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Abstract 

As part of a joint AFRL/DAGSI turbine blade research effort, a computer program has 

been developed that uses a von Karman large-deflection two-dimensional finite element 

approximation to determine stress levels and patterns in isotropic thin plates. The 

dynamic loading of various plates has been carried out in order to model a high cycle 

fatigue situation.    The research considered the various effects of mode shapes, resident 

frequency, non-linear cyclic effect, endurance limits, and stress variations within a high 

cycle fatigue environment. 

Two main initiatives were taken. First, a transient analysis tool was developed that 

calculates stress and displacement patterns over a period of time. This analysis also 

included the effects of damping. The second initiative developed a tool to calculate the 

eigenvalues (natural frequencies) and eigenvectors of a plate with a given geometry. The 

results indicated that it is possible to model fatigue at high frequencies using FE analysis 

and compare these findings with experimentation incorporating a shaker table. 

In this research, different geometries of plates were investigated to represent turbine 

blade configurations. One square plate and three trapezoidal plates were investigated. It 

was found that a linear relationship could be found between the loading amplitude and the 

resulting maximum stress. This relationship allows for the prediction of the needed 

loading amplitude to cause high cycle fatigue. It was also determined that by altering the 

geometry of the plate, the needed loading frequency or loading amplitude to reach a stress 

level that would initiate cracks could be minimized. 



THE DEVELOPMENT OF A FINITE ELEMENT PROGRAM TO MODEL HIGH 

CYCLE FATIGUE IN ISOTROPIC PLATES 

I. Introduction 

1.1 Motivation 

In the past, the most common problems faced by gas-turbine engine designers 

involved low cycle fatigue (LCF) issues. However, with improvements in materials, 

inspections, and maintenance policies, LCF failures have been reduced (1). Now with the 

number of LCF failures decreased, the next leading cause of failures, high cycle fatigue 

(HFC), becomes the number one issue. With the numerous failures occurring, it was 

concluded that a new fatigue test method must be developed to accurately predict HCF. 

The use of an actual turbine blade in a test could be difficult due to the high frequencies 

needed to excite the correct modes. An alternative must be found that is easier to analyze 

but has the same high-cycle fatigue effect. One suggested test method involves exciting a 

plate specimen with very high cyclic base motion causing a resonant frequency response 

resulting in multiaxial stress states at desired locations. The first step in developing this 

test method is to design a topological optimization procedure to optimize the shape of the 

plate specimens to ensure the required stress states and patterns. This optimization 

procedure will be based on a dynamic von Karman nonlinear finite element code 

developed within this thesis that will calculate the stress and displacements of a plate 

with a given geometry. 
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1.2 High Cycle Fatigue 

In this section, a general introduction to high cycle fatigue is presented. First, a 

description of fatigue and crack growth is presented. Some possible causes of high cycle 

fatigue, especially in turbomachinery, are discussed. Finally, a discussion on preventing 

high cycle fatigue both in design and inspection is indicated. 

1.2.1 Fatigue and Crack Growth.     Fatigue occurs when a load, usually less then the 

failure threshold, is applied in a cyclic manner over a period of time. Failure begins with 

micromechanical damage that eventually spreads to a small crack. At first, this crack is 

so minute that it is impossible to detect with the naked eye. Stress concentrations are 

formed in the vicinity of the crack. As the cyclic loading continues, the crack grows. 

After numerous cycles, the crack becomes large enough that it becomes visible to the 

naked eye and will eventually cause the failure of the entire structure (2). Cracks can 

also initiate from intrinsic defects or foreign object damage (3). Cracks propagating in 

this manner usually initiate earlier in the life cycle of the part and can grow to failure 

faster. This is a concern since it could possibly limit the life of the parts. 

Fatigue failure in turbomachinery is especially important in turbine blades. The 

failure usually is a result of a forced response at high frequency. This forced response is 

generally produced by non-uniform flow causing an unsteady aerodynamic loading that 

can be at a frequency at or near the natural frequencies of the turbine blades. This 

loading must be treated as an unknown variable in the design of turbine blades since the 

vibration due to geometry, aerodynamics, and materials cannot be predicted with 

certainty (4). 
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High cycle fatigue is the fatigue of a part or structure occurring at these very high 

frequencies. For example, in a turbine assembly, flow passes by stationery stators and 

then by a rotating turbine blade. A single turbine blade is loaded and unloaded with an 

aerodynamic force each time it passes through the shock waves coming off of the trailing 

edge of a stator upstream. Thus it has been loaded 1 cycle passing one stator. If the 

turbine has 40 stators, the single blade would be loaded 40 cycles per revolution. If the 

turbine spool is being rotated at 15,000 rpm, then every minute the blade is being rotated 

through 600,000 cycles. A short sortie for the engine could be two hours. Thus, the 

blade would have been loaded 72,000,000 cycles. If the frequency of the loading is 

coincidental with the natural frequencies of the blade and the amplitude of loading was 

large enough, this one sortie could have already initiated a crack and caused it to 

propagate to failure. Of course, this loading is not enough to cause failure by itself, but 

as indicated above, there are numerous factors acting together to cause the actual failure. 

This example is indicated to show how cyclic loading can cause failure relatively quickly. 

An in depth discussion of the mechanics of high cycle fatigue can be found in (5). 

1.2.2 Causes of High Cycle Fatigue.     Though extensive research has been done to 

investigate the causes of high cycle fatigue, the root causes are yet unknown (4). As 

described by (6), there are numerous sources of HCF damage in turbomachinery that can 

be classified in four main areas. First, aerodynamic behavior caused by flow 

perturbations, as illustrated previously. Next, mechanical vibrations brought about by 

unbalanced rotors can cause HCF damage. Airfoil flutter, especially in blades, is the 

third category. Finally, acoustic fatigue can cause some HCF damage, though it normally 

only affects sheet metal components in the combustor, nozzle and augmentor. There are 
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numerous other factors that effect HCF and its failure rate. These include foreign object 

damage (FOD), load intensity, frequency, combinations of low cycle fatigue (LCF) and 

HCF, fretting, and flutter (1, 5, 7, 8, 9). 

1.2.3 Preventative Measures.    HCF design involves either creating a condition in 

which the small cracks do not initiate, or a condition in which they do not grow. At 

present, due to inadequate understanding of the propagation of cracks under HCF 

conditions, current design tools deal mainly with crack initiation (10). Since it is difficult 

to detect the formation of the initial cracks, a very conservative route is taken that ensures 

the allowable stresses of a component are well below the average actual material fatigue 

resistance levels. This attempts to prevent crack initiation by not allowing stresses high 

enough to cause the cracks, but is very costly to the industry since the material is over- 

designed for its application (10). The Goodman diagram is the main tool used to predict 

the conditions that will cause crack initiation. Numerous studies have been done on the 

use of the Goodman diagram and have all concluded the same thing: the diagram is a 

good start but must be modified to accurately represent the effects of HCF (3, 4, 6, 7, 10). 

As illustrated by (6), there are complicating factors that modify the Goodman diagram. 

These include foreign object damage (FOD), fretting, and HCF/LCF interaction. HCF is 

extremely surface dependent, and thus is greatly affected by surface finish, coatings, shot 

peening, and other surface treatments. The Goodman diagram can be modified to capture 

these factors also as shown by Reference (7). The Goodman diagram is modified further 

to include manufacturing variability in geometry (4). This variation in geometry was 

modeled with a damping loss factor. 
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To ensure a condition in which cracks do not propagate, a true understanding of crack 

growth must be realized. Since most turbine blades are made of a titanium alloy, to 

predict the growth rate of cracks in turbine blades, a generalized theory of crack growth 

in titanium must be constructed. However, as shown by Ravichandran (11), a projection 

of crack growth for titanium alloys cannot be generalized. Therefore, until there is a 

better understanding of the influence of the microstructure of the material on the 

propagation of cracks (5), the design against HCF can not be focused on the propagation 

of existing small cracks but must focus on the prevention of these cracks. 

1.3 Plate Theory. 

Classical plate theory was developed to model that behavior of flat plates undergoing 

small displacements in an ideal elastic manner (12). However, as thickness or 

displacement increases, the accuracy of the theory decreases and new methods were 

necessary to model the plate's behavior accurately (13). According to reference (14), 

Cauchy and Poisson were the first to use a series expansion to solve for the general thin 

plate equations. Kirchhoff simplified the problem by assuming the planes normal to the 

mid-surface remain normal after deformation (15). The Kirchhoff theory neglects the 

transverse shear strains and therefore does not accurately predict deflections. Higher- 

order theories were developed that attempted to capture this transverse shear strain. The 

best-known early models were developed by E. Reissner, H. Hencky, and A. Kromm 

(16). The Reissner theory was shown to be accurate except for in-plane stresses (16). 

The Hencky theory was also shown to result in less accurate stresses without further 

simplifying the Reissner theory. The Kromm theory is shown to be more accurate, but 

fails when a harmonic load is applied (16). Other theories including Mindlin (15) and 
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Zienkiewicz's integration technique (17) were developed but had their limitations. 

Ashwell (18) continued work done by Mansfield (19) that investigated a higher-order 

theory based on the plate deforming to a developable surface while Kui (20) investigated 

a theory to account for shear locking. Srinivas (21) developed an exact solution for a 

simply supported homogeneous plate with unrestricted thickness. Lo (22) presented a 

higher-order theory and compared it to the earlier work as well as to the exact and 

classical plate theory. This higher-order theory also accounted for the nonlinear 

distribution of the in-plane displacements. Other examples of nonlinear theory can be 

found in (23- 28). 

A higher-order nonlinear theory was developed by Palazotto and Dennis (29, 30). 

This theory is known as the Simplified Large Displacement, Moderately Large Rotation 

(SLR) theory. It has been proven for numerous loading and boundary conditions. The 

SLR theory is used in this research and will be discussed in more detail in Chapter 2. 

1.4 Finite Element Method 

The finite element method solves for, in particular, displacements, stresses, strains, 

and several more functions through a numerical procedure in which a structure is 

modeled as a series of small elements. This allows a problem that is too complicated for 

classical analytical methods, to be solved as a discretized model. According to (15), a 

finite element analysis usually involves the following steps: 
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1. Divide the structure into a given number of finite elements. 

2. Formulate the properties of each element. 

3. Assemble the elements to obtain the complete model of the structure. 

4. Apply known loads. 

5. Apply boundary conditions. 

6. Solve simultaneous equations for nodal displacements. 

7. Calculate stresses and strains. 

The code used for this research follows the above steps. Step one is accomplished 

through a mesh generator or by specific user inputs. Step 2 is accomplished based on the 

user supplied material properties. Step 3 is based on the global connectivity array that is 

either created by the mesh generator or entered by the user. The user enters the data to 

accomplish steps 4 and 5. Step 6 is accomplished through the Gaussian elimination 

technique. Finally, step 7 is accomplished through elasticity relationships. Step 7 will be 

discussed more in Chapter 2. 

1.5 Plate Vibrations 

Since the basis of this research is the response of a plate to high frequency loading, the 

plate theory must be expanded upon to allow for a dynamic loading analysis. There has 

been a great deal of work done on the vibrations of plates including work done by 

Belytschko (31), Clough and Wilson (32), and Saigal and Yang (27). The method used 

for this research is based the work presented by Katona and Zienkiewicz (33). The 

method is called the beta-m method. This method is a generalization of the Newmark 

time marching integration scheme and can solve for a linear transient analysis. For 

nonlinear transient analysis, the beta-m method is combined with the Newton-Raphson 
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iterative method (34). The details of these methods will be discussed in more detail in 

Chapter 2. 

1.6 Eigensolutions 

Another major part of this research involved finding the natural frequencies and mode 

shapes of flat plates. This is of particular interest since high cycle fatigue has been 

assumed to occur near one of these natural frequencies of turbine blades. A description 

of finite element eigensolutions can be found in Chapter 8 of (35). Leissa describes the 

free response of plates for numerous boundary conditions and geometries (36). This text 

was used as a comparison for eigensolutions found in this research. Srinivas, Joga Rao, 

and Rao present an exact analysis of eigensolutions for plates and shells(21). Reddy 

developed a higher-order shear deformation relationship that leads to more accurate 

frequencies compared to first-order theories and the classical plate theory (14). For this 

research however, a method known as the subspace iteration was used. This method, 

developed by Bathe (37), consists of the following three steps: 

1. Establish starting vectors; there should be more starting vectors then 
the number of eigenvectors to be calculated 

2. Use simultaneous inverse iterations on these vectors and the Ritz 
method to approximate the eigenvalues 

3. After convergence, use the Sturm sequence check to verify the results. 

The subspace technique is very useful since it is relatively easy to understand and can be 

programmed with little effort (37). This technique will be discussed in greater detail in 

Chapter 2. 
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1.7 Code Evolution. 

The SLR theory developed by Palazotto and Dennis (29) was encoded in a Fortran 

program entitled Shell. This code was used mainly for the static analysis of shells, 

though it could also handle the static analysis of plates. Tsai and Palazotto (34) expanded 

the program to include the dynamic analysis of shells and plates through the Newton- 

Raphson iterative method and the beta-m time marching integration sequence mentioned 

previously. Gummadi and Palazotto (24) added to the program the ability to include 

nonlinear dynamics of shells and plates. This expanded code was entitled DSHELL. 

Another addition to DSHELL was made that allowed for the computation of natural 

frequencies and mode shapes of shells and plates using the subspace iteration method 

developed by Bathe (37). To allow for the eventual use of this finite element code in a 

larger, optimization program to be developed as part of the overall research, the shell 

component of DSHELL was eliminated leaving a dynamic plate analysis tool entitled 

DPLATE. 

For this research, the code entitled DSHELL was provided. This code had the ability 

to calculate eigensolutions and solve linear and nonlinear transient analyses for 

rectangular shells and flat rectangular plates. However, this code had been modified 

numerous times since its original programming. Thus, extensive work was needed to 

debug the program and re-validate the code. When this was accomplished, the ability to 

use trapezoidal geometry was added. Also, the output of the program was modified to 

allow for quicker evaluation of results. Finally, to create an efficient program to evaluate 

flat plates only, the shell sections of the code were removed. The final product was 

entitled DPLATE. 
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1.8 Objective 

The objective of this research is to develop a finite element program that will analyze 

plates under high frequency loading. This program must first be able to compute the 

natural frequencies and mode shapes of a plate with given geometry, material properties, 

and boundary conditions. Then, the program must compute stresses and displacements of 

this plate when a cyclic force is added. The program will compute these stresses and 

displacements for both linear and nonlinear cases. The effect of damping on the result 

will also be investigated. This code will later be used in a topological optimization 

program by Ohio State University as part of a DAGSI/AFRL research project. 

1.9 Approach 

The approach of this research is to use a finite element program to determine the stress 

and displacement distribution of a flat plate under a dynamic load at high frequency. 

