been 

reached and a baseline of profit established, it is time to test option two. However, 

to test option two we have to get rid of option one. In simpler text, management 

would have to layoff our newly trained third shift in favor of purchasing the new 

equipment. 

Even with new equipment, there may be the added cost of training the present 

crew on using it before you can reach a steady state and establish another profit 

baseline. The final step in option one would be to compare the profit margins of 

both methods and implement the one with the greatest yield. If the hiring of a third 

shift were the better alternative, then you would have to recall the shift that you 

previously terminated, assuming that none of those employees have found alternate 

work and no retraining were necessary. Now that you have hired all the employees 

back, the hardware that you have purchased is now a sunk cost. Conversely, if you 

decide to keep the hardware, there are still employee benefits to be paid out to the 

shift that was laid off. 

A third alternative is to simulate both of the previous options without phys- 

ically changing the system. By using simulation, you can "reproduce" the system 

you are interested in without affecting current production. Such experimentation is 

generally conducted with either physical or mathematical models [Law and Kelton, 

1991:3-7]. The above example is a case where a physical model would not be of 

service due to interruption of the present system and its associated costs. There are, 

however, systems that avail themselves to physical models. For example, aeronauti- 

cal engineers use scaled-down models to study airflow patterns in wind tunnels. 

As an alternative to physical models, mathematical models use quantitative 

and logical relationships to characterize the system. For relatively simple mathe- 

matical models, analytical solutions can be calculated in order to characterize the 

performance of the system [Taylor, 1994: 2-2]. 
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In the manufacturing example described before, it would be a simple task to 

compute the yield of either alternative if a direct relationship between the number of 

new machines and the number of additional workers could be established. But since 

there are qualitative factors involved in each, such a relationship cannot be easily 

obtained. 

2.3    Verification and Validation 

Once we have a simulation built for our system, we must ensure we have the 

correct simulation for our system. Did we build the correct model? One of the ways 

to verify our model is to dissect each section or subroutine of the model and determine 

if the logic is correct. This approach works well for small simulations or large ones 

without much detail. For the manufacturing example, the time between two stations 

(perhaps from the lathe to the sander) could be physically measured on the actual 

system and this value checked against the models results. If the average of these 

values are within some established tolerance you have set, assuming that you allow 

for some variance in travel speeds, that section of the model can be deemed verified. 

The rest of the model can be verified in the same manner. In reality you would only 

measure the time between machines if it directly impacted the simulation. Otherwise 

you could just assume it away as negligible travel time. A common mistake often 

made by beginning modelers is to include an excessive amount of model detail [Law 

and Kelton, 1991: 301]. 

The next step in the process is to validate our model. Did we build the model 

right. A simulation is a surrogate of an actual or proposed system. Keeping this 

in mind we must make sure that our simulation model is robust enough to make 

decisions about the system similar to those that would be made if it were feasible 

and cost-effective to experiment with the real system itself. 

One should keep in mind that a simulation is developed for a particular pur- 

pose. One model that is valid for one purpose may not be valid for another. Refer 
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back to the manufacturing example. The production of widgets and the production 

of automobiles both involve machining parts and using conveyor belts, but the times 

spent at each machine and on the belts would be different. 

Speaking to subject matter experts is one way to validate the model. Rarely 

will the analyst know all the details about what he/she is trying to simulate. By 

discussing what he/she hopes to accomplish with people who know the specifics about 

the "real world", the analyst can implement more accurate detail in the simulation. 

Once the simulation is complete, output must be checked for accuracy. One way 

to accomplish this would be to use a Turing test [Banks, Carson, and Nelson 1999: 

423]. To use the Turing test, one would take output data from the real system and 

an equal amount of data from the simulation, shuffle them together and give them 

to a subject matter expert. If the subject matter expert can consistently discern 

the simulated reports from the actual reports, then more work needs to be done 

on the simulation. However, if the expert cannot differentiate between the real and 

simulated reports, the modeler can conclude that the test provides no evidence of 

model inadequacy and the model may be used for its intended purpose. 

Once the simulation has passed the verification, validation, and accreditation 

checklist, the analyst can construct a simulation experiment to cover the experimen- 

tal region of interest. 

2.4   Design of Experiment 

There are several types of experimental designs that are widely used today. A 

few of the more common ones are the Box - Behnken, Central Composite, and the 

Plackett Burman designs. 

2.4-1 Box-Behnken Design. Box-Behnken designs (BBD) are an effi- 

cient measure to fit a three level design for a second order model [Myers and others, 

1995: 318].   The way that a BBD design works is to form balanced but incomplete 
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block designs. An example of a balanced but incomplete design with three treatment 

levels is shown in Table 2.1. 

Treatment 
Xl x2 X3 

Block 1 X X 
Block 2 X X 
Block 3 X X 

Table 2.1     Box-Behnken Design 

If we were to pair the X's from this design in block one and make them a full 

22 experiment while the third factor remains zero and do the same for blocks two 

and three the resulting design matrix would look like this 

Xl x2 x3 

-1 -1 0 
1 -1 0 

-1 1 0 
1 1 0 

-1 0 -1 
1 0 -1 

-1 0 1 
1 0 1 
0 -1 -1 
0 1 -1 
0 -1 1 
0 1 1 
0 0 0 

Table 2.2     Full 23 BBD 

The last line in the design matrix of Table 2.2 is a vector of center runs. When 

the number of parameters equals four or seven, then center runs are necessary to 

avoid singularity in the matrix [Myers and others, 1995: 319]. One of the downfalls 

of the BBD is that it is a spherical design, meaning if you were to inscribe that 

sphere on the inside of a cube, you would soon realize that you cannot reach the 

corner points of the cube. Therefore the BBD is not a good design if you need to 
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corner points of the cube. Therefore the BBD is not a good design if you need to 

predict responses at the extreme or corner points. Equation 2.1 shows how the values 

of this matrix are obtained. 

2.4-2 Central Composite Design. Table 2.3 shows the Central Com- 

posite Design (CCD). The CCD is widely used when fitting a second order response 

surface. If we were to envision a 22 experiment using the manufacturing example, 

and our factors were the lathe (xi) and the sander (x2) the design structure would 

resemble this: 

Run Xi x2 Response (Min) 
1 -1 -1 20 
2 1 -1 21 
3 -1 1 64 
4 1 1 47 
5 -1.414 0 42 
6 1.414 0 66 
7 0 -1.414 68 
8 0 1.414 25 
9 0 0 38 
10 0 0 35 
11 0 0 32 
12 0 0 43 

Table 2.3     Central Composite Design 

You can see that run sequence one through four alone would be a full 22 factorial 

design. The coded values for the design (±1, 0, and ±1.414) can be obtained using 

the following formula 

Xi — 
&-[max&)-miii(&)]/2 

[max(&)-min(&)]/2 
(2.1) 

where: 

^ = the amount of resource ^ that you are currently using in the experiment 

max(^) = the maximum amount of resource ^ that you possess 
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min(£j) = the minimum amount of resource ^ that you possess 

Design points five through eight constitute what are known as axial or star 

points. The term axial comes from the fact that the points lie on the xi or the x2 

axes at a radius of 1.414 from the center of the design. This distance from the center 

of the design to where the axial point is, changes with the number of factors that 

you have in the design. However, you will always have 2 x n number of axial points 

where n is the number of factors in the model. The last four design points, nine 

through twelve, are center or baseline runs. They are used to minimize variance in 

the output. Center runs result when ^ = [max(^) — min(^)]/2. Central composite 

designs are extremely useful when fitting second order response surfaces. 

24.3 Plackett-Burman Design. In 1946 R. L. Plackett and J. P. Bur- 

man gave designs for the minimum possible size of experiment with pn factorials 

and pointed out their utility in physical and industrial research. These designs have 

become so popular in industry and research because they enable five or more factors 

to be included simultaneously in an experiment of a feasible size. PB designs are 

two level designs which are useful for studying up to k = N - 1 variables, with N 

being the number of runs. Also note that N must be a multiple of four. For designs 

with N equaling 12, 20, 24, 28, and 36, the PB design is complicated with a very 

complex alias structure. In the 12 run experiment, every main effect is aliased with 

all two-factor interactions that do not involve it. For instance if k =11, then AB 

would be aliased with C, D, E,..., K [Cochran and Cox, 1957: 244]. 

In addition, each main effect is aliased with 45 two-factor interactions. The 

aliasing structure becomes even more convoluted in larger designs. The beauty of this 

seemingly confusing chain of events is that it allows the analyst to quickly discover 

which factors are important and which ones may be screened out of the design. This 

reduction in size does not come without a price tag. This price tag comes in the 

form of the aforementioned aliasing. 
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Treatment Combination I A B C AB AC BC ABC 
a + + - - - - + + 
b + - + - - + - + 
b + - - + + - - + 

abc + + + + + + + + 

Table 2.4     23     Half Fraction Design with Interaction 

2.4-4 Aliasing. In order to see what happens when an experiment contains 

just part of a design, let's look at a 23 factorial design in which only the four treatment 

combinations a, b, c, and abc are examined. If we relate factors a, b, and c to the 

manufacturing experiment, then factor a could be the lathe, factor b, perhaps the 

drill press, c may be the sander and abc is the three way interaction. This, in effect 

is a half fractional experiment (23_1). Factorial designs allow multiple comparisons 

to be made to facilitate model creation, provide highly efficient estimates of model 

parameters, and usually involve simple calculations [Box and Draper 1987: 106]. Box 

and Draper also note that two level designs are especially useful in the exploratory 

stages of an investigation when little is known about the system and the model 

structure is relatively unknown. 

Table 2.4 has a couple of interesting properties. When any other column mul- 

tiplies the identity column, there is no change in the original column. For example 

if column I is multiplied by column AC (I * AC), the result is column AC. And the 

product of any two columns in the matrix will result in a third column in the matrix, 

such as: 

B * ABC = AB2C = AC (2.2) 

This relationship shows that exponents are defined using modulus 2 arithmetic. 

As you can see from Table 2.4, it is impossible to differentiate factor A from 

BC, B from AC, and C from AB. That is to say when we run our experiment we 

are unsure if the results are because of factor A or because of the BC interaction. 
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In fact when we estimate the main effects A, B, and C we are really estimating A + 

BC, B + AC, and C + AB. Two or more effects that have this property are called 

aliases, and they are said to be confounded with each other. In the manufacturing 

example A and BC are aliased, B and AC are aliased to each other and C and AB 

are aliased as well. 

