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Abstract 

A numerical simulation of a carbon black suspension cell is explored which models 

a laser-induced plasma within a liquid ethanol medium of approximately 1mm thickness. 

The simulation model assumes a laser pulse with a pulse width of approxmiately 9 nsecs 

propagating in the left-to-right direction striking the front surface of the medium and 

focusing to a spot within the liquid volume. When the energy density within a given 

irradiated volume is sufficiently high, it ignites the carbon particles and generates a large 

number of free electrons, i.e. a plasma. The plasma couples with the in-coming laser energy 

on a picosecond timescale, thereby attenuating the intensity of the remaining pulse as it 

traverses the medium. The simulation divides the sample into discrete layers and models 

the propagation of the plasma through the course of a single laser pulse containing a total 

fluence of 1 Joule/cm2. A new double layer, time-reversed algorithm is employed which 

modifies and extends the capabilities of the existing code. The older version is used as a 

baseline for comparison with the new program. 

XI 



A NUMERICAL SIMULATION OF A CARBON BLACK SUSPENSION CELL 

VIA A TIME-REVERSED, DOUBLE LAYER COMPUTE ALGORITHM 

/.   Introduction 

1.1    Rationale 

The aim of this thesis is to design a computer code which will aid in understanding 

the physical interaction of an intense beam of light with a suspension of absorbing particles 

in a liquid. An examination of the data in experiments on such a system indicates physical 

effects which cannot be accounted for by conventional descriptions of the system response. 

To remedy this deficiency, researchers developed a theory or model of the response which 

incorporates assumptions subject to challenge. The system response is very complicated, 

so that comparisons with suitably designed experiments require the incorporation of the 

model into a numerical code. A previous effort was carried out with this aim. The resulting 

code, which I designate as the old code, suffered from two limitations. The first is that 

it used a one-dimensional desciption of the response. Therefore, it could not account 

for scattering in the radial direction. This thesis describes the precursor to a new two- 

dimensional code. The precursor overcomes this defect by laying the groundwork for the 

future modeling of scattering effects. The second problem with the old code was that it was 

not amenable to modeling elaborate physical descriptions. Since a multi-level description 

of the processes which occur in the response places a heavy burden on computational time, 

the program described in this thesis was written so that, with appropriate modifications, 

it can run on a computer with multiple processors using parallel programming techniques. 

The extant software was updated to run efficiently on an IBM SP2 machine. 

This thesis describes the physical assumptions on which the model rests. However, 

it does not revalidate those assumptions. It concentrates on modifying the old code so 

that later it can test those assumptions by observing how well the code predicts labora- 

tory results. If, after the code has been thoroughly tested to confirm that it is correctly 
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implementing the model, the code fails to be an accurate predictor of actual events, the 

physical assumptions of the model will have to be modified. 

The old code, and the present code which has been derived from it, form a small part 

in a much more vast computational mosaic. Materials researchers use an extensive array 

of modeling software to analyze and predict material and device characteristics in an effort 

to study and predict how well materials interact with light. Materials modeling techniques 

employ ab initio first principles or semi-empirical approaches. The aim is to elucidate the 

physical mechanisms at the molecular level without having to resort to costly and time 

consuming experiments. In some cases, such simulated experiments are the only way to 

gain insight into the underlying behavior. The magnitude and complexity of the present 

investigations require that researchers must routinely rely on the computational resources 

provided by the Major Shared Resource Center (MSRC) located here at Wright-Patterson 

AFB and at other sites across the DoD. 

1.2    Computer Simulation 

The code developed for this thesis models the interaction of a single pulse of laser 

energy with a thin, liquid cell. The code, however, can be generalized to describe other 

systems. The geometry involved is, of course, three-dimensional. The simulation, however, 

selects certain 2-D regions or "slices" of the cell where the interaction takes place and 

processes these as representative of the phenomenon in two-dimensions. Then, to fill an 

appropriate 3-D volume, the slice is rotated around an axis through the center of the cell. 

If the slice spans a diameter, the rotation is through it radians. If the slice spans a radius, 

the rotation is through 2it radians. 

The material medium used in this study is composed of carbon micro-particles sus- 

pended in ethanol, of a pre-determined thickness, and positioned at right angles to the 

direction of propagation of the laser pulse. The computer program divides the medium 

into discrete layers within a cone-shaped region called the Primary Zone (PZ). This is the 

volume filled by the laser beam traveling from left to right as it narrows to a focal spot. 

Dividing the Primary Zone this way captures the ignition of the carbon particles within it 

which starts the plasma and, thereafter, captures the physical mechanisms of absorption 
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from electrons and scattering from bubbles as the plasma progresses from layer to layer. 

This not only allows a numerical "divide and conquer" approach but it also affords a means 

of tracking the physical progress as well as the accumulating effects of the ignited plasma. 

A typical image, or shadowgraph, of the different regions within the sample is shown in 

Figure 1.1. The Primary Zone is the cone-shaped, dark region and is the volume directly 

illuminated by the laser beam. It contains the plasma generated by the ignition of the car- 

bon particles within it. Another region, however, surrounds the Primary Zone. This more 

spherical secondary zone is populated predominantly by bubbles which, as experimental 

evidence indicates, scatter the laser radiation. Evidently, enough light is being scattered 

out of the Primary Zone with sufficient energy to create these secondary zone bubbles. The 

image in Figure 1.1 shows the effects of a single laser pulse entering a liquid medium from 

the left and narrowing to focus at the end of a dark, cone-shaped region—the Primary 

Zone. The shadowgraph image, of course, is a two-dimensional view. A spatial schematic 

of the regions involved is shown in Figure 1.2. 

The shadowgraph reveals the accumulation of a number of events occurring over the 

lifetime of a single pulse. Based on the most current analysis (see Goedert [3]), at the 

beginning of the pulse, bubbles and hot electrons are generated within the Primary Zone. 

But enough energy is scattered out of the Primary Zone that bubbles are created a short 

time later in the secondary zone. Toward the end of the pulse, laser energy scatters from 

the Primary Zone and off the secondary zone bubbles with the result that the laser pulse 

scatters from a much larger volume than just the Primary Zone alone. Unfortunately, 

current shadowgraphs of the kind shown in Figure 1.1 are not time-resolved so as to 

capture this sequence of events. 

The geometry of the simulation is shown in Figure 1.3. Here, the slice of interest 

involves the upper half of the Primary Zone. For this thesis project, however, only the 

Z axis of the Primary Zone was investigated. The code is, therefore, a one-dimensional 

code. It is the goal of later work to model the contribution of the scattering effects from 

the secondary zone by modeling the upper slice of the Primary Zone and then rotating it 

2K radians around the Z axis. 
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Figure 1.1     A shadowgraph of the Primary Zone formed by a laser entering a liquid 
medium. Note the bubbles fanning out from the Primary Zone. 

Direction of propagation 

Entrance Surface 

Figure 1.2 Schematic of the shadowgraph of Figure 1.1. The dark arrows point in the 
general direction of the laser pulse toward a focal point and represent the 
boundary of the Primary Zone. The white arrows represent the general direc- 
tion of bubble formation as they fill the volume which surrounds the Primary 
Zone. 
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The code calculates the attenuating effects of a plasma and bubbles by first assuming 

a sample of thickness L irradiated by a laser pulse from a positive lens, as shown in 

Figure 1.3. The positive lens converges the beam toward the back (exit) surface of the 

sample. The code sets up the necessary space and time variables to track the progress 

of the plasma within the laser beam volume (the Primary Zone). These variables track 

the progress of the plasma over the lifetime of a single laser pulse. The beam enters the 

sample from the left already converging from the input lens and comes to focus in the first 

layer. As the beam narrows, the intensity (W/cm2) increases since the same amount of 

light is being forced to cover a smaller and smaller area. After a small amount of time, 

the fluence (J/cm2), which is the time integral of intensity, will become high enough to 

ignite its carbon particles, which starts the plasma. (See Figure 1.4). The second layer, 

upstream from the first, will ignite but only after it too has attained enough fluence in 

like manner. Similarly for the third layer and so on toward the entrance surface. Thus 

the timing of ignition of each successive layer is an approximation to the development of 

the plasma within the length of the sample. The resulting attenuation of the laser beam 

occurs because the ignition sequence of the layers' plasma advances toward the entrance 

surface, coupling head on with the incoming laser energy in front of it, reducing the beam's 

intensity as it progresses rightward, shielding the detector. 

The previous version of the code calculates the attenuation of the laser from the 

plasma and bubbles by starting at the exit surface on the Z axis. The code then transfers 

those results to neighboring layers through an accumulating process toward the entrance 

surface (see Figure 1.4). The calculation starts the moment the carbon particles in the layer 

at the focal volume vaporize and is designated Tau(n) for layer n. It must be emphasized, 

however, that the plasma does not propagate like the spread of a flame front throughout 

the Primary Zone backwards from the first ignition point in the starting layer. Rather, 

the ignition of the plasma is dependent on the geometry of the Primary Zone, each layer 

igniting locally only after 100 mJ have passed that particular layer. In other words, if the 

edges of the Primary Zone were parallel, the entire volume would ignite simultaneously. 

The previous version accumulates the attenuating effects of the newly formed plasma 

and bubbles by adding new layers through time. Each calculation is coordinated with a 
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Z Axis 

Exit 

Secondary Zone 

Focai -Region 

Figure 1.3 Input arrangement assumed by the simulation. A positive lens focuses the 
laser into a sample of thickness L. Near the exit surface, the plasma ignites in 
the focal region, starting the simulation which tracks the progress of plasma 
ignition toward the entrance surface. The secondary zone receives scattered 
light from the Primary Zone. 

"wall clock" that acts as the master clock for the simulation of the entire pulse. The 

program starts at time t = 0 and progresses toward the end of the pulse, adding slices in 

a leftward progression through space since that is the direction of progress of the plasma. 

A three-dimensional view of the Primary Zone is shown in Figure 1.5. Here, the entrance 

surface is layer 20 and the exit surface is layer 1. The plasma ignites at the tip of the arrow 

and progresses rearward toward the entrance surface. 

The f/# (f-number) of the lens is a key parameter for the simulation, and illustrates 

how changing it affects how the code adjusts individual layer ignition times. With large 

f/#'s, i.e. when the focal length of the lens is much greater than its diameter, each layer's 

ignition time will be nearly the same because each layer, which acts like a perpendicular 

slice through the cone, will have more nearly the same area and, therefore, the intensity 

difference between layers will not be great. Small f/#'s lead to the reverse the effect, 

resulting in a larger divergence of ignition thresholds among the layers. The effect of 

the former is a more instantaneous ignition of the plasma across the entire volume of the 

Primary Zone. The effect of the latter is to retard the plasma's leftward progress. 
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(a) 
3    2     1 

(b) 
3    2     1 

(c) 

3    2     1 

Figure 1.4 The leftward advance of the plasma in the upper half of the Primary Zone 
of Figure 1.3. The first layer to ignite is nearest the exit surface in part (a). 
Layer 2 remains unignited because it's threshold fluence level has not been 
reached. Soon, layer 2 ignites in part (b) and similarly for layer 3 in part (c). 
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Exit surface 

Entrance surface 

Figure 1.5 Three-dimensional focusing volume of the Primary Zone. The ID simulation 
produces intensity values at the center of the focal region's exiting disk, i.e. 
at the tip of the arrow. 

Since the simulation is one-dimensional, the results are determined at the z axis. 

Problems occur, however, as the number of layers increases. For the purposes of compu- 

tational efficiency, each layer's time line is nonlinearly partitioned, i.e. each layer's time 

steps are clustered near its ignition point. Much of the critical response phenomenon occurs 

during plasma ignition and the subsequent rapid electron diffusion, which happens within 

roughly the first 600 picoseconds. As a result, the model must impose this high rate of 

energy injection so that the simulation corresponds to the evolving temporal dynamics. In 

a sense, energy must continually "stoke" the plasma to keep it sustained. Otherwise, with 

time steps too large, the electrons become starved of energy and quickly cool, extinguishing 

the plasma and its attenuating effects. 

Hence, a nonlinear time scale must be imposed on each layer as shown in Figure 1.6. 

These time scales are represented as vertical fences, one for each layer, and "stacked" 

within themselves more closely together near the bottom than at the top. The code must 

resort to a complex logistical tracking system for managing the time and space variables 

for a given slice or layer. An event happening at A, for example, must have its attenuation 

"expressed" through five do-loops beginning with layer five. Layer five's history will be 

updated or "brought up to" the timeline associated with the arrow AB in Figure 1.6 by 

taking its input from its "leftward" neighbor and producing an output which must be made 



Simulation End 

Wall clock 
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Layer 2 ignition 

Layer 1 ignition 
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Figure 1.6 An event A in the sixth layer must be carefully tracked through five interven- 
ing layers, each with overlapping nonlinear time grids, to propagate correctly 
to B. The output from layer 6 becomes the input to layer 5 and so on. 

ready for its "rightward" neighbor. The Do-loop for layer 4 is started next until its output 

is brought up to the arrow AB. This process is repeated until finally, layer one uses its 

Do-loop to process its input up to arrow AB. The output at the end of this last Do-loop 

becomes the attenuated value associated with the event "A" and is written to the output 

file. The intricacy of the relay process grows with each newly added layer through this 

accumulating series of Do loops. 

Figure 1.7 further illustrates this cascading Do-loop system in slightly more detail. 

An event in layer 1 is calculated for each time bin up until the ignition point of layer 2. 

Calculating layer l's events is then suspended so that the first event in layer 2 can begin. 

But now, each event in layer 2 must be processed (attenuated) through layer 1 but not 

before the calculation in layer 1 is resumed to bring it up to the same wall clock "level" 

as layer 2. As layer 2 proceeds, each time increment must be coordinated with the time 

bins of layer 1 until the ignition point of Layer 3 is reached. Layer 3 events must then be 

coordinated with the previous two layers, layer 4 events with the previous three and so 

on. In other words, each new layer must not only calculate its own events, but it must 

ensure each intervening layer is brought up to the same master wall clock level before 
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Wall Clock Time 

Time 

Time = Tau(l)+ At 
Time = Tau(l) 

First 100 mJ/cmA2 
passes through 

Figure 1.7 After the first 100mJ/cm2 of fluence, layer 1 activates and processes informa- 
tion directly to output until Tau (2). From Tau (2), the program must process 
output from layer 2 through layer 1 to output. Layer 3 must process output 
through layer 2 and layer 1, etc. 
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calculating its next event. This neighbor-to-neighbor relay, or hand-off, propagates data 

rightward as the model (by design) incrementally reduces the value of each data point, 

thereby mimicking the attenuating effects of the induced plasma. The program ends when 

the wall clock time reaches the end of the pulse. 

As the number of layers increases, so does the numerical load. The program uses 

small time steps, numbering approximately 2,500 for each layer, and, during some parts 

of the program, the time steps must be rescaled, which further strains the numerical load. 

Eventually, beyond approximately seven to ten layers, the code begins to yield non-physical 

results because it is unable to sufficiently resolve any differences in overlapping time scales 

after a critical number of intervening layers is exceeded. 

The old Fortran code is comprised of two sections: one for modeling plasma growth 

for a single laser pulse, the other for generating intensity profiles by plotting the results 

from a series of input pulses. This thesis only investigates modifications and enhancements 

to the single-pulse code. Scattering effects were not included in the old code, which limits 

it's predictive power. While certainly improving the code's modeling fidelity, the addition 

would increase the overall computational time since the model is sequential, i.e. depends 

on a single processor, and thus scattering effects have not been added. 

