
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2001

A Methodology for Simulating the Joint Strike Fighter's A Methodology for Simulating the Joint Strike Fighter's

Prognostics and Health Management System Prognostics and Health Management System

Michael E. Malley

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aviation Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Malley, Michael E., "A Methodology for Simulating the Joint Strike Fighter's Prognostics and Health
Management System" (2001). Theses and Dissertations. 4656.
https://scholar.afit.edu/etd/4656

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1297?utm_source=scholar.afit.edu%2Fetd%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4656?utm_source=scholar.afit.edu%2Fetd%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

A METHODOLOGY FOR SIMULATING THE
JOINT STRIKE FIGHTER'S (JSF)

PROGNOSTICS AND HEALTH
MANAGEMENT SYSTEM

THESIS

Michael E. Malley, Captain, USAF

AFIT/GOR/ENS/0 IM-11

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U. S.
Government.

AFIT/GOR/ENS/OlM-11

A METHODOLOGY FOR SIMULATING THE JOINT STRIKE FIGHTER'S (JSF)

PROGNOSTICS AND HEALTH MANAGEMENT SYSTEM

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Michael E. Malley, B.S.

Captain, USAF

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/OlM-11

AMETHODOLOGYFOR SIMULATING THE JOINT STRIKE FIGHTER'S (JSF)

PROGNOSTICS AND HEALTH MANAGEMENT SYSTEM

Michael E. Malley, B.S.

Captain, US AF

Approved:

Jolm O. Miller, Lt Col, US AF (Chainnan) ««

Raymond R. KU. Lt Col, USAF (Member)

Acknowledgments

This research would have suffered without the help and guidance of several

individuals. I would like to thank my advisor, Lt Col J.O. Miller for his patience and

honesty throughout this process. I'm also grateful for the input provided on several

occasions by Dr Ken Bauer and Lt Col Ray Hill. Besides helping with the content of the

research, each of these three kept me focused on the end goal. I would also like to thank

Gary Smith, Gerald Williams, and Squadron Leader Richard Friend who all provided

input, and data, used in this research. My goal is that this research is true to all of your

inputs.

I would like to thank my loving wife for supporting me throughout the thesis

process. She graciously took over the housework and diaper changing duties while I

worked on this project. Thank you for listening to my thesis problems, proofreading

documents, and putting up with my frustration. You're a wonderful wife and mother.

Mike Malley

IV

Table of Contents

Acknowledgments iv
List of Figures vii
List of Tables viii
Abstract ix

I. INTRODUCTION 1

Background 3
Problem Statement 6
Research Objectives 7
Scope and Assumptions 7
Methodology and Expected Results 9
Thesis Organization 10

II. LITERATURE REVIEW 11

Introduction 11
Maintenance Strategy 12
Aircraft Prognostics Management 13

JSFPHM, 13
Boeing 777 and DS&S Maintenance Management 16

Engine Prognostics 17
JetSCAN 17
JSF Engine Prognostics 18
Digital Signal Processing. 19

Simulation 22
Predictive Maintenance Simulation 22
ALSim 23

Artificial Neural Networks 24
Conclusions 26

III. METHODOLOGY 27

Introduction 27

Sensor Data 28
Existing Datasets 28
Signal Generator 30
Signal Generator Algorithm 33

Signal Processing 36
Signal Generator Verification and Validation 41
Neural Network Construction 42
Building Failure and False Alarm Distributions 44

ALSim Modifications 46
Conclusions 48

IV. ANALYSIS AND RESULTS 49

Introduction 49
Signal Generator Output 49
Neural Network Analysis 53
Early Failure Detection Time versus False Alarm Tradeoff. 57

Batch Size Study 57
Neural Network Assignment Rule 61

Failure Detection Time and False Alarm Rate Results 64
Failure Detection Time 64
False Alarm Rate 67

ALSim Inputs 68
Failure Detection Time 68
ALSim Operation 72

Conclusions 73

V. CONCLUSIONS AND RECOMMENDATIONS 75

Further Study 77
Appendix A. Signal Generator Code 79
Appendix B. ALSim PHM Code 98
Bibliography 104
Vita 106

VI

List of Figures

Figure 1. JSF ALS Components 6

Figure 2. Capt Rebulanan's PHM Implementation 9

Figure 3. Neural Network Construction 25

Figure 4. Signal Generator User Interface 31

Figure 6. Wear-in Signal 50

Figure 7. Flight Signal 50

Figure 8. Failure Signal 51

Figure 9. Complete Signal 52

Figure 10. Batched Signal 53

Figure 11. Trained Neural Network Confusion Matrices 55

Figure 12. Batch Size of 10 vs Batch Size of 20 58

Figure 13. Batch Size 10 versus Batch Size 5 58

Figure 14. ROC Curve Example 62

Figure 15. Affect of Changing Classification Rule 63

Figure 16. Failure Time Distribution for 1500 Life 66

Figure 17. Failure Time Distribution for 3700 Life 66

Figure 18. Failure Detection Time as Percent of Life (1) 70

Figure 19. Failure Detection Time as Percent of Life (2) 71

Vll

List of Tables

Table 1. Signal Generator Component Life Settings 37

Table 2. Signal Generator Simulation Settings 38

Table 3. Signal Generator Output Form 40

Table 4. Component Lifetimes 53

Table 5. Batch Size 10 and 20 False Alarm Rates 59

Table 6. Batch Size Affect on Failure Detection Time 60

Table 7. Failure Time Distribution 65

Table 8. Scaling Lifetime 69

Table 9. Failure Detection Time Trend 69

Table 10. False Alarm Scaling 72

Vlll

AFIT/GOR/ENS/OlM-11

Abstract

The Autonomie Logistics System Simulation (ALSim) was developed to provide

decision makers a tool to make informed decisions regarding the Joint Strike Fighter's

(JSF) Autonomie Logistics System (ALS). The benefit to ALS is that it provides real-

time maintenance information to ground maintenance crews, supply depots, and air

planners to efficiently manage the availability of JSF aircraft. This thesis effort focuses

on developing a methodology to model the Prognostics and Health Management (PHM)

component of ALS. The PHM component of JSF is what actually monitors the aircraft

status.

To develop a PHM methodology to use in ALSim a neural network approach is

used. Notional JSF prognostic signals were generated using an interactive Java

application, which were then used to build and train a neural network. The neural

network is trained to predict when a component is healthy and/or failing. The results of

the neural network analysis are meaningful failure detection times and false alarm rates.

The analysis presents a batching approach to train the neural network, and looks at the

sensitivity of the results to batch size and the neural network classification rule used. The

final element of the research is implementing the PHM methodology in ALSim.

IX

A METHODOLOGY FOR SIMULATING

THE JOINT STRIKE FIGHTER'S (JSF)

PROGNOSTICS AND HEALTH MANAGEMENT SYSTEM (PHM)

I. Introduction

The Joint Strike Fighter (JSF) is the next generation fighter aircraft being

developed to meet air threats in the year 2010 and beyond. The JSF incorporates the

latest technology in the aircraft industry. One of the revolutionary developments is the

Autonomie Logistics System (ALS), which is designed to efficiently manage the JSF

maintenance and logistics programs. The ALS is possible because of two concepts.

First, the JSF uses well-placed sensors and diagnostics to detect impending faults and

uses reasoning algorithms to determine their causes; and second, this information quickly

disseminates throughout the logistics infrastructure (Scheuren, 1998: 2). The Prognostics

and Health Management (PHM) system on board the aircraft performs the first function,

and the Joint Distributed Information System (JDIS), a strategic communication system,

performs the latter.

The advantage of the ALS approach is that it reduces the time a JSF aircraft

spends in non-mission capable status. The PHM system minimizes the time maintenance

personnel need to diagnose a failure or fault in the weapon system, and JDIS reduces the

time it takes to requisition replacement parts. The JSF ALS begins with the continuous

monitoring of the aircraft's systems to detect and diagnose deteriorating performance or

system failure. Sensors and control algorithms used in the PHM isolate the faults and

communicate maintenance requirements to personnel on the flight line and in the logistics

infrastructure using JDIS. Time is saved because maintenance crews perform only

limited diagnostic tests when the aircraft returns to base, and the JDIS system sends

immediate notice of aircraft status to the logistics infrastructure.

This technology will substantially alter Department of Defense (DoD) logistics

policy, which is reactive and/or preventative in nature. Current fighter weapon systems

cannot be fault detected until the mission is completed and the aircraft returns to base.

Maintenance personnel then enter a detailed diagnostic series to isolate the problem. The

logistics organizations cannot proactively begin locating a replacement part until after the

maintenance crew successfully identifies the fault. The time required to complete these

tasks just adds to the length of time the aircraft will be unavailable to perform the

mission.

Captain Rene Rebulanan (GOR-00M) built a computer simulation of the ALS and

its components called the Autonomie Logistics Simulation or ALSim. ALSim was used

to show that the JSF ALS would lead to significantly higher weapon system availability

versus current strike aircraft (Rebulanan, 2000: 55-56). ALSim has all the necessary

elements to model the JSF ALS, the next step is to add a level of fidelity to some of the

components to make the simulation more useful for decision making. This thesis effort

will focus on developing a methodology to model the PHM system and then implement it

in ALSim.

Background

The Joint Strike Fighter is the next generation strike aircraft being developed

jointly by the US Air Force, Navy, Marine Corps as well as several foreign allies. The

goal is to develop an aircraft that can be used by each military service, including US

allies, without compromising the performance of the aircraft by tailoring it towards a

specific service. To meet affordability goals, each aircraft will be built using

approximately 70% - 90% common parts, with minor exceptions to meet service specific

requirements (JSF Program office, 2000: slide 7). For example, the Navy model JSF has

more robust landing gear and vertical take-off capability to accommodate the aircraft

carrier environment. Currently the program is in the early design phase, in which two

contractors are building prototype JSF aircraft for flight test. The prototype aircraft are

flight demonstrators only and do not include the ALS capability that will exist on the

operational aircraft. One contractor will be selected based from this fly-off to proceed to

the Engineering and Manufacturing Development acquisition phase. The first combat

ready JSF will be delivered in fiscal year 2007 (Hough, 1999: slide 4).

One revolutionary aspect of the JSF is the development of the ALS.

Autonomie logistics is the state-of-the-art in logistics management and is largely driven

by the increasing complexity of DoD weapon systems. Older aircraft, such as the

McDonnell Douglas F-15 and General Dynamics F-16, were designed to isolate

component failures using built-in-tests. The diagnostic cycle currently follows a path that

starts with fault detection, moves to fault isolation, and finally failure analysis and fault

treatment. This requires aircraft-specific support equipment to isolate failures, which is

costly, takes a great deal of time, and is terribly inaccurate. "Can Not Duplicate" and

"Tests-OK" situations now account for 50% of DoD repair results (Blemel, 1998: 1). A

Can Not Duplicate condition exists when the maintenance crew cannot repeat the

detected fault or error on the ground. Similarly, a Test-OK is when a piece of equipment

fails a diagnostic test, but when tested again the equipment shows no sign of fault.