This frequency is determined by first evaluating the natural frequencies and mode shapes 

of the plate. These mode shapes are plotted and compared. The frequency that results in 

a mode shape that concentrates the stress at the center of the blade tip, and thus causing 

the greatest opportunity for the onset of HCF, is used for the forcing frequency. With a 

force applied at this forcing frequency, a transient analysis of the plate is performed 

calculating the stress and displacement distribution. The process is done for a plate with 

a linear assumption and with a nonlinear assumption. The process is also run for a plate 

with and without damping. The results are compared to show the effects of the high- 

order nonlinear terms in addition to damping. A by-product of the analysis is the ability 

to determine the experimental requirements based on displacement or acceleration at the 

frequency levels associated with high cycle fatigue failure. 
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II. Theory 

To fully understand the results of a project, the theory used to arrive at these results 

must be understood. The analysis was based primarily on the SLR finite element theory 

introduced in Chapter 1. The analysis was further simplified by applying the von 

Karman large-deflection two-dimensional finite element approximation. The dynamic 

aspect of the analysis was accomplished through the use of a Newton-Raphson iterative 

method and beta-m time marching integration sequence. Finally, the subspace iteration 

method was used to solve for the natural frequencies and mode shapes of the different 

plates. 

2.1 Simplified Large Displacement Moderately Large Rotation Theory 

The SLR theory approaches the solution using two-dimensionality with the most 

important three-dimensional influence, transverse shear flexibility, being approximated. 

The SLR theory is explained in its entirety in (29), but the main assumptions and basic 

principles will be discussed here. 

2.1.1 Assumptions.     The SLR theory is based on the following assumptions: 1) The 

plate's three-dimensional aspects can be modeled using a two-dimensional theory based 

on the thickness being much smaller than the in-plane dimensions. 2) Transverse shear 

stresses are equal to zero on the top and bottom surfaces and parabolic through the 

thickness. For transversely isotropic materials, the transverse shear strains are also equal 

to zero on the top and bottom surfaces and parabolic through the thickness. 3) Since the 

plate is thin, it can be assumed to be in a state of plane stress, or a3 is equal to zero. 4) 

The in-plane strains are represented using all Green strain nonlinear terms while the out- 

of-plane strains are approximated with only the linear displacement terms. 
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2.1.2 Formulation.     Since the theory is designed for shell elements, the coordinate 

system used is curvilinear. However, this system can be easily converted to a flat plate 

by setting any radius term to large values (exact would be a value equal to infinity). The 

coordinate system used for this analysis is shown in Figure 2.1. 

Figure 2.1 Plate Coordinate System 

Throughout this thesis, a shorthand tensor notation will be used. Table 2.1 illustrates the 

shorthand notation. 

Table 2.1 Shorthand Tensor Notation 

STRESS STRAIN 
G\\=G\ £n=£i 

022=^2 £22=^2 

(?33=tf3 £33=£3 

<723=<74 £23=1/2E4 

CTi3=a5 £i3=l/285 

ai2=CT6 e12=l/2e6 

COORDINATES 
X=l 
Y=2 
Z=3 
YZ=4 
XZ=5 
XY=6 

The complete Green's strain tensor is developed in (29:22-26). The SLR theory 

modifies these strains by first assuming e3 is equal to zero. This is valid since the 

thickness of the plate is small. The second assumption assumes the in-plane stresses and 
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strains are more dominant then the transverse stresses and strains. Therefore, the full 

Green strain representation is used for the in-plane strains (81, e2, and e6), but the 

transverse shear strains (e4 and E5) are approximated by using only the linear terms. 

Though this approximation leads to a failure in continuity, Palazotto and Dennis (29) 

show that for moderate rotations, the continuity equations are approximately met. The 

need for transverse shear strain is required when composite materials are considered in 

the analysis. This thesis only considers isotropic materials and thus the transverse shear 

strain's importance is limited. 

The transverse strains assume a parabolic through the thickness relationship. This 

representation accounts for an internal transverse shear but still allows it to reduce to zero 

on the upper and lower surfaces. In order to develop these strains in the plate, it is 

important to capture the proper kinematics through the displacement terms. The SLR 

kinematics for a flat plate are: 

4 

_jLr*<    s (2-1) 
'2    3h2 u2=v + Cy2--rrC3 (w2 + wn) 

where h is the plate thickness, u and v are measured at the midplane, C, is the distance 

from the midplane, \\f\ and \|/2 are the rotations of the cross-sections and w,j and w,2 are 

the slopes of the plate in the x and s direction. The degrees of freedom u, v, w, \|/i, \|/2, w,i 

and w,2 are discussed later. The kinematics for the plate can be derived from a Taylor's 

series expansion of the ^-direction about the midplane. The differences in many of the 

plate theories depend on the chosen truncation of this infinite series. 

Shear locking is a problem in Reissner-Mindlin (RM) kinematics. As the thickness 
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decreases bending dominates over the shear. In RM theories, the shear and bending terms 

are the same order, which results in a disproportionate representation (15). This over- 

constrains the finite element analysis, causing it to "lock." In the SLR theory, there is a 

higher order representation of the shear terms, which reduce to zero as the thickness 

decreases. Therefore, the bending terms are allowed to dominate for a thin model and 

shear locking is avoided. 

The physical strains ey are found from: 

£  =JjL (2.2) 

where yy is the Green's strain tensor in curvilinear coordinates shown in (29, Equation 

2.10) and the h; terms are known as "scale factors." These scale factors are needed when 

curvilinear coordinates are used in the analysis. For flat plates, the scale factors are set 

equal to one. Equation (2.1) is applied to Equation (2.2). As previously stated, the in- 

plane strains are represented with the full Green strain representation so all terms remain. 

The in-plane strains become: 

6i = e? + C^ + W + CV + CV + C6^6 

where e°j and K'J (J= 1,2,6,1= 1,2,3,4,6) are functions of displacement. These expressions 

can be written in short hand as: 

(2.4) 
i = 1,2,6 

p - sum  I  to  7 

The full expressions for Ei° and KjP can be found in Appendix A of (29) by setting Oy=l 

2-4 



and RY=oo. The transverse shearing strains are approximated by using only the linear 

terms: 

e4=(w,2+^2)(l--72-) 

e5=(w,1+^1)(l--j^-) 

AC 
h2 ' (2.5) 

if 
h2 

where h is the thickness of the plate and £is the distance from the midplane. Note that 

the transverse shearing strains are represented by a parabolic function that equals zero at 

±h/2. This illustrates the earlier comments of a parabolic through-the-thickness strain 

equal to zero at the top and bottom surfaces. 

The analysis can be simplified through the use of a von Karman plate. The von 

Karman strain displacement relations are: 

1 
£i= «1,1 + 2^ 

£2=M2,2 + 2W.2 V2 
(2'6) 

2   '2 

£6 = Ml,2 + M2,l + W'l W>2 

where ui and u2 are given by Equation (2.1). When Equations (2.1) and (2.6) are 

combined, the full expressions for 8;° and K;
P
 in Equation (2.4) are easier to use and are: 
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ß,   =M,1+-W„ 

*13  =_3/l   O'11+Vl.l) 

iclp=0,(p = 2,4,5,6,7) 

£2   =V,i + 2W'2 

(2.7) 

/C 21   ~ V^2,2 

K-, 23 -Th2(w,22+y/2<2) 

K2p=0,(p = 2,4,5,6,7) 

ß6   =M,2+V,1+W,1W,2 

4   , 
K6,^--h (2W,12+VA1J2+^2,I) 

K6p=0,(p = 2,4,5,6,7) 

For more efficient analysis, the degrees of freedom are transformed from the global 

coordinate system to a localized coordinate system through the use of shape functions at 

each node of the element. 

w(£,?j) 

w(£,»7).i = [N]{U^} (2.8) 

where 

{t/J0>}  ={u(x,y)   v(x,y)   w(x,y)    w(x,y)n    w(x,y),2    \ff(x,y\    \l/(x,y)2] 

where [N] is a matrix of shape functions and j=l,2,3,4. The definitions of the degrees of 
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freedom are shown in Table 2.2 and graphically displayed in Figure 2.2. 

w 
w,1 
w,2 

¥1 
\|/2 

Table 2.2 Degrees of Freedom Definitions 

displacement in the x direction 
displacement in the y direction 
displacement in the z direction 
slope 8w/8x at the node 
slope 5w/8y at the node 
rotation of the normal to the plate midsurface in the x direction 
rotation of the normal to the plate midsurface in the y direction 

_2t_ 

Figure 2.2 Degrees of Freedom of Plate at One Node 

There are two types of shape functions used to form the [N] matrix.   Linear Lagragian 

shape functions are used to relate the functions U(£,TI) and V(£,TI) to values of u and v, 

and \|/(£,r|)i and \j/(^,ri)2 to values of \|/i and \|/2 at each node. At the four corner nodes, 

Hermitian shape functions are used to relate w(£,r|) to values of w, w,i, and w,2 at the 

nodes. 
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The displacement field of the element can be represented as 

where 

= [R]{U} 

[R] = 

loo kC   o   kC3 + C     o 
o  l o   o   kC     o     kC + C 
ooioo      o        o 

(2.9) 

and 

v(£,»7) 

where k=-4/3h2 and h is the plate thickness. The natural coordinates are defined as £=x/a 

and r|=y/b where a and b are shown in Figure 2.2. 

The equation of motion is derived through the use of the Hamilton principal. This is 

done by setting the variation of the time integral of the total energy equal to zero. 

•2 

OJ(E-T-We) = 0 (2.10) 

E is defined as the internal strain energy of conservative or body forces. T is the kinetic 

energy and We is the external work including nonconservative forces. From Equation 

(2.10), the dynamic Equation of motion can be derived to be: 
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[M]{Ü} + [C]{Ü} + [K]{U} = P(t) V-1^ 

where {Ü},{Ü}, and {U} are the acceleration, velocity, and displacement vectors 

respectively. The consistent mass matrix [M] is found by using Equation (2.12) where p 

is the mass density, [R] is the transformation as shown in Equation (2.9), [N] is a matrix 

of the shape functions, and Q, is the domain of the neutral surface. 

[M} = jjp[N}T[R]T[R}[N]dCd£l (2.i2) 
n c, 

The damping matrix [C] has a similar formulation as the mass matrix except for a 

damping coefficient c being substituted for p as shown in Equation (2.13). Damping will 

be discussed in more detail in section 2.4. 

[C] = jjc[N]T[R]T[R][N]dCdn (2.i3) 

The stiffness matrix [K] is defined for large displacement moderately large rotations of 

plates in Equation (2.14), 

where [K0] is a constant stiffness matrix, [NJ is a stiffness matrix which includes linear 

displacement, and [N2] is a stiffness matrix as a function of quadratic displacement. 

2.2 Beta-m Method and Newton-Raphson 

The beta-m method is a generalization of the Newmark time marching integration 

scheme (33). The advantage of this method is the ability to choose the method order m 

and m integration parameters, ß0, ßi,..., ßm- The integration parameters control accuracy 

and stability of the chosen method order. Other advantages include general single step 

algorithms that simplify programming and the fact that the finite difference scheme is not 
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required. 

The beta-m method is an implicit time integration method and is defined as 

U«\=qk+bkMJ™ (2-15) 

where 

q,=yU"  At (2.16) 

and 

RAtn~k 

bk = y     ... (2.17) k    (m-k)\ 

The variable k is equal to 0,1,..., m and ßm is equal to one. In Equations (2.16) and 

(2.17), At is the time increment. For this research, m was set equal to 2. Therefore, AU(m) 

is the small change in the second derivative of the displacement vector, or the 

acceleration. Note that for a method order of 2 (m=2), that the beta-m method is the 

Newmark time marching integration scheme. 

As shown in (24 and 34), substituting Equation (2.15) into Equation (2.11) at time tn+i, 

the Equation becomes: 

[b2[M] + bl[C] + b0[K](q0+b0AU°n)]AU(m) 

= Pn+l~{[M]q2 HQq, +[K](q0 + b0AU(m))q0} 
(2.18) 

where Pn+i is the applied load at tn+i. From Equation (2.17) it can be seen that the b0, bj, 

and b2 are scalars dependent upon the integration parameters and from Equation (2.16) it 

can be seen that the qo, qi, q2 variables are history vectors known at time tn. 

The result of Equation (2.18) is a set of algebraic Equations. If a linear analysis is 

done, then the mass, damping, and stiffness matrices (Ni and N2 are discarded) are all 

constant and the set of Equations can be solved directly. However, if a nonlinear analysis 
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is done, the stiffness matrix is a function of displacement (Ni and N2) and therefore is no 

longer constant. To solve these Equations, a Newton-Raphson iterative method is used. 

This method assumes that at tn+i, U(m) is simply U(m) at t„ plus a small change. This is 

shown in Equation (2.19). 

AU™=MJ}m)+8UJm) (2.19) 

where i is the iteration number. Equation (2.19) is applied to Equation (2.18) giving the 

following result as shown in (24 and 34): 

[^2[M] + Ö1[C] + Ö0[^](?0 +b0AUi
(m)]Sur = Pn+l-[M]{q2 + b2AU^} 

-[C]{q, + bxAU\m)} - [K](q0 + b0AU^){q0 + b0AU<m)} 
(2.20) 

where 

[*:r] = [A:0]+[#,]+[Ay (2.2i) 

Equation (2.19) is solved by the following algorithm: 

1) Given Un
(0), Un

(1), ..., Un
(m) at time tn, we seek tn+1 

2) Calculate q0, qi,... ,qm from Equation (2.16) 

3) Given AUi(m) and AUn+i(0) from the ith iteration, we obtain the right-hand side 

of Equation (2.20) 

4) Update the [KT] matrix recalling [Ki] and [K2] are functions of displacement 

so they need to be updated by the AUn+i(0) term 

5) Solve for the unknown 6TJi(m) from Equation (2.20) 

6) Calculate the updated solution vector Ui+i(m) from Equation (2.19) 

7) Update Un+i(0), Un+]
(1), ..., Un+i(m) for the i+1 iteration from Equation (2.15) 

8) Check for convergence using Equation (2.22) where 8 is a set tolerance value, 

/ is the degree of freedom number and L is the total number of degrees of 
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freedom for the entire mesh. If the criteria is met, return to step 1 for the next 

time step. If the criterion is not met, return to step 3 for the next iteration. 

<£ (2.22) 

2.3 Natural Frequencies 

To find the natural frequencies of the plate, Equation (2.11) is modified for free 

response. That is, the forcing function is set equal to zero. Also, the damping term is 

eliminated, leaving Equation (2.23). 

[M]Ü + [K]U = 0 (223) 

It assumed that the response will be harmonic and the displacement vector, U, can be 

written as: 

U = U0e" (2.24) 

Substituting Equation (2.24) into (2.23) and rearranging terms results in the following 

expression: 

([/n-A,[M]){0,.}=O (2.25) 

where A; is equal to the natural frequencies squared (Aj=G)i2) and (j); is the eigenvector 

(mode shape) for the ith mode. If we define a modal matrix O as in Equation 2.26 and A 

as a diagonal matrix of the eigenvalues, then Equation (2.25) can be re-written as 

Equation (2.26). 

«MMiHte}... {«Ml <2-26) 

[K]<D=[M]<DA (2-27) 
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To solve this equation for the "p" lowest eigenvalues, a method developed by Bathe (37) 

known as the subspace iteration method is used. The solution is named the subspace 

iteration method because the iteration is equivalent to iterating with a q-dimensional 

subspace and should not be regarded as a simultaneous iteration with q individual 

iteration vectors. This method is used due to its efficiency in memory storage and time to 

converge to a solution. The method not only solves for a solution to Equation (2.27) but 

also satisfies the orthogonality conditions: 

<DT[K]$=A   and  <DT[M]$=[I] (2 2g) 

where [I] is the identity matrix. To solve for the eigenvalues and vectors that satisfy 

Equations (2.27) and (2.28), the subspace iteration-method follows three steps as shown 

in 2.3.1-2.3.2. 