Finally, it should be re-emphasized that this thesis builds on physical insight and 

the attendant assumptions already laid down by previous researchers after a careful ex- 

amination of experimental data. Remarks pertaining to these assumptions will be found 

throughout this work. As was mentioned at the beginning of this chapter, it is not the 

intent of this thesis to reevaluate the validity of the physical underpinnings of the present 

model—a task beyond the scope of this thesis; it is to design a more robust computer 

program which will incorporate ways of extending the limits of the present computer code 

and so test the assumptions found in the model. 
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77.  Physics 

This chapter presents an overview of the essential physics of the carbon suspension cell. 

It begins with a description of a suspension cell and describes how the code mimics the 

interaction of the device with an in-coming laser pulse through the use of descrete numerical 

slices. It then proceeds to a qualitative discussion of scattering and absorption relating to 

a plasma and bubbles followed with a quantitative development of the essential modeling 

parameters. Much of the development contained in this chapter follows the development 

of Kerker [5]. 

2.1    Essential Parameters 

The objective of the code is to model the response behavior of a carbon suspension 

cell, testing the assumptions underlying the physical response mechanisms. This chapter, 

however, will not attempt to revalidate these assumptions nor the methods used to de- 

rive the simulation parameters but to present them within an experimentally established 

physical context. 

The cell is a thin medium composed of carbon particles suspended in a liquid or solid 

host, sandwiched between two glass surfaces. The cell is then subjected to a short (10 

nanosecond) laser pulse with a power in the range of 10W to 1MW. The code simulates the 

response characteristics of the carbon black suspension by calculating attenuation cross- 

sections for two simultaneous, physical processes: 1) a rapidly forming plasma, which 

contributes to the absorption of the laser energy and 2) relatively slow bubble growth, 

which causes scattering. The medium of the Primary Zone is divided into descrete cross- 

sectional slices comprised of a surface area perpendicular to the direction of propagation 

of the laser beam and a thickness which is a fraction of the thickness of the medium. The 

cross-section of each slice or layer becomes smaller toward the focus, owing to the geometry 

of the focusing optics. For any given layer, the original code attempts to cascade its output 

to neighboring layers lying rightward, toward focus, through the use of an expanding Do 

loop. Each successive hand-off serves to decrement the layer's original output. The Do 

loop ends when the rightmost layer writes its results to an output file. Both the old and 
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new algorithms appeal to the same underlying physical assumptions, which have remained 

essentially unchanged. These assumptons are referred to as "the model." 

Underlying the model's response algorithm is the concept that scattering and ab- 

sorption from a scattering center is linked to the center's dielectric constant e\ and to that 

of the center's surrounding medium er2- The dielectric constant of ethanol is 1.85 and is 

assumed to be a real quantity. The dielectric constant for a bubble is one and real. A 

plasma's dielectric constant, however, is complex—a plasma absorbs light. It's absorption 

is linearly proportional to the imaginary part of its dielectric constant, e ; scattering is 

dominated by the real part, e . In practice, e remains equal to the original host (liquid 

ethanol) value in cases of interest. Hence, a plasma in this context does not scatter. 

In condensed media in the visible, plasma absorption overwhelmingly dominates 

scattering. There are two limiting cases where this occurs: when the plasma centers are 

discrete and localized, known as the Rayleigh region, and when they have coalesced into 

a continuum. The model, as a result, divides absorption from a plasma into a Rayleigh 

regime and a continuous regime, adding a bridging intermediate regime. All three cases 

attempt to reflect the changes in the system's response characteristics as a function of size. 

In this way, the model captures the essential response mechanism of plasma absorption 

through its functional dependence on e . 

The code treats bubble scattering by assuming the initial bubble, like the nascent 

plasma, to be of a size on the order of the carbon particle. The rate equation for bubble 

growth is, to a first approximation, derived from a large body of research. (See [9], [2], 

[7], [12] and references therein.) The bubbles will expand adiabatically, i.e. no heat will be 

added in the initial stages of growth. Small bubbles are limited in their expansion through 

surface tension, whereas larger ones are constrained through ambient pressure. Integration 

of the rate equation is performed a priori via Mathcad in a separate computational run 

resulting in a file of bubble size versus time. The file is then read in by the main program 

and stored for later use. 

As with the plasma, bubble growth is divided into three separate categories based on 

its initiation and evolution within a liquid: 1) an explosive stage, 2) an adiabatic expansion 
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stage with an interior of carbon vapor and 3) an isothermal expansion stage with an interior 

of ethanol vapor. The first stage can be modeled as an underwater explosion of TNT and 

happens within the first picosecond. This provides the bubble radius and internal pressure 

as inputs for the second stage. Since bubbles would oscillate without any damping forces, 

their sizes are kept fixed at their maximum; otherwise, damping is not included in the 

simulation. The third stage, isothermal expansion, has not been included in the program 

owing to the emphasis on picosecond time scales. 

The code ultimately produces a response curve of intensity versus time, displaying 

the attenuating effects on the laser pulse as it traverses the sample. Because scattering 

from bubbles and absorption and scattering due to a plasma are nearly independent, these 

two processes were uncoupled in the code and computed separately for each time step, 

their contributions to extinction added together in the exponent of the Beer-Lambert Law 

/ = /oc-"*, (2-1) 

where IQ is the initial intensity propagating over a distance z and fx is the extinction 

coefficient. 

The physics underlying the response mechanisms of the simulation has been unaltered 

in revising the code; only changes to the computational algorithm were made. Any hard 

data compiled against the fundamental physical quantities are limited or nonexistent and 

must be estimated. The methods for arriving at these quantities follow the development 

in [5] and [11]. The procedure will be to briefly describe these relevant quantities and how 

they are estimated. 

We begin with the cross-sections of the plasma and bubbles alluded to at the begin- 

ning of this chapter. Their calculation requires knowing the size of the active volume, the 

wavelength of the incident radiation and the respective dielectric constants for the active 

centers and their surrounding medium. The dielectric constant, in turn, depends indirectly 

on the total energy contained in the scattering medium. The desired input parameters, 

therefore, are comprised of the energy contained within a scattering volume of a plasma 

center and the size of the bubble. Complications arise because of the inherently coupled 
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nature of the competing processes surrounding plasma formation and plasma diffusion. 

Initially, at carbon vaporization, the plasma is a sea of hot electrons which rapidly dif- 

fuse. Diffusion lowers the temperature of the plasma, slowing its growth and changing its 

absorption cross-section. Together with other losses, this cooling must be offset by laser 

heating. Bubble growth, on the other hand, is assumed to be much slower and independent 

of the laser intensity. That is, the light couples to the bubble; that is why scattering occurs. 

The light, however, does not couple into the bubble and for this reason, bubble scattering 

dominates, whereas bubble absorption is negligible. There is an indirect dependency be- 

tween bubble size and the laser but this is seen at longer time scales. Then, the bubble 

growth rate increases because the plasma has heated the surrounding liquid. Using the 

current, approximate bubble growth model of the present simulation, the bubble radius is 

not coupled to the laser's energy, making possible a more direct and simple calculation of 

the bubble size. In addition, and as noted above, the dielectric constants for the plasma 

and bubbles are required. In the case of a bubble, the dielectric constant is one ("free 

space"). The dielectric constant for a plasma depends on the plasma's density which, in 

turn, depends on its temperature as illustrated in appendix A. 

The quantities most important in the physical description of the cell's response within 

the present model are then 1) the electron collision frequency and diffusion coefficient, 2) 

the plasma complex dielectic constant, 3) particle size and 4) particle density. 

2.2   Assumptions 

The simulation model assumes small, spherical particles with radius a evenly dis- 

tributed on a simple, cubic lattice. The input is a pulse from a laser with an energy of 1 

Joule. The model performs its functions based on the assumption that the carbon parti- 

cles have been heated to their vaporization point which would require an estimated fluence 

of 70 mJ/cm2 This figure can vary, however, with little change to the final results. The 

program currently uses 100mJ/cm2 and since the model does not specifically treat carbon 

heating, the first 100 mJ are assumed to be completely transmitted. 

As previously discussed, the model de-couples the calculation of the plasma and bub- 

bles, since their attenuation effects are largely independent of one another.  Attenuation 
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effects are derived from the respective absorption and scattering cross-sections. Initially, 

a value for the plasma temperature is assumed together with the Saha equation (see Ap- 

pendix A) to find the density of the plasma electrons. Combining the electron density with 

the ionization energies of the liquid molecules yields the plasma density which, together 

with the temperature, determines the complex dielectric constant. Given s, the cross- 

sections and finally the attenuation are re-estimated. This interative process continues 

throughout the pulse. 

2.3   Electron Collision Frequency and Diffusion Constant 

The electron collision frequency, z/c, can be estimated from 

vc = f, (2-2) 

where v is the most probable electron velocity and le is the electron mean free path. The 

most probable electron velocity can be found by allowing an expression of the form F(v)dv 

to represent the mean number of electrons contained in a unit volume with velocity v in the 

range from v to v+dv. Employing the Maxwell velocity distribution, F(v), becomes [8: page 

207] 

^) = 4-(^)f»V^/-, (2.3) 

where n is the number of molecules per unit volume, m is the mass of the molecule in kg, 

k = 1.38 X 10-23J • Ä"-1 and T = temperature in degrees kelvin. 

The most probable velocity is found from the condition that 

£ = 0, (2.4) 
dv 

which yields 

v2 = —. (2.5) 
m 
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Hence the most probable velocity is 

' = 0- (2'6) 

The values for fc(erg-K_1), T(K) and m(gm) yield a probable velocity from equation 2.6 

whereupon 

v(cm/s) = 5.93 X 107y/E{eV). (2.7) 

where E is now the temperature of the electron in units of electron volts. An electron 

with a temperature of around 1 or 2 eV will, therefore, have a velocity respectively of 6 or 

8 X 107cm/s. 

The electron mean free path, le, is estimated from the equation 

«. = £. (2-8) 

where N is the electron density and qc is the collision cross-section of the hot electrons 

with the surrounding liquid molecules. TV is found from 

N=^NA, (2.9) 

where p is mass density, M is gram molecular weight of the liquid and NA is Avagadro's 

number. The collisional cross-section, qc, for ethanol and other organic liquids at low 

pressures have been estimated from data provided by Brown (see [1]). Brown [1: page 

13] defines a "probability of collision," Pc, as "the average number of collisions that occur 

when an electron travels a distance of 1 cm at a pressure of 1 torr at 0°C." Pc depends on 

velocity in general and has units of an area per unit pressure per unit volume. 

A value of approximately 110 for the collisional cross-section of ethanol at 1 eV can 

be extrapolated from this data (see Brown [1: page 21]), together with the relationship 

qc = 2.83 X 1(T17PC. (2.10) 
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This, along with the value for N, is inserted into equation 2.8 to yield the mean free path 

of the electron. 

The electron diffusion coefficient, D, can be shown to depend on the root mean square 

of the velocity (see Brown [1: page 99]): 

D=\{v)le. (2.11) 

The above relationships have been used to estimate the corresponding parameters for 

ethanol [1]. At 1 eV we have the mean free path of the electron, le = 3.2Ä, the electron 

collision frequency, vc — 1.8 x 1015/s and the diffusion coefficient, D = 0.71cm2/s . 

2-4    Light Scattering 

A brief description of the scattering of light from small spherical particles will serve to 

put into context and emphasize the important remaining quantities of the model, namely 

the dielectric constant, particle size and particle density. 

The model assumes the scattering particle to be a small sphere interacting with a 

parallel beam of linearly polarized light. It is further assumed the radius of the sphere 

to be small compared with the beam's wavelength. As a result, the instantaneous electric 

field inside the sphere is uniform. The field outside the sphere can be described as the 

superposition of the initial field, without the presence of the sphere, with a field identical 

to one produced by a simple dipole positioned in parallel to the incident field. The electric 

field inside the sphere is given as (see [5: pages 31-33]), 

Einf — 
Sei 

(ei + 2£2) 
Eo, (2.12) 

where e\ and e2 are, respectively, the dielectric constants of the sphere and the surrounding 

medium and EQ is the free space electric field. The dipole moment is given as 

p = 47T £2o
3 (£1 - £2) 

(£i + 2 e2) 
Eo, (2.13) 
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where a is the radius of the scattering center. The polarizability, a', is defined as 

a' = a3 (£1 - £2) 

L(£i+2e2) 
(2.14) 

The intensity of the scattered wave of wavelength A and distance r from the scattering 

particle is indicated by the positional geometry shown in Figure 2.1. 

Figure 2.1 Coordinate geometry of the incident electric field in the Z direction and the 
scattering direction, r, for Rayleigh scattering. The particle with radius a is 
positioned at the origin. (After Kerker [5: page 33]). 

If the incident wave has unit intensity, the scattered wave has an intensity given by 

(see Stratton  [10: page 436]) 

167T4a6 /g2-£i V 
r2A4   \e2 + 2ej 

sin ip, (2.15) 

where if) is the angle between r, the scattering direction, and the dipole on the x axis and 

A is the wavelength within the medium. For the present application, the roles of £1 and £2 

in equation 2.15 are reversed from those of equations 2.12, 2.13 and 2.14. 

Integrating equation 2.15 over a sphere yields an effective area scattered by the 

particle called the scattering cross-section, 

JO   JO 
(2.16) 
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Combining equation 2.16 with equation 2.15 we have  [5: page 37] 

1287T5a6 ( e2-Ei\2     24TT
3
F

2
 / e2 - ex c 3A4     \e2 + 2e 

where V is the particle volume (V = |7ra3). 

The efficiency of the scattering particle is defined as its cross-section divided by its 

geometric cross-section, which is IT a2 for a sphere. The scattering efficiency then becomes 

(see Kerker [5: page 37]) 

«-¥(££)'■ <-> 
A convenient, dimensionless size parameter, a, is introduced and is defined as the radius 

of the particle divided by the wavelength of the incident light, 

a=^, (2.19) 

which defines the spherical radius using units of 2n/X. Equation 2.18 then reduces to 

A complex refractive index describes an absorbing medium in which case it can be shown 

that the scattering cross-section, qs, becomes (see Kerker [5]) 

qs = ?l{nrk)4a6\A2\. (2.21) 

where k is the wavenumber, nr is the real part of the refractive index of the medium, a is 

the radius of the scattering center and A is the polarizability given by 

A=^?_ZiL. (2.22) 
e2 + 2ei v      ' 
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If the scattering particles are small compared to A (a -C 1), the absorption cross-section, 

qa, can also be shown to be (see Kerker [5]) 

qa = 4nnrka3Im[A]. (2.23) 

where a3 A is the polarizability of the scattering particle. 

Equations 2.21 and 2.23 serve to highlight the strong dependence of scattering cross- 

sections on particle size and wavelength for the small particle regime. If typical values for 

the real and complex dielectric constants for ethanol are used, i.e. respectively e' — 2.5 

and e" — 2.3, and taking the ratio of equations 2.21 and 2.23 and using the real part of 

the index of refraction, nr = 1.7, the resulting ratio is 

qs/qa = 0.8{ka)3. (2.24) 

Equation 2.24 reveals that absorption will predominate over scattering for 1/im wave- 

length radiation for particles with radii less than 180 nm. If absorption is far greater than 

scattering, then the extinction coefficient, fi, in equation 2.1 becomes Nq where N is the 

particle density and q is now the total cross-section. The density N can be derived from 

the inter- particle spacing, Z, through 

JV = l/l3. (2.25) 

A typical value for Im[A] as found in the literature is 0.5 and with 1.7 for n, equation 2.23 

yields 

qa = 70a3/A. (2.26) 

If A = 532 nm and the particle radius is 15 nm, then 

qa = 4.4 X 10~13cm2. (2.27) 
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For a transmission T of 70%, a thickness of 1 mm, and using 

T = e~NqL, (2.28) 

we would have N = 8.11 X 1012 cm-3 and from equation 2.25, I fa 0.50 /J,m. 

