
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2001

Microdot-A 4-BIT Synchronous Microcontroller for Space Microdot-A 4-BIT Synchronous Microcontroller for Space

Applications Applications

Kirby M. Watson

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
Watson, Kirby M., "Microdot-A 4-BIT Synchronous Microcontroller for Space Applications" (2001). Theses
and Dissertations. 4720.
https://scholar.afit.edu/etd/4720

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholar.afit.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4720?utm_source=scholar.afit.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

MICRODOT, A 4-BIT SYNCHRONOUS
MICROCONTROLLER FOR SPACE

APPLICATIONS

THESIS
Kirby Michael Watson
First Lieutenant, US AF

AFIT/GE/ENG/01M-20

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U. S.
Government.

AFIT/GE/ENG/01M-20

MICRODOT, A 4-BIT SYNCHRONOUS MICROCONTROLLER FOR SPACE
APPLICATIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Kirby Michael Watson, B.S.E.E.

First Lieutenant, USAF

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFTT/GE/ENG/01M-20

MICRODOT, A 4-BIT SYNCHRONOUS MICROCONTROLLER FOR SPACE
APPLICATIONS

Approved:

Kirby Michael Watson, B.S.E.E.
First Lieutenant, US AF

Major Charles P. Brothers, Jr., Ph
Thesis Advisor

£Sf£~0/
Date

Sutenant Colonel James A. Lott, Ph.D.
Committee Member

Lieutenant Colonel Michael A. Marciniak, Ph.D.
Committee Member

Date

T H±tr6/
Date

Acknowledgements

I would like to thank my parents for having instilled in me the values of hard

work and discipline. If not for them, none of this would have been possible. I must

thank my loving wife, who has put up with the hectic schedule and hours that comes with

an Electrical Engineering degree from AFIT. She kept me going when times were tough

and when the end never seemed reachable. I owe her a lot for these last 18 months.

Thank you to all my family who have been patient and understanding throughout

my time here at AFIT. I dedicate this thesis to my Grandpa Lentino, who passed away

during my time at AFIT. His spirit and love always kept me going strong throughout

difficulty and he will always be in my heart.

Thank you Major Charles Brothers for helping me in areas that I knew nothing

about. Thanks also go to Lieutenant Colonel James Lott and Lieutenant Colonel Michael

Marciniak for being on my thesis committee. Their experience helped me guarantee that

everything in this thesis is accurate and makes sense.

Thank you to Dr. Greg Donohoe and the Air Force Research Laboratory

(AFRL/VSSE) at Kirtland AFB, NM for giving me this opportunity and funding my test

chip. I learned invaluable lessons from this experience and I hope my research will help

future AFRL research development programs.

Thank you to Captain Dan Harvala for keeping me sane during the long hours in

the VLSI lab. I must thank Greg Richardson for maintaining the VLSI network and

continuously increasing my memory space for this work.

Table of Contents

Page

Acknowledgments ü

Table of Contents i"

List of Figures yi

List of Tables ix

Abstract x

1. Introduction •• 1-1

1.1 Introduction •• 1-1
1.2 Problem Statement •• 1-1
1.3 Methodology 1-3
1.4 Overview • • 1-4

2. Literature Review 2-1

2.1 Introduction 2-1
2.2 Synchronous Design Flow •• 2-1
2.3 History of 4-Bit Microcontrollers and Microprocessors 2-5
2.4 FPGA Design versus ASIC Standard Cell Design 2-7
2.5 Decentralized versus Centralized Architecture 2-11
2.6 Radiation Hardening of Electronics 2-13

2.6.1 The Need for Radiation Protection 2-14
2.6.1.1 Total Ionizing Dose 2-14
2.6.1.2 Dose Rate 2-19
2.6.1.3 Single Event Effects 2-19

2.6.2 Methods of Radiation Hardening 2-23
2.6.2.1 Radiation Hardening through Shielding 2-23
2.6.2.2 Radiation Hardening through Fabrication 2-24
2.6.2.3 Radiation Hardening through Layout 2-27

2.6.3 Previous Research 2-32
2.6.4 Performance Comparison 2-32
2.6.5 Conclusion 2-34

3. Design Overview 3-1

3.1 Design Constraints 3-1

in

3.2 Microdot Design 3-2
3.2.1 Program Memory Block 3-6

3.2.1.1 Program Counter 3-6
3.2.1.2 Program Memory 3-9
3.2.1.3 Memory Control 3-9
3.2.1.4 Instruction Register 3-10

3.2.2 Stack Block 3-11
3.2.2.1 Stack Counter 3-11
3.2.2.2 Stack 3-13
3.2.2.3 Top-of-the-Stack (TOS) Cache 3-14

3.2.3 Arithmetic Logic Unit (ALU) Block 3-14
3.2.3.1 ALU Functions 3-14
3.2.3.2 Adder/Subtractor 3-16
3.2.3.3 ALU Control Unit 3-17
3.2.3.4 ALU Resultant 3-17

3.2.4 Input and Output (I/O) Block 3-18
3.2.4.1 Event Detection Logic 3-18
3.2.4.2 Mask Register 3-19
3.2.4.3 Output Function 3-19

3.2.5 Control Block 3-19
3.2.5.1 ControlLogic 3-20
3.2.5.2 Control State Machine 3-22
3.2.5.3 Status Register 3-22
3.2.5.4 Temp State 3-22

3.2.6 Data Acknowledge Block 3-23
3.2.6.1 Acknowledge Off-Chip 3-23
3.2.6.2 Acknowledge On-Chip 3-23
3.2.6.3 Acknowledge Last Address 3-24
3.2.6.4 Acknowledge Multiplexor 3-25

3.2.7 Status Multiplexor... 3-25
3.3 Design Decisions 3-25

4. Design Implementation. 4-1

4.1 Microdot 4-1
4.2 Memory Architecture. 4-2

4.2.1 Two-Port Static Memory Cell 4-3
4.2.2 Precharge Circuit 4-3
4.2.3 Memory Row Decoder 4-4
4.2.4 Memory Column Decoder 4-5
4.2.5 Read Sense Amplifier 4-7
4.2.6 Write Amplifiers 4-8

4.3 Program Memory Block 4-9
4.4 Arithmetic Logic Unit (ALU) Block 4-14
4.5 Stack Block 4-19
4.6 Input and Output (I/O) Block 4-27

IV

4.7 Control Block..... 4-29
4.8 Data Acknowledge Block 4-35
4.9 Status Multiplexor 4-38

5. Testing Procedures and Analysis 5-1

5.1 VHDLBehavioral and Structural Testing... 5-1
5.2 IRSIM Testing 5-4
5.3 HSPICE Testing 5-5
5.4 Hewlett Packard 82000 Analyzer Testing 5-7

6. Summary and Conclusions 6-1

6.1 Summary 6-1
6.2 Conclusions 6-1
6.3 Lessons Learned 6-2
6.4 Recommendations for Future Research 6-3

Appendix A. Microdot Layout and State Diagrams A-l

Appendix B. Microdot Signal Table and Specifications B-l

AppendixC. SRAM Specifications and Timing Diagrams , C-l

Appendix D. OCTTOOLS Tutorial D-l

Appendix E. Design Checking Steps E-l

References REF-1

Vita VTTA-1

List of Figures

Figure Page

2-1. Diagram of Design Domains for ASIC Designs 2-2

2-2. Synchronous Design Flow 2-5

2-3. Technology Choice for Microprocessor Design 2-9

2-4. I-V NMOS Curve 2-16

2-5. Bird's Beak Region in NMOS Transistor 2-17

2-6. I-V Curve for PMOS Transistor 248

2-7. Microprocessor Trends for Operating Frequency and Standby Current versus
Total Ionizing Dose 2-18

2-8. Threshold Voltage Shift in NMOS versus Dose Rate 2-20

2-9. Leakage Current Dominance versus Dose Rate 2-20

2-10. Sensitive Nodes for a SEU in a Typical SRAM 2-21

2-11. Lateral Parasitic Bipolar Transistors found in CMOS P-N-P-N Structure 2-22

2-12. Shielding Advantage of Minimizing Total Ionizing Dose Radiation 2-24

2-13. Bulk CMOS and Epitaxial CMOS Structures 2-25

2-14. SOS and SOI CMOS Structures 2-26

2-15. Annular Layout 2-28

2-16. Dog Bone Layout 2-29

2-17. Guard Ring Structures 2-30

2-18. Width and Length of a CMOS Transistor 2-31

3-1. Microdot Hierarchical Structure 3-4

3-2. Program Memory Hierarchical Structure 3-8

VI

3-3. Program Memory Structure 3-10

3-4. Stack Hierarchical Structure 3-12

3-5. ALU Hierarchical Structure 3-15

3-6. I/O Hierarchical Structure 3-18

3-7. Control Hierarchical Structure 3-20

3-8. Data Acknowledge Hierarchical Structure 3-24

4-1. Precharge Circuit 4-4

4-2. Memory Column and Row Decoder Layout 4-6

4-3. Memory Sense Amplifier Circuit 4-8

4-4. Memory Write Amplifier Circuit 4-9

4-5. Program Memory Block Diagram 4-10

4-6. Arithmetic Logic Unit Block Diagram (1 of 2) 4-15

4-7. Arithmetic Logic Unit Block Diagram (2 of 2)4-18

4-8. Stack Block Diagram 4-21

4-9. Input and Output Block Diagram 4-27

4-10. Control Block Diagram 4-30

4-11. State Diagram for Programming 4-34

4-12. Data Acknowledge Block Diagram 4-37

4-13. Status Multiplexor Diagram 4-38

5-1. Average Power Consumption versus Clock Frequency 5-7

5-2. HP82000 Analyzer Testing Setup 5-8

A-l. Microdot Layout A-l

A-2. Microdot State Diagram (1 of 3) A-2

Vll

A-3. Microdot State Diagram (2 of 3) A-3

A-4. Microdot State Diagram (3 of 3) A-4.

Vlll

List of Tables

Table Page

2-1. 4-bit Microcontroller Design Parameters 2-33

2-2. Ionizing Dose, Dose Rate, and SEU response of ca, 1990 representative
microprocessors 2-34

3-1. MicrodotInstructions 3-7

3-2. Operation Code and Arithmetic Unit Code Operation Table 3-21

4-1. Stack Row Decoder Table 4-5

4-2. Memory Multiplexor Selection 4-12

4-3. NOT Truth Table 4-17

4-4. 4 to 1 Multiplexor Truth Table 4-25

4-5. Carry, Negative, Overflow, and Zero Bit Setting 4-31

4-6. Control Signals ;,.4-33

5-1. Power Consumption by Component 5-6

B-l. Microdot Signal Table B-l

B-2. Microdot Specifications B-6

IX

AFIT/GE/ENG/OlM-20

Abstract

Satellites have limited power budgets due to the amount of power collected by the

satellite's solar panels. The goal is to have a wide range of functionality, while running

off a limited power source. Large microprocessors use large amounts of power to report

back temperature and chemical sensor data to ground stations. By using small

microcontrollers to perform the data collection and minimizing the usage of the larger

microprocessors, the satellites will save power. A prototype design of the Microdot 4-bit

microcontroller for space applications is presented. Requirements for the Microdot, such

as microwatt power consumption and 23 different instructions, are based on research

completed at APRL/VSSE, Air Force Research Laboratory at Kirtland AFB, NM. A

brief history of 4-bit microcontrollers and microprocessors, the synchronous design

methodologies used, and space-based integrated circuit issues are presented. Various

CAD tools were used, implementing both standard cell and full custom logic into the

design. The prototype Microdot was fabricated at TSMC using MOSIS to validate the

design implementation.

Results from high fidelity simulations indicate the Microdot design has a power

consumption of 16.3 mW operating at 1 kHz and consumes 22 mW when operating at the

maximum operating clock frequency of 20 MHz. These results indicate that the Microdot

can be implemented into space-based systems, while exhibiting low power usage.

MICRODOT - A 4-BIT SYNCHRONOUS MICROCONTROLLER FOR SPACE
APPLICATIONS

Introduction

1.1. Introduction

The purpose of this research is to investigate, design, and implement a

synchronous Very Large Scale Integrated (VLSI) circuit for space applications to relay

sensor information from individual sensors back to a command data link within a

satellite. This research is an extension of previous work done at the Air Force Research

Laboratory located at Kirtland Air Force Base, New Mexico [1]. The design process,

from initial concepts to test results using Application Specific Integrated Circuit (ASIC)

standard library cells in a 4-bit microcontroller, is presented. The design was fabricated

using the Taiwan Semiconductor Manufacturing Corporation 0.35-micron commercial

process [2]. This ASIC called the Microdot, a 4-bit microcontroller, can be used for data

storage, data transfer, and data manipulation.

1.2. Problem Statement

Power consumption and reliability are critical concerns for satellite design. A

hierarchical decentralized control network architecture can potentially meet the necessary

low power requirement and be tolerant of component failures. The Microdot 4-bit

microcontroller is a small yet vital piece of the satellite network system's success. Many

1-1

possible scenarios for Microdot implementation into a network system's architecture

exist. However, one general scenario describes the Microdot's role in a system

architecture: the network contains small microcontrollers, which run programs that can

check for temperature or chemical variations thereby reducing power consumption.

Normally, a larger microprocessor would be tasked to continually run programs to check

multiple sensors, leading to high power consumption. An engineer can reduce the power

consumption by designing the smaller microcontroller to check sensors and report back to

a larger microprocessor only when an out of range sensor value has been detected. The

program being run by the small microcontroller determines the out of range sensor value.

The result of a small microcontroller, the Microdot, detecting an event and reporting back

to the larger microprocessor is less power consumption for the satellite and less run time

of the larger microprocessor. The power savings comes from only running the larger

microprocessors when necessary for data transmission, microcontroller programming, and

data storage.

In order to make the Microdot a reality, a design methodology must be followed.

Many software programs help an engineer follow along the design path; however, even

without software programs, an engineer must follow a distinct design regiment that

contains hierarchical elements. These elements are the building blocks that make it

possible to create a larger component, for example, the Microdot. If one is going to learn

what the Microdot is, one must first learn under what design methodology the Microdot

was created.

1-2

1.3. Methodology

A design methodology or design flow is a sequence of steps that are followed to

make an ASIC. The steps are either classified into the logical or physical design. Logical

design is design that involves describing functionality of circuitry. Physical design is the

actual implementation of the functionality desired. However, some steps such as system

partitioning may be considered as either logical or physical design [3]. This generic

outline of the ASIC design methodology will be explained in detail in Chapter Two and

Three.

The initial step in ASIC design is to define the function or behavior of the circuit.

At the behavioral level, the operation of the system is captured without having to specify

the implementation. Next, the design constraints such as area, power, and speed are

established along with the type of Complementary Metal Oxide Semiconductor (CMOS)

technology that will be used. The gate size selected by the engineer is a significant

decision, because the gate size will have a direct impact on whether or not the design

constraints can be met. The next step is crucial, which is deciding the architectural

design. The architecture is broken up into small manageable blocks, in which all the

interfaces and design constraints are identified. Each block is developed in the behavioral

domain and tested to make sure functionality is correct. Within each of these blocks, the

elements which make up the blocks are the lowest level of hierarchy. Interconnections

between the elements within the blocks are defined, as well as inter-block connections

between elements from different blocks. Each of these elements are tested for

functionality because the lowest level of hierarchy must be correct in order for any of the

blocks to work correctly.

1-3

After successful testing, the behavioral level of the design gets translated into the

structural level, where the implementation of the design is decided. Similar to the

behavioral stage, verification testing is performed at the structural level. Each element,

block, and fully connected top-level product must successfully pass the simulated tests.

Once successful, the design can be transformed to a physical layout. Again, verification

must be accomplished for each block and element at the physical level before all the

blocks can be pieced together to form the final top-level product.

The fully assembled circuit is simulated not only for functionality, but also for

power and speed requirements. If the circuit fails to meet the design requirements or

constraints, then the process is repeated until the circuit meets or exceeds the

requirements. An engineer must decide before physical layout, which fabrication process

will make the design a reality. One of the biggest considerations is the gate size or

technology size to which the transistors will be created. The gate size will strongly

influence power, speed, and area results in the final product. Once the design has been

fabricated, the circuit can be tested and compared to the simulation results [4].

1.4. Overview

Six chapters comprise this thesis. Chapter One provides an overview of the thesis

while introducing the problem and generic design methodology.

Chapter Two reviews the synchronous design flow and the history of 4-bit

microcontrollers. It continues by comparing Field Programmable Gate Array (FPGA)

with ASIC standard cell design and then repeats the differences between decentralized

and centralized architectures and explains radiation hardening of electronics. The chapter

1-4

concludes with a presentation of other design work related to this research area. Overall,

Chapter Two highlights the problem's importance thereby providing motivation for this

thesis.

Chapter Three applies the theories discussed in Chapter Two in order to develop a

working design. The overall functionality and purpose of the Microdot are explained.

The instruction set of the Microdot is explained along with data flow throughout the

Microdot. An overview of the Microdot design including the architecture of the top-level

design and its major elements are the primary focus of Chapter Three. Interfaces between

the elements within each block are diagrammed. The hierarchical structure is broken

down and explained in great detail. This chapter gives the reader a higher level

construction of the Microdot.

Chapter Four explores the higher level design overview presented in Chapter

Three at the elemental level. Chapter Four is also a presentation of the design

implementation of each functional block. Each block and its respective elements

introduced in Chapter Three are now revisited in detail. Pin labels of each element within

the different blocks are displayed. How the different blocks interact with each other is

described in detail. The final design of each block, as well as other possible designs, are

presented.

Chapter Five reveals and analyzes the simulation and fabricated chip test results.

Results are given at each level of design for the individual components as well as the

results of the top-level design. The testing process and errors encountered along the way

are explained. Each level of testing is described, which includes behavioral Very High

Speed Integrated Circuit Hardware Description Language (VHDL) simulation, structural

1-5

VHDL simulation, IRSM, and High Accuracy Simulation Program with Integrated

Circuit Emphasis (HSPICE).

Chapter Six concludes by summarizing the collected results of the research. In

addition, lessons learned during the design process and recommendations for future work

in this area of research are discussed.

1-6

2. Literature Review

2.1 Introduction

This chapter presents background research needed to understand the history of 4-

bit microcontrollers, the differences of between FPGA design and ASIC design, the

difference between decentralized versus centralized architecture, and radiation hardening

of electronics. The literature search did not find a 4-bit microcontroller built for a similar

purpose as the Microdot. However, a variety of microprocessors and microcontrollers are

summarized in a table to outline the functions and performance of both old and state-of-

the-art designs.

2.2 Synchronous Design Flow

The design of synchronous microcontrollers is a very well defined process. The

process flows through three domains: behavioral, structural, and physical, which are

illustrated in Figure 2-1.

The initial step is to begin with a behavioral representation of the component. A

behavioral representation describes how a particular design should respond to a given set

of inputs [4]. The process starts by determining the behavior of the highest level of

hierarchy and then describing the behavior. The description may be specified by Boolean

equations, tables of input and output values, or algorithms written in standard high level

computer languages or special Hardware Description Languages (HDLs). The latter

include VHDL, Verilog, and ELLA [4]. There are many levels of abstraction within the

behavioral domain. As an engineer descends through the levels, more detailed

2-1

Behavioral Domain Structural Domain

Applications
Operating Systems

Programs
RISC Processor

Adders\gates, registers

Transistors

ircuit Abstractiojn Level

RTL, Lagic Abstraction Level

Architectural Abstraction Level

Modules

Chips, Boards, Boxes

Figure 2-1. Diagram of Design Domains for ASIC Design from [4]

information about a particular implementation becomes evident. An example is one

might start with an algorithm describing a system and further explain to a description of

the specific hardware registers and the communication between them that is necessary to

implement the algorithm. At the lower levels of abstraction, the Boolean equations to

implement the algorithm would be specified. The goal of most modern design systems is

to convert a high level specification into a system design in minimum time and with

maximum likelihood that the system will perform as desired [4]. Once the behavioral

domain is represented and described, an engineer is ready to cross over to the structural

domain. This transformation from behavioral to structural can be done either using

automated software or manually.

2-2

The structural domain involves creating a structural specification, which specifies

how components are interconnected to perform a certain function. Basically, the

structural description is a list of modules and their interconnections [4]. The structural

domain has levels of abstraction, which include the module level, gate level, switch level,

and the circuit level. In each successive level, more detail is revealed about the

implementation. Once again, just like in the behavioral domain, an engineer starts at the

highest level of abstraction and gradually moves inwards to the lower levels. In Figure 2-

1, an engineer would start at the processor level and begin to break the processor down

into manageable parts. Eventually, the engineer would reach the transistor level, which

would be the lowest level of abstraction. Once this level is reached in the structural

domain, an engineer can translate the knowledge gained in the structural domain to the

physical domain.

In the physical domain, a physical representation for a circuit is used to define

how a particular part has to be constructed to yield a specific structure and hence

behavior. Similar to the behavioral and structural domains, various levels of abstraction

may be defined for the physical representation. For example, the physical layout of a 4-

bit adder may be defined by a rectangle or polygon that specifies the outer boundary of

all the geometry for the adder, a set of calls to submodules, and a collection of ports.

Each port corresponds to an input or output connection in the structural description of the

adder. The position, layer, name, and width are specified for each port. The calls to the

submodules are another hierarchical level that includes physical layouts of basic gate

structures, such as an AND gate. An example of how Figure 2-1 was used for this thesis

is described below.

2-3

The initial synchronous design process starts by determining the function of the

Microdot and then writing behavioral VHDL code to describe the functions. VHDL is

the Department of Defense (DoD) standard and was used throughout this thesis [5], It is

only necessary to be concerned with the behavior or functions that the circuit will have.

Once the behavioral VHDL code was successfully tested, the cross over to the structural

domain began.

Some of the structural VHDL code was created by using a VLSI tool called

Design Analyzer made by Synopsys [6]. The tool takes the behavioral VHDL code and

translates it into the structural version of the VHDL code; in this structural form, the type

of each logic gate and interconnection is specified. Certain blocks or modules of

behavioral VHDL code were not transferred over to the structural domain. However, one

can use behavioral VHDL code mixed in with structural VHDL code to create the top-

level interconnected component. Once this structural level is error free during testing, the

design is ready to transfer from the structural domain to the physical domain.

The automated structural VHDL code can be entered into a different VLSI tool,

Lager Octtools, in order to receive a physical layout in the form of the VLSI layout tool

called MAGIC [7]. The particular blocks that were not automated over to structural

VHDL code had to be manually laid out and connected to the other blocks in MAGIC.

Once the entire circuit layout is placed into a pad frame, all the inputs and outputs are

connected by a place and route tool and then tested. This physical layout is the final

design and it is sent to the foundry for fabrication. The synchronous design flow is

shown in Figure 2-2.

2-4

Behavioral
VHDL

Synopsys Structural
VHDL

Synopsys Layout
Netlist

Place & Route Layout
■■" w

Design
Analyzer

w
Graphical

Environment
Tool

Figure 2-2. Synchronous Design Flow from [8]

2.3 History of 4-Bit Microcontrollers and Microprocessors

In 1972 Texas Instruments (TI) introduced the first 4-bit microcontroller called

the TMS1000 [9]. The TMS1000 integrated a simple 4-bit microprocessor, a 1 kilobyte

read-only-memory (ROM), and 32-byte random access memory (RAM) on a single chip.

In 1974, the new microprocessor of the time to be used in electronic calculators was the

Intel 4004. The chip measured 3.0 by 4.0 millimeters and used two thousand and three

hundred transistors [9]. If the Intel 4004 were built using 0.35-micron process, it would

be tenths of a square millimeter in area (without wire bond pads) and cost less than one

cent to fabricate [10]. The microprocessor industry started with 4-bit microcontrollers

and microprocessors in the early 1970's and continued on with 8-bit, 16-bit, 32-bit, 64-bit

chips, and 128-bit chips [10]. As the microcontroller and microprocessor were

developed, certain advantages and disadvantages became evident to design engineers.

The microprocessor and microcontroller are similar entities in the fact that they

are made up of common elements. Some of those elements are SRAM, Arithmetic Logic

Unit (ALU), registers, input/output ports, and control units. Typically, 4-bit

microcontrollers are used in embedded applications, which are integrated with the

memory and Input/Output (I/O) functions. These true single chip computers are low cost

and can typically do all the work required in many simple control applications. Simple 4-

bit and 8-bit microcontrollers control microwave ovens, computer keyboards, taxi meters,

2-5

traffic lights, gas pumps, elevator control, medical instruments, vending machines, and

digital scales for example, while sophisticated microcontrollers drive cellular phones and

laser printers [9].

The microcontroller has the advantage of being a lower cost product than the

microprocessor. However, the microcontroller does not have the flexibility of the

microprocessor. The microcontroller normally takes less power to run than the

microprocessor, because it is less complex. An engineer, depending upon the application,

will first look to a microcontroller as a solution because of its less complex design. Some

simple tasks that are listed above, such as traffic light operation can easily be handled by

a microcontroller. The microcontroller can be reprogrammed also, just in case some type

of variation is required throughout the device's lifetime. Reprogramming the traffic

signal timing is a good example of how minor alterations may need to be made

throughout the microcontroller's lifetime. In contrast, a microprocessor would be used in

a more changing environment than an embedded application. Desktop computers, which

take on many different applications and functions, contain microprocessors which are

adaptable to many scenarios. Microprocessors typically have bigger memory and control

elements, because of the wide range of tasks that are expected of them. Bigger elements

yields a larger microchip area, which always results in a more expensive microchip.

The Microdot is designed to directly interface to a sensor or actuator in the space

environment. A nybble is a 4-bit set of data. The on-chip program memory will have a

capacity of one thousand and twenty-four nybbles in the form of internal Static Random

Access Memory (SRAM). Memory will be expandable to four thousand and ninety-six

nybbles with the use of an off-chip SRAM device. The data path is four-bits wide. The

2-6

instructions are stored in bit-serial fashion. Microdot uses a stack architecture, which

helps result in a compact implementation of the microcontroller. The modified stack is

able to hold one hundred and twenty-eight nybbles and have the ability to reach a range

of stack positions from the top-off-the-stack (TOS) down to the sixteenth position [11].

The stack pointer, which points to the current stack address that is being accessed, has the

ability of being adjusted. A 4-bit set of data is added to the current stack address.

Therefore, this gives the ability to reach into the stack memory sixteen positions or

addresses down into the stack. If certain instructions in the Microdot are used in a correct

sequence, all of the stack's one hundred and twenty eight addresses are able to be

accessed. A further explanation of this instruction sequence will continue in Chapter

Three.

2.4 FPGA Design versus ASIC Standard Cell Design

The initial design for the Microdot was done using Altera VHDL software. This

software is an initial design step in behavioral domain towards creating an IC design

using an FPGA [1]. Both FPGA and ASIC standard cell design have distinct advantages

and disadvantages.

The advantages of an FPGA design are lower non-recurring engineering (NRE)

costs and greater flexibility [12]. FPGA chips are sold from manufacturers and the

customers program the chips to do their desired function. The compiler software usually

only needs to know what function the FPGA needs to perform in order for the chip to be

programmed [12]. This process takes much less time than going through a synchronous

design process, where the designer has to step through each level of design [12]. Overall,

2-7

less engineering design hours yields a lower NRE cost compared to an ASIC standard

cell design [12].

FPGA chips have great flexibility, because of the easy access to correct design or

logic mistakes. The customer can reprogram some types of FPGAs, after finding an

error, as many times necessary to get the FPGA to function correctly. After an ASIC

standard library cell design has been fabricated at a foundry, any errors found will most

likely not be able to be fixed by the customer until a redesign and a new fabrication run is

complete. FPGA designs clearly have a shorter turnaround time than an ASIC standard

cell design [12].