Furthermore, using the F-15 as an example, approximately 25 maintenance hours are

required for each flight hour of operation (Blemel, 1998: 1-2). With shrinking military

maintenance budgets this scenario obviously is no longer viable. The ALS system is

designed to reduce the amount of time the JSF spends in non-mission-ready status, reduce

the cost of maintaining the weapon system, and provide a robust diagnostic suite that

minimizes detection inaccuracies.

The autonomic logistics system, specifically the PHM, will provide continuous

monitoring of the operation, health, and safety of the JSF. If during flight the PHM

detects degraded performance from any component or subsystem, it will isolate the fault,

predict the failure time, and schedule the necessary maintenance tasks to be completed.

Once again, maintenance actions will be forwarded to the logistics chain before the

aircraft returns to base. This continuous diagnostic coverage and fault detection

capability is being designed to reduce, and hopefully eliminate, the time required by the

maintenance crew to diagnose the problem once the aircraft lands. This added time is

used to locate spare parts, or refresh the maintenance crew on the repair/replace task.

One of the enabling technologies used in PHM is prognostics. Where diagnostics

are used for fault detection and isolation, the goal of prognostics is to predict failure. The

JSF recently completed a series of seeded fault engine tests to examine the prognostics of

the aircraft engine. To perform the test an engine was fitted with several sensors being

proposed for use on the JSF aircraft, including the engine distress monitoring system

sensor, ingested debris monitoring system sensor, the wear site sensor, and the oil-line

sensor. Fault conditions were induced on the engine and the sensor detection capability

was measured. The control logic for real-time diagnosis of the fault is not yet completed,

but it essentially works in the following manner. Operational limits are placed on the

sensor's reading, and out of limit conditions signify degraded performance and

impending failure (Powrie and Fisher, 1999: 12).

Similar prognostic measures are used on the Boeing 777 aircraft. The 777 Central

Maintenance Computer (CMC) uses an, "abductive control algorithm to encode a cause

and effect relationship between faults and their symptoms and then interpret fault

scenarios against these relationships" (Felke, 1994: 1). The 777 model defines fault

scenarios, their symptoms, and repair actions for each line replaceable unit (LRU) on the

aircraft. The algorithms within the CMC use this hard coded information to interpret

conditions on the aircraft and identify appropriate repair actions for the faults it detects

(Felke, 1994: 1).

This thesis effort builds on a thesis done last year by Capt Rene Rebulanan

(2000). Capt Rebulanan built a first-order model (ALSim) that defines all the

components of the ALS and gives them appropriate functionality (Figure 1). The model

consists of depot supply, base supply, JDIS, PHM, LRU, flightline maintenance, and

flightline supply classes built using the Java programming language. Using the model,

Capt Rebulanan was able to simulate the JSF ALS and conclude that the ALS leads to

higher aircraft availability (Rebulanan, 2000: 55-56).

Objects

Communication line

Figure 1. JSF ALS Components

Problem Statement

The ALS strategy is new to DoD and as such little is known about its actual

capabilities or the demands it places on the existing logistics infrastructure. ALSim

provides an initial framework of the JSF autonomic logistics system that can be used to

analyze the ALS components and characterizes the operational system. The next step is

to add a level of fidelity to the model. ALSim's components really only provide the

framework for the model and need further definition. The component of the model with

the least understanding is the PHM, and a methodology for modeling the PHM

component of the system needs to be developed and implemented to fully understand the

capabilities of ALS.

Research Objectives

The goal of this research is to build on a previously developed simulation model

that can be used to predict JSF support requirements and weapon system availability.

Previous research focused on building an initial, high-level simulation model of the ALS.

The next step is to develop a methodology for modeling the PHM component of the ALS.

This enhanced PHM methodology will be added to ALSim. The original model

performance measures will be used to track the ALS ability to meet JSF program goals of

achieving a 25% increase in combat sortie generation rate relative to current strike

aircraft. The ALSim measure of performance linked to sortie generation is JSF

availability.

Scope and Assumptions

The typical mission profile used in this simulation will be for the aircraft to take

off for a mission, perform the mission, and then return to base. During the mission the

PHM will monitor the condition of the JSF aircraft and monitor aircraft systems for

degraded performance. Any maintenance actions generated will be passed through the

logistics chain using the JDIS element of the simulation. The appropriate maintenance

actions will be taken once the aircraft returns to base, either immediately or, if parts are

unavailable, at the earliest time the parts become available.

The model of the system will simulate the operations of one JSF Wing and

corresponding support organizations needed to support one Wing. Also, the JSF aircraft

is too complex to simulate every part. This thesis will focus on key line replaceable units

(LRU) associated with the engine subsystem.

The focus of this thesis effort will be on developing and implementing accurate

PHM components of the JSF autonomic logistic system. The logistics chain consisting of

the JDIS, base supply shop, depot supply, and flightline maintenance will not be altered

dramatically. The model currently implements base supply, depot supply, and flightline

maintenance elements according to Air Force or DoD policy. The only changes to this

aspect of the simulation will be in the interface with the PHM components.

Since the JSF aircraft is still in development, system reliability data cannot be

used. Where possible, the simulation will use state-of-the-art reliability and logistics

information. When this is not possible existing Air Force aircraft data will be used. To

the maximum extent possible the simulation will allow for easy entry of JSF data, as it

becomes available.

As the model is developed additional assumptions will need to be made to

simplify the effort. These will be listed and discussed where appropriate.

Methodology and Expected Results

This thesis effort will focus on developing a methodology for building the PHM

component of the JSF ALS, and then implementing that strategy in ALSim. Figure 2

shows the ALSim PHM implementation. For a given LRU, a random draw determines

when the LRU will fail (have no remaining life). Based on the settings in ALSim the JSF

aircraft is programmed to detect this failure some percent of time before the failure

occurs (Rebulanan, 2000: 29). For example, if the failure time is 100 and ALSim is set to

detect a failure at 95% of the component life, then the PHM component of the JSF will

detect the failure at time 95. This approach assumes perfect, 100% failure identification.

Predicted Life

Detection: Sensed Delta between ideal design and actual performance

Failure: Performance below level of minimum requirement

Prognostics: Prediction of Delta from A to B

Assumption: Normal wear and tear

Time of Operation

Figure 2. Capt Rebulanan's PHM Implementation

This thesis effort uses multivariate analysis techniques to build a distribution of

predicted failure detection times as well as adding the capability to model false alarms

(predicting failure when the system is healthy). A PHM Signal Generator, built using

Java, is used to generate the data to be analyzed. The final step is to integrate the PHM

methodology in ALSim to better characterize the system.

Thesis Organization

This thesis document is organized into five chapters. The second chapter is a

detailed literature review of the pertinent subjects to this thesis. First, aircraft prognostics

of the JSF and other systems are discussed. Second, several ongoing data-analysis

techniques for prognostics data are presented. Third, existing prognostic simulation

models are presented, and finally, a short description of neural networks is included.

Chapter three describes the PHM methodology developed for this thesis. It

includes a detailed description of the PHM Signal Generator built in Java. A technique is

developed for inputting the PHM signal into an artificial neural network that is trained to

predict when a component is failing. This chapter also includes an explanation of how

the failure time distribution is built. Finally, a discussion of how the methodology is

implemented in ALSim is provided.

The fourth chapter includes the results from the PHM Signal Generator, the neural

network prediction, and the ALSim modifications. The results are explained and

interpreted. The final chapter includes study conclusions.

10

II. Literature Review

Introduction

The purpose of this literature review is to search for examples of how aircraft

maintenance systems similar to PHM have been built and modeled. To accomplish this

task there are several groups of topics that need to be researched for use in developing a

PHM methodology and then implementing in ALSim. The first topic is maintenance

strategy. The JSF PHM clearly pushes the state-of-the-art in maintenance management,

and understanding how that maintenance strategy is used is important for building the

system. Second, aircraft prognostics/diagnostic maintenance systems need to be

researched. The JSF system is still in development; so existing systems with ALS-like

capability need to be analyzed as examples of how ALS can be implemented. Third,

since the engine prognostics package is the most developed and is the focus of this thesis,

pertinent information on engine diagnostic technology needs to be presented. This

includes PHM implementation techniques and possible methods to analyze the engine

data collected from the Air Force Research Laboratory. A discussion on neural networks

is also included that provides a basic background of neural network construction and

includes research on the use of neural networks with prognostics. Finally, this thesis uses

the Java programming language to build a simulation model. Research on simulation

11

models built using the Java programming language may provide ideas and methods for

implementing a new PHM methodology.

Maintenance Strategy

Air Force maintenance strategies have evolved over the past 50 years. Walls

identifies the three maintenance strategies used today as reactive maintenance,

preventative maintenance, and predictive maintenance (1999: 151-153). Reactive

maintenance is a passive strategy where maintenance actions are not taken until the

system fails (Walls and others, 1999: 152). This is obviously a very easy strategy to

implement, however, it results in unpredictable system performance and system

availability. Furthermore, since system performance is unpredictable the maintaining

organization must have a large maintenance force and deep inventory of spare parts.

Preventative maintenance removes some of the unpredictable nature of system failures,

by scheduling maintenance actions at predetermined intervals (Walls and others, 1999:

152). For example, car manufacturers recommend changing the oil filter and oil in a

vehicle every 3000 miles. An organization can plan and forecast based on a preventative

maintenance strategy. One downfall of this approach is that the maintenance is

performed on a system that is still in good working order. Time spent working on a

system that hasn't failed is really unproductive, furthermore, if a part is replaced based

simply on schedule it may have useful life left. This has led rise to the predictive

maintenance strategy. Predictive maintenance relies on the principle that, "99% of all

machine failures are preceded by the certain signs, conditions, or indications that a failure

12

was going to occur (Knapp, 1996: 1)". Predictive maintenance tries to isolate what these

signs or conditions are and use them to dictate maintenance actions (Walls and others,

1999: 153). This strategy increases the probability that a component will remain in

service for most of its useful life, and requires a minimal maintenance staff and spare part

inventory. Obviously this approach is the most complex of the three strategies and

requires complex understanding of the system and its failure modes. While each strategy

is appropriate in certain situations, the Air Force is trying to implement a predictive

maintenance strategy on the JSF program to reduce maintenance requirements.