For purposes of simulation, the question of whether a plasma primarily absorbs or 

scatters (expressed through equation 2.24) can be readily answered. At the instant of 

carbon vaporization, all that exists in the liquid are electrons and bubbles. The scattering 

cross-section for an electron at low frequencies is the Thomson cross-section which is 

0.665 x 10~24 cm2 (see [4: page 490]); the electron's absorption cross-section is on the 

order of 2 X 10-17 cm2 (see [3: page 1459]). Hence, we have the ratio 

^ = 3.0 X 107, (2.29) 
o, s 

where aa and as are, respectively, the absorption and scattering cross-sections for the 

electron. The plasma limits through absorption; the bubbles through scattering. 
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HI.   Code Description 

This chapter focuses on establishing a more complete understanding of the present work by- 

comparing the old and new versions. It examines the set-up of both codes but concentrates 

on features of the new algorithm designed to overcome the limitations of the old program. 

The chapter also explores the main computational subroutine, ZAP, which is the same in 

both versions. 

3.1    Previous Code 

The old program divides the sample into discrete layers, each layer experiencing 

carbon varporization at times proportional to its distance from the first layer. The number 

of layers, N, is only one of a number of input variables the program reads at program start- 

up. Others include f-number (or f/#), pulse energy, carbon density and particle radius. 

The input variables are read in from input files, defined as parameters within the main 

body of the code itself, or defined within an external module which the main program can 

access. After the input is properly set and the appropariate arrays initialized, the program 

begins with layer one. 

Figure 3.1 is a diagram of the Primary Zone as it pertains to the new algorithm 

and anticipates a 2D treatment of off-axis scattering which was not addressed in the old 

version. Both the old and new codes, however, are alike in that both calculate values 

progressively along the z-axis which is the bottom line in the figure. The final output for 

both is produced at layer J — 1. 

Layer one (J = 1) is the first to ignite in real time, marking t = 0 for the entire 

simulation. The old code then begins stepping through two computational loops. The 

first, an inner loop, calculates the increase in plasma radius and bubble size for a given 

increment of time for each layer. This yields a value for the attenuation of the intensity 

using Beer's Law. The second outer loop increments from a given layer to the next layer 

backward toward the entrance of the sample. 

The heart of the calculation for both the old and new versions of the code occurs 

within the inner loop in a subroutine called ZAP to be described in the next section. The 
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J = N J = N-1 J = l 

Figure 3.1 Grid geometry of the Primary Zone for the new algorithm. J denotes layer 
number and HH the inter-layer distance. Rad is the radius for a given layer. 
The base of the figure denotes the Z axis. For the ID case, output is calculated 
at the rightmost point of the Z axis at J = 1. 

inner loop of the older version begins when layer J ignites and runs until the end of the 

pulse. After the first pass of the loop, ZAP is called to create input for the previous layer, 

layer J-l. The loop then cycles within layer J-l, calling ZAP at each time step. The inner 

loop moves on to the next intervening layer (previously ignited) but only after residing in 

layer J-l the amount of time given by the ignition time for layer J, thus allowing J-l to 

attenuate the output from J. Stepping next to J-2, the loop cycles only long enough to 

attenuate J-l's output, again calling ZAP at each time step, and so on toward the exiting 

layer, layer 1. (See Figure 3.1.) Since the model assumes no time delay between the 

ignition time of layer J and its affects on the final exiting layer, the exiting layer's intensity 

values are paired with layer J's turn-on times and the pairs are written to an output file. 

The overall effect of cascading the intensity and fluence from J through the intervening 

layers is to incrementally attenuate J's original intensity and fluence values in proportion 

to their run of the gauntlet. Once at the exit surface, the inner loop stops and the outer 

loop steps to layer J+l and the entire process repeats. 

3.2   ZAP 

ZAP's purpose is to calculate the extinction coeffcient, fi, for use in equation 2.1. 

To do this, ZAP's computational scheme is divided into four parts. The first part involves 

establishing key parameters and defining intermediate variables.  Here, the cross-section 
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for Rayleigh scattering from bubbles is calculated, what the program calls "muiso:" 

where e is the dielectric constant of the medium, k is the wavenumber and r the radius of 

the bubble. 

The remaining parts of ZAP calculate the contribution to the extinction from plasma 

absorption, what the program calls "muplas."    (See Figure 3.2.)   The three remaining 

ZAP called 
/    PZDATA        / 

ZRead in / )K-F A- 
Declare variables 

and arrays 

Set parameters 
XandCRIT 

J: Layer no.   *- jv 

K: time no.  »■ ku 

F: fluence value —^- fcell 

XinPZ_DATA 

CRIT in common blk 

Plasma radius, az, initialized 
Energy density, uz, initialized 

Figure 3.2     Flowchart for the subroutine ZAP. 
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regions of ZAP are three separate calculational routes. The logic decides which route to 

take based on comparing the radius of the expanding plasma with the wavelength of the 

laser. If the radius of the plasma, az, is smaller than |, use the physics for Rayleigh 

scattering from small spheres. If the radius has become as large as the separation distance 

between scattering centers, use the physics for the continuum. The third, intermediate 

region is a linear extrapolation between the first two. 

In all three routes, the process is essentially the same. The scattering and absorption 

cross-sections are calculated and brought together to obtain (i from 

V = np(qaS + qsb), (3.2) 

where np is the density of carbon particles, qa is the plasma absorption, 5 is a stimulated 

emission factor and qsb is the bubble scattering cross-section. Armed with the bubble 

radius, ZAP computes the bubble scattering cross-section. ZAP then multiplies this times 

that fraction of scattered light still remaining within the given layer's collection optics. 

Next, ZAP finds the absorption cross-section by using the subroutine "sigmaa." The 

output from sigmaa takes the in-coming fluence, multiplies it by the absorption cross- 

section, and calls the result "energya." Energya is added to the accumulating plasma 

center's energy tally to yield the total energy of all the electrons emanating from a single 

particle. Next, ZAP calculates the diffusion coefficient, "diff". Since diff depends on the 

temperature, it is updated to the temperature reached at the end of the last time step. 

Diff is then used to update the plasma radius. (In the continuum region, these last two 

steps are not calculated since diffusion is not defined for a continuum.) The new plasma 

radius determines the new plasma volume which is used with the recently updated energy 

to yield the updated plasma energy density. ZAP then returns to the main program 

where the energy density, "uz(j)," is used in the SAH A lookup routines "lookupt" and 

"lookupn" to generate updates for the plasma temperature array, "te(j)", and the density 

array, "density(j)". (See Appendix A for a more complete description of LOOKUPT and 

LOOKUPN). 
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3.3   Present Code 

The approach taken to remedy the faults of the previous program, namely the pro- 

gressive numerical loading and the attendant complex time keeping, resulted in essentially 

a backward, double-layer hand-off scheme. A single layer takes input from a previous cal- 

culation cycle, processes it, and then deposits it into the input array from the next layer. 

Once accomplished, the present layer's values are forgotten. This constitutes the hand-off, 

to be explained in more detail shortly. The result is that only two layers need be tracked in 

time and space during a single computational cycle, allowing the numerical algorithm an 

increased number of computational layers. The "backward" nature of the scheme derives 

from the fact that the first layer to be calculated in the code is the last layer to experience 

plasma ignition, since it is situated at the entrance of the sample. 

The advantages of eliminating some complexities inherent in the old code are bal- 

anced, however, by new complexities. The new code forces one to think backwards in time. 

More importantly, it also requires each layer's output to be correctly partitioned from the 

output of the present layer into the input of the next. (See Figure 3.3). This proves to be 

rather tricky. 

The newer "partitioning" time scheme requires more code to carefully track each 

layer's progress. This is because each layer now represents a complete, and somewhat 

independent computational cycle requiring its own set of time and space variables to be 

properly initialized and tracked. In the older version, each layer's spatial and temporal 

variables could be accounted for by sequencially incrementing the appropriate loop counting 

variables through that code's nested Do loop construction. The additional computing 

overhead of the new code, however, impacts the speed of the simulation. The old version 

was run on a Zenith 486 when the original code was being written and took approximately 

two minutes to run. For this project, however, both versions were run on the same IBM 

machine. Typical timing data for the old and new versions are shown in Table 3.1. The 

intent of revising the original code was not necessarily toward faster execution but toward 

eventually parallelizing the code to accomodate the increased demands imposed by adding 

the rudiments of scattering. Scattering will be simulated along a two-dimensional plane 

perpendicular to the z axis of the Primary Zone and will require more than one processor. 
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K+l 

TIME 

KQ+1 

Layer J + 1 Layer J 

Figure 3.3 The J+l layer of values is calculated first. Next, layer J starts. But the 
nonlinear time axis of layer J is offset from that of layer J+l. As a result, 
some of the K time bins will be contained in a KQ bin and others will fall 
on a boundary and must be divided. Hence, a portion of the K+l bin (XX) 
must be sent to KQ and a portion (YY) to KQ+1. 
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OLD NEW 
USER 
SYSTEM 

27.74 
0.05 

84.42 
1.75 

TOTAL 27.79sec 86.17sec 

Table 3.1 Timing data representative of typical run times for both the old and new- 
versions of the code. "User" is the time spent executing the code. "System" 
is the time spent performing system services such as accessing the file system, 
reporting time of day, etc. 

The newer code also has quadruple the number of time steps over the original program 

which has 2,500. This was done to compensate for the progressive loss of data as each layer 

completed its cycle. Each layer must calculate intensity values for each of its time bins. 

These values are then assigned to its 'next door' time bins but in a prescribed way. (See 

Figure 3.3). Because the given layer starts igniting later than its previous layer (and 

therefore offset from its neighbor slightly in time) and because each layer's time bins are 

partitioned nonlinearly and so get larger with each time increment, a given layer's time 

bins are smaller than the time bins of the receiving layer. If the receiving layer time bins 

are much larger than the sending layer time bins, all the sending values become assigned to 

fewer and fewer receiving bins, in effect crowding the migration of intensity values toward 

the origin with each new layer. This had the effect of eliminating time bins as time went on 

and, hence, eliminating data points, yielding intensity plots increasingly sparse toward the 

end of the timeline and crowded toward the origin. After approximately the 13th layer, 

the algorithm left all the data condensed along a curve close to the origin and no data 

after it. The problem was resolved with more and smaller time steps so as to keep the 

layer-to-layer ratio of time bin size from becoming too large. (For the discussion on the 

choice of timestep, see Appendix B). 

The older version's code rested on a straightforward approach to tracking the progress 

of the carbon plasma: start at the focal region where layer 1 ignites first and proceed until 

layer 2 ignites; as layer 2 ignites, incorporate that layer's results into the ongoing calculation 

of layer 1 until layer 3 ignites whereupon layer 3 is added to the continuing calculation of 

the previous two and so on. 
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The newer version, by contrast, starts with the layer that exists farthest from the 

focal region, i.e. layer 20. (See Figure 3.4.) This is the first layer. The code then projects 

its output into the next layer closer to focus. This projection or "hand-off", schematically 

represented in Figure 3.5, is accomplished with each complete pass through the outer main 

Do loop. At the top of the main loop, the time is reset to begin at the ignition point of 

the next layer, which becomes the recipient of the hand-off, and the process repeats. 

Figure 3.4 

^  Input pulse shape 

Pulse Energy 

Tau 19 
Tau 20 

This figure illustrates conceptually how the first three layer "histories" over- 
lap and how each successive layer starts earlier in the pulse. The start time 
for layer 20 is Tau20 and, for its lifetime, processes "free" input only. At 
the same time the processing for layer 20 loads the input aray for layer 19. 
The procedure starts over again when layer 19 starts at Taul9. But layer 19 
processes "free" input only until Tau20. From Tau20 to completion, layer 19 
takes its input from the array loaded by layer 20. 

The hand-off between the layers, while obvious, turned out to be critically important 

to the proper function of the simulation. The algorithm might perform flawlessly within 

a given layer but yet put its results in the wrong place, destroying the whole process of 

energy transfer from layer to layer. A fragment of code which performs the first leg of the 

hand-off for a given layer for one complete cycle of the main Do loop is shown below. 

Iin(J-l,I)y.value = 10 (J, I) '/.value 

Iin(J-l,I)y.time    = IO(J,I)y,time 
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The output intensity variables "IO(J,I)%value" and "IO(J,I)%time" have been calculated 

for layer J and are being assigned to the corresponding input variables for layer J-l. For the 

next cycle of the Do loop, layer J-l becomes layer J, its input variable, "Iin(J,KK)%value", 

having been modified by MUPLAS and MUISO. That portion of the code is shown next. 

IO(J,KQ)'/.value = Iin(J,KK)'/.value*ARATIO* & 

DEXP(-MUPLAS(J,K)*HH(J))*DEXP(-HUISO(J,K)*HH(J)) 

IO(J,Kq)'/.time = Iin(J,KK)y.time 

This is the second leg of the hand-off: the adjusted value for "Iin(J,KK)%value" and the 

value of "Iin(J,KK)%time" are assigned to their corresponding output variables which will 

be read in by the next layer during the next cycle of the Do loop. 

If the first layer's output has been calculated (a special case), the second layer starts 

with another type of calculation until the first layer's ignition time (See Figure 3.6). But 

since the second layer starts sooner in time, its start time is offset from that of the first. 

The second layer, (see Figure 3.7), cycles through this offset time receiving unobstructed 

("free") laser energy. After the offset, the first layer's output becomes the input to the 

second layer until the end of the pulse. At the end of the pulse, the input array for the 

next layer upstream has been loaded and the process repeats. 

This chapter has highlighted the main features of the new algorithm: the grid geom- 

etry of the Primary Zone, the new timing set-up between two layers, the main computa- 

tional subroutine, ZAP, and the hand-off routine which allows the results of one layer to 

be properly transferred to the next. As such, it serves as a motivation for a more complete 

understanding of the new algorithm and its results, the subject of the next chapter. 
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(a) 

(b) 

Time 

'W&ttm QQ "* Wwm 
(c) 

^s 

J-l 

(d) 

Figure 3.5 Schematic representation of a hand-off. Part (a) represents a conceptual 
time bin and part (b) shows an output variable calculated for that time bin. 
Part (c) shows the output variable being assigned to the input time bin on 
the left. Part (d) displays this pattern of assignment for a series of time 
bins comprising layer J which is the active layer starting at the bottom and 
progressing toward the top. The output of layer J awaits layer J-l when layer 
J-l becomes active. 
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Endpulse 

Time 

Tau(20) - 

First 100 mJ/cmA2 
passes through 

Figure 3.6 The first layer (layer 20) is a special case. It receives only uninterrupted laser 
energy. After passing the first 100 mJ/cm2, the layer ignites. The layer then 
steps through its time bins, loading its output array which yields a plot of 
the output which is input for the next cycle. 

Endpulse 

Figure 3.7 Layer 19 starts out receiving free input but soon runs into layer 20. Layer 
20's array now becomes the input to layer 19 which loads its arrays. When 
plotted, they yield an attenuated curve (displayed darker for clarity). Once 
layer 19 is complete, layer 20 can be ignored for the rest of the pulse. 
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IV.   The Algorithm and Its Results 

This chapter discusses the general computational approach used in this thesis. The three 

special Do-loops—the "A", "B" and "C" loops—are discussed in detail. These form the 

core of the new algorithm. The chapter concludes with a discussion of the final numerical 

results which are composed of plots of intensity versus time for a single pulse. 

