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Abstract 

Satellites have limited power budgets due to the amount of power collected by the 

satellite's solar panels. The goal is to have a wide range of functionality, while running 

off a limited power source. Large microprocessors use large amounts of power to report 

back temperature and chemical sensor data to ground stations. By using small 

microcontrollers to perform the data collection and minimizing the usage of the larger 

microprocessors, the satellites will save power. A prototype design of the Microdot 4-bit 

microcontroller for space applications is presented. Requirements for the Microdot, such 

as microwatt power consumption and 23 different instructions, are based on research 

completed at APRL/VSSE, Air Force Research Laboratory at Kirtland AFB, NM. A 

brief history of 4-bit microcontrollers and microprocessors, the synchronous design 

methodologies used, and space-based integrated circuit issues are presented.   Various 

CAD tools were used, implementing both standard cell and full custom logic into the 

design. The prototype Microdot was fabricated at TSMC using MOSIS to validate the 

design implementation. 

Results from high fidelity simulations indicate the Microdot design has a power 

consumption of 16.3 mW operating at 1 kHz and consumes 22 mW when operating at the 

maximum operating clock frequency of 20 MHz. These results indicate that the Microdot 

can be implemented into space-based systems, while exhibiting low power usage. 



MICRODOT - A 4-BIT SYNCHRONOUS MICROCONTROLLER FOR SPACE 
APPLICATIONS 

Introduction 

1.1. Introduction 

The purpose of this research is to investigate, design, and implement a 

synchronous Very Large Scale Integrated (VLSI) circuit for space applications to relay 

sensor information from individual sensors back to a command data link within a 

satellite. This research is an extension of previous work done at the Air Force Research 

Laboratory located at Kirtland Air Force Base, New Mexico [1]. The design process, 

from initial concepts to test results using Application Specific Integrated Circuit (ASIC) 

standard library cells in a 4-bit microcontroller, is presented. The design was fabricated 

using the Taiwan Semiconductor Manufacturing Corporation 0.35-micron commercial 

process [2]. This ASIC called the Microdot, a 4-bit microcontroller, can be used for data 

storage, data transfer, and data manipulation. 

1.2. Problem Statement 

Power consumption and reliability are critical concerns for satellite design. A 

hierarchical decentralized control network architecture can potentially meet the necessary 

low power requirement and be tolerant of component failures. The Microdot 4-bit 

microcontroller is a small yet vital piece of the satellite network system's success. Many 
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possible scenarios for Microdot implementation into a network system's architecture 

exist. However, one general scenario describes the Microdot's role in a system 

architecture: the network contains small microcontrollers, which run programs that can 

check for temperature or chemical variations thereby reducing power consumption. 

Normally, a larger microprocessor would be tasked to continually run programs to check 

multiple sensors, leading to high power consumption. An engineer can reduce the power 

consumption by designing the smaller microcontroller to check sensors and report back to 

a larger microprocessor only when an out of range sensor value has been detected. The 

program being run by the small microcontroller determines the out of range sensor value. 

The result of a small microcontroller, the Microdot, detecting an event and reporting back 

to the larger microprocessor is less power consumption for the satellite and less run time 

of the larger microprocessor. The power savings comes from only running the larger 

microprocessors when necessary for data transmission, microcontroller programming, and 

data storage. 

In order to make the Microdot a reality, a design methodology must be followed. 

Many software programs help an engineer follow along the design path; however, even 

without software programs, an engineer must follow a distinct design regiment that 

contains hierarchical elements. These elements are the building blocks that make it 

possible to create a larger component, for example, the Microdot. If one is going to learn 

what the Microdot is, one must first learn under what design methodology the Microdot 

was created. 
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1.3.      Methodology 

A design methodology or design flow is a sequence of steps that are followed to 

make an ASIC. The steps are either classified into the logical or physical design. Logical 

design is design that involves describing functionality of circuitry. Physical design is the 

actual implementation of the functionality desired. However, some steps such as system 

partitioning may be considered as either logical or physical design [3]. This generic 

outline of the ASIC design methodology will be explained in detail in Chapter Two and 

Three. 

The initial step in ASIC design is to define the function or behavior of the circuit. 

At the behavioral level, the operation of the system is captured without having to specify 

the implementation. Next, the design constraints such as area, power, and speed are 

established along with the type of Complementary Metal Oxide Semiconductor (CMOS) 

technology that will be used. The gate size selected by the engineer is a significant 

decision, because the gate size will have a direct impact on whether or not the design 

constraints can be met. The next step is crucial, which is deciding the architectural 

design. The architecture is broken up into small manageable blocks, in which all the 

interfaces and design constraints are identified. Each block is developed in the behavioral 

domain and tested to make sure functionality is correct. Within each of these blocks, the 

elements which make up the blocks are the lowest level of hierarchy. Interconnections 

between the elements within the blocks are defined, as well as inter-block connections 

between elements from different blocks. Each of these elements are tested for 

functionality because the lowest level of hierarchy must be correct in order for any of the 

blocks to work correctly. 
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After successful testing, the behavioral level of the design gets translated into the 

structural level, where the implementation of the design is decided. Similar to the 

behavioral stage, verification testing is performed at the structural level. Each element, 

block, and fully connected top-level product must successfully pass the simulated tests. 

Once successful, the design can be transformed to a physical layout. Again, verification 

must be accomplished for each block and element at the physical level before all the 

blocks can be pieced together to form the final top-level product. 

The fully assembled circuit is simulated not only for functionality, but also for 

power and speed requirements. If the circuit fails to meet the design requirements or 

constraints, then the process is repeated until the circuit meets or exceeds the 

requirements. An engineer must decide before physical layout, which fabrication process 

will make the design a reality. One of the biggest considerations is the gate size or 

technology size to which the transistors will be created. The gate size will strongly 

influence power, speed, and area results in the final product. Once the design has been 

fabricated, the circuit can be tested and compared to the simulation results [4]. 

1.4.      Overview 

Six chapters comprise this thesis. Chapter One provides an overview of the thesis 

while introducing the problem and generic design methodology. 

Chapter Two reviews the synchronous design flow and the history of 4-bit 

microcontrollers. It continues by comparing Field Programmable Gate Array (FPGA) 

with ASIC standard cell design and then repeats the differences between decentralized 

and centralized architectures and explains radiation hardening of electronics. The chapter 
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concludes with a presentation of other design work related to this research area. Overall, 

Chapter Two highlights the problem's importance thereby providing motivation for this 

thesis. 

Chapter Three applies the theories discussed in Chapter Two in order to develop a 

working design. The overall functionality and purpose of the Microdot are explained. 

The instruction set of the Microdot is explained along with data flow throughout the 

Microdot. An overview of the Microdot design including the architecture of the top-level 

design and its major elements are the primary focus of Chapter Three. Interfaces between 

the elements within each block are diagrammed. The hierarchical structure is broken 

down and explained in great detail. This chapter gives the reader a higher level 

construction of the Microdot. 

Chapter Four explores the higher level design overview presented in Chapter 

Three at the elemental level. Chapter Four is also a presentation of the design 

implementation of each functional block. Each block and its respective elements 

introduced in Chapter Three are now revisited in detail. Pin labels of each element within 

the different blocks are displayed. How the different blocks interact with each other is 

described in detail. The final design of each block, as well as other possible designs, are 

presented. 

Chapter Five reveals and analyzes the simulation and fabricated chip test results. 

Results are given at each level of design for the individual components as well as the 

results of the top-level design. The testing process and errors encountered along the way 

are explained. Each level of testing is described, which includes behavioral Very High 

Speed Integrated Circuit Hardware Description Language (VHDL) simulation, structural 
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VHDL simulation, IRSM, and High Accuracy Simulation Program with Integrated 

Circuit Emphasis (HSPICE). 

Chapter Six concludes by summarizing the collected results of the research. In 

addition, lessons learned during the design process and recommendations for future work 

in this area of research are discussed. 
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2.    Literature Review 

2.1 Introduction 

This chapter presents background research needed to understand the history of 4- 

bit microcontrollers, the differences of between FPGA design and ASIC design, the 

difference between decentralized versus centralized architecture, and radiation hardening 

of electronics. The literature search did not find a 4-bit microcontroller built for a similar 

purpose as the Microdot. However, a variety of microprocessors and microcontrollers are 

summarized in a table to outline the functions and performance of both old and state-of- 

the-art designs. 

2.2 Synchronous Design Flow 

The design of synchronous microcontrollers is a very well defined process. The 

process flows through three domains: behavioral, structural, and physical, which are 

illustrated in Figure 2-1. 

The initial step is to begin with a behavioral representation of the component. A 

behavioral representation describes how a particular design should respond to a given set 

of inputs [4]. The process starts by determining the behavior of the highest level of 

hierarchy and then describing the behavior. The description may be specified by Boolean 

equations, tables of input and output values, or algorithms written in standard high level 

computer languages or special Hardware Description Languages (HDLs). The latter 

include VHDL, Verilog, and ELLA [4]. There are many levels of abstraction within the 

behavioral domain. As an engineer descends through the levels, more detailed 
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Behavioral Domain Structural Domain 

Applications 
Operating Systems 

Programs 
RISC Processor 

Adders\gates, registers 

Transistors 

ircuit Abstractiojn Level 

RTL, Lagic Abstraction Level 

Architectural Abstraction Level 

Modules 

Chips, Boards, Boxes 

Figure 2-1. Diagram of Design Domains for ASIC Design from [4] 

information about a particular implementation becomes evident. An example is one 

might start with an algorithm describing a system and further explain to a description of 

the specific hardware registers and the communication between them that is necessary to 

implement the algorithm. At the lower levels of abstraction, the Boolean equations to 

implement the algorithm would be specified. The goal of most modern design systems is 

to convert a high level specification into a system design in minimum time and with 

maximum likelihood that the system will perform as desired [4]. Once the behavioral 

domain is represented and described, an engineer is ready to cross over to the structural 

domain. This transformation from behavioral to structural can be done either using 

automated software or manually. 
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The structural domain involves creating a structural specification, which specifies 

how components are interconnected to perform a certain function. Basically, the 

structural description is a list of modules and their interconnections [4]. The structural 

domain has levels of abstraction, which include the module level, gate level, switch level, 

and the circuit level. In each successive level, more detail is revealed about the 

implementation. Once again, just like in the behavioral domain, an engineer starts at the 

highest level of abstraction and gradually moves inwards to the lower levels. In Figure 2- 

1, an engineer would start at the processor level and begin to break the processor down 

into manageable parts. Eventually, the engineer would reach the transistor level, which 

would be the lowest level of abstraction. Once this level is reached in the structural 

domain, an engineer can translate the knowledge gained in the structural domain to the 

physical domain. 

In the physical domain, a physical representation for a circuit is used to define 

how a particular part has to be constructed to yield a specific structure and hence 

behavior. Similar to the behavioral and structural domains, various levels of abstraction 

may be defined for the physical representation. For example, the physical layout of a 4- 

bit adder may be defined by a rectangle or polygon that specifies the outer boundary of 

all the geometry for the adder, a set of calls to submodules, and a collection of ports. 

Each port corresponds to an input or output connection in the structural description of the 

adder. The position, layer, name, and width are specified for each port. The calls to the 

submodules are another hierarchical level that includes physical layouts of basic gate 

structures, such as an AND gate. An example of how Figure 2-1 was used for this thesis 

is described below. 
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The initial synchronous design process starts by determining the function of the 

Microdot and then writing behavioral VHDL code to describe the functions. VHDL is 

the Department of Defense (DoD) standard and was used throughout this thesis [5], It is 

only necessary to be concerned with the behavior or functions that the circuit will have. 

Once the behavioral VHDL code was successfully tested, the cross over to the structural 

domain began. 

Some of the structural VHDL code was created by using a VLSI tool called 

Design Analyzer made by Synopsys [6]. The tool takes the behavioral VHDL code and 

translates it into the structural version of the VHDL code; in this structural form, the type 

of each logic gate and interconnection is specified. Certain blocks or modules of 

behavioral VHDL code were not transferred over to the structural domain. However, one 

can use behavioral VHDL code mixed in with structural VHDL code to create the top- 

level interconnected component. Once this structural level is error free during testing, the 

design is ready to transfer from the structural domain to the physical domain. 

The automated structural VHDL code can be entered into a different VLSI tool, 

Lager Octtools, in order to receive a physical layout in the form of the VLSI layout tool 

called MAGIC [7]. The particular blocks that were not automated over to structural 

VHDL code had to be manually laid out and connected to the other blocks in MAGIC. 

Once the entire circuit layout is placed into a pad frame, all the inputs and outputs are 

connected by a place and route tool and then tested. This physical layout is the final 

design and it is sent to the foundry for fabrication. The synchronous design flow is 

shown in Figure 2-2. 
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VHDL 

Synopsys Structural 
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Environment 
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Figure 2-2. Synchronous Design Flow from [8] 

2.3   History of 4-Bit Microcontrollers and Microprocessors 

In 1972 Texas Instruments (TI) introduced the first 4-bit microcontroller called 

the TMS1000 [9]. The TMS1000 integrated a simple 4-bit microprocessor, a 1 kilobyte 

read-only-memory (ROM), and 32-byte random access memory (RAM) on a single chip. 

In 1974, the new microprocessor of the time to be used in electronic calculators was the 

Intel 4004. The chip measured 3.0 by 4.0 millimeters and used two thousand and three 

hundred transistors [9]. If the Intel 4004 were built using 0.35-micron process, it would 

be tenths of a square millimeter in area (without wire bond pads) and cost less than one 

cent to fabricate [10]. The microprocessor industry started with 4-bit microcontrollers 

and microprocessors in the early 1970's and continued on with 8-bit, 16-bit, 32-bit, 64-bit 

chips, and 128-bit chips [10]. As the microcontroller and microprocessor were 

developed, certain advantages and disadvantages became evident to design engineers. 

The microprocessor and microcontroller are similar entities in the fact that they 

are made up of common elements. Some of those elements are SRAM, Arithmetic Logic 

Unit (ALU), registers, input/output ports, and control units. Typically, 4-bit 

microcontrollers are used in embedded applications, which are integrated with the 

memory and Input/Output (I/O) functions. These true single chip computers are low cost 

and can typically do all the work required in many simple control applications. Simple 4- 

bit and 8-bit microcontrollers control microwave ovens, computer keyboards, taxi meters, 
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traffic lights, gas pumps, elevator control, medical instruments, vending machines, and 

digital scales for example, while sophisticated microcontrollers drive cellular phones and 

laser printers [9]. 

The microcontroller has the advantage of being a lower cost product than the 

microprocessor. However, the microcontroller does not have the flexibility of the 

microprocessor. The microcontroller normally takes less power to run than the 

microprocessor, because it is less complex. An engineer, depending upon the application, 

will first look to a microcontroller as a solution because of its less complex design. Some 

simple tasks that are listed above, such as traffic light operation can easily be handled by 

a microcontroller. The microcontroller can be reprogrammed also, just in case some type 

of variation is required throughout the device's lifetime. Reprogramming the traffic 

signal timing is a good example of how minor alterations may need to be made 

throughout the microcontroller's lifetime. In contrast, a microprocessor would be used in 

a more changing environment than an embedded application. Desktop computers, which 

take on many different applications and functions, contain microprocessors which are 

adaptable to many scenarios. Microprocessors typically have bigger memory and control 

elements, because of the wide range of tasks that are expected of them. Bigger elements 

yields a larger microchip area, which always results in a more expensive microchip. 

The Microdot is designed to directly interface to a sensor or actuator in the space 

environment. A nybble is a 4-bit set of data. The on-chip program memory will have a 

capacity of one thousand and twenty-four nybbles in the form of internal Static Random 

Access Memory (SRAM). Memory will be expandable to four thousand and ninety-six 

nybbles with the use of an off-chip SRAM device. The data path is four-bits wide. The 
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instructions are stored in bit-serial fashion. Microdot uses a stack architecture, which 

helps result in a compact implementation of the microcontroller. The modified stack is 

able to hold one hundred and twenty-eight nybbles and have the ability to reach a range 

of stack positions from the top-off-the-stack (TOS) down to the sixteenth position [11]. 

The stack pointer, which points to the current stack address that is being accessed, has the 

ability of being adjusted. A 4-bit set of data is added to the current stack address. 

Therefore, this gives the ability to reach into the stack memory sixteen positions or 

addresses down into the stack. If certain instructions in the Microdot are used in a correct 

sequence, all of the stack's one hundred and twenty eight addresses are able to be 

accessed. A further explanation of this instruction sequence will continue in Chapter 

Three. 

2.4   FPGA Design versus ASIC Standard Cell Design 

The initial design for the Microdot was done using Altera VHDL software. This 

software is an initial design step in behavioral domain towards creating an IC design 

using an FPGA [1]. Both FPGA and ASIC standard cell design have distinct advantages 

and disadvantages. 

The advantages of an FPGA design are lower non-recurring engineering (NRE) 

costs and greater flexibility [12]. FPGA chips are sold from manufacturers and the 

customers program the chips to do their desired function. The compiler software usually 

only needs to know what function the FPGA needs to perform in order for the chip to be 

programmed [12]. This process takes much less time than going through a synchronous 

design process, where the designer has to step through each level of design [12]. Overall, 
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less engineering design hours yields a lower NRE cost compared to an ASIC standard 

cell design [12]. 

FPGA chips have great flexibility, because of the easy access to correct design or 

logic mistakes. The customer can reprogram some types of FPGAs, after finding an 

error, as many times necessary to get the FPGA to function correctly. After an ASIC 

standard library cell design has been fabricated at a foundry, any errors found will most 

likely not be able to be fixed by the customer until a redesign and a new fabrication run is 

complete. FPGA designs clearly have a shorter turnaround time than an ASIC standard 

cell design [12]. 

ASIC standard cell design advantages include lower power consumption, faster 

processing speed, and greater area efficiency [12]. Many FPGA designs only use sixty to 

eighty percent of a given die, which results in unused area on the silicon wafer [12]. The 

ability to put an extra twenty to forty percent of functionality on the same size die helps 

to partition the design in order to minimize the connections to the outside world. The 

minimization of Input/Output (I/O) buffers can drastically reduce power consumption and 

increase speed by eliminating the capacitance associated with the removed I/O buffers 

[12]. Figure 2-3 summarizes the performance versus ease of modification tradeoffs made 

for different technologies including the FPGA and ASIC standard cell designs. 

A full custom IC design involves an engineer manually laying out each individual 

transistor and element. The full custom IC design has the advantages of fastest speed, 

least amount of area, minimum power consumption, and least volume cost. However, the 

full custom design has the disadvantages of high non-recurring engineering costs and low 

flexibility. The standard cell IC design is a design involving a standard set of gates 
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Figure 2-3. Technology Choice for Microprocessor Design from [13] 

which have similar height dimensions, so they can be connected together easily. An 

engineer would build the standard cells or receive them from a foundry, but no 

modification would take place on the transistor level. An automated layout tool or 

manual connection of the standard cells would be done to create the integrated circuit. A 

standard cell design would be slower, take up more area, consume more power, and have 

a higher volume cost than the full custom design. However, the non-recurring 

engineering costs would be less and there would be more flexibility than the full custom 

design. Gate arrays are regular structures of repeating types of gates. There are three 

types of gate array structures including channeled, channelless, and structured. The 

channeled gate array is manufactured by only customizing the interconnections between 

all the gates in the array. There are channels set aside between each row of gates that are 

used for interconnections. A channeled structure has the advantage of being easy to 

design, layout, and route. However, the channeled gate array uses twice the area of the 
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channelless gate array. The channelless gate array contains no set aside area for routing, 

but connects the gates using contact layers of metal that are laid on top of the gates. The 

gates that are not used are simply not contacted by the metal layers. The logic density is 

much greater than the channeled gate array, since area is not set aside for 

interconnections. Therefore, the advantages of the channelless gate array are smaller area 

and faster speed than the channeled gate array [3]. The disadvantage of the channeled 

gate array is the routing and interconnections are more complex than the channeled gate 

array. Finally, the structured gate array is an embedded gate array which sets aside some 

IC area and dedicates it to a specific function. The embedded gate array either can 

contain a different base cell that is more suitable for building memory cells, or it contain 

a complete circuit block, such as a microcontroller. The structured gate array has the 

advantage of a quick-turnaround time, improved area efficiency, lower cost, and 

increased speed and power performance. The disadvantage of the structured gate array is 

the embedded function is fixed, so flexibility is greatly limited. The gate array design 

falls in the middle of the rating for the performance and ease of modification factors. 

Programmable Array Logic (PAL), Programmable Read-Only Memory (PROM), and 

Field Programmable Logic Array (FPGA) fall closely together in Figure 2-3. The PAL 

and the PROM are classified in the family of Programmable Logic Devices (PLDs). 

PLDs are available in standard configurations that may be programmed for a specific 

application. A PROM is a device with a matrix of logic macrocells to be used as memory 

cells. A PAL is a device consisting of a programmable AND plane and a fixed OR plane 

[3]. By using combinations of different types of gates, the device can create numerous 

kinds of functions that the engineer requires. Some devices are programmed by applying 
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high voltages or blowing metal fuses. The most useful devices for a changing 

environment is a reprogrammable PLD, which uses a high voltage to initially program 

and to erase old programs. These devices have a quick-turnaround, since they can be 

programmed rather quickly. However, there is a high volume cost for these devices and a 

lesser performance results from non-optimization of logic. An FPGA is a step above a 

PLD in complexity. There is very little difference between an FPGA and a PLD. Some 

types of FPGAs can be reprogrammed in the field, which yields excellent flexibility. The 

microprocessor is the easiest design to modify, but its performance is the worst. An 

extreme amount of flexibility is built into a microprocessor, because of the wide range of 

duties that it may need to perform. However, the drawback for making a component so 

diverse is that it is not exceptional in any one task. The obvious advantage of the 

microprocessor is flexibility. The disadvantages of a microprocessor are high power 

consumption, high non-recurring engineering cost, and large area. Depending upon the 

application, this may be the best type of design to go with, because it may not need to be 

replaced only just reprogrammed [3]. 

After deciding on which kind of design is best for the application, an engineer 

must determine what kind of architecture the final product is going to operate in. The 

system architecture can help lead to design solutions along the design process. An 

important feature of designing a microcontroller or microprocessor is what kind of 

environment or architecture the device or component will operate in. 

2.5   Decentralized versus Centralized Architecture 

A centralized architecture or system consists of a single processor with its own 

memory, peripherals, and even possibly a few terminals. In the early 1970's, centralized 
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architectures or systems were prominently known as mainframes [14]. During that time, 

the economic climate maintained high prices for any kind of computer especially those 

using centralized architecture. A classical law made by Herb Grosch, computer guru, 

stated that the computing power of a central processing unit (CPU) is proportional to the 

square of its price [14]. However, due to today's microprocessor technology this law no 

longer holds true [14]. Nowadays, by paying twice the amount of money, a person will 

get basically the same CPU, but at a higher processing speed. Because CPUs can be 

manufactured inexpensively, it is much easier and cost effective to create a powerful 

system by connecting multiple CPUs in to a distributed or decentralized architecture. 

It is easier to understand the premise for decentralized architecture by describing 

the internet. The internet uses network hierarchy to create a Wide Area Network (WAN), 

which is then connected to a Local Area Network (LAN), thus providing millions of 

people access to the internet at the same time [11]. System control is embedded into the 

lower hierarchical levels. This is described as embedded control, where each level in the 

hierarchy has enough control to report back up the chain of hierarchy if a problem arises. 

However, if no problems exist the lower hierarchical levels have enough power and 

control to manage their individual sectors. 

A decentralized or distributed architecture has many advantages over centralized 

architecture. First, the price to performance ratio in a decentralized system is much better 

than in a centralized system [14]. A group of microprocessors is able to perform tasks 

that a single mainframe cannot [14]. A more powerful system can be built using a 

decentralized architecture (multiple CPUs) and usually at a lower cost. Another 

advantage of distributed systems is that many jobs are inherently distributed by nature. 
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One example is a vending machine company wanting to know the status of its vending 

machines all over a city. By placing small microcontrollers in the vending machines that 

will communicate a status back to a central location, the vending machine drivers can 

more accurately plan their route for the day and be more efficient [11]. Another example 

is taking in temperature data from different sensors all at different locations within a 

satellite. The satellite controller may just want to know overall temperature of the 

satellite, but also know local temperature data on a particular circuit board [11]. One of 

the most important advantages is higher system reliability. The workload is spread out 

across many microcontrollers in a distributed architecture so, if one breaks down, perhaps 

only 3% of the system performance is lost [14]. For a single mainframe, if a problem 

occurs the whole system could be down and unavailable. Errors still occur in a 

distributed system, but overall availability and reliability are higher because an error may 

not significantly affect the overall performance. The last advantage of decentralized 

architecture is the ability to expand the system when growth needs to occur. Since the 

system is already set up for multiple processors, adding another processor is less work, 

time, and money than restructuring a single mainframe or buying a whole new mainframe 

in a centralized architecture [14]. 