Aircraft Prognostics Management

JSFPHM. The Joint Strike Fighter Prognostics and Health Management (PHM)

system is the on-aircraft hardware and software that enable predictive maintenance. The

PHM hardware consists of well-placed diagnostics and prognostics throughout the

aircraft. To the maximum extent possible diagnostics that are already used on the aircraft

will be used as part of the maintenance diagnostic suite. Scheuren notes,

Research with intelligent diagnostic systems has shown that small changes in the
relationships or levels of the various variables (e.g. vibrations modes, temperatures,
pressures, electrical resistance, etc.) that define the machine of interest are precursors to
the failure that can be reliably used to predict future failure. (1998: 3)

If it is not possible to use diagnostics already intended to go on the aircraft, then

maintenance specific diagnostics will be added to the design. The PHM software will

implement artificial intelligence algorithms to isolate faults and predict failure time.

13

One approach for implementing PHM reasoning is the Evolvable Tri-Reasoner

Integrated Vehicle Health Management System (Atlas and others, 1999: 1). This

approach actually focuses on three separate reasoners for each aircraft subsystem, and

one independent reasoner at the aircraft system level. The first subsystem reasoner is a

diagnostic reasoner that is used to isolate faults and failures. The diagnostic reasoner

records inputs from various diagnostics placed throughout the subsystem to determine the

cause of a fault. This reasoner is trained the same way diagnostic reasoners in existing

aircraft are built. Detailed failure modes and effects analysis is completed on each

subsystem and programmed into the reasoner. The second reasoner is the prognostic

reasoner. The prognostic reasoner relies on input from prognostics located throughout

the subsystem to predict the useful life remaining in components of the subsystem. The

idea behind a prognostic reasoner is that a component has a nominal component life

curve which includes variability for each component. Based on where a component is on

its "life curve" the prognostic reasoner can identify how much longer the component will

continue to function (Atlas and others, 1999: 2-4). The final subsystem reasoner is an

anomaly reasoner. The anomaly reasoner is used to classify off-nominal behavior. The

anomaly reasoner collects off-nominal data that can later be used to update the prognostic

or diagnostic reasoner (Atlas and others, 1999: 11).

The system level reasoner is the Reasoner Integration Manager (RIM). The RIM

relies on input from the prognostic reasoner, diagnostic reasoner, and anomaly reasoner

to determine if maintenance action is required. The RIM uses prognostic input to

characterize where a component is on its life curve and how far away it is from its

nominal curve. The diagnostic reasoner is used to isolate what is causing the failure and

14

the necessary repair action. Finally, if a component or subsystem is operating in an off-

nominal condition the anomaly reasoner provides input about what could possibly be

occurring in the system. The RIM uses input from all the reasoners to best characterize

the state of a subsystem and recommend any necessary maintenance actions (Atlas and

others, 1999: 9-10). The reasoning algorithms used on the JSF are intelligent

mathematical models such as rule based reasoning, model based reasoning, cased based

reasoning, neural networks, fuzzy logic, and genetic algorithms (Scheuren, 1998: 3).

The PHM algorithms are developed in a very methodical process. First, the

failure modes and effects analysis of the aircraft systems and subsystems is performed.

Obviously, the JSF is still in the development phase, so this analysis is solely based on

engineering design. Second, the failure modes and effects analysis is used to determine

which subsystems need to have health management capability. Finally, for those systems

or components that merit health management capability, the failure modes and effects

analysis is molded into an aircraft model. For example, if one engine failure mode is that

a compressor blade becomes dislodged, the effects ofthat failure are linked to the cause

and used in a reasoning algorithm (Scheuren, 1998: 3).

The JSF is still in the development phase and as such the reasoning algorithms are

developed off of engineering design. The advantage to using neural networks, fuzzy

logic, or other reasoning algorithms is that as the system matures, the PHM system

improves (Scheuren, 1998: 4). As health data is accumulated on the aircraft, the

reasoners will be retrained to report more accurate and helpful health information. This

is truly the power of the PHM subsystem. If during flight testing for example, the test

crew finds that a certain engine seal has a long wear-in time, the PHM can be trained to

15

recognize that anomalous behavior and not trigger a maintenance action. The PHM has

the potential to define the operational envelope of the aircraft.

Boeing 777 and DS&S Maintenance Management. There are other examples of

maintenance management systems being implemented in aircraft, such as the Boeing 777.

The Boeing 777 system was developed in a similar manner as the JSF PHM. The

abductive algorithms were written in parallel with the engineering design of the aircraft

(Felke, 1994: 3-4). Boeing had to deal with several significant issues in developing the

Central Maintenance Computer (CMC) in order to make it effective. First, the

appropriate level of resolution needed to be determined. A model that is too general does

not provide sufficient accuracy, and a model that is too detailed is difficult to build and

maintain. A careful balance between these two extremes was maintained by balancing

the fault detection requirement with the implementation and maintenance cost. When the

cost was too high, alternative arrangements were sought (Felke, 1994: 4-5). The second

issue that had to be dealt with was the natural time lapse between the start of component

failure and notification to the CMC of this time. To overcome this time shift the model

logic and algorithms were trained to include this phenomenon (Felke, 1994: 1-2). The

final issue that had to be resolved was how to build the system while requirements were

still being generated. In response Honeywell built a proprietary tool called the Data

Capture Tool (DCT) (Felke, 1994: 3). The DCT shielded the airborne software from the

details of the exceptional data items. Engineers responsible for each system used the

DCT to enter their system data, which was then integrated into an aircraft level model.

This process allowed the 777 and CMC design to occur in parallel with minimal rework

required.

16

Another system that closely resembles the JSF autonomic logistics system in its

entirety is Data Systems & Solutions Company (DS&S) real-time engine condition

monitoring (ECM) system. The first airline to contract with DS&S to use the ECM

system is German-based Condor whose fleet consists of 13 Boeing 757-300 aircraft,

powered by Rolls-Royce RB211-535 engines (DS&S, 26 July 2000 press release).

During flight, engine data is transmitted from the aircraft to a DS&S engine health center

in the United Kingdom for processing. In July 2000, this data went online via the

Internet site enginedatacenter.com so the DS&S, Condor, and Rolls Royce have real-time

data availability (DS&S, 26 July 2000 press release). The online system tracks engine

performance data, recommends maintenance actions based on flight data, and even tracks

spare part shipments.

Engine Prognostics

JetSCAN. JetSCAN system is currently being used by the British Royal Air Force

to examine oil samples for material chemical composition, size, and shape (morphology).

The system was initially designed to solve a Tornado RB 199 engine problem where

metal chip detectors were failing to detect significant bearing material losses. The

JetSCAN system uses a scanning electron microscope to analyze a collected oil sample.

Using material knowledge of the system being sampled, the oil analysis helps maintainers

determine location, type, and rate of wear that is occurring in the engine. This

information is used to calculate failure risk, develop trends, and estimate the time to

failure. JetSCAN has increased the magnetic chip detector removal interval by 100%

17

(went from 25 to 50 flight hours), which reduces costs by eliminating unnecessary engine

removals and preventing on-wing engine failures (www.ds-s.com, 2000: n. pag.).

The JetSCAN system is also seeing trial use on US Air Force installations. The

Air Force hopes that JetSCAN can solve the #1 safety issue in Air Force Material

Command; the F-16, F-18 F-100 engine #4 bearing problem (Pomfret, 2000: 3). The

JetSCAN technology is a good example of predictive maintenance using information on

the aircraft (in this case engine oil) to predict aircraft failure. The drawback, of course, is

that oil samples still must be taken and analyzed off-board.

JSFEngine Prognostics. In addition to normal engine diagnostics, one JSF

contractor has developed PHM specific prognostics. Pratt-Whitney performed the first of

two-planned Seeded Fault Engine Tests (SFET) in 1999 to test three engine health-

monitoring systems. The first system is the Engine Distress Monitoring System (EDMS)

that examines the engine exhaust gas. The system detects the electrostatic charge

associated with debris present in the exhaust gas. The system provides real-time warning

of incipient fault conditions. Similarly, the Ingested Debris Monitoring System (IDMS)

detects electrostatic charge of debris in the inlet to the engine. The final system is the oil

monitoring system that detects electrostatic charge of debris in the engine oil system

(Powrie and Fisher, 1999: 11-12).

The three systems all work using the same principle; under normal operating

conditions a healthy sensor detects some level of electrostatic charge. If the electrostatic

signal has significant deviation from this normal value then somewhere in the system

component level degradation is occurring. The JSF PHM engine algorithms account for

18

normal increase in electrostatic charge that occurs over time as the system is 'worn-in'

(Powrie and Fisher, 1999: 12-13).

The SFET test yielded significant results. The sabotaged engine test runs

successfully demonstrated the capabilities of the above-mentioned sensors. Powrie notes

that some faults went undetected and there were false detections (1999: 18). For example

in the ingestion tests, the IDMS was tested to discriminate between Category 0,1, and 2

debris. Category 0 includes non-damaging debris. During each test, 10-90 category 0

detections were observed, primarily due to insect ingestion. Category 2 refers to

damaging debris. There were cases where category 0 debris triggered category 2

detection, but the exact number of instances is not included in the article. Finally,

category 1 refers to debris whose threshold has not been defined in the control logic

database or reasoning. Basically, if a category 1 condition exists, the control algorithms

can't discern what entered the engine. As the debris database fills out, these occurrences

should become more rare. One other significant finding of the oil system tests was that it

is hard to diagnose the system if more than one component is failing. The system detects

a fault, but cannot reason what caused the detection (Powrie and Fisher, 1999: 18-19).

Digital Signal Processing. Signal processing background is important to this

thesis because actual F-100 engine data has been obtained which can be used to help

build a simulation methodology for the PHM component of the JSF ALS. As part of an

Air Force sponsored Small Business Innovative Research (SBIR) contract in 1999,

Frontier Technology analyzed actual aircraft engine data using interesting techniques.

The purpose of Frontier's work is to determine whether existing engine instrumentation

can effectively be used to detect degraded engine performance and predict engine

19

performance. The focus of their work was on using existing engine instrumentation

because it saves the time and money of retrofitting AF aircraft with additional hardware

or software. This approach obviously fits within the realm of predictive maintenance,

because Frontier is trying to predict engine failure using various engine diagnostics

(Keller and Eslinger, 1999: 7-10).

The data that Frontier collected came from 17 test runs of an F-100-PW-220

engine performed at the Arnold Engineering and Development Center (AEDC). The data

include 77 parameters instrumented on an AF F-100 engine. The test data was not

specifically collected to investigate engine prognostics; rather it was collected as part of

an experiment to characterize the F-100 engine in different flight conditions. During the

final test run the engine failed due to a portion of a sixth stage high-pressure compressor

blade detaching. Because the test data was collected at many different flight conditions,

Frontier decided to start by analyzing transient data in the tests because it represented the

only repeatable data in the experiment. Specifically, 9 transient test runs where the

engine went from idle to military power in 2 minutes were analyzed (Keller and Eslinger,

1999: 7-10).

