
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2000 

The Distributor’s Three-Dimensional Pallet-Packing Problem: A The Distributor’s Three-Dimensional Pallet-Packing Problem: A 

Mathematical Formulation and Heuristic Solution Approach Mathematical Formulation and Heuristic Solution Approach 

Brian P. Ballew 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Operations and Supply Chain Management Commons, and the Operations Research, 

Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
Ballew, Brian P., "The Distributor’s Three-Dimensional Pallet-Packing Problem: A Mathematical 
Formulation and Heuristic Solution Approach" (2000). Theses and Dissertations. 4738. 
https://scholar.afit.edu/etd/4738 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=scholar.afit.edu%2Fetd%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4738?utm_source=scholar.afit.edu%2Fetd%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


THE DISTRIBUTOR'S THREE-DIMENSIONAL PALLET- 
PACKING PROBLEM: A MATHEMATICAL FORMULATION 

AND HEURISTIC SOLUTION APPROACH 

THESIS 

Brian P. Ballew, Second Lieutenant, USAF 

AFIT/GOR/ENS/00M-02 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

JDTIC QUALITY BJSPSCTED4i 
20000613 087 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for 
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), 
Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

March 2000 
3. REPORT TYPE AND DATES COVERED 

Master's Thesis 
4.    TITLE AND SUBTITLE 

THE DISTRIBUTOR'S THREE-DIMENSIONAL PALLET-PACKING 
PROBLEM: A MATHEMATICAL FORMULATION AND HEURISTIC 
SOLUTION APPROACH 

5.     FUNDING NUMBERS 

6.     AUTHOR(S) 

Brian P. Ballew, Second Lieutenant, USAF 
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 

2950 P Street, Building 640 
WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GOR/ENS/00M-02 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Dayton Area Graduate Studies Institute 
Atta: Dr. Frank Moore 
3155 Research Blvd, Suite 205 
Kettering, OH 45420       (937) 781-4000 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11.  SUPPLEMENTARY NOTES 

JAMES T. MOORE, Lt Col, USAF (RET), AFIT/ENS e-mail: james.moore@afit.af.mil Phone: (937) 255-6565x4337 
12a. DISTRIBUTION / AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 

ABSTRACT (Maximum 200 Words) 
It is through practice and experience Air Force loadmasters are able to pack the Air Force standard HCU-6/E (463L) pallets 

efficiently. Although the loadmasters perform their jobs exceptionally well, the Air Force is in search of a model that will more 
efficiently pack the pallets. 

We have developed a mathematical formulation of the three-dimensional pallet-packing problem which minimizes the 
amount of unused space on a pallet. The formulation ensures each box is packed with the correct volume and dimensions, and 
ensures the volume of all the boxes packed is less than the available pallet volume. Additionally, the formulation ensures that each 
box has a foundation on which to be placed and allows, at most, one box to be placed in each location on the pallet. 

The three-dimensional pallet-packing problem is a NP-hard problem. Thus, for large problems, the optimal solution can not 
be found in a reasonable amount of time. Therefore a heuristic solution approach is required to solve these large problems. This 
research observes the performance of a genetic algorithm on the three-dimensional pallet-packing problem using single-point 
crossover. 
14. SUBJECT TERMS 

Three-dimensional pallet-packing, packing problems, pallet-loading problems, 
distributor's pallet-packing problem, heuristics, genetic algorithms 

15. NUMBER OF PAGES 

111 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UNC 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the U. S. 
Government. 



AFIT/GOR/ENS/OOM-02 

THE DISTRIBUTOR'S THREE-DIMENSIONAL PALLET-PACKING PROBLEM: A 
MATHEMATICAL FORMULATION AND HEURISTIC SOLUTION APPROACH 

THESIS 

Presented to the Faculty 

Department of Operational Sciences 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

Brian P. Ballew, B.S. 

Second Lieutenant, USAF 

March 2000 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



AFJT7GOR/ENS/00M-02 

THESIS APPROVAL 

Student: Brian P. Ballew, Second Lieutenant, US AF Class: GOR-00M 

Title: The Distributor's Three-Dimensional Pallet-Packing Problem: A Mathematical 
Formulation and Heuristic Solution Approach 

Defense Date: 02 March 2000 

Committee: 

Advisor 

Name/Title/Department 

James Moore, Ph. D. 
Associate Professor 
Department of Operational Sciences 

Signature 

Q&wu, l''%n. 

Reader Raymond Hill, Major, USAF 
Assistant Professor 
Department of Operational Sciences 

(Rauy^A^iA/l \kdU 

Reader Gregory Mclntyre, Lt. Colonel, USAF 
Assistant Professor 
Department of Operational Sciences 



Acknowledgements 

First, I would like to thank my thesis advisor, Dr. Moore, for his support and 

guidance throughout this thesis effort. I would also like to thank one of my readers, 

Major Hill, for his insight on the problem and his help with the establishment of a 

sponsor. I would also like to thank Lt Col Mclntyre for his help with GENESIS and 

genetic algorithms. 

My family and my girlfriend, Betsy, deserve a lot of thanks for putting up with 

me during these trying months and supporting me throughout the thesis effort. My 

parents deserve extra thanks for teaching me the commitment and discipline needed to 

complete this program. 

Lastly, I would like to thank my classmates for all of their help throughout the 

program and the good times. 

u 



Table of Contents 

Page 

Acknowledgements ii 

Table of Contents iii 

List of Figures vi 

List of Tables vii 

Abstract viii 

Chapter 1 - Introduction 1-1 

1.1 Background 1-1 

1.2 Three-Dimensional Pallet-Packing 1-4 

1.3 Statement of the Problem 1-6 

1.4 Restrictions and Assumptions 1-6 

1.5 Overview 1-8 

Chapter 2 - Literature Review 2-1 

2.1 Introduction 2-1 

2.2 Three-Dimensional Pallet-Packing Problem 2-2 

2.3 Previously Contracted Efforts 2-8 

2.4 Commercial Packing Software 2-10 

2.5 Heuristics 2-12 

2.5.1 Greedy Heuristic 2-12 

2.5.2 Simulated Annealing 2-13 

2.5.3 Genetic Algorithms 2-14 

2.6 GENESIS 2-19 

m 



2.7 Summary 2-20 

Chapter 3 - Results 3-1 

3.1 Mathematical Formulation 3-1 

3.2 Results from LINGO 3-7 

3.3 Results from GENESIS 3-9 

3.4 Summary 3-14 

Chapter 4 - Conclusions and Recommendations 4-1 

4.1 Introduction 4-1 

4.2 Research Results 4-1 

4.3 Recommendations for Future Research 4-3 

4.4 Final Thoughts 4-4 

Appendix A - Annotated Bibliography A-l 

Appendix B - LINGO Formulation B-l 

B.l LINGO Formulation B-l 

B.2 Model Initialization and Objective Function B-2 

B.3 First and Second Constraints B-3 

B.4 Third and Fourth Constraints B-4 

B.5 Constraint Five B-5 

B.6 End of Program B-6 

B.7 Results when Boxes One and Three are Packed B-7 

B.8 Results when Boxes Two and Three are Packed B-8 

Appendix C - Genetic Algorithm Evaluation Function C-l 

C.l Description of Evaluation Function and Variables used in Program C-l 

IV 



C.2 Function Preventing Negative Penalties C-3 

C.3 Initialization of Variables C-4 

C.4 Determine Whether Each Boxes Length, Width, and Height are the Same.C-5 

C.5 Convert Character String to Binary String C-6 

C.6 First Feasibility Check C-6 

C.7 Second Feasibility Check C-7 

C.8 Third Feasibility Check C-7 

C.9 Fourth Feasibility Check C-8 

CIO Fifth Feasibility Check C-9 

C.l 1 Sixth Feasibility Check C-10 

C.12 Objective Function Value C-20 

Appendix D - Results of Genetic Algorithm on Test Problems D-l 

D.l Introduction D-l 

D.2 Results of Test Problem One D-l 

D.3 Results of Test Problem Two D-2 

D.4 Results of Test Problem Three D-3 

Bibliography BIB-1 

Vita V-l 



List of Figures 

Figure Page 

2-1 Single-point Crossover 2-16 

2-2 Generalized Crossover 2-17 

2-3 Graphical Depiction of how GENESIS Operates 2-20 

3-1 Box with Length, Width, and Height = 2 3-5 

3-2 Ensuring Correct Box Dimensions 3-6 

3-3 Packing of the Six Box Test Case 3-12 

VI 



List of Tables 

Table Page 

3-1 Box Characteristics for the Three Box Test Case 3-8 

3-2 Penalties for Constraint Violations 3-10 

3-3 Parameter Settings for the Three Box Test Case 3-10 

3-4 Box Characteristics for the Six Box Test Case 3-11 

3-5 Parameter Settings for the Six Box Test Case 3-11 

3-6 Box Characteristics for the Eleven Box Test Case 3-12 

3-7 Parameter Settings for the Eleven Box Test Case 3-13 

vn 



AFIT/GOR/ENS/OOM-02 

Abstract 

It is through practice and experience Air Force loadmasters are able to pack the 

Air Force standard HCU-6/E (463 L) pallets efficiently. Although the loadmasters 

perform their jobs exceptionally well, the Air Force is in search of a model that will more 

efficiently pack the pallets. 

We have developed a mathematical formulation of the three-dimensional pallet- 

packing problem which minimizes the amount of unused space on a pallet. The 

formulation ensures each box is packed with the correct volume and dimensions, and 

ensures the volume of all the boxes packed is less than the available pallet volume. 

Additionally, the formulation ensures that each box has a foundation on which to be 

placed and allows, at most, one box to be placed in each location on the pallet. 

The three-dimensional pallet-packing problem is a NP-hard problem. Thus, for 

large problems, the optimal solution can not be found in a reasonable amount of time. 

Therefore a heuristic solution approach is required to solve these large problems. This 

research observes the performance of a genetic algorithm on the three-dimensional pallet- 

packing problem using single-point crossover. 
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Chapter 1 - Introduction 

1.1 Background 

The mission of AMC is "The Air Mobility Team ... Responsive Global Reach for 

America ... Every Day." An important aspect of this responsiveness is providing the 

troops in forward locations with the goods they need using the fewest number of planes. 

Therefore, in hope of optimizing the use of our aircraft while simultaneously minimizing 

transportation costs, loadmasters attempt to maximize the amount of cargo on a given 

aircraft. Another aspect of cargo loading that could help cut costs and increase airlift 

efficiency is the packing of cargo on the pallets. 

Pallets are packed by Air Force loadmasters. Loadmasters attend a training 

course on the basic principles of pallet packing, yet it is through practice and experience 

that they are able to pack the pallets as efficiently as they do. Experienced loadmasters 

eyeball the items to be loaded and determine the best way to load them. The pallets are 

Air Force standard HCU-6/E (463L) pallets. The length and width of the pallets are 88 

inches (7 feet 4 inches) and 108 inches (9 feet), respectively. However, only 84 inches of 

the length and 104 inches of the width are available to be packed. Loadmasters are 

required to leave the outside two inches of the pallet unpacked so that the cargo net is 

able to securely fit around the packed boxes. The maximum height of a pallet is 96 

inches (8 feet) for pallets loaded in the main compartment and 76 inches (6 feet 4 inches) 

for pallets loaded on the ramp (Taylor, 1994). 

Although loadmasters perform their jobs exceptionally well, the Air Force is in 

search of a model that will help efficiently pack the pallets and provide loadmasters with 
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a report stating where the boxes should be placed on the pallet to minimize unused space. 

This will save time and resources. If the pallets are more efficiently packed, the number 

of sorties flown may decrease and aircraft may be freed to carry other items in large-scale 

mobilizations. 

The Air Force has sponsored research in this area on multiple occasions in search 

of finding a better way to pack the pallets and load the aircraft. These include an early 

effort by Taylor (1994), an airlift-loading model by Chocolaad (1998), and a three- 

dimensional packing problem approach by Manship and Tilley (1998). 

Taylor developed three different models in an attempt to solve the hybrid two- 

dimensional packing problem. The goal of the hybrid packing technique is to pack the 

boxes in layers as in the two-dimensional case. An additional goal is to minimize the 

deviation in height between the boxes in each layer. This helps make the height of each 

layer as uniform as possible (Taylor, 1994). 

Taylor's first model minimized the deviation in height between the boxes in a 

layer while maximizing the area covered. In his second model, the objective was to 

minimize the deviation in volume wasted based on whether or not a given box was 

loaded.   The amount of wasted volume depended on whether or not any unused surface 

area of the pallet remained due to choosing a specific box. By minimizing the largest of 

these values over the set of boxes, the most volume efficient packing solution could be 

found (Taylor, 1994). Taylor's third model was an extension of the second model, and 

the objective was to minimize the wasted volume of all packed boxes. 

Taylor was able to come up with optimal solutions for his model, but due to 

limited computer resources and capabilities, he was only able to solve three very small 
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problems (Taylor, 1994). The first problem was loading four boxes onto a three by three 

pallet. The second problem was loading seven boxes onto a four by four pallet in which 

one box was manually placed. The last problem was loading eight boxes onto a five by 

five pallet in which two boxes were manually placed. Since his test problems were only 

concerned with packing two layers on a pallet, the pallets did not have a height 

dimension. 

Chocolaad's (1998) research pertains to the airlift-loading problem. In his 

research, he developed a packing heuristic which uses simple tabu thresholding to 

determine the packing. This is a simple search method which avoids becoming trapped at 

a local optimum by allowing non-improving moves (Chocolaad, 1998). However, 

Chocolaad's research addresses the airlift loading problem and not the pallet-packing 

problem. Thus, he is trying to maximize utilization of the aircraft as opposed to the 

utilization of a pallet. In the two-dimensional case, the airlift-loading problem is similar 

to the pallet-packing problem in that the goal is to maximize the number of different size 

items (boxes/cargo) to fit into an airplane or pack onto a pallet subject to some 

constraining factors. 

Manship and Tilley (1998) approached the three-dimensional packing problem 

using a nonlinear programming approach. Unfortunately, their pallet-packing model only 

provides sub-optimal solutions. However, it does provide feasible solutions that include 

most of the required constraints (Manship and Tilley, 1998). 

Efforts in the past to improve on current pallet-packing procedures have at best 

only produced marginally better pallet loads, yet due to the complexity of the problem, 

very little if any time is saved due to computational times (Taylor, 1994). Therefore, 
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there is much room for improvement in the area of pallet packing.   A model that can 

efficiently pack pallets not only will cut costs but will free time and resources to be used 

elsewhere. 

1.2 Three-Dimensional Pallet-Packing 

Of all the research devoted to optimization problems, only a very small 

percentage of that research focuses on packing problems, and even a smaller percentage 

ofthat research concentrates on three-dimensional pallet-packing problems. The main 

reason for this is that if the three-dimensional pallet-packing problem is formulated as an 

integer program, it becomes an extremely complex and difficult to solve problem. As the 

pallet dimensions increase and the number of boxes to be packed increase, the number of 

variables required to model the problem explodes; thus, the problem does not admit a 

solution-time based on a polynomial function of the problem size. 

Although the focus of this research is in three-dimensional pallet packing, it is 

important to describe how the three-dimensional pallet-packing problem differs from the 

other types of packing problems. First, there are two general types of packing problems; 

there are the 'manufacturer's pallet packing problem' and the 'distributor's pallet packing 

problem'. The 'manufacturer's pallet packing problem', also referred to as the pallet 

loading problem, is the problem of finding the optimal layout for identical rectangular 

boxes on a rectangular pallet (K. Dowsland, 1987). Generally, the pallet is packed in 

layers where the second layer is packed the same as the first layer and so on until the 

height constraint of the pallet is reached. Thus, the formulation for this problem is 
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reduced to the two-dimensional case and the objective is to maximize the number of 

boxes packed on the pallet. 

For the 'distributor's pallet packing problem,' the objective is to load boxes of 

varying dimensions onto as few pallets as possible (Askin and Standridge, 1993). This is 

a more difficult problem. For the case in which only one pallet is to be loaded, the 

objective is to maximize volume utilization (minimize the amount of unused space). 

Most work done with the three-dimensional case of this problem has attempted to group 

boxes with the same or similar height to form layers. Then using these layers, the 

algorithm packs the layers until the height constraint is reached. 

Other packing problems very similar to the three-dimensional pallet-packing 

problem are the three-dimensional container-loading problem and the bin-packing 

problem. For all three of these problem types, the objective is to maximize volume 

utilization. However, the container-loading problem and the bin-packing problem have 

one less constraint than the three-dimensional pallet-packing problem. Since both bins 

and containers have vertical walls providing load stability, neither of these two problem 

types includes a load stability constraint. Load stability means the boxes do not have the 

tendency to tip over once packed. The three-dimensional pallet-packing problem on the 

other hand must include the stability constraint to ensure the packing of the boxes is 

stable. 