The aliasing structure for this design can be easily determined by using what 

is called a defining relationship. If we let I = ABC, then multiplying any column by 

our defining relationship (ABC)1 will give the aliases for that effect. For example: 

A * (7) = A * (ABC) = A2BC (2.3) 

Remember any column multiplied by the identity (I) column is just the column and 

by definition of modulus 2 arithmetic, the square of any column is the identity so we 

are left with 

A   =   I*BC = BC (2.4) 

A   =   BC (2.5) 

The alias structure for the main effects B and C may be found in the same manner. 

2.4-5 De-aliasing. One way to avoid the aliasing effects is to perform 

a full factorial experiment if time and funding permit. As seen in Table 2.5, no 

two columns are identical to one another and therefore all factorial effects may be 

distinguished from each other. 

1ln general, the defining relationship for a fractional factorial is the set of all columns that are 
equal to the Identity (I) column. 
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Treatment Combination I A B C AB AC BC ABC 

(1) + - - - + + + - 

a + + - - - - + + 
b + - + - - + - + 

ab + + + - + - - - 

c + - - + + - - + 
ac + + - + - + - - 

be + - + + - - + - 

abc + + + + + + + + 

Table 2.5     23 Full Factorial Design with Interaction 

2.4-6 Response Surface Methodology. Response surface methodology 

(RSM) is a collection of statistical and mathematical techniques useful for develop- 

ing, improving, and optimizing processes [Myers and Montgomery, 1995: 1]. RSM 

comprises a group of statistical techniques for empirical model building and model 

exploration. By careful design and analysis of experiments, it seeks to relate a re- 

sponse, or output variable to the level of a number of predictors, or input variables, 

that affect it [Box and Draper 1987: 1]. 

There are three typical uses for response surfaces methods. 

1. To approximate the response of a system given a set of input parameters. 

2. To assist in finding the particular input settings to produce a desired yield. 

3. To give the settings that will produce the optimal yield for a system [Box 

and Draper, 1987: 17-19]. 

RSM has been used in a wide variety of studies to include, Captain Tim Sme- 

tek's thesis effort using experimental design and RSM to fit first order surface re- 

sponse equations to several measures of effectiveness using a simulation, which he 

designed, that modeled a real-world maintenance system [Smetek 1998: xi]. R. Gar- 

rison Harvey, Kenneth W. Bauer Jr., and Joseph R. Litko have also used RSM in 

military force allocation models where they used a nontraditional approach to opti- 

mizing a stochastic response surface subject to constraints [R. Garrison Harvey and 
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others 1992: 1121]. Captain James L. Donovan took advantage of RSM and applied 

it to a macroeconomic model to facilitate better analysis with the model [Donovan 

1985: viii]. These three citations are just a few of the ways that RSM has provided 

analysts insights to varying problems. 

2.5   Linear Regression 

Regression analysis is the statistical methodology that utilizes the relationship 

between two or more quantitative variables so that one variable can be predicted 

from the other, or others. This methodology is widely used in business, the social 

and behavioral sciences, the biological sciences, and many other disciplines [Neter 

and others 1996: 3]. What we wish to do, in simpler terms, is fit the output data from 

the real world system or a simulation to a function that is based on the inputs to the 

system. The regression model can also be used to determine the relative importance 

of each factor (including the interactions) that are in the original design matrix. As 

with all models, the objective of linear regression is to form a parsimonious model. 

The general form of a linear regression model with k regressor variables is 

Vi = ß0 + ßxxx + ß2x2 + ... + ßkxk + Ei (2.6) 

The parameters ßi are the regressor coefficients, Xj- are the regressor variables for 

j = 0,1,2,..., k, and e* is the error term associated with the model for i = 1,2,..., n. 

ß. represents the expected change in the response variable y for every unit change 

in the regressor variable x,- while holding all other variables constant [Myers and 

Montgomery, 1995: 16-17]. 
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2.6   Metamodels 

Even though a simulation is not as detailed as a real world scenario, construct- 

ing a simulation can lead to a very labor intensive, time demanding, and complicated 

process of defining a relationship between variables that are input to a simulation 

and responses that may be seen in the real world. Sometimes a less complicated 

model may help bridge the gap between the real world and the simulation. This 

secondary model, called a metamodel will help bridge that gap and can be used to 

better understand and explore a simulation. 

2.6.1    Constructing Metamodels. Several authors have pointed out 

the need for an analytic metamodel to aid in the interpretation of a more detailed 

model: Geoffrion was concerned with mathematical programming models; Blanning 

proposed the use of metamodels for all kinds of management science models; Lawless 

et al. made explicit use of metamodels for sensitivity analysis; Ignall et al. advocated 

that one take advantage of the potential benefits of both simulation and metamodels 

[Friedman and Friedman 1985:144]. 

One of the simplest models favored by some simulation researchers is the gen- 

eral linear model, or more commonly known as the linear regression model, whose 

general form you will recall as being displayed in equation 2.6. Using metamodels 

enables us to interpret a simulated system especially with regard to performing sen- 

sitivity analysis, by evaluating the effects of specific changes in our X variables on 

our response variable. They can also help to answer quick "what-if" and "back of 

the envelope" questions without having to rerun the simulation. Once the meta- 

model has been constructed and validated, further examination of the real system 

is less costly than conducting additional simulation runs. As stated, validation of 

the metamodel is a must. Remember, by using a metamodel, we are now two steps 

away from the actual system and therefore this metamodel must be a reasonable 

approximation. 
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Let us return once again to the manufacturing example. Suppose we want 

to develop a metamodel that represented the demand for several pieces waiting to 

be serviced at the lathe (LQ). Assume the factors that were found to be salient to 

the problem were arrival rate (ARR), service rate (SVC), and the number waiting 

in the service queue (NSVR). Our first inclination is to try and fit a linear model 

to the problem. There is a great temptation to fit a linear model as it makes our 

calculations easy. With great temptation comes the need for great care. Since we 

have replicated data (several samples of each of our three variables), linear regression 

techniques would give us a lack of fit test as well as a pure error term. A significant 

lack of fit term would be indicative of an inappropriate model selection (linear vs. 

quadratic or cubic) or the omission of one or more crucial variables in our equation. 

Assume that the true function is represented by the following equation: 

LQ. = a {ARRV  (2 7) 

(SVC)^ * {NSVC)?> 

for i = 1, 2, 3,..., n. 

We may be able to make it into a linear function by performing a variable 

transformation. If we take the natural log of both sides we get: 

ln{LQ)i = ln(a) + ß1 ln{ARR)i - ß2 ln(SVC)i - ß3 \n(NSVR)i + \n{v)i      (2.8) 

By substituting variables we get the linear equation: 

Vi = ß0 + ßlxU ~ P2x2i - ßax9i + Ei (2-9) 

In doing this transformation of variables it is possible to turn a seemingly difficult 

equation into one that is tractable and thus use linear regression techniques to gain 

inferences to the real world system. 
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2.6.2 Metamodel Validation. There are two types of metamodel valida- 

tion that will be discussed here. The first method requires 80% of your observations, 

selected at random, which are used to build the metamodel. The remaining 20% of 

the observations are used to test and validate the model. The R2 value computed 

on the non-selected cases gives the analyst an indication of how the model performs 

on new data. A low R2 for the un-selected cases indicates that our metamodel lacks 

predictive validity since it does not explain the variation in new data. Conversely, 

a high R2 value shows that we have constructed an accurate metamodel [Friedman 

and Friedman, 1985: 145]. 

The R2 of a model measures the proportionate reduction of total variation in 

Y associated with the use of the set of X variables X\, X2,..., Xp_\ and can only take 

values ranging from 0 < R2 < 1 and is computed in the following manner [Neter and 

others 1996: 230]. 

SSR   =   Regression Sum of Squares 

SSE   =   Sum of Squares of Error 

SSTO   =   Total Sum of Squares 

The second way to validate a metamodel is a technique called double cross- 

validation. This technique involves randomly dividing the data roughly in half and 

building a model out of both sets of data. After the models are complete, the 

data from the second model is used to validate the first and vice versa. By doing 

this, the analyst can compute two R2 values for each portion of the data. One for 

the data used to create the model and one for the test data.   These R2 values are 
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then compared. Again, if the i?2's are very dissimilar this would indicate that the 

metamodel is not valid. Even if the R2 values are similar, the metamodel has to 

pass one more test. The coefficients of both metamodels should be examined. The 

coefficients of the metamodels should be of the same sign and magnitude. This 

indicates that the models are consistent and may be considered reliable. 

2.7   Summary 

Metamodels are an excellent tool for exploring a system without incurring the 

cost of additional simulation runs. Careful validation of the metamodel needs to 

take place in order to provide the decision maker with accurate insights. The analyst 

must also make sure that he/she stays within the design space of the experiment. 

Failure to do so could lead to inaccurate results. 

Careful consideration should come to mind when attempting to optimize the 

metamodel. As stated before,optimization provides only an upper bound to the 

problem. This upper bound should be strived for in any analysis that you perform. 

However it is emphasized here that in the real world optimization rarely occurs. 

Chapter 3 discusses the methodology that implements the topics that have been 

reviewed here. 
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III.   Methodology 

3.1 Introduction 

Chapter three explains the methodology used to meet the objective of devising 

a metamodel that will predict the cargo delivered from a notional TPFDD. The 

first section will be used to define the problem. This is the first step to the solution 

of any problem. Section two focuses on the statement of assumptions. Defining the 

variables will be the topic of the third section. The next topic will be to design an 

experiment to fully explore the region of interest. The fifth section will be used to 

determine if the necessary amount of simulation runs, for statistical purposes, have 

been accomplished . Data gathering and output analysis will be the topic of section 

six. Specifically, determining what output data is significant to the solution of the 

problem.   Finally, additional insights will be discussed in the last section. 

3.2 Definition of the Problem 

No problem can be explored properly until it has been explained by the user 

and understood by the analyst. Several meetings with the sponsor may be needed. 