ASIC standard cell design advantages include lower power consumption, faster

processing speed, and greater area efficiency [12]. Many FPGA designs only use sixty to

eighty percent of a given die, which results in unused area on the silicon wafer [12]. The

ability to put an extra twenty to forty percent of functionality on the same size die helps

to partition the design in order to minimize the connections to the outside world. The

minimization of Input/Output (I/O) buffers can drastically reduce power consumption and

increase speed by eliminating the capacitance associated with the removed I/O buffers

[12]. Figure 2-3 summarizes the performance versus ease of modification tradeoffs made

for different technologies including the FPGA and ASIC standard cell designs.

A full custom IC design involves an engineer manually laying out each individual

transistor and element. The full custom IC design has the advantages of fastest speed,

least amount of area, minimum power consumption, and least volume cost. However, the

full custom design has the disadvantages of high non-recurring engineering costs and low

flexibility. The standard cell IC design is a design involving a standard set of gates

2-8

Performance
Full Custom

VLSI

Standard Cell
LSI/VLSI

Gate Array

FPGA
PAL/PROM

Microprocessor

Ease of
Modification

Figure 2-3. Technology Choice for Microprocessor Design from [13]

which have similar height dimensions, so they can be connected together easily. An

engineer would build the standard cells or receive them from a foundry, but no

modification would take place on the transistor level. An automated layout tool or

manual connection of the standard cells would be done to create the integrated circuit. A

standard cell design would be slower, take up more area, consume more power, and have

a higher volume cost than the full custom design. However, the non-recurring

engineering costs would be less and there would be more flexibility than the full custom

design. Gate arrays are regular structures of repeating types of gates. There are three

types of gate array structures including channeled, channelless, and structured. The

channeled gate array is manufactured by only customizing the interconnections between

all the gates in the array. There are channels set aside between each row of gates that are

used for interconnections. A channeled structure has the advantage of being easy to

design, layout, and route. However, the channeled gate array uses twice the area of the

2-9

channelless gate array. The channelless gate array contains no set aside area for routing,

but connects the gates using contact layers of metal that are laid on top of the gates. The

gates that are not used are simply not contacted by the metal layers. The logic density is

much greater than the channeled gate array, since area is not set aside for

interconnections. Therefore, the advantages of the channelless gate array are smaller area

and faster speed than the channeled gate array [3]. The disadvantage of the channeled

gate array is the routing and interconnections are more complex than the channeled gate

array. Finally, the structured gate array is an embedded gate array which sets aside some

IC area and dedicates it to a specific function. The embedded gate array either can

contain a different base cell that is more suitable for building memory cells, or it contain

a complete circuit block, such as a microcontroller. The structured gate array has the

advantage of a quick-turnaround time, improved area efficiency, lower cost, and

increased speed and power performance. The disadvantage of the structured gate array is

the embedded function is fixed, so flexibility is greatly limited. The gate array design

falls in the middle of the rating for the performance and ease of modification factors.

Programmable Array Logic (PAL), Programmable Read-Only Memory (PROM), and

Field Programmable Logic Array (FPGA) fall closely together in Figure 2-3. The PAL

and the PROM are classified in the family of Programmable Logic Devices (PLDs).

PLDs are available in standard configurations that may be programmed for a specific

application. A PROM is a device with a matrix of logic macrocells to be used as memory

cells. A PAL is a device consisting of a programmable AND plane and a fixed OR plane

[3]. By using combinations of different types of gates, the device can create numerous

kinds of functions that the engineer requires. Some devices are programmed by applying

2-10

high voltages or blowing metal fuses. The most useful devices for a changing

environment is a reprogrammable PLD, which uses a high voltage to initially program

and to erase old programs. These devices have a quick-turnaround, since they can be

programmed rather quickly. However, there is a high volume cost for these devices and a

lesser performance results from non-optimization of logic. An FPGA is a step above a

PLD in complexity. There is very little difference between an FPGA and a PLD. Some

types of FPGAs can be reprogrammed in the field, which yields excellent flexibility. The

microprocessor is the easiest design to modify, but its performance is the worst. An

extreme amount of flexibility is built into a microprocessor, because of the wide range of

duties that it may need to perform. However, the drawback for making a component so

diverse is that it is not exceptional in any one task. The obvious advantage of the

microprocessor is flexibility. The disadvantages of a microprocessor are high power

consumption, high non-recurring engineering cost, and large area. Depending upon the

application, this may be the best type of design to go with, because it may not need to be

replaced only just reprogrammed [3].

After deciding on which kind of design is best for the application, an engineer

must determine what kind of architecture the final product is going to operate in. The

system architecture can help lead to design solutions along the design process. An

important feature of designing a microcontroller or microprocessor is what kind of

environment or architecture the device or component will operate in.

2.5 Decentralized versus Centralized Architecture

A centralized architecture or system consists of a single processor with its own

memory, peripherals, and even possibly a few terminals. In the early 1970's, centralized

2-11

architectures or systems were prominently known as mainframes [14]. During that time,

the economic climate maintained high prices for any kind of computer especially those

using centralized architecture. A classical law made by Herb Grosch, computer guru,

stated that the computing power of a central processing unit (CPU) is proportional to the

square of its price [14]. However, due to today's microprocessor technology this law no

longer holds true [14]. Nowadays, by paying twice the amount of money, a person will

get basically the same CPU, but at a higher processing speed. Because CPUs can be

manufactured inexpensively, it is much easier and cost effective to create a powerful

system by connecting multiple CPUs in to a distributed or decentralized architecture.

It is easier to understand the premise for decentralized architecture by describing

the internet. The internet uses network hierarchy to create a Wide Area Network (WAN),

which is then connected to a Local Area Network (LAN), thus providing millions of

people access to the internet at the same time [11]. System control is embedded into the

lower hierarchical levels. This is described as embedded control, where each level in the

hierarchy has enough control to report back up the chain of hierarchy if a problem arises.

However, if no problems exist the lower hierarchical levels have enough power and

control to manage their individual sectors.

A decentralized or distributed architecture has many advantages over centralized

architecture. First, the price to performance ratio in a decentralized system is much better

than in a centralized system [14]. A group of microprocessors is able to perform tasks

that a single mainframe cannot [14]. A more powerful system can be built using a

decentralized architecture (multiple CPUs) and usually at a lower cost. Another

advantage of distributed systems is that many jobs are inherently distributed by nature.

2-12

One example is a vending machine company wanting to know the status of its vending

machines all over a city. By placing small microcontrollers in the vending machines that

will communicate a status back to a central location, the vending machine drivers can

more accurately plan their route for the day and be more efficient [11]. Another example

is taking in temperature data from different sensors all at different locations within a

satellite. The satellite controller may just want to know overall temperature of the

satellite, but also know local temperature data on a particular circuit board [11]. One of

the most important advantages is higher system reliability. The workload is spread out

across many microcontrollers in a distributed architecture so, if one breaks down, perhaps

only 3% of the system performance is lost [14]. For a single mainframe, if a problem

occurs the whole system could be down and unavailable. Errors still occur in a

distributed system, but overall availability and reliability are higher because an error may

not significantly affect the overall performance. The last advantage of decentralized

architecture is the ability to expand the system when growth needs to occur. Since the

system is already set up for multiple processors, adding another processor is less work,

time, and money than restructuring a single mainframe or buying a whole new mainframe

in a centralized architecture [14].

2.6 Radiation Hardening of Electronics

The term "radiation-hardening" originated from the military needing a type of

electronics to operate in a radiation environment [8]. Many space and nuclear

applications require some sort of radiation protection. However, due to high cost factors

of radiation hardness, military electronics are designed to be "radiation-tolerant" versus

"radiation-hardened" [8]. The difference between "radiation-hardened" and "radiation-

2-13

tolerant" is dependent on the amount of radiation a part can withstand before failing or

malfunctioning [8]. The specific amount of radiation protection defined to each term is

different depending on the user (commercial or military engineer). The unit of radiation

typically used is the "rad" [15]. A rad is equal to one-tenth a Joule per kilogram [15].

From a military perspective, 100 kilorad (Si) is considered "radiation-tolerant" and 1

megarad (Si) is considered "radiation-hardened" [15]. However, when discussing levels

of radiation protection, one must keep in mind the various types of radiation. For

example, by saying that a circuit is 100 krad (Si) tolerant to total ionizing dose radiation

does not describe the tolerance for any other type of radiation [15]. Therefore, it might

be necessary to perform radiation tests to determine the degree of dose rate or single

event protection for that same part. There are many methods that can be used to protect a

circuit from radiation and several of them are discussed in this section.

2.6.1 The Need for Radiation Protection

The U.S. Department of Defense and the United States Air Force need radiation-

tolerant circuits. These circuits are used in the space and nuclear environment. The

overall effort to make circuits radiation-tolerant is broken up into three categories of

radiation exposure: long-term total ionizing dose, short-instantaneous dose rate, and

single event effects [15]. I begin by discussing the effects of total ionizing dose on

circuitry.

2.6.1.1 Total Ionizing Dose

Total ionizing dose is the accumulation of radiation, usually measured in rads, in

a circuit over a long period of time. The radiation comes in the form of high-energy ions,

2-14

gamma rays, X-rays, protons, low-energy protons, electrons, and neutrons. Radiation is

induced by either a nuclear detonation, sun-induced solar winds, or a galactic-induced

event in space. Electron-hole pair creation occurs in CMOS transistors when energetic

particles bombard the CMOS circuitry. Silicon dioxide is used as an insulator underneath

the gate junction and in between transistors [15]. The energetic particles disrupt the

charge balance of the silicon dioxide (Si02) in the n-channel and p-channel transistors

and create ionization paths. Typically, the Si02in CMOS circuitry is broken up into two

regions, the gate oxide and the field oxide [15]. The gate oxide is a thin high-quality

oxide that separates the channel and the gate contact of the device. The field oxide is a

thick low-quality oxide that separates the different levels of metal or polysilicon wire

runs. At the Si02-Si interface in the gate region, there are dangling bonds formed from

the lattice mismatch, which make electrically active interface states [15]. The electron-

hole pair generation has a secondary effect of causing additional interface states at the

Si02-Si interface [15]. Thus, an induced charge sheet is formed which affects the

transistor's performance characteristics. Radiation-induced interface states affect the

CMOS transistor in many different ways. These effects are the lowering of the

transconductance, softening the drain current versus gate voltage curve, additional

threshold voltage shifts causing turnaround, and generating 'slow states' which result in a

slow drift of threshold voltage over time [15].

Electron mobility is higher than hole mobility; therefore the electrons sweep out

of the oxide and leave behind trapped holes in the oxide [15]. The holes tend to migrate

to the Si02-Si interface and create a positive image charge on the channel, which is

equivalent to a positive voltage applied to the gate contact. This positive charge build-up

2-15

reduces the threshold voltage for an NMOS transistor, thus moving the drain current

versus gate voltage curve to the left as shown in Figure 2-4. An NMOS transistor will

become easier to turn on, and with enough charge build-up a leakage current will occur in

the channel, thus increasing the circuit's power consumption [15].

DeiMtSkmo!

Typtesl
«tfedof

stales

[— Vr before fff&Saijrt

Gate vertage VG

Figure 2-4. I-V NMOS Curve [15]

Another source of power consumption is channel formation in the bird's beak

region of the NMOS transistor. The bird's beak region is where the gate oxide meets the

field oxide at the edge of the NMOS transistor [16]. Positive charge build-up in the oxide

forms a leakage channel between the source and drain region of. the device, as shown in

Figure 2-5. An additional leakage path can occur between neighboring NMOS transistors

with charge build-up in the field-oxide. This leakage path will further increase power

consumption for the CMOS circuit [15].

2-16

n+SOURCE

;TULVÜA'IG OXIDE';

:»i5ft£ßfc

FIELD

GATE

X LEAKAGE
PATH

GATE
_/PS

GATE OXIDE
7"~~r V
SIDE / \

HBLDOXEDE

CHANNEL POSITIVE
REGION TRAPPED CHARGE

Figure 2-5. Bird's Beak Region in NMOS Transistor [17]

An opposite effect occurs in the PMOS transistor where positive charge build-up

makes the transistor more difficult to turn on [15]. Therefore, the accumulation of charge

at the Si02-Si interface shifts the drain current versus gate voltage curve to the left

increasing the negativity of the PMOS transistor's threshold voltage, as shown in Figure

2-6.

With enough charge build-up, the threshold voltage can reach a value outside of

the power supply's range and the PMOS transistor will not be able to turn on [15].

As total ionizing dose increases, the performance of the CMOS circuitry

degrades. Also, as the total ionizing dose increases, the standby power supply current

increases, which will eventually cause breakdown in a spacecraft due to the limited

amount of available power from the power supply [15]. Figure 2-7 shows that as

radiation increases the maximum operating frequency goes down, which results in slower

operation of the microprocessor [18]. The decrease in operating frequency could cause

failure in whatever system the microprocessor is responsible for [18].

2-17

Drain current

4 3 2 1 0

Typical effect
of interface
states

Definition of
threshold .
>D=10juA(say}

Gate voltage VQ

Figure 2-6. I-V Curve for PMOS Transistor [15]

MAXIMUM
FUNCTIONAL ' _
FREQUENCY 6

{mm)
i

STANDBY
** POWER

SUPPLY
66 CUHP-EMT

(mA)

5.2

-*£-* — ■"- i-Ljrmi^--''^

TOTAL OOSE (rads(SI)}

Figure 2-7. Microprocessor Trend for Operating Frequency and Standby Current versus
Total Ionizing Dose [18]

2-18

2.6.1.2 Dose Rate

Dose rate is the amount of radiation taken in by the CMOS circuitry per second.

Typically, dose rate effects are related to a nuclear detonation where a rapid time

variation of particle radiation occurs in the CMOS circuitry. Besides nuclear weapon

induced dose rates, there are lower dose rates caused by normal particle flow in outer

space. Weapon dose rates will be in the range of 104 to 1012 rad (Si) per second and

space background rates are on the order of 10 rad (Si) per second [19]. The main product

of high dose rates from nuclear weapons is photocurrent generation throughout the

circuitry. Extra current can generate rail collapses or voltage sags, which may cause

device burnout [19]. Different dose rates have different effects on the CMOS circuits.

Figure 2-8 illustrates, that at lower background dose rates found in the space

environment, the threshold voltage shift is positive, where at higher dose rates the shift is

negative [18].

The difference is the reduction of oxide-trapped charges at lower dose rates and

an increase in interface states. Different oxide regions, depending on the value of the

dose rate dominate the leakage current. At lower dose rates the gate oxide dominates the

leakage current whereas at higher dose rates the field oxide is dominant as shown in

Figure 2-9 [18].

2.6.1.3 Single Event Effects

Single Event Effects (SEE) are caused by a high energy particles that impact the

CMOS circuitry. A single event is a one time occurrence that the circuit experiences.

These particle strikes happen at particular points on the circuit board and are not a

blanket strike encompassing the whole circuit board. There are four basic types of SEE,

2-19

THRESHOLD-
VOLTAGE
SHIFT

AVth(V)

2.0

1.0

0.0

-1.0

i—r i"i"i1 iTii 1—i i n mi -i—i' i i 11 n

GO250A/W21
n-CHANNEL

0.10rad(SI)/s

20
200

■ ' i i- i ml I l-l-L I ioJL J I I I MM

10< 3 5 10: 3 5 10*
DOSE (rad (Si))

Figure 2-8. Threshold Voltage Shift in NMOS versus Dose Rate [18]

»DS(A)

(Vfls-0)

DOSE (rad (Si))

Figure 2-9. Leakage Current Dominance versus Dose Rate [18]

2-20

which are Single Event Upset (SEU), Single Event Latch-Up (SEL), Single Event

Burnout (SEB), and Single Event Gate-Rupture (SEGR).

An SEU is caused by the energetic particle striking a sensitive node of the

memory device as shown in Figure 2-10. SEU manifests by causing a bit-flip in memory

devices.

VDD-'—1

T^T

/I
jw if*8!

r-r-vss

-nTT
p-WQll

/
/ Cosmic ray n- Substrate

Sensitive
junction

TET

Sensitive
junction

Figure 2-10. Sensitive Nodes for a SEU in a Typical SRAM [15]

The excess charge of the particle causes a memory cell to lose its current value

and change the storage cell to hold the opposite value. This event is not permanent and

the old memory value can be rewritten back into the memory cell [15].

SEL occurs when an energetic particle strikes the p-n junction containing the base

region of the lateral parasitic p-n-p and n-p-n bipolar transistors located between an n-

channel and p-channel transistor. The two parasitic transistors form a thyristor that self-

reinforces itself to be in the "on" condition. This event is permanent and potentially

2-21

destructive to the circuit. The only way to turn off the thyristor is by powering down the

circuit and then reapplying power. The lateral parasitic bipolar transistors in the n-

channel and p-channel transistors can be seen in Figure 2-11 [15].

DD SS

/'

m Collector S
A

|jj Emitter

1
t

i

Emitter

Base
^V^ Collector

Base

n-type epitaxial

Substrate (n-type)

Figure 2-11. Lateral Parasitic Bipolar Transistors found in CMOS P-N-P-N Structure
from [15]

SEB occurs when the drain-to-source voltage of the device exceeds the local

breakdown voltage of the parasitic bipolar transistor; the device can burn out due to large

currents and high local power dissipation. This event is of a permanent nature and cannot

be repaired or worked around [15].

2-22

SEGR occurs when a heavy charged particle blows a hole through the thin gate

oxide. Circuit failure is an eminent result of gate oxide failure. This event is also of a

permanent nature and cannot be repaired [15].

2.6.2 Methods of Radiation Hardening

After reviewing the unfortunate effects of radiation damage, a clear motivation to

protect against these occurrences arises. There are three different areas that can help

CMOS circuitry be radiation-tolerant. First, shielding of a device will help stop some of

the particles from reaching the CMOS circuitry or lower the particle's energy that does !

reach the circuitry. Next, fabrication of the wafers that the circuitry is manufactured on

contains special characteristics to help protect against some radiation effects. Finally,

layout techniques can smartly target areas of known weakness for CMOS circuitry and

work to strengthen the circuitry overall [15].

2.6.2.1 Radiation Hardening through Shielding

Shielding aids CMOS circuitry by producing the following effects: stopping a

particle; lowering a particle's energy; creating generation of secondary particles.

Although, shielding is not the only solution to radiation hardening and cannot always be

utilized. Many tradeoffs, such as thickness and increase launch costs, must be considered

when assessing shielding. A typical thickness for shielding is 200-300 mils of aluminum

(Al). Figure 2-12 illustrates that between 200-300 mils of Al is a reasonable thickness,

because thicker shielding results in only a small increase in protection for an extremely

higher cost. The result is less value for the dollar, therefore shielding only protects

CMOS circuitry to a certain point [15].

2-23

104

o
CO o
Q

If?

0 4 8 12 16 20
Aluminium absorber thickness (mm)

Figure 2-12. Shielding Advantage of Minimizing Total Ionizing Dose Radiation [15]

2.6.2.2 Radiation Hardening through Fabrication

Fabrication processes such as epitaxial-layer growth, Silicon-On-Sapphire (SOS),

Silicon-On-Insulator (SOI), and quality oxide growth will help make CMOS circuitry

radiation-tolerant.

To help suppress single event latch-up (SEL), the use of an epitaxial layer is a

very useful fabrication technique. For the broader range of CMOS technologies,

hardening against latch-up may be achieved by the use of a lightly doped epitaxial layer

2-24

on a heavily doped (low resistivity) substrate. The low-resistivity substrate degrades the

gain of the parasitic bipolar transistors and limits base-emitter junctions. Also, the

substrate acts as an effective charge collector. Optimization of the resistivity and

thickness of the epitaxial layer is important in order to achieve adequate immunity to

latch-up. An example of what the epitaxial layer and normal processed bulk CMOS look

like is shown in Figure 2-13 [17].

nMOS pMOS

«-well

p- substrate

(a) Bulk CMOS structure

oMOS |*/1QS

Ft n+d=t n*:Fpt P*^ r fl
p- well n- well

s///////yA Tr^si^ Region VS/tf&Z,
p+ substrate

(b) Epitazial CMOS structure

Figure 2-13. Bulk CMOS and Epitaxial CMOS Structures [17]

Another fabrication technique that helps with radiation hardening is SOS. SOS is

a more complex form of dielectric isolation. A single-crystalline silicon film is grown

over a sapphire substrate. The silicon island is doped to make an n-channel or p-channel

transistor. Sapphire is a dielectric that has an inherently high tolerance to radiation. The

sapphire protects the device against dose rate and single event effects. Leakage currents

cannot flow between devices because the transistors are built on an insulating substrate.

Therefore, guard rings that limit leakage current between transistors are unnecessary in

SOS, and active devices can be packaged closer together. Also, there are no parasitic

2-25

bipolar transistors to latch-up, because the n-channel and p-channel transistors are in

complete isolation. Figure 2-14 illustrates the SOS CMOS structure [17].

- Metal
Gate oxide

Silicon

- Metal
Gate oxide

Silicon

CMOS SOS CMOSßOI

Figure 2-14. SOS and SOI CMOS Structures [17]

SOI technology is very similar to the process described above and used for SOS

devices. Therefore, SOI and SOS have similar advantages. The only basic difference

between them is the specific substrate used in each process. SOI uses SiÖ2 for its

substrate and SOS uses sapphire for its substrate. Silicon-on-Insulator devices can be

fabricated using several techniques. One of those techniques is called SMOX, or

Separation by Implanted Oxygen [15]. In SMOX, a high-current ion-implantation

system is used to deposit a heavy concentration of oxygen molecules in a layer a couple

of thousand angstroms below the wafer's surface. The wafer is then thermally annealed,

and the oxygen forms a continuous Si02 layer beneath the silicon surface. The annealing

process also is beneficial because it anneals damage in the top silicon layer caused by the

implant. Therefore, a thin, high-quality layer of silicon is left on top of an insulating

layer of Si02. This silicon is then ready to be used for device fabrication. Another

2-26

helpful fabrication technique is building the transistors on a mesa. The process involves

etching the silicon away between two active transistor areas and growing oxide in this

etched region, thereby completely isolating the devices. The dielectric-isolation plane

created by the SIMOX process enables increased circuit speeds and radiation tolerance.

When utilizing this fabrication technique with smaller devices, it is important to keep in

mind that a back-channel leakage can occur in n-channel devices as trapped positive

charge build up occurs in the buried oxide [17]. Figure 2-14 illustrates the SOI CMOS

structure.

2.6.2.3 Radiation Hardening through Layout

Several layout techniques assist in making a CMOS circuit radiation-tolerant.

The way a transistor is drawn in the design process makes a difference in both the amount

of leakage current and the single event susceptibility the overall circuit will have.

Additional layout features such as guard rings, extra contacts, limiting fan-in and fan-out,

and increased transistor sizing aid in circuit protection from radiation [17 and 20]. Two

of the most common transistor layouts for radiation hardening are the annular and the

dog-bone. Each of these special layouts is designed to protect against edge leakage in the

bird's beak region.

The annular layout involves a drain region that is surrounded by polysilicon

routing which forms a box shape around the drain region. The diffusion on the outside of

the box shaped polysilicon is used as the source region. This layout has the advantage of

eliminating the possibility for any edge leakage to occur in the bird's beak region of the

transistor. With this layout, source-to-drain leakage can be avoided by forcing all source-

to-drain current to run underneath the gate oxide, using an enclosed gate (or edge-less)

2-27

geometry. Any current between the source and drain has to flow underneath the gate.

Therefore, there is no current path underneath the field oxide or along the edge of the

active area. The main disadvantage to this layout is the cost of increased layout area for

the circuit [21]. Figure 2-15 illustrates the annular layout.

N+ Source

Polysilicon Gate T^

Thin Oxide Boundary

N+ Drain

Figure 2-15. Annular Layout from [16]

The dog bone layout consists of a wider polysilicon edge the diffusion region.

This creates a longer channel in the bird's beak region. By changing the effective width-

to-length ratio, widening the polysilicon at the edges decreases the amount of leakage

current. Although this reduces the leakage current it does not completely eliminate it.

Disadvantages of this design include a decrease in the effective width of the intrinsic

transistor, an increased gate capacitance, increased area, and difficulty and complication

of the layout [21]. Figure 2-16 illustrates the dog bone layout.

Guard ring structures are heavily doped diffused regions that encircle the well and

therefore prove to be another helpful radiation tolerant layout technique. They are very

effective in preventing latch-up. Two types of guard rings exist, minority carrier guards

and majority carrier guards [20]. Since CMOS devices form channels in the gate region

2-28

N+ Source
Polysilicon Gate

N+ Drain

Thin Oxide Boundary.

Figure 2-16. Dog Bone Layout [16]

using minority carriers in the well, the focus will be on the minority carrier guard rings.

Minority carrier guards have an opposite doping type to that of the region in which they

are formed. Therefore, they are able to collect injected minority carriers before they can

cause a fault or upset in the circuit. Guard rings are placed in the substrate outside the

well edge of a p- and/or n-well with frequent contacts to the rings. This reduces the

parasitic resistances. Inherently, a guard ring eliminates the inter-transistor leakage

current that occurs when the field oxide charges from the collection of excess charge and

by increasing the spacing between neighboring transistors, thus lengthening the leakage

path. As the length of a leakage path increases, it takes more excess charge or radiation

to start or connect the two ends of the path, which causes leakage current. Figure 2-17

illustrates a CMOS inverter with a guard ring implementation [20].

Typically, commercial CMOS circuits designed for high packing density and high

speed will minimize the space between n-channel and p-channel sources, and will use

infrequent well and substrate contacts. The increase of well contacts will reduce latch-up

susceptibility. The well contacts should be connected to the supply voltage (Vdd) or

ground (Vss) to collect any injected charge. Plus, adding additional substrate contacts

will help stabilize the transistors when they encounter a single particle strike. A lambda is

a unit of length used in the VLSI CAD tool called MAGIC. The visual interface for

2-29

Well Contacts

Figure 2-17. Guard Ring Structures [20]

MAGIC lays out a grid pattern broken up into squares, where each square equals one

lambda. The contact spacing (body tie) should be no more than two squares or lambda

apart in the circuit layout and should be placed between transistors to help deter latch-up.

The extra body ties at the p-well/n-well interface will increase single event upset

performance [20].

The terms fan-in and fan-out refer to the number of gates connected to the inputs

and the output of a combinational logic gate. Typically, commercial CMOS circuits are

designed to handle voltage fluctuations and to provide increased drive strength for the

operation of running high fan-in and fan-out. The demand put upon high fan-in/fan-out

transistors in order to drive certain large loads may not be realistic once exposed to some

total ionizing dose radiation. Fan-in/fan-out limitations depend on the available

technology, but it is a sound engineering principle to keep the fan-in/fan-out to a

minimum [20].

2-30

Since it is known that the threshold voltages will change for n-channel and p-

channel transistors following exposure to radiation, it is important to try to plan ahead for

the expected post exposure changes. Electron mobility is higher than hole mobility, thus

producing unequal drive strengths between NMOS and PMOS transistors. Therefore,

some threshold voltage variance should be designed into the circuit and transistor PMOS

to NMOS width ratios should not reflect the typical 2:1 ratio. A safety margin is

designed-in to increase the PMOS width to NMOS width ratio to 3:1. However, with all

the modifications designed to keep the transistor functional after radiation exposure the

transistor still needs to be able to operate under normal conditions (i.e. at the beginning of

the circuit's operational lifetime when total ionizing dose is zero). Figure 2-18 illustrates

the width and length of a CMOS transistor. By changing the size of the polysilicon gate,

the drive strength of the transistor will change. Typically, the length remains constant

and, to either increase or decrease the drive strength, the width will be increased or

decreased.

Figure 2-18. Width and Length of a CMOS Transistor [12]

2-31

2.6.3 Previous Research

Previous research on the Microdot was accomplished by Dr. Greg Donohoe and

Mr. Jim Lyke of Air Force Research Laboratory at Kirtland Air Force Base, New

Mexico. Dr. Donohoe and Mr. Lyke wrote the behavioral VHDL for the Microdot,

which was broken up into five modules. The five modules are the following: control;

program memory; arithmetic logic unit (ALU); modified stack; input/output module [1).