The distributor's three-dimensional pallet-packing problem is the most difficult of 

the packing problems. Unfortunately, expanding two-dimensional formulations to 

incorporate the third dimension becomes intractable for realistic problems. In addition, it 
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is very difficult to modify these formulations to meet the additional required constraints 

of the three-dimensional pallet-packing problem, particularly the stability constraint. 

1.3 Statement of the Problem 

The purpose of this research is to develop a three-dimensional pallet-packing 

algorithm that can be adopted by the Air Force to improve the current packing procedure. 

Few models have been developed to attack the three-dimensional palletization problem 

with non-uniform box sizes, and as mentioned in the previous section, not many of these 

models took a strict three-dimensional approach. Most algorithms attack the third 

dimension using some pseudo three-dimensional approach, such as the layered approach. 

This research employs a strict three-dimensional procedure for non-uniform box sizes 

that more efficiently packs pallets. 

1.4 Restrictions and Assumptions 

Due to the complexity of the three-dimensional palletization problem as well as 

the lack of previous work that has been accomplished in this area, many simplifying 

assumptions are employed in the formulation. The goal is to start simple and add 

complexity until we can pack Air Force 463L pallets. 

The first two restrictions are quite obvious. The first restriction is that only one 

box can occupy each pallet location. The second restriction is that the boxes are not 

permitted to extend beyond the dimensions of the pallet. Thus, the volume of all packed 

boxes must be less than the available pallet volume. Before a pallet is loaded onto a 

plane, the loadmaster secures the pallet by tying down cargo nets around the load. 
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Protruding boxes prevent the loadmaster from adequately securing the load. Therefore, 

to help the formulation "pack the boxes" so that they fit within the boundaries of the 

pallet, each box can be packed in any of its six orientations. 

Additionally, we assume in the formulation that no overhang is allowed when the 

boxes are packed. For a box to be packed, its entire base must be on top of either the 

pallet or other boxes. A further restriction is that all boxes are rectangular in nature. 

Both of these restrictions are commonly found in three-dimensional formulations. The 

first prevents the packed boxes from tipping, which adds to the stability of the load, 

whereas the second restriction simplifies the problem so spherical and cylindrical objects 

do not have to be accounted for in the formulation. 

Generally, Air Force 463L pallets are "cubed out" before they are "grossed out" 

(Taylor, 1994). This means the total available volume of the pallet is generally filled 

before the allowable weight limit is reached. For this reason, the weight of the boxes is 

initially omitted from the formulation. Therefore, all constraints dealing with weight are 

omitted. 

The first weight constraint omitted is the constraint ensuring the weight of all 

packed boxes does not exceed the available weight of the pallet. The second weight 

constraint omitted ensures heavier boxes are placed below lighter boxes. The third 

weight constraint omitted is the center of gravity constraint. For safety reasons, the Air 

Force requires that the center of gravity of a load is within four inches of the center of the 

pallet. 

Another constraint not included in this formulation is the load stability constraint. 

This constraint is omitted since each box is required to have a complete foundation under 
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it. Additionally, we are omitting the constraint which ensures the top of the load is as 

close to level as possible. This is required so that when the cargo net is thrown over the 

load, boxes do not shift or fall. Lastly, we are only concerned with packing boxes onto 

one pallet. These assumptions aid in the development of a formulation strictly concerned 

with the placement of boxes; yet allows for future modifications increasing the realistic 

nature of the formulation. 

1.5 Overview 

Chapter Two presents a detailed review of past work accomplished in this field of 

study and describes some of the solution techniques used by others. In addition, it 

touches upon a couple of commercial three-dimensional pallet-packing software 

packages available for purchase. Chapter Three describes in detail the development of 

the formulation and the constraints in the formulation. Since for larger, more realistic 

problems the number of variables increases exponentially, we also discuss in Chapter 

Three the heuristic applied to solve the problem's formulation. Lastly, Chapter Four 

provides a formal conclusion and recommendations for follow-on research. 
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Chapter 2 - Literature Review 

2.1 Introduction 

Much of the previous work on packing problems pertains to the two-dimensional 

packing problem. Yet in recent years with the advancements in computer technology and 

the advent of new solution techniques, there has been an influx of research and published 

papers in the realm of the three-dimensional pallet-packing problem. Unfortunately, the 

three-dimensional pallet-packing problem is a NP-hard problem; thus, for relatively large 

problems, the optimal solution can not be found in a reasonable amount of time. For this 

reason, much of the research on the three-dimensional palletization problem includes the 

implementation of a heuristic to find a good solution. 

"A heuristic is a technique which seeks good (i.e., near optimal) solutions at a 

reasonable computational cost without being able to guarantee either feasibility, or 

optimality, or even in many cases to state how close to optimality a particular feasible 

solution is" (Reeves, 1995). Instead of having to search the entire solution space and 

enumerate all possible solutions to find the optimal solution, a heuristic provides a means 

for smartly searching the solution space, examining only those areas where the optimal 

solution most likely resides. The heuristic will not necessarily converge on the optimal 

solution; yet, they generally provide solutions close to optimal in a reasonable amount of 

time. 

The remainder of this chapter reviews past research pertaining to the three- 

dimensional pallet-packing problem. Additionally, it reviews a couple of the commercial 

pallet-packing software packages available for purchase. Lastly, it reviews the 
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application of heuristics to the three-dimensional pallet-packing problem, specifically the 

application of the genetic algorithm to solving the three-dimensional palletization 

problem. 

2.2 Three-Dimensional Pallet-Packing Problem 

For nearly twenty years both Kathryn A. Dowsland and William B. Dowsland 

have been researching packing problems. Most of their earlier work focuses on the two- 

dimensional pallet-packing problem, yet they do address the three-dimensional packing 

problem. In a combined packing overview, one paper suggests that, on average, a three- 

dimensional algorithm will better load boxes on a pallet. However, they state this will 

come at an expensive computational cost and there will always be situations when a 

manual packing will more efficiently pack a pallet (Dowsland and Dowsland, 1992). 

William Dowsland (1991) states that since this is such a new field, much of the 

published work regarding the three-dimensional palletization problem declares successful 

implementation, but fails to provide the reader with any clear measure of scientific 

success. Since this is such a new area of study and many different methods are being 

attempted, any work illustrating a successful implementation of an algorithm is 

published. Scientific results stating how well a particular method performed on the three- 

dimensional pallet-packing problem are generally not provided, yet this is the information 

most useful to those performing follow-on research as it dictates what methods to avoid, 

or what methods to pursue further. 

Dowsland addresses many of the methods used by researchers to pack pallets in 

the third dimension. Unfortunately, he states many of these methods will become 
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intractable when extended to larger, more realistic problems (Dowsland 1991). Two 

methods discussed are the layered approach and the 'L' packing approach. The idea 

behind the layered approach is grouping boxes of the same height together and packing 

that group along the bottom of the pallet. Boxes of the same height are continually 

grouped and then packed as the next layer on the pallet. This continues until the height 

constraint is reached. If there are not enough boxes of the same height to fill a layer, then 

the algorithm searches for boxes closest in height and packs them as a layer. 

The problem with using the layered approach when packing in three dimensions is 

accounting for the stability of the load and the weight of the boxes. Moreover, if there 

are many boxes with different heights, the packing efficiency drops. It is generally good 

practice to first pack the larger, heavier boxes on the pallet to provide a foundation for the 

other boxes. However, a layered approach will pack the boxes with the same height first 

no matter their weight or volume. Thus, when using the layered approach in three 

dimensions, there are numerous additional checks the algorithm must perform to ensure 

the packing satisfies these additional constraints. 

The 'L' approach is also known as the wall building approach. As in the layered 

approach, we first want to group boxes with the same height and pack them as a layer 

along the floor of the pallet. Then, boxes with similar dimensions are grouped together 

and stacked vertically along one of the walls until the height constraint is reached. The 

algorithm continues alternating between packing the boxes in a horizontal layer and a 

vertical column until there are no more boxes that can be packed or there are no more 

boxes to pack. Han, Knott, and Egbelu (1989) applied this approach to the manufacturers 

pallet-packing problem and were able to achieve good results. 
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When packing different sized boxes, the main concern with this type of packing is 

how to ensure packing stability since this type of packing technique can produce gaps 

between the vertical columns of packed boxes (Dowsland, 1991). Additionally, when 

there are not enough boxes to completely fill the pallet, the algorithm produces 

unbalanced loads. Lastly, it is preferred to pack pallets upward from the base of the 

pallet. For these reasons, the 'L' approach has been known to produce loads that do not 

satisfy the stability constraint nor the center of gravity constraint, and thus this approach 

has not been used except for cases where the boxes to be packed are of uniform size. 

Abdou and Yang (1994) developed a multi-objective algorithm for the 

palletization problem. They attempt to maximize both pallet utilization and stability. 

Stability is needed to prevent the boxes from toppling when packed. To prevent this, 

larger, heavier boxes should be packed below the smaller, lighter boxes. This provides a 

solid foundation for the next layer of boxes. In their approach, Abdou and Yang attempt 

to simplify the problem by grouping boxes with the same height. 

In addition, the authors develop blocks that are subsets of the actual pallet. They 

try to maximize the space filled within each block, by either filling it with a large box or 

with several smaller boxes. As expected, when new blocks are generated, the criteria is 

to use boxes that have not been previously selected, use the bigger boxes first, and lastly 

use as few boxes as possible.   This makes it easier to pack the next layer. By packing the 

larger boxes first, either the volume of the block will be filled, or the larger boxes provide 

a good foundation for the boxes placed above them. 

Abdou and Yang's algorithm has many features required by the Air Force. 

However, to increase the capability of this model, boxes with similar heights but different 
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base dimensions should not be grouped together. Abdou and Yang's current model uses 

a layered approach to attack the third dimension. Although the boxes are not the same 

size, they are grouped by height so that the packing can be performed in layers. By 

disallowing this requirement, the complexity of the problem increases, however the 

opportunity for a better solution increases as well. 

Abdou and Arghavani (1997) developed a three-dimensional algorithm that 

arrives at its solutions through two separate objective functions. The first objective 

function attempts to maximize the packed base area of the pallet. Additionally, sub-areas 

are defined within this objective function. The second objective function seeks to 

maximize the stacking column for each sub-area. 

Abdou and Arghavani (1997) discuss some constraints for their three-dimensional 

pallet-packing problem. One constraint ensures all boxes are packed within the confines 

of the pallet. Another ensures the stacking heights are less than or equal to the maximum 

pallet height. A third constraint limits the number of each type of box available while a 

fourth constraint allows the boxes to be packed in only one of two orientations. This is 

also known as the 'face up' constraint where the boxes can only rotate 90° around the 

vertical axis. 

Ivancic, Mathur, and Mohanty (1989) attack the three-dimensional packing 

problem to minimize the number of pallets required to hold all the boxes. This is 

basically the same as maximizing pallet efficiency. The authors formulate the problem as 

a multidimensional knapsack problem and use a greedy heuristic to pack the boxes. 

Instead of packing boxes by using the "biggest bang for the buck" philosophy, their 

algorithm favors packing the box type having the most boxes left unpacked or those with 
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smaller volumes. The algorithm avoids packing boxes that trap unpacked space. This 

algorithm does allow the boxes to be packed in any of the six orientations, yet a major 

drawback of this heuristic is that it requires knowledge of all the packing patterns, which 

for large problems is computationally prohibitive (Ivancic, Mathur, and Mohanty, 1989). 

Bischoff, Janetz, and Ratcliff (1995) developed a three-dimensional heuristic 

approach to packing multiple-sized boxes onto a pallet, also known as the "Distributor's 

Pallet Packing Problem." Their objective function maximizes pallet utilization while 

ensuring the load is stable. The algorithm developed by the authors packs the boxes in 

layers allowing up to two different box types per layer; however, it gives preference to 

those layers which can be filled by a single box type. 

The authors found the layering approach provided better stability than those 

algorithms which pack boxes in vertical columns. Additionally, the algorithm prefers 

larger gaps between boxes to smaller ones. The larger the gap, the better the chance a 

box will be able to fill the vacancy. The algorithm did produce stable loads, but as the 

number of various sized boxes increased, the packing efficiency declined. 

Bischoffand Ratcliff (1995) published a follow-on to the article described above. 

They packed pallets in layers allowing at most two different box sizes per layer. The 

focus of this research was to determine whether it is better to load multiple pallets 

simultaneously or pack them sequentially. Simultaneous packing means that all the 

pallets are loaded at the same time, whereas sequential packing means that one pallet is 

fully loaded before any boxes are placed on the next pallet. The authors found packing 

the pallets sequentially to be the better packing method. 
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Fuh-Hwa and Hsiao (1997) address the three-dimensional "manufacturer's pallet 

loading problem." Since all the boxes are the same size, the authors use a layered 

approach to pack the boxes. The boxes are packed with any orientation; however, they 

must be packed so that the height of each layer is constant. While a primary objective is 

to maximize the number of boxes on each pallet, stability is also important. They check 

to ensure no packed vertical columns are removed from the rest of the packing. They 

also ensure each box has a solid base underneath it. Lastly, for problems where the boxes 

are not all the same size, they pack the heavier, larger boxes on the bottom of the pallet 

providing a solid foundation for the remaining boxes. 

Fuh-Hwa and Hsiao have developed a three-dimensional heuristic to maximize 

the pallet load. They model this problem with boxes of four different sizes arriving 

randomly at a loading dock. Once at the loading dock, the critical path method is used to 

determine the placement and sequence of the boxes. For example, for a box to be 

packed, there must be a solid, uniform foundation for that box. Although the technique 

may be transferable to the Air Force's pallet-packing problem, the scenario is different. 

The authors developed this model to pack boxes arriving on a conveyor belt as opposed 

to packing boxes already at the loading site. 

Tsai, Malstrom, and Kuo (1993) developed an exact model for the three- 

dimensional pallet-packing problem. Unfortunately, as the number of boxes increases, 

the computation time required to find the optimal solution increases and limits the 

practical use of this model. However, the authors do provide the constraints required to 

ensure no two boxes overlap and that all boxes, if packed, are packed within the confines 

of the pallet. 
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The authors' model did not include the constraints that address the issue of load 

stability. The model was designed for the single pallet case and thus the objective of the 

model was to maximize the packing volume. They did not consider the case when there 

are multiple pallets to be packed. Lastly, the authors did allow the boxes to be packed in 

one of two orientations; the boxes were allowed to rotate 90° around the vertical axis. 

Tsai, Malstrom, and Kuo introduced a heuristic to solve the three-dimensional 

pallet-packing problem. This paper focuses on packing boxes arriving via a conveyor 

belt. Additionally, this problem is concerned with packing multiple pallets 

simultaneously. The arrival of different sized boxes on a conveyor belt does reflect how 

boxes arrive in distribution centers, however it is quite different from this research's 

problem. 

2.3 Previously Contracted Efforts 

The Air Force has been examining this problem for many years in an attempt to 

minimize the costs associated with shipping cargo. In addition to the past research efforts 

at the Air Force Institute of Technology (AFIT), the Air Force has contracted this 

problem to companies outside the DoD. Both the Computer Science Corporation (1997) 

and TASC, Inc. (1998) performed research on this topic. 

The Computer Sciences Corporation's research states that although a strict 

mathematical model which produces optimal loads may not be available, heuristic 

techniques are available which could enhance load efficiency as well as reduce the time it 

takes to produce a load (Computer Sciences Corporation, 1997). Thus, they do feel a 

software package can be developed which takes into account the necessary packing 
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constraints and is able to find a close to optimal packing. Additionally, they state it is 

crucial for the software package to provide instructions describing exactly how to achieve 

the packing found by the software. 

The research provided a review of current systems employed by the Air Force 

and a review of existing literature on the pallet-packing problem. Unfortunately, none of 

the existing systems used by the Air Force specifically address packing pallets. 

Therefore, the research reviewed existing literature on the packing problems and 

commentated on how the current research pertained to the Air Force's requirements. 

TASC, Inc. researched the three-dimensional pallet-packing problem. The initial 

focus of their research was the feasibility of finding optimal solutions. However, as they 

became more familiar with the problem and its inherent complexity, the focus of the 

research changed to the feasibility of finding reasonably good solutions (TASC, 1998). 

Before they looked at solving the problem, they performed a literature search on past 

pallet-packing efforts. They found a lot of research has been performed on this problem, 

yet none of the research was complete in the sense that it encompassed all the 

requirements of the Air Force. 

The TASC research provided a list of all the packing rules and constraints used by 

the Air Force. While some of the constraints are required, other constraints are either 

recommended or optional. 