The purpose of these interactions are two-fold. First, it keeps the end user in the 

loop and it gives them a sense of quality control. The second purpose allows the 

analyst to fully understand the problem. With this in mind it is a good idea to 

put in writing what the user expects from the analyst and what the analyst will 

provide the user. AMC has asked that a metamodel be designed that will predict 

the amount of cargo that would be delivered from a TPFDD without re-running the 

AFM simulation model. The more direct question that AMC is concerned about in 

this effort is: Is there a linear connection between MOG and throughput? 
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3.3    The Model 

AFM is owned by the HQ AMC Studies and Analysis Flight located at Scott 

AFB, IL. Although they are the primary users of the model, other groups such as 

AFOTEC, Air Force Studies and Analysis, and even AFIT have a copy. There are 

approximately 60,000 lines of code written in FORTRAN, C, and C++. Currently 

the model is under revision to make it compliant to the High Level Architecture that 

the Air Force is requiring of all its simulation models. Depending on the constraint 

set in the model, i.e. amount of fuel, MOG, cargo to be delivered, aircraft in the 

system, AFM can complete a 45 day scenario in as little as five minutes. 

AFM simulates the AMC global airlift system and is capable of simulating 

AMC policies, procedures, operations, aircraft, air bases, cargo, passengers, and 

support resources as they relate to the airlift system. AFM simulates a fleet of 

aircraft moving a given amount of cargo and passengers from any number of on- 

load points, through any needed en-route stops, to any number of off-load points, 

then recovering and returning to home station for another mission. The model can 

continue this process for as many simulated days as desired, or until all requirements 

have been airlifted to their destination. Figure 3.1 illustrates these features on a 

macro scale. 
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CONUS THEATER 

Figure 3.1     AFM Delivery Capabilities 

On a micro scale, Figure 3.2 shows the series of steps that the model passes 

through for each aircraft. 

Initialization 
Read Input Data 
Create Aircraft Queues 
Create Aircrew Queues 

* Aircraft available? 

Ute rate available? 
5TT 

1, 
Crew available? 

*-3t 

i 
Requirements remaining? a 

Route available? 
1 

Assign cargo 
Reserve the route 
Add itinerary to queue 1 

Execute itinerary 

1 
End of simulation? 

Compute Summary Stats 

Figure 3.2     AFM High Level Block Diagram 
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3.4    Statement of Assumptions 

There axe several assumptions that can be made when running AFM. The 

assumptions that were made and the rationale behind them for this thesis effort are 

explained below. 

1. It is assumed that a crew for every aircraft is ready and available. That is, 

the system (the world in this case) is starting empty and idle. This is not 

a crew ratio study, therefore the amount of crews should not be the limiting 

factor. One can argue that in the real world the number and availability of 

crews would be an issue, but with the other assumptions that are listed below, 

the reader should be in agreement that the assumption of crew readiness is 

valid. Furthermore, outside of doing crew ratio studies, AMC assumes full 

crew availability in planning day to day operations. 

2. The second assumption made in this study was that at the start of the sim- 

ulation all aircraft were ready and available for use. This is not how AMC 

does business. At any point in time most of AMC's air fleet is spread across 

the globe. Consequently they are not available for immediate use. When 

a contingency arises, a large portion of the fleet, that has been apportioned 

by the Joint Strategic Capabilities Plan (JSCP), are recalled to their home 

station base to receive any maintenance they may need. After servicing they 

are then released to perform their mission of transporting troops and cargo to 

the war fight. The rationale for assuming all aircraft are ready at the start of 

the simulation will be discussed in assumption three. 

3. Assumption three shirttails on assumption two in the following manner. A 

standard AMC TPFDD has a ramp-up phase to account for aircraft being 

dispersed all over the globe. During this ramp-up phase in the early days of 

cargo movement in the TPFDD, the demand for cargo at the contingency area 

is considerably smaller.   This reduction in required cargo delivery takes into 
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account AMC's assets being dispersed over the globe. The notional TPFDD 

that was used for this thesis effort had no such ramp-up schedule. The reason 

that a notional TPFDD was used is twofold. A TPFDD is a war plan and 

therefore classified. Also, with the assumption that all aircraft are readily 

available for cargo movement, the amount of cargo that is available to be 

delivered in the early days of the scenario was substantially greater than what 

is available to be moved in a "real-world" TPFDD. 

4. The fourth assumption that was made was the removal of the C-141 from 

AMC's air fleet. This study was a look ahead as to what AMC's throughput 

capability would be after 2006. In 2006 the last of the C-141s will be retired 

from service.   The C-141 will be replaced by the C-17. 

5. NBC were not used in the study since the number that is allotted to AMC is 

negligible in moving material to the war fight. 

6. This assumption centers around the KC-10s and KC-135s. Typically, they 

have a dual use role as air refuelers and strategic cargo airlift aircraft. In this 

scenario, they are to be used as air refueling vehicles only and not as cargo 

transports. Depending on the severity of the contingency, these aircraft would 

be needed more for ferrying fighters, bombers, and strategic airlift forces across 

the ocean(s) rather than using them as cargo carrying aircraft. 

7. The last assumption that was made for this study was the use of the UHA. 

This notional aircraft is being proposed by the army as a way to help shorten 

the length of time it takes to get bombs and bullets into theater. Although 

sketchy at best, the capabilities of this aircraft are such that it is capable of 

carrying as much as ten C-5s. 

3.5   Definition of Variables 

There are many variables to consider in this experiment.    Among them are: 

material handling equipment (MHE), MOG, fuel, and maintenance personnel to 
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name a few. The only factor that was chosen to build a design of experiment 

around were the actual aircraft assets themselves. AMC has direct control over 

these assets and can use them as they see fit. MHE, MOG, fuel, and maintenance 

personnel are already in place or transported to where they need to be. Five sub- 

factors result when you break down the aircraft factor. These are the number of 

C-5, C-17, UHA, WBP, and WBC aircraft. 

3.6 Design of Experiment 

The design and resolution will be dependent upon the number of significant 

variables that will be represented in the experiment. When the number of factors 

are small, then a full factorial experimental design may be accomplished. In a 

full factorial experiment the effects of all the different factors can be investigated 

simultaneously. There are several different types of designs that can be used. A 

Central Composite Design (CCD) was used in this experiment for the following 

reasons. The CCD is a widely used design of experiment because it allows for the 

fitting of a second order response surface. The CCD design involves the use of as 

many as five levels for each variable. These levels are represented by -1, 0, 1 in coded 

units, and the use of axial points. It is the axial points that allow for the estimation 

of pure quadratic terms. Two important features to note concerning the use of axial 

points are they he only on the a* axes where i — 1, 2,..., n for the number of factors 

to be represented. Secondly, in the axial portion of the design, the factors are not 

varying simultaneously but rather one factor at a time. As a result, no information 

concerning any factor interaction is obtained from this section of the design matrix. 

3.7 Simulation Runs 

Now that the variables and the design of experiment have been determined, it is 

important to insure that the correct number of simulation runs will be accomplished. 

Statistical tests rely on a certain confidence level.    For example, forming a 95% 
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confidence interval allows us to state that we are 95% certain that our response will 

lie within a given range. For the problem being studied in this thesis, we wish to 

estimate at the 95% confidence level that the total tons of cargo delivered in our 45 

day time window will fall within our 2,500 ton threshold. To be sure that we reach 

that 95% level we must perform the correct number of simulation runs. Formula 

12.28 from Banks, Carson, and Nelson's Discrete-Event System Simulation states 

the equation to determine the correct number of simulation runs as 

Rf> 
'*(§,Ä-i)*<Sb> 

(3-1) 

where: 

Rf = total number of runs needed to conduct statistical analysis 

t^fi-i) = test statistic 

R — initial set of sample runs performed 

a = confidence level 

So = Max standard deviation of the sample runs 

e = tolerance level of cargo delivered (arbitrarily set at 2,500 tons) 

Initially, five runs of a 50 point central composite design matrix were accom- 

plished in order to determine a sample standard deviation at each of the design 

points. From these 50 points, the maximum standard deviation of 3,200 tons was 

obtained and the calculations for Rf at the 95% confidence level are based on this 

value. 

R, 5 6 7 8 9 
t-value t(.025, R-l) 2.776 2.571 2.447 2.365 2.306 

# of runs needed 
c(.025, fi-l)^ 

P2 12.626 10.830 9.810 9.164 8.712 

Table 3.1     Number of Runs 
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Table 3.1 illustrates this stepwise iterative approach. When Rf is greater than 

the number of runs needed, we can be sure at whatever confidence level we choose 

that we have the required amount of runs for statistical purposes. In this example 

we see that the number of runs necessary for statistical purposes is nine. A total of 

ten replications were accomplished at each design point. Therefore, we can estimate 

at the 95% confidence level, the total tons delivered will fall within our 2,500 ton 

threshold. 

3.8 Output Analysis 

The output from AFM is extremely detailed and readily available. It ranges 

from aircrew scheduling to utilization rates for aircraft. A mock scenario depicting 

the defense of Turkey was created for the AFM model to use, and the output that was 

of interest for this experiment was the total amount of cargo that could be delivered 

in a 45 day time window at each design point. Since the data was relatively well 

behaved, meaning there were no erratic data points, linear regression techniques were 

used to fit the data to a curve. 

3.9 Additional Insights 

The purpose of performing these types of analyses (also referred to as sensitivity 

analysis) is to see what effects small changes to our input parameters (X*) have on 

our response variable (Y). The sensitivity analysis that was conducted for this 

experiment was a simple one. The number of MOG spaces available were expanded 

at key bases by one third. Key bases are ones which have been determined to 

have a high volume of airlift traffic. The purpose behind this is that there is a 

lot of effort in AMC today to build up these key bases by increasing the available 

MOG for AMC use and the amount of fuel that is available to AMC. By increasing 

AMC's allotment of parking space, we are asking the simple question of can we do 

better with more?   If by increasing the MOG at key bases we see no change in the 
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amount of cargo delivered, further study may be warranted to expand the horizon 

for AMC to consider that the airlift problem may not be related to the repairs and 

construction that are slated to be completed in 2006. Rather, it may be an aircraft 

in the system problem. 

3.10   Summary 

Determining a methodology is an important step in any experimental process. 

Having a methodology prevents an analyst from doing steps out of order or, even 

worse, omitting steps altogether. The road map that is contained in this methodol- 

ogy was used to conduct the analysis that is displayed in chapter four. 
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IV.   Results and Additional Insights 

4.1    Introduction 

This chapter includes a summary of the results and sensitivity analysis from 

the Airlift Flow Model simulation. The experiment was conducted as it was outlined 

in Chapter 3. Analysis of the output data was used to formulate a metamodel to 

avert the need for additional simulation runs of the model. This metamodel would be 

used to predict cargo delivery given changes to the input parameters. The analysis 

was conducted using linear regression techniques. 