4-1    The Computational Scheme 

Except for cosmetic changes, much of the code connected with the subroutine ZAP 

has been left untouched. This includes the three separate computational routes within 

ZAP discussed in Chapter 3: the Rayleigh, intermediate and continuous regions. These 

regions are in the listing in Appendix C. What has changed are the sequence of steps 

leading up to each call to ZAP. The acts of the play have been rewritten but the main 

actor, even though he wears a slightly different costume and his cues have been rephrased, 

still has his old lines. 

The general computational scheme can be distilled into a simple flowchart as shown in 

Figure 4.1. After the program defines its variables and loads the necessary input arrays, it 

enters a large Do loop controlled by the variable J, the layer number. As seen in Figure 4.1, 

the loop starts with J equal to 20, which means the program is starting at the entrance 

surface of the cell. The program then enters a second, nested Do loop called loop "A" 

which performs the calculations for layer 20 calculations, calling ZAP during each loop 

cycle. The program uses ZAP to perform similar calculations using the "B" and "C" loops 

for intermediate values of J and finally writes the results to an output file when J is equal 

to 1. 

Each call to ZAP results in an output which, as discussed in Chapter 3, is immediately 

employed in the Beer-Lambert equation to calculate the attenuation of the input intensity 

seen by a given layer over a given time increment. A typical call looks like: 

CALL ZAP(J,K,F1) 

10(J,Devalue = I1*DEXP(-MUPLAS(J,K)*HH(J))*DEXP(-MUIS0(J,K)*HH(J)) 
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Start 

Declare variables 
and arrays 

Set parameters 

Load arrays 

Read input pulse shape andy 
bubble growth files 

Calc tau'sand 
time partition 

Start: J = 20 
Stop:J = 1 
Step: J = -1 

Ö- Calculate output of 
layer 20 using "A" loop 

Call ZAP 
20 < J < 1 

Calculate output of 
layer J using "B" and 
"C" loops. Call ZAP 

Write results to 
output file 

Stop   ) 

Figure 4.1     Flowchart for the main program. 
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Here, II on the second line is the input intensity being attenuated and IO(J,I)%value is 

the value of the new output intensity. HH(J) is a thickness of a given layer. 

ZAP always receives three arguments: J, K and Fl. J, an integer, represents the 

layer number and therefore is the spatial coordinate. J starts at 20 and ends at 1. K 

is an integer representing time. K starts at 1 at ignition of the plasma and increments 

through each time step until the end of the pulse, counting over 10,000 time steps in each 

layer. K serves as a reference index, coordinating inputs from one layer into the outputs 

for the next. K also counts into preloaded arrays for bubble growth and plasma expansion. 

Whatever value K is during the course of the simulation, the program knows the relative 

sizes of the expanding plasma and the bubble. 

The simulation assumes that at the moment of ignition, the spherically-shaped gas 

of hot electrons and the newly formed bubble have the same dimensions. Both bubble 

and plasma arrays, therefore, start with the same radius for K = 1, which is the first 

time step. The plasma is assumed to expand faster than the bubble. This means that 

the hot electrons diffuse outward and hence the plasma radius grows from the center more 

rapidly than does the bubble radius. As a result, the values of the plasma array, which 

express a growing radial distance in centimeters, are much larger than the corresponding 

bubble array values for the same array index counter from the moment of ignition until 

the end of the pulse. One test of a correctly running program is based on a flag routine, 

deliberately built into the code, to detect any divergence from these growth rates. The 

flag routine continuously compares the growth of the plasma and the bubble. Should the 

K for the bubble array inadvertantly index a value larger than what K indexes in the 

plasma array (K will be identical for both), the flag becomes set, stopping the program 

because the bubble can't be larger than the plasma. Finally, Fl is a floating point value 

representing fluence, where again, fluence is defined as energy per unit area or the time 

integral of intensity. ZAP, therefore, knows at any moment what layer it is in, where in 

the history of the pulse it is and how much fluence it has to work with. ZAP takes that 

bit of fluence, calculates attenuating factors due to the plasma and the bubbles ("muplas" 

and "muiso" respectively) and, given its time value and layer number, hands these off to 

the Beer-Lambert Law for attenuation. 
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Figure 4.2 Each box in the bottom row represents an input value of direct laser energy. 
Those boxes filled with an X contain calculated values; those without are 
waiting to be calculated. As K steps through time from left to right, ZAP 
attenuates each input and assigns it to an output box on the top to be 
processed later by layer 19. 

The first layer to receive input using the new algorithm is layer 20, the layer at the 

entrance face of the sample. With no neighboring layer between it and the laser beam to 

interfere with it, layer 20 receives pure input from the incoming beam (See Figure 4.2). 

For this reason, the input and output processing of layer 20 is treated differently than 

layers 19 through layer 2. Layer 1 is likewise processed much like layer 20 since it is the 

last layer and it too has no neighbor on one of its sides. The processing of input into layer 

20 is performed by its own, exclusive Do loop called loop "A". Once loop A is finished, 

it has loaded the input array for the next layer. Loop A runs only once on layer 20 and 

thereafter exits the computational scheme. A flavor for how loop A works without going 

into the details of Fortran can be obtained from looking at the pseudo code for this loop: 

var start, end: integer; 

procedure loopA 

do from start to end 

get_next_intensity_value_fromüle; 

calculate_next jfluence_value; 

call ZAP; 

calculate_outputintensity; 

inputintensity_for_nextJayer := outputintensity_of_presentJayer; 

outputfluence_of_presentlayer := outputintensity_of_presentlayerx At; 

enddo 
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end 

At the top of the loop, a value of intensity is read in from an input file which is then used to 

calculate the corresponding fluence value. ZAP uses this to calculate in-turn the absorption 

and scattering cross-sections. These are immediately used to calculate the output intensity 

which becomes the input intensity for the next layer. Finally, the layer's output fluence is 

loaded for plotting purposes. 

Layer 19 begins a sequence of two loops, performed back-to-back, and repeating 

from layers 19 down to layer 2. The first, loop B, behaves like loop A except it must 

coordinate with its follow-on, loop C. Loop B performs its functions over the small interval 

of time after layer 19 has turned on but before the turn-on time for layer 20. This small 

offset marks the distinction of the new algorithm from the old: each new layer is offset 

from its preceeding neighbor in negative time—layer 19 starts sooner than layer 20 (See 

Figure 4.3). Hence loop B works with direct laser input until layer 20 ignites, afterwhich 

loop C of layer 19 must now work with the input previously created by layer 20. Once 

loop C is completed, layer 19 has loaded the input array for layer 18 and layer 20 is no 

longer required. Next, layer 18 sees a small offset from layer 19, whereupon all of the 

values previously calculated in layer 19 are now inputs for layer 18 and so on. 

D □ DD 

Loop "B" | Loop "C" 

Layer (m      
Space 

TTT TT ••• TT 
Layer (^    -     Offset 

Loop "A" 

Time 

Figure 4.3     After the offset covered by loop B, loop C must now process input previously 
loaded by loop A. 

Loop B is similar to A with the exception that it must "pivot" on its last values and 

coordinate these with the beginning of loop C, which is taking its input from a previous 

layer: 

var start, loopBend: integer; 
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procedure loop B 

do from start to loopBend 

get_next intensity _value_fromJile; 

calculate_nextüuence_value; 

call ZAP; 

calculate_outputintensity; 

inputintensity_for_nextlayer := outputintensity_of_presentlayer; 

outputfluence_of_presentlayer := outputintensity_of_presentlayer x At; 

if loopvariable = loopBend then 

partition _timebin 

loopB_getsJKX_share 

process_with_ZAP 

exitloopB 

end 

enddo 

end 

When loop B is at the end, part of the input fluence into the present layer will come 

directly from the laser, XX, and the other will come from the output from the previous 

layer, YY, (See Figure 3.3). Once the XX portion is processed by ZAP, loop B hands its 

function over to loop C which starts by processing its YY portion. 

var loopCstart, loopCend: integer; 

procedure loop C 

process YYfromloopB 

do from loopCstart to loopCend 

get_next_fluence_fromJastJayer; 

adjust_next_fluence; 

call ZAP; 

outputintensity := inputintensity_from_last_layerxattenuation; 

inputintensity_for_next_layer := outputintensity_of_presentlayer; 
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outputfluence_oLpresentlayer := outputintensity_of_presentlayerx At; 

enddo 

end 

Loop C is the primary computational loop for the new algorithm. During each cycle, it 

must receive input from the previous calculations and partition them into the proper time 

bins of the next layer. With each successive hand-off, the output becomes more and more 

attenuated until finally, the output of layer 1 displays the properly attenuated curve. 

. Tau(19) 

Figure 4.4 Conceptual positions of the A, B and C loops as they pertain to layers 19 
and 20. Once layer 20 is computed, layer 19 and the rest of the layers only 
experience loops B and C. 

All three loops are shown as they might appear related conceptually to the profile of 

a single pulse for the first two computational layers, as shown in Figure 4.4. Layer 20 has 

the least amount of pulse to deal with, since it is the last to start in "real" time. Layer 20's 

A loop processes its input and then loads its output array, which is shown in the figure 

as X'd boxes below the arrow for Layer 20. Next, layer 19 has loop B load a portion of 

its array directly from the pulse. Then, shortly thereafter, at tau(20), the C loop takes 

over and processes the output boxes from layer 20, turning them into output boxes below 

the arrow for layer 19. This double layer arrangement repeats itself, with each successive 

4-7 



cycle starting closer to the origin. The final layer's output simply reports the accumulated 

results of the preceeding ones to an output file. 

4-2   Results 

With both the old and the new codes receiving the same input pulse shapes (see 

Figure 4.5) and the same set of input parameters (see Table 4.1), both exhibit nearly the 

same output shape—a sharp rise in the output pulse with a precipitous cutoff early in the 

pulse, albeit with a slightly greater peak intensity in the old version. (See Figures 4.6, 4.7 

and 4.8). 

Gaussian input  o 

Figure 4.5 The input to the simulation is gaussian instead of a Q-switched pulse shape 
due to an external subroutine which uses the readily available formula for the 
Gaussian distribution. 

An explanation for the slight differences seen in Figure 4.8 is possible. Apart from 

the algorithms of the two codes, the only difference between the two versions is the number 

of time steps—2,500 in the old versus 10,000 in the new. As a result, events in the new 

code are being captured in time four times more accurately. This would reasonably have 

the effect of much more precisely locating an event in a time bin for a given layer with 

the corresponding time bin of its receiving layer. Consequently, each layer's output would 

progress within much more narrowly aligned time limits from beginning to end. With no 
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Name Symbol(dimensions) Value 
Particle Radius a0(cm) 8.00 x 10-6 

Gamma 7 1.33 
F-number f/# 5 
Number of Particles np(/cm3) 1.0 x 1010 

Diffusion constant dconst(cm2/s) 0.7 
Laser Pulse Width width (nsec) 9.0 
Liquid Ionization Potential Chi(l)(eV) 12.2 
Liquid Ionization Potential Chi(2)(eV) 14.0 
Liquid Ionization Potential Chi(3)(eV) 16.0 
Laser Pulse Energy Epulse (Joules) 6.0 x 10~5 

Table 4.1 The input data set used for both the old and new codes. Gamma is the 
ratio of the heat capacity at constant volume to the heat capacity at constant 
pressure. F-number is the ratio of the focal length of a lens to its diameter. 
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Figure 4.6     The output of the older version of the simulation. Note: in each plot profile, 
the timeline for the in-coming pulse extends to 28 nsecs. 
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Figure 4.7     The output of the newer version of the simulation. 
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Figure 4.8     Both the old and new outputs are plotted together. Note the close similarity 
of both plots. 
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'gauntlet' to run as in Figure 1.6, the effect would be to shift the final output closer to the 

actual time values compared with the more coarse time divisions of the old code and with 

a correspondingly greater accumulated attenuation. 

Figure 4.8 and those following demonstrate that the simulation of each code is based 

on the same model and that the algorithms of each are equivalent. Both reflect the same 

trend when undergoing changes to the input pulse energy (See Figures 4.9 and 4.10). A 

plot of output intensity from the old code as a function of plasma radius is shown in 

Figure 4.11 and for the new code is shown in Figure 4.12 . The response effects of the 

new simulation develop consistently from the front to the exiting surface where Figure 4.13 

displays the effects of the simulation on selected intervening layers between the entrance 

(layer 20) and exit (layer 1) surfaces. 
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Figure 4.9     Output intensity as a function of pulse energy for the older version. 

The new algorithm is by no means perfect. It is slower than the old version, but not 

significantly slower. The new algorithm requires each layer to be treated separately which 

necessitated that the RBUBR array loop be filled by interpolating between the elements 

of the RBUB array within the MAIN loop. Now, each new layer number J requires a new 
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Figure 4.10     The output intensity of the new version as a function of pulse energy. 
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Figure 4.11 Old output as a function of plasma radius, A0. The bottom curve is for A0 
= 8.0E-06 cm and is included as a baseline for comparison with the curves 
above it generated from the smaller values of A0. In the legend, 800 is 
8.0E-06 cm, 190 is 1.90E-06 cm and 170 is 1.70E-06 cm. 
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Figure 4.12     New output as a function of plasma radius, AO. The bottom curve is again 
for AO = 8.0E-06 cm with the same legend designation as in Figure 4.11. 
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Figure 4.13 The effects of selected layers on a single pulse are shown superimposed for 
layers 19 through layer 2. In the legend, xy in hhhxy refers to the layer 
number. The curves closer to the origin are layers nearer to focus. 
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RBUBR array to be filled, whereas in the old code, RBUBR is filled only once. Together 

with quadruple the number of time divisions, the new program is bound to run slower. 

To create a faster code in the future, arrays keyed to each layer will have to be filled first 

outside of MAIN. Then each layer-specific bubble array can be called directly from within 

MAIN. The intent of this thesis, however, was not necessarily toward faster execution 

(although that certainly would have been a plus) but towards creating a code that could 

be extended to two dimensions and could accomodate parallel programming techniques 

while still retaining the essential features of the original code for testing purposes. 

The algorithm still suffers from a number of limitations. For example, small decre- 

ments in the plasma radius, aO, near 1.7E-06 cm produce anomalous results due, in part, 

to an incomplete development of the bubble growth files which support this size regime. 

The equations for bubble growth which have been incorporated into the code have not 

been well developed and will therefore need to be revised. In addition, adiabatic growth 

for bubbles in short time scales displays a strong dependence on the ratio of specific heats 

of the surrounding liquid and the vapor of the interior, namely 7. This functional relation- 

ship has not been written into the program and will need to be addressed in the future. 

The code also suffers from an inability to properly accomodate the effects of scattering, 

which when accomplished within a parallel construction, should account for much more 

light re-entering the Primary Zone, further modifying the output intensity profile. Finally, 

the liquid will boil at high energy densities, which is another feature that needs to be 

addressed. 