Before introducing the pallet-packing software they developed, TASC described a 

few of the existing pallet-packing software packages. The software package they 

developed was LoadPal (short for load pallet) (TASC, 1998). This program was written 
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in C++ and contained most of the major constraints. Unfortunately due to time 

constraints, the program did not include a Graphical User Interface (GUI). 

After testing their software package, they found that their approach was comparable 

to other existing software packages. However, they stated that their package could be 

expanded to include the other required constraints and employ a better solution technique 

which would provide statistically better solutions than those found from existing software 

packages. They suggest the cost of developing this product would be $150,000 and it 

would require six months of effort. 

2.4 Commercial Packing Software 

The Remarkable Software Company located in New Zealand is selling a three- 

dimensional pallet-packing software package (PowerPak™) that may possibly be of use 

to the Air Force. They have developed PowerPak™ to allow boxes with different sizes 

and attributes be loaded into the program. There is also no limitation on the size of the 

pallet or the size of the boxes as long as each uses the same units. Additionally, there is 

no limit on the number of boxes that can be input into the system. However, the program 

only allows the user to pack one pallet at a time. 

PowerPak™ also allows the user to input the maximum allowable weight for the 

pallet as well as the weight of each box. Using these values, the program determines the 

packing of boxes onto the pallet to minimize empty space. Once a solution is found, the 

software allows the user to rotate the pallet to see where each box was placed, but more 

importantly it provides an Optimized Packing Sequence Report. This report allows the 

user to achieve the computed packing through a step by step process. 
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Unfortunately, there is little insight into which technique(s) PowerPak™ uses to 

pack boxes on a pallet. The product does take weight into account, making sure the 

weight of all packed boxes does not exceed the allowable pallet weight, but it is unclear 

whether or not the model ensures heavier boxes are packed towards the bottom. 

Another commercial software product pertaining to pallet loading is Capesystems. 

Capesystems allows the user to pack up to three pallets simultaneously. Moreover, this 

product does not limit the shapes of the items to be packed. It packs cases, cylinders, 

ovals, and trapezoidal items. Three different modules are available to deal with the range 

of pallet-packing problems. 

The first module is Single Product and is used for the loading of identically sized 

boxes. For a large problem, this module's computation time is around 15 seconds. The 

next module, Display Pallet, allows the user to load products of up to 40 different sizes. 

However, this module has a limit on pallet dimensions. Each dimension must be less 

than 100 inches. Therefore, since the length of the 463 L pallet is 108 inches wide, this 

module would not meet Air Force requirements. Depending on the number of different 

sized boxes to be packed, the solution time for this module is around one minute. For 

both of these products, the program uses a series of logistical algorithms to pack the 

boxes in layers or in columns. 

The last module is concerned with packing products with different dimensions 

perpendicular to the pallet. This term means that the items packed must be packed 

upright. Since this research is not concerned with non-rectangular shapes, little 

information was gathered on this module. 
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However, they do have another product, Truckful, which handles the larger sized 

pallets such as the 463 L pallet. This product was designed more for logistics than it was 

for optimization, thus the packing is not as efficient as one would get using either of the 

other two modules. Since this module allows for such a diverse range in problem size, 

Capesystems provided no estimate regarding the average solution time using Truckful. 

2.5 Heuristics 

Heuristics are commonly applied to packing problems so that realistically large 

problems can be solved in a reasonable amount of time. Although the solutions are not 

guaranteed to be optimal or even close to optimal, heuristics generally provide good 

solutions. A variety of heuristics have been applied to the three-dimensional pallet- 

packing problem, but the three most common heuristics used are the greedy heuristic, 

simulated annealing and genetic algorithms. 

2.5.1 Greedy Heuristic 

A greedy heuristic is a simple approach to the packing of the boxes on a pallet. 

The algorithm packs the largest boxes first and continues down the list of boxes until no 

more boxes can fit on the pallet. Unfortunately, the greedy heuristic does not necessarily 

provide efficient loads and thus is not used except to provide starting solutions for other 

heuristic techniques. 
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2.5.2 Simulated Annealing 

Simulated annealing is another heuristic that has been utilized in packing 

problems. K. Dowsland (1993) used simulated annealing techniques on the two- 

dimensional packing problem. Simulated annealing is a probabilistic search technique in 

that moves are selected with some associated probability. 

For the packing problem, simulated annealing begins with some initial solution. 

This solution can be found through the use of a greedy heuristic or it can be as simple as 

starting with an empty pallet. The algorithm then proceeds through the list of boxes and 

picks a box at random to enter the packing. Entering that box into the packing is 

considered a "move." If that box increases pallet utilization while maintaining a feasible 

solution, then the move is accepted. However, if the move is infeasible, then a box is 

picked at random to be removed from the solution. All moves that increase pallet 

utilization are accepted as long as feasibility is maintained. However, if a move 

decreases pallet utilization, the move is only accepted according to some probability 

function designed by the user. 

In the initial stages of the algorithm, it is generally good practice to have the 

algorithm accept both improving and non-improving moves. This prevents the search 

from converging on a local optimum. Then as the search proceeds, the algorithm should 

select fewer unimproving moves to encourage the algorithm to converge on the global 

optimum. This is referred to as the cooling schedule. It is defined by the user and is 

generally different for each problem. Defining a cooling schedule is a very difficult and 

timely process. "It is said that while simulated annealing is easy to get working it is 

difficult to get working well." (Dowsland, 1993) 
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2.5.3 Genetic Algorithms 

A third heuristic technique most commonly applied to pallet-packing problems is . 

genetic algorithms. Genetic algorithms exploit historical information to speculate on new 

search points with expected improved performance. Genetic algorithms are based on the 

ideas of natural selection and the goal is to start with a group of initial solutions, called a 

population, and use these initial solutions to guide the search to the optimal solution. The 

initial population can be randomly generated or it can be initialized using solutions from 

quick, greedy heuristic techniques. The initial population is referred to as the first 

generation. After each iteration, a new population is produced. The user must determine 

the number of iterations to perform or the number of generations to generate before 

terminating the search. 

Additionally, the user must determine the size of the population. This is a 

difficult parameter to assess since it varies for each problem type and problem size. If a 

population size is too small then there is an insufficient number of different solutions, the 

population is not diversified enough, and the genetic algorithms may converge on sub- 

optimal regions. On the other hand, an extremely large population provides too much 

diversification and genetic algorithms may fail to converge to even local optimal 

solutions. Additionally, with extremely large populations, the solution time increases 

drastically. Therefore, the goal is to find a population size which provides enough 

diversification with reasonable solution times to obtain good solutions. 

Once a population is established, members from that population are combined 

(mated) to produce new solutions (a new generation). Four genetic algorithm parameters 

determine which members of a population should mate, how they should mate, and which 
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candidate solutions should become the members of the next generation. These 

parameters are the selection strategy, crossover rate, mutation rate, and generation gap. 

The selection strategy determines which members of a population mate. 

Proportional selection, the elitist strategy, and rank-based selection are three of the more 

popular selection strategies. In each method, members are randomly selected, however 

the random selection differs for each strategy. Proportional selection is the most common 

of all selection strategies. This strategy proportionally assigns probabilities to candidate 

solutions based on their objective function value. Those solutions with better objective 

function values have a higher probability of being selected for mating. The elitist 

strategy is a variation of proportional selection that ensures the best candidate solution 

survives into the next generation (Grefenstette, 1990). The elitist strategy generally 

converges on solutions quicker than a completely random selection; however, it 

sometimes converges prematurely on sub-optimal locations. The ranking strategy ranks 

the candidate solutions and assigns probabilities based on their rank within the 

population. Thus, higher-ranking solutions have a greater probability of being selected 

for mating. 

Two basic operations are responsible for how the actual mating occurs. They are 

crossover and mutation. The idea behind crossover is that of exploitation. The goal of 

exploitation is to mate two parents associated with good solutions to produce offspring 

which have an improved solution. This continues until the genetic algorithm converges 

on a good solution or is kicked out ofthat region. Crossover combines selected portions 

of one parent with selected portions of the second parent to produce an offspring. 
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Generally, each solution is represented by a bit stream. Figure 2-1 provides an example 

of single-point crossover. 

Parent 1: 001001 || 1101 Child 1: 001001 || 1001 
Parent2: 010101 || 1001 Child2: 010101 || 1101 

Figure 2-1: Single-point Crossover 

There are numerous types of crossover operations that can be applied in a genetic 

algorithm. The most primitive type of crossover operation is the single-point crossover. 

The algorithm randomly chooses a place along the bit stream where the crossover should 

occur. In Figure 2-1, the vertical lines after the sixth bit signify the crossover point. 

Once this crossover point has been established, the algorithm takes the first group of bits 

from the first parent and combines them with the second group of bits from the other 

parent to produce a new offspring or child. Thus for Child 1, the first six bits come from 

the first six bits of Parent 1, while the remaining four bits come from the last four bits of 

Parent 2. For Child 2, the first six bits come from the first six bits of Parent 2, while the 

remaining four bits come from the last four bits of Parent 1. 

Although single-point crossover is the simplest type of crossover, it is not 

necessarily the best type of crossover. In fact, single-point crossover limits the amount of 

information which is exchanged between the parents (Reeves, 1995). To combat this, 

multi-point crossover can be applied to improve the performance of a genetic algorithm. 

Another type of crossover that can be applied is 'string-of-change' crossover. 

(Reeves, 1995) This is a special type of single-point crossover that should be applied 

only when the bit stream of both parents to be mated is similar through the first few bits. 

This is because if both bit streams are similar through the first few bits and the single- 
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point crossover occurs in this location, then the crossover will fail to produce a new 

string. Thus, 'string-of-change' crossover checks the bit streams to ensure the crossover 

point produces offspring with different bit streams than the parents. 

A third type of crossover is referred to as the generalized crossover, also called 

uniform crossover (Reeves, 1995). For this type of crossover, after the parent bit streams 

have been chosen, a third bit stream of equal length to the other bit streams is randomly 

generated. Figure 2-2 below provides an example of generalized crossover. 

Parent 1: 0010011101 Child 1: 0111011101 
Parent 2: 0101011001 Child 2: 0000011001 
Random Bit Stream:   1010010110 

Figure 2-2: Generalized Crossover 

For Child 1, wherever there is a ' 1' in the random bit stream, the corresponding 

bit is taken from Parent 1, and wherever there is a '0' in the random bit stream, the 

corresponding bit is taken from Parent 2. Thus, the random bit stream provided in Figure 

2-2 implies that for Child 1, the 1st, 3rd, 6th, 8th, and 9th elements are taken from Parent 1, 

while the 2nd, 4th, 5th, 7th, and 10th elements are taken from Parent 2. It is the opposite for 

Child 2. Wherever there is a ' 1', the element is taken from Parent 2, and wherever there 

is a '0', the element is taken from Parent 1. These three types of crossover are the most 

common types and have been successfully implemented in past research. 

Mutation attempts to jump the solution out of the current solution space by adding 

exploration to the search. The purpose of mutation is to prevent the genetic algorithm 

from quickly converging on a sub-optimal solution and is applied after the crossover has 

taken place. Mutation occurs when the value of a single bit in a solution is flipped. For 
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example, if a bit chosen for mutation has a value of 1, after mutation its value is changed 

to 0. The user defines how much mutation to include in the problem, but generally the 

mutation rate is less than five percent. Each bit in the bit stream has an equal probability 

of being mutated. Therefore, based on the probability introduced by the user, the 

algorithm determines which bit(s) to mutate. 

The generation gap determines the percentage of offspring to include in the next 

generation. There are two methods used to determine this; the generational genetic 

algorithm and the incremental genetic algorithm. In the generational genetic algorithm, 

all offspring are included in the next generation, completely replacing the previous 

generation. In the incremental genetic algorithm, only selected offspring are included in 

the next generation. Generally, they replace those members from the previous generation 

associated with the worst solutions. 

It is generally good practice to replace a majority of the parent generation, yet it is 

also important to allow some of the parent generation to survive from one generation to 

the-next. When only a small portion of the parent generation is replaced, the algorithm 

frequently fails to converge on a feasible solution. On the other hand if we replace the 

entire parent generation, then it is possible that we are removing good candidate solutions 

from our solution space. However, most genetic algorithms maintain a list of the best 

solutions found to date. Therefore, even if an entire population is replaced, the genetic 

algorithm will remember the best solutions found. 

The algorithm continues these operations until the technique has converged on the 

best solution at which time each solution in the population will have basically the same 

bit make-up. 
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A weakness of genetic algorithms is its handling of constraints. Constraint 

violations are penalized in an objective function. The appropriate form of these 

constraint penalty functions can be difficult to determine; this is particularly true in this 

research. 

2.6 GENESIS 

Genetic Search Implementation System, GENESIS, is a program written in C- 

code that performs all the genetic algorithm operations (Grefenstette, 1990). All that is 

required is for the user to write his own evaluation function which determines a candidate 

solution's objective function value. 

The user determines how many generations the algorithm should generate as well 

as the size of the initial population. The user also determines how to generate the initial 

solutions. It can be done randomly, or the initial population can be 'seeded' with 

solutions found by a greedy heuristic. The user also determines which selection strategy 

to use, the crossover rate, and the mutation rate. 

After this has been established, GENESIS sends the individual member of the 

current population to a user-defined program. The solution is sent in a bit stream to the 

evaluation function. When all the decision variables are binary variables, the length of 

the bit stream is equivalent to the number of variables. The user-defined evaluation 

function checks the feasibility of the solution and assigns penalties for constraint 

violations. After the program determines the objective function value (including 

penalties), the value is sent back to GENESIS. After all the members of the population 

have been evaluated, GENESIS performs all the operations necessary to produce a new 
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generation. Once a new generation is produced, these solutions are again sent to the user- 

defined program. This procedure repeats itself until the program reaches the number of 

generations specified by the user. Figure 2-3 provides an illustration of what we have 

just described. 

Randomly generate an initial population 
M(0) 

v 

^ 
Compute and save fitness u(m) for each 
individual m in the current population 
M(t) 

w 

v 

Define selection probabilities p(m) for 
each individual m so that p(m) is 
proportional to u(m) 

Loop for a user-defined 
number of generations 

v 

Generate M(t+1) by probabilistically 
selectine individuals from Mff) to 
produce offspring vis \ genetic operators 

Figure 2-3: Graphical Depiction of how GENESIS Operates 

2.7 Summary 

There has not been a large amount of research performed on the three-dimensional 

pallet-packing problem. However, the problem has gathered interest in the operations 

research community. Appendix A presents an annotated bibliography of papers pertinent 

to packing problems. 
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In the next chapter we describe in detail the development of the three-dimensional 

pallet-packing formulation, the constraints included in the formulation, and the heuristic 

used to test and expand the formulation to handle larger problems. 
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Chapter 3 - Results 

3.1 Mathematical Formulation 

The initial focus of this research was on the development of a strict three- 

dimensional mathematical formulation for the distributor's pallet-packing problem. We 

chose a 0-1, nonlinear model. The objective of the formulation is to minimize unused 

packing space. To determine the amount of unused space, we broke the available 

packing space on the pallet into cubic units. Since the dimensions for both the pallet and 

boxes are given in inches, the cubic units of the pallet are (inches)3. Therefore, the 

number of cubic units available for packing equals the volume of the pallet. 

We want the formulation to mimic actual packing procedures, so constraints force 

the algorithm to generate solutions in the same manner as a loadmaster. Therefore, the 

formulation allows the boxes to be packed in any of their six orientations. 

The constraints included in the model ensure boxes are packed with the correct 

volume and dimensions, the available packing volume is not exceeded, each box has a 

complete foundation on which to be packed, and at most only one box occupies each 

cubic unit on the pallet. Following is a descriptions of the variables used in the 

formulation. 

