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AFIT/DSS/ENS/OOM-01 

Abstract 

This dissertation research makes contributions towards the objective evaluation of competing 

classifiers, i.e., classification systems (CSs) or pattern recognition algorithms. Automatic CSs have 

been under development for almost 40 years in a wide range of military and medical applications. 

During this period, scientists and engineers have developed extensive theory and algorithms for 

classification, but by comparison have focused little on the testing and evaluation of their systems. 

Classifier evaluation is very important in the fields of automatic target recognition (ATR) and pilot 

workload classification. In order for military operators to be confident in new CSs, they must have 

an objective way of testing and evaluating competing systems. 

The purpose of this dissertation research is to advance the knowledge of classifier evaluation. 

The basis of the research is a commonly used evaluation tool in ATR and medical applications, 

called the receiver operating characteristic (ROC) curve. A proof of convergence with respect 

to increasing sample size for these ROC curves is provided. This ROC convergence theorem is 

important because it provides the basis for a framework for the comparison of ROC curves and 

hence, the comparison of classifiers. A demonstration is given to show how this framework can 

be employed using metrics that provide more insight about classifier differences than the typical 

area under the curve performance index used in ROC analysis. As an alternative to ROC type 

analyses, a method for using a multinomial selection procedure to evaluate competing classifiers is 

presented and demonstrated. A comparison is then made between the methodologies introduced 

in this research and typical approaches. Both ATR and pilot workload applications are used to 

make these comparisons. A review of the interpretations of the typical performance measures 

used is given along with interpretations for the proposed performance measures introduced in this 

dissertation. Finally, research contributions are summarized and future directions highlighted. 

xvii 



THE EVALUATION OF COMPETING CLASSIFIERS 

/.   Introduction 

1.1 General Discussion 

This dissertation research makes contributions towards the objective evaluation of competing 

classifiers, i.e., classification systems (CSs) or pattern recognition algorithms. Automatic CSs have 

been under development for almost 40 years in a wide range of military and medical applications. 

During this period, scientists and engineers have developed extensive theory and algorithms for 

classification, but by comparison have focused little on the testing and evaluation of their systems. 

The issue of classifier evaluation is very important in the fields of automatic target recognition 

(ATR) and pilot workload classification where data are finite. In order for military operators to 

be confident in new CSs, they must have an objective way of testing and evaluating competing 

systems. 

1.2 Motivation 

1.2.1 ATR Problem. The United States Air Force (USAF) is especially interested in 

objectively evaluating algorithm upgrades to their ATR system named MSTAR (Moving and Sta- 

tionary Target Acquisition and Recognition) [2]. The MSTAR system is a model-based approach 

to automatic target recognition of synthetic aperture radar (SAR) imagery. Previous approaches 

to the SAR ATR problem relied on vast data libraries of targets at numerous aspect and depression 

angles as well as different configurations (e.g., tank hatch open/closed). The model-based approach 

relies on computer generated templates for matching a specific identity to each image, using only 

a small data library of actual stored SAR images of targets [21]. The MSTAR system consists of 

three major components shown in Figure 1.1.   These components are [41,42]: 

1-1 
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Figure 1.1      The three major components of MSTAR. 

Table 1.1      Technical barriers facing performance estimation for MSTAR. The barriers in italics 
represent the original motivation for this research. 

1 Undersampling of mission space 
2 ATR Performance vs.  Unknowns 
3 False Alarm Performance 

4 
Relationship Between Mission and 
Extended Operating Conditions (EOC) 
Parameters 

5 Synthetic Data 
6 Data Truthing 
7 Performance Theory 
8 Joint Human/ATR Performance 

9 
Modeling & Simulation for ATR 
Evaluation 

1. Focus of Attention (FOA) module identifies regions of interest (ROIs) in the image. 

2. Index (IX) module generates a list of hypotheses (target/orientation) for a ROI. 

3. Predict/Extract/Match/Search (PEMS) loop performs final classification of a ROI. 

A change in one of these components constitutes a new MSTAR configuration or upgrade 

which must be evaluated objectively for its performance [21]. The Air Force Research Laboratory 

Sensors Directorate (AFRL/SN) at Wright-Patterson Air Force Base, Ohio manages the MSTAR 

program and is directing its research efforts toward investigating solutions to the technical barriers 

(Table 1.1) facing performance estimation for MSTAR [3]. These technical barriers, specifically 

performance theory, the undersampling of mission space, ATR performance vs.   unknowns, and 
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false alarm performance are the original motivation for this research. However, this research is 

directly applicable to a variety of applications, including the classification of pilot workload which 

is another high priority research area of the USAF. 

1.2.2 Pilot Workload Classification Problem. The issue of pilot workload is important to 

the USAF because pilot overload or task saturation can decrease mission effectiveness and, in some 

extreme cases, cause loss of life [9]. The modern aircraft, especially the military fighter is not an 

ideal work station for human operators. The fighter pilot must perform complex cognitive tasks 

while experiencing acceleration levels up to +9 Gs [34]. Between 1986 and 1995, the USAF lost 14 

fighter pilots to G-induced loss of consciousness. All but one of these 14 mishaps occurred during 

high workload, demanding portions of the flight. These mishaps resulted because the pilots were 

overly task saturated and therefore unable to perform adequate anti-G straining maneuvers [9]. 

The ultimate goal of pilot workload research is to put instrumentation in every cockpit to monitor 

a pilot's workload and to warn a pilot that overload or task saturation is imminent [34]. 

Previous research to classify pilot workload has used psychophysiological measures such as 

heart rate, heart rate variability, respiration rate, respiration rate variability, and eye blink rate [33]. 

Measures of on-going brain electrical activity, as measured by electroencephalograph (EEG), have 

only been recently added to the arsenal of pilot workload measurements [33]. Artificial neural 

networks (ANNs) have shown great promise for classifying pilot workload using both EEG and 

psychophysiological measures [33-35]. ANNs have been successful because of the nonlinearity 

of the workload data and the generalization capabilities of ANNs [1,33]. A significant amount of 

previous research to classify pilot workload has used ANNs and, in particular, feedforward multilayer 

perceptron (MLP) ANNs.   A typical feedforward MLP ANN is shown in Figure 1.2. 

The inputs to these feedforward ANNs typically include peripheral psychophysiological fea- 

tures as well as features preprocessed in a variety of ways from EEG. Unfortunately, irrelevant 

input features to an ANN can reduce classifier performance.   In order to identify the important 
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Figure 1.2 Feedforward multilayer perception ANN. The inputs Xi represent the features used 
for classification while Zk are the outputs generated by the ANN to determine the 
classification. The hidden nodes yj, the bias, and the connection weights w^- are 
the parameters used by the ANN. 

input features in a MLP ANN with many input features, the initial stages of this research resulted 

in the development of the Signal-to-Noise Ratio (SNR) saliency measure and screening method 

for selecting a parsimonious set of features [14]. Greene et al. [33-35] successfully applied this 

SNR screening method to determine which EEG and psychophysiological features are relevant for 

classifying mental workload via a feedforward ANN. 

In all of the research on the mathematical modeling of pilot workload, classification accuracy 

has been used as the sole performance measure to compare different models. Other evaluation tools 

are available. As part of this research, these tools are reviewed and examined in order to develop 

mathematically rigorous selection procedures to evaluate competing models of pilot workload. 

1.3    Problem Statement 

One of the problems facing the pattern recognition community is the question of how to 

objectively evaluate competing classifiers. In many applications only one performance measure, 

typically classification accuracy (CA) is used to distinguish between competing classifiers. For 

example, consider the classification results for a notional cancer detection problem shown in Figure 
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Figure 1.3      Example of typical classifier comparison using notional cancer detection problem. 

Table 1.2      Confusion matrices for notional cancer detection problem. 
Classifier 1 (CA = 78.0%) 

CLASSIFICATION 
T 
R 
U 
T 
H 

Normal Cancer 

Normal 
1616 

(76.2%) 
504 

(23.8%) 

Cancer 
65 

(14.0%) 
400 

(86.0%) 

Classifier 2 (CA = 82.0%) 

PFA = 23.8% 
PD = 86.0% 

CLASSIFICATION 
T 
R 
U 
T 
H 

Normal Cancer 

Normal 
2120 

(100%) 
0 

(0.0%) 

Cancer 
465 

(100%) 
0 

(0.0%) 
PFA = 0% 
PD = 0% 

1.3. Classifier 2 has CA = 82.0% which means that Classifier 2 was successful 82% of the time 

identifying both cancer and non-cancer images alike. If Classifier 2's CA — 82.0% is significantly 

greater (both statistically and practically) than Classifier l's CA = 78.0%, then Classifier 2 would 

be considered the better classifier. 

Depending on the particular problem, one performance measure may not always be sufficient. 

Consider the classification results for the notional cancer problem displayed in more detail as confu- 

sion matrices in Table 1.2. Confusion matrices (Section 2.2.1) show classification results vertically 

down the columns compared to truth which is shown horizontally across the rows. Classifier 2 

classified all the normal images as normal, achieving a probability of false alarm PFA equal to 0%. 

However, Classifier 2 failed to classify any of the cancer images as cancer, achieving a probability 

of detection PD equal to 0%. While Classifier 1 failed to classify all the normal images as normal, 

achieving PFA = 23.8%, Classifier 1 did identify a good percentage of cancer images as cancer, 

achieving PD — 86.0%. Classifier 1 may be the better classifier if the goal is to identify cancer 

images correctly rather than achieving an overall high CA.   However, even these results, which 
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provide more information that classification accuracy alone, do not tell the whole story. The re- 

sults shown in Table 1.2 depend upon a particular decision threshold for declaring a cancer image 

as cancer. A receiver operating characteristic (ROC) curve (Figure 2.6, page 2-17 and Sections 

2.2.6 and 2.3.3) shows the relationship between Pp^ and PD as the decision threshold is varied 

from a very conservative value, i.e., a value that results in zero probability of detection and zero 

probability of false alarm, to a very aggressive value, i.e., a value that results in 100% probability 

of detection and 100% probability of false alarm. 

ROC curves are commonly used as an evaluation tool in ATR and medical applications. An 

implicit assumption in the literature is that for the case of unlimited data, a limiting ROC curve 

exists. The major thrust of this research is the introduction of a family of metrics for comparing 

ROC curves that enable a proof of convergence for these curves, while also providing a useful tool 

for distinguishing between competing classifiers. As an alternative to ROC type analyses, a method 

for using a multinomial selection procedure to evaluate competing classifiers is also explored. These 

two methods represent differing world views of the classifier comparison problem. The methods 

are compared and contrasted on real world problems. 

1-4    Organization of Dissertation 

The remainder of this dissertation is organized as follows. Chapter II provides a literature 

review of performance assessment and performance comparison of CSs. Chapter III introduces a 

family of metrics for comparing ROC curves that enable a proof of convergence for these curves. 

This ROC convergence theorem is important because it provides the basis for a framework for 

the comparison of ROC curves and hence, the comparison of classifiers. A demonstration is also 

provided in this chapter to show how this framework can be employed using metrics that provide 

more insight about classifier differences than the typical area under the curve performance index 

used in ROC analysis. Chapter IV introduces a multinomial selection procedure as an alternative 
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to ROC type analyses for evaluating competing classifiers. Chapter V and VI provide comparisons 

between the methodologies introduced in this dissertation and typical approaches on real-world 

problems. Chapter V summarizes the results obtained using various methodologies for comparing 

competing classifiers for an ATR application using the MSTAR public release data set. Chapter 

VI summarizes the results obtained using various methodologies for a pilot workload classification 

problem. Chapter VII provides interpretations of the typical performance measures used in com- 

paring competing classifiers as well as interpretations for the new performance measures introduced 

in this dissertation. Research contributions are summarized and future directions highlighted in 

Chapter VIII. Appendix A contains the proof of the ROC convergence theorem and Appendix B 

provides a glossary of acronyms and abbreviations. This research has resulted in many publica- 

tions [1-7,14,19]. 
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II.   Literature Review 

2.1 Overview 

This chapter reviews the pertinent literature on the two main topic areas required to complete 

this dissertation research—performance assessment and performance comparison of classification 

systems (CSs). The majority of the following discussion is a summary of a technical report entitled, 

"Survey of Statistical Analysis and Experimental Design in ATR Evaluation" [2]. Therefore, the 

literature review presented here has a definite ATR slant. However, the performance assessment 

and performance comparison methods described in this chapter apply equally as well to a wide 

variety of other classification and detection problems. 

This chapter is organized into two main sections. The performance assessment section con- 

tains a review of typical classifier performance assessment techniques, which include the use of 

confusion matrices, error-reject curves, confidence intervals, hypothesis testing, and receiver oper- 

ating characteristic (ROC) curves. The section on performance comparison begins by describing 

the comparison of confusion matrices for competing classifiers. This section also discusses the com- 

parison of classifiers using non-sequential and sequential hypothesis testing. Special attention is 

given in this section to the discussion of the comparison of different ROC curves representing dif- 

ferent classifiers. Finally, the last part of this section presents an overview of multinomial selection 

procedures. 

2.2 Performance Assessment 

2.2.1 Confusion Matrices. The easiest way to report the classification results of a CS is 

through the use of a discrimination event matrix (term used by ATR community [11]) or more com- 

monly referred to as a confusion matrix in the pattern recognition community [24]. The confusion 

matrix is a square matrix with a single row and single column for each category defined in the data 

set. The rows of the matrix relate to the actual (ground truth) membership while the columns give 
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Actual 
(Truth) 

Table 2.1 Example Confusion Matrix. 
Classified As (Reported) 

Target 1 Target 2 Target 3 Non-Target 
Target 1 24 0 1 5 
Target 2 1 25 1 3 
Target 3 2 3 20 5 

Non-Target 1 3 4 82 

Actual 
(Truth) 

Table 2.2      Example Population Confusion Matrix. 
Classified As (Reported) 

Target 1 Target 2 Target 3 Non-Target 
Target 1 80.0% 0.0% 3.3% 16.7% 
Target 2 3.3% 83.3% 3.3% 10.0% 
Target 3 6.7% 10.0% 66.7% 16.7% 

Non-Target 1.1% 3.3% 4.4% 91.1% 

the predicted (CS reported) membership. Table 2.1 illustrates the confusion matrix format for a 

notional ATR example. The (i, j) entry in the matrix is the number of ATR reports on target j 

(predicted classifications) that correspond to ground truth target i (actual class membership). For 

example, the (3,1) entry of the matrix indicates that the ATR reported two target 1 types which 

were actually target 3 types. A perfect ATR system for this example would have (30,30,30,90) 

along the diagonal and zeros elsewhere. Rather than using the raw numbers in the confusion ma- 

trix as in Table 2.1, some CS designers will report the population counterpart (conditioned on the 

rows) with entries that are percentages as indicated in Table 2.2. Another reporting alternative is 

to summarize both raw number and population percentage results in terms of clutter (non-target) 

and target in a simple 2x2 composite matrix (Table 2.3). 

The strength of the confusion matrix is that it not only indicates how well the CS is doing 

over the entire data set, but it also gives clues as to where the errors are being made. Investigating 

Table 2.3     Example Composite Confusion Matrix. 
Classified As (Reported) 

Actual 
(Truth) 

Clutter Target 

Clutter 
82 

(91.1%) 
8 

(8.9%) 

Target 
13 

(14.4%) 
77 

(85.6%) 
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Figure 2.1 Typical gray level confusion matrices, (a) shows a good CS with few classification 
errors, (b) shows a poor CS with many classification errors, and (c) shows a CS with 
structured errors. 

where these errors occur can be a useful method for determining which type of target data to collect 

if more data is considered necessary to better distinguish the target distribution from the clutter 

distribution and hence improve the CS performance. The drawbacks of the confusion matrix are 

that it is only a visualization of the raw data for one specific decision threshold and it does not 

provide a measure of effectiveness which could be used to compare various CSs. 

The standard confusion matrix is not, necessarily, the best visualization tool available. Better 

means for visualizing the raw data to quickly identify the distribution of errors that a CS makes 

are available. Swingler [65] shows how it is possible to plot the confusion matrix using gray levels 

to indicate frequency as depicted in Figure 2.1. The darker the shading of a square in the grid, 

the more frequently the classifier produced an answer listed on the same column as the square 

when the correct answer was that denoted by the square's row. A near perfect classifier produces a 

confusion matrix with a very dark right hand diagonal and very pale entries elsewhere. These gray 

level confusion matrices enable the evaluator to quickly identify the distribution of errors that a 

classifier makes and thereby visualize its accuracy and simultaneously determine clues as to which 

aspect of the classifier's task needs improvement. For example, Figure 2.1 depicts three typical 

gray level confusion matrices. Gray level confusion matrices for competing classifiers could be 

compared side by side or a gray level matrix for the confusion matrix formed by computing the 
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difference between the competing classifiers' confusion matrices could be examined to determine 

visually where the two classifiers differ. 

2.2.2 Error Histograms. For classifiers with several outputs or in situations where the size 

of the errors is more important than their type, an error histogram provides another quick method 

for visualizing the distribution of errors [65]. An error histogram shows the count of the frequency 

with which a classification error falls within a set of bandwidths, i.e., within a certain range of 

error sizes. These bandwidths or error sizes are the ranges of possible differences between the 

actual target class and the predicted class for each exemplar. For a classification probability score 

from zero to one, these bands must be split into a set of small bins. This error binning technique 

contrasts the setting of class thresholds used to classify the exemplars and generate the confusion 

matrix. For a simple two class confusion matrix, if the predicted classification score for a particular 

exemplar exceeds some preset threshold (e.g., 0.5), then that exemplar is classified as class 2. For 

the error histogram, the difference between a given exemplar's predicted classification probability 

and each actual target output class probability (e.g., if actual class is 2, then target probabilities 

are: 0.0 for Class 1 and 1.0 for Class 2) is used. A healthy classifier will show a peak at zero, quickly 

falling off as the number of errors of greater magnitude diminishes. For a data set with normally 

distributed noise, the error histogram should have the appearance of a normal distribution. Figure 

2.2, shows an example of an error histogram for a notional classification problem. This histogram 

is constructed by splitting the real-valued classification errors (-1 to 1) into 21 bins and counting 

the number of errors in each bin. Since the majority of the errors are made in the small error bins, 

the notional error histogram signifies a healthy classifier. 

2.2.3 Error-Reject Curves. Another technique used in pattern recognition is to allow 

classifiers to make doubt reports. Rather than making a firm classification, for example, of target 

or clutter, the classifier is permitted to identify exemplars which are too hard to classify, i.e., the 

classification output falls in a gray or uncertain area. These difficult exemplars are then rejected by 
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Figure 2.2      Error Histogram example for a well trained classifier 

the classifier until further measurements can be made which permit a more definite classification 

or perhaps these difficult exemplars are passed on to a second classifier specifically designed to deal 

with the gray area of classification [60]. Using the doubt option, a loss function, L(k,l) can be 

defined as the loss incurred by making decision / if the true class is k (out of total of K classes). 

If every misclassification is equally serious, then the loss function is given by 

L(k,l)= < 

0 if I — k  (correct classification) 

d                    if I = V  (classification in doubt) 

1 if I ^ k  and  / £ {!,... ,K} (incorrect classification) 

(2.1) 

where k = 1,... , K and I £ {1,... , K} is a reasonable choice [60].   The total risk for the optimal 

decision rule is called the Bayes risk (R) and is defined by 

R = Pmc + d-pd (2.2) 

where pmc is the probability of misclassification or error, pd is the probability of doubt, and d is 

the rejection threshold or the cost of being in doubt. The plot of pmc versus pd for varying d, is 

called the error-reject curve and is illustrated in Figure 2.3.      The error-reject curve is a useful 
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Figure 2.3      Error-Reject tradeoff curve. 

performance tool for understanding the error-reject tradeoffs for a given classifier for the assumed 

cost d of rejecting data that is difficult to categorize [60]. Since the slope of the error-reject tradeoff 

curve is the value of the rejection threshold [60], the tradeoff is most effective for low levels of 

rejection and becomes less effective for high levels of rejection when the error rate is very low [22]. 

2.2-4    Confidence Intervals. A CS's performance is typically assessed using a set of 

probabilities. The most common performance measure used is classification accuracy (CÄ) or the 

probability of success (ps), i.e., the probability of identifying targets and non-targets alike. For 

an ATR application [10,21,61], the typical probabilities used are the probability of detection (PD), 

probability of correct classification (pec), probability of correct identification (PID), and probability 

of false alarm (PFA)- AFRL defines correct detection as correctly declaring that a target in a region 

of interest (ROI) is, in fact, a target. Conversely, a false alarm, or incorrect detection, occurs when 

the ATR declares clutter, such as trees, as a target. AFRL defines correct classification, as correctly 

classifying a detected target as a member of its actual target class regardless of the specific target 

type. For example, MSTAR is being designed to operate under realistic military scenarios, called 

extended operating conditions (EOC's), which include up to 20 specific target types in five different 
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Table 2.4      MSTAR EOC Class and Target Types 

Class 

Main 
Battle 
Tank 
(MBT) 

Armored 
Personnel 
Carrier 
(APC) 

Self- 
Propelled 
Gun 
(SPG) 

Truck 
(T) 

Mobile 
Missile 
Launcher 
(MML) 

Target 
Type 

T72 
Ml 

BMP2 
M2 
M113 
BTR60 
BTR70 

M109 
MHO 

M548 
M35 
HMMWV 

SCUD 

classes. Thirteen (the types used in the first phase of the MSTAR program) of these 20 target types 

are shown in Table 2.4 [21]. 

If an M2 armored personnel carrier (APC) image is inputted and MSTAR reports APC as the 

image class, a correct classification is obtained, even if MSTAR incorrectly identifies the image type 

as a Ml 13. Correct Identification, a subset of classification, is naming the specific alphanumeric 

target designator. For example, if a T72 main battle tank (MBT) image is inputted and MSTAR 

identifies the image as a T72, a correct identification [21] is obtained. The typical performance 

probabilities of interest (PS,PD, PCC, PID, PFA) can be estimated as functions of the elements of 

the confusion matrix and the ground truth data [10,21]. The estimation equations are listed below 

along with sample calculations for the data in Table 2.1, where for illustration target 1 is assumed 

to be a T72, target 2 a Ml, and target 3 a M2. 