2.3.1 Establish q Starting Iteration Vectors.     For the analysis, q is greater then the 

number of required eigenvalues to be calculated. The starting iteration vectors, Xi, are 

chosen to excite the degrees of freedom with a relatively large mass and small stiffness. 

To accomplish this, the first column of MXi is set equal to the diagonal of the M matrix. 

The remaining columns, except for the last column, have a value of +1 in the location 

corresponding to the degrees of freedom with the smallest stiffness to mass ratio and a 

value of 0 at the remaining locations. The last column of MXi is set as a random vector. 

2.3.2 Simultaneous Inverse Iteration.     This iteration is performed on the q vectors and 

then a Rayleigh-Ritz analysis is used to extract the "best" eigensolution approximation 

from the q iteration vectors. This step finds an orthogonal basis of vectors in the 

subspace Ek+i. These vectors are the eigenvectors when Ek+i converges to Eoo. The 

algorithm is as follows: 
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1) For k= 1,2,... iterate from Ek to Ek+i: 

KXM = MXk (2.29) 

2) Find the projections of the matricies K and M onto Ek+i: 

Kk+i ~ Xk+\KXk+i. 
(2.30) 

Mk+1 = Xl+lMXk+l 

3) Solve for the eigensystem of the projected matricies: 

Kk+lQk+1 = Mk+lQMAM (2.31) 

4) Find an improved approximation to the eigenvectors: 

^it+l = X-k+ixik+l (2 32) 

As long as the vectors Xi are not orthogonal to one of the required eigenvectors, the 

following is true: 

Ak+i—>A and Xk+i^O as k—>°° (2.33) 

The last step involves checking for convergence based on a set tolerance value tol. The 

check is accomplished through use of Equation (2.34). 

1 W4>)! 

^7 ,(*) 
<tol,      i-l,...,p (2.34) 

(*,(t,)V 
If Equation (2.34) is met, the eigensolution is the eigensolution for the plate to within the 

accuracy of tol. 

2.3.3 Sturm Sequence Check.     After iteration convergence, the Sturm sequence check 

is used to verify the eigensolution. The Sturm sequence check determines a shift value |i 

such that |i is slightly larger than the largest eigenvalue calculated. The Sturm sequence 

property along with Gauss factorization can determine the number of eigenvalues that are 

smaller then u, (37). If this number does not match the number of eigenvalues calculated, 
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then the correct eigenvalues have not been found and another iteration is accomplished. 

2.4 Damping 

The damping used in this research is Rayleigh or proportional damping for 

homogeneous materials. The damping matrix [C] is a linear combination of the mass 

matrix [M] and stiffness matrix [K] as shown in Equation (2.35). 

_[C] = a[K] + ß[M] (2.35) 

where a and ß are the stiffness and mass proportional damping constants respectively. It 

was assumed for this research that the stiffness damping would have negligible effect 

compared to the mass damping. Thus a was set equal to zero. The values of ß are 

limited to a maximum less then 0.1 to ensure that the mass-proportional damping is not 

excessive. This is especially important if rigid body motion could be possible (15). With 

a set equal to zero, Equation (2.35) reduces to Equation (2.36). 

[C] = ß[M] (2.36) 

Equation (2.37) is developed by substituting Equation (2.12) for [M] into (2.36). 

[C] = ßj $ p[N]T[R]T[R][N]dCdQ (2.37) 

Since ß is a constant, it can be moved inside the integration. Then Equation (2.13) can be 

derived by setting c=ßp. 

2.5 Convergence Criteria 

The theory used in this research is not exact, but rather is dependent upon converging 

to solutions within a prescribed error. There are three values that must be set to prescribe 

these error tolerances. The first is the value of tol used in Equation (2.34) for the 

eigensolution. According to (37), 
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toi = l(T2i (2.38) 

where the desired accuracy of the largest eigenvalue is 2s digits. For this research, it was 

decided to have the eigenvaules accurate to at least the 6th digit. Therefore, tol was set 

equal to le-6 or s is set equal to 3. 

The second variable is the convergence criteria e from Equation (2.22) used to 

terminate the Newton-Raphson inner-loop iteration. This value should be small enough 

to ensure needed accuracy in the transient analysis, but not so small that the time needed 

for the solution to converge is too extreme. A value of 0.01% was chosen for this 

research based on past experience. 

The final parameter that must be set is the At value from Equations (2.16-2.17). This 

is the time increment between steps for the transient analysis. This proved to be the most 

sensitive parameter in this research. It was hypothesized that the response will have 

sinusoidal form for a given node point. Based on experience and common practice, a 

time increment to properly represent a sinusoid should be equal to or smaller then one- 

twentieth of the period of the response frequency. A study was done to see the effect of 

the time increment on the solution. The results of this study showed that the time 

increment should be set to one-fortieth of the period of the expected response frequency. 
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III. Results and Discussion 

The main objective of this research is to show trend data, which will later allow for an 

optimization program to be designed to achieve specified high cycle fatigue scenarios. To show 

these trends, two main shapes were investigated, square and trapezoidal. The square plate 

investigated was 0.1143m X 0.1143m titanium plate with a thickness of 0.001016m. These 

dimensions were chosen based on on-going experiments being performed in a Ohio State 

University thesis to allow for eventual comparisons. Three trapezoids were investigated where 

all three had the same in-plane area as the square and the same material. The first trapezoid had 

a hub to tip ratio of 0.3. The second trapezoid had a hub to tip ratio of 0.7. The third trapezoid 

was the inverse of the first with a hub to tip ratio of 3.33. The basic geometries of the plates are 

shown in Figure 3.1. 

.1143m 

■4 ► 
.0528m 

.1143m 

.1759m 
<4 ► 

Trapezoid 1 

.1143m 

.1345m 
■4 ► 

.0528m 
■* ► 

.1143m Trapezoid 2 .1143m 

.0941m .1759m 

Figure 3.1 Plate Geometries 
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For each of these four cases, an eigensolution was found that included the first six natural 

frequencies and mode shapes. A transient analysis was then accomplished for each case with a 

sinusoidal forcing function applied at the center of the plate. The frequency of this forcing 

function was based on the natural frequencies of the plate. The mode shapes were examined to 

determine the one that concentrated the most energy in the center of the tip of the plate. The 

stress at this point can be predicted and compared to the estimated value needed to initiate cracks 

in the material, and thus it can be determined when the correct stress levels are reached to cause 

fatigue. The amplitude of the forcing function was set at two different values thus allowing a 

trend to be developed that could then predict the amplitude of the force needed to raise the stress 

high enough to initiate cracks based on the Goodman diagram. The plates were then loaded with 

this large forcing function. Numerical factors that could affect the outcome were also examined. 

These factors included nonlinearity, damping, and the von Karman assumption. 

The material used for all four cases was a titanium alloy (Ti-6A1-4V). This material has 

numerous applications in the aerospace industry, particularly turbine blades. Therefore, the 

response of this material to high cycle fatigue is very critical to the future development of 

turbomachinery. The material properties for Ti-6A1-4V are shown in Table 3.1. 

Table 3.1 Material Properties 
Property Symbol    Value 

Young's Modulus 
Poisson's Ratio 

E 114Gpa 
V 0.33 

Thickness t 1.016 mm 

3.1 Code Validation 

Before the cases can be investigated, the code used must be verified. The actual code used for 

this research is a subset of a code entitled DSHELL. This code can do linear/nonlinear dynamic 

analysis for plates and shells. The code was first run and compared to published results for shell 

elements. The first case, as presented in (34), involved the static response of a shell to a 
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uniformly distributed half-sinusoidal wave loading applied in the center of the shell with a peak 

intensity of 90 psf as shown in Figure 3.2. 

H.r 

Ottpftftym 

w*$w ttoib/n* 
tJttO'ptl 

tO 

0 0.5 1,0 
Time, »ec 

Figure 3.2 Distributed Half-Sinusodial Impulse Load 

The shell is an isotropic shell with a Young's Modulus E=3 X 106 psi, a Poisson ratio of 0, and a 

weight density of 90 psf or mass density of 2.795 slugs/ft. In DSHELL, a static solution is 

accomplished by setting the mass density equal to 0, thus eliminating the mass and damping 

matrices from the equation of motion. The displacement of point A over time is calculated. The 

results of DSHELL compared to Clough and Wilson's results can be seen in Figure 3.3. 
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♦   Clough & Wilson 
(Nonlinear) 

-o— Dshell (Nonlinear) 

0 0.2        0.4        0.6        0.8 

time (s) 

Figure 3.3 Static Response of Shell with Distributed Half-Sinusodial Impulse Load 

The graph shows the displacement of point A with respect to time. DSHELL's result indicates 

that the code is adequate for static solutions. For validation of a dynamic solution, another case 

done by Clough and Wilson was tested. The same shell and loading were used as above, but a 

dynamic solution was sought (34). The result of this analysis is shown in Figure 3.4. 

0     0.2 0.4    0.6    0.8 

time(s) 

1       1.2    1.4 

♦   Clough and Wilson 
(Nonlinear) 

-«—Dshell (Nonlinear) 

Figure 3.4 Dynamic Response of Shell with Distributed Half-Sinusodial Impulse Load 

Once again DSHELL results are approxiamtely the same as the results presented by Clough and 

Wilson. A third case is presented for validation from (38). This case involved a step load 
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applied at the center of an arch that reaches its maximum value at 0.002 seconds as shown in 

Figure 3.5. 

«.MW2lb) 

40.03 N(9 lb) 

S.896 N(l lb)- 

f. 

Ik 
0.002 0.02 

Time (seel 

Figure 3.5 Concentrated Step Load 

The arch is simply supported at the ends. The results for the max loading amplitude of 8.896 N 

from DSHELL as well as from (38) are shown in Figure 3.6. DSHELL's results are 

approxiamtely the same as those presented by the reference. 
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Figure 3.6 Dynamic Response of Arch with Concentrated Step Load 

The difference between a flat plate and a shell is the radial dimension used. A flat plate is a shell 

with a radius that approaches infinity. A shell analyis and a plate analysis are both done with the 

same material properties, boundary conditions, geometries, and loading conditions. The shell 

has a radius set equal to a very large value (100,000m). The results of the two analyses are 

identical. This leads to the conclusion that since the shell analysis was verified, and that the 

plate analysis matches the reults of this shell analysis, the plate anlsysis has also been verified. 

3.2 Time Increment Investigation 

As mentioned in Chapter 2, an investigation was done on the sensitivity of the results to the 

time increment incorporated. Since the forcing function has a sinusoidal shape, the response is 

expected to be sinusoidal. From past experience, to accurately represent a sinusoid there should 

usually be at least 10 data points per cycle but 20 is sometimes required depending upon the 

frequency of the sine wave. To investigate how many points were needed to accurately capture 

the data for this analysis, four cases were run, 10 data points per cycle, 20 data points per cycle, 

40 data points per cycle, and 100 data points per cycle. A 20x20 mesh was used based on the 
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results of the convergence study discussed in the next section. The time increment investigation 

and mesh convergence investigation had to be done simultaneously since one causes change in 

the other. The time increment investigation was done first. The results were then used in the 

mesh convergene test. The results from the mesh convergence test were used to update the time 

increment investigation. This process was continued until the results from one test did not 

change the other test. The results for the final time increment investigation are shown in Figures 

3.7. The results are shown for comparison only. The details of the analysis will be discussed 

later. 

10 Data Points per Cycle 20 Data Points per Cycle 
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4.00E+07 ■ 
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time (s) 
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Figure 3.7 Graphical Results of Time Increment Study 

There is an obvious shape difference between 10 data points per cycle and the remaining cases. 

There is also a difference in the maximum values of stress between the four cases. These 

differences are illustrated in Table 3.2 where T is the period of the expected response. Therefore, 

10 data points per cycle can be written as x/10. 

3-7 



Table 3.2 Error Analysis of Results of Time Increment Study 

Max Stress (Pa) % error based on next % error based on i/100 

t/10 1.27E+07 53% 68% 

T/20 2.69E+07 25% 33% 

x/40 3.60E+07 10% 10% 

T/100 4.00E+07 

The results of an error analysis that assumes the next level of accuracy is the true solution is 

shown in the column titled "% error based on next". The results of an error analysis that assumes 

the result using 100 data points per cycle as the true solution is shown in the column titled "% 

error based on x/100". Based on the error calculations, it can be assumed that if the data points 

were doubled again, the result for 100 data points per cycle would be less then 10%. The error 

for 40 data points per cycle will be slightly over 10%. Though the analysis using 100 data points 

per cycle would be slightly more accurate, it would be much more costly in computational time. 

Therefore, for this analysis, it was decided to use an analysis with 40 data points per cycle. This 

assumption is valid for this research since the trends are being investigated, not the precise 

response of the plates. 

3.3 Geometry Investigation 

In this section, each geometry will be discussed and the results given. For each geometry, the 

eigensoultion will first be presented. Next the transient analysis will be presented where the 

frequency of the loading function is based on the eigensolution. A linear analysis is done for 

three geometries (square and first two trapezoids). A nonlinear analysis is accomplished on the 

square only to show its effect on the analysis. With this analysis, a loading amplitude will be 

approximated that will result in a stress field that will lead to high cycle fatigue. An analysis will 

be done with this loading amplitude to verify the predicted stress values. After the four 

geometries have been discussed, the results from the four cases will be compared and the trends 

indicated. 

3-8 



3.3.1 Square Plate.     The first geometry examined was the square plate. The mesh used for this 

plate is shown in Figure 3.8. For this research, displacements will be measured at node 66. This 

point is at the center of the plate's side opposite of the loading conditions. Stress values will be 

at a Gaussian point near this node. The program outputs stress at four Gaussian points at five 

different thickness locations, or 20 Gaussian points. The Gaussian point chosen to track data for 

this research is on the upper surface of the plate in the corner of the element near node 66. The 

boundary conditions used for all four geometries was a cantilever system in which all seven of 

one side's degrees of freedom are fixed and held at a constant value of zero. The initial 

conditions for all four geometries were zero displacement, zero velocity, and zero acceleration at 

all node points. 

Gaussian Point 
Used for Stress Point of Interest 

(Node 66) 

Point where Force Applied 
(Node 61) 

Clamped End 

Figure 3.8 20x20 Mesh Illustration 
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It was determined after a convergence study that a 20x20 mesh would be best. Table 3.3 

shows the errors of three different mesh sizes. The same error criteria as discussed in the time 

increment study is used. 

Table 3.3 Converegence Error Analysis 
Mesh Max Stress % error based on next % error based on 20X20 

6x6 2.51 E+07 21% 22% 
10x10 3.19E+07 1% 1% 
20x20 3.22E+07 

It can be assumed based on the data that the 20x20 mesh will have less then 1% error since as the 

mesh is refined, the solution approaches the true solution. Normally, the 10x10 mesh would be 

adequate for this research. However, due to the coupling between the mesh size and time 

increment, it was decided to use the 20x20 mesh to ensure accuracy. 
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Figure 3.9 Graphical Results of Convergence Study 
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3.3.1.1 Eigensolution.     An eigensolution is found for the square plate in order to determine the 

frequency of the loading function to use in the transient analysis. By examining the mode shapes 

of the plate, it can be hypothesized which mode will concentrate the most energy at the point of 

interest (node 66). Knowing that stress is a function of displacement, a mode will be chosen that 

shows the greatest rate of change of relative displacement of the plate near node 66. The results 

of the eigensolution for the square plate are shown in Figure 3.10.    Mode 4 is selected as the 

mode that will concentrate the most energy at the center point of the tip of the plate. Modes 1 

and 2 will impart little to no energy at the desired point since the edge is undeformed. Mode 3 

will impart some energy, but very little since the relative displacement is so small. Mode 5 

shows that most of the energy will be concentrated on the sides of the plate. Mode 6 will 

concentrate the energy both on the sides and in the center of the tip, but the difference in relative 

displacement will not be as great as mode 4, and thus impart a smaller amount of energy at the 

center-point. 
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Mode 1 =66.5 Hz Mode 2 =160.9 Hz 

Mode 3 =406.5 Hz Mode 4 =520.7 Hz 

Mode 5 =589.1 Hz Mode 6 =1182.1 HZ 

Figure 3.10 Square Plate Mode Shapes 

3.3.1.2 Transient Analsysis. The square plate is loaded with a forcing function as shown in 

Equation 3.1. 