Their design implementation used FPGAs for the control module. An instruction set and

modified stack architecture implementation was adapted from older stack machines such

as the Forth and Java Virtual Machine [1]. This architecture definition and description

are adequate for this implementation; however, in this effort, the five modules are

implemented using an ASIC radiation-tolerant standard library cell design.

2.6.4 Performance Comparison

The key reason to compare design and performance parameters between the

historical 4-bit, 8-bit, 16-bit devices is to set appropriate design goals for the ASIC

Microdot. The Microdot did not have set design parameters for power delay product,

speed, and size. However, due to the nature of the space application, the order of

importance for the design parameters is power delay product, size, and speed. Speed is of

minimal importance because of the nature of the application the Microdot will perform.

By sampling temperature or chemical sensors, readouts do not have to be made at an

accelerated processing speed such as 50 or 100 MHz. Simply to sample data once a

second would be enough useful information for the ground station to have for a satellite.

By slowing the clock speed down to the Hz range rather than kHz, the Microdot is able to

operate while consuming less power. The minimization of the power delay product is the

2-32

main goal of the Microdot. Table 2-1 shows 1993 4-bit microcontrollers performance

parameters and displays current Microdot goals. These goals are based on previous

microcontroller parameters and by adding in the advantage of the 0.35-micron TSMC

process. A definite disadvantage over commercial microcontrollers for the Microdot will

be making the microcontroller radiation-tolerant, which will increase area and power

consumption. The area of the design should be optimized, in order to minimize power

consumption and increase efficiency.

Table 2-1. 4-bit Microcontroller Design Parameters from [22]

Serial # Manufacturer Part Number Power Consumption Operating Frequency
1 Fujitsu MB88xxxH >100 microwatt range 666.7 kHz
2 OKI MSM505X 4.5 microwatts 8 kHz
3 Sharp SM530 18 microwatts 11 kHz
4 Sharp SM500 60 microwatts 16.4 kHz
5 TSMC/AFIT Microdot < 50 microwatts at the Hz or low kHz range

Another performance parameter, which specifically has to do with the space

environment, is radiation tolerance or hardness. The mission needs and requirements of

the United States Air Force will set the goal for the Microdot's radiation tolerance value.

Table 2-2 illustrates some radiation information on different microprocessors and also

displays the minimal radiation tolerance goals for the Microdot.

Section 2.6 involved discussions about the different types of radiation, radiation

effects on circuitry, radiation protection for electronics, and finally goals for the ASIC

Microdot design. Total ionizing dose, dose rate, and single event effects were explored

in detail. Also, radiation protection through shielding, fabrication, and layout were

investigated. Finally, radiation goals were discussed for the Microdot design.

2-33

Table 2-2. Ionizing Dose, Dose-Rate, and SEU response of ca, 1990 representative
microprocessors from [19]

Ser. Microprocessor Manufacturer Technology

Ionizing Dose
Failure

Threshold Dose Rate
Threshold

(109 Rads/s)

Dose
Rate
Pulse
Width
(ns)

Threshold LET

(MeV*cm2/mg)
Krad
(Si)

@
Rads/s

1 SA3000/80C85RH Sandia/HA CMOS-Epi 1000 1.9 20-50 120

2 GP 501 RCA CMOS/SOS 1000 130

3 SA3300/NS32016 Sandia/NSC CMOS-Epi 5000 27.8 1 1000 30/120

4 80C186 INT CMOS 8 125

5 68020 MOT CMOS 3 150

6 GVSC IBM CMOS/SOS/SOI 3000 76.8 1/1 E3 30 120

7 1750 A RCA CMOS/SOS 1000 1.0 20 8.5

8 GP001 RCA CMOS/SOS 1000 112 45 20 75

9 80C85 HA CMOS-Epi 100 0.3-0.5 75

10 TMP 320C25 TI CMOS-Epi 52.6 207 0.26 20-50

11 80C86 HA CMOS-Epi 4 39.3 0.1 35 5

12 Microdot TSMC/AFIT CMOS-Epi 250 at least 10-3

2.6.5 Conclusion

The goal of this thesis is to design a low power, small, and efficient 4-bit

microcontroller able to operate in a space environment. This chapter covered

synchronous design flow, the history of 4-bit microcontrollers and microprocessors,

FPGA versus ASIC standard library cell design, decentralized versus centralized

architecture, and radiation hardening of electronics. The last section compared

performance parameters of several kinds of microprocessors and microcontrollers

developed for commercial use and for the space environment. The key motivation for the

Microdot is to improve on these previous performance and design parameters using the

0.35-micron process along with radiation hardening techniques, to improve spacecraft

mission lifetime and safety.

2-34

3. Design Overview

3.1 Design Constraints

There are two key issues of design involving the Microdot microcontroller. First,

an important task to be undertaken is optimizing the Microdot for minimum power

consumption. Since the Microdot is programmable, inherently it can be used in many

different scenarios. For example, a satellite has a limited amount of power that is

produced by the solar panels of the satellite. As time goes on and the solar panels

degrade due to radiation effects in the space environment, the total amount of power

available to the satellite operations decreases. The Microdot microcontroller needed to

be designed for minimum power consumption in order to achieve a particular satellite's

mission lifetime. The final issue that played a part in the design of the Microdot was the

actual size that the layout would yield. This issue connects to the previous issue of power

consumption, since a larger microchip would need more power to operate due to larger

capacitances throughout the circuitry. A goal was set for the Microdot to not be larger

than 5 square millimeters or 2.2 millimeters on a side. The area goal was set to keep

power consumption low and the design as compact as possible. The requirement for the

Microdot to contain on-chip Static Random Access Memory (SRAM), which takes up a

large amount of area, presented the biggest challenge. Chip area needed to be as small as

possible without constricting routing between different elements in the Microdot. All of

these design constraints were taken into consideration when designing the Microdot.

3-1

3.2 Microdot Design

The Microdot design is of a hierarchical nature. The Microdot microcontroller is

made up of seven blocks and an expandable SRAM unit that is located off-chip. The

seven blocks are made up of forty-five elements. The seven component blocks are

broken into different functional areas that the Microdot needs and has to perform its

overall mission.

The seven blocks are the Program Memory, Stack, Arithmetic Logic Unit (ALU),

Input and Output (I/O), Data Acknowledge, and the Status Multiplexor. Each functional

block was created to improve the design, test, and building of the Microdot.

The Program Memory is the block, which stores the programs to run the

Microdot. It also keeps track of the memory address for the on-chip SRAM and the

expandable off-chip SRAM units. In addition, it is responsible for sending out

instructions and other types of information.

The Stack is the block, which is capable of storing data from different blocks and

off-chip. It also keeps track of the stack memory address by the use of a stack pointer.

The stack pointer points or directs data flow to a memory address within a stack.

The ALU block performs different kinds of arithmetic operations on data from the

Stack block. In addition, the ALU block sends status signals to the Control block.

The I/O block is responsible for controlling bi-directional ports, which can be

either used as an input or an output.

The Data Acknowledge block sends handshaking signals for programming

purposes off-chip to whatever device is programming the Microdot.

3-2

The Status Multiplexor block is used to test the fabricated Microdot once back

from the foundry. It is not necessary for the Microdot to run its tasks, but helps the

designer see into the numerous data lines within the Microdot. The Status Multiplexor

block adds to the design-for-test functionality, which is built into the Microdot. The

hierarchical nature of this microchip design, under which less errors occurred and

productivity increased, yielded a system of checks that occurred at different hierarchical

levels. This hierarchical structure for the Microdot is shown in Figure 3-1.

The Microdot can be programmed from any device that can send a program and

communicate with handshaking signals. Microdot performs 23 different instructions and

does not incorporate any special provisions for interrupts or subroutines. It is designed to

perform one task, which would be sensor data input manipulation, recording, and

reporting of data to a master microprocessor within a hierarchical network. Microdot is

capable of controlling an off-chip SRAM unit, which expands the 4-bit memory

allocations from 1024 to 4096. The first 1024 memory addresses are located in on-chip

SRAM and controlled primarily by on-chip resources. The Microdot is a self-contained

microcontroller capable of running small programs that are less than or equal to 1024 4-

bit instructions. However, it can accommodate larger programs up to 4096 instructions

with the help of an off-chip SRAM unit. Microdot was intended to be connected to a

master microprocessor, which would program the Microdot and read sensor data through

four data lines.

It is crucial to understand the instructions the Microdot can perform, before

understanding actually how the Microdot was built to perform these instructions. An

operand for the Microdot contains 4-bits, since the Microdot is a 4-bit microcontroller.

3-3

Microdot
4-bit Microcontroller

Program
Memory
Block

Off-Chip
SRAM

<

£=±
Control
Block

< <

_/\

< <

Input and
Output (I/O)
Block

Arithmetic
H- Log'c

Unit (ALU)
Block

Stack
Block

/

Status
Multiplexor

f

Figure 3-1. Microdot Hierarchical Structure

The Arithmetic Logic Unit (ALU) instructions contain two types of instructions.

There are two operand instructions and one operand instructions. First, the two operand

instructions are Add, Subtract, Add with Carry, Subtract with Carry, And, Or, and

Exclusive-Or (XOR). The single operand instructions are Not, Shift Left, and Shift

Right. The And, Or, and XOR instructions are bit-wise operations. In addition, the Shift

3-4

Left and Shift Right instructions use the Carry Bit as the data bit to shift into the operand

and the data shifted out of the operand becomes the Carry Bit. The Stack instructions

contain pop, push, load, store, duplicate, swap, and pick. The POP instruction simply

reads the data at the top-of-the-stack (TOS) address onto the output data lines of the

stack. The opposite of the POP instruction is the PUSH instruction, which writes data

from the TOS register to the SRAM cells selected by the stack address. The LOAD

instruction latches the data input lines, which are selected as inputs by the mask register

into the TOS register. The STORE instruction sends the TOS register 4-bit output to the

output lines of the Microdot, however each data line needs to be declared an output by

the mask register in order to be sent off-chip. The mask register is an element, which

simply sets the four bi-directional ports to either an output port or an input port. If a bi-

directional port is set to be an input port and data gets sent to the port for output, the data

will not be outputted and sent off-chip. The DUPLICATE instruction (DUP) simply

duplicates the TOS element from the TOS register or TOS cache into the current stack

address. The SWAP and PICK instruction can be used together to reach any 4-bit data

set in any one of the 128 stack addresses. The SWAP instruction exchanges the TOS

with any element within the stack (TOS-n). The PICK instruction copies the (TOS-n)

data to the TOS. The next set of instructions has to do with the input/output module of

the Microdot. The SETIO Mask instruction will set control bits for the input/output lines

and force each line to be an input or output based on the particular control bit value for

the line. The WAIT instruction sets the Microdot is a passive mode until an input line

connected to some element off-chip produces a different value on the line than the TOS

line has. Once a different value is detected on any of the four lines, the waiting is over

3-5

for the Microdot and the next instruction is loaded. Finally, there are four miscellaneous

instructions, which do unique tasks to specific Microdot elements. The LOADRAM

instruction will write the data on the TOS register output lines into the stack

corresponding to the stack address. The SKIP instruction is set up to increment the

program memory address by as many as three times in order to skip up to three

instructions. The JUMP instruction allows the program memory to jump to any of the

4096 addresses. The CLEAR STATUS REGISTER (CLRSR) instruction simply clears

the status register bits to all zeros. Table 3-1 visually simplifies what the different

instructions in the Microdot do.

3.2.1 Program Memory Block

The program memory block contains 10 of the 45 total elements for the Microdot.

The hierarchical structure of the program memory block is shown in Figure 3-2. The

program memory block has a number of functions that are crucial to the Microdot

operation. This block is responsible for writing and reading 4-bit instructions from anyone

of 4096 addresses along with getting the instructions out to the rest of the Microdot

components. In addition, this block keeps track of the memory address, to be read from or

written to, for the on-chip and off-chip Static Random Access Memory (SRAM)

components. Either control lines from the Control Block or off-chip lines that come into

the Microdot as inputs control all Program Memory elements.

3.2.1.1 Program Counter

The Program Counter is made up of several elements, which include a 12-bit

adder (Program Logic), 12-bit register (Program State Machine), and a 12 line 3 to 1

multiplexor (Program MUX). The multiplexor takes in the incremented address, the jump

3-6

Table 3-1. Microdot Instructions

s _o
u a u

•4-»

' a

U3

s « u

O
CM o

S3

o

In
st

ru
ct

io
n

T
yp

e

C
om

m
en

ts

Addn 2
TOS(value) <= TOS(value) + [TOS(value)-n] +

Carry Bit ALU 0<n<15

Subtract n 2 TOS(value) <= TOS(value) - [TOS(value)-n] ALU 0<n<15

Add w/Carry n 2
TOS(value) <= TOS(value) + [TOS(value)-n] +

Carry Bit ALU 0<n<15

Subtract w/Carry n 2
TOS(value) <= TOS(value) - [TOS(value)-n] +

Carry Bit ALU 0<n<15

Andn 2 TOS(value) <= TOS(value) and [TOS(value)-n] ALU 0<n<15

Orn 2 TOS(value) <= TOS(value) or [TOS(value)-n] ALU 0<n<15

Exclusive-Or n (XOR n) 2 TOS(value) <= TOS(value) xor [TOS(value)-n] ALU 0<n<15

Not 1 TOS(value) <= not TOS(value) ALU

Shift Left (SHL) 1
TOS(value) <= left shift of TOS(value) thru Carry

Bit ALU

Carry Bit gets shifted in and
gets replaced by the bit that is

shifted out

Shift Right (SHR) 1
TOS(value) <= right shift of TOS(value) thru

Carry Bit ALU

Carry Bit gets shifted in and
gets replaced by the bit that is

shifted out

Load RAM 1 Stack TOS(value) <= TOS Register (value) Stack

Loads Output of TOS Register
into the Stack's Current

Address

Pop 1 TOS(value) <= TOS(value)+l Stack

Duplicate (DUP) 1 TOS(value)+l <= TOS(value) Stack ■

Load 1 TOS(value) <= Input(value) and IOMASK(value) Stack

TOS Register gets the inputs
if the IOMASK bits are set to

'0'

Store 1 Output <= TOS(value) Stack
Only bits where IOMASK is

set as an output

Push c 1 Push constant onto stack Stack 0<c<15

SetIO Mask (SETIO) 1 Write mask value 'm' to IOMASK Input/Output l=>output; 0=>input

Wait Mask (WAIT) 1 Wait for an event on I/O channel Input/Output
Wait for change on sensitive

input channels

Skip Mask (SKIP) 2 Skip if Status Register Bits and C0NST1 = '1' Program Memory

Jump Address (JUMP) 4 Jump to 12-bit address 'a' Program Memory 0<a<4096

Swap n 1
TOS(value) <= TOS(value)+n;
TOS(value)+n <= TOS(value) Stack 0<n<127

Pickn 1 TOS(value) <= TOS(value)+n Stack 0<n<127

Clear Status Register
(CLRSR) 1 Status Register Bits <= '0000' Control Clear Status Register

3-7

Program
Memory
Block

^7

Memory
Controller

< < < <

■* ir ir r w r

4*

v v

Memory
Multiplexor

Program
Memory
(1024X4 SRAM)

I
< <

J

J

V

r\

OPCODE
Register

ALUCODE
Register

CONSTANT 1
Register

±
Program
Memory
State Machine

Program
Memory
Logic

Program
Counter
Multiplexor

«

CONSTANT 2
Register

/"X

?
< <r

Figure 3-2. Program Memory Hierarchical Structure

address, and the current address. The Program MUX decides which of the three inputs to

send through to the Program State Machine based on the values of the control lines sent

from the Control block. The three elements connected together essentially are

responsible for making sure the program memory address is sent to the on-chip SRAM

and off-chip as the Program Memory.

3-8

3.2.1.2 Program Memory

The Program Memory is made up of seven elements that make-up a functional

SRAM unit. The Program Memory includes column decode circuitry, row decode

circuitry, pre-charge circuitry, pre-charge cell, write circuitry, read circuitry (sense

amplifiers), and SRAM cells. Chapter Four will describe in more detail how each of

these elements interact with each other in order for the SRAM unit to be read from and

written to. The Program Memory gets input data from off-chip and the output is sent to

the Memory Control. The Program Memory lower level hierarchical structure is shown

in Figure 3-3.

3.2.1.3 Memory Control

The Memory Control is composed of two elements, which are a NOR gate

(Memory Controller) and a four-line 4 to 1 multiplexor (Memory MUX). The Memory

Controller controls, which SRAM either on-chip or off-chip is functional on or off. At any

one time only one of the two SRAM units will be functioning as the Microdot's program

memory. If the off-chip SRAM is enabled then the on-chip SRAM is disabled and vice-

versa. The Memory MUX takes in three 4-bit data lines. One set of data lines is from the

on-chip SRAM and another one is from the off-chip SRAM. The last set of data lines is the

data input lines, which are connected to an outside source. Two of the four selections for

the multiplexor are set to select the data input lines. These data input lines can be used to

test and override the program memory instructions coming from either the on-chip or off-

chip SRAM units. This feature is another built-in-for-test feature that will aid in

determining working elements under the event that the on-chip and/or off-chip SRAM units

3-9

do not function. No matter which data is selected by the Memory MUX, the output is sent

to the Instruction Register.

Program
Memory

Pre-Charge
Circuitry

Row
Decode
Circuitry

V\-

Column
Decode Circuitry

Write
Amplifier

Pre-Charqe Cell

512x4
SRAM Cells

I
Sense Amplifiers

512x4
SRAM Cells

^r ^r

Column
Decode
Circuitry

Figure 3-3. Program Memory Structure

3.2.1.4 Instruction Register

The Instruction Register is made up of four individual 4-bit registers that send out

data from the Memory MUX. The four registers are responsible for transferring 4-bits of

data to numerous other elements on the Microdot. The first 4-bit register is the OPCODE

3-10

register, which sends a 4-bit operational code to the Control, ALU, and the Status

Multiplexor blocks. The operational code tells the Microdot what instruction it will be

running and thus helps the control block decide which elements will need to be operated.

The next 4-bit register is the ALUCODE register, which sends a 4-bit data set to the ALU

block and Control Block. The ALU code tells the Microdot, which ALU operation to

perform and which control signals are needed. The two remaining registers,

CONSTANT 1 and CONSTANT2 registers are used for 4-bit variables for certain

instructions. For example, the JUMP instruction requires a 12-bit memory address sent

to the Program Counter Multiplexor. The CONSTANT1, CONSTANT2, and

ALUCODE register make up the 12-bit memory address. The CONSTANT1 register is

used to send data to the I/O and Stack blocks. The CONSTANT2 register is just used to

create the 12-bit memory address for the JUMP instruction. All the data from the

Instruction Register is sent to another block, except for the JUMP instruction scenario.

3.2.2 Stack Block

The stack block contains 10 of the 45 total elements for the Microdot. The

hierarchical structure of the stack block is shown in Figure 3-4.

3.2.2.1 Stack Counter

The Stack Counter is made up of four elements, which together provide the

function of generating the stack memory address that is read from or written to in the

stack. The four elements are a 7-bit register (Stack State Machine), 7-bit adder (Stack

Addresser), a seven line 2 to 1 multiplexor (Stack MUX), and a 7-bit

incrementor/decrementor (Stack Logic). The Stack State Machine takes in the output of

3-11

Stack
Block

2to1
Multiplexor

/\ /\

<

y\

^r ^r

^.Top-Of-The-Stack
Register

y\.

Stack
Logic

Stack
Multiplexor

Stack
State
Machine

4to1
Multiplexor

v v v

Temporary
Register

Top-Of-The-Stack
Multiplexor

<—►

Stack
Addressor

Stack
(128X4 SRAM)

Figure 3-4. Stack Hierarchical Structure

the Stack MUX and sends the latched output to the Stack Addresser. The Stack Logic

depending on control signal values either will increment or decrement the address sent

out from the Stack State Machine. The output from the Stack Logic is one set of seven

inputs to the Stack MUX. The Stack Addresser takes in the output from the Stack State

3-12

Machine and outputs from the Control Block. The output of the Stack Addresser is the

address that is sent to the stack. The setup is designed for the incrementing,

decrementing, and keeping the stack memory address static. In addition, the Stack

Addresser makes it possible to reach any of the 128 stack memory addresses within the

stack, because it adds two 7-bit operands. One operand comes from the Stack State

Machine and the other operand comes from the ALUCODE and CONSTANT 1 registers

located in the Program Memory block. The output of the Stack Counter goes to the on-

chip SRAM unit, known as the Stack.

3.2.2.2 Stack

The Stack is comprised of seven elements that make the Stack able to be read

from and written to from any of the 128 stack addresses. The elements are the write

decoder, row decoder, column decoder, pre-charge circuitry, pre-charge cell, write

amplifier, and the SRAM cell. All of these elements are similar to the elements displayed

in Figure 3-3 in the Program Memory Block section, which takes on the same function.

Both elements are SRAM units and the only difference between them is that the Program

Memory contains the Microdot's instructions, while the Stack contains actual data either

produced by the Microdot or taken in from off-chip. Whether the Stack is reading from

an SRAM cell or writing to one is determined by the control signals from the Control

block. The output of the Stack is sent to the Status Multiplexor block and to the ALU

block for data manipulation. The Stack takes in data from the TOS Cache and writes the

data into the SRAM cell, which corresponds, to the memory address given by the Stack

Counter.

3-13

3.2.2.3 Top-Of-The-Stack (TOS) Cache

The TOS Cache is comprised of five elements, which take in different data lines

and decide which set to send through to the stack and to the Arithmetic Logic Unit (ALU)

Block. The five elements are a four line 4 to 1 multiplexor (4 to 1 MUX), four line 2 to 1

multiplexor (2 to 1 MUX), another four line 2 to 1 multiplexor (TOS MUX), a 4-bit

register (Temp Register), and a 4-bit register (TOS Register). The 4 to 1 MUX and the 2

to 1 MUX take in different 4-bit data lines and depending on control signal values decide

which set to send through to the TOS MUX. Temp Register is a 4-bit that takes part in

the key instructions of SWAP and PICK. The Temp Register sends its output to the 2 to

1 MUX. The TOS MUX is another layer of multiplexor that confirms that the correct set

of data is sent to the TOS Register. The TOS Register latches through the data sent from

the TOS MUX. The output of the TOS MUX is delivered to the stack as data to be

written to an SRAM cell within the stack and the data is sent to the ALU Block.

3.2.3 Arithmetic Logic Unit (ALU) Block

The ALU block contains 13 of the 45 total elements for the Microdot. The

purpose of the ALU block is to manipulate two 4-bit sets of data or one 4-bit set of data

and determine the attributes of the results. The hierarchical structure of the ALU block is

shown in Figure 3-5.

3.2.3.1 ALU Functions

There are ten functions that the ALU block can produce and these are AND, OR,

Exclusive-Or (XOR), NOT, Shift Left, Shift Right, and Addition without Carry, Subtract

without Carry, Addition with Carry, Subtract with Carry. There are eight elements that

make it possible for the Microdot to perform these functions. The AND function is

3-14

Arithmetic
Logic
Unit (ALU)
Block

Figure 3-5. ALU Hierarchical Structure

3-15

simply the bit-wise and operation of each TOS Register output bit with each Stack output

bit. The OR and XOR function follow the same process, except that each bit-wise

function performing their respective gate operation on the two sets of data. The NOT

function inverts the TOS Register output bits and sends the result to the ALU Result

component. The Shift Left function takes the Carry bit and shifts it into the least

significant bit position, while shifting the rest of the bits to the left and placing the most

significant bit as the new Carry bit. The Shift Right function takes the least significant

bit and shifts it out to be the new Carry bit, while the Carry bit gets shifted into the most

significant bit position. The first four functions fall under the Adder/Subtractor section

further on.

3.2.3.2 Adder/Subtractor

As a portion of the ALU block, the 4-bit adder/subtractor consists of four

elements that make the four addition and subtraction functions possible, which are

Addition without Carry, Subtraction without Carry, Addition with Carry, and Subtraction

with Carry. The four elements are the Adder, Carry-In Multiplexor, Subtraction

Multiplexor, and the Two's Complement that make addition/subtraction with and

without using the carry bit possible. The Adder simply adds the two 4-bit operands. The

Carry-In Multiplexor decides with a control signal value from the ALU Control Unit

whether or not to send the Carry bit to the adder/subtractor. The Subtraction Multiplexor

routes the original data or the two's complement version of the data or to the adder

component. If the two's complement is sent to the adder then an subtraction operation is

effectively performed, while if the original data from the stack is passed then an addition

operation will occur. The Two's Complement component produces the opposite signed

3-16

value of the input data and sending the result to the Subtraction Multiplexor. For

example, if a negative three binary value were inputted into the Two's Complement

component then the result would output a positive three binary result.

All these functions need to be controlled, so not all the functions are operating at

the same time. A critical element of the ALU block, which determines the addition or

subtraction of data is the ALU Control Unit.

3.2.3.3 ALU Control Unit

An ALU which contains numerous functions needs to be directed to which

functions to perform at a particular time. The ALU Control Unit takes in the ALU Code

and Operation Code from the Instruction Register and determines what ALU function

those codes represent. ALU control signals are sent out to each functional component

effectively telling which one of the elements to operate, while keeping the other elements

in static operation. By not running all the ALU operations each time any instruction is

passed to the ALU, the Microdot saves power by not running unnecessary operations.

After the ALU Control Unit tells the elements which function to perform, the ALU

Result element selects the correct output to send to the Stack and the Status Multiplexor

blocks.

3.2.3.4 ALU Resultant

The ALU Resultant is made up of three elements, which are the ALU Result,

ALU Overflow, and the ALU Zero. The ALU Result takes in all the functional element

outputs and selects which one of the 4-bit data lines to send to the output, which is sent to

the TOS Cache in the Stack block, the ALU Overflow, and the ALU Zero. The ALU

Overflow determines from the output value whether to turn on or off the overflow signal,

3-17

which goes to the Status Register element in the Control block. The ALU Zero element

which is dependent on the ALU Result output will turn on or off the negative and zero

signals, which also go to the Status Register in the Control block.

3.2.4 Input and Output (I/O) Block

The I/O block contains four of the 45 total elements for the Microdot. The

hierarchical structure of the I/O block is shown in Figure 3-6.

Input and
Output (I/O)
Block

Figure 3-6. I/O Hierarchical Structure

3.2.4.1 Event Detection Logic

The Event Detection Logic simply keeps the Microdot in a waiting mode until an

input value is detected that is different from the output of the TOS Register located in the

Stack block. This element is used for the WAIT instruction and has constant

3-18

communication with the Control Block. As soon as a different value is detected the

Microdot continues on with its other instructions.

Another key function of the I/O block is determining whether the bi-directional

ports should be set as inputs or outputs.

3.2.4.2 Mask Register

The Mask Register maintains values sent from the Instruction Register that

determine which function each input/output port should be used for. If the bit value in

the Mask Register for a port is equal to '0' then the port is set as an input port. On the

contrary, if the bit value is set to ' 1', then the port is set to be an output port. The Mask

Register will maintain loaded values until another new set is loaded in. The initial set-up

values for the Mask Register for the four bits is all zeros, so the Microdot can take on

inputs from the start for programming purposes. The Mask Register outputs are also sent

to the Output Function.

3.2.4.3 Output Function

The Output Function is made up of two elements and they are the Output Logic

and Output Register. The Output Logic takes in the Mask Register values along with the

TOS Register values. If a Mask Register value is set to '1', then the TOS Register value

gets passed to the Output Register. The Output Register during the STORE instruction is

told to take the inputs and latch the values to the output lines of the Microdot.

3.2.5 Control Block

The Control block contains four of the 45 total elements for the Microdot. The

hierarchical structure of the control block is shown in Figure 3-7.

