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AFIT/GOR/ENS/OlM-12 

Abstract 

The issue of predicting high pilot mental workload is important to the United 

States Air Force because lives and aircraft can be lost when errors are made during 

periods of mental overload and task saturation. Current research efforts use 

psychophysiological measures such as electroencephalography (EEG), cardiac, ocular, 

and respiration measures in an attempt to identify and predict mental workload levels. 

Existing classification methods successfully classify pilot mental workload using flight 

data from the same pilot on the same day but unsuccessfully classify workload using data 

from a different pilot on a different day. 

The primary focus of this effort is the development of a calibration scheme that 

allows a small subset of salient psychophysiological features developed using actual 

flight data for one pilot on a given day to accurately classify pilot mental workload for a 

separate pilot on a different day. Extensive raw data preprocessing, including 29 Fourier 

transformations for each second of flight data, prepares the feature data for analysis. The 

signal-to-noise ratio feature screening method is employed to determine the usefulness of 

151 psychophysiological features in feed-forward artificial neural networks. Factor 

analysis is used to identify patterns in features that vary with changes in mental workload 

level. Methodologies for workload level modification and data calibration are presented 

and tested to determine if any are useful in increasing the accuracy of measuring pilot 

mental workload across different pilots and over different days. 

xiv 



Through exploratory factor analysis, the reevaluation of the dimensions of the 

problem lead us to the insight that the feature space varies by pilot and day. While 

artificial neural networks appear unable to find this feature space by themselves, our 

calibration scheme exploits the new feature space and allows us to accurately 

discriminate between high and low mental workload. We achieve classification accuracy 

improvements over previous classifiers exceeding 55% while using 88% fewer features 

and reducing the classification accuracy variance by over 88%. Without the need for 

EEG data, the calibration scheme also reduces the raw data collection requirements by 

99.75%, making data collection immensely easier to manage and dramatically reduces 

computational processing requirements. Along with the validated implementation 

method, the calibration scheme completely dominates all other classifiers over their entire 

operating curves and significantly simplifies the entire classification process. This makes 

the calibration scheme and implementation method far more practical than any previous 

classifier and classification method. Finally, the identification of the new feature space 

also opens new doors for further improvements in classification accuracies. 

The calibration scheme produces a single classifier developed from only one 

flight that can be used to accurately predict pilot mental workload for different pilots over 

different days. The psychophysiological variations within and across individuals 

preventing previous methods from attaining high classification accuracy appear to no 

longer be a major hurdle. 
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PILOT MENTAL WORKLOAD CALIBRATION 

I. Introduction 

1.1       Overview 

This research contributes to the advancement of knowledge regarding the problem 

of classifying pilot mental workload through the use of artificial neural networks. The 

goal of this research is to develop a calibration scheme that allows a parsimonious subset 

of salient psychophysiological features developed using data from a specific day to 

accurately classify pilot mental workload on a different day. In this context, parsimony 

means using the least number of features and saliency means selecting those features that 

have the strongest predictive power for classifying mental workload. A secondary goal is 

the development of a computer software tool that enables anyone using a standard office 

computer to perform the extensive preprocessing of the psychophysiological data 

quickly, accurately, and with minimum external software requirements. One proposed 

research question is: Can we develop a mental workload classifier that accounts for the 

psychophysiological differences across days with a single pilot? A second and more 

intriguing question is: Can we develop a mental workload classifier that is robust enough 

to account for the psychophysiological differences across days for multiple pilots? 
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This research effort uses data from a study conducted on several pilots flying 

identical aircraft over identical flight paths on two days, as well as several processes and 

methods developed in previous research work [10, 12, 15]. A saliency screening method 

will be employed on the psychophysiological features derived from this data to determine 

a parsimonious set of features for each pilot on each day [5]. Mental workload 

classification accuracies will then be measured following the training of artificial neural 

networks on these salient feature sets. Several methodologies for modifying the training 

and workload levels will be addressed, and a data calibration scheme will be presented. 

Finally, the different methodologies and data calibration scheme will be tested to 

determine if any are useful in increasing the accuracy of measuring pilot mental 

workload. 

1.2      Background 

With technological advancement in today's aircraft come increased demands on 

the pilots, often requiring their attention to be split between multiple tasks. When divided 

attention is coupled with stressful or mentally demanding situations, a potential for 

mental overload presents itself. Studies of fighter aircraft pilots show how devastating 

the effects of mental overload can be. These pilots can become so involved in their 

current situation that they forget to perform basic tasks, such as G-force straining 

maneuvers. As a result, some pilots have lost consciousness and their lives. One fighter 

pilot became so concerned about this problem that he conducted a study himself after 

surviving a G induced loss of consciousness (GLOC) incident [2]. He discovered that the 
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USAF lost fourteen pilots due to GLOC over ten years, with only one common factor 

found across the pilots: all but one of the fatalities occurred during mentally demanding 

portions of flight. If a classifier could be constructed to accurately analyze the 

psychophysiological data of the pilot and provide insight into the current level of mental 

workload, then a system could be developed to reduce the possibility of a GLOC 

situation. 

The Air Force Research Laboratory (AFRL)ZHuman Effectiveness Directorate 

(HE) at Wright-Patterson Air Force Base, Ohio, has conducted many studies on mental 

workload in laboratory, simulator, and flight settings. Their results, used by the 

predecessors to this research effort, have indicated that the most influential 

psychophysiological features in classifying mental workload level are: brain electrical 

activity, heart rate, breath rate, and eye blink measures [28-32]. The AFRL has collected 

flight data using ten pilots flying Wright-Patterson Aero Club Piper Cubs on a specified 

route over two days. To collect the psychophysiological data, the pilots wore special 

recording equipment. Previous analysis of this data has revealed that substantial feature 

reduction is attainable through a signal-to-noise ratio feature-screening algorithm and that 

artificial neural networks produced the most robust classifier for determining mental 

workload [10, 15, 16]. While training an artificial neural network using these reduced 

features sets produced same-data mental workload classification accuracies varying from 

approximately 72%-97%, the classification accuracy for an individual pilot over multiple 

days using a classifier constructed from first-day data produced results comparable to 

flipping a coin [10]. 
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1.3 Research Objectives 

AFRL/HE has already performed an experiment and collected data on several 

pilots over two days. This psychophysiological data consists of electrical brain activity, 

heart rate, breath rate, and eye blink measures. Using feature selection techniques, 

artificial neural networks were trained with the hopes of accurately classifying mental 

workload. The resulting classification accuracies from classifiers built on data from one 

day used to predict mental workload with data from a second day were much lower than 

the desired 95% accuracy. This research concentrates on trying to solve this problem by 

developing a calibration scheme that can account for the psychophysiological differences 

pilots experience across days and therefore greatly increase the mental workload 

classification accuracy for trained artificial neural networks. This calibration scheme will 

then be used to evaluate the classification accuracy of multiple pilots over multiple days. 

1.4 Research Methodology 

While the specific methodologies of this research effort are included in Chapters 

III and IV, a quick overview of the approach is as follows: 

• Preprocess the raw data into data files for each pilot on each day using only 
macros from Microsoft Excel and Word. 

• Use artificial neural networks and the signal-to-noise ratio screening method to 
determine the most salient features from each data set, including mixed day data 
sets. With these networks, calculate performance measures across days and 
pilots. 

• Investigate causes of low classification accuracy, such as challenging several 
assumptions concerning the threshold level between low and high workload, and 
develop a calibration scheme to overcome these difficulties. 
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• Validate the calibration scheme by calculating network performance measures on 
independent data and comparing the results to networks trained with non- 
calibrated data. 

1.5      Scope of Research 

As previously stated, the primary goal of this research effort is to develop a 

calibration scheme to allow a parsimonious subset of the most salient 

psychophysiological features developed from data on one day to accurately classify pilot 

mental workload on a different day. Additionally, this research effort provides the 

following: 

• Development of a series of macros in Microsoft Office to perform the extensive 
preprocessing of the raw data 

• Development of a process to identify and extract the middle layer node weights 
from Statistical Neural Network Analysis Package Version 2.0, the artificial 
neural network software tool 

• Creation of an archive of all processed psychophysiological data, software tool 
files and instructions, and middle layer weight extraction process files. 

A review of the literature concerning artificial neural networks, feature selection 

techniques, and the various psychophysiological features used in this research is 

addressed in Chapter II.   Detailed information about the flight experiment and the 

extensive preprocessing requirements of the psychophysiological features  is then 

presented in Chapter III.  Chapter IV discusses the different methodologies followed to 

solve the classification accuracy problem, and the results are provided in Chapter V. The 

significance of the results, along with several conclusions and recommendations are then 

presented in Chapter VI. 
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II. Literature Review 

This chapter reviews the pertinent literature involved in this research effort in four 

sections. The first section introduces artificial neural networks. The second section 

describes the feed-forward multilayer perceptron artificial neural network, followed by 

the third section that describes saliency screening methods for input features. Finally, the 

fourth section reviews the various psychophysiological features that are available when 

assessing mental workload in a multi-task environment. 

2.1      Overview and History of Artificial Neural Networks 

Artificial neural networks (ANNs) are inspired by how scientists believe brains 

function and organisms learn. It is well understood that the brain is composed of a 

network of interconnected neurons. Neurons receive simultaneous inputs from other 

neurons through their dendrites, causing some neurons to "fire" as they pass or suppress 

signals along the network [23]. The firing of various neurons, along with a changing 

network structure and weighting of the respective neurons, forms the basis for how 

organisms learn. This same concept of a network, including neurons connected to each 

other and interacting with one another simultaneously, is the structure and learning 

principle used in ANNs. Learning is accomplished by providing feedback to the network 

under supervised training to adjust the model parameters in order to provide more 

accurate model output. 
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Early users of ANNs, such as McCulloch and Pitts in 1943, created simple 

networks that involved neurons firing only when summed inputs exceeded bias threshold 

values [7]. In the 1950's, Rosenblatt challenged the models made by McCulloch and 

Pitts because they were single layer in nature, didn't take into account randomness 

inherent in many systems, and therefore only had limited capabilities and uses [7]. His 

ideas led to the development of Rosenblatt's perceptron, shown in Figure 2-1. 

Output layer 

First layer 
Threshold Logic 
Functions 

Input layer 

Figure 2-1. Rosenblatt's Perceptron 

Rosenblatt's perceptron creates essentially a two-layer network (the input layer is not 

counted). The first layer contains fixed threshold logic functions, and the second layer 

provides the network output and has connecting trainable weights. Rosenblatt's 

perceptron improved an ANN's ability to distinguish between linearly separable 

functions, thus allowing it to perform adequately as a simple classification system. It still 

fell short, however, of accurately classifying regions that were not linearly separable, 
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such as Exclusive OR (XOR) classification problems shown in Figure 2-2. In this case, 

the existing learning algorithms will never terminate, and any arbitrary stopping rules do 

not guarantee that the resulting weight vector from the network will generalize well for 

new data [7]. 

.      O ft  -tr 

0  0 ft- 

■A-    . -A- 0       0 
* 0 0 

■ft      -tr 0 
ft- 0 

Figure 2-2. XOR Classification Problem 

Minsky and Papert pointed out in 1969 that the reason these perceptron networks failed to 

correctly classify data sets that are linearly inseparable is due to the network structure 

only having a single layer of weights that are modified by the learning algorithm [7]. 

They showed that a network could solve a multi-dimensional problem, such as the XOR 

problem, as long as the number of perceptrons increased exponentially with the 

dimensionality of the problem being presented to the network. This would allow the 

ANN to operate in a transformed space where the problem can once again become 

linearly separable. Despite this discovery, size and computational limitations lead most 

researchers to believe that ANNs had little practical use for everyday problems and little 

progress was made toward improved learning algorithms or network structures until the 

late 1980's. 
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In 1986, Rumelhart, Hinton, and Williams announced the discovery of a new 

learning algorithm that eliminated the need for an exponential number of perceptrons to 

solve nonlinearly separable problems. Their approach, now called backpropagation, 

revitalized the ANN community by employing a gradient search method on the error 

surface produced following training. The gradient search method is implemented to 

minimize the error so that the network correctly classifies patterns as often as possible. 

Other modifications to backpropagation have been introduced since the late 1980's, but 

the backpropagation method has remained the most widely used algorithm by researchers 

and practitioners alike. As a result, the learning algorithm used in this research effort will 

also employ the backpropagation method. 

With the renewed interest in ANNs and the development of increasingly more 

powerful computers, neural networks have been successfully used for complex pattern 

recognition. One particularly successful application includes recognizing patterns in 

psychophysiological data. 

2.1.1 Definitions. Some basic definitions of terms used throughout this research 

effort are included below. 

• Activation function. A mathematical function that takes the weighted activation 
values entering a unit, sums them, and translates the result to a position along a 
given scale [22]. Activation functions are generally chosen to be monotonic [7]. 

• Artificial Neural Network (ANN). An information processing system that 
operates on inputs to extract information and produces outputs corresponding to 
the extracted information [4]. 

• Architecture. The topological arrangement of neurons, layers, and connections, 
which defines the set of modeling equations available to the ANN [4]. 
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• 

Backpropagation. A learning algorithm for a multiplayer perceptron (MLP) using 
gradient descent applied to the sum-of-squares error function, and updates the 
various network weights accordingly [7]. 

Epoch. A complete presentation of the data set being used to train the MLP, also 
called a training cycle [22]. 

Feature. Features refer to the input vectors of information that are presumed to 
have some relation for helping to distinguish the various output classes. A vector 
of features is often called an exemplar [4, 7]. 

Feed-forward neural network. Multilayer ANNs whose connections exclusively 
feed inputs from lower to higher levels. In contrast to a feedback or recurrent 
ANN, a feed-forward ANN operates only until all the inputs propagate to the 
output layer, thus having the property that the outputs can be expressed as 
deterministic functions of the inputs. An example of a feed-forward ANN is the 
MLP [4, 7]. 

Hidden unit. The processing element in MLP ANNs that is not included in the 
input or output layers. This part is located between the input and output layers 
[4]. 

Learning algorithm. The algorithm that is used to train the ANN, resulting in 
changes to the weights of the neurons [7]. 

Learning rate. A value established by the operator of the ANN that identifies how 
much the various weights can be changed after each training epoch in trying to 
minimize the squared error [7]. 

Momentum. By adding the momentum term to the gradient search algorithm on 
the error surface, inertia is essentially added to the motion through the weight 
space. This "memory" of previous weight changes helps to avoid stopping at 
local minima on the error surface [7]. 

Neuron. The fundamental building block of an ANN. Normally, each neuron 
takes a weighted sum of its inputs to determine its net input. The net input is then 
processed through its transfer or activation function to produce a single-valued 
output that is broadcast to neurons further down in the network [4]. 

• Sigmoid activation function. An activation function that squashes its input into a 
range usually set from 0 to 1 (thus allowing for network outputs to represent 
posterior probabilities when assuming the class-conditional densities can be 
approximated by normal distributions) [7]. 

• 

• 

• 

• 
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Weight. An indication of the strength or importance of a particular connection 
between neurons. Each processing element receives inputs by means of its 
connections, and each of these connections has an associated weight that 
identifies its strength [4, 7]. 

2.2      Description of a Feed-forward Multilayer Perceptron ANN 

This research effort focuses on using feed-forward multilayer perceptron (MLP) 

ANNs, which consist of three layers: input layer, hidden layer, and output layer. Within 

a MLP ANN, a perceptron receives a weighted sum of I features and a bias term. The 

perceptron then transforms the weighted sum according to its activation function, 

producing the perceptron's output. The basic structure of this type of network, including 

the bias term, is shown in Figure 2-3. 

Output *V /(I*iw\i) 

= wVi 

Input 

Figure 2-3. Single Perceptron with Bias Term. 

As Figure 2-3 shows, data is fed upward from the input nodes x\ through x\ towards the 

network output node. The network gets its name "feed-forward" due to the data always 
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flowing forward through the network.   The output y of the perceptron is found by 

executing the activation function after summing each neuron x\ for / = 1, ..., /multiplied 

by its synaptic weight w; for i = 1, ..., /and adding the synaptic weight associated with 

the bias term WQ. The inclusion of the bias term allows the intercept to be non-zero. This 

equation is shown below. 

i 

Output = /[(I Xi*Wi)+   ] (2-1) 

A more detailed explanation of some of the various components and important 

considerations in building and training MLP ANNs follows. In particular, network 

architecture, weight initialization and activation functions, and the backpropagation 

algorithm will be addressed. 

2.2.1 MLP Network Architecture. The number of input nodes, hidden layers, 

hidden nodes, and output nodes define the architecture of a MLP ANN. Neural networks 

can be built with different architectures to solve the same problem, although some 

architectures are more effective in solving certain problems than others. 

By convention, the number of features determines the number of input nodes for 

a network. Similarly, the number of classes the ANN is trying to classify determines the 

number of output nodes. The number of hidden layers used in an ANN can vary from 

none to many, however Bishop shows that a network with a single hidden layer is 

sufficient when approximating any multivariate problem [7]. Figure 2-4 shows a 

representation of a multivariate MLP ANN with a single hidden layer and a bias term. 
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The determination for the number of hidden nodes to use in a network, however, is not as 

clearly defined. 

Output layer 

Hidden layer 

Input layer 

Figure 2-4. Multivariate MLP ANN with Bias Term. 

Several algorithms and theories have been developed for selecting the "correct" 

number of hidden nodes for a particular network. The primary concern is that should a 

network be built with too few hidden nodes, then solution convergence is possibly 

compromised, and if too many hidden nodes are included, then the ability of the network 

to characterize new data might be reduced. As a general rule, Bishop argues that a 

network built with the number of hidden nodes equal to twice the dimensionality of the 

input space will result in an efficient network that is able to approximate any smooth 

mapping surface [7]. One algorithm for determining the upperbound for the number of 

hidden nodes is Kolmogorov's theorem. This theorem identifies that the number of 

hidden nodes needed for a network will never be more than twice the number of input 
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nodes [7]. While other heuristic techniques have also been developed, the final 

determination of the "correct" number of hidden nodes to include in a network for a 

particular problem still remains somewhat more of an art form than a deterministic 

mathematical expression. 

Besides the number of nodes and layers to include in a MLP ANN, issues such as 

raw feature data transformation, learning rate step-size, momentum rate values, weight 

initializations, and network training must also be considered. These issues will all be 

addressed in the remainder of this chapter. 

With an understanding of the basic architecture used in building a MLP ANN, 

describing the general equation for calculating the output of the MLP ANN when 

presented with the nth input vector naturally follows. 

The output from a MLP ANN for the «th input vector (zn) can be computed by: 

j 

Äth neural network output = z\ = fQjw2j,k* x1]) (2-2) 

where 

J is the number of hidden nodes. 

fla) = l/(l+e"a) for sigmoidal activation functions, or ./(a) = a for linear 
activation functions. 

w^tis the weight from the hidden nodey to the output node k. 

x'o is the hidden layer bias term and is set equal to 1. 

x!j ^fQjw'ij* x"j) is the output of hidden nodey and is summed from i = 1 
toM. 

M is the number of input features. 
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- w1^ is the weight from input node / to hidden node/ 

- x"0 is the input layer bias term and is set equal to 1. 

- x"i is the fth input feature of the nth input vector. 

2.2.2 MLP Weight Initialization and Activation Functions. Before a MLP ANN 

can be used, the values of the weights between the input layer and the hidden layer, and 

between the hidden layer and the output layer must be assigned. This initial assignment 

is the only time the weights are dealt with directly. Afterwards, the backpropagation 

algorithm performs all modifications to the weights. 

Smith found that randomly initializing the weights close to zero resulted in 

quicker training times for the ANN [19]. The case for the random assignment of the 

weights is due to the error calculations and subsequent weight modifications in the 

backpropagation algorithm. Briefly, if all of the weights in the network are initialized to 

the same value, then the hidden nodes all receive the same input values, the activation 

function calculations in the hidden layer all result in the same output values leading into 

the output layer, and the output layer values will all be identical. When the 

backpropagation algorithm calculates the partial derivative of the network output error 

with respect to the weight parameters, the network weights will all be updated identically, 

leading to an inability of the network to solve a nonlinear problem. Greene found that 

randomly initializing the weights between -0.05 and 0.05 worked best when the Signal- 

to-Noise Ratio (SNR) feature screening method was employed [12]. 

In order for the network to treat all inputs equally, the activation function must 

limit the inputs into a small range, usually -1 to 1 or 0 to 1. These modified inputs are 
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then transmitted from the hidden node layer to the output layer through the weighted 

branches. Examples of activation functions include: hard limiter, threshold logic, 

hyperbolic tangent, and sigmoid. Graphs of each of these activation functions are shown 

in Figures 2-5 through 2-8. 

Figure 2-5. Hard Limiter Activation Function. 

's 

Threshold Logic (Linear Ramp) Function 
1.5 

X X 
i 

-5 
i 

0 

a 
5 

Figure 2-6. Threshold Logic (Linear Ramp) Activation Function. 
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Figure 2-7. Hyperbolic Tangent Activation Function. 
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Figure 2-8. Sigmoid Activation Function. 

Notice how the hard limiter and threshold logic functions are linear in nature, while the 

hyperbolic tangent and sigmoid functions are non-linear. This non-linearity allows for a 

continually differentiable function and is therefore more desirable. For the purposes of 

this research effort, the sigmoid activation function is used exclusively due to its robust 

nature. 

2.3      The Backpropagation Algorithm. 

In order for an ANN to be useful in classifying exemplars, the network must first 

be trained. The one most widely studied training algorithm and also the one used 

exclusively in this research effort is called backpropagation [7]. Training any neural 

network involves an iterative process by which the network receives inputs, pumps them 

through the network using the current weight values, calculates the network outputs and 

the resulting error values based on comparisons with the known outputs, and then 

modifies the various nodal weights throughout the network in efforts of reducing the 

calculated error. The backpropagation method is simply one algorithm by which the 

weights are updated throughout the network. 
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The cornerstone of the backpropagation algorithm lies in differentiable activation 

functions, such as the sigmoid activation function used for this research effort. This is 

important because the activations of the output nodes become differentiable functions of 

both the input variables, and of the weights and biases [7]. If we apply an error function, 

such as a sum-of-squares error function, a differentiable function of the network output is 

created and the error is a differentiable function of the weights [7]. By evaluating the 

derivatives of the error function with respect to the different weights, we then find weight 

values that minimize the error. The algorithm that evaluates these derivatives and 

updates the various weights is the backpropagation algorithm, and it uses a gradient 

descent approach to find the minimum error on the error surface. The actual updating of 

the weights can occur in two ways: an instantaneous update that examines the gradient of 

the error surface after the network processes each training exemplar, and a batch method 

that examines the gradient of the error surface only after the network has processed all of 

the training exemplars [7]. The method used in this research effort incorporates the 

instantaneous update method, and an algorithm using this method is provided below [20]. 

1. Randomly partition data into training, training-test, and validation data sets. 

2. Normalize the feature input data. 

3. Initialize the weights to small random values. 

4. Present the network with a randomly selected exemplar from training set, 
denoted JC^. 

5. Calculate the network output, /, associated with the pth training vector. 

6. Update the weights. 

7. If the training-test data set error does not indicate sufficient convergence, go 
to step 4. 
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The first step of this algorithm involves randomly partitioning the entire data set 

into three separate data sets: training, training-test, and validation. The training set 

consists of the data that will be presented to the ANN for updating the weights, and a 

portion of this data will be held back for assessing network performance. This hold out 

data is called the training-test data set. The validation data set is used to independently 

measure how well the ANN predicts future responses and produces the expected outputs. 

The purpose of the training-test data set is to identify when the network is 

overfitting the data. Overfitting means that the ANN is becoming so finely tuned to the 

training data set that it is "memorizing" even the noise in the data set. This is not 

necessarily a problem to the user, depending on the purpose of building the ANN. If the 

purpose is to build an ANN that can very accurately classify an exclusive set of data, then 

overfitting this particular data set might be warranted. Under this circumstance, the 

performance of the ANN would be excellent for the training and training-test data sets, 

while very poor for the validation data set. Overfitting the data can be a concern, 

however, if the intent is to build a robust ANN that can accurately classify data outside of 

the training data set. 

There are many different ways to divide the whole data set into the three data sets 

described above. One method involves splitting the data set into the training and 

validation sets using a 2:1 ratio. If one then splits the training set again by a 2:1 ratio, the 

creation of the training and training-test sets will have been accomplished, and a 2:1:1.5 

ratio will result across the training, training-test, and validation data sets. Another 

method results in a 40/30/30 split across the training, training-test, and validation sets, 
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respectively. The way one decides how to best split the data depends on the number of 

available exemplars and the particular application of the ANN. Larger data sets allow for 

the use of the 2:1:1 ratio, while smaller data sets might only allow for a 40/30/30 or 

similar split. 

With the data split into the different sets, the second step of the algorithm 

normalizes the feature input data. Two basic approaches can be taken to accomplish this 

step: scaling the data to fall within a range (like -1.0 to 1.0, or 0.0 to 1.0), or 

standardizing each feature to a mean of 0.0 and a variance of 1.0 [27]. Steppe 

recommends normalizing the data sets independently, which will keep the test and 

validation sets as separate and independent of one another as possible [20]. 

The third step of the algorithm involves initializing the weights within the ANN 

to small random values. The purpose behind the randomness, and a suggested range of 

values for the weights has already been addressed in an earlier section. In the fourth step, 

a randomly selected exemplar from the training set, denoted JK^, is presented to the 

network. This exemplar is the pth vector from this set. During the fifth step of the 

algorithm, the network calculates the output from this exemplar, denoted £, which is the 

output associated with the j?th training exemplar. Equation 2-2 detailed this output 

function as a summation of the sigmoid activation functions and the current weights in 

the network. The sixth step in the algorithm updates the weights in the network. Section 

2.3.1 details how the network updates the weights. 

The seventh step in the backpropagation algorithm tests to see if the weights have 

converged sufficiently to stop the training network. The training-test data set is used for 

this test.  If the average error distance (the difference between the observed output and 
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the actual output) for the most recent interval is less than the average error distance over a 

previous fixed interval, then training should continue by repeating steps four through 

seven. If the average error distance for the most recent fixed interval is not less than the 

average error distance over a previous fixed interval, then training should be stopped. 

Any continued network training from this point onward is unlikely to produce better 

results due to an overtrained network, and the weights should be left with the values that 

produced the minimum error on the training-test sample [19]. Other methods to stop a 

network from training include reaching a maximum number of training epochs and the 

attainment of training error target value [27]. 