2.6   Radiation Hardening of Electronics 

The term "radiation-hardening" originated from the military needing a type of 

electronics to operate in a radiation environment [8]. Many space and nuclear 

applications require some sort of radiation protection. However, due to high cost factors 

of radiation hardness, military electronics are designed to be "radiation-tolerant" versus 

"radiation-hardened" [8]. The difference between "radiation-hardened" and "radiation- 

2-13 



tolerant" is dependent on the amount of radiation a part can withstand before failing or 

malfunctioning [8]. The specific amount of radiation protection defined to each term is 

different depending on the user (commercial or military engineer). The unit of radiation 

typically used is the "rad" [15]. A rad is equal to one-tenth a Joule per kilogram [15]. 

From a military perspective, 100 kilorad (Si) is considered "radiation-tolerant" and 1 

megarad (Si) is considered "radiation-hardened" [15]. However, when discussing levels 

of radiation protection, one must keep in mind the various types of radiation. For 

example, by saying that a circuit is 100 krad (Si) tolerant to total ionizing dose radiation 

does not describe the tolerance for any other type of radiation [15]. Therefore, it might 

be necessary to perform radiation tests to determine the degree of dose rate or single 

event protection for that same part. There are many methods that can be used to protect a 

circuit from radiation and several of them are discussed in this section. 

2.6.1    The Need for Radiation Protection 

The U.S. Department of Defense and the United States Air Force need radiation- 

tolerant circuits. These circuits are used in the space and nuclear environment. The 

overall effort to make circuits radiation-tolerant is broken up into three categories of 

radiation exposure: long-term total ionizing dose, short-instantaneous dose rate, and 

single event effects [15]. I begin by discussing the effects of total ionizing dose on 

circuitry. 

2.6.1.1   Total Ionizing Dose 

Total ionizing dose is the accumulation of radiation, usually measured in rads, in 

a circuit over a long period of time. The radiation comes in the form of high-energy ions, 
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gamma rays, X-rays, protons, low-energy protons, electrons, and neutrons. Radiation is 

induced by either a nuclear detonation, sun-induced solar winds, or a galactic-induced 

event in space. Electron-hole pair creation occurs in CMOS transistors when energetic 

particles bombard the CMOS circuitry. Silicon dioxide is used as an insulator underneath 

the gate junction and in between transistors [15]. The energetic particles disrupt the 

charge balance of the silicon dioxide (Si02) in the n-channel and p-channel transistors 

and create ionization paths. Typically, the Si02in CMOS circuitry is broken up into two 

regions, the gate oxide and the field oxide [15]. The gate oxide is a thin high-quality 

oxide that separates the channel and the gate contact of the device. The field oxide is a 

thick low-quality oxide that separates the different levels of metal or polysilicon wire 

runs.   At the Si02-Si interface in the gate region, there are dangling bonds formed from 

the lattice mismatch, which make electrically active interface states [15]. The electron- 

hole pair generation has a secondary effect of causing additional interface states at the 

Si02-Si interface [15]. Thus, an induced charge sheet is formed which affects the 

transistor's performance characteristics. Radiation-induced interface states affect the 

CMOS transistor in many different ways. These effects are the lowering of the 

transconductance, softening the drain current versus gate voltage curve, additional 

threshold voltage shifts causing turnaround, and generating 'slow states' which result in a 

slow drift of threshold voltage over time [15]. 

Electron mobility is higher than hole mobility; therefore the electrons sweep out 

of the oxide and leave behind trapped holes in the oxide [15]. The holes tend to migrate 

to the Si02-Si interface and create a positive image charge on the channel, which is 

equivalent to a positive voltage applied to the gate contact. This positive charge build-up 

2-15 



reduces the threshold voltage for an NMOS transistor, thus moving the drain current 

versus gate voltage curve to the left as shown in Figure 2-4. An NMOS transistor will 

become easier to turn on, and with enough charge build-up a leakage current will occur in 

the channel, thus increasing the circuit's power consumption [15]. 
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Figure 2-4. I-V NMOS Curve [15] 

Another source of power consumption is channel formation in the bird's beak 

region of the NMOS transistor. The bird's beak region is where the gate oxide meets the 

field oxide at the edge of the NMOS transistor [16]. Positive charge build-up in the oxide 

forms a leakage channel between the source and drain region of. the device, as shown in 

Figure 2-5. An additional leakage path can occur between neighboring NMOS transistors 

with charge build-up in the field-oxide. This leakage path will further increase power 

consumption for the CMOS circuit [15]. 
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Figure 2-5. Bird's Beak Region in NMOS Transistor [17] 

An opposite effect occurs in the PMOS transistor where positive charge build-up 

makes the transistor more difficult to turn on [15]. Therefore, the accumulation of charge 

at the Si02-Si interface shifts the drain current versus gate voltage curve to the left 

increasing the negativity of the PMOS transistor's threshold voltage, as shown in Figure 

2-6. 

With enough charge build-up, the threshold voltage can reach a value outside of 

the power supply's range and the PMOS transistor will not be able to turn on [15]. 

As total ionizing dose increases, the performance of the CMOS circuitry 

degrades. Also, as the total ionizing dose increases, the standby power supply current 

increases, which will eventually cause breakdown in a spacecraft due to the limited 

amount of available power from the power supply [15]. Figure 2-7 shows that as 

radiation increases the maximum operating frequency goes down, which results in slower 

operation of the microprocessor [18]. The decrease in operating frequency could cause 

failure in whatever system the microprocessor is responsible for [18]. 
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2.6.1.2 Dose Rate 

Dose rate is the amount of radiation taken in by the CMOS circuitry per second. 

Typically, dose rate effects are related to a nuclear detonation where a rapid time 

variation of particle radiation occurs in the CMOS circuitry. Besides nuclear weapon 

induced dose rates, there are lower dose rates caused by normal particle flow in outer 

space. Weapon dose rates will be in the range of 104 to 1012 rad (Si) per second and 

space background rates are on the order of 10 rad (Si) per second [19]. The main product 

of high dose rates from nuclear weapons is photocurrent generation throughout the 

circuitry. Extra current can generate rail collapses or voltage sags, which may cause 

device burnout [19]. Different dose rates have different effects on the CMOS circuits. 

Figure 2-8 illustrates, that at lower background dose rates found in the space 

environment, the threshold voltage shift is positive, where at higher dose rates the shift is 

negative [18]. 

The difference is the reduction of oxide-trapped charges at lower dose rates and 

an increase in interface states. Different oxide regions, depending on the value of the 

dose rate dominate the leakage current. At lower dose rates the gate oxide dominates the 

leakage current whereas at higher dose rates the field oxide is dominant as shown in 

Figure 2-9 [18]. 

2.6.1.3 Single Event Effects 

Single Event Effects (SEE) are caused by a high energy particles that impact the 

CMOS circuitry. A single event is a one time occurrence that the circuit experiences. 

These particle strikes happen at particular points on the circuit board and are not a 

blanket strike encompassing the whole circuit board. There are four basic types of SEE, 
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which are Single Event Upset (SEU), Single Event Latch-Up (SEL), Single Event 

Burnout (SEB), and Single Event Gate-Rupture (SEGR). 

An SEU is caused by the energetic particle striking a sensitive node of the 

memory device as shown in Figure 2-10. SEU manifests by causing a bit-flip in memory 

devices. 
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Figure 2-10. Sensitive Nodes for a SEU in a Typical SRAM [15] 

The excess charge of the particle causes a memory cell to lose its current value 

and change the storage cell to hold the opposite value. This event is not permanent and 

the old memory value can be rewritten back into the memory cell [15]. 

SEL occurs when an energetic particle strikes the p-n junction containing the base 

region of the lateral parasitic p-n-p and n-p-n bipolar transistors located between an n- 

channel and p-channel transistor. The two parasitic transistors form a thyristor that self- 

reinforces itself to be in the "on" condition. This event is permanent and potentially 
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destructive to the circuit. The only way to turn off the thyristor is by powering down the 

circuit and then reapplying power. The lateral parasitic bipolar transistors in the n- 

channel and p-channel transistors can be seen in Figure 2-11 [15]. 
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Figure 2-11. Lateral Parasitic Bipolar Transistors found in CMOS P-N-P-N Structure 
from [15] 

SEB occurs when the drain-to-source voltage of the device exceeds the local 

breakdown voltage of the parasitic bipolar transistor; the device can burn out due to large 

currents and high local power dissipation. This event is of a permanent nature and cannot 

be repaired or worked around [15]. 
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SEGR occurs when a heavy charged particle blows a hole through the thin gate 

oxide. Circuit failure is an eminent result of gate oxide failure. This event is also of a 

permanent nature and cannot be repaired [15]. 

2.6.2   Methods of Radiation Hardening 

After reviewing the unfortunate effects of radiation damage, a clear motivation to 

protect against these occurrences arises. There are three different areas that can help 

CMOS circuitry be radiation-tolerant. First, shielding of a device will help stop some of 

the particles from reaching the CMOS circuitry or lower the particle's energy that does ! 

reach the circuitry. Next, fabrication of the wafers that the circuitry is manufactured on 

contains special characteristics to help protect against some radiation effects. Finally, 

layout techniques can smartly target areas of known weakness for CMOS circuitry and 

work to strengthen the circuitry overall [15]. 

2.6.2.1   Radiation Hardening through Shielding 

Shielding aids CMOS circuitry by producing the following effects: stopping a 

particle; lowering a particle's energy; creating generation of secondary particles. 

Although, shielding is not the only solution to radiation hardening and cannot always be 

utilized. Many tradeoffs, such as thickness and increase launch costs, must be considered 

when assessing shielding. A typical thickness for shielding is 200-300 mils of aluminum 

(Al). Figure 2-12 illustrates that between 200-300 mils of Al is a reasonable thickness, 

because thicker shielding results in only a small increase in protection for an extremely 

higher cost. The result is less value for the dollar, therefore shielding only protects 

CMOS circuitry to a certain point [15]. 
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Figure 2-12. Shielding Advantage of Minimizing Total Ionizing Dose Radiation [15] 

2.6.2.2   Radiation Hardening through Fabrication 

Fabrication processes such as epitaxial-layer growth, Silicon-On-Sapphire (SOS), 

Silicon-On-Insulator (SOI), and quality oxide growth will help make CMOS circuitry 

radiation-tolerant. 

To help suppress single event latch-up (SEL), the use of an epitaxial layer is a 

very useful fabrication technique. For the broader range of CMOS technologies, 

hardening against latch-up may be achieved by the use of a lightly doped epitaxial layer 
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on a heavily doped (low resistivity) substrate. The low-resistivity substrate degrades the 

gain of the parasitic bipolar transistors and limits base-emitter junctions. Also, the 

substrate acts as an effective charge collector. Optimization of the resistivity and 

thickness of the epitaxial layer is important in order to achieve adequate immunity to 

latch-up. An example of what the epitaxial layer and normal processed bulk CMOS look 

like is shown in Figure 2-13 [17]. 
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Figure 2-13. Bulk CMOS and Epitaxial CMOS Structures [17] 

Another fabrication technique that helps with radiation hardening is SOS. SOS is 

a more complex form of dielectric isolation. A single-crystalline silicon film is grown 

over a sapphire substrate. The silicon island is doped to make an n-channel or p-channel 

transistor. Sapphire is a dielectric that has an inherently high tolerance to radiation. The 

sapphire protects the device against dose rate and single event effects. Leakage currents 

cannot flow between devices because the transistors are built on an insulating substrate. 

Therefore, guard rings that limit leakage current between transistors are unnecessary in 

SOS, and active devices can be packaged closer together. Also, there are no parasitic 
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bipolar transistors to latch-up, because the n-channel and p-channel transistors are in 

complete isolation. Figure 2-14 illustrates the SOS CMOS structure [17]. 
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Figure 2-14. SOS and SOI CMOS Structures [17] 

SOI technology is very similar to the process described above and used for SOS 

devices. Therefore, SOI and SOS have similar advantages. The only basic difference 

between them is the specific substrate used in each process. SOI uses SiÖ2 for its 

substrate and SOS uses sapphire for its substrate. Silicon-on-Insulator devices can be 

fabricated using several techniques. One of those techniques is called SMOX, or 

Separation by Implanted Oxygen [15]. In SMOX, a high-current ion-implantation 

system is used to deposit a heavy concentration of oxygen molecules in a layer a couple 

of thousand angstroms below the wafer's surface. The wafer is then thermally annealed, 

and the oxygen forms a continuous Si02 layer beneath the silicon surface. The annealing 

process also is beneficial because it anneals damage in the top silicon layer caused by the 

implant. Therefore, a thin, high-quality layer of silicon is left on top of an insulating 

layer of Si02. This silicon is then ready to be used for device fabrication. Another 

2-26 



helpful fabrication technique is building the transistors on a mesa. The process involves 

etching the silicon away between two active transistor areas and growing oxide in this 

etched region, thereby completely isolating the devices. The dielectric-isolation plane 

created by the SIMOX process enables increased circuit speeds and radiation tolerance. 

When utilizing this fabrication technique with smaller devices, it is important to keep in 

mind that a back-channel leakage can occur in n-channel devices as trapped positive 

charge build up occurs in the buried oxide [17]. Figure 2-14 illustrates the SOI CMOS 

structure. 

2.6.2.3   Radiation Hardening through Layout 

Several layout techniques assist in making a CMOS circuit radiation-tolerant. 

The way a transistor is drawn in the design process makes a difference in both the amount 

of leakage current and the single event susceptibility the overall circuit will have. 

Additional layout features such as guard rings, extra contacts, limiting fan-in and fan-out, 

and increased transistor sizing aid in circuit protection from radiation [17 and 20]. Two 

of the most common transistor layouts for radiation hardening are the annular and the 

dog-bone. Each of these special layouts is designed to protect against edge leakage in the 

bird's beak region. 

The annular layout involves a drain region that is surrounded by polysilicon 

routing which forms a box shape around the drain region. The diffusion on the outside of 

the box shaped polysilicon is used as the source region. This layout has the advantage of 

eliminating the possibility for any edge leakage to occur in the bird's beak region of the 

transistor. With this layout, source-to-drain leakage can be avoided by forcing all source- 

to-drain current to run underneath the gate oxide, using an enclosed gate (or edge-less) 
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geometry. Any current between the source and drain has to flow underneath the gate. 

Therefore, there is no current path underneath the field oxide or along the edge of the 

active area. The main disadvantage to this layout is the cost of increased layout area for 

the circuit [21]. Figure 2-15 illustrates the annular layout. 
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Figure 2-15. Annular Layout from [16] 

The dog bone layout consists of a wider polysilicon edge the diffusion region. 

This creates a longer channel in the bird's beak region. By changing the effective width- 

to-length ratio, widening the polysilicon at the edges decreases the amount of leakage 

current. Although this reduces the leakage current it does not completely eliminate it. 

Disadvantages of this design include a decrease in the effective width of the intrinsic 

transistor, an increased gate capacitance, increased area, and difficulty and complication 

of the layout [21]. Figure 2-16 illustrates the dog bone layout. 

Guard ring structures are heavily doped diffused regions that encircle the well and 

therefore prove to be another helpful radiation tolerant layout technique. They are very 

effective in preventing latch-up. Two types of guard rings exist, minority carrier guards 

and majority carrier guards [20]. Since CMOS devices form channels in the gate region 
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N+ Source 
Polysilicon Gate 

N+ Drain 

Thin Oxide Boundary. 

Figure 2-16. Dog Bone Layout [16] 

using minority carriers in the well, the focus will be on the minority carrier guard rings. 

Minority carrier guards have an opposite doping type to that of the region in which they 

are formed. Therefore, they are able to collect injected minority carriers before they can 

cause a fault or upset in the circuit. Guard rings are placed in the substrate outside the 

well edge of a p- and/or n-well with frequent contacts to the rings. This reduces the 

parasitic resistances. Inherently, a guard ring eliminates the inter-transistor leakage 

current that occurs when the field oxide charges from the collection of excess charge and 

by increasing the spacing between neighboring transistors, thus lengthening the leakage 

path. As the length of a leakage path increases, it takes more excess charge or radiation 

to start or connect the two ends of the path, which causes leakage current. Figure 2-17 

illustrates a CMOS inverter with a guard ring implementation [20]. 

Typically, commercial CMOS circuits designed for high packing density and high 

speed will minimize the space between n-channel and p-channel sources, and will use 

infrequent well and substrate contacts. The increase of well contacts will reduce latch-up 

susceptibility. The well contacts should be connected to the supply voltage (Vdd) or 

ground (Vss) to collect any injected charge. Plus, adding additional substrate contacts 

will help stabilize the transistors when they encounter a single particle strike. A lambda is 

a unit of length used in the VLSI CAD tool called MAGIC. The visual interface for 
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Well Contacts 

Figure 2-17. Guard Ring Structures [20] 

MAGIC lays out a grid pattern broken up into squares, where each square equals one 

lambda. The contact spacing (body tie) should be no more than two squares or lambda 

apart in the circuit layout and should be placed between transistors to help deter latch-up. 

The extra body ties at the p-well/n-well interface will increase single event upset 

performance [20]. 

The terms fan-in and fan-out refer to the number of gates connected to the inputs 

and the output of a combinational logic gate. Typically, commercial CMOS circuits are 

designed to handle voltage fluctuations and to provide increased drive strength for the 

operation of running high fan-in and fan-out. The demand put upon high fan-in/fan-out 

transistors in order to drive certain large loads may not be realistic once exposed to some 

total ionizing dose radiation. Fan-in/fan-out limitations depend on the available 

technology, but it is a sound engineering principle to keep the fan-in/fan-out to a 

minimum [20]. 
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Since it is known that the threshold voltages will change for n-channel and p- 

channel transistors following exposure to radiation, it is important to try to plan ahead for 

the expected post exposure changes. Electron mobility is higher than hole mobility, thus 

producing unequal drive strengths between NMOS and PMOS transistors. Therefore, 

some threshold voltage variance should be designed into the circuit and transistor PMOS 

to NMOS width ratios should not reflect the typical 2:1 ratio. A safety margin is 

designed-in to increase the PMOS width to NMOS width ratio to 3:1. However, with all 

the modifications designed to keep the transistor functional after radiation exposure the 

transistor still needs to be able to operate under normal conditions (i.e. at the beginning of 

the circuit's operational lifetime when total ionizing dose is zero). Figure 2-18 illustrates 

the width and length of a CMOS transistor. By changing the size of the polysilicon gate, 

the drive strength of the transistor will change. Typically, the length remains constant 

and, to either increase or decrease the drive strength, the width will be increased or 

decreased. 

Figure 2-18. Width and Length of a CMOS Transistor [12] 
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2.6.3 Previous Research 

Previous research on the Microdot was accomplished by Dr. Greg Donohoe and 

Mr. Jim Lyke of Air Force Research Laboratory at Kirtland Air Force Base, New 

Mexico. Dr. Donohoe and Mr. Lyke wrote the behavioral VHDL for the Microdot, 

which was broken up into five modules. The five modules are the following: control; 

program memory; arithmetic logic unit (ALU); modified stack; input/output module [1). 

Their design implementation used FPGAs for the control module. An instruction set and 

modified stack architecture implementation was adapted from older stack machines such 

as the Forth and Java Virtual Machine [1]. This architecture definition and description 

are adequate for this implementation; however, in this effort, the five modules are 

implemented using an ASIC radiation-tolerant standard library cell design. 

2.6.4 Performance Comparison 

The key reason to compare design and performance parameters between the 

historical 4-bit, 8-bit, 16-bit devices is to set appropriate design goals for the ASIC 

Microdot. The Microdot did not have set design parameters for power delay product, 

speed, and size. However, due to the nature of the space application, the order of 

importance for the design parameters is power delay product, size, and speed. Speed is of 

minimal importance because of the nature of the application the Microdot will perform. 

By sampling temperature or chemical sensors, readouts do not have to be made at an 

accelerated processing speed such as 50 or 100 MHz. Simply to sample data once a 

second would be enough useful information for the ground station to have for a satellite. 

By slowing the clock speed down to the Hz range rather than kHz, the Microdot is able to 

operate while consuming less power. The minimization of the power delay product is the 
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main goal of the Microdot. Table 2-1 shows 1993 4-bit microcontrollers performance 

parameters and displays current Microdot goals. These goals are based on previous 

microcontroller parameters and by adding in the advantage of the 0.35-micron TSMC 

process. A definite disadvantage over commercial microcontrollers for the Microdot will 

be making the microcontroller radiation-tolerant, which will increase area and power 

consumption. The area of the design should be optimized, in order to minimize power 

consumption and increase efficiency. 

Table 2-1. 4-bit Microcontroller Design Parameters from [22] 

Serial # Manufacturer Part Number Power Consumption Operating Frequency 
1 Fujitsu MB88xxxH >100 microwatt range 666.7 kHz 
2 OKI MSM505X 4.5 microwatts 8 kHz 
3 Sharp SM530 18 microwatts 11 kHz 
4 Sharp SM500 60 microwatts 16.4 kHz 
5 TSMC/AFIT Microdot < 50 microwatts at the Hz or low kHz range 

Another performance parameter, which specifically has to do with the space 

environment, is radiation tolerance or hardness. The mission needs and requirements of 

the United States Air Force will set the goal for the Microdot's radiation tolerance value. 

Table 2-2 illustrates some radiation information on different microprocessors and also 

displays the minimal radiation tolerance goals for the Microdot. 

Section 2.6 involved discussions about the different types of radiation, radiation 

effects on circuitry, radiation protection for electronics, and finally goals for the ASIC 

Microdot design. Total ionizing dose, dose rate, and single event effects were explored 

in detail. Also, radiation protection through shielding, fabrication, and layout were 

investigated. Finally, radiation goals were discussed for the Microdot design. 
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Table 2-2. Ionizing Dose, Dose-Rate, and SEU response of ca, 1990 representative 
microprocessors from [19] 

Ser. Microprocessor Manufacturer Technology 

Ionizing Dose 
Failure 

Threshold Dose Rate 
Threshold 

(109 Rads/s) 

Dose 
Rate 
Pulse 
Width 
(ns) 

Threshold LET 

(MeV*cm2/mg) 
Krad 
(Si) 

@ 
Rads/s 

1 SA3000/80C85RH Sandia/HA CMOS-Epi 1000 1.9 20-50 120 

2 GP 501 RCA CMOS/SOS 1000 130 

3 SA3300/NS32016 Sandia/NSC CMOS-Epi 5000 27.8 1 1000 30/120 

4 80C186 INT CMOS 8 125 

5 68020 MOT CMOS 3 150 

6 GVSC IBM CMOS/SOS/SOI 3000 76.8 1/1 E3 30 120 

7 1750 A RCA CMOS/SOS 1000 1.0 20 8.5 

8 GP001 RCA CMOS/SOS 1000 112 45 20 75 

9 80C85 HA CMOS-Epi 100 0.3-0.5 75 

10 TMP 320C25 TI CMOS-Epi 52.6 207 0.26 20-50 

11 80C86 HA CMOS-Epi 4 39.3 0.1 35 5 

12 Microdot TSMC/AFIT CMOS-Epi 250 at least 10-3 

2.6.5    Conclusion 

The goal of this thesis is to design a low power, small, and efficient 4-bit 

microcontroller able to operate in a space environment. This chapter covered 

synchronous design flow, the history of 4-bit microcontrollers and microprocessors, 

FPGA versus ASIC standard library cell design, decentralized versus centralized 

architecture, and radiation hardening of electronics. The last section compared 

performance parameters of several kinds of microprocessors and microcontrollers 

developed for commercial use and for the space environment. The key motivation for the 

Microdot is to improve on these previous performance and design parameters using the 

0.35-micron process along with radiation hardening techniques, to improve spacecraft 

mission lifetime and safety. 
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3.   Design Overview 

3.1    Design Constraints 

There are two key issues of design involving the Microdot microcontroller. First, 

an important task to be undertaken is optimizing the Microdot for minimum power 

consumption. Since the Microdot is programmable, inherently it can be used in many 

different scenarios. For example, a satellite has a limited amount of power that is 

produced by the solar panels of the satellite. As time goes on and the solar panels 

degrade due to radiation effects in the space environment, the total amount of power 

available to the satellite operations decreases. The Microdot microcontroller needed to 

be designed for minimum power consumption in order to achieve a particular satellite's 

mission lifetime. The final issue that played a part in the design of the Microdot was the 

actual size that the layout would yield. This issue connects to the previous issue of power 

consumption, since a larger microchip would need more power to operate due to larger 

capacitances throughout the circuitry. A goal was set for the Microdot to not be larger 

than 5 square millimeters or 2.2 millimeters on a side. The area goal was set to keep 

power consumption low and the design as compact as possible. The requirement for the 

Microdot to contain on-chip Static Random Access Memory (SRAM), which takes up a 

large amount of area, presented the biggest challenge. Chip area needed to be as small as 

possible without constricting routing between different elements in the Microdot. All of 

these design constraints were taken into consideration when designing the Microdot. 
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3.2   Microdot Design 

The Microdot design is of a hierarchical nature. The Microdot microcontroller is 

made up of seven blocks and an expandable SRAM unit that is located off-chip. The 

seven blocks are made up of forty-five elements. The seven component blocks are 

broken into different functional areas that the Microdot needs and has to perform its 

overall mission. 