3-19

The operation code (OPCODE) and the ALU code (ALUCODE) sent through the

instruction register tell the Control Block what state to be in and what control signals to

activate. A table of the operation cross-references with the specific OPCODE and

ALUCODE is displayed in Table 3-2 for easy reference.

Control
Block

v -\r<\r

Status
Register

<

Control
Logic

Control
State
Machine

Figure 3-7. Control Hierarchical Structure

3.2.5.1 Control Logic

The Control Logic is responsible for taking the current state from the Control State

Machine and determining which control signals to turn on or off based on the current

3-20

Table 3-2. Operation Code and Arithmetic Logic Unit Code Operation Table

Operation

a a o
y a. o

a a o
y s- o

w
Q o
y
OH o

©
Ed a o
y
PH o

w
Q o
y
p
p

W a o
y
p
p
<

P
Q
O
y
P
p
<

© w
Q
O
y
p
p
< Comments

Addn 0 0 0 0 0 0 0 0 Adding TOS and Stack w/o Carry

Subtract n 0 0 0 0 0 0 0 l Subtracting TOS and Stack w/o Carry

Add w/Carry n 0 0 0 0 0 0 1 0 Adding TOS and Stack w/Carry

Subtract w/Carry n 0 0 0 0 0 0 1 1 Subtracting TOS and Stack w/Carry

And n 0 0 0 0 0 1 0 0 Anding TOS and Stack

Orn 0 0 0 0 0 1 0 1 Oring TOS and Stack

Exclusive-Or n
(XOR n) 0 0 0 0 0 1 1 0 Exclusive-Oring TOS and Stack

Notn 0 0 0 1 0 1 1 1 Inverting TOS

Shift Left (SHL) 0 0 0 1 1 0 0 0 Shifting left TOS (shifting in Carry bit)

Shift Right (SHR) 0 0 0 1 1 0 0 1 Shifting right TOS (shifting in Carry bit)

Load RAM 0 0 1 0 X X X X Loading TOS register contents into Stack

Pop 0 1 0 0 X X X X Reading TOS address within the Stack

Duplicate (DUP) 0 1 0 1 X X X X

Copy data from TOS to another address location
within the Stack

Load 0 1 1 0 X X X X Loading the Input data into the TOS register

Store 0 1 1 1 X X X X

Sending the TOS register data to the
Output lines of the Microdot

Pushc 0 0 0 X X X X Writing data onto the Stack

SetIO Mask (SETIO) 0 0 1 X X X X Setting the Mask bits for either inputs or outputs

Wait Mask (WATT) 0 1 0 X X X X

Waiting until an input line changes compared to the
TOS register data

Skip Mask (SKIP) 0 1 1 X X X X

Skips either one, two, or three instructions in the
Program Memory

Jump Address (JUMP) 1 0 0 J3 J2 jl JO Jumps the Program Memory address to any location

Swapn 1 0 1 s3 s2 si sO
Swaps the TOS register data with data in any adress
location within the Stack

Pickn 1 1 0 p3 p2 pi pO
Picks any address location within the Stack and loads
it into the TOS register

Clear Status Register
(CLRSR) 1 1 1 X X X X Clears the Status Register data bits to all zeros

3-21

State and operational code data. The control signals go to every element in the Microdot,

with the exception of the Status Multiplexor.

3.2.5.2 Control State Machine

The Control State Machine keeps track of what state the Microdot is in and

determines what the next state will be. This component has been designed to follow a

state diagram. The Control State Machine takes in the operational code and other key

off-chip signals such as the RESET and FUNCT signals, which would be from the master

microprocessor on-board the satellite. Once the off-chip master microprocessor

programs the Microdot, the Control State Machine will take the loaded instructions and

perform them without any monitoring or correction from the master microprocessor. At

anytime, the master microprocessor can decide to reprogram the Microdot with different

instructions.

3.2.5.3 Status Register

The Status Register keeps track of the Carry, Overflow, Negative, and Zero Bits.

These bits help determine what kind of result came from the ALU Result and

subsequently from the ALU Block. The Microdot during certain situations will use these

data bits of information to decide what next action to perform. These four bits are only

set during certain instructions and for some instructions a few of them may change but

the others will remain constant.

3.2.5.4 Temp State

The Temp State component is used to clarify a specific state transition during the

JUMP instruction. This register helps define when a different state transition should

3-22

occur based upon an input value from the Control Logic. This input is latched into the

register and sent out to the Control State Machine.

3.2.6 Data Acknowledge Block

The data acknowledge block contains four of the 45 total components for the

Microdot. The hierarchical structure of the Data Acknowledge Block is shown in Figure

3-8.

3.2.6.1 Acknowledge Off-Chip

The Acknowledge Off-Chip component delays the Data Valid signal from the

master microprocessor and sends its output to the Acknowledge Multiplexor. The value

of the Data Valid signal will oscillate between '0' and '1' throughout the programming of

the on-chip and off-chip SRAM units. The Acknowledge Off-Chip component is the

crucial piece for handshaking between the Microdot and the master microprocessor when

programming the off-chip SRAM unit. The handshaking essentially tells the master

microprocessor that the off-chip SRAM has received the data and is ready for a new set

of data.

3.2.6.2 Acknowledge On-Chip

The Acknowledge On-Chip component delays the Data Valid signal from the

master microprocessor, when the programming of the on-chip SRAM is taking place. Its

output gets sent to the Acknowledge Multiplexor. This component is critical to the

handshaking process between the Microdot and master microprocessor, when on-chip

SRAM is being written to.

3-23

Data
Acknowledge
Block

Acknowledge
Multiplexor

Acknowledge
On-Chip

TH

Acknowledge
Off-Chip

->
Acknowledge
Last Address

Figure 3-8. Data Acknowledge Hierarchical Structure

3.2.6.3 Acknowledge Last Address

The Acknowledge Last Address component is set up to send a constant T back

to the master microprocessor when the address 4096 has been written to. Even if the

master microprocessor sends back a '0' on the Data Valid signal line, the Acknowledge

signal will remain a ' 1' until the FUNCT signal is set to a '0'. Thus, only when the

programming function is stopped by the master microprocessor will the Microdot

proceed with running the instructions that were just programmed. The Acknowledge

Last Address signal is sent to the Acknowledge Multiplexor.

3-24

3.2.6.4 Acknowledge Multiplexor

The Acknowledge Multiplexor takes in the Acknowledge Off-Chip signal, the

Acknowledge On-Chip signal, and the Acknowledge Last Address signal. The

Acknowledge Multiplexor selects which signal to send to the master microprocessor

based on which SRAM chip is enabled and whether the Acknowledge Last Address

signal is high or low.

3.2.7 Status Multiplexor

The Status Multiplexor block is in a class of its own because it exists for no

specific Microdot purpose, except for the designer to see the internal signal values

throughout the running of all the instructions. The select lines are controlled off-chip by

myself, so I can select five different data sets to view on five output pins of the Microdot.

I can view the data going into the Instruction Register, the TOS Register outputs, Stack

outputs, Control State Machine outputs (Current State of the Microdot), and the ALU

Result outputs. This component allows me to view key signal lines in all the major areas

of the Microdot. This is crucial to deducing the cause of errors, if any shall happen

during the testing of the Microdot.

3.3 Design Decisions

The design goal going into the Microdot design was to consume on the order of

microwatts of power during normal operation. Unfortunately, due to the size of Static

Random Access Memory (SRAM) needed on chip this goal was not achieved. In

addition, a radiation-hardened design was planned for the Microdot. However, due to the

0.35 sub-micron Taiwan Semiconductor Manufacturing Corporation (TSMC) design

rules the design library could not contain 90-degree angle transistors. This was critical

3-25

because the annular transistor contains 90-degree angles and thus I was advised not to

proceed with the radiation-hardened design. There was an easily attainable clock speed

requirement of operation in the kilohertz range. I believe the Microdot, as I have

designed it, would be able to be run at approximately 10 MHz for a maximum clock

speed. The goal for the Microdot size was to keep the area as small as possible, so I

ended up keeping the size to less than 5 square millimeters. Chapter Four will go into

signal line connections between elements and other blocks, along with more specific

design decisions.

3-26

4. Design Implementation

4.1 Microdot

Chapter Three applied the theories discussed in Chapter Two in order to develop a

working design. The overall functionality and purpose of the Microdot was explained.

The instruction set of the Microdot was explained along with data flow throughout the

Microdot. An overview of the Microdot design including the architecture of the top-level

design and its major elements were the primary focus of Chapter Three. Interfaces

between the elements within each block were diagrammed. The hierarchical structure

was broken down and explained in great detail. Chapter Three gave the reader a higher-

level construction of the Microdot.

Chapter Four explores the higher level design overview presented in Chapter

Three at the elemental level. Chapter Four is a presentation of the design implementation

of each functional block. Each block and its respective elements introduced in Chapter

Three are now revisited in detail. Pin labels of each element within the different blocks

are displayed. How the different blocks interact with each other is described in detail.

The final design of each block, as well as other possible designs, are presented.

The Microdot is designed to complete a specific action within each state designed

into the Control State Machine. Each state lasts one clock cycle and the cycle period

minimum depends on the state, which takes the longest amount of time to be complete its

action. Writing to off-chip SRAM is the longest action done within a state, and therefore

determines the maximum operating speed for the Microdot. However, since writing to

4-1

the SRAM program memory is usually done in the beginning of start-up it may be

possible to run the Microdot faster when instructions are being run from the on-chip

SRAM unit. The on-chip SRAM unit or Program Memory is capable of storing 1024 4-

bit words and the off-chip SRAM unit is responsible for storing an additional 3072 4-bit

words. This gives the Microdot the capacity to store and use 4096 4-bit instructions, the

limit to the program length that can be run by the Microdot. The on-chip data Stack can

store 128 4-bit words of data. This data can be manipulated by the Arithmetic Logic Unit

Block and sent out through a 4-bit bi-directional port to a master microprocessor. The

master microprocessor or some off-chip state machine is responsible for programming

the Microdot and deciding when the Microdot can start running the programmed

instructions. Once the Microdot begins running, it can run the program indefinitely. The

only time the program would be interrupted would be if the master microprocessor or

some other off-chip device would want to reprogram the Microdot. By simply turning on

the FUNCT signal, a new program is written into the on-chip and off-chip SRAM units.

The current program in the memory units would be halted and overwritten during the

reprogramming process. The timing diagrams for the on-chip SRAM (Program Memory)

and the Stack are located in Appendix C.

4.2 Memory Architecture

The memory architecture of the Static Random Access Memory (SRAM) units,

such as the Program Memory and the Stack, are the crucial elements to the Microdot.

Since the Program Memory is the largest element in the Microdot, the power

consumption goal rests largely on the SRAM units. Therefore, each piece that makes up

4-2

the Program Memory and the Stack will be discussed. The design for the SRAM units

was gleaned from Kranz [23] and S anGregory's [24] research.

4.2.1 Two-Port Static Memory Cell

Static memory cell operation is detailed in any CMOS book, such as [4]. The

two-port static memory cell can be simultaneously read from and/or written to. When a

WORD line, shown in Figure 1, is asserted, the cross-coupled inverters become

electrically connected to the complementary bit lines. The state of the bit lines at this

point determines whether a read or write takes place. If data is actively driven onto the

bit and bit-bar lines by the write amplifiers, the driven data will overcome whatever data

is stored in the memory cell effectively writing to the memory cell. Otherwise, if the bit

and bit-bar lines are floating in a precharged state, the existing memory cell data will be

transferred onto the bit and bit-bar lines by pulling one line down to a logic-zero state and

the other up to a logic-one. Depending on which line is pulled down during the read

operation, the data value out will be either a logic-one or zero as stored in the memory

cell. Finally, the sense amplifier will interpret the voltage change on the lines and drive

SRAM output lines to the correct output value [23].

4.2.2 Precharge Circuit

The precharge cells are used to stabilize the BIT and BIT-BAR lines between

memory read operations. These cells equally charge up the BIT and BIT-BAR lines, so

there is an identical voltage reading on each line. Before a memory read operation

begins, the state of the BIT and BIT-BAR lines is very important, because these lines are

connected to a sense amplifier. The importance is due to the fact that the sense amplifier

4-3

is a differential amplifier, which detects a difference in voltages between the two lines.

The precharge cell, shown in Figure 4-1, is made of three N-channel transistors: two for

precharging (Ml and M2) and one for stabilizing (M3) [23].

Vdd

BIT-BAR

y\

PRE

M1

BIT

M2

M3

Figure 4-1. Precharge Circuit from [23]

When the PRE signal line is asserted high, all the transistors in the precharge cell

are turned on. In this state, Ml arid M2 bring BIT and BIT-BAR lines high to

approximately 2.3 V. To guarantee that BIT and BIT-BAR lines are at the same

potential, M3 shunts the two rails together. M3 allows charge sharing between the rail

lines, which increases the speed of the precharging. This operation is critical to keeping

valid data in the memory cells and stabilizing the differential amplifier between memory

reads by forcing an equilibrium state between the BIT and BIT-BAR lines.

4.2.3 Memory Row Decoder

The Memory Row Decoder is made up of NAND gates along with inverters. In

large memory structures, it has been shown that NAND gates, used as decoders, consume

less power than NOR gates; however they are slower [24]. Depending on the number of

rows, the number of NAND gates can vary. However, simple address buses usually

4-4

using the highest significant bits and their inverted states make up the decode logic. An

example of the row decode table for the Stack will help explain the set up. Table 4-1

shows the different combinations of address yielding different rows being selected.

Table 4-1. Stack Row Decoder Table

Row
Selected ADDRESS BIT 6 ADDRESS BIT 5 ADDRESS BIT 4

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

The NAND gates are selected in order to save power overall in the Microdot. The

transistor size ratio for the P-channel to the N-channel is around two for low dopant

concentrations. However, for high dopant concentrations in sub-micron processes the

ratio is between one and one and a half [3]. The Microdot contains just over a one and a

half ratio with the P-channel transistors having a width often lambda and a length of two

lambda. While, the N-channel transistors have a width of six lambda and a length of two

lambda. Transistors in series are easier to layout and save layout space. The NAND

gate's P-channel transistors are in series thus yielding smaller area overall per gate.

4.2.4 Memory Column Decoder

The two memory column decoders are located in two different places. The

memory column decoders have the main function of asserting the correct column that the

address demands. One instantiation of the memory column decoder asserts the

4-5

appropriate write amplifiers during a memory write operation. The second instantiation

of the memory column decoder turns on the appropriate sense amplifiers of the on-chip

SRAM unit and enables the tri-state buffers, which are connected to the output of the

sense amplifiers. The memory column decoder is made up of NAND gates and is

similarly constructed to the memory row decoder. The memory column decoder uses

address buses that contain the least significant bits of the address. Each column pertains

to a specific address combination, so each NAND gate's inputs are determined by what

column the NAND gate controls. In order to attain the right combination of inputs, two

address buses are routed along all the NAND gates. One address bus is the set of

addresses sent from the Program Counter State Machine and the other address bus is the

complement of the address sent from the Program Counter State Machine. Figure 4-2

shows a diagram of how the Memory Column and Row Decoders were laid out.

NAND

Row Select Lines
Or

Column Select Lines

NAND

^
Address Bus Line

Address Bus Line

Figure 4-2. Memory Column and Row Decoder Layout

4-6

4.2.5 Read Sense Amplifier

The read sense amplifier detects a difference in voltage levels on the BIT and

BIT-BAR lines and drives both lines to their appropriate logic state. Both lines are

logically opposite one another during a memory read operation. The logic state of the

BIT line is the logic value that is output from the on-chip SRAM. When a memory cell

places its data on the BIT and BIT-BAR lines, the only line affected is whichever line

corresponds to a logic-zero state. The other line stays at the precharge level, which is a

logic-one. The rate of the drop in the line voltage is dependent on the capacitance of the

line, the on resistance of the port transistor, and the size of the N-channel transistors in

the storage cell. The time to fully discharge the precharge level of the line would take

several nanoseconds, because of the above factors. The differential amplifier is

implemented to speed up the process of detecting which line is at a logic-zero and which

is at a logic-one. The differential sense amplifier is an analog device, which amplifies the

difference between the BIT and BIT-BAR line values. A simple sense amplifier is used

for this purpose, because of its small size and simplicity. A design choice was made to

increase the transistor size in order to increase the gain, which reduces the switching time

of the amplifier. By increasing transistor size an increased gain can be attained by the

way of using positive feedback. The output was taken from the opposite side of the cell

in order to provide the allowance for a single-stage inverter. Figure 4-3 shows how the

memory sense amplifier is constructed.

4-7

Vdd

ENABLE

BIT BAR

To
Output
Inverter

Figure 4-3. Memory Sense Amplifier Circuit from [23]

4.2.6 Write Amplifiers

The last cell needed to construct the memory was an amplifier for writing new

data in to the memory cells. The write amplifier takes in data to be written to an SRAM

cell and increases the drive strength of the incoming data signal. The write amplifier

design is shown in Figure 4-4 and the transistor sizes are displayed by width over length

dimensions in units of lambda. The design uses two stages of inverters to increase the

write drive strength. A final set of inverters is enabled through a memory column

decoder, which actually drive the BIT and BIT-BAR lines. One write amplifier is

required for each bit column in the memory.

4-8

Vdd

INPUT

EN-BAR EN-BAR
12/2 0

7/2

w

5/2

12/2

12/2

/\ /\

BIT-BAR

15/2

12/2

EN

BIT

15/2

EN
15/2 15/2

GND

Figure 4-4. Memory Write Amplifier Circuit from [23]

The small inverter connected to the INPUT signal serves two purposes: to

generate the data, and to reduce the load on the input data. Only one inverter is

necessary, however such an implementation would have one inverter and the entire BIT

line on the input bus. The two-inverter scheme for the BIT line helps reduce parasitic

capacitance, by placing only a small inverter and two large inverters on the input bus.

However, the two-inverter design does introduce an additional gate delay. The way the

timing scheme occurs the data overcomes the two inverters delay before the SRAM cell

is ready to be written to, so therefore the delay is transparent to the writing process [23].

4.3 Program Memory Block

The Program Memory Block, as shown in Figure 4-5, shows the signal

connections for the program memory block elements. All the signal lines, either outputs

or inputs, which do not have an internal connection, are connected to another block's

4-9

Memory Controller

ADDR(11,10) CE

I
Memory Multiplexor

CE IRINO-0)

INPUT(3-0)

DOFFOUT(3-0)

DONOUT(3-0)

OVERRIDE

Program Memory

CE DONOUT(3-0)

INPUT(3-0)

ADDR(11-0)

CLK

MEMRW

LDALU

LDOP

LDCONST1

LDCONST2

DATAV

«H^
12, Program Counter Logic

ADDR(11-0) ADDRIN(11-0)

«

1 12/ h

3
■T

4H
M
M

Program Counter Multiplexor

ADDRIN(11-0) ADDRMX(11-0)

ADDR(11-0)

CONST1(3-0)

ALUCODE(3-0)

CONST2(3-0)

PCLOAD

PCCOUNT

4 /

Y\

y\.

1+

OPCODE Register

CLK OPCODE(3-0)

IRIN(3-0)

LDOP

RESET

■**

4w

ALUCODE Register

CLK ALUCODE(3-0)

IRIN(3-0)

LDALU

4w

CONSTANT1 Register

CLK CONST1(3-0)

IRIN(3-0)

LDCONST1

—►

CONSTANT2 Register

CLK CONST2(3-0)

IRIN(3-0)

LDCONST2

12,
Program Counter State Machine

ADDRMX01 -0) ADDR01 -0)

CLK

RESET

PCSET

12,

Figure 4-5. Program Memory Block Diagram

4-10

elements. The Program Memory Block is connected to 12 Microdot output pads, seven

Microdot input pads, the Control Block, the Data Acknowledge Block, the I/O Block, the

ALU Block, the Stack Block, and the Status Multiplexor. The SRAM unit (Program

Memory) is the main element of this block. The Memory Controller enables the Program

Memory through the chip enable (CE) signal. The function, number of bits, the

origination, and the destination(s) of all the Microdot signals can be found in Appendix B

in Table B-l. The Memory Controller simply takes the two most significant bits of the

memory address and if both of them are low then the on-chip SRAM is enabled. This

same enable line selects the off-chip SRAM when the chip enable value is low. The load

signals (LDOP, LDALU, LDCONST1, and LDCONST2) are sent to the set of four flip-

flops instruction register. These load signals are used to enable falling-edge D flip-flops

within the four registers to load during the falling-edge of the clock cycle. These four

load signals also have the purpose of telling the Program Memory that at the end of the

clock cycle one of the four registers will be latching in the output of the SRAM unit.

Therefore, the load signals trigger a read sequence to begin within the Program Memory

and imply that the data on the output lines needs to be valid before the falling-edge of the

clock cycle. The combined timing delays help determine clock speed limitations in the

Microdot. Since multiple operations usually occur during one clock cycle, the Microdot

needs to be run at the appropriate clock speeds. However, the Microdot's purpose is to

be run at clock speeds in the Hertz range, since sensor readings do not have to be

numerous times per second. Therefore, the fact that the Microdot runs at 20 MHz or less

is not a design flaw, but intentional. The Program Memory function of either reading

4-11

from or writing to SRAM cells is controlled by the Control Logic element within the

Control Block through the MEMRW signal line.

The Memory Multiplexor takes in the data lines from the off-chip controlled input

pins, the off-chip SRAM, and the on-chip SRAM. The Chip Enable (CE) and the

OVERRIDE lines are the selectors lines to the multiplexor. Table 4-2 shows how the

select lines decode which of the data lines are sent through to the four registers. If the CE

line is high and the OVERRIDE line is low, then the data selected (DONOUT(3-0)) and

sent to the instruction registers (OPCODE Register, ALUCODE Register, CONSTANT1

Register, and CONSTANT2 Register) is from the on-chip SRAM. If the CE line is low

and the OVERRIDE line is low, then the data selected (DOFFOUT(3-0)) and sent to the

instruction registers is from the off-chip SRAM. If the OVERRIDE line is high, then the

data selected (INPUT(3-0)) and sent to the instruction registers is from the Microdot

input lines, which is feed from off-chip.

Table 4-2. Memory Multiplexor Selection

Chip Enable (CE) OVERRIDE IRIN(3-0)

0 0 DONOUT(3-0)

0 1 INPUT(3-0)

1 0 DOFFOUT(3-0)

1 1 INPUT(3-0)

The select line, OVERRIDE, can bypass either SRAM unit and enter instructions

into the registers externally. This feature was installed for testing purposes in case the

4-12

SRAM units fail to function properly. Instructions can be manually entered into the

Microdot to bypass the SRAM and see if the other elements are working properly.

The Program Counter Logic, Program Counter Multiplexor, and the Program

Counter State Machine all work together to output the correct memory address to the on-

chip and off-chip SRAM units as well as to the Data Acknowledge Block. The Program

Counter Multiplexor takes in the current memory address from the output of the Program

Counter State Machine, the incremented by one address from the Program Counter Logic,

and the jump memory address provided by three of the four registers within the

instruction register. The control signals of PCCOUNT, PCLOAD, PCSET, and RESET

determine the output of the Program Counter State Machine. The PCCOUNT signal tells

the multiplexor to pass through the output of the Program Counter Logic, which simply

takes the output of the Program Counter State Machine and increments the address by

one. The Program Counter Logic automatically calculates this next address whenever the

output of the Program Counter State Machine changes. However, when PCCOUNT is

low and PCLOAD is high, then the jump address from the ALUCODE, CONSTANT 1,

and CONSTANT2 registers is passed through to the Program Counter State Machine.

The three instruction registers, Program Counter State Machine, Program Counter

Multiplexor, and the two control signal values (PCLOAD being high and PCCOUNT

being low) allow the Microdot to jump to any 4-bit address location, which lies within

either the on-chip or off-chip SRAM units. If both the PCCOUNT or PCLOAD signals

are either low or high at the same time, the Program Counter Multiplexor will pass

through the current address from the output of the Program Counter State Machine.

4-13

The Program Counter State Machine simply latches through the memory address

the Program Counter Multiplexor gives it on the rising-edge of the clock cycle. For the

latching of the memory address to work properly, the address is stabilized during the

clock cycle before the new address is latched through. There are two overriding control

signals that can change the normal behavior of the Program Counter State Machine. The

RESET or PCSET line going high will tell the Program Counter State Machine to put all

zeros on the output, thus resetting to the first memory address of the Microdot. The

RESET and PCSET control lines are used independently for separate purposes. The

RESET line is used when the Microdot is initializing and getting ready to be

programmed. The first address written to is address zero and then the address is

incremented through to 4095 or until the master processor decides to end the Microdot

program. The PCSET line is used when the programming stops and the memory address

needs to be reset to address zero. The starting address is key because otherwise the

Microdot would start running from the last programmed address, possibly program

memory address location 4095 versus address zero.

4.4 Arithmetic Logic Unit (ALU) Block

The ALU Block is composed of fourteen elements and is split into two separate

figures. In Figure 4-6, the ALU Control Unit along with six of the functional elements

within the ALU Block is shown. While, Figure 4-7 focuses on the elements surrounding

the ADDER along with the ALU Result element.

The main focus of the ALU Block design is to accomplish the mathematical and

logic operations at the lowest power for the Microdot, especially when ALU operations

4-14

ALU Control Unit

ALUCODE(3-0) CARRY

CURSTATE(4-0) ORSEL

OPCODE(3-0) XORSEL

CBIT

COUT

SHLC

SHRC

ANDSEL

SHRSEL

SHLSEL

NOTSEL

ADDSUB

ADDSEL

ADDCSEL

SUBCSEL

SUBSEL

Connected
to
ALU
Block
Part
(2 of 2)
Fig. 4-7

/-v

W

OR

ORSEL OROUT(3-0)

RAMOUT(3-0)

TOSOUT(3-0)

4-

XOR

XORSEL XOROUT(3-0)

RAMOUT(3-0)

TOSOUT(3-0)

X

AND

ANDSEL ANDOUT(3-0)

RAMOUT(3-0)

TOSOUT(3-0)

4-

-M
Shift Right

TOSOUT(3-0) SHROUT(3-0)

SHRSEL SHRC

CBIT

-M
Shift Left

TOSOUT(3-0) SHLOUT(3-0)

SHLSEL SHLC

CBIT

■M

NOT

NOTSEL NOTOUT(3-0)

TOSOUT(3-0)

4-

Connected
to
ALU
Block
Part
(2 of 2)
Fig.4-7

X

X

Figure 4-6. Arithmetic Logic Unit Block Diagram (1 of 2)

are not called for. The problem with ALU elements is that as long as data is changing on

the input lines, the ALU elements keep processing the result. In order to keep the ALU

4-15

from processing every incoming signal, I designed control signals that are sent out from

the ALU Control Unit that force ALU elements to a quiescent state during non-ALU

instructions. The ALU Control Unit contains seven control signals implementing the

power-saving feature. Each of the functional elements (AND, OR, XOR, Shift Right,

Shift Left, and NOT) contains a selector input. When the specified logic selector input is

high, the element performs the operation as directed. However, when the selector input is

a logic low the outputs of the elements are held constant regardless of input data changes.

The ALU Control Unit is also responsible for producing the CARRY signal, which is

sent to the Status Register within the Control Block. By taking the carry signals from the

Shift Right, Shift Left, and the ADDER, the ALU Control Unit decides based upon the

current instruction which carry bit to send out through the CARRY output line. In

addition, during non-ALU operations and ALU operations that do not involve any of the

carry bits the ALU Control Unit maintains the same signal whether high or low to the

input of the Status Register.

An example of saving power is the logical NOT element truth table shown in

Table 4-3. If the NOTSEL line is sent to a two input NAND gate along with each bit of

the input data from the Top-Of-The-Stack Register, then the NOT operation is suspended

by toggling the NOTSEL line.