To analyze the data Frontier developed two methods to test independent

parameters and other metrics made up of several parameters. The first technique is all

parameter visualization. It looks at relative changes of a parameter over time using color

(Keller and Eslinger, 1999: 10). If a parameter changes color very little during a test or a

series of tests, a blue or green bar represents the parameter. If, however, the parameter

begins to change values significantly the color changes to red. The idea behind this

approach is that if the system fails then somewhere in the system something must be

20

happening. A parameter that doesn't change will not be useful in predicting a particular

failure. The second method that Frontier developed is called all parameter trending. This

technique provides a single number characterization of deviations in measured

parameters based on transient data from a test run relative to an established basis group of

test runs (Keller and Eslinger, 1999: 10-12).

One of the metrics used by Frontier is hyperspace mean deviation. For the

technique the nine test runs were divided into 3 groups of 3 runs where the first group

contained tests 1,2, and 3; the second group contained tests 4, 5, 6; and the third group

contained test runs 7, 8, and 9. For a given parameter or group of parameters the average

value of the nine test runs is calculated and then the average for each of the subgroups is

calculated. Frontier speculated that the third subgroup should have a larger distance from

the overall mean, which could be used to show incipient failure (Keller and Eslinger,

1999: 12-13).

To this point Frontier's results are promising. The all parameter visualization

technique works well at seeing how individual parameters change throughout a test. The

hyperspace mean deviation technique initially looked promising, however, the company

noticed that the results of the analysis were very correlated to parameters controlled by

the test crew that ran the tests. The correlation makes it difficult to determine if the

experimental settings caused the metric to change, or if the metric is in fact indicating an

impending failure. The Air Force Research Laboratory has extended the Frontier

contract, so the company plans to further examine non-correlated metrics it has

developed (Keller and Eslinger, 1999: 27-29).

21

Simulation

Predictive Maintenance Simulation. Szczerbicki has developed a predictive

maintenance simulation for an industrial condition-monitoring service group that

performs inspection, vibration, oil, and wear debris analysis (1998: 482). The model

simulates the monitoring service and is built to optimize the manning scale and

instrument resources for the service. The model is built using the SLAMSYSTEM

simulation language and defines a unique methodology for modeling predictive

maintenance (Szczerbicki and White, 1998: 481).

The model is built as a traditional discrete event simulation. The model creates

entities at specified intervals that represent the vibration analysis and oil analysis for the

system. Resources such as maintenance staff, analysis machinery, and facility

management act upon the entities. The model includes logic for routing each analysis

task through the simulation. For example, the probability of a vibration analysis being

created that is corrupted is governed by a Triangle(0, .08,1.0) distribution; if the entity is

corrupted the model logic knows to immediately generate another vibration analysis

entity (Szczerbicki and White, 1998: 492). All of this logic is driven by probability

distributions; no form of artificial intelligence is implemented.

The maintenance simulation ran for 12 simulated weeks and was used to

determine staffing levels for the maintenance activity. Basically, the model was used for

parametric analysis by changing the number and skill level of crew assigned to the

different maintenance groups. Using this approach, the model was able to successfully

optimize the maintenance crew configuration. The model was verified and validated

22

using simple entity flow tests and a bottom-up dynamic testing strategy. Individual

components of the model were tested before the model was put together in whole. Once

the whole model was built Szczervicki used the TRACE animation option to verify the

model (Szczerbicki and White, 1998: 492-497).

ALSim. Air Force Captain Rene Rebulanan (GOR-00M) built a top-level JSF ALS

simulation model. He modeled the system using the Silk collection of Java simulation

classes. His model includes a JSF class, a scheduler class, a PHM class, a supply class, a

base supply class, a depot supply class, a JDIS class, and a maintenance class. These

classes basically mirror the elements of the JSF maintenance and supply chain. Each

class includes the methods necessary to simulate operation of the JSF ALS in its entirety.

ALSim's current PHM class simply calculates the time when the PHM detects degraded

performance of a JSF line replaceable unit as a constant percentage of the items mean

time between failure (Rebulanan, 2000: 29). ALSim is designed to be a flexible

simulation, and items such as the PHM detection time (percentage listed above) can

easily be changed. Captain Rebulanan's thesis varied the detection time between 90%,

95%, and 99% of the components life. As an example, for an LRU life of 1000 hours,

ALSim was run using PHM detection times of 900 hours, 950 hours, and 990 hours.

ALSim's measures of performance are JSF availability, the cumulative number of

sorties taken per 24-hours for the entire simulation period, and the accumulated wait-time

due to supply. The first performance measure is the proportion of time a JSF aircraft is

available for mission. Each JSF object created includes an availability time dependent

statistic that tracks this value. The second parameter is the cumulative number of JSF

sorties taken per 24-hours for the simulation period. This is collected using a simple

23

count observational statistic. Finally, the accumulated wait-time due to supply is

determined by tracking the time a JSF aircraft object spends in the queue waiting for a

part (Rebulanan, 2000: 42-43).

Captain Rebulanan's thesis simulated six months (183 days) of JSF ALS operation

using four ALS enabled aircraft and four non-ALS enabled aircraft. The simulation was

replicated 30 times and statistical analysis run comparing the four ALS aircraft to the four

non-ALS aircraft. The results showed that the ALS enabled aircraft were statistically

different then the non-ALS enabled aircraft. For all three measures of performance the

ALS aircraft showed better performance then the non-ALS aircraft: aircraft availability

is higher, cumulative sorties flown is higher, and wait-time due to supply is lower

(Rebulanan, 2000: 42-53).

Artificial Neural Networks

One of the most common methods for detecting aircraft failures appears to be the

application of neural nets. In the aircraft failure arena the neural network acts as a

classification algorithm - classifying a healthy system or a failing system. Figure 3

shows the physical representation of a neural network. A neural network is a collection

of nodes that process signals. Each node takes a weighted sum of its input to establish its

net input and then transforms the input using a linear, sigmoid, or hyperbolic function

(Bauer, 2000: 4). A linear combination of the weights applied to the inputs yields the

output. The goal of training a neural network is to optimize the weights such that the

error between the actual output and the predicted output is minimized.

24

Output layer

Hidden layer

Input layer

Figure 3. Neural Network Construction

To train a neural network the data must be split into three pieces: training,

training-test, and validation. The validation data is not used until the network is fully

trained. The training and training-test data are used to actually train the neural network.

During one epoch all the training data is passed through the network and weights are

calculated that minimize the assignment error (actual to predicted output). After each

epoch the training-test data is passed through the resulting network to determine if the

network has been sufficiently trained. If the prediction error is too high in the training-

test dataset, then another epoch of training data is fed into the network to further train it.

When the training-test dataset error is minimized, the network is sufficiently trained.

There are two big advantages to training a neural network as a predictor. First,

because nonlinear sigmoid and hyperbolic transformations are used the classification

accuracy of neural networks is generally higher than linear predictors. Second, unlike

discriminant analysis or basic regression, neural networks do not require independent

data. This removes the hassle of checking for independence and then transforming the

25

data to comply with the assumption. These advantages make neural networks very useful

and simple to use.

One example of neural networks being applied in maintenance classification is an

F-16 Fire Control Radar (FCR) study done in 1996. The neural network design included

three layers (input, hidden, and output) and was used to classify the faulty avionics

system. The goal of the study was to be able to classify with 90% accuracy whether a

radar system was a "lemon", "bad actor", or "normal". All three conditions indicate a

faulty system or failing system. A system is classified as a lemon if it is classified as a

healthy system in different aircraft. A bad actor identifies a system that is classified as

healthy on an aircraft during one diagnostic test and subsequently classified as failing on

another diagnostic test. Normal identifies an always-faulty system. The study concluded

by achieving a maximum classification accuracy of 80%.

Conclusions

The JSF Autonomie Logistics System is revolutionary and pushes the state-of-the-

art in logistics and maintenance management. Although the system is still being

designed, enough literature about the ALS and comparable systems exist to make

considerable headway towards better defining PHM in ALSim. Furthermore, subscale

test data on the JSF engine prognostics will be very useful. Several data analysis

techniques were presented that can be used to analyze failure data and develop the PHM

methodology.

26

III. Methodology

Introduction

The following methodology will be used to more accurately reflect PHM

operation in ALSim. This is not to say that the current PHM component is incorrect or

that it doesn't provide sufficient information about the JSF ALS. In fact, ALSim was

used to provide meaningful results about ALS capability as part of Capt Rebulanan's

thesis. This thesis effort focuses on making the PHM component more realistic. The

results will hopefully be able to help the Air Force further understand the capability of

ALS, and develop a meaningful Concept of Operations (ConOps) for the JSF aircraft.

This chapter focuses on the method developed and implemented to more

accurately model the JSF PHM component of ALS. The approach to solving the problem

breaks down into three processes. The first of these is to gather data on the JSF PHM

system that can be used to build a model of the system. Actual system data is the best to

analyze the system and build a representative model, but for reasons stated in the next

section this is not possible at this time. The second process is to analyze the data that was

gathered to determine how it could best be used to model PHM. To add realism to the

PHM component a neural network will be used to analyze the PHM data and characterize

the system's performance. From the neural network, a database is built that maintains

27

probability of false alarm, probability of detection, and the time associated with false

alarm or detection for specific component failure times. The final process is to input the

database back into ALSim to make it more accurate. The following sections break down

these three processes into further detail to clearly show the methodology used to model

the PHM.

Sensor Data

Existing Datasets. The best way to accurately model the PHM component of

ALS is to use real-world PHM data. Unfortunately for the JSF system this is difficult

because the aircraft is still largely an engineering drawing. Although flight-testing of the

Boeing and Lockheed Martin prototypes is underway, these prototypes have no PHM

capability for cost reasons. The best alternative to using JSF data is to use data from a

similar system. As the literature discussed in Chapter 2 outlines, the greatest abundance

of PHM-type data is in aircraft engines. Two alternate data sources were found that

potentially could be used to model PHM. Ultimately neither of these two sources of data

was used for reasons discussed below.

The first source of data mentioned in Chapter 2 is F-100-PW-220 engine data

collected several years ago at Arnold Engineering and Development Center (AEDC).

The engine was not being tested for fault detection reasons and as such did not have any

suite of fault diagnostics. The tests were simply performance tests run to characterize the

engine. On what became the final test, the engine experienced a compressor blade

28

detachment that prematurely ended the test series. The tests were run at different

operating conditions, although across the 17 tests there were nine "idle to military power"

test sequences. The last "idle to military power" test sequence was run during test 14.

To analyze this data all 77 engine parameters were differenced between the nine different

sequences to see if any parameter may have been able to predict the failure.