The seven blocks are the Program Memory, Stack, Arithmetic Logic Unit (ALU), 

Input and Output (I/O), Data Acknowledge, and the Status Multiplexor. Each functional 

block was created to improve the design, test, and building of the Microdot. 

The Program Memory is the block, which stores the programs to run the 

Microdot. It also keeps track of the memory address for the on-chip SRAM and the 

expandable off-chip SRAM units. In addition, it is responsible for sending out 

instructions and other types of information. 

The Stack is the block, which is capable of storing data from different blocks and 

off-chip. It also keeps track of the stack memory address by the use of a stack pointer. 

The stack pointer points or directs data flow to a memory address within a stack. 

The ALU block performs different kinds of arithmetic operations on data from the 

Stack block. In addition, the ALU block sends status signals to the Control block. 

The I/O block is responsible for controlling bi-directional ports, which can be 

either used as an input or an output. 

The Data Acknowledge block sends handshaking signals for programming 

purposes off-chip to whatever device is programming the Microdot. 
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The Status Multiplexor block is used to test the fabricated Microdot once back 

from the foundry. It is not necessary for the Microdot to run its tasks, but helps the 

designer see into the numerous data lines within the Microdot. The Status Multiplexor 

block adds to the design-for-test functionality, which is built into the Microdot. The 

hierarchical nature of this microchip design, under which less errors occurred and 

productivity increased, yielded a system of checks that occurred at different hierarchical 

levels. This hierarchical structure for the Microdot is shown in Figure 3-1. 

The Microdot can be programmed from any device that can send a program and 

communicate with handshaking signals. Microdot performs 23 different instructions and 

does not incorporate any special provisions for interrupts or subroutines. It is designed to 

perform one task, which would be sensor data input manipulation, recording, and 

reporting of data to a master microprocessor within a hierarchical network. Microdot is 

capable of controlling an off-chip SRAM unit, which expands the 4-bit memory 

allocations from 1024 to 4096. The first 1024 memory addresses are located in on-chip 

SRAM and controlled primarily by on-chip resources. The Microdot is a self-contained 

microcontroller capable of running small programs that are less than or equal to 1024 4- 

bit instructions. However, it can accommodate larger programs up to 4096 instructions 

with the help of an off-chip SRAM unit. Microdot was intended to be connected to a 

master microprocessor, which would program the Microdot and read sensor data through 

four data lines. 

It is crucial to understand the instructions the Microdot can perform, before 

understanding actually how the Microdot was built to perform these instructions. An 

operand for the Microdot contains 4-bits, since the Microdot is a 4-bit microcontroller. 
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Figure 3-1. Microdot Hierarchical Structure 

The Arithmetic Logic Unit (ALU) instructions contain two types of instructions. 

There are two operand instructions and one operand instructions. First, the two operand 

instructions are Add, Subtract, Add with Carry, Subtract with Carry, And, Or, and 

Exclusive-Or (XOR). The single operand instructions are Not, Shift Left, and Shift 

Right. The And, Or, and XOR instructions are bit-wise operations. In addition, the Shift 
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Left and Shift Right instructions use the Carry Bit as the data bit to shift into the operand 

and the data shifted out of the operand becomes the Carry Bit. The Stack instructions 

contain pop, push, load, store, duplicate, swap, and pick. The POP instruction simply 

reads the data at the top-of-the-stack (TOS) address onto the output data lines of the 

stack. The opposite of the POP instruction is the PUSH instruction, which writes data 

from the TOS register to the SRAM cells selected by the stack address. The LOAD 

instruction latches the data input lines, which are selected as inputs by the mask register 

into the TOS register. The STORE instruction sends the TOS register 4-bit output to the 

output lines of the Microdot, however each data line needs to be declared an output by 

the mask register in order to be sent off-chip. The mask register is an element, which 

simply sets the four bi-directional ports to either an output port or an input port. If a bi- 

directional port is set to be an input port and data gets sent to the port for output, the data 

will not be outputted and sent off-chip. The DUPLICATE instruction (DUP) simply 

duplicates the TOS element from the TOS register or TOS cache into the current stack 

address. The SWAP and PICK instruction can be used together to reach any 4-bit data 

set in any one of the 128 stack addresses. The SWAP instruction exchanges the TOS 

with any element within the stack (TOS-n). The PICK instruction copies the (TOS-n) 

data to the TOS. The next set of instructions has to do with the input/output module of 

the Microdot. The SETIO Mask instruction will set control bits for the input/output lines 

and force each line to be an input or output based on the particular control bit value for 

the line. The WAIT instruction sets the Microdot is a passive mode until an input line 

connected to some element off-chip produces a different value on the line than the TOS 

line has. Once a different value is detected on any of the four lines, the waiting is over 
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for the Microdot and the next instruction is loaded. Finally, there are four miscellaneous 

instructions, which do unique tasks to specific Microdot elements. The LOADRAM 

instruction will write the data on the TOS register output lines into the stack 

corresponding to the stack address. The SKIP instruction is set up to increment the 

program memory address by as many as three times in order to skip up to three 

instructions. The JUMP instruction allows the program memory to jump to any of the 

4096 addresses. The CLEAR STATUS REGISTER (CLRSR) instruction simply clears 

the status register bits to all zeros. Table 3-1 visually simplifies what the different 

instructions in the Microdot do. 

3.2.1 Program Memory Block 

The program memory block contains 10 of the 45 total elements for the Microdot. 

The hierarchical structure of the program memory block is shown in Figure 3-2. The 

program memory block has a number of functions that are crucial to the Microdot 

operation. This block is responsible for writing and reading 4-bit instructions from anyone 

of 4096 addresses along with getting the instructions out to the rest of the Microdot 

components. In addition, this block keeps track of the memory address, to be read from or 

written to, for the on-chip and off-chip Static Random Access Memory (SRAM) 

components. Either control lines from the Control Block or off-chip lines that come into 

the Microdot as inputs control all Program Memory elements. 

3.2.1.1    Program Counter 

The Program Counter is made up of several elements, which include a 12-bit 

adder (Program Logic), 12-bit register (Program State Machine), and a 12 line 3 to 1 

multiplexor (Program MUX). The multiplexor takes in the incremented address, the jump 
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Table 3-1. Microdot Instructions 
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Addn 2 
TOS(value) <= TOS(value) + [TOS(value)-n] + 

Carry Bit ALU 0<n<15 

Subtract n 2 TOS(value) <= TOS(value) - [TOS(value)-n] ALU 0<n<15 

Add w/Carry n 2 
TOS(value) <= TOS(value) + [TOS(value)-n] + 

Carry Bit ALU 0<n<15 

Subtract w/Carry n 2 
TOS(value) <= TOS(value) - [TOS(value)-n] + 

Carry Bit ALU 0<n<15 

Andn 2 TOS(value) <= TOS(value) and [TOS(value)-n] ALU 0<n<15 

Orn 2 TOS(value) <= TOS(value) or [TOS(value)-n] ALU 0<n<15 

Exclusive-Or n (XOR n) 2 TOS(value) <= TOS(value) xor [TOS(value)-n] ALU 0<n<15 

Not 1 TOS(value) <= not TOS(value) ALU 

Shift Left (SHL) 1 
TOS(value) <= left shift of TOS(value) thru Carry 

Bit ALU 

Carry Bit gets shifted in and 
gets replaced by the bit that is 

shifted out 

Shift Right (SHR) 1 
TOS(value) <= right shift of TOS(value) thru 

Carry Bit ALU 

Carry Bit gets shifted in and 
gets replaced by the bit that is 

shifted out 

Load RAM 1 Stack TOS(value) <= TOS Register (value) Stack 

Loads Output of TOS Register 
into the Stack's Current 

Address 

Pop 1 TOS(value) <= TOS(value)+l Stack 

Duplicate (DUP) 1 TOS(value)+l <= TOS(value) Stack ■ 

Load 1 TOS(value) <= Input(value) and IOMASK(value) Stack 

TOS Register gets the inputs 
if the IOMASK bits are set to 

'0' 

Store 1 Output <= TOS(value) Stack 
Only bits where IOMASK is 

set as an output 

Push c 1 Push constant onto stack Stack 0<c<15 

SetIO Mask (SETIO) 1 Write mask value 'm' to IOMASK Input/Output l=>output; 0=>input 

Wait Mask (WAIT) 1 Wait for an event on I/O channel Input/Output 
Wait for change on sensitive 

input channels 

Skip Mask (SKIP) 2 Skip if Status Register Bits and C0NST1 = '1' Program Memory 

Jump Address (JUMP) 4 Jump to 12-bit address 'a' Program Memory 0<a<4096 

Swap n 1 
TOS(value) <= TOS(value)+n; 
TOS(value)+n <= TOS(value) Stack 0<n<127 

Pickn 1 TOS(value) <= TOS(value)+n Stack 0<n<127 

Clear Status Register 
(CLRSR) 1 Status Register Bits <= '0000' Control Clear Status Register 
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Figure 3-2. Program Memory Hierarchical Structure 

address, and the current address. The Program MUX decides which of the three inputs to 

send through to the Program State Machine based on the values of the control lines sent 

from the Control block. The three elements connected together essentially are 

responsible for making sure the program memory address is sent to the on-chip SRAM 

and off-chip as the Program Memory. 
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3.2.1.2 Program Memory 

The Program Memory is made up of seven elements that make-up a functional 

SRAM unit. The Program Memory includes column decode circuitry, row decode 

circuitry, pre-charge circuitry, pre-charge cell, write circuitry, read circuitry (sense 

amplifiers), and SRAM cells. Chapter Four will describe in more detail how each of 

these elements interact with each other in order for the SRAM unit to be read from and 

written to. The Program Memory gets input data from off-chip and the output is sent to 

the Memory Control. The Program Memory lower level hierarchical structure is shown 

in Figure 3-3. 

3.2.1.3 Memory Control 

The Memory Control is composed of two elements, which are a NOR gate 

(Memory Controller) and a four-line 4 to 1 multiplexor (Memory MUX). The Memory 

Controller controls, which SRAM either on-chip or off-chip is functional on or off. At any 

one time only one of the two SRAM units will be functioning as the Microdot's program 

memory. If the off-chip SRAM is enabled then the on-chip SRAM is disabled and vice- 

versa. The Memory MUX takes in three 4-bit data lines. One set of data lines is from the 

on-chip SRAM and another one is from the off-chip SRAM. The last set of data lines is the 

data input lines, which are connected to an outside source. Two of the four selections for 

the multiplexor are set to select the data input lines. These data input lines can be used to 

test and override the program memory instructions coming from either the on-chip or off- 

chip SRAM units. This feature is another built-in-for-test feature that will aid in 

determining working elements under the event that the on-chip and/or off-chip SRAM units 
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do not function. No matter which data is selected by the Memory MUX, the output is sent 

to the Instruction Register. 
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Figure 3-3. Program Memory Structure 

3.2.1.4     Instruction Register 

The Instruction Register is made up of four individual 4-bit registers that send out 

data from the Memory MUX. The four registers are responsible for transferring 4-bits of 

data to numerous other elements on the Microdot. The first 4-bit register is the OPCODE 
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register, which sends a 4-bit operational code to the Control, ALU, and the Status 

Multiplexor blocks. The operational code tells the Microdot what instruction it will be 

running and thus helps the control block decide which elements will need to be operated. 

The next 4-bit register is the ALUCODE register, which sends a 4-bit data set to the ALU 

block and Control Block. The ALU code tells the Microdot, which ALU operation to 

perform and which control signals are needed. The two remaining registers, 

CONSTANT 1 and CONSTANT2 registers are used for 4-bit variables for certain 

instructions. For example, the JUMP instruction requires a 12-bit memory address sent 

to the Program Counter Multiplexor. The CONSTANT1, CONSTANT2, and 

ALUCODE register make up the 12-bit memory address. The CONSTANT1 register is 

used to send data to the I/O and Stack blocks. The CONSTANT2 register is just used to 

create the 12-bit memory address for the JUMP instruction. All the data from the 

Instruction Register is sent to another block, except for the JUMP instruction scenario. 

3.2.2   Stack Block 

The stack block contains 10 of the 45 total elements for the Microdot. The 

hierarchical structure of the stack block is shown in Figure 3-4. 

3.2.2.1    Stack Counter 

The Stack Counter is made up of four elements, which together provide the 

function of generating the stack memory address that is read from or written to in the 

stack. The four elements are a 7-bit register (Stack State Machine), 7-bit adder (Stack 

Addresser), a seven line 2 to 1 multiplexor (Stack MUX), and a 7-bit 

incrementor/decrementor (Stack Logic). The Stack State Machine takes in the output of 
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the Stack MUX and sends the latched output to the Stack Addresser. The Stack Logic 

depending on control signal values either will increment or decrement the address sent 

out from the Stack State Machine. The output from the Stack Logic is one set of seven 

inputs to the Stack MUX. The Stack Addresser takes in the output from the Stack State 
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Machine and outputs from the Control Block. The output of the Stack Addresser is the 

address that is sent to the stack. The setup is designed for the incrementing, 

decrementing, and keeping the stack memory address static. In addition, the Stack 

Addresser makes it possible to reach any of the 128 stack memory addresses within the 

stack, because it adds two 7-bit operands. One operand comes from the Stack State 

Machine and the other operand comes from the ALUCODE and CONSTANT 1 registers 

located in the Program Memory block. The output of the Stack Counter goes to the on- 

chip SRAM unit, known as the Stack. 

3.2.2.2    Stack 

The Stack is comprised of seven elements that make the Stack able to be read 

from and written to from any of the 128 stack addresses. The elements are the write 

decoder, row decoder, column decoder, pre-charge circuitry, pre-charge cell, write 

amplifier, and the SRAM cell. All of these elements are similar to the elements displayed 

in Figure 3-3 in the Program Memory Block section, which takes on the same function. 

Both elements are SRAM units and the only difference between them is that the Program 

Memory contains the Microdot's instructions, while the Stack contains actual data either 

produced by the Microdot or taken in from off-chip. Whether the Stack is reading from 

an SRAM cell or writing to one is determined by the control signals from the Control 

block. The output of the Stack is sent to the Status Multiplexor block and to the ALU 

block for data manipulation. The Stack takes in data from the TOS Cache and writes the 

data into the SRAM cell, which corresponds, to the memory address given by the Stack 

Counter. 
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3.2.2.3    Top-Of-The-Stack (TOS) Cache 

The TOS Cache is comprised of five elements, which take in different data lines 

and decide which set to send through to the stack and to the Arithmetic Logic Unit (ALU) 

Block. The five elements are a four line 4 to 1 multiplexor (4 to 1 MUX), four line 2 to 1 

multiplexor (2 to 1 MUX), another four line 2 to 1 multiplexor (TOS MUX), a 4-bit 

register (Temp Register), and a 4-bit register (TOS Register). The 4 to 1 MUX and the 2 

to 1 MUX take in different 4-bit data lines and depending on control signal values decide 

which set to send through to the TOS MUX. Temp Register is a 4-bit that takes part in 

the key instructions of SWAP and PICK. The Temp Register sends its output to the 2 to 

1 MUX. The TOS MUX is another layer of multiplexor that confirms that the correct set 

of data is sent to the TOS Register. The TOS Register latches through the data sent from 

the TOS MUX. The output of the TOS MUX is delivered to the stack as data to be 

written to an SRAM cell within the stack and the data is sent to the ALU Block. 

3.2.3   Arithmetic Logic Unit (ALU) Block 

The ALU block contains 13 of the 45 total elements for the Microdot. The 

purpose of the ALU block is to manipulate two 4-bit sets of data or one 4-bit set of data 

and determine the attributes of the results. The hierarchical structure of the ALU block is 

shown in Figure 3-5. 

3.2.3.1   ALU Functions 

There are ten functions that the ALU block can produce and these are AND, OR, 

Exclusive-Or (XOR), NOT, Shift Left, Shift Right, and Addition without Carry, Subtract 

without Carry, Addition with Carry, Subtract with Carry. There are eight elements that 

make it possible for the Microdot to perform these functions. The AND function is 
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Figure 3-5. ALU Hierarchical Structure 
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simply the bit-wise and operation of each TOS Register output bit with each Stack output 

bit. The OR and XOR function follow the same process, except that each bit-wise 

function performing their respective gate operation on the two sets of data. The NOT 

function inverts the TOS Register output bits and sends the result to the ALU Result 

component. The Shift Left function takes the Carry bit and shifts it into the least 

significant bit position, while shifting the rest of the bits to the left and placing the most 

significant bit as the new Carry bit. The Shift Right function takes the least significant 

bit and shifts it out to be the new Carry bit, while the Carry bit gets shifted into the most 

significant bit position. The first four functions fall under the Adder/Subtractor section 

further on. 

3.2.3.2    Adder/Subtractor 

As a portion of the ALU block, the 4-bit adder/subtractor consists of four 

elements that make the four addition and subtraction functions possible, which are 

Addition without Carry, Subtraction without Carry, Addition with Carry, and Subtraction 

with Carry. The four elements are the Adder, Carry-In Multiplexor, Subtraction 

Multiplexor, and the Two's Complement that make addition/subtraction with and 

without using the carry bit possible. The Adder simply adds the two 4-bit operands. The 

Carry-In Multiplexor decides with a control signal value from the ALU Control Unit 

whether or not to send the Carry bit to the adder/subtractor. The Subtraction Multiplexor 

routes the original data or the two's complement version of the data or to the adder 

component. If the two's complement is sent to the adder then an subtraction operation is 

effectively performed, while if the original data from the stack is passed then an addition 

operation will occur. The Two's Complement component produces the opposite signed 
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value of the input data and sending the result to the Subtraction Multiplexor. For 

example, if a negative three binary value were inputted into the Two's Complement 

component then the result would output a positive three binary result. 

All these functions need to be controlled, so not all the functions are operating at 

the same time. A critical element of the ALU block, which determines the addition or 

subtraction of data is the ALU Control Unit. 

3.2.3.3 ALU Control Unit 

An ALU which contains numerous functions needs to be directed to which 

functions to perform at a particular time. The ALU Control Unit takes in the ALU Code 

and Operation Code from the Instruction Register and determines what ALU function 

those codes represent. ALU control signals are sent out to each functional component 

effectively telling which one of the elements to operate, while keeping the other elements 

in static operation. By not running all the ALU operations each time any instruction is 

passed to the ALU, the Microdot saves power by not running unnecessary operations. 

After the ALU Control Unit tells the elements which function to perform, the ALU 

Result element selects the correct output to send to the Stack and the Status Multiplexor 

blocks. 

3.2.3.4 ALU Resultant 

The ALU Resultant is made up of three elements, which are the ALU Result, 

ALU Overflow, and the ALU Zero. The ALU Result takes in all the functional element 

outputs and selects which one of the 4-bit data lines to send to the output, which is sent to 

the TOS Cache in the Stack block, the ALU Overflow, and the ALU Zero. The ALU 

Overflow determines from the output value whether to turn on or off the overflow signal, 
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which goes to the Status Register element in the Control block. The ALU Zero element 

which is dependent on the ALU Result output will turn on or off the negative and zero 

signals, which also go to the Status Register in the Control block. 

3.2.4   Input and Output (I/O) Block 

The I/O block contains four of the 45 total elements for the Microdot. The 

hierarchical structure of the I/O block is shown in Figure 3-6. 

Input and 
Output (I/O) 
Block 

Figure 3-6. I/O Hierarchical Structure 

3.2.4.1    Event Detection Logic 

The Event Detection Logic simply keeps the Microdot in a waiting mode until an 

input value is detected that is different from the output of the TOS Register located in the 

Stack block. This element is used for the WAIT instruction and has constant 
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communication with the Control Block. As soon as a different value is detected the 

Microdot continues on with its other instructions. 

Another key function of the I/O block is determining whether the bi-directional 

ports should be set as inputs or outputs. 

3.2.4.2 Mask Register 

The Mask Register maintains values sent from the Instruction Register that 

determine which function each input/output port should be used for. If the bit value in 

the Mask Register for a port is equal to '0' then the port is set as an input port. On the 

contrary, if the bit value is set to ' 1', then the port is set to be an output port. The Mask 

Register will maintain loaded values until another new set is loaded in. The initial set-up 

values for the Mask Register for the four bits is all zeros, so the Microdot can take on 

inputs from the start for programming purposes. The Mask Register outputs are also sent 

to the Output Function. 

3.2.4.3 Output Function 

The Output Function is made up of two elements and they are the Output Logic 

and Output Register. The Output Logic takes in the Mask Register values along with the 

TOS Register values. If a Mask Register value is set to '1', then the TOS Register value 

gets passed to the Output Register. The Output Register during the STORE instruction is 

told to take the inputs and latch the values to the output lines of the Microdot. 

3.2.5   Control Block 

The Control block contains four of the 45 total elements for the Microdot. The 

hierarchical structure of the control block is shown in Figure 3-7. 
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The operation code (OPCODE) and the ALU code (ALUCODE) sent through the 

instruction register tell the Control Block what state to be in and what control signals to 

activate. A table of the operation cross-references with the specific OPCODE and 

ALUCODE is displayed in Table 3-2 for easy reference. 

Control 
Block 

v -\r<\r 

Status 
Register 

< 

Control 
Logic 

Control 
State 
Machine 

Figure 3-7. Control Hierarchical Structure 

3.2.5.1  Control Logic 

The Control Logic is responsible for taking the current state from the Control State 

Machine and determining which control signals to turn on or off based on the current 
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Table 3-2. Operation Code and Arithmetic Logic Unit Code Operation Table 

Operation 

a a o 
y a. o 
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y s- o 

w 
Q o 
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OH o 

© 
Ed a o 
y 
PH o 

w 
Q o 
y 
p 
p 

W a o 
y 
p 
p 
< 

P 
Q 
O 
y 
P 
p 
< 

© w 
Q 
O 
y 
p 
p 
< Comments 

Addn 0 0 0 0 0 0 0 0 Adding TOS and Stack w/o Carry 

Subtract n 0 0 0 0 0 0 0 l Subtracting TOS and Stack w/o Carry 

Add w/Carry n 0 0 0 0 0 0 1 0 Adding TOS and Stack w/Carry 

Subtract w/Carry n 0 0 0 0 0 0 1 1 Subtracting TOS and Stack w/Carry 

And n 0 0 0 0 0 1 0 0 Anding TOS and Stack 

Orn 0 0 0 0 0 1 0 1 Oring TOS and Stack 

Exclusive-Or n 
(XOR n) 0 0 0 0 0 1 1 0 Exclusive-Oring TOS and Stack 

Notn 0 0 0 1 0 1 1 1 Inverting TOS 

Shift Left (SHL) 0 0 0 1 1 0 0 0 Shifting left TOS (shifting in Carry bit) 

Shift Right (SHR) 0 0 0 1 1 0 0 1 Shifting right TOS (shifting in Carry bit) 

Load RAM 0 0 1 0 X X X X Loading TOS register contents into Stack 

Pop 0 1 0 0 X X X X Reading TOS address within the Stack 

Duplicate (DUP) 0 1 0 1 X X X X 

Copy data from TOS to another address location 
within the Stack 

Load 0 1 1 0 X X X X Loading the Input data into the TOS register 

Store 0 1 1 1 X X X X 

Sending the TOS register data to the 
Output lines of the Microdot 

Pushc 0 0 0 X X X X Writing data onto the Stack 

SetIO Mask (SETIO) 0 0 1 X X X X Setting the Mask bits for either inputs or outputs 

Wait Mask (WATT) 0 1 0 X X X X 

Waiting until an input line changes compared to the 
TOS register data 

Skip Mask (SKIP) 0 1 1 X X X X 

Skips either one, two, or three instructions in the 
Program Memory 

Jump Address (JUMP) 1 0 0 J3 J2 jl JO Jumps the Program Memory address to any location 

Swapn 1 0 1 s3 s2 si sO 
Swaps the TOS register data with data in any adress 
location within the Stack 

Pickn 1 1 0 p3 p2 pi pO 
Picks any address location within the Stack and loads 
it into the TOS register 

Clear Status Register 
(CLRSR) 1 1 1 X X X X Clears the Status Register data bits to all zeros 
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State and operational code data. The control signals go to every element in the Microdot, 

with the exception of the Status Multiplexor. 