4-2   Assumptions 

4-2.1 Mandatory. In order to perform linear regression analysis on the 

output data, there are three mandatory input data criteria that must be satisfied. 

These are: 

1. The data needs to be independent and identically distributed 

2. Normally distributed error terms 

3. Constant variance 

Violation of any of these three criteria might prevent us from performing an 

analysis of variance test (ANOVA) on the output. 

4.2.2 Necessary. These assumptions were made on both the input and 

output data. First is the assumption that reliable data was input into the simulation. 

This means no "fat fingering" of the data or other operator error confounded the 

data. Making sure that the output data is gathered and stored in chronological 

order is the second assumption. Finally, removing, at random, 20% of the output 

data to use as test data does not drastically affect the resulting metamodel. 
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4-3   Preliminary Analysis 

This step is used to verify the appropriateness of the data. Three steps need 

to be accomplished in this preliminary analysis. First the correct variables to use 

in the analysis need to be identified. This is accomplished by performing a linear 

regression fit of the output data and verifying the impact of each variable to the 

model by checking its associated p-value and variance inflation factor (VIF). A VIF 

is used to detect the presence of multicollinearity Multicollinearity exists when 

predictor variables are correlated among themselves. Having a VIF greater than 10 

suggests high multicollinearity [Neter and others, 1996: 387]. 

The the full model analysis, the first attempt was to fit a model that included 
2 

up to four way factor interactions. This resulted in a model with an R of 0.98648. 

Although this is an excellent fit of our data, four way interactions are difficult to 

envision and hard to explain. In addition, the fewer the amount of terms in the 

model, the wider the range of data that may be fit to it. When reducing the 

number of terms in the model, care must be taken to ensure that we keep enough 

to fully explain the data.     By reducing the previous model to include only two 
2 

way interactions, we showed a decrease in the ti  of only 0.008462. This negligible 
2 

decrease in the R value provides us with enough security to reduce the number of 

terms in the model. The model and ANOVA table displayed in tables 4.1 and 4.3 

show the resulting values of the two factor regression. 
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Term Estimate t Ratio Prob>|t| VIF 

Intercept 279,823.430 958.72 0 0 
C-5 5,906.926 47.30 <.0001 1.007384 

C-17 9,289.214 74.36 <.0001 1.007858 
C-5*C-17 -2,436.464 -16.59 <.0001 1.013022 

UHA 5,558.726 44.19 <.0001 1.005743 
C-5*UHA -1,709.033 -11.64 <.0001 1.011891 

C-17*UHA -1,771.266 -12.07 <.0001 1.011040 
WBP 2,036.573 16.02 <.0001 1.010112 

C-5*WBP -385.505 -2.62 0.0091 1.015127 
C-17*WBP -1,680.886 -11.42 <.0001 1.017345 
UHA*WBP 667.449 4.54 <.0001 1.011911 

WBC 7,951.317 63.04 <.0001 1.010229 
C-5*WBC -2,507.189 -17.13 <.0001 1.005342 

C-17*WBC -2,376.538 -16.23 <.0001 1.007542 
UHA*WBC -2,125.416 -14.52 <.0001 1.005477 
WBP*WBC -395.740 -2.70 0.0073 1.010827 

C-52 -1,523.227 -14.00 <.0001 1.063238 
C-172 -2,341.755 -21.53 <.0001 1.063164 
UHA2 -2,156.767 -19.44 <.0001 1.056327 
WBP2 -1,106.649 -9.76 <.0001 1.050255 
WBC -3,275.149 -29.47 <.0001 1.059731 

Table 4.1     Full Model Parameter Estimates, P-values, and VIF 

2 
From the adjusted R   value obtained in table 4.3, we see that we have an 

2 
excellent fit for our model.   The larger the R  is, the more the total variation of Y 

2 
is reduced by introducing the predictor variable X into the model.   The adjusted R 

2 
modifies the R by dividing each sum of squares by its associated degrees of freedom. 

2 
The adjusted R may actually become smaller when another X variable is introduced 

into the model.   It is also noted to the reader that all VIF values were well below 

g a lack o : multicollinearity. 
-2.37841 -1 0 1 2.37841 

C-5 44 65 80 95 116 
C-17 44 65 80 95 116 
UHA 1 12 20 28 39 
WBP 44 65 80 95 116 
WBC 29 50 65 80 101 

Table 4.2     Coded Variable Conversion Chart 

Table 4.2 shows the actual number of aircraft that would be used in the regres- 

sion equation.   For example if the experiment was set up to analyze a center run, 
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all factors would be at the coded level of zero, then 80 C-5s, 80 C-17s, 20 UHAs, 80 

WBP, and 65 WBC aircraft would be used in the scenario. 

Source DF Sum of Squares Mean Square F Ratio 

Model 20 9.19E+10 4.60E+09 843.1076 

Error 379 2,065,992,281 5,451,167 Prob>F 

C Total 399 9.40E+10 <.0001 

RSquare 0.978018 
RSquare Adj 0.976858 

Root Mean Square Error 2,334.77 
Mean of Response 270,865.60 

Observations (or Sum Wgts) 400 

Table 4.3    Full Model Regression ANOVA 

The ANOVA of Table 4.3 provides an analytical view of the regression model. 

Note that the model possesses a large R2 and Adj R2 indicating that the model does 

have predictive capability and warrants further investigation of its validity. 

290000 

280000   - 

270000   - 

260000   - 

g   250000  ~ 

240000  - 

230000   ~ 

220000 
220000 

■>—r-1—i—■—r 
240000 260000 280000 

Tons Delivered       Predicted 

Figure 4.1     Full Model Least Squares Regression Line Plot 

Figure 4.1 shows the regression plot for the data.   The solid center line, called 

the least squares regression line, represents the predicted value of the model.   The 

4-4 



two solid outer lines show the confidence bands surrounding the predicted line. The 

points show the actual value that was obtained by the simulation. The difference 

between the actual value and the predicted value of the model is the error term. It 

can be seen how well the data points fit the least squares regression line indicating a 

small amount of error. This reinforces the assumption that we seem to have a proper 

fitting model. Now we must check for the presence of outliers and influential data 

points. To check for outliers, we plot the studentized residuals versus run time. If a 

point lies outside of plus or minus three standard deviations (four for large groups of 

sample data), then we would investigate that point for possible outlier consideration 

[Neter and others 1996: 103]. Another test for outliers is to check each individual 

studentized deleted residual. If any of the absolute values of the studentized deleted 

residuals are greater than the t-distribution [Neter and others 1996: 374] 

t(l-£;n-p-l) (4.1) 

where: 

a = the associated level of confidence with the test 

p = the number of parameters in the model 

n = the total number of samples 

or numerically, t(0.9988,379) which lends a value of 3.266 then they are classi- 

fied as an outlier. 
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Figure 4.2     Full Model Outlier Plot 

Figure 4.2 above shows the studentized residuals plotted against the run time. 

We see that only one out of the four hundred data points is close to being an outlier. 

Outliers can create great difficulty when using least squares analysis. Outliers 

can cause a fitted line to be pulled disproportionately towards them in order to 

minimize the sum of squared deviations. The presence of outliers can be attributed 

to several things such as inaccurate readings, bad sampling techniques, or bad input 

data. Removal of the point is unwarranted since the data collection process was 

automated. This provides data integrity. In addition, as stated before, for large data 

sets (number of samples greater than 50) a point needs to be outside of four standard 

deviations to warrant further outlier testing. Figure 4.2 is also an indication of the 

independence of the residuals. It is necessary to have independence in the residuals 

in order to continue using linear regression techniques. The lack of any patterns in 

the dispersal of the residuals is an indication of independence. 
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4-4    Full Model Regression Analysis 

4.4.I Normality. The first step in regression analysis is to check the 

residuals for normality. Residuals result from the difference in the predicted value 

versus the actual value. A lack of normality would suggest that a transformation of 

the response is necessary. To check for normality in the raw residuals, we plot the 

residuals and perform a Shapiro-Wilk test [Sail and Lehman 1996: 112]. In Figure 

4.3, a visual inspection of the residual plot and use of the Shapiro-Wilk test confirms 

that the residuals are normally distributed. The obtained p-value of 0.9891 allows 

us to fail to reject HQ at the 0.05 level. 

c       RiH 

* 20 

Residual Value 
Test for Normality 

Shapiro-Wilk W Test 
W Prob < W 
.991064 0.9691 

Figure 4.3     Full Model Residual Normality Plot 

44.2 Constant Variance. Step two in regression analysis is to check 

the residuals for constant variance. Figure 4.4 shows a plot of the residuals for the 

regression model. What is meant by constant variance? In a visual inspection of 

the raw residual plot, we are looking for evenly spaced and distributed residuals. 

Patterns such as megaphoning, football, or any other type of trends are undesirable 

and indicate the need for possible variance-stabilizing transformations. 
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Figure 4.4     Full Model Residual Plot 

As can be seen in Figure 4.4 there doesn't appear to be any patterns present 

in the residuals. 

To quantitatively test for constant variance in the residuals we can use the 

Breusch-Pagan Test [Neter and others, 1996: 115]. This is a large sample test 

which assumes that the error terms are independent and normally distributed. The 

test statistic is denoted: 

2        SSR*      fSSE\ 
XBP

~     2      '  \   n   ) 
(4.2) 

where: 

SSR* — regression sum of squares when regressing e2 on X; 

SSE  = error sum of squares when regressing YonXj 

n  = number of parameters in the model 
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To conduct the Breusch-Pagan test at the 95% confidence level with 20 degrees 

of freedom for the data that was obtained in this experiment, we refer back to table 

4.3 for our SSE, and n values. We use JMP to determine the SSR* value. We see 

that the test statistic is equal to: 

Ap_ ^4971x10^/2,065, «2,28lV     „^ 

Looking up the table value for the x2 at the 95% confidence level and 20 degrees 

of freedom we obtain the value of 31.41. Since the test statistic value is much smaller 

than the table lookup, we fail to reject the null hypothesis of constant variance at 

the 95% confidence level. 

4-4-3 Lack of Fit Test. This test is used to determine whether the model 

adequately fits the data. The assumptions that the lack of fit makes is that the 

response(s) are (1) independent, (2) normally distributed, and (3) the distributions 

of Y have the same variance a2 [Neter and others 1996: 116]. In order to perform 

the lack of fit test, multiple observations of at least one design point are required. 

Referring back to the model in Table 4.3 we see that the P-value is <0.0001. 