The ALU Control Unit by taking in the ALUCODE, OPCODE, and the

CURSTATE signals, can determine which one of the ALU functions needs to be running

and therefore shuts the rest of the ALU functions down to save power. These kinds of

power saving techniques have been applied to every functional element including the

4-16

Table 4-3. NOT Truth Table

TOSOUT NOTSEL OUTPUT

0 0 1

0 1 1

1 0 1

1 1 0

ADDER, OR, XOR, AND, NOT, Shift Left, and Shift Right, which are shown in Figure

4-7.

In order to operate the adder/subtractor, one needs several other elements that

function along with the adder. Figure 4-7 shows the additional elements to be the Two's

Complementor, Subtract Multiplexor, and the Carry-In Multiplexor. The Two's

Complementor takes in the data from the Stack and depending on the ADDSUB signal

will either output the two's complement of the data or will pass through all ones to the

Subtract Multiplexor. Producing the two's complement only when necessary is yet

another power saving technique, which only uses the element when it is needed. The

Subtract Multiplexor decides which set of data to send to the ADDER. Either the two's

complement data or the original data from the Stack is passed to the ADDER. The

ADDSUB signal in this case is the selector line for the multiplexor. The Carry-In

Multiplexor takes in control signals from the ALU Control Unit and the CBIT signal

from the Status Register in the Control Block. The different select lines such as

ADDSEL, ADDCSEL, SUBSEL, and SUBCSEL tell the multiplexor whether the adder

will be performing its operation with the carry bit or without the carry bit. When either

ADDCSEL or SUBCSEL is high, the CIN signal sends through the CBIT signal value to

4-17

Connected
to
ALU
Block
Part
(1of2)
Fig. 4-6

Carry-In Multiplexor

CBIT CIN

ADDSEL

ADDCSEL

SUBSEL

SUBCSEL

Connected
to
ALU
Block
Part
(1of2)
Fig. 4-6

Subtract Multiplexor

ADDSUB RAMNOUT(3-0)

RAMOUT(3-0)
4,

|-/>- RAMQ(3-0)

M
-M

y\-

-M
Two's Complementor

ADDSUB RAMQ(3-0)

RAMOUT(3-0)

ALU Result

OPCODE(O) ALURES(3-0)

ALUCODE(2-0)

ADDOUT(3-0)

ANDOUT(3-0)

XOROUT(3-0)

OROUT(3-0)

NOTOUT(3-0)

SHLOUT(3-0)

SHROUT(3-0)

ADDER

ADDSEL ADDOUT(3-0)

ADDCSEL COUT

SUBSEL

SUBCSEL

RAMNOUT(3-0)

TOSOUT(3-0)

CIN

r

/

<

4-^M
ALU Zero

ALURES(3-0) NEGRES

ZERORES

/^->

ALU Overflow

ADDSUB OVFLW

ADDOUT(3)

RAMOUT(3)

RAMQ(3)

TOSOUT(3)

Figure 4-7. Arithmetic Logic Unit Block Diagram (2 of 2)

4-18

the ADDER element. However, if all of the select signals are low or if either ADDSEL

or SUBSEL are high, then the CIN output is set to zero regardless of the CBIT signal

value on the input.

The last critical element to the ALU Block is the ALU Result element, because it

sends the final data outside the ALU Block to the Stack Block and the Status Multiplexor.

The ALU Result inputs are all the outputs from all the functional units and parts

of the ALUCODE and the OPCODE. From the pieces of the ALUCODE and the

OPCODE, the ALU Result can determine which set of data to pass to outside the ALU

Block. This final set of data is sent to the ALU Zero element for determination if the

result was negative or zero. The ALU Zero element sends its outputs to the Status

Register. Another element that sends its output to the Status Register is the ALU

Overflow element. The ALU Overflow element takes in the most significant bits from

the Top-Of-The-Stack Register, ADDER, Stack, and the Two's Complementor along

with the ADDSUB bit. The most significant bits along with the ADDSUB bit determine

whether there was an overflow situation or not. The ALU Overflow simply determines

the overflow status and reports that information back to the Status Register on the

OVFLW signal line.

The result of the ALU Block is sent to the Stack Block for storage and possible

output to off-chip.

4.5 Stack Block

The data storage unit in the Microdot is the Stack, SRAM unit, which is

responsible for holding incoming data from off-chip through the bi-directional ports. The

Stack along with the ALU Block can alter the data and perform various operations on

4-19

either one set or two sets of 4-bit data. Elements such as the 2-to-l Multiplexor, 4-to-l

Multiplexor, Temporary Register, Top-of-the-Stack Multiplexor, Top-of-the-Stack

Register, Stack Logic, Stack State Machine, Stack Addressor, and the Stack Multiplexor

make it possible for the Stack to operate properly.

The Stack Block, which is made up of 10 elements, is shown in Figure 4-8. There

are four elements, which maintain and assign the memory address location for the Stack,

SRAM unit. The maintaining and assigning of the Stack's memory address are important

functions, because without the proper address data will be written to or read from the

wrong location. The Stack memory uses a 7-bit address, which gives the Stack a total of

128 memory locations to work with. The Stack State Machine latches through data from

the Stack Multiplexor on the rising-edge of the clock cycle. The output of the Stack State

Machine is sent to the Stack Addressor and to the Stack Logic. The RESET signal line to

the Stack State Machine when is a low or zero state sets the output to all ones. At the

start up of the Microdot, the first Stack memory address is location 127, or ' 111 i 1112' in

binary code. The reason this start up address was picked minimized the number of Stack

element related logic gates for the Microdot, thus saving power.

The Stack Addressor is a 7-bit adder, which takes the 7-bit output of the Stack State

Machine and adds it to the 7-bit OFFSET input from the Control Block. This gives the

ability to effectively jump to any of the 128 memory address locations in the Stack. The

memory address normally decrements down, when data is pushed on, from address 127

to 0. In order to jump back to a previous location, the Stack Addressor simply adds the

current address to the OFFSET to reach an old address. However, a reminder that the

4-20

Stack Addressor will yield the memory address or result without a carry bit, so I can add

one to address 127 and roll over to the numerically lower valued address location which

Temporary Register

CLK TEMPOUT(3-0)

RAMOUT(3-0)

LDTEMP

A
4H

2 to 1 Multiplexor

DATASEL2 MUX2OUT(3-0)

TEMPOUT(3-0)

ALURES(3-0)

./\

%

Top-Of-the-Stack Multiplexor

DATASEL1 TOSIN(3-0)

DATASELO

MUX2OUT(3-0)

MUX4OUT(3-0)

*>

Top-Of-the-Stack Register

CLK TOSOUT(3-0)

TOSIN(3-0)

LDTOS

*A-

*H
Stack Multiplexor

SPIN(6-0) SPMX(6-0)

SPOUT(6-0)

DECSP

INCSP

>

e

CLK

TOSOUT(3-0)

LDRAM

PRESELCNTL

STAKADR(6-0)

Stack
RAMOUT(3-0)

/\ /\

4n

4to1 Multiplexor

DATASEL1 MUX4OUT(3-0)

DATASELO

INPUT(3-0)

RAMOUT(3-0)

CONST1(3-0)

^

Stack Addressor

SPIN(6-0) STAKADR(6-0)

-7^ OFFSET(6-0)

■?H
Stack State Mächine

SPMX(6-0) SPIN(6-0)

CLK

RESET

^H
Stack Logic

SPIN(6-0) SPOUT(6-0)

DECSP

INCSP

Figure 4-8. Stack Block Diagram

4-21

would be address 0. The Stack Addressor simply adds whatever is on its inputs. The

inputs are two 7-bit operands (SPIN signal and OFFSET signal) from the Stack State

Machine element and the Control Logic element, respectively. If the 7-bit SPIN signal or

the 7-bit OFFSET signal changes, the Stack Addressor will sum the inputs and calculate a

new memory address. The new memory address is sent from the Stack Addressor to the

Stack. The memory address is meant to decrement down from address 127 versus

incrementing up from address 0. By decrementing the Stack memory address, the

addition operation will be the appropriate operation when jumping to another one of the

128 memory address locations. A jumping of Stack memory address locations occurs

when a value greater than zero is asserted on the OFFSET signal line. When OFFSET is

set to a value greater than zero, the current Stack memory address (SPIN signal) and the

OFFSET signal are added together to create a new Stack memory address. If I chose to

have the Stack memory address increment from a starting address of zero rather than

decrement from a starting address of 127, then a subtraction operation would need to

occur in order to complete an accurate jumping of Stack memory address locations. As a

design decision, I choose to have the address decrement down from address 127 to 0 in

order to save building a 7-bit two's complementor that would be connected to the Stack

Addressor.

I chose to decrement the Stack memory address after pushing or writing to a

memory location and increment the Stack memory address after popping or reading from

the Stack. The current Stack memory address always is referred to as the Top-of-the-

Stack memory address. When pushing or writing to the Stack, the data is written into the

Top-of-the-Stack memory address location. At the beginning of the next clock cycle, the

4-22

Stack memory address is decremented by one. The new Stack memory address is now

the Top-of-the-Stack memory address. The decrementing of the memory address sets up

for the next push or write to the Stack. However, if a pop or read occurs then the Stack

memory address is incremented by one. The incrementing operation makes the last set of

data written to the Stack available on the output lines of the Stack. The incrementing of

the Stack memory address occurs to counter the last decrement, which occurred at the

end of the last push or write operation.

Stack Logic plays an important role with selecting the next Stack memory

address. The 7-bit SPIN signal is input to the Stack Logic from the Stack State Machine

and the Stack Logic either increments or decrements the SPIN signal by one. Whether or

not to increment or decrement, depends on the control signals INCSP and DECSP from

the Control Logic within the Control Block. If one control signal is high while the other

is low, then the operation of the high dominates and controls the output sent to the Stack

Multiplexor. However, when the control signals are both low or both high, the Stack

Logic simply passes the 7-bit SPIN signal through to the Stack Multiplexor. Under the

condition of the control signals having the same value, the SPIN signal is sent to the

Stack Multiplexor so the Stack memory address can remain constant. A constant Stack

memory address is needed when neither a push or pop operation has been called for.

Also if a control signal malfunction occurs and both signals are a logic-one, a constant

Stack memory address is needed to isolate the malfunction and not have the malfunction

propagate to the Stack Multiplexor and eventually to the Stack.

The Stack Multiplexor takes on the output address data from the Stack State

Machine and the Stack Logic. DECSP and INCSP are control selector signals the

4-23

multiplexor uses to determine address to pass through to the Stack State Machine. If

either the DECSP or INCSP are high then the Stack Logic data is sent through, but if

neither are high or both are high then the Stack State Machine data is passed through.

The DECSP and INCSP are never supposed to be high at the same time, but as a

precaution, I designed in a safety feature refreshing the old memory address until the

conflict is resolved by the Control Block.

There are five elements, which are responsible for delivering the correct set of

data to the Stack's data input lines. The Temporary Register is the first of these five

elements to be discussed. The SWAP and PICK instruction combination discussed in

Chapter Three needs a data storage element to make the instruction work properly. The

Temporary Register is the data storage element needed when these instructions are used

together in order to access data at any of the 128 address locations. The register takes

data from the Stack output and latches it through on the falling-edge of the clock cycle

and while the LDTEMP signal is high. Only when the falling-edge of the clock cycle

occurs and the LDTEMP signal is high will the Temporary Register latch the data

through to the 2-to-l Multiplexor element.

The 2-to-l Multiplexor element takes in data sent from the Temporary Register

and the ALU Result in the ALU Block. The Temporary Register sends the 4-bit

TEMPOUT signal and the ALU Result sends the 4-bit ALURES signal. The

DATASEL2 signal from the Control Logic element is the control selector signal for the

2-to-l Multiplexor element. If the DATASEL2 signal is low then the 4-bit ALURES

signal is passed through to the Top-Of-The-Stack (TOS) Multiplexor. However, if the

signal is low then the 4-bit TEMPOUT signal is passed through.

4-24

The 4-to-l Multiplexor element takes in data sent from the CONSTANT 1

Register, the four bi-directional ports connected to the master microprocessor, and the

output of the Stack. The fourth set of data is a set of zeros in case of a malfunction of the

control selector signals (DATASEL1 and DATASELO). The DATASEL1 and

DATASELO control selector signals from the Control Block determine which set of data

is passed to the TOS Multiplexor. If the DATASEL1 and DATASELO are both high,

then the 4-bit RAMOUT signal is passed. If the DATASEL1 signal is high while the

DATASELO signal is low, then the 4-bit INPUT signal is passed. If the DATASEL1

signal is low while the DATASELO signal is high, then the 4-bit CONST1 signal is

passed. In the event that both control signals are low, then all zeros are passed to the

TOS Multiplexor. Table 4-4 shows the control selector values and which corresponding

set of data is passed to the output of the 4 to 1 Multiplexor element.

Table 4-4. 4 to 1 Multiplexor Truth Table

DATASEL1 DATASELO 4 to 1 Multiplexor Output

0 0 '00002'

0 1 CONST1(3-0)

1 0 INPUT(3-0)

1 1 RAMOUT(3-0)

The TOS Multiplexor determines if either the output from the 2-to-l Multiplexor

or the 4-to-l Multiplexor gets sent to the Top-Of-The-Stack (TOS) Register. The control

signals DATASEL1 and DATASELO determine the output of the TOS multiplexor. If

the DATASEL1 and DATASELO are both low, then the 4-bit MUX20UT signal gets

4-25

passed to the TOS Register. If any other signal combination of DATASEL1 and

DATASELO occurs the 4-bit MUX40UT signal gets passed to the TOS Register.

The TOS Register takes in data from the TOS Multiplexor and latches the data

through, when the falling-edge of the clock cycle occurs and the LDTOS control signal is

high. The output only changes when the LDTOS signal is high and the falling-edge of

the clock cycle occurs, otherwise the last set of data latched through remains on the

output lines (TOSOUT(3-0)). Output data from the TOS Register gets sent to the Stack,

ALU Block, and the Input and Output Block.

The Stack is a 128 location by 4-bit SRAM unit that stores data for the Microdot.

The 2-to-l Multiplexor, 4-to-l Multiplexor, Temporary Register, TOS Multiplexor, and

the TOS Register mentioned above control which data gets written into the Stack through

the 4-bit TOSOUT signal. The Stack is set up to read during the rising part of the clock

cycle and write during the falling edge of the clock cycle. The reading occurs during the

rising part of the clock cycle, because the output data needs to be manipulated by the

ALU Block and latched into the TOS Register on the falling-edge of the clock cycle.

Since data is latched through by the TOS Register on the falling-edge of the clock cycle,

input data to the Stack is only valid two nanoseconds after the falling-edge of the clock

cycle, so that is why the write occurs in the falling part of the clock cycle. When the

reading and writing of data occurs is simply based off of when data needs to be available

to the other elements within the Microdot. The PRESELCNTL signal turns off the pre-

charge circuitry mentioned in Section 4.2.2, which is used for the read cycle. The

LDRAM control signal triggers the write cycle for the Stack. Each of those control

signals along with the correct part of the clock cycle triggers the read or write cycle. The

4-26

output of the Stack is sent to the ALU Block, Temporary Register, 4-to-l Multiplexor,

and the Status Multiplexor. The Stack is made up of the elements mentioned in Section

4.2.

4.6 Input and Output (I/O) Block

Four bi-directional ports are located in the Microdot, which can be switched

between either being input pins or output pins. There are four elements, Mask Register,

Output Logic, Event Detection Logic, and Output Register, that control these bi-

directional ports. These elements make up the Input and Output (I/O) Block, shown in

Figure 4-9.

-M
Mask Register

CLK MASKOUT(3-0)

CONST1(3-0)

LDMASK

RESET

1

4H

Event Detection Logic

WAITP EVENT

TOSOUT(3-0)

INPUT(3-0)

CONST1(3-0)

*-

1*\

Output Logic

MASKOUT(3-0) OUT(3-0)

TOSOUT(3-0)

4*\

Output Register

CLK OUTPUT(3-0)

STOREP

OUT(3-0)

^

Figure 4-9. Input and Output Block Diagram

The Event Detection Logic is a separate element, which is not connected to the

other I/O block elements, but relies on the TOS Register output, CONSTANTl Register

4-27

output, the bi-directional ports, and the Control Block. Event Detection Logic plays an

important role in performing the WAIT instruction for the Microdot. Each bit of the 4-bit

CONST 1 signal sets up which input bit to compare. If the bits from CONSTANT 1

register are high then the TOS Register output bit will be compared to the input bit on a

bit-wise basis. If however, a bit from the CONSTANT 1 Register is low, then the

respective bits from the TOS Register output and the bi-directional ports are not

compared. Event Detection Logic takes in the TOS Register output and compares the

values to the input lines in the bi-directional ports. If any of the bit-wise comparisons are

different and they have been targeted to be compared, the EVENT signal goes high and is

sent to the Control Block. Therefore, the Event Detection Logic has the ability to

compare all four sets of bits from the TOS Register and the bi-directional ports.

Depending on the values from the CONSTANT1 Register, the Event Detection Logic can

be set to compare four, three, two, one, or zero bits from the TOS Register and the bi-

directional ports. This gives the option of waiting for a specific input bit to change or

even a whole 4-bit set of data to change before the Microdot continues on with other

instructions.

The Mask Register sets the bi-directional data ports to be either inputs or outputs.

The 4-bit MASKOUT signal sends a single bit to each of the four bi-directional ports,

which are connected to the master microprocessor and possibly sensor, external testing

device, etc. If the bit output from the Mask Register is high then the bi-directional is set

to be an output. If the bit output is low, then the bi-directional port is set to be an input.

The Mask Register is loaded on the falling-edge of the clock when the LDMASK signal

is high. It is important to notice that the bi-directional ports will be set as inputs from

4-28

start-up with the RESET signal being low. The Mask Register must be loaded in order to

change the direction of the ports from this initial set up. The outputs of the Mask

Register are sent to the Output Logic and the bi-directional ports.

The Output Logic takes in the Mask Register outputs and the TOS Register

outputs. If a bit from the Mask Register is set to low, then the corresponding TOS

Register bit is sent to the Output Register. However, if a Mask Register bit is high, then

the bi-directional port is set to be an input, thus the output of Output Logic will not be

sent off-chip. The output of the Output Logic is always sent to the Output Register

whether the bi-directional port is set up to be an input or an output.

The Output Register latches the output from the Output Logic on the falling-edge

of the clock and the STOREP control signal is high. The output of the Output Register is

sent to the output lines of the bi-directional ports, which are separate from the input lines

of the bi-directional ports.

4.7 Control Block

The Control Block is the main control unit, which controls every element within

the Microdot, except for the Status Multiplexor. The four elements play a critical role in

sending control signals at the correct time to the elements to implement their specific

function.

Shown in Figure 4-10, is Control Block Diagram indicating all the

interconnections between the four elements. The Status Register stores the carry,

negative, overflow, and the zero bits. These bits are sent to the Control Logic, to help

determine control signal values. The output bits only change during ALU instructions

4-29

/

■4

4M

Status Register

CLK CBIT

ALUCODE(3-0) NBIT

CURSTATE(4-0) VBIT

CARRY ZBIT

CLRSR

NEGRES

OVFLW

ZERORES

RESET

-M
Control State Machine

OPCODE(3-0) CURSTATE(4-0)

EVENT

CLK

FUNCT

RESET

TEMP2

SKIPFLAG

<r
_/v

Control Logic

OPCODE(3-0) DATASEL(2-0)

ALUCODE(3-0)

CONST1(3-0)

CURSTATE(4-0)

CBIT

NBIT

VBIT

ZBIT

ACKLAST

Temp State

TEMP TEMP2

CLK

DECSP

INCSP

LDALU

LDOP

LDCONST1

LDCONST2

LDMASK

LDRAM

LDTEMP

LDTOS

MEMRW

OFFSET(6-0)

PCCOUNT

PCLOAD

PCSET

STOREP

TEMP

WAITP

SKIPFLAG

CLRSR

*►

-►

±

Figure 4-10. Control Block Diagram

4-30

and that is why the 5-bit CURST ATE and 4-bit ALUCODE signals are inputs to the

Status Register. The CLRSR control signal comes from the Control Logic and is used to

set the output bits to all zeros when asserted. At start-up when the RESET signal is

asserted low, the Status Register begins with zeros on the output bits.

The Status Register latches in values from the ALU Block on the falling-edge of

the clock when the CURSTATE signal and ALUCODE signal values are appropriate.

During the AND, XOR, OR, NOT, Shift Left, and Shift Right instructions not all of the

status bits are set to whatever the input values are. During these instructions the overflow

bit is not set, because there is no possibility for an overflow condition to occur. The carry

bit is not set during the AND, OR, XOR, and NOT instructions, because these are bit-

wise operations. Table 4-5 shows what outputs are set during which instructions.

Table 4-5. Carry, Negative, Overflow, and Zero Bit Setting

Instruction Carry Bit Negative Bit Overflow Bit Zero Bit
Addn X X X X

Subtract n X X X X

Add n w/carry X X X X

Subtract n
w/carry X X X X
ANDn X X

ORn X X

XORn X X

NOTn X X

Shift Left X X X

Shift Right X X X

The Control Logic takes the data from three registers from the Instruction

Register to determine control signal values during particular instruction sequences. The

ACKLAST input signal comes from the Data Acknowledge Block and tells the Control

Logic when to turn the MEMRW control signal from a logic-zero to a logic-one. The

4-31

ACKLAST signal is used to stop writing data to memory address locations on the off-

chip SRAM or on-chip SRAM after the last memory address location 4096 has been

written to. When programming the Microdot, there is only 4096 memory address

locations that can be filled with data. An internal trigger turns off the programming when

the 4096th memory address location is reached. The internal trigger, ACKLAST signal,

prohibits the writing over of previously programmed memory address locations. The

status bits sent to the Control Logic similar to the OPCODE and ALUCODE signals help

determine control signal values during the SKIP instruction. The status bits help

determine whether the SKIPFLAG signal from the Control Logic element should a logic-

one or logic-zero during the SKIP and SKPT states. If any of the status bits are a logic-

one and any of the CONST1 signal bits are a logic-one during the SKIP and SKPT states,

the SKIPFLAG signal is asserted high. Table 4-6 shows the control signals activated

during each instruction of the Microdot.

The Temp State element is used to create an additional state for use during the

JUMP instruction. Since, there were thirty-two states clarified by the 5-bit CURSTATE

signal, I needed to implement another state into the state diagram of the Microdot, but did

not want to add another bit to the CURSTATE signal. The Temp State element is a

register that latches in the TEMP signal from the Control Logic on every falling-edge of

the clock cycle. Only during the JUMP instruction does the TEMP signal become

asserted by the Control Logic and thus gets latched through to the Control State Machine,

which interprets the TEMP2 signal value and sends the Microdot operations down the

correct state diagram path.

4-32

The Control State Machine tells the Control Logic, Status Register, ALU Block,

and the Status Multiplexor what current state the Microdot is in. In addition, the 5-bit

CURSTATE signal is an input/output signal that gets fed back into the Control State

Table 4-6. Control Signals

Operation

0-
O □

z
o o
D
_J

<
Q
—1

CM
z
o
Ü
Q

CO

e
Q
—I

CO <
5
Q

CL
2
HI

_l

5 <
rr
Q

H
111
CO
u.
U-
o

<
o
_l
Ü
Q_

1- z
o
Ü
Ü
Q-

Q.
CO
Ü
z

0.
CO
Ü
UJ
Q

CD
tr
_l
Ü

a.
5
UJ

0.
b-

<
5

0.
LU
rr
ß
CO

%
u.
D-

co

Addn X X X X X X

Subtract n X X X X X X

Addwr'Canyn X X X X X X

Subtract WCarryn X X X X X X

Andn X X X X X X

On X X X X X X

Exdusive-Orn(XORn) X X X X X X

Notn X X X X

Shift Left (SHL) X X X X

Shift Right (SHR) X X X X

Load RAM X X X X

Pop X X X X

Duplicate (DUP) X X X X X

Load X X X X X

Store X X X

Pushc X X X X X X

SetlOMasMSETIO} X X X X

Wait Mask (WAIT) X X X X

Skip Mask (SKIP) X X X X

Jump Address (JUMP) X X X X X X

Swapn X X X X X X X

Pickn X X X X X

Clear Status Register
(CLRSR) X X X

Machine. The first process after a RESET that occurs with the Microdot is the

programming of the on-chip and off-chip SRAM, so that the Microdot can run

autonomously from the master microprocessor. The FUNCT and RESET signals play a

key role in making sure the programming and transition to running the program execute

correctly. Both of these signals are controlled off-chip by the master microprocessor, so

4-33

at power up the Microdot's elements are just receivers of information. Figure 4-11 shows

the state diagram for the programming, which details the states the Control State Machine

follows during programming.

RESET = '0'

RESET = '1'
AND

FUNCT = '0'

FUNCT=T
AND

RESET=T

FUNCT=T
AND

CURSTATE = 'il0102'
AND

RESET=T

V PROGWR\

To Other
Non-
Program
States

Figure 4-11. State Diagram For Programming

A keynote is that for the Microdot has to have the RESET signal asserted low for

a minimum of two clock cycles and then the FUNCT signal can be asserted high. The

programming begins once the RESET signal has been de-asserted, while the FUNCT

signal remains asserted. This is the only way the start-up and programming of the

Microdot has been configured by design. Once the programming is over and the FUNCT

signal has been de-asserted, the Microdot will go into the RESET state for a clock cycle

4-34

and then start to run the instructions that were written into the on-chip and off-chip

SRAM.

The Control State Machine element is started up by a 4-bit OPCODE signal value

of '00002' sent because of the RESET signal being asserted low. The Control State

Machine defines the current state of the Microdot and assesses what the next state will be

based upon the current state being fed back to itself. Appendix A shows the complete

state diagrams that the Microdot uses and is executed by the Control State Machine.

The 4-bit OPCODE signal during the fetch operand (FOP) state tells the Control

State Machine what instruction will be executed. After the OPCODE has been delivered,

then the Control State Machine will continue down the path of the instruction encoded in

the 4-bit operand from the OPCODE Register. The Control State Machine inputs

(OPCODE, TEMP2, SKIPFLAG, RESET, and FUNCT) determine the state diagram

paths the Microdot follows.

The block that makes the programming of the Microdot possible by accepting an

off-chip handshaking signal and returning handshaking signals is the Data Acknowledge

Block.

4.8 Data Acknowledge Block

The Data Acknowledge Block's purpose is to produce the handshaking signals

used by the master microprocessor, when programming the Microdot. In addition, the

block also generates the off-chip SRAM read and write signal from the MEMRW control

signal along with the DATAV signal. The DATAV signal comes from the master

microprocessor and simply indicates when the data that is sent through the bi-directional

ports is valid. When the data is valid, instructions are written to the SRAM cells. After

4-35

either five nanoseconds or 22 nanoseconds, an acknowledge signal called ACK is sent

off-chip back to the master microprocessor. The different delay times depend on whether

the memory address location refers to an on-chip SRAM memory address or an off-chip

SRAM memory address. Since the Microdot is designed to communicate with a off-chip

15 nanosecond write cycle SRAM, a 22 nanosecond delay is introduced in order for data

to be written to and read from the off-chip SRAM without error The five nanosecond

delay is used when writing to on-chip SRAM. The ACK signal lets the master

microprocessor know that the Microdot received the data and has successfully written the

data into memory. Once the ACK signal is sent to the master microprocessor, the

DATAV signal sent from the master microprocessor de-asserts and a delayed time (five

nanoseconds or 22 nanoseconds) afterward the ACK signal clears. When the DATAV

signal is de-asserted, the master microprocessor sets up the next batch of data to send,

while the Microdot increments to the next memory address to be written to. The sending

signals back and forth for communication purposes is called handshaking. The only

difference between the Acknowledge On-Chip and Acknowledge Off-Chip elements is

the time between when the DATAV signal is received and when the ACK signal is sent

back. This built in delay from receiving the DATAV signal to sending back the ACK

signal is used for giving the SRAM units enough time to write the valid data into

memory. Of course, the off-chip SRAM delay needs to longer than for the on-chip

SRAM, which takes less time to Write to. Figure 4-12 shows all the elements that make

up the Data Acknowledge Block.