Overall, however, the aim of this thesis project has been largely successful. Errors 

have been uncovered and corrected. For example, values of the plasma radius were not 

being properly accumulated, and so the formula for the plasma radius in ZAP had to be 

adjusted. It was also discovered that the old and new codes were not being compared 

using exactly the same starting conditions. This involved the values of ARATIO for the 

old and the new code where ARATIO is defined as the ratio of the area of the J + 1th 

layer to the Jth layer. It proportionally increases the intensity seen by the Jth layer as 

the simulation moves to layers closer to the focal region. While the values for ARATIO 

had each been calculated correctly, the timing of their use was offset by one layer between 
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the two versions of the code. This too was corrected. Refinements have been built into the 

code in the form of Fortran 90 features. Most importantly, the vexing limitation inherent 

in the old code, that of an upper limit to the number of layers a sample could be divided 

into, has been largely overcome. This allows a more reasonable confidence level to be 

attained for N > 10, where N = the layer number. This is important for the larger task 

ahead, that of scaling the simulation to two dimensions. It is then that the more important 

aspect, largely ignored in the present effort, can be seriously addressed, namely scattering. 
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V.   Conclusion 

A new approach to simulating the response behavior of a carbon black suspension cell has 

been developed employing a double-layer hand-off algorithm. The response mechanism 

results from the coupling effects on a laser pulse with a rapidly expanding plasma. The 

plasma is generated from the ignition of carbon aggregates suspended within the liquid 

sample while being irradiated by the incoming pulse. As the plasma expands, the pulse 

becomes increasingly attenuated such that points beyond the exit surface of the sample 

are shielded from the effects of the pulse by virtue of the interaction between the plasma 

and the laser. 

The new approach is based on physical insight forged from earlier experimental work. 

It is outside the scope of this thesis to re-examine the physical basis of the code and 

its assumptions—what has been termed "the model". The intent of this thesis was to 

modify and extend the numerical algorithm 'surrounding' the model in such a way that 

it's assumptions might be tested through the future developement of a 3-D code using 

concurrent programming techniques. 

Like its predecessor, the new scheme divides a sample into discrete layers, trans- 

forming inputs into slightly attenuated output. The old version of the code suffered from 

a cumbersome tracking mechanism which eventually constrained the numerical computa- 

tion. Unlike its predecessor, however, the new algorithm chooses the first layer as being 

the farthest in space from the site of plasma ignition (the focal region) and the last in time 

to ignite. Each layer is therefore set in motion with unique time and space variables which 

create its own local 'history'. The algorithm superimposes each layer's history in such a 

way that once a given layer's output has been properly prepared and processed, tracking 

that layer is no longer necessary, allowing a greater number of layers to subdivide a sample 

thickness. Whereas the old version typically allowed from seven to ten layers, the new 

version routinely runs twenty. 

The new algorithm suffers from a number of limitations. The algorithm is not faster 

than the old version. This is because, with everything else equal in terms of initial param- 

eters and data sets, the new code has four times the number of time steps with four times 
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the number of calls to the subroutine ZAP. This was done to eliminate the data 'drop out' 

seen in the initial output plots when the new algorithm was being developed. The code, 

therefore, will have to be modified to run more efficiently. For example, one way will be 

to explore numbers of time steps less than 10,000 which still prevent data drop out yet 

maintain the same time domain structure for capturing the essential temporal dynamics. 

Another option is rather than customizing the RBUBR array within MAIN's Do loop for 

each J, RBUBR will be loaded for each J beforehand. This will require a two-dimensional 

RBUBR array. Also, the number of time steps will have to be reduced which means ad- 

dressing the issue of the cancelling time bins. The code also suffers from a lack of a refined 

treatment of bubble growth and boiling. But perhaps the most significant flaw in the 

present code is a lack of a description for scattering which afflicted the old code as well. 

Largely ignored due to time constraints, scattering will need to be seriously addressed in 

the future if the new code is to be realistically predictive. The reliability of the present 

code is addressed through Table 5.1 which lists the ranges of input variables within which 

the simulation, in its present state, can be expected to produce physically valid results. 

Name (symbol) Range 
Particle Radius (ao) lOnm to lOOnm 
F-number (f/#) 1 to 50 
Particle Density (np) 1010 to 1014/cm3 

Diffusion Const (dconst) 0.3 to 7 cm2/s 
Pulse Width (width) Ins to 30ns 
Ionization Potential (x) 7 to 14 eV 
Plasma Temperature (TE) 0.5 to 20 eV 
Intensity (Iin) <10GW/cm2 

Table 5.1     The range of input variables determining the validity of the present code. 

Scattering effects will require a two-dimensional treatment. The plasma is composed 

of electrons. The bubbles, however, cannot be ignored because they are located at the 

center of each cell. They become scattering centers, growing larger throughout the lifetime 

of the plasma. They cause a significant amount of light to be redirected back into the 

Primary Zone. Presently, the Primary Zone "exists" only as the z-axis. To mimic the 

action of redirected light, scatterers off the z-axis will be required, which means a two- 
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dimensional array of points will be set up to span the roughly cone-shaped Primary Zone. 

(See Figure 5.1). 

Figure 5.1 Off-axis scattering will be accomplished through an array of node points 
roughly spanning a cross-section of the Primary Zone. Only the upper half 
need be used because of symmetry. The bottom line is the present z-axis. 

With the array in place, a scattering transfer function will be imposed to approximate 

light scattering into the Primary Zone. The initial transfer function will impose a 3-1-3 

arrangement of input to output, as shown in Figure 5.2. The top and bottom boundary 

lines of the Primary Zone will have a 2-1-2 scheme. Each array point will be designated a 

position relative to the origin of the grid. The three leftward neighbors will supply input 

and the three rightward neighbors will receive the output in proportion to their respective 

positions on either side of the (i,j)th grid point, as shown in Figure 5.2. The circular 

symmetry of the Primary Zone will allow the array of grid points to simulate the entire 

volume as shown in Figure 5.3. 

The present work is a start. The code will become truly useful only as far as it 

faithfully predicts well known material response behavior. The code will have attained 

such a predictive capability and with reasonable confidence if, given a set of well-defined 

starting conditions, it can simulate the observed phenomena. Once this 'retroprediction' 

goal is attained, the code can become a useful "what if" tool for the materials scientist 

or engineer. For example, researchers inevitably want to know which boundary conditions 

of a device design favor one response over another. Specifically, they are interested in 

knowing the kind of behavior a material would exhibit if the particles of the suspension 
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Figure 5.2 Part (a) displays three shaded grid points which supply input to the single 
unshaded neighbor grid point. The symmetric input/output scheme is shown 
in terms of grid position in part (b). 

/    /     / 
< /     i 
i i     i 
i i    i 

Figure 5.3     The cross-sectional plane of grid points, when rotated around the z-axis, will 
span the roughly cone-shaped Primary Zone volume. 
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cell were smaller. The present code has already shown it has the potential to answer that 

question in a semi-qualitative way, thereby showing promise as a guide in helping materials 

researchers in their on-going experiments. 
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Appendix A.   The Saha Equation 

The Saha equation governs the thermal ionization of carbon particles within a volume 

of a plasma under conditions of local thermodynamic equilibrium and is an extension to 

the Boltzman relation. It is this thermal ionization of carbon atoms which forms the basis 

for the material response under investigation in this thesis. The Boltzman distribution 

will be discussed first. It describes the fraction of atoms having a certain quantum level 

within the volume of a plasma. The Boltzman formula will then be extended to include 

consecutive ionization levels of an atom, which leads to the Saha relation. The means by 

which the code actually implements the SAHA equation and a listing of the code itself 

completes the appendix. The development is taken from Lochte [6]. 

If a volume of a plasma contains the number n of identical particles in a cubic 

centimeter, then some fraction will exist in an excited state. If that fraction is designated 

rii and they occupy the ith quantum level having energy E{ and assuming thermodynamic 

equilibrium, then nt- can be described by the Boltzman equation, 

n,        gi 
— exp 

(-#) ■ <AJ> n      U(T) 

where gi is a statistical weight for the ith level and U(T) is the partition function, 

t/(r) = J>exp(-§). (A.2) 

The summation must include all levels including the highest existing level. This last energy 

level is given by 

Ej = X- Ax, (A.3) 

where x 1S the ionization energy. 

We now look at ionized atoms and consider the numbers nz and nz-\, which represent 

the number of particles occupying respectively the z and z — 1 ionization levels of an atom. 

z is the number of electric charges seen by the radiating electron and z — 1 is the charge 

on the ion or atom. By comparing two consecutive ionization levels we can extend the 

Boltzman relationship to these ionized atoms. The ratio of the number of atoms in the 
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z — \ level to those in the z level is given by the SAH A equation, 

where nz and nz-\ are particle densities and ne is the density of free electrons per cm3. 

The two partition functions, Uz and Uz-i, correspond to the two ionization levels and mo 

is the electron's rest mass. If the ionization energy is given in eV and the temperature in 

degrees Kelvin, equation A.4 reduces somewhat to a more practical expression, 

nenz  _     UZ{T)     „ 00 „ inl5^l „._ (    ,   »nr „ m4^-l ~ AX 
n,_!      U2-X{T) 

4.83 X 1015r2 exp   -1.1605 X 10 (-1.1605 x lO4**"1   T
AXz'1) • (A.5) 

The ratio of the partition functions in equation A.5 reduces to 1/2. The code also 

supplies a series of constant ionization potentials, xi, X2 and X3> and treats the A%s as a 

constant, yielding an effective x- The value of Ax is estimated at between 1 and 1.5 eV. 

Simplifying the exponential term, we have 

Solving the SAHA equation for temperature based on the number of free electrons, ne, 

is difficult. Instead, the code resorts to a subroutine called GENERATELOOKUP which 

occurs before the MAIN Do loop. GENERATELOOKUP creates lookup tables for values 

of temperature, free electron density and energy density, creating in effect a data-triplet— 

given one data point, the other two are determined. Then, with these tables in place, and 

starting with arbitrary values of energy density, either a corresponding value of temperature 

or of electron density can be found by interpolating between the values of the appropriate 

tables. This is exactly what is done after each call to ZAP. The temperature and electron 

density need periodic updating so ZAP can function properly when it is next called. The 

program therefore updates TE(J) and DENSITY(J) by calling respectively the subroutines 

LOOKUPT and LOOKUPN. It is in these subroutines where the interpolations between 

values of the tables take place. LOOKUPT interpolates between values of energy density, 

UTABLE,—the X axis—and values of temperatue, TTABLE,—the Y axis. Similarly for 
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LOOKUPN, where UTABLE is the X axis and the free electron density, NTABLE, is the 

Y axis. 

Starting with the call to GENERATELOOKUP and with the values of x as input, 

the subroutine begins by partitioning a range of temperature values from 0.1 eV to 25 eV 

into 512 evenly spaced time divisions. The program then calculates ne at each data point 

by solving the following four simultaneous equations: 

ne   =   «i + 2n2 + 3n3, (A.7) 

ne   =    %(*), (A.8) 
ni 

=   ~b(t), (A.9) 

=   %(t), (A.10) 
"3 

n„ 

n- 

where 

a   =    (2.4£15)ttexp((8^g_5)t), (A.ll) 

6   -   (2.4^15)tJexp((861^_5)t), (A.12) 

«   =    (2.4El5)(}exp((861^_5),). (A-") 

t is the temperature in degrees Kelvin and ng is the number of ground-state molecules, so 

that 

% = n0 - ni - n2 - n3. (A.14) 

no equals the number of neutral molecules, ni equals the number of singly ionized molecules, 

n2 equals the number of doubly ionized molecules, and n3 equals the number of triply ion- 

ized molecules. Equations A.10 to A.12 together with their a, b and c coefficients comprise 

three SAHA equations, each governing their respective z/z-1 level ratios. We now have 

four equations in four unknowns. 

Solving this system and simplifying leads to a quartic equation in ne, 

n\ + (a)nl + (ab - an0)n
2

e + (abc - 2abn0)ne - 3abcnQ = 0. (A.15) 
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For each value of the subroutine's loop counter, TTABLE is loaded based on the above de- 

fined partition. Next, Find_ne solves for the positive, real root of the quartic and NTABLE 

is loaded with that number. From the current NTABLE value, rax, n2 and n3 are solved 

and from these solutions, the current value of UTABLE is loaded. The result is that all 

three arrays are loaded at once during each cycle of the loop and hence are coupled, as 

required by the physics. They are now ready for interpolating. 

The portion of the program which creates the tables follows: 

Generatelookup is a routine that creates the lookup tables. The three 
values for chi are read in and the program enters a loop, calculating 
values for ni, n2, n3, and ne.    Variables are as follows: 

chi(3):    an array holding the values of chi 
ntable:    an array holding the values of nl for the different temps. 
nl :    the instantaneous value of nl 
n2 :    the instantaneous value of n2 
n3 :    the instantaneous value of n3 
a,b,c  :    functions of temperature 
t :    the temperature in Kelvin 
tev       :    the temperature in eV 
ttable:    an array containing the varying temperatures 
utable: 
npts  : number of data points to calculate 

starttev: starting temperature in eV 

finaltev: ending temperature in eV 

tevincr : temperature increment, in eV 

evtojoule: constant 

const : a constant 

kev  : a constant 

n    : a constant 

k    : a constant 

i    : loop variable 
Something to note is that while the value of ne is recorded for each 

temperature in ntable, the values of nl, n2, and n3 are not kept for 

each temperature. 

SUBROUTINE generatelookup(nO, chi) 

IMPLICIT none 

REAL*8  chi(3) 

REAL*8  ntable,utable,ttable 

REAL*8  const, kev, tev, starttev, finaltev, tevincr 

REAL*8  evtojoule, t, k, nO 

REAL*8  a, b, c, nl, n2, n3 

COMMON /LINE6/ utable(512), ttable(512), ntable(512) 
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INTEGER i.npts 

PARAMETER(kev = 8.617d-5, evtojoule = 1.602d-19) 

PARAMETER(const = 2.4dl5, npts = 512, k = 1.38d-23) 

starttev = .1 

finaltev = 25 
tevincr = (finaltev - starttev)/npts 

tev = starttev 

DO i = 1, npts 

t = tev/kev ! t in Kelvin! 
a = const*(t**1.5)*dexp(-chi(l)/(t*kev)) 

b = const*(t**i.5)*dexp(-chi(2)/(t*kev)) 

c = const*(t**i.5)*dexp(-chi(3)/(t*kev)) 

ttable(i) = tev 
CALL find_ne(a, b, c, nO, ntable(i)) 
nl = (n0*ntable(i)**2)/((ntable(i)**3)/a + ntable(i)**2 + & 

b*ntable(i)+ b*c) 

n2 = b*nl/ntable(i) 

n3 = c*n2/ntable(i) 
utable(i) = evtojoule*(nl*(chi(l) + 3./2.*tev) & 

+n2*(chi(l) + chi(2) + 6.*tev)      & 

+n3*(chi(i) + chi(2) + chi(3) + 9./2.*tev)) 

tev = tev + tevincr 
END DO       ! end of i loop 

RETURN 
END SUBROUTINE generatelookup 

The subroutine, find_ne, calls zroots to find the 4 roots. 

Its task is to take the three parameters a, b, c and determine 

from them the coefficients of the quadratic equation. Once 
it receives the 4 roots it eliminates all but the positive, real 

ones and then sends those back. Variables are as follows: 
a, b, c: functions of temperature passed to this routine, 

ntable.real: array holds values of ne returned to the 

calling routine. They will be positive and real, hence the 

name ntable_real. 
ntable: the values of nl returned by zroots. 

Some of these may be complex or negative, 

coef: an array that holds the values of the coefficients of 

the quadratic equation, coef(l) is the constant term, coef(2) 

is the coefficient of the 1st order term, etc. 

nO : a constant also used in determining the values of ne 

SUBROUTINE find_ne(a, b, c, nO, ntable.real) 
REAL*8     a, b, c, nO lused to determine the coefficients 

REAL*8     ntable_real  !the real roots 

C0MPLEX*16  coef(5)     !the coefficients 
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COMPLEX*16  netable(4)  !array holding roots returned from 

!zroots 

coef(l) = dcmplx(-3*a*b*c*n0) 

coef(2) = dcmplx(a*b*c - 2*a*b*n0) 

coef(3) = dcmplx(a*b - a*nO) 

coef(4) = dcmplx(a) 

coef(5) = dcmplx(l) 

CALL zroots(coef, 4, netable, .false.) 