3.2.5.2 Control State Machine 

The Control State Machine keeps track of what state the Microdot is in and 

determines what the next state will be. This component has been designed to follow a 

state diagram. The Control State Machine takes in the operational code and other key 

off-chip signals such as the RESET and FUNCT signals, which would be from the master 

microprocessor on-board the satellite. Once the off-chip master microprocessor 

programs the Microdot, the Control State Machine will take the loaded instructions and 

perform them without any monitoring or correction from the master microprocessor. At 

anytime, the master microprocessor can decide to reprogram the Microdot with different 

instructions. 

3.2.5.3 Status Register 

The Status Register keeps track of the Carry, Overflow, Negative, and Zero Bits. 

These bits help determine what kind of result came from the ALU Result and 

subsequently from the ALU Block. The Microdot during certain situations will use these 

data bits of information to decide what next action to perform. These four bits are only 

set during certain instructions and for some instructions a few of them may change but 

the others will remain constant. 

3.2.5.4 Temp State 

The Temp State component is used to clarify a specific state transition during the 

JUMP instruction. This register helps define when a different state transition should 
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occur based upon an input value from the Control Logic. This input is latched into the 

register and sent out to the Control State Machine. 

3.2.6 Data Acknowledge Block 

The data acknowledge block contains four of the 45 total components for the 

Microdot. The hierarchical structure of the Data Acknowledge Block is shown in Figure 

3-8. 

3.2.6.1 Acknowledge Off-Chip 

The Acknowledge Off-Chip component delays the Data Valid signal from the 

master microprocessor and sends its output to the Acknowledge Multiplexor. The value 

of the Data Valid signal will oscillate between '0' and '1' throughout the programming of 

the on-chip and off-chip SRAM units. The Acknowledge Off-Chip component is the 

crucial piece for handshaking between the Microdot and the master microprocessor when 

programming the off-chip SRAM unit. The handshaking essentially tells the master 

microprocessor that the off-chip SRAM has received the data and is ready for a new set 

of data. 

3.2.6.2 Acknowledge On-Chip 

The Acknowledge On-Chip component delays the Data Valid signal from the 

master microprocessor, when the programming of the on-chip SRAM is taking place. Its 

output gets sent to the Acknowledge Multiplexor. This component is critical to the 

handshaking process between the Microdot and master microprocessor, when on-chip 

SRAM is being written to. 
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Figure 3-8. Data Acknowledge Hierarchical Structure 

3.2.6.3   Acknowledge Last Address 

The Acknowledge Last Address component is set up to send a constant T back 

to the master microprocessor when the address 4096 has been written to. Even if the 

master microprocessor sends back a '0' on the Data Valid signal line, the Acknowledge 

signal will remain a ' 1' until the FUNCT signal is set to a '0'. Thus, only when the 

programming function is stopped by the master microprocessor will the Microdot 

proceed with running the instructions that were just programmed. The Acknowledge 

Last Address signal is sent to the Acknowledge Multiplexor. 
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3.2.6.4   Acknowledge Multiplexor 

The Acknowledge Multiplexor takes in the Acknowledge Off-Chip signal, the 

Acknowledge On-Chip signal, and the Acknowledge Last Address signal. The 

Acknowledge Multiplexor selects which signal to send to the master microprocessor 

based on which SRAM chip is enabled and whether the Acknowledge Last Address 

signal is high or low. 

3.2.7   Status Multiplexor 

The Status Multiplexor block is in a class of its own because it exists for no 

specific Microdot purpose, except for the designer to see the internal signal values 

throughout the running of all the instructions. The select lines are controlled off-chip by 

myself, so I can select five different data sets to view on five output pins of the Microdot. 

I can view the data going into the Instruction Register, the TOS Register outputs, Stack 

outputs, Control State Machine outputs (Current State of the Microdot), and the ALU 

Result outputs. This component allows me to view key signal lines in all the major areas 

of the Microdot. This is crucial to deducing the cause of errors, if any shall happen 

during the testing of the Microdot. 

3.3   Design Decisions 

The design goal going into the Microdot design was to consume on the order of 

microwatts of power during normal operation. Unfortunately, due to the size of Static 

Random Access Memory (SRAM) needed on chip this goal was not achieved. In 

addition, a radiation-hardened design was planned for the Microdot. However, due to the 

0.35 sub-micron Taiwan Semiconductor Manufacturing Corporation (TSMC) design 

rules the design library could not contain 90-degree angle transistors. This was critical 
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because the annular transistor contains 90-degree angles and thus I was advised not to 

proceed with the radiation-hardened design. There was an easily attainable clock speed 

requirement of operation in the kilohertz range. I believe the Microdot, as I have 

designed it, would be able to be run at approximately 10 MHz for a maximum clock 

speed. The goal for the Microdot size was to keep the area as small as possible, so I 

ended up keeping the size to less than 5 square millimeters. Chapter Four will go into 

signal line connections between elements and other blocks, along with more specific 

design decisions. 
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4.    Design Implementation 

4.1       Microdot 

Chapter Three applied the theories discussed in Chapter Two in order to develop a 

working design. The overall functionality and purpose of the Microdot was explained. 

The instruction set of the Microdot was explained along with data flow throughout the 

Microdot. An overview of the Microdot design including the architecture of the top-level 

design and its major elements were the primary focus of Chapter Three. Interfaces 

between the elements within each block were diagrammed. The hierarchical structure 

was broken down and explained in great detail. Chapter Three gave the reader a higher- 

level construction of the Microdot. 

Chapter Four explores the higher level design overview presented in Chapter 

Three at the elemental level. Chapter Four is a presentation of the design implementation 

of each functional block. Each block and its respective elements introduced in Chapter 

Three are now revisited in detail. Pin labels of each element within the different blocks 

are displayed. How the different blocks interact with each other is described in detail. 

The final design of each block, as well as other possible designs, are presented. 

The Microdot is designed to complete a specific action within each state designed 

into the Control State Machine. Each state lasts one clock cycle and the cycle period 

minimum depends on the state, which takes the longest amount of time to be complete its 

action. Writing to off-chip SRAM is the longest action done within a state, and therefore 

determines the maximum operating speed for the Microdot. However, since writing to 
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the SRAM program memory is usually done in the beginning of start-up it may be 

possible to run the Microdot faster when instructions are being run from the on-chip 

SRAM unit. The on-chip SRAM unit or Program Memory is capable of storing 1024 4- 

bit words and the off-chip SRAM unit is responsible for storing an additional 3072 4-bit 

words. This gives the Microdot the capacity to store and use 4096 4-bit instructions, the 

limit to the program length that can be run by the Microdot. The on-chip data Stack can 

store 128 4-bit words of data. This data can be manipulated by the Arithmetic Logic Unit 

Block and sent out through a 4-bit bi-directional port to a master microprocessor. The 

master microprocessor or some off-chip state machine is responsible for programming 

the Microdot and deciding when the Microdot can start running the programmed 

instructions. Once the Microdot begins running, it can run the program indefinitely. The 

only time the program would be interrupted would be if the master microprocessor or 

some other off-chip device would want to reprogram the Microdot. By simply turning on 

the FUNCT signal, a new program is written into the on-chip and off-chip SRAM units. 

The current program in the memory units would be halted and overwritten during the 

reprogramming process. The timing diagrams for the on-chip SRAM (Program Memory) 

and the Stack are located in Appendix C. 

4.2      Memory Architecture 

The memory architecture of the Static Random Access Memory (SRAM) units, 

such as the Program Memory and the Stack, are the crucial elements to the Microdot. 

Since the Program Memory is the largest element in the Microdot, the power 

consumption goal rests largely on the SRAM units. Therefore, each piece that makes up 
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the Program Memory and the Stack will be discussed. The design for the SRAM units 

was gleaned from Kranz [23] and S anGregory's [24] research. 

4.2.1 Two-Port Static Memory Cell 

Static memory cell operation is detailed in any CMOS book, such as [4]. The 

two-port static memory cell can be simultaneously read from and/or written to. When a 

WORD line, shown in Figure 1, is asserted, the cross-coupled inverters become 

electrically connected to the complementary bit lines. The state of the bit lines at this 

point determines whether a read or write takes place. If data is actively driven onto the 

bit and bit-bar lines by the write amplifiers, the driven data will overcome whatever data 

is stored in the memory cell effectively writing to the memory cell. Otherwise, if the bit 

and bit-bar lines are floating in a precharged state, the existing memory cell data will be 

transferred onto the bit and bit-bar lines by pulling one line down to a logic-zero state and 

the other up to a logic-one. Depending on which line is pulled down during the read 

operation, the data value out will be either a logic-one or zero as stored in the memory 

cell. Finally, the sense amplifier will interpret the voltage change on the lines and drive 

SRAM output lines to the correct output value [23]. 

4.2.2 Precharge Circuit 

The precharge cells are used to stabilize the BIT and BIT-BAR lines between 

memory read operations. These cells equally charge up the BIT and BIT-BAR lines, so 

there is an identical voltage reading on each line. Before a memory read operation 

begins, the state of the BIT and BIT-BAR lines is very important, because these lines are 

connected to a sense amplifier. The importance is due to the fact that the sense amplifier 
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is a differential amplifier, which detects a difference in voltages between the two lines. 

The precharge cell, shown in Figure 4-1, is made of three N-channel transistors: two for 

precharging (Ml and M2) and one for stabilizing (M3) [23]. 

Vdd 

BIT-BAR 

y\ 

PRE 

M1 

BIT 

M2 

M3 

Figure 4-1. Precharge Circuit from [23] 

When the PRE signal line is asserted high, all the transistors in the precharge cell 

are turned on. In this state, Ml arid M2 bring BIT and BIT-BAR lines high to 

approximately 2.3 V. To guarantee that BIT and BIT-BAR lines are at the same 

potential, M3 shunts the two rails together. M3 allows charge sharing between the rail 

lines, which increases the speed of the precharging. This operation is critical to keeping 

valid data in the memory cells and stabilizing the differential amplifier between memory 

reads by forcing an equilibrium state between the BIT and BIT-BAR lines. 

4.2.3   Memory Row Decoder 

The Memory Row Decoder is made up of NAND gates along with inverters. In 

large memory structures, it has been shown that NAND gates, used as decoders, consume 

less power than NOR gates; however they are slower [24]. Depending on the number of 

rows, the number of NAND gates can vary. However, simple address buses usually 
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using the highest significant bits and their inverted states make up the decode logic. An 

example of the row decode table for the Stack will help explain the set up. Table 4-1 

shows the different combinations of address yielding different rows being selected. 

Table 4-1. Stack Row Decoder Table 

Row 
Selected ADDRESS BIT 6 ADDRESS BIT 5 ADDRESS BIT 4 

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

The NAND gates are selected in order to save power overall in the Microdot. The 

transistor size ratio for the P-channel to the N-channel is around two for low dopant 

concentrations. However, for high dopant concentrations in sub-micron processes the 

ratio is between one and one and a half [3]. The Microdot contains just over a one and a 

half ratio with the P-channel transistors having a width often lambda and a length of two 

lambda. While, the N-channel transistors have a width of six lambda and a length of two 

lambda. Transistors in series are easier to layout and save layout space. The NAND 

gate's P-channel transistors are in series thus yielding smaller area overall per gate. 

4.2.4   Memory Column Decoder 

The two memory column decoders are located in two different places. The 

memory column decoders have the main function of asserting the correct column that the 

address demands. One instantiation of the memory column decoder asserts the 
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appropriate write amplifiers during a memory write operation. The second instantiation 

of the memory column decoder turns on the appropriate sense amplifiers of the on-chip 

SRAM unit and enables the tri-state buffers, which are connected to the output of the 

sense amplifiers. The memory column decoder is made up of NAND gates and is 

similarly constructed to the memory row decoder. The memory column decoder uses 

address buses that contain the least significant bits of the address. Each column pertains 

to a specific address combination, so each NAND gate's inputs are determined by what 

column the NAND gate controls. In order to attain the right combination of inputs, two 

address buses are routed along all the NAND gates. One address bus is the set of 

addresses sent from the Program Counter State Machine and the other address bus is the 

complement of the address sent from the Program Counter State Machine. Figure 4-2 

shows a diagram of how the Memory Column and Row Decoders were laid out. 

NAND 

Row Select Lines 
Or 

Column Select Lines 

NAND 

^ 
Address Bus Line 

Address Bus Line 

Figure 4-2. Memory Column and Row Decoder Layout 
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4.2.5    Read Sense Amplifier 

The read sense amplifier detects a difference in voltage levels on the BIT and 

BIT-BAR lines and drives both lines to their appropriate logic state. Both lines are 

logically opposite one another during a memory read operation. The logic state of the 

BIT line is the logic value that is output from the on-chip SRAM. When a memory cell 

places its data on the BIT and BIT-BAR lines, the only line affected is whichever line 

corresponds to a logic-zero state. The other line stays at the precharge level, which is a 

logic-one. The rate of the drop in the line voltage is dependent on the capacitance of the 

line, the on resistance of the port transistor, and the size of the N-channel transistors in 

the storage cell. The time to fully discharge the precharge level of the line would take 

several nanoseconds, because of the above factors. The differential amplifier is 

implemented to speed up the process of detecting which line is at a logic-zero and which 

is at a logic-one. The differential sense amplifier is an analog device, which amplifies the 

difference between the BIT and BIT-BAR line values. A simple sense amplifier is used 

for this purpose, because of its small size and simplicity. A design choice was made to 

increase the transistor size in order to increase the gain, which reduces the switching time 

of the amplifier. By increasing transistor size an increased gain can be attained by the 

way of using positive feedback. The output was taken from the opposite side of the cell 

in order to provide the allowance for a single-stage inverter. Figure 4-3 shows how the 

memory sense amplifier is constructed. 
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Vdd 

ENABLE 

BIT BAR 

To 
Output 
Inverter 

Figure 4-3. Memory Sense Amplifier Circuit from [23] 

4.2.6    Write Amplifiers 

The last cell needed to construct the memory was an amplifier for writing new 

data in to the memory cells. The write amplifier takes in data to be written to an SRAM 

cell and increases the drive strength of the incoming data signal. The write amplifier 

design is shown in Figure 4-4 and the transistor sizes are displayed by width over length 

dimensions in units of lambda. The design uses two stages of inverters to increase the 

write drive strength. A final set of inverters is enabled through a memory column 

decoder, which actually drive the BIT and BIT-BAR lines. One write amplifier is 

required for each bit column in the memory. 
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Figure 4-4. Memory Write Amplifier Circuit from [23] 

The small inverter connected to the INPUT signal serves two purposes: to 

generate the data, and to reduce the load on the input data. Only one inverter is 

necessary, however such an implementation would have one inverter and the entire BIT 

line on the input bus. The two-inverter scheme for the BIT line helps reduce parasitic 

capacitance, by placing only a small inverter and two large inverters on the input bus. 

However, the two-inverter design does introduce an additional gate delay. The way the 

timing scheme occurs the data overcomes the two inverters delay before the SRAM cell 

is ready to be written to, so therefore the delay is transparent to the writing process [23]. 

4.3      Program Memory Block 

The Program Memory Block, as shown in Figure 4-5, shows the signal 

connections for the program memory block elements. All the signal lines, either outputs 

or inputs, which do not have an internal connection, are connected to another block's 
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Figure 4-5. Program Memory Block Diagram 
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elements. The Program Memory Block is connected to 12 Microdot output pads, seven 

Microdot input pads, the Control Block, the Data Acknowledge Block, the I/O Block, the 

ALU Block, the Stack Block, and the Status Multiplexor. The SRAM unit (Program 

Memory) is the main element of this block. The Memory Controller enables the Program 

Memory through the chip enable (CE) signal. The function, number of bits, the 

origination, and the destination(s) of all the Microdot signals can be found in Appendix B 

in Table B-l. The Memory Controller simply takes the two most significant bits of the 

memory address and if both of them are low then the on-chip SRAM is enabled. This 

same enable line selects the off-chip SRAM when the chip enable value is low. The load 

signals (LDOP, LDALU, LDCONST1, and LDCONST2) are sent to the set of four flip- 

flops instruction register. These load signals are used to enable falling-edge D flip-flops 

within the four registers to load during the falling-edge of the clock cycle. These four 

load signals also have the purpose of telling the Program Memory that at the end of the 

clock cycle one of the four registers will be latching in the output of the SRAM unit. 

Therefore, the load signals trigger a read sequence to begin within the Program Memory 

and imply that the data on the output lines needs to be valid before the falling-edge of the 

clock cycle. The combined timing delays help determine clock speed limitations in the 

Microdot. Since multiple operations usually occur during one clock cycle, the Microdot 

needs to be run at the appropriate clock speeds. However, the Microdot's purpose is to 

be run at clock speeds in the Hertz range, since sensor readings do not have to be 

numerous times per second. Therefore, the fact that the Microdot runs at 20 MHz or less 

is not a design flaw, but intentional. The Program Memory function of either reading 
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from or writing to SRAM cells is controlled by the Control Logic element within the 

Control Block through the MEMRW signal line. 

The Memory Multiplexor takes in the data lines from the off-chip controlled input 

pins, the off-chip SRAM, and the on-chip SRAM. The Chip Enable (CE) and the 

OVERRIDE lines are the selectors lines to the multiplexor. Table 4-2 shows how the 

select lines decode which of the data lines are sent through to the four registers. If the CE 

line is high and the OVERRIDE line is low, then the data selected (DONOUT(3-0)) and 

sent to the instruction registers (OPCODE Register, ALUCODE Register, CONSTANT1 

Register, and CONSTANT2 Register) is from the on-chip SRAM. If the CE line is low 

and the OVERRIDE line is low, then the data selected (DOFFOUT(3-0)) and sent to the 

instruction registers is from the off-chip SRAM. If the OVERRIDE line is high, then the 

data selected (INPUT(3-0)) and sent to the instruction registers is from the Microdot 

input lines, which is feed from off-chip. 

Table 4-2. Memory Multiplexor Selection 

Chip Enable (CE) OVERRIDE IRIN(3-0) 

0 0 DONOUT(3-0) 

0 1 INPUT(3-0) 

1 0 DOFFOUT(3-0) 

1 1 INPUT(3-0) 

The select line, OVERRIDE, can bypass either SRAM unit and enter instructions 

into the registers externally. This feature was installed for testing purposes in case the 
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SRAM units fail to function properly. Instructions can be manually entered into the 

Microdot to bypass the SRAM and see if the other elements are working properly. 

The Program Counter Logic, Program Counter Multiplexor, and the Program 

Counter State Machine all work together to output the correct memory address to the on- 

chip and off-chip SRAM units as well as to the Data Acknowledge Block. The Program 

Counter Multiplexor takes in the current memory address from the output of the Program 

Counter State Machine, the incremented by one address from the Program Counter Logic, 

and the jump memory address provided by three of the four registers within the 

instruction register. The control signals of PCCOUNT, PCLOAD, PCSET, and RESET 

determine the output of the Program Counter State Machine. The PCCOUNT signal tells 

the multiplexor to pass through the output of the Program Counter Logic, which simply 

takes the output of the Program Counter State Machine and increments the address by 

one. The Program Counter Logic automatically calculates this next address whenever the 

output of the Program Counter State Machine changes. However, when PCCOUNT is 

low and PCLOAD is high, then the jump address from the ALUCODE, CONSTANT 1, 

and CONSTANT2 registers is passed through to the Program Counter State Machine. 

The three instruction registers, Program Counter State Machine, Program Counter 

Multiplexor, and the two control signal values (PCLOAD being high and PCCOUNT 

being low) allow the Microdot to jump to any 4-bit address location, which lies within 

either the on-chip or off-chip SRAM units. If both the PCCOUNT or PCLOAD signals 

are either low or high at the same time, the Program Counter Multiplexor will pass 

through the current address from the output of the Program Counter State Machine. 
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The Program Counter State Machine simply latches through the memory address 

the Program Counter Multiplexor gives it on the rising-edge of the clock cycle. For the 

latching of the memory address to work properly, the address is stabilized during the 

clock cycle before the new address is latched through. There are two overriding control 

signals that can change the normal behavior of the Program Counter State Machine. The 

RESET or PCSET line going high will tell the Program Counter State Machine to put all 

zeros on the output, thus resetting to the first memory address of the Microdot. The 

RESET and PCSET control lines are used independently for separate purposes. The 

RESET line is used when the Microdot is initializing and getting ready to be 

programmed. The first address written to is address zero and then the address is 

incremented through to 4095 or until the master processor decides to end the Microdot 

program. The PCSET line is used when the programming stops and the memory address 

needs to be reset to address zero. The starting address is key because otherwise the 

Microdot would start running from the last programmed address, possibly program 

memory address location 4095 versus address zero. 

4.4      Arithmetic Logic Unit (ALU) Block 

The ALU Block is composed of fourteen elements and is split into two separate 

figures. In Figure 4-6, the ALU Control Unit along with six of the functional elements 

within the ALU Block is shown. While, Figure 4-7 focuses on the elements surrounding 

the ADDER along with the ALU Result element. 

The main focus of the ALU Block design is to accomplish the mathematical and 

logic operations at the lowest power for the Microdot, especially when ALU operations 
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Figure 4-6. Arithmetic Logic Unit Block Diagram (1 of 2) 

are not called for. The problem with ALU elements is that as long as data is changing on 

the input lines, the ALU elements keep processing the result. In order to keep the ALU 
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from processing every incoming signal, I designed control signals that are sent out from 

the ALU Control Unit that force ALU elements to a quiescent state during non-ALU 

instructions. The ALU Control Unit contains seven control signals implementing the 

power-saving feature. Each of the functional elements (AND, OR, XOR, Shift Right, 

Shift Left, and NOT) contains a selector input. When the specified logic selector input is 

high, the element performs the operation as directed. However, when the selector input is 

a logic low the outputs of the elements are held constant regardless of input data changes. 

The ALU Control Unit is also responsible for producing the CARRY signal, which is 

sent to the Status Register within the Control Block. By taking the carry signals from the 

Shift Right, Shift Left, and the ADDER, the ALU Control Unit decides based upon the 

current instruction which carry bit to send out through the CARRY output line. In 

addition, during non-ALU operations and ALU operations that do not involve any of the 

carry bits the ALU Control Unit maintains the same signal whether high or low to the 

input of the Status Register. 

An example of saving power is the logical NOT element truth table shown in 

Table 4-3. If the NOTSEL line is sent to a two input NAND gate along with each bit of 

the input data from the Top-Of-The-Stack Register, then the NOT operation is suspended 

by toggling the NOTSEL line. 

The ALU Control Unit by taking in the ALUCODE, OPCODE, and the 

CURSTATE signals, can determine which one of the ALU functions needs to be running 

and therefore shuts the rest of the ALU functions down to save power. These kinds of 

power saving techniques have been applied to every functional element including the 
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Table 4-3. NOT Truth Table 

TOSOUT NOTSEL OUTPUT 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

ADDER, OR, XOR, AND, NOT, Shift Left, and Shift Right, which are shown in Figure 

4-7. 