CA=ps = 
number of target and clutter images correctly classified      159 

total number of target and clutter images 180 
= 88.3%       (2.3) 

number of target images declared as targets      77        nr _ 
PD = -r FT T^ = ™   = 85-6% 

number of target images 90 
(2.4) 

number of correctly classified target images    „     „ m_.      50        „ J nrr/ ,„   . 
Pec = r r , ,    ,   , . —. ; Pec (MBT) = —  = 64.9% (2.5) 

number of detected target images 77 
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_ number of correctly identified target images    „    frr70\      24 
number detected target images ' 77 

number of clutter images declared as targets       8 ^ , 
VFA = r T-T7T-- ~ = ™   = 8-9% 2-7 

number ol clutter images 90 

Often, performance measures such as the probabilities of success are reported as single numbers 

as calculated above. For example, an ATR designer might say that his system has a classification 

accuracy of 88.3 percent based on the probability of success estimated above. However, this is just 

a point estimate. Since the ATR is tested on a finite data set, the true classification accuracy is 

probably not 88.3 percent. Instead, the accuracy is more likely in some interval centered about the 

point estimate. For this example, a 95 percent confidence interval, assuming a binomial distribution 

for the number of successful classifications, is given by the interval [0.83 0.93]. In other words, if 

the ATR designer computed interval estimates from many different samples, then in the long run, 

he would expect about 95 percent of the intervals to include the true value for the accuracy of the 

ATR system. Hence, the confidence interval describes the experimental uncertainty in estimating 

the true ATR classification accuracy. ATRWG paper no. 88-006 [11] provides an excellent review 

of confidence intervals in ATR performance evaluation. The general procedure for construction of 

confidence intervals is to first postulate an underlying distribution. In ATR as in many CSs, the 

distributions which are probably of most interest are the Binomial, Poisson, and Gaussian. As an 

illustration, the concepts and calculation for a confidence interval for classification accuracy (CA), 

i.e., the probability of success parameter, ps, is summarized below using the Binomial distribution 

to model the number of successful classifications. 
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Suppose an ATR is designed and then tested on an independent sample.   For each image 

tested, there are two possible outcomes 

V= { 
0, if image incorrectly classified 

1, if image correctly classified 

(2.8) 

with associated probabilities: P(0) = 1 — p and P(l) = p, which means 77 is a Bernoulli random 

variable. For a series of these independent, identical trials, the Binomial random variable Y is the 

number of successful classifications in n trials, i.e., Y =binomial(n,p), where 

(A 
p{y) Py(i-p)n~y 

\y ) 

and the expectation and variance of Y are given by 

(2.9) 

E(Y) = np  and Var(Y) = np(l-p). (2.10) 

An unbiased estimate for p, the true classification success rate (probability of success), can be made 

using the definition in Equation 2.3 above as shown in Equation 2.11 below 

Y 
P = n 

(2.11) 

Now, p is an unbiased estimator for p so 

E(») = E 
Y 

= -E(y)=p. 
n 

(2.12) 
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Using the variance expression for p yields 

Var(p) = Var ('£) = ^Var(F) = P-^-A (2.13) 

and the usual method of substituting sample values for unknown parameters in the expression for 

the variance, one can approximate (1 — a) confidence intervals for p as 

*±z(i-«)r^ (2J4) 

where the normal approximation is used (assuming large test sample size; n > 30) for the binomial. 

For the example in Table 2.3, with a— .05, the following result referred to above is obtained 

p = 0.883 ± 0.047 or 0.83 <p< 0.93. (2.15) 

The strength in using a confidence interval is that it provides a quantifiable measure of the 

accuracy of the evaluation process. The confidence interval accounts for the sampling error of 

the testing experiment. When comparing the performance of various CSs tested under the same 

conditions, confidence intervals provide a simple measure of the variations in the performance 

results for the individual CSs. 

One limitation of confidence intervals is that they can only indicate what can be expected in 

the future when one performs exactly the same test under the exact same conditions. For example, 

in their work [61], Ross et al. distinguish between data sets and conditions for an ATR application. 

They define a condition as a subset of a multi-dimensional space where the dimensions of the space 

are the specific conditions that may affect the performance of an ATR system. These dimensions 

can be grouped into those related to the target, environment, and sensor, as illustrated for synthetic 

aperture radar (SAR) ATR in Table 2.5. 
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Table 2.5      Example of SAR ATR dimensions by group 
Group Target Environment Sensor 

Dimensions 
# targets 
# variants 
# configurations 

obscuration 
background 

radar frequency 
depression angle 

In general, it may not be possible to define this multi-dimensional space, but for a particular 

ATR test or application, it is often possible to explicitly list the dimensions and their range. Ross 

et al. [61] define the conditions for which the dimensions take on all possible values in their range 

as the universal set. There are four subsets of special interest within this universal set: 

1. operational conditions-ranges of conditions ATR expected to handle operationally; 

2. testing conditions-ranges of conditions used in testing ATR; 

3. training conditions-ranges of conditions used for training ATR; 

4. modeled conditions-ranges of conditions modeled on-line for model-driven ATR. 

Operational conditions are the conditions under which the ATR user expects the ATR to func- 

tion properly. Ross et al. [61] warn that the user may assume that the reported ATR performance 

is over these operational conditions. However, this may often not be correct. The testing conditions 

are typically a subset of the operational conditions, but depending upon the data available, might 

expand on the operational conditions in some dimensions. Training conditions are more than just 

the exact conditions of the various training data. Ross et al. [61] define the training conditions to 

include all of those conditions that produce images that are similar to training images. Images 

are considered similar if a simple non-feature-based comparison between each image and the tar- 

get image result in mean-square-errors small enough to allow accurate recognition of both images. 

The training conditions are typically a proper subset of the testing conditions. For a model-driven 

ATR, the modeled conditions include the conditions modeled on-line. For example, the on-line 

model may be capable of handling 10 target types and 5 to 15 GHz radar frequency, but cannot 

deal with obscuration.  The modeled conditions are then 10 target types and 5 to 15 GHz radar 
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Figure 2.4      Venn diagram showing the relationship between modeled, training, and testing con- 
ditions [61]. 

frequency.  Data sets are finite collection of individual data points in the space of conditions, as 

illustrated in Figure 2.4. 

Since ATR systems are operated and tested under these conditions, four performance measures 

can be defined using these conditions [61]: 

1. Accuracy-how well an ATR performs under its training conditions; 

2. Robustness-how well an ATR performs outside its training conditions; 

3. Extensibility-how well a model-based ATR performs outside training conditions, but within 

its modeled conditions; 

4. Utility-how well an ATR performs under operational conditions. 

The relationship between these four performance measures and the conditions used to define 

and test them are illustrated in Figure 2.5. 
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Figure 2.5     Venn diagram showing the relationship between accuracy, robustness, extensibility, 
and utility [61]. 

In order for performance results to be useful indicators of future performance, the future 

conditions must be the same as the testing conditions. For example, Ross et al. [61] warn that 

unless the training conditions are the same, or nearly the same, as the operational conditions of 

the fielded ATR system, then the accuracy of the system will not be a good indicator of system 

performance outside the training conditions. 

An assumption made in computing confidence intervals for ATR performance is that the test 

sample is a random sample, i.e., the a priori probabilities of occurrence -Ki for each class i of the 

test sample are unknown [11]. For this case of random sampling, test points are considered to be 

randomly generated by a "pattern source" according to the a priori probabilities of occurrence 

-Ki [39]. An ATR evaluator takes a test point or sample pattern from this "pattern source," 

identifies it, and then lets the ATR in question attempt identification. This experiment is repeated 

n times, resulting in Y samples or test points which have been successfully classified.   Estimates for 
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the mean and variance for classification accuracy for the case of random sampling are then given 

by Equation 2.11 and 2.13 above. 

For the alternative case of selective sampling, the assumption is made that the a priori prob- 

abilities of occurrence -Ki for each class i (of k total classes) of the test sample are known [39]. To 

take advantage of this knowlege, the ATR evaluator takes n; samples from each class i such that 

-=n (2.16) 
n 

where n is the total number of samples. The ATR in question is then again allowed to attempt 

recognition of these test samples, resulting in Yi samples from class i being correctly classified. 

Then for this case of selective sampling, the estimates for the mean p' and variance Var (p') for 

classification accuracy are given by 

k 

p' = ^i— (2.17) 
n 

1 A     Y. /       Y Var(p') = -5>-    I""    . (2.18) 
n c—'       Hi   \ Ui 

Highleyman [39] shows that the variance in the case of selective sampling is smaller than the variance 

in the case of random sampling. The result is that the confidence intervals for classification accuracy 

in the case of selective sampling are tighter than the random sampling confidence intervals usually 

computed. 

A drawback to using independent samples, whether it be random or selective sampling, to test 

a CS such as an ATR system is that the training data is not typically exploited to the fullest extent 

possible. Training data is used to train the ATR and then it is discarded. As long as the training 

data is representative of the operational conditions deemed important (i.e., training conditions the 
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same or nearly the same as the operational conditions), then the training data can itself be used to 

obtain estimates and confidence intervals for the classification error using techniques that correct 

for the inherent bias in using the training data for testing. James [45] provides an excellent review 

of two of these methods: the leaving-one-out and jackknife methods. 

One must also be aware that confidence intervals should not be used out of context to predict 

the range of future values for performance measures when the CS is operated over the full range 

of its dimensions. For example, if an ATR designer is interested in knowing the range of detection 

rates that can be expected from his system when it operates over a range of dimensions, such as 

various aspect angles, this information can only be obtained by performing a series of tests over the 

desired range of interest. Finally, as with confusion matrices, confidence intervals are based on one 

specific decision threshold. If the decision threshold is changed, a new result for the performance 

parameter may result. 

2.2.5 Hypothesis Testing. The procedure of hypothesis testing is directly related to the 

use of confidence intervals. An operational CS must satisfy certain performance specifications. 

For example, AFRL requires MSTAR to realize a probability of detection pjj > 0.9 with 95% 

confidence [21]. Hypothesis testing allows the program evaluator to infer the detection performance 

for a certain configuration of MSTAR on the entire population of target images after testing on a 

limited sample [48]. The null and alternative hypotheses are: 

H0    :     pD> 0.9  (ATR meets specification) (2.19) 

H\    :     PD < 09   (ATR fails to meet specification) 
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Using the binomial model in a similar fashion as in Section 2.2.4 for confidence intervals, Equations 

2.12 and 2.13 above are applied (for large n) to derive the test statistic for this hypothesis test 

Z0=    PD
    

PO
=^N(0,1) (2.20) 

'pp(i-pp) 

where po = 0.90 is the required AFRL specified value for detection performance. Consider the 

simple notional example from Table 2.3 again, which consists of a test sample of n = 90 target 

images where Y = 77 images are correctly identified as targets. The point estimate of po = II = 

0.856 would incorrectly suggest that the ATR does not satisfy AFRL's requirement [48]. Applying 

the test statistic in Equation 2.20 to the one-sided hypothesis test (Equation 2.19) above (with 

a = 0.05) yields 

Z0 = -1.189 > -Zx-a = -1.645 (2.21) 

which implies there is no statistical evidence for rejecting the null hypothesis that the ATR meets 

the required specification. 

The strength of hypothesis testing is that it provides a formal approach to the statistical 

evaluation of CSs [48]. However, hypothesis testing shares the same weaknesses and limitations of 

confidence intervals mentioned above. In addition, the distribution postulated for the interested 

performance parameter carries with it certain assumptions. For example, the confidence interval 

and hypothesis testing methods based on the Binomial distribution assumes a constant probability 

of success (or detection) and a constant variance for all observations. Since AFRL wants the 

data for MSTAR to represent the full range of aspect and depression angles for all of the targets, 

performance parameters, such as probability of correct identification pjo, may differ for different 

targets at different angles [21]. Catlin et al. [21] provide a derivation of a confidence interval which 

accounts for variation in the scenario p/£>'s. 
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Figure 2.6     Typical ROC curve. 

2.2.6 ROC Curves. Receiver operating characteristic (ROC) curves are commonly used 

for summarizing the performance of imperfect diagnostic systems, especially in automatic target 

recognition (ATR) and in biomedical research, when classification accuracy alone is not sufficient. 

A ROC curve is the graph of a relation which summarizes the possible performances of a signal 

detection system faced with the task of detecting a signal (target) in the presence of background 

noise (clutter). This relation is usually used to relate the detection or "hit" rate (probability of 

detection, i.e., probability of true positive) to the false alarm rate (probability of false alarm, i.e., 

probability of false positive) as an internal decision threshold is varied. For a typical ROC curve, 

shown in Figure 2.6, the decision threshold is varied from a very conservative value, i.e., a value 

that results in zero detection rate and zero false alarm rate, to a very aggressive value, i.e, a value 

that results in 100% detection rate and 100% false alarm rate. 

In order to describe the basic principles behind standard ROC curves, consider the simple 

two-class problem (C\ is the clutter or non-target class and C2 is the target class) with a single 

variable or feature z e 3? depicted in Figure 2.7. Let Z be a real-valued random variable and let p(z) 

be its probability density function (pdf). Then the conditional pdf for each class will be p{z\C{) 

and p{z\Ci). That is, the clutter pdf, p{z\C{), is the conditional pdf representing the distribution 

of clutter objects (class 1) while the target pdf, p(z\C2), is the conditional pdf representing the 

distribution of target objects (class 2).   Since the choice of scale for the 2-axis is arbitrary and 
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Figure 2.7     Target and clutter pdfs for a two class problem.   Target: N(0, 1.5); Clutter: iV(4,2). 

is easily transformed, let lower values of z equate to stronger indications of target, while higher 

values of z equate to stronger indications of clutter. A given decision threshold boundary, z = 6, 

then, partitions the feature axis into two regions, target (—GO, 6) and clutter (8, oo), resulting in 

two types of errors shown as horizontal (a) and vertical (ß) cross-hatched areas under the two 

distribution curves in Figure 2.7: 

1. Type I Error (a): Misclassifying an actual clutter object as a target (False Positive, FP, or 

False Alarm, FA) 

2. Type II Error (/?): Misclassifying an actual target object as clutter (False Negative, FN). 

For a single feature problem, the clutter and target distributions can be more complex than 

the simple distributions in Figure 2.7. For many features, the class distributions will be even of 

greater complexity. However, a transformation can always be made to a simple one dimensional 

space Z where Z is the real-valued random variable representing the strength of conviction for the 
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non-target or clutter. Therefore, the conditional probabilities, Ppp and PFN, corresponding to 

the two types of errors described above can be defined as 

a = PFP(9) = Pr({z<6 | Ci}) (2.22) 

ß = PFN(0) = Pi({z>9\C2}). (2.23) 

Associated with these two probability errors are their complementary probabilities of correct clas- 

sification, 

PTN(9) = Pi({z>e\d}) (2.24) 

pTP(e) = Pi({z<e\c2}). (2.25) 

The interrelationships among these probabilities and the various terminologies used in ATR, statis- 

tics, and medicine to describe them are shown in Figure 2.8. Because of the interrelationships 

among the probabilities, it is only necessary to indicate a single (specificity, sensitivity) pair to 

describe the performance of a pattern recognition algorithm for a particular decision threshold. 

These (specificity, sensitivity) probability pairs vary as the decision boundary shifts along the fea- 

ture axis. For example, if the decision boundary 9 is shifted to the right in Figure 2.7, ß decreases 

while a increases. A relationship exists between these two error probabilities. In ROC analysis, 

the decision threshold 9 is purposefully varied over all possible 9 values to show this relationship 

in the form of a ROC curve. Figure 2.9, illustrates the generation of a ROC curve for the case of 

one-dimensional normal distributions for both the clutter and target distributions. 
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Figure 2.8      Relationships and terms associated with ROC analysis (adapted from Hildebolt et 
al., 1991 [40]). 

ROC curves have their foundation in statistical decision theory [68] and were originally de- 

veloped as tools for electronic signal detection [58]. ROC analysis has been extensively applied 

to human perception and decision-making problems [32] and is also commonly used in biomedical 

research [51]. For an in-depth technical discussion of ROC curves, consult Egan [27] and Swets 

and Pickett [64]. Han and Clark [37] provide a good introduction of ROC analysis applied to 

the ATR problem for a simple, single decision threshold parameter problem as described above. 

Irving and Wissinger [43] describe how to generate ROC curves for MSTAR when multiple decision 

threshold parameters are required. Of special significance is their approach for choosing a single 

set of threshold parameter settings for processing region of interests (ROIs) so that the ROIs need 

only be pushed through the ATR system once and that the average run-time per chip is no more 

than 30 minutes. The results from this run of a single set of threshold settings are rich enough 

that ROC curves can be generated by post processing the data. Since many ATR designs require 

the X-axis of the ROC curves to be in units of false alarms per kilometer square, Jachimczyk's 

work [44] is a good illustration of how this conversion is made. 

The major strength of ROC curves in CS evaluation is that rather than reporting the sys- 

tem's performance in terms of a simple target detection batting average [51] for a specific decision 
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Figure 2.9      Generation of ROC curve (right) using two 1-D normal distributions (left).   Target: 
N(0,1.5); Clutter: iV(4,2). 

threshold, ROC curves enable performance reporting in terms of a pair of related indices (detection 

probability, false alarm probability) for varying decision thresholds. ROC curves provide a means 

for characterizing and qualitatively comparing CS designs. One CS design can visually be seen as 

better than an alternate design if its associated ROC curve is higher than its competitor's ROC 

curve as shown in Figure 2.10. 

2.3    Performance Comparison 

2.3.1 Comparison of Confusion Matrices. One technique [45] used in pattern recognition 

is to compare the form of the resulting confusion matrix from a classification problem to the con- 

fusion matrix forms for two simple classification rules where the prior probabilities are known. For 

example in the two class case where 7rj and 7^ are the a priori probabilities for the two classes, the 

confusion matrix takes on two distinctive forms based on whether a random or a priori assignment 

classification rule is used. If each exemplar is randomly assigned as it occurs to any of the two 

classes (random assignment), then the population confusion matrix is given by Table 2.6 and the 

total classification error is 0.5.    If the exemplars are assigned randomly as before, but with the 
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Figure 2.10      Qualitative comparison of ROC curves.   Competitor A is better than Competitor B. 

Table 2.6      Random assignment confusion matrix. 
Classified As (Reported) 

Actual 
(Truth) 

Class 1 Class 2 Prior Prob 
Class 1 ILL ILL 

2 71" 1 

Class 2 E2. 
2 

2Ji 
2 7T2 

Assign Prob 1 
2 

I 
2 

a priori probabilities 7Ti to class 1 and Tr2 to class 2 (a priori assignment), then the population 

confusion matrix is given by Table 2.7 and the total classification error is 1-K\-K<I- 

These two assignment rule cases indicate what sort of errors and pattern of errors can be 

achieved without really trying [45]. The random assignment case corresponds to using no informa- 

tion about the class populations while the a priori assignment case uses only the a priori probabil- 

ities. These cases with their corresponding population confusion matrices shown in Table 2.6 and 

Table 2.7 and associated errors can be used as a baseline against which the performance of any 

classifier is judged.   A Chi square (%2) statistic can be used as a measure of how far the observed 

Table 2.7     A priori assignment confusion matrix. 
Classified As (Reported) 

Actual 
(Truth) 

Class 1 Class 2 Prior Prob 
Class 1 ^ 7Ti • 7T2 TTl 

Class 2 ITl ■ 7T2 *f 7T2 

Assign Prob 71"! 7T2 
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confusion matrix differs from the expected confusion matrices for either the random or a priori 

assignment cases. The statistic x2 is computed in the usual way 

x2 = £fc^)! (226) 

where Oi and Ei are the respective observed and expected frequencies for the ith cell of the raw 

numerical confusion matrix with a total of k cells (k — G2, where G = number of classes) and the 

error rates of either of the two assumed random assignment cases are used to compute the Ei. If the 

Oi are based on an independent sample, then the statistic does indeed follow a distribution with 

(G — l)2 degrees of freedom as the sample size increases [45]. A comparison of x2 for two competing 

classifiers can determine which classifier has a pattern of errors further removed from the assumed 

random assignment case and therefore, which classifier is using more information than random 

chance. In order to directly compare two competing classifiers, a x2 statistic could be computed 

using the numbers from one of the confusion matrices as the expected frequencies and the numbers 

from the other classifier's confusion matrix as the observed frequencies. The disadvantage of this 

comparison technique in practice, is that the x2 statistic becomes a function of the choice of the 

nominal classifier for the expected frequencies as well as the particular decision threshold for which 

the confusion matrix is computed. 

Instead of comparing the entire confusion matrix of one classifier to another, a row by row 

comparison can be made between competing classifiers [57]. For each row of a confusion matrix 

each element of that row is conditioned the same. For a given row i for example, each element fy, 

representing the number of exemplars classified as class j given its actual class is i, is drawn from 

the conditional probability Pr (classified j | actual class i). To compare a row from a confusion 
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matrix between m competing classifiers for a k class problem, the x2 test statistic is given by 

m      k        r 2 

^-[EE^:-1! (2'27) 

where m — row z totals, n = Y^i=\ n»' and Cj = X^S=i Aj-   This x2 statistic should follow a x2 

distribution with (fc — l)(m — 1) degrees of freedom. 

5.5.S    Comparison of Classifiers Using Hypothesis Testing. 

2.3.2.1 Non-sequential Hypothesis Testing. In order to compare two CSs, one can 

either decide in advance the number of images (or trials) for testing each system or one can have the 

testing procedure decide on the fly if more trials are needed to differentiate between the performance 

of the systems. In Section 2.3.2.1 the former procedure, called non-sequential testing, is considered, 

while in Section 2.3.2.2, the latter, called sequential testing, is discussed. 

When comparing two CSs using non-sequential testing [21], one can either compare the con- 

fidence intervals for some performance measure p calculated via Equation 2.14 for both systems, or 

the confidence interval for the performance difference can be computed . Assuming equal sample 

sizes n (n = n\ — 712), this difference interval can be calculated [29] using classical inferential 

statistics for large n (n > 30) as: 

(P2-P1) ± Z1_g>(1-ft>+fc(1-ft> (2.28) 

with the associated test statistic, 

Z0 = P2    Pi  == (2.29) 
/Pl(l-Pl)+P2(l-fe) 
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for the following null and alternative hypotheses: 

H0:    pi > p2 
(2.30) 

Hi:    pi< p2 

The advantage of using the difference interval (or its associated hypothesis test) over the 

comparison method of two separate intervals, is that a superior system can be chosen with fewer 

samples. However, difference intervals still need large sample sizes when the difference is small [21]. 

Another problem with the classical approach above is that the assumption must be made that 

the probability p does not vary from trial to trial. As mentioned in Section 2.2.5 above, some 

probability measures may violate this assumption, which means that the classical approach is not 

truly valid in all applications. Wald's work [68] provides an exact, but cleverly simple method for 

probability comparison using a non-sequential testing procedure which allows for the variation of 

probabilities from trial to trial. 

To illustrate Wald's procedure [68], consider again an ATR system which is designed and then 

tested on an independent sample.   For each target tested, there are two possible outcomes: 

77= < 

0 if target image incorrectly classified as clutter 

1 if target image correctly classified as target 

(2.31) 

The results for each target test image using Equation 2.31 for two different ATR systems are 

arranged in pairs in the order observed. Define t\ as the number of pairs (1,0) where ATR number 

1 was successful at detecting a target image, while ATR number 2 was unsuccessful. Similarly, 

define t% as the number of pairs (0,1) where ATR number 2 was successful, but ATR number 1 was 

unsuccessful. Considering only the ordered pairs (1,0) and (0,1), the hypothesis tests in Equation 

2-25 



2.30 are equivalent to 

H0: v>\ 
(2.32) 

Hi: v<\ 

where p is the probability that any ordered pair (a, b) is equal to (0,1) and is given by: 

P      Pi(l-P2)+P2(l-Pl) (        j 

The test statistic for the equivalent hypothesis tests in Equation 2.32 is simply the number <2 of 

observed ordered pairs (0,1). The null hypothesis, that p\ is better than p2, is rejected only if, 

^2 > T, where the value of T, for a given level of significance a, is given by the binomial distribution 

with p — - ■ 2 • 

T 

Pr(h>T) = J2 
i=0 

M 
\l J 

p\l - py~l = 1 - a where i = ij + i2 (2.34) 

2.3.2.2 Sequential Hypothesis Testing. The main problem with non-sequential test- 

ing, which is the common practice in most CS evaluation, is that more test samples are used on 

average than are really necessary if sequential testing was used instead. Catlin et al. [21] provide 

an excellent in-depth description and application of Wald sequential testing [68]. This section will 

provide a brief overview of the Wald sequential testing method and highlight the application results 

of Catlin et al. 