This is a clear indication that we reject the null hypothesis H0, (H0 being we have a 

linear model), in favor of the alternative, Ha, (the model as represented poorly fits 

the data). Why does the model reject the null hypothesis? Ten replications of a 50 

point design of experiment were performed since multiple replications are necessary 

to achieve a lack of fit test. This resulted in the regression line having to pass 

through 50 different means. The likelihood of this happening to the point where it 

statistically passes the lack of fit test is a minimum. Even though the model fails 

lack of fit, with the R2 that is produced, we can still have confidence in the model. 
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4-5   Metamodel Verification 

Now that we have constructed the metamodel, we need to fit the 20% of the 

data that has been separated from it. The reason that we do this is to make sure 

the model fits an independent set of data. Table 4.4 shows how the regression model 

of Table 4.1 fits the test data. Note that Table 4.4 displays a combination of the 

information that is contained in Tables 4.1 and 4.3. 
Source DF Sum of Squares Mean Square F Ratio 

Model 20 2.36E+10 1.18E+09 239.3199 

Error 79 389,477,838 4,930,099 Prob>F 

C Total 99 2.40E+10 <.0001 

RSquare 0.983763 
RSquare Adj 0.979652 

Root Mean Square Error 2,220.383 
Mean of Response 270,576.700 

Observations (or Sum Wgts) 100 

Parameter Estimates 
Term Estimate t Ratio Prot»|t| VIF 

Intercept 279,996.590 523.12 <.0001 0 
C-5 6,340.599 23.68 <.0001 1.175805 

C-17 8,838.736 32.85 <.0001 1.184609 
C-5*C-17 -2,545.233 -8.31 <.0001 1.218404 

UHA 5,888.283 23.14 <.0001 1.135253 
C-5*UHA -1,735.199 -5.54 <.0001 1.273288 

C-17*UHA -2,447.812 -7.86 <.0001 1.257180 
WBP 1,809.686 7.19 «.0001 1.172543 

C-5*WBP -397.137 -1.23 0.2235 1.338952 
C-17*WBP -1,360.797 -4.17 <.0001 1.368292 
UHA*WBP 384.075 1.22 0.2262 1.258032 

WBC 7,901.784 29.90 <.0001 1.203806 
C-5*WBC -2,139.790 -7.31 <.0001 1.106506 

C-17*WBC -2,984.041 -10.09 <.0001 1.136479 
UHA'WBC -2,039.424 -6.92 <.0001 1.124256 
WBP*WBC -864.468 -2.77 0.007 1.254359 

C-52 -1,541.121 -6.60 <.0001 1.045001 

C-172 -1,928.224 -8.26 <.0001 1.044537 

UHA2 -1,963.494 -9.33 <.0001 1.050706 

WBP2 -1,169.985 -6.00 <.0001 1.071581 
WBC -3,893.931 -17.90 <.0001 1.122838 

Table 4.4     Test Data Verification 

2 D2 
By inspecting the R and adj. R from the table above, we see that we have a 

good fit of the test data using the regression model of Table 4.1. The coefficients of 

the test data are of the same magnitude and sign as Table 4.1. Taking note of the 

p-values for the test data regression model, it is observed that two of the coefficients 

may be insignificant to the model due to their high p-value.   However, since we wish 
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to fit the test data to the metamodel that has already been established, we shall 

leave these two terms in the model. 

4-6   Metamodel Validation 

In order to test the predictive validity of the metamodel, another regression 

model was developed using the twenty percent of the observations that were selected 

at random. The test model was created using the same parameters the metamodel 

used. The R2 value computed on the test data gives an indication of how well the 

model performs on new data. A very low R2 for the test data regression model 

would indicate that the model lacks predictive validity since it does not sufficiently 

explain the variation in the test data set. For the data that was used for this project, 

the R2 for both the metamodel and validation set were very close. The R2 for the 

metamodel data was 0.9867, while the test set achieved an R2 of 0.9898. This attests 

to the fact that the metamodel does possess predictive capability. 

Another way to test the validity of the model is to plug the design matrix 

values into the regression equation to determine what the predicted value would be 

at that design point.   Then, by using the following equation, 

ISimulation - Metamodell ,. _. 
Absolute Error = J ^—— L (4.3) 

Simulation 

a mean absolute percent error (MAPE) can be established for the system [Friedman 

and Friedman 1985: 146]. Table 4.5 contains the data for the absolute error for 

each simulation run. 
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Absolute                            Absolute 
Run Simulation Metamodel Deviation % Error  Run Simulation Metamodel Deviation  % Error 

1 281,405 279,821 1,584 0.562957 51 239,838 242,357 -2,519 1.050244 

2 279,399 284,348 -4,949 1.771287 52 245,899 244,686 1,213 0.493450 

3 277,599 276,416 1,183 0.426230 53 247,697 250,361 -2,664 1.075541 

4 281,267 279,821 1,446 0.514170 54 244,889 244,686 203 0.083053 

5 277,726 278,123 -397 0.142948 55 268,214 268,694 -480 0.178905 

6 281,050 280,202 848 0.301801 56 262,231 258,131 4,100 1.563576 

7 286,384 284,764 1,620 0.565642 57 278,560 279,821 -1,261 0.452617 

8 271,747 270,832 915 0.336569 58 231,534 242,357 -10,823 4.674426 

9 284,261 282,433 1,828 0.643125 59 279,766 279,821 -55 0.019591 

10 278,560 279,821 -1,261 0.452617 60 225,962 224,424 1,538 0.680537 

11 281,267 279,821 1,446 0.514170 61 277,164 276,145 1,019 0.367538 

12 282,866 283,220 -354 0.125165 62 279,766 279,821 -55 0.019591 

13 285,712 285,320 392 0.137066 63 278,560 279,821 -1,261 0.452617 

14 286,567 285,926 641 0.223607 64 280,168 278,123 2,045 0.729918 

15 248,877 244,541 4,336 1.742178 65 275,399 274,454 945 0.343118 

16 279,155 276,416 2,739 0.981250 66 283,965 287,195 -3,230 1.137375 

17 285,942 286,671 -729 0.254924 67 252,356 254,252 -1,896 0.751194 

18 241,889 242,357 -468 0.193429 68 274,983 276,145 -1,162 0.422687 

19 286,004 284,348 1,656 0.579028 69 269,399 268,694 705 0.261750 

20 269,480 267,419 2,061 0.764684 70 253,224 256,118 -2,894 1.142924 

21 279,134 276,255 2,879 1.031526 71 231,069 229,856 1,213 0.524770 

22 286,495 284,764 1,731 0.604167 72 281,758 279,201 2,557 0.907386 

23 278,736 276,416 2,320 0.832404 73 280,591 282,433 -1,842 0.656417 

24 282,407 280,963 1,444 0.511418 74 276,750 274,454 2,296 0.829609 

25 229,654 229,856 -202 0.088141 75 275,610 274,454 1,156 0.419413 

26 252,531 255,569 -3,038 1.203093 76 287,102 288,590 -1,488 0.518412 

27 258,249 259,669 -1,420 0.549968 77 249,088 250,361 -1,273 0.511098 

28 276,452 276,416 36 0.013098 78 256,350 254,252 2,098 0.818536 

29 275,810 274,484 1,326 0.480618 79 275,042 276,145 -1,103 0.401145 

30 278,167 278,398 -231 0.083058 80 253,889 254,424 -535 0.210818 

31 278,370 279,821 -1,451 0.521180 81 282,852 284,510 -1,658 0.586252 

32 269,363 268,694 669 0.248420 82 280,619 279,821 798 0.284439 

33 230,629 229,856 773 0.334989 83 284,466 280,963 3,503 1.231528 

34 280,040 284,510 -4,470 1.596281 84 256,996 255,569 1,427 0.555190 

35 246,500 250,361 -3,861 1.566363 85 259,482 263,292 -3,810 1.468480 

36 278,331 274,484 3,847 1.382021 86 283,784 287,195 -3,411 1.201881 

37 250,287 244,541 5,746 2.295717 87 281,395 283,220 -1,825 0.648572 

38 277,085 274,484 2,601 0.938554 88 257,408 258,131 -723 0.280807 

39 277,465 278,398 -933 0.336273 89 281,734 284,348 -2,614 0.927810 

40 286,460 285,320 1,140 0.397827 90 278,192 275,057 3,135 1.126813 

41 279,250 274,484 4,766 1.706569 91 278,560 279,821 -1,261 0.452617 

42 281,405 279,821 1,584 0.562957 92 284,333 287,195 -2,862 1.006477 

43 277,755 278,123 -368 0.132492 93 281,267 279,821 1,446 0.514170 

44 254,934 254,424 510 0.199956 94 279,855 279,821 34 0.012217 

45 279,279 278,123 1,156 0.413922 95 278,705 279,821 -1,116 0.400355 

46 282,465 282,433 32 0.011383 96 260,856 263,292 -2,436 0.934018 

47 283,367 287,330 -3,963 1.398512 97 276,520 278,123 -1,603 0.579706 

48 258,170 259,669 -1,499 0.580737 98 256,766 257,072 -306 0.119315 

49 258,675 258,131 544 0.210372 99 280,619 279,821 798 0.284439 

50 281,405 279,821 1,584 0.562957 100 260,415 258,131 2,284 0.877131 

Table 4.5     Mean Absolute Percent Error of Validation Data 

To calculate the overall MAPE for the system, simply sum up all of the absolute 

percent errors and divide by the total number of samples in the system, in this case 

one hundred. The MAPE for this system is 0.6756%, thus providing a second check 

that the metamodel appears to be a reliable and valid approximation. 
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4.7 Variable Screening 

The comparison of R2 for both models indicates that we have a good model. 

But, have we really constructed the correct model for the problem? Looking back to 

table 4.1, we see that our model uses two way factor interaction. All combinations 

of those two way interactions were kept in the model and their associated p-values 

are listed as well. Upon further inspection of these p-values, we see that they are all 

below our tolerance level of 0.05. Looking deeper than that, we have an extremely 

high R2 for a model that uses two factor interactions. This is a clear indication that 

all the variables in Table 4.1 are pertinent to the model. But we must keep in mind 

that we are not looking for a metamodel for this specific problem. We are looking 

for a parsimonious model, one that contains the fewest amount of variables possible, 

yet is complete and robust enough to provide an accurate prediction. 

4.8 Full Model Summary 

The model as represented, gives a fairly accurate numerical description of the 

data. With the large R2 value that we have obtained, we are fairly certain, at least 

95% certain, that the model will predict cargo throughput as long as we experiment 

within the given design space. 