F = Fsin(ra?) (3.1) 

From the eigensolution, the frequency of the applied load, m l(2n), should be 520.7 Hz. 

However, loading at this frequency will lead to resonance. Therefore, the actual frequency used 

is 528.9 Hz. This is slightly larger then the actual natural frequency allowing for the correct 
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mode to be excited, but resonance will not occur. The amplitude of the function, F ; wiH be 

determined later. The forcing function with an amplitude of 1 is shown in Figure 3.11. 

- Forcing 
Function 

-1.5 
0.00E+00   1.00E-02   2.00E-02   3.00E-02   4.00E-02   5.00E-02   6.00E-02 

time(s) 

Figure 3.11 Square Plate Forcing Function 

A linear analysis is done for a forcing function with an amplitude of 1. The stress of the 

Gaussian point near node 66 (as discussed previously) is shown in Figure 3.12. It is noted that 

the response is a repetitive pattern in which the stress rises to a maximum value, then lowers 

again in a cyclic fashion. This pattern is the result of the beat phenomenon that occurs when the 

loading frequency is near but not at one of the natural frequencies of the plate. For convience, 

only the first half of the response of the plate, up to the maximum stress, will be shown in 

following graphs. 
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Figure 3.12 Stress at F =1 

The analysis is repeated for an amplitude of 3. This allows the comparison of the response to 

different amplitudes. The results of the two analyses are shown in Figure 3.13. 
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Figure 3.13 Linear Response of Square Plate 

As indicated in Figure 3.13, a maximum stress value of 35 MPa is reached when the forcing 

function has an amplitude of 1. When the amplitude is tripled, the resulting maximum stress is 

also shown to triple. This allows the prediction through a linear function of what amplitude 
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would be needed to arrive at a certain stress. To determine what the stress should be to initiate 

cracks the Goodman diagram in Figure 3.14 is used. The mean stress is zero for this case since 

the stress is approximately symmetric about the x-axis. The chart indicates that an alternating 

stress of at least 500 MPa is needed to initiate a crack. Based on the linear relationship above, 

the forcing amplitude needed to arrive at this stress is approximately 14.3. (500MPa / 35MPa = 

14.3) 
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Figure 3.14 Goodman Diagram for Ti-6A1-4V 

A linear transient analysis was then done with a frequency still at 528.9 Hz and an amplitude 

of 14.3 based on the above analysis. The result of this analysis is shown in Figure 3.15. The 

results show that the sought after stress of 500 MPa was realized and that the linear model for 

predicting the needed loading amplitude is accurate for the linear analysis. 
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Figure 3.15 Linear Response of Square Plate with F =14.3 

It is interesting to note that the displacement profile for all cases, and later for all geometries, is 

approximately the same shape with only the amplitude and frequency of the response differing. 

This is due to the same basic mode shape being excited in all cases. Since the same mode shape 

is being excited, the shape of the curve representing the displacement of a single point should be 

the same for all of the cases with only the amplitude changing. 

3.3.1.3 Other Numerical Factors Possibly Affecting Solution.     The analysis above models an 

amplitude multiplier that allows a simple method for a high cycle fatigue experiment. The 
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experiment would first determine the stress state at a low loading amplitude. The multiplier 

would be used to determine the needed amplitude to cause HCF failure. The specimen would 

then be run at the needed frequency and loading amplitude based on the analysis in the previous 

section. However, there were assumptions made in the code that simplified the analysis and 

could have introduced unacceptable error. One assumption was that the analysis was a linear 

analysis where the stiffness matrix is independent of displacement. Another assumption used 

was the von Karman assumption to simplify the nonlinear analysis. Also, damping was assumed 

to be negligible. The effect of these assumptions on the expected solution is discussed in this 

section. 

A nonlinear analysis was done to test the accuracy of the linear analysis. As in the linear 

analysis, the amplitude of the forcing function was set equal to 1. The result of this analysis is 

shown in Figure 3.16. The results are indistinguishable from the results found in the linear 

analysis previously discussed. 
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Figure 3.16 Nonlinear Response of Square Plate with F =1 

It is hypothesized that the same relationship exists between the loading amplitude and stress. 

Thus, a nonlinear analysis is done with the load amplitude set equal to 14.3 as in the linear 

analysis. The result of this analysis is shown in Figure 3.17. 
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Figure 3.17 Nonlinear Response of Square Plate with F =14.3 

The results indicate that the nonlinear analysis does not result in the sought after stress of 500 

MPa. The explanation for this is based on the difference between the linear and nonlinear 

analyses. The linear and nonlinear analyses are approximately the same when the displacement 

is much smaller then the thickness. However, as the displacement approaches the thickness of 

the plate, the nonlinear and linear analyses lead to different solutions. The error in the linear 

solution becomes much larger and leads to an incorrect solution. 
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To try and attain a stress of 500Mpa, a case is run where the amplitude is set equal to 19.74. 

This value is based on a linear relationship between the maximum stress at an amplitude of 1 and 

the maximum stress at an amplitude of 14.3. It is assumed that there still is a linear load 

relationship as found in the linear analysis, but with a different slope. The result is shown in 

Figure 3.18. 
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Figure 3.18 Nonlinear Response of Square Plate with Load=19.74 

The result indicates that there is not a linear relationship between the amplitude of the loading 

function and the resulting maximum stress. To accurately represent the relationship between the 

loading function amplitude and the resulting maximum stress, a study must be accomplished 

where numerous loading amplitudes are used and the resulting maximum stresses are calculated. 

In Figure 3.19, the results of a nonlinear analysis with the amplitude set equal to 6,9, and 15 are 

shown. These results and the results from Figures 3.16-3.18 are plotted in Figure 3.20. This 

figure shows the possibility of a higher-order function that could relate the amplitude of loading 

function to the max stress. Further investigation is needed to truly capture this function. 
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Figure 3.19 Nonlinear Response of Square Plate with Load=6,9,&15 
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Figure 3.20 Results of Nonlinear Response Study 

Recalling from Chapter 2, the von Karman assumption simplified the nonlinear analysis by 

eliminating certain terms. These terms were mainly rotation terms and terms related to the 

higher order dependency on in-plane displacements. Anytime terms are eliminated, error is 

introduced into the results. However, this error is sometimes accepted due to the benefit of the 

assumption. To accomplish a cost-benefit analysis of the von Karman assumption, a case must 

be run with the original terms included in the calculation. Figure 3.21 shows the results from 

analyses done with and without the von Karman assumption at load amplitudes of 1 and 14.3. 

The graphs on the left are the results using the von Karman assumption. These are compared to 

the corresponding nonlinear analysis graph on the right where the von Karman assumption is not 

utilized (full SLR theory). 
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Figure 3.21 von Karman Affect on Analysis 

The results are almost the same. Thus, the error cost of using the von Karman assumption is 

nearly zero. The benefit is found in computational time. With the von Karman assumption, the 

runs were taking approximately 24 hours. Without the von Karman assumption, the runs were 

taking almost 32 hours. Therefore, a cost-benefit analysis of the von Karman assumption 

indicates that the assumption should be used. 
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Since the analysis indicates a vibratory response, damping could be a very important factor. 

To illustrate the effect of damping on a solution, a dynamic analysis was done in which an 

impulse was applied to a plate and then suddenly stopped as shown in Figure 3.5. The response 

of the plate after the force is stopped is shown in Figure 3.22 for a mass proportional damping 

constant, ß, of 0.09 (see chapter 2). 
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Figure 3.22 Dynamic Response of Square Plate to Stopped Impulse Load with ß 

The analysis was repeated for a ß value of 0.05. The result is shown in Figure 3.23. 
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Figure 3.23 Dynamic Response of Square Plate to Stopped Impulse Load with ß=5% 

The damping diminishes the displacement and stress amplitudes over time. The higher the 

damping, the quicker the displacement and stress amplitudes are decreased. The effect of 

damping on the transient sinusoidal loading function analysis done previously is shown in Figure 

3.24 for ß values of 9% and 5%. When these results are compared to the previously discussed 

results, it becomes evident that damping does not have a noticeable effect on the analysis. The 

analysis, with or without damping, results in the same solutions with only a small error (less then 

1 % difference). This is due to the fact that the loading function is sinusoidal and continual. The 

effect of the loading function dominates the reaction of the plate so the small damping 

contributions are negligible. It can be assumed that as long as ß is less the 10%, the effects of 

damping are insignificant for this research. If ß is larger then 10% (which is not very practical), 
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practical), its effects must be investigated since this is larger then the basic assumption made in 

Chapter 2, and could start to affect the solution both physically and/or numerically. 
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Figure 3.24 Dynamic Response of Square Plate including Damping 
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3.3.2 Trapezoid 1.     The second geometry investigated was a trapezoid with a hub to tip ratio 

of 0.3 as shown in Figure 3.1. The mesh used for the trapezoid is shown in Figure 3.25. As 

previously shown in the mesh for the square plate, stress values are calculated at the Gaussian 

point, and displacement values are at the node in the center of the plate far from the boundary 

condition. The same boundary condition as earlier is used in which all seven degrees of freedom 

at the clamped end are fixed and held constant at zero. The initial conditions are also the same 

with zero initial displacement, velocity, and acceleration. 

Gaussian Point 
Used for Stress Point of Interest 

(Node 66) 

where Force Applied 
(Node 61) 

/////A V77777//A 
Clamped End 

Figure 3.25 20x20 Mesh for Trapezoid 1 

Before the trapezoid could be investigated, the code must be validated for this geometry. To 

accomplish this, a test case was run that modeled results given in (39). The same geometry was 

used as presented in Figure 3.25 except all four sides were clamped. This geometry is the most 
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severe deviation from normal rectangular plates and therefore if proven to be correct, then 

trapezoid 2 and trapezoid 3 can also be investigeated with the code. The material properties for 

titanium were still used. A single point load in the center of the plate was applied and the static 

maximum displacement was calculated. DPLATE calculated the maximum displacement to be 

0.0114mm. The results from (39) calculated the maximum displacement to be 0.0121mm. This 

leads to a 5% error in DPLATE's solution. This error can easily be explained by the fact that 

(39) does not take tranverse strain through the thickness into account but instead uses a lower- 

order theory. This leads to the conclusion that the code is adequate for trapezoidal shapes. 

3.3.2.1 Eigensolution.     An eigensolution is found for trapezoid 1. The mode shapes are 

examined and the frequency resulting in the mode shape concentrating the most energy at the 

center of the tip of the blade is chosen. The results of this eigensolution are shown in Figure 

3.26. As in the square plate, mode 4 is chosen since it will concentrate the most energy at node 

66.    The results are very similar to the square plate, but the frequencies are much lower. The 

frequency needed to excite mode 4 is only 419.2 Hz, compared to the 528.9 Hz for the square 

plate. This can be explained by realizing that in the trapezoid, more mass has been concentrated 

far from the clamped end. Therefore, the inertia forces here are greater and cause the flapping 

reaction to come about much easier. 
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Mode 1 =46.1 Hz Mode 2 =164.3 Hz 

Mode 3 =365.4 Hz Mode 4 =419.2 Hz 

Mode 5 =548.8 Hz Mode 6 =829.7 HZ 

Figure 3.26 Trapezoid 1 Mode Shapes 

3.3.2.2 Transient Analysis.     A transient analysis similar to the one performed on the square 

plate is accomplished for trapezoid 1. The frequency used for this analysis according to the 

eigensolution should be 419.2 Hz. However, as in the square plate, when this frequency is used, 

resonance occurs. The frequency is exactly at the natural frequency of the plate. It is decided to 

increase the forcing frequency slightly to 430 Hz to allow the response to remain near the natural 

frequency, but far enough away so the resonance is not a problem. 

The first case run with trapezoid 1 is with a loading amplitude equal to 1. A graphical 

representation of the forcing function is shown in Figure 3.27. 
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Forcing Function 
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Figure 3.27 Trapezoid 1 Forcing Function 

A linear analysis is done with this forcing function. The stress is calculated for the Gaussian 

point nearest to node 66 as shown earlier in Figure 3.25. The resulting stress of trapezoid 1 is 

shown in Figure 3.28. The same repeating pattern as seen for the square plate is seen again. 

Figure 3.28 shows the resulting stress for trapezoid up to 0.2 seconds. Though there appears to 

be two curves, there is actually only one curve. The rate at which the data is sampled and the 

printing ability of the printer are causing the appearance of a phantom curve of smaller 

amplitude. For convenience, the remaining graphs will only present data up to one half of the 

first cycle. 
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Figure 3.28 Stress at F=l 

The analysis is repeated for a forcing function amplitude of 3. The results for the two analyses 

are shown in Figure 3.29 allowing for their comparison. 
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Figure 3.29 Linear Response of Trapezoid 1 

As found in the square plate, a linear relationship exists between the loading function's 

amplitude and the maximum stress. When the loading amplitude was tripled, the resulting 

maximum stress was also tripled. Therefore, to arrive at the stress needed to initiate a crack, a 
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loading amplitude is calculated. The stress needed is 500 MPa based on the Goodman diagram 

shown in Figure 3.14. The analysis leads to a predicted loading amplitude of 35.97 to initiate a 

crack. The result of the linear analysis with this predicted loading amplitude of 35.97 is shown 

in Figure 3.30. The sought after value of 500 MPa for maximum stress is realized, and thus the 

linear relationship between the loading amplitude and resulting maximum stress is accurate. 
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Figure 3.30 Linear Response of Trapezoid 1 with F =35.97 
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3.3.3 Trapezoid 2.     The third geometry investigated was a trapezoid with a hub to tip ratio of 

0.7 as shown in Figure 3.1. The mesh used for the trapezoid is shown in Figure 3.31. As 

previously shown, stress values are calculated at the Gaussian point, and displacement values are 

at the node in the center of the plate far from the boundary condition. The same boundary 

condition as earlier is used in which all seven degrees of freedom at the clamped end are fixed 

and held constant at zero. The initial conditions are also the same with zero initial displacement, 

velocity, and acceleration. 