!FILTER OUT ONLY VALUES OF Ne WHICH ARE POSITIVE AND REAL 

DO i = 1, 4 
IF (imag(netable(i)) == 0 .AND. real(netable(i)) > 0)    & 

ntable_real = dreal(netable(i)) 

END DO 

RETURN 

END SUBROUTINE find_ne 

The subroutine, zroots, is a driver subroutine. 
It calls LAGUER to find the roots of a polynomial equation, 

m is the degree of the equation, and a is an array containing 

the m+1 coefficients (m coefficients and 1 const, term). 

a(i) = the constant term, a(2) is the coefficient of x"l, etc. 

"roots"= array containing all the roots, complex or otherwise, 

"polish" = logical variable that determines if the roots will 

be polished infinitely well (true) or only to the desired 

precision (false). The desired fractional precision is set 

by eps.  "maxm" is the maximum degree the equation can have, 

zroots does the following: it calls laguer multiple times to 

find all the roots of the equation; then it sorts the roots 

for the real one. 
SUBROUTINE zroots(a, m, roots, polish) 

IMPLICIT none 

REAL*8 eps 

C0MPLEX*16 a(10), roots(4), ad(10), x, b, c, root 

INTEGER i,j,jj,m,maxm 

LOGICAL polish 
PARAMETER (eps=l.E-3, maxm=101) 

DO 11 j = 1, m+1 

ad(j) = a(j) 

11 CONTINUE 

DO 13 j = m, 1, -1 

x = dcmplx(0.0, 0.0) 

CALL laguer(ad, j, x, eps, .false.) 

IF (abs(imag(x)) <= 2.0*eps**2*abs(dreal(x)))    & 

x = dcmplx(dreal(x), 0) 

roots(j)= x 
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b = ad(j+l) 
DO 12 jj = j, 1, -1 

c= ad(jj) 
ad(jj) = b 
b = x*b + c 

12 CONTINUE 
13 CONTINUE 
IF (polish) THEN 
DO 14 j= i,m 

root = roots(j) 
CALL laguer(a,m,root, eps,.true.) 

14 CONTINUE 
ENDIF 
RETURN 

END SUBROUTINE zroots 

A-7 



Appendix B.   The Timestep Calculation 

B.l    Factors Influencing Choice of Time Step 

Several factors influenced the choice of time step for the simulation. The first might 

be called an operational factor, since the decision depended more or less on trial and error. 

But, rather than being completely arbitrary, the original width used in the old code seemed 

a reasonable starting point. The second factor involved the shape of the input pulse. If the 

pulse were linear (a ramp or a square-shaped pulse, for example) equal time steps would 

be appropriate since the pulse maintains a linear profile throughout its history enforcing a 

democratic partition: no part of the input can afford to be missed. The shape of the input 

pulse to the present computer model, however, is gaussian. This shape was chosen because 

it can be generated relatively easily in a separate computer program. A real input, however, 

will be a Q-switched pulse (see Figure B.l). In that case, any given layer will experience 

a rapidly expanding plasma at its beginning with a more moderately changing response 

near the end of its lifetime. The rapidly varying interaction dynamics at the beginning of 

the pulse dictates smaller time steps there. The interaction, however, tends to equilibrate 

after only a few ps, thereby allowing a more coarse sampling rate as time proceeds. The 

nature of the algorithm, however, prevented using a truly nonlinear partition scheme. As 

the computation progressed through more and more layers, it became apparent that the 

time bins at later times were being "compressed" toward the origin before the simulation 

finished. Consequently, it was decided to divide the pulse into evenly spaced time domains 

and have each successive time domain have fewer total time bins. This increased the 

number from 2,500 to over 10,000. The efficiency of the new program, however, has not 

been degraded appreciably. 

The third factor in the choice of time step involved the physics of plasma initiation 

itself. After approximatly 600 ps, the plasma quits diffusing and the response mechanism 

isn't changing very rapidly. This further validates the need to rapidly sample the pulse 

within the first few nanoseconds after plasma ignition. 
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Figure B.l The sharp rise time of the input Q-switched laser pulse dictates a nonlinear 
time partition at the beginning to capture and sustain the critical physics of 
scattering and absorption. 

B.2   Estimation of Initial Time Step 

With the above factors in mind, we can then estimate the size of the first time step. 

The governing equation is 

QDt, (B.l) 

where r is the plasma radius and D is the diffusion coefficient (assumed here to be constant). 

In the computer code, a is the plasma radius and ao is the plasma radius at the initial 

time. 

Next, taking the derivative, we have 

2r Ar = 6DAt, (B.2) 

or 

Ar At. (B.3) 

To capture the essential plasma physics, it is desirable to have Ar <C r. (See Figure B.2). 
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Figure B.2     In the first time step, the plasma expands from r to r + Ar. 

The plasma must "experience" input at a very high rate during this initial expansion 

phase lest it cool below its critical, self-sustaining temperature. In effect, the wait time 

for the next input should not exceed approximately 1 ps, which has been determined 

operationally through experience with the older code. 

The effective plasma velocity, Vefj, is 

_ Ar _ 3D 
*eff At 

(B.4) 

We need to choose At such that Ar < a0. We have a0 ~ 20 nm = 20 x 10~7 cm. Select 

Ar < 2 nm = 2 x 10~7 cm or n (for the first time step) < 20 + 2 = 22 nm = 2.2 x 10-7 

cm. Then 

(22 x 10~7)2 = 6Dtu (B.5) 

where D is approximately 0.7 cm2/sec. Now, 

Ar _ 3D 
At ~   r ' 

(B.6) 

or 
40xl0~14     n    nn_13 Ah = — = 2 x 10 13. 

2.1 

Therefore, pick Ati < 0.2 ps. Choose 0.1 ps as the first time step. 

(B.7) 
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Appendix C.   Partial Code Listing 

The following is a partial listing of the FORTRAN simulation code used for this 

thesis project and contains the code for the "A", "B" and "C" loops as well as the code 

for the ZAP subroutine. The "USE" construction is a Fortran 90 feature which allows 

the main program to "see" the contents of a separate module, in this case the module 

"PZJDATA," which follows immediately below. 

MODULE PZ.DATA 

INTEGER,PARAMETER::REAL8=SELECTED_REAL_KIND(15,307) 

INTEGER,PARAMETER::N=20!NUMBER OF LAYERS SAMPLED. 

INTEGER,PARAMETER::P=20!NUMBER OF PROCESSORS. 

REAL(REAL8).PARAMETER::LL=1000E-4 !SAMPLE LENG(CMS). 
REAL(REAL8).PARAMETER::LAMBDA=532E-7!WAVLNGTH(CMS). 

REAL(REAL8).PARAMETER::DELTA_L=50E-4!IN CMS(50 MICRONS). 
REAL(REAL8),PARAMETER::FN0IN=5. !INPUT F/# OF OPTICS. 

REAL(REAL8).PARAMETER::PI=3.141592 

REAL(REAL8).PARAMETER::nl=1.36 

REAL(REAL8).PARAMETER::SP0T_SIZE=5.*FN0IN*LAMBDA/PI 
REAL(REAL8).PARAMETER::RAY_RANGE=4.*LAMBDA*(FN0IN**2)/PI 

REAL(REAL8).PARAMETER::bb=LL/FN0IN 
REAL(REAL8),PARAMETER::BM_RAD=bb/2.!INPUT BEAM RADIUS. 

TYPE POLAR 
REAL(REAL8)::LENGTH 

REAL(REAL8)::ANGLE 

END TYPE POLAR 
TYPE(POLAR),DIMENSI0N(0:P,N)::GRID 

REAL(REAL8)::DELTA,TEM,LENGTH 
REAL(REAL8),DIMENSI0N(0:30)::LENG,AREA,RAD,HH 

!LENG()HOLDS ACCUM LENGTH VALUES STARTING AT LEFT. 

!AREA()HOLDS AREA OF EACH LAYER. 

!RAD()HOLDS RADIUS OF EACH LAYER. 
!DEL()HOLDS DIST BETWEEN THE LAYERS IN RAY.RANGE. 

!HH()HOLDS DIST BETWEEN LAYERS THROUGHOUT SAMPLE. 

END MODULE PZ.DATA 

The main program follows next. 
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PROGRAM ss313 

USE PZ_DATA 

IMPLICIT NONE 

****************************************************** 

MUST ADD 0.1 J TO THE INTEGRATED INPUT AND OUTPUT 

FLUENCES. 
****************************************************** 

REAL*8 aO, absu, aratio, asratio, bremss, begin 

REAL*8 cangle, choice, chi(3), chiic, crit 
REAL*8 dconst.diff,el, endtime, epulse.ethamu, evtojoule 

REAL*8 Fl, Fc, F j , fnoout, Ftot 

REAL*8 gamma, h, home_stretch, hyp 
REAL*8 Ii, initdens, initenergy, inittemp, initu 

REAL*8 kb, kev 
REAL*8 np, nuc.nOc, nOe, nOn, nucconst 

REAL*8 plttime.pulsewidth, pO,q,rr,rrr 
REAL*8 start, TH, THETA, thetamax,time,timex,tO, tev, tps 

REAL*8 uO, width, x, xx, yy, zz, zr 

REAL*8 FRACi, FRAC2,F0_XX,F0_YY,F0_ZZ 

REAL*8 TKl,TK2,TQl,Tq2 

INTEGER I, J, JJ, K, KK, L, NUM 

INTEGER R, S, V, COUNT 

INTEGER ENDK 
INTEGER npts, rpts 

INTEGER tstop 

INTEGER KQ.KKQ 
INTEGER KSUM 

LOGICAL FLAG 

CHARACTER(LEN=40) bubble_file, pulse.file 

ARRAYS THAT ARE A FUNCTION OF INDEX J (layer) 

REAL*8 dia(31),deltaz(31),zaxis(31) 

REAL*8 Ij(31),tau(31),te(31),FRAC(31) 

REAL*8 az(31),density(31),energyz(31) 

REAL+8 solidw(31),update(31),uz(31) 

INTEGER, DIMENSION(0:N) :: u 
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INTEGER, DIMENSION(30)  :: U2 

INTEGER, DIMENSI0N(30)  :: UU2 

REAL*8, DIMENSION(3,3)  :: SCAT.MAT 

ARRAYS THAT ARE A FUNCTION OF INDEX K (time) 

REAL*8 del(10500), deltat(10500), Fout(10500) 

REAL*8 Ifocus(10500), Pinc(10500) 

REAL*8 t(10500), rbubr(10500) 

REAL*8 tb(10500), rbub(10500) 

REAL*8 Pshape(10500), temp(10500) 

!     ARRAYS THAT ARE A FUNCTION OF I(intensity) 

REAL*8 ntable(512), ttable(512), utable(512) 

!        ARRAYS THAT ARE A FUNCTION OF J, K 

REAL*8, DIMENSI0N(31,10500) 
REAL+8, DIMENSI0N(31,10500) 
REAL*8, DIMENSI0N(31,10500) 
REAL*8, DIMENSI0N(31,10500) 

Fin, Isfocus, ITEMP 

PPSHAPE 

RRBUBR 
muiso,muplas 

DEFINING DERIVED DATA TYPES 

TYPE energy 

REAL*8 :: value 

REAL*8 :: time 

END TYPE energy 
TYPE(energy),DIMENSION(30,10500)  :: Iin, 10, FO 
I  

! FUNCTIONS USED BY MAIN PROGRAM 
j  

REAL*8 :: INTERP, LOOKUPN, LOOKUPT 

! COMMON BLOCKS 

COMMON /LINE1/ aO,bremss,crit,dconst,ethamu,h,Il,kev,nuc 
COMMON /LINE2/ nucconst,nOn,plttime,q,thetamax,time,x 
COMMON /LINE3/ az,density,deltaz,dia,energyz 
COMMON /LINE4/ solidw,tau,te,uz 
COMMON /LINE5/ muplas.muiso.rrbubr 
COMMON /LINE6/ utable,ttable,ntable 
COMMON /LINE7/ np 
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COMMON /LINE8/ deltat.rbubr 

PARAMETERS 

noe = initial electron density; kb is Boltzman's constant 

PARAMETER(tO = 5.9d3) !vapor pt of seed mat'l;may + a little 

PARAMETER(tps = 2499, tstop = 50) 

PARAMETER(nOc = id22, nOe = 1.2d20, kb = 1.38d-23) 

PARAMETER(evtojoule = 1.602d-19)!const for conv of eV to J 

INITIAL VALUES OF CONSTANTS 

chiic =4.3      Iwork function for seed material 

!may no longer be used 

!(used to get initial energy density) 

pO = id9 

pulsewidth = 10d-9 !laser pulse width 

npts = 512 
start = 0        !hvp 
kev = 8.617d-5    !conversion constant from eV to Kelvin 

el = nl**2       !Re[dielectric constant] of liquid 

ethamu =46.0     !amu of ethanol; change for each liquid 

nOn = ld22       Inumber density of liquid molecules 

nucconst = 1.8dl5 !const to get electron collision fre'cy 

FORMAT STATEMENTS 

6 F0RMAT(f8.3,',',f8.3) 

8 FORMAT(a40) 

9 F0RMAT(f8.3,',',3e20.7) 

10 FORMAT(alO) 
15 F0RMAT(a35,fl5.4) 

18 F0RMAT(a35,el5.4) 

17 F0RMAT(a35,il5) 

12 FORMAT(lx,3e20.7) 
28 FORMAT(lx,'Pulse width    =',a4,'ns') 

29 F0RMAT(al0,lel0.3) 

31 F0RMAT(al0,a2,fl0.2) 

41 FORMAT(lx,'Enter your choice:',i3,',',i3,', " or 0 for same') 
51 FORMAT(' ',A3,lX,G12.6,lX,G12.6,lX,G12.6,lx,G12.6,lx,G12.6,lX,G12.6,lX,G12.6) 

53 FORMAT(' ',A3,1X,G12.6,1X,G12.6,1X,G12.6) 

120 FORMATUx,' density = ',lel9.5) 
121 FORMAT(lx,' density = ',lel9.5,' Transmission = ',lel9.5) 

122 FORMAT(lx,2e20.10) 

123 FORMAT(lx,3e20.10) 
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130 F0RMAT(lx,'Calculating Input Fluence : ',fl0.3,' J/cm~2') 

OPEN(unit = 81, file = 'denl.dat', status='unknown') 

INITIAL SAVED CONSTANTS 

aO = particle size 
gamma = ratio of heat cap at const vol to he at const press 

fnoin = the f/number of the input optics 

fnoout = the f/number of the output optics 

np = initial particle density 

dconst = diffusion constant 

mult = constant 

h = constant in diffusion algorithm 

width = laser pulse width 

chi(n) = ionization potentials of the liquid 

epulse = laser pulse energy 

WRITE(*,*) 'Single Shot Version: press RETURN to continue. 