4.9 Reduced Model Analysis 

By removing terms that are close to being insignificant we can perform a full 

versus reduced test. Even if the p-value of the term warrants the term to be kept 

in the model, this test will determine if there are any additional terms that can be 

removed without degradation of the model. The null hypothesis, H0, for this test 

is ßi = 0 meaning that the «th term is in fact insignificant to the regression model. 

The alternative, Ha, is that ß{ ^ 0, or the ith term is significant to the model. The 

test statistic for this is [Neter and others, 1996: 80]: 
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p, = SSER - SSEF ^ SSEF ^ ^ 
dfR-dfF       '    dfF 

The decision rule for this test is: 

If F*   <   F(l- a; dfR - dfF, dfF), conclude H0 

If F*   >   F(l - a; dfR - dfF, dfF), conclude Ha 

where: 

SSER = Sum of Squares of Error in the reduced model 

SSEF = Sum of Squares of Error in the full model 

dfR = degrees of freedom in the reduced model 

dfF = degrees of freedom in the full model 

Several variables were removed from the model one at a time according to 

their absolute t-value from table 4.1 in order to create a reduced model. The 

absolute t-value is indicative of a term's contribution to the model. The smaller 

the t-value, the less the contribution. Reduced models were in turn tested against 

the full model to determine if individual terms may be excluded from the model. 

For example by removing the WBP*WBC interaction term, the full versus reduced 

model comparison is illustrated below. 

_ 2,105,630,252-2,065,992,281 ^ 2,065,992,281 = ? 2?14 

380-379 ' 379 

We have an F statistic with the following parameters F(0.05, 1, 379) which equates 

to a value of 3.8661.   Our F* value of 7.2714 is greater than our F statistic of 3.8661 
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therefore we conclude the alternative.    As it turns out, F* > F(0.05,l,379) in all 

cases, concluding at the 95% level that all terms are significant to the model. 

4-10   Stationary Points 

Now that we have obtained a viable second order model, we can use RSM to 

see how close the model comes to the optimal solution to our problem. We begin by 

finding the stationary point of our design space. If we could minimize and physically 

transport ourselves onto the design space, the stationary point would represent where 

we would be actually standing on the design space. There are three cases that can 

happen when we find the stationary point on a surface. 

1. We can be located at a local (or global) minimum where all values of xs 

are positive 

2. We can be located at a local (or global) maximum where all values of xs 

are negative 

3. We can be located at a saddle point the signs of xs are mixed (both positive 

and negative) 

If we were at a min point, stepping in any direction (remember we are on 

the surface of the design space) would improve our solution. Conversely, at a max 

point we would decrease our value if we stepped in any direction. And finally if our 

stationary point is a saddle point, then we could either increase or reduce or value 

depending on which way we stepped. 

In order to find the stationary point (and in doing so we will discover the 

nature of the system at that point, either min, max, or saddle) we use the following 

formula [Myers and Montgomery, 1995: 218]: 

xs = -B-1 * b/2 (4.5) 
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where b and B contain estimates of the linear and second order coefficients 

respectively.   In matrix format, they are represented as thus: 

B = 

hi \bn    ■ .    j&ifc" 

J612 622 •      2fc2fe 

I6" 2fc2fe     • ■ •       hk 

(4.6) 

and 

b= [(61,62,..., 6*)f (4.7) 

By applying equation 4.5 to the regression model of Table 4.1, we obtain the following 

values for the stationary point. 

xs = [84.634,90.219,27.230,103.651,71.90lf 

Inspecting these values we see that we are at a local min because all of the signs 

in the vector are positive. A local min tells us that if we step in a certain direction 

we improve our solution and going the opposite way decreases our solution. But 

inspecting the vector in more detail, we observe the magnitude of the values. We 

note that the third value is much smaller than any of the other values. This indicates 

that we may be standing on or close to a ridge in the design space. A technique 

known as ridge analysis would be beneficial at this point. Ridge analysis is the 

steepest ascent method applied to a second order model. The intent of steepest 

ascent method is to provide a path to an improved solution to a system that has not 
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been well studied. Steepest ascent is generally a low-cost first order experiment. 

Ridge analysis is used when the analyst feels confident that he or she is close to the 

region where the contains the optimal solution. However, due to the fact that no 

further data is available ridge analysis computations are not able to be exercised 

here. 

Another way to "see" where we are on the design space is to create a response 

surface. A response surface allows us to represent the curvature of the response and 

affords us with a visual image of what we would see if we were minimized and placed 

on the surface. Out of the 400 data points that are represented in the metamodel, 

the design point that produced the maximum amount of cargo was selected to be 

representative of the system. A response was built about this point. The stationary 

point that is represented above could not be mapped to this response since it is 

outside of our design space, and hence of no predictive value. It only serves to 

inform us that a new experiment needs to be conducted at that point. Since it is 

impossible to represent more than a 2D image on paper, the coded value for the 

UHAs, WBPs, and WBC aircraft were held constant. These constant values that 

were used were for those three aircraft types were the settings that were used at the 

maximum response. Only the C-5s and C-17s were allowed range from the low axial 

value through their high axial value. 
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Figure 4.5     Maximum Cargo Throughput Response 

Figures 4.5 and 4.6 show the response. Figure 4.5 shows how quickly the 

response rises and levels off and has a large region of maximum throughput. It also 

has a rather large region where throughput, although not optimal, would be a very 

acceptable delivery region. 
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Figure 4.6     Maximum Cargo Throughput Response 

Figure 4.6 displays this large region in greater detail. Any mix of C-5s, C-17s, 

and the remaining three aircraft types set at their uncoded values that keep us in 

this region provide a high throughput of cargo.   But is this throughput optimal? 

4.11    Optimization 

Optimization is more of a pipe dream than a reality. When the best laid plans 

are put to the test, the slightest deviation now makes you sub-optimal. However, 

optimization techniques do provide a good estimate of the upper bound (or lower 

bound depending on how the problem is constructed). Using Lingo to solve the 

problem, Figure 4.7 shows the constructed integer program (IP) and its results in 

uncoded units. 
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A = C-5, B = C-17, C = UHA, D = WBP, E = WBC 

Max = -387457.554 - 6.77*A*A - 10.408*B*B -33.699*C*C - 4.18*D*D - 14.556*E*E 
+ 3489.483* A + 4730.242*B + 5069.32*C + 1660.522*D + 4653.776*E 
- 10.829*A*B - 14.242*A*C - 1.713*A*D - 11.143*A*E - 14.761*B*C 
- 7.471*B*D - 10.562*B*E + 5.562*C*D - 17.712*C*E - 1.759*D*E; 

-387457.554 - 6.77*A*A - 10.408*B*B -33.699*C*C - 4.18*D*D - 14.556*E*E 
+ 3489.483* A + 4730.242*B + 5069.32*C + 1660.522*D + 4653.776*E 
- 10.829*A*B - 14.242*A*C - 1.713*A*D - 11.143*A*E - 14.761*B*C 
- 7.471*B*D - 10.562*B*E + 5.562*C*D - 17.712*C*E - 1.759*D*E > 288902; 

!! AIRCRAFT CONSTRAINT 
A + B + C + D + E>0; 
A + B + C + D + E<488; 

!! WIDE BODY ADICRAFT CONSTRAINT 
A>2*E 9 

B>2*E > 
A>B; 
D>75; 
D<83; 

@GIN(A) 
@GIN(B) 
@GIN(C) 
@GIN(D) 
@GIN(E) 

Variable D? Value SIM Value 
C-5          104 95 
C-17        104 95 
UHA         24 28 
WBP        83 95 
WBC        52 50 
TONS   290722 288902 

Figure 4.7     Cargo Throughput Optimization IP 

This is just a rough sketch at improving cargo delivery. Other factors need to 

be considered when constructing the IP. For instance, all aircraft were given equal 

weight. Not in cargo capacity but aircraft desirability for cargo. An example of 

this follows, WBC and C-5s both carry large amounts of cargo, but not the same 

type. Weighting functions and perhaps goal programming methods would need to 

be implemented in order to get an accurate aircraft mix.   Passenger aircraft would 
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also need to be converted to tons carried rather than passengers and weighted in the 

same manner. 
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Figure 4.8     Optimal Throughput Response 

Inspection of the response in Figure 4.8 shows that we have not increased our 

region of maximum throughput a substantial amount by implementing the results 

from the IP. It is stressed again that the solution represented by the IP may not be 

optimal due to certain constraints being left out. The actual optimal region could 

be larger or smaller. 

4-12   Additional Insights 

A separate set of data was collected using the same design matrix as in the 

previous experiment. Again, as in the previous experiment, the same amount of 

samples were collected at each design point for a total of 500 samples. The only 

difference between the two experiments is that the MOG values at crucial bases for 

the second experiment were increased.  This increase will be noted as IMS (increased 
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MOG scenario). Crucial bases were determined by examining traffic patterns from 

the output of the first experiment. MOG was increased by 20% for those bases 

having a high flow of aircraft.   Fuel was not increased at any of the bases. 

4-13   Full Model Regression Analysis IMS 

Table 4.6 represents the final regression model of this data. The insignificant 

terms have already been removed from the model. This was accomplished by re- 

moving variables with large p-values, then performing a full versus reduced test on 

the remaining ones. Again, note that our VIF factors are well below 10, indicating 

a lack of multicollinearity between predictor variables. 