Gaussian Point 
Used for Stress Point of Interest 

(Node 66) 

Point where Force Applied 
(Node 61) 

Figure 3.31 20x20 Mesh for Trapezoid 2 

3.3.3.1 Eigensolution.     An eigensolution is found for trapezoid 2. The mode shapes are 

examined and the frequency resulting in the mode shape predicted to concentrate the most 
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energy at the center of the tip of the blade is chosen. The results of this eigensolution are shown 

in Figure 3.32. As in the previous geometries, mode 4 is chosen since it will concentrate the 

most energy at node 66.    The results are in between the results of the square plate and trapezoid 

1 as expected since the geometry is in between the two. The frequency needed to excite mode 4 

is only 467.6 Hz. 
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Figure 3.32 Trapezoid 2 Mode Shapes 

3.3.3.2 Transient Analysis.     A transient analysis similar to the one before is accomplished for 

trapezoid 2. The frequency used for this analysis according to the eigensolution should be 467.6 
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Hz. However, when this frequency is used, resonance occurs in this trapezoid like it did in the 

square plate and trapezoid 1. The frequency is exactly at the natural frequency of the plate. It is 

decided to increase the forcing frequency slightly to 478 Hz to allow the response to remain near 

the natural frequency, but far enough away the resonance is not a problem. 

The first case run with trapezoid 2 is with a loading amplitude equal to 1. A graphical 

representation of the forcing function is shown in Figure 3.33. 
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Figure 3.33 Trapezoid 2 Forcing Function 

A linear analysis is done with this forcing function. The stress is calculated for the Gaussian 

point nearest to node 66 as shown earlier in Figure 3.31. Also, a linear analysis with a loading 

amplitude equal to 3. The results of these analyses for trapezoid 2 are shown in Figure 3.34. 

The same repeating pattern as seen before is seen again and therefore only the first half of the 

first cycle will be graphed. 
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Figure 3.34 Linear Response of Trapezoid 2 

As found in before, a linear relationship exists between the loading function's amplitude and the 

maximum stress. When the loading amplitude was 1, the maximum stress was 23.7 MPa. When 

the amplitude is tripled, the resulting is also tripled to 71.1 MPa. With this relationship and 

knowing what stress level is needed to initiate cracking, the loading amplitude needed to initiate 

cracks can be determined. The stress needed is 500 MPa based on the Goodman diagram shown 

in Figure 3.14. The analysis leads to a predicted loading amplitude of 21.1 to initiate a crack. 

The result of the linear analysis with this predicted loading amplitude of 21.1 is shown in Figure 

3.35. Once again, the sought after value of 500 MPa for maximum stress is realized, and thus the 

linear relationship between the loading amplitude and resulting maximum stress is accurate. 
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Figure 3.35 Linear Response of Trapezoid 2 with F =21.1 

3.3.4 Trapezoid 3.     The final geometry investigated is the inverse of trapezoid 1. This 

geometry was investigated to illustrate why it is better to have the longer length away from the 

clamped edge. The dimensions of the geometry can be found in Figure 3.1. The mesh used for 

this trapezoid is shown in Figure 3.36. 
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Figure 3.36 20x20 Mesh for Trapezoid 3 

The eigensolution of this trapezoid indicates why this geometry would be a bad choice if the 

desired result was a shape that would have cracks initiating at the center of the tip. The mode 

shapes and frequencies are shown in Figure 3.37. 
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Figure 3.37 Trapezoid 3 Mode Shapes 

The mode seen in the previous geometries that concentrated the energy at the point of interest is 

not brought about in the first six modes. Also, the frequencies are much higher. For example, 

Mode 2 for the square plate was 163.4 Hz. The 2nd mode for trapezoid 3 is 421.5 Hz. This is 

over a 250% increase in frequency for the same mode shape. Also, it is noted that the desired 

flapping mode shape does not occur. Mode 5 is similar, but will not result in the concentrated 

stress like before because some of the energy is being concentrated on the sides of the trapezoid 
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as well as the tip. Because of the increase in frequencies and lack of the desired mode shape 

within the first 6 modes, this geometry was not investigated further. 

3.3.5 Comparison of Results.     With the results of the first three geometries, a comparison can 

be made and a trend developed to guide the optimization of the best shape to use in an 

experiment. Experiments are limited by the amount of loading amplitude as well as by the 

frequency it can operate at. Table 3.4 shows the frequency and load amplitude for the three 

geometries needed to cause a maximum stress large enough to initiate cracking. 

Table 3.4 Comparison of Results for Three Geometries 

Geometry Frequency Load Amplitude 
Square 1 528.9 14.3 
Trapezoid 1 419.2 35.97 
Trapezoid 2 467.6 21.1 

If the square plate is considered the reference condition, a %-change can be found by altering the 

geometry. This will indicate the trends and allow for a better choice of the proper geometry to 

be made. Table 3.5 shows the %-change of frequency and loading amplitude for trapezoid 1 and 

trapezoid 2. Trapezoid 1 decreases the needed frequency by 21%, but increases the needed 

loading amplitude by 152%. Trapezoid 2 decreases the frequency by 12%, but only increases the 

loading amplitude by 48%. 

Table 3.5 %-Change in Frequency and Loading Amplitude 

Geometry 
Frequency 
% Change 

Load Amplitude 
% Change 

Trapezoid 1 -20.741161 151.5384615 
Trapezoid 2 -11.590093 47.55244755 

If frequency is the only factor being optimized, then the trend indicates that a trapezoid with the 

smallest hub-to-tip ratio should be used. If the loading amplitude is the only factor, then the 

results indicate the square plate should be used. Since an experiment is actually limited by both, 

a factor needs to be assigned to each based on their relative importance. As an example, it is 
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decided that the frequency should drive 75% of the decision and the load amplitude should only 

drive 25%. This would indicate that the frequency is three times more crucial then the loading 

amplitude. A reference condition is chosen where the frequency is set at 100 Hz and the 

amplitude is set at 10. The results from the analyses for the different geometries are normalized 

based on this reference condition. Then the normalized values are multiplied by the factors of 

for frequency and for load amplitude. The result can be considered the weighted comparison 

value for the given geometry. Since the lowest frequency and loading amplitude is desired, the 

lowest weighted comparison value indicates the most ideal geometry. Table 3.6 shows the 

weighted comparison values for the three geometries for three different sets of factor schemes. 

The first case is the same as the example above where the frequency is three times as important 

as the loading amplitude. The second is when the two are equally important. Finally, the third 

case is when the loading amplitude is three times as important as the frequency. 

Table 3.6 Weighted Comparison Values 

Geometry 
Normalized 
Frequency 

Normalized Load 
Amplitude 

Weiqhted Comparison Value 
Case 1 Case 2 Case 3 

Square 1 5.289 1.43 4.32425 3.3595 2.39475 
Trapezoid 1 4.192 3.597 4.04325 3.8945 3.74575 
Trapezoid 2 4.676 2.11 4.0345 3.393 2.7515 

From Table 3.6, for case 1, trapezoid 2 would be the best choice, though trapezoid 1 is a very 

close second. For case 2, the best choice would be the square plate though trapezoid 2 is very 

close. For the final case, the square plate is the obvious choice by a much larger margin than the 

two previous cases. The actual factors for the analysis should be chosen based on the actual 

limitations of the experiment. These factors were chosen as an illustration. 
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IV. Conclusions 

This research developed a tool that is useful to analyzing flat, isotropic plates for a high cycle 

fatigue analysis. The approach was based on numerous proven concepts including the SLR 

theory, beta-m method, Newton-Raphson iterative method, and the subspace iteration method. 

Some key conclusions can be drawn from this research: 

1. Finite Element Methods are a useful tool to analyze the response of isotropic thin 

plates due to their ability to calculate displacement and stress at almost any point in 

the structure based on the mesh for any time during the loading. This is important to 

this research since the goal is to concentrate the stress at or near a single point. With 

the stress and displacement at this point known, an experiment can be done to 

confirm the results and test the accuracy of the model. 

2. The code DPLATE is a working code that has been verified and is capable of an 

eigensolution analysis and a transient analysis. The transient analysis can be static or 

dynamic as well as linear or nonlinear. 

3. When a nonlinear analysis is done, the result indicates that the plate is less stiff then 

a linear analysis, thus reducing the resulting maximum stress. This is extremely 

important to this research. Most finite element tools currently being used to predict 

maximum stress only use a linear analysis. This analysis over-predicts the maximum 

stress. If an experiment is set-up based on the results from a linear analysis, the 

loading amplitude may be too low and the plate stress needed to initiate cracks will 

never be realized. 

4. A multiplier can be determined that describes the relationship between the loading 

amplitude and the resulting maximum stress. This multiplier would allow the loading 
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amplitude needed to initiate cracks to be determined and thereby allowing an 

experiment to be conducted at a proper amplitude to initiate cracks. This multiplier is 

linear if only a linear analysis in considered. However, it becomes a higher-order 

relationship for the nonlinear analysis. 

5. This multiplier is not affected by the von Karman assumption that is utilized to 

shorten computation time. This is important since one goal of this research was to 

develop a tool that could be included in a topological optimization program. To 

accomplish this goal, the code must be as efficient as possible. 

6. The multiplier is unaffected by damping if the damping matrix is limited to 10% of 

the mass matrix. If an experiment is run correctly (no extra wires or unnecessary 

connections), the material damping should be of greatest interest. This damping 

would be negligible as shown in this research. 

7. It is possible to get a response with a displacement distribution that resembles a mode 

shape by modeling the plate with a point force that has a frequency near the natural 

frequency associated with the desired mode shape. 

8. For a desired maximum stress, changing the geometry of the plate can alter the 

needed frequency and loading amplitude of a forcing function. To decrease the 

frequency, the bulk of the mass should be moved away from the clamped end. This 

was seen in trapezoid 1. However, this causes the loading amplitude to increase. To 

minimize the loading amplitude, an even distribution of the mass should be used as 

illustrated by the square plate. To optimize both of these parameters (frequency and 

loading amplitude) a weighting function must be determined that accounts for the 

relative importance of the parameters. 
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It would be beneficial to compare these results with results from experimentation. Also, more 

research is needed for the nonlinear multiplier. Other possible areas that can be examined 

include adding the ability to have a base motion loading condition in which the clamped end of 

the plate is vibrated at a certain frequency over a certain distance. This would better model an 

experiment. The results from this analysis could be compared to the results from the 

concentrated forcing function used in this research. Also, the addition of a graphical post- 

processor to the code would be beneficial by allowing for a faster analysis of the results. Finally, 

a study should be done on the effects of the thickness of the plates on the results. The trend from 

this research would be beneficial to the design of an optimization program. 

It is recommended that this code be inserted into a topological optimization program that will 

try different geometries to find the best combination to minimize the required frequency and 

loading amplitude for a needed stress level. Then, the results from the program could be used to 

determine an experiment that will help give insight to the behavior of high cycle fatigue. 
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Appendix A: DPLATE Users Guide 

The program used in this research is titled DPLATE. It is a Fortran 77 code. The code is run 

by initiating the executable file titled a.out. The program will ask for the name of the input file 

to be used. This input file is either created before or created by using a question/answer 

scenario. Enter the name of the input file. The computer will then ask if this is a new file. If the 

file exists, enter a 0 and the code will execute. If you want to create the file using the 

question/answer subroutine, enter a 1. The computer will ask for certain inputs. If you make a 

mistake, proceed and when the code begins to run, stop the computer. Open the input file and 

edit the mistake manually. The format of the input file is shown on the next page as Table A-l. 

The definition of the variables used is shown in Table A-2. The program outputs the information 

to three files. First is the OUTPUT.filename where filename is the name of the input file. This 

file echos your input. The next file is Billy.filename. This file outputs the displacement vectors. 

Finally, STRESS.filename output the stresses at the Gaussian points. The output can be 

modified to output only the desired data. For this research, the displacement of node 231 was of 

interest and the stress at the Gaussian point in element 200 nearest node 231 was needed. 

Therefore, the output was modified to show only these values. A sample input file is shown 

starting on pages A-6 and A-7. The OUTPUT.filename file is shown on pages A-8 to A-21. The 

Billy.filename file is shown on page A-22. Finally, the STRESS.filename is shown on page A- 

23. 
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Table A-l Input File Format 
Cad! iTTTLE 

cam :  MKXUNV 

iUXSTRS 

:ISYMM 

illXSTRN 

,UXJMT MBXMAX NOXPRT [UXDISP UXVEL 

Caid3 |  
:IEL 

IMÖRD 

:NPE 

:NT1MES 

|NANAL(1) 

NEGN 

NANAL(2) 

:DELT 

NANALI3) 

NPRINt 

ilMESH 

INIMAX   

NPRNT 

NRESTR 

NCUT 

NSTORE 

Caid4 i ;THOUQH CDAMP METHOD ;BETA0(1) BETA0(2) :BETA0(3) 

:           ifNANAL(1)=2 IRSTEP 

:       If NANALfl )=0 or 1 ilNTYP NINC ■IMAX IRES TOL rRTCL 

„    .„ !lNANAL(1)=0&INTYP= 
Caid6  >= , .           ,  :Else skipcaid 

;TABLE(1) iTABLE(2) ;TABLE(NINC) 

Cani7a:lflMESH=0 NEM iNNM ;NX :NY 

CardSa!             lflMESH=0 

:NOD(1,1) 

:NOD(2,1) 

:NOO(NEM,1)' 

;N0D(1,2) 

NOD(2,2) 

:NOO(NEM,2) 

;NOD(1,3) 

NODI2.3)            ' ^ 

NCO(NEM,3) 

NOD(1,4) 

:NOD(2,4) 

NÖb(NEM>)  

:NOD(1,5) 
NOD(2,5J"~"""' 

!NCÖ(NEM,5) 

;NOD(1,6) 

NOD(2,6) 

;NOD(NEM^6) 

NOD(1.7) 

NOD(2.7) 

NOOINEM.7) 

NOD0.8) 

NOD(2.8) 

NCO(NEM,8) 

Caid9a IflMESHrf) 
:*m iY(1) |X(2) Y(2) iX(NNM) Y(NNM) 

Card7b lflMESH=1 NX NY 
Card8b:lflMESH=1 :DX(1) :DX(2) DX(NPE'NX<4) 

CardSb lflMESH=1 IDY(1) DY(2) □Y(NPE-NY/4) 

llfNCUT>0 
If NCUT.0 Skip Caid 

MCUT(1) ICUT(2) ICUTINCUT) 

Card11 ; :LD IPO 

_ _,.. :lfLD=3 INEDGE 

„           ^IILDstf IEDGEM) :|EDGE(2) E0OE(NEDQE) 

ElsoskiDcaid                                                                                                                                                                                                                                                 '■■ 
Card14 :NBDY1 

Card15 

NBOUNDd.1) 

NBOUND(2.1) 

NBOUND(NBDY1, 

:NB0UND(1,2) 

•'NBOUNp(2,2) 

1) :NBöüND(NBDYI,2 

;NBOUND(1,3) 

;NBOUND(2,3) 

NBÖÜNb(NBbY1,3 

;NBOUND(1.4) 

NBÖÜNb(2.4)  

NBOUNDINBDY1.4) 

;NBOUND(1,5) 

:NBÖÜNb(2,5) 

NBOUND(NBDY1,5 

NBOUND(1,6) 

NBOUND(2,6) 

NBOUND(1,7) 

NBOUND(2,7) MBOUtiDi: 6i 

vNBÖÜNb(NBDY1.6) NBOUNb(NBDYl'7J' NBOUND(NBDY1,8) 

Card16 VBDY(1) :VBDY(2) VBDY(NBDY) 

Caid17 NBSF 

INBSF>0 
IF NBSF=0 Skip Caid 

BSF(1) :BSF(2) IBSF(NBSF) 

_    ,._:INBSF>0 iVBSF(1) :VBSF(2) VBSF(NBSF) 

IF NBSF=0 Skip Caid 
_    ,„_ HNANAL(2)=1 iEY iNU iHT 

^'"ilfNANAL^Oo^ :E1 1E2 [Q12 NU12 G13 G23 

Card21 i MREST MDIS MNVEL 

Cartl22 iNFOR i 

Card23 If NFOR=0 Skip Caid 
:IFOR(1) :IFOR(2) IFOR(NFOR) 

Card24 iNSTRES 

.    ...:ltNSTRES>0 ;ISTRES(1) HSTRES(2) ISTRES(NFOR) 

■"  If NSTES=0 Skip Caid 
„    ...  »NT1MES=0 MÜOAD T1M1 T1M2 T1M3 T1M4 

^«^ItNTIMESoO            :DLFACT(ii) 
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Table A-2 Input Variables 

Variable Names Description 

TITLE Descriptive title that will appear as the first line on your data input file. 