2.3.1. Updating Weights in the Backpropagation Algorithm. This section details 

how the weights are updated in the backpropagation algorithm once the network output, 

zp, associated with the pth training exemplar is calculated. 

The weight updating is accomplished by calculating the instantaneous output 

error, £?<,, associated with x? from the pth exemplar of observed outputs, £k, and the 

corresponding vector of desired outputs, (f *. In this case, p represents the pth input 

exemplar of data, and k represents the number of output nodes, which is typically equal 

to the number of classes one is trying to classify. The formula to calculate the 

instantaneous network output error, £?<,, is the square error associated with the pth 

exemplar, shown below: 

k 

e?o=     (<fk-z?k)
2 (2-3) 

k=\ 
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where 

- K is the number of output nodes 

- (fk is the desired output vector associated with the/rth input exemplar 

- fk is the observed output vector produced from the pth input exemplar at the 
Äth output 

Using this defined error surface, the gradient descent step direction is found by taking the 

partial derivative of the error surface with respect to the weights currently in the network. 

There are four different calculations for the partial derivatives of the error surface, 8, 

depending on the layer of weights being updated and the type of activation function used. 

Equations 2-4 and 2-5 reflect 8 when using sigmoidal activation functions, and equations 

2-6 and 2-7 reflect 8 when using linear activation functions. 

Equation for weights between input and hidden layers (sigmoid function) are 

8'k = ^(1-^)18\(w2jkfd   fork=l,...K (2-4) 

where (w2jk)M is the old weight from hidden node j to output node k. 

Equation for weights between hidden and output layers (sigmoid function) are 

5\ = (cfk-fk)f^-fk) (2-5) 

Equation for weights between input and hidden layers (linear function) are 

81
k = E82

k(W
2

/*)old   fork=l,...K (2-6) 

Equation for weights between hidden layer and output layers (linear function) are 

d\ = (cfk-fk) (2-7) 
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Using this gradient descent direction, the weight parameters in the network can then be 

updated. Once again, there are two equations to update the weights, depending on the 

location of the weights. Equations 2-8 and 2-9 identify the weight updating equations 

between the input and hidden layers, and the hidden to output layers. 

Weight update equation for weights between the input and hidden layers: 

(wi
ij)

n™ = (wl
ij)

M + r\&jXp
i (2-8) 

Weight update equation for weights between the hidden and output layers: 

(w2
Jkr

w = (w2
Jkf

d + T]b2
kx

1j (2-9) 

where 

(wly)new is the updated weight from input node i to hidden node j. 

- (w ij)    is the old weight from input node i to hidden node j. 

- (w2/t)new is the updated weight from hidden node j to output node k. 

- (w2/*)old is the old weight from hidden node j to output node k. 

- T| is the learning rate, or the training step size. 

- jcy =ßX wXij x?i) is the output of hidden node j (i = 1,..., M) 

- y?i is the Ith input feature ofthe/rth input vector. 

The learning rate, r\ (defined in Section 2.1.1), measures how quickly the ANN will try to 

reduce the error during each backpropagation cycle. It ranges from zero to one, 

indicating the proportion of error that will be reduced during each weight updating cycle. 

If a learning rate with a value close to zero is used, then small steps in the gradient search 

will be taken. This leads to long convergence and computational times, and is therefore 
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rather inefficient. On the other hand, using a value close to one entails large steps in the 

gradient search, leading to possibly overshooting the minimum (which might actually 

cause an increase in the error). Furthermore, using the backpropagation algorithm with 

large training values can cause divergent oscillations and an inability for the network to 

stabilize at a solution [7]. A constant learning rate value set at T|= 0.25 has shown to be 

relatively efficient in terms of computational time and convergence speed [12,15]. 

The backpropagation algorithm can sometimes get stuck with solutions on the 

error surfaces that are local minimums instead of global minimums. To help avoid this 

problem, practitioners add a momentum term, a, into the backpropagation equations. 

The momentum term allows a network to respond to both the local gradient as well as 

recent trends in the error surface through the effect of inertia [7]. The term makes 

changes to the weights equal to the sum of a fraction of the last weight change and the 

new change suggested by the backpropagation rule [15]. Weight updating Equations 2- 

10 through 2-13 are modified to incorporate the momentum term. 

Equation for weights between the input and hidden layers are 

[w(t + l)\T = MO1/,]01" + T|5X
7 A + a A[w(t - l)V]°ld' °ld        (2-10) 

Equation for weights between the hidden and output layers are 

Mt + l)2,*]new = Mtfjkf* + A x'j + a AMt ~ l)#]°ld' °ld (2-11) 

AMt - I)1/,]0'4 °ld = [w(0VM " w(M) V"* °ld] (2-12) 

AM* - l)2
;*]old'old = Mt)Yd ~ w(M)Vld- °ld] (2-13) 
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where 

- a is the momentum term. 

- [w(t + l)\y]new is the new weight at epoch (H-l) from input node i to hidden 
nodej. 

- [w(t + l)2/*]new is the new weight at epoch (M-l) from hidden node j to output 
node k. 

- [w(tfjk]o]d is the old weight at epoch t from hidden node j to output node k. 

- [w(t)lij]M is the old weight at epoch t from input node i to hidden node j. 

- A[w(t - l)1/,]010, old is the weight change from epoch (t-l) to epoch t for input 
node i to hidden nodej. 

- A[w(t - lfjk]M'old is the weight change from epoch (t-l) to epoch t for hidden 
nodej to output node k. 

- t is the training epoch 

These equations show a momentum rate set to zero causes the weights to change exactly 

as they would when using only the error gradient. A momentum rate set to one, which is 

the highest value that should ever be used, will cause the weights to change the same 

amount from the previous update plus the current gradient step. Any values greater than 

one will result in an exponential impact on training [27]. Since the momentum term and 

learning rate together often determine the extent of the adjustments the weights will 

experience with each update, the settings for these values should be carefully considered 

in light of one another. The learning rate determines the magnitude of the next gradient 

step, while the momentum term determines how much the previous step will impact the 

next step. Other research efforts have shown that setting the momentum term around a = 

0.9 results in quick training times when the learning rate is set around T|= 0.25 [12,15]. 
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Building a network with a larger momentum term implies that a smaller learning rate 

should be used [27]. 

2.4      Feature Selection and Reduction Using Saliency Measures. 

In order for an ANN to produce good results, only the best features should be 

presented to the network for training. If only a few features are available for use in the 

training process, reducing them to an even smaller number is likely unnecessary. 

Presenting too many features to the network, however, can result in an ANN with poor 

classification accuracy. This is especially true if there is a large amount of noise in the 

data. As a result, several measures and methods have been developed to assist in 

determining which features are most salient. Three of these measures are Ruck's saliency 

measure, Tarr's saliency measure, and the signal-to-noise ratio (SNR) saliency measure. 

Each saliency measure uses its own equations and algorithm. Ruck's measure is 

based on using the partial derivatives from a trained network output with respect to the 

feature inputs over a number of independently trained networks [15]. The result produces 

ranked features according to their average saliency metric over several training cycles [6, 

21]. Tarr's measure is based on using the sum of the squared weights between the input 

and hidden nodes, and also produces ranked features according to their saliency metric 

[10]. The SNR measure is also based on the sum of the squared weights connecting the 

input and hidden nodes and compares the weights of each feature to the saliency of an 

injected noise feature [5]. While any of these feature saliency measures could be used, 

this research effort focuses on using the SNR saliency measure. 
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2.4.1 Signal-to-Noise Ratio Saliency Measure. As introduced above, the SNR 

saliency measure involves summing the squared weights connecting the input and hidden 

nodes, and then comparing the sum from each feature to the saliency of an injected noise 

feature. The metric's computation is shown in equation 2-14. 

K-J)' 

where 

SNR, = 10 log ^  (2-14) 

ZK)2 

SNRj is the saliency metric for the /* feature 

Jis the number of hidden nodes 

W
1
NJ is the weight connecting the injected noise feature, XN, to the 

hidden node layer 

wlij is the weight connecting the input feature, xt, to the hidden node 
layer 

In order to use the SNR saliency measure, the noise feature must be added to the data set. 

The uniform (0,1) distribution is used for this purpose [5]. The concept behind why the 

SNR saliency measure works lies in the movement and size of weights as the 

backpropagation algorithm tries to reduce the error. Features that are relevant to the 

ANN's output will have weight values in the first layer that are significantly greater than 

features with little relevancy to the output, whose weight values should fluctuate around 

zero [5]. As a result, SNR values for salient features will be larger than SNR values for 

non-salient features, and ranking the features by their SNR values can be accomplished. 
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2.4.2 Signal-to-Noise Ratio Screening Method A method using the SNR concept 

has been developed with the purpose of identifying a parsimonious set of salient features. 

To do this, non-salient features must be removed from the data set while still allowing the 

ANN to generalize the data set well. The method used to accomplish this feature 

reduction is shown below [5,12]. 

1. Introduce a Uniform (0,1) noise feature, xN, to the original set of features. 

2. Standardize all features to zero mean and unit variance. 

3. Randomly initialize the weights between -0.001 and 0.001. 

4. Randomly select the training and test sets. 

5. Begin to train the ANN. 

6. After each epoch, compute the SNR saliency measure for each input feature. 

7. Interrupt training when the SNR saliency measures for all input features have 
stabilized. 

8. Compute the test set classification error. 

9. Identify the feature with the lowest SNR saliency measure and remove it from 
further training. 

10. Continue training the ANN. 

11. Repeat steps 6-9 until all features (except the noise feature) in the original set are 
removed from training. 

12. Compute the reaction of the test set classification error due to the removal of the 
individual features. 

13. Retain the first feature whose removal caused a significant increase in the test set 
classification error, as well as all features that were removed after that first salient 
feature. 

14. Retrain the ANN with only the parsimonious set of salient input features. 
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Using the SNR screening method described above allows for a quick screening of 

the input features at any time in the network training process. As a result, when one is 

presented with many features, this screening method quickly eliminates the non-salient 

features before excessive training time has been wasted. Other screening methods 

require multiple independently trained networks to eliminate features, where as the SNR 

screening method only needs one. In addition, several studies have found that the SNR 

screening method produces robust results [5, 12]. This indicates that another advantage 

to the SNR screening method is its robustness when compared to other more statistically 

rigorous screening methods. 

2.5      Psychophysiological Features 

United States and foreign industries, along with governmental agencies, have long 

been interested in the effects of mental workload on animals and humans [1, 2, 3, 10, 11, 

12, 14, 15, 16, 25, 28, 29, 30, 31, 32]. To observe the effects of mental workload, many 

prominent psychophysiological features have been developed and studied. While other 

measures and features exist, the focus of this study revolves around using features 

derived from these four measures: cardiac, respiratory, ocular, and brain activity. 

Furthermore, research has shown that using multiple psychophysiological features 

simultaneously provides a more complete mental workload picture of a test subject in a 

multi-task situation, such as flying an airplane, than any single feature by itself [10, 11, 

15,16,29,31]. 
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2.5.1 Cardiac Measures. Using the heart to measure physical and mental 

workload is not a new concept. In fact, studies dating back to the early 1930's have used 

the heart rate to assess pilot responses [28]. This is primarily due to the ease with which 

data can be gathered since cardiac measures can be taken non-intrusively and are 

continuously available [28]. As a general guideline, increases in heart rate have been 

associated with increases in mental workload. During flight, pilots may experience 

increased heart rates when performing more difficult or more demanding operations such 

as take offs and landings [14, 29, 31]. 

Another cardiac feature recorded for estimating mental workload is heart rate 

variability. Heart rate variability is simply the variation of the beat-to-beat heart rhythm. 

It is not a statistical calculation of heart beat variance, but rather a measure of how much 

the heart inter-beat intervals change. Generally, this beat-to-beat variability decreases 

with increased mental workload, and increases with decreased mental workload [28]. 

Despite the number of studies that have measured heart rate variability, some controversy 

remains regarding its practical use. The controversy extends from how to best calculate 

the measure to research conclusions that heart rate variability provides no additional 

information beyond what can be gleaned from heart rate alone [28]. 

2.5.2 Respiratory Measures. Studies using respiratory measures have found a 

general increase in respiration during periods of higher mental workload [28]. Despite 

the general connection between respiration and workload, however, respiratory measures 

have not been widely used to estimate cognitive workload. One reason involves the 

complexities associated with removing the effects of speech and physical activity on a 
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test subject's breathing pattern [28]. As a result, increased respiration rates appear to be 

an indication of increased workload conditions, but the collection, processing, and 

interpretation of the data can be difficult. 

2.5.3 Ocular Measures. The most common features using ocular measures 

include duration of eye blinks and eye blink rate. Past research has shown that as test 

subjects attempt to process more information due to high visual workload demand, their 

blink rate and blink duration decrease [14, 31]. In other words, as the visual demands 

increase in the environment, test subjects must focus their attention more to avoid 

missing important information. Furthermore, research has been published indicating that 

blink rate is possibly more sensitive to cognitive workload levels than blink duration [31]. 

Blink duration, on the other hand, appears to be more dependent on the amount of visual 

information presented to test subjects than blink rate [31]. Any variations in these 

features are most noticeable, however, when visual demands vary and are overall not as 

sensitive to auditory or cognitive workloads where less visual stimulation is involved 

[31]. 

2.5.4 Brain Activity Measures. In recent years, given the ever-increasing 

computational power of computers, researchers have been able to process and analyze 

data from a brain like never before. Through the use of electrodes, the electrical impulses 

spanning the brain can be recorded and electroencephalographs (EEGs) generated [30]. 

These graphs plot the voltage changes over time at a particular location of the brain [3]. 

With this information, researchers have successfully used EEG data to monitor workload 

in multi-task environments [10, 11, 16, 30, 31, 32].  The frequency range found to be 
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most associated with cognitive workload lies from 1 to 40 Hertz (Hz), with frequencies 

below 1 Hz generally thought to be due to eye movements and frequencies over 40 Hz 

due to muscle movements. Furthermore, the cognitive workload frequency range can be 

broken down into 5 distinct power bands, shown in Table 2-1 below. 

Table 2-1. EEG Frequency Power Band Designations. 

Band Symbol Frequency 
Delta A l-3Hz 

Theta e 4-7Hz 

Alpha a 8-12 Hz 

Beta ß 13-30 Hz 

UltraBeta juß 31-42 Hz 

Using a Fourier transform, the raw EEG data can be transformed from a composite 

waveform into these 5 power bands. This is accomplished through a Fast Fourier 

Transform, which is a computationally efficient discrete Fourier transform algorithm [8]. 

The result is a conversion of the EEG data from a time-domain waveform to a frequency- 

domain waveform, upon which the 5 power bands are filtered for each second of 

recorded EEG data. Research using these power bands has shown that as cognitive 

demand increases, EEG activity in the alpha (#) band tends to decrease and EEG activity 

in the theta {&) band tends to increase [3, 14, 32]. 
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2,6      Chapter Summary 

This chapter introduced the literature used as a foundation for this research effort. 

ANN architectures and learning algorithms are addressed, along with saliency screening 

methods for input features. The psychophysiological features required to classify mental 

workload are also presented. Chapter III discusses the flight experiment and the 

necessary data preprocessing that must be completed prior to training ANNs. 
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III. Data Collection and Preprocessing 

This chapter includes information on the experiment and the data collected by the 

Flight Psychophysiology Laboratory (FPL) in the Human Effectiveness Directorate at 

AFRL. The methodology and software tool employed to preprocess the data is also 

discussed, and an example of a final input data matrix is presented. To ensure 

consistency, the preprocessing methodology is the same as used by both Laine and East 

[10,15]. 

3.1      The Flight Experiment 

The data used in this analysis came from an experiment conducted by the 

AFRL/FPL on pilots at the Wright-Patterson Aero Club. Ten volunteers flew a 

predetermined flight route once a day for two days. Each flight, lasting approximately 44 

minutes, was divided into 22 two-minute flight segments. Along with the pilot, a 

technician from the FPL and a copilot flew on each flight. The technician's job was to 

monitor the data collection process, and the copilot was present only for safety reasons 

and was not part of the experiment. While ten pilots participated in the flight experiment, 

only the data from Pilots 1 and 4 are analyzed during the course of this research effort. 

The flight route was specifically chosen to include three levels of workload: low, 

medium, and high. The laboratory personnel graded the difficulty of each flight segment 

before the flight, and the test subjects graded the difficulty of the flight segments after the 

flight. Figure 3-1 shows a graph reflecting the pilot's subjective measures of workload 
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level associated with each flight segment. Understandably, there were some 

discrepancies between the researchers and the pilots concerning workload levels 

associated with each flight segment. As an example, the pilots classified both the IFR 

airwork and VFR touch-and-go segments as high workload levels, while the researchers 

classified the VFR touch-and-go segment as high workload and the IFR airwork as 

medium workload. 

Pilot Subjective Measure Workloads 
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Figure 3-1. Pilot Subjective Measure Mental Workload Ratings 

To rectify the difference, the pilots and researchers agreed that since both groups 

classified the touch-and-go segment of the flight as high workload, then this would be the 

minimum threshold for determining a high workload segment. East found classifying 

three workload levels (low, medium, and high) very difficult and combined the low and 

medium levels into one group called low workload [10]. As a result, the dark horizontal 

line drawn across Figure 3-1 separates the low and high workload levels. All of the flight 
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segments below the line were classified as low mental workload and all of the flight 

segments above the line were classified as high mental workload. 

With the creation of this line, however, two significant assumptions are made 

concerning workload level accuracy and transitions between flight segments that can 

significantly increase classification errors. The first assumption deals with how 

accurately the flight segments are classified by mental workload for the pilots. It is 

assumed that all flight segments classified as low mental workload are equal in workload 

to other low workload flight segments. Similarly, it is assumed that all flight segments 

classified as high mental workload are equal in workload to other high workload flight 

segments. Determining the true mental difficulty for individual flight segments is not a 

science, however, and it is possible that the compromise between the researchers and 

pilots results in inaccurate workload levels. Chapter IV explores different schemes for 

defining the workload states to identify the effects of this assumption. 

The second assumption deals with instantaneous transitions between flight 

segments where the low/high workload line is crossed. It is assumed that the transition 

from low to high (or high to low) workload is instantaneous. In other words, the last 

second of the previous flight segment is correctly classified as low, and the first second of 

the following fight segment is correctly classified as high. However, transitions between 

mental workload levels are not really instantaneous since they occur over time and can 

vary by individual pilot. The effects of this assumption are also addressed through the 

different schemes for defining the workload states in Chapter IV. 
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3.2      Psychophysiological Data Collected 

Four different types of psychophysiological data are collected during flight: EEG 

data, ocular data, respiratory data, and cardiac data. To collect the EEG data, the pilots 

wear a special cap on their heads fitted with 29 electrodes. Figure 3-2 shows a diagram 

of a pilot's head fitted with the electrodes. Each of these electrodes has an identifier 

associated with it that reflects the location and naming of the electrode site based on the 

International 10-20 system [15]. The letter of each identifier designates the brain region 

and the number provides location information relative to the left or right side of the brain. 

An even number identifies the electrode to be on the right side of the brain and an odd 

number means the electrode is on the left side. The larger the number, whether odd or 

even, means the electrode is further from the center of the brain, where the center runs 

from the nose to the back of the head. A "Z" designates a central location, and the 

middle of the brain has no numerical designator. Table 3-1 lists the different regions of 

the brain associated with the letters found in the electrode identifiers. 

The ocular, respiratory, and cardiac data are recorded in data files that contain the 

elapsed time in milliseconds between events. An event is simply the blink of an eye, the 

taking of a breath, or a beat of the heart. A few additional pieces of raw data are also 

made available for several of these features, including the maximum and minimum 

amplitudes associated with each breath, and the amplitude and duration of each eye blink. 
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Figure 3-2. EEG Electrode Locations as Viewed from Top of Head 

Table 3-1. Regions of EEG Identifiers 

Letter Location 
C Central 
F Frontal 

0 Occipital 
P Parietal 
T Temporal 

3.3      EEG Processing 

The raw EEG data is collected and immediately sent through a program called 

Manscan 4.0, which filters out some of the undesirable artifacts from the EEG signals. 

Examples of these artifacts include muscle movements such as movement of the pilot's 

head moving during flight and eye movement. At this point, the EEG data is saved into 
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large data files, one file for each of the 22 flight segments, for more thorough processing. 

This processing, described in greater detail below, ignores two extraneous data columns 

also stored in the data files: the Horizontal Electro-oculography (HEOG) and the Vertical 

Electro-oculography (VEOG). These two columns record the movements, both 

horizontally and vertically, of the pilot's eye during flight and are not considered 

indicators of mental workload. Instead, the Manscan program uses these columns of data 

to remove the undesirable artifacts due to eye movement, and consequently, they can be 

deleted or ignored during the remaining preprocessing of the EEG data. An example of 

the raw EEG signal data for one node over a 0.5 second interval is shown in Figure 3-3. 

Raw EEG Data 
Landing Segment, Electrode C3 

0.1 0.2 0.3 0.4 
0.5 Seconds (128 Observations) 

0.5 

Figure 3-3. Raw EEG Signal from Electrode C3 during Landing Segment 

The EEG data, since it is a function of time, has a time dependency associated 

with it.  In order to use the data as a classifier, however, this dependency needs to be 
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removed. To remove this dependency, the raw data is passed through a Fast Fourier 

Transform (FFT), which is a computationally efficient way of computing Fourier 

Transforms [8]. The FFT moves the data from the time domain into the frequency 

domain, which will then allow estimates of power to be computed. According to the 

Nyquist sampling theorem, estimates for power can only be made for frequencies up to 

fsl2, where fs is the sampling frequency [8]. Since the EEG data was collected at 256 

Hertz (Hz), the estimates for power can be made up to 128 Hz. 

Using macros in both Microsoft Excel and Microsoft Word, a software program 

was developed to automatically preprocess all the EEG data for one pilot during one 

flight. The code for this preprocessing is shown in Appendix A. The EEG data 

preprocessing algorithm can be easily understood by following one second of data from 

one of the 29 electrodes through the process. The process is depicted in Figure 3-4 

below, and it must be repeated 76,560 times per flight in order to build the EEG portion 

of one data set for one pilot. 

First, a FFT is performed over one second of raw EEG data on one of the 29 

electrodes. This produces 256 rows of primarily complex numbers, since the data was 

sampled at 256 Hz. The frequency for each of the rows is then found by looking at the 

real number portion of the FFT output. Due to the Nyquist theorem mentioned earlier, 

only the frequencies between 1 and 128 Hz are usable, leaving the other frequencies and 

rows to be disregarded. For all of the rows whose frequencies fall between 1 and 128 Hz, 

the absolute value (also known as the complex modulus or magnitude) of each FFT 

output row is calculated, and this result is squared. A filter then pulls out the real number 

portion of this squared value, producing an estimate of the power at the associated 
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frequency. At this point, the frequencies are filtered into the five desired frequency bands 

introduced in Chapter II that lie between 1 and 40 Hz, and all of the rows with power 

estimates falling into each frequency band are summed for the entire second of data. The 

sum of these power estimates, separated by frequency band, represents the power 

estimates for that one second of EEG data at that one electrode. 

Raw EEG Data Processing 

Each 2 minute flight segment is a separate EEG file provided by AFRL/HE containing data from 29 electrodes, 
sampled at 256 Hz. Each flight consists of 22 flight segments. 

(29 electrodes x 120 seconds x 256 Hz = 890,880 observations per 2-minute flight segment) 

i' 

For each of the 29 electrodes, perform a FFT for every second of data. Estimate the power by squaring the 
magnitude (or complex modulus) of the FFT. The frequency for that power estimate is the real portion of FFT. 
Keep only the power estimates where the frequency lies between 1 and 128 Hz, due to the Nyquist theorem. 

i r 

For each second of data, compute the total power observed for each frequency band ( ,  ,  ,  ,:   ). This is 
accomplished by filtering the power estimates into their respective frequency bands and summing up the totals 
within each frequency band for the whole second of data. 

(29 electrodes x 5 frequency bands x 120 seconds = 17,400 total power estimates for the five frequency bands) 

T r 

When 10 seconds have been processed and their power estimates filtered, compute the 10- second power 
averages for each frequency band, remembering to include the 5 seconds of overlap for each observation 
Finally, take the log10 of the averaged power estimates. 

(29 electrodes x 5 frequency bands x23 exemplars = 3335 total EEG exemplars per 2-minute segment 

Figure 3-4. Raw EEG Data Preprocessing Chart 

Figure 3-5 shows an example of the power estimates found by using this method 

over a one second internal, broken down into the five different frequency bands.  This 
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graph is also known as a periodogram. As shown on the x-axis, only frequencies from 1 - 

40 Hz are included in this research effort. Frequencies above 40 Hz are often associated 

with muscular movements and not mental workload, so they are not processed or 

analyzed [25]. The vertical lines separate the different frequency bands, and the y-axis 

identifies the estimated power values, expressed in microvolts2 (juV2). 

The periodogram allows one to visualize the estimate of power contained in the 

EEG signal. Unfortunately, periodogram estimates of power obtained from a FFT 

decomposition often have a large variance that do not decrease even if the sample size is 

increased [17]. The variance can be reduced, however, by breaking the signal into 

separate sections and averaging the power across these sections. For example, if each 

section represents one second of data, then averaging the power over several seconds of 

data reduces the variance in the resulting power estimates. The more sections the power 

is averaged over, the lower the variance in the estimates [17]. 
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Figure 3-5. Power Estimates by Frequency For One Electrode During One Second 
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To reduce the variance and smooth the EEG power estimates, all power estimates 

for each frequency band in this research effort are averaged over a 10-second window 

that includes 5-second overlaps with the previous observation. Figure 3-6 shows a graph 

depicting how the observations are built using this overlapping window concept. The 

overlapping sections are statistically dependent and therefore increase the variance. More 

sections (i.e. seconds of data) can be used to help alleviate this increase in variance, 

however 10 sections were found to be adequate in past research [10, 15]. 

Observations 

0 5 10 15 20 25 30 

Time in seconds 

Figure 3-6. Overlapping Window Construction 

This overlapping window method produces 12 distinct non-overlapping windows and 11 

overlapping windows that are a combination of the distinct non-overlapping windows. 

The 12 distinct non-overlapping windows are the odd windows shown in Figure 3-6, and 

the 11 combination overlapping windows are the even windows in the figure. The result 

is a total of 23 exemplars of averaged power estimates for each two-minute flight 
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segment. Over a 44-minute flight, therefore, a total of 506 exemplars per frequency band 

are generated for analysis. 