Unfortunately, even within a specific test sequence the parameters varied too much to

make any meaningful conclusions. Furthermore, any difference that was seen could not

be decoupled from possible test run conditions (operating altitude for example). This

data set did not prove to be useful.

The second set of data analyzed was the JSF seeded fault engine test (SFET1 and

SFET2). This data looked very promising because the tests were specifically run to test

PHM components at the development level. The data came for the Aeronautical System

Center Propulsion Directorate, which supports the JSF program office. Once the data

was in hand it became clear that the PHM components were not included, and that the

only data available was typical engine diagnostics. Furthermore, the test plan from the

test series was not written so there was no formal documentation of any given test. The

data was accompanied only by a several page spreadsheet that had one-line goals for each

test run. Using the spreadsheet, several test configurations were found that differed only

in the aspect that the first test was run without the fault present and the second run with

the fault present. Again the engine parameters were differenced to look for trends. Two

problems developed. First, there was no log of when a fault was induced into the system

and consequently no way to know if a parameter was indeed detecting a fault in the

system. Second, the tests were all run at different operating conditions (throttle position

29

for example), which made it impossible to tell if a parameter changed due to operating

condition or incipient failure.

To overcome these deficiencies a simulation was developed to generate a PHM

component sensor signal that could be analyzed. The drawback to this approach is that

the simulation had to be very generic since it could not be baselined with PHM data.

With this in mind a Java program was written to generate a sensor signal for a given set

of input conditions. The resulting Signal Generator uses input from a graphical user

interface (GUI) to generate a PHM sensor signal.

Signal Generator. The Signal Generator is a very generic simulation that builds a

sensor signal based on user input. The only "data" available to build a representative

simulation were several journal articles that described in some detail how the PHM

system will notionally operate (Scheuren, 1998; Powrie, 1999). The key components

drawn from the literature are the factors that could adversely affect the PHM's ability to

detect a failure. Using this information, the simulation builds a notional sensor signal.

The basis for the Signal Generator really comes from the ingested debris

monitoring system (IDMS) and/or the engine distress monitoring system (EDMS). These

sensors were discussed in Chapter 2, and are used as prognostics in the JSF engine to

predict mechanical failures. Both sensors operate by measuring the electrostatic

discharge of the gas that flows through the engine. Under normal operating conditions

each sensor produces a baseline signal that represents the "normal" amount of

electrostatic charge that exists in an engine. As an engine component degrades and sheds

material the amount of electrostatic charge in the gas flow increases. The failing

component can be isolated because different metals lead to different sensor readings.

30

Using the above information the baseline signal from the Signal Generator could

be programmed. Obviously the process is time-dependent so a time-series process is

used to build the sensor signal. The governing equation to build the signal is:

s^ju + icxs^ + S (1)

where

st

M
c

St-l

8

is the signal value at time t
is the mean of the signal
is a coefficient that induces correlation between signal readings (set at .8)
is the signal value at time t - 1
is a standard normal noise term ~ Normal(0,l)

To further describe how the simulation works it is necessary to look at the GUI

interface (Figure 4).

JSF PHM Signal Generator

The JSF PHM Signal Generator builds
a PHM sensor signal based on the
selected settings.

100

300

Signal Nominal Mean

Component Life

Component MTBF I 3000

Run Simulation

Numberof Replications 30

0 3

JLTJ::
15

Tl
M$i so

Wearintimeas % of life Wearin occurrence rate (%)

Signal Sensitivity to Changing Flight Conditions

10 50

► I
Adverse flight condition occurrence rate (%)

PHM Failure Prediction

v30 20

Jj JJL
Variability in failure start

Figure 4. Signal Generator User Interface

31

The user interface includes four text boxes that can accept user input and four

slider values that can be manipulated. The first text box is for the signal nominal mean.

This can be any value, but the simulation currently is programmed for 100 - if the value

is changed other values in the code need to be changed accordingly. Using a mean of 100

the steady state signal is centered on 500. The second box allows the user to enter the

component life. This is the time when the component for which the signal is being

generated has completely failed (JSF is grounded). The simulation is programmed to

randomly determine this value, but for the purposes of this thesis it was easier if the

component life could be entered. Rather than wait for a random draw to yield a life that

could be used in data analysis, a meaningful value can be entered. The third text box is

the exponentially distributed mean of the component's failure time - commonly called

mean time between failures (MTBF). Most of the prognostics being developed for the

JSF will operate at 10s to 100s Hertz, however for the Signal Generator as built, seconds

or minutes make sense as the time units. The final text box is for the user to input the

number of replications to be run at a specific setting.

The slider bars are essentially used to alter the mean (ju in Equation 1) for

different flight conditions. The PHM literature revealed three primary concerns for a

signal change. The first is component wear-in. An engine seal, for example, takes time

to set, which will be reflected in a prognostic sensor signal. The first slider value under

"Signal Sensitivity to Component Wear-in" is used to determine how long the component

is sensitive to wear-in conditions. The slider represents a percent of the component

MTBF entered by the user. The second slider is used to determine how sensitive the

component is to wear-in anomalies. This value again is a percent. As an example if the

32

slider bar value is 30, then 30 percent of the resulting wear-in portion of the signal will be

off-nominal.

The slider under "Signal Sensitivity to Changing Flight Conditions" changes |i in

Equation 1 due to changes in flight conditions. Consider a JSF aircraft going from idle

throttle to full afterburner. The mechanical stress this places on the engine temporarily

leads to higher electrostatic readings. This slider value, similar to the "Signal Sensitivity

to Component Wear-in" slider is represented as a percent. The final slider is the

"Variability in Failure Start" slider, and is used to indicate the variability in the failure

onset time. In building the Signal Generator a point in time has to be chosen to start the

failure portion of the sensor signal. This slider allows the user to input the variability of

when that failure portion of the signal should begin. As discussed below the Signal

Generator is programmed to start the failure portion of the signal at 90% of its life. This

slider value controls the variability ofthat start time - it represents the standard deviation

of the start time and ranges from 0 to 2 (0 to 0.02 standard deviations).

Sisnal Generator Algorithm. The Signal Generator is built using two Java

classes. The first is JSFGui and holds the user interface and the main program. The

second class is SensorSignal which has five methods used to build the sensor signal and

process it. The program is setup as a Java application that can be run on any operating

platform.

The first part of the signal generated is the wear-in portion. The wear-in portion

of the sensor is calculated by multiplying the "Wearin time as % of life" slider value

(percent) by the component MTBF. The wear-in portion of the sensor is thus

independent of the actual life of the component - for a given component it's the same no

33

matter the components failure time. The mean of Equation 1 is changed based on the

values of the "Wearin occurrence rate" slider and the "Adverse flight condition" slider.

The sum of these slider values is compared to a uniform random draw (between zero and

one). The sum of both slider values is used because at this stage of the component's life

it is exposed to both wear-in conditions and flight conditions. If the random draw is less

than the slider values, then Equation 1 is modified using the following equation:

p = fi + (px2.25) (2)

where

/7 is the adjusted mean
p. is the user entered mean
p is a Uniform(0,1) random draw

An element of randomness is included because the signal change will be different based

on the event. The value of 2.25 is used because it keeps the steady state signal from

exceeding 510, which is used in the program to indicate component failure. When a

random draw is performed and it triggers a "wear-in event", the mean is adjusted using

Equation 2, then four iterations of the signal are calculated using Equation 1 (with the

adjusted mean). Four time units are chosen because the events are supposed to be

transient in nature. This can easily be changed if necessary. As an example of the wear-

in process consider the following: if the two slider values are set at 15 (.15) and 10 (.10),

the random draw is compared to .25. If the random draw is .20, then the mean is adjusted

and four signal measurements generated using the adjusted mean. The process of

generating the wear-in portion of the signal is accomplished using the wearinGenerator

method in the SensorSignal class.

34

The second portion of the signal that is generated is the "flight" portion. The

flight portion of the signal represents that portion of the signal that is not influenced by

wear-in conditions or failure conditions. To generate this portion of the signal the same

algorithm is used as described above for the wear-in portion of the signal with one

exception. The random number draw is compared to only the "Adverse flight condition"

slider. If the random number is less than the slider percentage, Equation 2 is used to

calculate the adjusted mean and then Equation 1 used to generate four signal

measurements. There is nothing in the literature that suggests four measurements are

correct or constant, however the goal is to simply model a transient event. The value

could easily be changed if necessary. The flight portion of the signal is generated using

the flightGenerator method in the SensorSignal class.

The last portion of the signal is the "failure" portion. Failure is defined when the

signal measurement reaches 510 (assuming the starting mean is 100). To determine when

the failure will start Equation 3 is used:

'/=[(* */,) + .9] x/e (3)

where

tf is the length of time the signal is considered in failure state
</) is a standard normal (0,1) random draw
fs failure slider divided by 1000 (range of 0 to .02)
lc is the component life

Equation 3 is used to determine when the failure portion of the signal will begin. The

failure begin time is normally distributed with a mean of 90% of the component life and

the standard deviation is user defined using the failure slider. Using this beginning

35

failure time, the slope of the failure signal is calculated using Equation 4. Finally

Equation 5 is used to actually generate the signal.

510-500 (4)

s,=Vi+[/0x(-7 + (.6x0)] (5)

where

ß is the slope of the line between 510 and 500
9 is a Uniform(0,1) random draw

st, st-i same as defined in Equation 1

The uniform random draw in Equation 5 permits some randomness in the failure portion

of the signal. For each failure signal measurement, the signal increment is uniformly

distributed between 0.7 and 1.3 times the baseline signal increment.

The Signal Generator builds a notional sensor signal. Its purpose in this research

is simply to provide data from which a PHM modeling methodology can be developed.

When actual JSF sensor data is obtained the Signal Generator can be modified to

accurately reflect the real world data.

Signal Processing

Once the signal is generated it needs to be analyzed to determine if and when

component failure can be predicted. The goal, again, is to be able to predict impending

failure. Discriminate analysis, and building an artificial neural network are the best

potential analysis methods for analyzing the signal data. The basic approach of both

36

analysis methods is discriminating between various populations. The component in a

healthy state and the component in a failure state are the two populations that need to be

differentiated. Neural networks tend to have higher accuracy rates than discriminate

analysis because neural networks use nonlinear functions. However, predicting healthy

versus failing components is currently a one-dimensional problem (sensor signal). With

this in mind the neural network analysis and discriminate analysis should lead to similar

classification accuracies. As the JSF begins flight testing and operational use, extensive

aircraft data will be gathered that can be used to predict aircraft failure. With a large

collection of data a neural network has the best ability to classify the component as

healthy or failing, so a neural network methodology will be developed that can be

implemented later.