In order to operate the adder/subtractor, one needs several other elements that 

function along with the adder. Figure 4-7 shows the additional elements to be the Two's 

Complementor, Subtract Multiplexor, and the Carry-In Multiplexor. The Two's 

Complementor takes in the data from the Stack and depending on the ADDSUB signal 

will either output the two's complement of the data or will pass through all ones to the 

Subtract Multiplexor. Producing the two's complement only when necessary is yet 

another power saving technique, which only uses the element when it is needed. The 

Subtract Multiplexor decides which set of data to send to the ADDER. Either the two's 

complement data or the original data from the Stack is passed to the ADDER. The 

ADDSUB signal in this case is the selector line for the multiplexor. The Carry-In 

Multiplexor takes in control signals from the ALU Control Unit and the CBIT signal 

from the Status Register in the Control Block. The different select lines such as 

ADDSEL, ADDCSEL, SUBSEL, and SUBCSEL tell the multiplexor whether the adder 

will be performing its operation with the carry bit or without the carry bit. When either 

ADDCSEL or SUBCSEL is high, the CIN signal sends through the CBIT signal value to 
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the ADDER element. However, if all of the select signals are low or if either ADDSEL 

or SUBSEL are high, then the CIN output is set to zero regardless of the CBIT signal 

value on the input. 

The last critical element to the ALU Block is the ALU Result element, because it 

sends the final data outside the ALU Block to the Stack Block and the Status Multiplexor. 

The ALU Result inputs are all the outputs from all the functional units and parts 

of the ALUCODE and the OPCODE. From the pieces of the ALUCODE and the 

OPCODE, the ALU Result can determine which set of data to pass to outside the ALU 

Block. This final set of data is sent to the ALU Zero element for determination if the 

result was negative or zero. The ALU Zero element sends its outputs to the Status 

Register. Another element that sends its output to the Status Register is the ALU 

Overflow element. The ALU Overflow element takes in the most significant bits from 

the Top-Of-The-Stack Register, ADDER, Stack, and the Two's Complementor along 

with the ADDSUB bit. The most significant bits along with the ADDSUB bit determine 

whether there was an overflow situation or not. The ALU Overflow simply determines 

the overflow status and reports that information back to the Status Register on the 

OVFLW signal line. 

The result of the ALU Block is sent to the Stack Block for storage and possible 

output to off-chip. 

4.5      Stack Block 

The data storage unit in the Microdot is the Stack, SRAM unit, which is 

responsible for holding incoming data from off-chip through the bi-directional ports. The 

Stack along with the ALU Block can alter the data and perform various operations on 
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either one set or two sets of 4-bit data. Elements such as the 2-to-l Multiplexor, 4-to-l 

Multiplexor, Temporary Register, Top-of-the-Stack Multiplexor, Top-of-the-Stack 

Register, Stack Logic, Stack State Machine, Stack Addressor, and the Stack Multiplexor 

make it possible for the Stack to operate properly. 

The Stack Block, which is made up of 10 elements, is shown in Figure 4-8. There 

are four elements, which maintain and assign the memory address location for the Stack, 

SRAM unit. The maintaining and assigning of the Stack's memory address are important 

functions, because without the proper address data will be written to or read from the 

wrong location. The Stack memory uses a 7-bit address, which gives the Stack a total of 

128 memory locations to work with. The Stack State Machine latches through data from 

the Stack Multiplexor on the rising-edge of the clock cycle. The output of the Stack State 

Machine is sent to the Stack Addressor and to the Stack Logic. The RESET signal line to 

the Stack State Machine when is a low or zero state sets the output to all ones. At the 

start up of the Microdot, the first Stack memory address is location 127, or ' 111 i 1112' in 

binary code. The reason this start up address was picked minimized the number of Stack 

element related logic gates for the Microdot, thus saving power. 

The Stack Addressor is a 7-bit adder, which takes the 7-bit output of the Stack State 

Machine and adds it to the 7-bit OFFSET input from the Control Block. This gives the 

ability to effectively jump to any of the 128 memory address locations in the Stack. The 

memory address normally decrements down, when data is pushed on, from address 127 

to 0. In order to jump back to a previous location, the Stack Addressor simply adds the 

current address to the OFFSET to reach an old address. However, a reminder that the 
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Stack Addressor will yield the memory address or result without a carry bit, so I can add 

one to address 127 and roll over to the numerically lower valued address location which 
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would be address 0. The Stack Addressor simply adds whatever is on its inputs. The 

inputs are two 7-bit operands (SPIN signal and OFFSET signal) from the Stack State 

Machine element and the Control Logic element, respectively. If the 7-bit SPIN signal or 

the 7-bit OFFSET signal changes, the Stack Addressor will sum the inputs and calculate a 

new memory address. The new memory address is sent from the Stack Addressor to the 

Stack. The memory address is meant to decrement down from address 127 versus 

incrementing up from address 0. By decrementing the Stack memory address, the 

addition operation will be the appropriate operation when jumping to another one of the 

128 memory address locations. A jumping of Stack memory address locations occurs 

when a value greater than zero is asserted on the OFFSET signal line. When OFFSET is 

set to a value greater than zero, the current Stack memory address (SPIN signal) and the 

OFFSET signal are added together to create a new Stack memory address. If I chose to 

have the Stack memory address increment from a starting address of zero rather than 

decrement from a starting address of 127, then a subtraction operation would need to 

occur in order to complete an accurate jumping of Stack memory address locations. As a 

design decision, I choose to have the address decrement down from address 127 to 0 in 

order to save building a 7-bit two's complementor that would be connected to the Stack 

Addressor. 

I chose to decrement the Stack memory address after pushing or writing to a 

memory location and increment the Stack memory address after popping or reading from 

the Stack. The current Stack memory address always is referred to as the Top-of-the- 

Stack memory address. When pushing or writing to the Stack, the data is written into the 

Top-of-the-Stack memory address location. At the beginning of the next clock cycle, the 
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Stack memory address is decremented by one. The new Stack memory address is now 

the Top-of-the-Stack memory address. The decrementing of the memory address sets up 

for the next push or write to the Stack. However, if a pop or read occurs then the Stack 

memory address is incremented by one. The incrementing operation makes the last set of 

data written to the Stack available on the output lines of the Stack. The incrementing of 

the Stack memory address occurs to counter the last decrement, which occurred at the 

end of the last push or write operation. 

Stack Logic plays an important role with selecting the next Stack memory 

address. The 7-bit SPIN signal is input to the Stack Logic from the Stack State Machine 

and the Stack Logic either increments or decrements the SPIN signal by one. Whether or 

not to increment or decrement, depends on the control signals INCSP and DECSP from 

the Control Logic within the Control Block. If one control signal is high while the other 

is low, then the operation of the high dominates and controls the output sent to the Stack 

Multiplexor. However, when the control signals are both low or both high, the Stack 

Logic simply passes the 7-bit SPIN signal through to the Stack Multiplexor. Under the 

condition of the control signals having the same value, the SPIN signal is sent to the 

Stack Multiplexor so the Stack memory address can remain constant. A constant Stack 

memory address is needed when neither a push or pop operation has been called for. 

Also if a control signal malfunction occurs and both signals are a logic-one, a constant 

Stack memory address is needed to isolate the malfunction and not have the malfunction 

propagate to the Stack Multiplexor and eventually to the Stack. 

The Stack Multiplexor takes on the output address data from the Stack State 

Machine and the Stack Logic. DECSP and INCSP are control selector signals the 
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multiplexor uses to determine address to pass through to the Stack State Machine. If 

either the DECSP or INCSP are high then the Stack Logic data is sent through, but if 

neither are high or both are high then the Stack State Machine data is passed through. 

The DECSP and INCSP are never supposed to be high at the same time, but as a 

precaution, I designed in a safety feature refreshing the old memory address until the 

conflict is resolved by the Control Block. 

There are five elements, which are responsible for delivering the correct set of 

data to the Stack's data input lines. The Temporary Register is the first of these five 

elements to be discussed. The SWAP and PICK instruction combination discussed in 

Chapter Three needs a data storage element to make the instruction work properly. The 

Temporary Register is the data storage element needed when these instructions are used 

together in order to access data at any of the 128 address locations. The register takes 

data from the Stack output and latches it through on the falling-edge of the clock cycle 

and while the LDTEMP signal is high. Only when the falling-edge of the clock cycle 

occurs and the LDTEMP signal is high will the Temporary Register latch the data 

through to the 2-to-l Multiplexor element. 

The 2-to-l Multiplexor element takes in data sent from the Temporary Register 

and the ALU Result in the ALU Block. The Temporary Register sends the 4-bit 

TEMPOUT signal and the ALU Result sends the 4-bit ALURES signal. The 

DATASEL2 signal from the Control Logic element is the control selector signal for the 

2-to-l Multiplexor element. If the DATASEL2 signal is low then the 4-bit ALURES 

signal is passed through to the Top-Of-The-Stack (TOS) Multiplexor. However, if the 

signal is low then the 4-bit TEMPOUT signal is passed through. 
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The 4-to-l Multiplexor element takes in data sent from the CONSTANT 1 

Register, the four bi-directional ports connected to the master microprocessor, and the 

output of the Stack. The fourth set of data is a set of zeros in case of a malfunction of the 

control selector signals (DATASEL1 and DATASELO). The DATASEL1 and 

DATASELO control selector signals from the Control Block determine which set of data 

is passed to the TOS Multiplexor. If the DATASEL1 and DATASELO are both high, 

then the 4-bit RAMOUT signal is passed. If the DATASEL1 signal is high while the 

DATASELO signal is low, then the 4-bit INPUT signal is passed. If the DATASEL1 

signal is low while the DATASELO signal is high, then the 4-bit CONST1 signal is 

passed. In the event that both control signals are low, then all zeros are passed to the 

TOS Multiplexor. Table 4-4 shows the control selector values and which corresponding 

set of data is passed to the output of the 4 to 1 Multiplexor element. 

Table 4-4. 4 to 1 Multiplexor Truth Table 

DATASEL1 DATASELO 4 to 1 Multiplexor Output 

0 0 '00002' 

0 1 CONST1(3-0) 

1 0 INPUT(3-0) 

1 1 RAMOUT(3-0) 

The TOS Multiplexor determines if either the output from the 2-to-l Multiplexor 

or the 4-to-l Multiplexor gets sent to the Top-Of-The-Stack (TOS) Register. The control 

signals DATASEL1 and DATASELO determine the output of the TOS multiplexor. If 

the DATASEL1 and DATASELO are both low, then the 4-bit MUX20UT signal gets 
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passed to the TOS Register. If any other signal combination of DATASEL1 and 

DATASELO occurs the 4-bit MUX40UT signal gets passed to the TOS Register. 

The TOS Register takes in data from the TOS Multiplexor and latches the data 

through, when the falling-edge of the clock cycle occurs and the LDTOS control signal is 

high. The output only changes when the LDTOS signal is high and the falling-edge of 

the clock cycle occurs, otherwise the last set of data latched through remains on the 

output lines (TOSOUT(3-0)). Output data from the TOS Register gets sent to the Stack, 

ALU Block, and the Input and Output Block. 

The Stack is a 128 location by 4-bit SRAM unit that stores data for the Microdot. 

The 2-to-l Multiplexor, 4-to-l Multiplexor, Temporary Register, TOS Multiplexor, and 

the TOS Register mentioned above control which data gets written into the Stack through 

the 4-bit TOSOUT signal. The Stack is set up to read during the rising part of the clock 

cycle and write during the falling edge of the clock cycle. The reading occurs during the 

rising part of the clock cycle, because the output data needs to be manipulated by the 

ALU Block and latched into the TOS Register on the falling-edge of the clock cycle. 

Since data is latched through by the TOS Register on the falling-edge of the clock cycle, 

input data to the Stack is only valid two nanoseconds after the falling-edge of the clock 

cycle, so that is why the write occurs in the falling part of the clock cycle. When the 

reading and writing of data occurs is simply based off of when data needs to be available 

to the other elements within the Microdot. The PRESELCNTL signal turns off the pre- 

charge circuitry mentioned in Section 4.2.2, which is used for the read cycle. The 

LDRAM control signal triggers the write cycle for the Stack. Each of those control 

signals along with the correct part of the clock cycle triggers the read or write cycle. The 
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output of the Stack is sent to the ALU Block, Temporary Register, 4-to-l Multiplexor, 

and the Status Multiplexor. The Stack is made up of the elements mentioned in Section 

4.2. 

4.6      Input and Output (I/O) Block 

Four bi-directional ports are located in the Microdot, which can be switched 

between either being input pins or output pins. There are four elements, Mask Register, 

Output Logic, Event Detection Logic, and Output Register, that control these bi- 

directional ports. These elements make up the Input and Output (I/O) Block, shown in 

Figure 4-9. 
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Figure 4-9. Input and Output Block Diagram 

The Event Detection Logic is a separate element, which is not connected to the 

other I/O block elements, but relies on the TOS Register output, CONSTANTl Register 
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output, the bi-directional ports, and the Control Block. Event Detection Logic plays an 

important role in performing the WAIT instruction for the Microdot. Each bit of the 4-bit 

CONST 1 signal sets up which input bit to compare. If the bits from CONSTANT 1 

register are high then the TOS Register output bit will be compared to the input bit on a 

bit-wise basis. If however, a bit from the CONSTANT 1 Register is low, then the 

respective bits from the TOS Register output and the bi-directional ports are not 

compared. Event Detection Logic takes in the TOS Register output and compares the 

values to the input lines in the bi-directional ports. If any of the bit-wise comparisons are 

different and they have been targeted to be compared, the EVENT signal goes high and is 

sent to the Control Block. Therefore, the Event Detection Logic has the ability to 

compare all four sets of bits from the TOS Register and the bi-directional ports. 

Depending on the values from the CONSTANT1 Register, the Event Detection Logic can 

be set to compare four, three, two, one, or zero bits from the TOS Register and the bi- 

directional ports. This gives the option of waiting for a specific input bit to change or 

even a whole 4-bit set of data to change before the Microdot continues on with other 

instructions. 

The Mask Register sets the bi-directional data ports to be either inputs or outputs. 

The 4-bit MASKOUT signal sends a single bit to each of the four bi-directional ports, 

which are connected to the master microprocessor and possibly sensor, external testing 

device, etc. If the bit output from the Mask Register is high then the bi-directional is set 

to be an output. If the bit output is low, then the bi-directional port is set to be an input. 

The Mask Register is loaded on the falling-edge of the clock when the LDMASK signal 

is high. It is important to notice that the bi-directional ports will be set as inputs from 
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start-up with the RESET signal being low. The Mask Register must be loaded in order to 

change the direction of the ports from this initial set up. The outputs of the Mask 

Register are sent to the Output Logic and the bi-directional ports. 

The Output Logic takes in the Mask Register outputs and the TOS Register 

outputs. If a bit from the Mask Register is set to low, then the corresponding TOS 

Register bit is sent to the Output Register. However, if a Mask Register bit is high, then 

the bi-directional port is set to be an input, thus the output of Output Logic will not be 

sent off-chip. The output of the Output Logic is always sent to the Output Register 

whether the bi-directional port is set up to be an input or an output. 

The Output Register latches the output from the Output Logic on the falling-edge 

of the clock and the STOREP control signal is high. The output of the Output Register is 

sent to the output lines of the bi-directional ports, which are separate from the input lines 

of the bi-directional ports. 

4.7      Control Block 

The Control Block is the main control unit, which controls every element within 

the Microdot, except for the Status Multiplexor. The four elements play a critical role in 

sending control signals at the correct time to the elements to implement their specific 

function. 

Shown in Figure 4-10, is Control Block Diagram indicating all the 

interconnections between the four elements. The Status Register stores the carry, 

negative, overflow, and the zero bits. These bits are sent to the Control Logic, to help 

determine control signal values. The output bits only change during ALU instructions 
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Figure 4-10. Control Block Diagram 
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and that is why the 5-bit CURST ATE and 4-bit ALUCODE signals are inputs to the 

Status Register. The CLRSR control signal comes from the Control Logic and is used to 

set the output bits to all zeros when asserted. At start-up when the RESET signal is 

asserted low, the Status Register begins with zeros on the output bits. 

The Status Register latches in values from the ALU Block on the falling-edge of 

the clock when the CURSTATE signal and ALUCODE signal values are appropriate. 

During the AND, XOR, OR, NOT, Shift Left, and Shift Right instructions not all of the 

status bits are set to whatever the input values are. During these instructions the overflow 

bit is not set, because there is no possibility for an overflow condition to occur. The carry 

bit is not set during the AND, OR, XOR, and NOT instructions, because these are bit- 

wise operations. Table 4-5 shows what outputs are set during which instructions. 

Table 4-5. Carry, Negative, Overflow, and Zero Bit Setting 

Instruction Carry Bit Negative Bit Overflow Bit Zero Bit 
Addn X X X X 

Subtract n X X X X 

Add n w/carry X X X X 

Subtract n 
w/carry X X X X 
ANDn X X 

ORn X X 

XORn X X 

NOTn X X 

Shift Left X X X 

Shift Right X X X 

The Control Logic takes the data from three registers from the Instruction 

Register to determine control signal values during particular instruction sequences. The 

ACKLAST input signal comes from the Data Acknowledge Block and tells the Control 

Logic when to turn the MEMRW control signal from a logic-zero to a logic-one. The 
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ACKLAST signal is used to stop writing data to memory address locations on the off- 

chip SRAM or on-chip SRAM after the last memory address location 4096 has been 

written to. When programming the Microdot, there is only 4096 memory address 

locations that can be filled with data. An internal trigger turns off the programming when 

the 4096th memory address location is reached. The internal trigger, ACKLAST signal, 

prohibits the writing over of previously programmed memory address locations. The 

status bits sent to the Control Logic similar to the OPCODE and ALUCODE signals help 

determine control signal values during the SKIP instruction. The status bits help 

determine whether the SKIPFLAG signal from the Control Logic element should a logic- 

one or logic-zero during the SKIP and SKPT states. If any of the status bits are a logic- 

one and any of the CONST1 signal bits are a logic-one during the SKIP and SKPT states, 

the SKIPFLAG signal is asserted high. Table 4-6 shows the control signals activated 

during each instruction of the Microdot. 

The Temp State element is used to create an additional state for use during the 

JUMP instruction. Since, there were thirty-two states clarified by the 5-bit CURSTATE 

signal, I needed to implement another state into the state diagram of the Microdot, but did 

not want to add another bit to the CURSTATE signal. The Temp State element is a 

register that latches in the TEMP signal from the Control Logic on every falling-edge of 

the clock cycle. Only during the JUMP instruction does the TEMP signal become 

asserted by the Control Logic and thus gets latched through to the Control State Machine, 

which interprets the TEMP2 signal value and sends the Microdot operations down the 

correct state diagram path. 
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The Control State Machine tells the Control Logic, Status Register, ALU Block, 

and the Status Multiplexor what current state the Microdot is in. In addition, the 5-bit 

CURSTATE signal is an input/output signal that gets fed back into the Control State 

Table 4-6. Control Signals 

Operation 
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Addn X X X X X X 

Subtract n X X X X X X 

Addwr'Canyn X X X X X X 

Subtract WCarryn X X X X X X 

Andn X X X X X X 

On X X X X X X 

Exdusive-Orn(XORn) X X X X X X 

Notn X X X X 

Shift Left (SHL) X X X X 

Shift Right (SHR) X X X X 

Load RAM X X X X 

Pop X X X X 

Duplicate (DUP) X X X X X 

Load X X X X X 

Store X X X 

Pushc X X X X X X 

SetlOMasMSETIO} X X X X 

Wait Mask (WAIT) X X X X 

Skip Mask (SKIP) X X X X 

Jump Address (JUMP) X X X X X X 

Swapn X X X X X X X 

Pickn X X X X X 

Clear Status Register 
(CLRSR) X X X 

Machine. The first process after a RESET that occurs with the Microdot is the 

programming of the on-chip and off-chip SRAM, so that the Microdot can run 

autonomously from the master microprocessor. The FUNCT and RESET signals play a 

key role in making sure the programming and transition to running the program execute 

correctly. Both of these signals are controlled off-chip by the master microprocessor, so 
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at power up the Microdot's elements are just receivers of information. Figure 4-11 shows 

the state diagram for the programming, which details the states the Control State Machine 

follows during programming. 

RESET = '0' 

RESET = '1' 
AND 

FUNCT = '0' 

FUNCT=T 
AND 

RESET=T 

FUNCT=T 
AND 

CURSTATE = 'il0102' 
AND 

RESET=T 

V PROGWR\ 

To Other 
Non- 
Program 
States 

Figure 4-11. State Diagram For Programming 

A keynote is that for the Microdot has to have the RESET signal asserted low for 

a minimum of two clock cycles and then the FUNCT signal can be asserted high. The 

programming begins once the RESET signal has been de-asserted, while the FUNCT 

signal remains asserted. This is the only way the start-up and programming of the 

Microdot has been configured by design. Once the programming is over and the FUNCT 

signal has been de-asserted, the Microdot will go into the RESET state for a clock cycle 
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and then start to run the instructions that were written into the on-chip and off-chip 

SRAM. 

The Control State Machine element is started up by a 4-bit OPCODE signal value 

of '00002' sent because of the RESET signal being asserted low. The Control State 

Machine defines the current state of the Microdot and assesses what the next state will be 

based upon the current state being fed back to itself. Appendix A shows the complete 

state diagrams that the Microdot uses and is executed by the Control State Machine. 

The 4-bit OPCODE signal during the fetch operand (FOP) state tells the Control 

State Machine what instruction will be executed. After the OPCODE has been delivered, 

then the Control State Machine will continue down the path of the instruction encoded in 

the 4-bit operand from the OPCODE Register. The Control State Machine inputs 

(OPCODE, TEMP2, SKIPFLAG, RESET, and FUNCT) determine the state diagram 

paths the Microdot follows. 

The block that makes the programming of the Microdot possible by accepting an 

off-chip handshaking signal and returning handshaking signals is the Data Acknowledge 

Block. 

4.8      Data Acknowledge Block 

The Data Acknowledge Block's purpose is to produce the handshaking signals 

used by the master microprocessor, when programming the Microdot. In addition, the 

block also generates the off-chip SRAM read and write signal from the MEMRW control 

signal along with the DATAV signal. The DATAV signal comes from the master 

microprocessor and simply indicates when the data that is sent through the bi-directional 

ports is valid. When the data is valid, instructions are written to the SRAM cells. After 
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either five nanoseconds or 22 nanoseconds, an acknowledge signal called ACK is sent 

off-chip back to the master microprocessor. The different delay times depend on whether 

the memory address location refers to an on-chip SRAM memory address or an off-chip 

SRAM memory address. Since the Microdot is designed to communicate with a off-chip 

15 nanosecond write cycle SRAM, a 22 nanosecond delay is introduced in order for data 

to be written to and read from the off-chip SRAM without error  The five nanosecond 

delay is used when writing to on-chip SRAM. The ACK signal lets the master 

microprocessor know that the Microdot received the data and has successfully written the 

data into memory. Once the ACK signal is sent to the master microprocessor, the 

DATAV signal sent from the master microprocessor de-asserts and a delayed time (five 

nanoseconds or 22 nanoseconds) afterward the ACK signal clears. When the DATAV 

signal is de-asserted, the master microprocessor sets up the next batch of data to send, 

while the Microdot increments to the next memory address to be written to. The sending 

signals back and forth for communication purposes is called handshaking. The only 

difference between the Acknowledge On-Chip and Acknowledge Off-Chip elements is 

the time between when the DATAV signal is received and when the ACK signal is sent 

back. This built in delay from receiving the DATAV signal to sending back the ACK 

signal is used for giving the SRAM units enough time to write the valid data into 

memory. Of course, the off-chip SRAM delay needs to longer than for the on-chip 

SRAM, which takes less time to Write to. Figure 4-12 shows all the elements that make 

up the Data Acknowledge Block. 

The Acknowledge Last Address element was designed for the purpose of sending 

a final prolonged ACK signal back to the master microprocessor when the last memory 
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address has been programmed. This element is used to tell the master microprocessor 

that it is done programming and all the SRAM cells are full of instructions. When the 

last memory address is written to, the ACK signal asserts and stays asserted until the 

FUNCT signal goes low, thus steering the Microdot out of the program state. 

