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Abstract 

Reconnaissance missions and satellites collect hundreds of images loaded with 

valuable information to be utilized by the Air Force. Intelligence operations must 

analyze these images to extract the information needed to help commanders make 

important decisions. No matter how obtained, images of this type are often degraded by 

noise due to disruptions such as atmospheric disturbances, optical system variations, 

motion, and large distance from the sensor to the source. This noise must be removed 

effectively to improve the quality of these images and ensure that the information 

contained in them can be correctly extracted. The Air Force relies on the critical 

information contained in these images and therefore effective noise removal is critical. 

Limitations in current image restoration techniques cause visually disturbing 

effects in reconstructed images. Therefore, a more effective algorithm for noise removal 

is required. This thesis will explore the use of redundant wavelet-based multiresolution 

image processing and a priori information to enhance current image restoration 

techniques. Often on an airplane, tank or other military vehicle or building there may be 

a known symbol, which can be used as perfect a priori information to restore the entire 

image. An adaptive redundant discrete wavelet transform will be trained using this a 

priori information. Constant and adaptive thresholds are used on the noisy image while 

in the wavelet domain. The quality of the reconstructed image is improved over non- 

adaptive techniques. 

XI 



REDUNDANT WAVELET-BASED IMAGE RESTORATION 

USING A PRIORI INFORMATION 

I. Introduction 

1.1      Background 

Reconnaissance missions and satellites collect hundreds of images loaded with 

valuable information to be utilized by the Air Force. Intelligence operations must 

analyze these images to extract the information needed to help commanders make 

important decisions. No matter how obtained, images of this type are often degraded by 

noise due to disruptions such as atmospheric disturbances, optical system variations, 

motion, and large distance from the sensor to the source. This noise must be removed 

effectively to improve the quality of these images and ensure that the information 

contained in them can be correctly extracted. The Air Force relies on the critical 

information contained in these images and therefore effective noise removal is critical. 

1.2      Problem 

Image restoration attempts to recover an image which has been degraded. This 

thesis will explore the use of redundant wavelet-based multiresolution image processing 

and a priori information to enhance current image restoration techniques. Perfect a priori 

information about an object in an image will be assumed. Often on an airplane, tank or 

other military vehicle or building there may be a known symbol, which can be used as 



perfect a priori information to restore the entire image. An adaptive redundant discrete 

wavelet transform will be trained using this a priori information. Then the new adapted 

wavelet will be used to transform an image in which the object should appear. Wavelets 

will be used because they have proven useful in many signal and image processing 

techniques. Wavelet decompositions provide efficient representations for a wide range of 

signals. While in the wavelet domain, the soft or hard-threshold techniques [2] will be 

used to remove noise. Then the image is transformed back into the image space and the 

area of the image containing the object of interest should be improved. A successful 

algorithm accomplishing improved restoration of an image, which contains the training 

object, could be of great value to the Air Force in image analysis operations. 

1.3      Summary of Current Knowledge 

Many techniques for image restoration have been developed and studied 

extensively. Even with these many image restoration techniques available, research 

continues in this area due to limitations with each of these techniques. Many of these 

limitations cause restored imagery to have visually disturbing effects. 

For example, many techniques degrade edges. Edges in an image provide 

important object definition but are difficult to deal with in image restoration because of 

their high frequency content. The corruption of high frequencies causes blurring at these 

edge locations in an image. Another problem occurring at the location of edges is the 

Gibbs phenomenon, an interchange of overshooting and undershooting a target level. 

This phenomenon  is  associated with  many current signal  and  image processing 
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techniques. Thus, researchers continually attempt to develop improved image restoration 

techniques. 

One way researchers work to solve these problems is with adaptive wavelet 

transforms. Adaptive transforms use some or all of the transform parameters to adapt to 

the signal, typically to minimize some error criterion. The lifting construction [9, 10, 11] 

developed to implement the wavelet multiresolution transform provides an easy way to 

introduce adaptivity using prediction error energy as a metric. Adaptable wavelet 

transforms have been developed using the lifting construction [6] and show promise in 

the search for high quality image restoration. 

A different approach to image restoration was used in [3] by using a priori 

information about an image. Perfect knowledge of a portion of the image was assumed 

and was used to help remove noise from the entire image in the Fourier transform 

domain. That research showed that repeated use of this information to restore the image 

using a Fourier transform technique improved the degraded image in only the opposite 

quadrant of the perfect information. Other quadrants in the image experienced minimal 

improvement. To achieve these results, the perfect information had to be repeatedly 

placed into the image and then the algorithm was run to reduce noise. The noise 

reduction outside the area of perfect knowledge depends upon the noise correlation 

properties [3]. For this technique, 25% of the image needs to be perfectly known and 

often knowing this much a priori information about the image is unrealistic. 



1.4       Assumptions 

In this thesis, perfect knowledge of an object in a digital image will be known. 

Also the relative size and rotation of this object in the image must be known. This 

information is necessary for development at this stage due to the fact that the transforms 

used will not be scale or rotation invariant. However, due to the shift invariant nature of 

the proposed algorithms, the relative position of the object can freely vary. Images will 

be degraded with additive Gaussian zero mean white noise. No multiplicative noise will 

be introduced into the image model. 

1.5      Scope 

The research will begin by having complete knowledge of an object in an image. 

The orientation, size and intensity of the object will be known. The adaptive wavelet 

transform will be trained using this information; this transform will then be used for 

image restoration. Comparisons will be made between these images using soft-threshold 

noise removal and hard-threshold noise removal [2]. Non-adaptive techniques will be 

run so that comparisons may be made. The transforms used will be shift-invariant so that 

knowledge of the location will not be necessary; this redundancy will also reduce the 

pseudo-Gibbs phenomenon associated with the non-redundant discrete wavelet 

transform-based restoration techniques. 



1.6      Standards 

Images will be evaluated using mean square error and L°° error criteria between 

the original image before noise is added and the image after noise removal. This 

evaluation will be done for the entire image and also locally on the object of interest. 

More importantly, the visual appearance of the images will be compared to other image 

restoration techniques to determine which is more appealing. 

1.7      Approach 

The multiresolution transforms via lifting developed by Claypoole [6] will be 

modified to complete this research. The transforms will be trained using the known 

information of a local area or object. Then, the trained transforms will be used to process 

an entire image containing the training information with degradations. All simulations 

will be performed in MATLAB®. 

-5- 



II.     Background 

In its most general form, image restoration is any technique to recover an image 

that has been degraded. Whether captured by camera, x-ray, or other optical systems, 

images are typically degraded by various phenomena. Movement of the camera or other 

external disruptions can cause blur in a photographic image, which is visually disturbing. 

In digital imaging, other forms of interference degrade the image. In the transmission of 

a digital image, interference and thermal noise can cause degradation throughout the 

image. This noise in an image is purely an artifact of the image process; one goal of 

image restoration is to remove that noise. 