The final step in preprocessing the EEG data occurs after averaging the data over 

each 10-second time window. This step entails scaling the average power estimates using 

the logio transformation. An example of a fully processed two-minute flight segment for 

one electrode is shown in Figure 3-7. Upon completion of this final step, 145 features 

based upon the EEG data are developed for use in classifying mental workload per 2- 

minute segment, with 23 exemplars available per node. 

Landing Segment, C3 Electrode 
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Figure 3-7. Processed EEG Signal 

3.4      Physiological Feature Preprocessing 

The preprocessing required for the remaining physiological features from the 

heart, eye, and respiratory files is less involved than the EEG data preprocessing and 
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brings the total to 151 features available for classifying mental workload. To allow EEG 

and physiological features to be included together within data sets, the same overlapping 

10-second window method described in Section 3.3 is employed. This produces 23 

exemplars per 2-minute flight segment, as way true for the EEG preprocessing. The 

same software tool described in Section 3.3 also processes the remaining physiological 

features described in this section, however only the Microsoft Excel portion is needed to 

process these remaining features. The software code for the physiological feature 

preprocessing is included in Appendix A. 

3.4.1 Cardiac Measures. The raw heart rate files contain the time between 

heartbeats, in milliseconds, for each two-minute flight segment. By processing the 

cardiac files, two different features are developed. The first feature is the heart rate (in 

beats per minute), and the second feature is the heart rate variability. The heart rate 

variability is most easily thought of as the rate of increase or decrease in the heart rate 

over a period of time, which in this case is every ten seconds. Figure 3.8 provides a 

procedural summary of how the software tool preprocesses the two cardiac measures. 

The first step involves computing the average beats per minute. Since the data 

reflects the time between heartbeats (in milliseconds), the average time between beats for 

each 10-second window is calculated, and then inverted. After multiplying this result by 

60,000 milliseconds per minute, the average beats per minute for each 10-second window 

is obtained. Figure 3-9 shows an example of a fully processed average beat per minute 

flight segment. 
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Raw Heart Rate Processing 

Each 2 minute flight segment is a separate file provided by AFRL/HE. The data provides the time 
between beats, in milliseconds. 

i r 

Calculate the Beats per Minute Feature 

First calculate the average time between beats (in milliseconds) for each 10 second window. 
Second, invert this average time between beats and multiply it by 60,000 milliseconds per minute to 
obtain the beats per minute (bpm) feature values. 

i r 

Calculate the Heart Rate Variability 

Fit a first order polynomial using ordinary least squares to the observed inter-beat intervals for each 
10 second window. Next, take the absolute value of the slope of the polynomial. The magnitude of 
the slope is used as the measure of heart rate variability. 

Figure 3-8. Raw Cardiac Data Preprocessing Chart 
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Figure 3-9. Processed Heart Beats Per Minute Feature 
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The second heart feature is the heart rate variability. To calculate this feature, the 

software tool performs a first order polynomial fit using ordinary least squares to the time 

intervals between heartbeats in each 10-second time window. If a heartbeat overlaps a 

10-second time window cut-off, then its value is included in the next time window 

calculation. Upon completion of the polynomial fit, the last part of the cardiac 

preprocessing occurs. This consists of simply taking the absolute value of the slope from 

the polynomial fit to estimate the change in heart rate. The magnitude of this slope is 

used as the measure of heart rate variability. Figure 3-10 shows an example of a fully 

processed heart rate variability feature for one flight segment. 
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Figure 3-10. Processed Heart Rate Variability Feature 

3.4.2   Ocular Measures.   Two ocular measures are calculated from the data 

provided by AFRL/HE, however the raw eye data files contain three different columns of 
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eye data: the blink interval (the time in milliseconds between blinks), the blink amplitude, 

and the blink duration. The blink duration data is disregarded, and the other two data 

columns are used to develop the number of blinks per 10-second time window and the 

average time between blinks. The same software tool introduced in previous sections 

automatically performs all of the ocular data preprocessing by following the diagram seen 

in Figure 3.11. 

Raw Ocular Data Processing 

Each 2 minute flight segment is a separate file provided by AFRIVHE. Each file contains three data 
columns consisting of the time between blinks (in milliseconds), the amplitude, and duration of each 
blink. 

i r 

Calculate the Number of Blinks 

Count the number of blinks in each 10 second time window. Fractional blinks are not considered. 

i r 

Calculate the Average Time Between Blinks 

For each 10 second window, calculate the average time between blinks for all ofthe blinks that fell into 
that time window. If one blink occurred, use the time between the last blink and the one blink that fell 
into the interval. If no blinks occurred, subtract the time ofthe last blink from the end ofthe current 
time window. 

Figure 3-11. Raw Ocular Data Preprocessing Chart 

The first feature, the number of blinks, is quite simple to calculate. It entails 

counting the number of blinks that fell into each 10-second time window. Fractional 

blinks are not considered, as they will naturally fall into a future 10-second time window. 
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The second feature, the average time between blinks, is a more complicated feature to 

calculate since three scenarios are possible. If multiple blinks fall into a 10-second time 

window, then the simple average of the time between these blinks is used. On the other 

hand, if only one blink falls in a 10-second time window, then the time between the last 

blink and the blink in the current is used. Finally, if no blinks fall into a 10-second time 

window, then the average time between blinks is determined by subtracting the time of 

the last blink from the end of the current time window. Figure 3-12 shows a graph of the 

number of blinks in a 2-minute flight segment, and Figure 3-13 shows a graph of the 

average time between blinks for the same 2-minute flight segment. 

Number of Blinks, Landing Segment 
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Figure 3-12. Processed Number of Blinks Feature 

3.4.3 Respiration Measures. The two respiration features developed from the 

raw respiration data files are the number of breaths per 10-second time window and the 

average time between breaths within the time window. The data files provided by 

AFRL/HE, however, include three data columns. These data columns are: the time 
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Figure 3-13. Processed Average Time Between Blinks Feature 

between breaths (in milliseconds), the minimum breath amplitude, and the maximum 

breath amplitude. Only the time between breaths data column is used to develop both 

respiration features, and the preprocessing procedures are identical to those used in 

preprocessing the ocular features. Figure 3-14 identifies the process to develop these two 

features, and it is the method used by the software tool to automatically calculate them. 

The number of breaths feature is simply the number of breaths that occur in each 

10-second time window. Just like the ocular feature procedure, no fractional breaths are 

included since they will be reflected in future time windows. The average time between 

breaths feature is found by averaging the time between breaths within a 10-second time 

window. If only one breath occurs in a time window, then use the time between the last 

breath and the one breath in the interval.   If no breaths occur in a time window, then 
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subtract the time of the last breath from the end of the current time window. Figures 3-15 

and 3-16 show examples of these two features for the same 2-minute flight segment. 

RawRespiratoiy Data Processing 

Each 2 minute flight segment is a separate file provided by AFRI/HE. Each file contains three data 
columns consisting of the time between breaths (in milliseconds), the minimum amplitude, and the 
maximum amplitude of each breath. 

i r 

Calculate the NumberofBreaths 

Count the number of breaths in each 10 second time window. Fractional breaths are not considered. 

•yr 

Calculate the Average Time Between Breaths 

For each 10 second window, calculate the average time between breaths for all of the breaths that fell 
into that time window. If one breath occurred, use the time between the last breath and the one breath 
that fell into the interval. If no breaths occurred, subtract the time of the last breath from the end of the 
current time window. 

Figure 3-14. Raw Respiratory Data Preprocessing Chart 
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Figure 3-15. Processed Number of Breaths Feature 
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Figure 3-16. Processed Average Time Between Breaths Feature 

3.5      Handling Data Gaps 

One problem often encountered when using data from real test subjects versus 

simulated data, is the possibility of having holes or gaps in the data. The data for this 

experiment had several cases where EEG features were missing for various lengths of 

time. Most likely this was the result of a loss of contact between the pilot and one of the 

twenty-nine electrodes. The options available to solve this problem include deleting each 

feature containing a gap from the data set, or filling the gap with non-zero data. If the 

first option is chosen and the entire feature is deleted from the data set, fair comparisons 

of variable sets across pilots or across days would require that the feature be removed 

from every data set. Should this feature be highly significant in predicting mental 

workload, then its removal could seriously affect the final selection of the most salient 

features and possibly the ANN's ability to accurately classify mental workload.  If the 
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gap is filled with non-zero data, then a decision must be made concerning how to best 

accomplish this action without losing the data integrity of the affected features. 

The second option seems most appropriate. We decided to keep the affected EEG 

features with missing data, and fill the gaps with an average value based on the location 

of the gap. If the gap occurred in the middle of the data set, then the two data points 

immediately above and below the gap were used to create an average value for filling the 

gap. If the gap occurred at the end of the data set, then the four data points immediately 

above the gap were used to create the average value for filling the gap. If the gap 

occurred at the beginning of the data set, then the four data points immediately following 

the gap were used to create the average value for filling the gap. The most likely effect 

of this procedure will be an overall reduction in the total variance observed in each 

affected feature. We felt that accepting this slight reduction in variance was preferable to 

the total loss of the feature from the data sets. 

3.6      Summary of Processed Features 

Once all of the data preprocessing has been accomplished, a total of 151 

psychophysiological features are available to the ANN for classifying mental workload. 

In order to reduce the number of features through the Signal-to-Noise ratio algorithm, one 

last feature must be added to the data sets. This feature is the noise feature, and it 

consists of random numbers drawn from a uniform (0, 1) distribution. Binary mental 

workload values are also added to each row of the data sets, with a 0.0 representing low 
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mental workload and a 1.0 indicating high mental workload. A truncated version of the 

final input matrix is shown in Table 3-2. 

Table 3-2. Truncated Input Feature Matrix 

Feature # Name Description Units 
1 Workload Level 0 if low, 1 if high None 
2 C3 delta Power in    Band at C3 logio(//V") 
3 C3 theta Power in   Band at C3 logio(^V2) 
4 C3 alpha Power in   Band at C3 logioC«Vz) 
5 C3 beta Power in :   Band at C3 logio(^) 
6 C3 ultrabeta Power in Band at C3 logioCuV") 
7 C4 delta Power in    Band at C4 logiofr/V") 
8 C4 theta Power in   Band at C4 logl0(jNz) 
9 C4 alpha Power in   Band at C4 log10(juVz) 
10 C4 beta Power in :   Band at C4 logio(^) 
11 C4 ultrabeta Power in Band at C4 logioGiV) 

146 Heart Rrate Heart Rate bpm 
147 Heart Variability Heart Rate Variability sec per 10-sec 
148 Blinks Number of Eye-Blinks # blinks per 10-sec 
149 Inter Blink Inter-blink Interval seconds 
150 Breaths Number of Breaths # breaths per 10-sec 
151 Inter Breath Inter-breath Interval seconds 
152 Noise Random Uniform (0,1) none 

It is important to note that previous initial data inspections on this data has found 

that some of the psychophysiological features appear to vary with an increased workload 

level. Most notably, the heart rate increases, the number of eye blinks decrease, and the 

number of breaths tend to increase as mental workload increases [10]. Previous research 

with feature screening has also shown that these features are significant in predicting 

mental workload, and networks trained with data from one day did, in fact, produce 

reasonably high classification accuracies when projected onto data from the same day 
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[10]. Despite this success, a network trained with data from one day did a very poor job 

of accurately classifying the mental workload for the same pilot on a different day [10]. 

3.7      Chapter Summary 

This chapter addressed how to preprocess the various data files to develop 151 

different psychophysiological features for use when classifying mental workload. In the 

next chapter, the methodology used to classify mental workload will be investigated, and 

variable selection and reduction efforts will be accomplished. Factor analysis will also be 

presented to see what additional information and insight can be garnered from the data, 

and a calibration scheme will be presented. 
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IV. Methodology 

This chapter describes the methodologies used to classify pilot mental workload 

by means of the processed psychophysiological features described in Chapter III. 

Following some general methodology information in the first section, the second section 

is devoted to the initial modeling efforts where the salient features are found in each data 

set. The third section presents the methodology used for conducting factor analysis and 

the accompanying exploratory factor analysis. The fourth section addresses different 

ways to modify the mental workload levels as we explore the possibility that some of the 

assumptions of this research effort are sources of low classification accuracy. Finally, the 

fifth section identifies a data calibration scheme that can be applied to the original and 

modified workload levels, as well as several different training groups. 

4.1      General Methodology Information 

To highlight some of the subtle changes that occur between several of the 

methodologies presented in this chapter, and to help avoid confusion, certain sections will 

be presented with a common table identifying key pieces of information associated with 

the method in that section. A sample information table, shown in Table 4-1, shows the 

workload type, the training group set, and identifies whether the data was calibrated 

following the calibration scheme. The workload type identifies what mental workload 

levels were used in the training, training-test, and validation data sets. The three possible 

choices include "original" workload, "modified with high-once-high" workload, and 
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"modified with neither" workload. We will describe each workload type in-turn. The 

"original" workload designation means that the mental workload levels originally agreed 

upon by the pilots and the researchers at AFRL/HE were used for the three data sets. 

Table 4-2 lists the flight segments and these "original" workload levels. 

Table 4-1.    Sample Information Table 

Type of Information Description 
Workload Type Original 

Training Group Set All flight segments 
Data Calibrated? No 

Table 4-2.    Original Workload Designations By Flight Segment 

Segment # Flight Segment Workload Level 
1 Baseline 1 
2 Preflight 
3 Engine Start 
4 VFR Takeoff 
5 VFR Climbout 1 
6 VFR Cruise 
7 VFR Airwork 
8 Approach 
9 VFR Touch and Go 2 
10 VFR Climbout 2 1 
11 IFR Airwork 2 
12 IFR Cruise 2 
13 IFR Hold 2 
14 IFR DME Arc 2 
15 IFR ILS Tracking 2 
16 IFR Missed Approach 2 
17 IFR Climbout 1 
18 HS Hold 1 
19 HS DME Arc 1 
20 HS ILS Tracking 2 
21 Landing 2 
22 Baseline 2 1 
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Figure 4-1 identifies the subjective levels of mental workload for each flight segment, 

and the thick horizontal line drawn across the graph establishes these "original" workload 

designations by separating the low from high mental workload levels. 

Pilot Subjective Measure Workloads 

70 

Group 1 

"Neither" Workload Region 

Group 2 

i    i     i    i     i    i     i     i     i    i     i     i     i    i     i     i    i     i     i    i     i 

1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Two Minute Flight Segment Number 

Figure 4-1. Workload Levels and Training Group Sets 

The "modified with high-once-high" workload designator, not diagramed in 

Figure 4-1, means that all flight segments following the first high workload flight 

segment (segment 9) are changed to high workload, regardless of their original workload 

levels. This reason for this modified workload method stems from the possibility that 

after pilots hit high mental workload, their current mental workload level remains 

affected by either the recent workload increase or their anticipation of future workload 

increases.   As a consequence, regardless of a decrease in the actual current mental 
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workload, it is possible that their brains do not allow them to return to a lower mental 

workload level. An example where this could occur is a pilot repeatedly performing a 

difficult maneuver for several minutes using only instruments in poor weather. 

Following a sharp increase in altitude, visibility improves to several miles and the 

apparent mental workload level drops. Instead of the pilot's actual mental workload level 

dropping, it remains elevated because he is still thinking about the difficult maneuvers he 

recently completed. 

The "modified with neither" workload designator takes into account the 

possibility that there is not a single line separating high from low mental workload, but 

actually an indifference zone where the mental workload is neither high nor low. Under 

this workload modification method, the "neither" workload area falls both a little above 

and below the horizontal line shown on Figure 4-1, and includes the boxed flight 

segments (flight segments 9 through 14,17 through 19, and 22). 

The training group set in Table 4-1 identifies which flight segments were used to 

train the network. The three choices are: all flight segments, Group 1, and Group 2. A 

response of "all flight segments" means that every flight segment was included in the 

training and training-test data sets. A "Group 1" response identifies that only those flight 

segments nearest to the extremes (lowest workload and highest workload) are used when 

training the network. By looking at Figure 4-1, the Group 1 flight segments are included 

in the smaller circles at both the lower and upper portions of the graph. Flight segments 

3, 6, 15, and 20 fall into the Group 1 training group. Similarly, a "Group 2" response 

identifies that only those flight segments included in Group 2 are used when training the 

network. Group 2, shown by the two larger circles in Figure 4-1, includes all of the flight 
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segments from Group 1, plus the next two most extreme flight segments for both high 

and low mental workloads. As a result, the Group 2 flight segments include segments 3 

through 6,15 through 16, and 20 through 21. 

One additional point concerning the two training group sets is that each group 

contains equal numbers of high and low flight segments. This can be an important 

consideration since networks trained with an overwhelming number of exemplars from 

one particular class can sometimes achieve a minimum squared error by always 

classifying exemplars as members of the dominant class, regardless of their true 

membership class. 

The final piece of information in Table 4-1 identifies whether or not the data was 

calibrated using the calibration scheme prior to training the ANN. This calibration 

scheme is not presented until Section 4.5. 

4.2      Initial MLP Neural Network Modeling Efforts 

Upon completing the preprocessing of the psychophysiological data, the next step 

involves training ANNs to find the most salient features for each pilot on each day. 

Every neural network for this research effort is built with the same basic architecture and 

settings so that differences in classification accuracy can be attributed primarily to the 

selected workload type, training group set, and whether or not the data was calibrated 

using the calibration scheme. These settings are shown in Table 4-3. 
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Table 4-3. Basic Network Architecture and Parameter Settings 

Architecture or Parameter Network Setting 
Training-test data set Holdout exemplars from training data set 

found by mod 3, remainder 0 
Input Variables Normalized 
Training Rate 0.01 
Momentum 0.9 

Weight Initialization -0.1 to 0.1 
Termination Rule Minimum training-test sum of square error 

The number of hidden nodes to include in each network often depends on the 

number of features included in the training data set, and SNNAP suggests a number of 

nodes accordingly. All of the networks use SNNAP's suggested number of nodes. In 

addition to these settings, a bias term and two output nodes are included in each model. 

The two output nodes allow the network to compute probabilities of an exemplar 

belonging to the high and low workload classes. With these probabilities, network 

classification accuracy (CA) can be determined using the Equation 4-1, shown below. 

Nie + N2c 
CA = (4-1) 

where 

CA is the classification accuracy 

Nie is the number of exemplars in group 1 classified as group 1 

N2C is the number of exemplars in group 2 classified as group 2 

n is the total number of exemplars in the test data set 
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Normally, the maximum CA for a network is found by assigning each exemplar to the 

group whose output node has a probability greater than or equal to 0.5 [27]. A confusion 

matrix can then be built using the exemplar assignments by comparing them to the actual 

classes from which they came. A sample confusion matrix is shown in Figure 4-2. In 

this example of 100 exemplars, 80 are classified correctly and 20 are classified 

incorrectly for a CA of 80%. The network incorrectly predicts low 15 times when the 

actual class membership is high (Type I error), and it incorrectly predicts high 5 times 

when the actual class membership is low (Type II error). 

Confusion Matrix 
Predicted 

Actual 

low high 
low 20 5 
high 15 60 

Classification Accuracy                80.00% 

Figure 4-2. Sample Confusion Matrix 

Since many of the 151 features in each data set, especially the EEG features, are 

highly correlated with one another, and partially due to the randomness of the neural 

network initial weight values, different features can be selected for removal from the 

same network when identically initialized and trained several times [10]. With the high 

correlation among the features, any difference in feature selection should have negligible 

impact on the classification accuracy of the network, and so resolving feature selection 

differences is unnecessary. The criterion for feature removal is based on low SNRs, as 

described in the SNR screening method in Chapter II, and Appendix B identifies a 
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process to build the SNRs using SNNAP output. The classification accuracy for several 

neural networks starts to drop significantly (one or more percent) in several instances 

when fewer than 36 features remain, prompting the decision to allow no more than 36 

features per data set. 

4.2.1 SNR Saliency Screening On Individual Day Data Sets. Past feature 

reduction efforts on this data has found that the number of salient features necessary to 

obtain high inter-day classification accuracy for individual pilots range from 5 to over 59 

[10]. The number of salient features identified below are consistent with these results, 

however the salient features selected in each data set differ due to reasons provided 

earlier [10]. 

The most salient features for each pilot on each day are shown in Tables 4-4 

through 4-7, when the entire data set is presented to the network for training. The 

features are listed alphabetically from left to right across the rows. Pilot 1 has 35 salient 

features on day 1 and 28 salient features on day 2, while Pilot 4 has 36 salient features on 

both day 1 and day 2. 

Table 4-4 Salient Features for Pilot 1 on Day 1 

Variable Variable Variable Variable Variable Variable 
Blinks BPM C3 theta C4 alpha C4 beta C5 alpha 

CZ theta C6 delta F4 delta F7 alpha F7 delta F8 delta 
FP1 theta FP2 delta FZ delta Inter Blink 01 alpha 02 delta 
02 theta OZ beta OZ ubeta P10 theta P10 ubeta P4 beta 
P4 delta P4 theta P9 theta P9 ubeta P03 beta P03 delta 

P04 alpha PZ_alpha PZ beta T8 beta T8 theta 
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Table 4-5 Salient Features for Pilot 1 on Day 2 

Variable Variable Variable Variable Variable Variable 
Blinks BPM C3 ubeta C4 alpha CZ delta F7 theta 

FP2 ubeta Hrt Var Inter Blink Inter Breath 01 theta 02 theta 
OZ ubeta P3 alpha P3 beta P3 delta P4 theta P7 delta 
P7 theta P8 beta P03 beta P03 delta P04 beta PZ alpha 
PZ theta T7 beta T7 ubeta T8 delta 

Table 4-6 Salient Features for Pilot 4 on Day 1 

Variable Variable Variable Variable Variable Variable 
BPM C3 ubeta C6 alpha C6 beta C6 ubeta F3 alpha 

F3 beta F3 delta F3 ubeta F7 theta F8 ubeta FC1 beta 
FC1 theta FC2 alpha FP1 beta FP1 delta FP2 beta Hrt Var 
IZ delta IZ ubeta 01 ubeta OZ alpha OZ delta OZ theta 

P10 delta P10 theta P3 alpha P7 theta P8 beta P8 theta 
P9 delta P03 delta P04 beta PZ theta T7 ubeta T8 delta 

Table 4-7 Salient Features for Pilot 4 on Day 2 

Variable Variable Variable Variable Variable Variable 
Blinks BPM Breaths C4 delta C4 theta C5_alpha 

C5 ubeta CZ beta CZ theta CZ ubeta F3 theta F3 ubeta 
F4 delta F8 delta F8 ubeta FC1 ubeta FC2 delta FP1 beta 

FP2 alpha FP2 beta FZ theta Hrt Var Inter Breath IZ ubeta 
01 ubeta P10 theta P10 ubeta P4 alpha P4 beta P8 beta 
P9_alpha P9 beta P9 theta P03 delta P04 ubeta T7 alpha 

4.2.2 SNR Saliency Screening On Multiple Day Data Sets. Since the goal of this 

research effort is to develop a calibration scheme to classify mental workload across days 

and pilots, it is valuable to identify which features are important when classifying mental 

workload for an individual pilot over more than just one day. While this is similar to 

"peeking" into the future since the second day of data is not available for use when 
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building a classifier based upon the first day of data alone, some insights can be gained 

by observing the results. 

An ANN for an individual pilot is trained only after combining the data sets from 

both flights into a single large data set. This data set is then randomly split into the 

training and validation data sets using a 65/35 ratio. Remember that the training-test data 

set consists of holdout exemplars from the training data set. Tables 4-8 and 4-9 identify 

the features found most salient in the combined day data sets, where Pilot 1 has 36 salient 

features and Pilot 4 has 6 salient features. 

Table 4-8. Salient Features for Pilot 1 Over Both Days 

Variable Variable Variable Variable Variable Variable 
Blinks BPM Breaths C3 theta C4 alpha C4 delta 

C5 ubeta C6 delta CZ theta F3 alpha F4 beta FC1 ubeta 
FC2 theta FP1 alpha FP1 beta FZ ubeta Inter Blink IZ beta 
01 theta Ol ubeta 02 delta OZ beta OZ theta P10 beta 
P3 beta P3 theta P4 delta P4 theta P03 alpha P03 beta 

P03 delta P04 theta PZ alpha PZ beta PZ ubeta T7 theta 

Table 4-9. Salient Features for Pilot 4 Over Both Days 

Variable Variable 
BPM C4 ubeta 

F8 ubeta FCl_alpha 
Hit Var P10 ubeta 

4.3      Factor Analysis 

Factor analysis is based on the idea that the set of all features is explained by a 

smaller set of underlying factors. In the case of classifying mental workload, even 

though there are 151 different features, there may be a relatively small number of factors 
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that drive these variables. The way these features are split into the different factors is 

derived from the variance associated with each feature. Factor analysis assumes that 

some of the feature variance is due to a common variance due to the factors, and the 

remainder is uniquely tied to the specific feature [4]. By performing factor analysis, the 

researcher hopes to identify and interpret the underlying factors to provide greater insight 

into the problem. A more thorough review of the concepts and mathematics behind 

factor analysis is found in [4] and [10]. 

To perform factor analysis, the salient features in each data set from Sections 

4.1.1 and 4.1.2 are placed into the statistical software program SAS JMP. A separate 

scree plot is then built in Microsoft Excel using the eigenvalues from each data set, 

showing the relative size of the different eigenvalues compared to one another. The scree 

line helps determine how many eigenvalues to keep by establishing the number of factors 

to rotate using the varimax procedure in SAS JMP. Figure 4-3 shows a sample scree plot 

with scree line drawn on it. Since the scree line falls above the sixth eigenvalue and 

crosses the top of the fifth eigenvalue, choosing to keep the first four eigenvalues would 

likely result in an appropriate number of factors to rotate. 

The output of the varimax procedure is a factor loadings matrix, and this matrix is 

used to determine the feature-to-factor assignments. This is accomplished by assigning 

each feature to the factor with the largest absolute value factor loading for that particular 

feature. We are able to make these assignments because we have already normalized the 

input data. Once all the features are assigned to the factors, we eliminate those factors 

with no features assigned to them, and then attempt to interpret the remaining factors. 
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Factors are not normally eliminated in factor analysis, however in our analysis we are 

trying to reduce the number of factors to interpret. 

Scree Plot 

Scree Line 

2 3 4 5 

Eigenvalue Number 

Figure 4-3. Sample Scree Plot and Scree Line 

4.3.1 Preliminary Results. A review of the eigenvalues across several of the data 

sets reveals that the first eigenvalue represents approximately 15% of the total variation 

in the features, leaving the other eigenvalues to each explain only 3-4% of the remaining 

variation. 