The Acknowledge Last Address element was designed for the purpose of sending

a final prolonged ACK signal back to the master microprocessor when the last memory

4-36

address has been programmed. This element is used to tell the master microprocessor

that it is done programming and all the SRAM cells are full of instructions. When the

last memory address is written to, the ACK signal asserts and stays asserted until the

FUNCT signal goes low, thus steering the Microdot out of the program state.

Acknowledge On-Chip

DATAV ACKON

PRESEL

Acknowledge Off-Chip

DATAV ACKOFF

MEMRW RW

*w

Acknowledge Last Address

ACKOFF ACKLAST

ADDR(11-0)

DATAV

RESET

FUNCT

Acknowledge Multiplexor

ACKON ACK

ACKOFF

ACKLAST

CE

Figure 4-12. Data Acknowledge Block Diagram

The Acknowledge Multiplexor chooses between which delayed acknowledge

signal to send through to the ACK output port. A key feature is that the ACKLAST

signal is not only one of three input choices for the multiplexor but it also a selector

signal. While ACKLAST is asserted high, the output is asserted high. Only when the

Acknowledge Last Address element is reset to zero will the ACK signal go back to a low

or zero state.

4-37

While the Data Acknowledge Block is used during the programming of the

Microdot, the Status Multiplexor is designed to give insight to data bus line during the

running of the program.

4.9 Status Multiplexor

The Status Multiplexor allows internal signals of the Microdot to be observed.

This element is designed for developmental troubleshooting and is not needed for

operational use. Figure 4-13 shows the input and output ports of the Status Multiplexor.

Status Multiplexor

IRIN(3-0) STATOUT(4-0)

ALURES(3-0)

CURSTATE(4-0)

RAMOUT(3-0)

TOSOUT(3-0)

STATSEL(2-0)

Figure 4-13. Status Multiplexor Diagram

As shown, any of the five main signal lines in the Microdot is observable at any

one time. The 3-bit STATSEL signal is manually input through input ports on the

Microdot. The Status Multiplexor is controlled from outside the Microdot through use of

the selector inputs and can be changed at anytime. The 5-bit output signal STATOUT is

sent to output ports, which are visible to the outside world. The STATOUT signal

provides visibility to the Instruction Register, ALU Block, Control State Machine, Stack,

and the TOS Register.

4-38

5. Testing Procedures and Analysis

5.1 VHDL Behavioral and Structural Testing

The process of testing the Microdot began with the simulation of each component

using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The

first step in the testing process involved running a complete test of the behavioral VHDL.

This step is used to show if the language description of the element accurately portrays

the specified requirements. At this point in the testing, no layouts of elements or gates

have been chosen, only the behavior of the system is described. Through the VHDL

simulator, the functionality of each element was tested. Successful tests result in

identifying that the simulator results represent the behavior that I had envisioned for each

component. Once each element tests successfully, I began to piece all the components

together to make the final working product called the Microdot. In one behavioral

VHDL document, I connected the elements together and defined all the inputs, outputs,

signals, and port mappings for each element. After all the elements were pieced together,

I tested the behavioral VHDL language version of the Microdot using the VHDL

simulator. The process of testing the Microdot required running each instruction and

running multiple instructions back to back. The instruction and multiple instruction tests

verified correct operation of the Microdot behavioral design. Some common errors I

encountered included forgetting to use all the inputs specified in the behavioral VHDL

file, having the wrong clock edge specified for triggering registers, and not specifying all

the possible combinations for a multiplexor component. After learning from these

mistakes, I successfully tested all the components and the Microdot at the behavioral

5-1

VHDL level. However, there are certain things that cannot be accurately tested at the

behavioral VHDL level.

At the behavioral level of abstraction, I tested the programming of the Microdot

for the on-chip SRAM. Behavioral VHDL does not involve any timing considerations

unless specific time delays are put into the language. I started with no time delays

involved, thus the testing of the off-chip SRAM did not seem reasonable. The main

reason is that the writing and reading of the off-chip SRAM involves timing issues, since

the SRAM is not located on the Microdot. There are two kinds of signals that make

timing critical. The master microprocessor sends signals that are interpreted by the

Microdot and then sent to the off-chip SRAM. In addition, signals are generated on the

Microdot and sent to the off-chip SRAM. Both types of signals need to follow timing

specifications for a 15 nanosecond read/write cycle. Therefore, not performing

behavioral VHDL testing of the off-chip SRAM without any detailed timing information

was a reasonable decision at the behavioral level. The SRAM timing diagrams that were

followed through the design of the Microdot for the off-chip SRAM are located in

Appendix C. After successfully completing the behavioral VHDL testing of the

Microdot, I proceeded to port the behavioral VHDL to structural VHDL.

Structural VHDL uses descriptions of the gates the element needs to make the

operations described in the behavioral VHDL become a reality. All the different gates

and their connections to each other are documented in a structural VHDL file. A similar

test process was used with structural VHDL as with the behavioral VHDL testing; I

began with individual component testing of the structural VHDL. Each of the structural

VHDL files calls primitive VHDL gate files, which contain timing and functional

5-2

information. I used timing delays for the testing that were used for gates in the Hewlett-

Packard 0.5 micron process. The timing delays were used in a previous thesis that had

radiation-hardened standard cells [8]. I used these timing delays in order to ensure

success, because the timing delays of the larger radiation-hardened cells was greater than

the actual 0.35 micron standard cells I was using. I discovered the difference in timing

delays by running HSPICE on each set of standard cells. The extra built-in timing delay

was a benefit because all the Microdot signals need to arrive before either a falling or

rising clock edge. Since all signals need to arrive on a clock edge, a signal delayed by a

half a period or more will cause some problems. Even though my gates are faster based

on the HSPICE testing, for testing purposes, using slower times gave me greater

confidence in signals arriving on time throughout the Microdot. Once all the components

were tested, I began to piece all the components together similar to the behavioral VHDL

testing process. The Microdot passed all the instruction and multiple instruction tests on

the structural VHDL level. However, there were some testing errors that occurred before

successful structural VHDL testing was achieved. Some errors were using the wrong

triggered clock edge D flip-flop and improper triggering of test bench inputs. Structural

VHDL testing success gave me the conclusion that it was time to start building these

elements either by hand layout or through standard cell layout. I hand laid out the Stack,

Program Memory, and some Data Acknowledge Block components. Hand layout of the

SRAM units was used for the Microdot, since most of the power consumption comes

through the SRAM units. Standard cell layout uses up more area, thus has more

capacitance and resistance. The higher capacitance and resistance values lead to

inevitably using more power to operate an element. Standard cell layout was completed

5-3

on all the other components for the Microdot using a channel routing software tool

known as Octtools. Once I laid out the components using the MAGIC layout software, I

extracted a .ext file from MAGIC [25]. Once I converted the .ext file to a .sim file, the

testing of the layouts began with IRSIM a switch-level software simulator [26].

5.2 IRSIM Testing

IRSM is a switch-level simulator that uses resistance and capacitance

information from the devices contained in each element. A file is extracted from the

layout in MAGIC, and capacitance and resistance values are contained within the file.

Therefore, IRSIM is able to calculate relevant timing information based on the device

values in the file. However, IRSIM is not the most accurate testing tool, because it does

not use logic-cell delays as parameters for its models [26]. IRSIM works on a switch-

level basis, which means the signal value can either be a high, low, or unresolved. There

are no voltage levels for each signal, only sharp transitions occur which normally would

not happen on the Microdot. Each component was tested for functionality and timing by

IRSIM. I looked at certain transitions to get a feel for timing scenarios, but I did not base

any design decisions on the IRSIM timing data. For the most part, IRSIM testing went

quite well with only minor changes needed to correct a few imperfections. One

imperfection involved IRSIM trying to model tri-state buffers in the Program Memory

and Stack elements. A tri-state buffer has 1.4 volts on the output when it is not enabled.

IRSIM does not understand the intermediate voltage levels. Limitations of IRSIM lead

me to not test the entire Microdot by excluding the two SRAM elements (Program

Memory and Stack). IRSIM can only display 32 signals and has a character limitation on

an input line. In other words, the Microdot had too many signals and I could not have run

5-4

enough sets of inputs. From my experience with IRSIM handling microprocessors, it is

very difficult for IRSM to simulate such a large extracted file with numerous

interconnections. However, each of the main blocks that I put together were simulated by

IRSIM and passed the functional tests. Therefore, I felt confident that when the Microdot

was completely assembled, it would function properly. IRSIM testing results for the

Microdot displayed adequate timing information and confidence to proceed to the next

more intricate level of software testing called HSPICE.

5.3 HSPICE Testing

The most sophisticated simulation type of testing involved using the HSPICE

software tool [27]. HSPICE takes a SPICE file extracted from MAGIC and calculates

node voltages, currents, and even power consumption. HSPICE is the most accurate type

of software testing available, because it uses model parameters for the N-channel and P-

channel transistors. Each N-channel and P-channel transistor is modeled by the

parameter file, which is read by HSPICE. I used the level 49 HSPICE model for my tests

[27]. I acquired the level 49 model parameters for this particular technology from the

fabricator MOSIS [2]. MOSIS is a company that sends educational VLSI design projects

to different foundries for fabrication. MOSIS was the direct link for getting the Microdot

fabricated. I used the parameters from a wafer run completed in late May of 2000 from

Taiwan Semiconductor Manufacturing Corporation (TSMC) using the 0.35 sub-micron

process. Each component was tested with HSPICE for functionality and timing

information. The most critical timing information, which took several runs of HSPICE,

was for the SRAM components. The read and write cycles needed to be timed correctly

so false data did not get written into the memory units or read from the memory.

5-5

HSPICE has a command to calculate power for each time increment. The power

calculation involves consumed power and static power. These calculations are critical to

simulation results regarding the Microdot's power consumption profile. The clock

frequency that the Microdot is operated at will determine the power consumption of the

4-bit microcontroller. Therefore, HSPICE helped me estimate the true power

consumption values the Microdot may require once back from the foundry. Table 5-1

shows the HSPICE results for average power consumption for each of the elements

during normal operation.

Table 5-1. Power Consumption by Component

HementName

Power Consumption

Element Name

Power Consumption Durinq During Operation; @ 20
MHz for Clocked Operation: @ 20 IWfefor
Elements Clocked Elements

2to1 MJtiplexor 0.192 mW OR 0.026 mW

4to1MJtiplexDr 0.310 mW Output Buffer 0.034 mW

Acknowledge Last Address 0.068 mW Output Logic 0.119 mW

Acknowledge Multiplexor 0.046 mW Output Register 0.418 mW

Acknowledge Off-Chip 0.721 mW Program Counter Logic 0.309 mW

Acknowledge On-Chip 0.205 mW Program Counter Multiplexor 0.434mW

ADDER 0.268 mW Program Counter State Machine 1.58 mW

AUU Control Unit 0.316 mW Program Memory 25.1 mW

ALU Overflew 0.169 mW ShiftLeft 0.115 rriW

ALURssuK 0.375 mW Shift Rght : 0.116mW

ALU Zero 0.025 mW Stack 124 mW

ALUCODE Register 0.458 mW Stack Addresser 0.437mW

ATC 0.020 mW Stack Logic 0.422 mW

Carry-In Multiplexor 0.023 mW Stack Multiplexor 0.604 mW

CONSTANT! Register 0.461 mW Stack Sate Machine 0.891 mW

CONSTANT2 Register 0.463 mW Status Multiplexor 0.247 mW

Control Logic 1.09 mW Status Register 0.555mW

Control State Machine 0.642 mW Subtract Multiplexor 0.259 mW

Event Detection Logic 0.187 mW Temp State 0.065mW

Mask Register 0.456 mW Temporary Register 0.380 mW

Memory Controller 0.011 mW Top-of-the-Stack MJtiplexor 0.415 mW

Memory Multiplexor 0.329 mW Top-of-the-Stack Register 0.383 mW

NOT 0.011 mW Two's Complementer 0.059 mW

OPCODE Register 1.02 mW XOR 0.146 rriW

5-6

Figure 5-1 shows the average power consumption versus clock frequency

achieved through running HSPICE simulations on the Microdot. The figure shows a

reduction in power consumption as the clock frequency decreases. The minimum power

consumption at 1 kHz is 16.3 milliwatts.

Figure 5-1. Average Power Consumption versus Clock Frequency

Once the Microdot is sent back from the foundry, it is time to test the actual chip

on the HP 82000 analyzer. This is the last step in finalizing the validity of the design and

the functionality of the Microdot.

5.4 Hewlett Packard 82000 Analyzer Testing

The HP 82000 analyzer is used to test microchips using a DUT board, mainframe,

and a UNIX workstation [28]. Software specific to the testing function of the HP 82000

5-7

analyzer is accessed through the UNIX workstation. With the HP82000 software test

vectors, voltage levels, current levels, pin declarations, power readings, and clock

frequency measurements are all accomplished. The HP82000 is used to actually validate

the operation and timing of the fabricated Microdot chip. Figure 5-2 shows the test setup

oftheHP82000 system.

UNIX Workstation
HP82000 Software

Interface
< ►

HP82000 Analyzer

DUT Board Interface

DUT Board

Figure 5-2. HP 82000 Analyzer Testing Setup from [28]

The HP82000 testing began with running a continuity test on the test channels

and the DUT board. The continuity test checks the connections between the HP82000

and the pin sockets on the DUT board. The fabricated Microdot chip does not have to be

locked in place on the DUT board for the continuity test. The continuity test checks for a

short circuit between the tester channels and the DUT board. The continuity test

successfully passed on the HP82000, which ensured the DUT board made a good

connection with the HP82000. The testing continued with running the Microdot at a slow

clock frequency of around hundreds of Hertz, while trying to initialize the Microdot by

asserting the RESET signal. Of course, before the instruction set can be tested, the

Microdot had to be initialized. Many tests at different frequencies, input voltages, current

limits, and input vectors took place in order to get the Microdot to initialize. However,

all of my attempts failed to get the Microdot to initialize. I checked the four power and

5-8

ground pins on the Microdot and found that power and ground were shorted together.

After inspection of the MAGIC layout file, I found two elements that had power and

ground wired incorrectly. After many attempts to use a laser cutter to try and break the

connection of these two elements from the power and ground rail lines, I still was unable

to get the Microdot to initialize.

I ran a quiescent current test on the Microdot and found the chip was using 108

milliamps of current in a steady state. The quiescent current measurement went down as

I continued to laser cut the two element connections from 108 milliamps to 15 milliamps.

As the quiescent current measurement decreased, the resistance measurement between

the power and ground rails increased. The resistance measurement started out at 100

ohms and I measured after laser cutting a resistance of 2800 ohms. Even though a sizable

resistance was attained between the power and ground rails, a signal transition on the

outputs of the Microdot was never measured by the HP82000.

The following process would need to occur in order to fully test the Microdot's

operation and functionality. The testing would need to begin by running the following

static tests, a continuity test and then a quiescent current test. After successful

completion of the continuity test and recording the quiescent current, the active tests may

begin. To minimize the complexity of the active tests, beginning with a slow clock speed

is preferred, somewhere in the low kilohertz range. After getting initialization to

correctly function, the programming of the Microdot would need to be tested. A test

involving only programming one instruction into the Microdot and viewing the IRIN,

ADDR, and the CURSTATE signal lines is a beginning to testing the Microdot's

functionality. After programming successfully, start with programming one instruction

5-9

into the Microdot and running the instruction. An easy instruction to start with would be

the PUSH instruction, since the instruction mainly uses the instruction register and Stack

Block. Under the PUSH instruction, the operation of the Stack Block will be tested.

After successfully running a Stack instruction, an ALU instruction would be the next test

to be executed. During an ALU instruction the output of the ALU Block can be viewed

on the STATOUT signal lines. After successful completion of an ALU instruction,

testing of the entire instruction set at the same low clock speed should continue. The

instruction set can be checked for operational success by the STATOUT signal lines and

all the other output lines coming from the Microdot.

The next batch of tests, after successful completion of running the entire

instruction set, involves incrementing the clock frequency small amounts to find the

maximum clock speed that the Microdot can operate under. Finding the maximum clock

speed requires setting the clock frequency to the highest possible frequency until some

expected outcome does not occur. Also, these maximum clock speed tests require the

clock frequency to be increased until a breaking point occurs. During the process, the

Status Multiplexor pins are monitored for different values that should be located on

different data lines within the Microdot. Monitoring the STATOUT signal lines is done

to better understand the inner workings of the Microdot and to troubleshoot an error if

necessary.

Furthermore, minimal power consumption tests need to be run to see what the

lowest amount of power consumption the Microdot can function on. A process of

lowering the clock speed and running all the Microdot instructions needs to be

completed. The goal is to find out the minimum power consumption of the Microdot

5-10

when operating the clock at a slow clock speed. As the clock speed decreases, the power

consumption of the Microdot should decrease.

5-11

6. Summary and Conclusions

6.1 Summary

The Microdot is a 4-bit microcontroller that is designed for operations in a space

environment. The purpose of the Microdot is to execute programs that deal with data

manipulation from sensors on-board a satellite. The main role is to process and

temporarily store the data and report if any of the data is out of limits set by the

programmer. The execution of a reporting program is only one of the many scenarios

that the Microdot could be used for. This thesis used documentation from the Air Force

Research Laboratory located at Kirtland AFB NM as a starting point to begin the

Microdot design [1,11]. The work that was completed for this thesis is a building block

to fabricating a prototype of the Microdot. New concepts and design decisions were

made throughout the design of the Microdot. The LDRAM instruction was added along

with ALU Block control signals to minimize power consumption of the Microdot.

Finally, all the Microdot elements were integrated to achieve the prototype product and

HSPICE simulations were used to validate the operation and specifications of the

Microdot. The fabricated Microdot was unable to be tested for functionality due to two

elements having the power and ground rail connections switched.

6.2 Conclusions

The results that were displayed in Chapter Five demonstrate the feasibility of a

small and efficient 4-bit microcontroller that can meet mission requirements for space

applications. The lowest power consumption of the Microdot during operation using

HSPICE simulation runs was 15 microwatts. Also, the highest operating frequency for

6-1

the Microdot using HSPICE simulation runs was 20 MHz. The lowest tested operating

frequency for the Microdot was 1 kHz. In addition, the Microdot was simulated using

HSPICE and all of the 23 instructions were performed correctly and without error.

Therefore, I believe that due to these results further research should be continued in this

area.

6.3 Lessons Learned

From the beginning to the end of the design process, several lessons were learned.

One crucial lesson is to learn the software tools thoroughly, because most thesis designs

are more complex than class designs. Complicated designs can make the automation of

going from behavioral to structural VHDL code more difficult and, thus, take more time

to achieve.

Another lesson learned is attaining the knowledge of the Lager Octtools software

and all the files that the software needs to work properly. When using a different

standard cell library than the traditional Lager library, it is critical to know how to set up

each standard cell MAGIC layout. There are many particular dimensions that need to be

followed for the labels, power and ground rails, and overall cell size. Appendix D

contains a tutorial for using the Lager Octtools software with new standard cell libraries.

A better routing tool to be used with standard cell libraries would greatly reduce

the time and area of designs in the AFIT VLSI lab. The Lager Octtools software

currently routes between standard cells using channel routing. The software creates extra

channels where only routed lines run. Area is wasted by this technique, since wire

connections could be accomplished by going over cells in higher levels of metal.

6-2

When trying to meet a fabrication run date, set aside at least a couple of weeks to

test the design. I did test the Microdot before sending it to fabrication and everything

worked properly. However, I discovered when the chip returned from the foundry, there

were interconnections and a state transition that my simulation tests had not covered.

There are unlimited amounts of tests to run on any chip design, so choosing which tests

to run is critical. I chose to test numerous functions yielding a high percent fault

coverage, however without a large amount of time it is sometimes difficult to reach a 100

percent or complete fault coverage for an ASIC.

6.4 Recommendations for Future Research

I recommend that the Microdot design be re-fabricated in the 0.35 sub-micron

TSMC process using commercial standard cells. I have instituted the following

corrections to the MAGIC layout file of the Microdot, so correct operation will occur. I

have corrected the two element connections to power and ground, therefore correcting the

short between power and ground. I also corrected a state transition from PROG (state 26)

to PROGWR (state 30) in the Control State Machine element, which hindered the

programming of the Microdot. HSPICE simulation runs of all the instructions at varying

frequencies have validated the corrected Microdot design. The fabrication of the

corrected Microdot design will give a baseline to work from in the future. The main

elements that consumed power in the HSPICE simulation runs were the SRAM units

(Program Memory and Stack). A redesign of the SRAM cells and research in this area

would help achieve the goal of the Microdot, which is to consume low amounts of power.

In addition, a radiation tolerant Microdot design using radiation hardened standard cells

should be created in the 0.5 sub-micron Hewlett-Packard (HP) process. The 0.35 sub-

6-3

micron TSMC process does not guarantee the threshold voltage levels of annular

transistors. The HP process has the ability to fabricate the annular transistor without any

limitations and therefore may be the best chance at making an acceptable radiation

tolerant design for the Microdot. A comparison of the two different Microdots from the

HP and TSMC process would have great merit. Specifications such as radiation

tolerance, power consumption, and area could be compared and optimized for each

design. A fabrication process and design could be decided on by continuing the research

of the Microdot in this direction.

6-4

Appendix A. Microdot Layout and State Diagrams

'SSvSi vv3SS TSS» &v» vöS IP illil 111 i|

msws
m

äx*^» 2x«e sp>>s >»>*§ v**>» • mm mm

Figure A-1. Microdot Layout

A-l

Path
Name

OPCODE =
(Binary Code)

Path Name OPCODE =
(Binary Code)

A '0110' H '0100'

B '0111' I '1000' or '1001' or
'1010'

e '0101' J '0000'or'1011'or
'1100'or'1101'or

'1110'

D '1111' K '1011'

E '0010' L '0000'or ('1100'and
TEMP2 = T)or
'1101' or '1110'

F '0000'or'1000'or
'1001'or'1010'or
'1011'or'1100'or
'1101'or'1110'

M '0000'or'0001'or
('1100'and TEMP2
= '1') or'1101'or

'1110'

G '0001'

Figure A-2. Microdot State Diagram (1 of 3)

A-2

FOP
0

M _/ PUSH ^
V 9

FOP
0

4 _[WAIT
^

V 11

FOP
0

^ _[SETIO
^ —V 12

Path
Name

OPCODE =
(Binary Code)

Path Name OPCODE =
(Binary Code)

F '0000'or'1000'or
'1001'or'1010'or
'1011'or'1100'or
'1101'or'1110'

Q SKIPFLAG = '0'

J '0000'or'1011'or
'1100'or'1101'or

'1110'

R SKIPFLAG = '1'

K '1011' S '0100" or'0101'or
'0111'or'1111'

L '0000'or ('1100'
andTEMP2 = T)
or'1101'or'1110'

T '0001'or'1000'or
'1001'or'1010'or
'1011'or'1100'or
'1101'or'1110'

N '1000' U '0001' or '1000' or
'1001'or'1010'

O '1010' V '1011'or'1100'or
'1101'or'1110'

P '1001'

Figure A-3. Microdot State Diagram (2 of 3)

A-3

/
ALU1 _

FOP
0

h (w

*K

ALU2 Y

W

FOP
0

w
14 J~

PICK _

w

FOP
0

 ►

Path
Name

OPCODE =
(Binary Code)

Path Name OPCODE =
(Binary Code)

G '0001' Z '0000'

L '0000'or ('1100'
andTEMP2 = T)
or'1101'or'1110'

AA '0001'

W '1100' BB '1100'and
TEMP2 ='0'

X '1101' CC '1101'

Y '1110'

Figure A-4. Microdot State Diagram (3 of 3)

A-4

Appendix B. Microdot Signal Table and Specifications

Table B-l. Microdot Signal Table

Sianal Name # of Bits FROM TO FUNCTION

ACK 1 Acknowledge Multiplexor OFF-CHIP
Handshaking signal used during
programming

ACKLAST 1 Acknowledge Last Address
Acknowledge Multiplexor;
Control Logic

Turns off programming after reaching
the 4096th memory location

ACKOFF 1 Acknowledge Off-Chip
Acknowledge Multiplexor;
Acknowledge Last Address

Delayed handshaking signal used when
programming the off-chip SRAM unit

ACKON 1 Acknowledge On-Chip Acknowledge Multiplexor
Delayed handshaking signal used when
programming the on-chip SRAM unit

ADDCSEL 1 ALU Control Unit Carry-In Multiplexor; Adder
Signals that the Add with Carry
instruction is being performed

ADDOUT 4 Adder ALU Result Result of the Adder element

ADDR 12

Program Counter State
Machine

Program Counter Multiplexor;
Program Counter Logic;
Program Memory; Memory
Controller; Acknowledge Last
Address; OFF-CHIP

Address which decides which SRAM
cell to write to or read from

ADDRIN 12 Program Counter Logic Program Counter Multiplexor
ADDR incremented by one; provides
next address

ADDRMX 12
Program Counter
Multiplexor

Program Counter State
Machine

Selected address to get sent to SRAM
units

ADDSEL 1 ALU Control Unit Carry-In Multiplexor; Adder
Signals that the Add instruction is being
performed

ADDSUB 1 ALU Control Unit
Subtract Multiplexor; ALU
Overflow; Two's Complementer

Declares whether the ALU operation is
addition or subtraction

ALUCODE 4 ALUCODE Register

Program Counter Multiplexor;
ALU Control Unit; ALU Result;
Control Logic; Status Register;

Declares which ALU operation will
occur. Used in the JUMP instruction
sequence.