Wavelets have become an important tool for many image-processing techniques. 

They provide an efficient representation for a broad range of signals. In addition to this 

parsimonious representation, they provide spatial and frequency localization, which helps 

to reduce the Gibbs phenomenon to only a local effect hence referred to as pseudo-Gibbs 

phenomenon [5]. The lifting approach to wavelets provides an easy implementation and 

a way to introduce adaptivity. Redundancy provides a better representation by allowing 

for any shift in the data while averaging out most of the pseudo-Gibbs phenomenon and 

other restoration artifacts. This thesis will explore the use of these redundant and 

adaptive multiresolution image-processing techniques and a priori information to enhance 

current image restoration processing techniques. 
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2.1      Wavelets 

Many techniques for image restoration have been developed and studied 

extensively. Effective algorithms for removing degradation exist in the frequency 

domain. Mathematical models for image restoration are also available. More recently, 

wavelet-based image restoration techniques have proven to be very effective. The 

wavelet decomposition is useful because signal information is contained in a few 

coefficients. Another valuable feature of the wavelet decomposition is the fact that the 

coefficients simultaneously provide information on time/location and frequency. 

Wavelet techniques preserve smooth areas, polynomials and even piecewise polynomials 

very well but have trouble maintaining clear, sharp edges. 

The successive projection of a function / into smaller orthogonal subspaces is a 

primary focus of wavelet multiresolution analysis. Shifts and dilations of a low-pass 

scaling function <p{t) and a band pass wavelet function y/{t) form the smaller subspaces. 

Presented below is a derivation of the multiresolution analysis for orthogonal wavelets. 

Let {Fm}m£2 be a sequence of nested subspaces in £2(Z) and 

Vm a Vm -1 V m e Z is required. Now let/be a function in the subspace Vm_i for some 

m. The function / e Vm.j is projected into the nested subspace Vm <z Vm.j by a 

projection operator Pm. This projection operator Pm eliminates the part off which is not 

in Vm , while the portion of / in Vm remains undisturbed. The orthogonal projection 

operator, Qm = I - Pm, projects the function/into the subspace Wm a Vm.j. Here, I is the 

identity operator. Qm and Pm are orthogonal; therefore, PmQm - QmPm = 0. 



Let {Wm)mez be another sequence of nested subspaces where 

WmCzWm-t Vm e Z. Let the span of Vm u Wm= Vm_i and let Vm and Wm be orthogonal 

subspaces (i.e., Vm-\ = Vm®Wm and VmnWm = 0). 

Let the set of scaling functions {^m,/}/6 z be an orthonormal basis for Vm and let 

the set of wavelet functions {y/m,i}ie z be an orthonormal basis for Wm.  Vm c Vm.i, and 

therefore, 0m, i can be expanded in terms of 0m-\,k as: 

0m, /(JC) = ^jT Cm - l(£)0m - 1, /t(x). (2.1) 
k 

Take the inner product of <j)m,i with the basis function 0m-\,k to determine the 

value of the coefficient cm.ij(k) as follows: 

(<ftm, l,0m-l,k)=   ftp!», l{x)<pm - 1, k(x)dx. (2.2) 

If hi,k = (<pm, 1,0m- \,k), then the new expansion of (j)m,i becomes: 

<f)m, l(x) =/hm- 1, k(/>m - 1, *(x). (2.3) 

Now to form an orthogonal wavelet transform, the set of functions 0m, r must 

satisfy Equation (2.3) for all m. For a discrete wavelet transform, each 0m,i must be 

created from integer shifts and dyadic dilations (/ and 2m, respectively) of the scaling 

function 0{x). Therefore, Equation (2.3) can be written as: 

0{x-l) = YJh{k-2l)0{2x-k). (2.4) 
k 

Let g(k - 21) - (i//m, i, 0m -1,k) and the wavelet equation can be written as: 

Hx-l) = YJg(k-2l)0(2x-k). (2.5) 



Together, Equations (2.4) and (2.5) create the wavelet recursion relations [8]. 

The function/can be completely described as a linear combination of the basis 

functions in the subspace Vm.i. The projection of/into the subspace Vm can be described 

in terms of the basis functions for Vm. In a similar way, the projection of/ into the 

subspace Wm can be described in terms of the basis functions for Wm. These projections 

are: 

[/>»/] (x) = ]>]cm,/^m,/(x), 

[Q»f](x) = J^dm,iyfmj(x), 
i 

where cm, i = (Pmf, <pm, i) and dm, i = {Qmf, y/m, /). The function/can be written as 

f = Pmf + Qmf (2.6) 

because P + Q = l. Any given decomposition coefficient in Vm can be written as: 

Cm, 1 = (Pmf, 0m, /) 

= {{f-Q4)^>) 
= {f,0m,l)-(Qmf,0m,l} 

Expand/ in terms of the basis functions in Vm.i and substitute the results into Equation 

(2.7) yielding 

Cm,l = ( ( / \ Cm - 1, k(j)m -],k),0m,I ) 

= 2_j Cm - 1, k (^>m -],k, <f)m, ij. 
k 

Expressing/in terms of the basis functions for Wm.j leads to: 

dm, l = 2_j Cm -Uk\0">- 1, *j Wm- ')• 

-9- 



The inner products are independent of the current decomposition level for the 

discrete wavelet transform. Therefore, 

i,fa-i,k) = h(k-2l), (2.8) '«,', 

(ym.r,fa-i,k) = g(k-2I). (2.9) 

The coefficients of the projection of/into Vm and Wm are given by the following: 

G»,/ = £cm-i,*Ä(ifc-2/), (2.10) 

flfm, / = ^ Cm - I, kg(k - 21). (2.11) 

The coefficients cm.i,n off are the starting point of our decomposition, and this leads to a 

filter bank implementation of the discrete wavelet transform [8]. As seen in Equation 

2.10 above, the coefficients cmj are found by convolving the coefficients cm.j_„ with h, 

and decimating the result by 2. The detail coefficients dm,i are found in similar fashion 

for the filter g. These equations (2.10 and 2.11), along with similar constructions for the 

synthesis filters, lead to the filterbank implementation of the discrete wavelet transform, 

shown in Figure 2.1. 

x[n] l-l -M 
cinj 

-f2- 
0^ 

h 

-*2 
d[n] 

-\2- n    1 

A 
r  fc vrnl a 9 p  xLnJ 

Figure 2.1:      Filterbank Implementation of Discrete Wavelet Transform 
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After determining cmj and dmj , the function / can be decomposed onto the 

orthogonal subspaces of Vm, i.e., Vm+i and Wm+!. The subspaces of Vm can be 

decomposed using the same formulas because the filters h and g are independent of the 

decomposition level m and lead to a recursive decomposition. The discrete wavelet 

transform consists of a set of scaling coefficients cm[n], which represent coarse signal 

information at some lowest scale m = M, and a set of wavelet coefficients dm[n], which 

represent detail signal information at scales   m- l,2,...,M. 