To successfully train the neural network it needs to be exposed to the full range of

data. To achieve that goal the Signal Generator was run for 30 replications with a mean

time between failure (MTBF) of 3000 at the various component lives listed in Table 1.

Table 1. Signal Generator Component Life Settings

Component Life Cumulative Dist
300 0.10
700 0.21
1100 0.31
1500 0.39
2100 0.50
2700 0.59
3700 0.71
4900 0.80
7200 0.91
14100 0.99

37

The first column represents the component life (when the component fails), and the

second column is the cumulative exponential distribution using the respective component

life and mean MTBF. The following example should clarify how to interpret the data in

Table 1. Using the exponential cumulative distribution with mean 3000, the probability

that the component life will be less than 300 is -0.10 or 10%. The table shows that the

component lifetimes were chosen in 10% increments over the full range of possible

lifetimes. This table is important for two reasons. First, it shows that the range of

operating conditions for a component with MTBF equal to 3000 will be adequately

covered. Second, the cumulative distribution information is useful in analyzing the data

and for possibly extending the results to components of any MTBF.

The simulation settings for each component life are listed in Table 2.

Table 2. Signal Generator Simulation Settings

Parameter Setting

Signal Mean 100

MTBF 3000

Replications 30

Wear-in time as percent of life 3 (0.03 or 3%)

Wear-in occurrence rate 15 (0.15 or 15%)

Adverse flight condition occurrence rate 10 (0.10 or 10%)

Variability in failure start 20 (0.02 or 2%)

38

Based on these settings the component will be subject to wear-in events for 90 time units,

and the wear-in events will occur 25% of the time. The flight condition events will occur

10% of the time. Finally, the failure portion of the sensor signal is normally distributed

about 90% of the component's life with standard deviation of .02%. For the way the

Signal Generator is written these values were found to be reasonable starting positions.

The final element of processing the signal is putting it in a meaningful form to

train the neural network. Feeding the raw data to the network is not realistic and

furthermore not practical. The raw data is very transient in nature and the purpose of the

PHM system is to diagnose the long-term health of the JSF aircraft. To achieve this

effect the raw signal is averaged, or batched, to smooth out the signal. Notionally the

batched mean of a healthy component will be less than the batched mean of a failing

component. One experiment performed as part of this research is determining what batch

size is most appropriate for accurately modeling PHM. Traditionally batching is used in

simulation analysis when only one or two simulation runs can be performed. Batching

the simulation run allows meaningful statistical analysis to be completed on the

simulation. When choosing a batch size in a simulation environment the goal is generally

to use a batch size large enough to get independent data (one batch is independent from

another). For this research the batch size is chosen to balance two goals - minimal false

alarms, and timely failure detection. The neural network will determine at what value a

component can "safely" be classified as operating healthy in contrast to what value the

component can be classified as failing. A method in SensorSignal was added to perform

the batch operation (batchSignal).

39

The other element of signal processing involves identifying a batch as "healthy"

or "failing". The Signal Generator builds a three-column matrix that can be used in the

neural network. The first column is the batched signal values. The remaining two

columns are indicator variables for the health of the component. The first state of health

is "healthy" (hereafter referred to as healthy) and takes on the value 1 if the component is

healthy and 0 if the component is failing. The second state of health is "failing"

(hereafter referred to as failing) and takes on the value of 1 if the component is failing

and 0 if the component is healthy. Table 3 shows how a typical output file looks.

Table 3. Signal Generator Output Form

Batched Signal Healthy Failing

502.576 1 0

509.678 0 1

The Signal Generator algorithm distinguishes between healthy and failing based

on the condition of the component at the end of a batch. If the component is healthy at

the conclusion of the batch then the batch is labeled healthy. Similarly if the component

is failing at the end of a batch then the batch is labeled failing. Using this definition, a

batch of 10 that begins with 9 healthy signal measurements and finishes with one failing

signal will be labeled as failing. By definition the Signal Generator classifies the wear-in

and flight portion of the raw signal as healthy. The failure portion of the raw signal is

40

identified as failing. Consequently, any batch that includes the failure portion of the raw

signal is labeled failing.

Signal Generator Verification and Validation

Before the Signal Generator was used it was verified and validated. Verification

insures the program does what it is intended to do, and validation addresses whether the

Signal Generator is representative of the real life system. To properly verify the system

operates as intended three aspects of the system had to be checked. First, the process of

generating the raw signal had to be examined to insure the generated signal properly used

the user input. Second, the batching process needed to be verified. Finally, the process

of appending the healthy and failing indicator status to the batched signal array had to be

verified.

To insure the raw signal properly represented user input two approaches were

used. All of the Java programming was done using Symantec's VisualCafe programming

environment. VisualCafe has a very robust debugging capability that allows the user to

run the Java application in a step-by-step fashion. Breakpoints can be added anywhere in

the code and the debugger runs until it hits a breakpoint. At each breakpoint the user can

look at the value of all the program variables. Using this capability, breakpoints were

added to all the logic conditions and loops of the Signal Generator and the system was

run multiple times to capture any errors. Several errors that would have otherwise gone

unnoticed were corrected using this approach. The other verification step used was

41

simply graphing the generated signal to insure it looked as intended. Generating signals

at extreme values and comparing the results graphically showed the algorithm works as

intended.

Verification of the batching process and the process by which the indicator

variables were added was much easier. Again, VisualCafe's internal debugging

capability was utilized and proved helpful. Perhaps more convincing, however, the raw

signal for a given run could be brought into Excel and manually batched and compared to

the same batched signal generated by the Signal Generator. Similarly, the healthy and

failing status could be added in Excel to the batched signal and compared to the Signal

Generator output. If the Excel manual results differed from the Signal Generator then the

algorithm had to be looked at again.

Validation of the Signal Generator is very difficult, and probably not meaningful.

No data exists on the JSF PHM system against which to compare the Signal Generator

output. Furthermore, the real purpose of the Signal Generator is to generate a notional

signal that incorporates transient effects. It doesn't really matter what the signal looks

like, so long as it incorporates the transient effects and has a definite failure status.

Graphically examining both the raw and batched signal provides the best indication that

the system produces a proper signal.

Neural Network Construction

To build the neural network, Statistical Neural Network Analysis Package

(SNNAP) was used. SNNAP is a Microsoft Windows based product, which is very easy

42

to use. The mathematical analysis performed in building the neural network is

transparent to the user, who merely selects criteria for constructing and training the

network. The goal is to build a network using all the data generated using the Signal

Generator. The resulting neural network can then be used to build a distribution of

failure detection times and build a distribution of false alarm times.

To construct the neural network one input and two outputs were used. The input

is simply the batched signal. The two outputs are indicator variables signifying if the

sensor is measuring a healthy or failing component. For example if a batched signal

represents a healthy component then the "Nominal Signal" output has a value of 1 and

the "Failing Signal" output has a value of 0. The network has 10 nodes in the middle or

hidden layer. The input node is transformed using a linear function, while the hidden

layer and output layer nodes are transformed using a sigmoid function. The sigmoid

function enables the neural network to build a relationship using a nonlinear equation.

One concern in using a neural network for this problem is that substantially more

data are collected in the healthy state than in the failure state. This could potentially fool

the neural network into classifying all the data as healthy or nominal. To prevent this

from happening only a subset of the healthy data is used to train the network. The subset

is generated by identifying the number of failure state data collected and then randomly

selecting an equivalent number of healthy state data. For example if 100 failure data

exist in the training set then close to 100 healthy data will be randomly selected to

complement the failure data. The modified data set is broken into three pieces. The first

piece represents the validation data that is never used to train the network; it is only used

for validation and is 25% of the data. The remaining 75% is broken up into training data

43

and training-test data. Of the 75%, on a given training epoch, two-thirds of the data is

used for training the network and one-third is used to test the network.

The built neural network uses a back propagation training method, which is not

very efficient but will always converge to an optimum solution. A back propagation

network trains by minimizing root mean square error (RMSE), where RMSE is the error

between a predicted output value and the actual output value. Once the RMSE is

minimized a confusion matrix is built of the training, training-test, and validation data.

The confusion matrix measures the classification accuracy of the network. If the network

is built with representative data then the confusion matrices for each data set should lead

to similar classification accuracies.

Building Failure and False Alarm Distributions

Once the neural network is built the next step is to use it to build failure and false

alarm distributions for a given component life. The first step to accomplish this is to run

the Signal Generator at each component life for many replications and run the data

through the trained neural network. For each batched mean the neural network will

predict whether the component is healthy or failing. The neural network output is used to

build the distribution of predicted failure time and the false alarm rate. To build a

distribution of failure detection times a database is populated with the time when the

neural network first detects incipient failure for a given component life. Across 30

replications for each component life setting, sufficient information is gathered to build a

histogram of failure times. Using Arena's Input Analyzer the empirical data can be fit to

44

a normal distribution and the parameters calculated. A false alarm is defined as a batch

that the neural network predicts is failing, but is actually healthy. The false alarm rate

can then be determined by looking at the proportion of replications that have a false

alarm. To build a false alarm distribution the times of false alarm for a given component

life are cataloged and fit to a distribution. Figure 5 shows how the false alarm and failure

detection time data are collected. The component life in the figure is 1500, and a section

A BC D EFG H 1 : J ! K ;
Batch Size 10
Life
Rep

1500
1 :

Rep Time False Alan Failure Detectic Batched Sign. Healthy Failing pred Heall pred Failii pred HeaKpred Failing
2
2

1180 FA
1190

504.778 1 0 0.064674 0.935898
500.873! 1 0 0.97275 0.027279

0: 1
1 0

2:
2

1200
1210;

498.872: 1 0 0.999947 5.34E-05
499.55: 1 0 0.999817 0.000183

1 0
V 0

2
2
2:
2
2

1220
1230
1240
1250
1260

501.399; 1 0 0.95127 0.048769
502.507: 1 0 0.91581 0.084136

1 0
1 0

500.373
501.812
502.628
501.448
500.827

1 0 0.993642: 0.006354
1 0 0.940322 0.059688
1 0 0.908098 0.091836

1 0
1 0
1 0

2
2

1270;
1280:

1 0 0.949803 0.050233
1 0 0.975052 0.024973

1 0
1: 0:

2
2
2
2

1290;
1300:

499.58
500.323

1 0 0.999799 0.000201
1 0 0.994825 0.00517

1 0:
1 0:

1310:
1320:

501.618
497.403

1 0 0.945174 0.054852
1 0 0.999962 3.82E-05

1 0;
1 0:

2
2
2

1330:
1340:
1350;

499.202
501.108
500.651

1 0 0.999921 7.98E-05
1 0 0.961865 0.038178
1 0 0.983536 0.016474

1 0
1 0
1 0

2
2

1360 500.516
1370: 500.877

0 1 Ö.989122 0.010879
0 1 0.972596 0.027434

1 0
1 0

2
2

1380: 501.556
1390; 502.243

0 1 0.946792 0.053238
0 1 0.927862 0.072109

1 0
1 0

2
2

1400
1410

502.875
503.537

0 1 0.884988 0.114924
0 1 0.706455 0.293529

1 0
1 0

2 1420 FD 504.201 0 1 0.267679 0.733051 0 1
2 1430 504.832 0 1 0.056903 0.943633 0 1

Figure 5. Neural Network Output

of replication 2 is shown. Column C shows that at time 1180 the batched signal value is

504.778, which the neural network classifies as failing (FA). Column F and G, however,

45

show the actual batch status as healthy. Looking at this component life, there is now one

false alarm out of 30 replications. The false alarm time is collected to build the false

alarm time distribution. The second thing to notice in Figure 5 is when the neural

network predicts the system is failing. At time 1420 the system detects the component is

failing (FD), even though the failure portion of the signal actually began at time 1360.