In order to capture a high degree of the total feature variation in these data sets, a 

large number of factors should be kept. Keeping too many factors does not help reduce 

the dimensionality of the problem, and therefore limits the effectiveness of performing 

factor analysis. Keeping too few factors results in low factor loadings matrix values, 

making it difficult to determine which variables are really correlated to which factor, and 
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also leads to difficulties with factor interpretation. By deciding to set the maximum 

number of factors to twenty, sufficiently high factor loadings matrix values are produced, 

and it allows for some useful groupings of features within and across the factors. Table 

4-10 identifies the number of factors rotated for each data set. 

The decision to limit the number of factors to twenty enables some interpretation 

of the factors, and more importantly, it highlights key features within each factor that can 

be explored as we look for patterns to exploit. With the relatively large number of factors 

for each data set, most of the factors end up being associated with only a few of the 

features. This makes factor interpretation somewhat easier given that brain researchers 

have identified certain areas of the brain are associated with certain functions. 

Table 4-10. Number of Rotated Factors for Each Data Set 

Data Set Number of Rotated Factors 
Pilot 1, Day 1 20 
Pilot 1, Day 2 15 
Pilot 4, Day 1 20 
Pilot 4, Day 2 20 

Pilot 1, Mix of both days 20 
Pilot 4, Mix of both days 3 

A factor with only one feature assigned to it can be interpreted as being related to the 

function associated with that feature. For a more in-depth interpretation and analysis of 

the individual factors, reference the work by East [10]. Factor interpretation at this level, 

however, does not appear to provide direct insight into the research problem, and so an 

exploratory factor analysis is performed. 

4-13 



4.3.2 Exploratory Factor Analysis. Exploratory factor analysis for this research 

effort consists of two different activities. The first activity involves compiling the factor 

results from Section 4.3.1 in different ways to find patterns among the factors. The 

second activity uses graphs of the key feature-to-factor assignments to find patterns that 

emerge within the data as mental workload varies. 

To identify factor commonalities across pilots and across days, three different 

compilation methods are employed. The first method involves combining all of the 

feature-to-factor assignments across the data sets, grouping them by specific feature. The 

second method groups these feature-to-factor assignments by EEG node, which means 

dropping the five frequencies associated with each EEG node. The third method groups 

these feature-to-factor assignments by frequency, which means dropping the EEG node 

identifiers. A sample of the first grouping method is shown in Table 4-11, and the 

complete results of the second and third grouping methods are shown in Tables 4-12 and 

4-13. The letter "A" indicates the results when using the data set for Pilot 1 on day 1; 

"B" indicates Pilot 1 on day 2; "X" indicates Pilot 4 on day 1; "Y" indicates Pilot 4 on 

day 2; "1" indicates Pilot 1 over both days of data; and "4" indicates Pilot 4 over both 

days of data. 

The first two methods of grouping the data do not appear to produce any 

meaningful patterns. The first method results in the identification of nearly all 151 

features associated with one or more of the factors. While the EEG features are evenly 

spread over the factors, the physiological features are grouped rather tightly in the first 

six factors across the different data sets. In particular, the second factor shows a high 

concentration of the physiological features, with the ocular and heart features dominating 
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the factor. The loadings for this factor are shown in Appendix C. Since the physiological 

features align with the first few factors, this means they likely represent a larger portion 

of the total variation in the data sets than many of the other features identified in later 

factors. The second method of grouping produces more desirable clusters of features and 

factors, but even at this higher level of clustering it is difficult to make sense of the 

results. The third method of factor grouping produces some interesting results worthy of 

additional discussion. We address this in Chapter V. 

Table 4-11. Partial Feature-to-factor Assignments Grouped By Feature 

Factor Number 
Feature 1 2 3 4 5 6 7 8 9 10 11 

Blinks A, 1 
BPM B A, X 1 Y 4 

Breaths Y 1 
Hrt Var 4 B X Y 

Inter Blink A, 1 B 
Inter Breath B, Y 

C3 alpha X 
C3 beta 
C3 delta 
C3 tfieta A 1 
C3 ubeta X B 
C4 alpha 1 A B 
C4 beta 
C4 delta 1 Y 
C4 theta Y 
C4 ubeta 4 
C5 alpha Y A 
C5 beta 
C5 delta 
C5 theta 
C5 ubeta 1 Y 
C6 alpha 
C6 beta X 
C6 delta 1 A 
C6 theta 
C6 ubeta X 
CZ_alpha 
CZ beta Y 
CZ delta B 
CZ theta 1 A Y 
CZ ubeta Y 
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Table 4-12 Feature-to-factor Assignments Grouped By EEG Node 

Factor Number 
Combined 

Feature 1 2 3 4 5 6 7 8 9 10 11 

Blinks A, 1 
BPM B A, X 1 Y 4 

Breaths Y 1 
Hit Var 4 B X Y 

Inter Blink A, 1 B 

Inter Breath B, Y 
C3 X X A B 1 
C4 1,4 A B, 1 Y Y 
C5 Y A, 1 Y 
C6 X 1 X A 
CZ Y Y, B 1 A Y 
F3 XX XX Y 1 Y 
F4 Y, 1 A 
F7 A, X B A 
F8 4 A XY Y 

FC1 4, 1 Y XX 
FC2 X 1 Y 
FP1 X 1 1 XY A 
FP2 A, B, X Y Y 
FZ 1 A Y 
IZ X Y, 1 X 
01 1, 1 X A, Y B 
02 1 B A A 
OZ 1, B X X X A A, 1 
P10 Y X X 1, A A Y 
P3 B B X B, 1 1 
P4 A, Y A, B A, 1 1 Y 
P7 B, B X 
P8 Y X B, X X 
P9 A, A Y X Y Y 

P03 A, X B, Y A B, 1 1 1 
P04 B X 1 A 
PZ A, A, 1 X B, B 1 1 
T7 X B B 1 Y 
T8 A A B, X 

The next step in exploratory factor analysis involves generating and analyzing 

graphs. A graph is made for each feature-to-factor association within the different data 

sets, representing the most important features across the factors. By generating these 

graphs, we hope to discover that some features form a pattern with the changing levels of 

mental workload. 

4-16 



Table 4-13. Grouping of Feature-to-factor Assignments By Frequency 

Factor Number 
Combined 

Feature 1 2 3 4 5 6 7 8 9 10 11 

Blinks A, 1 B 
BPM 4 B X1 Y 

Breaths Y 1 
Hit Var 4 B X Y 

Inter Blink A, 1 B 
Inter Breath B, Y 

Alpha X A, Y, 4 B Y A, B, 1 A, XY A, X 

Beta 
A, A, A, B, B, 

B, X Y, Y, 1.1 XX Y Y, A 1, 1 B, 1,1, 1 A, XY A, Y, 1 

Delta A, B B.X Y A, X A, B, X A.B.XY A B,Y,Y,1 X B, 1 

Theta X Y A. B, 1 B A, 1 B, 1 
A, XX 

Y, 1 A, B,Y, 1 A, X1 
Ultra beta X, X, Y. 1, 1 X 4, 4, 4 Y Y Y 1 Y B, Y A 

As one might expect, most of these graphs reveal no discernible patterns across 

the mental workload levels. A few graphs, however, do show some interesting apparent 

patterns. The most noticeable pattern for Pilot 1 on day 1 is found in the interblink 

feature, shown in Figure 4-4. The solid line at the bottom of the graph indicates high 

workload levels. We notice a definite increase in the value and variation of the feature as 

the mental workload level increases from low to high. The only other feature for Pilot 1 

on day 1 that exhibits a consistent pattern following changes in mental workload level is 

the number of blinks feature, shown in Figure 4-5. This feature appears to decrease 

during periods of higher mental workload. For easier comparison, all four ocular and 

cardiac features are placed together on one graph for each pilot and day in Appendix D. 

Artificial biases are added to separate the data on many of the graphs. Upon inspecting 

Figures D-l and D-2, one notices the other features for Pilot 1 also vary over time and 

mental workload levels, but they do not vary consistently like the interblink and number 

of blinks features. In Figure D-l, for instance, the heart BPM feature increases during the 
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Interblink Feature for Pilot 1 on Day 1 
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Figure 4-4. Interblink Feature for Pilot 1 on Day 1 

Number of Blinks Feature for Pilot 1 on Day 1 
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Figure 4-5. Number of Blinks Feature for Pilot 1 on Day 1 
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first and last periods of higher workload, however it drops during the middle period of 

higher workload. The heart variability feature follows the same inconsistent pattern as 

the BPM feature, except it drops during the first and last periods of higher workload and 

does not change during the middle period. 

Inspecting the graph for Pilot 1 on day 2, shown in Figure D-2, reveals similar 

feature changes to those seen in Figures 4-4 and D-l. Both the number of blinks and 

interblink features exhibit the same patterns with relation to changes in mental workload. 

These patterns, however, are not as dramatic as seen on day 1. For instance, the amount 

of variability in the interblink feature, while certainly higher during periods of greater 

mental workload, is definitely not as variable as seen on day 1. Perhaps this decrease in 

variability is due to the learning curve effect caused by the identical flight path and same 

mental demands being repeated on the second day of the experiment. The increased 

familiarity possibly allows Pilot 1 on day 2 to lower the visual concentration 

requirements necessary to execute the same maneuvers performed on day 1. Besides 

these two features, a search of the remaining features for consistent workload patterns on 

day 2 reveals no new discoveries. 

Similar graphs built using the same features from Pilot 4 on days 1 and 2 reveal 

surprising different patterns as mental workload varies. The complete graphs with all 

four features are shown in Figures D-3 and D-4. Unlike Pilot 1, Pilot 4's heart BPM 

feature rises during periods of higher workload and stays at an overall increased level 

throughout the higher workload periods. Furthermore, there is a visible decrease in the 

heart variability feature. Figures 4-6 and 4-7 show Pilot 4's heart BPM and heart 

variability features for day 1, respectively.  A review of the remaining key feature-to- 
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factor assignments for Pilot 4 over the two days, including the EEG and breathing 

features, reveals no other consistent patterns. 

Heart BPM Feature for Pilot 4 on Day 1 
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Figure 4-6. Heart BPM Feature for Pilot 4 on Day 1 

Heart Variability Feature For Pilot 4 Day 1 
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Figure 4-7. Heart Variability Feature for Pilot 4 on Day 1 
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The different patterns in the psychophysiological features for Pilots 1 and 4 show 

that the pilots react differently under high workload conditions. Both pilots have two 

features that reveal patterns with changes to mental workload, but the features are 

different for each pilot. Furthermore, we notice features not exhibiting patterns for one 

pilot while exhibiting patterns for the other pilot look like noise features. For example, 

the graphs for Pilot 1 show decreases in the number of blinks feature and increases in the 

interblink feature while for Pilot 4 they appear more like noise features. Similarly, the 

graphs for Pilot 4 show decreases in the heart variability feature and increases in the heart 

BPM feature while for Pilot 1 they appear as noise features. 

From the exploratory factor analysis, we find that Pilots 1 and 4 each have two 

features that consistently show patterns with the changes in mental workload. We also 

find that features not containing patterns appear similar to noise features. These 

discoveries present a new avenue of research for exploitation, discussed in greater detail 

in Section 4.5. 

4.4      Modified Workload Methodologies and Network Training 

As mentioned in Section 4.1, several different modifications are made to the 

original mental workload levels. The reason for these modifications lies in challenging 

some of the significant assumptions used in this research effort, as discussed in Section 

3.1. These assumptions revolve around how accurately the flight segments are classified 

by workload level, as well as the assumption of instantaneous transitions between varying 
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levels of workload.    By modifying the workload levels, the magnitude of these 

assumptions can be quantified. 

4.4.1 Details of the "High-Once-High" Workload Method. Revisiting the first 

workload modification to the "original" workload levels discussed earlier involves 

keeping the workload level high once the low/high workload threshold is crossed. The 

threshold that separates low and high mental workload remains unchanged from the 

"original" workload levels shown in Figure 4-1. Flight segment 9 first crosses the 

high/low threshold, and every flight segment after 9 is now reclassified as high workload, 

except segment 22. Segment 22 remains low because the flight has ended in the 

experiment and the pilot is sitting stationary on the ground after landing the aircraft. 

With the modified workload levels reflected in adjusted data sets for the pilots, all 

of the ANNs are built and trained. Table 4-14 summarizes the key pieces of information 

associated with this section. All of the other network settings remain constant. 

Table 4-14. Modified Workload Information Table For High-Once-High Method 

Type of Information Description 
Workload Type Modified with high-once-high 

Training Group Set All flight segments 
Data Calibrated? No 

4.4.2 Details of the "High", "Low", and "Neither" Workload Method. The 

second modification to the original mental workload levels allows for an indifference 

zone separating high from low mental workload by including a "neither" workload 
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category. The flight segments that fall into this category, shown back in Figure 4-2, 

include segments 9 through 14, 17 through 19, and 22. Another modification that is 

made to the training (and training-test) data sets incorporates the Group 1 and Group 2 

training groups mentioned in Section 4.1. As a result, two new training (and training- 

test) data sets are made from each flight. 

ANNs using these modified workload levels and training groups are built and 

trained. Table 4-15 summarizes the key pieces of information associated with this 

section. All other network settings remain constant. 

Table 4-15. Modified Workload Information Table For "High", "Low", "Neither" 

Type of Information Description 
Workload Type Modified with "High", "Low", "Neither" 

Training Group Set(s) Groups 1 and 2 
Data Calibrated? No 

4.5      Data Calibration Methodology and Network Training 

The consistent patterns found in the mental workload data through exploratory 

factor analysis introduce the possibility of pattern exploitation. If a calibration scheme 

can be developed that highlights these patterns to an ANN, then mental workload 

classification accuracy might be improved. Once a calibration scheme is established, one 

or more new features incorporating the scheme could be used for training the ANNs. 

To determine which features to include in the calibration scheme, the features in 

Section 4.2 identified as most salient in the different data sets are compiled using a five 

step process. First, the salient features from all of the single flight data sets are combined 
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and then sorted alphabetically. Second, the features that appear more than once are noted 

in a separate list along with the number of times they appear. The list with features that 

appear more than once is List #1. Third, the features found most salient across both days 

per individual pilot are combined and sorted; any features that appear more than once are 

also noted. This is List #2. Fourth, Lists #1 and #2 are compared and features found in 

both lists are noted. Fifth, the features that show consistent patterns from the exploratory 

factor analysis are noted. The features that appear on both lists and show consistent 

patterns should be included in the calibration scheme. Table 4-16 identifies the results of 

this process using all of the features identified in Section 4.2. A review of Table 4-16 

shows that only four features meet all of the criteria for inclusion in the calibration 

scheme: eye blinks, heart BPM, heart variability, and interblink. 

Following the same process listed above using only the top 10 and 15 features per 

data, instead of the top 36, produces nearly identical results. The top 10 and 15 features 

are identified based upon their high ranking of the SNR ratios. Features not identified 

more than once are not included in the tables. Tables 4-17 and 4-18 show how few of the 

features repeatedly rank as most important across the two pilots and days. This 

additional information supports the decision to include the four physiological features 

listed above in the calibration scheme. 

Since the purpose of the calibration scheme is to highlight consistent patterns in 

the data to the ANN, a linear combination of the features is proposed. The intent is to 

combine the features in such a way that the sum increases dramatically when approaching 

high mental workload and drops dramatically when approaching low mental workload. 
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Table 4-16. Feature Determination for Calibration Scheme 

Feature Name # Times Identified in 
Individual Flights 

# Times Identified 
Across Days 

Consistent Pattern 
in Data? 

Blinks 3 1 Y 
BPM 4 2 Y 

C3 ubeta 2 
C4 alpha 2 1 
C5 alpha 2 
CZ theta 2 1 
F3 ubeta 2 
F4 delta 2 
F7 theta 2 
F8 delta 2 
F8 ubeta 2 1 
FP1 beta 2 1 
FP2 beta 2 

Heart Variability 3 1 Y 
Interblink 2 1 Y 
Interbreath 2 
IZ ubeta 2 
01 ubeta 2 1 
02 theta 2 
0Z ubeta 2 
P10 theta 3 
P10 ubeta 2 1 
P3 alpha 2 
P4 beta 2 
P4 theta 2 1 
P7 theta 2 
P8 beta 3 
P9 theta 2 
P03 beta 2 1 
P03 delta 4 1 
P04 beta 2 
PZ alpha 2 1 
PZ theta 2 
T7 ubeta 2 
T8 delta 2 
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Table 4-17. Top 15 Features Across Pilots and Days 

Feature Name # Times Identified in 
Individual Flights 

# Times Identified 
Across Days 

Consistent Pattern 
in Data? 

Blinks 3 1 Y 
BPM 4 2 Y 

Interblink 2 1 Y 
01 ubeta 2 1 
0Z ubeta 2 
P8 beta 2 

P03 beta 2 1 
T8 delta 2 

Table 4-18. Top 10 Features Across Pilots and Days 

Feature Name # Times Identified in 
Individual Flights 

# Times Identified 
Across Days 

Consistent Pattern 
in Data? 

Blinks 3 1 Y 
BPM 4 2 Y 

Interblink 2 1 Y 
T8 delta 2 

This might allow the ANN to notice the changes in mental workload more readily since 

the patterns for each of the features are less distinct individually. Following this concept, 

the features that are shown to drop when mental workload increases are subtracted from 

the linear combination, and the features that are shown to increase when mental workload 

increases are added to the linear combination. The proposed linear combination 

calibration scheme using standardized data is shown in Equation 4-2. Standardizing each 

feature is necessary since the features contain different units and are of different 

magnitudes. 

Newl = - Heart_VariabilitySD + BPMSD - BlinkssD + Inter_BlinkSD        (4-2) 
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where SD stands for standardized data with a mean of zero and a variance of one. The 

new feature, labeled Newl, replaces the four natural features when training the ANN. 

Figure 4-8 shows what this linear combination of features looks like for Pilot 1 on day 1, 

and it can be compared to Figure D-l that shows the natural features prior to the linear 

combination. An artificial bias is added to separate the workload level line from the new 

feature. In Figure 4-8, the Newl feature shows an overall increase during periods of 

higher mental workload and an overall decrease during periods of lower mental 

workload. We also notice that despite the overall desired movement in the new feature to 

changes in mental workload, there is a large amount of variability in the linear 

combination at any given mental workload level. 

New_1 for Pilot 1 on Day 1 

Observation Number 

Figure 4-8. Linear Combination of Features for Pilot 1 on Day 1 
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In order to smooth this variability, three moving averages of Newl are added to 

complete the new set of features in the calibration scheme. The lengths of the moving 

averages are 30, 60, and 120 seconds, and are labeled New_30, New_60, and New_120. 

With the addition of the moving averages, the four features that comprise the calibration 

scheme now include Newl, New_30, New_60, and New_120. Figure 4-9 shows the 

three moving averages for Pilot 1 on day 1. An artificial bias is added to separate the 

features. As one would expect, the addition of the moving averages smoothes the widely 

fluctuating Newl feature. In particular, notice how the New_120 feature generally 

matches the changes in mental workload. 

Moving Averages For Pilot 1 on Day 1 

mocoi^i-mojcoi^-T-inocoi^t-iogjco^-j-lS 
CM^I^OCM^-COOTT-'^-COOOv-eOCDOOOCOlOOOO 

T-T-T-T-CNCMCNCMCJCOOOCO^-'sr^-'tflO 

Observation Number 

■High_Workload -*-New_30 New_60 -*-New_120 

Figure 4-9. Moving Averages for Pilot 1 on Day 1 
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Figure 4-10 shows the New_120 feature for both pilots over both days to help 

identify whether or not this New_120 feature matches the changes in mental workload for 

the other data sets as well. From looking at the figure, it appears that the New_120 

feature does generally reflect the mental workload level across pilots and across days. 

Despite containing greater variability than the New_120 feature shown in Figure 4-10, 

the other moving average features for each data set also show the same desirable trait. 

New_120 Feature Across Pilots and Days 

Observation Number 

■ High_Workload -*— Pilot 1, Day 1     —*— Pilot 1, Day 2 

■Pilot4,Day1     ----Pilot4, Day2 

Figure 4-10. New_120 Feature Across Pilots and Days 

4.5.1 Calibration with Original Workloads and Full Day Training Sets. New 

data sets are built for both pilots on both days using the original workloads and the 

calibration scheme defined in Section 4.5. The ANNs are trained using only the four new 

features from the calibration scheme: New_l, New_30, New_60, and New_120.   All 
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other network settings remain constant.   Table 4-19 summarizes the key pieces of 

information associated with this section. 

Table 4-19. Information Table For Calibrated Data and Full Day Data Sets 

Type of Information Description 
Workload Type Original Workload 

Training Group Set All flight segments 
Data Calibrated? Yes 

4.5.2 Calibration with Original Workloads and Grouped Training Sets. The 

only modifications from Section 4.5.1 that occur in this section involve the training data 

sets. Instead of training the networks with the full day data sets, only Groups 1 and 2 are 

presented to them. The new training data sets incorporating the two groups are built 

following the same process discussed in Section 4.4.2. All other network settings remain 

constant. Table 4-20 summarizes the key pieces of information associated with this 

section. 

Table 4-20. Information Table For Calibrated Data and Grouped Training Sets 

Type of Information 
Workload Type 

Description 
Original Workload 

Training Group Set(s) Groups 1 and 2 
Data Calibrated? Yes 

4.5.3 Calibration with Modified Workloads and Grouped Training Sets. The 

final modifications to the data sets involve incorporating both the "high", "low", and 

"neither" workloads as well as the Group 1 and 2 training sets. The workloads are made 
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identical to those discussed in Section 4.4.2, and the training sets are split into Groups 1 

and 2 following the same process also addressed in Section 4.4.2. All other network 

settings remain constant. Table 4-21 summarizes the key pieces of information associated 

with this section. 

Table 4-21. Information Table For Calibrated Data and Modified Workloads 

Type of Information Description 
Workload Type Modified with "High", "Low", "Neither" 

Training Group Set(s) Groups 1 and 2 
Data Calibrated? No 

4.6      Chapter Summary 

Chapter IV described the methodologies used to classify pilot mental workload. 

Different sections discussed the initial modeling efforts and feature reduction process, 

performing factor and exploratory factor analysis, modifications to the mental workload 

levels and different training groups, and a calibration scheme to improve network 

classification accuracy. Chapter V will review the results of the methodologies 

introduced in Chapter IV and conclude with a proposal for implementing the calibration 

scheme. 
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V. Analysis Results and Implementation Methodology 

This chapter provides the results to the different methodologies introduced in 

Chapter IV for classifying pilot mental workload. The first section introduces several 

ways to measure network performance, followed by the second section that discusses the 

results to the initial modeling efforts after removing the non-salient features in each data 

set. The third section concludes the results from the exploratory factor analysis, and the 

fourth section presents the results from modifying the mental workload levels. The fifth 

section provides the results from the data calibration scheme, and the sixth section 

demonstrates the value of the calibration scheme through a validation effort. Finally, the 

seventh section introduces an implementation methodology and concludes with an 

implementation validation. 

5.1      Evaluating Network Performance and Methodologies 

Two different methods of measuring network performance are used in this 

chapter. The first method, introduced in Section 4.2, is classification accuracy (CA). 

CA is useful for summarizing a network's performance with categorical outputs in a 

single number. Due to how it is calculated, however, the CA measure implies equal costs 

of misclassification. In the case of determining pilot mental workload, we may be more 

interested in how accurately a network classifies high mental workload and less interested 

in how well it classifies low mental workload. If this is the case, then another network 

performance measure is needed. 
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A second performance measure for categorical outputs is a receiver operating 

characteristic (ROC). This measure is especially useful when one category is more 

important than others [27]. A ROC, unlike the CA measure, provides two network 

performance characteristics over a varying decision threshold [4]. The two 

characteristics are the probabilities of detection and false alarm, also known as the true 

positive (TP) and false positive (FP) rates. For our application, the threshold represents 

the cut-off probability for detecting a signal and varies from 0.0 to 1.0. For the CA 

measure, the threshold probability is 0.5 because this usually maximizes the probability 

of a correct classification [27]. Since the ROC relation ignores the separators between 

categories, the maximum value of a ROC typically occurs at a threshold value other than 

0.5 [27]. The construction of a ROC curve is accomplished by piecing together the 

separate ROC true positive and false positive values and allows decision makers to 

readily visualize network performance and trade-off decisions. 

To make the comparisons easier across the different methodologies, only the 

average CA and ROC values are presented. Each average is based on 12 values, and 

never includes the results from the same pilot and day combination used to train the 

network. For instance, assume a network is trained using the data from Pilot 1 on day 1. 

A projection of this network is then made using the data sets for Pilot 1 on day 2, Pilot 4 

on day 1, and Pilot 4 on day 2. No projection is run on Pilot 1 on day 1 since this is the 

same pilot and day combination used to train the network. Another network is then 

trained using the data from Pilot 1 on day 2, and projections are made for the three other 

pilot and day combinations: Pilot 1 on day 1, Pilot 4 on day 1, and Pilot 4 on day 2. This 

process is repeated two more times using the data from Pilot 4 on day 1 and Pilot 4 on 
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day 2 to train the networks, and data sets from the other three pilot and day combinations 

are projected through these two networks. The result is 12 projections, which when 

averaged together become one CA or ROC value. Table 5-1 shows the calculation for a 

single average CA or ROC value using notional data. 

Table 5-1. Calculation for Average CA and ROC Value 

Projection Data Set 
Pilot 1, Day 1 Pilot 1, Day 2 Pilot 4, Day 1 Pilot 4, Day 2 

Training 
Data 
Set 

Pilot 1, Day 1 
^»^^Ä CA = 66% CA = 53% CA = 57% 

%m''^i# TP = .6 TP= .7 TP = .8 

• FP= .2 FP = .3 FP = .4 

Pilot 1, Day 2 
CA = 65% W&M^&ESi CA = 55% CA = 48% 

TP = .8 *»       il^*fi£!i«ls*ii& TP = .7 TP = .5 

FP = .5 FP=.4 FP = .2 

Pilot 4, Day 1 
CA = 60% CA = 64% *- -    l- 81 CA = 73% 

TP = .6 TP = .7 ar&^u:..»^ ..»* titbit,J TP= .6 

FP=.3 FP=.3 FP=.2 

Pilot 4, Day 2 
CA = 46% CA = 48% CA = 68% &Y;%$^£3*0 
TP = .5 TP = .7 TP = .8 
FP = .3 FP = .4 FP=.5 

Average CA Value 58.58% 
Average ROC Value True Positive 0.667 

False Positive 0.333 

The gray areas in the figure represent the same pilot and day combinations used for 

training the networks, meaning that these CA, TP, and FP values are not included in the 

averages. For each methodology, the average CA value is only calculated once with the 

cut-off threshold set at 0.5. The average TP and FP values, as mentioned earlier, are 

calculated 101 times to build each ROC curve as the threshold moves from 0.0 through 

1.0. To simplify comparisons across the different methodologies, the same information 
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tables from Chapter IV that identify key methodology information will precede the 

average results. The only modification to these tables is the addition of the average CA. 