Acknowledge On-Chip 

DATAV       ACKON 

PRESEL 

Acknowledge Off-Chip 

DATAV       ACKOFF 

MEMRW RW 

*w 

Acknowledge Last Address 

ACKOFF ACKLAST 

ADDR(11-0) 

DATAV 

RESET 

FUNCT 

Acknowledge Multiplexor 

ACKON      ACK 

ACKOFF 

ACKLAST 

CE 

Figure 4-12. Data Acknowledge Block Diagram 

The Acknowledge Multiplexor chooses between which delayed acknowledge 

signal to send through to the ACK output port. A key feature is that the ACKLAST 

signal is not only one of three input choices for the multiplexor but it also a selector 

signal. While ACKLAST is asserted high, the output is asserted high. Only when the 

Acknowledge Last Address element is reset to zero will the ACK signal go back to a low 

or zero state. 
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While the Data Acknowledge Block is used during the programming of the 

Microdot, the Status Multiplexor is designed to give insight to data bus line during the 

running of the program. 

4.9      Status Multiplexor 

The Status Multiplexor allows internal signals of the Microdot to be observed. 

This element is designed for developmental troubleshooting and is not needed for 

operational use. Figure 4-13 shows the input and output ports of the Status Multiplexor. 

Status Multiplexor 

IRIN(3-0)       STATOUT(4-0) 

ALURES(3-0) 

CURSTATE(4-0) 

RAMOUT(3-0) 

TOSOUT(3-0) 

STATSEL(2-0) 

Figure 4-13. Status Multiplexor Diagram 

As shown, any of the five main signal lines in the Microdot is observable at any 

one time. The 3-bit STATSEL signal is manually input through input ports on the 

Microdot. The Status Multiplexor is controlled from outside the Microdot through use of 

the selector inputs and can be changed at anytime. The 5-bit output signal STATOUT is 

sent to output ports, which are visible to the outside world. The STATOUT signal 

provides visibility to the Instruction Register, ALU Block, Control State Machine, Stack, 

and the TOS Register. 

4-38 



5.     Testing Procedures and Analysis 

5.1     VHDL Behavioral and Structural Testing 

The process of testing the Microdot began with the simulation of each component 

using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The 

first step in the testing process involved running a complete test of the behavioral VHDL. 

This step is used to show if the language description of the element accurately portrays 

the specified requirements. At this point in the testing, no layouts of elements or gates 

have been chosen, only the behavior of the system is described. Through the VHDL 

simulator, the functionality of each element was tested. Successful tests result in 

identifying that the simulator results represent the behavior that I had envisioned for each 

component. Once each element tests successfully, I began to piece all the components 

together to make the final working product called the Microdot. In one behavioral 

VHDL document, I connected the elements together and defined all the inputs, outputs, 

signals, and port mappings for each element. After all the elements were pieced together, 

I tested the behavioral VHDL language version of the Microdot using the VHDL 

simulator. The process of testing the Microdot required running each instruction and 

running multiple instructions back to back. The instruction and multiple instruction tests 

verified correct operation of the Microdot behavioral design. Some common errors I 

encountered included forgetting to use all the inputs specified in the behavioral VHDL 

file, having the wrong clock edge specified for triggering registers, and not specifying all 

the possible combinations for a multiplexor component. After learning from these 

mistakes, I successfully tested all the components and the Microdot at the behavioral 
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VHDL level. However, there are certain things that cannot be accurately tested at the 

behavioral VHDL level. 

At the behavioral level of abstraction, I tested the programming of the Microdot 

for the on-chip SRAM. Behavioral VHDL does not involve any timing considerations 

unless specific time delays are put into the language. I started with no time delays 

involved, thus the testing of the off-chip SRAM did not seem reasonable. The main 

reason is that the writing and reading of the off-chip SRAM involves timing issues, since 

the SRAM is not located on the Microdot. There are two kinds of signals that make 

timing critical. The master microprocessor sends signals that are interpreted by the 

Microdot and then sent to the off-chip SRAM. In addition, signals are generated on the 

Microdot and sent to the off-chip SRAM. Both types of signals need to follow timing 

specifications for a 15 nanosecond read/write cycle. Therefore, not performing 

behavioral VHDL testing of the off-chip SRAM without any detailed timing information 

was a reasonable decision at the behavioral level. The SRAM timing diagrams that were 

followed through the design of the Microdot for the off-chip SRAM are located in 

Appendix C. After successfully completing the behavioral VHDL testing of the 

Microdot, I proceeded to port the behavioral VHDL to structural VHDL. 

Structural VHDL uses descriptions of the gates the element needs to make the 

operations described in the behavioral VHDL become a reality. All the different gates 

and their connections to each other are documented in a structural VHDL file. A similar 

test process was used with structural VHDL as with the behavioral VHDL testing; I 

began with individual component testing of the structural VHDL. Each of the structural 

VHDL files calls primitive VHDL gate files, which contain timing and functional 
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information. I used timing delays for the testing that were used for gates in the Hewlett- 

Packard 0.5 micron process. The timing delays were used in a previous thesis that had 

radiation-hardened standard cells [8]. I used these timing delays in order to ensure 

success, because the timing delays of the larger radiation-hardened cells was greater than 

the actual 0.35 micron standard cells I was using. I discovered the difference in timing 

delays by running HSPICE on each set of standard cells. The extra built-in timing delay 

was a benefit because all the Microdot signals need to arrive before either a falling or 

rising clock edge. Since all signals need to arrive on a clock edge, a signal delayed by a 

half a period or more will cause some problems. Even though my gates are faster based 

on the HSPICE testing, for testing purposes, using slower times gave me greater 

confidence in signals arriving on time throughout the Microdot. Once all the components 

were tested, I began to piece all the components together similar to the behavioral VHDL 

testing process. The Microdot passed all the instruction and multiple instruction tests on 

the structural VHDL level. However, there were some testing errors that occurred before 

successful structural VHDL testing was achieved. Some errors were using the wrong 

triggered clock edge D flip-flop and improper triggering of test bench inputs. Structural 

VHDL testing success gave me the conclusion that it was time to start building these 

elements either by hand layout or through standard cell layout. I hand laid out the Stack, 

Program Memory, and some Data Acknowledge Block components. Hand layout of the 

SRAM units was used for the Microdot, since most of the power consumption comes 

through the SRAM units. Standard cell layout uses up more area, thus has more 

capacitance and resistance. The higher capacitance and resistance values lead to 

inevitably using more power to operate an element. Standard cell layout was completed 
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on all the other components for the Microdot using a channel routing software tool 

known as Octtools. Once I laid out the components using the MAGIC layout software, I 

extracted a .ext file from MAGIC [25]. Once I converted the .ext file to a .sim file, the 

testing of the layouts began with IRSIM a switch-level software simulator [26]. 

5.2     IRSIM Testing 

IRSM is a switch-level simulator that uses resistance and capacitance 

information from the devices contained in each element. A file is extracted from the 

layout in MAGIC, and capacitance and resistance values are contained within the file. 

Therefore, IRSIM is able to calculate relevant timing information based on the device 

values in the file. However, IRSIM is not the most accurate testing tool, because it does 

not use logic-cell delays as parameters for its models [26]. IRSIM works on a switch- 

level basis, which means the signal value can either be a high, low, or unresolved. There 

are no voltage levels for each signal, only sharp transitions occur which normally would 

not happen on the Microdot. Each component was tested for functionality and timing by 

IRSIM. I looked at certain transitions to get a feel for timing scenarios, but I did not base 

any design decisions on the IRSIM timing data. For the most part, IRSIM testing went 

quite well with only minor changes needed to correct a few imperfections. One 

imperfection involved IRSIM trying to model tri-state buffers in the Program Memory 

and Stack elements. A tri-state buffer has 1.4 volts on the output when it is not enabled. 

IRSIM does not understand the intermediate voltage levels. Limitations of IRSIM lead 

me to not test the entire Microdot by excluding the two SRAM elements (Program 

Memory and Stack). IRSIM can only display 32 signals and has a character limitation on 

an input line. In other words, the Microdot had too many signals and I could not have run 
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enough sets of inputs. From my experience with IRSIM handling microprocessors, it is 

very difficult for IRSM to simulate such a large extracted file with numerous 

interconnections. However, each of the main blocks that I put together were simulated by 

IRSIM and passed the functional tests. Therefore, I felt confident that when the Microdot 

was completely assembled, it would function properly. IRSIM testing results for the 

Microdot displayed adequate timing information and confidence to proceed to the next 

more intricate level of software testing called HSPICE. 

5.3     HSPICE Testing 

The most sophisticated simulation type of testing involved using the HSPICE 

software tool [27]. HSPICE takes a SPICE file extracted from MAGIC and calculates 

node voltages, currents, and even power consumption. HSPICE is the most accurate type 

of software testing available, because it uses model parameters for the N-channel and P- 

channel transistors. Each N-channel and P-channel transistor is modeled by the 

parameter file, which is read by HSPICE. I used the level 49 HSPICE model for my tests 

[27]. I acquired the level 49 model parameters for this particular technology from the 

fabricator MOSIS [2]. MOSIS is a company that sends educational VLSI design projects 

to different foundries for fabrication. MOSIS was the direct link for getting the Microdot 

fabricated. I used the parameters from a wafer run completed in late May of 2000 from 

Taiwan Semiconductor Manufacturing Corporation (TSMC) using the 0.35 sub-micron 

process. Each component was tested with HSPICE for functionality and timing 

information. The most critical timing information, which took several runs of HSPICE, 

was for the SRAM components. The read and write cycles needed to be timed correctly 

so false data did not get written into the memory units or read from the memory. 
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HSPICE has a command to calculate power for each time increment. The power 

calculation involves consumed power and static power. These calculations are critical to 

simulation results regarding the Microdot's power consumption profile. The clock 

frequency that the Microdot is operated at will determine the power consumption of the 

4-bit microcontroller. Therefore, HSPICE helped me estimate the true power 

consumption values the Microdot may require once back from the foundry. Table 5-1 

shows the HSPICE results for average power consumption for each of the elements 

during normal operation. 

Table 5-1. Power Consumption by Component 

HementName 

Power Consumption 

Element Name 

Power Consumption Durinq During Operation; @ 20 
MHz for Clocked Operation: @ 20 IWfefor 
Elements Clocked Elements 

2to1 MJtiplexor 0.192 mW OR 0.026 mW 

4to1MJtiplexDr 0.310 mW Output Buffer 0.034 mW 

Acknowledge Last Address 0.068 mW Output Logic 0.119 mW 

Acknowledge Multiplexor 0.046 mW Output Register 0.418 mW 

Acknowledge Off-Chip 0.721 mW Program Counter Logic 0.309 mW 

Acknowledge On-Chip 0.205 mW Program Counter Multiplexor 0.434mW 

ADDER 0.268 mW Program Counter State Machine 1.58 mW 

AUU Control Unit 0.316 mW Program Memory 25.1 mW 

ALU Overflew 0.169 mW ShiftLeft 0.115 rriW 

ALURssuK 0.375 mW Shift Rght :    0.116mW 

ALU Zero 0.025 mW Stack 124 mW 

ALUCODE Register 0.458 mW Stack Addresser 0.437mW 

ATC 0.020 mW Stack Logic 0.422 mW 

Carry-In Multiplexor 0.023 mW Stack Multiplexor 0.604 mW 

CONSTANT! Register 0.461 mW Stack Sate Machine 0.891 mW 

CONSTANT2 Register 0.463 mW Status Multiplexor 0.247 mW 

Control Logic 1.09 mW Status Register 0.555mW 

Control State Machine 0.642 mW Subtract Multiplexor 0.259 mW 

Event Detection Logic 0.187 mW Temp State 0.065mW 

Mask Register 0.456 mW Temporary Register 0.380 mW 

Memory Controller 0.011 mW Top-of-the-Stack MJtiplexor 0.415 mW 

Memory Multiplexor 0.329 mW Top-of-the-Stack Register 0.383 mW 

NOT 0.011 mW Two's Complementer 0.059 mW 

OPCODE Register 1.02 mW XOR 0.146 rriW 
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Figure 5-1 shows the average power consumption versus clock frequency 

achieved through running HSPICE simulations on the Microdot. The figure shows a 

reduction in power consumption as the clock frequency decreases. The minimum power 

consumption at 1 kHz is 16.3 milliwatts. 

Figure 5-1. Average Power Consumption versus Clock Frequency 

Once the Microdot is sent back from the foundry, it is time to test the actual chip 

on the HP 82000 analyzer. This is the last step in finalizing the validity of the design and 

the functionality of the Microdot. 

5.4     Hewlett Packard 82000 Analyzer Testing 

The HP 82000 analyzer is used to test microchips using a DUT board, mainframe, 

and a UNIX workstation [28]. Software specific to the testing function of the HP 82000 
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analyzer is accessed through the UNIX workstation. With the HP82000 software test 

vectors, voltage levels, current levels, pin declarations, power readings, and clock 

frequency measurements are all accomplished. The HP82000 is used to actually validate 

the operation and timing of the fabricated Microdot chip. Figure 5-2 shows the test setup 

oftheHP82000 system. 

UNIX Workstation 
HP82000 Software 

Interface 
< ► 

HP82000 Analyzer 

DUT Board Interface 

DUT Board 

Figure 5-2. HP 82000 Analyzer Testing Setup from [28] 

The HP82000 testing began with running a continuity test on the test channels 

and the DUT board. The continuity test checks the connections between the HP82000 

and the pin sockets on the DUT board. The fabricated Microdot chip does not have to be 

locked in place on the DUT board for the continuity test. The continuity test checks for a 

short circuit between the tester channels and the DUT board. The continuity test 

successfully passed on the HP82000, which ensured the DUT board made a good 

connection with the HP82000. The testing continued with running the Microdot at a slow 

clock frequency of around hundreds of Hertz, while trying to initialize the Microdot by 

asserting the RESET signal. Of course, before the instruction set can be tested, the 

Microdot had to be initialized. Many tests at different frequencies, input voltages, current 

limits, and input vectors took place in order to get the Microdot to initialize. However, 

all of my attempts failed to get the Microdot to initialize. I checked the four power and 
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ground pins on the Microdot and found that power and ground were shorted together. 

After inspection of the MAGIC layout file, I found two elements that had power and 

ground wired incorrectly. After many attempts to use a laser cutter to try and break the 

connection of these two elements from the power and ground rail lines, I still was unable 

to get the Microdot to initialize. 

I ran a quiescent current test on the Microdot and found the chip was using 108 

milliamps of current in a steady state. The quiescent current measurement went down as 

I continued to laser cut the two element connections from 108 milliamps to 15 milliamps. 

As the quiescent current measurement decreased, the resistance measurement between 

the power and ground rails increased. The resistance measurement started out at 100 

ohms and I measured after laser cutting a resistance of 2800 ohms. Even though a sizable 

resistance was attained between the power and ground rails, a signal transition on the 

outputs of the Microdot was never measured by the HP82000. 

The following process would need to occur in order to fully test the Microdot's 

operation and functionality. The testing would need to begin by running the following 

static tests, a continuity test and then a quiescent current test. After successful 

completion of the continuity test and recording the quiescent current, the active tests may 

begin. To minimize the complexity of the active tests, beginning with a slow clock speed 

is preferred, somewhere in the low kilohertz range. After getting initialization to 

correctly function, the programming of the Microdot would need to be tested. A test 

involving only programming one instruction into the Microdot and viewing the IRIN, 

ADDR, and the CURSTATE signal lines is a beginning to testing the Microdot's 

functionality. After programming successfully, start with programming one instruction 
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into the Microdot and running the instruction. An easy instruction to start with would be 

the PUSH instruction, since the instruction mainly uses the instruction register and Stack 

Block. Under the PUSH instruction, the operation of the Stack Block will be tested. 

After successfully running a Stack instruction, an ALU instruction would be the next test 

to be executed. During an ALU instruction the output of the ALU Block can be viewed 

on the STATOUT signal lines. After successful completion of an ALU instruction, 

testing of the entire instruction set at the same low clock speed should continue. The 

instruction set can be checked for operational success by the STATOUT signal lines and 

all the other output lines coming from the Microdot. 

The next batch of tests, after successful completion of running the entire 

instruction set, involves incrementing the clock frequency small amounts to find the 

maximum clock speed that the Microdot can operate under. Finding the maximum clock 

speed requires setting the clock frequency to the highest possible frequency until some 

expected outcome does not occur. Also, these maximum clock speed tests require the 

clock frequency to be increased until a breaking point occurs. During the process, the 

Status Multiplexor pins are monitored for different values that should be located on 

different data lines within the Microdot. Monitoring the STATOUT signal lines is done 

to better understand the inner workings of the Microdot and to troubleshoot an error if 

necessary. 

Furthermore, minimal power consumption tests need to be run to see what the 

lowest amount of power consumption the Microdot can function on. A process of 

lowering the clock speed and running all the Microdot instructions needs to be 

completed. The goal is to find out the minimum power consumption of the Microdot 
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when operating the clock at a slow clock speed. As the clock speed decreases, the power 

consumption of the Microdot should decrease. 
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6.     Summary and Conclusions 

6.1 Summary 

The Microdot is a 4-bit microcontroller that is designed for operations in a space 

environment. The purpose of the Microdot is to execute programs that deal with data 

manipulation from sensors on-board a satellite. The main role is to process and 

temporarily store the data and report if any of the data is out of limits set by the 

programmer. The execution of a reporting program is only one of the many scenarios 

that the Microdot could be used for. This thesis used documentation from the Air Force 

Research Laboratory located at Kirtland AFB NM as a starting point to begin the 

Microdot design [1,11]. The work that was completed for this thesis is a building block 

to fabricating a prototype of the Microdot. New concepts and design decisions were 

made throughout the design of the Microdot. The LDRAM instruction was added along 

with ALU Block control signals to minimize power consumption of the Microdot. 

Finally, all the Microdot elements were integrated to achieve the prototype product and 

HSPICE simulations were used to validate the operation and specifications of the 

Microdot. The fabricated Microdot was unable to be tested for functionality due to two 

elements having the power and ground rail connections switched. 

6.2 Conclusions 

The results that were displayed in Chapter Five demonstrate the feasibility of a 

small and efficient 4-bit microcontroller that can meet mission requirements for space 

applications. The lowest power consumption of the Microdot during operation using 

HSPICE simulation runs was 15 microwatts. Also, the highest operating frequency for 
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the Microdot using HSPICE simulation runs was 20 MHz. The lowest tested operating 

frequency for the Microdot was 1 kHz. In addition, the Microdot was simulated using 

HSPICE and all of the 23 instructions were performed correctly and without error. 

Therefore, I believe that due to these results further research should be continued in this 

area. 

6.3     Lessons Learned 

From the beginning to the end of the design process, several lessons were learned. 

One crucial lesson is to learn the software tools thoroughly, because most thesis designs 

are more complex than class designs. Complicated designs can make the automation of 

going from behavioral to structural VHDL code more difficult and, thus, take more time 

to achieve. 

Another lesson learned is attaining the knowledge of the Lager Octtools software 

and all the files that the software needs to work properly. When using a different 

standard cell library than the traditional Lager library, it is critical to know how to set up 

each standard cell MAGIC layout. There are many particular dimensions that need to be 

followed for the labels, power and ground rails, and overall cell size. Appendix D 

contains a tutorial for using the Lager Octtools software with new standard cell libraries. 

A better routing tool to be used with standard cell libraries would greatly reduce 

the time and area of designs in the AFIT VLSI lab. The Lager Octtools software 

currently routes between standard cells using channel routing. The software creates extra 

channels where only routed lines run. Area is wasted by this technique, since wire 

connections could be accomplished by going over cells in higher levels of metal. 
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When trying to meet a fabrication run date, set aside at least a couple of weeks to 

test the design. I did test the Microdot before sending it to fabrication and everything 

worked properly. However, I discovered when the chip returned from the foundry, there 

were interconnections and a state transition that my simulation tests had not covered. 

There are unlimited amounts of tests to run on any chip design, so choosing which tests 

to run is critical. I chose to test numerous functions yielding a high percent fault 

coverage, however without a large amount of time it is sometimes difficult to reach a 100 

percent or complete fault coverage for an ASIC. 

6.4     Recommendations for Future Research 

I recommend that the Microdot design be re-fabricated in the 0.35 sub-micron 

TSMC process using commercial standard cells. I have instituted the following 

corrections to the MAGIC layout file of the Microdot, so correct operation will occur. I 

have corrected the two element connections to power and ground, therefore correcting the 

short between power and ground. I also corrected a state transition from PROG (state 26) 

to PROGWR (state 30) in the Control State Machine element, which hindered the 

programming of the Microdot. HSPICE simulation runs of all the instructions at varying 

frequencies have validated the corrected Microdot design. The fabrication of the 

corrected Microdot design will give a baseline to work from in the future. The main 

elements that consumed power in the HSPICE simulation runs were the SRAM units 

(Program Memory and Stack). A redesign of the SRAM cells and research in this area 

would help achieve the goal of the Microdot, which is to consume low amounts of power. 

In addition, a radiation tolerant Microdot design using radiation hardened standard cells 

should be created in the 0.5 sub-micron Hewlett-Packard (HP) process. The 0.35 sub- 
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micron TSMC process does not guarantee the threshold voltage levels of annular 

transistors. The HP process has the ability to fabricate the annular transistor without any 

limitations and therefore may be the best chance at making an acceptable radiation 

tolerant design for the Microdot. A comparison of the two different Microdots from the 

HP and TSMC process would have great merit. Specifications such as radiation 

tolerance, power consumption, and area could be compared and optimized for each 

design. A fabrication process and design could be decided on by continuing the research 

of the Microdot in this direction. 
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Appendix A. Microdot Layout and State Diagrams 
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Figure A-1. Microdot Layout 
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Path 
Name 

OPCODE = 
(Binary Code) 

Path Name OPCODE = 
(Binary Code) 

A '0110' H '0100' 

B '0111' I '1000' or '1001' or 
'1010' 

e '0101' J '0000'or'1011'or 
'1100'or'1101'or 

'1110' 

D '1111' K '1011' 

E '0010' L '0000'or ('1100'and 
TEMP2 = T)or 
'1101' or '1110' 

F '0000'or'1000'or 
'1001'or'1010'or 
'1011'or'1100'or 
'1101'or'1110' 

M '0000'or'0001'or 
('1100'and TEMP2 
= '1') or'1101'or 

'1110' 

G '0001' 

Figure A-2. Microdot State Diagram (1 of 3) 
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V       9 

FOP 
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4 _[    WAIT 
^ 

V    11 

FOP 
0 

^ _[  SETIO 
^ —V        12 

Path 
Name 

OPCODE = 
(Binary Code) 

Path Name OPCODE = 
(Binary Code) 

F '0000'or'1000'or 
'1001'or'1010'or 
'1011'or'1100'or 
'1101'or'1110' 

Q SKIPFLAG = '0' 

J '0000'or'1011'or 
'1100'or'1101'or 

'1110' 

R SKIPFLAG = '1' 

K '1011' S '0100" or'0101'or 
'0111'or'1111' 

L '0000'or ('1100' 
andTEMP2 = T) 
or'1101'or'1110' 

T '0001'or'1000'or 
'1001'or'1010'or 
'1011'or'1100'or 
'1101'or'1110' 

N '1000' U '0001' or '1000' or 
'1001'or'1010' 

O '1010' V '1011'or'1100'or 
'1101'or'1110' 

P '1001' 

Figure A-3. Microdot State Diagram (2 of 3) 
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Path 
Name 

OPCODE = 
(Binary Code) 

Path Name OPCODE = 
(Binary Code) 

G '0001' Z '0000' 

L '0000'or ('1100' 
andTEMP2 = T) 
or'1101'or'1110' 

AA '0001' 

W '1100' BB '1100'and 
TEMP2 ='0' 

X '1101' CC '1101' 

Y '1110' 

Figure A-4. Microdot State Diagram (3 of 3) 
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Appendix B. Microdot Signal Table and Specifications 

Table B-l. Microdot Signal Table 

Sianal Name # of Bits FROM TO FUNCTION 

ACK 1 Acknowledge Multiplexor OFF-CHIP 
Handshaking signal used during 
programming 

ACKLAST 1 Acknowledge Last Address 
Acknowledge Multiplexor; 
Control Logic 

Turns off programming after reaching 
the 4096th memory location 

ACKOFF 1 Acknowledge Off-Chip 
Acknowledge Multiplexor; 
Acknowledge Last Address 

Delayed handshaking signal used when 
programming the off-chip SRAM unit 

ACKON 1 Acknowledge On-Chip Acknowledge Multiplexor 
Delayed handshaking signal used when 
programming the on-chip SRAM unit 

ADDCSEL 1 ALU Control Unit Carry-In Multiplexor; Adder 
Signals that the Add with Carry 
instruction is being performed 

ADDOUT 4 Adder ALU Result Result of the Adder element 

ADDR 12 

Program Counter State 
Machine 

Program Counter Multiplexor; 
Program Counter Logic; 
Program Memory; Memory 
Controller; Acknowledge Last 
Address; OFF-CHIP 

Address which decides which SRAM 
cell to write to or read from 

ADDRIN 12 Program Counter Logic Program Counter Multiplexor 
ADDR incremented by one; provides 
next address 

ADDRMX 12 
Program Counter 
Multiplexor 

Program Counter State 
Machine 

Selected address to get sent to SRAM 
units 

ADDSEL 1 ALU Control Unit Carry-In Multiplexor; Adder 
Signals that the Add instruction is being 
performed 

ADDSUB 1 ALU Control Unit 
Subtract Multiplexor; ALU 
Overflow; Two's Complementer 

Declares whether the ALU operation is 
addition or subtraction 

ALUCODE 4 ALUCODE Register 

Program Counter Multiplexor; 
ALU Control Unit; ALU Result; 
Control Logic; Status Register; 

Declares which ALU operation will 
occur. Used in the JUMP instruction 
sequence. 