The failure detection time is annotated and when added to the failure detection times

from the remaining replications will be sufficient to build a failure detection time

distribution. The analysis results in three pieces of information that will be used in

ALSim: false alarm rate, failure detection time, and false alarm detection time for a

given component life.

ALSim Modifications

The goal of this thesis effort is to develop a more accurate PHM methodology to

use in ALSim. The previous sections discuss the methodology employed to generate

more realistic failure detection times and add the reality of false alarms. The result of

this methodology is essentially a database of failure detection time distributions, false

alarm probability, and false alarm occurrence time distributions. The next step is to add

this information into ALSim and the logic to handle false alarm occurrences.

The ALSim PHM component currently works in a very simplistic manner. A

random failure time is drawn and the JSF detects this failure at 95% of the drawn failure

time. When the PHM component detects the failure (95% of random draw) it knows

46

when the actual failure time is and allows the aircraft to fly up until that failure time.

Meanwhile the logistics chain is taking the necessary actions to repair the JSF aircraft.

The ALSim PHM component has no false alarm allowance.

The existing PHM random failure draw will still be used. The resulting failure

time will be compared to the database of failure times created. For values not explicitly

included in the database, the failure detection time, false alarm probability, and false

alarm occurrence time will have to be interpolated. Two additional random variate draws

will have to be added to ALSim. The first will be to determine if the component will

have a false alarm or if the component will operate until failure. This is simply

implemented by comparing the result of a uniform (0,1) random draw to the false alarm

probability for the failure time. If the random draw is less then the false alarm

probability then the component will experience a false alarm. Otherwise the component

will operate until the failure detection time. The second random draw will be to pull a

false alarm occurrence time or a failure detection time. The distributions for these two

events will be cataloged in ALSim.

The final modification to ALSim is adding the necessary logic for responding to

false alarm occurrences. Nothing needs to be added for the failure detection, the existing

logic can still be used. The only change is that the failure detection time will be variable

rather than a fixed 95% of the LRU life. The concept of operations for the JSF logistics

system is still largely undefined, particularly to the level of detail needed to handle false

alarms. Obviously if a JSF aircraft detects failure the logistics chain begins. The way

failures are handled in ALSim currently is that the PHM communicates with the JDIS

which then starts the logistics process. There is no person in the loop - the repair process

47

is simply begun. Since the concept of operations is so immature, the false alarm logic

will be implemented as if the false alarm were an actual failure. The repair process will

be initiated and a healthy LRU exchanged for a new LRU.

Conclusions

The preceding sections detail a well-planned and appropriate methodology for

modeling PHM. The data being used to implement the methodology is, by necessity,

notional. Nonetheless this research focuses on the approach, and once actual data

becomes available it will be straightforward to implement the proposed methodology.

The Signal Generator is a tool that is designed with sufficient flexibility to provide

meaningful data about PHM operation and its sensitivities. To a large extent this

capability will not be exploited in this research. Additional research could and should be

done using the Signal Generator to further understand PHM operation.

The specific outcomes of this modeling approach will be more accurate failure detection

times and realistic detection probabilities. Used in ALSim this information will be useful

for developing the JSF Concept of Operations (ConOps), and for meaningfully

characterizing the JSF ALS capability.

48

IV. Analysis and Results

Introduction

This chapter includes the results of this research effort. First, results from the

Signal Generator are presented to illustrate how the Signal Generator works. Second, the

neural network analysis is presented. Next, a trade study of the link between failure

detection time and false alarm rate is presented. The trade study is necessary to

characterize the relationship between failure detection time and false alarm rate. Next,

the failure detection time data and false alarm rate data is presented and explained. The

final failure and false alarm results are chosen for incorporation in ALSim. Finally, the

ALS im implementation is presented.

Signal Generator Output

For purpose of illustration the Signal Generator code was modified for the initial

run to break up the signal into its component pieces and show how the signal is put

together. For this illustration the component life is 1500 and the remaining user settings

are the same as defined in Table 2. Running the Signal Generator created a signal with

the following characteristics: the wear-in portion of the signal includes the first 90 time

units; the flight portion of the signal makes up time 91-1385; and the failure portion of

the signal starts at 1386. Figure 6 shows the wear-in portion of the signal.

49

Wear-in Signal

494

■Wear-in

50

Time

100

Figure 6. Wear-in Signal

The steady state signal converges around 500. The signal does show correlation, and the

intermittent spikes are most likely "wear-in events". The flight portion of the signal is

built after the wear-in portion and is pictured in Figure 7.

Flight Signal

510

490

•Flight

500 1000

Time

1500

Figure 7. Flight Signal

50

The flight portion of the signal clearly shows some peaks that represent the "flight

condition events". The flight signal begins at time 91 and finishes at 1385. The final

piece of the sensor signal is the failure portion of the signal shown in Figure 8.

Failure Signal

512
510

0)
3 bU8
ra
> 506
« 504 c
O) 502
V)

500
498

■ Failure

1350 1400 1450 1500 1550

Time

Figure 8. Failure Signal

The failure portion of the signal starts at 1386 and the part completely fails at time 1500.

The Signal Generator algorithm is written such that at failure the sensor reading is 510.

There is randomness in the failure signal, but it is difficult to distinguish because the

signal is incremented in such small steps at each time unit. Figure 9 shows the complete

signal put together by the Signal Generator.

51

Complete Signal

509

507

505

503

501

499

497

495

 Raw Signal /

llyU/—

I I

500 Time 1000 1500

Figure 9. Complete Signal

Figure 9 clearly shows why the signal needs to be batched prior to entry into the neural

network. The signal is very noisy and would lead to poor classification accuracy if it

were entered as is. Batching the signal smoothes it out which leads to better results. The

batched signal essentially just averages the signal for some amount of time. Later in this

chapter a detailed discussion of the batch size is presented, but for illustration purposes

Figure 10 shows the effect of batching using a batch size of 10. The batched signal

covers the transient effects and is definitely smoother than the raw signal.

52

Batched Signal (10)

510
508
506
504
502
500
498
496

♦ Batch(10)

Raw Signal
•
♦

♦
♦

\^% Hi ♦ «*► • ♦ S *

i| ♦ ;,vy - *♦ ^
I I ■ ■

500 1000 1500

Time

Figure 10. Batched Signal

Neural Network Analysis

To train the neural network 30 replications of each component life (Table 4) were

run using a batch size of 5, 10, and 20. As mentioned in Chapter 3, the raw data is

Table 4. Component Lifetimes

Component Lifetimes

300 700 1100 1500 2100 2700 3700 4900 7200 14100

53

predominantly healthy which could inadvertently cause the network to predict every

batch as healthy. To prevent this condition, approximately the same number of healthy

batches and failing batches were used. As an illustration consider the 30 replications

using batch size 20. This results in 57,450 total signal batches, 51,777 healthy batches

and 5,673 failing batches. To get a more equal number of healthy and failing batches, the

51,777 healthy batches are assigned Uniform (0,1) random variables. The batches are

sorted on the random variable and only those variables with random variables less than

0.12 are kept. The result is 6,190 healthy batches and 5,673 failing batches are used to

train and validate the neural network.

Once the healthy and failing batches are selected for input into the neural

network, they must be divided into training and validation data. As mentioned in Chapter

3 the data set is broke into 75% training and 25% validation. Following through on

illustration above, the training set has 4,662 healthy batches and 4,304 failing batches.

The validation set has 1,528 healthy batches and 1,369 failing batches. Internally

SNNAP further partitions the training data set into a training set and a training test set for

each epoch. This is accomplished by using a 2/3 to 1/3 ratio.

Using a batch size of 20 the neural network trained for 160 epochs and the

minimized root mean square error is 0.391. Each epoch consists of passing the training

data through the neural network and comparing the network predictions to the actual

predictions. After each epoch, the neural network node weights are adjusted, the training

and training-test data sets redefined, and then the training data is passed through the

network. In the instance of batch size 20 data this iterative process occurred 160 times.

One indication of how well the neural network classifies is by generating a confusion

54

matrix. SNNAP will generate a contusion matrix for the training data and the training

test data. An Excel spreadsheet is used to build the confusion matrix for the validation

data. The confusion matrices are given in Figure 11.

Training Confusion Matrix Training-test Confusion Matrix
Predicted Predicted

Actual
healthy failing

Actual
healthy failing

healthy 3101 7 healthy 1553 1
failing 1044 1825 failing 536 899

Classification Accuracy 82.42% Classification Accuracy 82.03%

Validation Confusion Matrix
Predicted

Actual
healthy failing

healthy 1526 2
failing 529 840

Classification Accuracy 81.67%

Figure 11. Trained Neural Network Confusion Matrices

The confusion matrices show how accurately the neural network classifies the signal

batches. The classification accuracies listed in Figure 11 are for 30 replications of each

component life, so the network has been trained over the entire range of component

lifetimes.

To build the confusion matrix an assignment rule is used to classify the networks

output. The neural network output (healthy and failing) ranges in value between 0 and 1.

SNNAP uses a classification rule of 0.5 to generate the training and training test

confusion matrices. The 0.5 cutoff equates to a batch signal value of approximately

503.878. Batch values above 503.878 are predicted as failing and values below that are

55

predicted as healthy. For example, if for a given batched signal the network output for

healthy equals 0.3, then healthy is assigned the value 0 and failing is assigned 1.

Alternatively, if the prediction is 0.6, then healthy is assigned the value 1 and failing is

assigned 0. The network's assignment is then compared to the actual component state.

Since the validation confusion matrix is built in Excel, the assignment rule can be

changed to see how that impacts the networks classification accuracy. More about this

will be discussed later in the chapter.

The first row of the confusion matrices can be used to classify the false alarm rate.