E = The amount of unoccupied space on the pallet 

L - The length of the pallet 

W = The width of the pallet 

H = The height of the pallet 

N = The number of boxes to be packed 

PV = The pallet volume available for packing 
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Lx = The length of box x; where x goes from 1 to N 

Wx = The width of box x; where x goes from 1 to N 

Hx = The height of box x; where x goes from 1 to N 

Vx = The volume of box x; where x goes from 1 to N 

Ax - The number of adjacent faces for each box x; where x goes 
from 1 to N (we explain this concept in detail following the 
presentation of the formulation) 

Bx       =        Binary variable used to represent whether box x is packed or not; 
where x goes from 1 to N 
0 = Box x is not packed 

1 = Box x is packed 

Bijhc     =        Binary variable used to represent whether part of box x is packed 
in pallet location i, j, k; where x goes from 1 to N, where i goes 
from 1 to L, where j goes from 1 to W, where k goes from 1 to H 
0 = Box x is not packed in pallet location i, j, k 
1 = Box x is packed in pallet location i, j, k 

PLxy    =        Binary variable which counts the number of times when summing 
across the length of the pallet the summed value for box x equals 
the length ofthat box; where x goes from 1 to N, where y goes 
from 1 to (W*H) 
0 = Length of box x along length y does not equal Lx 
1 = Length of box x along length y does equal Lx 

PWxy    =        Binary variable which counts the number of times when summing 
across the width of the pallet the summed value for box x equals 
the width ofthat box; where x goes from 1 to N, where y goes 
from 1 to (L*H) 
0 = Width of box x along width y does not equal Wx 

1 = Width of box x along width y does equal Wx 

PHxy    = Binary variable which counts the number of times when summing 
across the height of the pallet the summed value for box x equals 
the height ofthat box; where x goes from 1 to N, where y goes 
from 1 to (L*W) 
0 = Height of box x along height y does not equal Hx 

1 = Height of box x along height y does equal Hx 

The formulation is the following: 

Minimize E 
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Subject to the following constraint sets: 

( N 

YJB**Vx 
\x=l J 

+ E = PV (1) 

Y^Bijh: < 1      V i from 1 to L, j from 1 to W, k from 1 to H (2) 
x=\ 

]T Bijkx - By{k+i)x > 0     V i from 1 to L, j from 1 to W, k from 1 to (H-1)    (3) 
x=\ 

L     W    H 

HE** 
V '=' y=i *=i     j 

-Bx*Vx = 0    VxfromltoN (4) 

r H    W   L-\ \      f H     L   W-\ ~\ 

\k=\ j=\  (=1 J      \k=\  (=1   y=l 

+ 
W    L   H-\ \ 

V x from 1 to N       (5) 

Bijkx * Bij{k+\)x 
^y=l ,'=i k=\ 

■Ax*Bx = 0 

^Bijkx = Lx*PLxy      V j from 1 to W, k from 1 to H, x from 1 toN, y from 1 to 

(W*H) (6a) 

W*H 
YJPLxy = Wx*Hx     VxfromltoN 
y=l 

(6b) 

W 
EBijkx = Wx*PWxy    V i from 1 to L, k from 1 to H, x from 1 to N, y from 1 to 
7=1 

(L*H) (6c) 

L*H 
Y;PWxy = Lx*Hx     VxfromltoN 
y=\ 

(6d) 

H 
^YjBijkx = Hx*PHxy    V i from 1 to L, j from 1 to W, x from 1 to N, y from 1 to 
k=\ 

(L*W) (6e) 
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L*W 
YJPHxy = L**Wx      VxfromltoN (6f) 

Bijkx, Bx, PLxy, PWxy, and PH^ = 0 or 1 

The objective of this formulation minimizes the amount of unused packing space 

on the pallet. Constraint (1) ensures the volume of the packed boxes is less than the 

available volume that can be packed. Constraint (2) is a set of constraints ensuring no 

more than one box is placed in each cubic location on the pallet. Therefore, the number 

of constraints in this set is equal to L*W*H. 

Constraint (3) ensures each box has a foundation on which to be placed. This 

helps ensure load stability. The number of constraints in this set is equal to L*W*(H-1). 

Constraint (4) ensures each packed box is packed with the correct volume. The number 

of constraints in this set is equal to the number of boxes. 

Constraint (5) is the first of two constraints ensuring each box is packed with the 

correct dimensions. We broke down each box into cubic units, where the number of 

cubic units for a box is equal to the volume of the box. Then to ensure each box was 

packed with the correct dimensions, we developed a formula to determine how many 

adjacent faces exist for a box with a given length, width and height. Figure 3-1 illustrates 

what we define as adjacent faces. 
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Figure 3-1: Box with Length, Width, and Height = 2 

Figure 3-1 illustrates all eight cubic units of a box with length, width, and height 

dimensions of two. The lines intersecting the faces define the number of adjacent faces 

with regards to the length and the width of the box. For this box there are eight adjacent 

faces with regards to length and width. The stars represent the number of adjacent faces 

with regards to the height of the box, which in this case equals four. Therefore, there are 

12 adjacent faces for a box with these dimensions. 

Counting the adjacent faces of each box size is a tedious assignment, especially as 

box dimensions increase. Therefore, we developed an equation to determine the number 

of adjacent faces for a box with given dimensions. This equation is shown below. 

L Length of Box 
W z         Width of Box 
H Height of Box 
A Number of adjacent Faces 

A = (L-\\W*H)+(W-\\L*H)+(H-\\L*W) (7) 

The first term of equation (7) finds all of the adjacent faces in the direction of the 

length. The number of adjacent faces along the length of a box is always equal to the 

length of the box minus one unit of length. This value is multiplied by the width and the 
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height of the box to determine the number of adjacent faces for the length dimension. 

The same method is applied to the width and the height of the box to determine the 

number of adjacent faces for each of those dimensions. The adjacent faces for each 

dimension are added together to determine the total number of adjacent faces for a box. 

Unfortunately, ensuring a box is packed with the correct volume and the correct 

number of adjacent faces does not ensure a box is packed with the correct dimensions. 

The figure below illustrates the phenomenon when the original five constraints do not 

ensure a box is packed with the correct dimensions. 

Box A BoxB 

Figure 3-2: Ensuring Correct Box Dimensions 

Figure 3-2 provides a depiction of two possible ways to pack a box with a volume 

of four and three adjacent faces. Box A is packed correctly while Box B is not. However 

in both cases the volume of the packing and the number of adjacent box faces are correct. 

Therefore, a sixth constraint is required to ensure all boxes are packed with the correct 

dimensions. 

Constraint (6) is broken up into three different sections with two equations within 

each section. Each section represents a dimension. For example, equation (6a) illustrates 

that for each width and height pair, and for each box, the formulation sums over the 

length and counts how many units are occupied for each box. If the number of units 
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equals the actual length of the box then the binary variable, PL^, is set to one, otherwise 

it is zero. 

Equation (6b) ensures the correct length of each box occurs the correct number of 

times. The number of correct lengths for a box equals WX*HX. For a box with length, 

width, and height dimensions of two, there will be four times when the packed length of a 

box (for a given width and height) equals two. 

The other two sets of equations (6c and 6d, and 6e and 6f) ensure both the width 

and the height of each box is correct throughout the pallet. For each box, equations (6a, 

6c, and 6e) are performed W*H, L*H, and W*L times respectively, while equations (6b, 

6d, and 6f) are performed once for each box. The constraints in constraint sets (5) and 

(6) work together to ensure boxes are packed with the correct dimensions. 

As the size of the problem increases, the number of variables and constraints 

required to formulate the problem becomes very large. The equations below illustrate the 

number of variables and constraints for a problem with iV boxes and pallet dimensions L, 

W,andH. 

Variables   =  N + (N*L*W*H) + (N*W*H) + (N*L*H) + (N*L*H) (8) 

Constraints   =   1+5N+(L*W*H)+(L*W*(H-1))+(W*H*N)+(L*H*N)+(L*W*N) (9) 

3.2 Results from LINGO 

For a small problem, we tested the formulation using HYPERLINGO, an 

optimization software package developed by LINDO Systems Inc. A small problem 

stays within the limits of the software, produces reasonable run times, and allows a 
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validation of the model results (e.g., we can check the packing). The test case developed 

had three separate boxes. Table 3-1 presents the characteristics of each box. 

Table 3-1: Box Characteristics for the Three Box Test Case 

Box Length Width Height Volume Adj. Faces 
1 3 3 2 18 33 
2 3 2 3 18 33 
3 3 2 1 6 7 

Additionally, the pallet the boxes were being packed on had a length, width, and 

height of three. Therefore, we knew the optimal solution was three, meaning that only 

three units of empty space should be left after the boxes were packed. Either box 1 or 2 

would be packed and then box 3 would also be packed. This simple test case would 

allow us to determine if the constraints were functioning properly and if the formulation 

in general was performing as expected. 

Without constraint (6), the boxes were packed with the correct dimensions. 

Therefore, to simplify the problem and to allow the boxes to be packed in any of their six 

orientations, we did not include constraint (6) in our HYPERLINGO formulation. 

As with any nonlinear code, HYPERLINGO can only find locally optimum 

solutions as opposed to the global optimal solution. Therefore, we forced the program to 

pack either boxes one and three or boxes two and three to ensure it would at least follow 

the packing rules defined by the constraint sets provided in the previous section.   The 

coded formulation and the outputted results, which illustrate the boxes were packed 

feasibly, are both shown in Appendix B. 
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3.3 Results from GENESIS 

As the pallet dimensions and the number of boxes increase, the three-dimensional 

packing problem gets large and complex and finding a solution requires an unreasonable 

amount of time. To expand the size of the problem we applied a heuristic solution 

technique. We applied a genetic algorithm, using the GENESIS (Genetic Search 

Implementation System) software product. 

Since the variables for this program are binary, the solution sent to the evaluation 

program by GENESIS has a length equal to the number of variables. For this problem, 

the number of variables is equal to the pallet volume times the number of boxes.   For the 

simple three box test case, the number of variables sent from GENESIS to the evaluation 

function is equal to 81. 

In order to measure the performance of the genetic algorithm, we applied the 

same test case we used in HYPERLINGO. Penalties were assigned for each constraint 

violation to get the genetic algorithm to converge near the optimal solution. Therefore 

each time a constraint was violated, a penalty was assigned. Testing showed the 

assignment of penalties was critical. 

Appendix C shows the code for the evaluation function we developed. Table 3-2 

shows the final penalties used for each constraint. Table 3-3 shows the genetic algorithm 

parameters used with GENESIS. 
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Table 3-2: Penalties for Constraint Violations 

Constraint Violation Penalty(Per violation) 
Constraint 1 500 
Constraint 2 500 
Constraint 3 500 
Constraint 4 100 
Constraint 5 100 
Constraint 6 100 

Table 3-3: Parameter Setting for the Three Box Test Case 

Parameter Setting 
Population size 50 
Crossover rate 0.85 
Mutation rate 0.01 

Generation gap 0.9 
Selection strategy Elitist 

Using the penalties from Table 3-2 and the parameter settings from Table 3-3, the 

genetic algorithm converged on the optimal solution in less than 200 generations. 

Therefore, a population size of 50 provided enough diversification to force the genetic 

algorithm to converge on the optimal solution. A crossover rate of 0.85 signifies that 

single-point crossover occurs on 85% of all pairs to be mated. A mutation rate of 0.01 

indicates there is a 1% chance a bit will be mutated. Replacing 90% of parent solutions 

with offspring worked best for the generation gap. Lastly, we applied the elitist strategy 

to ensure the best characteristics are maintained from generation to generation. The 

complete input file and solution are shown in Appendix D. 

The second test case, a 3 by 3 by 3 pallet with six different sized boxes, is shown 

in Table 3-4. 
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Table 3-4: Box Characteristics for the Six Box Test Case 

Box Length Width Height Volume Adj. Faces 
1 2 2 2 8 12 
2 3 2 1 6 7 
3 1 2 2 4 4 
4 2 1 1 2 1 
5 1 3 1 3 2 
6 1 1 1 1 0 

Since we doubled the number of boxes to be packed, the length of the bit stream 

sent to the evaluation function also doubled. The bit stream consisted of 162 bits. Since 

the volume of all the boxes is 24 and the available packing volume is 27, the optimal 

solution for this problem packs all six boxes and leaves three empty units on the pallet. 

We used the same penalties as those used in the three box problem, but modified 

the genetic algorithm parameters. Table 3-5 shows the parameter settings we used for 

this problem. 

Table 3-5: Parameter Settings for the Six Box Test Case 

Parameter Setting 
Population size 100 
Crossover rate 0.95 
Mutation rate 0.01 

Generation gap 0.9 
Selection strategy Elitist 

Since the solution space is larger for this problem, we increased the population 

size to 100. A crossover rate of 0.95 worked best for this problem. The other parameter 

settings remained the same as those used with the three box test problem. The entire input 

file and solution are presented in Appendix D. Using the penalties from Table 3-2 and 

the parameter settings in Table 3-5, the genetic algorithm converged on a solution 75% of 
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optimal in 655 generations. The algorithm packed all boxes except for Box 2. Figure 3-3 

shows how the boxes were packed on the pallet. A number inside of a square represents 

that a part of the numbered box is located in that pallet location. 

Bottom Layer Middle Layer Top Layer 

Figure 3-3: Packing of the Six Box Test Case 

Our third test problem came from an article by Abdou and Arghavani (1996). 

The problem consists of a much larger pallet and eleven boxes. The length of the pallet is 

seven units while the width and height are four units. The characteristics of the eleven 

boxes are shown in Table 3-6. 

Table 3-6: Box Characteristics for the Eleven Box Test Case 

Box Length Width Height Volume Adj. Faces 
1 2 2 1 4 4 
2 2 2 1 4 4 
3 2 2 2 8 12 
4 3 2 1 6 7 
5 3 2 2 12 20 
6 3 2 2 12 20 
7 3 2 3 18 33 
8 4 2 1 8 10 
9 4 2 1 8 10 
10 4 2 2 16 28 
11 4 2 2 16 28 
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For this problem, Abdou and Arghavani (1996) were able to pack the pallet with 

100% utilization. The length of the bit stream for this problem was 1,232 bits. Again we 

used the same penalties, but modified the parameter settings. Table 3-7 shows the 

parameter settings used for this problem. 

Table 3-7: Parameter Settings for the Eleven Box Test Case 

Parameter Setting 
Population size 100 
Crossover rate 0.85 
Mutation rate 0.01 

Generation gap 0.9 
Selection strategy Elitist 

Unfortunately, GENESIS did not show any signs of convergence in a reasonable 

amount of time. The reason for this is that GENESIS only allows for single-point 

crossover, which is too simplistic for a problem with this many variables. Even after 

1,000 generations, which took approximately 45 minutes, the best solution did not even 

come close to resembling a feasible packing for any of the 11 boxes. Appendix D shows 

the complete input file as well as the results found after 1,000 generations. Although 

single-point crossover was effective for the smaller problem sizes, it was ineffective for a 

problem of this magnitude. 

Even for the smaller problem sizes, multi-point crossover is preferred because it 

means more information is exchanged between the parents which leads to quicker 

convergence. We speculate that one potential method for determining the number of 

crossover points is to base it on the number of boxes. 
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3.4 Summary 

We have developed a mathematical formulation for the three-dimensional pallet- 

packing problem and verified the formulation packs boxes correctly in three dimensions. 

Additionally, we successfully applied a genetic algorithm to our formulation. In Chapter 

Five we provide a formal conclusion for this research and recommendations for future 

work. 
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Chapter 4 - Conclusions and Recommendations 

4.1 Introduction 

We began this research with two objectives. The first objective was to develop a 

direct three-dimensional mathematical formulation for the pallet-packing problem. The 

second objective was to verify that the formulation correctly packed boxes onto a pallet. 

This verification included the development of a test problem to ensure the constraints 

caused the proper packing of the pallet. 

In addition to meeting these objectives, we expanded the research to include the 

application of a heuristic solution approach. We attempted to use a genetic algorithm to 

determine if it was an effective tool which could be used to produce close-to-optimal 

feasible solutions. 

In this chapter we discuss the results of the research and provide 

recommendations for future research in this area of study. We close this chapter with our 

final thoughts on this research topic. 

4.2 Research Results 

In our literature review of research accomplished on packing problems, we found 

only a minority of the research pertained to the three-dimensional pallet-packing 

problem. 

Although most articles contained some of the necessary constraints for the Air 

Force's three-dimensional pallet-packing problem, none contained a formulation 
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including all the required constraints. The article by Abdou and Arghavani (1996) was 

the most helpful in our initial formulation. 

The objective of our formulation was to minimize the amount of unpacked space 

on the pallet. Three of the constraints included in the formulation ensure that each box is 

packed with the correct volume and the correct dimensions. The link boxes constraint as 

well as the box dimensions constraint work together to ensure each box is packed with 

the proper dimensions. To determine the number of adjacent faces for each box when it 

is broken down into cubic units, we developed a formula which calculates the number of 

adjacent faces among the unit cubes for each box based on that boxes length, width and 

height. 

Two of the other constraints included in the formulation ensure each box has a 

foundation on which to be placed and that at most only one box can occupy each location 

on the pallet. The last constraint ensures the volume of all the packed boxes does not 

exceed the available pallet volume. Although these are not all the constraints required for 

the Air Force pallet-packing problem, using an optimal solver, we were able to show 

these constraints correctly pack boxes in three dimensions on a pallet. 