READ(*,*) 

0PEN(unit = 10, file = 'ssdata.dat', status = 'old') 

READ IN CONSTANTS 

REWIND(10: 

READ(10,*: ) aO 

READ(10,*: ) gamma 

READÜ0,*: ) fnoout 
READ(10,*: ) np 

READC10,*: ) dconst 

READÜ0,*: ) h 
READC10,*: ) X 

READ(10,*: ) width 

READC10,*: ) chi(l) 

READC10,*: ) chi(2) 

READC10,*: ) chi(3) 

READ(10,*: ) epulse 

CLOSE(IO) 

5 CONTINUE 

DISPLAY CONSTANTS TO SCREEN 

WRITE(*,*) ' 

WRITE(*,*) ' gamma = '.gamma 

WRITE(*,*) 'fnoout = '.fnoout 

aO = ',a0 
— ) 
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WRITE(*,*) '   np = '.np 

WRITEC*,*) 'dconst = ',dconst 

WRITEC*,*) '    h = '.h 
WRITE(*,*) '    x = \x 
WRITEC*,*) ' width = ' .width 

WRITEC*,*) 'chiCD = ',chiCD 

WRITEC*,*) 'chiC2) = ',chiC2) 

WRITEC*,*) 'chiC3) = ',chiC3) 

WRITEC*,*) 'epulse = ',epulse 

WRITEC*,*) 
WRITEC*,*) 'The input numbers: press RETURN to continue.' 

READC*,*) 

!    CALCULATING THE NONLINEAR TIME PARTITION 

!     ENDTIME = 2 .72711E-08 ns. 

!   DO K = 1, 2000 
!       DELTATCK) = 1. OOE- ■14 
!   ENDDO 
!   DO K = 2001, 3000 

!      DELTATCK) = 1. 50E- -13 
!   ENDDO 

!   DO K = 3001, 4000 

!      DELTATCK) = 3 50E- ■13 
!   ENDDO 

!   DO K = 4001, 5000 

!      DELTATCK) = 7 50E- ■13 
!   ENDDO 

!   DO K = 5001, 6000 

!      DELTATCK) = 2 OOE- -12 
!   ENDDO 

!   DO K = 6001, 7000 

!      DELTATCK) = 3 50E- -12 
!   ENDDO 

!   DO K = 7001, BOOO 

!      DELTATCK) = 5 50E- -12 
!   ENDDO 

!   DO K = 8001, 9000 

!      DELTATCK) = 7 50E- -12 
!   ENDDO 

!   DO K = 9001, 10000 

!      DELTATCK) = 9 OOE- -12 
!   ENDDO 

!   TIME = 0.0 
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DO K = 1, lOOOO 

TIME = TIME + DELTAT(K) 

write(*,*)'ttt',k,deltat(k),del(k),time 

write(*,*)'ttt',k,deltat(k)*iE+10,del(k)*lE+10,time 

IF(TIME > ENDTIME)EXIT 

ENDDO 

KSUM = 10000 
WRITEC*,*) 'Calculated time and ENDTIME:'.TIME,ENDTIME 

SELECTING THE INPUT FILE CONTAINING THE ENERGY 

OF THE INCIDENT PULSE 

1 = 1 

IF (width.eq.9) THEN 

pulse_file = 'gaussinput_10000' 

pulse_file = 'qs9.25t' 
pulse_file = 'const_temp_k.in' 

ELSEIF (width .eq. 35) THEN 
pulse.file = 'PULSE35.035' 

ELSEIF (width .eq. 50) THEN 

pulse_file = 'ps50n.dat' 

ELSE 
WRITE(*,*) 'pulse shape not available for width' 

STOP 

END IF 

FILLING THE TEMP AND PSHAPE ARRAYS. 

DEL AND PINC ARRAYS ARE FOR TAU CALCUATION LATER. 

TEMP(l) = 0.0 

DELTAT(l) = 1.0D-14 

!      DEL(l) = 2.3D-14 
OPEN(UNIT = 14, FILE = pulse.file, STATUS = 'old') 

REWIND(14) 

READ(14,*) NUM 

DO K = 1, NUM 

READU4,*) TEMP(K), PSHAPE(K) 

IF(K > 1) DELTAT(K) = TEMP(K) - TEMP(K-l) 

PINC(K) = EPULSE * PSHAPE(K) 

ENDDO 

CLOSE(14) 

ENDK = K - 1 
!      ENDTIME = TEMP(ENDK) 

ENDTIME = 2.72711E-08lvalue taken from file qs9.25t. 
i. 
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EXPLANATION OF GRIDFILL 

IGRIDFILL CONTAINS THE MECHANICS FOR CALCULATING THE RADIUS 

!AND AREA OF EACH PRIMARY ZONE (PZ) LAYER AND THEIR INTERVEN- 

ING DISTANCES AND THE POLAR COORDINATES OF THE TRIANGULAR 

I GRID WHICH DISCRETIZES THE PZ. J COUNTS THE LAYERS STARTING 

I FROM NO 1 ON THE RIGHT EDGE. 

CALL GRIDFILL 

FILL A 3 X 3 ARRAY WITH NUMBERS THAT MIMIC SCATTERING. THE 

ARRAY'S ENTRIES CORRESPOND TO NINE PAIR COMBINATIONS WHICH 

RESULT FROM THREE INPUTS MAPPED TO THREE OUTPUTS. RESHAPE 

IS A FORTRAN 90 INTRINSIC. SCATTERING NUMBERS IN THE ARRAY 

ARE HARDWIRED FOR NOW... 

CALUCULATING THE SOLID ANGLE FOR EACH LAYER. 

SOLIDW = array holding values of solid angles—layer depend. 

DIA = the diameter of each layer, computed from RAD(J) 

CANGLE = the value of the cosine of the linear angle 

HYP = the hypotenuse of the triangle 

THETAMAX = ASIN(l./(2.*fnoout)) Imaximum collection angle! 

!FORMULA FOR SOLIDW(N) DERIVED USING SERIES APPROXIMATION 

IFOR 1/Cl+X) WHERE X = TAN~2(X) BECAUSE C0S~2(X) = 1/(1+TAN~2(X) 

I AND TAN(X) EQUALS l/2*f/#0UT. THE SOLID ANGLE FOR EACH SUBSEQ 

I LAYER USES 2*PI*(l-C0S(theta)) WHERE COS(theta) IS FOUND MORE 

I DIRECTLY USING HH AND HYP OF THE LINEAR ANGLE BEWTEEN LAYERS. 

!HH() ARRAY HAS ALREADY BEEN CALC IN PZ DATA AND HOLDS DIST 

I BETWEEN LAYERS. 

ISOLIDW(i) = 2.*PI*(l-SQRT(l-.25/fnoout**2+l./(i6.*fnoout**4))) 

DIA(l)   = 2. * RAD(l) 

DO J = 2, N 

DIA(J)   = 2. * RAD(J) 
I     HYP     = SQRT((HH(J+1)**2)+(RAD(J+1)**2)) 

HYP      = SQRT((HH(J)**2)+(RAD(J)**2)) 

!     CANGLE   = HH(J+1)/HYP 

CANGLE   = HH(J)/HYP 

SOLIDW(J) = 2.*PI*(1.- CANGLE) 

END DO 

SOLIDW(l) = S0LIDW(2) 
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INITIAL ENERGY DENSITY AT PLASMA INITIATION 

TO IS INITIAL TEMP; UO IS ENERGY DENSITY. 

UO = (CHIIC + (3./2.)*KEV*T0)*N0E*EVT0J0ULE 

INITENERGY = U0*4./3.*PI*A0**3 !ENERGY IN EACH PLASMA CENTER. 

SAHA TABLES 

DO I = 1, NPTS INPTS = 512 

UTABLE(I) =0.0 

NTABLE(I) =0.0 

TTABLE(I) =0.0 

END DO 

CALL GENERATEL00KUPUD22, CHI) 

INITU =  (CHIIC+3./2.*KEV*T0)*N0E*EVT0JOULE 

INITTEMP =  TO 

INITDENS =  7.0D18 
WRITE(*,*) 'Init Temperature =',INITTEMP 
WRITE(*,*) 'Init Density    =',INITDENS 

FILLING BUBBLE TIME AND BUBBLE GROWTH ARRAYS, TB() AND RBUB() 

bubble_file = 'bub80c3.dat' 
OPEN(UNIT = 7, FILE = bubble.file, STATUS = 'old') 

REWIND(7) 

1=1 
READ(7,*) NUM 
DO WHILE (I <= NUM) 

READ(7,*) TB(I), RBUB(I) 

1 = 1+1 

ENDDO 

CL0SE(7) 

RPTS =1-1 

SCATTERING MATRIX 

SCAT_MAT = RESHAPE(S0URCE=(/.10,.30,.60,.25,.75,.25,.60,.30, 

.10/), SHAPE = (/3,3/)) 

CALCULATING TAU 
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I EACH LAYER NEEDS TO HAVE ASSIGNED TO IT ITS OWN TAU, THE TIME 

!TO REACH ITS CRITICAL FLUENCE ,FC, WHICH IS SET AT 0.1 JOULE. 

DO J = N, 1, -1 

FTOT = 0.0 
FC  =0.1  !FC = PROPERTY OF CARBON; SAME FOR EACH LAYER. 

!  TIME = 0.0 

K = 1 
!NEXT DO LOOP CRUDELY INTEGRATES INTENSITY. IJ HOLDS ITENSITY 

IFOR EACH LAYER. FJ UPDATES FTOT FOR EACH COUNT OF K. 

DO WHILE(FTOT < FC) IWHEN TOTAL FLUENCE = FC, EXIT DO LOOP. 

IJ(J) = PINC(K)/AREA(J) 

FJ = IJ(J) * DELTAT(K) 

FTOT = FTOT + FJ 

! TIME = TIME + DELTAT(K) 

IF( K < ENDK ) K = K + 1 

ENDDO 
TAU(J) = TEMP(K) !TEMP(K) HOLDS TIME VALUE,TAU(J), 

UU2(J) = K  IFOR LAYER J TO REACH ITS CRITICAL 

IFLUENCE. 

ENDDO 

AA LOOP FILLS EACH LAYER'S ARRAY WITH INTERPOLATED VALUES. 

AA: DO J = N, 1, -1 
TIME = TAU(J) 

FLAG = .TRUE. 

IF(J == N)THEN 

FIRST:DO I = UU2(J), KSUM 

PPSHAPE(J.I) = Pshape(I) 
ISFOCUS(J.I) = Pinc(I)/AREA(l) 

U2(J) = I 
TIME = TIME + DELTAT(I) 

IF(TIME > ENDTIME)EXIT 

END DO FIRST 

ELSE IF( J .HE. H)THEN 
SECONDrDO I = UU2(J), KSUM 

PPSHAPE(J,I) = Pshape(I) 

ISFOCUS(J.I) = Pine(I)/AREA(1) 

IFCTIME > TAU(J+1) .AND. FLAG)THEN 

U2(J) =1-1 
FLAG = .FALSE. 

END IF 

TIME = TIME + DELTAT(I) 

IF(TIME > ENDTIME)EXIT 

END DO SECOND 
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END IF 

END DO AA 

REINITIALIZE ARRAYS AT THE BEGINNING OF EACH SHOT. 

TIME = 0.0 

DO J = 1, N 

UZ(J) = UO 
ENERGYZ(J) = INITENER 

AZ(J) = AO 
TE(J) = INITTEMP 

DENSITY(J) = INITDENS 

END DO 

!INITIAL TEMPERATURE 

!INITIAL ELECTRON DENSITY 

REINITIALIZE CONSTANTS AT THE BEGINNING OF EACH SHOT. 

TEV    =  TE(J-1)*KEV !TEMP IN eV 
DIFF   =  DCONST*(SqRT(TEV)+X*TEV**H)!CALC DIFF CONSTANT 

CRIT   =  (3./(4.*PI*NP))**(l./3.)  IPLMA VOL = LATT VOL. 

NUC    =  NUCCONST 
j  

!  MAIN LOOP OF REVISED TIME AND LAYER ACTIVATION SCHEME. 
j  

OPEN(unit = 43, file = »results', status = 'OLD') 
j  

MAIN: DO J = N, 1,-1 
! ADJUSTING TIME SCALE FOR THE BUBBLE FILE  
! WITH EACH NEW J  

TIME = 0.0 

K = 1 
DO KK = UU2(J), KSUM !KSUM = 10000 

R = 2 

DO WHILE ((R < RPTS) .AND. (TB(R) <= TIME)) 

R = R + 1 

END DO 
IF(R <= RPTS)THEN 

RBUBR(K) = INTERP(RBUB(R-1),RBUB(R),TB(R-1),TIME,TB(R)) 

ELSE 

RBUBR(K) = RBUBR(K-l) 

END IF 

TIME = TIME + DELTAT(KK) 

K = K + 1 

END DO 
j  

K = 1 
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TIME = TAU(J) 

ASRATIO = AREA(1)/AREA(J) 

ARATIO = AREA(J+1)/AREA(J) 

IF(J == N)THEN  !FIRST LAYER IS UNIQUE: NO NEIGHBOR INPUTS. 
i  

j LOOP "A" FOR LAYER 20 ONLY  

A: DO I = UU2(J), KSUM  !I indexes into some point in the 

!pulse profile. K must start at one when layer turns on. 

K = I - UU2(J) + 1 

II = ISFOCUS(J,I)*ASRATIO 
Fl = I1*DELTAT(I) 
PLTTIME = TIME * 1E+09 

CALL ZAP(J,K,F1) 

IO(J,I)y.value = Ii*DEXP(-MUPLAS(J,K)*HH(J))    & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,I)y.time = TIME 

I in (J-l, Devalue = 10 (J, I)'/.value 
Iin(J-l,I)'/.time = IO(J,I)y,time 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 
DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

F0(J, I)*/,value = IO(J,I)'/.value*DELTAT(I) 

F0(J,I)'/.time = 10 (J, I)'/.time 

IF(FO(J,I)y.value < 1E-13) FO(J,I)'/.value = 0.00 

TIME = TIME + DELTAT(I) 

IF(TIME > ENDTIME)EXIT 

END DO A 

ELSE IF (J < N .AND. J > 1) THEN 
j  

TQ1 = TAU(J)    !TQ2-TQ1="PR0BE INTVL" : LAYER J. 

TQ2 = TQ1 + DELTAT(i) 
j LOOP "B"  

B: DO KQ = UU2(J), UU2(J+i) 

K = KQ - UU2(J) + 1 
Ii = ISFOCUS(J,KQ)*ASRATIO 
Fl = I1*DELTAT(KQ) 
PLTTIME = TIME * 1E+09 

CALL ZAP(J,K,F1) 

10 (J.KQ) '/.value = I1*DEXP(-MUPLAS(J,K)*HH(J))    & 

*DEXP(-MUIS0(J,K)*HH(J)) 

IO(J,KQ)y.time = TIME 

Iin(J-l,KQ)y.value = IO(J,KQ)y.value 

Iin(J-l,KQ)y.time = IO(J,KQ)'/.time 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 
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DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

FO(J,KQ)y. value = IO(J,KQ)'/.value*DELTAT(KQ) 

FO(J,KQ)y.time = IO(J,KQ)'/.time 
j  

IF(KQ == UU2(J+1))THEN 

XX = TAU(J+1)-TQ1 !XX IS THE LAST BIT OF "FREE" INPUT INTO LAYER J. 

II = ISFOCUS(J,KQ)*ASRATIO 

Fl = I1*XX 

CALL ZAP(J,K,F1) 

10 (J.KQ)'/.value = I1*DEXP(-MUPLAS(J,K)*HH(J))    & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KQ)'/,time = TIME 

Iin(J-l,KQ)y.value = 10 (J.KQ)'/.value 

Iin(J-l,KQ)'/.time = IO(J,Kq)'/,time 
TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

FO(J.KQ)'/.value = IO(J,KQ)'/.value*XX 

FO(J,Kq)'/.time = IO(J,KQ)'/.time 
j  

END IF 
j  

TQ1 = TQ2 

TQ2 = TQ2 + DELTAT(Kq+i) 

TIME = TQ1 

PLTTIME = TIME+1E+09 

END DO B 
j  

KK = UU2(J+1) !KK = Layer J+i's time counter. 