Term Estimate t Ratio Prob>|t| VIF 
Intercept 281,980.510 500.68 0 0 

C-5 7,287.891 29.62 <.0001 1.0096698 

C-17 3,715.291 14.99 <.0001 1.0068280 
UHA 6,047.431 24.61 <.0001 1.0070985 

C-5*UHA -1,992.959 -6.88 <.0001 1.0129846 
C-17*UHA 1,452.773 5.03 <.0001 1.0091683 

WBP 7,944.796 32.06 <.0001 1.0073892 

C-5*WBP -2,045.934 -7.06 <.0001 1.0152550 

C-17*WBP -1,455.306 -5.03 <.0001 1.0099856 

UHA*WBP -1,633.573 -5.66 <.0001 1.0054868 
WBC 6,948.790 27.87 <.0001 1.0204690 

C-5*WBC -1,792.193 -6.18 <.0001 1.0120150 
UHA*WBC -1,864.064 -6.43 <.0001 1.0144451 
WBP*WBC -2,256.427 -7.78 <.0001 1.0162575 

C-52 -1,756.503 -8.27 <.0001 1.0597127 

C-172 -2,249.597 -10.39 <.0001 1.0527594 

UHA2 -2,507.733 -11.81 <.0001 1.0594988 

WBP2 -1,771.223 -8.18 <.0001 1.0527594 
WBC -3,477.003 -15.98 <.0001 1.0631796 

Table 4.6     Full Model Parameter Estimates, P-values, and VIF - IMS 

Examining the ANOVA in Table 4.7 next, we observe that it has an Adjusted 
2 

R  of approximately 0.91.   With a value this high we can say that this model, as 

well as the first, possesses predictive capability. 
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Source DF Sum of Squares Mean Square F Ratio 
Model 18 8.87E+10 4.93E+09 235.5281 
Error 381 7,974,855,780 20,931,380 Prob>F 

C Total 399 9.67E+10 <.0001 
RSquare 0.917541 

RSquare Adj 0.913646 
Root Mean Square Error 4,575.083 

Mean of Response 272,273.300 
Observations (or Sum Wgts) 400 

Table 4.7    Full Model Regression ANOVA - IMS 

Visual verification of how well the model fits can be viewed in the least square 

regression line plot of figure 4.9. 
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Figure 4.9     Full Model Least Squares Regression Line Plot - IMS 

As you recall, to check for outliers we plot the studentized deleted residuals 

against the run order.   Figure 4.10 displays these results. 
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Figure 4.10     Full Model Outlier Plot - IMS 

Again we see that only one point is close to being an outlier. Next we move 

to checking the residuals for normality. 

4.13.1 Normality IMS. The p-value of <0.0001 in Figure 4.11 implies 

that we fail to meet our normality assumption. This is a violation of assumption 

number two in section 4.2.1. Further investigation of the residuals is now necessary 

to see if regression analysis techniques are applicable to this situation. 
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Residual Value 
Test for Normality 

Shapiro-Wilk W Test 
W Prob < W 
.955092 <.0001 

Figure 4.11     Full Model Residual Normality Plot - IMS 

Normality not only depends on the distribution of the residuals, it also depends 

on the number of samples that you have. For a small sample, you are more likely 

to accept a data set as being normal. This happens because there is not enough 

data to influence the regression line in any one direction. Conversely, normality is 

usually rejected for large sets of sample data. The slightest deviation can influence 

the regression line away from normality [Crown, 1999]. 

However, this does not mean we need to stray away from using normal linear 

regression techniques. Visual inspection, and scrutiny of the box plot, quantiles, 

and moments of the residuals can provide enough confidence to continue using linear 

regression techniques. 
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Figure 4.12     Residual Stem and Leaf Plot 

The stem and leaf plot in Figure 4.12 appears to have a normal distribution 

about it. Looking at the box plot of Figure 4.13 we see that both tails seem to 

be heavy with residuals. Since the residuals seem to be distributed evenly in both 

tails, we continue with the quest to validate pseudo-normality 

Figure 4.13   Residual Box Plot 

Table 4.8 allows us to view the residuals through their quantiles and moments. 
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Quantiles Moments 
maximum 100.00% 16412 Mean 0 

99.50% 14312 Std Dev 4470.694 
97.50% 11325 Std Error Mean 223.535 
90.00% 4960 Upper 95% Mean 439.46 

quartile 75.00% 2217 Lower 95% Mean -439.46 
median 50.00% -11 N 400 
quartile 25.00% -2226 Sum Weights 400 

10.00% -5244 Sum 0 
2.50% -10743 Variance 19987107 
0.50% -11518 Skewness 0.272 

minimum 0.00% -12052 Kurtosis 1.56 
CV 3.84E+15 

Table 4.8     Quantiles and Moments 

Inspecting the quantiles we see that the data is fairly evenly distributed about 

the median. We see in the moments that the mean is located at zero and the 

skewness (the shift left or right of the mean) is 0.272. A symmetric distribution has 

a skewness of zero. The only statistic that may be of question is the kurtosis, which 

is a measure of "tail weight" of the distribution [Law and Kelton, 1991: 360]. We 

have an obtained value of 1.56. For a normal distribution, the kurtosis should be 

equal to 3. However, kurtosis has not been found to be very useful for discriminating 

among distributions [Law and Kelton 1991: 360]. 

From the visual observation of the stem and leaf plot, box plot, quantiles, and 

moments, we can conclude that our residuals, while not normal, are normal enough 

to proceed with the use of linear regression techniques. 

4.13.2 Constant Variance IMS. As before, we use the Bruesch-Pagan 

test to check for constant variance in the residuals. The plot of Figure 4.14 shows 

the distribution of the residuals. 
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Figure 4.14    Full Model Residual Plot - IMS 

Again the residuals appear to lack any sort of a pattern.    To quantitatively 

test this we again use the Breusch-Pagan test. 

o        3.19347 xlO17     7,974,855,780     noioc 

XBP = a " 18 = °-8135 

Looking up the x2 value at the 95% confidence level with 18 degrees of freedom, we 

obtain the value of 28.87. Again, this value is much greater than our obtained value 

so we fail to reject our hypothesis of constant variance at the 95% level. 

For the lack of fit test for the increased MOG scenario, we refer to Table 4.7 

and observe again that we reject the null hypothesis for lack of fit with a p-value of 

<0.0001. As before, we fail the lack of fit test, but conclude that the model is valid 

for the same reason as previously stated in section 4.5. 
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4-14    Metamodel Verification IMS 

Again we check how well the test data fits the regression model that it was 

designed for. In this case we are referring to the regression model of Table 4.6. 

Table 4.9 displays how well the metamodel fits the test data. The reader should 

again note that Table 4.9 contains the same data as Tables 4.6 and 4.7. 

Source DF Sum of Squares Mean Square F Ratio 
Model 18 2.67E+10 1.48E+09 54.2971 
Error 81 2,215,062,043 27,346,445 Prob>F 

C Total 99 2.89E+10 <.0001 
RSquare 0.923466 

RSquare Adj 0.906458 
Root Mean Square Error 5,229.383 

Mean of Response 269,633.400 
Observations (or Sum Wgts) 100 

Parameter Estimates 
Term Estimate t Ratio Prob>|t| VIF 

Intercept 281,890.300 210.12 <.0001 0 
C-5 7,489.988 12.10 <.0001 1.172510 

C-17 2,989.045 4.99 <.0001 1.160429 
UHA 7,247.852 11.76 <.0001 1.166141 

C-5*UHA -2,181.637 -3.16 0.0022 1.156555 
C-17*UHA 1,298.954 1.85 0.0677 1.205213 

WBP 8,133.552 13.71 <.0001 1.142193 

C-5*WBP -2,369.832 -3.29 0.0015 1.257788 
C-17*WBP -1,828.484 -2.54 0.0131 1.269767 
UHA*WBP -1,576.305 -2.30 0.0239 1.109654 

WBC 6,184.909 9.35 <.0001 1.433978 
C-5*WBC -1,449.455 -2.00 0.0488 1.230378 
UHA*WBC -1,878.091 -2.61 0.0109 1.269497 
WBP*WBC -2,112.785 -2.89 0.0049 1.303534 

C52 -1,137.575 -2.03 0.0459 1.064403 

C-172 -2,092.574 -4.15 <.0001 1.066821 

UHA2 -2,236.083 -3.99 0.0001 1.060906 

WBP2 -1,613.077 -3.20 0.002 1.066821 
WBC" -4,766.729 -8.56 <.0001 1.299841 

Table 4.9    Test Data Verification - IMS 

We have both a high R2 and adj. R2 which means we have an excellent fit of 

the data. All the coefficients of the test data are of the same magnitude and sign 

as the model. We are suspect of only one term in the regression model, the C-17 * 

UHA interaction. However, since we are trying to fit data to the model and removal 

of the term results in an insignificant loss in the adj. R2, as before, we shall leave 

this term in the model. 
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4-15   Metamodel Validation IMS 

We test the predictive nature of this metamodel by establishing its MAPE in 

the same fashion as before. Table 4.10 gives an analytic view of the error associated 

with this model. 
Absolute Absolute 

Run Simulation Metamodel Deviation % Error Run Simulation Metamodel Deviation % Error 

1 286,072 284,941 1,131 0.003952 51 284,710 287,661 -2,951 0.010366 
2 243,581 250,334 -6,753 0.027724 52 283,965 280,236 3,729 0.013132 

3 267,517 249,588 17,929 0.067020 53 274,499 281,848 -7,349 0.026771 

4 277,322 278,370 -1,048 0.003779 54 254,526 249,934 4,592 0.018040 
5 289,092 290,575 -1,483 0.005130 55 280,493 278,420 2,073 0.007389 

6 256,558 260,360 -3,802 0.014820 56 276,829 274,056 2,773 0.010017 

7 277,712 278,371 -659 0.002371 57 259,331 258,973 358 0.001380 

8 266,181 268,600 -2,419 0.009089 58 286,461 286,556 -95 0.000331 

9 266,847 233,396 33,451 0.125356 59 282,751 283,713 -962 0.003402 

10 241,488 261,976 -20,488 0.084842 60 286,167 285,901 266 0.000930 
11 275,018 274,056 962 0.003498 61 273,095 278,370 -5,275 0.019315 
12 264,046 265,124 -1,078 0.004082 62 250,031 255,887 -5,856 0.023419 
13 288,744 281,077 7,667 0.026552 63 252,553 256,941 -4,388 0.017376 
14 227,412 230,164 -2,752 0.012100 64 249,634 259,845 -10,211 0.040905 
15 282,085 278,504 3,581 0.012697 65 275,821 274,056 1,765 0.006400 
16 258,661 258,973 -312 0.001206 66 266,808 265,124 1,684 0.006313 
17 278,338 278,890 -552 0.001983 67 289,427 283,149 6,278 0.021690 

18 281,677 281,981 -304 0.001078 68 258,344 263,581 -5,237 0.020271 

19 284,774 282,178 2,596 0.009116 69 283,271 278,504 4,767 0.016830 

20 281,318 278,504 2,814 0.010005 70 255,957 256,402 -445 0.001737 
21 273,893 276,221 -2,328 0.008500 71 281,318 281,981 -663 0.002355 
22 274,590 282,391 -7,801 0.028411 72 281,318 278,504 2,814 0.010005 