Due to the complexity of the problem, we applied a genetic algorithm to our 

formulation. From the test cases, we concluded that genetic algorithms could be 

effectively used to find good feasible solutions to packing problems. Unfortunately, as 

the problem size increased, the solution quality decreased. We feel single-point 

crossover and the penalty functions are the two areas preventing the genetic algorithm 

from converging on better solutions for larger problems. 
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4.3 Recommendations for Future Research 

Since we successfully applied a genetic algorithm to small test problems, further 

research should examine genetic algorithm application to larger problems. A genetic 

algorithm program which allows for multi-point crossover should be examined on larger 

more realistic problems to ultimately determine whether a genetic algorithm can find 

close-to-optimal feasible solutions for large, realistically sized problems. 

If the genetic algorithm continues to provide poor results, either simulated annealing or 

tabu search should be investigated as possible heuristic solution techniques that could be 

applied to packing problems. 

In addition to further examining heuristic solution techniques, the formulation 

should be expanded to include more of the necessary constraints required to pack Air 

Force 463 L pallets. The first characteristic that must be included is the weight of the 

boxes. One constraint associated with weight ensures the total weight of all the boxes 

packed is less than the maximum allowable weight for the pallet. Another constraint 

ensures the heavier boxes are packed below the lighter boxes. A third constraint ensures 

each box is not crushed. This constraint ensures the total weight of all the boxes packed 

on top of a box does not exceed the maximum allowable weight that can be packed on 

that box. For safety reasons, a fourth constraint ensuring the center of gravity of the 

packed boxes is within four inches of the middle of the pallet is required by the Air 

Force. Another constraint to add, not pertaining to weight, ensures the top of the packing 

is as smooth as possible. Therefore, when the cargo net is thrown over the load, it will 

securely hold the boxes in place. 
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4.4 Final Thoughts 

The Air Force has spent a lot of time and effort searching for a model which will 

more efficiently pack pallets. There is good reason for this as improved pallet utilization 

will cut costs and free additional time and resources. However, this is a very complex 

problem, and a heuristic solution approach is necessary to find a solution in a reasonable 

amount of time. Unfortunately, a major drawback of applying a heuristic is that it does 

not guarantee the optimal solution. However, it is the belief of the researcher that as 

more and more research is performed on heuristic solution approaches, a heuristic 

solution approach will be found for the three-dimensional pallet-packing problem that 

produces close-to-optimal, feasible solutions. 
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Appendix A-Annotated Bibliography 

Abdou, G., and M. Yang. "A systematic approach for the three-dimensional 
palletization problem," International Journal of Production Research 32: 2381-2394 
(1994). 

The authors develop a multi-objective algorithm for the palletization problem. 

They attempt to maximize both pallet utilization and stability. Not many of the 

algorithms developed for this type of problem include stability as an objective. For the 

Air Force, stability is a necessity. The authors discuss the five factors that affect 

palletization: box size, box weight, box orientation, box density (stability), and box 

availability. They attempt to simplify the problem by assuming boxes with different base 

dimensions are grouped by the same height. 

The authors develop blocks which are subsets of the actual pallet. They try to 

maximize the space within each block, by either filling it with a large box or with several 

smaller boxes. As expected, when new blocks are generated, the criteria is to use boxes 

that have not been previously selected, use the bigger boxes first, and lastly use as few 

boxes as possible.   This is important since it will make it easy to pack the next layer. By 

packing the larger boxes first, either the volume of the block will be filled, or the larger 

boxes provide a good foundation for the boxes placed above them. 

This algorithm has many features required by the Air Force. However, the 

authors note that expanding its capability so that boxes cannot by grouped by similar 

height and have different base dimensions is an area for improvement. 
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Abdou, G., and J. Arghavani. "Interactive ILP procedures for stacking 
optimization for the 3D palletization problem," International Journal of Production 
Research 35:1287-1304 (1997). 

The authors develop an algorithm that first maximizes the utilization of the base 

area and then attempts to maximize the stacking height of each sub area. The authors 

note that a limitation of this problem is high computational times, which limits the 

complexity of the models. Thus, the authors attempt to expand on a two-dimensional 

model so that it can be applied in the third dimension. 

The authors acknowledge future research needs to be done to increase the 

capability of their model. The model does not address stability, and the model does not 

allow for a stochastic arrival of boxes with different dimensions. Lastly, possible 

modifications or better rules may be applied to the algorithm to aid in the heuristic 

procedure used. 

Askin, Ronald G., and Charles R. Standridge. Modeling and Analysis of 
Manufacturing Systems. New York: John Wiley and Sons, Inc., 1993. (320-321) 

The author describes two types of pallet packing problems. He first details the 

Manufacturer's pallet packing problem. This problem deals with loading boxes of the 

same dimensions. He next describes the Distributor's pallet-packing problem. This is 

more complex and involves boxes of different dimensions. This is the problem facing the 

Air Force and as the author states is very similar to the bin-packing and cutting stock 

problems. 

"Astrokettle Algorithms."http://www4.bcity.com/astrokettle/data.html. 29 July 
1999. 

This article provides algorithms for the three-dimensional bin-packing problem. 

It also provides a demonstration for the bin-packing problem illustrating how effective 

A-2 



their current algorithm is at finding a good solution. Again, there is a concern on how the 

program takes the weight of the boxes into account and how good of a solution is the 

program really finding. Thus, for the program to be useful for the Air Force, these 

questions need to be addressed. 

Bischoff, E. E., F. Janetz, and M. S. W. Ratcliff. "Loading pallets with non-identical 
items," European Journal of Operational Research 84; 681-692 (1995). 

The authors develop a three-dimensional heuristic approach to packing multiple- 

sized boxes onto a pallet. This problem is known as the 'Distributors Pallet Packing 

Problem.' The objective for their algorithm is to maximize pallet utilization while 

ensuring that the load is stable. Unlike the bin-packing problem where there are vertical 

walls ensuring the packing is stable, the packing on a pallet must be inherently stable to 

ensure the boxes don't topple. Additionally, the algorithm packs the boxes from the 

bottom upwards using single layers of up to two different box types at a time. 

The algorithm attempts to pack the layers where vertical dimensions are the same. 

Additionally, the algorithm favors a layer in which one type of box can cover the entire 

layer. Also, larger gaps between boxes are favored over smaller ones in hopes a box 

might be able to fill the vacancy. The authors found that using the layering approach is 

beneficial in terms of achieving stability whereas other algorithms that attempt to pack 

columns are generally unstable. Also, with more box types the packing utilization 

decreased since it was more difficult for the algorithm to form layers with the boxes. 

Overall I felt this was a good layered approach to the problem even though there 

was nothing more than an explanation of their algorithm. Lastly, the authors did add a 

merging criteria to their algorithm to prevent fragmentation. Even though this may have 
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added to the content in the article it seemed to me to add very little to the quality of the 

solution found. 

Bischoff, E. E., and M. S. W. Ratcliff. "Loading Multiple Pallets," Journal of the 
Operational Research Society 46: 1322-1336 (1995). 

This paper focuses on the 'Distributors Pallet Packing Problem' and is mostly 

concerned with packing multiple pallets at a time. However there is a small portion of 

the article that is concerned with packing only one pallet at a time. Packing stability is 

addressed in this paper and the underlying algorithm used is the single-pallet algorithm 

by Bischoff. Unfortunately, this article packs the boxes on the pallet using a semi- 

layered approach. It tries to back boxes that have equivalent dimensions first to get them 

the same height. The author found when packing the multiple pallets sequentially as 

opposed to simultaneously the algorithm produced better utilization. He also found that 

with single-pallet packing a better utilization is found when there are fewer box sizes that 

need to be packed. 

Chen, C. S., S. Sarin, and B. Ran. "The pallet packing problem for non-uniform 
box sizes," International Journal of Production Research 29: 1963-1968 (1991). 

The authors develop an algorithm minimizing the number of pallets required to 

pack boxes of non-uniform size. The algorithm takes into account box orientation and 

allows the size of boxes to be non-integer. The formulation is for the two-dimensional 

case and according to the authors does find the optimal packing. The constraints in the 

formulation ensure there is no overlap among the boxes, every box is placed on the pallet, 

and that each box is placed within the confines of the pallet. 
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Dowsland, Kathryn A. "An exact algorithm for the pallet loading problem," 
European Journal of Operational Research 31: 78-83 (1987). 

The author develops an algorithm for the 'manufacturers pallet loading problem.' 

The problem is reduced to the two dimensional problem of packing identical rectangles 

onto a larger containing rectangle. The author concedes that this problem is NP-complete 

and that most of the emphasis has been on finding good heuristic solution. The author 

uses a graph-theoretic model of the problem, but found that the problem becomes too 

large to use this method directly. She provides some problem reduction techniques 

allowing the problem to become more manageable. The information in this paper does 

not appear to be very applicable to the three-dimensional packing problem. 

Dowsland, Kathryn A., and William B. Dowsland. "Packing problems," European 
Journal of Operational Research 56: 2-14 (1992). 

Most of this article is spent describing the different types of packing problems and 

the constraints found in those problems. They begin with the two-dimensional 

rectangular packing problems. The authors state that the problem lends itself to dynamic 

programming, however they go on to state that the problem is generally formulated as an 

integer programming problem where there is one binary variable for each possible 

position for a piece on the pallet. They describe the pallet-loading problem, packing 

identical sized boxes, as well as the bin-packing problem. The bin-packing problem is 

similar to the pallet-packing problem however with the bin-packing problem there are 

vertical columns which provide vertical stability. 

The authors then dive into the three-dimensional packing problem and state that 

the increased combinatorial complexity over the two-dimensional case means that exact 

solutions are unlikely to be found. Also, when moving to the third dimension load 
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stability becomes an issue and has been found to be difficult to formulate. Lastly, due to 

the complexity of moving to the third dimension it becomes increasingly difficult to 

check the feasibility of a solution by eye. 

Dowsland, Kathryn A. "Some experiments with simulated annealing techniques for 
packing problems," European Journal of Operational Research 68: 389-399 (1993). 

The first part of the article is concerned with the classical pallet loading problem, 

packing identical rectangles into a larger containing rectangle. The second part of the 

article is concerned with the packing of non-identical pieces into a larger containing 

rectangle. For both parts the author was working on the two-dimensional case. 

Generally with the packing of identical items the objective function attempts to maximize 

the number of boxes packed, whereas with the packing on non-identical items the 

objective function attempts to minimize wasted space. 

The paper describes the simulated annealing process for both types of problems in 

good detail making it pretty easy to follow and understand. Unfortunately for the non- 

uniform box size case the annealing process often produced infeasible solutions. The 

author found that after a good feasible solution was found the process would move away 

from that solution to a worse solution. The author concluded that simulated annealing 

could be a good solution technique for this problem if a few changes were made to the 

algorithm she developed. 

Dowsland, William B. "Three-dimensional packing—solution approaches and 
heuristic development," International Journal of Production Research 29: 1673- 
1685 (1991). 

Much of the work concerning the pallet-packing problem has been done in two 

dimensions. The author attempts to look at the third dimension and how heuristic 

methods can be improved to provide better results. Additionally, he looks at the 
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possibility of expanding the two-dimensional heuristics so that they can be used in the 

three-dimensional packing problems. Unfortunately when looking at the third dimension 

the level of complexity increases dramatically and constraints such as load stability make 

it difficult to expand heuristics designed for the two-dimensional cases into the third 

dimension. 

The author states that research on the three-dimensional packing problem is still 

in its early stages, thus most of the research states successful implementation, yet fails to 

show proof of scientific success. The author spends a lot of time discussing the wall 

building approach in which the pallet is filled in from the sides. However he discusses 

some of the troubles associated with this approach. The main concern was the lack of 

load stability which is a major concern of the Air Force. Additionally, he states that it is 

generally good packing practice to build a load up from the base of the pallet. Overall, 

this article provided good insight especially regarding the lack of transferability of the 

two-dimensional heuristics to the three-dimensional case. 

Dowsland, W. B. "Improving palletisation efficiency—the theoretical basis and 
practical application," International Journal of Production Research 33: 2213-2222 
(1995). 

The basis of the article is the "manufacturers" pallet-loading problem in which the 

goal is to maximize the number of identical sized boxes onto a pallet. The goal of the 

paper was to determine the potential benefits of modifying the box sizes by some fixed 

percentage, either maintaining constant box volume or giving a slightly smaller box 

volume. The author tested this hypothesis with set percentage change, thus the paper 

does not answer the question, 'What volumetric change is needed to provide an 

A-7 



improvement?' The research is interesting but does not pertain to the actual packing of 

the boxes onto the pallet. 

Fuh-Hwa, F. Liu and C-J Hsiao. "A three-dimensional pallet loading method for 
single-size boxes," Journal of the Operational Research Society 48: 726-735 (1997). 

The author addresses the packing of single-sized boxes onto a single pallet trying 

to maximize utilization while maintaining stability. It allows the boxes to be packed in 

any of the six orientations. However, this article uses the layered approach to pack the 

boxes. Thus once one box is packed a certain way, then the other boxes in that layer are 

also packed that same way so that they have the same height throughout the layer. The 

author does use LINDO to solve his problems. 

In this paper the algorithm does not allow boxes to be packed if they will not be 

stable. Most algorithms that address stability wait until a layer is packed and then check 

to see if stability is met. If it is then good, if not then that packing is thrown out. 

Han, Ching Ping, Kenneth Knott, and Pius J. Egbelu. "A heuristic approach to the 
three-dimensional cargo-loading problem," International Journal of Production 
Research 27: 757-774 (1989). 

The authors develop a heuristic approach to the three-dimensional packing 

problem. This article is concerned with single-sized boxes. The packing is accomplished 

by packing the boxes so that one of the edges of each box is initially placed along a 

vertical edge of the pallet. Additionally, the third dimension is approached using the 

layered approach. Thus, the algorithm tries to find the correct orientation of the box to 

both maximize utilization and maximize the number of boxes packed. 
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Healy, Patrick, Marcus Creavin and Ago Kuusik. "An optimal algorithm for 
rectangle placement," Operations Research Letters 24; 73-80 (1999). 

The author approached this problem as the cutting stock problem, when no 

overlapping is feasible. The bottom-left heuristic technique for placing boxes is used to 

increase the speed of the solver. This paper focuses on a two-dimensional problem and is 

closely related to the largest empty rectangular problem. Thus, after a box has been 

placed, depending on which bottom-left location is chosen, the program searches for the 

largest empty area and tries to find a box that will best fill that area. 

This article emphasizes the two-dimensional case. However, the author claims 

this formulation can easily be extended into the third dimension. Instead of just sweeping 

the width and the depth of the boxes, one would also need the sweep the height. Again, 

the problem with this is the explosion of variables and complexity required to include the 

third dimension. 

Herbert, Edward A. and Kathryn A. Dowsland. "A family of genetic algorithms for 
the pallet loading problem," Annals of Operations Research 63: 415-436 (1996). 

The authors develop a generic algorithm that can be applied to the two- 

dimensional pallet-packing problem. The authors explain that this problem requires 

binary coding and is a NP-Hard problem. Their algorithm allows the initial packing to be 

infeasible and then works toward a feasible solution. Although the initial packing may 

not be feasible, the algorithm sufficiently penalizes this to drive the algorithm back to 

feasibility. The objective of the algorithm is to pack the maximum number of boxes onto 

the pallet while avoiding overlap. The authors conclude that although their algorithm is 

not able to compete with traditional heuristic solution methods, they do suggest that such 

an approach could prove fruitful for more complex problems. 
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Ivancic, N., Kamlesh Mathur, and Bidhu B. Mohanty. "An Integer Programming 
Based Heuristic Approach to the Three-dimensional Packing Problem," Journal of 
Manufacturing and Operations Management 2: 268-298 (1989). 

The authors develop a three-dimensional packing algorithm. They are attempting 

to minimize cost, where cost is essentially equivalent to maximizing the utilization of the 

total packing. Their work focuses on loading multiple containers whereas my research is 

focused on the loading of a single pallet at a time. However, they do perform some test 

instances where they are only loading one container. To aid in the solution the authors 

employ a greedy heuristic search for the "biggest bang for the buck."  Unfortunately to 

apply this heuristic requires knowledge of all the packing patters which can be 

computationally prohibitive. The heuristic is used in two steps: first determining a 

packing pattern for a container and then choosing the next box to pack. 

Their algorithm is set up so that boxes of which there are more left and with 

smaller volume are more likely to be packed. 

Manship, Wesley E., and Jennifer L. Tilley. A Three-Dimensional 364L Pallet 
Packing Model and Algorithm. MS thesis, AFIT/GIM/LAL/98S-3. School of 
Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson 
AFB, OH, September 1998. 