5.2      Initial Modeling Results 

Following the removal of non-salient features from the different data sets and 

training of the ANNs, the performance measures discussed in Section 5.1 are calculated. 

The results of this section are consistent with those found in research by East [10]. 

5.2.1 SNR Saliency Screening on Individual Day Data Sets. The results from this 

section establish a baseline against which the other methodologies will be compared. 

Accordingly, these results are referred to as "baseline". The key methodology 

information and average CA is shown in Table 5-2, followed by the ROC curve in Figure 

5-1. 

Table 5-2. Baseline Information Table Results 

Type of Information Description 
Workload Type Original Workload 

Training Group Set All flight segments 
Data Calibrated? No 

Average CA 59.83% 

From looking at the average CA and ROC curve, we see that networks trained on the 

most salient features from single day data sets do not perform well across days and pilots. 

In fact, the ROC curve shows that the ratio of true positive to false positive rates are 

almost always 1:1, meaning that the trained networks provide very little information 
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about the actual level of mental workload across pilots and days. The small arch in the 

ROC curve represents the limited information these networks provide. 

Average Across Days and Pilots: 
Baseline 

0.4 0.5 0.6 

False Positive 

Figure 5-1. Baseline ROC Curve 

5.2.2 SNR Saliency Screening on Multiple Day Data Sets. The results of the 

SNR saliency screening on multiple day data sets reveal that fewer features are salient for 

classifying Pilot 4 than Pilot 1. Furthermore, the features found most salient across the 

multiple day data sets are often different from those found most salient on individual day 

data sets, shown in Table 4-16. Possible causes for these differences include the 

discussion at the end of Section 4.2 concerning the randomness of the initial weights in 

neural networks, as well as wide variation in psychophysiological measures across days. 
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This variation can be a result of stress levels, sleep patterns, caffeine levels, among other 

causes. 

Calculating network performance for the multiple day networks is secondary to 

the saliency screening and feature reduction results. As discussed in Section 4.5, these 

features are used to help determine which features to include in the calibration scheme. 

Nevertheless, the average CA for Pilot 1 when projected onto Pilot 4 day 1 and day 2 is 

67.1%, and the average CA for Pilot 4 when projected onto Pilot 1 day 1 and day 2 is 

44.33%. Given the overall average CA of 55.71%, we see that training a network over 

multiple day data sets does not consistently or dramatically improve our ability to 

accurately measure the mental workload of another pilot. 

5.3      Factor Analysis 

The results from conducting factor analysis on the pilot data can be found in the 

research by East [10], supplemented with the discussion in Section 4.3.1. In addition, 

most of the results from performing exploratory factor analysis on the data are already 

addressed in Section 4.3.2, and are used to discover the key features that show consistent 

patterns with changes in mental workload. 

One result not fully addressed in Section 4.3.2 concerns the third grouping 

method of the factor data, shown in Table 4-13 and reproduced below in Table 5-3. This 

grouping method involves grouping the feature-to-factor assignments by frequency, 

meaning that the EEG node identifiers are dropped. The letter "A" indicates the results 

when using the data set for Pilot 1 on day 1; "B" indicates Pilot 1 on day 2; "X" indicates 
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Pilot 4 on day 1; "Y" indicates Pilot 4 on day 2; "1" indicates Pilot 1 over both days of 

data; and "4" indicates Pilot 4 over both days of data. 

1 ̂able 5-3. Grouping of Feature-to-Factor Assignments By Frequency 

Factor Number 
Com tuned 

Feature 1 2 3 4 5 6 7 8 9 10 11 
Sinks A, 1 B 
BPM 4 B X,1 Y 

Breaths Y 1 
Hit Var 4 B X Y 

Inler Blink A, 1 B 
lnter_Breath B, Y 

Alpha X A, Y, 4 B Y A,B, 1 A,X Y A, X 

Beta 
A, A, A, B, B, 

B, X, Y, Y, 1, 1 XX Y Y, A 1, 1 B, 1, 1, 1 A,X Y A, Y, 1 
Delta A, B B,X Y A, X A, B, X A,B,XY A B,Y, Y, 1 X B. 1 

Theta X Y A, B, 1 B A, 1 B, 1 
A, XX 

Y, 1 A,B, Y, 1 A, X 1 
Ultrabeta X, X, Y, 1, 1 X 4, 4, 4 Y Y Y 1 Y B, Y A 

Previous brain research indicates that the effects of task difficulty are mainly visible in 

the alpha and theta frequency bands [32]. Since the goal of this research is to accurately 

identify high mental workload, we hope that the most salient features across the pilots 

and days include many EEG nodes associated with these two frequencies. Furthermore, 

we also hope that when grouping the assignments by frequency and factor, we end up 

with the alpha and theta frequencies being associated most often with a small number of 

factors indicating common variation among these frequencies. Table 5-3 shows that Pilot 

1 has a concentration for the alpha frequency in factor 7, whereas Pilot 4 has a 

concentration in factor 8. Concentrations for the theta frequency occur in factor 4 for 

Pilot 1, and in factor 9 for Pilot 4. Since the first few factors in factor analysis represent a 

proportionally larger share of the total variation in the data sets, it appears that the 
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features associated with mental workload are not a dominant source of variation. Other 

frequencies, such as the beta frequency, are identified as explaining a larger portion of the 

total variation than the alpha and theta frequencies. This means that the first few factors 

in Table 5-3 might essentially represent noise when assessed as features in this mental 

workload classification problem, and partially explains why ANNs have such difficulty 

predicting pilot mental workload. 

5.3.7 Network Training Results Using Key Features On Individual Data Sets. 

The discovery of four features that vary with changes in mental workload led to the 

decision to train ANNs using only these features. The four features are heart bpm, heart 

variability, number of blinks, and interblink. If these four features vary consistently 

across pilots and days, then the ANNs should learn these patterns and improve their 

ability to classify mental workload. Table 5-4 shows the important information 

associated with this network training, and the ROC curve in Figure 5-2 compares the 

result of training ANNs with only these four features to the baseline. 

Table 5-4. Information Table Results For 4 Key Variables 

Type of Information Description 
Workload Type Original Workload 

Training Group Set All flight segments 
Data Calibrated? No 

Average CA 58.22% 

The ROC curve reveals that using just these four features actually improves the 

predicting capabilities by a small amount, with most of the improvement falling in the 
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upper range of the curve. The average CA is comparable to the baseline CA. With these 

results, we conclude that while the performances are similar, the networks trained using 

only these four features are preferable to the baseline networks due to the dramatic 

reduction in the number of features. The baseline networks had an average of 33.75 

features, whereas these networks only had 4 features. 
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—— Four Key Features 
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I 

Figure 5-2. ROC Curve of Four Key Features vs. Baseline 

5.4      Modified Workload Training Results 

Different workload configurations are presented in Section 4.4 to challenge two 

assumptions   used   in   this   research   effort.      The   first   involves   the   assumed 
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instantaneousness of the transitions between varying levels of workload, and the second 

assumption concerns how accurately the flight segments are classified by workload level. 

The results presented in this section challenge these assumptions by quantifying the 

effects of relaxing the assumptions. 

5.4.1 Results From Workload Staying "High" Once Threshold Crossed. By 

modifying the workload levels to stay "high" once the low/high threshold is crossed, we 

are testing the assumption that the transitions between varying levels of workload are 

instantaneous. This is the situation we are trying to address: a pilot has recently finished 

a flight segment classified as high mental workload, and is now flying in a flight segment 

classified as low mental workload. Despite the lower workload in the current flight 

segment, does the mental workload of the pilot actually decrease, or do factors such as 

anticipation of approaching difficult maneuvers keep the pilot at an elevated level of 

mental workload? If mental workload does not actually decrease during flight segments 

classified as lower workload, then the modifications made to the workloads in this section 

should result in networks with higher classification accuracies than those in the baseline. 

If mental workload does decrease during flight segments classified as lower workload, 

then these workload level changes should cause the average CA to drop. Table 5-5 

shows the key information for this section, as well as the average CA result. 

This table reveals that the average CA drops approximately 1% compared to the 

baseline average CA of 59.83%. This means that we have no evidence to dispute the 

assumption that the transitions between varying levels of workload are instantaneous. 
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There is no need to build a ROC curve for this section since the workload modification 

did not result in improvement over the baseline CA. 

Table 5-5. Information Table Results For High-Once-High Method 

Type of Information Description 
Workload Type Modified with high-once-high 

Training Group Set All flight segments 
Data Calibrated? No 

Average CA 58.84% 

5.4.2 Results From Workload Broken Into "High", "Low", and "Neither". By 

modifying the workload levels to include a "neither" category, we are testing the 

assumption that the workload levels in the flight segments are accurately classified. We 

are trying to determine if the flight segments classified as high mental workload are all 

equally high mental workload, and if the low mental workload flight segments are all 

equally low mental workload. Two changes are made to evaluate this assumption: the 

addition of the "neither" workload level indifference zone that separates high from low 

mental workload, and the use of training groups. The key difference between the 

"neither" workload level and the "medium" workload level from the original flight 

experiment lies in calculating the classification accuracy. With the "neither" workload 

level, network predictions of "neither" and low workload both count as correct 

predictions if the actual workload is either of these two workloads. In other words, we do 

not penalize the network for misclassifying within these two workload states. 

If the flight segments are all accurately and equally classified, then we would 

expect the addition of the "neither" category to result in a drop of the average CA 
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compared to the baseline. If the flight segments are not all accurately and equally 

classified, then the addition of the "neither" category should result in a significantly 

higher average CA than the baseline. Table 5-6 shows the key information and CA 

results for this section, followed by the ROC curves in Figure 5-3. 

Table 5-6. Information Table Results For "High", "Low", and "Neither" Method 

Type of Information Description 
Workload Type Modified with "High", "Low", "Neither" 

Training Group Set(s) Groups 1 & 2 
Data Calibrated? No 

Average CA Group 1: 50.06%, Group 2: 56.36% 
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Figure 5-3. ROC Curve for "High", "Low", and "Neither" Workload Method 
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The average CA shows a drop of 9.77% over the baseline for the networks trained with 

Groupl flight segments, and a drop of 3.47% for the networks trained with the Group 2 

flight segments. Despite the drop, the ROC curve for Group 1 trained networks shows 

improvement over the baseline curve across nearly the entire graph. The contradiction in 

results is attributed to the ANNs predicting a few more false alarms (causing the average 

CA to drop) while significantly increasing the true positive rates. The overall 

improvement with this workload modification gives us reason to doubt the assumption 

that the original workload levels are equally and accurately classified. There appear to be 

varying degrees of low and high mental workload, meaning that the workload levels 

associated with the flight segments shown in Figure 4.1 might be accurately portrayed. 

To accommodate the sliding scale between high and low workload, maybe the low/high 

workload threshold should be treated as region of indifference where the workload is 

neither high nor low instead of a distinct line that separates the two workload levels. This 

approach appears to permit ANNs to better separate the differences between high and low 

mental workload. 

5.5      Data Calibration Scheme Results 

This section presents the results of the different methods using the data calibration 

scheme introduced in Chapter IV. If the network performance measures show a 

significant improvement over the baseline results, then we conclude that the data 

calibration scheme works. If there is little difference to the baseline results, then we 

conclude that the data calibration scheme is not successful. 
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5.5.7 Results From Original Workloads and Full Day Data Sets. The data 

calibration scheme is first applied to networks using the original workload levels and full 

day data sets. The key information and average CA for this method is shown in Table 5- 

7. Figure 5-4 shows the ROC curve compared to the baseline. 

Table 5-7. Information Table Results For Calibrated Data and Full Day Data Sets 

Type of Information Description 
Workload Type Original Workload 

Training Group Set All flight segments 
Data Calibrated? Yes 

Average CA 72.02% 

Averages Across Days and Pilots: 
Calibration Scheme With Original Workloads vs. Baseline 

-Calibrated Data, Full Day Data 
Sets 

■Baseline 

0.1      0.2      0.3     0.4     0.5     0.6     0.7     0.8      0.9 

False Positive 

Figure 5-4. ROC Curve: Calibration, Original Workloads, and Full Day Data 
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The 12.19% increase in average CA over the baseline average and the dramatic 

improvement shown in the ROC curve clearly indicate that the calibration scheme 

enables ANNs to more accurately classify low and high mental workload. Chapter VI 

addresses why the calibration scheme improves ANN classification performance. 

5.5.2 Results From Original Workloads and Use of Training Groups. The data 

calibration scheme is applied to the data sets with original workloads and split training 

groups to see if using training groups improve the network performance measures. Table 

5-8 shows the key information and average CAs for this method. Figure 5-5 compares 

the ROC curve for this method with two other curves: the baseline ROC curve and the 

ROC curve from Section 5.5.1 that did not use the split training groups. 

Table 5-8. Information Table Results For Calibration and Grouped Training Sets 

Type of Information Description 
Workload Type Original Workload 

Training Group Set(s) Groups 1 and 2 
Data Calibrated? Yes 

Average CA Group 1: 68.96%, Group 2: 70.22% 

The average CA for networks trained with either Group 1 or 2 is lower than the 

average CA when trained on the full day data. This result is somewhat inconsistent with 

our expectation that the removal of flight segments around the low/high threshold would 

allow the ANNs to more easily distinguish the differences between low and high mental 

workload. Instead, it appears that the networks are able to separate the workload levels 
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when trained on calibrated full day data, despite including the flight segments where the 

workload levels fall near the low/high threshold. The ROC curves support this result 

Averages Across Days and Pilots: Calibration Scheme With Original 
Workloads and Training Groups vs. Baseline 

-Group 1 
-Group 2 
-Full Day Data Set 
-Baseline 

0.1        0.2       0.3 0.4       0.5       0.6 

False Positive 

0.7        0.8        0.9 

Figure 5-5. ROC Curves: Calibration, Original Workloads, and Training Groups 

and show that training on a full day of data produces better results across the whole 

curve. Training on Group 2, which includes flight segments that fall closer to the 

low/high threshold, produces better results that training on Group 1 where the greatest 

amount of separation between workloads levels occur. 

5.5.3 Results From Modified Workloads and Full Day Data Sets. The data 

calibration scheme is applied to the data sets with "high", "low", and "neither" 

workloads.  From our observations in Section 5.4.2 concerning the varying degrees of 
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high and low mental workload, we expect that the calibration scheme combined with the 

"neither" workload category will produce improved ROC curve performance. Table 5-9 

identifies the key method information with the average CA, and Figure 5-6 shows the 

ROC curve compared to two other curves: the baseline ROC curve and the curve from 

Section 5.5.1. The only difference between the curve in this section and the curve in 

Section 5.5.1 is the addition of the "neither" workload group. 

Table 5-9. Information Table Results For Calibration and Modified Workloads 

Type of Information Description 
Workload Type Modified with "High", "Low", "Neither" 

Training Group Set Full Day Data 
Data Calibrated? Yes 

Average CA 63.01% 

Averages Across Days and Pilots: Calibration Scheme With 
Original and Modified Workloads vs. Baseline 
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Figure 5-6. ROC Curve: Calibration, Modified Workloads, and Full Day Data Sets 
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The average CA decreased 9.01% over the same setup with "original" workloads, 

indicating that the ANNs have increased difficulties identifying differences between low 

and high mental workload when an indifference zone is placed between the two workload 

levels and the calibration scheme is used. Furthermore, Figure 5-6 shows marginal 

improvement between these two methods only in one portion of the curve indicating that 

unless the desired operating range is the middle portion of the ROC curve, using the 

"neither" workload category is probably unnecessary. 

5.5.4 Results From Modified Workloads And Use of Training Groups. The data 

calibration scheme is also applied to the data sets with "high", "low", and "neither" 

workloads as well as the two training groups. The data from Section 5.5.2 indicate that 

networks trained using the calibration scheme and Groups 1 and 2 result in lower network 

performance than networks trained with calibrated full day data. If this observation holds 

true then we expect lower network performance in this section when compared to Section 

5.5.3. Table 5-10 identifies the key method information and average CAs, and Figure 5-7 

shows the ROC curves compared to two other curves: the ROC curve using full day data, 

and the baseline ROC curve. 

Table 5-10. Information Table Results: Calibration, Modified Workload, Groups 

Type of Information Description 
Workload Type Modified with "High", "Low", "Neither" 

Training Group Set(s) Groups 1 and 2 
Data Calibrated? Yes 

Average CA Group 1: 60.85%, Group 2: 62.55% 
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Averages Across Days and Pilots: Calibration Scheme with 
Modified Workloads and Training Groups vs. Baseline 

Group 1 

Group 2 

Full Day Data Set 

Baseline 

0.4 0.5 0.6 

False Positive 

Figure 5-7. ROC Curve: Calibration, Modified Workloads, and Training Groups 

The average CA values for the two training groups are lower than the average CA value 

when using full day data sets. In addition, Group 1 networks have lower average CAs 

and ROC curves than Group 2 networks. Both of these observations are consistent with 

the findings in Section 5.5.2. The only place where a training group performance 

measure surpasses the full day data set training occurs in the middle of the ROC curve. 

Group 2 networks have a higher ratio of true positive to false positive rates for a small 

portion of the ROC curve. Besides this area of the graph, however, training on all flight 

segments with the calibration scheme produces the highest network performance. 
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5.5.5 Network Training Results Using Key 4 Features Across All Data Sets. A 

subtle and unfair advantage is hidden in the results from Section 5.5.1. The discovery of 

the features that vary with changes in mental workload, which lead to the development of 

the particular linear combination chosen to highlight these changes, only occurred after 

reviewing four flights of data. The data sets used for training the ANNs in Section 5.5.1, 

however, consist of only one flight of data instead of four flights of data. To equal the 

playing field, in this section an ANN will be given a random training (and training-test) 

data set comprised of all four flights of data. To accomplish this, all four data sets are 

combined, randomly ordered, and split into training (and training-test) and validation data 

sets using a 60/40 ratio. If the performance from this ANN is equal to or better than the 

performance from Section 5.5.1, then we conclude that there is no advantage to using the 

calibration scheme. If the performance is lower than Section 5.5.1, then we conclude that 

the calibration scheme is adding value by providing additional information to the ANNs. 

Table 5-11 shows the important information associated with this network training, and 

the ROC curve in Figure 5-8 compares the result of training ANNs with these four 

features across all of the data sets to the calibration scheme and baseline. 

Table 5-11. Information Table Results For Key Variables and Mixed Day Data 

Type of Information Description 
Workload Type Original Workload 

Training Group Set Random Data From All 4 Data Sets 
Data Calibrated? Yes 

Average CA 60.67% 
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Averages Across Days and Pilots: Mixed Day Data Without Calibration 
Scheme vs. Full Day Data Using Calibration Scheme 

-Full Day Data Using 
Calibration Scheme 

-Mixed Day Data Without 
Calibration Scheme 

-Baseline 

0     0.1     0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9      1 

False Positive 

Figure 5-8. ROC Curve: Non-calibrated Mixed Day vs. Calibrated Full Day Data 

The average CA for the non-calibrated mixed day data ANN is 11.35% lower than 

the average CA for the calibrated full day data ANNs. Furthermore, Figure 5-8 shows 

that the calibration scheme clearly improved network performance across the whole 

range of threshold values. These results indicate that the calibration scheme provides 

additional information to the ANNs that they cannot produce themselves. Section 6.3 

addresses several reasons why this phenomenon occurs. 

5.5.6. Additional Calibration Scheme Comparisons. Three additional ways to 

assess the benefit of using of the calibration scheme involve SNR values and rankings, 
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measuring average network performance over the flight segments immediately following 

shifts in mental workload, and the variance of classification accuracies across data sets. 

Table 5-12 identifies the average rank based on SNR for the features found most 

salient in each data set. These features are listed in Tables 4-4 through 4-7. A rank of 1.0 

signifies the highest rank. Table 5-13 provides the average SNR values for these 

features. The tables only contain information for the four features included in the 

calibration scheme, and they reflect feature averages across the two pilots as well as the 

average per pilot. If one of the four calibration features is not listed in Tables 4-4 through 

4-7, then its SNR value and rank is based on the results from the appropriate network 

trained with all 151 features. 

Table 5-12. Average SNR Rank By Pilot Before Calibration 

Source Heart BPM Blink Heart Variability Interblink 
Pilot 1 1 6.5 77 2 
Pilot 4 1 57 31 63.5 

Average 1 31.75 54 32.75 

Table 5-13. Average SNR Value By Pilot Before Calibration 

Source Heart BPM Blink Heart Variability Interblink 
Pilot 1 11.233 4.893 1.137 8.189 
Pilot 4 18.365 2.765 2.784 0.639 

Average 14.799 3.892 1.961 4.414 

For comparison, Tables 5-14 and 5-15 show the same types of information except the 

networks are trained on 8 features: the original 4 key features and the 4 calibrated 

5-22 



features.   These tables allow us to evaluate how important the calibrated features are 

compared to the original features. 

Table 5-14. Average SNR Rank By Pilot After Calibration 

Source Heart 
BPM 

Blink Heart 
Variability 

Inter 
blink 

New_l New_30 New_60 New_120 

Pilot 1 2.5 6.5 4.5 7.0 4.0 6.5 4.0 1.0 
Pilot 4 1.0 6.0 7.5 4.5 2.5 5.0 7.0 2.5 

Average 1.8 6.3 6.0 5.8 3.3 5.8 5.5 1.8 

Table 5-15. Average SNR Value By Pilot After Calibration 

Source Heart 
BPM 

Blink Heart 
Variability 

Inter 
blink 

New_l New_30 New_60 New_120 

Pilot 1 10.2 1.9 8.1 2.9 6.0 1.9 7.9 11.8 
Pilot 4 11.8 -0.1 -1.5 3.3 6.7 1.6 0.6 8.2 

Average 11.0 0.9 3.3 3.1 6.3 1.7 4.3 10.0 

Tables 5-12 and 5-13 show that heart BPM is consistently the most important 

feature. The other three features rank well below heart BPM, with heart variability being 

the only exception for Pilot 1. Tables 5-14 and 5-15 show that heart BPM remains 

overall the most important feature after calibration, followed very closely by New_120 

which ranks second overall. New_l and New_60 rank third and fourth overall as the next 

two most important features. The fifth, sixth, and seventh overall ranking features are not 

quite as clearly identifiable due to inconsistencies in the average values and average 

ranks. Nevertheless, the blinks feature overall ranks eighth. The average original feature 

rank is 4.9 versus the average calibration feature rank of 4.1. The average original 

feature SNR value is 4.6 versus the average calibration feature SNR value of 5.6. 
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Overall, these tables show that the calibration features dominate the original features. 

This information helps to explain why using the four calibration features to train ANNs 

produces better results. 

Another way of assessing the benefit of the calibration scheme involves 

measuring average network performance over the flight segments immediately following 

shifts in mental workload. Table 5-16 shows the results over three different workload 

shifts: low-to-high, high-to-low, and high-to-low-to-high. The performance measure is 

average CA. 

Table 5-16. Average CA Comparison Following Workload Shifts 

Workload Shift Baseline Calibration 
Low-to-High 54.7% 72.9% 
High-to-Low 60% 55.7% 

High-to-Low-to-High 54.7% 46.3% 
Overall Average 56.5% 58.3% 

Table 5-16 shows that the baseline method produces more consistent accuracy 

across the different workload shifts, despite a lower overall average CA. The low 

average CA from the calibration method in the high-to-low-to-high workload shift is 

probably due to the importance of the New_120 feature and the effects of a 2-minute 

moving average. Probably the most important workload shift for pilots is the low-to-high 

shift, and in this comparison the calibration method clearly surpassed the baseline 

method. 

An additional method of measuring the improvements using the calibration 

scheme over previous classifiers involves how consistently the calibration scheme 
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performs across different pilots and over different days. This consistency can be 

measured by the decrease in CA variance across the different data sets. Appendix E 

shows the baseline results compared to the calibration scheme results for each pilot and 

day combination using the original workloads and full day data sets. Overall, we find the 

calibration scheme reduces the CA variance by more than 88% and produces CA 

improvements as high as 55% over the baseline when comparing individual pilot and day 

combinations. 

5.6      Calibration Scheme Validation 

The results of the different methods using the calibration scheme indicate that 

ANNs trained with data using the scheme are able to better predict pilot mental workload. 

In order to fully determine the effectiveness and robustness of the calibration scheme, a 

validation effort is performed. The independent data set to be used for validation 

purposes comes from Pilot 6 on day 2. 

To establish a baseline performance level, an ANN is trained using the original 

workloads levels and non-calibrated full-day data. Table 5-17 shows the information 

table for the baseline network, along with the average CA. The performance measures 

for the baseline and the calibration networks are determined by averaging the results of 

four projections sent through the trained networks. The four data sets sent through the 

networks are: Pilot 1 on days 1 and 2, and Pilot 4 on days 1 and 2. 

After calibrating the data following the calibration scheme, another ANN is 

trained and the projections are made. Table 5-18 shows the information table along with 
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the average CA.   The ROC curve comparing the baseline to the calibration method is 

shown in Figure 5-9. 

Table 5-17. Baseline Information Table Results 

Type of Information Description 
Workload Type Original Workload 

Training Group Set All flight segments 
Data Calibrated? No 

Average CA 57.31% 

Table 5-18. Calibration Validation Information Table Results 

Type of Information Description 
Workload Type Original Workload 

Training Group Set All flight segments 
Data Calibrated? Yes 

Average CA 71.84% 

Validation of Calibration Scheme: 
Pilot 6 Day 2 Averages vs. Pilot 6 Day 2 Baseline 

-Pilot 6 Day 2 Baseline 

-Calibrated Data 

0       0.1      0.2      0.3      0.4      0.5      0.6      0.7      0.8      0.9 

False Positive 

Figure 5-9. ROC Curve of Calibration Scheme Compared to Baseline 
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The calibration method improves average CA by 14.53% over the baseline. 