ALURES 4 ALU Result 
ALU Zero; 2 to 1 Multiplexor; 
Status Multiplexor The selected output of the ALU Block 

ANDOUT 4 AND ALU Result Result of the AND operation 

ANDSEL 1 ALU Control Unit AND Turns the AND element on and off 

CARRY 1 ALU Control Unit Status Register Gives resulting carry bit 

CBIT 1 Status Register 

Control Logic; Carry-In 
Multiplexor; ALU Control Unit; 
Shift Left; Shift Right Current carry bit 

CE 1 Memory Controller 

Program Memory; Memory 
Multiplexor; Acknowledge 
Multiplexor 

Enables either the on-chip or off-chip 
SRAM 
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Sianat Name # of Bits FROM TO FUNCTION 

CLK 1 OFF-CHIP 

Control State Machine; Status 
Register; Temp State; Mask 
Register; Output Register; 
Program Memory; Program 
Counter State Machine; 
OPCODE Register; 
ALUCODE Register; 
CONSTANT1 Register; 
CONSTANT2 Register; 
Temporary Register; Top-of- 
the-Stack Register; Stack; 
Stack State Machine System Clock 

CLRSR 1 Control Logic Status Register Resets the Status Register to all zeros 

CONST1 4 CONSTANT1 Register 

Program Counter Multiplexor; 
4 to 1 Multiplexor; Control 
Logic; Mask Register; Event 
Detection Logic All-purpose instruction register output 

C0NST2 4 CONSTANT2 Register Program Counter Multiplexor Used for JUMP Instruction 

COUT 1 ADDER ALU Control Unit Carry bit result from addition operation 

CURSTATE 5 Control State Machine 

Control Logic; Status 
Multiplexor; Status Register; 
ALU Control Unit 

Current state bits- keeps track of 
which state the Microdot is in 

DATASEL1 1 Control Logic 

4 to 1 Multiplexor; Top-of-the- 
Stack Multiplexor Select bit for both multiplexors 

DATASEL2 1 Control Logic 2 to 1 Multiplexor Select bit for the multiplexor 

DATAV 1 OFF-CHIP 

Acknowledge On-Chip; 
Acknowledge Off-Chip; 
Acknowledge Last Address; 
Program Memory 

Handshaking signal used during 
programming 

DECSP 1 Control Logic Stack Multiplexor; Stack Logic 

Tells Stack Block to decrement current 
stack address 

DOFFOUT 4 OFF-CHIP Memory Multiplexor Output bits from Off-chip SRAM 

DONOUT 4 Program Memory Memory Multiplexor Output bits from On-chip SRAM 

EVENT 1 Event Detection Logic Control State Machine 

Used during WAIT instruction; signals 
Microdot to stop waiting 

FUNCT 1 OFF-CHIP 

Control State Machine; 
Acknowledge Last Address 

Triggers the beginning and end of 
programming 

INCSP 1 Control Logic Stack Multiplexor; Stack Logic 

Tells Stack Block to increment current 
stack address 

INPUT 4 OFF-CHIP 

Program Memory; Memory 
Multiplexor; 4 to 1 Multiplexor; 
Event Detection Logic; 4-bit input/output data path 
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Sianal Name # of Bits FROM TO FUNCTION 

IRIN 4 Memory Multiplexor 

OPCODE Register; ALUCODE 
Register; CONSTANT1 
Register; CONSTANT2 
Register; Status Multiplexor Instruction register data path 

LDALU 1 Control Logic 
ALUCODE Register; Program 
Memory 

Signals loading of the ALUCODE 
Register 

LDC0NST1 1 Control Logic CONSTANT1 Register 
Signals loading of the CONSTANT1 
Register 

LDC0NST2 1 Control Logic CONSTANT2 Register 
Signals loading of the CONSTANT2 
Register 

LDMASK 1 Control Logic Mask Register Signals when to load register 

LDOP 1 Control Logic OPCODE Register Signals when to load register 

LDRAM 1 Control Logic Stack Signals when to write to stack 

LDTEMP 1 Control Logic Temporary Register Signals when to load register 

LDTOS 1 Control Logic Top-of-the-Stack Register Signals when to load register 

MASKOUT 4 Mask Register Output Logic Sets which bits are input or output bits 

MEMRW 1 Control Logic 
Program Memory, Acknowledge 
Off-Chip 

Signals either to read or write from 
memory 

MUX20UT 4 2 to 1 Multiplexor Top-of-the-Stack Multiplexor output of multiplexor 

MUX40UT 4 4 to 1 Multiplexor Top-of-the-Stack Multiplexor output of multiplexor 

NBIT 1 Status Register Control Logic 
Signals whether result from ALU is 
negative 

NEGRES 1 ALU Zero Status Register 
Signals whether result from ALU is 
negative 

NOTOUT 4 NOT ALU Result Result of the NOT operation 

NOTSEL 1 ALU Control Unit NOT Turns the NOT element on and off 

OFFSET 7 Control Logic Stack Addressor 

One of two 7-bit operands for 7-bit 
adder; gives ability to reach any of the 
128 stack addresses within the stack 

OPCODE 4 OPCODE Register 

Control State Machine; ALU 
Control Unit; ALU Result; 
Control Logic 

Gives the operational code, which 
determines which instruction to run 

OROUT 4 OR ALU Result Result of the OR operation 

ORSEL 1 ALU Control Unit OR Turns the OR element on and off 

OUT 4 Output Logic Output Register Sends data off-chip 

OUTPUT 4 Output Register OFF-CHIP Sends selected output bits off-chip 

OVERRIDE 1 OFF-CHIP Memory Multiplexor 
By-passes both SRAM units; gives 
ability to load instructions manually 

OVFLW 1 ALU Overflow Status Register 
Signals whether result from ALU is an 
overflow condition 

PCCOUNT 1 Control Logic Program Counter Multiplexor 
Tells multiplexor to send through 

I incremented address value                   | 
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Sianal Name # of Bits FROM 12 FUNCTION 

PCLOAD 1 Control Logic Program Counter Multiplexor 

Tells multiplexor to load 12-bit address 
from the instruction registers- used 
during JUMP instruction 

PCSET 1 Control Logic 
Program Counter State 
Machine 

Resets address to "000000000000" 
after programming is complete 

PRESEL 1 Program Memory Acknowledge On-Chip 

Tells handshake signal to go high when 
Program Memory is ready to write to 
SRAM cell 

PRESELCNTL 1 Control Logic Stack 
Tells stack when to read from SRAM 
cell 

RAMNOUT 4 Subtract Multiplexor ADDER 4-bit operand to ADDER 

RAMOUT 4 Stack 

Temporary Register; Subtract 
Multiplexor; ALU Overflow; 
Two's Complementer; OR; 
AND; XOR; Status Multiplexor Output from Stack 

RAMQ 4 Two's Complementer 
Subtract Multiplexor; ALU 
Overflow 

Complemented version of RAMOUT 
data 

RESET 1 OFF-CHIP 

Stack State Machine; Mask 
Register; OPCODE Register; 
Program Counter State 
Machine; Control State 
Machine; Acknowledge Last 
Address Initializing signal 

RW Acknowledge Off-Chip OFF-CHIP Read/Write signal for off-chip SRAM 

SHLC Shift Left ALU Control Unit Carry result from shift operation 

SHLOUT 4 Shift Left ALU Result Result of shift left operation 

SHLSEL ALU Control Unit Shift Left Turns the Shift Left element on and off 

SHRC Shift Right ALU Control Unit Carry result from shift operation 

SHROUT 4 Shift Right ALU Result Result of shift right operation 

SHRSEL ALU Control Unit Shift Right Turns the Shift Right element on and off 

SKIPFLAG Control Logic Control State Machine 
Used during SKIP instruction as a go or 
no-go flag 

SPIN 7 Stack State Machine 
Stack Logic; Stack Addressor; 
Stack Multiplexor 

One of two 7-bit operands for 7-bit 
adder; gives ability to reach any of the 
128 stack addresses within the stack 

SPMX 7 Stack Multiplexor Stack State Machine input to stack state machine 

SPOUT 7 Stack Logic Stack Multiplexor 
Incremented by one or decremented by 
one SPIN address 

STAKADR 7 Stack Addressor Stack 
Result of adding OFFSET and SPIN- 
current stack address 

STATOUT 5 Status Multiplexor OFF-CHIP 
Used to view different internal data 
buses within the Microdot 
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Signal Name # of Bits FROM IQ FUNCTION 

STATSEL 3 OFF-CHIP Status Multiplexor 
Select lines to control which data buses 
to output on STATOUT 

STOREP 1 Control Logic Output Register 
Used to send data off-chip, during the 
STÖRE instruction 

SUBCSEL 1 ALU Control Unit Carry-In Multiplexor; Adder 
Signals that the Subtract with Carry 
instruction is being performed 

SUBSEL 1 ALU Control Unit Carry-In Multiplexor; Adder 
Signals that the Subtract instruction is 
being performed 

TEMP 1 Control Logic Temp State 
temporary control signal to create an 
extra state during the JUMP instruction 

TEMP2 1 Temp State Control State Machine 

tells state machine to go to state 15- 
FCON2; during the JUMP instruction 
only 

TEMPOUT 4 Temporary Register 2 to 1 Multiplexor 
Used to store RAMOUT during SWAP 
instruction 

TOSIN 4 
Top-of-the-Stack 
Multiplexor Top-of-the-Stack Register 

Used to transfer data into the TOS 
Register (Cache) 

TOSOUT 4 Top-of-the-Stack Register 

Stack; Status Multiplexor; 
ADDER; OR; NOT; XOR; 
AND; XOR; Shift Left; Shift 
Right; Event Detection Logic; 
Output Logic 

Used to write data to stack and perform 
ALU operations on data; also used for 
miscellaneous operations 

VBIT Status Register Control Logic 
Tells control logic whether last ALU 
operation had an overflow condition 

WAITP Control Logic Event Detection Logic 
Signals wait for an event on the selected 
INPUT bits 

XOROUT 4 XOR ALU Result Result from the XOR operation 

XORSEL ALU Control Unit XOR Turns the XOR element on and off 

ZBIT Status Register Control Logic 
Tells control logic whether last ALU 
operation had a zero result 

ZERORES ALU Zero Status Register 
Signals a zero result from the ALU 
Result 
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Table B-2. Microdot Specifications 

Package Type DIP40 

Supply Voltage 3.3VDC 

Average Power (Simulated): 16.3 mW 

Average Set-Up Power (Simulated): 115mW 

Core Transistor Count: 41,872 

Total Chip Area: 2243 x 2152 microns = 4.83 mm2 

Pin Count: (40 Pins Total) 4VddandGND 
1CLK (Input) 

1DATAV (Input) 

4 DOFFOT (Inputs) 

1 FUNCT (Input) 
1 OVERRIDE (Input) 

1 RESET (Input) 
3 STATSEL (Inputs) 
4 INPUT (Inputs/Outputs) 

1ACK (Output) 
12 Address (Outputs) 
1CE (Output) 
1 RW (Output) 
5 STATOUT (Outputs) 
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Appendix C. SRAM Specifications and Timing Diagrams 
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> Automatic pow^r-down when daaelacted 

» CMOS for optimum »peeoVpower 

• High speed 

» Low active power 

— SSSmW 

»Low sianoty power 

— HO mW 
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(CE) and Write Enable (WE) inputs are both LOW. Dalaon the 
four data Input/oulpul pins (t/Ofc through V03\ is wrinaninlolhe 
memory location specified on the aottess pins- <Ag through 
An)- 
Rgadinglhe device is aocompsshea by latclngine Chip Enable 
(CE) LOW, wwis Write Enaws tws) remains HIGH, under 
these conditions, tha contents of the location specified Ort Ihe 
adtfrMS pins will appear on the four flats Inputfoutput oim 
(WOoihmuanUOj). 
The input/otupm pins remain in a high-impBdancs state when 
Cwp Enable (5f) Is H1CH or Write Enable- (5?E) is LOW. 

A die «o«l is used to Insure alpha immunity. 

£§E 

\1Q} 

lA 

El 

WE 

Pin Configurations 

jHpysoj 
Top view 

\il T-^ ""'     20 3tc 
AsE 2 1D ] A3 

AiC 3 1B 3*2 
A7C 4 17 3 Ai 
AiC 5   7C1M« "> 3 Ar> 
A«[ »   ' 15 3 i«3o 
AIQC H 3 I/O, 
AllC " ia 3 tW? 
ceC a 12 3 ros 

GNDC in ii U W^    CIESA4 

Selection Guide 
7C16*A-1S 7C166A-20 7C16AA-K 7C16*A-35 7C168A-45 

Maximum Access Time (ns) 15 20 2S 35 45 

Maximum Operating 
Current (mA) 

commercial 116 30 90 .      90 90 

Military - 10Q 100 100 100 

C-l 



r/CYPRESS ============ 
Maximum Ratings 

(Above whi* th» useful life may be impaired. For usar guide- 
lines, not lestadL) 
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Mil - 40 
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5.   Teased rjlisly arts) »ti«r any ggs'gn or fix«; chsrg« lhal may a£ed IfiSS* pjowwlfttg. 

AC Te*t Loads and Waveforms 

sv*- 
OUTPUT»- 

INCLUDING- 
JIÖAND 
SCOPE 

R1 4*1(J 

255Q 

(») 

r 
BJCUUDUBS-dr 

JIGftSD ~ 
SCOPE    {b} 

R2 

3,W 

6*tD 

AU INPUT PULSES 

ZZZ > mmmmmmtr 10 10% 

&3Ur<reS5!rit 1o; TUfergNI» £QU!VALEr« 

CUTPUTo- 
167J3 

"■<W'"fi -»1.73V 
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Wr CYPRESS 
CY7C16SA 

Switching Characteristics Over the Opening Ranged i 

Parameter D«scripMon 

7C16&A-15 7C168A-2Ö 7C169A-25 7C16SA-35 7C16SA-45 

Unit Wln- Max. Mill. Max. Win. {Max. MIn. Max. Min. Max. 

READCYCLS 

V» Read Cycle Tim© 15 so ■25 55 «5 ns 

*M Address to Data valid IS 20 25 35 45 n$ 

*OHA Ouipet Hold tan Address Change 5 5 5 S 5 rss 

tsCE Power Supply Current ts 20 25 (   35 45 <« 
,U5CG ÖELOWtoLowZ1'1 5 5 5 5 S 

>HZC£ MHlGHIoHlgriZl7'^ a 3 10 I   15 15 

tpU CE LOW 1» Power Up 0 0 0 0 0 f*S 

'PO Cf HIGH to Power-Down IS 20 20 I   g0 25 RS 

fRCS Read commancJ Set-Up 0 0 0 öi 0 ß$ 

•RCH Read Command Hold 0 0 0 o 0 ra 

WRITE CYCLE^ 

■we Write Cycle Time IS 20 20 25 -30 as 

tsce CE LOW 10 Write 6nd \i 15 20 25 30 os 

to* Aöäress Set-Up to Write End 12 15 20 £5 30 BS 

W Address Hold from WiSte End 0 0 0 0 0 M 

tSA Address Set-Up to Write Ssert 0 0 0 0 0 m 

*PVVE SSI Pulse Width 12 15 1S 20 20 M 

•so Dasa Set-Up to Write End 30 10 10 15 15 

ns %o Data Hold fcörft Write End 0 0 0 0 0 

have WE HIGH io Low 2.P? 7 7 7 5 5 m 

k»VE WiL0WtolHighZl7'8J 5 5 5 5 10 rs 

Switching Waveforms 
RaadCycteMo. If1«-11] 

A0DS6SS 

! 1«C • 

>£*« ■ 
•AA- 

DATA OUT PREVIOUS DATA VAUP ) (XX ^ \ 

X 
DATA VALID 

6.   lisl OHHSSHTS iissKma signalwirisäfeiii liro» et S ns «r tats. Siriiia lereiwx» !•»*»«11SV. «nptir Pt#« to«1'1 <* c 1O aw.a,!It «*'* Hwöng gl Iho »ecib«* 

!|^^9^I^TI»«W»i^*^l^***rt^!*«MI«lll!taBO0Od»-tWf^ 
13.  WEBHIGHfcfitadi»*, 
1l!  D«tcoi5cor^nuoia!y!*lK««|.?^sVt. 
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^CYPRESS 
CY7C168A 

Switching Waveforms («onfeuedj 

Read Cycle 

5E 

!3P. «t 

K 

DAYAÖU'- 

CURRENT■ 

_/ 

'HC- 

y 
'Ace- 

* km—~"~ 
HISH IMPEDANCE jm 

«*>u 1 
* 'HZCE- 

^. DATA VALID 

50% 

> 

HIGH 
IMPEDANCE 

*  '«> M 

*£ 

Write CycfsNo.1 (WE ConlwJK 

AOWSSS Rsss y^ 
• %C" 

* 

^SL 
■ me" *■» 

' !SA- 

0 ATA IN 

OATAira" 

■ twr- 

^L 

X 

" !J9*1E" 

< SStJ" 

DATA)NVAUD 

• tüvtm 

DATA UNDEFINED 
d 

*—■»«.——*i 

^r 
* >H0 "• 

MPEDANCE I HS0H IMPEDANCE 

< 

Write cycl» No. 2 (csöofttraitecO*9,,Ss 
* i—^^   —— tim —————— 

ADDRESÖ           "^ it                                                                                                                                             ) ( 
• . 1g* > ♦*— 

CE S v  ? 
i  

. ,. m  'AW •*"™ mf, 

lp«e 

? ^^^^^^ <mmmm 
*- IHD "* j" 

DATA IN                                                   ^^ 0ATA|NvAUD > < 
<— — tmm *• 

DATA IX) OATAWNDSFMED > 
HIGH IMPEDANCE 

Nabu: 
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Program Memory Write Cycle 
i 
i 

1                                t 
1                                  1 

i 
i 

CLK   ! r 
CE     | 

FUNCT    1 

*        * 
ACK    ! 

•^"          w 

td   '     tw 

Wv ! | MEMRW ^ w<% w 
!          »..! . 

DATAV 1                  1 
1                  1 i > 

i 1 1 

PRE 
1   .     tp,e «J tadd 

X 
i                  j 

p 
ADDR(11-0) 

L  

i                i o            i 

INPUT(3-0) i VALID DATA X j           xxxx X            VALID DATA 

LDALU 

  

LDOP 

LDCONST1 

LDCONST2 

DONOUT(3-0) !                       HIGH IMPEDANCE STATE 

These timing delays take into account pad 
delays from MOSIS documentation of 
0.8ns for inputs and 1.9ns for outputs. 
Signals coming from off-chip are assumed to 
have no delay from the off-chip device to the 
input pad 

tw = 5 ns 
ta = 8 ns 
tm = :2.8 ns 
td = 2.4 ns 
tv = 3 ns 
tpre = 8ns 
taddr = 1.2 nS 
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Program Memory Read 

i 
i 

i 
i 

1 
1 

i 
i 

i 
i 

i 
i 

CLK   I r 
CE    j 

FUNCT   ! 

MEMRW   j 

DATAV   ! 
telex* 1 

PRE   j 
top 

4> 
tpre 

^           W 
^O1 

ADDR(11-0) 
i 
i 

0 i             IX :   l          : 
1 

INPUT(3-0) |  xxxx 

LDALU 

LDOP !                      i4* 

LDCONST1 

i— 

LDCONST2 j >- 

i                      {   tdata 

DONOUT(3-0) J z X D ATA X ! z                  ! 

These timing delays take into account 
pad delays from MOSIS 
documentation of 
0.8ns for inputs and 1.9ns for outputs. 
Signals coming from off-chip are 
assumed to have no delay from the 
off-chip device to the input pad 

td = 2.9 ns 
tdata = 4 ns 
tciock = 2.8 ns 
top = 3.5 ns 
taddr = 1.2 nS 
tpre = 4.5ns 
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Stack Write 

i 
i 
i 

i 
i 

i 

CLK 1 
i                       i                       i 

LDRAM   j 

_i 
i                                 i 
i                                 i i r 

PRESELCNTL 
i ■—i 1  

i                                 i 
i                                 i 
i                                 i 

tdata 
l —i 

TOSOUT(3-0) | INVALID DATA X VALID PATA 1 
t                       i 
i                       i 
■                       i 

tad*   1 

STAKADR(6-0) !                      !    127             ! X 126 

tclockl 

1   Ifall Ipre 
4                        fe !                     !                     r** ^               w 

RAMOUT(3-0) !                      iHIGH IMPEDANCE STATE 

These timing delays take into account 
pad delays from MOSIS 
documentation of 
0.8ns for inputs and 1.9ns for outputs. 
Signals coming from off-chip are 
assumed to have no delay from the 
off-chip device to the input pad 

td = 3.4 ns 
tdata = 1.2 ns 
tciock = 1.2 ns 
tfaii = 1.1 ns 
tpre = 3 nS 
taddr = 2.5 ns 
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Stack Read 

1 
1 1 

CLK 1 
LDRAM 

PRESELCNTL 
1 y 
IM 

1 
TOSOUT(3-0) |  XXXX         |    ! 

i 

i 
taddr 

■                                 '      i 
i                                 •      i 
!                           !     ' 

STAKADR(6-0) 1126 X i              i & 
1                                            |        ! tdala 

!     ** 
tpre 

tctock 
I 
■ 

PRE ■^       w 

RAMOUT(3-0) •HIGH IMPEDANCE STATE! 

These timing delays take into account 
pad delays from MOSIS 
documentation of 
0.8ns for inputs and 1.9ns for outputs. 
Signals coming from off-chip are 
assumed to have no delay from the 
off-chip device to the input pad 

td = 2.6 ns 
tdata = 0.6 ns 
tciock = 1 ns 
tpre = 2 ns 
taddr = 2.5 nS 
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Appendix D. OCTTOOLS Tutorial 

Creating a Standard Cell Library from Radiation Hardened 
Cells or Commercial Cells 

Introduction 
The purpose of this tutorial is to learn how to place a standard cell library into the 

VLSI network for use with design tools. This tutorial will show how to use a different 
cell library than the Lager cell library throughout the entire design process. The finished 
product will be a layout using the different cells whether they are radiation hardened or 
another commercial set of library cells. The goal is to create .mag and .sdl files for each 
new library cell that will work with the Octtools. Octtools will lay out the circuit and 
perform the interconnections as described by the structural VHDL code. 

*Note that you will need to have EENG653 and EENG695 Lab handouts for this tutorial 
assumes the student has taken both of these courses and performed these labs. This 
tutorial is targeted for VLSI thesis students who need to fabricate an integrated circuit 
with a different technology than the Hewlett-Packard 0.8 micron process using the Lager 
standard cell library. 

* All commands that need to be performed at the Unix terminal prompt are specified by 
the following syntax (UnixPrompt% or HeraclesorEris%) before the actual command. 
Otherwise the commands are Magic commands and need to be carried out when Magic is 
open. For Magic commands it is crucial to have the cursor located within the Magic 
layout window, otherwise Magic will not recognize the command. 