Wald sequential testing is a logical extension of Wald's exact non-sequential method discussed 

in Section 2.3.2.1 above. Consider the same ATR detection example from the previous section. 

The Wald sequential test is then based on the efficiencies of the two competing ATRs, where Wald 
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defines efficiency k as 

k-JT^) ^ 

such that p is the true probability of success, which for this example is the true probability of 

detection. The relative superiority of ATR number 2 over ATR number 1 can be measured by the 

ratio (u) of the efficiencies of two systems: 

h    pi{i-p2) 

To implement the test, one must first set four parameters, which reflect the precision (UQ,UI) 

required and the risks (a, ß) tolerated. Wald explains the procedure for choosing UQ and u\ in 

terms of manufacturing processes: 

...select two values of u,uo,and uj say (UQ < uj), such that the rejection of process 
1 in favor of process 2 is considered an error of practical importance whenever the true 
value of u < UQ, and the maintenance of process 1 is considered an error of practical 
importance whenever u>u\. If u lies between UQ and u\, the manufacturer does not 
particularly care which decision is made. [68] 

Since u—space (the set of u values for UQ and u\) does not clearly indicate precision, Catlin 

et al. recommend investigating u values for various p\ and p% values [21]. Table 2.8 is an example 

of u values for various p\ and p2 values. Since the most interesting differences in p\ and p2 values 

occurs when both are near the desired performance value po, a table of u values for various p\ 

and p2 values in the neighborhood of po provides a good starting point for the required level of 

precision [21]. Table 2.9 is an example of u values in the neighborhood of po = 0.70. 

As an illustration of the selection of UQ and U\ using Table 2.9 above, consider the following 

example. Suppose ATR number 1 is currently being used with probability of detection p\. If 

ATR number 1 is preferred when p\—p2> 0.03, then possible UQ values are 0.86 or 0.87.  If ATR 
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Table 2.8 Values of u for the full range of possible p\ and p2 values [21]. 
P1/P2 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
0.10 0.00 1.00 2.25 3.86 6.00 9.00 13.5 21.0 36.0 81.0 
0.20 0.00 0.44 1.00 1.17 2.67 4.00 6.00 9.33 16.0 36.0 
0.30 0.00 0.26 0.58 1.00 1.56 2.33 3.50 5.44 9.33 21.0 
0.40 0.00 0.17 0.38 0.64 1.00 1.50 2.25 3.50 6.00 13.5 
0.50 0.00 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 
0.60 0.00 0.07 0.17 0.29 0.44 0.67 1.00 1.56 2.67 6.00 
0.70 0.00 0.05 0.11 0.18 0.29 0.43 0.64 1.00 1.71 3.86 
0.80 0.00 0.03 0.06 0.11 0.17 0.25 0.38 0.58 1.00 2.25 
0.90 0.00 0.01 0.03 0.05 0.07 0.11 0.17 0.26 0.44 1.00 
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 2.9      Values of u for selected pi and p2 values from 0.66 to 0.75 21]. 
Pl/P2 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 
0.66 
0.67 
0.68 
0.69 
0.70 
0.71 
0.72 
0.73 
0.74 
0.75 

1.00 
0.96 
0.91 
0.87 
0.83 
0.79 
0.75 
0.72 
0.68 
0.65 

1.05 
1.00 
0.96 
0.91 
0.87 
0.83 
0.79 
0.75 
0.71 
0.68 

1.09 
1.05 
1.00 
0.95 
0.91 
0.87 
0.83 
0.79 
0.75 
0.71 

1.15 
1.10 
1.05 
1.00 
0.95 
0.91 
0.87 
0.82 
0.78 
0.74 

1.20 
1.15 
1.10 
1.05 
1.00 
0.95 
0.91 
0.86 
0.82 
0.78 

1.26 
1.21 
1.15 
1.10 
1.05 
1.00 
0.95 
0.91 
0.86 
0.82 

1.32 
1.27 
1.21 
1.16 
1.10 
1.05 
1.00 
0.95 
0.90 
0.86 

1.39 
1.33 
1.27 
1.21 
1.16 
1.10 
1.05 
1.00 
0.95 
0.90 

1.47 
1.40 
1.34 
1.28 
1.22 
1.16 
1.11 
1.05 
1.00 
0.95 

1.55 
1.48 
1.41 
1.35 
1.29 
1.23 
1.17 
1.11 
1.05 
1.00 

number 2 with probability of detection p2 is the preferred classifier when P2 — Pi > 0.03, then 

possible u\ values range from 1.15 to 1.17. This is an example of an unfair comparison, which is 

common in manufacturing. When competing ATRs are compared fairly, as is the current practice 

in the MSTAR case, the selection of uo and u\ is simplified. For fair comparisons, UQ and u\ are 

reciprocals, i.e., UQ = ^-. 

For statistical tests, a and ß are the desired significance level and 1 minus the power of 

the test respectively. The significance level a is the probability of a Type I error and ß is the 

probability of a Type II error (see page 2-18 above). Wald also defines a and ß as risk tolerances 

for his sequential test method: 
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The probability of rejecting process 1 should not exceed a pre-assigned value a 
whenever u < UQ, and the probability of maintaining process 1 should not exceed a 
pre-assigned value ß whenever u > u\_ [21] 

Wald is using the parameters a and ß in dual roles in his sequential testing method. These 

parameters represent both risk tolerances for choosing the wrong process, as well as test significance 

and power [21]. 

As in Wald's non-sequential test, the null and alternate hypotheses are given by Equation 

2.30 and the test statistic is again t2, the number of observed ordered pairs (0,1), representing the 

number of trials where there was a successful target detection by ATR number 2 and failure of 

ATR number 1. But, this time for the sequential test, instead of comparing t2 to just one critical 

value, £2 is compared to two critical values:   the acceptance and rejection numbers. 

■ _£_ Jog- —c.— loff —~— 
acceptance number    at = logltlifo"gU0 + fti - <2)iOSUll^u„      (lower bound) 

i_g lo  i+«j_ (2.37) 

rejection number       rt = log°f_foeil0 + (£1 - t2)^^^     (upper bound) 

If t2 falls below the acceptance number for any value of t = £j + t2, the null hypothesis that 

ATR number 1 is better than ATR number 2 is accepted. If t2 exceeds the value for the rejection 

number, the null hypothesis is rejected and the conclusion is that ATR number 2 is better than 

ATR number 1. If t2 remains between these bounds, testing is continued. 

In their work, Catlin et al. [21] applied the Wald sequential test methodology to actual data to 

compare the probability of identification (PID) performance measure for different configurations of 

the MSTAR System. They also embedded the Wald sequential test methodology inside a multiple 

sequential rejective Bonferroni procedure for the multiple pairwise comparison of more than two 

ATR systems. The Wald test required only an average of about one sixth as many samples as 

confidence intervals to choose the superior of two system configurations, and about one fifth as 

many samples as the non-parametric method of ranking and selection. In a four system comparison 

with simulated data, the embedded Wald test typically needed only one third as many samples as 
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multiple pairwise confidence intervals to detect specified differences between system p/£>'s, and 

about one half as many samples as required by ranking and selection. 

The results of Catlin et al. emphasize the sample size savings advantage of the Wald sequen- 

tial test methodology. Since image data collection can be very expensive, CS designers prefer to 

compare CS systems with the smallest number of sample images to choose one system as statis- 

tically significantly better than another. The Wald sequential test methodology appears to be a 

good method for these cost conscious designers. 

The only limitations of the Wald methodology as presented by Catlin, are the use of a fair 

comparison procedure and the equal treatment or weighting of targets in her MSTAR application. If 

an unfair comparison is required, such that performance is weighted by cost or another quantitative 

measure, the methodology can be compensated by adjusting the likelihood function and applying 

Wald's sample size formulas for the general case. If the best mission specific ATR system is 

desired, target sampling can be modified to favor the more likely targets in the mission scenario. 

Competing systems can then be compared on their performance for targets which are representative 

of the specific mission. 

2.3.3 Comparison of ROC Curves. ROC analysis is widely accepted and used in medical 

applications to evaluate the accuracy of diagnostic and prognostic technologies. However, instead 

of just reporting qualitative comparisons between ROC curves of competing systems, as discussed 

in Section 2.2.6, quantitative comparisons can be made to statistically differentiate performance. 

The most commonly used index for comparing ROC curves is the area A beneath the curve. 

This area is equivalent to the probability of success for a diagnostic system identifying both abnor- 

mal and normal images in a series of image pairs in which there is always an abnormal and normal 

image [40]. Examination of Figure 2.11, illustrates how the value for A effectively varies between 

0.5 and 1 and also shows that the farther the ROC curve moves toward the upper left corner, the 

greater the area under it, and thus the more successful diagnostic system.    There is no general 
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Figure 2.11      Effective range of areas (A) under ROC curves. 

agreement in the literature with regard to how large an area should be because this is dependent 

upon the difficulty of the given diagnostic task. However, since A = 0.50 could be achieved by 

random chance, diagnostic systems seldom have an area below this value [40]. 

Areas under ROC curves can be obtained in several different ways [50]. If conventional 

probability axes are used, the ROC points on a curve can be connected with straight lines and 

the trapezoidal rule can be used to approximate the area. This non-parametric area is designated 

sometimes in the medical literature as P(A) and is not typically used since the trapezoidal method 

greatly underestimates the area when a discrete rating system is used with only a handful of points 

comprising the ROC curve [49]. This underestimation is due to the way all of the points on the 

ROC curve are connected with straight lines rather than smooth concave curves. Bradley [20], 

however, notes that the underestimation of the area (he refers to as AUC) should not be too 

severe if there are a reasonable number of points comprising the ROC curve. Bradley does not 

define a reasonable number, but he successfully uses the trapezoidal rule to approximate the area 

under varioius ROC curves which have between seven and 15 points [20].   The advantage of using 
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Table 2.10      Typical discrete rating I system used in medical studies. 

Classification 
Definitely 
Normal 

Probably 
Normal Questionable Probably 

Abnormal 
Definitely 
Abnormal 

Discrete 
Rating 1 2 3 4 5 

Table 2.11      Discrete rating of 109 CT images (data from McNeil and Hanley, 1982 [49]). 
Discrete Rating Classification 

Truth 
1 2 3 4 5 

Normal 33 6 6 11 2 
Abnormal 3 2 2 11 33 

the trapezoidal approach is that it does not rely on any assumptions regarding the underlying 

distributions of the target and non-target classes. Also, as will be discussed below, the trapezoidal 

estimate is exactly the same quantity measured using the Wilcoxon test of ranks. 

Since discrete rating systems, as illustrated in Table 2.10 are typically used in medical studies 

[49], a demonstration will be made here to show how a ROC curve is generated using such a 

discrete rating system and to describe how a parametric method is commonly used to compute 

the area under the generated ROC curve. Consider for example, a single reader (i.e., a human 

expert) assigned with the task of classifying computed tomographic (CT) images obtained from 

109 patients with neurological problems [49]. Using the discrete rating system shown in Table 2.10, 

the reader rates each image, with known disease status, with a discrete rating of 1,2,3,4, or 5 as 

shown in Table 2.11. In order to generate the ROC curve, the points (pairs of detection and false 

alarm probabilities) must first be computed. These points are obtained by using different discrete 

ratings as the decision threshold between normal and abnormal images. For example, images are 

first classified as abnormal (^4) only if they are given a discrete rating of 5 (definitely abnormal) 

by the reader while the remaining images are classified as normal (TV). Using the knowlege of the 

true class of the images, a standard 2x2 confusion matrix can be constructed and the probability 

of detection and false alarm for this decision threshold represented by the discrete rating of 5 can 

be computed.   Then the decision threshold is changed by now classifying images as abnormal only 
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Table 2.12      2x2 Confusion matrices for varying decision thresholds applied to 109 CT images 
(data from McNeil and Hanley, 1982 [49]). 

Classification for Decision Threshold of: 

Truth 

5 4 3 2 1 
N A M A M A M A N ^ 

N 56 2 N 45 13 M 38 19 M 33 25 M 0 58 
A 18 33 A 7 44 A 5 46 A 3 48 A 0 51 
PD = 0.65 

PFA = 0.03 
PD = 0.86 
PFA = 0.22 

PD = 0.90 
PFA = 0.33 

PD = 0.94 
PFA = 0.43 

PD = 1.00 
P/M = 1-00 

=  0.8 

0.4 ■ 

0 0.2 0.4 0.6 0.8 1 

Probability of False Alarm 

Figure 2.12      ROC curve generated from 109 CT images using the discrete rating sytsem (data 
from McNeil and Hanley, 1982 [49]). 

those images given a discrete rating of 4 or 5 by the reader. The decision theshold is varied again 

and again until all images are classified as abnormal, i.e., images with discrete ratings ranging from 

1 to 5 are classified as abnormal. For each decision threshold settting, the resulting 2x2 confusion 

matrix is constructed and the associated probabilities are computed as shown in Table 2.12. 

The ROC curve is then generated by plotting these five probability pairs along with the 

zero point (PFA = 0, PD — 0) on conventional probability axes as shown in Figure 2.12. 

If ROC curves are assumed to be based on underlying Gaussian distributions, then the ROC 

can be plotted using binormal (normal-deviate) coordinate axes as shown in Figure 2.13. The 

area A under the ROC curve can then be computed as 

A = Az = $ yr+F (2.38) 
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Figure 2.13      ROC curve plotted using normal-deviate coordinates. 

where $ is the cumulative standard normal distribution function, a and b are the ROC curve's two 

parameters (the y—intercept a and the slope b as depicted in Figure 2.13 above) in this binormal 

space, and Az denotes that the area has been computed using the binormal assumption. Several 

computer programs have been developed for ROC analysis that compute fitted curves and calculate 

areas and their standard errors based on these two parameters. These programs are variations on 

an original program by Dorfman and Alf [25] which calculates maximum-likelihood estimates and 

variances of a and b. 

The area A and its standard error can also be computed using the Wilcoxon statistic, W. The 

results are approximations for a discrete rating system and more exact for a continuous system. W 

is usually computed to test whether the levels of some quantitative variable x, such as the rating, in 

one population (A, for abnormal) tend to be greater than in a second population (Af, for normal), 

without making any assumptions about the distributions of x in the two populations [49]. The null 

hypothesis is that x is not a useful discriminator, i.e., Pr(.T^ > XM) < 0.5. With a sample of size 
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n.4 from A and n^/ from A/", the Wilcoxon statistic W is defined by 

1 TIA    njy 

nA -n^ 
(2.39) 

l     l 

where  S(x^,x//)    = 

1     if XA > xtf 

\    if x.4 = a;^/-     (discrete case only) 

0     if Xj\ < xj^f 

such that all n^ ■ n^f possible comparisons between the n^ sample x^'s and the n// sample zyv's 

are made. For a discrete rating system, the quantity W can be thought of as an estimate of the 

true area under the curve, i.e., the area one would obtain with an infinite sample and a continuous 

rating scale. McNeil and Hanley [49] show that this area estimate is exactly the same estimate 

obtained when using the trapezoidal approximation method discussed above. 

The differences between two areas can be tested for statistical significance by comparing the 

critical ratio z defined as 

z — 
Areaj — Area2 

^^(Area! - Area2) 
(2.40) 

with the table of the normal distribution [50,64]. In general, the standard error of the area difference 

(SE) can be very complex. Swets and Pickett [64] provide a general expression for SE to take into 

account the three types of variances that may be present in a paired data comparison: 

1. variance induced by using the selected data set. 

2. variance induced by having one system classify the same data set more than once. 

3. variance induced by having multiple systems classify the same data set. 

Instead of comparing ROC curves using a single performance index, like Az, a simultaneous 

comparison can be made of the two parameters (a and b) which characterize ROC curves in binormal 
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coordinates [50]. This is a more rigorous statistical comparison approach than the use of area under 

the ROC curve because while the identity between both curves' parameters can only exist if there 

is complete coincidence of the curves, two curves may have the same area but not be coincidental 

curves. Metz et al. [52] provide a test statistic for the differences in the parameters that follows a 

Chi-square distribution. 

Rather than using single or joint accuracy indices that are based on an entire ROC curve 

and that provide general assessments of system performance, an investigator may desire to use an 

accuracy index based on one ROC point when the full ROC curve is determined. The most direct 

and easily interpretable single-parameter index based on one operating point of a fully determined 

ROC is the value of Pr(TP) corresponding to some carefully selected reference Pi(FP) [64]. This 

TP point index is useful when comparing ROC curves that cross or when investigating for differences 

in ROC curves in a specific range of interest which may not be detected in any global test. McNeil 

and Hanley [50] and Metz et al. [52] show how to determine if statistical differences in the TP point 

indices exist between two different ROC curves based on the same data set. 

As an alternative measure, the area above the ROC curve can be measured by integrating 

from some lower limit for Pr (TP) to 1.0, with better performance minimizing this area. This area 

is denoted as A+, where the + denotes the area above the ROC curve and tp is the lower limit for 

Pr(TF) [30]. 

2.3.4 Multinomial Selection Procedures. The problem of determining which of k systems 

is most likely to be the best performer based on some objective performance measure is known as 

the multinomial selection problem (MSP). Mathematically the MSP is described as follows [53]. 

Let Xji represent the ith replication from system j of some performance measure. Each system 

(71-j, j = 1,2,... ,k) has an unknown constant probability (pj, j = 1,2,... , A;) of having the largest 

value of the performance measure. The best system is defined as the one most likely to have the 

largest performance measure in any comparison across all systems. Such a comparison corresponds 
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to a multinomial trial, where one and only one system can win in any given trial. The objective of 

the MSP is to find the system, given a limited amount of data, that is most likely to be the best 

performer in a single trial among the systems, rather than identifying the best average performer 

over the long run. 

Procedure BEM (Bechhofer, Elmaghraby, and Morse [16]) is a classical solution procedure 

for the MSP. BEM prescribes a minimum number v* of independent vector replications across 

all systems such that the probability of correctly selecting the true best system (PCS) meets or 

exceeds a prespecified probability. On the assumption that larger is better, BEM selects the system 

having the largest value of the performance measure in more replications than any other, as the 

best system. The probability of success, pj, i.e., the probability of being the best, for each system 

can be estimated as 

Pi = V (2-41) 

where Yj is the number of successes of system TTJ for v replications. PCS can be calculated using 

BEM for a fixed k and v as 

where the summation is over all vectors y = (y^j, y^}, ■ ■ ■ , y\k]) such that [53] : 

L Ej=i Vi = v; 

2- y\k] > V[j\ where y^] denotes the ranked number of successes for each system; 

3. t(y) is a function of J/^J , y^}, ■ ■ ■ , y\k\ representing the number of populations tied for the most 

wins; 

4. p[jj denotes the ranked success probabilities for each system and [p] denotes the set of py]. 
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Miller, et al. [53] propose an alternative approach, they call Procedure AVC (All Vector 

Comparisons) designed to obtain a higher PCS by performing all possible comparisons across all 

systems for a given set of system performance data. The advantage of AVC is that a smaller number 

of replications are needed to achieve a desired PCS. However, a necessary condition for applying 

AVC is that the performance measures must be independent of the replication number, which is 

not the case for detection problems. 
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III.   A Family of Metrics for Comparing Receiver Operating Characteristic Curves 

3.1 Overview 

In the pattern recognition community, a commonly held assumption is that for the case of 

unlimited data, a limiting ROC curve and a classification strategy exists. In reality only finite 

data are available so only an approximate ROC curve can be constructed. As more (finite) data 

are added the approximate ROC curve is updated. Performing this process repeatedly yields a 

sequence of approximate ROC curves. In this chapter a family of metrics for comparing two ROC 

curves is presented. This family of metrics enables a proof of convergence for these ROC curves. 

This ROC convergence theorem is important because it provides the basis for a framework for the 

comparison of ROC curves and hence, the comparison of classifiers. 

The research in this chapter summarizes Alsing et al. [5,7]. The chapter is organized as 

follows. It begins with a definition of a ROC curve given finite data. This is followed by a 

description of the proposed family of metrics for comparing two ROC curves and the presentation 

of the theorem for ROC convergence. The proposed metrics are applied to two diagnostic problems 

to illustrate the usefulness of these metrics, especially when the ROC curves of competing classifiers 

overlap. 

3.2 ROC Curve Given Finite Data 

3.2.1 Mathematical Description of a ROC Curve. As described in Section 2.2.6, a ROC 

curve is generated by varying the decision threshold 9 over all possible values. As 9 is varied from 

a low decision threshold value to a high decision threshold value, PFP{9) and PTP{9) both take on 

values between 0 and 1.  Mathematically then, PFP(9) and PTP{9) have the following properties: 

1. Ppp{9) and PTP{9) are non-decreasing functions of 9. 

2- PFP(9) 
and PTP{9) 

are upper semi-continuous functions of 9. 
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3- PFP(9) and PTP(9) are implicit functions of the random variable Z (Equations 2.22 and 

2.25). 

Define the set of possible 0 values for the random variable Z as the set 0. For the example 

shown in Figure 2.9 (page 2-21), 0 = (-co, oo). In general 0 can be some subset of 3J. A proper 

ROC curve starts at (PFp = 0, PTP = 0) and ends at (PFP = 1, PTP — 1) [27]. In order to ensure 

that a proper ROC curve is generated the following definition is made. 

Definition III.l.  The set 0 = (a, 6) C 3? is said to be an admissible threshold set for the 

random variable Z if 

lim PFp{9)    =    0   and     lim PTp(9) = 0 
e-*a+ 6-*a+ 

lim PFP(6)    =    1   and     lim PTp(9) = 1 

Let 0 denote an admissible threshold set throughout this dissertation. A ROC Trajectory T 

can then be defined over the admissable threshold set 0 as the ordered triple or 3-tuple 

F={(9,PFP(9),PTp(9)):9ee} (3.1) 

Let P(0) = (PFP(9), PTP(9)), then the ROC Trajectory T can be defined in the more compact 

notation as 

•F={(0,P(0)):0ee} (3.2) 

A ROC curve / is then simply the projection of T onto the (PFP, PTP) plane 

/ = {P(0) : e e 0} - {(PFP(9),PTP(9)) :9eQ) (3.3) 
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Remark 1. f is a relation. In some cases, f is a function, i.e., if(p,q) € f then, given p there 

exists a unique value q. Thus, we write q = f(p) to denote this unique value. For example, let 

Fi and F2 denote the cumulative distribution functions of the scalar feature z for Class 1 and 

Class 2 data, respectively. Let Z\ and Z2 denote random variables with these distributions. When 

Zi is discrete, the ROC function is a set of discrete points. When Fi and F2 are continuous, a 

closed-form expression for the ROC function, f, can be written [47] as 

f{p) = l-F2(F{\l-p)) (3.4) 

for all p £ [0,1], assuming the converse relation F± is a function. Lloyd [47] points out that 

for both the discrete and continuous cases, f is nothing more than the distribution function of 

1 — F\(Z2). Statistically, this is the non-null distribution function of the p-value [55], 1 — F\(Z2), 

for testing the null hypothesis that a given feature z comes from Class 1 [47]. 