2.2       Denoising 

Denoising is an important concept for image restoration; basically, it is any 

method used to remove noise from an image. It has been approached in many ways using 

many different techniques. Denoising methods in the Fourier transform domain and in 

the wavelet domain will be discussed but only the latter will be employed in this thesis. 

Although all denoising methods require some a priori information about the statistics of 

the noise, denoising methods using a priori image information will also be reviewed. 

The process of restoring digital images is often approached with some a priori 

knowledge about the cause of the degradation, typically the statistics of the noise. In 

many restoration techniques, the degradation is modeled using this knowledge and then 

the model is used in a way to reverse the effects of the degradation. Many techniques to 

restore digital images using this kind of information have been studied based on 

frequency domain concepts [1]. These techniques typically involve some form of 

lowpass or adaptive filtering in the frequency domain. More direct mathematical 

approaches have also been studied. Mathematical approaches fit the data in a least mean- 

-11 



squares sense but also require some degree of smoothness. In the mathematical 

approaches, the types of a priori knowledge used in image restoration techniques vary 

between equality and inequality constraints. The constraints contain information on the 

cause of the degradation in the image. For example, the probability distribution for the 

noise throughout the image could be known. This image could then be denoised using a 

form of low-pass filter in the Fourier transform domain or by using thresholding in the 

wavelet transform domain [2]. The soft-threshold in the wavelet domain provides a 

smoothness class in the restored image equivalent to or less than the smoothness class 

held by the original image while maintaining close to a minimum in least squares fitting 

to the original image. Knowledge about the degradation in an image (in this case, the 

statistics of the noise) has been effectively used as a priori information to help restore the 

image [2]. 

A different approach to image restoration using a priori information involves 

specific knowledge about the image itself instead of the degradation. Using this 

technique requires knowledge about the image before the effects of degradation have 

been introduced. A procedure in the Fourier transform domain using this type of a priori 

information was developed in [3] and showed some improved performance. That 

procedure requires full knowledge of one quarter of the image without degradation; this 

is not always practical. However, the concept in general is valid; information about the 

image should be a valuable tool for image restoration. 

Recently, the wavelet transform has shown great success in reducing the noise in 

images [2, 4]. A reconstruction method for an unknown function / on [0,1] with additive 

noise was proposed with excellent results [2].    The method operates on the noisy 

12- 



measured data df = f(ti) + zh where i = 0 , ... , n - 1, /,• = //», and z, ~ #(0,1). The </,- 

are transformed into the wavelet domain, and the resulting wavelet coefficients are 

translated towards zero by the threshold amount (2*log(«))1/2*a/(«)1/2 to form the 

reconstruction, f%. The reconstruction, ft, proved to be as smooth as / with high 

probability in many smoothness measures. The estimator of the function obtained from 

the data fits the unknown function almost as close in the mean square sense as any 

estimator could fit. These results show how effective soft-thresholding is for noise 

removal. This is a soft-threshold because coefficients with an absolute value at or below 

the threshold are set to zero and coefficients with an absolute value greater than the 

threshold are reduced by the amount of the threshold. Hard-thresholding is also available 

in wavelet denoising. The hard-threshold is similar to a soft-threshold with the difference 

being that coefficients with an absolute value greater than the threshold are not modified. 

However, hard-thresholding typically induces a greater Gibbs phenomenon than soft- 

thresholding and the reconstruction ft will not be as smooth. Approached from a 

mathematics standpoint, thresholding yields the best estimate [4]. 

Even with many image restoration techniques available, research continues in this 

area due to problems with each of these techniques. Edges in an image provide important 

object definition but are difficult to deal with in image restoration because they cause 

discontinuities. Many image restoration techniques do not maintain the very important 

(visually significant) edges of an image. Low pass filters in the Fourier transform 

domain remove noise but also cause sharp edges to blur. The Gibbs phenomenon, an 

interchange of overshooting and undershooting a target level, occurs globally in Fourier- 

based de-noising.  The pseudo-Gibbs phenomenon appears only locally in wavelet-based 
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de-noising [5]. Whether global or local, the Gibbs phenomenon causes undesirable visual 

artifacts in the area of discontinuities after de-noising in the Fourier domain or the 

wavelet domain. Thus, researchers continually attempt to improve image restoration 

techniques. 

2.3      Redundant Wavelets and Denoising 

Coifman and Donoho developed a successful technique to weaken the pseudo- 

Gibbs phenomenon in the wavelet domain [5]. "Cycle spinning" by Coifman "averages 

out" the translation dependence in the wavelet basis and suppresses the undesired 

artifacts. In this technique, the wavelet basis functions can be set to shift a limited 

number of times or set to shift over the full scale of the signal, making the transform 

"Fully Translation-Invariant." Either of these techniques works well with both hard- 

thresholding and soft-thresholding in the wavelet domain although typically hard 

thresholding is used. In most cases, the "Fully Translation-Invariant" system gives the 

best results in terms of mean-squared error over "cycle spinning" with a limited number 

of shifts, although both improve performance over non-redundant denoising. A 

redundant undecimated wavelet transform is also an effective technique for improving 

image restoration. For images, the wavelet transform is implemented in a separable 

fashion, i.e., the 1-D wavelet transform is performed on the rows and then the columns. 

Thus, for images the redundant transform performs the wavelet transform for the image 

with no shifts, one column shift, one row shift and one of each. This technique repeats at 

each iteration so the transform becomes very large quickly (growing as a factor of 4 , 
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where L is the number of iterations).  Most this information is more than is needed for 

reconstruction and can therefore be used to improve restoration. 

2.4 Other Wavelet-Based Techniques 

Other image processing techniques have been developed focusing on the 

preservation of edges. In an attempt to preserve edges, Beige et. al. used wavelet domain 

image restoration and adaptive edge-preserving regularization [7]. The distribution of 

wavelet coefficients for many images is similar to that of a Gaussian density distribution 

but the tails are much heavier due to edges. This knowledge of the distribution for 

wavelet coefficients in an image is used to ensure preservation of the important edges in 

images. The edge-preserving image restoration techniques provide methods to remove 

noise and degradation while maintaining clear edges, but these methods do have 

problems in the smooth regions of an image. This technique is an example of an adaptive 

denoising algorithm. 

2.5 Adaptive Wavelet Transforms Via Lifting 

The lifting scheme [6] offers a simple implementation to perform the wavelet 

transform and easily allows for perfect reconstruction back to the spatial domain. The 

lifting scheme breaks the wavelet transform into a prediction and an update step. Any 

linear, non-linear, or space-varying function may be used to perform the predict and 

update. The transform that results is always invertible due to the lifting construction. In 

the linear prediction step, neighbors of a certain point are used to predict that point. The 

errors in the prediction create the detail coefficients of the wavelet transform.   The 
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prediction can be performed using one point or several points. These points suppress 

polynomials up to the order of the number of points used for prediction. The update step 

uses the detail coefficients in the same manner to update a point and create a coarse 

coefficient of the wavelet transform. This procedure to perform the wavelet transform is 

simple, logical and flexible, and will be described in more detail in Chapter 3. 