TK1 = TAU(J+1) 

TK2 = TK1 + DELTAT(KK) 
j LOOP MCM  

C: DO KQ = UU2(J+1), KSUM 

PLTTIME = TIME * 1E+09 

DO 

IF(TK1 < TQ2 .AND. TK2 > TQ2)EXIT 

Fin(J.KQ) = FO(J+l,KK)'/.value*ARATIO 

CALL ZAP(J,K,Fin(J,KQ)) 

10 (J.KQ)'/.value = Iin(J,KK)'/.value*ARATIO      & 

*DEXP(-MUPLAS(J,K)*HH(J))   & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KQ)*/,time = Iin(J,KK)'/.time 

FO(J,KQ)'/.value = FO(J,KQ)'/. value + IO(J,KQ)'/.value*DELTAT(KK) 

FO(J,KQ)'/.time = Iin(J,KK)'/,time 
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Iin(J-l,KQ)'/.value = IO(J,KQ)*/,value 

Iin(J-l,KQ)y,time = IO(J,KQ)'/.time 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

TK1 = TK2 

TK2 = TK2 + DELTATCKK+1) 

IF(TK1 < TQ2 .AND. TK2 > TQ2)EXIT 

K = K + 1 

KK = KK + 1 

END DO 

XX = TQ2 - TKi 

YY = TK2 - TQ2 
Fin(J.KQ) = ARATIO*FO(J+l,KK)'/.value*XX/DELTAT(KK) 

CALL ZAP(J,K,Fin(J,KQ)) 

IO(J,KQ)#/.value = Iin(J,KK)'/,value*ARATIO    & 

*DEXP(-MUPLAS(J,K)*HH(J))   & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KQ)y,time = Iin(J,KK)y,time 
FO(J,KQ)'/.value = FO(J,KQ)'/.value + IO(J,Kq)'/.value*XX 

FO(J,Kq)'/.time = Iin(J,KK)'/.time 
Iin(J-l,KQ)'/.value = 10 (J.KQ)'/.value 

Iin(J-l,Kq)'/.time = IO(J,KQ)'/.time 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

KKQ = KQ + 1 
Fin(J.KKQ) = ARATIO*FO(J+l,KK)'/,value*YY/DELTAT(KK) 

! Fin(J.KKQ) = ARATIO*FO(J+l,KK)'/.value 

CALL ZAP(J,K,Fin(J,KKq)) 
IO(J,KKq)y.value = Iin(J,KK)'/.value*ARATIO    & 

*DEXP(-MUPLAS(J,K)*HH(J))   & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KKq)'/.time = Iin(J,KK)'/.time 

FO(J,KKq)'/.value = IO(J,KKq)'/,value*YY 

Iin(J-l,KKq)'/.value = 10 (J.KKq)'/.value 

Iin(J-l,KKq)'/.time = IO(J,KKq)'/.time 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

TIME = TIME + DELTAT(Kq) 

IF(TIME > ENDTIME)EXIT 

Tqi = Tq2 
Tq2 = Tq2 + DELTAT(Kq+l) 

TKI = TK2 
TK2 = TK2 + DELTAT(KK+1) 

KK = KK + 1 

K = K + 1 
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END DO C 
i  

ELSE IF(J == DTHEN 

TQ1 = TAU(J) 

TQ2 = TQ1 + DELTAT(i) 

ARATIO = AREA(2)/AREA(1) 
! LAST LAYER  
LAST1:DO KQ = UU2(1), UU2(2) !KQ = LAYER 1 TIME COUNTER 

K = KQ - UU2U) + 1 

II = ISFOCUS(J,KQ)*ASRATIO 

Fl = I1*DELTAT(KQ) 

PLTTIME = TIME * 1E+09 

CALL ZAP(J,K,F1) 

IO(J,KQ)y,value = I1*DEXP(-MUPLAS(J,K)*HH(J))     & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KQ),/.time = TIME 
TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

FO(J,KQ)'/value = IO(J,KQ),/.value*DELTAT(KQ) 

FO(J,KQ),/.time = IO(J,KQ)y.time 
I  

IF(KQ == UU2(2))THEN 
j  

XX = TAU(J+1)-TQ1 !XX IS THE LAST BIT OF "FREE" 

!INPUT INTO LAYER J. 
II = ISFOCUS(J,KQ)*ASRATIO 

Fl = I1*XX 
CALL ZAP(J,K,F1) 

IO(J,KQ)y.value = I1*DEXP(-MUPLAS(J,K)*HH(J)) & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KQ),/.time = TIME 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

FO(J,KQ)'/. value = IO(J,KQ),/.value*XX 

FO(J,KQ),/.time = IO(J,KQ),/.time 
j  

END IF 
j  

TQ1 = TQ2 

TQ2 = TQ2 + DELTATCKQ+1) 

TIME = TQ1 

PLTTIME = TIME * 1E+09 

END DO LAST1 
i  
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KK = UU2(2)       !KK = LAYER 2 TIME COUNTER. 

TK1 = TAU(2) 

TK2 = TK1 + DELTAT(KK) 

TIME = TK1 

LAST2: DO KQ = UU2(2)+1, KSUM 

PLTTIME = TIME * 1E+09 

IF(TK1 < TQ2 .AND. TK2 > TQ2)THEN 

Fin(J.KQ) = FO(J+l,KK)'/.value*ARATIO 

CALL ZAP(J,K,Fin(J,KQ)) 

IO(J,KQ)'/,value =Iin(J,KK)'/,value*ARATIO & 

*DEXP(-MUPLAS(J,K)*HH(J))     & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,Kq)y.time = Iin(J,KK)'/.time 

FOCJ.KQ)'/. value = FO(J,KQ)y,value + & 

10 ( J, KQ) y,value*DELTAT (KK) 
FO(J,KQ)y.time = Iin(J,KK)y,time 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 
DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

TKi = TK2 
TK2 = TK2 + DELTATCKK+1) 

K = K + 1 
KK = KK + 1 

END IF 
XX = TQ2 - TKI 

YY = TK2 - TQ2 
Fin(J.KQ) = ARATIO*FO(J+l,KK)'/.value*XX/DELTAT(KK) 

!Fin(J,KQ) = ARATI0*F0(J+1,KK)'/.value 

CALL ZAP(J,K,Fin(J,Kq)) 
IO(J,Kq)'/,value=Iin(J,KK)'/.value*ARATIO & 

*DEXP(-MUPLAS(J,K)*HH(J)) & 
*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KQ)y.time = Iin(J,KK)y.tirae 

FO(J,Kq)y. value = FO(J,Kq)'/. value + IO(J,Kq)'/,value*XX 

FO(J,Kq)'/.time = Iin(J,KK)y.time 
TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

KKq = Kq + 1 
Fin(J.KKq) = ARATIO*FO(J+l,KK)#/.value*YY/DELTAT(KK) 

!Fin(J,KKq) = ARATI0*F0(J+1,KK)'/.value 

CALL ZAP(J,K,Fin(J,KKq)) 

10(J,KKq)'/.value = Iin(J,KK)'/.value*ARATIO & 

*DEXP(-MUPLAS(J,K)*HH(J)) & 

*DEXP(-MUISO(J,K)*HH(J)) 

IO(J,KKq)'/.time = Iin(J,KK)'/.time 
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FO(J,KKQ)y. value = IO(J,KKQ),/,value*YY 

FO(J,KQ)'/,time = Iin(J,KK)y,time 

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE) 

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE) 

TIME = TIME + DELTAT(KQ) 

IF(TIME > ENDTIME)EXIT 

TQ1 = TQ2 

TQ2 = TQ2 + DELTAT(Kq+i) 

TK1 = TK2 
TK2 = TK2 + DELTATCKK+1) 

K = K + 1 

KK = KK + 1 

END DO LAST2 
j .  

END IF 

END DO MAIN 

J = 1 

TIME = TAU(l) 
RESULTS:DO K = UU2(1), KSUM 

IF(IO(J,K)y.value > 3E+09) 10 (J,K)'/.value = 0.0 

WRITE(43,*) K,TIME*lE+09,I0(J,K),/.value,Iin(J,K) ,Fin(J,K) 

TIME = TIME + DELTAT(K) 
IF(TIME > ENDTIME)EXIT 

END DO RESULTS 

!Integrate total output intensity to obtain total output 

Ifluence, adding 0.1 J/cm"2 to allow for plasma initiation 

CLOSE(14) 
CLOSE(43) 

CLOSE(44) 

CL0SE(45) 

CL0SE(81) 

WRITE (*,*) 'ss313 completed' 

END PROGRAM ss313 
i ZAP  

SUBROUTINE ZAP(jv,ku,fcell) 

USE PZ.DATA 

IMPLICIT none 
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REAL*8 aO, az(31), absu, alpha 

REAL+8 bremss, crit, diff, dconst, deltat(10500) 

REAL*8 deltaz(31), density(31), dia(31) 

REAL*8 enliq, energya, energyz(31), ethamu 

REAL*8 e2p, e2pp, eps2p, eps2pp, evtemp 

REAL*8 fluence, fcell, hold 

REAL*8 h, II, iext, kk, kev 
REAL*8 muplas(31,10500), muiso(31,10500) 

REAL*8 nOn, nueff, np, ntot, nuc, nucconst 

REAL*8 ntable(512), plastime, plttime, pwliq 

REAL*8 plta(31), pltu(31) 
REAL*8 q, qa, rb, rrbubr(31,10500), rbubr(10500), sigiso 

REAL*8 sigmaa, sigmasph, solidw(31), stim, stimemiss 

REAL*8 tau(31), te(31), thetamax, time, ttable(512) 

REAL*8 utable(512), uz(31), vol, x 

COMMON /LINE1/ aO,bremss,crit,dconst,ethamu,h,II,kev,nuc 

COMMON /LINE2/ nucconst,n0n,plttime,q,thetamax,time.x 

COMMON /LINE3/ az,density,deltaz,dia,energyz 

COMMON /LINE4/ solidw,tau,te,uz 

COMMON /LINE5/ muplas,muiso.rrbubr 

COMMON /LINE6/ utable.ttable.ntable 

COMMON /LINE7/ np 

COMMON /LINE8/ deltat,rbubr 

REAL*8, PARAMETER 
REAL*8, PARAMETER 
REAL*8, PARAMETER 
REAL*8, PARAMETER 
REAL*8, PARAMETER 

INTEGER jv.ku 

c = 3dl0 
Emin = 2.4e-19 !min elect NRG in Joules! 

eamu = (1./1837.)  (electron mass in amu! 

elp = nl**2 
b = ((elp - i.)/(2.*elp + l.))**2 

rb     = rbubr(ku) 

kk     = 2.*pi/lambda 

evtemp  = te(jv)*kev 

alpha   = kk*rb 
hold    = 8./3.*pi*b*kk**4*rb**6 

nueff   = 2*(eamu/ethamu)*nuc*(evtemp**0.5) 

plastime = (time - tau(jv) + l.e-12) 
plastime = (time - tau(jv) + l.e-13) !ZAP won't run withou a small 

time increment to get the plasma expansion ball rolling. 

plastime = (time - tau(jv)) 

vol     = (pi/4.)*(dia(jv)**2)*HH(jv) 

ntot    = np*vol 
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!CALCULATION OF LIQUID THERMALIZATION 

pwliq = nueff*energyz(jv) 

enliq = pwliq*deltat(ku) 

!CALCULATION OF THE BUBBLE SCATTERING, ISOTROPIC AND FRAUNHOFF 

CALL isotroChold, solidw(jv), sigiso) 

muiso(jv,ku) = sigiso*np 

i ABSORPTION CROSSECTION (RAYLEIGH REGION)  
i Zapregionl  

IF (az(jv) .LT. lambda/2.) THEN 
eps2p = e2p(density(jv),nuc,lambda) !Re[plasma dielectric constant]! 

eps2pp = e2pp(nuc,lambda,te(jv),density(jv)) 
!Im[plasma dielectric constant] 

qa = sigmaa(az(jv),aO,lambda,nl,eps2p,eps2pp,rbubr(ku),jv,ku) 

IRayleigh absorption cross section 

stim = stimemiss(lambda,te(jv)) Istimulated emission factor 

muplas(jv,ku) = np*(qa*stim) 
energya = fcell*qa*stim    !absorbed energy per particle 

energyz(jv) = energyz(jv)+energya-(enliq/ntot)!-(erad/ntot) 

!energy per carbon particle 

IF (energyz(jv).LE.Emin) energyz(jv) = Emin 

diff = dconst*(sqrt(evtemp) + x*evtemp**h)!calc diff constant 

az(jv) = aO + dsqrt(6.*diff*plastime)   Iplasma expansion 

uz(jv) = energyz(jv)/((4.*pi/3.)*az(jv)**3) !NRG density 
!due to expansion 

 Zapregionl  

 INTERMEDIATE REGION  
 Zapregion2  

ELSE IF((az(jv).GT.lambda/2.).AND.(az(jv).LT.CRit)) THEN 
sigmasph=(4./3.)*pi*(az(jv)**3 - rbubr(ku)**3 + a0**3) & 

*((0.106*(l/nl)*(nuc/((2.*pi*c/lambda)**2      & 

+nuc**2)))*density(jv) + (i.37E-25)*lambda**3   & 

/dsqrt(te(jv)*8.617d-5)*(density(jv))**2) 

q = sigmasph 

stim=stimemiss(lambda,te(jv)) Istimulated emission factor 

muplas(jv,ku)=np*(q*stim)    Iplasma crossection 

energya=fcell*q*stim    I absorbed energy per particle 
energyz(jv)=energyz(jv)+energya-(enliq/ntot) !-(erad/ntot) 
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!energy per carbon particle 

IF (energyz(jv).LE.Emin) energyz(jv) = Emin 
diff=dconst*(sqrt(evtemp)+x*evtemp**h)!calc diff constant! 

az(jv)=a0+dsqrt(6.*diff*plastime) !Let plasma center expand! 

uz(jv)=energyz(jv)/((4.*pi/3.)*az(jv)**3) 

!energy density due to diffusion of electrons! 
 Zapregion2  

 CONTINUUM REGION—(plasma spheres have coalesced)  
 Zapregion3  

ELSE IF (az(jv) .GE. crit) THEN 
bremss = iext(nuc,lambda,nl.te(jv).density(jv))        & 

*(l./np - 4.*pi/3.*(rbubr(ku))**3)*np 

!Could run into problems when bubble radius exceeds lattice size 

stim = stimemiss(lambda,te(jv)) !stimulated emission factor 

muplas(jv,ku) = bremss*stim    !plasma crossection! 

fluence = fcell*(l. - dexp(-bremss*HH(jv)*stim)) 
!absorbed fluence! 

absu = fluence/HH(jv) (Absorbed energy density! 

energyz(jv) = energyz(jv) + absu*vol - enliq   ! - Erad ! 

IF (energyz(jv).LE.Emin) energyz(jv) = Emin 

uz(jv) = uz(jv) + absu - enliq/vol  ! - erad/vol ! 

IF (energyz(jv).LE.Emin) uz(jv) = 5e-19 

ELSE 
STOP 'something screwy happened with coelescent limits' 
j Zapregion3  

ENDIF 
plta(jv) = az(jv)*le7 !convert units for plasma radius to nm! 

pltu(jv) = uz(jv)*le3 !convert units for energy density to mJ/cm3! 

RETURN 

END SUBROUTINE ZAP 
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