The focus of this thesis is to explain the background of the pallet-loading problem 

and provide information on many of the existing models. They go into great detail on the 

background information and why this is such an important issue for the Air Force. They 

look at some of the different algorithms that have been used in attempting to solve this 

problem. In addition, the authors suggest a non-linear algorithm that can be used to assist 

in the pallet loading process. 
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The authors built a model consisting of three different components to handle the 

different areas of the pallet-packing problem. The first component dealt with hazardous 

cargo since they found that this often is a cause for re-packing the pallets. The next 

component of the model helps limit the candidate list of boxes that may fit on the pallet. 

This aids in the manageability of the problem. The last component of the model focuses 

on putting the actual boxes onto the pallet. They use a nonlinear objective function to 

load the boxes as tightly as possible. The authors mention one difficult aspect of the 

problem is determining with constraints and variables to include in the model. The 

models in this thesis provide feasible, but sub-optimal solutions. 

Morabito, R. and S. Morales. "A simple and effective recursive procedure for the 
manufacturer's pallet loading problem," Journal of the Operational Research 
Society 49: 819-828(1998). 

The focus of the paper is the packing of uniform sized boxes, the 

"manufacturer's" problem. Additionally, the authors implemented the face-up principal 

which allows the boxes to be packed only one of two ways. Basically the problem is 

broken up into two smaller problems. The first problem is to determine how many boxes 

can be placed on a layer and then the second problem determines how many layers to 

pack. The authors also ignore all constraints related to weight, density, and fragility. 

The authors use a depth-first tree search method to find the best packing for a 

particular problem. Only in 18 of the more than 20,00 problems was the algorithm 

unable to find the optimal packing. The authors developed two different algorithms to 

find the best packing. One of the algorithms was much quicker but did not perform as 

well on the whole. 
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"PowerPack™ 6 Easy Steps to Lower Freight Costs." 
http;//www.remarkable.co.nz/prod04.htm. 29 July 1999. 

This article describes a three-dimensional packing software that allows for 

different size boxes with different attributes be loaded into the program. The program 

then determines the optimal packing of boxes onto the pallet to minimize empty space, 

and lastly prints the solution for the user. Some concerns I have with this product are 

how the weight of the boxes is factored into the problem and if there are limitations on 

the pallet size. Since the Air Force has weight limitations on its cargo and a center of 

gravity requirement, for a software package to be useful these things must be included. 

Secondly, most algorithms that attempt to solve this problem deal with pallets much 

smaller than what the Air Force uses, thus it is important this software is able to solve the 

problem using the 463L pallet size. Also, it does not say anything about the limitation on 

the number of boxes that can be loaded into the program for each problem. The cost of 

this software is only $995. 

Pisinger, David. "David Pisinger's optimization codes." 
http://www.diku.dk/~pisinger/codes.html. 29 July 1999. 

This article describes an algorithm in C-code that solves three-dimensional 

packing problems either as a heuristic or to optimality. The code as expected is quite 

lengthy, but could be used as a possible foundation in my thesis. One limitation for this 

code is that it does not allow the boxes to be rotated in any direction. Most algorithms 

allow boxes to be rotated 90° around the vertical axis, however by rotating the boxes, a 

lot of complexity is introduced. Thus, this may be one area where the code can be 

improved to increase its capabilities. 
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Romaine, Jonathan M. Solving the Multidimensional Multiple Knapsack Problem 
with Packing Constraints Using Tabu Search. MS thesis, AFIT/GOR/ENS/99M-15. 
Graduate School of Engineering, Air Force Institute of Technology (AU), Wright- 
Patterson AFB, OH, March 1999. 

This thesis approaches the pallet-packing problem in two-dimensional space, 

however it allows for modifications to include the third dimension. Due to the solution 

time required to solve the problem the author employs Tabu search coded in JAVA to 

efficiently determine the best solution. Three approaches are used in loading the pallets. 

The first method is loading the pallets for the first plane before even thinking about the 

next plane. The next strategy is that each aircraft in the fleet is feasible and packable at 

the^same time. The last strategy is that only one plane needs to be feasible and packable 

at a time. The last strategy provided the best solutions. Adding a third dimension to the 

model would make the model more realistic and allow one to take into account height 

restrictions. 

Scheithauer, Guntram and Johannes Terno. "The G4-Heuristic for the Pallet 
Loading Problem," Journal of the Operational Research Society 47: 511-522 (1996). 

The authors use this G4-heuristic to pack single-sized boxes in two dimensions. 

Thus this paper focuses on the 'Distributor's Problem'. They claim that this heuristic 

finds solutions at least as good as any other heuristic to date. Their presentation of their 

algorithm is very confusing and hard to follow. In addition I do not feel this article will 

be very helpful with my formulation since it is only concerned with two dimensions and 

it is only packing single-sized boxes. 
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Taylor, Gregory S. A Pallet Packing Postprocessor for the Logistics Composite 
Model. MS thesis, AFIT/GST/ENS/94M-11. Graduate School of Engineering, Air 
Force Institute of Technology (AU), Wright-Patterson AFB, OH, March 1994. 

This paper provides an excellent description of the current problems with pallet 

packing in the Air Force and the needs for an algorithm that will enable the Air Force to 

better utilize pallet space to save money on airlift. The difficulty of the problem stems 

from the fact that this is the distributor's problem meaning there are multiple box sizes 

that need to be loaded. The author explains that the main constraining factor in the 

pallet-packing problem is the volume. Pallet space is usually used up before the weight 

constraint becomes a factor. 

The author defines three models in the thesis. The objective function in the first 

model minimizes the maximum deviation in height of all the boxes. The second model 

both maximizes area coverage and minimizes deviation in heights. The third model, 

which was not tested in the paper, is based on model two except it minimizes the wasted 

volume for all of the packed boxes. The paper emphasizes the complexity of the 

problem. This paper does not take into account the center of gravity constraint, which 

requires a majority of the weight be in the center of the pallet. 

Tsai, R.D., E.M. Malstrom, and W. Kuo. "Physical Simulation of a Three 
Dimensional Palletizing Heuristic," International Journal of Production Research 
32:1159-1171 (1994). 

The authors develop a three-dimensional heuristic to maximize the pallet load. 

Since, this problem is NP-Hard a heuristic is imposed to reduce computational time so 

that a close to optimal solution will be reported. They model this problem with four 

different size boxes arriving randomly to the loading dock. Once to the loading dock the 

critical path method was used to determine the placement and sequence of the boxes. For 
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example, for a box to be placed on another box there must be a solid, uniform foundation 

to place the box. It is not allowed to overhang. 

The authors simplify the problem by only using four different box sizes. In 

addition, although the technique may be transferable to the problem I am attacking, the 

idea is different. The authors have developed this model to pack boxes arriving on a 

conveyor belt as opposed to loading boxes already at the loading site. 

Tsai, R.D., E.M. Malstrom, and W. Kuo. "Three Dimensional Palletization of Mixed 
Box Sizes," HE Transactions 25: 64-74 (1993). 

The authors develop a model that generates exact optimal solutions in terms of 

volume utilization of the pallet. Due to computational limits this model is limited in the 

size of problems that it can solve. The authors do not place any restrictions on the box 

sizes, the pallet sizes, or the allowable number of different sized boxes. However, the 

model does not address the issue of load stability when determining where to pack the 

boxes. Additionally this model was developed for the individual pallet case, thus the 

objective is not to minimize the number of pallets required to fit the boxes. Lastly, the 

model only allows the boxes to be packed in one of two ways. They are allowed to rotate 

90° around the vertical axis. 

However, the model does ensure no two boxes on the pallet overlap, as well as 

ensure that each box is placed completely within the confines of the pallet. Once a 

solution has been found the model outputs the exact placement of a box on a pallet. 

Unfortunately since this is an NP-Hard problem as the number of boxes increases the 

computation time required to find the optimal solution increases limiting the practical use 

of this model. 
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Appendix B - LINGO Formulation 

B.l LINGO Formulation 

To verify that the mathematical formulation we developed for the three- 

dimensional pallet-packing problem performed correctly, we input the formulation into 

LINGO. In this appendix we break down the formulation into segments and describe in 

detail the purpose of each segment. Then we provide the results of the formulation and 

describe in detail their significance. First, we have provided a list and description of each 

variable used in the formulation. 

VOLUME(x) 

PACK(x) 

B(ijkx) 

The variable represents the volume for each of the 
three boxes. The volume of each box is initialized 
at the end of the program 

This is a binary variable which represents whether 
Box x is packed or not 
0 = box is not packed 
1 = box is packed 

This is a binary variable which represents whether 
box x is packed in pallet location i, j, k where x, i, j, 
and k all go from 1 to 3 for this problem 
0 = box x is not packed in location i, j, k 
1= box x is packed in location i, j, k 

The amount of unused pallet space after the boxes 
are packed 
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B.2 Model Initialization and Objective Function 

This part of the formulation initializes all the variables and defines the number of 

boxes, and the length, width, and height of the pallet to be three. Since this is the 

beginning of the formulation a brief description of the model is presented within the 

code. After the variables have been initialized within the SETS routine, the objective 

function value is defined. It is obvious that we are attempting to minimize unpacked 

pallet space. Lastly, after the objective function value is defined we declare variable 

PACK(x) and variable B(ijkx) to be binary variables. 

MODEL: 

! Description: This formulation packs rectangular boxes; 
! on a pallet in three dimensions; 
! Both the variables B and Pack are binary variables; 

SETS: 
BOXES/1.3/: VOLUME,PACK; 
PALL/1.3/; 
PALW/1.3/; 
PALH/1.3/; 
PACKAGE(PALL, PALW, PALH, BOXES): B; 

ENDSETS 

! The objective function attempting to minimize empty space; 
! E is empty space; 

[MIN] MIN = E; 

@FOR(BOXES(X): @BIN(PACK(X))); 
@FOR(PACKAGE(I,J,K,X):@BIN(B(I,J,KX))); 
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B.3 First and Second Constraints 

Each of these constraints are well commented within the coding of the model. 

The first constraint is a nonlinear constraint which determines the amount of unpacked 

space on the pallet. The second constraint is actually a set of constraints where the 

number of constraints is equal to the number of boxes to be packed. For this problem, it 

is a set of three constraints. As the comment within the code describes the constraint 

ensures that each box is packed with the correct volume. 

/ First constraint attempts to find the amount of space left unpacked; 
I This ensures the packed box volume is less than the available; 
! pallet volume; 

DßUM(BOXES(X): VOLUME'(X)*PACK(X)) + E = 27; 

I This set of constraints ensure that the boxes are; 
! packed with the correct box volume; 

@FOR(BOXES(X): 
@SUM(PALL(I): 

@SUM(PALW(J): 
@SUM(PALH(K): 

B(I,J,K,X) 
) 

) 
) = VOLUME(X)*PACK(X) 

); 
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B.4 Third and Fourth Constraints 

Again the function of each of these two constraints is commented into the code. 

The first constraint below is also a set of constraints where the number of constraints in 

the set is equal to the volume of the pallet. For this problem the number of constraints in 

this set is equal to 27. The second constraint of this page is also a set of constraints 

where the number of constraints in the set is equal to: 

L*W*(H-\) where L = length of pallet 
W = width of pallet 
H =  height of pallet 

/ This set of constraints ensure no two boxes occupy; 
! the same space; 

@FOR(PALL(I): 
@FOR(PALW(J): 

@FOR(PALH(K): 
@SUM(BOXES(X): 

B(I,J,K,X) 

) 
) 

); 

! This set of constraints ensure a box is packed on top of; 
! another box; 
I Each box must have a complete foundation for it to be packed; 

@FOR (PALL(I): 
@FOR (PALW(J): 

@SUM(BOXES(X): 
B(I,J,1,X)-B(I,J,2,X)) >= 0)); 

@FOR (PALL(I): 
@FOR (PALW(J): 

@SUM(BOXES(X): 
B(I,J,2,X) -B(I,J,3,X)) >= 0)); 
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B.5 Constraint Five 

This constraint is well described by the comments within the code. The constraint 

for box 3 did not fit on this page and is located on the following page. Since LINGO 

does not converge on the globally optimal solution for nonlinear formulations we had to 

assign boxes two and three to the packing otherwise it did not come up with the globally 

optimal solution and we were unable to check if the constraints were being violated. 

/ The last set of constraints ensure that the boxes are packed; 
! with the correct dimensions; 
I This ensures that the number of adjacent faces for each; 
I box is the correct number of adjacent faces for that box; 

! This assigns boxes 2 and 3 to the packing; 
!PACK(1) = 1; 
PACK(2) = 1; 
PACK(S) = 1; 

.'Box 1; 

@SUM(PALL(I): 
@SUM (PALW(J): B(IJ, 1,1)*B(IJ,2,1)+B(I,J,2,1)*B(I,J,3,1))) 

+ 
@SUM(PALL(I): 

@SUM(PALH(K): B(I,1,K,1)*B(I,2,K,1)+B(I,2,K,1)*B(I,3,K,1))) 
+ 
@SUM(PALW(J): 

@SUM (PALH(K): B(1,J,K, 1) *B(2,J,K, 1)+B(2,J,K, 1) *B(3,J,K, 1) )) 
- (PACK( 1)*33) = 0; 

IBox 2; 

@SUM (PALL(I): 
@SUM(PALW(J): B(I,J,1,2)*B(I,J,2,2)+B(I,J,2,2)*B(I,J,3,2))) 

+ 
@SUM (PALL(I): 

@SUM(PALH(K): B(IJ,K,2)*B(12,K,2)+B(I,2,K,2)*B(I,3,K,2))) 
+ 
@SUM (PALW(J): 

@SUM (PALH(K): B(1,J,K,2)*B(2,J,K,2)+B(2,J,K,2)*B(3,J,K,2))) 
- (PACK( 2)*33) = 0; 
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!Box 3; 

@SUM (PALL(I): 
@SUM (PALW(J): B(I,J,1,3)*B(I,J,2,3)+B(I,J,2,3)*B(I,J,3,3))) 

+ 
@SUM (PALL(I): 

@SUM (PALH(K): B(I,1,K,3)*B(I,2,K,3)+B(I,2,K,3)*B(I,3,K,3))) 
+ 
@SUM (PALW(J): 

@SUM (PALH(K): B(1,J,K,3)*B(2,J,K,3)+B(2,J,K,3)*B(3,J,K,3))) 
-    (PACK( 3)*7) = 0; 

B.6 End of Program 

As described in the comments this is where the volume of each box is initialized; 

right before the end of the program. 

/ Data required for the problem; 

DATA: 
VOLUME= 18, 18, 6; 

ENDDATA 
END 
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B.7 Results when Boxes One and Three are Packed 

The output from LINGO when boxes one and three are packed is shown below. 

The objective function value is three which we know to be the optimal solution for this 

problem. Additionally, PACK(l) and PACK(3) are equal to one which reemphasizes that 

boxes one and three are packed in the solution while PACK(2) equals zero. Lastly, the 

long columns under each box illustrates where each box is packed. As we would expect 

the entire column is zero for Box 2. Also, we found Boxes 1 and 3 do not violate any 

constraints. 