The set of all possible ROC curves for an admissible set 0 will be denoted by R = R(0). 

That is 

R = {f :3 Z and 0 which is admissable for Z} . (3.5) 

3.2.2   Empirical ROC Curves from Unknown Data Distributions.       In practice the distri- 

bution functions are not known.   Three approaches for constructing ROC curves are available: 

1. Assume the form of the distributions (binormal most common in medical diagnostic research 

employing the rating method) to fit ROC curves [49,64]. 

2. Estimate the unknown distributions from the sample data [38] and use Lloyd's [47] ROC 

function / (Equation 3.4). 
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3. Approximate ROC curves by using Equation 3.3 above with the estimated probability of false 

positive, PFP, and the estimated probability of true positive, Ppp [43,44]. 

Consider approach 3 which is commonly used in ATR [43,44]. The estimated probabilities 

used in approach 3 are random variables because they both depend upon the actual finite data 

used [2,3]. As an illustration, consider again a two-class problem, but with multiple variables 

or a feature vector x. Let z £ Q here be the real-valued output (in particular, 0 = [0,1] ) of a 

pattern recognition algorithm, representing the probability for class 1 (non-target) membership, 

i.e., z = Pr (c = C\ | x). For classifiers based on linear or quadratic discriminant functions, z can 

be taken as the a posterior probability when weighted against the alternatives [45], using Bayes 

Rule for classification with equal costs for misclassification and equal prior probabilities assumed: 

A feature vector x is assigned to class c = Cfc if P(Ck\ x) >P(Cj\ x) for all j ^ k [18]. 

In the case of a multi-layer perceptron artificial neural network conditions exist [18,59,62] where z 

estimates, in the limit, the a posterior probability as well. 

Let Xj, i = l,... , 2n, where 2n is the total number of feature vectors, be the finite test data 

X>(n) = {XJ 6S" : i = 1,... , 2n} used, where v is the number of variables or features and assume 

for now that the number of data points for each class in any test data set are equal to n. Let w 

be the specific instantiation of this finite vector data that can be drawn from the set of all possible 

data where the event space or set Cl is the set of all possible instantiations of this finite vector data. 

For every feature vector x, a particular classifier will generate a scalar output z, resulting in the 

output space Z^ = {ZJ 6 [0,1]   : i = 1,... , 2n}.   Given an integer n, a decision threshold 6 6 9, 

~ (n) and a given instantiation v € ft of the data, the estimated probability of false positive, Ppp,  and 
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the estimated probability of true positive, PJ,p,   are 

>(«) 
P?A<O,0) = 

card{zi < 8 | Ci, i = 1,... ,n} £ X(0|0) (zi\d) 
(3.6) 

A(»),    m      card{Z<<g|C2, z = l,...,n}      £X^" (^|Cz) 

(3.7) 

where card {£} is the cardinality of event £ or the number of times event £ occurs and x   (zi\Ck) 

XSxC   l(zii ci)\ is the characteristic function defined by 

For example, 

Xsxc. {&'*)] = VSxOA. 

1,    if  Zi G S and a G Cfc 

otherwise 
>   . 

Xl(K0] (zi\Ci)    =    X[0,0]XO] KzuCi)] 

1,    if z* G [0,0] and q G Ci 

0, otherwise 

(3.; 

(3.9) 

The estimated or empirical ROC curve, /(™)(w),   is defined by varying the decision threshold, 6, 

over its entire range, O,  specifically 

=    {pW(w,ff):«ee}. 

(3.10) 

(3.11) 

In order to make meaningful comparisons between empirical ROC curves, as n becomes large, 

in the sense that more feature vectors x are added to the data, /(") (u) must converges in probability 
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to a limiting ROC curve / £ R(6), denned as 

/ - {(PFP(0),PTP(0))  :0£9} = {P(0)  : 6 £ 6} . (3.12) 

If a limiting ROC curve does not exist, then the comparisons of empirical ROC curves are not 

valid. A family of metrics is proposed in the following section that enable a proof of convergence 

for these curves. 

3.3    Comparison of ROC Curves 

3.3.1    Definition of metric and metric spaces.      The distances between two ROC curves is 

determined with a metric.   Bartle and Sherbert provide the following definition [13]. 

Definition III.2 (metric). A metric on a non-empty set S is a function d : S x S -» 9? that 

satisfies the following properties: 

1. d(x,y) > 0 for all x,y £ S (positivity); 

2. d(x, y) — 0 if and only if x = y (definiteness); 

3. d(x,y) = d(y,x) for all x,y £ 5 (symmetry); 

4. d(x, y) < d(x, z) + d(z, y) for all x,y,z £ S (triangle inequality). 

If property 1,3 and 4 hold, but property 2 does not hold true, then the function d is said to 

be a pseudo-metric on S. 

Definition III.3 (metric space). A metric space (S,d) is a non-empty set S with a metric d 

defined on S. 

Definition III.4 (pseudo-metric space). A pseudo-metric space (S,d) is a non-empty set S 

with a pseudo-metric d defined on S. 
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Some examples of metric spaces are S = 5ft2 = {x — (xi,x2)\xi e 5ft} and the metric p 

i 

pq(x,y) = {\x1- yi\" + \x2 - y2\g)7' ■ (3.13) 

for each 1 < q < oo. The metric px is known as the Manhattan metric while p2 is known as the 

Euclidean metric. For q = oo, define the metric p^ to be 

Poc(x,y) =max{ |.T! — 2/iJ, \x2-y2\}, (3.14) 

which is known as the infinity metric. 

Definition III.5 (equivalent metrics). Assuming (S,da) and (S,dß) are metric spaces, the 

metrics da and dß are said to be equivalent metrics on S if there exist constants k,K > 0 such 

that 

kd0(x, y) < da(x, y) < Kdß(x, y) for all x,y e S. (3.15) 

Theorem III.l (equivalent metrics on reals). All metrics on 5ft2 are equivalent. 

The proof of this theorem is straight forward using Definition III.5, see Naylor and Sell [56]. 

3.3.2 Area Under the ROC Curve (AUC). Typically in the literature, ROC curves are 

compared using the area under the ROC curve (AUC) as a performance measure [20,27,38,49,64]. 

The classifier with the largest AUC is then considered overall better than its competitors. In this 

section AUC is shown to be an unsuitable quantifier because the difference in AUCs is not a metric. 

Let / and g be two ROC curves. Define the delta area, S, as the difference of the areas under 

the ROC curves, that is 
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Definition III.6 (Delta area). Let f,g e R, then the difference in the area is defined as 

8(f,g) = / f(p)dp - / g(p)dp (3.16) 

Theorem III.2. 6 is a pseudo-metric on R(0) and (R(Q),6) is a pseudo-metric space. 

The proof of this theorem is easily accomplished by showing that 6 satisfies all the properties 

of a metric except for the defmiteness property. Since 6 is a pseudo-metric and not a metric, S 

cannot be used to prove ROC convergence. Even if <5(/(™),/) -> 0 as n -+ oo, /(n)(p) may not 

converge to f(p) for every p £ [0,1],   Consider the two ROC curves / and g, 

f{v) = \{1p-lY+l- (3.17) 

g(p)=p (3.18) 

shown in Figure 3.1. Both / and g have exactly the same AUC and hence S = 0, but they are 

clearly not the same curve. The implication is that the AUC or the difference in areas may not 

always be suitable for comparing ROC curves. Rather than using ROC areas, a family of suitable 

metrics are proposed below for enabling a proof of ROC convergence. 

3.3.3   Definition of proposed ROC metrics.       Let 1 < r < oo   and let p be any metric on 

K2.   Given two ROC curves /, g e R(0), 

/ = { (Hp(ö).-Pfö(ö)) : 0 e O} = {P(»(0) : 6 6 ©} (3.19) 

9 - {{P
{
FP^),PTP(0)) ■0ee} = |p(»>(0) : 9 E 6} , (3.20) 
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Figure 3.1      Both / and g have exactly the same area, but they are clearly not the same function, 

define the mapping dp>r as the family 

dpAf,g)= (jp(pifHe),Pi9)(o)y de (3.21) 

Theorem III.3. For every r e [l,oo],   (R(6),rfp,r)   is a metric space. 

Proof of Theorem III.3 

Let 1 < r < oo and let p be any metric on 5ft2. Given two ROC curves f,g e R(6), it is 

sufficient to prove that dPtT.(f,g) satisfies the four required properties of a metric (Definition III.2, 

page 3-6). 

1. ForeachÖee,/9(P(/)(ö),p(s)(ö)) > 0 since p is a metric.  This implies ( fp (P(f\9),P^(8))r doY > 

0.   Therefore, dPir(f,g) > 0 and dPiT satisfies the positivity property. 

2. Definiteness proof. 
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(a) (only if part) Let dP]T (f,g)= 0. Then I Jp (P^)(0),P(s)(0))r dB ) = 0 which implies 

p (pW(fl),pW(fl)) = 0 for each 0 € 6. Since p is a metric, then pM(0) = P^(0). But 

p(/)(0) = p(s)(0) for each 0 G 0 which implies f = g. 

(b) (i/part) Assume/=5. Then P^ (0) = p(s)(0) for all 0 e 0. Andp (pW(e),p(«)(9)) = 0 

for all 0 e 6 since p is a metric.   This implies ( Jp (P^(6),P^)(e))r do) " = 0 which 

implies dp>r(f,g) = 0.   Therefore, dPi,. satisfies the definiteness property. 

3- dp,r(f,9) = ^p(PW(B),PM(9))rdey = ^p{P^(e),pW(8))rd8y =dp,r(gj) since 

p is a metric.   Therefore, c?Pjr satisfies the symmetry property. 

4. Let f,g,he R(0). For each 0 e 6, /> (pW(0), p(»)(0)) < p (P«(9),pW(Ö)) + p (pW(9),pW(8)) 

since p is a metric.   Therefore, for 1 < r < oo 

dPir{f,g)    =     j|p(p(/)(0),P^(0))rd0 

<     j   L(p^(0),pW(0))rd0J    + |  /p(pW(«),pW(«) d0 

=    dPtr(f,h) + dp>r(h,g) 

by r-norm properties of functions [56].   Therefore, dPiT(f,g) < dp<r(f, h) + dp>r(h,g) and c^r 

satisfies the triangle inequality. 

3.3.4    Definition of Empirical ROC Curves.      For a given instantiation u £ ft of the data, 

let f{u)) e R(0).  Let RR(Q, G) denote the set of estimated or empirical ROC curves f(u), that is 

RR(fi,e)    =    {/(w)  : Lü€ü\ (3.22) 

=    {{(pFP(W,0),PTp(W,0))   :  0ee}   :  wGfi}. 
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Figure 3.2      Pictorial representation of the convergence in the Hausdorff metric of the set Z?(") for 
n data points to the set S of all data points. 

3.3.5 ROC Convergence Theorem. Let S C W, where v is the number of variables or 

features, be the set from which feature vectors x are drawn. Let £>(") c S be the set of feature 

vectors x for finite n, i.e., £>(") = {x;G S : i= 1,... , 2n} . As n grows (more data are collected) 

assume that Z>(") converges to S. Under these conditions, the type of convergence assumed is a 

sequence of sets converging in the Hausdorff metric, dH [12]. This type of convergence of sets 

requires that Z>(") grows to span S as more data are collected rather than just become a small 

subset of S (Figure 3.2). Let /(n)(w) G RR(ft,©) be a sequence of empirical ROC curves. For 

large n, assuming that £>(") approaches S, then /(,l)(u;) becomes a better estimate of / G R(9). 

This convergence is stated rigorously with the following theorem. 

Theorem III.4 (ROC Convergence). // {p(n)} converges to S, i.e., given e > 0, there exists 

N such that for all n > N, dH (V^n\S) < e, then j/(n)(o;)| converges to /, i.e., given e > 0, 

there exists N such that for all n > N, Pr (luj G Ü  :  dPiT (/^(w),/J > e\ ) < e. 

The proof of this theorem is given in Appendix A. 
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3-4    Application of Proposed ROC Metric 

In this section a demonstration is given using one of the proposed ROC metrics, namely dp ti, 

dPlil(f,g) = J Pl(pU)(0),pW(OJ)dO (3.23) 
e 

along with the commonly used performance measure, AUC [20,64]. Since AUC is measured on a 

scale from 0 to 1, an average metric distance is defined as 

d    i (/,<?)      M(p(/)(0),P(9)(*))d0 
avg metric distance =   Pl'     '— = ;— . (3.24) 

H(e) /z(6) 

where ^ is a measure on 5ft (possibly Lebesgue) such that 0 < fi(Q) < oo. Choose A 6 5ft such that 

(z + -0 *s an mteger- Then the ROC curves for each classifier are generated by using (^ + l) 

discrete thresholds 6i and the admissible set O is then given by 

e = {0i,02l... ,0i,ei+1,... ,em:0i = o, ei+1 = öi + A, em = i). (3.25) 

For a given A and defining fj, such that y, (O) = m, the average metric distance can be approximated 

as follows: 

m 

avg metric distance w  . (3.26) 
TO 

Using this approximation, the scale for this average metric distance, like the scale for AUC, extends 

from 0 to 1. However, an average metric distance of 0 implies no difference between ROC curves 

/ and g, while an average metric distance of 1 implies maximum difference between ROC curves 

/ and g. Both this average metric distance and AUC are applied to a real-world application-the 

University of Wisconsin Breast Cancer Diagnosis problem. The data set for this application is 

available from the University of California-Irvine [661. 
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Table 3.1 Feature rankings for University of Wisconsin Breast Cancer Diagnosis Data Set ob- 
tained by using the signal-to-noise ratio algorithm [14]. Rankings averaged over 30 
different test data sets. 

Feature # 1 2 3 4 5 6 7 8 9 
Feature 
Name 

III irk size filmpc ncllii'Mon . ;, i i li•■ Mi.! 
harr 

nuclei 

blniiil 

cliromnlln muln 
,„i,„»,:S 

Mean 
Feature 
Ranking 

2.87 5.43 5.03 5.70 7.40 1.80 5.50 5.53 5.73 

Standard 
Error 

0.22 0.47 0.52 0.42 0.30 0.23 0.40 0.36 0.38 

3.4-1 Data Description. The University of Wisconsin Breast Cancer Diagnosis Data Set 

consists of 699 patterns of which 458 are benign samples and 241 are malignant samples. Each of 

these patterns consists of nine measurements taken from fine needle aspirates from a patient's breast. 

These measurements consisted of (1) clump thickness, (2) uniformity of cell size, (3) uniformity of 

cell shape, (4) marginal adhesion, (5) single epithelial cell size, (6) bare nuclei, (7) bland chromatin, 

(8) normal nucleoli, and (9) mitoses. All nine measurements were graded on an integer scale from 

one to ten, with one being the closest to benign and ten being the most malignant. Sixteen samples 

of feature number 6, bare nuclei, were missing from the data set. Rather than dropping this feature 

and risk losing an important feature, the missing values are estimated using a linear regression with 

feature 6 as the independent variable and the other features as the dependent variables. Predictions 

of feature 6 are then used to estimate the missing values. 

3.4-2 Experiment #1. The goal of the first experiment is to compare three different 

classifiers for which the relative ordering is already known. To obtain these classifiers the feature 

ranking results (Table 3.1) of the signal-to-noise ratio (SNR) feature screening method as applied 

to the University of Wisconsin Breast Cancer Diagnosis problem [14] is used. The top two 

ranked features (bare nuclei and clump thickness) are used for classifier 1; the two features (bland 

chromatin and normal nucleoli) ranked in the middle for classifier 2; and the bottom two ranked 

features (mitoses and single epithelial cell size) for classifier 3. Thirty artificial neural networks are 

trained for each classifier using 210 randomly selected samples for training, 140 samples for internal 

3-13 



Comparison of ROCs for MLP Classifiers 
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Figure 3.3      Experiment 1:  average ROC curves for three MLP Classifiers.   ROC Curves averaged 
over 30 different test data sets. 

validation, and 349 for independent testing. All neural networks are multi-layer perceptrons (MLPs) 

trained using MATLAB's adaptive learning algorithm (TRAINGDX) with an initial learning rate of 

0.01 [23]. This algorithm also employs momentum with a momentum constant of 0.9. All features 

are standardized to zero mean and unit variance. One hidden layer is employed with 18 nodes. All 

activation functions are sigmoidal. 

ROC curves for each MLP classifier are generated using 101 discrete decision thresholds 

(A = 0.01) for each test data set. The average ROC curves over 30 different test data sets for 

the three MLP classifiers are shown in Figure 3.3. The ROC curves appear as expected with the 

ROC for classifier 1 closer to the "northwest corner" of the graph (perfection: Ppp = 0, PTP = 1) 

followed by classifier 2 and then classifier 3. The area under each ROC curve for the three classifiers 

(Table 3.2, 2nd column) is estimated by using the trapezoidal method for all thirty ROC curves 

for each classifier and computing the mean. The mean areas agree with the expected ordering of 

the classifiers. The average metric distance is computed in a similar way to compare each classifier 
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to the 9 = PTP - PFP diagonal. The average metric distances (Table 3.2, 3rd column) also agree 

with the expected ordering of the classifiers. 

The areas can be converted to delta areas by computing the absolute differences in areas 

between the ROC curves for each pair of classifiers. These delta areas are shown in a distance 

matrix (Table 3.3, lower triangular matrix), where 0 in a cell matrix implies that the two classifiers 

corresponding to the row and column number of the respective cell have exactly the same area. 

Table 3.3, upper triangular matrix shows the average metric distances between each pair of ROC 

curves. Both upper and lower triangular matrices display similar patterns and agree with the 

expected ordering of the classifiers. 

3.4-3 Experiment #2. The goal of the second experiment is to compare three different 

types of classifiers which have ROC curves that overlap. A multi-layer perceptron (MLP) artificial 

neural network, a linear statistical classifier, and a quadratic statistical classifier are used. The 

top two ranked features (bare nuclei and clump thickness) are used to construct all three classifiers. 

The MLP neural network is exactly the same as described above. The linear statistical classifier is 

employed using a discriminant analysis function using equal (pooled) covariance matrices for each 

class (benign and malignant) while the quadratic statistical classifier employs unequal covariance 

matrices for each class. Thirty statistical classifiers are trained for each type using 350 randomly 

selected samples for training, and 349 for independent testing. 

ROC curves for each classifier are generated using 101 discrete decision thresholds (A = 0.01) 

for each test data set. The average ROC curves over 30 different test data sets for the three different 

types of classifiers are shown in Figure 3.4 along with the respective areas in Table 3.4 (2nd column) 

and the corresponding delta areas in the lower triangular matrix in Table 3.5. Because the ROC 

curves overlap, there is some difficulty in determining which classifier is overall the best. The 

areas (Table 3.4, 2nd column) or the delta areas (Table 3.5, lower triangular matrix) do not help 

eliminate the confusion.   The areas for all three classifiers are within 0.007 and the delta area 
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Compar son of ROCs for Classifiers Using Top 2 Features 
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Figure 3.4      Experiment 2:   average ROC Curves for linear, quadratic, and MLP classifiers.   ROC 
curves averaged over 30 different test data sets. 

between the linear and MLP classifiers is statistically zero. The AUC confidence intervals for the 

linear and MLP classifiers overlap, while the AUC confidence intervals for the quadratic and the 

MLP classifiers overlap. Therefore any clear distinction between the three classifiers using AUC is 

impossible to ascertain. 

The average metric distances between each pair of ROC curves using this metric are shown 

in the upper triangular matrix in Table 3.5. The differences between all three classifiers are easier 

to ascertain using the average metric distances in the upper triangular matrix in Table 3.5, rather 

than using the delta areas shown in the lower triangular matrix. Since the average metric distances 

between each pair of ROC curves is statistically non-zero, the implication is that there are in fact 

differences in the three curves. 

The average metric distances between the ROC curve for each classifier and the 9 = P?p = 

PFP diagonal are shown in Table 3.4 (3rd column). The average metric distances from the diagonal 

distinguish the quadratic classifier as the best of the three (confidence intervals do not overlap). 
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Table 3.2 Comparison of area under ROC curves and average metric distances from diagonal 
line for MLP ROCs. Bonferroni confidence intervals based on 30 different test data 
sets (normal assumption with ottotai — 0.05). 

Classifier 
Area under 
ROC curve 

Average metric 
distance from 
diagonal line 

1 0.9805 ± 0.0039 0.8007 ± 0.0099 
2 0.9673 ± 0.0037 0.7496 ± 0.0188 
3 0.9319 ± 0.0045 0.6593 ± 0.0150 

Table 3.3 Distance matrix showing absolute area differences (lower triangular matrix) and av- 
erage metric distances (upper triangular matrix) between MLP ROC curves. Bonfer- 
roni confidence intervals based on 30 different test data sets (normal assumption with 
Ottotai = 0-05).  

Classifier 1 Classifier 2 Classifier 3 
Classifier 1 0 0.1034 ± 0.0149 0.1653 ± 0.0175 
Classifier 2 0.0147 ± 0.0039 0 0.1552 ± 0.0192 
Classifier 3 0.0486 ± 0.0057 0.0354 ± 0.0049 0 

Table 3.4 Comparison of area under ROC curves and average metric distances from diagonal 
line for linear, quadratic, and MLP classifiers. Bonferroni confidence intervals based 
on 30 different test data sets (normal assumption with a.totai = 0.05). 

Classifier 
Area under 
ROC curve 

Average metric 
distance from 
diagonal line 

Linear 0.9822 ± 0.0023 0.7628 ± 0.0048 
Quadratic 0.9755 ± 0.0032 0.8395 ± 0.0068 

MLP 0.9805 ± 0.0039 0.8007 ± 0.0099 

Table 3.5 Distance matrix showing absolute area differences (lower triangular matrix) and av- 
erage metric distances (upper triangular matrix) between linear, quadratic, and MLP 
classifiers. Bonferroni confidence intervals based on 30 different test data sets (normal 
assumption with atotal — 0.05). 

Linear Quadratic MLP 
Linear 0 0.1169 ± 0.0081 0.1101 ± 0.0105 

Quadratic 0.0067 ± 0.0013 0 0.0798 ± 0.0083 
MLP 0.0025 ± 0.0027 0.0065 ± 0.0017 0 

3-17 



An examination of the average ROC curves (Figure 3.4) provides an explanation. The highest 

concentration of points that comprise the ROC curve for the quadratic classifier occur in a smaller 

region compared to the majority of points that comprise the ROC curves for the linear and MLP 

classifiers. This high concentration of points in a smaller region for the quadratic classifier reflects 

the robustness of the quadratic classifier's performance for various decision thresholds. Since the 

metric distance is the average taxi-cab distance from each ROC point (Ppp^j), P-^(öi)) on ROC 

curve / to its corresponding point (0j,0i) on the diagonal line g, it is not surprising that the 

metric distance for the quadratic statistical classifier is statistically the largest. The choice of the 

quadratic classifier using the average metric distance from the diagonal then, represents a choice 

for consistency in performance. 