MKXUNV 
=0 no universal file 
=1 universal file created 

ISYMM 
Used only for universal file 
=0 no symmetry, keep mesh as is 
=1 bilaterally symmetric mesh will be created 

UXLIMT 
=0 no limit to the size of the universal file 
=1 limit the size of the universal file to MBXMAX megabytes 

MBXMAX The maximum size of the universal file in megabytes 

NOXPRT 
=0 Stress data will be written to the output file 
=1 Stress data will not be written to the output file 

UXDISP 
=0 Displacement data will not be written to universal file 
=1 Displacement data will be written to the universal file 

UXVEL 
=0 Velocity data will not be written to universal file 
=1 Velocity data will be written to the universal file 

UXACC 
=0 Acceleration data will not be written to universal file 
=1 Acceleration data will be written to the universal file 

UXSTRS 
=0 Stress data will not be written to universal file 
=1 Stress data will be written to the universal file 

UXSTRN 
=0 Strain data will not be written to universal file 
=1 Strain data will be written to the universal file 

IEL 
=1 Plate elements 
=2 Shell elements 

NPE 
=4 Four-noded elements (4 corners) 
=8 Eight-noded elements (4 corners + 4 midside nodes) 

NANAL(1) 
=0 Nonlinear analysis 
=1 Linear analysis 
=2 Bifurcation analysis 

NANAL(2) 
=0 Arbitrary laminate 
=1 Isotropie material 
=2 Symmetric laminate 

NANAL(3) 
=0 von Karman Plate/ Donnell Shell Assumptions will not be used 
=1 von Karman Plate/ Donnell Shell Assumptions will be used 

IMESH 
=0 User defined mesh 
=1 Computer generated mesh (Preferred method) 

NPRNT 
=0 Elasticity arrays will not be printed to output file 
=1 Elasticity arrays will be printed to output file 

NCUT 
Number of elements eliminated to model a cutout in the structure. If 
there are no cutouts, then enter 0 

MORD Beta-m method order. Set equal to 2. 

NTIMES 
=0 Load factor will be based on a function (sine, step, multistep) 
(preferred)   =1 Load factor will be based on discrete data points 
entered by user(AVOID) 

NEIGN 
Number of natural frequencies to calculate. If transient analysis is 
wanted, set equal to 0. 

DELT The time increment. 

NPRINT 
=0 The elemental stiffness matricies will not be printed to output file 
=1 The elemental stiffness matricies will be printed to output file 
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NIMAX Set equal to 0 

NRESTR 
=0 No restart option 
=1 Restart option 

NSTORE Number of steps to store for restart 
THOUGH Mass density in consistent units (BE CAREFUL ON UNITS!!!) 
CDAMP Damping factor 

METHOD Set equal to 0. Only option. 

BETAOO) Set equal to 0.5 
BETA0(2) Set equal to 0.5 
BETAOO) Set equal to 1.0 
RSTEP Step used for Bifurcation analysis 

INTYP 
=0 Load Control 
=1 Displacement Control 

NINC Number of load or displacement increments 

IMAX 
Maximum iterations performed to try and reach convergence before the 
proqram halts. 

IRES 
=0 Update stiffness matrix after each iterations 
=1 Update stiffness matrix after each increment 

TOL Convergence criteria in percentage (I.e. 0.1 = .1% = .001) 
RTOL Convergence tolerance on eigenvalues (1.00e-6 or smaller) 

TABLE(m) Table of multipliers for displacement specified input where m=1 ..NINC 
NEM Total number of elements 
NNM Total number of nodes 
NX Number of elements in the x-direction 
NY Number of elements in the y-direction 

NOD(m,n) 

Connectivity array where m=1 ..NEM and n=1 ..NPE These values 
should be entered by starting at the corner node with the smallest x,y 
coordinate. Then go to the remaining three corner nodes in a clockwise 
rotation. 
If there are midside nodes, start with the midside node with the smallest 
y coord, and then go clockwise to the remaining three nodes. 

X(m) X-coordinate of node m where m=1 ..NNM 
Y(m) Y-coordinate of node m where m=1 „NNM 

DX(m) Distance between nodes in x direction where m=1..(NPE*NX/4) 
DY(m) Distance between nodes in y direction where m=1 „(NPE*NY/4) 

ICUT(m) Array of element numbers deleted to model cutout where m=1 ..NCUT 

LD 

Structural Load Parameter 
=0 No Load 
=1 Transverse or normal load 
=2 Dead weight 
=3 Axial load 

PO Distributed load intensity. Enter 0.0 if there is no distributed load. 
NEDGE Number of nodes with in-plane loading 

lEDGE(m) 
Array of nodes where there in-plane loading is applied where 
m=1..NEDGE 

NBDY1 Number of nodes with specified degrees of freedom 
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NBOUND(iiJj) 

Specifies which degrees of freedom are fixed. _ii=1 ..NBDY1 
jj=1 ..8 where the first value is the node number. Then comes the 
degrees of freedom u v w w,x w,y psi,x psi.y 
A 1 is entered if the degree of freedom is fixed and a 0 is entered if the 
degree of freedom is free. Remember, midside nodes can only have u 
and v fixed, all other must be entered as zeros. 

VBDY(m) 
The prescribed displacement values for the degrees of freedom called 
out in NBOUND. Usually, this is just an array with a 0.0 for every 1 
entered into NBOUND 

NBSF Number of degrees of freedom with specified loads 

IBSF(m) 
Array of degree of freedom numbers with specified loads where 
m=1..NBSF 

VBSF(m) 
Array of the values of the specified loads applied to the degree of 
freedoms where m=1.. NBSF 

EY Youngs Modulus (for isotropic material) 
NU Poisson's Ratio (for isotropic material) 
HT Thickness of plate/shell (for isotropic material) 
E1 Young's Modulus in fiber direction (composite materials) 

E2 Young's Modulus perpendicular to fiber direction (composite materials) 
G12 Shear Modulus in 12-plane (composite materials) 

NU12 Poisson's Ration in 12-plane (composite materials) 
G13 Shear Modulus in 13-plane (composite materials) 
G23 Shear Modulus in 23-plane (composite materials) 

IREST 
=0 Zero initial displacement and velocity 
=1 Nonzero initial displacement and velocity 

INDIS 
=0 Uniform initial displacement 
=1 non-uniform initial displacement 
=2 initial displacement input by continuous function 

INVEL 
=0 Uniform initial velocity 
=1 non-uniform initial velocity 
=2 initial velocity input by continuous function 

NFOR Number of nodal forces to be calculated at end of each increment 

IFOR(m) 
Array of degrees of freedom numbers to calculate the nodal forces 
where m=1..NFOR 

NSTRES 
Number of elements to calculate stress/strain data at the at end of 
each increment. 

ISTRES(m) 
Array of element numbers to calculate stress/strain data at the end of 
each increment where m=1..NSTRES 

I LOAD 
=1 Single step loading 
=2 Sinusoidal loading 
=3 Multi-Step Loading 

TIM1 
If ILOAD=1 Time to reach max loading 
If ILOAD=2 Time for half sine wave 
If ILOAD=3 Time to reach max loading for first step 

TIM2 
If ILOAD=1 or 2 Time when loading ends 
If ILOAD=3 Time to reach max loading for second step 

TIM3 
If ILOAD=1 or 2 Dummy variable, set equal to zero 
If ILOAD=3 Time to reach max loading for third step 

TIM4 
If ILOAD=1 or 2 Dummy variable, set equal to zero 
If ILOAD=3 Time to reach max loading for fourth step 

DLFACT(ii) Loading factor in discrete data points where ii=1 (AVOID USING THIS) 
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Square Titanium Plate, Linear, No Damping, 4 Noded, Von Karman 
0,0,0,1,0,0,0,0,0,0 
l,4,l,l,l,l,0,0,2,0,0,4.73e-5,0,0,0,0 
4430,0.0,1,0.5,0.5,1.0 
0,2115,500,0,.01,1.0e-6 
20,20 
.005715, .005715, .005715 
.005715, .005715, .005715 
.005715, .005715, .005715, .005715,.005715, 
.005715,.005715, .005715, .005715, .005715 
.005715, .005715, .005715, .005715,.005715, 

005715,.005715, .005715, 
005715, .005715 
005715, .005715 

,005715, .005715, 
,005715,.005715, 

.005715, 

.005715, 

.005715, 

.005715 

.005715 

.005715 
0,0. 
21 
1,1,1,1,1,1,1,1 
22,1,1,1,1,1,1,1 
43,1,1,1,1,1,1,1 
64,1,1,1,1,1,1,1 
85,1,1,1,1,1,1,1 
106,1,1,1,1,1,1,1 
127,1,1,1,1 

1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 

1,1 
,0. 
,0. 

005715, 
005715 

148 
169 
190 
211 
232 
253 
274,1 
295,1 
316,1 
337,1 
358,1 
379,1 
400,1 
421,1 
0. ,0. 
0. 
0. 
0. 

0. 
0. 
0. 

0.,0. 
0. ,0. 
0. ,0. 

,0. 
,0. 
,0. 
,0. 
,0. 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
1 

,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 

1,1,1 
1,1,1 
1,1,1 

1,1 
1,1 
1,1 
1,1 

1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 
1,1,1 

1,1 
,0. 
,0. 
,0. 
,0. 
,0, 
,0, 
,0, 
,0, 
,0, 
,0. 
,0. 
,0. 
,0. 

0. ,0. 
0. ,0. 

,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 

,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 

,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0.,0. 
,0. ,0. 

,0 
,0 
,0 

,0. 
,0. 
,0. 
,0. 
,0. 
,0. 
,0. 

o.,o. 
0. ,0. 

,0. 
,0. 
0. 
0. 
0. 
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1543 
1.000 
1.14ell, .33, .001016 
0,0,0 
0 
1 
200 
2,9.433962e-4,2,0.,0. 
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Square Titanium Plate, Linear, No Damping, 4 Noded, Von Karman 

MASS DENSITY =  0.443000E+04 
DAMPING COEFFICIENT =  0.0O0000E+00 
METHOD =    1 
NUMBER OF LOWEST MODES CALCULATED =    0 
BETA PARAMETERS (USED IN BETA-M METHOD) =  0.500E+00  0.500E+00   0.100E+01 

ELEMENT TYPE(1=PLATE, 2=CYL SHELL) = 1      NODES PER ELEMENT= 4 
ORDER OF BETA-M METHOD = 2 
NTIMES = 0 
TIME INCREMENT = 0.4730000E-04 

NUMBER OF ELEMENTS IN THE MESH =400 
NUMBER OF NODES IN THE MESH = 441 
DOF PER NODE = 7 

DISPLACEMENT BOUNDARY CONDITIONS, 1=PRESCRIBED,      0=FREE 

NODE   U 
1   1 

22 1 
43 1 
64   1 
85 1 
106 1 
127 1 
148 1 
169 1 
190 1 
211 1 
232 1 
253 1 
274 1 
295 1 
316 1 
337 1 
358 1 
379 1 
400 1 
421 1 

W  W-X W-S PSI-X PSI-S 
1    1    1 

NUMBER OF PRESCRIBED DISPLACEMENTS= 147 
SPECIFED DISPLACEMENT DOF AND THEIR VALUES FOLLOW: 

1    2   3   4   5    6   7 148 149 150 151  152 153 154 295 296 
297 298 299 300 301 442 443 444 445 446 447 448 589 590 591 592 
593 594 595 736 737 738 739 740 741 742 883 884 885 886 887 888 
889 1030 1031 1032 1033 1034 1035 1036 1177 1178 1179 11801181 1182 1183 1324 
1325 1326 1327 1328 1329 1330 1471 1472 1473 1474 1475 1476 1477 1618 1619 1620 
1621 1622 1623 1624 1765 1766 1767 1768 1769 1770 1771 1912 1913 1914 1915 1916 
1917 1918 2059 2060 2061 2062 2063 2064 2065 2206 2207 2208 2209 2210 2211 2212 
2353 2354 2355 2356 2357 2358 2359 2500 2501 2502 2503 2504 2505 2506 2647 2648 
2649 2650 2651 2652 2653 2794 2795 2796 2797 2798 2799 2800 2941 2942 2943 2944 
2945 2946 2947 

O.OOOOOD+00 0.00000D+00 0.00000D+00 O.0000OD+00 0.0O00OD+00 0.00000D+00 0.00000D+00 0.00000D+00 
O.OOOOOD+00 0.00000D+00 O.O00O0D+00 0.00000D+00 0.00000D+00 O.O0000D+00 0.00000D+00 0.O0OO0D+00 
O.O0000D+0O 0.00000D+0O 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 
0.00000D+00 0.00000D+00 O.OOOOOD+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 
O.OOOOOD+00 0.00000D+00 0.00000D+00 0.00000D+00 0.0000OD+O0 0.00000D+00 0.00000D+00 O.O00O0D+00 
0.00000D+00 0.00000D+0O O.O0000D+0O 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 
0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 
0.00000D+00 O.00000D+00 O.OOOOOD+00 0.00000D+00 0.00000D+00 0.00000D+00 0.0000OD+OO 0.00000D+00 
0.00O00D+O0 0.00000D+00 0.00000D+O0 0.00000D+00 0.00000D+00 O.O000OD+00 0.00000D+00 0.00000D+00 
0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.0O000D+00 0.00000D+00 0.00000D+00 0.00000D+00 
O.OOOOOD+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 
O.O0000D+00 0.00000D+00 O.O00O0D+00 0.00000D+00 O.00000D+O0 0.O0000D+0O 0.00000D+00 0.00000D+00 
0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 O.0O00OD+00 
0.00000D+00 0.00000D+00 0.00000D+00 O.OOOOOD+00 0.00000D+00 0.00000D+00 0.0O00OD+00 0.00000D+0O 
0.00000D+00  O.OOOOOD+00  0.0000OD+00  0.00000D+00  0.00000D+0O  0.00000D+00  0.0000OD+O0  0.00O00D+00 
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O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 
O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 O.OOOOOD+00 
O.OOOOOD+OO O.OOOOOD+00 O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO 

O.OOOOOD+00  O.OOOOOD+00  O.OOOOOD+00 

NUMBER OF SPECIFIED FORCES=   1 
SPECIFIED FORCE DEGREES OF FREEDOM AND THEIR SPECIFIED VALUES FOLLOW: 

1543 
0.10000D+01 

BOOLEAN (CONNECTIVITY) MATRIX-NOD(U) 