Furthermore, the ROC curve shows a large increase in true positive to false positive 

ratios across the whole curve. The performance measures in this validation effort 

indicate that the calibration method can be successfully applied to new data sets and 

result in substantially improved pilot mental workload classification. 

5.7      Implementation Methodology And Validation 

The calibration scheme improves network performance, however it uses the 

known mean and variance for each feature to produce the improved results. Since this 

information is unknown until the end of each flight, implementing the scheme requires 

some modifications. This section introduces one way to implement the calibration 

scheme and shows the results of a validation effort. 

5.7.1 Implementation Methodology. The implementation methodology is based 

on constantly computing the mean and standard deviation values for each of the 4 key 

features (heart BPM, heart variability, number of blinks, and interblink) throughout the 

flight, and comparing these values to the minimum mean and standard deviation values 

set at the 4 minute point in the flight. Only the larger of the minimum or actual values 

will be used for standardizing the feature data and building the 4 calibration features. 

Furthermore, during the first 4 minutes of flight the pilot is assumed to be in low mental 

workload and the New_l feature is set to -1.0. The other 3 calibration features, since 

they are moving averages of New_l also have values of-1.0 during this period. 
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At 4 minutes of flight, the actual mean and standard deviation values for the 4 key 

features are adjusted according to the Feature Adjustment Factor Table, shown in Table 

5-19. The equations for these adjustments are shown in Equations 5-1 and 5-2. These 

adjusted values become the minimum mean and standard deviation values for the rest of 

the flight. As time passes and the 4 key features are computed, they are standardized 

based upon the larger of the minimum mean and standard deviation values or the actual 

mean and standard deviation values. The New_l calibration feature is computed using 

Equation 4-2, and the other 3 moving average calibration features are updated. The 4 

calibration features are presented to the ANN for a prediction of current mental workload, 

and this process is repeated until the end of the flight. After the flight, the Feature 

Adjustment Factor Table should be updated to reflect the new pilot information. 

Alternatively, a personalized Feature Adjustment Factor Table can be built using data 

exclusively from one pilot. Steps 1 through 5 review the implementation process. 

1. For the first 4 minutes of flight, set the New_l feature to -1.0 to reflect the 
low workload state. After 4 minutes of flight, compute the actual mean and 
standard deviation for each of the 4 key features. 

2. Find the minimum mean and standard deviation for each feature. These 
values are found by multiplying the actual mean and standard deviation values 
by the appropriate adjustment factor from the Feature Adjustment Factor 
Table, shown in Table 5-19. The equations to compute the minimum values 
are shown in Equations 5-1 and 5-2. 

3. As each set of 4 key features becomes available, the continually updating 
mean and standard deviation for each feature is compared to the minimum 
values found in Step #2. If a feature mean or standard deviation value falls 
below the respective minimum value, then the minimum value is substituted 
to standardize the feature. If a feature mean or standard deviation rises above 
the respective minimum value, then the larger value is used to standardize the 
feature. 
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4. Using the mean and standard deviation values from Step #3, compute the 
New_l calibration feature, and update the 3 moving average calibration 
features: New_30, New_60, and New_120. Present the 4 calibration feature 
values to the ANN for a prediction of current pilot mental workload. 

5. Repeat Steps #3 and #4 until the end of the flight. Before the next flight 
begins, update the Feature Adjustment Factor Table until the values stabilize. 
Alternatively, update a personalized Feature Adjustment Factor Table for 
exclusive use by one pilot. 

The Feature Adjustment Factor Table is based on data from previously flown 

flights. Currently, the table only reflects data from four flights: two flights by Pilot 1 and 

two flights by Pilot 4. Each value in the table represents the average percent difference 

between the overall mean (or standard deviation (SD)) for a feature and the mean (or SD) 

for the feature after 4 minutes of flight. To compute a minimum mean or standard 

deviation for feature /, use Equations 5-1 and 5-2 below. 

Minimum mean, = (mean, after 4 minutes) x (1 + adjustment factor,)     (5-1) 

Minimum SD, = (SD, after 4 minutes) x (1 + adjustment factor,) (5-2) 

Table 5-19. Feature Adjustment Factor Table 

Feature Mean Adjustment 
Factor 

Standard Deviation 
Adjustment Factor 

Heart Variability -0.3707 -0.2543 
Heart BPM 0.2188 0.971 

Number Blinks 0.0115 0.0599 
Interblink 0.1631 0.4328 

5.7.2 Implementation  Validation Results.     To  validate the  implementation 

methodology, the data set from Pilot 6 on day 2 is used.  Since information about this 
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data set was not available during construction of the Feature Adjustment Factor Table, 

the two are independent of one another. The data set is processed following the 

implementation methodology described in Section 5.7.1. Table 5-20 shows the 

information table and average CA results for the implementation, and Figure 5-10 

provides the ROC curve. The implementation ROC curve is compared to the baseline 

and the full calibration method. 

Table 5-20. Calibration Implementation Information Table Results 

Type of Information Description 
Workload Type Original Workload 

Training Group Set All flight segments 
Data Calibrated? Yes, Implementation Method 

Average CA 69.81% 

in o 
a 
3 

Validation for Implementation Process: 
Pilot 6 Day 2 Averages vs. Pilot 6 Day 2 Baseline 

Implementation Data 

Pilot 6 Day 2 Baseline 

Calibration Data 

0.1       0.2      0.3      0.4      0.5      0.6      0.7      0.8      0.9 

False Positive 

Figure 5-10. ROC Curve For Implementation vs. Baseline and Calibration 
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The average CA increased by 12.5% over the baseline, and the ROC curve shows 

the same dramatic increase over the baseline as the calibration method. Figure 5-10 also 

shows a comparison of the calibration and implementation methods, and the two curves 

are nearly identical. The middle of the graph shows an area where the full calibration 

method is better than the implementation method, but the improvement is small. These 

performance measures indicate that the implementation methodology is robust and 

accurately reproduces the full calibration benefits. 

5.8      Chapter Summary 

This chapter identified the results from the different methodologies introduced in 

Chapter IV for classifying pilot mental workload. Each methodology is compared to the 

initial modeling results, or baseline, based upon several network performance measures. 

Following initial success, the calibration scheme is applied to an independent data set for 

validation purposes, and an implementation methodology is introduced and tested. 

Chapter VI will take the results from this chapter and provide several conclusions about 

what this research has discovered. In addition to conclusions, Chapter VI will also 

address several recommendations for follow-on research. 
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VI. Conclusions and Recommendations 

This chapter summarizes the results of our research effort. In particular, the 

research assumptions and challenges are summarized in the first section, followed by a 

summary of the factor analysis in the second section. The third section addresses why the 

calibration scheme works, and the fourth section summarizes the calibration scheme 

results. The fifth and final section provides several recommendations for further 

research. 

6.1      Summary of Research Assumptions and Challenges 

Two assumptions challenged in this research involve the assumptions of 

instantaneous transitions between varying levels of workload and perfectly specified 

workload levels for the flight segments. Each of these assumptions and the research 

findings are addressed below. 

The results from Section 5.4.1 show that the "high-once-high" workload 

modification results in an average CA lower than the original workload levels. Since no 

improvement is found, we conclude we have no evidence to contradict this assumption. 

This does not imply that we believe the transitions between varying levels of workload 

are actually instantaneous. While we have no evidence to prove the assumption is invalid 

using our data, other research using data where test subjects simulate tasks similar to 

flying suggests otherwise. Laine found that the presentation order of workload appears to 

have a significant effect on the values of certain features [15].   He observed that 

6-1 



inconsistencies in feature data were correlated to multiple periods of constant workload 

or changes from overload to low workload levels [15]. One might ask, "Why is there a 

difference between research results?" One possible reason involves the order of flight 

segments and the number of transitions across workload levels throughout the flight 

experiment. The flight path flown by pilots in the non-simulated flight experiment was 

carefully planned to include certain types of maneuvers and skills in a real-world 

environment. This resulted in limitations on the number of transitions from low-to-high 

and high-to-low workloads during the 44-minute flights. The simulated flight 

experiment, on the other hand, had greater flexibility to vary workloads more often since 

no real-world considerations like altitude, aircraft speed, and pitch had to be addressed. 

As a result, more transitions from low-to-high and high-to-low workloads could be 

included in the 45-minute simulations. Had more transitions been included in the real- 

world flight experiment, the workload modification method might have produced results 

identical to those found by Laine [15]. 

Another potential cause that might explain the different results concerning 

instantaneous transitions between the real-world and simulated flight experiments can be 

found in the workload levels presented to the test subjects. The simulated flight 

experiment included an overload workload state, where the workload difficulty is 

increased to the point that the test subject cannot complete all required tasks. The real- 

world flight experiment could not include a similar overload workload state, since this 

would involve serious safety risks. It is quite possible, therefore, that the transition times 

from simulated overload-to-medium or overload-to-low workload levels take longer than 

real-world experiment transitions since the overload workload state involved failure of 
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the pilot to accomplish certain tasks. The highest workload levels during the real-world 

flight experiment never subjected pilots to failure of task accomplishment. This 

difference might be another cause for why the results in this research differ with those 

found by Laine [15]. 

The results from Section 5.4.2 indicate that there are different degrees of high and 

low workload, leading us to doubt that the workload levels are all accurately classified as 

either high or low workload. The original flight experiment split the flight segments into 

3 workload levels (low, medium, and high), but previous research using this data 

combined the low and medium workload levels into a single low workload classification 

[10]. Our research initially indicates that a "neither" workload level should probably be 

reintroduced, based on the results shown in Figure 5-3. An interesting result occurs, 

however, when the calibration scheme is applied to the data and we compare the ROC 

curve based on the modified workload levels (low, high, and "neither") to the ROC curve 

based on the "original" workload levels, shown in Figure 5-6. We discover that the 

significant advantage to including the "neither" workload level shown in Figure 5-3 is 

greatly reduced. The only place on the ROC curve where including the "neither" 

workload level remains an advantage falls in the range of true positive values from 0.70 

to 0.85. The rest of the ROC curve before, and after this true positive range, shows using 

2 workload levels remains the better choice. The final determination whether or not to 

include the "neither" workload level, therefore, is based on the user's desired operating 

characteristics of the classifier. 
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6.2 Summary of Factor Analysis 

The factor analysis method in this research effort differs slightly from a 

conventional factor analysis. Normally all of the factors are kept following the varimax 

rotation, however the large number of factors make factor interpretation difficult and do 

not reduce the dimensionality of our the problem. Given the ultimate goal of finding a 

one-size-fits-all classifier, we want to eliminate the factors that have no features assigned 

to them. This decision narrows the number of features to graph with workload level, 

ultimately leading to the discovery of 4 features that vary by workload level. 

As pointed out in Chapter V, the two frequencies most associated with changes in 

mental workload are the alpha and theta frequencies. Factor analysis reveals that based 

upon their frequent association with higher number factors, these two frequencies 

represent less variation in the total data set than other frequencies. The other frequencies, 

therefore, might represent noise instead of valuable information. One possible way to 

eliminate this excess noise involves not including these frequencies in network training. 

Overall, the factor analysis and subsequent exploratory factor analysis proved 

instrumental to the identification and development of the classification scheme. 

6.3 Why the Data Calibration Scheme Works 

The data calibration scheme works because it creates a new feature that is more 

immune to the psychophysiological variations that occur across different pilots and 

across days than the non-calibrated features by themselves. ANNs trained on non- 

calibrated data from one flight will have larger weight values associated with those 
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features found to vary with the workload levels, and smaller weight values associated 

with those features that vary little with changes in the mental workload levels. Due to the 

large psychophysiological variations in different pilots and in the same pilots on different 

days, however, two situations occur. First, the magnitude of the changes in the features 

found to vary by mental workload level does not remain constant over time or by pilot. 

Second, the specific features that vary by mental workload level do not stay the same 

over time or by pilot. In other words, both the specific feature and the degree of changes 

vary from pilot to pilot, and by pilot over time. The SNR ranks and values in Tables 5-12 

through 5-15 reflect this observation. This means that a network trained on non- 

calibrated data from Pilot 1 on either day will place the second greatest amount of weight 

on the interblink feature, and a sizable amount of weight on the number of blinks feature. 

Features that show less consistent variation with changes in mental workload rank 

beneath these features. Unfortunately, both the interblink and blink features do not show 

the same patterns in Pilot 4 as they do in Pilot 1, causing the trained network to result in 

low CA when projected onto Pilot 4 data. The SNR ranks associated with these features 

for Pilot 4 clearly reflect this problem. Pilot 4 has average SNR ranks for the interblink 

and blink features of 63.5 and 57.0, respectively. In other words, networks trained using 

the non-calibrated feature data on only one pilot and day stand little chance of accurately 

classifying mental workload across different pilots, and only a slightly better chance of 

accurately classifying mental workload across days for the same pilot. 

The calibration scheme reduces the impacts of the psychophysiological variations 

that occur across different pilots and over different days. The reason this is first 

approached in an observation made in Section 4-3 and shown in Figures D-l through D- 
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4. If one or more of the four features included in the calibration scheme are not 

significant to a particular pilot on a certain day, then those features basically represent 

small amounts of noise. Their inclusion in the linear combination results in the addition 

of this noise. Before a network is trained, however, the neural network software 

standardizes the data, thus mitigating the effect of insignificant features. As a result, the 

linear combination calibration scheme allows the significant features to provide valuable 

mental workload information to the network, and makes the insignificant features only 

increase the amount of noise. 

Continuing the example from above using a network trained on Pilot 1 on either 

day, the calibration scheme adds the normalized contributions from the interblink feature, 

subtracts the contribution from the blink feature, adds the contribution from the heart 

BPM feature, and subtracts the contribution from the heart variability feature. The heart 

variability feature, as we see in table 5-12, is insignificant to Pilot 1 so its addition to the 

calibration scheme is really an addition of noise. As mentioned before, Pilot 4 does not 

display the same consistent patterns as Pilot 1 in the interblink and number of blinks 

features, but Pilot 4 does have two consistent patterns in the heart BPM and heart 

variability features. This results in two features added to the calibration scheme that 

provide information about mental workload for Pilot 4 and two features that add noise. 

The outcome is a new calibration feature for Pilot 4 containing useful information about 

mental workload, and it can be directly compared to the calibration feature developed for 

Pilot 1. When data from Pilot 4 is projected through the network trained on Pilot 1, the 

network understandably performs quite well.  The large psychophysiological variations 
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found across different pilots and over different days is no longer a stumbling block to 

achieving higher classification accuracy and good ROC curve performance. 

Another way to understand how the calibration scheme works involves plotting 

the average values of the ocular and heart features during periods of low and high 

workload. To reduce the number of features on the graph, the number of blinks feature is 

subtracted from the interblink feature to develop a single ocular feature. This is the same 

calculation for these features used in the calibration scheme. Similarly, the heart 

variability feature is subtracted from the heart BPM to create a single cardiac feature. 

The average values for the single ocular and cardiac features during periods of low and 

high workload are then calculated, producing the results shown in Table 6-1. The graph 

of this information is shown in Figure 6-1. 

Table 6-1. Average Combined Feature Values During High and Low Workload 

Pilot 1, Day 1 Pilot 1, Day 2 Pilot 4, Day 1 Pilot 4 Day 2 
Source Low High Low High Low High Low High 
Ocular -0.367 0.531 -0.323 0.467 -0.021 0.030 -0.014 0.020 

Cardiac -0.339 0.489 -0.250 0.362 -0.630 0.910 -0.799 1.154 

Total -0.706 1.02 -0.573 0.829 -0.651 0.940 -0.813 1.174 

Table 6-1 shows how both the ocular and cardiac values are always negative during 

periods of low mental workload, and always positive during periods of high mental 

workload. Furthermore, we observe differences in average values across the two pilots 

and over the two days. We notice, for example, that Pilot 4 has very small absolute 

values in the combined ocular feature and very large absolute values in the combined 

cardiac feature during both low and high workloads.  Pilot 1 has combined ocular and 
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cardiac feature absolute values that are closer in value to one another but show a stronger 

tendency towards the ocular feature due to its larger absolute values. These two 

observations confirm our results found in the exploratory factor analysis and in the SNR 

comparisons. 

Pilots 1 & 4 Ocular & Heart Calibrated Features: 
Averages During Low vs. High Workloads 
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Figure 6-1. Average Combined Feature Values During High and Low Workload 

Figure 6-1 visually shows the same information identified in Table 6-1. The calibration 

scheme clearly results in average negative values during periods of low workload and 

average positive values during periods of high workload, despite the differences in which 

features add value to the linear equation. For example, the figure shows that ocular 

features reflect the mental workload level for Pilot 1, where as the cardiac features reflect 
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the mental workload level for Pilot 4.   These observations are consistent with our 

previous findings. 

6.4. Summary of Calibration Scheme Results 

Our research indicates the calibration scheme dramatically improves our ability to 

accurately predict pilot mental workload. The validation data set shows the CA using the 

calibration scheme increases by more than 14% over the baseline, which is more than a 

25% increase. The various ROC curves indicate even greater improvement with the 

calibration scheme over the baseline. Table 6-2 shows the average true positive rates for 

three calibration method modifications compared to the baseline when the false positive 

rate is set at 0.33. The table also shows the average percent of improvement over the 

baseline for these true positive rates. 

Table 6-2. Calibration Improvement Over Baseline With FP Rate Set At 0.33 

Description Average TP 
Rate 

% Improvement 
Over Baseline 

Baseline with "original" workloads 0.497 - 

Calibration with "original" workloads 0.774 56% 
Calibration with "high, low, neither" workloads 0.800 61% 
Calibration with "high, low, neither" workloads 

and Group 2 training 
0.791 59% 

Table 6-2 clearly shows how much of an improvement the calibration method makes over 

the baseline. In all three cases, the true positive rates improve over 55%. Furthermore, 

our validation effort results indicate that the calibration scheme is robust, and the 
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implementation method results identify that the calibration scheme can be successfully 

implemented without any significant loss of predictive capabilities. 

Through exploratory factor analysis, the reevaluation of the dimensions of the 

problem lead us to the insight that the feature space varies by pilot and day. While 

artificial neural networks appear unable to find this feature space by themselves, our 

calibration scheme exploits the new feature space and allows us to accurately 

discriminate between high and low mental workload. We achieve classification accuracy 

improvements over previous classifiers exceeding 55% while using 88% fewer features 

and reducing the classification accuracy variance by over 88%. Without the need for 

EEG data, the calibration scheme also reduces the raw data collection requirements by 

99.75%, making data collection immensely easier to manage and dramatically reduces 

computational processing requirements. Along with the validated implementation 

method, the calibration scheme completely dominates all other classifiers over their entire 

operating curves and significantly simplifies the entire classification process. This makes 

the calibration scheme and implementation method far more practical than any previous 

classifier and classification method. Finally, the identification of the new feature space 

also opens new doors for further improvements in classification accuracies. 

The calibration scheme produces a single classifier developed from only one 

flight that can be used to accurately predict pilot mental workload for different pilots over 

different days. The psychophysiological variations within and across individuals 

preventing previous methods from attaining high classification accuracy appear to no 

longer be a major hurdle. 
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6.5      Recommendations 

Several opportunities exist for further research on calibrating pilot mental 

workload. The first opportunity involves exploring calibration schemes other than the 

linear combination presented in this research. Examples include calibration schemes 

containing interaction terms and non-linear functions. The second opportunity applies 

optimization techniques for improving the weighting of the features within the calibration 

scheme to optimally highlight the changes in mental workload level. Provided the 

predictive power and operating characteristics of the calibration scheme meets warfighter 

needs, the third opportunity includes moving the calibration and implementation schemes 

towards additional testing and future system development. 
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Appendix A. Microsoft Excel Feature Preprocessing Code 

A. 1.     Preprocessing the Physiological Features 

The following code preprocesses the feature data described in Chapter III. It will 

process two flights of data for one pilot, and it is intended for placement in separate 

macros where it references cells on one spreadsheet that identify certain pieces of 

information. This information includes: number of files to process per feature, the name 

and directory of the processor file storing these macros, the directory locations for data 

file retrieval (where the data files are located for processing one pilot over two flights), 

the data file prefixes, and the workload levels per flight segment. 

A. 1.1. Main Program Code. The main program code builds the processed 

data file for each flight, and then calls the other subroutine macros to process each 

individual feature. The main program code repeats twice to process the two flights per 

pilot, however only the physiological features are preprocessed by the main program 

code. The preprocessing time for two flights of data in this research takes approximately 

2 minutes. 

Sub Build_File_Macro() 

' BuildFileMacro Macro 
' Macro recorded 10/27/2000 by Capt Jeremy Noel 

Dim NumberOfFiles As Integer       ' Total number of data files' 
-  Dim j As Integer 'Just a counter' 

Dim i As Integer 'Just a counter' 
Dim Difficulty(l To 100) As Double 'Array that holds the respective difficulty levels per flight segment 
Dim FileName2(l To 5) As String    'Array that holds the names of the files to process 
Dim TxtMsg As String 
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Dim FileNameDefault As String 
Dim RowCount As Integer 
Dim z As Integer 'Just a counter' 

Dim TxtTitle As String 
Dim Director(l To 5) As String     Array that holds the different data file locations 
Dim DirectorSave As String 'The directory to save the new processed data file into 
Dim Bookname(l To 5) As String     Array that holds the prefix names for the raw data files 
Dim FileSaveName As String "Name of file to save, passed to subroutines 
Dim BooknameLocation As String     "Name of the bookname, passed to subroutines 
Dim DirectorLocation As String     'Name of the directory location, passed to subroutines 
Dim NameOfßook As String 'Temporary holders of the name of book 
Dim NameOfDirectory As String      'Temporary holders of the name of the directory 
Dim ColumnName(0 To 300) As String "Names for the columns for EEG data 
Dim ColumnName2(0 To 300) As String "Names for the columns for EEG data 
Dim Band(0 To 4) As String 'Stores the different names of the frequency bands 
Dim ColumnCounter As Integer       A column counter 
Dim ProcessorFileName As String 

'Get the directory to save the file to from the processor file 
ProcessorFileName = Cells(4,3).Value 
Windows(ProcessorFileName) Activate 
DirectorSave = Range("D7") 

'Get the number of files from the processor file' 
- NumberOfFiles = Range("E3") 
'Get the difficulty levels from the processor file' 

RowCount = 20 
For i = 1 To NumberOfFiles 

Difficulty(i) = Cells(RowCount, 3).Value 
RowCount = RowCount + 1 

Nexti 
'Get the different file prefixes and directory locations for the two days of raw data 

NameOfßook = Range("cl0") 
Bookname(l) = NameOfßook 
NameOfßook = Range("cl 1") 
Bookname(2) = NameOfßook 
NameOfDirectory = Range("D5") 
Director( 1) = NameOfDirectory 
NameOfDirectory = Range("D6") 
Director(2) = NameOfDirectory 

'*********** THIS IS THE MAJOR LOOP IN THE PROCESSING PROGRAM ************- 
For z = 1 To 2 

Ask for a file name to save this processed data file as' 
TxtTitle = "Provide A File Name (8 Letters & No Spaces)" 
TxtMsg = "What name would you like to give this processed data file? Make it 8 letters or less, include 

no spaces, and use .xls for extension." 
- FileNameDefault = "Pilot_Name_Day_Number.xls" 

'Build the new workbook' 
WorkbooksAdd 

A-2 



ActiveCell.FormulaRlCl; 

Range("Bl").Select 
ActiveCell.FormulaRlCl: 

Range("Cl").Select 
ActiveCell.FormulaRlCl; 

Range("dl").Select 
ActiveCell.FormulaRlCl: 

Range("el").Select 
ActiveCell.FormulaRlCl> 
Range("fl").Select 
ActiveCell.FormulaRlCl: 

Range("gl").Select 
ActiveCell.FormulaRlCl: 

Range("hl").Select 
ActiveCell.FormulaRlCl: 

Range("il").Select 
ActiveCell.FormulaRlCl: 

Range("jl").Select 
ActiveCell.FormulaRlCl: 

: "Flt_Segment" 

: "Interval" 

: "Low_Workload" 

"High_Workload" 

: "BPM" 

; "Hrt_Var" 

■■ "Blinks" 

"Inter_Blink" 

: "Breaths" 

"Inter Breath" 

'EEG data labels begin here 
•These are all of the 29 EEG nodes: T8 02 P10PZ FP1 C3 P03 01 IZ P4 F3 T7 OZ FP2 F8 P9 

P3 P8 C5 CZ FZ F4 C6 F7 P7 FC2 P04 FC1 C4 
ColumnName(O) = "T8" 
ColumnName(l) = "02" 
ColumnName(2) = "P10" 
ColumnName(3) = "PZ" 
ColumnName(4) = "FPl" 
ColumnName(5) = "C3" 
ColumnName(6) = "P03" 
ColumnName(7) = "01" 
ColumnName(8) = "IZ" 
ColumnName(9) = "P4" 
ColumnName(lO) = "F3" 
ColumnName(ll) = "T7" 
ColumnName(12) = "OZ" 
ColumnName(13) = "FP2" 
ColumnName(H) = "F8" 
ColumnName(15) = "P9" 
ColumnName(16) = "P3" 
ColumnName(17) = "P8" 
ColumnName(18) = "C5" 
ColumnName(19) = "CZ" 
ColumnName(20) = "FZ" 
ColumnName(21) = "F4" 
ColumnName(22) = "C6" 
ColumnName(23) = "F7" 
ColumnName(24) = "P7" 
ColumnName(25) = "FC2" 
ColumnName(26) = "P04" 
ColumnName(27) = "FC1" 
ColumnName(28) = "C4" 
'EEG Frequency bands: delta, theta, alpha, beta, ultrabeta (ubeta) 
Band(O) = "delta" 
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Band(l) = "theta" 
Band(2) = "alpha" 
Band(3) = "beta" 
Band(4) = "ubeta" 

'Build the labels for the EEG columns and frequency bands 
ColumnCounter = 0 
For i = 0 To (29 -1)' Each EEG node has 5 frequency bands 

For j = 0 To 4 
ColumnName2(i) = ColumnName(i) & "_" 

Cells(l, i + ColumnCounter + 11 + j) = ColumnName2(i) & Band(j) 
Nextj 
ColumnCounter = ColumnCounter + 4 

Nexti 

'Save the new processed data file' 
FileSaveName = InputBox(TxtMsg, TxtTitle, FileNameDefault) 
Active Workbook.SaveAs FileName:= _ 
DirectorSave & FileSaveName, _ 
FileFormat:=xlText, CreateBackup:=False 
NameOfßook = Bookname(z)    This is the file prefix 
NameOfDirectory = Director(z)  This is the directory location 

For i = 0 To (NumberOfFiles -1) 
For j = 1 To 23    There are 23 exemplars per file and 2 minute segment 

Cells(j + i * 23 + 1,1) = i + 1 This places the flight segment into the cells 
Cells(j + i * 23 + 1, 2) = j     This places the interval per flight segment into the cells (it can be 

deleted later) 
If Difficulty (i + 1) = 1 Then 

CellsQ + i * 23 + 1,3) = 1 
Cells(j+i*23 + l,4) = 0 

Else 
CellsQ+i* 23+ 1,3) = 0 
CellsQ + i * 23 + 1,4) = 1 

End If 
Nextj 

Nexti 
Call Heart_Data(NumberOfFiles, FileSaveName, NameOfßook, NameOfDirectory) 
Call Eye_Data(NumberOfFiles, FileSaveName, NameOfßook, NameOfDirectory) 
Call Breath_Data(NumberOfFiles, FileSaveName, NameOfßook, NameOfDirectory) 

'  Call FFT_Data(NumberOfFiles, FileSaveName, NameOfßook, NameOfDirectory) 
Active Workbook.Save 

Nextz 

End Sub 
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A. 1.2.   Cardiac Preprocessing Code.      This   code   preprocesses  the   cardiac 

feature data. It is called from the main program code. 