Lifting allows for spatially adaptive and scale adaptive transforms [6]. The 

adaptive transforms match the characteristics of a signal using the data-based prediction 

measures of the lifting scheme. For the scale-adaptive transform (ScAT), several points 

are used for prediction but not all these points are used to suppress the polynomials as in 

the usual lifting scheme. These extra degrees of freedom are used to adapt to the signal. 

This adaptation is completed at each scale to minimize the spatially averaged squared 

prediction error. This adaptive predictor effectively zeros out the dominant signal 

structure at each scale. The variations from this signal structure are then represented by 

the detail coefficients of the wavelet transform. The space-adaptive transform (SpAT) 

changes the wavelet basis function at each point and scale. Lifting allows the predictor to 

change instantaneously with the signal. In this adaptive algorithm, the predictor is 

chosen to minimize the detail coefficient of the wavelet transform, which is the error in 

the prediction. Therefore, the number of points used for prediction in the space-adaptive 

transform changes from point to point and scale to scale. The adaptive transforms 

perform almost as well or even superior to the common wavelets for denoising. Again, 

the available image restoration techniques are improved upon with various algorithms. 

This thesis will concentrate on the ScAT. 

16- 



2.6      Summary 

Research shows many techniques available for image restoration and image de- 

noising. Certain factors in the Fourier and wavelet domains still cause problems, which 

are visually undesirable. Various methods improve some of these effects. "Cycle 

spinning" developed by Coifman provides great improvement over artifacts caused by the 

pseudo-Gibbs phenomenon in the wavelet domain [5]. The adaptive transforms 

developed by Claypoole using the lifting technique can improve on wavelet denoising via 

thresholding [6]. The use of a priori knowledge can also improve the denoising 

performance. This thesis research will combine wavelets, adaptivity, redundancy, and 

the use of a priori information. The scale adaptive wavelet transform will be modified to 

use redundancy, then trained on a known object within an image. This newly adapted 

transform will then transform the entire degraded image into the wavelet domain where a 

de-noising threshold will be applied. The inverse transform should yield improvement in 

the area where the known object is located. A successful algorithm of this type would be 

desirable in many applications, particularly pattern recognition. When looking for a 

target in pattern recognition, an algorithm such as this could be run on an image before 

attempting to locate the target so that the properties of the target would be enhanced, 

making the target easier to identify by the pattern recognition system. This is just one 

example of how this type of locally adaptive algorithm could be very useful in image 

restoration and image processing in general. Variations of the adaptive and redundant 

wavelet transforms have great potential in enhancing the techniques of image restoration. 
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III.    Methodology 

As described in Chapter II, Wavelet transforms compress most signals into a few 

large coefficients that contain information on both time and frequency. The lifting 

approach [9, 10, 11] to wavelets will be helpful in this research, providing a structure to 

easily incorporate adaptivity into the wavelet transform. The lifting interpretation views 

the wavelet transform as a prediction-error decomposition. The lifting scheme provides 

easy implementation and a way to introduce adaptivity. Redundancy will also be 

implemented to reduce the psuedo-Gibbs phenomenon. Adaptive transforms will be 

utilized so that a set of best predictors can be found for a given image; a priori 

information containing perfect knowledge of part of the image or an object in the image 

will be used to train the adaptive transform. 

3.1       Lifting 

The lifting process is reviewed here. The lifting process is performed in three 

major steps: the split, predict, and update, which are described below. 

Split: The original data is separated into two subsets.  Any disjoint split of the 

data can be made but the usual split in the lifting scheme is the division into even and odd 

data points. For the one-dimensional data set x[n], the even set would be xe[n] = x[2n] 

and the odd x0[n] = x[2n+\]. Clearly, the output of the split is time-varying. 
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Predict: The error in predicting x0[n] from xe[n] creates the wavelet coefficients 

d[n] using the prediction operator P: 

d[n] = Xo[n]-P(xe[n]). (3.1) 

Update: The update step forms a coarse approximation to the original signal x[n] 

in the scaling coefficients c[n].   They are formed by combining xe[n] and the update 

operator U applied to the wavelet coefficients, d[ri\: 

c[n] = Xe[n] + U(d[n]). (3.2) 

Multiple iterations of the lifting process are accomplished by repeating these steps 

on the scaling coefficients, c[n] to create a complete set of scaling and wavelet 

coefficients. At each iteration, the scaling and wavelet coefficients can be weighted to 

normalize the energy of the underlying wavelet functions. 

Inversion of the lifting steps is easily accomplished, regardless of the condition of 

P and U, by rearranging Equations (3.1) and (3.2). The forward and inverse lifting 

transforms use the same P and U to perfectly reconstruct the transformed signal. The 

forward and inverse lifting stages are shown in Figures (3.1) and (3.2) respectively. Note 

that these figures depict the optional 4th step, the weighting of the wavelet and scaling 

coefficients with k<. and k0, respectively. 
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Figure 3.1:      Forward Lifting Stage. 
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Figure 3.2:      Inverse Lifting Stage. 

In the standard (linear) lifting scheme, an N-point predictor design is found using 

the desired predictor's z-transform. For a 4-point predictor, the z-transform is 

P(z) =p\zA +P2+P3Z +P4Z2. An illustration to create the wavelet coefficient d[n] from 
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xe[n], x0[n], and P is shown in Figure 3.3. By tracking the effect of P up through the 

tree, an equivalent prediction vector g can be determined. The prediction vector g would 

be applied to the original data, x[ri]. In this case, g = [-p\, 0, -p2, 1, -pi, 0, -pi\ . 

Placing zeros in the locations corresponding to odd data points except for the center one 

accounts for the split step and allows the vector g to be applied to the original data. 

x[0]  x[1]  x[2]  x[3] x[4]  x[5]  x[6] 

1    1    i     1 i     i    i 
Xe[0]  Xo[0]  Xe[1]  Xo[1] Xe[2]  X0[2]  Xe[3] 

-P2 \  1  I /  PS 

"Pi    "Si.      \   1 /      *S              P4 

Figure 3.3:      Prediction Design. 

Now for the N-point predictor, an Nx2N-l Vandermonde matrix V is formed. 