3.5    Conclusion 

This chapter introduces a family of metrics dPtT for comparing two ROC curves that enables 

a proof of convergence for these curves. This ROC convergence theorem is important because it 

provides the basis for a framework for the comparison of ROC curves. The typical ROC performance 

measure, AUC, used for comparing ROC curves is shown to be an unsuitable metric because the 

comparison of areas is in fact a pseudo-metric. The experiment comparing MLPs constructed using 

the salient and non-salient features of the University of Wisconsin Breast Cancer Diagnosis Data 

Set showed that a particular metric, dPlti, from the proposed family of metrics yielded expected 

classifier rankings that are consistent with AUC. Furthermore, the second experiment comparing 

linear, quadratic, and MLP classifiers showed that this particular metric provides more insight 

about classifier differences when the ROC curves for the classifiers overlap. The results of these 

experiments bolster confidence in the proposed family of metrics presented here as a useful tool in 

distinguishing between the ROC curves of competing classifiers. 
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IV.   Using a Multinomial Selection Procedure in Classifier Evaluation 

4-1    Overview 

Multinomial selection procedures have not been previously applied to the detection problem 

in the pattern recognition literature. This chapter explores the use of a multinomial selection 

procedure as an alternative to the ROC type analyses discussed above for evaluating competing 

classifiers and to serve as a baseline for comparing methods. 

This chapter is organized in the following manner. In Section 4.2 the multinomial selection 

procedure as applied to the detection problem is illustrated using the classical two-dimensional 

exclusive-OR problem. Classification accuracy, ROC analysis, as well as multinomial selection 

procedure results for two other more difficult discrimination problems are described in Sections 

4.3-4.4.  Finally, in Section 4.5 the strengths of the multinomial selection procedure are summarized. 

4-2    Illustration of Multinomial Selection Procedure on XOR Problem 

In order to illustrate how a multinomial selection procedure can be applied to the detection 

problem, consider first the classical two-dimensional exclusive-OR problem, also known as XOR [18] 

shown in Figure 4.1. XOR data are randomly generated with 1000 Class 1 and 1000 Class 2 data 

points. The data are classified using three different types of classifiers: a linear statistical classifier, 

a quadratic statistical classifier, and a multi-layer perceptron (MLP) artificial neural network. All 

three classifiers are trained on fifty percent of the data (balanced between the two classes) and 

tested and compared on the remaining fifty percent. The linear statistical classifier is employed 

using a discriminant analysis function using equal (pooled) covariance matrices for each class while 

the quadratic statistical classifier employs unequal covariance matrices for each class. The MLP is 

trained using MATLAB's adaptive learning algorithm (TRAINGDX) with an initial learning rate 

of 0.01 [23]. One hidden layer is employed with eight nodes. Forty percent of the training data is 

used for internal validation of the MLP to prevent over training.   The resulting confusion matrices 
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Figure 4.1      The exclusive-OR problem, also known as XOR, consists of data belonging to one of 
two classes C\ and C<i which are not linearly separable. 

and classification errors on the test data set for the three classifiers are shown in Tables 4.1 - 4.3. 

The ROC curves (where Class 2 is considered the target) for the three classifiers for the test data 

are shown in Figure 4.2, along with the corresponding AUCs in Table 4.4. 

As expected, the linear statistical classifier is not much better than a coin toss. However, 

the MLP appears to have only slightly better performance than the quadratic statistical classifier 

after examining the classification errors, ROC curves, and corresponding AUCs on the test data 

set. Instead of comparing the classifiers over the entire test data set at once, a multinomial 

selection procedure compares the performance of each classifier on each data point using some 

scoring measure. A logical choice for classifier scores is the estimated class conditional posterior 

probabilities generated by each classifier for each data point. The test data is first separated into 

the two independent classes. The BEM multinomial selection procedure is then applied to each 

class as follows: 

1. Given Uj Class j test data points, compare estimated posterior Class j probabilities for each 

classifier. 
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Table 4.1      Linear classifier confusion matrix for XOR data. 
Linear Classifer 

Classified As (Reported) 

Actual 
(Truth) 

error = 48.6% 

Class 1 Class 2 
Class 1 259 241 
Class 2 245 255 

Table 4.2      Quadratic classifier confusion matrix for XOR data. 
Quadratic Classifer 

Classified As (Reported) 

Actual 
(Truth) 

error = 3.2% 

Class 1 Class 2 
Class 1 483 17 
Class 2 15 485 

Table 4.3      MLP classifier confusion matrix for XOR data. 
MLP Classifer 

Classified As (Reported) 

Actual 
(Truth) 

Class 1 Class 2 
Class 1 490 10 
Class 2 12 488 

error = 2.2% 
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Figure 4.2      ROC curves for XOR problem. 
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2. Select the best classifier for each data point as the classifier with the maximum estimated 

posterior Class j probability. 

3. Compute the number of wins/successes Y^j for each classifier i given Class j data. 

4. Let Y(ij < Y(2) < Y(3) be the ranked number of successes from Step 3.   Select the classifier 

associated with the largest count, Y(3), as the best for Class j. 

This BEM procedure is illustrated in Table 4.5 for Class 1 data and Table 4.6 for Class 2 

data. Since the MLP clearly has the most successes for both classes, the conclusion, according to 

the BEM procedure, is that the MLP is the best of the three systems. However, even with only one 

test data set, the BEM procedure provides additional information about the competing systems. If 

the number of successes Y^- for each classifier i given Vj Class j test data points, is modeled as a 

single multinomial distribution, a point estimate can be computed for the conditional probability 

P(Ci\Xj) of each classifier d being the best given the class Xj using 

P(Ci\Xj) = ^ (4.1) 

Remark 2. An inherent assumption in a multinomial distribution is a constant probability of suc- 

cess over all test trials, or in this case all test points. For this type of application of the BEM 

procedure, it is not altogether clear that the probability of success, i.e., probability of being the best 

(Equation 4-1) is constant from trial to trial. However, an argument could be made that the trials 

are still random, and the probabilities of success obtained are still estimates of the probabilities of 

winning in any randomly selected trial. Such an argument is made to justify the use of Equation 

4-1 to generate point estimates for the conditional probabilities of each classifier being the best given 

the class. 

The point estimates for the probability of being the best classifier along with their corre- 

sponding Bonferroni confidence intervals (using Equation 2.14 with atotai = 0.05) for comparing 
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Table 4.4     AUCs (area under ROC curve) for XOR data. 
Classifier AUC 

Linear 0.5114 
Quadratic 0.9970 

MLP 0.9988 

Table 4.5      BEM procedure illustrated for Class 1 XOR data. 
Test Data Posterior Probabilities Win/Successej 5 = 1 
Number Linear    Quad    MLP Linear Quad MLP 
1 0.451      0.908     1.000 0 0 1 
2 0.395      1.000    0.998 0 1 0 
3 0.434      0.988     0.996 0 0 1 
4 0.524      0.594    0.994 0 0 1 
5 0.589      0.999     1.000 0 0 1 
6 0.421      0.606    0.900 0 0 1 

498 0.526      0.644     1.000 0 0 1 
499 0.454      0.836     1.000 0 0 1 
500 0.577      0.979     1.000 0 0 1 

Successes (Y*|i) = 
Linear 
5 

Quad 
25 

MLP 
470 

Table 4.6      BEM procedure illustrated for Class 2 XOR data. 
Test Data Posterior Probabilities Win/Successes , = l 
Number Linear    Quad    MLP Linear Quad MLP 
501 0.558      0.998     0.984 0 1 0 
502 0.472      0.658     1.000 0 0 1 
503 0.550      0.989     0.991 0 0 1 
504 0.499      0.958     1.000 0 0 1 
505 0.506      0.516    0.844 0 0 1 
506 0.448      0.973     1.000 0 0 1 

998 0.499      0.938     1.000 0 0 1 
999 0.498      0.957     1.000 0 0 1 
1000 0.497      0.772     1.000 0 0 1 

Successes (^2) = 
Linear 
4 

Quad 
69 

MLP 
427 

4-5 



Table 4.7      Estimates and Bonferroni confidence intervals {atotal — 0.05) for the probability of 
being the best classifier given Class 1 data 

Pbest 
Classifier 1 
Linear 

Classifier 2 
Quadratic 

Classifier 3 
MLP 

P{Ci\X{) 0.01 0.05 0.94 
CI [0  0.02] [0.03  0.05] [0.91  0.97] 

Table 4.8 Estimates and Bonferroni confidence intervals {atotai = 0.05) for the probability of 
being the best classifier given Class 2 data 

Pbest 
Classifier 1 
Linear 

Classifier 2 
Quadratic 

Classifier 3 
MLP 

P(Ci\X2) 0.01 0.14 0.85 
CI [0 0.02] [0.10  0.18] [0.81  0.89] 

the three classifiers are given in Tables 4.7 - 4.8. Since the confidence interval for the MLP does 

not overlap the confidence intervals for the other two classifiers for either class data, the BEM 

procedure suggests that the MLP is statistically the best system for both classes. The total 

probability that each classifier is the best according to the estimated posterior probabilities can be 

computed using the law of total probability 

P{d) = P(Ci\X1)P(X1) + P(Ci\X2)P(X2) (4.2) 

where P{Xj) are the prior probabilities for each class (for this problem, P{XX) = P(X2) - 0.5). 

These total probabilities and their corresponding Bonferroni confidence intervals (Table 4.9) indi- 

cate that the MLP is statistically the best classifier for this problem. 

The BEM procedure also provides an equation (Equation 2.42, pg. 2-37) for the probability of 

correct selection PCSBBM. In order to get a lower bound on PCSBEM, a least favorable condition 

Table 4.9      Estimates and Bonferroni confidence intervals {atotai = 0.05) for the total probability 
of being the best classifier for XOR data. 

Pbest 
(total) 

Classifier 1 
Linear 

Classifier 2 
Quadratic 

Classifier 3 
MLP 

P(Ci) 0.01 0.09 0.90 
CI [0  0.02] [0.07 0.12] [0.88  0.92] 
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(LFC) is chosen using 

P[i] = P[2] = ' 3> (4.3) 

andp[3] = P(C3\Xj) for the ranked probabilities of being the best system for each class. Using these 

probabilities along with the number of test points Uj in each class, and computer code developed 

by Goldsman [16], the probability of correct selection for each class is estimated to be 

PCSBEM = ^ ^ 

Because the probability of correct selection is one, the number of actual test data points needed to 

differentiate between the three classifiers could have been reduced. Using the same ratio 9 between 

the best and the next best system 

2 _     P[3] .... 

2 

Goldsman's code [16], which constructs the tables of Bechhofer, Elmaghraby, and Morse [16], 

provide the number of test points (Table 4.10) required to achieve PCSBEM = 1.0. Table 4.10 

implies that only 15 test points are needed to differentiate the MLP classifier as being the best 

classifier for either class. 

4.3   Block C Problem 

The XOR problem is fairly easy for both the quadratic statistical classifier as well as the 

MLP. A more challenging discrimination problem is shown in Figure 4.3. Block C data are 

randomly generated with 1000 Class 1 and 1000 Class 2 data points. The data are again classified 

as described in Section 4.2 using three different types of classifiers: a linear statistical classifier, a 

quadratic statistical classifier, and a multi-layer perceptron (MLP) artificial neural network. The 
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Table 4.10     Values for the 
points for the 

Probability of Correct Selection (PCS) for various number of test data 
XOR problem. 

Number of 
Test Points 

Class 1 
PCS 

Class 2 
PCS 

1 0.9399 0.8540 
2 0.9399 0.8540 
3 0.9913 0.9514 
4 0.9944 0.9656 
5 0.9987 0.9838 
6 0.9994 0.9905 
7 0.9998 0.9952 
8 0.9999 0.9971 
9 1.0000 0.9985 
10 1.0000 0.9992 
11 1.0000 0.9995 
12 1.0000 0.9997 
13 1.0000 0.9999 
14 1.0000 0.9999 
15 1.0000 1.0000 

resulting confusion matrices and classification errors on the test data set for the three classifiers are 

shown in Tables 4.11 - 4.13. The ROC curves (where Class 2 is again considered the target) for 

the three classifiers for the test data are shown in Figure 4.4, along with the corresponding AUCs 

in Table 4.14. As expected again, the linear statistical classifier is not much better than a coin 

toss for this problem. While both the quadratic statistical classifier and the MLP show better 

performance than the linear classifier, according to the classification errors and the AUCs, the MLP 

appears to have better performance. The dominance of the MLP is clearly seen in Table 4.15 where 

the point estimates and Bonferroni confidence intervals (using Equation 2.14 with atotai = 0.05) for 

comparing the three classifiers are computed as shown in Section 4.2 using the BEM multinomial 

selection procedure and the law of total probability (Equation 4.2). Using Goldsman's code as 

in the previous section [16], the probability of correctly selecting the MLP as the best classifier for 

each class is estimated to be 

PCS BEM (4.6) 
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Table 4.11      Linear classifier confusion matrix for Block C data. 
Linear Classifer 

Classified As (Reported) 

Actual 
(Truth) 

i^iass 

error = 47.5% 

Class 1 Class 2 
Class 1 263 237 
Class 2 238 262 

Table 4.12 Quadratic classifier confusion matrix for Block C data. 
Quadratic Classifer 

Classified As (Reported) 

Actual 
(Truth) 

error = 9.9% 

Class 1 Class 2 
Class 1 438 62 
Class 2 37 463 

Table 4.13      MLP classifier confusion matrix for Block C data. 
MLP Classifer 

Classified As (Reported) 

Actual 
(Truth) 

Class 1 Class 2 
Class 1 477 23 
Class 2 4 496 

error 2.7% 

Table 4.14     AUCs (area under ROC curve) for Block C data. 
Classifier AUC 

Linear 0.5471 
Quadratic 0.9520 

MLP 0.9864 
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Figure 4.3      The Block C problem consists of data belonging to one of two classes C\ and C2 
which are not linearly separable (taken from Belue, 1995 [17]). 

Table 4.15      Estimates and Bonferroni confidence intervals (atotai = 0.05) for the total probability 
of being the best classifier for Block C data. 

Pbest 
(total) 

Classifier 1 
Linear 

Classifier 2 
Quadratic 

Classifier 3 
MLP 

P(Ci) 0.02 0.04 0.94 
CI [0.01   0.03] [0.02  0.06] [0.92 0.96] 

giving confidence to the choice of the MLP. Also, this same code can be used to determine that 

only 12 test points are needed to differentiate the MLP classifier as being the best classifier for 

either class. 

4-4    Iron Cross Problem 

An even more challenging discrimination problem than either the XOR or the Block C problem 

is shown in Figure 4.5. Iron Cross data are randomly generated with 1000 Class 1 and 1000 Class 

2 data points. The data are again classified as described in Section 4.2 using three different 

types of classifiers:   a linear statistical classifier, a quadratic statistical classifier, and a multi-layer 
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Figure 4.4     ROC curves for Block C data. 

perceptron (MLP) artificial neural network (for this problem the MLP required 12 hidden nodes). 

The resulting confusion matrices and classification errors on the test data set for the three classifiers 

are shown in Tables 4.16 - 4.18. The ROC curves (where Class 2 is again considered the target) for 

the three classifiers for the test data are shown in Figure 4.6, along with the corresponding AUCs 

in Table 4.19. As expected again, the linear statistical classifier is not much better than a coin 

toss for this problem. However, the MLP clearly shows better performance than both the linear 

and quadratic classifier, according to the classification errors and the AUCs. The dominance of the 

MLP is also clearly seen in Table 4.20 where the point estimates and Bonferroni confidence intervals 

(using Equation 2.14 with atotai — 0.05) for comparing the three classifiers are computed as shown 

in Section 4.2 using the BEM multinomial selection procedure and the law of total probability 

(Equation 4.2). Using Goldsman's code as in the previous section [16], the probability of correctly 

selecting the MLP as the best classifier for each class is estimated to be 

PCS BEM (4.7) 
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Table 4.16      Linear classifier confusion matrix for Iron Cross data. 
Linear Classifer 

Classified As (Reported) 

Actual 
(Truth) 

Class 1 Class 2 
Class 1 250 250 
Class 2 236 264 

error = 48.6 % 

Table 4.17     Quadratic classifier confusion matrix for Iron Cross data. 
Quadratic Classifer 

Classified As (Reported) 

Actual 
(Truth) 

Class 1 Class 2 
Class 1 291 209 
Class 2 185 315 

error 39.4% 

Table 4.18      MLP classifier confusion matrix for Iron Cross data. 
MLP Classifer 

Classified As (Reported) 

Actual 
(Truth) 

error 

Class 1 Class 2 
Class 1 472 28 
Class 2 10 490 

Table 4.19      AUCs (area under ROC curve) for Iron Cross data. 
Classifier AUC 

Linear 0.5117 
Quadratic 0.6526 

MLP 0.9970 
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Figure 4.5      A very challenging discrimination problem, termed the Iron Cross problem. 

Table 4.20      Estimates and Bonferroni confidence intervals (atotai = 0.05) for the total probability 
of being the best classifier for Iron Cross data. 

Pbest 
(total) 

Classifier 1 
Linear 

Classifier 2 
Quadratic 

Classifier 3 
MLP 

P(Ci) 0.02 0.02 0.96 
CI [0.01   0.03] [0.01   0.03] [0.94 0.98] 

giving confidence to the choice of the MLP. Also, this same code can be used to determine that 

only 9 test points are needed to differentiate the MLP classifier as being the best classifier for either 

class. 

4-5    Conclusions 

This chapter introduces a multinomial selection procedure as an alternative to ROC analysis 

for evaluating competing classifiers. Three discrimination problems of varying difficulty are used 

to illustrate the method. For the XOR problem both classification accuracy and the area under the 

ROC curve do not clearly distinguish between the quadratic statistical classifier and the multilayer 

perceptron (MLP) classifier, while the probability of being the best classifier from the multinomial 
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Figure 4.6      ROC curves for Iron Cross data. 

selection procedure does. For all three discrimination problems, the ordering of the classifiers 

according to the multinomial selection procedure agrees with the ordering of classifiers based on 

classification accuracy and ROC analysis using AUCs. However, in all three problems the dom- 

inance of the MLP classifier is more easily ascertained using the multinomial selection procedure, 

which requires only one pair of training and testing data to estimate a performance measure with 

confidence intervals. Also, the multinomial selection procedure provides additional information 

about the number of test data points needed to distinguish between the classifiers. These results 

provide confidence in the multinomial selection procedure as a useful tool in distinguishing between 

competing classifiers. 
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V.   ATR Application 

5.1    Overview 

This chapter provides comparisons between the methodologies introduced in Chapter III and 

IV and typical approaches on an ATR application. As discussed in Section 1.2.1, the USAF is 

especially interested in objectively evaluating algorithm upgrades to their ATR system, MSTAR. 

The Air Force Research Laboratory Sensors Directorate manages the MSTAR program and is 

leading the effort toward promoting generally sound evaluation practices in ATR research [67]. 

The recent public release of high resolution SAR data by the MSTAR program has provided a 

unique opportunity to promote and evaluate SAR ATR algorithm development. The application 

summarized in this chapter uses two statistical classifiers and an ANN classifier on this SAR data 

to illustrate the methodologies developed in this dissertation. 

The research in this chapter has its foundation in two referee reviewed papers [4,19]. This 

chapter is organized as follows. Section 5.2 provides a description of the SAR data used. Section 

5.3 describes the experimental setup and classifiers employed. Section 5.4 provides the results 

obtained using the various methodologies to compare the competing classifiers. Discussion of the 

results are given in Section 5.5 and conclusions are provided in Section 5.6. 

5.2   Data Description 

The SAR data used consist of 1-D high range resolution (HRR) data taken from the MSTAR 

Public Data Set [67]. The HRR data was formed by processing X-band lxl foot resolution complex 

spotlight SAR images for ten target types collected over full 360° aspect coverage at 15° and 17° 

depression angles as part of the MSTAR program data collections 1 and 2, scene 1. Two target types 

(BMP2 armored personnel carrier and T72 tank) have additional configuration variants yielding a 

total of 22 targets in the data set. The targets are listed in Table 5.1 by MSTAR class, type, and 
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Table 5.1      Target listing for MSTAR Public Data Set. 
MSTAR Target Serial MSTAR Data Product 

Class Type Number Source 
Armored C21 
Personnel BMP2 9563 MSTAR (Public) Targets 
Carrier 9566 

132 MSTAR (Public) Targets 
812 MSTAR (Public) Targets 
S7 MSTAR (Public) Targets 
A04 MSTAR/IU (Public) T72 Variants 
A05 MSTAR/IU (Public) T72 Variants 

Tank T72 A07 MSTAR/IU (Public) T72 Variants 
A10 MSTAR/IU (Public) T72 Variants 
A32 MSTAR/IU (Public) T72 Variants 
A62 MSTAR/IU (Public) T72 Variants 
A63 MSTAR/IU (Public) T72 Variants 
A64 MSTAR/IU (Public) T72 Variants 

Tank T62 A51 MSTAR/IU (Public) Mixed Targets 
ZSU23-4 D08 Gun 

2S1 B01 MSTAR/IU (Public) Mixed Targets 

Transport BTR70 C71 MSTAR (Public) Targets 
BTR60 K10YT7532 MSTAR/IU (Public) Mixed Targets 
BRDM2 E71 Truck 
ZIL131 E12 MSTAR/IU (Public) Mixed Targets 

Bulldozer    | D7 92V13015 MSTAR/IU (Public) Mixed Targets 

serial number along with the public source of the SAR chips. The public CDs can be requested via 

the World Wide Web at http://www.mbvlab.wpafb.af.mil/public/MBVDATA [67]. 

For this application the average HRR profile is used for each aspect angle that data is available. 

Although the images for the targets are spaced in 1° increments over full aspect, the aspect sampling 

is not uniform and results in data dropouts. The HRR profile used contains the average of the 

center eight signatures in the range/angle data matrix after each signature range bin is magnitude 

detected, normalized by the mean signature power and power transformed (exponent = 0.2) [67]. 

Figure 5.1 shows an example of an average HRR profile for a BMP2 (serial # C21) armored 

personnel carrier at an aspect angle of 150.1914°. 

Standard approaches for HRR identification include the use of the entire range profile as 

the feature vector or the selection of peak amplitudes within a specified range bin [54]. For this 

application, the peak amplitudes within range bin numbers 21-30, 31-40, 41-50, 51-60, 61-70, and 
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Figure 5.1      Average HRR profile for a BMP2 (serial # C21) armored personnel carrier.   Depres- 
sion angle is 17°   and aspect angle is 150.1914°. 

71-80 are used to characterize the average HRR profiles [4].  These six amplitudes together with 

their corresponding aspect angle comprise the feature vector used for HRR classification. 

5.3   Experiment Description 

5.3.1 Experimental setup. The experiment classifies targets into two classes: non-targets 

or "confusers" (class 1) and targets specified for attack (class 2) [67]. The confusers consist of 

the two trucks (BRDM2 and ZIL131) and the bulldozer from the MSTAR Public Data Set (Table 

5.1). The targets of interest consist of the BMP2 armored personnel carrier and the T72 tank. 

Following the evaluation guidelines set forth by Veiten, et al. [67], 17° depression angle data is 

used for training and 15° depression angle data is used for testing. Furthermore, only the BMP2 

armored personnel carrier, serial # C21, and the T72 tank, serial #132, are used for training 

while all the variants of the BMP2 armored personnel carrier and T72 tank shown in Table 5.1 are 

used for testing. This setup provides for training at a specific extended operating point (EOC), 

i.e., nominal BMP2 armored personnel carrier and nominal T72 tank at 17° depression angle, and 

testing at various EOCs, i.e., variants of the BMP2 armored personnel carrier and T72 tank at 
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15° depression angle [4]. The testing data was divided into 33 trials, each consisting of the three 

confusers and one combination of the variants of the BMP2 armored personnel carrier and T72 

tank. 