ALURES 4 ALU Result
ALU Zero; 2 to 1 Multiplexor;
Status Multiplexor The selected output of the ALU Block

ANDOUT 4 AND ALU Result Result of the AND operation

ANDSEL 1 ALU Control Unit AND Turns the AND element on and off

CARRY 1 ALU Control Unit Status Register Gives resulting carry bit

CBIT 1 Status Register

Control Logic; Carry-In
Multiplexor; ALU Control Unit;
Shift Left; Shift Right Current carry bit

CE 1 Memory Controller

Program Memory; Memory
Multiplexor; Acknowledge
Multiplexor

Enables either the on-chip or off-chip
SRAM

B-l

Sianat Name # of Bits FROM TO FUNCTION

CLK 1 OFF-CHIP

Control State Machine; Status
Register; Temp State; Mask
Register; Output Register;
Program Memory; Program
Counter State Machine;
OPCODE Register;
ALUCODE Register;
CONSTANT1 Register;
CONSTANT2 Register;
Temporary Register; Top-of-
the-Stack Register; Stack;
Stack State Machine System Clock

CLRSR 1 Control Logic Status Register Resets the Status Register to all zeros

CONST1 4 CONSTANT1 Register

Program Counter Multiplexor;
4 to 1 Multiplexor; Control
Logic; Mask Register; Event
Detection Logic All-purpose instruction register output

C0NST2 4 CONSTANT2 Register Program Counter Multiplexor Used for JUMP Instruction

COUT 1 ADDER ALU Control Unit Carry bit result from addition operation

CURSTATE 5 Control State Machine

Control Logic; Status
Multiplexor; Status Register;
ALU Control Unit

Current state bits- keeps track of
which state the Microdot is in

DATASEL1 1 Control Logic

4 to 1 Multiplexor; Top-of-the-
Stack Multiplexor Select bit for both multiplexors

DATASEL2 1 Control Logic 2 to 1 Multiplexor Select bit for the multiplexor

DATAV 1 OFF-CHIP

Acknowledge On-Chip;
Acknowledge Off-Chip;
Acknowledge Last Address;
Program Memory

Handshaking signal used during
programming

DECSP 1 Control Logic Stack Multiplexor; Stack Logic

Tells Stack Block to decrement current
stack address

DOFFOUT 4 OFF-CHIP Memory Multiplexor Output bits from Off-chip SRAM

DONOUT 4 Program Memory Memory Multiplexor Output bits from On-chip SRAM

EVENT 1 Event Detection Logic Control State Machine

Used during WAIT instruction; signals
Microdot to stop waiting

FUNCT 1 OFF-CHIP

Control State Machine;
Acknowledge Last Address

Triggers the beginning and end of
programming

INCSP 1 Control Logic Stack Multiplexor; Stack Logic

Tells Stack Block to increment current
stack address

INPUT 4 OFF-CHIP

Program Memory; Memory
Multiplexor; 4 to 1 Multiplexor;
Event Detection Logic; 4-bit input/output data path

B-2

Sianal Name # of Bits FROM TO FUNCTION

IRIN 4 Memory Multiplexor

OPCODE Register; ALUCODE
Register; CONSTANT1
Register; CONSTANT2
Register; Status Multiplexor Instruction register data path

LDALU 1 Control Logic
ALUCODE Register; Program
Memory

Signals loading of the ALUCODE
Register

LDC0NST1 1 Control Logic CONSTANT1 Register
Signals loading of the CONSTANT1
Register

LDC0NST2 1 Control Logic CONSTANT2 Register
Signals loading of the CONSTANT2
Register

LDMASK 1 Control Logic Mask Register Signals when to load register

LDOP 1 Control Logic OPCODE Register Signals when to load register

LDRAM 1 Control Logic Stack Signals when to write to stack

LDTEMP 1 Control Logic Temporary Register Signals when to load register

LDTOS 1 Control Logic Top-of-the-Stack Register Signals when to load register

MASKOUT 4 Mask Register Output Logic Sets which bits are input or output bits

MEMRW 1 Control Logic
Program Memory, Acknowledge
Off-Chip

Signals either to read or write from
memory

MUX20UT 4 2 to 1 Multiplexor Top-of-the-Stack Multiplexor output of multiplexor

MUX40UT 4 4 to 1 Multiplexor Top-of-the-Stack Multiplexor output of multiplexor

NBIT 1 Status Register Control Logic
Signals whether result from ALU is
negative

NEGRES 1 ALU Zero Status Register
Signals whether result from ALU is
negative

NOTOUT 4 NOT ALU Result Result of the NOT operation

NOTSEL 1 ALU Control Unit NOT Turns the NOT element on and off

OFFSET 7 Control Logic Stack Addressor

One of two 7-bit operands for 7-bit
adder; gives ability to reach any of the
128 stack addresses within the stack

OPCODE 4 OPCODE Register

Control State Machine; ALU
Control Unit; ALU Result;
Control Logic

Gives the operational code, which
determines which instruction to run

OROUT 4 OR ALU Result Result of the OR operation

ORSEL 1 ALU Control Unit OR Turns the OR element on and off

OUT 4 Output Logic Output Register Sends data off-chip

OUTPUT 4 Output Register OFF-CHIP Sends selected output bits off-chip

OVERRIDE 1 OFF-CHIP Memory Multiplexor
By-passes both SRAM units; gives
ability to load instructions manually

OVFLW 1 ALU Overflow Status Register
Signals whether result from ALU is an
overflow condition

PCCOUNT 1 Control Logic Program Counter Multiplexor
Tells multiplexor to send through

I incremented address value |

B-3

Sianal Name # of Bits FROM 12 FUNCTION

PCLOAD 1 Control Logic Program Counter Multiplexor

Tells multiplexor to load 12-bit address
from the instruction registers- used
during JUMP instruction

PCSET 1 Control Logic
Program Counter State
Machine

Resets address to "000000000000"
after programming is complete

PRESEL 1 Program Memory Acknowledge On-Chip

Tells handshake signal to go high when
Program Memory is ready to write to
SRAM cell

PRESELCNTL 1 Control Logic Stack
Tells stack when to read from SRAM
cell

RAMNOUT 4 Subtract Multiplexor ADDER 4-bit operand to ADDER

RAMOUT 4 Stack

Temporary Register; Subtract
Multiplexor; ALU Overflow;
Two's Complementer; OR;
AND; XOR; Status Multiplexor Output from Stack

RAMQ 4 Two's Complementer
Subtract Multiplexor; ALU
Overflow

Complemented version of RAMOUT
data

RESET 1 OFF-CHIP

Stack State Machine; Mask
Register; OPCODE Register;
Program Counter State
Machine; Control State
Machine; Acknowledge Last
Address Initializing signal

RW Acknowledge Off-Chip OFF-CHIP Read/Write signal for off-chip SRAM

SHLC Shift Left ALU Control Unit Carry result from shift operation

SHLOUT 4 Shift Left ALU Result Result of shift left operation

SHLSEL ALU Control Unit Shift Left Turns the Shift Left element on and off

SHRC Shift Right ALU Control Unit Carry result from shift operation

SHROUT 4 Shift Right ALU Result Result of shift right operation

SHRSEL ALU Control Unit Shift Right Turns the Shift Right element on and off

SKIPFLAG Control Logic Control State Machine
Used during SKIP instruction as a go or
no-go flag

SPIN 7 Stack State Machine
Stack Logic; Stack Addressor;
Stack Multiplexor

One of two 7-bit operands for 7-bit
adder; gives ability to reach any of the
128 stack addresses within the stack

SPMX 7 Stack Multiplexor Stack State Machine input to stack state machine

SPOUT 7 Stack Logic Stack Multiplexor
Incremented by one or decremented by
one SPIN address

STAKADR 7 Stack Addressor Stack
Result of adding OFFSET and SPIN-
current stack address

STATOUT 5 Status Multiplexor OFF-CHIP
Used to view different internal data
buses within the Microdot

B-4

Signal Name # of Bits FROM IQ FUNCTION

STATSEL 3 OFF-CHIP Status Multiplexor
Select lines to control which data buses
to output on STATOUT

STOREP 1 Control Logic Output Register
Used to send data off-chip, during the
STÖRE instruction

SUBCSEL 1 ALU Control Unit Carry-In Multiplexor; Adder
Signals that the Subtract with Carry
instruction is being performed

SUBSEL 1 ALU Control Unit Carry-In Multiplexor; Adder
Signals that the Subtract instruction is
being performed

TEMP 1 Control Logic Temp State
temporary control signal to create an
extra state during the JUMP instruction

TEMP2 1 Temp State Control State Machine

tells state machine to go to state 15-
FCON2; during the JUMP instruction
only

TEMPOUT 4 Temporary Register 2 to 1 Multiplexor
Used to store RAMOUT during SWAP
instruction

TOSIN 4
Top-of-the-Stack
Multiplexor Top-of-the-Stack Register

Used to transfer data into the TOS
Register (Cache)

TOSOUT 4 Top-of-the-Stack Register

Stack; Status Multiplexor;
ADDER; OR; NOT; XOR;
AND; XOR; Shift Left; Shift
Right; Event Detection Logic;
Output Logic

Used to write data to stack and perform
ALU operations on data; also used for
miscellaneous operations

VBIT Status Register Control Logic
Tells control logic whether last ALU
operation had an overflow condition

WAITP Control Logic Event Detection Logic
Signals wait for an event on the selected
INPUT bits

XOROUT 4 XOR ALU Result Result from the XOR operation

XORSEL ALU Control Unit XOR Turns the XOR element on and off

ZBIT Status Register Control Logic
Tells control logic whether last ALU
operation had a zero result

ZERORES ALU Zero Status Register
Signals a zero result from the ALU
Result

B-5

Table B-2. Microdot Specifications

Package Type DIP40

Supply Voltage 3.3VDC

Average Power (Simulated): 16.3 mW

Average Set-Up Power (Simulated): 115mW

Core Transistor Count: 41,872

Total Chip Area: 2243 x 2152 microns = 4.83 mm2

Pin Count: (40 Pins Total) 4VddandGND
1CLK (Input)

1DATAV (Input)

4 DOFFOT (Inputs)

1 FUNCT (Input)
1 OVERRIDE (Input)

1 RESET (Input)
3 STATSEL (Inputs)
4 INPUT (Inputs/Outputs)

1ACK (Output)
12 Address (Outputs)
1CE (Output)
1 RW (Output)
5 STATOUT (Outputs)

B-6

Appendix C. SRAM Specifications and Timing Diagrams

/CYPRESS

Features

> Automatic pow^r-down when daaelacted

» CMOS for optimum »peeoVpower

• High speed

» Low active power

— SSSmW

»Low sianoty power

— HO mW

» TTL-con>p«tH)te Inputs and outputs

► Vmof2SV
» Capable of wHhatanding greaterthart 2001V elactrostal-

jc discharge

Logic Block Diagram

MPUTDUFPS>

A>-
A|-
*!-
*»-
A,-
Aj-

3Z

ISSxHB

3E

3

ODIUM»
cecocBt

TTTTT
Ay Aa AJAIOAM

PCftEP
QQWN

-jnciea*

3
Z^

i>
^

CY7C168A

4Kx4 RAM
Functional Description

The CY7Cl6fiA is a high-performance CMOS stalle RAM or-
ganised as 40BÖ hy 4 bits. Easy memory expansion is provided
by an tuXm LOW Ch* EnaWe (51) ant) inree-siate driver».
The CY7C168A has Bn automatic pcwar-ctown Feature, reduc-
ing the power consumption by 77% whan deselected.

Writing to Hid davfcs is aceorrtflishad when the Cr* Select
(CE) and Write Enable (WE) inputs are both LOW. Dalaon the
four data Input/oulpul pins (t/Ofc through V03\ is wrinaninlolhe
memory location specified on the aottess pins- <Ag through
An)-
Rgadinglhe device is aocompsshea by latclngine Chip Enable
(CE) LOW, wwis Write Enaws tws) remains HIGH, under
these conditions, tha contents of the location specified Ort Ihe
adtfrMS pins will appear on the four flats Inputfoutput oim
(WOoihmuanUOj).
The input/otupm pins remain in a high-impBdancs state when
Cwp Enable (5f) Is H1CH or Write Enable- (5?E) is LOW.

A die «o«l is used to Insure alpha immunity.

£§E

\1Q}

lA

El

WE

Pin Configurations

jHpysoj
Top view

\il T-^ ""' 20 3tc
AsE 2 1D] A3

AiC 3 1B 3*2
A7C 4 17 3 Ai
AiC 5 7C1M« "> 3 Ar>
A«[» ' 15 3 i«3o
AIQC H 3 I/O,
AllC " ia 3 tW?
ceC a 12 3 ros

GNDC in ii U W^ CIESA4

Selection Guide
7C16*A-1S 7C166A-20 7C16AA-K 7C16*A-35 7C168A-45

Maximum Access Time (ns) 15 20 2S 35 45

Maximum Operating
Current (mA)

commercial 116 30 90 . 90 90

Military - 10Q 100 100 100

C-l

r/CYPRESS ============
Maximum Ratings

(Above whi* th» useful life may be impaired. For usar guide-
lines, not lestadL)

Storage Tenwaiu« -6S"C to +I50*c

Amrjlem "temperature witn
PWW AppllKl -55*C 16 +125«C

Supply Voltac.a to Ground Potential
(Pin 30 to Pin 10} -05V to +7.0V

DC Volume Applied ie> Ouiputs
in HighZSlalB -O.SVto +7.0V

DC Input VÖI18Q« -3.0V 10 +7.0V

Electrical Characteristics Ovsr (he Operating Range^

CY7C168A

Otilput Current inlD Outputs (Low) 20 nift

Static Discharge Voltage >2001V
{perMIL-STD-ÖSS, Method 3015}

La1ch-Up Current ,..,.»20UmA

Operating Range

RSflgt
Ambiant

temperature Vf*

Commercial 0'C 1o +70°C 5V + 1D%

Military111 - 55eC K> +125"C SV±10%

Parameter Description

7C168A-15 7C168A*20

unit Tarf Condition* Mln. Max. Mln. Max.

VoH Ouiptrt" HIGH VonagB Voc = Min., ICH = -4.0 m* Z.4 2.* V

Vgi Oulp«tLOwvoiia.t|« VocsMin., lrji.sfi.0m A 0,4 0.4 V

Vin inpul HIGH vtoJIage 2.2 Vcc 2.2 Vcc V

** Inpul LOW Voltage*31 -0.5 08 -0.5 0.8 V

lix Inpul Load Current GNDäV|*VCC -10 +10 -10 +10 uA

'oz Output Leakage
Current

GNDjcVosVpp.
Output DisaBfed

-10 +10 -10 +10 tlA

lafi Output snort
Circuit CurrenF1

VC0 = Max.,Väu:f = 6ND -OSÖ -350 mA

'oc vcc OPeratin9
Supply Currafll

VC0=Mäx„
lour * u mA

Com'l 11S 90 mA I

Mil - 100

lasi Automatic CE
Power-Down CuiWt

Max. VCC,
C£>V,H

Com'l -w 40 mA

Mil - 40

'SBZ Automatic CG
Powsr*D6wrt Current

Max. Vcf>
UE2VOT-0.SV

com'l 2D 20 mA

Mil ■ 20

Mow*;
1. TA i$ |he 1ntnl on" «iff Icmpcralu».
2. SMlhnlas;paminHhfct0«Äail*r>*l'CrOup A tt^jfiup leiÄns üilcnnralhn.
3 Vtnijn.= -SiOVIcr pasn duiäicr: lass than 30 n&.
4. Mel morn man 1 wtwl «l^Jd 6* ihO««') »I ow» limn. DunBon nl inn Sicrt cunul Ehoub not ewSwXl 30 ««SO«)«

C-2

w CYPRESS
CY7C168A

Electrical Characteristics Over fco operating Ranged (cominuad)

Parameter ! Description Test Condition«

7C168A-25 7C158A-35 7C1S8A-4S

Unit Mln. Max. Min. Max. Min. Max.

Vow CMS»! HIGH Voltage Vcc=I**- h» - -*^ m A 2.4 2.4 ZA V

v«. Output LOW voltage Voc = Mku IüL = 9.0 WA 04 0.4 0.« V

Vm input HlßH voftags 2.2 Vcc 2.2 Vcc Z.Z Vqc V

v* Input LOW VoUageM -0.S 0.8 -0.5 0.8 -0,5 0,8 V

iix Input Load Current GNDSVJäVCC -10 +10 -10 10 -10 10 »A

bz Output Leakage
Current

mozVQuVce
output oisaww

-10 +10 -SO SO -50 SO (|A

to Output Snort
Circuit Current™

Vcc = Max., VQUT = GND -3S0 -350 »350 mA

Ice VCc Operaüng
Supply Curwjnt

Vcc = Max..
tour = 0 mA

Corrs'l 90 90 90 mA

Mil 100 ICO 100

fssi Automate El
Powftf-Dawn Current

Max. Vc& Com'l £0 20 20 snA

Mil 20 20 20

?SD2 Automatic ü§
Power-Down Cwrrenl

Max. Vcc»
CEi VCC-0.3 V

Com'l 20 20 20 mA

Mil 20 20 20

Capacitance55'
parameter Description Test Conditions | MäX, Unit

CUN Irijsut Capacitance TA = 25'C,t = 1MH?;,
Vcc = S.0V

j 10 pP

COUT Output CapacSlanca I 10 PF

5. Teased rjlisly arts) »ti«r any ggs'gn or fix«; chsrg« lhal may a£ed IfiSS* pjowwlfttg.

AC Te*t Loads and Waveforms

sv*-
OUTPUT»-

INCLUDING-
JIÖAND
SCOPE

R1 4*1(J

255Q

(»)

r
BJCUUDUBS-dr

JIGftSD ~
SCOPE {b}

R2

3,W

6*tD

AU INPUT PULSES

ZZZ > mmmmmmtr 10 10%

&3Ur<reS5!rit 1o; TUfergNI» £QU!VALEr«

CUTPUTo-
167J3

"■<W'"fi -»1.73V

C-3

Wr CYPRESS
CY7C16SA

Switching Characteristics Over the Opening Ranged i

Parameter D«scripMon

7C16&A-15 7C168A-2Ö 7C169A-25 7C16SA-35 7C16SA-45

Unit Wln- Max. Mill. Max. Win. {Max. MIn. Max. Min. Max.

READCYCLS

V» Read Cycle Tim© 15 so ■25 55 «5 ns

*M Address to Data valid IS 20 25 35 45 n$

*OHA Ouipet Hold tan Address Change 5 5 5 S 5 rss

tsCE Power Supply Current ts 20 25 (35 45 <«
,U5CG ÖELOWtoLowZ1'1 5 5 5 5 S

>HZC£ MHlGHIoHlgriZl7'^ a 3 10 I 15 15

tpU CE LOW 1» Power Up 0 0 0 0 0 f*S

'PO Cf HIGH to Power-Down IS 20 20 I g0 25 RS

fRCS Read commancJ Set-Up 0 0 0 öi 0 ß$

•RCH Read Command Hold 0 0 0 o 0 ra

WRITE CYCLE^

■we Write Cycle Time IS 20 20 25 -30 as

tsce CE LOW 10 Write 6nd \i 15 20 25 30 os

to* Aöäress Set-Up to Write End 12 15 20 £5 30 BS

W Address Hold from WiSte End 0 0 0 0 0 M

tSA Address Set-Up to Write Ssert 0 0 0 0 0 m

*PVVE SSI Pulse Width 12 15 1S 20 20 M

•so Dasa Set-Up to Write End 30 10 10 15 15

ns %o Data Hold fcörft Write End 0 0 0 0 0

have WE HIGH io Low 2.P? 7 7 7 5 5 m

k»VE WiL0WtolHighZl7'8J 5 5 5 5 10 rs

Switching Waveforms
RaadCycteMo. If1«-11]

A0DS6SS

! 1«C •

>£*« ■
•AA-

DATA OUT PREVIOUS DATA VAUP) (XX ^ \

X
DATA VALID

6. lisl OHHSSHTS iissKma signalwirisäfeiii liro» et S ns «r tats. Siriiia lereiwx» !•»*»«11SV. «nptir Pt#« to«1'1 <* c 1O aw.a,!It «*'* Hwöng gl Iho »ecib«*

!|^^9^I^TI»«W»i^*^l^***rt^!*«MI«lll!taBO0Od»-tWf^
13. WEBHIGHfcfitadi»*,
1l! D«tcoi5cor^nuoia!y!*lK««|.?^sVt.

C-4

^CYPRESS
CY7C168A

Switching Waveforms («onfeuedj

Read Cycle

5E

!3P. «t

K

DAYAÖU'-

CURRENT■

_/

'HC-

y
'Ace-

* km—~"~
HISH IMPEDANCE jm

«*>u 1
* 'HZCE-

^. DATA VALID

50%

>

HIGH
IMPEDANCE

* '«> M

*£

Write CycfsNo.1 (WE ConlwJK

AOWSSS Rsss y^
• %C"

*

^SL
■ me" *■»

' !SA-

0 ATA IN

OATAira"

■ twr-

^L

X

" !J9*1E"

< SStJ"

DATA)NVAUD

• tüvtm

DATA UNDEFINED
d

*—■»«.——*i

^r
* >H0 "•

MPEDANCE I HS0H IMPEDANCE

<

Write cycl» No. 2 (csöofttraitecO*9,,Ss
* i—^^ —— tim ——————

ADDRESÖ "^ it) (
• . 1g* > ♦*—

CE S v ?
i

. ,. m 'AW •*"™ mf,

lp«e

? ^^^^^^ <mmmm
- IHD " j"

DATA IN ^^ 0ATA|NvAUD > <
<— — tmm *•

DATA IX) OATAWNDSFMED >
HIGH IMPEDANCE

Nabu:

C-5

Program Memory Write Cycle
i
i

1 t
1 1

i
i

CLK ! r
CE |

FUNCT 1

* *
ACK !

•^" w

td ' tw

Wv ! | MEMRW ^ w<% w
! »..! .

DATAV 1 1
1 1 i >

i 1 1

PRE
1 . tp,e «J tadd

X
i j

p
ADDR(11-0)

L

i i o i

INPUT(3-0) i VALID DATA X j xxxx X VALID DATA

LDALU

LDOP

LDCONST1

LDCONST2

DONOUT(3-0) ! HIGH IMPEDANCE STATE

These timing delays take into account pad
delays from MOSIS documentation of
0.8ns for inputs and 1.9ns for outputs.
Signals coming from off-chip are assumed to
have no delay from the off-chip device to the
input pad

tw = 5 ns
ta = 8 ns
tm = :2.8 ns
td = 2.4 ns
tv = 3 ns
tpre = 8ns
taddr = 1.2 nS

C-6

Program Memory Read

i
i

i
i

1
1

i
i

i
i

i
i

CLK I r
CE j

FUNCT !

MEMRW j

DATAV !
telex* 1

PRE j
top

4>
tpre

^ W
^O1

ADDR(11-0)
i
i

0 i IX : l :
1

INPUT(3-0) | xxxx

LDALU

LDOP ! i4*

LDCONST1

i—

LDCONST2 j >-

i { tdata

DONOUT(3-0) J z X D ATA X ! z !

These timing delays take into account
pad delays from MOSIS
documentation of
0.8ns for inputs and 1.9ns for outputs.
Signals coming from off-chip are
assumed to have no delay from the
off-chip device to the input pad

td = 2.9 ns
tdata = 4 ns
tciock = 2.8 ns
top = 3.5 ns
taddr = 1.2 nS
tpre = 4.5ns

C-7

Stack Write

i
i
i

i
i

i

CLK 1
i i i

LDRAM j

_i
i i
i i i r

PRESELCNTL
i ■—i 1

i i
i i
i i

tdata
l —i

TOSOUT(3-0) | INVALID DATA X VALID PATA 1
t i
i i
■ i

tad* 1

STAKADR(6-0) ! ! 127 ! X 126

tclockl

1 Ifall Ipre
4 fe ! ! r** ^ w

RAMOUT(3-0) ! iHIGH IMPEDANCE STATE

These timing delays take into account
pad delays from MOSIS
documentation of
0.8ns for inputs and 1.9ns for outputs.
Signals coming from off-chip are
assumed to have no delay from the
off-chip device to the input pad

td = 3.4 ns
tdata = 1.2 ns
tciock = 1.2 ns
tfaii = 1.1 ns
tpre = 3 nS
taddr = 2.5 ns

C-8

Stack Read

1
1 1

CLK 1
LDRAM

PRESELCNTL
1 y
IM

1
TOSOUT(3-0) | XXXX | !

i

i
taddr

■ ' i
i • i
! ! '

STAKADR(6-0) 1126 X i i &
1 | ! tdala

! **
tpre

tctock
I
■

PRE ■^ w

RAMOUT(3-0) •HIGH IMPEDANCE STATE!

These timing delays take into account
pad delays from MOSIS
documentation of
0.8ns for inputs and 1.9ns for outputs.
Signals coming from off-chip are
assumed to have no delay from the
off-chip device to the input pad

td = 2.6 ns
tdata = 0.6 ns
tciock = 1 ns
tpre = 2 ns
taddr = 2.5 nS

C-9

Appendix D. OCTTOOLS Tutorial

Creating a Standard Cell Library from Radiation Hardened
Cells or Commercial Cells

Introduction
The purpose of this tutorial is to learn how to place a standard cell library into the

VLSI network for use with design tools. This tutorial will show how to use a different
cell library than the Lager cell library throughout the entire design process. The finished
product will be a layout using the different cells whether they are radiation hardened or
another commercial set of library cells. The goal is to create .mag and .sdl files for each
new library cell that will work with the Octtools. Octtools will lay out the circuit and
perform the interconnections as described by the structural VHDL code.

*Note that you will need to have EENG653 and EENG695 Lab handouts for this tutorial
assumes the student has taken both of these courses and performed these labs. This
tutorial is targeted for VLSI thesis students who need to fabricate an integrated circuit
with a different technology than the Hewlett-Packard 0.8 micron process using the Lager
standard cell library.

* All commands that need to be performed at the Unix terminal prompt are specified by
the following syntax (UnixPrompt% or HeraclesorEris%) before the actual command.
Otherwise the commands are Magic commands and need to be carried out when Magic is
open. For Magic commands it is crucial to have the cursor located within the Magic
layout window, otherwise Magic will not recognize the command.

Preliminaries
First, you will need to copy files to your directory, which are needed to run

through this tutorial. All the different file types used throughout this tutorial are
explained in the reference section of this tutorial located on the backpage. The .vhd and
.sym files can be copied from (-kwatson/tutorial/), which includes a components.vhd file
that instances all the individual cells. Also, files needed when using Octtools are located
in this directory (lager, wolfe.rules_6.0, octprep, feed.mag, and all necessary net2sdlr
files). The VHDL files are currently back-annotated with spice results from 0.5 sub-
micron radiation-hardened standard cells. You can decide is this timing data is good
enough to use when performing structural tests with your components. In addition, some
sample .mag files (0_nan2.mag, 0_nan3.mag, 0_nan4.mag) that are Octtool complaint are
in the subdirectory of the tutorial directory called examples. You can open these files in
Magic and visually see how the standard library cells should be laid out at the end of
standard library cell creation. Finally, a 0.35-micron standard library .cif file and a 0.50
micron radiation-hardened standard library .gds file in included in the tutorial directory.

D-l

From the directory that you want to work in for this tutorial, at the Unix prompt type:

UnixPrompt% cp -r -kwatson/tutorial/* .

First, you need a different cell library than the Lager cell library preferably the
cell library you will use for your design. However, I have provided two cell libraries for
you to practice making a standard cell library. There are two different file types that a
cell library can come in. First is the .cif format, which is the most popular format for
commercial cell libraries. The second type is the .gds format, which is a common format
for radiation hardened cell libraries. The MOSIS web site has different cell libraries for
the different technology sizes and can be downloaded from www.mosis.org. However,
the .cif files from MOSIS contain all the standard library cells in one .cif file for each
technology. This creates a problem when trying to break apart the standard cells into
individual Magic files. You may have to go into the main .cif file and copy sections out
and paste them into separate .cif files. This can be easily done in EMACS by opening the
main .cif file and opening a new file preferably with the nomenclature of cellname.cif.
Once the standard cells are in individual .cif files a conversion from .cif to .mag files will
have to be performed. My example .cif file (mtsms035dl.cif) is used for the TSMC 0.35
micron process, which has 4 layers of metal and 2 different layers of polysilicon.

To transform from .cif to .mag files simply open Magic with the correct
technology called in the command at the Unix terminal prompt: (This is to
call the technology files related to the TSMC 0.3 5-micron process)

UnixPrompt% magic -T SCN4M_SUBM.20.TSMC

Next use these commands in this order at the Magic terminal prompt to read in a .cif file
and load the new Magic file into a Magic window:

: cif read filename

:open junk

:load filename

:save filename

Repeat this process until all the library cells you need are converted to .mag files and
saved.

To transform from .gds to .mag files simply perform these commands:

D-2

I have provided an example .gds file (ga061ib6.gds) that is for the HP 0.5 micron process
which has 3 layers of metal and 1 layer of polysilicon. This standard cell library is
radiation hardened, so expect larger cell areas and irregular transistor dimensions
especially for the n-channel transistors.
Resave the .gds files as .strm files at the Unix prompt

UnixPrompt% cp ga06Iib6a.gds ga061ib6a.strm

Open Magic with the correct technology file loaded for the standard cells.

For example for HP 0.5-micron process at the Unix terminal prompt type:

UnixPrompt% magic -T SCN3M_SUBM.30

At the Magic terminal perform the "calma" command to read in the .strm file into Magic:

:calma read ga061ib6a

Depending on how the library was made, you may have to call different cells into one
window and then start performing the commands under the "Transforming Magic Cells
to Octtools Leaf Cells or Standard Cells" Cells possibly could have routing cells that
will need to be loaded into the window with the standard cell main layout. Simply
perform a "getc" command at the Magic prompt: (make sure the cursor is on the Magic
Layout window you want the cell put into)

:getc filename

There are some standard files, which will make the conversion to a new standard
cell library easier. First, behavioral VHDL code has been created for different standard
cell names, so conforming to these names will make the process easier. In addition, .sym
files exist for all these standard cell names which helps when working in Synopsys
Graphical Environment.