The entries of the Vandermonde matrix [V]*,„ = (n-lf, where n - 1,2,...,2N-1 and k = 

0,1,...,N-l and /=N if a balanced filter is desired. Otherwise / is the number from 1 to 

2N-1 that causes the column, where n-l = 0, to correspond to the 1 in g. All even 

columns are deleted to create a new matrix V°. Vg must equal zero so that all low-order 

polynomials are suppressed by the predictor and thus V°p = [1 0...0]7. Now, p can easily 

be found by solving this set of linear equations. 
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The update filter uses an even data point and N of the wavelet coefficients to 

create a coarse coefficient. It is not necessary for N to equal the number of prediction 

coefficients, N. The prediction coefficients are necessary to find the update filter in the 

normal lifting scheme. Again, the z-transform, U(z) = u\z2 + u2z
A + «3 + u&, is used 

to find the update filter. The update coefficients «k and the prediction coefficients p^ 

combine to form the update filter h which should pass low-order polynomials on to the 

coarse coefficients c[n] and attenuate high-order polynomials. A 4-point update 

follows a 2-point prediction in Figure 3.4 and tracing the effects of P and U to the 

original data gives the following update vector h: 

T 
h = [-p\U\,  Ml,   -P\U2-P2U\,   U2,   \-piU2-p\U-i,  W3,   -p2U3-piU4,   "4,   -piUÄ\  . 

The mirror update filter vector g where gn = (-l)nhn is created to suppress low-order 

polynomials. 

m T 
g = [-piUU -U\, -p\U2-p2Ui, -U2, l-p2U2-piU3, -M3, -p2U3-piU4, "«4, -P2U4]  ■ 

With the previously determined prediction coefficients p±, only the update coefficients «k 

are left to be determined. The update coefficients are found by solving Vg = 0, i.e., just 

as in the design of the predictor, the mirror filter g is design to suppress low order 

polynomials. Thus, the filter h will preserve these low order polynomials, yielding the 

desired coarse approximation. 
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Xe[0]       Xo[0]       Xe[1]       X0[1]       Xe[2]       X0[2]       Xe[3]       X0[3]       Xe[4] 

Figure 3.4:      Update Design. 

With the lifting procedure, the transition to the wavelet domain is made 

through the steps of split, predict, and update. The prediction step is designed to 

eliminate low-order polynomial signal structures. The wavelet coefficients formed by the 

prediction step maintain the high-order polynomials as the details. Then, the update is 

designed so that the low-order polynomial signal structure is preserved at the next coarser 

scale. 

3.2      Wavelet Polyphase Representation 

The lifting wavelet transform can be written in the form of a perfect 

reconstruction multirate filter bank. A perfect reconstruction multirate filter bank can be 

created using any biorthogonal wavelet transform. 
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Separating each wavelet filter into the polyphase components where 

H(z) = He(z
2) + zxR0(z

2), the discrete wavelet transform can be completed as in Figure 

3.5. 

x„\n\ c\ri\ 
/ A 

x[n] 
■/V|/»J 

\2 —► 

—► 

He(z)    H0(z) 

Ge(z)    G0(z) 

—► 

—► 

He(z)   Ge(z) 

Ho(z)   G0(z) 

—► 

\ 

t? 

h 

 k. 

z 

—w 

—► 

z-1 

E(z) R(z) x0[n] 

Figure 3.5:      Polyphase Form of Wavelet Transform. 

In this form, down sampling the signal by two and then applying the filter He(z) is the 

same as filtering using He(z
2) and then down sampling by two [13]. 

For the lifting scheme when the odd/even split is made, the polyphase 

domain is created. In Figure 3.6, the polyphase matrices are created using the predict and 

update steps. 
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Figure 3.6:      Lifting operations in Polyphase Form. 

The wavelet coefficients d[n] and the scaling coefficients c[n] are created just as before in 

Equations (3.1) and (3.2).  The prediction matrix does not change the even data points 

xe[n] and the update matrix does not change the wavelet coefficients d[n]. The prediction 

matrix forms the wavelet coefficients d[n] as the difference in the odd data x0[n]   and 

P(xe[n]). The update matrix forms the scaling coefficients c[n] as the sum of even data 

xe[n] and U(d[n]), the update applied to the wavelet coefficients. 

Combination of the predict and update steps and the undo update and undo predict 

steps leads to the lifting scheme in polyphase form with matrices E(z) and R(z) in Figure 

3.7. 

c[n]  
x[n J 

Xg 

z 
-► ^2 

n 

l-P(z)U(z)     U(z) 

-P(z) 1 

1 -U(z) 

P(z)     l-P(z)U(z) 

»] 

T2 

T2H 

A 
x[n] 

—► 
.-/ 

x0[n] E(z) d[n] R(z) 

Figure 3.7:      Combination of Lifting Steps in Polyphase Form. 

x0[n] 
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The lifting scheme typically does not lead to orthogonal transforms. This would 

only be possible if P(z) and U(z) were constants.   Therefore, the lifting transform is 

generally viewed as a biorthogonal wavelet transform. From the combination of steps in 

Figure 3.7, the wavelet filters in terms of the lifting scheme are as follows: 

He(z) = l-P(z)U(z) 

Ho{z) = U{z) 

Ge(z) = -P(z) 

Go(z) = l 

and therefore, 
H(z) = l-P(z2)U(z2) + z-lU(z2) 

G(z) = -P{z2) + z~\ 

The wavelet filters h[ri\ and g[n] are related to the scaling (0) and wavelet (\|/) functions 

by the following wavelet recursion relations [8] 

^t) = ^h[ky>(2t-k) 
* (3.4) 

Using the wavelet filters created from the lifting scheme, vanishing moment constraints 

on y<t) can be mapped into constraints on the prediction and update filters P. Adding a 

zero01 vanishing moment to y^t), 
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and switching the order, then [<j)(2t-k)dt is equal to a constant m0, not zero. Leaving 

2g[fc]=0 and since  G(z) = -P(z2) + z~\ the zero* vanishing moment constraint mo 
k 

makes 

pi + P2...+pN = l. 

Forcing the prediction filter to eliminate zero* order polynomials leads to the 

same constraint. Additional vanishing moments in the analysis wavelet function is 

equivalent to eliminating additional polynomials in the prediction step. After 

determining the coefficients for the prediction filter or G(z), vanishing moments are 

added to the synthesis wavelet function ^(t) with the following 

r t'yr(t)dt=r Y°g[k]t'$&t-k) = 0. 

This equations utilizes the equivalent recursion relation for the dual (synthesis) 

filters, as in Equation 3.4 above. Thus, each vanishing moment on the synthesis wavelet 

function $t) is equivalent to an additional update filter polynomial constraint. The 

biorthogonal wavelet system created by adding vanishing moments to the underlying 

wavelet functions is the same as eliminating and preserving polynomials in the predict 

and update steps. Constraints on the wavelet filters h, g, /T, and g are identical whichever 

approach is used to create them. The lifting scheme does not require the use of the 

polyphase matrices or the underlying scaling and wavelet functions making its 

implementation easier. This also allows for nonlinearities and adaptivity to be introduced 

into the wavelet transform. The properties of the underlying wavelet transform can be 

controlled by forcing the prediction and update filters to meet requirements besides low- 

order polynomial suppression.   In other words, the transform can adapt by forcing the 
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predict and update filters to suppress the training signal, while still maintaining some 

vanishing moments properties of the standard wavelet transform. 