1 1 2 23 22 
2 2 3 24 23 
3 3 4 25 24 
4 4 5 26 25 
5 5 6 27 26 
6 6 7 28 27 
7 7 8 29 28 
8 8 9 30 29 
9 9 10 31 30 
10 10 11 32 31 
11 11 12 33 32 
12 12 13 34 33 
13 13 14 35 34 
14 14 15 36 35 
15 15 16 37 36 
16 16 17 38 37 
17 17 18 39 38 
18 18 19 40 39 
19 19 20 41 40 
20 20 21 42 41 
21 22 23 44 43 
22 23 24 45 44 
23 24 25 46 45 
24 25 26 47 46 
25 26 27 48 47 
26 27 28 49 48 
27 28 29 50 49 
28 29 30 51 50 
29 30 31 52 51 
30 31 32 53 52 
31 32 33 54 53 
32 33 34 55 54 
33 34 35 56 55 
34 35 36 57 56 
35 36 37 58 57 
36 37 38 59 58 
37 38 39 60 59 
38 39 40 61 60 
39 40 41 62 61 
40 41' 42 63 62 
41 43 44 65 64 
42 44 45 66 65 
43 45 46 67 66 
44 46 47 68 67 
45 47 48 69 68 
46 48 49 70 69 
47 49 50 71 70 
48 50 51 72 71 
49 51 52 73 72 
50 52 53 74 73 
51 53 54 75 74 
52 54 55 76 75 
53 55 56 77 76 
54 56 57 78 77 
55 57 58 79 78 
56 58 59 80 79 
57 59 60 81 80 
58 60 61 82 81 
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59 61 
60 62 
61 64 
62 65 
63 66 
64 67 
65 68 
66 69 
67 70 
68 71 
69 72 
70 73 
71 74 
72 75 
73 76 
74 77 
75 78 
76 79 
77 80 
78 81 
79 82 
80 83 
81 85 
82 86 
83 87 
84 88 
85 89 
86 90 
87 91 
88 92 
89 93 
90 94 
91 95 
92 96 
93 97 
94 98 
95 99 
96 100 
97 101 
98 102 
99 103 
100 104 
101 106 
102 107 
103 108 
104 109 
105 110 
106 111 
107 112 
108 113 
109 114 
110 115 
111 116 
112 117 
113 118 
114 119 
115 120 
116 121 
117 122 
118 123 
119 124 
120 125 
121 127 
122 128 
123 129 
124 130 
125 131 
126 132 
127 133 
128 134 

62 83 
63 84 
65 86 
66 87 
67 88 
68 89 

82 
83 
85 
86 
87 

69 90 
70 91 

89 
90 

92 91 

73 94 
74 95 

97 
98 

71 
72 93 92 

93 
94 

75 96 95 
76 97 96 
77 98 
78 99 
79 100 99 
80 101 100 
81 102 101 
82 103 102 
83 104 103 
84 105 104 
86 107 106 
87 108 107 
88 109 108 
89 110 109 
90 111 110 
91 112 111 
92 113 112 
93 114 113 
94 115 114 
95 116 115 
96 117 116 
97 118 117 
98 119 118 
99 120 119 
100 121 120 
101 122 121 
102 123 122 
103 124 123 
104 125 124 
105 126 125 
107 128 127 
108 129 128 
109 130 129 
110 131 130 
111 132 131 
112 133 132 
113 134 133 
114 135 134 
115 136 135 
116 137 136 
117 138 137 
118 139 138 
119 140 139 
120 141 140 
121 142 141 
122 143 142 
123 144 143 
124 145 144 
125 146 145 
126 147 146 
128 149 148 
129 150 149 
130 151 150 
131 152 151 
132 153 152 
133 154 153 
134 155 154 
135 156 155 
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129 135 
130 136 
131 137 
132 138 
133 139 
134 140 
135 141 
136 142 
137 143 
138 144 
139 145 
140 146 
141 148 
142 149 
143 150 
144 151 
145 152 
146 153 
147 154 
148 155 
149 156 
150 157 
151 158 
152 159 
153 160 
154 161 
155 162 
156 163 
157 164 
158 165 
159 166 
160 167 
161 169 
162 170 
163 171 
164 172 
165 173 
166 174 
167 175 
168 176 
169 177 
170 178 
171 179 
172 180 
173 181 
174 182 
175 183 
176 184 
177 185 
178 186 
179 187 
180 188 
181 190 
182 191 
183 192 
184 193 
185 194 
186 195 
187 196 
188 197 
189 198 
190 199 
191 200 
192 201 
193 202 
194 203 
195 204 
196 205 
197 206 
198 207 

136 157 156 
137 158 157 
138 159 158 
139 160 159 
140 161 160 
141 162 161 
142 163 162 
143 164 163 
144 165 164 
145 166 165 
146 167 166 
147 168 167 
149 170 169 
150 171 170 
151 172 171 
152 173 172 
153 174 173 
154 175 174 
155 176 175 
156 177 176 
157 178 177 
158 179 178 
159 180 179 
160 181 180 
161 182 181 
162 183 182 
163 184 183 
164 185 184 
165 186 185 
166 187 186 
167 188 187 
168 189 188 
170 191 190 
171 192 191 
172 193 192 
173 194 193 
174 195 194 
175 196 195 
176 197 196 
177 198 197 
178 199 198 
179 200 199 
180 201 200 
181 202 201 
182 203 202 
183 204 203 
184 205 204 
185 206 205 
186 207 206 
187 208 207 
188 209 208 
189 210 209 
191 212 211 
192 213 212 
193 214 213 
194 215 214 
195 216 215 
196 217 216 
197 218 217 
198 219 218 
199 220 219 
200 221 220 
201 222 221 
202 223 222 
203 224 223 
204 225 224 
205 226 225 
206 227 226 
207 228 227 
208 229 228 
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199 208 
200 209 
201 211 
202 212 
203 213 
204 214 
205 215 
206 216 
207 217 
208 218 
209 219 
210 220 
211 221 
212 222 
213 223 
214 224 
215 225 
216 226 
217 227 
218 228 
219 229 
220 230 
221 232 
222 233 
223 234 
224 235 
225 236 
226 237 
227 238 
228 239 
229 240 
230 241 
231 242 
232 243 
233 244 
234 245 
235 246 
236 247 
237 248 
238 249 
239 250 
240 251 
241 253 
242 254 
243 255 
244 256 
245 257 
246 258 
247 259 
248 260 
249 261 
250 262 
251 263 
252 264 
253 265 
254 266 
255 267 
256 268 
257 269 
258 270 
259 271 
260 272 
261 274 
262 275 
263 276 
264 277 
265 278 
266 279 
267 280 
268 281 

209 230 229 
210 231 230 
212 233 232 
213 234 233 
214 235 234 
215 236 235 
216 237 236 
217 238 237 
218 239 238 
219 240 239 
220 241 240 
221 242 241 
222 243 242 
223 244 243 
224 245 244 
225 246 245 
226 247 246 
227 248 247 
228 249 248 
229 250 249 
230 251 250 
231 252 251 
233 254 253 
234 255 254 
235 256 255 
236 257 256 
237 258 257 
238 259 258 
239 260 259 
240 261 260 
241 262 261 
242 263 262 
243 264 263 
244 265 264 
245 266 265 
246 267 266 
247 268 267 
248 269 268 
249 270 269 
250 271 270 
251 272 271 
252 273 272 
254 275 274 
255 276 275 
256 277 276 
257 278 277 
258 279 278 
259 280 279 
260 281 280 
261 282 281 
262 283 282 
263 284 283 
264 285 284 
265 286 285 
266 287 286 
267 288 287 
268 289 288 
269 290 289 
270 291 290 
271 292 291 
272 293 292 
273 294 293 
275 296 295 
276 297 296 
277 298 297 
278 299 298 
279 300 299 
280 301 300 
281 302 301 
282 303 302 
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269 282 283 
270 283 284 
271 284 285 
272 285 286 
273 286 287 
274 287 288 
275 288 289 
276 289 290 
277 290 291 
278 291 292 
279 292 293 
280 293 294 
281 295 296 
282 296 297 
283 297 298 
284 298 299 
285 299 300 
286 300 301 
287 301 302 
288 302 303 
289 303 304 
290 304 305 
291 305 306 
292 306 307 
293 307 308 
294 308 309 
295 309 310 
296 310 311 
297 311 312 
298 312 313 
299 313 314 
300 314 315 
301 316 317 
302 317 318 
303 318 319 
304 319 320 
305 320 321 
306 321 322 
307 322 323 
308 323 324 
309 324 325 
310 325 326 
311 326 327 
312 327 328 
313 328 329 
314 329 330 
315 330 331 
316 331 332 
317 332 333 
318 333 334 
319 334 335 
320 335 336 
321 337 338 
322 338 339 
323 339 340 
324 340 341 
325 341 342 
326 342 343 
327 343 344 
328 344 345 
329 345 346 
330 346 347 
331 347 348 
332 348 349 
333 349 350 
334 350 351 
335 351 352 
336 352 353 
337 353 354 
338 354 355 

304 303 
305 304 
306 305 
307 306 
308 307 
309 308 
310 309 
311 310 
312 311 
313 312 
314 313 
315 314 
317 316 
318 317 
319 318 
320 319 
321 320 
322 321 
323 322 
324 323 
325 324 
326 325 
327 326 
328 327 
329 328 
330 329 
331 330 
332 331 
333 332 
334 333 
335 334 
336 335 
338 337 
339 338 
340 339 
341 340 
342 341 
343 342 
344 343 
345 344 
346 345 
347 346 
348 347 
349 348 
350 349 
351 350 
352 351 
353 352 
354 353 
355 354 
356 355 
357 356 
359 358 
360 359 
361 360 
362 361 
363 362 
364 363 
365 364 
366 365 
367 366 
368 367 
369 368 
370 369 
371 370 
372 371 
373 372 
374 373 
375 374 
376 375 
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339 355 356 377 376 
340 356 357 378 377 
341 358 359 380 379 
342 359 360 381 380 
343 360 361 382 381 
344 361 362 383 382 
345 362 363 384 383 
346 363 364 385 384 
347 364 365 386 385 
348 365 366 387 386 
349 366 367 388 387 
350 367 368 389 388 
351 368 369 390 389 
352 369 370 391 390 
353 370 371 392 391 
354 371 372 393 392 
355 372 373 394 393 
356 373 374 395 394 
357 374 375 396 395 
358 375 376 397 396 
359 376 377 398 397 
360 377 378 399 398 
361 379 380 401 400 
362 380 381 402 401 
363 381 382 403 402 
364 382 383 404 403 
365 383 384 405 404 
366 384 385 406 405 
367 385 386 407 406 
368 386 387 408 407 
369 387 388 409 408 
370 388 389 410 409 
371 389 390 411 410 
372 390 391 412 411 
373 391 392 413 412 
374 392 393 414 413 
375 393 394 415 414 
376 394 395 416 415 
377 395 396 417 416 
378 396 397 418 417 
379 397 398 419 418 
380 398 399 420 419 
381 400 401 422 421 
382 401 402 423 422 
383 402 403 424 423 
384 403 404 425 424 
385 404 405 426 425 
386 405 406 427 426 
387 406 407 428 427 
388 407 408 429 428 
389 408 409 430 429 
390 409 410 431 430 
391 410 411 432 431 
392 411 412 433 432 
393 412 413 434 433 
394 413 414 435 434 
395 414 415 436 435 
396 415 416 437 436 
397 416 417 438 437 
398 417 418 439 438 
399 418 419 440 439 
400 419 420 441 440 

CUTOUTS 
THE FOLLOWING ELEMENT NUMBERS ARE    CUTOUT 

COORDINATES OF THE GLOBAL NODES: 

1   O.O0000D+OO  0.00000D+00 
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2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.8001 OD-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.00000D+0O 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 

O.00000D+00 
0.00000D+00 
0.00000D+00 
0.00000D+00 
O.O0000D+O0 
0.00000D+00 
0.00000D+00 
0.00000D+00 
0.0O000D+0O 
0.00000D+00 
0.0O000D+00 
O.OOOOOD+OO 
O.OOOOOD+00 
0.00000D+00 
0.00000D+00 
O.OOOOOD+00 
0.00000D+00 
0.00000D+00 
0.00000D+00 
O.OOOOOD+OO 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.57150D-02 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.11430D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
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72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 

0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
0.00000D+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
0.00000D+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 

0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.17145D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.22860D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.28575D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
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142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 

0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+OO 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
0.00000D+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+OO 

0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.34290D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.40005D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.45720D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.51435D-01 
0.57150D-01 
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212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 

0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.OOOOOD+00 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 
0.45720D-01 
0.51435D-01 
0.57150D-01 
0.62865D-01 
0.68580D-01 
0.74295D-01 
0.80010D-01 
0.85725D-01 
0.91440D-01 
0.97155D-01 
0.10287D+00 
0.10858D+00 
0.11430D+00 
O.00000D+0O 
0.57150D-02 
0.11430D-01 
0.17145D-01 
0.22860D-01 
0.28575D-01 
0.34290D-01 
0.40005D-01 

0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.57150D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.62865D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.68580D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
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282 0.45720D-01 
283 0.51435D-01 
284 0.57150D-01 
285 0.62865D-01 
286 0.68580D-01 
287 0.74295D-01 
288 0.80010D-01 
289 0.85725D-01 
290 0.91440D-01 
291 0.97155D-01 
292 0.10287D+00 
293 O.10858D+O0 
294 0.11430D+00 
295 O.OOOOOD+00 
296 0.57150D-02 
297 0.11430D-01 
298 0.17145D-01 
299 0.22860D-01 
300 0.28575D-01 
301 0.34290D-01 
302 0.40005D-01 
303 0.45720D-01 
304 0.51435D-01 
305 0.57150D-01 
306 0.62865D-01 
307 0.68580D-01 
308 0.74295D-01 
309 0.80010D-01 
310 0.85725D-01 
311 0.91440D-01 
312 0.97155D-01 
313 0.10287D+00 
314 0.10858D+00 
315 0.11430D+00 
316 O.OOOOOD+OO 
317 0.57150D-02 
318 0.11430D-01 
319 0.17145D-01 
320 0.22860D-01 
321 0.28575D-01 
322 0.34290D-01 
323 0.40005D-01 
324 0.45720D-01 
325 0.51435D-01 
326 0.57150D-01 
327 0.62865D-01 
328 0.68580D-01 
329 0.74295D-01 
330 0.80010D-01 
331 0.85725D-01 
332 0.91440D-01 
333 0.97155D-01 
334 0.10287D+00 
335 O.10858D+O0 
336 0.11430D+00 
337 0.00000D+00 
338 0.57150D-02 
339 0.11430D-01 
340 0.17145D-01 
341 0.22860D-01 
342 0.28575D-01 
343 0.34290D-01 
344 0.40005D-01 
345 0.45720D-01 
346 0.51435D-01 
347 0.57150D-01 
348 0.62865D-01 
349 0.68580D-01 
350 0.74295D-01 
351 0.80010D-01 