Preliminaries 
First, you will need to copy files to your directory, which are needed to run 

through this tutorial. All the different file types used throughout this tutorial are 
explained in the reference section of this tutorial located on the backpage. The .vhd and 
.sym files can be copied from (-kwatson/tutorial/), which includes a components.vhd file 
that instances all the individual cells. Also, files needed when using Octtools are located 
in this directory (lager, wolfe.rules_6.0, octprep, feed.mag, and all necessary net2sdlr 
files). The VHDL files are currently back-annotated with spice results from 0.5 sub- 
micron radiation-hardened standard cells. You can decide is this timing data is good 
enough to use when performing structural tests with your components. In addition, some 
sample .mag files (0_nan2.mag, 0_nan3.mag, 0_nan4.mag) that are Octtool complaint are 
in the subdirectory of the tutorial directory called examples. You can open these files in 
Magic and visually see how the standard library cells should be laid out at the end of 
standard library cell creation. Finally, a 0.35-micron standard library .cif file and a 0.50 
micron radiation-hardened standard library .gds file in included in the tutorial directory. 
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From the directory that you want to work in for this tutorial, at the Unix prompt type: 

UnixPrompt% cp -r -kwatson/tutorial/* . 

First, you need a different cell library than the Lager cell library preferably the 
cell library you will use for your design. However, I have provided two cell libraries for 
you to practice making a standard cell library. There are two different file types that a 
cell library can come in. First is the .cif format, which is the most popular format for 
commercial cell libraries. The second type is the .gds format, which is a common format 
for radiation hardened cell libraries. The MOSIS web site has different cell libraries for 
the different technology sizes and can be downloaded from www.mosis.org. However, 
the .cif files from MOSIS contain all the standard library cells in one .cif file for each 
technology. This creates a problem when trying to break apart the standard cells into 
individual Magic files. You may have to go into the main .cif file and copy sections out 
and paste them into separate .cif files. This can be easily done in EMACS by opening the 
main .cif file and opening a new file preferably with the nomenclature of cellname.cif. 
Once the standard cells are in individual .cif files a conversion from .cif to .mag files will 
have to be performed. My example .cif file (mtsms035dl.cif) is used for the TSMC 0.35 
micron process, which has 4 layers of metal and 2 different layers of polysilicon. 

To transform from .cif to .mag files simply open Magic with the correct 
technology called in the command at the Unix terminal prompt: (This is to 
call the technology files related to the TSMC 0.3 5-micron process) 

UnixPrompt% magic -T SCN4M_SUBM.20.TSMC 

Next use these commands in this order at the Magic terminal prompt to read in a .cif file 
and load the new Magic file into a Magic window: 

: cif read filename 

:open junk 

:load filename 

:save filename 

Repeat this process until all the library cells you need are converted to .mag files and 
saved. 

To transform from .gds to .mag files simply perform these commands: 
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I have provided an example .gds file (ga061ib6.gds) that is for the HP 0.5 micron process 
which has 3 layers of metal and 1 layer of polysilicon. This standard cell library is 
radiation hardened, so expect larger cell areas and irregular transistor dimensions 
especially for the n-channel transistors. 
Resave the .gds files as .strm files at the Unix prompt 

UnixPrompt% cp ga06Iib6a.gds ga061ib6a.strm 

Open Magic with the correct technology file loaded for the standard cells. 

For example for HP 0.5-micron process at the Unix terminal prompt type: 

UnixPrompt% magic -T SCN3M_SUBM.30 

At the Magic terminal perform the "calma" command to read in the .strm file into Magic: 

:calma read ga061ib6a 

Depending on how the library was made, you may have to call different cells into one 
window and then start performing the commands under the "Transforming Magic Cells 
to Octtools Leaf Cells or Standard Cells" Cells possibly could have routing cells that 
will need to be loaded into the window with the standard cell main layout. Simply 
perform a "getc" command at the Magic prompt: (make sure the cursor is on the Magic 
Layout window you want the cell put into) 

:getc filename 

There are some standard files, which will make the conversion to a new standard 
cell library easier. First, behavioral VHDL code has been created for different standard 
cell names, so conforming to these names will make the process easier. In addition, .sym 
files exist for all these standard cell names which helps when working in Synopsys 
Graphical Environment. 

The new standard cells should mimic the names listed below in the parentheses: 
(Keep in mind that the first character is the number zero, not the letter O) 

(0_nan2) 2-input NAND gate 
(0_nan3) 3-input NAND gate 
(0_nan4) 4-input NAND gate 
(0_nor2) 2-input NOR gate 
(0_nor3) 3-input NOR gate 
(0_nor4) 4-input NOR gate 
(0_mux2) 2-input MUX 
(0_xor2) 2-input XOR gate 
(0_dff) D Flip-Hop 
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(0_dffr) D Flip-Flop w/Reset 
(0_dffrnq) D Flip-Flop w/Reset and without a negated output (not Q) 
(0_aoi22) And-Or-Invert (2 input AND gates and 2 input OR gate Structure) 
(0_buf 1x8) Buffer (Increase drive strength by 8) 
(0_buf 1 x 1) Buffer (Signal Refresh) 
(0_zbuflx8) Tri-State Buffer (Increase drive strength by 8) 
(0_zbuflxl) Tri-State Buffer (Signal Refresh) 
(0_invlxl) Inverter 
(0_invlx8) Inverter (Increase drive strength by 8) 
(0_one) Pull-Up (Makes Line a Constant Zero) 
(0_zero) Pull-Down (Makes Line a Constant One) 

In order to view the .mag files in the correct technology, simply perform this 
command at the Unix terminal: 

UnixPrompt% magic -T SCN3M_SUBM.30 filename 

Transforming Behavioral VHDL code to Structural VHDL code (including 
new library cells) 

The transformation is time consuming, but simple to perform. Design Analyzer 
(DA) is a tool that reads in behavioral VHDL code and creates circuitry to perform the 
VHDL code's functions. See EENG 695 Laboratory Exercise #2 in the Reference 
Section located in the back of this tutorial for help on how to transform behavioral VHDL 
code into a .dbfile. It will use the Lager library cells to make the circuit. After 
optimizing the design and saving a .db file from DA, perform the "db2sge" command to 
transform the .db file into a readable format for the next tool (Synopsys Graphical 
Environment) to read. 

UnixPrompt% db2sge -add_search_path ~cad/chiplib/synthesis -database filename.db 

Synopsys Graphical Environment (SGE) will create the structural VHDL code 
from the following commands performed in SGE. Make sure all the standard cell .sym 
and .vhd files are in the same directory you are creating your hierarchical components in 

Step 1: Open SGE 

UnixPrompt% sge & 

Step 2: Select the Schematic Editor and Double-Click on the Component you 
want to create structural VHDL code for and check to make sure the design transferred 
over to SGE correctly. 
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Step 3: If the circuit has D flip-flops within it, then change out the Lager D flip- 
flops with the appropriate radiation-hardened D flip-flop or a commercial flip-flop and 
reconnect the appropriate wires. Reminder that some D flip-flops have a regular clock 
input along with a negated clock input, which may drive adding an additional inverter 
and buffer. If splicing the clock line to make the negated clock line, remember to put a 
buffer on the clock line after the splice point in order to make the delay similar in order 
for structural VHDL back-annotated timing tests function properly. For some reason 
without putting in the buffer into the clock line, the structural VHDL tests will yield U's 
on all the outputs. After performing your changes to the schematic window, perform a 
save by clicking on the File drop-down and click Save. 

Step 4: Click-on the Utility drop-down menu on the main SGE window and click 
on Schem to ASCII, then scroll down and click on the component you wish to change 
out the Lager cells for your new standard cells. This will create a file with the syntax of 
component.asc. DO NOT CLOSE SGE. 

Step 5: Open the component.asc file with EMACS and perform Query Search on 
the standard cell names. You will find the standard cell names towards the bottom of the 
.asc file, so go to the end of file and page up to the beginning of the standard cell 
declarations. After performing the modifications, click on the File drop-down menu and 
click Save Buffer. 

Step 6: Click on the Utility drop-down menu on the main SGE window and click 
on ASCII to Schem. Scroll down and click on the component that you just changed in 
EMACS. Click on Schematic Editor on the side of the main SGE window and double 
click on the component you just read into SGE from the ASCII file. A window will open 
up showing the new schematic with the new standard library cells embedded into the top- 
level design. 

Step 7: Select the Tools drop-down bar in the Schematic Editor window and then 
click on VHDL Netlist. 

Step 8: Go into Structural VHDL Code and perform a Query Search in EMACS 
to the library directory and cell directory Lager to WORK. Make sure all the standard 
cell behavioral VHDL code is complied in your WORK directory before trying to 
compile the newly generated SGE structural VHDL code. 

Creating .sdl Files from SGE for Octtools 

Step 1: Open SGE 
UnixPrompt% sge & 

Step 2: Select Navigate Hierarchy, then click on New, click on the component 
you want to create the .sdl file for. 
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Step 3: Select Process in Editor Window and then click on Netlist by Pin in the 
drop-down menu 

Step 4: Close the Editor window and save the file when prompted 

Step 5: In main SGE window, click on Symbol to ASCII and select the same 
component as chosen in Step 2. 

Step 6: Exit SGE, Click on File drop-down menu and select Quit. 

Step 7: Open .net file in EM ACS and perform a search and replace V with '_' 
globally. (After selecting Query Search and inputting the search character(s) and the 
replacement character(s), the Shift! in EMACS will replace all the occurrences without 
having to type in "y" or "n" for each occurrence) 

Step 8: Run net2sdlr on file (net2sdlr lets you work with the newly named 
standard cells rather than the Lager cell names) (may have to edit code if gates are 
missing in the .sdl file that is created) 

Step 9: Open .sdl file in EMACS and check to be sure all gates were instanced. 

Making Octtools Compliant Magic Cell Files 

Helpful Hints (keep these hints in mind as you are performing the next 
section): 

To create leaf cells from magic cells: 

1. Make sure that Vdd! is the top rail and GND! is the bottom rail. 

2. Cell width (metal rail width) must be a multiple of eight X. 
For example - cell width can be 8, 16, 24, 32,40,48, 56, ... etc. 

3. Ensure that the lower left corner of GND! is at (0,3). You can use the black 
dot marker in the Magic window to locate the (0,0) point. You will need to use the 
:move command at the Magic terminal 

4. Label Vdd! and GND! with vertical line labels along the border of 
all four Vdd! and GND! edges. See example .mag files to see what these labels look like. 

5. Label all terminals in the Magic layout window. It is helpful to label the 
inputs/outputs as they are defined in the behavioral VHDL files. Center of terminal must 
be at x=m*8 + 4, where m in any positive integer or zero. All contacts must be vias 
labeled in the center. No terminals can have the same x value. Metal2 
is used vertically to connect to the terminals. Any blockage may 
cause routing problems (can be blocked either upper or lower, but not 
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both). 

To create labels for the input/output terminals make a box around the via and perform the 
label command: 

tlabel labelname center    (This will create a label that is centered on the 

via) 

To check the x coordinate position; make a dot in the middle of the input/output vias and 
perform the box command (the xy coordinates will be displayed in the Magic terminal 
window): 

:box 

6. Create .SDL file from template below by replacing <cell_name>, 
<cell_width>, and <cell_height> with the actual parameters. Modify net 
statements and terminal statements as necessary. (An example is provided in the 
-kwatson/tutorial/examples directory called example.sdl) 

; sdlFile 
(parent-cell <cell_name> (FLAT_STOP"") 

(CELLAREA (* <cell_width> <cell_height>)) 
(CELLCLASS LEAF)) 

(net A ((parent Al))) 
(net B ((parent Bl))) 
(net C ((parent C2))) 
(net D ((parent D2))) 
(net O ((parent O))) 
(terminal Al (TERMTYPE SIGNAL) (DIRECTION INPUT)) 
(terminal Bl (TERMTYPE SIGNAL) (DIRECTION INPUT)) 
(terminal C2 (TERMTYPE SIGNAL) (DIRECTION INPUT)) 
(terminal D2 (TERMTYPE SIGNAL) (DIRECTION INPUT)) 
(terminal O (TERMTYPE SIGNAL) (DIRECTION OUTPUT)) 
(terminal Vdd! (TERMTYPE SUPPLY)) 
(terminal GND! (TERMTYPE SUPPLY)) 
(end-sdl) 

7. Open a feed.mag cell. See example in Lager directory under the path 
(currently /cad/Lager5.0/Lager/common/LagerrV/cellib/stdcell2_3/misc) or the example 
provided from the initial copy from the tutorial directory. 
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8. Open the lager file and make sure the file looks like the syntax below. (This 
tells the Octtools to look for the .sdl files and the standard library cells in your current 
directory.) 

(DMoct.sdl 
./ 

) 
(stdcell.leaf cell 

./ 

) 

9. Make sure you have 'octprep' in your current directory. You can get a copy 
from (currently /cad/Lager5.0/Lager/common/LagerlV/cellib/stdcell/misc) or from the 
tutorial directory mention at the beginning. 

10. Open wolfe.rules_6.0 file provided from the tutorial directory: (This file tells 
Octtools how it is going to route all your standard cells together- you can modify the rail 
lines extension from the main part of the component which is helpful for routing the 
power and round rail lines. For each technology size this file will have to be adjusted to 
get the right spacing between rows- this example file was used for the Hewlett-Packard 
0.5 sub-micron process, a 3 layer metal, 1 layer of poly process.) 

units_per_lambda       20 
feedthru ./feed physical 
hjayer MET1 
vjayer MET2 
power_position LEFT 
v_net_weight 1.0 
h_net_weight 1.0 
rowSep 1.4 
powerjwidth 24 
fast 20 
minimum_pad_space 50 
restart off 
create_new_cel_file off 
vertical_wire_weight 1.0 
vertical_path_weight 1.0 

11. Remove any existing directories with the same name as the cells be created. 
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Transforming Magic Cells into Octtool Leaf Cells or Standard Cells: 

Step 1: Load Complete Gate File into Magic 
:load filename 

Step 2: Perform Command at Magic Prompt 
(use "test" for the filename to use as a dummy file) 

:cif flat filename 

Step 3: Quit Command 

Step 4: Open a Blank Magic File from the Unix Terminal 
UnixPrompt% magic -T SCN3M_SUBM.30 junk 

Step 5: Perform a Read of the New .cif File 
:cif read filename 

Step 6: Perform a Select in Magic - DO NOT EXPAND THE FILE 

S 

Step 7: Go into Edit Mode (be sure you have the cursor on the Magic window) 
:edit 

Step 8: Perform a Save on the Magic File 
:save filename 

Step 9: Perform a Load of the Magic File 
:load filename 

Step 10: Perform a Select on the Cell in Magic 

S 

Step 11: Measure the Area of the Cell in units of Lambda (k) 
(note to measure the cell with a box which encompasses the ground and Vdd rail lines- 
need to record this height and width in the .sdl file for each standard cell) 

:box 

Step 12: Rotate the Vdd (Power Line) on the top of the Cell 
: clock 
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Step 13: Label According to .sdl names (inputs, outputs, Vdd, GND) 
(may have to add vias for the inputs/outputs before putting on labels- see Magic Macros 
for the "pai via" macro) 
(see the Helpful Hints section for Label Specifications, which are different for the 
inputs/outputs and the rail lines) 
(see Lager cell .sdl/.mag pair for example of setup) 
(need to orient cell so lower left corner is 3X above (0,0)) 
(inputs and outputs will have to be separated by 41 horizontally in the Magic layout) 

Step 14: Box an Appropriate Area and Annotate in the .sdl file (include from 
bottom of GND! rail to the top of the Vdd! rail) 

:box 

Step 15: Perform a Save on the File 
:save filename 

Step 16: Quit Magic 

Step 17: Run Octprep (can do octprep *.mag at the end of adjusting all the files) 
(octprep calls two functions mag2oct and vulcan which are located at 
(~cad/Octtools5.0/sun4/bin/) make sure you have permissions to execute and read these 
binary files) (Before running Octprep you must be on a SUNOS station since they contain 
the Octtools software) 

Make a Connection to where the Octtools software is located (switch over to either "eris" 
or "heracles" SUNOS stations). 

UnixPrompt% rlogineris 
or 

UnixPrompt% rlogin heracles 

HeraclesorEris% octprep filename.mag 
or 

HeraclesorEris% octprep *.mag 

Octprep creates a directory for each standard cell and contains files for the physical, 
structure_instance, and structure_master views that are needed by Octtools to create a 
Magic layout for a top-level component, which calls these standard cells. 

Step 18: You now have a standard cell library after completing these steps for all 
the cells you need for your design and performing the "octprep" command on all of them. 
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Using Octtools to Generate Layout with New Library Cells 

Step 1: Make sure all needed .sdl files, .mag files, and post-processed octprep 
directories for all the standard cells and higher level cells are in one directory. Be sure 
you are in that directory that contains all these files. 

Step 2: Make a Connection to where the Octtools software is located (switch over 
to either "eris" or "heracles" SUNOS stations). 

UnixPrompt% rlogineris 
or 

UnixPrompt% rlogin heracles 

Step 3: Check to make sure you are in the directory mentioned in Step 1. 
(Initially, you will be in your root directory for example /home/newstudent2/kwatson/, 
may have to perform a couple of "cd" commands to get to the correct directory where all 
the .mag, and .sdl files are) 

Step 4: Generate the Master View 

HeraclesorEris % DMoct -m filename 

Step 5: Generate the Structurejfastance View 

HeraclesorEris % DMoct -s filename filename 

Step 6: Perform a Schematic Check 

HeraclesorEris % SIVcheck -s -m filename 

Step 7: Perform an octprep on the .mag Files 
(This step should have already been performed, but just in case it hasn't it is a good idea 
to perform this command before the next DMoct command) 

HeraclesorEris % octprep *.mag 

Step 8: Generate the Layout (Dmoct will generate a .log file and place it in your 
current directory just in case any errors occurred) 

HeraclesorEris % DMoct -#wolfe6_0 -t ./wolfe.rules6_0# -#Stdcell -F# -v -1 
filename filename 

Step 9: Open the Magic file, which should be located in a subdirectory called 
(layout) and check to be sure everything is connected. 
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Comments when working with IRSIM and HSPICE files (Radiation 
Hardened Layouts Only): 

(See EENG653 Laboratory Exercise #5 in the Reference Section for help with 
HSPICE and IRSIM file extraction from Magic) When trying to perform ext2sim or 
ext2sp on the extracted files from the final layout in Magic, remember to check on the 
transistor dimensions if using annular transistors for the n-channel transistors. For 
example, for the HP 0.5 micron process the .spice or .sim files have incorrect transistor 
dimensions when the files are generated. You will have to manually go in and change the 
transistor dimensions. For the 0.5 micron process, the dimensions were (1_51 J and they 
should be (_2_46_). You will need to go into the layout and count the lambda for the 
width and length measurements for the annular transistor. By performing, a Query 
Search in EMACS will take care of the transistor dimension problem. 

Comments on using IRSIM and HSPICE with different technologies than the 
standard VLSI network 0.8-micron technology: 

For IRSIM: You need the correct .prm file that goes with the technology you are trying 
to simulate. The .prm file can be in the directory you are running the simulation from, 
because by default IRSIM looks in your current directory for the .prm file and then looks 
at a specified location on the network for the file. 

For HSPICE: MOSIS has test wafer run results with spice parameters included in the test 
run. It is best to take one of the most recent fabrication runs results and copy those spice 
parameters, which were deduced from testing the wafer. In your .run file simply use an 
(include) statement to call the spice parameter file that is copied from the wafer test 
results. It will take some searching through the wafer test run file to find the spice 
parameters, but you can find the default file on the VLSI network and compare what 
terms you need to what is in the wafer test run file. 
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Reference Section 

Example 0_nan2.mag file with a few keynotes included: 

magic 
tech scmos 
timestamp 913925037 
« metall >> 
rect 0 3 56 19 
rect 0 111 56 127 
rect 0 111 56 127 
rect 18 76 38 80 
rect 26 34 30 76 
rect 34 45 38 73 
rect 18 45 22 73 
rect 26 30 38 34 
rect 18 19 22 27 
rect 0 3 56 19 
« metal2 >> 
rect 26 57 30 61 
rect 18 57 22 61 
rect 34 57 38 61 
rect 34 57 38 61 
rect 26 57 30 61 
rect 18 57 22 61 
« poly » 
rect 39 73 41 119 
rect 31 73 33 119 
rect 23 73 25 119 
rect 15 73 17 119 
rect 31 71 41 73 
rect 15 71 25 73 
rect 34 69 38 71 
rect 18 69 22 71 
rect 34 45 38 49 
rect 18 45 22 49 
rect 35 37 37 45 
rect 19 37 21 45 
rect 31 35 41 37 
rect 15 35 25 37 
rect 39 22 41 35 
rect 31 22 33 35 
rect 23 22 25 35 
rect 15 22 17 35 
rect 31 20 41 22 
rect 15 20 25 22 
« ppcontact » 
rect 46 5 50 9 
rect 36 5 40 9 
rect 26 5 3 0 9 
rect 16 5 20 9 
rect 6 5 10 9 
<< pdcontact » 
rect 42 111 46 115 
rect 26 111 30 115 

(Octtools changes psubstratepcontact to ppcontact- may 
have to add ppcontact to the .tech file so Magic can 
recognize this contact) 

D-13 



rect 10 111 14 115 
rect 34 76 38 80 
rect 18 76 22 80 
« ndcontact » 
rect 34 30 38 34 
rect 18 23 22 27 
« pdiff » 
rect 9 75 47 116 
« ppdiff » 
rect 0 51 56 55 
rect 51 10 56 51 
rect 0 10 5 51 
rect 0 4 56 10 
« nndiff » 
rect 0 121 56 126 
rect 51 67 56 121 
rect 0 67 5 121 
rect 0 63 56 67 
« m2contact » 
rect 34 57 38 61 
rect 26 57 30 61 
rect 18 57 22 61 
« ndiff » 
rect 9 14 47 43 
« pwell » 
rect -3 1 59 59 
<< polycontact >> 
rect 34 69 38 73 
rect 18 69 22 73 
rect 34 45 38 49 
rect 18 45 22 49 
« nncontact >> 
rect 46 121 50 125 
rect 36 121 40 125 
rect 26 121 30 125 
rect 16 121 20 125 
rect 6 121 10 125 
« nwell » 
rect -3 59 59 
« labels » 
rlabel metall 
rlabel metall 
rlabel metal2 
rlabel metal2 18 57 22 61 
rlabel metal2 34 57 3 8 61 
« end » 

(Octtools changes nsubtratencontact to nncontact, 
may need to change the .tech file to recognize this 
new layer name) 

129 

0 3 56 19 0 GND! 
0 111 56 127 0 Vdd! 
26 57 30 61 0 01 

0 II 
0 12 

(Octtools will group the two Vdd! and 
GND! terminals into one terminal 
each) 
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File Types 

.vhd    Behavioral VHDL files used to describe the behavior of components and standard 
library cells 

.sym SGE files, which define the component's schematic representation as well as 
terminal- used by SGE to display a schematic view of component or standard 
library cell 

.gds     Standard library cell file type that needs to be converted to .strm for Magic to read 
it- used to convert to .srtm files for Magic to read 

.cif      Extraction view of a Magic layout- can be read by Magic with a :cif read 
command- used by Magic to create .mag files 

.strm  File type used to be read by Magic with a xalma command- used by Magic to 
create .mag files 

.sim    File type used by IRSIM for analysis purposes- used with IRSEVI 

.ext     Extraction file from Magic layout that is created by the Magic command :ext 
filename- a product produced from a .mag file using Magic 

.mag   File type read by Magic that contains layout information- used by Magic to 
display layout 
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Appendix E. Design Checking Steps 

There is a certain order of steps an engineer should go through before placing a 
chip onto an HP 82000 analyzer or any other kind of tester equipment. The steps are as 
follows: 

Step 1: Check for continuity with a multimeter between power and 
ground pins with every other pin on the package. There should not be 
continuity between power or ground to any of the other pins, which are 
used for the output and input signals. 

Step 2: Check for continuity between the power and ground pins. If 
there is continuity, then a short exists somewhere in the circuitry. 

Step 3: If a short exist between power and ground, go back to the 
MAGIC file, which the design came from. Extraction of the top-level 
of the file in MAGIC will produce a file with a .ext extension. Perform 
an ext2spice on this file and open the .spice file that is created from this 
process. To check for power and ground problems, perform two 
searches in the .spice file. The first search should be for "GND pfet" in 
order to detect any p-channel transistors that are connected to ground. 
The last search is for "Vdd nfet" in order to detect any n-channel 
transistors that are connected to power. 

Step 4: When finding wrongly connected transistors, use the bottom of 
the .spice file to reference back to which component contains the 
transistors. The final step is to go back into MAGIC and correct the 
errors found in the .spice file. 

Step 5: Repeat this procedure until all of the transistors are connected 
correctly. 
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