3.3      Redundancy 

Superior performance in many applications is gained by using a redundant 

wavelet transform [5]. When denoising, the pseudo-Gibbs phenomenon appears in the 

local area of discontinuities after thresholding the non-redundant wavelet transform 

coefficients. The shift invariant or redundant transform improves thresholding by 

averaging over all possible shifts of the signal. The redundant lifting scheme is shown in 

Figure 3.8 for a one-dimensional signal. 

Xo[n] d3[n] 

Figure 3.8:      Redundant Lifting Scheme. 
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This method of shifting over all possible shifts and transforming is known as 

"cycle spinning" and was developed by Coifman to "average out" translation dependence 

[5]. Implementation of the redundant lifted transform on images will create two 

additional shifts for one iteration, i.e., four transforms for one image. As iterations L 

increase the size of the data increases by 4L. This causes a problem in storing and 

displaying the transform. Instead of storing each possible shift as a complete transform 

(which would create four transforms the same size as the original image) the transforms 

will be stored as a four dimensional array. The first two dimensions are the size of the 

original image, the third is always four for the first four transforms created at the first 

iteration, and the fourth dimension is equal to the number of iterations. Thus, a transform 

of a 256x256 image with 3 iterations would have a redundant wavelet transform 

dimension of (256, 256, 4, 3) and 4 iterations of the same image would have a dimension 

of (256, 256, 4, 4). For ease of storage and display purposes, this method will retain all 

coarse approximations at each scale, even though only the lowest level coarse 

approximation is needed for reconstruction. 

3.4      Adaptivity 

The lifting scheme was demonstrated in Section 3.1 using polynomial constraints 

but restrictions besides low-order polynomial suppression can be implemented. This 

research uses the scale-adaptive transform to adapt the predictor of each lifting stage to 

match a training signal structure at that scale. A N-point predictor is used to suppress 

polynomials up to order M, less than N. This is equivalent to adding M vanishing 

moments to the underlying wavelet function. The other degrees of freedom will adapt to 
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the training signal. The remaining N-M degrees of freedom optimize the predictor so 

that it minimizes the spatially-averaged squared prediction error. Therefore, the predictor 

matches both polynomial and non-polynomial signal structure at each scale. A N- 

dimensional constrained least-squares problem solves this optimization using the 

constraint that the predictor must suppress JVMM01 order polynomials. The goal is to 

minimize the sum of squared prediction errors, eTe, when e = x0-Xep. Here, *0 are the 

odd data points, Xe is a matrix of the even points such that [Xe]n,k= *e[n-k] and p is the 

vector of prediction filter coefficients.  Xe and p are attempting to predict *0-   Solving 

min|jc0-Xp|f   subject to  V°p = [l,0...0]T   results in a p that minimizes eTe, and 
P 

maintains M polynomial constraints.  In this case, V° is an MxN matrix containing the 

first M rows of the full rank Vandermonde matrix V° as determined in Section 3.1. The 

predictor now tries to capture the dominant training signal structure at each scale. When 

this transform is applied to the degraded image, the noisy signal variation from the 

training signal structure is represented by the wavelet coefficients d[n\. The update filter 

is designed so that the coarse signal approximation transformed at the next scale should 

maintain the low frequency dominant structure of the training signal. 

3.5      Denoising/Thresholding 

An adaptive transform is being implemented and thus, an appropriate adaptive 

threshold will be created for denoising so that each sub-band in each iteration will have 

its own adaptive threshold. The a priori information used to train the signal will also help 

determine the threshold for noise removal. While implementing this redundant 

transform, the transform must be completed on the training image as well as the noisy 
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image for each shift and iteration. This information gives us not only the training data for 

the next scale but it also gives a comparison for the size of the wavelet coefficients d[ri\. 

Looking separately at each band a threshold is set as the mean absolute value of the 

differences in the wavelet coefficients for each of the four bands LL, HL, LH, and HH. 

Thresholds are set for the LL bands but these bands are not thresholded. The difference 

in the wavelet coefficients for the training image and the noisy image represent the noise 

and is a good indicator to help establish an appropriate threshold. 
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IV.    Results 

In this chapter, the success of denoising with the redundant adaptive wavelet transform 

using a priori information is demonstrated. As discussed in Chapter 2, current image 

restoration techniques have certain undesirable effects. In this research, a new technique, 

combining adaptive wavelets, redundancy, and a priori information was developed. This 

thesis research gives reasons why such an algorithm should be powerful to image- 

processing techniques. Now, the performance of this algorithm is compared to other 

redundant wavelet-based techniques. 

4.1      Error Measures 

Two errors measures are used to measure the performance of the adaptive 

algorithm. The peak signal-to-noise ratio (PSNR) is used to help determine the strength 

of the true signal compared to the reconstructed signal (or noisy signal). 

PSNR = 20* log io 
max \Xi\ 

'       N 

(4.1) 

.•th where JC, is the im pixel of the original image, JO is the /th pixel of the reconstructed (or 

noisy) image, and N is the total number of pixels. The PSNR values are determined 

before noise removal and after for comparison of the improvement made in the 

reconstructed image. PSNR is a common metric in the image processing community. 
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The second measure of performance used for the algorithm is L°°. The error here 

is the maximum difference in the desired image and the denoised image. This metric 

relates to the human visual system, and is a good indicator of the visual "quality" of an 

image. These performance measures are good indicators of how the training algorithm 

compares to other types of wavelet denoising. 

4.2      Denoising Experiments 

Several wavelet transforms are used to transform an image. The image is then 

denoised while in the wavelet domain before it is reconstructed. For a basis comparison, 

a (4,4) lifting scheme is used with 4 vanishing moments so that the transform is not 

adaptive and does not take advantage of any a priori information. Also for comparison, a 

separate baseline case is completed. In this case, the (4,4) lifting transform is used with 

only 2 vanishing moments and this transform adapts to the noisy image. In other words, 

this transform is not trained using the a priori information but it does use adaptivity. For 

each of these transforms, a soft threshold was used with the threshold being 3 times the 

standard deviation of the noise. A hard threshold was also completed on these transforms 

using 3.6 times the standard deviation of the noise as the threshold. These are the 

standard thresholds experimentally derived from [12]. 

One test of the training algorithm is completed using a (4,4) lift with 2 vanishing 

moments adapted to the training image and for consistency to the baseline comparisons, a 

soft threshold equal to 3 times the standard deviation of the noise and a hard threshold 

equal to 3.6 times the standard deviation of the noise. A second test of the algorithm also 

uses a (4,4) lift with 2 vanishing moments adapted to the training image and for denoising 
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uses the threshold set adaptively by the training algorithm as discussed in Chapter 3. 