Option Explicit 
Sub Heart_Data(NumberOfFiles As Integer, 
String) 

FileName2 As String, Bookname As String, Director As 

' Heart Macro 
' Macro recorded 10/27/2000 by Capt Jeremy Noel 

' Row number of .HRT file' 
'Row Value of .HRT file' 
' Number of total Intervals from all files' 
' Current number of file being imported and processed' 
' Number of beats in interval 
' Current time elapsed for current interval' 
' Length of interval in milliseconds' 
' File and directory of current file' 
' String number extention of .HRT file 

' Establishes how many rows are included in the current time 
window interval' 

Dim DataArray(l To 5000) As Double 'The array that gathers each row value as it is read from the file' 
Dim i As Integer 'Just a counter' 
Dim StarterRow As Double 'The row you started from after the last interval 
Dim SumTotal As Double 'The sum of the data values within an interval' 
Dim AverageValue(l To 1000) As Double  'The array that holds the average values per interval 
Dim AverageValue2(l To 1000) As Double 'The array that holds the final average values' 

Dim RowCount As Integer 
Dim RowValue As Integer 
Dim Interval As Integer 
Dim Filenumber As Integer 
Dim RowTally As Integer 
Dim IntervalTime As Integer 
Dim RunLength As Double 
Dim File As String 
Dim Number As String 
Dim Rowslnlnterval As Double 

Dim Slope(l To 1000) As Double 

Dim slope2(l To 1000) As Double 
Dim a As Double 

Dim b As Double 
Dim c As Double 
Dim d As Double 
Dim e As Double 
Dim f As Double 
Dim MainCounter As Double 

Dim BookNameOriginal As String 

'The array that holds the absolute value of the slope for each 
interval 

'The array that holds the final slope values' 
'These letters, a through f, are used to calcuate the (x'x)A-l*x'y 
values to get the slope 

'This keeps track of which file is being read for properly spacing the 
different arrays 

'This is the original bookname passed into the file 

BookNameOriginal = Bookname 
RunLength = 10000 
MainCounter = 0 
' Loop runs file for all files up to variable NumberOfFiles' 
' Adds a 0 to a single digit number' 
For Filenumber = 1 To NumberOfFiles 

If (Filenumber <= 9) Then 
Number = "0" & Filenumber 
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Else 
Number = Filenumber 

End If 

Bookname = Bookname & Number & ".HRT" 
File = Director & Bookname 

' Loads file here' 
Workbooks.OpenText FileName:=File, Origin:=xlWindows, StartRow:=l, DataType:=xlDelimited, 

TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, Semicolon:=False, 
Comma:=False, Space:=True, Other:=False, FieldInfo:=Array(Array(l, 1), Array(2,1), Array(3,1)) 

i******** Read in the data file *****************g 
i=l 
RowCount = 7 
While Not (Cells(RowCount, 2) = " ") 

RowValue = Cells(RowCount, 2).Value 
DataArray(i) = RowValue 
i = i + l 
RowCount = RowCount + 1 

Wend 

'******** Process the odd exemplars: 1,3, 5,..., 23 ***********- 
Interval = 1 
RowCount = 7 
RowTally = 0 
StarterRow = 1 
IntervalTime = 0 
Rowslnlnterval = 0 
SumTotal = 0 
i=l 

-     WhileNot(Cells(RowCount,2) = " ") 
'Continue to add time until the 10 second RunLength has been exceeded' 
RowValue = Cells(RowCount, 2).Value 
IntervalTime = IntervalTime + RowValue 

If (IntervalTime < RunLength) Then ' Determine if enough time has elapsed to build interval 
Rowslnlnterval = Rowslnlnterval + 1 'Increase the number of rows (and data values) included in 

the current interval' 
Else 

'Collect and add the data values that fell within the time interval 
a = 0 
b = 0 
c = 0 
d = 0 
e = 0 
f=0 
SumTotal = 0 
For a = StarterRow To (StarterRow + Rowslnlnterval -1) 

SumTotal = SumTotal + DataArray(a) 
b = b + a 'This line calculates the second position, or b, in the x'x matrix 
d = d + a* a 
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f = f + a * DataArray(a) 
Next a 
'Average the data values within the time interval' 
AverageValue(Interval) = SumTotal / Rowslnlnterval 'This is the average interbeat value for this 

time window' 

'Calculate the ordinary least squares estimator for bl, the slope 
'First build the x'x matrix: a,b,c,d stand for the 4 placeholders of the resulting 2x2 matrix 
a = Rowslnlnterval 
'b and d are already calculated above' 
c = b 'the second and third elements in the x'x matrix are identical 
'Calculated the inverse matrix: (x'x)A-l 
'To calculate the slope, we only need the 3rd and 4th elements of the (x'x)A-l matrix 
c = -c / (a * d - b * c) 'The new c value is the 3rd element in the (x'x)M matrix 
d = a/(a*d-b*b) 'The new d value is the 4th element in the (x'x)M matrix 
'Now build the x'y matrix 
e = SumTotal 'This is the first element in the x'y matrix 
'f, the second element in the x'y matrix, is already calculated above' 
'Calculate the (x'x)A-l*x'y for the second element, the slope 
Slope(Interval) = ((c * e + d * f) * (c * e + d * f))A 0.5 'We want only the absolute value of the 

slope, so square it and take the square 
root of the value 

'Reset the variables or prepare them for the next interval 

StarterRow = StarterRow + Rowslnlnterval 
Interval = Interval + 2 
RowCount = RowCount -1 'The last row didn't make it into the last interval 
Rowslnlnterval = 0 
IntervalTime = 0 

'RowTally = 1 
End If 

RowCount = RowCount + 1 
i = i + l 

Wend 

'******** Process the even exemplars: 2,4,6 22 ************ 
'Drop the first 5 seconds of the data' 
RowTally = 0 
IntervalTime = 0 
Rowslnlnterval = 0 
i=l 

While IntervalTime < 5000 
IntervalTime = IntervalTime + DataArray(i) 
i = i + l 
Rowslnlnterval = Rowslnlnterval + 1 

Wend 

'Proceed with the normal development of the exemplars' 
Interval = 2 
RowCount = 7 + (Rowslnlnterval - 1) 'This eliminates the effect of the last loop where the sum fell 

above the limit 
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RowTally = 0 
StarterRow = Rowslnlnterval 
IntervalTime = 0 
Rowslnlnterval = 0 
SumTotal = 0 
i=l 

While Not (Cells(RowCount, 2) = " ") 
'Continue to add time until the 10 second RunLength has been exceeded' 
RowValue = Cells(RowCount, 2).Value 
IntervalTime = IntervalTime + RowValue 

If (IntervalTime < RunLength) Then ' Determine if enough time has elapsed to build interval 
Rowslnlnterval = Rowslnlnterval + 1 'Increase the number of rows (and data values) included in 

the current interval' 

Else 
'Collect and add the data values that fell within the time interval 
a = 0 
b = 0 
c = 0 
d = 0 
e = 0 
f=0 
SumTotal = 0 
For a = StarterRow To (StarterRow + Rowslnlnterval -1) 

SumTotal = SumTotal + DataArray(a) 
b = b + a 'This line calculates the second position, or b, in the x'x matrix 
d = d + a* a 
f = f + a * DataArray(a) 

Next a 
'Average the data values within the time interval' 
AverageValue(Interval) = SumTotal / Rowslnlnterval 'This is the average interbeat value for this 

time window1 

'Calculate the ordinary least squares estimator for bl, the slope 
'First build the x'x matrix: a,b,c,d stand for the 4 placeholders of the resulting 2x2 matrix 
a = Rowslnlnterval 
'b and d are already calculated above' 
c = b 'the second and third elements in the x'x matrix are identical 
'Calculated the inverse matrix: (x'x)A-l 
'To calculate the slope, we only need the 3rd and 4th elements of the (x'x)M matrix 
c = -c / (a * d - b * c) 'The new c value is the 3rd element in the (x'x)A-l matrix 
d = a/(a*d-b*b) 'The new d value is the 4th element in the (x'x)A-l matrix 
'Now build the x'y matrix 
e = SumTotal 'This is the first element in the x'y matrix 
'f, the second element in the x'y matrix, is already calculated above' 
'Calculate the (x'x)A-l*x'y for the second element, the slope 
Slope(Interval) = ((c * e + d * f) * (c * e + d * f)) A 0.5 'We want only the absolute value of the 

slope, so square it and take the square 
root of the value 

'Reset the variables or prepare them for the next interval 
StarterRow = StarterRow + Rowslnlnterval 
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Interval = Interval + 2 
RowCount = RowCount -1 'The last row didn't make it into the last interval 
Rowslnlnterval = 0 
IntervalTime = 0 
'RowTally = 1 

End If 

RowCount = RowCount + 1 
i = i + l 

Wend 

'Keep only the first 23 exemplars from each file 
For i = 1 To 23 

AverageValue2(i + 23 * MainCounter) = AverageValue(i) 
slope2(i + 23 * MainCounter) = Slope(i) 

Nexti 

' Close current workbook' 
Windows(Bookname).Activate 
Active Workbook.Close 
MainCounter = MainCounter + 1 

Bookname = BookNameOriginal 

Next Filenumber 

' Place the processed data into the processed data worksheet' 

Windows(FileName2) Activate 
For i = 1 To 23 * NumberOfFiles 'There are 23 exemplars per file 

AverageValue2(i) = 60000 * 1 / AverageValue2(i)    'To get a beats per minute value, invert the 
average time between beats and multiply by 
60,000 

Cells(i + 1,5) = Average Value2(i) 
Cells(i + 1,6) = slope2(i) 

Nexti 

Active Workbook.Save 

End Sub 

A. 1.3. Ocular and Respiratory Preprocessing Code. This code preprocesses the 

ocular feature data. With only file extension changes it also preprocesses the respiratory 

feature data. Both of these subroutines are called from the main program code. 
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Option Explicit 
Sub Eye_Data(NumberOfFiles As Integer, FileName2 As String, Bookname As String, Director As String) 

' EyeData Macro 
' Macro recorded 10/28/2000 by Capt Jeremy B. Noel 

Dim RowCount As Double ' Row number of file' 
Dim Interval As Integer ' Number of total Intervals from all files' 
Dim Filenumber As Integer ' Current number of file being imported and processed' 
Dim IntervalTime As Double        ' Current time elapsed for current interval' 
Dim RunLength As Double ' Length of interval in milliseconds' 
Dim File As String ' File and directory of current file' 
Dim Number As String ' String number extention of file 
Dim Rowslnlnterval As Double    ' Establishes how many rows are included in the current time window 

interval' 
Dim DataArrayl(l To 5000) As Double 'The array for odd exemplars that gathers each row value as it is 

read from the file' 
Dim i As Double 'Just a counter' 
Dim StarterRow As Double 'The row you started from after the last interval 
Dim SumTotal As Double 'The sum of the data values within an interval' 
Dim AverageValuel(l To 1000) As Double  'The array that holds the average values per interval 
Dim AverageValue2(l To 1000) As Double 'The array that holds the final average values' 
Dim a As Double 'Just a counter' 
Dim MainCounter As Double 'This keeps track of which file is being read for properly spacing the 

different arrays 
Dim NumberBlinksl(-l To 1000) As Double   'Array that holds the number of blinks in each 10 second 

time interval 
Dim NumberBlinks2(-l To 1000) As Double   'Array that holds the final number of blinks in each 10 

second time interval 
Dim RowValue As Double 'The value in the respective row of the file' 
Dim Time Window As Double 'Counter keeping track of which time window we are in 
Dim RowsInFirstFive As Double      'Set as the number of rows that fall within the first 5 seconds 
Dim BookNameOriginal As String     'This is the original bookname passed into the file 

BookNameOriginal = Bookname 
RunLength = 10000 
MainCounter = 0 

' Loop runs file for all files up to variable NumberOfFiles' 

' Adds a 0 to a single digit number' 
For Filenumber = 1 To NumberOfFiles 

If (Filenumber <= 9) Then 
Number = "0" & Filenumber 

Else 
Number = Filenumber 

End If 
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Bookname = Bookname & Number & ".BLK." 
File = Director & Bookname 

' Loads file here' 
Workbooks.OpenText FileName:=File, Origin:=xlWindows, StartRow:=l, DataType:=xlDelimited, 

TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, Semicolon:=False, 
Comma:=False, Space:=True, Other:=False, FieldInfo:=Array(Array(l, 1), Array(2,1), Array(3,1)) 

i = l 
RowCount = 7 
While Not (Cells(RowCount, 2) = " ") 

RowValue = Cells(RowCount, 2).Value 
DataArrayl(i) = RowValue 
1 = 1-1-1 
RowCount = RowCount + 1 

Wend 

********* processthe odd exemplars: 1,3, 5,..., 23 ***********' 
Interval = 1 
RowCount = 7 
StarterRow = 1 
IntervalTime = 0 
Rowslnlnterval = 0 
SumTotal = 0 
Time Window = 1 

While Not (Cells(RowCount, 2) = " ") 
'Continue to add time until the 10 second RunLength has been exceeded' 
RowValue = Cells(RowCount, 2).Value 
IntervalTime = IntervalTime + RowValue 

If (IntervalTime < RunLength * TimeWindow) Then ' Determine if enough time has elapsed to 
build interval 

Rowslnlnterval = Rowslnlnterval + 1 'Increase the number of rows (and data values) included in 
the current interval' 

Else 
NumberBlinksl(Interval) = Rowslnlnterval - StarterRow + 1 'This puts the number of blinks in 

the interval into the array 

'Calculate the average time between blinks 
If NumberBlinksl(Interval) > 1 Then 

SumTotal = 0 
For a = StarterRow To Rowslnlnterval 

SumTotal = SumTotal + DataArrayl(a) 
Next a 
StarterRow = StarterRow + NumberBlinksl(Interval) 
AverageValuel(Interval) = (SumTotal /NumberBlinksl (Interval)) /1000 

Elself NumberBlinksl(Interval) = 1 Then 'Use the time between the last blink and the one blink 
in the interval 

Average Value 1 (Interval) = DataArrayl (RowCount -1)11000 
StarterRow = StarterRow + NumberBlinksl (Interval) 
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Elself NumberBlinksl (Interval) = 0 Then 'If no blinks occur, subtract the time of the last blink 
from the end of the current window 

SumTotal = 0 
a=l 
While a < StarterRow 

SumTotal = SumTotal + DataArrayl(a) 
a = a+l 

Wend 
Average Value 1 (Interval) = (RunLength * Time Window - SumTotal) /1000 

End If 

'Reset the variables or prepare them for the next interval 
Interval = Interval + 2 
RowCount = 6 'Each time you want to read through the entire data set until the main condition is 

met 
Rowslnlnterval = 0 
IntervalTime = 0 
Time Window = TimeWindow + 1 

End If 

RowCount = RowCount + 1 

Wend 

'******** Process the even exemplars: 2,4,6,..., 22 ***********' 
'Drop the first 5 seconds of the data' 

IntervalTime = 0 
Rowslnlnterval = 0 

i = l 
While IntervalTime < 5000 

IntervalTime = IntervalTime + DataArrayl(i) 
Rowslnlnterval = Rowslnlnterval + 1 
i = i + l 

Wend 

'Proceed with the normal development of the exemplars' 
Interval = 2 
RowsInFirstFive = Rowslnlnterval -1    'The -1 eliminates the looping structure's extra +1 from above 
RowCount = 7 
StarterRow = 1 
IntervalTime = 0 
Rowslnlnterval = 0 
SumTotal = 0 
TimeWindow = 1 

While Not (Cells(RowCount, 2) = " ") 
'Continue to add time until the 10 second RunLength has been exceeded' 
RowValue = Cells(RowCount, 2).Value 
IntervalTime = IntervalTime + RowValue 
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If (IntervalTime < (RunLength * TimeWindow + 5000)) Then ' Determine if enough time has 
elapsed to build interval 

Rowslnlnterval = Rowslnlnterval + 1 'Increase the number of rows (and data values) included in 
the current interval' 

Else 
NumberBlinksl(Interval) = Rowslnlnterval - StarterRow + 1 - RowsInFirstFive 'This puts the 

number of blinks in the interval into the array 

'Calculate the average time between blinks 
If NumberBlinksl(Interval) > 1 Then 

SumTotal = 0 
For a = (StarterRow + RowsInFirstFive) To Rowslnlnterval 

SumTotal = SumTotal + DataArrayl(a) 
Next a 
Average Valuel(Interval) = (SumTotal /NumberBlinksl (Interval)) /1000 
StarterRow = StarterRow + NumberBlinksl (Interval) 

Elself NumberBlinksl(Interval) = 1 Then 'Use the time between the last blink and the one blink 
in the interval 

Average Valuel (Interval) = DataArrayl(RowCount -1)11000 
StarterRow = StarterRow + NumberBlinksl(Interval) 

Elself NumberBlinksl(Interval) = 0 Then 'If no blinks occur, subtract the time of the last blink 
from the end of the current window 

SumTotal = 0 
a=l 
While a < (StarterRow + RowsInFirstFive) 

SumTotal = SumTotal + DataArrayl(a) 
a = a+l 

Wend 
AverageValuel (Interval) = (RunLength * TimeWindow + 5000 - SumTotal) / 1000 

End If 

'Reset the variables or prepare them for the next interval 
Interval = Interval + 2 
RowCount = 6 'Each time you want to read through the entire data set until the main condition is 

met 
Rowslnlnterval = 0 
IntervalTime = 0 
TimeWindow = TimeWindow + 1 

End If 

RowCount = RowCount + 1 

Wend 

'Keep only the first 23 exemplars from each file 
For i = 1 To 23 

NumberBlinks2(i + 23 * MainCounter) = NumberBlinksl(i) 
AverageValue2(i + 23 * MainCounter) = AverageValuel(i) 

Nexti 

' Close current workbook' 
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Windows(Bookname).Activate 
Active Workbook.Close 
MainCounter = MainCounter + 1 
Bookname = BookNameOriginal 

Next Filenumber 

' Place the processed data into the processed data worksheet' 
Windows(FileName2) Activate 

For i = 1 To 23 * NumberOfFiles 'There are 23 exemplars per file 
Cells(i +1,7) = NumberBlinks2(i) 
Cells(i +1,8) = Average Value2(i) 

Nexti 

Active Workbook.Save 

End Sub 

A.2.     Preprocessing the EEG Features 

The EEG feature preprocessing requires both Microsoft Word and Microsoft 

Excel. Microsoft Word is needed due to memory management issues with Microsoft 

Excel and Microsoft Windows. The main program runs in Word and after each 2-minute 

EEG file is processed, it shuts down Excel and re-opens it free the computer RAM. As a 

result, the main program code is placed in a Word macro and the other code in Section 

A.2.2 is placed in an Excel macro. Processing time for each flight of data takes 

approximately 22 hours since over 19.5 million FFTs are performed, sorted, and recorded 

per flight. This time estimate is based on a networked 850MHz computer with 512MB 

RAM, however automatic network and disk scanning functions periodically delayed the 

processing speed over this period of time. 

A-14 



A.2.1. Main Program Code For Placement In Microsoft Word Macro. This 

macro code needs to be placed in Word since the EEG preprocessing is controlled by 

Word, not Excel. This macro calls other macros in Excel, shown in Section A.2.2. 

SubExecute_FFT_PiIotl_Dayl_In_excel() 

' Execute_FFT_Pilotl_Dayl_In_excel Macro 
' Macro recorded 11/8/00 by ENS 

Dim ProcessFile As Object 
Dim OutputFile As Object 
Dim LastExcelSheet As Object 

i*********************************************************************** 

ALL FILE MODIFICATIONS OCCUR RIGHT HERE 
DFileName = "Pilotl_Dayl.xls" 
DataFileName = "c:\Capt Noel Thesis\Pilotl_Dayl.xls" 
MacroToRunName = "'ProcessorFile for all pilots.xls'!FFT_Pilotl_Dayl" 

r*********************************************************************** 

•NO MODIFICATIONS NECESSARY BEYOND THIS POINT IN PROGRAM 
'Open the processor file in excel and reset the counters 

LastExcelSheetName = "LastExcelSheet.xls" 
ProcessFileName = "c:\Capt Noel Thesis\ProcessorFile for all pilots.xls" 
PFileName = "ProcessorFile for all pilots.xls" 
Set OutputFile = GetObject(DataFileName) 
Set ProcessFile = GetObject(ProcessFileName) 
Set LastExcelSheet = GetObject(LastExcelSheetName) 

ProcessFile.Application.Visible = True 
ProcessFile.Windows(PFileName).Visible = True 
ProcessFile.Application.Cells(15, 15).Value = 1 'The original file number setting is 1 
ProcessFile.Application.Cells(14,15).Value = 0 'The original main counter value is 0 
ProcessFile.CloseSaveChanges:=True 
LastExcelSheet.Application.Quit 

'This is just a pausing statement to allow excel to fully close before being re-opened 
For j = 1 To 500000000 

a = a 
Nextj 

'The main loop starts here 
For FileNumber = 1 To 22 

'For speed this might not be wanted, visible=true. Maybe just comment it out after error checking 
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ProcessFile.Application.Visible = True 

' Need to add something about the "enable macro" default value here, ("yes" vs. "no" default) 
' NOTE: IF COMPUTER ASKS FOR ENABLING MACROS WHEN OPENING FILE, CHANGE 
MACRO SECURITY SETTINGS TO LOW, ELIMINATING THIS PROBLEM 
ProcessFile.Windows(PFileName).Visible = True 
OutputFile.Windows(DFileName).Visible = True 

'***** process data here ****** 
'Put which loop number we are currently processing into the processor spreadsheet 
ProcessFile.Application.Cells(15,15).Value = FileNumber 
'call macro to process here 
'ProcessFile.Application.Run '"ProcessorFile mod for eeg process.xls'!Build_File_Macro" 
ProcessFile.Application.RunMacroToRunName 

'****** stop processing data here ****** 
'Saving and closing portion below only' 

OutputFile.CloseSaveChanges:=True 
'ProcessFile.SaveAssavenameprocess 
ProcessFile.CloseSaveChanges:=True 
LastExcelSheet.Application.Quit 

'This is just a pausing statement to allow excel to fully close before being re-opened 
For j = 1 To 500000000 

a = a 
Nextj 

'End of main loop here 
Next FileNumber 

End Sub 

A.2.2. Code for EEG Preprocessing For Placement In Microsoft Excel. This 

code is currently set-up to preprocess one flight of EEG data at a time, and each flight of 

data for preprocessing has its own macro. To accomplish this task easily, copy the macro 

multiple times and only modify the key information following the variable declarations to 

preprocess each different flight. An alternative is to have a separate location on an Excel 

spreadsheet that identifies the header information to process multiple flights of data using 

only one Excel macro. 
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Option Explicit 
Sub FFT_Pilotl_Dayl() 

' FFT_Pilotl_Dayl Macro 
' Macro 11/7/2000 by Capt Jeremy Noel 
i 

Dim Matches As Integer     'The number of matches when re-arranging the cells for processing 
Dim RowNumber As Integer 'The number of the row 
Dim Cell Value As Double 'The value of the cell 
Dim CellValue2 As Variant A modified value of a cell: either a number if positively valued, or '(number) 
(an added appostraphy) if negatively valued 

m i As Double 
mj As Double 
m b As Double ' 
m c As Double ' 
m d As Double ' 
m m As Double 
m n As Double ' 
m o As Double ' 
m DataStart As Double 

' Just a counter 
' Just a counter 
' Just a counter 
' Just a counter 
' Just a counter 
' Just a counter 

' Just a counter 
' Just a counter 

'Location where the data starts to process within each data file 
m DataEnd As Double      'Location where the data ends to process within each data file 
m DataStart2 As Double    'Location where the data starts to process within each data file 
m DataEnd2 As Double      'Location where the data ends to process within each data file 
m VEOGLocation As Integer 'The location of the data column of VEOG 
m HEOGLocation As Integer 'The location of the data column of HEOG 
m ColumnLabels(l To 29) As String 'This array holds the 29 column labels 
in ColumnName(0 To 50) As String "Names for the columns for EEG data 
m BookNameOriginal As String     'This is the original bookname passed into the file 
m DeltaArray(l To 3000) As Double 'Array to hold the processed Delta information 
m ThetaArray(l To 3000) As Double 'Array to hold the processed Delta information 
m AlphaArray(l To 3000) As Double 'Array to hold the processed Delta information 
m BetaArray(l To 3000) As Double 'Array to hold the processed Delta information 
m UBetaArray(l To 3000) As Double 'Array to hold the processed Delta information 

'Holds the average for the varioius frequency bands 
'Holds the average for the varioius frequency bands 
'Holds the average for the varioius frequency bands 
'Holds the average for the varioius frequency bands 
'Holds the average for the varioius frequency bands 

'Holds a part of a range of cells 
'Holds a part of a range of cells 

m myMultiAreaRange As Range       'The combined ranges of cells for deleting 
m NameOfProcessorFile As String  'This is the name of the main processor file 
m CellCheck As Double 'This checks for all eeg nodes 
m MainCounter As Double 'This keeps track of which file is being read for properly spacing the 

different arrays 
Dim Filenumber As Integer ' Current number of file being imported and processed' 
Dim File As String 'File and directory of current file' 

m AverageD As Double 
m AverageT As Double 
m AverageA As Double 
m AverageB As Double 
m AverageU As Double 
m rl As Range 
m r2 As Range 