23 289,950 274,614 15,336 0.052891 73 256,818 260,104 -3,286 0.012794 

24 287,544 288,418 -874 0.003041 74 284,290 292,945 -8,655 0.030444 

25 261,796 251,234 10,562 0.040346 75 278,975 287,380 -8,405 0.030128 
26 247,206 252,410 -5,204 0.021049 76 286,855 281,077 5,778 0.020142 
27 261,469 265,124 -3,655 0.013978 77 288,469 290,575 -2,106 0.007300 
28 282,122 281,897 225 0.000796 78 268,897 271,479 -2,582 0.009601 
29 282,419 278,504 3,915 0.013864 79 255,952 260,360 -4,408 0.017223 
30 243,201 252,410 -9,209 0.037864 80 288,937 283,149 5,788 0.020030 
31 225,998 226,687 -689 0.003047 81 286,427 281,077 5,350 0.018678 
32 251,690 259,845 -8,155 0.032402 82 290,635 283,149 7,486 0.025756 
33 256,509 260,360 -3,851 0.015014 83 226,616 237,599 -10,983 0.048466 
34 287,188 281,077 6,111 0.021278 84 262,700 251,234 11,466 0.043648 
35 275,948 277,533 -1,585 0.005743 85 252,899 259,845 -6,946 0.027466 
36 282,460 281,981 479 0.001698 86 288,386 294,052 -5,666 0.019647 
37 282,460 262,312 20,148 0.071332 87 282,463 281,981 482 0.001708 
38 237,017 261,976 -24,959 0.105307 88 282,463 278,504 3,959 0.014018 
39 250,765 259,845 -9,080 0.036210 89 254,936 252,925 2,011 0.007890 
40 252,245 256,402 -4,157 0.016478 90 287,911 281,077 6,834 0.023736 
41 281,238 262,312 18,926 0.067296 91 287,823 291,980 -4,157 0.014442 

42 242,916 261,976 -19,060 0.078465 92 279,837 290,857 -11,020 0.039380 

43 268,848 265,124 3,724 0.013853 93 253,303 253,411 -108 0.000428 
44 266,106 268,600 -2,494 0.009373 94 281,299 281,981 -682 0.002423 
45 282,704 278,504 4,200 0.014858 95 291,081 278,091 12,990 0.044625 
46 283,906 287,661 -3,755 0.013227 96 248,746 256,941 -8,195 0.032947 

47 249,813 236,218 13,595 0.054422 97 230,855 234,122 -3,267 0.014153 
48 241,590 261,976 -20,386 0.084384 98 285,309 280,236 5,073 0.017781 
49 274,349 271,479 2,870 0.010462 99 250,825 255,887 -5,062 0.020179 
50 268,701 265,123 3,578 0.013315 100 281,238 281,981 -743 0.002640 

Table 4.10     Mean Absolute Percent Error of Validation Data - IMS 
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Solving this analytically, we find that we have a MAPE of 0.0216%. We can 

conclude that this model also has a tendency for high predictive capability. 

4-16   System Comparison 

We can determine which of the two systems performs better by utilizing the 

paired t-test. With this test, we can assume unequal and unknown variances of the 

samples. In order to perform a paired t-test, we must ensure that the number of 

samples (Xu, X2i) for each experiment are equal. We need to define the parameter 

for the test [Law and Kelton, 1991: 587]. 

Zt = Xu - X2i for » = 1,2,..., n (4.8) 

where 

Xu = Tons of cargo delivered in 45 days by system one 

X2i = Tons of cargo delivered in 45 days by the increased MOG scenario 

Now we compute the estimated mean (Z) , the estimated variance (S2), and 

the confidence interval (CI) about Z using the t-test as the test statistic. 

If the confidence interval contains zero, then there is no distinction between 

which system would be preferred. If the confidence interval is greater than zero, 

system one performs better. Conversely, if the confidence interval is less than zero, 

it implies that system two performs better. For this experiment, the system with 

the normal set of MOG values is system one and the increased MOG scenario will 

be considered system two.   The results for the paired t-test computed at the 95% 
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confidence level are shown below. 

2±*(l-(^),499)*H=) 

2795 

-937 ± 245 

The 95% confidence interval for the paired t-test yields (-1182, -692). This indicates 

that system two performs better than system one. We chose the paired t-test in this 

instance because if the ZjS are normally distributed, then this confidence interval is 

exact [Law and Kelton, 1991: 587]. Figure 4.15 shows that the distribution of the 

Z'jS are normally distributed. 

s 50 
u 
§   40 

T-fftt 
»       *- 

Test for Normality 
Shaplro-WllkWTest 

W       Prob<W 
0.983831     0.3605 

Figure 4.15     Distribution of Z'jS 

4-17   Conclusion 

This chapter has provided an exploration of the methodology discussed in 

Chapter 3. The two metamodels that were constructed in this chapter showed they 

possess good predictive capability. The reader should note that the original model 

contained 4-way instead of 2-way factor interactions.    Changing the model from a 
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4-way to a 2-way factor interaction resulted in negligible loss in the adjusted R • 

This insignificant loss is important since it allows reduction in the model to fewer 

terms, thereby making a more parsimonious model capable of predicting a wider 

range of data. This reduction in variables may or may not be feasible with other 

metamodels due to their significance to the problem. 

The primary benefit of a metamodel is that it can be studied using straight- 

forward mathematical analysis [Barry 1992]. Metamodels become useful when the 

appropriate values are assigned to the unknown parameters. Experimental design 

is needed to ensure good parameter estimates. Once the experiments have been 

performed, least squares regression is a standard procedure for estimating the pa- 

rameters. 
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V.   Conclusions and Recommendations 

5.1 Introduction 

As stated previously, the purpose of this research effort was to develop a valid 

metamodel that would be able to accurately predict the amount of cargo that would 

be delivered in a given scenario. Conclusions from the previous chapters are pre- 

sented here.   In addition, recommendations for additional research are presented. 

5.2 Conclusions 

The graphical and ANOVA analyses of Chapter 4 clearly address the problem 

statement and research objective of Chapter 1. It is important to remember that 

model building is an art not a science. Although there are specifications on when to 

add and remove variables, there are no hard and fast "rules" as to which variables 

remain in the model. Building a parsimonious model, one that accurately explains 

the system at hand while using the fewest variables, is the key concept. 

The predictability of the two metamodels that were developed in Chapter 4 

were validated by evaluating their mean absolute percent error. In both cases, the 

MAPE was less than 1% supporting the research and the decisions made concerning 

which variables to keep. 

5.3 Design Setting 

In order to find out if we are taxing the airlift system to its maximum potential, 

we would like to know where our maximum delivery occurs. If all our variables are 

at their high settings, meaning all five aircraft types are set at +1, then we can 

conclude that we have not saturated the system with aircraft. 
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Coded Values 
C-5 C-17 UHA WBP WBC Tons Delivered 

Normal MOG 1 -1 1 1 -1 288,902 
Increased MOG 1 -1 1 1 1 292,608 

Uncoded Values 
Normal MOG 95 65 28 95 50 288,902 

Increased MOG 95 65 28 95 95 292,608 

Table 5.1     Coded and Uncoded Design Settings for Max Throughput 

The above table shows the coded and uncoded values and the associated tons 

of delivery for both data sets. The Joint Capabilities Strategic Planning guide sets 

forth the amount of aircraft that are available to be used in the scenario. Typically, 

AMC uses all available assets to deliver cargo. Using a design of experiment may 

uncover a theoretically "better" mix of aircraft to use. 

Looking at the maximum output of each of the models in Table 5.1 we see 

that increasing MOG values at various airfields, does not reap a substantial benefit 

in cargo delivery. This could prompt us to believe that this is a fuel, not MOG 

sensitive system. However, it only stands to reason that increasing both system 

attributes would serve well in increasing cargo delivery. Further research would 

need to be accomplished in order to bring this development to light. 

5.4    Recommendations 

5.4.1 Introduction. Although the scope of this research was relatively 

limited due to the small number of variables, additional research is warranted in the 

areas depicted below. 

5.4.2 Fuel and MOG. Another design of experiment can be implemented 

to include Fuel and MOG as factors. This would provide a better understanding as 

to what would be the limiting factor. By adding these two variables a true sensitivity 

analysis could be conducted.   Complications arise, however, by adding more factors. 
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By changing from a 2 full factorial experiment to a 2 full factorial experiment, you 

increase the number of runs necessary from 50 to 152. You can reduce the number 

of simulation runs necessary needed by doing a fractional experiment, but then you 

encounter the problem of aliasing. 

5.4.3 Convert Passengers to Tons. The experiment, as performed, 

did not take into account the required delivery of passengers. The reason for this 

omission is that AMC "assumes" that the delivery of soldiers to the theater will take 

place. As such, the number of passengers delivered to a theater is seldom reported. 

By multiplying the number of passengers delivered by 350 you can effectively convert 

the number of passengers delivered into tons. AMC estimates the weight of each 

individual soldier plus his/her gear to be 350 pounds. By collecting the number 

of passengers delivered, converting them to tons, and adding this value to the total 

number of tons that are delivered by cargo planes, may make the WBP more signifi- 

cant to the problem. As it displayed in this effort, the WBP aircraft are little more 

than place holders. Their only role is to "take up space and resources" to make the 

cargo aircraft report more accurate data. 

5.5    Conclusion 

This research provided proof of a relatively simple axiom. Work smarter and 

not harder. What is meant by that is, if you can develop a good metamodel to 

replace additional simulation runs you will save time and effort. As long as you, the 

analyst stay within the established bound or design space of your experiment, you 

will be able to provide the decision maker with options. Remember, as an analyst 

you provide insight not answers. 
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Appendix A.   Glossary of Acronyms and Abbreviations 

AFM Airlift Flow Model 

AMC Air Mobility Command 

ANOVA Analysis of Variance 

APOD Aerial Port of Debarkation 

APOE Aerial Port of Embarkation 

BBD Box-Behnken Design 

CCD central composite design 

CRAF Civil Reserve Air Fleet 

DOE design of experiment 

JSCP Joint Stategic Capabilities Plan 

LMSR Large Medium Speed Roll-On Roll-Off 

MAPE Mean Absolute Percent Error 

MASS Mobility Analysis Support System 

MOG maximum on the ground 

NBC Narrow Body Cargo aircraft 

RSM response surface methodology 

TPFDD Time-Phased Force Deployment Data document 

UHA Ultra Heavy Airlifter 

VTF Variance Inflation Factor 

WBC Wide Body Cargo aircraft 

WBP Wide Body Passenger aircraft 
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