Objective value: 3.000000 

Variable Value 
E 3.000000 

PACK( 1) 1.000000 
PACK( 2) 0.0000000 
PACK( 3) 1.000000 

Boxl Box 2 Box 3 
B(l, 1,1,1) 0.0000000 B( 1,1, 1,2) 0.0000000 B( 1,1,1,3) 1.000000 
B( 1,1, 2,1) 0.0000000 B(l,l,2,2) 0.0000000 B(l,l,2,3) 1.000000 
B( 1,1, 3,1) 0.0000000 B( 1,1,3,2) 0.0000000 B(l,l,3,3) 1.000000 
B( 1,2, 1,1) 0.0000000 B( 1,2,1,2) 0.0000000 B( 1,2,1,3) 1.000000 
B( 1,2, 2,1) 0.0000000 B(l,2,2,2) 0.0000000 B(l,2,2,3) 1.000000 
B( 1,2, 3,1) 0.0000000 B(l,2,3,2) 0.0000000 B(l,2,3,3) 1.000000 
B( 1,3, 1,1) 0.0000000 B( 1,3, 1,2) 0.0000000 B( 1,3, 1,3) 0.0000000 
B( 1,3, 2,1) 0.0000000 B(l,3,2,2) 0.0000000 B(l,3,2,3) 0.0000000 
B( 1,3, 3,1) 0.0000000 B(l,3,3,2) 0.0000000 B(l,3,3,3) 0.0000000 

B( 2,1,1,1) 1.000000 B(2,l,l,2) 0.0000000 B(2, 1,1,3) 0.0000000 
B( 2,1,2,1) 1.000000 B(2,l,2,2) 0.0000000 B(2,l,2,3) 0.0000000 
B( 2,1,3,1) 1.000000 B(2,l,3,2) 0.0000000 B(2,l,3,3) 0.0000000 
B(2,2, 1, 1) 1.000000 B(2,2,l,2) 0.0000000 B(2,2,l,3) 0.0000000 
B(2,2,2, 1) 1.000000 B(2,2,2,2) 0.0000000 B(2,2,2,3) 0.0000000 
B(2,2,3, 1) 1.000000 B(2,2,3,2) 0.0000000 B(2,2,3,3) 0.0000000 
B(2,3, 1, 1) 1.000000 B(2,3,l,2) 0.0000000 B(2,3,l,3) 0.0000000 
B(2,3,2, 1) 1.000000 B(2,3,2,2) 0.0000000 B(2,3,2,3) 0.0000000 
B(2,3,3, 1) 1.000000 B(2,3,3,2) 0.0000000 B(2,3,3,3) 0.0000000 
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B( 3, 1,1,1) 1.000000 B(3,l,l,2) 0.0000000 B(3,l,l,3) 0.0000000 
B( 3, 1,2,1) 1.000000 B(3,l,2,2) 0.0000000 B(3,l,2,3) 0.0000000 
B( 3, 1,3,1) 1.000000 B(3,l,3,2) 0.0000000 B(3,l,3,3) 0.0000000 
B(3,2,l,l) 1.000000 B(3,2, 1,2) 0.0000000 B(3,2,l,3) 0.0000000 
B(3,2,2,l) 1.000000 B(3,2,2,2) 0.0000000 B(3,2,2,3) 0.0000000 
B(3,2,3,l) 1.000000 B(3,2,3,2) 0.0000000 B(3,2,3,3) 0.0000000 
B(3,3,l,l) 1.000000 B(3,3,l,2) 0.0000000 B(3,3,l,3) 0.0000000 
B( 3,3,2,1) 1.000000 B(3,3,2,2) 0.0000000 B(3,3,2,3) 0.0000000 
B(3,3,3, 1) 1.000000 B(3,3,3,2) 0.0000000 B(3,3, 3,3) 0.0000000 

B.8 Results when Boxes Two and Three are Packed 

As expected the objective function value when Boxes 2 and 3 are packed equals 

3.   Also, we can see that PACK(l) equals zero while the other two boxes equal 1. 

Lastly, the columns for each box, illustrating where each box is packed, shows that we 

again have a feasible packing. 

Objective value: 3.000000 

Variable Value 
E 3.000000 

PACK( 1) 0.0000000 
PACK( 2) 1.000000 
PACK( 3) 1.000000 

Boxl Box 2 Box 3 
B( 1,1, 1,1) 0.00000000 B( 1,1,1,2) 1.000000 B(l, 1,1,3) 0.0000000 
B( 1,1, 2,1) 0.0000000 B(l,l,2,2) 1.000000 B(l, 1,2,3) 0.0000000 
B( 1, 1, 3, 1) 0.0000000 B(l,l,3,2) 1.000000 B(l, 1,3,3) 0.0000000 
B( 1, 2, 1, 1) 0.0000000 B( 1,2, 1,2) 1.000000 B(l, 2,1,3) 0.0000000 
B( 1,2, 2,1) 0.0000000 B(l,2,2,2) 1.000000 B(l, 2,2,3) 0.0000000 
B( 1,2, 3,1) 0.0000000 B(l,2,3,2) 1.000000 B(l, 2, 3, 3) 0.0000000 
B( 1,3, 1,1) 0.0000000 B( 1,3, 1,2) 1.000000 B(l, 3,1,3) 0.0000000 
B( 1,3, 2,1) 0.0000000 B(l,3,2,2) 1.000000 B(l, 3,2,3) 0.0000000 
B( 1,3, 3,1) 0.0000000 B(l,3,3,2) 1.000000 B(l, 3, 3, 3) 0.0000000 
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B(2, 1,1,1) 0.0000000 B(2,l,l,2) 1.000000 B(2 1 1,3) 0.0000000 
B( 2,1,2,1) 0.0000000 B(2,l,2,2) 1.000000 B(2, 1 2,3) 0.0000000 
B( 2,1,3,1) 0.0000000 B( 2, 1,3,2) 1.000000 B(2, 1 3,3) 0.0000000 
B(2,2, 1, 1) 0.0000000 B(2,2,l,2) 1.000000 B(2, 2 1,3) 0.0000000 
B( 2, 2, 2, 1) 0.0000000 B( 2, 2, 2, 2) 1.000000 B(2, 2 2,3) 0.0000000 
B(2,2,3, 1) 0.0000000 B( 2, 2, 3, 2) 1.000000 B(2, 2. 3,3) 0.0000000 
B(2,3, 1, 1) 0.0000000 B(2,3,l,2) 1.000000 B(2, 3, 1,3) 0.0000000 
B(2,3,2, 1) 0.0000000 B( 2, 3, 2, 2) 1.000000 B(2, 3, 2,3) 0.0000000 
B(2,3,3, 1) 0.0000000 B(2,3,3,2) 1.000000 B(2, 3 3,3) 0.0000000 

B(3, 1, 1, 1) 0.0000000 B(3,l,l,2) 0.0000000 B(3, 1, 1,3) 0.0000000 
B( 3,1,2,1) 0.0000000 B( 3, 1,2,2) 0.0000000 B(3, 1, 2,3) 0.0000000 
B( 3,1,3,1) 0.0000000 B(3,l,3,2) 0.0000000 B(3, 1, 3,3) 0.0000000 
B(3,2, 1,1) 0.0000000 B(3,2,l,2) 0.0000000 B(3 ,2 ,1,3) 1.000000 
B(3,2,2, 1) 0.0000000 B(3,2,2,2) 0.0000000 B(3, 2, 2,3) 1.000000 
B(3,2,3, 1) 0.0000000 B( 3, 2, 3, 2) 0.0000000 B(3, 2, 3,3) 1.000000 
B(3,3, 1,1) 0.0000000 B(3,3,l,2) 0.0000000 B(3, 3. 1,3) 1.000000 
B(3,3,2, 1) 0.0000000 B(3,3,2,2) 0.0000000 B(3, 3 2,3) 1.000000 
B(3,3,3, 1) 0.0000000 B(3, 3, 3,2) 0.0000000 B(3 3. 3,3) 1.000000 
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Appendix C - Genetic Algorithm Evaluation Function 

C.l Description of Evaluation Function and Variables used in Program 

In this appendix we provide the evaluation function that we coded using the 

programming language C. GENESIS calls the evaluation function and sends it a 

solution. The evaluation function determines the objective function value ofthat solution 

and the penalties that should be assessed on that solution before returning the objective 

function value including any penalties that were assessed. There are comments 

throughout the code explaining what the code is doing. This code is written for the 

simple three box test case. Below is a list and description of the variables used in the 

program. 

GENESIS sends these four variables to the evaluation function: 

char strfj; This variable represents the actual Is and Os found 
in the solution. 

int length; This variable represents the length of the bit stream. 
double vect[]; Neither of these two variables are used in this 
int genes; program since all variables are binary. 

The following variables are all used within the evaluation function: 

int box_vol[3J = {18, 18, 6}; Actual volumes for each box 
int box_L[3] = {3, 3, 3); Actual lengths for each box 
int box_w[3J = {3, 2, 2}; Actual widths for each box 
int box_h[3] = {2, 3, 1}; Actual heights for each box 
int adj_faces[3] = {33, 33, 7}; Number of adjacent faces for each 

box 

int numjboxes = 3; Number of boxes to be packed 
int pal_L = 3; Length of the pallet 
int pal_w = 3; Width of the pallet 
int pal_h = 3; Height of the pallet 
intpal_vol = 2 7; Available packing volume on the pallet 
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int box_pal[3] [3] [3] [3]; Four dimensional array which holds the 
solution sent by GENESIS. The first 
dimension is for the boxes, and the last three 
dimensions are for the length, width, and 
height of the pallet 

Each of the following constraints are used to check whether a solution sent by 

GENESIS violates a certain constraint. 

int pack_pal[3] [3] [3]; 

int pack_pal_mod[3] [3] [3]; 

int count_adj J'aces[3]'; 

int sum_box[3J ; 

int wrong_L[3]'; 

int wrong_w[3]; 

int wrong_h[3J; 

int violationß] ; 

int mistake[3]; 

This checks to see whether only one box is 
placed at each location 
This checks whether each box has a 
foundation on which to be packed 
This checks whether each box has the 
correct number of adjacent faces 
This checks whether each box is packed 
with the correct volume 
This checks whether each box is packed 
with the correct length 
This checks whether each box is packed 
with the correct width 
This checks whether each box is packed 
with the correct height 
This checks whether each box is packed 
with the correct dimensions 
This counts how much the packed volume 
for each box differs from the actual volume 
of the box 

Each of these constraints ensure that for each time the evaluation function is 

called the penalties are reset to zero. 

int penalty 1 = 0; 
int penalty2 = 0; 
int penalty3 = 0; 

int penalty 4 = 0; 
int penalty5 = 0; 

int penalty 6 = 0; 

int total_penalty : 

Checks whether boxes have correct volume 
Checks whether available pallet volume is exceeded 
Checks whether more than one box is packed at 
each location 
Checks whether each box has a foundation 
Checks whether each box has the correct number of 
adjacent faces 
Checks whether boxes are packed with the correct 
dimensions 

0; Total of all the above penalties 
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int same[3J; 

int done; 

int match = 0; 

This variable checks whether the dimensions of 
each individual box are the same 
Used to determine which orientation box was 
packed in 
Also used to determine which orientation box was 
packed in 

Each of the following constraints are used to help determine if there are constraint 

violations. 

int count_L = 0; 

int countjw = 0; 

int countji = 0; 

intpack_yol = 0; 

char tempi!]; 

double objJun_yal = 0; 

Used to ensures boxes are packed with 
correct length 
Used to ensure boxes are packed with 
correct width 
Used to ensure boxes are packed with 
correct height 
Used to ensure the available pallet volume is 
not exceeded 

This variable enables us to change the 
character string to an integer siring 

Value returned to GENESIS after all 
penalties have been assessed 

C.2 Function Preventing Negative Penalties 

This function is called twice within the evaluation function to ensure no negative 

penalties are assessed. 

/* This function ensures we do not get negative penalties */ 

int no_negative(int x, int y) 
{ 

if((x-y)>=0) 
return (x - y); 

else 
return (y - x); 

} 
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C.3 Initialization of Variables 

/* These are the variables which are passed in by Genesis */ 

double eval (str, length, vect, genes) 
char strfj; 
int length; 
double vectfj; 
int genes; 
{ 
int pack_pal[3] [3] [3]; 
int pack_pal_mod[3] [3] [3]; 
int box_vol[3] = {18, 18, 6}; 
int box_L[3] = {3, 3, 3); 
int box_w[3J = {3, 2, 2}; 
int box_h[3J = {2, 3, 1}; 
int adjJaces[3J = {33, 33, 7}; 
int count_adj_faces[3]; 

int penalty 1 = 0; 
int penalty2 = 0; 
int penalty3 = 0; 
int penalty4 = 0; 
int penalty5 = 0; 
int penalty 6 = 0; 
int done; 
int total_penalty = 0; 

int sum_box[3] ; 
int wrong_L[3J ; 
int wrong_w[3J'; 
int wrong_h[3]; 
int violation[3]; 
int mistake[3]; 
int same[3]; 
int box_pal[3] [3] [3] [3]; 

int numjboxes = 3; 
int pal_h = 3; 
intpalJL - 3; 
int pal_w = 3; 
intpal_yol = 27; 

int match = 0; 
int count_L = 0; 
int count w = 0; 
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int count_h = 0; 
double objJiin_val = 0; 
intpack_yol = 0; 

int i,H, W,L; 

char temp[2J; 

for (H=0;H <pal_h; H++) 
for (W = 0; W<pal_w; W++) 

for (L = 0; L <pal_L; L++) 
{ 

pack_pal[L] [W] [H] = 0; 
pack_pal_mod[L] [W] [H] = 0; 

} 

for (i = 0; i < num_boxes; i++) 
{ 

sum_box[i] = 0; 
count_adjj~aces[i] = 0; 
wrong_L[i] = 0; 
wrong_w[iJ = 0; 
wrong_h[iJ = 0; 
violationfij = 0; 
mistakefi] = 0; 
samefij = 0; 

} 

C.4 Determine Whether Each Boxes Length, Width and Height are the Same 

This is used in the constraint which checks whether each box is packed with the 

correct dimensions. 

for (i = 0; i < numjboxes; i++) 
{ 

if((box_L[i] == box_w[i]) && (box_L[iJ == boxjifij)) 
samefij = 3; 

else 
samefij = 0; 

} 
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C.5 Convert Character String to Binary String 

This converts the character string into a binary string and puts the binary string 

into a four dimensional array. The first dimension represents the boxes, and the other 

three dimensions represent the length, width and height of the pallet respectively. 

Additionally, within the loop the program calculates the packed volume of each box in 

the solution as well as determine how many boxes are placed in each location. 

/* Must read in solution and put that solution into matrix form */ 

for (i = 0; i < num_boxes; i++) 
for (H = 0; H <pal_h; H++) 

for(W= 0; W<pal_w; W++) 
for (L = 0; L <pal_L; L++) 
{ 

tempfO] = str[pal_vol*i + pal_h*pal_w*H + pal_L*W + L]; 
tempfl] = '10'; 

box_pal[i] [L] [W] [H] = atoi(temp); 
sum_box[i] = sumjboxfi] + box_pal[i] [L] [W] [H]; 
pack_pal[L] [W] [H] = pack_pal[L] [W] [H] + box_pal[i] [L] [W] [H]; 

'     } 

C.6 First Feasibility Check 

This checks whether the packed volume of each box is equal to the actual volume 

ofthat box. If there is a violation then a penalty is assessed. 

/* First feasibility check is to see if the volume of the boxes packed are the actual box 
volume */ 

for (i = 0; i < numjboxes; i++) 
if ((sumjyoxfij != box_vol[iJ) && (sumjboxfi] != 0)) 

mistakefij = mistakefi] + no_negative(box_yol[i], sum_box[i]); 

for (i = 0; i < numjboxes; i++) 
penalty 1 = penalty 1 + mistakefij; 
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C.7 Second Feasibility Check 

This checks whether the packed volume exceeds the available volume. If it does 

then a penalty is assessed. 

/* Second feasibility check is to see if the volume of the solution is greater than the 
available volume on the pallet */ 

for (i = 0; i < numjboxes; i++) 
pack_yol = pack_yol + sumjboxfi]; 

if(pack_yol > pal_vol) 
penalty 2 = pack_yol - pal_vol; 

C.8 Third Feasibility Check 

This checks whether more than one box occupies each location on the pallet and 

assesses a penalty for each violation. 

/* Third feasibility check only allows one box to be placed in each location */ 

for (H=0;H <pal_h; H++) 
for (W=0;W <pal_w; W++) 

for (L = 0; L <pal_L; L++) 
{ 

if(pack_pal[L][W][H] > 1) 
penaltyS = penaltyS + (pack_pal[L][W][H] - 1); 

} 
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C.9 Fourth Feasibility Check 

This checks whether each box has a foundation on which to be packed and assigns 

a penalty for each location where the foundation does not exist. 

/* Fourth feasibility check only allows a box to be packed if there is a foundation for it */ 

for (H=0;H <pal_h; H++) 
for (W=0;W <pal_w; W++) 

for (L = 0; L <pal_L; L++) 
{ 

if(pack_pal[L][W][H] > 0) 
pack_pal_mod[L] [W] [H] = 1; 

else 
pack_pal_mod[L] [W] [H] = 0; 

} 

for (W=0;W <pal_w; W++) 
for (L = 0;L <pal_L; L++) 

for (H=1;H <pal_h; H++) 
{ 

if((pack_pal_mod[L][W][H] -packj)al_mod[L][W][H-l]) > 0) 
penalty 4 = penalty 4 + 1; 

} 
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CIO Fifth Feasibility Check 

This checks whether the number of adjacent faces for each box in the solution is 

equal to the actual number of adjacent faces for that box. For each violation a penalty is 

assessed. 