5.3.2 Classifiers. A linear statistical classifier, a quadratic statistical classifier, and an 

MLP ANN are used. The linear statistical classifier is employed using a discriminant analysis 

function using equal (pooled) covariance matrices for each class while the quadratic statistical 

classifier employs unequal covariance matrices for each class. Both statistical classifiers are trained 

on the one training data set and then tested on the 33 different testing data sets in order to measure 

the robustness of the classifiers. Thirty-three different neural networks are trained on the same 

training data set, but using a different random initialization for the weights. These ANNs are 

then tested on the 33 different testing data sets for robustness. All neural networks are MLPs 

trained using MATLAB's adaptive learning algorithm (TRAINGDX) with an initial learning rate of 

0.01 [23]. This algorithm also employs momentum with a momentum constant of 0.9. All features 

are standardized to zero mean and unit variance. One hidden layer is employed with 12 nodes. All 

activation functions are sigmoidal. 

5.4    Results 

The confusion matrices for all three classifiers are shown in Tables 5.2-5.4. These confusion 

matrices represent classifier performance at the Bayes optimal point, i.e., classification performance 

at a decision threshold that minimizes total classification error. The raw numbers in the confusion 

matrix are the sums over all 33 test data sets. The percentages are the means of 33 probabilities 

conditioned on the rows for each test data set. Bonferroni confidence intervals for comparing the 

two independent probability estimators in each confusion matrix for each classifier are computed 

using the normal assumption with atotai = 0.05. 
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Table 5.2 Linear classifier confusion matrix for ATR application. Raw numbers are the sums 
over 33 test data sets. Percentages and corresponding half-lengths of the Bonferroni 
confidence intervals are also based on 33 independent test data sets (normal assumption 
with atotal = 0.05). 

Linear Classifier 
CLASSIFICATION 

T Confuser Target 
R 
U 

Confuser 12375 
(57.60 ± 0.00%) 

9108 
(42.40 ± 0.00%) 

T 
H Target 125 

(0.82 ± 0.23%) 
14645 

(99.18 ±0.23%) 

Table 5.3 Quadratic classifier confusion matrix for ATR application. Raw numbers are the sums 
over 33 test data sets. Percentages and corresponding half-lengths of the Bonferroni 
confidence intervals are also based on 33 independent test data sets (normal assumption 
with atotal - 0.05). 

Quadratic Classifier 
_ CLASSIFICATION 

T 
R 
U 
T 
H 

Confuser Target 

Confuser 18843 
(87.71 ± 0.00%) 

2640 
(12.29 ± 0.00%) 

Target 4962 
(33.21 ± 2.30%) 

9808 
(66.79 ± 2.30%) 

Table 5.4 MLP classifier confusion matrix for ATR application. Raw numbers are the sums 
over 33 test data sets. Percentages and corresponding half-lengths of the confidence 
intervals are also based on 33 independent test data sets (normal assumption with 
a = 0.05). 

MLP Classifier 
 CLASSIFICATION 

T 
R 
U 
T 
H 

Confuser Target 

Confuser 20401 
(94.96 ± 0.67%) 

1082 
(5.04 ± 0.67%) 

Target 4370 
(29.53 ±1.38%) 

10400 
(70.47 ±1.38%) 
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Figure 5.2      Average ROC curves for ATR application.   Curves averaged over 33 independent test 
data sets. 

ROC curves for each classifier are generated by using 101 discrete decision thresholds for each 

test data set. The average (over 33 test data sets) ROC curves are shown in Figure 5.2. The 

area under the ROC curve (AUC) for the three classifiers is estimated by using the trapezoidal 

method for all 33 ROC curves for each classifier and computing the mean. The average (over all 

thresholds) of the proposed ROC metric dPl>1 (Section 3.4) is computed for all 33 ROC curves to 

compare each classifier to the 9 - PTP = PFP diagonal (chance) line for each test data set. The 

mean metric distances along with the mean AUCs are shown in Table 5.5. 

The BEM multinomial selection procedure as described in Section 4.2 is also applied to 

the ATR problem. The conditional probabilities for each classifier being the best given the class 

(confuser or target) are computed for each test data set. The prior probability of confusers 

(or targets) is then estimated for each test data set by computing the ratio of the number of 

confusers (or targets) to the total number of confusers and targets. Using these estimates for the 

prior probabilities, the total probability that each classifier is the best for each test data set is 
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Table 5.5 Summary of various performance measures for ATR application. Mean estimates and 
half-lengths for simultaneous Bonferroni confidence intervals based on 33 independent 
test data sets (normal assumption with attotai = 0.05). 

Classifier 

Linear 
Quadratic 

MLP 

CA 

0.7451 ± 0.0032 
0.7910 ±0.0111 
0.8500 ± 0.0061 

AUC 

0.7866 ± 0.0013 
0.8833 ± 0.0070 
0.9146 ± 0.0089 

Metric 
Distance 

0.7286 ± 0.0026 
0.5524 ±0.0140 
0.6155 ±0.0098 

Pbest(total) 

0.7251 ± 0.0034 
0.1376 ±0.0072 
0.1373 ±0.0067 

computed using the law of total probability (Equation 4.2).    The mean (over 33 test data sets) 

total probabilities are also given in Table 5.5. 

Table 5.5 also contains estimates for classification accuracy which is the typical performance 

index used in pattern recognition. Classification accuracy (CA) is estimated for a specific decision 

threshold, namely the Bayes optimal point. The Bayes optimal point is the decision threshold for 

which the total misclassification error is a minimum. Classification accuracy is defined for this 

application as follows 

p A _ number of confusers and targets classified correctly 
total number of confusers and targets (5.1) 

Classification accuracy is computed for each test data set for each classifier.   The mean (over 33 

test data sets) CAs are reported in Table 5.5. 

For all the performance measures shown in Table 5.5, the half-lengths for confidence inter- 

vals are also reported. These half-lengths represent simultaneous 95% Bonferroni [46] confidence 

intervals for comparing the three classifiers. 

5.5    Discussion 

Using classification accuracy (CA) and AUC as the performance measures, Table 5.5 indicates 

that the MLP is the best classifier.    However, a closer examination of the average ROC curves 
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Table 5.6 Comparison of the trapezoidal approximation (AUC), the binormal approximation 
(As), and the Wilcoxon approximation (W) for computing the area under the ROC 
curve for each classifier for the ATR application. Mean estimates and half-lengths for 
simultaneous Bonferroni confidence intervals based on 33 independent test data sets 
(normal assumption with atotai — 0.05). 

Classifier 
Linear 

Quadratic 
MLP 

AUC 
0.7866 ± 0.0013 
0.8833 ± 0.0070 
0.9146 ±0.0089 

Az 

0.6776 ±0.0461 
0.8850 ± 0.0073 
0.9178 ±0.0083 

W 
0.7797 ± 0.0044 
0.9057 ±0.0045 
0.9130 ±0.0100 

(Figure 5.2) reveals that there is something peculiar about the linear ROC curve. Except for 

two decision thresholds corresponding to the two ROC points, (PFP = 0, PTp = 0) and (PFP = 

1,-PTP = 1), the rest of the 101 decision thresholds yield ROC points for the linear classifier 

concentrated about the Bayes' optimal point (PFP = 0.424, PTP = 0.992). Since the linear ROC 

curve is composed then of essentially only 4 or 5 points, the trapezoidal approximation for AUC 

may not be a good estimate for the area under the curve. Table 5.6 provides a comparison of AUC 

and two other area calculation methods, the binormal approximation Az (Equation 2.38) and the 

Wilcoxon approximation W (Equation 2.39). Table 5.6 shows that the three different methods for 

calculating the area under the ROC curve for the linear classifier yield three statistically different 

results. However, area calculations using the trapezoidal method and the binormal approximation 

are statistically equivalent for the quadratic classifier and all three area computation methods for 

the MLP classifier are statistically equivalent. These results suggest that the area under the ROC 

curve may not be a suitable performance measure for the linear classifier and possibly even for the 

quadratic classifier for this application. 

Using average metric distance from the diagonal line as the performance measure, Table 5.5 

indicates that the linear classifier is the best classifier. Closer examination of the average ROC 

curves (Figure 5.2) provides an explanation. As mentioned above, the highest concentration of 

points that comprise the ROC curve for the linear classifier occur in a very small region compared 

to the majority of points that comprise the ROC curves for the quadratic and MLP classifiers. 

This high concentration of points in a small region for the linear classifier reflects the robustness 
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Table 5.7      Comparison of the classifiers using the modified metric distance. 
Classifier modified metric distance 

Linear 
Quadratic 

MLP 

0±0.0 
0.5524 ±0.0141 
0.6057 ±0.0106 

of the linear classifier's performance for various decision thresholds. Since the metric distance 

is the average taxi-cab distance from each ROC point (PJ/p^i),-^^)) on ROC curve / to its 

corresponding point (0*, 0*) on the diagonal line g, it is not surprising that the metric distance for 

the linear statistical classifier is statistically the largest. The choice of the linear classifier using 

the average metric distance then, represents a choice for consistency in performance. 

If Po is the maximum acceptable probability of false positive, the proposed metric performance 

measure (Equation 3.24) can be modified to include a constraint. First define 

e^^eG: pW(6) < P0 } (5.2) 

Then the modified average metric distance can be defined as 

JXP(/)(0),P(fl)(0))d0 
modified avg metric distance = -  

M(6) (5.3) 

For a finite number m decision thresholds the modified average metric distance from the ROC curve 

/ to the diagonal line g can be approximated as 

avg metric distance; 
£ /91(P^)(0i),0i) such that  P$(0O < P0 

m 
(5.4) 

Table 5.7 shows the comparison of the competing classifiers using this modified performance measure 

with P0 = 0.3. With a maximum acceptable probability of false positive of 0.3, Table 5.7 indicates 

that the MLP is the best classifier, while the linear classifier is now the worst. 
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Table 5.8 Estimates for the probability of being the best classifier given the target class for the 
ATR application. Mean estimates and half-lengths for Bonferroni confidence intervals 
based on 30 different test data sets.  

Classifier 
Linear 

Quadratic 
MLP 

Pbest (confuser) 
0.5422 ± 0.0000 
0.2319 ±0.0115 
0.2259 ±0.0115 

Pbest (target) 
0.9920 ± 0.0023 

0 ± 0.00 
0.0080 ± 0.0023 

Table 5.9 Updated estimates and Bonferroni confidence intervals (atotai = 0.05) for the total 
and individual class probabilities of the quadratic and MLP classifiers being the best 
for the ATR application after the linear classifier is removed from consideration. 

Classifier Pbest{total) Pbest (confuser) Pbest (target) 
Quadratic 0.6862 ±0.0133 0.7741 ± 0.0108 0.5596 ± 0.0287 

MLP 0.3138 ±0.0133 0.2259 ±0.0108 0.4404 ± 0.0287 

Using the proposed multinomial performance measure Pbest(total) as the performance mea- 

sure, Table 5.5 indicates that the linear classifier is the best classifier. Examination of the estimates 

for Pbest for each class (confuser and target), Table 5.8, provides some insight.   Table 5.8 implies 

that the linear classifier is the most confident (since Pbest for each class is the measure on average 

of which classifier has the highest estimated posterior probability) of the three classifiers for identi- 

fying both the confusers and the targets.   However, Table 5.8 indicates that linear classifier is the 

more confident in identifying targets than confusers.   Examination of the actual estimated poste- 

rior probabilities generated by the linear classifier provides an explanation.    The linear classifier 

has estimated posterior probabilities very close to one for identifying all the targets and confusers, 

except for one specific confuser.   For the serial number E71 truck, the linear classifier has estimated 

posterior probabilities very close to zero, thereby misclassifying all the data points associated with 

the truck as a target.    If the linear classifier is removed from consideration because this type of 

performance is unacceptable, then the multinomial selection procedure can be re-accomplished with 

only the quadratic and MLP classifiers.   Table 5.9 shows the updated total probabilities and class 

probabilities for the quadratic and MLP classifiers being the best.      After the linear classifier is 

removed from consideration, Table 5.9 implies that the quadratic classifier is the best.     Closer 

examination of Table 5.9 indicates that the quadratic classifier is more confident than the MLP 
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classifier for identifying both the confusers and the targets, but especially more confident for iden- 

tifying confusers. The choice of the quadratic classifier over the MLP classifier in this two classifier 

comparison represents a choice for the classifier with the greater confidence, i.e., statistically larger 

estimated class posterior probabilities. 

5.6    Conclusions 

If a high false alarm rate as high as 0.42 is acceptable, then the linear classifier is considered 

the best classifier according to both the proposed metric distance and the multinomial selection 

procedure. If PFP = 0.42 is not acceptable, then the modified metric distance would provide 

support for the MLP as the best classifier. The choice of the best classifier then depends upon a 

thorough understanding of the performance measures and the desired requirements for the specific 

application. 
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VI.   Pilot Workload Application 

6.1 Overview 

This chapter provides comparisons between the methodologies introduced in Chapter III and 

IV and typical approaches on a pilot workload application. As discussed in Section 1.2.2, the 

USAF is especially interested in pilot workload detection because pilot overload or task saturation 

can decrease mission effectiveness and, in some extreme cases, cause loss of life [9]. In order 

for pilots to be confident in classification systems that may be employed in their cockpits in the 

future, they must have an objective way of testing and evaluating competing systems. The Air 

Force Research Laboratory Human Effectiveness (AFRL/HE) Division at Wright-Patterson AFB 

is leading the effort toward modeling pilot workload using psychophysiological measures and EEC 

The application summarized in this chapter uses two statistical classifiers and an ANN classifier on 

data provided by AFRL/HE to illustrate the methodologies developed in this dissertation. 

The research in this chapter has its foundation in a technical report [1] and a journal article 

[14]. This chapter is organized as follows. Section 6.2 provides a description of the pilot workload 

data used. Section 6.3 describes the experimental setup and classifiers employed. Section 6.4 

provides the results obtained using the various methodologies to compare the competing classifiers. 

Discussion of the results are given in Section 6.5 and conclusions are provided in Section 6.6. 

6.2 Data Description 

The data set used in this application is taken from a pilot workload study conducted by 

AFRL/HE using ten different pilots of the Wright-Patterson AFB Aero Club as test subjects. 

Each pilot flew two missions on two different days following the same flight profile. The profile 

consisted of pre-flight preparations and a take-off from the home field, VFR (visual flight rule) 

departure, IFR (instrument flight rule) arrival, descent, and instrument approach at the alternate 

field followed by a landing and subsequent return to the home field containing both IFR and VFR 
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flight segments. This profile is divided into 22 two minute segments which are each designated by 

instructors prior to the study as either low, medium, or high workload. For example, the pre-flight 

is designated as low workload, while the IFR mid-flight cruise is designated as medium workload, 

and the landings as high workload. 

Throughout the flight, EEG are sampled at a frequency of 256 Hz at 29 different locations on 

the pilot's head. Bad data associated with artifacts such as head movements and muscle movement 

which can be caused by speech are replaced with the average of data that is collected before and 

after the artifact. The EEG data are passed through a fast-Fourier transform (FFT) and then 

broken up into five bands based upon frequency: A, 8, a, ß, and /iß. For each band at each 

head location, the average power is collected over a 10-second moving window, resulting in 23 data 

points consisting of 145 EEG features (5 bands x 29 locations) for each two minute segment of 

flight [26]. 

Six peripheral psychophysiological features are also collected during the flight. Cardiopul- 

monary information is represented by heart rate (HR) measured in number of beats per minute 

and heart interbeat interval (IBI) which is a measure of the variability of the heart rhythm. Eye 

information is represented by eye blinks (BLK) measured in number of eye blinks per millisec- 

ond and interblink interval (IBLKI) which is the time between blinks. Respiratory information 

is represented by the breathing rate (BTH) measured in number of breaths per millisecond and 

interbreath interval (IBTHI) which is the time between breaths. For each peripheral feature a 

10-second moving window is also used to extract 23 data points for each two minute segment of 

flight [26]. 

The multivariate data set contains 506 data points (23 points for each 2-minute flight segment) 

consisting of 151 features (145 EEG and 6 peripheral features) collected for each pilot for each day. 

For this application, only the data for one pilot on one day is used to illustrate the methodologies 

developed in this dissertation. 

6-2 



6.3    Experiment Description 

6.3.1 Experimental setup. Since the USAF is especially interested in identifying pilot 

overload conditions, this experiment classifies pilot workload into two classes: non-overload or low 

and medium workload (class 1) and overload or high workload (class 2). This division of classes 

results in an unbalanced data set with 299 data points (59.1% of the data) belonging to the non- 

overload class, while only 207 points (40.9%) belong to the overload class. This data set has a large 

number of features and a limited number of data points. According to Foley's rule of thumb [31], 

the test set error is close to the optimum training error attained by a Bayes classifier for inputs 

with unknown distributions when 

Mtrain »31  K (6.1) 

where Mtrain is the number of training data points, / is the number of features, and K is the 

number of classes. Since the number of total points in this data set (506) violates Foley's rule, the 

number of features need to be reduced. The SNR screening method (Figure 6.1) is used to identify 

the salient features shown in Table 6.1. 

All classifiers are trained on approximately 50% of the data and tested on the remaining 50% 

using these salient features. Both training and testing data sets maintain the same proportion 

of class 1 and class 2 data. In order to ensure that the performance of the classifiers are not 

dependent upon a particular choice of training and testing data sets, the data are shuffled 30 times 

to generate 30 random selections of the training and testing data sets. 

6.3.2 Classifiers. A linear statistical classifier, a quadratic statistical classifier, and an 

ANN are used. The linear statistical classifier is employed using a discriminant analysis function 

using equal (pooled) covariance matrices for each class while the quadratic statistical classifier 

employs unequal covariance matrices for each class.     The neural network employed is a MLP 
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Figure 6.1 Plot of classification accuracy (on independent test data set) vs. number of features 
generated by the Signal-to-Noise Ratio (SNR) algorithm [14] for the pilot workload 
application. 

Table 6.1      Listing of 14 most salient features identified by SNR algorithm for pilot workload 
application. 

SNR 
Saliency 
Ranking 

Feature 
Number 

Description of Feature 

1 19 average power of ß band at location C6 
2 119 average power of ß band at location P9 

3 129 average power of ß band at location P04 
4 23 average power of a band at location CZ 

5 146 number of heart beats per minute 
6 145 average power of \xß band at location T8 
7 16 average power of A band at location C6 
8 128 average power of a band at location P04 

9 132 average power of 8 band at location PZ 
10 18 average power of a band at location C6 
11 111 average power of A band at location P8 
12 150 number of breaths per millisecond 
13 20 average power of fiß band at location Cß 
14 105 average power of fiß band at location PA 
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trained using MATLAB's adaptive learning algorithm (TRAINGDX) with an initial learning rate 

of 0.01 [23]. This algorithm also employs momentum with a momentum constant of 0.9. One 

hidden layer is employed with 38 nodes. All activation functions are sigmoidal. Thirty statistical 

classifiers for each type and thirty neural networks are trained using 254 randomly selected data 

points (59.1% class 1/ 40.9% class 2) for training. The neural networks use 40% of this training 

data for internal validation to prevent over training. All the classifiers use 252 randomly selected 

data points (59.1% class 1/ 40.9% class 2) for independent testing of their performance. All 

features are standardized to zero mean and unit variance. Each neural network uses a different 

random initialization for the weights. 

6.4    Results 

The confusion matrices for all three classifiers are shown in Tables 6.2-6.4. These confusion 

matrices represent classifier performance at Bayes optimal point, i.e., classification performance at 

a decision threshold that minimizes total classification error. The raw numbers in the confusion 

matrix are the sums over all 30 test data sets. The percentages are the means of 30 probabilities 

conditioned on the rows for each test data set. Bonferroni confidence intervals are computed using 

the normal assumption with atotai = 0.05. 

ROC curves for each classifier are generated by using 101 discrete decision thresholds for each 

test data set. The average (over 30 test data sets) ROC curves are shown in Figure 6.2. The 

area under the ROC curve (AUC) for the three classifiers is estimated by using the trapezoidal 

method for all 30 ROC curves for each classifier and computing the mean. The average (over all 

thresholds) of the proposed ROC metric dPu\ (Section 3.4) is computed for all 30 ROC curves to 

compare each classifier to the 9 = PTP — PFP diagonal (chance) line for each test data set. The 

mean metric distances along with the mean AUCs are shown in Table 6.5. 
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Table 6.2 Linear classifier confusion matrix for Pilot Workload application. Raw numbers are 
the sums over 30 test data sets. Percentages and corresponding half-lengths of the 
confidence intervals (CIs) are also based on 30 different test data sets (Bonferroni CIs 
using normal assumption with atotai — 0.05). 

Linear Classifier 
CLASSIFICATION 

T 
R 
U 
T 
H 

non-Overload Overload 

non-Overload 
3170 

(70.92 ± 1.98%) 
1300 

(29.08 ±1.98%) 

Overload 
666 

(21.55 ± 1.33%) 
2424 

(78.45 ±1.16%) 

Table 6.3 Quadratic classifier confusion matrix for Pilot Workload application. Raw numbers 
are the sums over 30 test data sets. Percentages and corresponding half-lengths of the 
confidence intervals are also based on 30 different test data sets (Bonferroni CIs using 
normal assumption with atotai = 0.05). 

Quadratic Classifier 
 CLASSIFICATION 

T 
R 
U 
T 
H 

non-Overload Overload 

non-Overload 
3806 

(85.15 ± 1.06%) 
664 

(14.85 ±1.06%) 

Overload 
945 

(30.58 ±2.21%) 
2145 

(69.42 ± 2.21%) 

Table 6.4 MLP classifier confusion matrix for Pilot Workload application. Raw numbers are 
the sums over 30 test data sets. Percentages and corresponding half-lengths of the 
confidence intervals are also based on 30 different test data sets (Bonferroni CIs using 
normal assumption with atotai = 0.05). 

MLP Classifier 
  CLASSIFICATION 

T 
R 
U 
T 
H 

non-Overload Overload 

non-Overload 
3765 

(84.23 ±1.61%) 
705 

(15.77 ±1.61%) 

Overload 
654 

(21.17 ±1.91%) 
2436 

(78.83 ±1.91%) 
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Figure 6.2      Average ROC curves for Pilot Workload application.    Curves averaged over 30 dif- 
ferent test data sets. 

The BEM multinomial selection procedure as described in Section 4.2 is also applied to the 

pilot workload problem. The conditional probabilities for each classifier being the best given the 

class (overload or non-overload) are computed for each test data set. The prior probability of 

overload (or non-overload) is then estimated for each test data set by computing the ratio of the 

number of overload (or non-overload) workload data points to the total number of pilot workload 

points. These prior probability estimates are approximately the same for each test data set since 

the same proportion of class 1 and class 2 data (59.1% class 1/ 40.9% class 2) are maintained 

for all training and testing data sets. Using these estimates for the prior probabilities, the total 

probability that each classifier is the best for each test data set is computed using the law of total 

probability (Equation 4.2). The mean (over 30 test data sets) total probabilities are also given in 

Table 6.5. 