'**** Because this takes so long to process, keep these in here instead of auto processing ****** 
Dim NumberOfFiles As Integer 
Dim FileName2 As String 
Dim Bookname As String 
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Dim Booknamel(l To 22) As String 
Dim Director As String 
Dim e As Integer 

'******* MODIFY ONLY THESE LINES TO PROCESS PILOT X DAY Y ****** 

'*** This part processes Pilot 1 on Day 1 

FileName2 = "Pilotl_Dayl.xls" 
NameOfProcessorFile = "ProcessorFile for all pilots.xls" 
Director = "C:\Capt Noel Thesis\lb\" 

NumberOfFiles = 22 
Windows(NameOfProcessorFile) Activate 
Sheets("Main Sheet") Activate 
For m = 1 To 22 
' Modify the column number below for the appropriate pilot and day combination 

Booknamel(m) = Cells(19 + m, 13).Value 
Nextm 

'******* NO MODIFICATIONS BELOW THIS POINT ********************* 

' Determine if the data file is large (approx. 180MB) or if there are 22 smaller files 

' *** No need to build this logic in at this point of time ******* 

MainCounter = Cells(14,15). Value 
Filenumber = Cells(15,15).Value 
Bookname = Bookname l(Filenumber) 
File = Director & Bookname 

' Loads file here' 
Workbooks.OpenText FileName:=File, Origin:=xlWindows, StartRow:=l, DataType:=xlDelimited, 

TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, Semicolon:=False, 
Comma:=False, Space:=True, Other:=False, FieldInfo:=Array(Array(l, 1), Array(2,1), Array(3,1)) 

' Determine where the data starts in the data files 
i=l 
While (Cells(i, 26).Value = "") 

i = i + l 
Wend 

- DataStart = i 'This is the first row of the data, but it has labels in this row 

' Determine where the VEOG and HEOG columns lie... they are not to be included as processed data 
Fori=lTo31 

If Cells(DataStart, i).Value = "VEOG" Then 
VEOGLocation = i 

End If 

If Cells(DataStart, i).Value = "HEOG" Then 
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HEOGLocation = i 
End If 

Nexti 

'Copy the data and close the data file without making any changes to it. 
Range(Cells(l, 1), Cells(33000,3 l)).Select 
Selection.Copy 
Windows(NameOfProcessorFile).Activate 
Sheets("Data Sheet").Activate 
Range("Adl").Select 
ActiveSheet.Paste 
' This copy is added only to eliminate a message appearing asking whether or not to keep the copied 

info in the clipboard. 
Range("Adl").Select 
Selection.Copy 
Windows(Bookname).Activate 
ActiveWorkbook.Close 

' Delete these two unnecessary data columns 
Windows(NameOfProcessorFile).Activate 
Sheets("Data Sheet").Activate 
Set rl = Columns(VEOGLocation + 29) 
Set r2 = Columns(HEOGLocation + 29) 
Set myMultiAreaRange = Union(rl, r2) 
myMultiAreaRange.Select 
Selection.Delete Shift:=xlToLeft 

' Build the correct order of columns to create a consistent output file with the same EEG order or nodes 
' This is the correct order for the 29 EEG nodes (no particular reason for this order, but it will be made the 
"correct" order: 
' T8 02 P10 PZ FP1 C3 P03 01  IZ P4 F3 T7 OZ FP2 F8 P9 P3 P8 C5 CZ FZ F4 C6 F7 P7 
FC2 P04 FC1 C4 

- For i = (1) To (29) 
ColumnLabels(i) = Cells(DataStart, i + 29).Value 'start at column 30 

Nexti 

' Now determine which data column goes where... in order, of course! 
' This is just a copy of the list/array from the Build_File macro 
ColumnName(O) = "T8" 
ColumnName(l) = "02" 
ColumnName(2) = "P10" 
ColumnName(3) = "PZ" 
ColumnName(4) = "FP1" 
ColumnName(5) = "C3" 

"" ColumnName(6) = "P03" 
ColumnName(7) = "01" 
ColumnName(8) = "IZ" 
ColumnName(9) = "P4" 
ColumnName(10) = "F3" 
ColumnName(ll) = "T7" 
ColumnName(12) = "OZ" 
ColumnName(13) = "FP2" 
ColumnName(14) = "F8" 
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ColumnName(15" = »po» 
ColumnName(16' _ ptpon 

ColumnName(17) = "P8" 
ColumnName(18^ = "C5" 
ColumnName(19) = "CZ" 
ColumnName(20) = "FZ" 
ColumnName(21' = "p4" 
ColumnName(22' = "C6" 
ColumnName(23' = "p7" 
ColumnName(24 _ iipyn 

ColumnName(25) = "FC2" 
ColumnName(26; = "P04" 
ColumnName(27; = "FC1" 
ColumnName(2 8' = "C4" 

' Now copy and paste the columns into their correct order 
Matches = 0 
While Matches < 29 

For i = 0 To 28 
For j = 1 To 29 

If ColumnLabels(j) = ColumnName(i) Then 
'Copy the column and put it in its proper location 
'The column to select is j 
'The column to put it in is: i + 1 
Range(Cells(l, j + 29), Cells(32000, j + 29)).Select 
Selection.Copy 
Range(Cells(l, i + 1), Cells(32000, i + l)).Select 
ActiveSheet.Paste 
Matches = Matches + 1 

End If 
Nextj 

Next i 
Wend 

' Error check for blank columns here.   If blank set them to 50, which will eliminate an error (type 
mismatch) later in processing 

For n = 1 To 29 
CellCheck = Cells(DataStart + 1, n).Value 
IfCellCheck = OThen 

Foro=l To 32000 
Cells(DataStart + o, n). Value = 50 

Nexto 
End If 

Nextn 

' Now delete (clear) the rest of the data that we no longer need... hopefully speeds up processing 
Range(Cells(l, 30), Cells(32000,60)).Select 
Selection.ClearContents 

' Grab the appropriate cells from the data file 
DataStart = DataStart + 1 
DataEnd = DataStart + 255 
DataStart2 = DataStart 
DataEnd2 = DataEnd 
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For i = 1 To 29        This is the counter for the number of columns to process in each file 
DataStart = DataStart2 
DataEnd = DataEnd2 
For j = 1 To 120       'Each column has 120 seconds in it 

'Select the appropriate cells 
Range(Cells(DataStart, i), Cells(DataEnd, i)).Select 
Selection.Cut 

' Put the values into the FFT processor worksheet in the processor file 
Sheets("FFT").Activate 
Range("A2").Select 
ActiveSheet.Paste 

' Add appostrophies to the any negative values 
For RowNumber = 2 To 257 

CellValue = Cells(RowNumber, l).Value 
If(CellValue<0)Then 

CellValue2 =""' & CellValue 
Else 

CellValue2 = CellValue 
End If 

Cells(RowNumber, 2).Value = CellValue2 

Next RowNumber 
' Clear the old FFT data: eliminates the alert message that would otherwise appear when doing 

another FFT on top of it 
Range(Cells(2, 3), Cells(257, 3)).Select 
Selection.ClearContents 

' Perform FFT on the data 
Application.Run "ATPVBAEN.XLAIFourier", ActiveSheet.Range("$B$2:$B$257"), _ 

ActiveSheet.Range("$C$2"), False, False 

' Stick the results into the respective arrays 
DeltaArrayQ) = Cells(261, 8).Value 
ThetaArray(j) = Cells(261,9).Value 
AlphaArray(j) = Cells(261,10).Value 
BetaArray(j) = Cells(261, ll).Value 
UBetaArrayG) = Cells(261,12).Value 

' Get the variables ready for the next j iteration, and re-activate the data file 
DataStart = DataStart + 256 
DataEnd = DataEnd + 256 
Sheets("Data Sheet").Activate 

Nextj 

'Calculate the 10 second averages. 
Sheets("FFT").Activate 

****** Calculate the odd exemplars first ***** 

d = 0  'This counter keeps track of cell location in the processor file 
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For b = 0 To 11 'This is the number of odd exemplars per 2 minute interval (12) 
For c = 1 To 10 'this is the number of seconds per time window 

AverageD = AverageD + DeltaArray(c + d) 
AverageT = AverageT + ThetaArray(c + d) 
AverageA = AverageA + AlphaArray(c + d) 
AverageB = AverageB + BetaArray(c + d) 
AverageU = AverageU + UBetaArray(c + d) 

Nextc 
'Put the averages into the correct cells in the processor file worksheet 
Cells(265,2 + 2 * b).Value = AverageD /10 
Cells(266,2 + 2 * b).Value = AverageT /10 
Cells(267,2 + 2 * b).Value = AverageA /10 
Cells(268,2 + 2 * b).Value = AverageB /10 
Cells(269,2 + 2 * b).Value = AverageU /10 
d = d + 10 'Increments where in the arrays to find the right data 
AverageD = 0 'These are reset for every b value; we want fresh 10 second interval values 
AverageT = 0 
AverageA = 0 
AverageB = 0 
AverageU = 0 

Nextb 

>***** caicuiate the even exemplars next ***** 

d = 4 'The even windows start at 5 seconds (so when c=l, c + Maincounter2 = 5 seconds) 
For b = 0 To 10 'This is the number of even exemplars per 2 minute interval (11 of them) 

For c = 1 To 10 'this is the number of seconds per time window 
AverageD = AverageD + DeltaArray(c + d) 
AverageT = AverageT + ThetaArray(c + d) 
AverageA = AverageA + AlphaArray(c + d) 
AverageB = AverageB + BetaArray(c + d) 
AverageU = AverageU + UBetaArray(c + d) 

Nextc 
'Put the averages into the correct cells in the worksheet 
Cells(265,3 + 2 * b).Value = AverageD /10 
Cells(266, 3 + 2 * b).Value = AverageT / 10 
Cells(267,3 + 2 * b).Value = AverageA /10 
Cells(268,3 + 2 * b).Value = AverageB / 10 
Cells(269,3 + 2 * b).Value = AverageU /10 
d = d + 10 'Increments where in the arrays to find the right data 
AverageD = 0 'These are reset for every b value; we want fresh 10 second interval values 
AverageT = 0 
AverageA = 0 
AverageB = 0 
AverageU = 0 

Nextb 

' Grab the loglO of these average values from the processor sheet and put them into the processed data 
file 

'First put the processed data into arrays 
For b = 0 To 22 

DeltaArray(b + 1) = Cells(271,2 + b).Value 
ThetaArray(b + 1) = Cells(272,2 + b).Value 
AlphaArray(b + 1) = Cells(273,2 + b).Value 
BetaArray(b + 1) = Cells(274,2 + b).Value 
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UBetaArray(b + 1) = Cells(275,2 + b).Value 
Nextb 

"Now put these arrays into the correct places in the processed data file 

Windows(FileName2).Activate 
For b = 1 To 23 

Cells(2 + (b -1) + MainCounter * 23,11 + (i -1) * 5).Value = DeltaArray(b) 
Cells(2 + (b -1) + MainCounter * 23,12 + (i -1) * 5).Value = ThetaArray(b) 
Cells(2 + (b -1) + MainCounter * 23,13 + (i -1) * 5).Value = AlphaArray(b) 
Cells(2 + (b -1) + MainCounter * 23,14 + (i -1) * 5).Value = BetaArray(b) 
Cells(2 + (b -1) + MainCounter * 23,15 + (i -1) * 5).Value = UBetaArray(b) 

Nextb 

Windows(NameOfProcessorFile).Activate 
Sheets("Data Sheet"). Activate 

Next i 'This loops for the next column of data within the data file 

'Save the processed data file (just in case!) 
Windo ws(Fi leName2) .Activate 
Active Workbook.Save 

'Update the main counter value and filenumber in the main sheet before closing down excel 
Windows(NameOfProcessorFile).Activate 
Sheets("Main Sheet").Activate 
Cells(14,15).Value = MainCounter + 1 

Cells(15,15). Value = Filenumber + 1 
Application.ScreenUpdating = True 

1 Delete the data on the data sheet of the processor file so that it isn't so large 

Sheets("Data Sheet").Activate 
Range(Cells(l, 1), Cells(32000,29)).Select 
Selection.ClearContents 
Sheets("Main Sheet").Activate 
ActiveWorkbook.Save 

End Sub 
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Appendix B. Additional Information For Working WithSNNAP 

B.l. Getting the Weights Out From SNNAP 

1. Go to the Network menu of SNNAP 

2. Click on "Text Save" and give a file name for the weights to be placed into 

3. Go to program like Microsoft Excel and open the file as "Space Delimited" 

4. The first two rows show the structure of the ANN. The first row is the number of 
layers in the network. The second row shows: the number of input nodes, the number 
of middle nodes, and the number of output nodes 

5. Select and delete rows 1 through 14, keeping row 15. (Note: rows 12 through 14 
might mean something to the ANN, but they are not the weights going into or out of 
the hidden nodes.) 

6. The next set of rows and columns are the hidden node weights. The information 
below will help organize them, as well as explain their location. First make sure that 
all of the rows start in the same column. Usually this means "cutting and pasting" 
several rows so that they all start in column 2. Each column represents one input 
node, listed in the order identified from the data set. (Example: "From Input Variable 
X"). Each row represents one hidden node (Example: "To hidden Node Y"). The 
last column of the weights should be deleted. (Note: despite numerous attempts to 
confirm that this column is related to a bias term included in the model structure, the 
attempts have failed. It is possible that somehow it is related.) 

7. At the end of the hidden node weights, look for a "1" all by itself in either column 1 
or column 2. Select this row and the next three rows. Delete all four rows. 

8. The next few rows in the spreadsheet are the output weights, with the number of rows 
varying depending on the number of outputs in the network structure. If there are 
more rows than outputs in the network, the first row of this group should be ignored. 

9. All of the remaining rows in the file can be deleted. 

10. The example output file shown in Table B-l highlights the key items mentioned in 
the steps above. All of the gray areas should be deleted. Extra spaces have been 
added to show the different areas of the output file. 
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Table B-l. Example of Identifying Middle Layer Weights in SNNAP 
number 
middle 
nodes 

3 

number 
output 
nodes 

1 
Number of Layers in Model 3 
Number of Input Nodes 2 

Delete this area 
0 
0 
0 

0 
1 
0 
0 

'■::":**,a-'.-0": 

■■""■siW 

0 

iiO»M7S56821 
5.306-303 

0 
■ 1 

i.0:278348341? 
2.44E+260 

0 
 1 

[Delete this area m51684501:11 foazmsam 
-2500581159? 122S26S693: 

io&tswsss; 
:!Z443;728939,1 

from Inout x node from input vnode Deletethls column 
to hidden node 1 -3.406761144 -0.004843976 -3.281100371 

iHidden node values to hidden node 2 1.564029952 0.02613722t 1.586868154 

to hidden node 3 3.363891095 -0.017006666 3212268311 

Deletethls area 10 

Deletethls column 

I From hidden nodes to output nodey -4.602218596 2176575008 4.528260506 4.756878389;; < 

hidden node 1 to out node hidden node 2 to out node hidden node 3 to out node 

Deletethls: 

-aw-i-iA 
2 
1 

."ftM5TO7i 
-1.103209 
-0.811796 

1 
H%tiV ; ;bl 

:-'':-v  '25:~i 

4.34148 
-2393882 

i 0.276348'! 

B.2. Building the Signal-To-Noise Ratios with the Hidden Layer Weights From SNNAP 

1. First find and isolate the hidden layer weights in the weights output file using the 
process from Part A of this appendix. 

2. Remember that each column of hidden weights represents the relationship of one 
input node to all of the hidden nodes. 

3. Using the SUMSQ function in Excel, square each value in each column and sum the 
columns. Make sure that each column is clearly labeled, including the noise input 
variable column. A good suggestion involves placing column labels above the 
respective columns. 

4. In the next row calculate the incomplete signal-to-noise ratios. This is simply the 
sum total from each input variable column found in Step #3 above divided by the sum 
total from the noise column, also found in Step #3 above. 
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5. In the next row, finish the signal-to-noise ratios by taking the logio of the above ratio 
and multiply the result by 10. This row now represents the signal-to-noise ratios. 

6. At this point one can sort the signal-to-noise ratios from greatest to least, or vice 
versa. Regardless of the sort criteria, we now identify those input variables that are 
more "important" than others by looking at the signal-to-noise ratios, where larger 
values represent more "important" variables than those with smaller values. (Note: if 
one sorts the ratios at this point, first "cut" the data and then select "paste special, 
values". This enables a sort of the values to occur properly.) 

7. An example of this process is shown in Table B-2. Step #8 discusses the example. 

8. From these ratios, one can clearly see that the input variable "interblink" is the most 
significant input variable, with "interbreath" being the least important. The negative 
value of the SNR from "interbreath" indicates that it provides less information than 
the "noise" input variable. This means that "interbreath" is of little help for 
classification and can be dropped from the network with negligible impact. 

B.3. Build A Confusion Matrix Using The Projection Command 

SNNAP has several "bugs" in it that keep one from consistently using a separate 

file as a second validation data set. (SNNAP will cause an error that requires it to be shut 

down.) Possible ways to avoid this error include placing the data files in directories not 

more than 2 levels away from the c:\ root directory, and not using directory names longer 

than 8 characters. Should errors continue to occur, it is often fastest to ignore this 

separate validation data set option. Instead, train the network using only the training and 

test-training options that are set up as defaults when you build a network with SNNAP, 

and then run a "projection" with the separate data set after training the network. With 
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Table B-2. Example of Calculating Signal-to-Noise Ratios 

Original Hidden Node Weights 

bpm        | tirtvar    | blinks     | nterblink  | breath    |interbreath noise 

to hidden node 1 1.228182 

0.44289 

6.945779 

-0.13592 

-0.242743 

-1.088486 

-8.182255 

0.765886 

-0.344955 

2.58347 
-0.537035 

1.956048 
-3.074462 

-5.813756 

0.406276 

0.714273 

-0.197278 

-0.372884 

-1.312679 

-5.931768 

2.452297 

4.731014 
-2.961659 

-0.086306 

0.652472 
5.481898 

0.110445 

-0.543087 
-0.150824 

-4.66408 0.873662 

-0.88165 -1.59677 

-7.15632 4.203261 
-0.25499 -0.07266 

-0.18252 0.57865 

1.741637 -7.30336 

1.311842 4.565304 

-0.69689 0.918963 

-1.66559 0.293987 

-2.50951 -4.98877 

-1.61175 0.457642 

-6.18525 -5.02061 

2.910491 2.185458 

-5.06899 -1.78737 

-0.73725 -1.27231 

-1.36032 -2.60155 

-0.31445   0.158358 

-1.4776 0.400758 

-2.74164 -6.5734 

1.509958   3.888034 
1.03936 1.013676 

-0.20389 -4.58325 

3.280136 8.136055 
-0.24167   0.100493 

-1.4347 -2.76032 

1.598198 -0.33567 

-O.43607 -0.61845 
-1.18985 0.218928 
-0.25705     0.16413 

-0.5890601 

-2.6500522 

-3.3273452 

-1.0541176 

-0.6447437 

-3.9605374 

-3.0484271 

-1.0542315 

0.03797538 

-2.0563215 
-0.0166564 

-9.7290162 
-4.3110999 

-17.851689 

-2.2929607 

-3.2294989 

-0.433888 

-0.289906 

-14.696181 

-5.5369369 

0.77617153 

-4.7626373 

-1.6451507 

-0.7876493 

-3.5612125 
0.23240459 

-1.8597694 
-0.0089165 

-0.6344681 

-1.98919 -1.91096867 
1.344144 0.037204876 

-1.56593 3.131863355 

0.172265 -0.68911343 

0.285281 -0.35842223 

3.9593 -0.49591274 

-0.51907 -1.08875646 

-1.18348 0.489961823 
-1.38783 -1.20124922 

3.188603 2.221960279 

-1.54997 -1.13726906 

-3.90286 0.950555856 
2.079584 0.749845554 

-2.62473   -3.49420204 

1.19505 -0.02816358 

1.826056 0.361938384 

-0.07826     -0.8389498 

-1.9721 -0.71053436 

-1.12337 -3.30825064 

-3.94712 -3.34798413 

5.735868 0.692736126 

3.519942 4.523428012 

-4.51668 -4.28997996 

0.260308 -0.57004067 

1.920864 0.349636858 

3.556493   -1.60769427 

0.72694 -0.35750469 

-0.97949 -1.16975391 
0.085096   -0.72135071 

-0.72471 

0.366523 

0.395718 
-0.21842 

0.050174 

3.528583 

0.317501 

-0.31332 
-12274 

1.288096 

-1.4846 
0.919123 

7-2.81503 

1039999 

[0,261513 

0,730456 

-0.31659 

-2.08259 

-5.85071 

-522659 
-3.45713 

0.654364 
0.452325 
-0.13948 

0:794226 

0,98622 

0^043856 

-1,30579 
-0.21748 

to hidden node 2 
to hidden node 3 
to hidden node 4 

to hidden node 5 

to hidden node 6 

to hidden node 7 
to hidden node 8 
to hidden node 9 
to hidden node 10 
to hidden node 11 

to hidden node 12 
to hidden node 13 
to hidden node 14 
to hidden node 15 
to hidden node 16 

to hidden node 17 
to hidden node 18 

to hidden node 19 
to hidden node 20 
to hidden node 21 
to hidden node 22 
to hidden node 23 
to hidden node 24 

to hidden node 25 
to hidden node 26 
to hidden node 27 
to hidden node 28 
to hidden node 29 
Sum of Squares Values 278.6506 195.8714  318.0347 788.015053 175.7062   104.9728154 111.2859 

Input Variables bpm hrtvar blinks i nterblink breath interbreath 

Ratios 2.503916 1760073 2.857816 7.08099395 1578871 0.943271157 

SNR: 10*log(ratio) 3.986197 2.455308 4.560342 8.50094223 1.983467 -0.25363445 

this "projection" output, one can then quickly build a confusion matrix to see the desired 

results. 

The construction of the confusion matrix is relatively easy. "If-then" logic 

statements will need to be added to the output file using a spreadsheet program like 

Microsoft Excel. These statements will need to split the results into 4 columns based on 

prediction versus actual values. Section 4-2 addresses the confusion matrix and includes 

an equation that will need to be placed at the bottom of the columns, after they are 

summed, to complete the development of the confusion matrix. 
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Appendix C. Factor Loadings for Factor 2 Physiological Features 

The letter "A" indicates the results when using the data set for Pilot 1 on day 1; 

"B" indicates Pilot 1 on day 2; "X" indicates Pilot 4 on day 1; "Y" indicates Pilot 4 on 

day 2; "1" indicates Pilot 1 over both days of data; and "4" indicates Pilot 4 over both 

days of data. 

Table C-1.    Factor Loadings for Factor 2 Physiological Features 
Feature Data Set Loading 
Blinks A 0.475 

1 0.492 
BPM B 0.435 

Breaths Y -0.483 
Heart Variability B -0.430 

Interblink A -0.492 
1 -0.476 

Interbreath B 0.487 
Y -0.404 
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Appendix D. Ocular and Cardiac Feature Graphs For Pilots 1 and 4 on Days 1 and 2 

Ocular and Cardiac Features for Pilot 1 on Day 1 

T-cowr^oocNi^-cocoOT-coior^coocN^-eor^OT-coiocpcpo 
T-T-T-T-r-v-CMCMCgCMCMCOCOCO"      —     — 

Observation Number 
nnn**'»*f«i 

—High_Workload —Blinks -— Hrt_Var -*-lnter_Blink — BPM 

Figure D-l. Ocular and Cardiac Features for Pilot 1 on Day 1 

Ocular and Cardiac Features for Pilot 1 on Day 2 

C4''i-(OCOOCM'<a'<DCOOCMM-a>COOCvj'^-CDCOgC\l3<DCOO 

Observation Number 

■ High_Workload —Blinks -~Hrt_Var -*-lnter_Blink —BPM 

Figure D-2. Ocular and Cardiac Features for Pilot 1 on Day 2 
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Ocular and Cardiac Features for Pilot 4 on Day 1 

T*mw*iwwm?:-mmmm*im^F. 
MMMMMWMNM4«I MMtfaftflM« 
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Observation Number 

 HighJAforkload —Blinks -—Hrt_Var -*-lnter_Blink --BPM 

Figure D-3. Ocular and Cardiac Features for Pilot 4 on Day 1 

Ocular and Cardiac Features for Pilot 4 on Day 2 
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Figure D-4. Ocular and Cardiac Features for Pilot 4 on Day 2 
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Appendix E. Individual Calibration Scheme To Baseline Comparisons 

The information tables for Table E-l and E-2 are shown in Tables 5-2 and 5-7, 

respectively. 

Table E-l. Baseline CA and Variance Results By Data Set 
Projection Data Set 

Pilot 1, Day 1 Pilot 1, Day 2 Pilot 4, Day 1 Pilot 4, Day 2 

Training 
Data 
Set 

Pilot 1, Day 1 t-'i.&.i'M CA = 63.24% CA = 47.43% CA = 66.80% 
$,■.-■■. <-y* ■■■''':r. 

Pilot 1, Day 2 
■HI^^^H 
CA = 64.43%      |£| ? i?'4::.'''?.' >':~ ': CA = 48.22% CA = 72.92% 

Pilot 4, Day 1 
SwfllilaBfSPifS 

CA = 59.09% CA = 59.09% CA = 60.87% 

™-   T-i*:.- ■■' ■;      i .. 

Pilot 4, Day 2 
SV '... V..'Vrf-.'VAvX 

CA = 60.87% CA = 61.86% CA = 53.16% 

B*.':'-<JW!.->. 

Average CA Value 59.83% 
CA Variance 53.92 

Table E-2. Calibration Scheme CA and Variance Results By Data Set 

Projection Data Set 
Pilot 1, Day 1 Pilot 1, Day 2 Pilot 4, Day 1 Pilot 4, Day 2 

Training 
Data 
Set 

Pilot 1, Day 1 
WttWl 
WtäSÜrrt CA = 69.76% CA = 73.72% CA = 71.34% 

■■HIN 
Pilot 1, Day 2 

^\;;^&fk&;: 
CA = 69.57% ^ .;.,"*'•-■>/**,>*>. CA = 68.77% CA = 69.57% 

fBMBS&BBR 

Pilot 4, Day 1 
■NlilMPraai 

CA = 71.54% CA = 71.15% ^^^tep CA = 72.33% 

Pilot 4, Day 2 CA = 75.69% CA = 75.69% CA = 75.10%      W$MliiZ<<W& 

Average CA Value 72.02% 
CA Variance 6.23 
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