/* Fifth constraint ensures that the box is linked together */ 

for (i = 0; i < numjboxes; i++) 
{ 

for (H = 0; H <pal_h; H++) 
{ 

for (W=0;W <pal_w; W++) 
{ 

for (L = 1; L <pal_L; L++) 
{ 

if((box_pal[i][L][W][H] == 1) && (box_pal[i][L-l][W][H] == 1)) 
count_adjjaces[i] = count_adjJ~aces[i] + 1; 

} 
~ } 
for (L = 0; L <pal_L; L++) 
{ 

for(W=l;W< pal_w; W+ +) 
{ 

if((box_pal[i][L][W][H] == 1) && (box_pal[i][L][W-l][H] == 1)) 
count_adjJaces[i] = count_adjjaces[i] + 1; 

} 
} 

} 
for (W=0;W <pal_w; W++) 

for (L = 0;L <pal_L; L++) 
for (H=1;H <pal_h; H++) 
{ 

if((box_pal[i][L][W][H] == 1) && (box_pal[i][L][W][H-l] == 1)) 
count_adjjaces[i] = count_adj_faces [i] + 1; 

} 
} 

for (i = 0; i < numjboxes; i++) 
if ((count_adjjaces[i] !- adjj~aces[i]) && (sumjboxfij > 0)) 
penalty5 = penalty5 + no_negative(adjJaces[i], count_adj_faces[i]); 
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C.ll Sixth Feasibüity Check 

This constraint checks to ensure each box is packed with the correct dimensions. 

It allows the box to be packed with any orientation. If the dimensions of a particular box 

are the same then the check is quite simple. Otherwise the check is quite intensive and 

consists of multiple loops to determine the orientation in which the box is packed. For 

each violation a penalty is assessed. 

/* The sixth constraint ensures that each box is packed with the correct L, W, &H*/ 

for (i = 0; i < num_boxes; i++) 
{ 

/* This first part is for boxes with all the same dimensions */ 

if(same [i] ==3) 
{ 

for (H=0;H <pal_h; H++) 
{ 

for (W=0;W <pal_w; W++) 
{ 

countJL = 0; 
for (L = 0;L <pal_L; L++) 

if(box_pal[i][L][W][H] ==1) 
count_L = countJL + 1; 

if((count_L /= box_L[i]) && (count_L 1= 0)) 
wrong_L[i] = wrong_L[i] + 1; 

} 

for (L = 0; L <pal_L; L++) 
{ 

count_w = 0; 
for (W = 0; W<pal_w; W++) 

if(box_pal[i][L][W][H] == 1) 
count_w = countjw + 1; 

if((count_w != box_w[i]) && (count_w != 0)) 
wrong_w[i] = wrong_w[i] + 1; 

} 
} 
for (W=0;W <pal_w; W++) 
{ 

for (L = 0; L <pal_L; L++) 
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{ 
countji = 0; 
for (H=0;H <pal_h; H++) 

if(box_pal[i][L][W][H] == 1) 
countji = countJi + 1; 

if((count_h != box_h[i]) && (countji '.= 0)) 
wrong_h[i] = wrongJ[i] + 1; 

} 
} 

} 

/* The rest of this is for boxes that do not have all three dimensions equal */ 
else 
{ 

match = 0; 
countJL = 0; 
done = 0; 
W=0; 
H=0; 

- while (done == 0) 
{ 

if((W == (pal_w - 1)) &&(H== (pal_h - 1))) 
done = 1; 

for (L = 0; L <pal_L; L++) 
if(box_pal[i][L][W][H] == 1) 

countJL = count_L + 1; 

W=W+1; 
if (count_L > 0) 

done - 1; 
else if(W ==pal_w) 
{ 

H = H+ 1; 
W=0; 

} 
else 

{} 
.} 

if (countJL == box_L[i]) 
match = 1; 

else if (count_L == box_w[iJ) 
match = 2; 

else if (count_L == boxjifij) 
match = 3; 
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else if(count_L != 0) 
{ 

violationfi] = violationfi] + 1; 
match = 1; 

} 
else 

{} 

/* This is for boxes whose length is packed along the length of the pallet */ 

if (match == 1) 

f 
for (H=0;H <pal_h; H++) 
{ 

for (W = 0; W<pal_w; W++) 
{ 

count_L = 0; 
for (L = 0;L< pal_L; L++) 

if(box_pal[i][L][W][H] == 1) 
count_L = countJL + 1; 

if ((count_L != box_L[i]) && (count_L != 0)) 
wrong_L[i] = wrong_L[i] + 1; 

} 
} 

done = 0; 
count_w = 0; 
L = 0; 
H=0; 
while (done == 0) 
{ 

if((L == (pal_L - 1)) && (H == (palji - 1))) 
done = 1; 

for (W = 0; W<pal_w; W++) 
if(box_pal[i][L][W][H] == 1) 

count_w = count_w + 1; 

L=L + 1; 
if (count_w > 0) 

done = 1; 
else if(L ==palJL) 
{ 

H = H+1; 
L = 0; 

} 
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else 

0 
} 

if (countjM == box_w[iJ) 
match = 4; 

else if (count_w == box_h[iJ) 
match = 5; 

else if'(count_w != 0) 
{ 

violationfi] = violationfij + 1; 
match = 4; 

} 
else 

0 

/* This is for boxes whose width is packed along the width of the pallet * 
/ 

if (match ==4) 
{ 

for (H=0;H< palji; H++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

count_w = 0; 
for (W=0;W <pal_w; W++) 

if(box_pal[i][L][W][H] == 1) 
countjw = countjw + 1; 

if'((count_w l- box_w[iJ) && (count_w != 0)) 
wrong_w[i] = wrong_w[i] + 1; 

} 
} 
for (W = 0; W<pal_w; W++) 
{ 

for (L = 0;L <pal_L; L++) 
{ 

countjh = 0; 
for (H=0;H <pal_h; H++) 

if(box_pal[i][L][W][H] == 1) 
countJi = countjh + 1; 

if ((countjh != boxjhfi]) && (countjh != 0)) 
wrongjhfij = wrongJi[i] + 1; 

} 
} 

} 
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/* This is for boxes whose height is packed along the width of the pallet */ 

if (match -= 5) 
{ 

for (H=0;H <pal_h; H++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

count_w = 0; 
for (W = 0; W<pal_w; W++) 

if(box_pal[i][L][W][H] == 1) 
countjw = countjw + 1; 

if ((count_w != boxjtfij) && (count_w != 0)) 
wrong_w[i] = wrong_w[i] + 1; 

} 
} 
for (W=0;W <pal_w; W++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

count_h = 0; 
for (H=0;H <pal_h; H++) 

if(box_pal[i][L][W][H] == 1) 
count_h = countJi + 1; 

if ((count_h != box_w[i]) && (count_h != 0)) 
wrong_h[i] = wrongJtfiJ + 1; 

} 
} 

} 
} 

/* This is for boxes whose width is packed along the length of the pallet */ 

if (match ==2) 
-  { 

for (H = 0; H <pal_h; H++) 
{ 

for (W = 0; W<pal_w; W++) 
{ 

count_L = 0; 
for (L = 0;L <pal_L; L++) 

if(box_pal[iJ[LJ[W][HJ == 1) 
countJL = count_L + 1; 

if '((count_L != box_w[iJ) && (count_L != 0)) 
wrong_L[i] = wrong_L[i] + 1; 

} 
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; 

done = 0; 
countjw = 0; 
L = 0; 
H=0; 
while (done =- 0) 
{ 

if((L == (pal_L - 1)) &&(H== (palji -1))) 
done = 1; 

for (W = 0; W<pal_w; W++) 
if(box_pal[i][L][W][H] == 1) 

countjw = countjw + 1; 

L=L + 1; 
if (count_w > 0) 

done = 1; 
else if(L ==pal_L) 
{ 

H = H+1; 
L = 0; 

} 
else 

0 
} 

if(count_w == box_L[i]) 
match = 4; 

else if (count_w == box_h[i]) 
match = 5; 

else if'(count_w != 0) 
{ 

violationfi] = violationfij + 1; 
match = 4; 

} 
else 

{} 

/* This is for boxes whose length is packed along the width of the pallet */ 

if (match ==4) 
{ 

for (H = 0; H <pal_h; H++) 
{ 

for (L = 0; L <pal_L; L++) 
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{ 
countjw = 0; 
for (W=0;W< pal_w; W+ +) 

if(box_pal[i][L][W][H] == 1) 
count_w = count_w + 1; 

if((count_yv /= box_L[i]) && (countjw /= 0)) 
wrong_w[iJ - wrong_w[i] + 1; 

} 
} 
for (W=0;W <pal_w; W++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

countji = 0; 
for (H=0;H <pal_h; H++) 

if(box_pal[i][L][W][H] == 1) 
countJi — countji + 1; 

if ((countJi '.= boxjifij) && (countJi != 0)) 
wrong_h[i] = wrong_h[i] + 1; 

} 
} 

-   ; 

/* This is for boxes whose height is packed along the width of the pallet */ 

if (match —~ 5) 
{ 

for (H=0;H <pal_h; H++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

countjw = 0; 
for (W=0;W <pal_w; W++) 

if(box_pal[iJ[LJ[WJ[HJ == 1) 
count_w = count_w + 1; 

if((count_w !=box_h[iJ) && (count_w != 0)) 
wrong_w[i] = wrong_wfiJ + 1; 

} 
} 
for (W=0;W <pal_w; W++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

count Ji = 0; 
for (H=0;H <pal_h; H++) 

if(box_pal[i][L][W][H] == 1) 
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countJi = countji + 1; 
if((count_h != boxJLfi]) && (count_h != 0)) 

wrong _hfij - wrong_h[i] + 1; 
} 

} 
} 

} 

/* This is for boxes whose height is packed along the length of the pallet */ 

if (match ==3) 
{ 

for (H=0;H< pal_h; H++) 
{ 

for (W=0;W <pal_w; W++) 
{ 

count_L = 0; 
for (L = 0; L <pal_L; L++) 

if(box_pal[i][L][W][H] == 1) 
countJL = count_L + 1; 

if'((count_L != boxjifij) && (count_L != 0)) 
wrongJLfi] = wrongJLfiJ + 1; 

} 
} 

done = 0; 
count_w = 0; 
L = 0; 
H=0; 
while (done == 0) 
{ 

if((L == (pal_L - 1)) && (H == (palji - 1))) 
done = 1; 

for (W = 0; W<pal_w; W++) 
if(box_pal[i][L][W][H] == 1) 

countjw = count_w + 1; 

L=L + 1; 
if (count_w > 0) 

done = 1; 
else if(L ==pal_L) 
{ 

H = H+1; 
L = 0; 

} 

C-17 



else 
{} 

} 

if (countjv == box_L[i]) 
match = 4; 

else if (countjw == box_w[iJ) 
match = 5; 

else if (countJA! != 0) 
{ 

violation [i] = violationfij + 1; 
match = 4; 

} 
else 

0 

/* This is for boxes whose length is packed along the width of the pallet */ 

if (match ==4) 
{ 

for (H=0;H <pal_h; H++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

countjw = 0; 
for (W=0;W <pal_w; W++) 

if(box_pal[i][L][W][H] == 1) 
count_w = count_w + 1; 

if '((count_w != box_L[i]) && (count_w != 0)) 
wrong_wfiJ = wrong_w[i] + 1; 

} 
} 
for (W = 0; W<pal_w; W++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

countjh = 0; 
for (H=0;H <pal_h; H++) 

if(box_pal[i][L][W][H] == 1) 
countjh = countjh + 1; 

if ((countJi != box_w[i]) && (count_h != 0)) 
wrong_h[i] = wrong_h[i] + 1; 

} 
} 

} 
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/* This is for boxes whose width is packed along the width of the pallet */ 
if (match ==5) 
{ 

for (H=0;H <pal_h; H++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

count_w - 0; 
for (W=0;W <pal_w; W++) 

if(box_pal[i][L][W][H] == 1) 
countjw = count_w + 1; 

if((count_w 1= box_w[iJ) && (count_w != 0)) 
wrong_w[i] = wrong_w[i] + 1; 

} 
} 
for (W=0;W <pal_w; W++) 
{ 

for (L = 0; L <pal_L; L++) 
{ 

countji - 0; 
for (H=0;H <pal_h; H++) 

if(box_palfiJ[LJ[WJ[HJ == 1) 
count_h = countJi + 1; 

if ((count_h != box_L[i]) && (count Ji != 0)) 
wrong_hfi] = wrong_h[i] + 1; 

} 
} 

■     } 
} 

} 
} 

for (i = 0; i < numjboxes; i++) 
if((violation[iJ > 0) \\ (wrong_L[iJ > 0)\\ (wrong_w[ij > 0) \\ (wrong_h[iJ > 0)) 

penaltyö = penaltyö + violationfi] + wrong_L[i] + wrong_w[i] + wrong_h[i]'; 

C-19 



C.12 Objective Function Value 

This calculates the total penalty associated with all the violations and then 

calculates the objective function value which is returned to GENESIS. 

/* This calculates the objective function value */ 

totaljpenalty = 50*penaltyl + 500*penalty2 + 500*penalty3 + 500*penalty4 + 
100*penalty5 + 100*penalty6; 

objjunjyal = (pal_yol - pack_yol) + total_penalty; 

return (objJun_val); 

}   - 
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Appendix D - Results of Genetic Algorithm on Test Problems 

D.l Introduction 

For each of these test problems we will show the genetic algorithms settings we 

used, the number of generations it took to find the reported solution, as well as provide 

the reported solution. We attempted to solve three separate test problems. The first test 

problem consisted of three boxes, the second test problem consisted of six boxes and the 

third test problem consisted of eleven boxes. Additionally, the available pallet volume 

for the first two test problems was 27, while for the third test problem the available pallet 

volume was 112. 

D.2 Results of Test Problem One 

The genetic algorithm settings we used for this problem are illustrated below. 

Experiments = 1 
Total Trials = 50000 

Population Size = 50 
Structure Length =81 

Crossover Rate = .85 
Mutation Rate = .01 
Generation Gap = .9 
Scaling Window = 5 

Report Interval = 250 
Structures Saved =10 

Max Gens w/o Eval = 2 
Dump Interval = 0 

Dumps Saved = 0 
Options = eel 

Random Seed = 123456789 
Rank Min = 0.75 
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The settings we adjusted were the total trials (number of generations), population 

size, crossover rate, mutation rate, and generation gap. We found that these initial setting 

forced the genetic algorithm to converge on the optimal solution in less than 200 

generations. The optimal solution is provided below. Each group of three bits represents 

a row, and each group of nine bits represents a layer of the pallet. 

Oil Oil Oil || Oil Oil Oil || Oil Oil Oil Box 1 
000 000 000 II 000 000 000 II 000 000 000 Box 2 
100 100 100 II 100 100 100 || 000 000 000    Box 3 

Objective Function Value = 3.0000e+00 

D.3 Results of Test Problem Two 

For this test problem the size of the pallet remained the same as in the first test 

problem, however the number of boxes to be packed doubled. Therefore, the structure 

length of the bit stream also doubles from 81 variables to 162 variables. The input file 

used for this test problem is shown below. 

Experiments = 1 
Total Trials = 65000 

Population Size = 100 
Structure Length = 162 

Crossover Rate = .95 
Mutation Rate = .01 
Generation Gap = .9 
Scaling Window = 5 

Report Interval = 500 
Structures Saved = 10 

Max Gens w/o Eval = 2 
Dump Interval = 0 

Dumps Saved = 0 
Options = eel 

Random Seed = 123456789 
Rank Min = 0.75 
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These were the settings we found to work best for this test problem. 

Unfortunately we were unable to get the genetic algorithm to converge on the optimal 

solution. Instead it converged on a sub-optimal feasible solution in 655 generations. The 

solution found is provided below. 

011011000 
000 000 000 
000 000 000 
100 000 000 
000 000 111 
000 100 000 

011011000 
000 000 000 
000 100 100 
100 000 000 
000 000 000 
000 000 000 

000 000 000 Box 1 
000 000 000 Box 2 
000 100100 Box 3 
000 000 000 Box 4 
000 000 000 Box 5 
000 000 000 Box 6 

Objective function value = 9.0000e+00 

D.4 Results of Test Problem Three 

This test problem is quite a bit larger than the other test problem and has a 

structure length of 1,232 variables. Therefore, it took a very long time for GENESIS to 

find solutions for this problem size. Additionally, since GENESIS only uses single-point 

crossover it did not come close to converging on a feasible solution in a reasonable 

amount of time. However, we did use the settings shown on the following page to solve 

the problem. 
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Experiments = 1 
Total Trials = 100000 

Population Size = 100 
Structure Length = 1232 

Crossover Rate = .85 
Mutation Rate = .01 
Generation Gap = .9 
Scaling Window = 5 

Report Interval = 2 000 
Structures Saved = 10 

Max Gens w/o Eval = 2 
Dump Interval = 0 

Dumps Saved = 0 
Options = eel 

Random Seed = 123456789 
Rank Min =0.75 

Using these settings, GENESIS was unable to converge on a feasible solution. 

Also, it took GENESIS 45 minutes to run through all 1,000 generations. At the 99,907 

iteration the best solution was found with an objective function value of 28,876. 
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