Table 6.5 also contains estimates for classification accuracy which is the typical performance 

index used in pattern recognition. Classification accuracy (CA) is estimated for a specific decision 

threshold, namely the Bayes optimal point. The Bayes optimal point is the decision threshold for 

which the total misclassification error is a minimum.    Classification accuracy is defined for this 
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Table 6.5 Summary of various performance measures for Pilot Workload application. Mean 
estimates and half-lengths for Bonferroni confidence intervals (normal assumption with 
ottotai — 0.05) based on 30 different test data sets. 

Classifier CA AUC 
Metric 

Distance 
Pbest(total) 

Linear 
Quadratic 

MLP 

0.7399 ±0.0103 
0.7872 ±0.0100 
0.8202 ±0.0125 

0.8247 ±0.0100 
0.8687 ± 0.0088 
0.8884 ±0.0114 

0.4513 ±0.0109 
0.5187 ±0.0161 
0.5214 ±0.0276 

0.1877 ±0.0149 
0.5716 ±0.0153 
0.2407 ± 0.0278 

application as follows: 

CA = 
number of overload and non-overload workload points classified correctly 

total number of pilot workload data points 
(6.2) 

Classification accuracy is computed for each test data set for each classifier.   The mean (over 30 

test data sets) CAs are reported in Table 6.5. 

For all the performance measures shown in Table 6.5, the half-lengths for confidence inter- 

vals are also reported. These half-lengths represent 95% simultaneous Bonferroni [46] confidence 

intervals for comparing the three different classifiers. 

6.5   Discussion 

Using classification accuracy (CA) as the performance measure, Table 6.5 indicates that the 

MLP is the best classifier. However, when AUC and the average proposed metric distance are used 

as the performance measures, the best classifier is unclear from the table. The confidence intervals 

for the quadratic statistical classifier and the MLP overlap for both AUC and metric distance. An 

examination of the average ROC curves (Figure 6.2) provides an explanation. The ROC curve for 

the MLP dominates the ROC curve for the quadratic statistical classifier for Ppp (probability of 

false positive/false alarm) values from 0 to 0.3, while the quadratic ROC curve dominates the MLP 

ROC curve for Ppp values from 0.3 to 0.6.   For Ppp values from 0.6 to 1.0, the two ROC curves 
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Table 6.6 Estimates for the probability of being the best classifier given the workload class for 
Pilot Workload application. Mean estimates and half-lengths for Bonferroni confidence 
intervals based on 30 different test data sets. 

Classifier Pbest(non — overload) Pbest(overload) 
Linear 

Quadratic 
MLP 

0.0899 ± 0.0126 
0.7027 ±0.0265 
0.2074 ± 0.0252 

0.3291 ±0.0411 
0.3819 ±0.0210 
0.2890 ± 0.0436 

coincide. Therefore, it is not surprising that the AUCs are statistically equivalent for the quadratic 

statistical classifier and the MLP. A further examination of the ROC curves, indicates that the 

highest concentration of points that comprise both the MLP and the quadratic ROC curves occurs 

in the same region (PFP values from 0.1 to 0.3). Since the metric distance is the average taxi-cab 

distance from each ROC point, it is also not surprising that the metric distances for the MLP and 

the quadratic statistical classifier are statistically equivalent. 

The question that naturally arises after examining Table 6.5 is, Why does the proposed multi- 

nomial performance measure Pf,est(total) indicate that the quadratic statistical classifier is the best? 

Examination of the estimates for Pbest for each workload class (overload and non-overload), Table 

6.6, provides some insight. Table 6.6 implies that the quadratic classifier is the most confident 

(since Pbest f°r eacn class is the measure on average of which classifier has the highest estimated 

posterior probability) of the three classifiers for identifying the non-overload workload class. Since 

the confidence intervals for Pbest (overload) estimates for the three classifiers overlap, it is not clear 

which classifier is the most confident of the three for identifying the overload class. However, since 

Pbest(total) is the weighted average of Pbest for each workload class (overload and non-overload), it 

is not surprising that Pbest(total) indicates that the quadratic statistical classifier is the best overall 

for identifying both workload classes. 

6.6    Conclusions 

Since the quadratic and MLP classifiers have statistically equivalent performance measures 

for AUC and metric distance, this application demonstrates the usefulness of an alternate method 
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like the multinomial selection procedure for differentiating between the competing classifiers. The 

multinomial selection procedure could be used as a tie-breaker for determining the best classifier 

when the other methods cannot select a winner. 
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VII.   An Interpretation of Performance Measures 

7.1    Overview 

This chapter provides an interpretation of the performance measures used in the two previous 

application chapters. Sections 7.2 and 7.3 review the interpretation of classification accuracy and 

area under the ROC curve which are the typical performance measures used to compare competing 

classifiers. Sections 7.4 and 7.5 explore the interpretation of the average metric distance from the 

diagonal and the probability of being the best as suggested by their use in the two applications. 

Finally, Section 7.6 provides a summary of the interpretations of the new performance measures 

introduced in this dissertation along with the interpretations of the typical performance measures. 

7.2   Interpretation of Classification Accuracy 

Consider the confusion matrix shown in Table 7.1 for a two-class problem. The number 

of Class 1 exemplars classified correctly is N\c and the number of Class 2 exemplars classified 

correctly is N2c- Alternatively, the number of Class 1 exemplars classified incorrectly is NXQ and 

the number of Class 2 exemplars classified incorrectly is N2Q. For n\ Class 1 exemplars and n2 

Class 2 exemplars, the estimated probability of successful classification or classification accuracy 

CA is given by 

CA = Nie + N2C 

ni +n2 
(7.1) 

Classification accuracy indicates how well the classifier is at identifying both Class 1 and Class 

2 exemplars at a specific decision threshold 9.   Typically, classification accuracy is reported for 

Table 7.1      Example Confusion Matrix for computing classification accuracy. 
Assigned Membership 

Actual 
Membership 

Class 1 Class 2 totals 
Class 1 N1C Nie ni 

Class 2 N2c N2c n2 
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the Bayes optimal point.    The Bayes optimal point is the decision threshold for which the total 

misclassification error (1 — CA) is a minimum. 

Let z € 5ft be a scalar that represents some measure of the classifier's strength of conviction 

for Class 1, such that z > 6 for an exemplar generates an assignment of Class 1 while z < 9 for 

an exemplar generates an assignment of Class 2 . Let Z\ and Z2 be random variables representing 

the values of z for a randomly selected exemplar from Class 1 and Class 2, respectively. For the 

case where a classifier with a decision threshold 8 is presented with one randomly chosen Class 

1 exemplar and one randomly chosen Class 2 exemplar, the probability that the classifier will 

successfully identify both exemplars is given by [20]: 

P(S) = Pr(Zi > 9) Pi{Z2 < 6) (7.2) 

Classification accuracy is effectively an estimate of P(S). 

1.3    Interpretation of Area Under the ROC Curve 

The area under the ROC curve (AUC) represents the probability that a randomly chosen 

target exemplar is correctly rated with greater suspicion than a randomly chosen non-target exem- 

plar [20]. If z, as defined in the previous section, is used as the rating and Class 2 exemplars are 

the targets while Class 1 exemplars are the non-targets, then lower values of z equate to stronger 

indications of target. The probability P(CR) that a randomly chosen target exemplar is correctly 

rated with greater suspicion than a randomly chosen non-target exemplar is then given by [20] 

P(CR)=Pi(z2<z1). (7-3) 
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This probability of correct rating P(CR) is the same quantity estimated by the Wilcoxon statistic 

W (Section 2.3.3, page 2.39), which is sometimes used to estimate AUC. Therefore, AUC effectively 

measures P{CR) which is independent of the decision threshold 9. 

7.4    Interpretation of Average Metric Distance from Diagonal 

The applications in the previous chapters suggest that the average metric distance between 

the ROC curve and the diagonal line reflects the robustness of the classifier's performance for 

various decision thresholds. This robustness hypothesis is tested in this section on a variety of 

data sets. Since it is suspected that the perturbation of data points of one class is equivalent to 

a small change in decision threshold, classifier performance as a function of perturbation of Class 

2 data is examined. Specifically, classification accuracy (CA) for each classifier is computed for 

various levels of perturbation of Class 2 data and is compared to CA changes expected based on the 

values of the average metric distance from the diagonal line. Classifiers with similar values for the 

average metric distance are expected to have similar changes in CA as a function of perturbation 

level. Alternatively, a classifier with a higher value for the average metric distance from the 

diagonal is expected to have CA more stable with changes in perturbation level than classifiers 

with smaller values for the average metric distance. 

7.4-1 2-D Normal Data Set. Consider the following 2-D normal data set consisting of 1000 

randomly generated Class 1 data points and 1000 randomly generated Class 2 data points. Class 

1 data are generated from a two-dimensional normal distribution with mean ß1 and covariance 

matrix Ei given by 

Mi and  Ei 
1     0 

0     1 

(7.4) 
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Table 7.2      Classification accuracy and average metric distance from diagonal for unperturbed 2-D 
normal data. 

Classifier CA 
Metric 

Distance 
Linear 

Quadratic 
MLP 

0.770 
0.766 
0.768 

0.362 
0.350 
0.347 

while Class 2 data are generated from a two-dimensional normal distribution with mean /22 and 

covariance matrix £2 given by 

M2 = and  £2 = 
1     0 

0    1 

(7.5) 

The data are classified using three different types of classifiers: a linear statistical classifier, a 

quadratic statistical classifier, and a multi-layer perceptron (MLP) artificial neural network. All 

three classifiers are trained on fifty percent of the data (balanced between the two classes) and 

tested and compared on the remaining fifty percent. The linear statistical classifier is employed 

using a discriminant analysis function using equal (pooled) covariance matrices for each class while 

the quadratic statistical classifier employs unequal covariance matrices for each class. The MLP is 

trained using MATLAB's adaptive learning algorithm (TRAINGDX) with an initial learning rate 

of 0.01 [23]. One hidden layer is employed with eight nodes. Forty percent of the training data 

is used for internal validation of the MLP to prevent over training. The classification accuracy is 

computed using Equation 7.1 for all three classifiers as shown in Table 7.2. After generating ROC 

curves (Figure 7.1) for each classifier using 101 discrete decision thresholds, the average metric 

distance from the diagonal line is computed for all three classifiers and is also shown in Table 7.2. 

Since the average metric distances from the diagonal in Table 7.2 are all within 0.01 of each 

other, all three classifiers are expected to have similar variations in CA when tested on perturbed 

data. In order to test this hypothesis, the trained classifiers are tested on new test data sets 

formed by perturbing the Class 2 data points in the original test data set.   Class 2 data points Si 
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Figure 7.1      ROC curves for unperturbed 2-D Normal data. 

are perturbed by moving the points in the direction denned by the vector connecting the means of 

Class 1 and Class 2 as follows: 

-perturbed _ -.    ,    •>     , -. -.  s 
xi — xi T- A    [fi2       f1!) (7.6) 

where A is a fraction indicating the amount of perturbation. All three trained classifiers are tested 

on the perturbed data sets formed by varying the perturbation fraction A from -0.6 to +0.6. 

Classification accuracies for the classifiers are plotted as a function of perturbation fraction A in 

Figure 7.2.   As expected all three classifiers have similar variations in CA on the perturbed data. 

7.4.2 University of Wisconsin Breast Cancer Diagnosis Data Set. Consider the University 

of Wisconsin Breast Cancer Diagnosis Data Set as used in Experiment #2 in Section 3.4.3. Recall 

that this data set consists of 699 patterns of which 458 are benign samples and 241 are malignant 

samples. Each of these patterns consists of nine measurements taken from fine needle aspirates from 

a patient's breast. However, for this experiment only the top two ranked features (bare nuclei and 

clump thickness) are used to construct a multi-layer perceptron (MLP) artificial neural network, 

a linear statistical classifier, and a quadratic statistical classifier.    Thirty classifiers of each type 
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Figure 7.2      Classification accuracy as a function of perturbation fraction for linear, quadratic, 
and MLP classifiers for 2-D normal data set. 

Table 7.3 Mean classification accuracies and average metric distances from diagonal line for 
linear, quadratic, and MLP classifiers. Bonferroni confidence intervals based on 30 
different test data sets (normal assumption with octotai = 0.05). 

Classifier CA 
Metric 

Distance 
Linear 

Quadratic 
MLP 

0.935 ± 0.004 
0.941 ± 0.004 
0.945 ± 0.004 

0.763 ± 0.005 
0.840 ± 0.007 
0.800 ±0.010 

are generated and tested by randomly shuffling the data into thirty different training and testing 

data sets. The mean classification accuracies over the thirty different test data sets for the three 

classifiers are shown in Table 7.3. ROC curves for each classifier are generated using 101 discrete 

decision thresholds for each test data set. The average ROC curves over 30 different test data 

sets for the three different types of classifiers are shown in Figure 7.3. The means over the 30 

different test data sets for the average metric distance from the diagonal line is computed for all 

three classifiers and is also shown in Table 7.3. 

Table 7.3 shows that the average metric distances from the diagonal for the quadratic clas- 

sifier is statistically larger than the average metric distance for the MLP classifier and even larger 

statistically than the linear classifier. The implication is that the quadratic classifier is expected to 
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Comparison of ROCs for Classifiers Using Top 2 Features 

  linear (top 2 features) 
-O  quad (top 2 features) 
-+- mlp (top 2 features) 

0.1        0.2        0.3        0.4        0.5       0.6       0.7        0.8        0.9 1 
Probability of False Alarm 

Figure 7.3      Average ROC curves for University of Wisconsin Breast Cancer Diagnosis Data Set. 
ROC curves averaged over 30 different test data sets. 

have less variation in CA than the other two classifiers when tested on perturbed data. In order 

to test this hypothesis, the thirty trained classifiers of each type are tested on new test data sets 

formed by perturbing the Class 2 data points in the original test data set associated with each 

trained classifier. The Class 2 data points for each test data set are perturbed as described in 

Section 7.4.1 by varying A from —0.8 to +0.6. The mean classification accuracies over the thirty 

different perturbed test data sets for the classifiers are plotted as a function of the perturbation 

fraction A in Figure 7.4. As expected the quadratic classifier displays the least variation in CA on 

the perturbed data. 

7.4.3 ATR Data Set. Consider the ATR data set described in Sections 5.2-5.3. Recall 

that the ATR application classifies targets into two classes: non-targets or confusers (class 1) 

and targets specified for attack (class 2). Furthermore, a linear statistical classifier, a quadratic 

statistical classifier, and a multi-layer perceptron (MLP) artificial neural network are trained on 

one set of data and then tested on thirty-three independent test data sets. For one particular 

test data set, the classification accuracies for the three classifiers are shown in Table 7.4. After 

generating ROC curves (Figure 7.5) for each classifier on this particular test data set using 101 
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Figure 7.4 Mean classification accuracy as a function of perturbation fraction for linear, 
quadratic, and MLP classifiers for University of Wisconsin Breast Cancer Diagno- 
sis Data Set. 

Table 7.4      Classification accuracy and average metric distance from diagonal for one ATR test 
data set. 

Classifier CA 
Metric 

Distance 
Linear 

Quadratic 
MLP 

0.733 
0.839 
0.849 

0.731 
0.622 
0.584 

discrete decision thresholds, the average metric distance from the diagonal line is computed for all 

three classifiers and is also shown in Table 7.4. 

Table 7.4 shows that the average metric distances from the diagonal for the linear classifier 

is larger than the average metric distance for the quadratic and MLP classifiers by approximately 

0.11 or more. The implication is that the linear classifier is expected to have much less variation in 

CA than the other two classifiers when tested on perturbed data. In order to test this hypothesis, 

the trained classifiers of each type are tested on new test data sets formed by perturbing the Class 

2 data points in the original test data. The Class 2 data points for each test data set are perturbed 

as described in Section 7.4.1 by varying A from -0.6 to +0.6. Classification accuracies for the 
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Figure 7.5      ROC curves for one particular ATR test data set. 

classifiers are plotted as a function of perturbation fraction A in Figure 7.6.   As expected the linear 

classifier displays very stable CA on the perturbed data compared to the other two classifiers. 

7-4-4 Pilot Workload Data Set. Consider the pilot workload data set described in Sections 

6.2-6.3. Recall that the multivariate data set used contains 506 data points consisting of 14 salient 

features. Furthermore, a linear statistical classifier, a quadratic statistical classifier, and a multi- 

layer perceptron (MLP) artificial neural network are trained to classify the data into two workload 

classes: non-overload (class 1) and overload (class 2). Thirty classifiers of each type are generated 

and tested by randomly shuffling the data into thirty different training and testing data sets. For 

one particular test data set, the classification accuracies for the three classifiers are shown in Table 

7.5. After generating ROC curves (Figure 7.7) for each classifier on this particular test data 

set using 101 discrete decision thresholds, the average metric distance from the diagonal line is 

computed for all three classifiers and is also shown in Table 7.5. 

Since the average metric distances from the diagonal in Table 7.5 are all within 0.07 of each 

other, all three classifiers are expected to have similar variations in CA when tested on perturbed 

data.   In order to test this hypothesis, the trained classifiers of each type are tested on new test 
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Figure 7.6      Classification accuracy as a function of perturbation fraction for linear, quadratic, 
and MLP classifiers for one particular ATR test data set. 

Table 7.5      Classification accuracy and average metric distance from diagonal for one pilot work- 
load test data set.  

Classifier CA 
Metric 

Distance 
Linear 

Quadratic 
MLP 

0.762 
0.782 
0.841 

0.501 
0.507 
0.571 

0 0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 
Probability of False Alarm 

Figure 7.7      ROC curves for one particular pilot workload test data set. 
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Figure 7.8      Classification accuracy as a function of perturbation fraction for linear, quadratic, 
and MLP classifiers for one particular pilot workload test data set. 

data sets formed by perturbing the Class 2 data points in the original test data. The Class 2 data 

points for each test data set are perturbed as described in Section 7.4.1 by varying A from —0.6 to 

+0.6. Classification accuracies for the classifiers are plotted as a function of perturbation fraction 

A in Figure 7.8. The quadratic classifier appears to have the slightly less variation in CA on the 

perturbed data than the linear or MLP classifiers. However, if more test data sets are used and 

averaged, the curves in Figure 7.8 are expected to smooth out and indicate that all three classifiers 

have similar variations in CA on the perturbed data. 

7.5   Interpretation of Probability of Being the Best 

The applications in the previous chapters suggest that the probability of being the best reflects 

the confidence or strength of conviction of a classifier for its classification of the data. This strength 

of conviction hypothesis is tested in this section on a couple of 2-D data sets. For 2-D data sets, 

contour plots of the estimated posterior probabilities for either class can be generated for each 

classifier for the 2-D feature space. If Classifier A has a larger probability of being the best for a 

given class than Classifier B, then exemplars from the appropriate class in the 2-D feature space will 
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Table 7.6      Estimates and Bonferroni confidence intervals (atotai — 0.05) for the probability of 
being the best classifier given Class 2 data for 2-D Normal Data Set, 

Linear Quadratic MLP 
Pbest (Class 2) 0.50 0.44 0.06 

CI [0.45  0.55] [0.39  0.49] [0.03  0.09] 

have on average higher estimated posterior probabilities for Classifier A than Classifier B. Since 

the estimated posterior probabilities for a two-class problem are directly related, contour plots for 

just the target class (Class 2) are used in the following examples to test the strength of conviction 

hypothesis. 

7.5.1 2-D Normal Data Set. Consider the same 2-D normal data set described in Section 

7.4.1 above. The point estimates for the probability of being the best classifier given Class 2 

data, along with their corresponding Bonferroni confidence intervals (using Equation 2.14 with 

atotai = 0.05) for comparing the three classifiers, are given in Table 7.6. Since Pbest for the 

linear and quadratic classifiers are greater statistically than the MLP classifier, the expectation is 

that the linear and quadratic classifiers assign higher estimated Class 2 posterior probabilities for 

appropriate points in the 2-D feature space than the MLP classifier. 

The Class 2 probability contour plots for the three classifiers are shown in Figures 7.9-7.11. A 

comparison of the three plots indicates that the Class 2 data points have on average higher estimated 

posterior probabilities according to the contour lines of the linear and quadratic classifiers than the 

contour lines of the MLP classifier. 

7.5.2 University of Wisconsin Breast Cancer Diagnosis Data Set. Consider the same 

University of Wisconsin Breast Cancer Diagnosis Data Set described in Section 7.4.2 above. The 

means over the thirty different test data sets for the probability of being the best classifier given 

Class 2 data, along with their corresponding Bonferroni confidence intervals (Normal assumption 

with atotai = 0.05) for comparing the three classifiers, are given in Table 7.7. Since Pbest f°r 

the quadratic classifier is much greater statistically than both the linear and MLP classifiers, the 
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Table 7.7 Means and Bonferroni confidence intervals (atotai — 0.05) for the probability of be- 
ing the best classifier given Class 2 data for University of Wisconsin Breast Cancer 
Diagnosis Data Set. 

Linear Quadratic MLP 
Pbest (Class 2) 0.01 0.87 0.12 

CI [0.00  0.02] [0.85  0.89] [0.10  0.14] 

expectation is that the quadratic classifier assigns higher estimated Class 2 posterior probabilities 

for appropriate points in the 2-D feature space than the other two classifiers. 

The Class 2 probability contour plots for the three classifiers are shown in Figures 7.12-7.14. 

A comparison of the three plots indicates that the Class 2 data points have on average higher 

estimated posterior probabilities according to the contour lines of the quadratic classifier than the 

contour lines of the of the linear and MLP classifiers. 

7.6    Conclusions 

This chapter reviews the interpretation of the typical performance measures used to compare 

competing classifiers and explores the interpretation of the new performance measures introduced 

in this dissertation. Classification accuracy indicates how well the classifier is at identifying exem- 

plars from all classes at a specific decision threshold. For a two-class problem, where a classifier, 

operating at a specific decision threshold, is presented with one randomly chosen Class 1 exemplar 

and one randomly chosen Class 2 exemplar, CA is effectively the probability that the classifier 

will successfully identify both exemplars. The area under the ROC curve is independent of deci- 

sion threshold and represents the probability that a randomly chosen target (Class 2) exemplar 

is correctly rated with greater suspicion than a randomly chosen non-target (Class 1) exemplar. 

The examples in this chapter support the hypothesis that the average metric distance between the 

ROC curve and the diagonal line reflects the robustness of the classifier's performance for various 

decision thresholds. The examples also illustrate that the probability of being the best reflects the 

confidence or strength of conviction of a classifier for its classification of the data.   Both hypotheses 
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are supported by examples where only one test data set is used and by examples where performance 

is averaged over multiple test data sets. 

Understanding the meaning of these performance measures is essential to the objective eval- 

uation of competing classifiers. If classifiers are to be operated at a specific decision threshold, 

then classification accuracy may be a sufficient performance measure. However, if the choice of 

classifier for a given application is desired to be independent of a particular decision threshold, 

then AUC or the average metric distance from the diagonal should be used to differentiate between 

the classifiers. The average metric distance from the diagonal has the advantage of being a true 

metric which provides more insight about classifier differences when the ROC curves of compet- 

ing classifiers overlap. Also, the average metric distance provides the evaluator with information 

about the stability of CA for changes in decision thresholds, which can be alternatively viewed as 

perturbations in the data. Finally, the probability of being the best can be used as a tie-breaker 

when the other performance measures for the competing classifiers are statistically or practically 

insignificant, or when the strength of conviction of a classifier for its classification is of primary 

concern. 
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VIII.   Summary and Recommendations 

8.1 Overview 

This dissertation research makes contributions towards the objective evaluation of competing 

classifiers. This chapter summarizes these contributions and also provides recommendations for 

future research. 