This threshold was multiplied by various constants to find which produced the best 

results and then used for denoising. With a soft threshold, the adaptive threshold is 

multiplied by a constant of 1.5 for the best results. When a hard threshold is used, the 

adaptive threshold is multiplied by a constant of 3 for the best results. So one test uses 

the a priori information to train the transform but uses a standard threshold and the 

second test uses the a priori information to train the transform and to set the adaptive 

threshold. 

The original image is made zero mean and is show in Figure 4.1. To obtain the 

training image in Figure 4.2, a part of the original image is made zero mean and then 

padded with zeros so that it is the same size as the test image. This is necessary because 

the algorithm calls for an equal number of iterations of the wavelet transform to be 

completed on both the original image and the training image and therefore to make this 

possible at all times, the images must be the same size. 

4.3       Denoising Results 

The first noisy image in Figure 4.3 is created by adding a noise amount of 

approximately 25 times the standard deviation of the noise giving a PSNR value of 

approximately 20 dB and a L°° measurement of 105.38. This represents a high amount of 

noise for the image. 

Results after using a soft threshold are looked at first. The image reconstructed 

after using a non-adaptive transform and a standard threshold has significant blurring 

around the edges of the image, but the PSNR is improved by approximately 8 dB. This 
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first baseline case is shown in Figure 4.4. The second baseline, in Figure 4.5, case 

improves the PSNR and the V measures for the whole image but blurring is still present. 

Again looking at the soft threshold results, the test using an adaptive threshold 

and the training algorithm reduces blurring but effects of the noise are still present, see 

Figure 4.6. The PSNR values are comparable to the baseline measurements and the L°° 

values are reduced. Using the training algorithm with the standard threshold (Figure 4.7) 

produces an image that is visually as good as the first baseline case, possibly even a little 

less blur. The error values are not significantly reduced but are comparable. All soft 

threshold results with this high noise case cause some blurring of the edges. 

Most hard thresholds improve over their equivalent soft thresholds. The hard 

threshold results are visibly better because there is less blurring. In Figure 4.8, the first 

baseline case is an improvement over previous transforms but the edges still acquire 

undesired effects. In Figure 4.9, adapting to the noisy signal leaves obvious artifacts in 

the reconstructed image but edge effects are not as obvious. Artifacts left from the noise 

are not as prominent in Figure 4.10. This reconstructed image has less blur, yet it is also 

smoother. The best PSNR value for the high noise case is produced by Figure 4.11 where 

the training algorithm is used with the standard threshold. This test also gives a good L°° 

value. 

The training error measurements were very similar to the overall picture 

measurements. This was probably because the majority of the edges in the image where 

within the training area without any large smooth areas as those found outside of this 

training area. 
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Figure 4.1:      Original star image before the addition of noise. 
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Figure 4.2:      Training star image used for adapting the transform. 
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Figure 4.3: Star image and additive Gaussian noise with standard deviation equal to 
10% of the maximum signal value (high noise case). For entire image, PSNR = 20.15 
dB and L°° = 105.38. In the training area, PSNR = 20.12 dB and L~ = 105.38. 
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Figure 4.4: Star image denoised using (4,4) lift, 4 vanishing moments (non-adaptive) 
and a soft threshold equal to 3 times the standard deviation of the noise. For entire 
image, PSNR = 28.00 dB and U° =84.96. In the training area, PSNR = 25.86 dB and 
L~ =66.14. 
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Figure 4.5: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
noisy signal and a soft threshold equal to 3 times the standard deviation of the noise. For 
entire image, PSNR = 29.09 dB and L°° = 80.16. In the training area, 
PSNR = 27.15 dB and L~ = 67.20. 
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Figure 4.6: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
training signal and a soft threshold equal to 1.5 times the adaptive threshold set by the 
transform. For entire image, PSNR = 27.44 dB and L°° = 76.67. In the training area, 
PSNR = 26.03 dB and L~ = 66.02. 
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Figure 4.7: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
training signal and a soft threshold equal to 3 times the standard deviation of the noise. 
For entire image, PSNR = 28.43 dB and L°° = 86.09. In the training area, 
PSNR = 26.33 dB and L~ = 68.66. 
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Figure 4.8: Star image denoised using (4,4) lift, 4 vanishing moments (non-adaptive) 
and a hard threshold equal to 3.6 times the standard deviation of the noise. For entire 
image, PSNR = 29.91 dB and L°° = 71.68. In the training area, PSNR = 27.73 dB and 
L~ =64.80. 
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Figure 4.9: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
noisy signal and a hard threshold equal to 3.6 times the standard deviation of the noise. 
For entire image, PSNR = 28.82 dB and V° = 75.20. In the training area, 
PSNR = 27.39 dB and L~ = 75.20. 
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The second noisy image in Figure 4.12 is created by adding a noise amount of 

approximately 15 times the standard deviation of the noise giving a PSNR value of 

approximately 25 dB and a L°° measurement of 105.38. This represents a medium 

amount of noise for the image. 

Soft threshold results are looked at first. The image reconstructed after using a 

non-adaptive transform and a standard threshold has blurring around the edges of the 

image, but the PSNR is improved by approximately 5 dB. This first baseline case is 

shown in Figure 4.13. The second baseline, in Figure 4.14, case improves the PSNR and 

the L°° measures for the whole image but blurring is still present. 

Again looking at the soft threshold results, the test using an adaptive threshold 

and the training algorithm reduces blurring but effects of the noise are still present, see 

Figure 4.15. The PSNR values are comparable to the baseline measurements and the L°° 

values are significantly reduced. Using the training algorithm with the standard threshold 

(Figure 4.16) produces an image that is visually as good as the first baseline case, and has 

some improvements in the measurements. 

Most hard thresholds improve over their equivalent soft thresholds. The hard 

threshold results are visibly better because there is less blurring. In Figure 4.17, the first 

baseline case is an improvement over previous transforms but the edges still blur. In 

Figure 4.18, adapting to the noisy signal leaves obvious artifacts in the reconstructed 

image but edges are clearer. Artifacts left from the noise still exist but are reduced in size 

for Figure 4.19. This adaptive hard threshold used with the training algorithm gives 

excellent L°° values in this example.  Figure 4.20 produces the best PSNR value for the 
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medium noise case which is where the training algorithm is used with the standard 

threshold. This test also gives a good L°° value. 