The new standard cells should mimic the names listed below in the parentheses:
(Keep in mind that the first character is the number zero, not the letter O)

(0_nan2) 2-input NAND gate
(0_nan3) 3-input NAND gate
(0_nan4) 4-input NAND gate
(0_nor2) 2-input NOR gate
(0_nor3) 3-input NOR gate
(0_nor4) 4-input NOR gate
(0_mux2) 2-input MUX
(0_xor2) 2-input XOR gate
(0_dff) D Flip-Hop

D-3

(0_dffr) D Flip-Flop w/Reset
(0_dffrnq) D Flip-Flop w/Reset and without a negated output (not Q)
(0_aoi22) And-Or-Invert (2 input AND gates and 2 input OR gate Structure)
(0_buf 1x8) Buffer (Increase drive strength by 8)
(0_buf 1 x 1) Buffer (Signal Refresh)
(0_zbuflx8) Tri-State Buffer (Increase drive strength by 8)
(0_zbuflxl) Tri-State Buffer (Signal Refresh)
(0_invlxl) Inverter
(0_invlx8) Inverter (Increase drive strength by 8)
(0_one) Pull-Up (Makes Line a Constant Zero)
(0_zero) Pull-Down (Makes Line a Constant One)

In order to view the .mag files in the correct technology, simply perform this
command at the Unix terminal:

UnixPrompt% magic -T SCN3M_SUBM.30 filename

Transforming Behavioral VHDL code to Structural VHDL code (including
new library cells)

The transformation is time consuming, but simple to perform. Design Analyzer
(DA) is a tool that reads in behavioral VHDL code and creates circuitry to perform the
VHDL code's functions. See EENG 695 Laboratory Exercise #2 in the Reference
Section located in the back of this tutorial for help on how to transform behavioral VHDL
code into a .dbfile. It will use the Lager library cells to make the circuit. After
optimizing the design and saving a .db file from DA, perform the "db2sge" command to
transform the .db file into a readable format for the next tool (Synopsys Graphical
Environment) to read.

UnixPrompt% db2sge -add_search_path ~cad/chiplib/synthesis -database filename.db

Synopsys Graphical Environment (SGE) will create the structural VHDL code
from the following commands performed in SGE. Make sure all the standard cell .sym
and .vhd files are in the same directory you are creating your hierarchical components in

Step 1: Open SGE

UnixPrompt% sge &

Step 2: Select the Schematic Editor and Double-Click on the Component you
want to create structural VHDL code for and check to make sure the design transferred
over to SGE correctly.

D-4

Step 3: If the circuit has D flip-flops within it, then change out the Lager D flip-
flops with the appropriate radiation-hardened D flip-flop or a commercial flip-flop and
reconnect the appropriate wires. Reminder that some D flip-flops have a regular clock
input along with a negated clock input, which may drive adding an additional inverter
and buffer. If splicing the clock line to make the negated clock line, remember to put a
buffer on the clock line after the splice point in order to make the delay similar in order
for structural VHDL back-annotated timing tests function properly. For some reason
without putting in the buffer into the clock line, the structural VHDL tests will yield U's
on all the outputs. After performing your changes to the schematic window, perform a
save by clicking on the File drop-down and click Save.

Step 4: Click-on the Utility drop-down menu on the main SGE window and click
on Schem to ASCII, then scroll down and click on the component you wish to change
out the Lager cells for your new standard cells. This will create a file with the syntax of
component.asc. DO NOT CLOSE SGE.

Step 5: Open the component.asc file with EMACS and perform Query Search on
the standard cell names. You will find the standard cell names towards the bottom of the
.asc file, so go to the end of file and page up to the beginning of the standard cell
declarations. After performing the modifications, click on the File drop-down menu and
click Save Buffer.

Step 6: Click on the Utility drop-down menu on the main SGE window and click
on ASCII to Schem. Scroll down and click on the component that you just changed in
EMACS. Click on Schematic Editor on the side of the main SGE window and double
click on the component you just read into SGE from the ASCII file. A window will open
up showing the new schematic with the new standard library cells embedded into the top-
level design.

Step 7: Select the Tools drop-down bar in the Schematic Editor window and then
click on VHDL Netlist.

Step 8: Go into Structural VHDL Code and perform a Query Search in EMACS
to the library directory and cell directory Lager to WORK. Make sure all the standard
cell behavioral VHDL code is complied in your WORK directory before trying to
compile the newly generated SGE structural VHDL code.

Creating .sdl Files from SGE for Octtools

Step 1: Open SGE
UnixPrompt% sge &

Step 2: Select Navigate Hierarchy, then click on New, click on the component
you want to create the .sdl file for.

D-5

Step 3: Select Process in Editor Window and then click on Netlist by Pin in the
drop-down menu

Step 4: Close the Editor window and save the file when prompted

Step 5: In main SGE window, click on Symbol to ASCII and select the same
component as chosen in Step 2.

Step 6: Exit SGE, Click on File drop-down menu and select Quit.

Step 7: Open .net file in EM ACS and perform a search and replace V with '_'
globally. (After selecting Query Search and inputting the search character(s) and the
replacement character(s), the Shift! in EMACS will replace all the occurrences without
having to type in "y" or "n" for each occurrence)

Step 8: Run net2sdlr on file (net2sdlr lets you work with the newly named
standard cells rather than the Lager cell names) (may have to edit code if gates are
missing in the .sdl file that is created)

Step 9: Open .sdl file in EMACS and check to be sure all gates were instanced.

Making Octtools Compliant Magic Cell Files

Helpful Hints (keep these hints in mind as you are performing the next
section):

To create leaf cells from magic cells:

1. Make sure that Vdd! is the top rail and GND! is the bottom rail.

2. Cell width (metal rail width) must be a multiple of eight X.
For example - cell width can be 8, 16, 24, 32,40,48, 56, ... etc.

3. Ensure that the lower left corner of GND! is at (0,3). You can use the black
dot marker in the Magic window to locate the (0,0) point. You will need to use the
:move command at the Magic terminal

4. Label Vdd! and GND! with vertical line labels along the border of
all four Vdd! and GND! edges. See example .mag files to see what these labels look like.

5. Label all terminals in the Magic layout window. It is helpful to label the
inputs/outputs as they are defined in the behavioral VHDL files. Center of terminal must
be at x=m*8 + 4, where m in any positive integer or zero. All contacts must be vias
labeled in the center. No terminals can have the same x value. Metal2
is used vertically to connect to the terminals. Any blockage may
cause routing problems (can be blocked either upper or lower, but not

D-6

both).

To create labels for the input/output terminals make a box around the via and perform the
label command:

tlabel labelname center (This will create a label that is centered on the

via)

To check the x coordinate position; make a dot in the middle of the input/output vias and
perform the box command (the xy coordinates will be displayed in the Magic terminal
window):

:box

6. Create .SDL file from template below by replacing <cell_name>,
<cell_width>, and <cell_height> with the actual parameters. Modify net
statements and terminal statements as necessary. (An example is provided in the
-kwatson/tutorial/examples directory called example.sdl)

; sdlFile
(parent-cell <cell_name> (FLAT_STOP"")

(CELLAREA (* <cell_width> <cell_height>))
(CELLCLASS LEAF))

(net A ((parent Al)))
(net B ((parent Bl)))
(net C ((parent C2)))
(net D ((parent D2)))
(net O ((parent O)))
(terminal Al (TERMTYPE SIGNAL) (DIRECTION INPUT))
(terminal Bl (TERMTYPE SIGNAL) (DIRECTION INPUT))
(terminal C2 (TERMTYPE SIGNAL) (DIRECTION INPUT))
(terminal D2 (TERMTYPE SIGNAL) (DIRECTION INPUT))
(terminal O (TERMTYPE SIGNAL) (DIRECTION OUTPUT))
(terminal Vdd! (TERMTYPE SUPPLY))
(terminal GND! (TERMTYPE SUPPLY))
(end-sdl)

7. Open a feed.mag cell. See example in Lager directory under the path
(currently /cad/Lager5.0/Lager/common/LagerrV/cellib/stdcell2_3/misc) or the example
provided from the initial copy from the tutorial directory.

D-7

8. Open the lager file and make sure the file looks like the syntax below. (This
tells the Octtools to look for the .sdl files and the standard library cells in your current
directory.)

(DMoct.sdl
./

)
(stdcell.leaf cell

./

)

9. Make sure you have 'octprep' in your current directory. You can get a copy
from (currently /cad/Lager5.0/Lager/common/LagerlV/cellib/stdcell/misc) or from the
tutorial directory mention at the beginning.

10. Open wolfe.rules_6.0 file provided from the tutorial directory: (This file tells
Octtools how it is going to route all your standard cells together- you can modify the rail
lines extension from the main part of the component which is helpful for routing the
power and round rail lines. For each technology size this file will have to be adjusted to
get the right spacing between rows- this example file was used for the Hewlett-Packard
0.5 sub-micron process, a 3 layer metal, 1 layer of poly process.)

units_per_lambda 20
feedthru ./feed physical
hjayer MET1
vjayer MET2
power_position LEFT
v_net_weight 1.0
h_net_weight 1.0
rowSep 1.4
powerjwidth 24
fast 20
minimum_pad_space 50
restart off
create_new_cel_file off
vertical_wire_weight 1.0
vertical_path_weight 1.0

11. Remove any existing directories with the same name as the cells be created.

D-8

Transforming Magic Cells into Octtool Leaf Cells or Standard Cells:

Step 1: Load Complete Gate File into Magic
:load filename

Step 2: Perform Command at Magic Prompt
(use "test" for the filename to use as a dummy file)

:cif flat filename

Step 3: Quit Command

Step 4: Open a Blank Magic File from the Unix Terminal
UnixPrompt% magic -T SCN3M_SUBM.30 junk

Step 5: Perform a Read of the New .cif File
:cif read filename

Step 6: Perform a Select in Magic - DO NOT EXPAND THE FILE

S

Step 7: Go into Edit Mode (be sure you have the cursor on the Magic window)
:edit

Step 8: Perform a Save on the Magic File
:save filename

Step 9: Perform a Load of the Magic File
:load filename

Step 10: Perform a Select on the Cell in Magic

S

Step 11: Measure the Area of the Cell in units of Lambda (k)
(note to measure the cell with a box which encompasses the ground and Vdd rail lines-
need to record this height and width in the .sdl file for each standard cell)

:box

Step 12: Rotate the Vdd (Power Line) on the top of the Cell
: clock

D-9

Step 13: Label According to .sdl names (inputs, outputs, Vdd, GND)
(may have to add vias for the inputs/outputs before putting on labels- see Magic Macros
for the "pai via" macro)
(see the Helpful Hints section for Label Specifications, which are different for the
inputs/outputs and the rail lines)
(see Lager cell .sdl/.mag pair for example of setup)
(need to orient cell so lower left corner is 3X above (0,0))
(inputs and outputs will have to be separated by 41 horizontally in the Magic layout)

Step 14: Box an Appropriate Area and Annotate in the .sdl file (include from
bottom of GND! rail to the top of the Vdd! rail)

:box

Step 15: Perform a Save on the File
:save filename

Step 16: Quit Magic

Step 17: Run Octprep (can do octprep *.mag at the end of adjusting all the files)
(octprep calls two functions mag2oct and vulcan which are located at
(~cad/Octtools5.0/sun4/bin/) make sure you have permissions to execute and read these
binary files) (Before running Octprep you must be on a SUNOS station since they contain
the Octtools software)

Make a Connection to where the Octtools software is located (switch over to either "eris"
or "heracles" SUNOS stations).

UnixPrompt% rlogineris
or

UnixPrompt% rlogin heracles

HeraclesorEris% octprep filename.mag
or

HeraclesorEris% octprep *.mag

Octprep creates a directory for each standard cell and contains files for the physical,
structure_instance, and structure_master views that are needed by Octtools to create a
Magic layout for a top-level component, which calls these standard cells.

Step 18: You now have a standard cell library after completing these steps for all
the cells you need for your design and performing the "octprep" command on all of them.

D-10

Using Octtools to Generate Layout with New Library Cells

Step 1: Make sure all needed .sdl files, .mag files, and post-processed octprep
directories for all the standard cells and higher level cells are in one directory. Be sure
you are in that directory that contains all these files.

Step 2: Make a Connection to where the Octtools software is located (switch over
to either "eris" or "heracles" SUNOS stations).

UnixPrompt% rlogineris
or

UnixPrompt% rlogin heracles

Step 3: Check to make sure you are in the directory mentioned in Step 1.
(Initially, you will be in your root directory for example /home/newstudent2/kwatson/,
may have to perform a couple of "cd" commands to get to the correct directory where all
the .mag, and .sdl files are)

Step 4: Generate the Master View

HeraclesorEris % DMoct -m filename

Step 5: Generate the Structurejfastance View

HeraclesorEris % DMoct -s filename filename

Step 6: Perform a Schematic Check

HeraclesorEris % SIVcheck -s -m filename

Step 7: Perform an octprep on the .mag Files
(This step should have already been performed, but just in case it hasn't it is a good idea
to perform this command before the next DMoct command)

HeraclesorEris % octprep *.mag

Step 8: Generate the Layout (Dmoct will generate a .log file and place it in your
current directory just in case any errors occurred)

HeraclesorEris % DMoct -#wolfe6_0 -t ./wolfe.rules6_0# -#Stdcell -F# -v -1
filename filename

Step 9: Open the Magic file, which should be located in a subdirectory called
(layout) and check to be sure everything is connected.

D-ll

Comments when working with IRSIM and HSPICE files (Radiation
Hardened Layouts Only):

(See EENG653 Laboratory Exercise #5 in the Reference Section for help with
HSPICE and IRSIM file extraction from Magic) When trying to perform ext2sim or
ext2sp on the extracted files from the final layout in Magic, remember to check on the
transistor dimensions if using annular transistors for the n-channel transistors. For
example, for the HP 0.5 micron process the .spice or .sim files have incorrect transistor
dimensions when the files are generated. You will have to manually go in and change the
transistor dimensions. For the 0.5 micron process, the dimensions were (1_51 J and they
should be (_2_46_). You will need to go into the layout and count the lambda for the
width and length measurements for the annular transistor. By performing, a Query
Search in EMACS will take care of the transistor dimension problem.

Comments on using IRSIM and HSPICE with different technologies than the
standard VLSI network 0.8-micron technology:

For IRSIM: You need the correct .prm file that goes with the technology you are trying
to simulate. The .prm file can be in the directory you are running the simulation from,
because by default IRSIM looks in your current directory for the .prm file and then looks
at a specified location on the network for the file.

For HSPICE: MOSIS has test wafer run results with spice parameters included in the test
run. It is best to take one of the most recent fabrication runs results and copy those spice
parameters, which were deduced from testing the wafer. In your .run file simply use an
(include) statement to call the spice parameter file that is copied from the wafer test
results. It will take some searching through the wafer test run file to find the spice
parameters, but you can find the default file on the VLSI network and compare what
terms you need to what is in the wafer test run file.

D-12

Reference Section

Example 0_nan2.mag file with a few keynotes included:

magic
tech scmos
timestamp 913925037
« metall >>
rect 0 3 56 19
rect 0 111 56 127
rect 0 111 56 127
rect 18 76 38 80
rect 26 34 30 76
rect 34 45 38 73
rect 18 45 22 73
rect 26 30 38 34
rect 18 19 22 27
rect 0 3 56 19
« metal2 >>
rect 26 57 30 61
rect 18 57 22 61
rect 34 57 38 61
rect 34 57 38 61
rect 26 57 30 61
rect 18 57 22 61
« poly »
rect 39 73 41 119
rect 31 73 33 119
rect 23 73 25 119
rect 15 73 17 119
rect 31 71 41 73
rect 15 71 25 73
rect 34 69 38 71
rect 18 69 22 71
rect 34 45 38 49
rect 18 45 22 49
rect 35 37 37 45
rect 19 37 21 45
rect 31 35 41 37
rect 15 35 25 37
rect 39 22 41 35
rect 31 22 33 35
rect 23 22 25 35
rect 15 22 17 35
rect 31 20 41 22
rect 15 20 25 22
« ppcontact »
rect 46 5 50 9
rect 36 5 40 9
rect 26 5 3 0 9
rect 16 5 20 9
rect 6 5 10 9
<< pdcontact »
rect 42 111 46 115
rect 26 111 30 115

(Octtools changes psubstratepcontact to ppcontact- may
have to add ppcontact to the .tech file so Magic can
recognize this contact)

D-13

rect 10 111 14 115
rect 34 76 38 80
rect 18 76 22 80
« ndcontact »
rect 34 30 38 34
rect 18 23 22 27
« pdiff »
rect 9 75 47 116
« ppdiff »
rect 0 51 56 55
rect 51 10 56 51
rect 0 10 5 51
rect 0 4 56 10
« nndiff »
rect 0 121 56 126
rect 51 67 56 121
rect 0 67 5 121
rect 0 63 56 67
« m2contact »
rect 34 57 38 61
rect 26 57 30 61
rect 18 57 22 61
« ndiff »
rect 9 14 47 43
« pwell »
rect -3 1 59 59
<< polycontact >>
rect 34 69 38 73
rect 18 69 22 73
rect 34 45 38 49
rect 18 45 22 49
« nncontact >>
rect 46 121 50 125
rect 36 121 40 125
rect 26 121 30 125
rect 16 121 20 125
rect 6 121 10 125
« nwell »
rect -3 59 59
« labels »
rlabel metall
rlabel metall
rlabel metal2
rlabel metal2 18 57 22 61
rlabel metal2 34 57 3 8 61
« end »

(Octtools changes nsubtratencontact to nncontact,
may need to change the .tech file to recognize this
new layer name)

129

0 3 56 19 0 GND!
0 111 56 127 0 Vdd!
26 57 30 61 0 01

0 II
0 12

(Octtools will group the two Vdd! and
GND! terminals into one terminal
each)

D-14

File Types

.vhd Behavioral VHDL files used to describe the behavior of components and standard
library cells

.sym SGE files, which define the component's schematic representation as well as
terminal- used by SGE to display a schematic view of component or standard
library cell

.gds Standard library cell file type that needs to be converted to .strm for Magic to read
it- used to convert to .srtm files for Magic to read

.cif Extraction view of a Magic layout- can be read by Magic with a :cif read
command- used by Magic to create .mag files

.strm File type used to be read by Magic with a xalma command- used by Magic to
create .mag files

.sim File type used by IRSIM for analysis purposes- used with IRSEVI

.ext Extraction file from Magic layout that is created by the Magic command :ext
filename- a product produced from a .mag file using Magic

.mag File type read by Magic that contains layout information- used by Magic to
display layout

D-15

Appendix E. Design Checking Steps

There is a certain order of steps an engineer should go through before placing a
chip onto an HP 82000 analyzer or any other kind of tester equipment. The steps are as
follows:

Step 1: Check for continuity with a multimeter between power and
ground pins with every other pin on the package. There should not be
continuity between power or ground to any of the other pins, which are
used for the output and input signals.

Step 2: Check for continuity between the power and ground pins. If
there is continuity, then a short exists somewhere in the circuitry.

Step 3: If a short exist between power and ground, go back to the
MAGIC file, which the design came from. Extraction of the top-level
of the file in MAGIC will produce a file with a .ext extension. Perform
an ext2spice on this file and open the .spice file that is created from this
process. To check for power and ground problems, perform two
searches in the .spice file. The first search should be for "GND pfet" in
order to detect any p-channel transistors that are connected to ground.
The last search is for "Vdd nfet" in order to detect any n-channel
transistors that are connected to power.

Step 4: When finding wrongly connected transistors, use the bottom of
the .spice file to reference back to which component contains the
transistors. The final step is to go back into MAGIC and correct the
errors found in the .spice file.

Step 5: Repeat this procedure until all of the transistors are connected
correctly.

E-l

References

1. Donohoe, Greg W. Microdot 4-bit Stack Machine: Architectural Description.
Unpublished. June 2000.

2. The MOSIS Service, Information Sciences Institute, University of Southern
California, 4676 Admiralty Way, Marina del Ray CA 90292-6695.
http://www.mosis.org

3. Smith, Michael J. S. Application-Specific Integrated Circuits. Reading: Addison-
Wesley, 1997.

4. Weste, Neil H. and Kamran Eshraghian, Principles of CMOS VLSI Design A
Systems Perspective, Second Edition. New York: Addison Wesley, 1993.

5. IEEE Standard 1076-1993.

6. Synopsys Design Analyzer Reference Manual, Synopsys Incorporated, 700 East
Middlefield Rd., Mountain View CA, 1998.

7. Shung, C. B, et al, "An Integrated CAD System for Algorithm-Specific IC Design,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
10: pages 447-463, April 1991.

8. Barnhart, David J. An Improved Asynchronous Implementation of a Fast Fourier
Transform Architecture for Space Applications. MS Thesis, AFIT/GE/ENG/99M-
01. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, March 1999.

9. Faggin, Federico, Hoff, Marcian E., Mazor, Stanley, and Shima, Masatoshi. The
History of the 4004. IEEE Micro, Volume 16, pages 10-20, December 1996.

10. Betker, Michael R., Fernando, John S., and Whalen, Shaun P. The History of the
Microprocessor. Bell Labs Technical Journal, Volume 2, No. 4, pages 29-56,
Autumn 1997.

11. Donohoe, G. W., Lyke, J. C, Cannon, S. "Microdot: a Tiny Microcontroller for
Distributed Sensor Interfacing." Proc. 2nd International Conference on Integrated
MicroNano Technology, Pasadena, CA, 11-13 April, 1999.

REF-1

12. Hollis, Ernest E. Design of VLSI Gate Array ICs. Englewood Cliffs, New Jersey:
Prentice Hall, 1987.

13. Massara, R. E., editor. Design & Test Techniques for VLSI & WSI Circuits.
London, United Kingdom: Peter Peregrinus Ltd., 1989.

14. Tanenbaum, Andrew S. Distributed Operating Systems. Upper Saddle River, New
Jersey: Prentice Hall, 1995.

15. Holmes-Siedle, Andrew and Len Adams. Handbook of Radiation Effects. Oxford,
New York: Oxford Press, 1994.

16. Brothers, Charles P., et al. "Radiation Hardening Techniques for Commerically
Produced Microelectronics for Space Guidance and Control Applications." 20th
Annual American Astronautical Society Guidance and Control Conference, pages
169-180, February 1997.

17. The Materials Science and Engineering Department at Virginia Tech University.
Online. Internet. 31 Jan 2001. Available: http://dvorak.mse.vt.edu/faculty/
hendrick/mse4206/projects97/group02/hardening.htm

18. T. Ma and P. Dressendorfer. Ionizing Radiation Effects in MOS Devices and
Circuits. New York: John Wiley and Sons, 1989.

19. Messenger, George C. and Milton Ash. The Effects of Radiation on Electronic
Systems, 2nd Edition. New York: Van Nostrand Reinhold, 1992.

20. The National Institute for Nuclear Physics and High Energy Physics. Online.
Internet. 31 Jan 2001. Available: http://www.nikhef.nl/user/dbello/txts/doctoral/
adtol.html#geometrical

21. Osborn, J., Lacoe, R., Mayer, D., and Yabiku, G. "Total Dose Hardness of Three
Commercial CMOS Microelectronics Foundries," RADECS97 Proceedings.
pages 265-270, September 1997.

22. McDowell, Philip. Choosing and using 4-bit microcontrollers. New York: Marcel
Dekker, Inc., 1993.

23. SanGregory, Sam L. A Single-Chip 2K x 8-Bit Pipelined Digital RF Memory Using
2pm CMOS VLSI Technology. MS Thesis, AFTT/GCE/ENG/92D-10. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1992.

REF-2

24. Kranz, G. M. The Design of a 6-Bit CMOS Dual-port Digital Radio Frequency
Memory Using Very Large Scale Integrated Circuit Technology. MS Thesis,
AFIT/GE/ENG/90D-30, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1990.

25. MAGIC, Version 6.5.1, EECS/ERL Industrial Liaison Program, University of
California at Berkley, Berkeley, CA.

26. IRSIM, Version 9.5, Stanford University, CA. 1988-1990.

27. HSPICE User's Manual Version 96.1, Meta-Software, Inc., 1300 White Oaks Road,
Campbell CA, February 1996.

28. Using the HP82000 Manual, Hewlett-Packard, November 1993.

REF-3

Vita

First Lieutenant Kirby M. Watson was raised in Princeton, Illinois. He graduated

from Saint Charles High School in Saint Charles, Illinois in June 1993. He entered

undergraduate studies at Marquette University in Milwaukee, Wisconsin where he

graduated with a Bachelor of Science degree in Electrical Engineering in May 1997. He

was commissioned through the Detachment 925A AFROTC at Marquette University

where he was recognized as a Distinguished Graduate.

His first assignment was at Wright-Patterson AFB as a C-17 Maintenance

Training Systems Engineer in June 1997. In August 1999, he entered the Graduate

School of Engineering and Management, Air Force Institute of Technology. Upon

graduation, he will be assigned to the Air Force Technical Application Center (AFTAC)

at Patrick AFB, Florida.

VITA-1

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The pubiic reporting burden for this «ff^X^XX^ ^^ ^^^T^^Z^!^ t^= SS^g «S
gathering and maintaining the data needed, and c^^<"S»na^v>^>"^^^^n

D°^° Washington Headquarters Services, Directorate for Information Operations and Reports
&Ä1)0 «Ä^^^ VDAPS20n2-4302DeRensSponoVents shouid be alre that notwithstanding any other provision of law. no person sha.l be
subject to a^'y penalty"or Sing tocomply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
07-03-2001

2. REPORT TYPE
Mater's Thesis

4 TITLE AND SUBTITLE
MICRODOT- A 4-BIT SYNCHRONOUS MICROCONTROLLER FOR
SPACE APPLICATIONS

6. AUTHOR(S)
Kirby Michael Watson, First Lieutenant, USAF

3. DATES COVERED (From - To)
May 00 - Mar 01

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
2950 P Street
WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/VSSE
Dr. Robert P. Pugh
3550 Aberdeen Ave. SE
Kirtland AFB, NM 87117-5776
DSN 246-0585

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GE/ENG/01M-20

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Unlimited

13. SUPPLEMENTARY NOTES
Major Charles P. Brothers, Jr., PHD
DSN: 785-3636 ext. 4618, Email: Charles.Brothers@afit.edu

Satellites have limited power budgets due to the amount of power collected by the satellite's solar panels. The goal is to have a
wide range of functionality, while running off a limited power source. Large microprocessors use large amounts of power to report
back temperature and chefnical sensor data to ground stations. By usmg small microcontrollers to perform the data collection and
mMmizing the usage of the larger microprocessors, the satellites will save power. A prototype design of the Microdot 4-bit
Zocontroller for space applications is presented. Requirements for the Microdot such as microwatt power consumption and 23
different instructions, are based on research completed at AFRL/VSSE, Air Force Research Laboratory at Kirtland AFENM.A
brief history of 4-bit microcontrollers and microprocessors, the synchronous design methodologies used, and space-based integrated
circuit issues are presented. Various CAD tools were used, implementing both standard cell and full custom logic into ^design.
The prototype Microdot was fabricated at TSMC using MOSIS to validate the design implementation Results from high fidelity
simulations indicate the Microdot design has a power consumption of 16.3 mW operating at 1 kHz and consumes 22 mW when
operating at the maximum operating clock frequency of 20 MHz. .
15. SUBJECT TERMS
VLSI, synchronous, radiation hardened electronics, space electromcs, microcontroller

16. SECURITY CLASSIFICATION OF:

REPORT

U
. ABSTRACT

U
c. THIS PAGE

U

17 LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

171

19a. NAME OF RESPONSIBLE PERSON
Major Charles P. Brothers, Jr., PHD
19b. TELEPHONE NUMBER (Include area code)

(937)255-3636 ext.4618

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

	Microdot-A 4-BIT Synchronous Microcontroller for Space Applications
	Recommended Citation

	/tardir/tiffs/a392026.tiff