0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.74295D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.80010D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.85725D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
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352 0.85725D-01 
353 0.91440D-01 
354 0.97155D-01 
355 0.10287D+00 
356 0.10858D+00 
357 0.11430D+00 
358 O.OOOOOD+00 
359 0.57150D-02 
360 0.11430D-01 
361 0.17145D-01 
362 0.22860D-01 
363 0.28575D-01 
364 0.34290D-01 
365 0.40005D-01 
366 0.45720D-01 
367 0.51435D-01 
368 0.57150D-01 
369 0.62865D-01 
370 0.68580D-01 
371 0.74295D-01 
372 0.80010D-01 
373 0.85725D-01 
374 0.91440D-01 
375 0.97155D-01 
376 0.10287D+00 
377 0.10858D+00 
378 0.11430D+00 
379 O.OOOOOD+00 
380 0.57150D-02 
381 0.11430D-01 
382 0.17145D-01 
383 0.22860D-01 
384 0.28575D-01 
385 0.34290D-01 
386 0.40005D-01 
387 0.45720D-01 
388 0.51435D-01 
389 0.57150D-01 
390 0.62865D-01 
391 0.68580D-01 
392 0.74295D-01 
393 0.80010D-01 
394 0.85725D-01 
395 0.91440D-01 
396 0.97155D-01 
397 0.10287D+00 
398 0.10858D+00 
399 0.11430D+00 
400 0.00O00D+00 
401 0.57150D-02 
402 0.11430D-01 
403 0.17145D-01 
404 0.22860D-01 
405 0.28575D-01 
406 0.34290D-01 
407 0.40005D-01 
408 0.45720D-01 
409 0.51435D-01 
410 0.57150D-01 
411 0.62865D-01 
412 0.68580D-01 
413 0.74295D-01 
414 0.80010D-01 
415 0.85725D-01 
416 0.91440D-01 
417 0.97155D-01 
418 0.10287D+00 
419 0.10858D+00 
420 0.11430D+00 
421 O.OOOOOD+OO 

0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.91440D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.97155D-01 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10287D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
O.10858D+O0 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.10858D+00 
0.11430D+00 

A-20 



422 0.57150D-02 0.11430D+00 
423 0.11430D-01 0.11430D+00 
424 0.17145D-01 0.11430D+00 
425 0.22860D-01 0.11430D+00 
426 0.28575D-01 0.11430D+00 
427 0.34290D-01 0.11430D+00 
428 0.40005D-01 0.11430D+00 
429 0.45720D-01 0.11430D+00 
430 0.51435D-01 0.11430D+00 
431 0.57150D-01 0.11430D+00 
432 0.62865D-01 0.11430D+00 
433 0.68580D-01 0.11430D+00 
434 0.74295D-01 0.11430D+00 
435 0.80010D-01 0.11430D+00 
436 0.85725D-01 0.11430D+00 
437 0.91440D-01 0.11430D+00 
438 0.97155D-01 0.11430D+00 
439 0.10287D+00 0.11430D+00 
440 0.10858D+00 0.11430D+00 
441 0.11430D+00 0.11430D+00 

LOAD PARAMETER=1,2,3,4; NORMAL.DEADWT.AXIAL.SHEAR 

LOAD PARAMETER = 0   INTENSITY = O.OOOOOD+OO 

NUMBER OF NODES WITH IN-PLANE LOADING=    0 
NODE NUMBERS: 

NANAL(1)=0,1,2 FOR N0NLINEAR,LINEAR,EIGEN VALUES 
NANAL(2)=0,1,2 FOR ARBITRARY LAMINATE.ISOTROPICSYMMETRIC LAMINATE 
NANAL(3)=1 FOR VON KARMAN PLATE OR DONNELL SHELL EQNS 
NANAL(1)= 1 NANAL(2)= 1 NANAL(3)= 1 

THE FOLLOWING PROPERTIES WERE INPUT (E.NU.THICK) 
0.1140000000000D+12 
0.3300000000000D+00 
0.1016000000000D-02 

INITIAL CONDITION INFORMATION : 
IREST=  0 INDIS=   0 INVEL=   0 

HALF BAND WIDTH OF GLOBAL STIFFNESS MATRIX -   161 

NCOUNT=    1 

ELASTIC SOLUTION AT TTIME = 0.0 DUE TO INITIAL CONDITIONS, IF THERE IS ANY 

NCOUNT=    2 

NCON=  0  RATIO=   0.000000D+00 RINIT=   0.674297D-09 RCURR=  0.674297D-09 
NCON=   1   RATIO=   0.241383D-11RINIT=   0.674297D-09 RCURR=  0.674297D-09 

RESULTS OF LINEAR ANALYSIS 
INCREMENT NUMBER =  2 ITERATION =   2 
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NODE u V w w-x w-s PSI-X PSI-E 

231 0. OOOOOD+00 0. OOOOOD+00 0. 12970D- 09 0. 13365D-07 0. 37210D-21 -0. 13395D-07 -0. 37962D-21 

231 0. O0000D+00 0. OOOOOD+00 0. 14448D- ■08 0. 25340D-06 0. 14580D-20 -0. 25448D-06 -0. 15539D-20 

231 0. 00000D+00 0. OOOOOD+OO 0. 46869D- ■08 0. 14276D-05 0. 70520D-20 -0. 14339D-05 -0. 72122D-20 

231 0. 00000D+00 0. OOOOOD+00 -0. 27170D- ■08 0. 32087D-05 0. 45754D-19 -0. 32188D-05 -0. 43758D-19 

231 0. 00000D+00 0. OOOOOD+00 -0. 58616D- 07 0. 10586D-05 0. 11554D-18 -0. 10454D-05 -0. 10366D-18 

231 0. OOOOOD+00 0. OOOOOD+00 -0. 19310D- ■06 -0. 10102D-04 0. 37114D-18 0. 10169D-04 -0. 33799D-18 

231 0. 00000D+00 0. OOOOOD+OO -0. 38936D- ■06 -0. 28266D-04 0. 29302D-18 0. 28372D-04 -0. 22445D-18 

231 0. 00000D+00 0. OOOOOD+00 -0. 62214D- ■06 -0. 50200D-04 0. 12481D-17 0. 50334D-04 -0. 11685D-17 

231 0. 00000D+00 0. OOOOOD+00 -0. 88050D- ■06 -0. .76981D-04 0. 76178D-18 0. 77182D-04 -0. 66620D-18 

231 0. OOOOOD+OO 0. OOOOOD+OO -0. 11116D- ■05 -0. .10575D-03 -0. .52134D-17 0. 10604D-03 0. 52901D-17 

231 0. 00000D+00 0. OOOOOD+00 -0. 12247D- ■05 -0. .13122D-03 -0. .58994D-17 0. 13158D-03 0. .60171D-17 

231 0. 00000D+00 0. OOOOOD+OO -0. .11622D- ■05 -0. .15101D-03 -0. .54915D-17 0. 15134D-03 0. .55982D-17 

231 0. 00000D+00 0. OOOOOD+00 -0. .93805D- ■06 -0. .16582D-03 -0. .92965D-17 0. 16609D-03 0. .93867D-17 

231 0. .00000D+00 0. OOOOOD+00 -0, .59729D- ■06 -0. .18036D-03 -0, .64632D-17 0. .18062D-03 0. . 65180D-17 

231 0. .00000D+00 0. .OOOOOD+00 -0. .14229D- ■06 -0. .19472D-03 -0. .12484D-16 0. .19496D-03 0. .12498D-16 

231 0. .OOOOOD+00 0. .OOOOOD+00 0, .44483D- -06 -0. .20409D-03 -0. .27330D-16 0. .20428D-03 0. .27207D-16 

231 0. .00000D+00 0. .OOOOOD+00 0, ,11534D- ■05 -0. .20628D-03 -0. .26991D-16 0. .20638D-03 0. .26851D-16 

231 0. .00000D+00 0. .OOOOOD+00 0, .19489D- ■05 -0. .20309D-03 -0. .31413D-16 0. .20305D-03 0. .31146D-16 

231 0. ,OOOOOD+00 0. .OOOOOD+00 0. .28005D- -05 -0. .19716D-03 -0. .50544D-16 0. .19705D-03 0, .49946D-16 

231 0, .OOOOOD+00 0. .OOOOOD+OO 0, .37145D- ■05 -0. •18583D-03 -0. .67842D-16 0. , 18565D-03 0, .67089D-16 

231 0. .OOOOOD+00 0. .OOOOOD+00 0. .46858D- ■05 -0. •16796D-03 -0. .10018D-15 0, .16765D-03 0, .99813D-16 

231 0. .OOOOOD+00 0. .OOOOOD+00 0. .56729D- ■05 -0 •14518D-03 -0. •16351D-15 0. ,14477D-03 0, .16203D-15 

231 0, .OOOOOD+00 0, .OOOOOD+00 0. •66412D- -05 -0 •11654D-03 -0. •27716D-15 0. .11604D-03 0, .27542D-15 

231 0, .OOOOOD+00 0, .OOOOOD+00 0 •75311D- -05 -0 •83442D-04 -0. .32596D-15 0. .82812D-04 0. .32368D-15 

231 0, .OOOOOD+00 0, .OOOOOD+00 0 •82543D- -05 -0 .49927D-04 -0 .32413D-15 0. .49254D-04 0. .32251D-15 

231 0. .OOOOOD+OO 0. •OOOOOD+00 0 .87584D- -05 -0 .19224D-04 -0 .44554D-15 0. .18548D-04 0. .44332D-15 

231 0. .OOOOOD+00 0. .OOOOOD+OO 0 .90313D- -05 0 •67223D-05 -0 •47207D-15 -0 .73716D-05 0 .46985D-15 

231 0 .OOOOOD+00 0 •OOOOOD+00 0 .91019D- -05 0 .27755D-04 -0 •43894D-15 -0. .28268D-04 0 .43716D-15 

231 0 .OOOOOD+00 0 •OOOOOD+OO 0 .90528D- -05 0 .47196D-04 -0 .53439D-15 -0 .47551D-04 0 •53266D-15 

231 0 .OOOOOD+00 0 •OOOOOD+00 0 .89708D- -05 0 .69104D-04 -0 .50074D-15 -0 .69324D-04 0 •49736D-15 

231 0 .OOOOOD+00 0 •OOOOOD+OO 0 .89199D- -05 0 .97348D-04 -0 .44620D-15 -0 •97444D-04 0 •44450D-15 

231 0 .OOOOOD+OO 0 •OOOOOD+00 0 .89370D- -05 0 .13319D-03 -0 .56032D-15 -0 •13319D-03 0 •55827D-15 

231 0 .OOOOOD+00 0 •OOOOOD+00 0 .90160D- -05 0 .17335D-03 -0 .75170D-15 -0 •17326D-03 0 .74600D-15 

231 0 .OOOOOD+OO 0 •OOOOOD+00 0 .91370D- -05 0 .21455D-03 -0 .86712D-15 -0 .21432D-03 0 .86113D-15 

231 0 .OOOOOD+00 0 •OOOOOD+00 0 .93198D- -05 0 .25547D-03 -0 .73754D-15 -0 .25508D-03 0 .73323D-15 

231 0 .OOOOOD+00 0 •OOOOOD+00 0 .96187D- -05 0 .29576D-03 -0 .54334D-15 -0 .29525D-03 0 .53906D-15 

231 0 .OOOOOD+00 0 •OOOOOD+OO 0 .10084D- -04 0 .33647D-03 -0 .45343D-15 -0 .33587D-03 0 .44908D-15 

231 0 .OOOOOD+00 0 .OOOOOD+00 0 .10748D- -04 0 .37973D-03 -0 .33323D-15 -0 .37909D-03 0 .32917D-15 

231 0 .OOOOOD+00 0 .OOOOOD+00 0 .11616D- -04 0 .42518D-03 -0 .10089D-15 -0 .42449D-03 0 .96426D-16 

231 0 .OOOOOD+00 0 .OOOOOD+00 0 . 12702D- -04 0 .47529D-03 0 .16127D-15 -0 .47457D-03 -0 .16505D-15 

231 0 .OOOOOD+00 0 .OOOOOD+OO 0 .13984D- -04 0 .52874D-03 0 .77720D-15 -0 .52813D-03 -0 .77709D-15 

231 0 .OOOOOD+00 0 .OOOOOD+00 0 .15341D- -04 0 .57503D-03 0 .16342D-14 -0 .57449D-03 -0 .16309D-14 

231 0 .OOOOOD+00 0 .OOOOOD+00 0 .16675D- -04 0 .60956D-03 0 .20118D-14 -0 .60906D-03 -0 .20065D-14 

231 0 .OOOOOD+OO 0 .OOOOOD+00 0 . 17958D- -04 0 .63309D-03 0 .23283D-14 -0 .63259D-03 -0 .23244D-14 

231 0 .OOOOOD+00 0 .OOOOOD+00 0 .19192D- -04 0 .64582D-03 0 .30155D-14 -0 . 64534D-03 -0 .30085D-14 

231 0 .OOOOOD+OO 0 .OOOOOD+OO 0 .20373D- -04 0 .64836D-03 0 .34048D-14 -0 . 64797D-03 -0 .33972D-14 

231 0 .OOOOOD+00 0 .OOOOOD+00 0 .21473D- -04 0 .64094D-03 0 .36720D-14 -0 . 64064D-03 -0 .36629D-14 
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ELEMENT 200 

2 -COORD X-COORD c -COORD SIGMA11 SIGMA22 SIGMA12 SIGMA23 SIGMA13 

0 5080E-03 0 1139E+00 0 5675E-01 0 4297E+02 0 2840E+02 -0 2747E+01 0 0000E+00 0 00O0E+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 3400E+03 0 1760E+03 -0 3411E+02 0 OOOOE+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 3635E+03 -0 2632E+03 -0 1150E+03 0 OOO0E+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 2805E+04 -0 4302E+04 0 1011E+01 0 0000E+00 0 0000E+OO 

0 5080E-03 0 1139E+00 0 5675E-01 -0 9530E+04 -0 1305E+05 0 7810E+03 0 O000E+00 0 0000E+OO 

0 5080E-03 0 1139E+00 0 5675E-01 -0 1333E+05 -0 1916E+05 0 1913E+04 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 1416E+05 -0 1710E+05 0 2541E+04 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 1774E+05 -0 1659E+05 0 3108E+04 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 2192E+05 -0 3307E+05 0 4618E+04 0 0000E+OO 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 2864E+05 -0 6449E+05 0 6911E+04 0 0000E+OO 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 3410E+05 -0 7203E+05 0 8421E+04 0 OOOOE+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 2951E+05 -0 2367E+05 0 7543E+04 0 OOOOE+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 2560E+05 0 5029E+05 0 6020E+04 0 OOOOE+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 2334E+05 0 1258E+06 0 5610E+04 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 1571E+05 0 2247E+06 0 4517E+04 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 -0 5747E+04 0 3409E+06 0 2492E+04 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 5001E+04 0 4486E+06 0 7324E+02 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 1617E+05 0 5437E+06 -0 2831E+04 0 0000E+OO 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 2800E+05 0 6218E+06 -0 4857E+04 0 0000E+OO 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 3718E+05 0 6956E+06 -0 6760E+04 0 OOOOE+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 4949E+05 0 7799E+06 -0 9850E+04 0 OOOOE+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 6147E+05 0 8498E+06 -0 1234E+05 0 OOOOE+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 7105E+05 0 9060E+06 -0 1477E+05 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 8220E+05 0 9413E+06 -0 1788E+05 0 O000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 8381E+05 0 9044E+06 -0 1877E+05 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 8103E+05 0 7993E+06 -0 1829E+05 0 OOOOE+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 7451E+05 0 6358E+06 -0 1690E+05 0 OOOOE+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 5973E+05 0 4149E+06 -0 1308E+05 0 OOOOE+00 0 0000E+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 4304E+05 0 1809E+06 -0 8904E+04 0 0000E+00 0 OOOOE+00 

0 5080E-03 0 1139E+00 0 5675E-01 0 2928E+05 -0 4645E+05 -0 5415E+04 0 OO00E+00 0 OOOOE+00 
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