The training error measurements were very similar to the overall picture 

measurements. This was probably because the majority of the edges in the image where 

within the training area without any large smooth areas as those found outside of this 

training area. 
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Figure 4.12: Star image and additive Gaussian noise with standard deviation equal to 
6% of the maximum signal value (medium noise case). For entire image, PSNR = 24.58 
dB and L°° = 63.23. In the training area, PSNR = 24.56 dB and V = 63.23. 
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Figure 4.13: Star image denoised using (4,4) lift, 4 vanishing moments (non-adaptive) 
and a soft threshold equal to 3 times the standard deviation of the noise. For entire 
image, PSNR = 29.88 dB and L°° -70.87. In the training area, PSNR = 27.69 dB and 
L°° = 58.83. (medium noise) 
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Figure 4.14: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
noisy signal and a soft threshold equal to 3 times the standard deviation of the noise. For 
entire image, PSNR = 30.91 dB and L°° = 66.62. In the training area, 
PSNR = 28.81 dB and L~ = 55.76. 
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Figure 4.15: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
training signal and a soft threshold equal to 1.5 times the adaptive threshold set by the 
transform. For entire image, PSNR = 29.92 dB and L°° = 57.74. In the training area, 
PSNR = 28.34 dB and L" = 50.86. 
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Figure 4.16: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
training signal and a soft threshold equal to 3 times the standard deviation of the noise. 
For entire image, PSNR = 30.27 dB and L°° = 72.45. In the training area, 
PSNR = 28.12 dB and L~ = 59.20. 
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Figure 4.17: Star image denoised using (4,4) lift, 4 vanishing moments (non-adaptive) 
and a hard threshold equal to 3.6 times the standard deviation of the noise. For entire 
image, PSNR = 32.32 dB and V = 54.04. In the training area, PSNR = 30.22 dB and 
L~ =54.04. 
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Figure 4.18: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
noisy signal and a hard threshold equal to 3.6 times the standard deviation of the noise. 
For entire image, PSNR = 31.93 dB and L°° = 56.08. In the training area, 
PSNR = 30.18 dB and L°° = 56.08. 
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Figure 4.19: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
training signal and a hard threshold equal to 3 times the adaptive threshold set by the 
transform. For entire image, PSNR = 31.59 dB and L~ =52.10. In the training area, 
PSNR = 30.19 dB and L°° =51.81. 
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Figure 4.20: Star image denoised using (4,4) lift, 2 vanishing moments, adaptive to 
training signal and a hard threshold equal to 3.6 times the standard deviation of the noise. 
For entire image, PSNR = 32.33 dB and L°° = 57.43. In the training area, 
PSNR = 30.28 dB and L" = 57.43. 
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Medium Noise Case 
PSNR (dB) 

measurements 

Training Area of 
Image 

Whole Image 

^^^^Denoising 
Transform^^^. 

Soft 
Threshold 

Hard 
Threshold 

Soft 
Threshold 

Hard 
Threshold 

Image with 
Noise 

24.56 24.58 

(4,4) Lift 
4 vanishing 27.69 30.22 29.88 32.32 

(4,4) Lift 
2 vanishing 
No training 

28.81 30.18 30.91 31.93 

(4,4) Lift 
2 vanishing 

Training 
28.12 30.28 30.27 32.33 

(4,4) Lift 
2 vanishing 

Training 
Adaptive Threshold 

28.34 30.19 29.92 31.59 

Table 4.3:       PSNR measurements for medium noise case. 
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Medium Noise Case 
L~ 

measurements 

Training Area of 
Image 

Whole Image 

^^^^Denoising 
Transforrn^^^^ 

Soft 
Threshold 

Hard 
Threshold 

Soft 
Threshold 

Hard 
Threshold 

Image with 
Noise 

63.23 63.23 

(4,4) Lift 
4 vanishing 

58.83 54.04 70.87 54.04 

(4,4) Lift 
2 vanishing 
No training 

55.76 56.08 66.62 56.08 

(4,4) Lift 
2 vanishing 

Training 
59.20 57.43 72.45 57.43 

(4,4) Lift 
2 vanishing 

Training 
Adaptive Threshold 

50.86 51.81 57.74 52.10 

Table 4.4:       L°° measurements for medium noise case. 
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4.4      Summary 

The new algorithm used with the adaptive soft threshold performs very well by L°° 

measures and comparable by PSNR measures for both the whole image and the training 

area. The new algorithm used with the non-adaptive hard threshold gives the best overall 

PSNR measure, again for both the whole image and the training area. In each 

thresholding case, the new algorithm is better than or comparable to the (4,4) lift with 4 

vanishing moments and the (4,4) lift with 2 vanishing moments adapted to the noisy 

signal in the PSNR and L°° measures. 

Visually, the training algorithm results are very good. Images resulting from the 

training algorithms using soft-thresholds have fewer artifacts than the other images after a 

soft threshold was used. The adaptive threshold used with hard thresholding did not 

perform as well in error measures but the image is smoother with fewer artifacts than the 

other images after hard thresholding. 

These results show that the training algorithm performs very well in the area of 

training and sometimes the entire image. The training algorithm obtains the best PSNR 

value overall the images for the whole image and the training area. The combination of 

the adaptive wavelets, redundancy and a priori information have proven to be useful in 

obtaining better image restoration. 
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V.      Conclusion 

This research explored many techniques available for image restoration and image 

denoising. Certain factors in the Fourier and wavelet domains still cause problems, 

which are visually undesirable. As technology progresses, more improvement in image 

restoration is desired, and can be achieved by incorporating redundancy and adaptivity 

into the wavelet transform. In this thesis research, a Scale Adaptive Transform (ScAT) 

was extended to form a redundant transform for a 2-dimensional signal. The ScAT was 

further modified so that it adapts to a training signal and then transforms a separate 

signal. In this research, the modified ScAT is trained on an image containing a priori 

information, typically a known object in the image. The noisy image is then transformed 

into the wavelet domain using the newly trained transform, where various denoising 

threshold techniques were applied to remove noise degradations. These techniques 

improved the image in the area of the known object and at times even improved the 

whole image. The algorithms and results presented in this thesis demonstrate that 

improved denoising is possible with the incorporation of redundancy and adaptivity into 

existing wavelet-based image restoration techniques. 

5.1      Applications 

An algorithm of this type could be used as a pre-processing step for many image- 

processing applications. In target recognition, researchers look for distinguishing 

features of a possible target in an image to allow a computer to locate and identify the 

target. An algorithm that enhances the features of the target would greatly improve the 
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probability of its detection in a cluttered image. This is just one example of how this 

type of redundant adaptive algorithm could be very useful in image restoration and image 

processing. In general, any image analysis application where a priori information is 

known about the image could be improved by the algorithms presented in this thesis. 

5.2      Recommendations for Future Research 

The success of this algorithm gives encouragement to continue this area of 

research. This technique improves noise removal in an image using redundancy, a priori 

information and just one adaptive prediction filter per scale; therefore, if the prediction 

filters also adapted spatially (e.g., multiple filters per scale), the improvement could be 

even greater. This modification would require developing a method to compensate with 

appropriate filters outside of the training area where only zeros are located (training on 

data comprised of all zeros is an ill-posed problem). Also, additional storage would be 

required for these additional prediction and update filters. This is a difficult task, due to 

the nature of the redundant wavelet transform. However, the creation of such a redundant 

spatially adaptive transform would obviously further enhance image restoration 

techniques. 
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