8.2 Contributions 

This section summarizes the contributions resulting from this research. 

8.2.1 Development of the Signal-to-Noise Ratio (SNR) Screening Method. The initial 

stages of this research solidified ideas previously presented [33-35,63] on concepts for the Signal-to- 

Noise Ratio (SNR) screening method. These ideas were brought to practical fruition in an archival 

journal paper [14]. The SNR screening method uses the SNR saliency measure proposed in the 

paper to select a parsimonious set of salient features for an artificial neural network. Confidence 

in the SNR screening method and the SNR saliency measure are bolstered by comparisons to two 

other feature selection methods on three real-world problems. 

8.2.2 Background Reference on Performance Assessment and Performance Comparison Meth- 

ods Used in Classifier Evaluation. This dissertation provides a background reference on per- 

formance assessment and performance comparison methods used in classifier evaluation. The 

development of this background reference specifically for AFRL/SN on ATR has resulted in one 

technical report [2]. However, the performance assessment and performance comparison methods 

described in this background reference apply equally as well to a wide variety of other classification 

and detection problems. 

8.2.3 Proof of Convergence of Receiver Operating Characteristic (ROC) Curves. This 

dissertation provides a proof of convergence of ROC curves.    This ROC convergence theorem is 
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important because it provides the basis for a framework for the comparison of ROC curves and 

hence, the comparison of competing classifiers. The development of this proof has resulted in one 

submitted archival journal paper [7], one referee reviewed conference paper [5], and one technical 

report [6]. 

8.2.4 Development of a New Methodology for Comparing ROC Curves. This dissertation 

presents a family of metrics for comparing ROC curves. The development of these metrics as a 

useful tool in distinguishing between the ROC curves of competing classifiers resulted in one submit- 

ted archival journal paper [7], three referee reviewed conference papers [4,5,19], and two technical 

reports [3,6]. This methodology is successfully applied to two extremely different applications, 

namely ATR and pilot workload detection. 

8.2.5 Development of a New Methodology Using a Multinomial Selection Procedure for Com- 

paring Competing Classifiers. This dissertation introduces a multinomial selection procedure as 

an alternative to ROC analysis for evaluating competing classifiers. This methodology is success- 

fully applied to two extremely different applications, namely ATR and pilot workload detection. 

The results provide confidence in the multinomial selection procedure as a useful tool in distin- 

guishing between competing classifiers. 

8.3   Recommendations for Future Research 

There are many areas for future research and this section will list but just a few. 

8.3.1 Application of New Methodologies for Evaluating Competing Classifiers to Other Clas- 

sifier Types and Other Problems.      This dissertation research uses three distinct classifier types: 

1. Linear Statistical Classifier 

2. Quadratic Statistical Classifier 
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3. Feed-forward MLP Classifier 

More research in the application of the new methodologies presented in this dissertation for 

evaluating competing classifiers to other types of classifiers could be explored. Specifically, non- 

parametric classifiers such as those based on nearest neighbor methods [18,60] and ANNs that 

allow for the encoding of time such as the Elman recurrent neural network (RNN) [18,28] could 

be investigated. Also, the new methodologies could be applied to a variety of other classification 

problems, such as loan classification in business or galaxy classification in astronomy. 

8.3.2 Extension of New Methodology for Comparing ROC Curves to Multiple Probability 

Measures. Future research may investigate the extension of the new methodology for comparing 

ROC curves developed in this dissertation to multiple probability measures. Instead of comparing 

standard two-dimensional (2-D) ROC curves, multi-dimensional ROC trajectories consisting of the 

usual probabilities of false alarm and detection along with a third, fourth, etc. probability measure 

could be compared. For example, a three-dimensional (3-D) ROC trajectory can be formed by 

adding the probability of rejection as the third dimension to the standard ROC curve [4]. The 

methodology developed in this dissertation for comparing ROC curves could be extended to compare 

these 3-D ROC trajectories. 

8.3.3 Development of a Systematic Methodology for Using Both Typical Performance Mea- 

sures and Proposed Measures. Future research may develop a systematic methodology for using 

both the typical performance measures, such as classification accuracy and area under the ROC 

curve along with the average metric distance from the diagonal line and the total probability of 

being the best classifier. Such a methodology would be valuable in the practical evaluation of 

competing classifiers. 

8.3-4 Development of a Hybrid Classifier Using the Classification Results of Competing Clas- 

sifiers.      Another area of possible research is the development of better CSs by fusing the classifi- 
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cation results of the competing classifiers. Bayesian inference [36] could be applied to the estimated 

posterior probabilities generated by the classifiers for a specific class of interest. As a starting point, 

a simple fusion technique could be employed to rank order the classifiers according to the values 

of these posterior probabilities for each training data point. The conditional probability of the 

indication or in this simple technique, the order of the classifiers, given the specific class could then 

be computed. Bayes theorem could then be used to obtain the conditional probability of a specific 

class given the indication. Using an appropriate loss function, a new hybrid classifier could then be 

generated which predicts the class given the order of the individual classifiers for new data. More 

robust hybrid classifiers could be investigated by expanding the event space for the indication of 

the individual classifiers. 
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Appendix A.   Proof of ROC Convergence Theorem 

A.l Overview 

To prove the ROC Convergence Theorem the proof proceeds as follows: 

1. Prove that the probabilities of false positive and true positive are consistent estimators. 

2. Prove pointwise convergence for the estimated probability pair (false positive, true positive). 

3. Prove that the integral of a real-valued random variable converges. 

4. Prove that the sequence of ROC curves converges. 

A. 2    Proof that the probabilities of false positive and true positive are consistent estimators 

Let 6 C 5R. First, it will be shown that P^p(uj,9) is a consistent estimator for PTP{9) for 

each 9 e 0 and for each u E fl. For 9 e 6 fixed and a given instantiation weflof the data, define 

pn as 

n n 

Ex[ofll(*i|c2)    £>i 
pn = P$(w,e) = ^i— = ^-. (A.i) 

Note that pn is the sample mean of a random sample of size n of binary or Bernoulli random 

variables, r]i , so p„ is also a random variable. Let S be the set from which feature vectors x are 

drawn. Let P(n) C S be the set of feature vectors x for finite n, i.e., £>("> = {xiG "ST: i= 1,... , 2n) 

where v is the number of variables or features. Assume that V^ converge to S in the Hausdorff 

metric, CLH   [12], i.e., given e > 0, there exists AT  such that for all n > N, 

dH(v{n\s}<e (A.2) 
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then the Bernoulli random variables r]i have a mean 7r and positive variance a2 for each i 

E^] = 7T    and   Varfo] = a1 = TT(1 - TT)                                      (A.3) 

where E denotes the Expectation operator Var denotes the variance operator.   Then the mean of 

pn is 7T since 

E[p„] = E 
1   n 

n5> n 

i 

n. £Efo] 
1 

71 E» = — nix = TT           (A.4) 
n. 

L    2=1    J             |_i=i    J          \_i=i         J          Lj=i 

and the variance c fpnis^ since 

Var[p„] = Var 
1    n 

n ^-^ 
rVar 

.2 = 1 

EVar^i 
i=i 

X>2 
.»=1 

nz n 

(A.5) 

Let £ > 0 and consider the probability 

Pr(|p„ -TT] >e). (A.6) 

Choose k > 0 and choose N > (fc|) .   Thus e > k-4= and for every n > N  we have e > A;-7=. 

Using Chebyshev's Inequality 

Pr[\pn-,\>k^<l2 (A.7) 

which implies 

TW.- 1 cr2 

Pr(bn-7r|>e)<^<^ (A., 
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for every n > N. Therefore as n becomes larger 

lim Pr (\pn — 7r| > e) <  lim -5— = 0. 
n—»00 n—»oo /^n 

(A.9) 

Hence, {pn} converges to n in probability, which is denoted here as 

p 
Pn -> 7T- (A.10) 

Therefore, pn is a consistent estimator, which implies P^p(u>,9) is a consistent estimator for all 

8 G 0 and for all w G fl. Hence, there exists PTP{8) for each 8 G 0 and for each w£f! such that 

PJ!p(w,#) A PTP{9)- Using the same technique above, one can prove similarly that Pf^(to,9) is 

also a consistent estimator for all 9 G 0 and for all w G fi, that is, there exists PFP(8) for each 

0 G 0 and for each w G Q such that Ppp(u;,0) -^> PFP{8)-   In summary then, PTp(u,8) and 

Ppp(w, 0) are consistent estimators for each 8 G 0 and for each W6Ü, that is 

Pr ({P(")(u,,0) Pj${u>,e)-PFP(6) > e }) <e  or  PF%,8) ^ PJ,P(0) (A.11) 

Pr({p(n)(w,< 4"p
}(w,0)-PTp(0) <}) 

&(")/ >e      <e  or  P™M)A?IP(Ö) (A.12) 

J4.5    Proof of pointwise convergence for the estimated probability pair 

Since all metrics are equivalent (Theorem III.l) , consider for now the Manhattan metric 

px. Therefore, given e > 0, 9 G 0, and to G Cl, there exists Npp > 0 and NTP > 0. Take 

N = max {Npp, NTP} then for each n > N 

C 

{P(n)(w,ö)  : \P^(U,0)-PFP(6)\ + |p£>W)--Prp(0)| > ?} (A.13) 

{P(n)(w,fl)   : |pF
n;^0)-PFp(0)| > |}u{pW(a;,0) |   |p^(o;, 0)-PrP(0)| > |} 
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so, 

Pr({p(n>(c,0)   :ft(pW(W,9),P(ö))>£ (A.14) 

< Pr({p(n)(w,Ö)   : PJ#(W,0)-PFP(0) 

< Prf{p(n'(w,fl)   : P${u,e)-PFp(e) 

< e     e 
2 + 2=£- 

>(«) P^(W,Ö)-PTP(Ö) 
- 2 

P^(W,0)-PTP( HMD 

Hence, the estimated probability pair p(n)(w,6>) = (Ppp(CJ,9),P!^(UJ,9) jconverges pointwise 

probability to P(0) = (PFP{9),PTP(9)) , that is 

p(")(.,0) 2» P(6»), for each 9 e 9. (A.15) 

Since all metrics are equivalent, convergence in Equation A.15 is valid with respect to every possible 

metric on !R2. 

A.4    Proof that the integral of a real-valued random variable converges 

In this section a general result is first established. This result is then applied to the sequence 

of random ROC curves in the next section. 

Let ß be a measure on 3? (possibly Lebesgue) such that 0 < ß(Q) < oo. Let 8 C S be a set 

of decision thresholds. For each 9 e Q and n € N let Y^n\9) be a real-valued random variable. 

Assume that Y^n\9) -^> Y{6) as n —> co for each 9 e 9, that is, given e > 0 and 9 e 9, assume 

there exists a, N = N(e, 9) € N, such that for all n > N 

Pr(|y<n>(0)-y(0)   >e) <e (A.16) 
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or written more explicitly, 

m({w6fi:   |y(n)(w,ö)-y(W,0)|>£}) <e (A.17) 

where m (S) is the probability measure of an event S and Q is the set of all possible random 

events under consideration. Assume for each n G N that Y^(UJ, •) is ^-integrable over 0, almost 

everywhere u G fl, that is, 

/ Y^(UJ,8)dji{9)  exists almost everywhere w G ü. (A.18) 

e 

Theorem A.l. Assume 0 C Sft such that 0 < /u(0) < oo and 

1. Y^n'(u>, •) is ß-integrable on 0 almost everywhere u> G fl. 

2. {y(n)}  is uniformly bounded,  i.e.,  there exists B  <  oo swc/i i/iai |y(n)(a;, 0)1   <  B for 

all n, 9 almost everywhere u> G Q. 

5. Y<n>(-,0) A y(.,0) for each 0 G 0 

Then 

JY^(-,9)d^^ JY(-,9)dß 

This theorem is proved below.   First a useful Proposition is given. 

Proposition A.l. Assume 0 < ß(Q) < oo and Y^(-,6) A Y{-,6) for each 9 G 0.   If e > 0 and 

6 > 0, tfiere exisfo 5 = S(e, S) C 0 and JV = JV(e, <5) G N such that fi(S) < 6 and 

mf/wefi:    YW(W,6)-Y(UJ,0)  > e\) <e 

for alln> N and 6 G 0 - 5. 
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Proof of Proposition A.l 

Let e > 0 and 8 > 0.   For each n G N define 

Sn = ie G 0 :  m(Lj&Q,:    Y(fc)(w,0) - Y(u,9)  > e\) > e  for some k > n\ (A.19) 

Claim 1.   Sn is a ji—measurable set for each n G N. 

Proof of Claim 1. 

Since Y^n\u>, 9) and Y(u>, 9) are measurable functions on fi x G (with respect to m x /i) then 

for e > 0 and every k G N 

r('l = {(w,«)6ßxe:    yW(w,0)-y(w,0)  >e\ (A.20) 

isamx ^-measurable set.   By results in measure theory [15], the cross-section set 

T0
(fc) = {u;Gfi:   \Y^\LO,9)-Y(UJ,9)\ > e\ (A.21) 

is ^-measurable for each 9 G © and M^k\9) = m(Tg ') is a ^-measurable function.   Therefore, 

W(fc)    =    {(9G6: M(fc)((9) >e} (A.22) 

=    {öee:ra({weQ:    Y{k\w, 9) - Y(UJ,9)  > e\) > e\ 

is a /i-measurable set.    However Sn =   \J W^k\ which implies Sn is a ^t-measurable set since a 
k>r 

countable union of measurable sets is measurable [8]. 

Claim 2.   Sn is decreasing, that is, if n\ < ri2, then Sni D Sn.2. 

Proof of Claim 2. 
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Let 7i\ < ri2-  Let 0 G Sn2, then 

m({wew:   Y{k\uj,9)-Y(co,0)  > e\) >e (A.23) 

for some k > n?, say fc*. Since ri2 > ni, then fc* > n\ so the inequality is true for some k>n\. 

Thus, 6 G Sni.   Hence, S„2 C Sni. 

Claim 3.     f)  -^ = 0. 

Proof of Claim 3. 

Assume   f| Sn ^ 0.   Let 6* G   f\ Sn.   Since y(n>(-,9*) A y(-,0*) then given e > 0 there 
?i£N n£N 

exists A = A(e,0*) G N such that for all n > N, m ({u> G ft : \Y^(LJ,9*) - Y(w,9*)\ > e}) < e. 

But fl S„ C SN , thus 9* G SN. Therefore, m ({w G fi : |y(fc)(w, 0*) - y(w, 0*)| > e}) > e for 

some k > N.  This is a contradiction.   Therefore,   f] Sn = 0. 

Since Si C 6, then fi(Si) < p(0) < oo and {n{Sn)}'^L1 C 5ft is a decreasing sequence bounded 

below by zero.   Thus,   lim p(Sn) = 0.   There exists M = M(6) G N such that /X(SM) < <5-   For 
n—>oo 

0 G 6 - SM then for all n > M 

mfjwGQ:    y(n>(w,ö)-y(w,e)   >e}) <e (A.24) 

thus, y('^(-, 0) -^» Y(-, 9) uniformly on 0 - SM .   This completes the proof of Proposition A.l. 

Proof of Theorem A.l 
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Let e > 0.   For each n G N and almost everywhere UJ G fl 

Y{n\u>,6)dfi-     Y(u,6)dfj. 

e e 
Y(n\uj,6)-Y(LJ,6) d/i (A.25) 

Y^n\u)e)-Y{w,e) dp 

=   hyWfae)-Y{w,o)\dn+ f \YW(u>,e)-Y(w 
e e-s 

< j\Yi-n\io)e) + Y{w,e)\d^+ I |yW(ü;)0)-y(w,ö)|d^ 
s e-s 

< 2Bfi(s)+  I |y(n)(w,0)-y(w,0) d/i 

d/i 

e-s 

Take L = L(e,<5) = max {N(e,S),M(8)} and S = SL (as in Proposition A.l) then fi(S) < 6 so 

that Equation A.25 becomes 

Y^(w,e)d/i- JY(u),6)dn <2B6 +   f |y(n)(w,0) - y(w,0)| d/x (A.26) 
e e "   ■ e-s 

This inequality implies 

w£(l: jY^(w,e)d8- jY{u>,8)d6 { 
ciuj£n:2B6+   J   \YW(u,e)-Y(u>,6)\dn>e\ 

Take 6 = -^ so that 

to e ft : 

=     < w 

fY^(u,9)d0-  IY{LO, 

e e 

eft:    / |y(n)(w,0)-y(w,0) 

>e 

d/i>| 

(A.27) 

(A.28) 

e-s 
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Since Y^(OJ,-) — Y(u>,-) is bounded on 6, there exists an essential supremum M^n'^ and an 

essential infimum m^1^ given by 

M(n, ess   sup 
oee-s 

Yi-n\uj)9)-Y(uj)o) 

m(n,u)    =    es5   inf    yW(wj)_y(wj) 
eee-s        K     ' 

(A.29) 

By the Mean Value Theorem there exists C<n'w) G [m(n'w),M(n'u')] such that 

I |y(n)M) - y(w, 0)| dn(9) = c^u) /i(e - 5) 

e-s 

(A.30) 

Therefore, 

e-s 

/" |y(n>(w,0)-Y(w,0)|d/i   =   c("'wV(0-5) 

<    C(n,u;) /i(0) 

y(B)(w,»)-y(u,«) M(0) =    ess   sup 
eee-s 

(A.31) 

(A.32) 

Thus, 

JwGft:    f   Y(n)(w, 

I e-s 

C    < w G fi :   ess   sup 
I eee-s 

,0)-Y(u;,0) dfi> 

Yin){u,e)-Y(io,0) > 
2/x(0) 

(A.33) 

There exists 9nw6 9-S such that 

M(n'U) ~ lie) - \Yln)(w>°n^ -Y(",8n,u)\ < M^ (A.34) 
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So, 

Therefore, 

So, 

So, 

M(n,«)<  Y(n\<j,6niU)-Y{u,6niU) + Me) (A.35) 

ess   sup 
eee-s 

Y<n>(w,0)-*>>*)   M(0) 

< y(n)(wA,ü,)-n<"A,*) 4M(6) 
/.(e) 

y(n)(w,öniW)-y(w,öniU;)| M(ö) + J 

(A.36) 

<    /" y(")(w,ö)-y(w,ö) (i/t 

e-s 

<    ess   sup 
eee-s 

y(n)(w,ö)-Y(w,ö) /.(e) 

< ^ln,KW-^,9n,u) Me) + | 

(A.37) 

4/^(0) 
< y(n)(w,ön,w)-r(w,önita,) (A.38) 

Therefore for any $„jW £6 — 5 

well 

C       wed: 

/V(n>(w,0)d0- /V(w,0)d0 > £- I 
0 e J 

yCn)(^ön,c)-y(w,ön,w) > 
4M(e) 

(A.39) 
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Since y(")(w, •) -^ Y(w, •) uniformly on 9 - S, then for all n > L 

m \ <Lü eft : fY^(u,e)d/j.- jY(u,ß)dfi > £ 
—  2 

< m ({^H:   |y(">(W)0n,w) -V(W) <?„,„) | > 4^}) < 

(A.40) 

Me) 

for all 0n w G 6 - S.  Therefore, 

/V(n)(-,0)d/i A  fY(;0)dfi asn^oo (A.41) 

e e 

A.5    Proof of the convergence of the sequence of ROC curves 

Let p be any metric on 5ft2 and 0 E 6. Define Y^{u,6) = p (p(n)(w,0),P(0)) then y(")(-,0) 

is a random variable. Since p(n)(-, 0) ^> P(0), for all 0 e G (Section A.3), then y<")(-, 0) ^> 0 for 

each 0 e G.   Choose /z such that 0 < p, (G) < oo then 

• y(")(w, •) is ^i-integrable on G almost everywhere LJ e fl because y(")(w, •) is of bounded 

variation on Q. 

• {y(")} is uniformly bounded, i.e., \Y^(u>, 9)\ < 1 for all n, 0 almost everywhere u> e fl since 

£FP(W,0) < 1 and PTp(u>e) ^ 1 which imPlies P (p(n)(^,0),P(0)) < 1. 

• y(")(-, 0) ±0 for each 0 6 G. 

then according to Theorem A.l 

/V(")(-,0)d0^O (A.42) 

e 

Let Z(n\9) — g(Y^n\9)) where g is any continuous function.  Then Equation A.42 implies 

[zW(;0)dO±O (A.43) 
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Let V(n)(w) = h I JZ(-n')(-,6)d9 ] where h is any continuous function.  Then Equation A.43 implies 

^(n»H^0. (A.44) 

For the specific case where 

g{x)    =   xr  where r e N (A.45) 

h(x)    =   g~l — x^   where reN 

the metric dP:1.{f^n\uj),f) can be written as 

dp,r(f{n)(w),f)    =    (y"p(p<nW),P(0))rd0) (A.46) 

Y^{Lo,6)rd6 

z{-n\iü)e)de 

= y(n)H 

Therefore, Equation A.44 implies that given e > 0, there exists TV  such that for all n > N, 

Pr ({wen : dp<r (/»(w), /) > e}) < e (A.47) 

which is the result sought, namely that \ f^(u) > converges to /, i.e., the sequence of estimated 

ROC functions f^n\u) converge. 
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Appendix B.   Glossary of Acronyms and Abbreviations 

AFB Air Force Base 

AFOSR Air Force Office of Scientific Research 

ANN Artificial Neural Network 

ANNIE Artificial Neural Networks in Engineering 

AFRL/HE Air Force Research Laboratory Human Effectiveness Directorate 

AFRL/SN Air Force Research Laboratory Sensors Directorate 

APC Armored Personnel Carrier 

ATR Automatic Target Recognizer/Recognition 

ATRWG Automatic Target Recognition Working Group 

AUC Area Under the ROC Curve 

AVC All Vector Comparison 

BEM Bechhofer, Elmaghraby, and Morse 

BLK Blinks 

BTH Breaths 

CA Classification Accuracy 

CI Confidence Interval 

CS Classification System 

EEG Electroencephalograph 

FFT Fast Fourier Transform 

FOA Focus of Attention 

FN False Negative 

B-l 



FP False Positive 

HR Heart Rate 

HRR High Range Resolution 

IBI Interbeat Interval 

IBLKI Interblink Interval 

IBTHI Inter breath Interval 

IFR Instrument Flight Rules 

IX Index 

JASA Journal of the American Statistical Association 

LFC Least Favorable Condition 

MBT Main Battle Tank 

MLP Multi-layer Perceptron 

MML Mobile Missile Launcher 

MSE Mean Square Error 

MSP Multinomial Selection Problem/Procedure 

MSTAR Moving and Stationary Target Acquisition and Recognition 

PCS Probability of Correct Selection 

PEMS Predict/Extract/Match/Search 

ROC Receiver Operating Characteristic 

ROI Region of Interest 

SAR Synthetic Aperture Radar 

SNR Signal-to-Noise Ratio 
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SPG Self-Propelled Gun 

SSE Sum of Square Error 

T Truck 

TN True Negative 

TP True Positive 

USAF United States Air Force 

VFR Visual Flight Rules 

W Wilcoxon 
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