This row represents all of the actual healthy batches. The batches that the network

incorrectly predicts as failing but are in fact healthy are in effect false alarms. For

example, in the validation confusion matrix there are 2 false alarm batches. There are

two ways to interpret this data. First, of the 1528 healthy batches only 2 were incorrectly

classified which is less than 0.5% of the batches. This would appear to be a good false

alarm rate. However, the second way of looking at this is that 2 false alarms occurred in

a fixed number of replications. For this initial training data set the number of replications

is difficult to determine because the datasets have been broken into several pieces. When

the trained neural network is used to classify 30 replications of a given component life it

is not uncommon to see up to 10 false alarm batches out of 30 replications or 33% false

alarms. Clearly the number of false alarms needs to be carefully defined and a

classification rale used to accurately represent the data.

The second row of the confusion matrices represents all of the actual "failing"

batches and can be used to classify the failure detection times. The high incidence of

56

healthy predictions for actual failing components signifies that there is a time delay in

detecting failure.

Early Failure Detection Time versus False Alarm Tradeoff

The preceding confusion matrices are useful for illustrating a tradeoff in modeling

PHM. Clearly, the goal of PHM is to minimize false alarms and to allow for the earliest

possible detection of component failure. Unfortunately, these two goals are linked. As

the number of false alarms is decreased, failures are detected later in the component life.

There are two possible alternatives for balancing this tradeoff. The first is to change the

batch size, and the second is to change the neural network assignment rule.

Batch Size Study. Since batching the signal smoothes it, one method of

decreasing the number of false alarms is to increase the batch size. As the batch size gets

larger the batch signal is less affected by transient conditions, decreasing the variation in

the signal and the number of false alarms. The drawback to this approach is that for short

component lifetimes a larger batch size pushes out failure detection time.

Figure 12 shows how the batch size can be used to smooth the signal by

comparing a batch size of 20 to a batch size of 10 of the same raw signal. The batch

values of the batches composed of 20 signals is affected less by the transient events than

the batches composed of 10 signals. The smoother signal leads to fewer healthy batches

being labeled as failing.

57

Batch Size of 10 vs Batch Size of 20

512

510

508

506

504

502

500

498

496

□ Batch(10)
♦ Batch(20)

500 1000
Time

1500

Figure 12. Batch Size of 10 vs Batch Size of 20

Figure 13 shows that a smaller batch size leads to a noisier signal that will

increase the number of false alarms.

Batch Size of 10 vs Batch Size of 5

512
510
508
506
504
502
500
498
496
494

o Batch(5)

♦ Batch(10)

500 1000 1500

Time

Figure 13. Batch Size 10 versus Batch Size 5

58

The impact of batch size on false alarm rate can be clearly seen in Table 5. The

percentage under each life column represents the proportion of time that a false alarm

Table 5. Batch Size 10 and 20 False Alarm Rates

False Alarm Rate
Life 300 700 1100 I 1500 2100 2700 3700 4900 7200 14100
Batch Size 20 2.00% 4.44% 5.76% 7.78% 10.89% 11.56% 14.22% 19.11% 26.67% 46.22%
Batch Size 10 14.67% 22.67% 36.44% 41.78% 54.44% 64.89% 74.44% 85.33% 92.67% 99.78%
t-test p-value 1.22E-07 8.02E-08 2.53E-09J6.40E-10 2.51 E-14 3.29E-16 6.55E-19 3.18E-21 8.40E-16 1.22E-11

would occur for that component life.

The percentages were found by performing 15 macro-replications at each

component life. Each macro-replication consists of 30 replications. For example,

looking at the component life of 1100, a total of 450 replications were run of the Signal

Generator and then put into the neural network. If during the first set of 30 replications

the neural network predictions led to 5 false alarms then the false alarm rate for that

replication would be 5/30 or 16.67%. The remaining 14 sets of 30 replications would

similarly be analyzed and then a mean value from the 15 macro-replications can be

derived. For a batch size of 10 this mean value is 36.44% and for a batch size of 20 the

value is 6.36%. For this analysis any one batch misclassified as "failing" leads to a false

alarm. Whether or not this is appropriate is discussed later.

While increasing the batch size is advantageous for decreasing the number of

false alarms, it has an adverse affect on detecting failure time for short component lives.

For example, using the Signal Generator to represent a component with life 300, the

failure signal on average will begin at time 270. Using a batch size of 20, only two

59

batches will be labeled as failing, whereas a batch size of 10 allows three batches of

failure data. As a result the batch size of 10 will detect failure earlier than the batch size

of 20. Table 6 shows the affect on batch size for this experiment only impacts the failure

detection time for lifetimes of 300 and 700. Beyond time 700, there is no statistical

difference (a = 0.05) between the batch size 20 and batch size 10 average failure

detection times. The first row of Table 6 has the component lifetimes. The second and

third rows show the average failure detection time using a batch size of 20 and a batch

size of 10 respectively. As an example consider component life 700. Across 30

replications the average detection time for the batch size 20 data is 675, while the average

detection time for the batch size 10 data is 669.

Table 6. Batch Size Affect on Failure Detection Time

Failure Detection 1 ime
Life 300 700 1100 1500 2100 2700 3700 4900 7200 14100
Batch Size 20 300 675 1054 1425 1980 2542 3495 4594 6764 13257
Batch Size 10 292 669 1047 1424 1975 2551 3486 4617 6773 13205
Benefit 100% 20% 13% 2% 4% -6% 5% -8% -2% 6%
Significant Dif Yes Yes No No No No No No No No

The benefit measures the benefit of using a batch size of 10 versus a batch size of 20.

Sticking with a component life of 700, the lead-time before failure using a batch size of

10 is 31 (700-669). Similarly the lead-time before failure using a batch size of 20 is 25

(700-675). The percent benefit is then (31-25)/31 or 0.20 (20%). The final row shows

whether the difference in detection times is statistically different using a = 0.05. The

Wilcoxon Signed Rank Test is used to test the first four component lifetimes, because the

results are not normally distributed. Beyond a lifetime of 1500, a two-sample t-test

60

(unequal variance) is used to test the difference. Using a batch size of 5 doesn't improve

the average detection time for component lifetimes 300 and 700 and is actually

statistically worse beyond 700 compared to batch size of 10.

Clearly batch size is very influential in minimizing the number of false alarm

batches and in determining the earliest possible failure detection. For the component

lifetimes used in this experiment a batch size of 20 is most advantageous in minimizing

false alarms. To insure the earliest possible failure detection time a batch size of 10 is

best, although the batch size 20 results are not statistically different beyond a lifetime of

700. Based on these results the batch size 20 results are carried forward for the

remaining analysis.

Neural Network Assignment Rule. The other option for managing the balance

between false alarms and failure detection time is to modify the neural network

assignment rule. For the analysis presented above the neural network classified a signal

batch as "healthy" if the healthy prediction is greater than 0.5; similarly a signal batch is

"failing" if the failing prediction is greater than 0.5. Any given batch will only satisfy

one of the above conditions.

One method of looking at the sensitivity of the neural network output to the

classification rule is to build a Receiver Operating Characteristic (ROC) curve. A ROC

curve shows the relationship between some parameter and the output of the neural

network. Figure 14 below shows a ROC curve for a component with life 1500.

61

Figure 14. ROC Curve Example

To build the ROC curve the network classification rule is varied from healthy

equal zero and failing equal one to healthy equal one and failing equal zero. The false

positive axis corresponds to the first row of the confusion matrix, and the true positive

axis corresponds to the second row of the confusion matrix. The bottom left corner of the

ROC curve represents one extreme of trying to minimize the number of false positives

(false alarms). In order to achieve this goal, the ability of the network to predict failing

components is compromised. The other extreme (upper right corner) is to error towards

predicting when a component is failing. For this thesis application, operating in this

region insures that the network detects a failing component immediately.

62

Figure 15 makes the transition from the ROC curve to false alarm rates, and

failure detection time. Figure 15 includes the average false alarm rate and average failure

c o
o o
« a
9>

re

1428.0
1427.0
1426.0
1425.0
1424.0
1423.0
1422.0
1421.0
1420.0
1419.0

♦ >.3 - Healthy, > .7 - Failing

^ > 4 - Healthy, > fi - Failing

♦
>.5 - Healthy, > .5 - Failing

♦
>.6 - Healthy, > .4 - Failing

I I I

0.00% 10.00% 20.00% 30.00%

False Alarm Rate

40.00%

Figure 15. Affect of Changing Classification Rule

detection time for five different assignment rules. Starting from the upper left hand

corner of the graph, the classification rule is ranged from 0.3 healthy, 0.7 failing to 0.7

healthy, 0.3 failing. When the classification rule is healthy greater than 0.3, the neural

network prediction has a low false alarm rate. As that classification rule is increased to

0.7, the number of false alarms increases. The tradeoff again is the failure detection time.

When the network classification errors toward healthy, the failure detection time is later

than when the network classification errors towards failing.

Over the full range of the classification rule, the failure detection time changes by

10% (1420 to 1428). The difference in the false alarm rate is more substantial, varying

63

between 10% and 30%. These results are for only 30 replications (versus 15 macro-

replications), so the false alarm rate results are not actually this dramatic. Table 5 shows

that the actual false alarm rate for a component life of 1500 is 7.78% (.5, .5) versus the

approximate 22% shown above. Since the false alarm rate for the batch size 20 data is

not too bad using the .5, .5 classification, the remainder of the analysis will be performed

using that rule. Once ALSim is modified, sensitivity analysis can be performed by

varying the classification rule to determine the optimum setting.

Failure Detection Time and False Alarm Rate Results

After the Signal Generator produced the initial sensor signals, and the neural

network was trained to predict healthy and failing signal batches, the failure detection

time data and false alarm data can be obtained. The failure detection data is obtained by

running 30 replications of each component life through the neural network. Thirty

replications are sufficient to get an average failure detection time and to determine the

spread of the detection times. The false alarm data is generated as discussed above.

Included below is some discussion about what false alarm strategy is appropriate.

Failure Detection Time. The failure detection data collection was done for batch

sizes of 5, 10, and 20. The average failure detection times for batch size of 10 and 20

were presented in Table 6. The average failure detection time using a batch size of 5 is

worse than the batch size of 10. The batch size 5 results are worse because the batches

are influenced too much by the transient events. The results from Table 6 show that there

64

is virtually no difference in the average failure detection time for the batch size 10 and

batch size 20 data except early in the component life.

The next step in building the PHM failure detection capability is to determine the

spread of the data. The failure detection times for all 30 replications were entered into

Arena's Input Analyzer, to build a distribution of the failure detection times. The

highest-rank distribution for both batch sizes is shown in Table 7. The Arena p-values

Table 7. Failure Time Distribution

Batch Size 10
Life Dist/Parameters Arena p-value Shapiro-Wilk

300 Tria(280, 290, 301) <.005 <.001
700 Tria(660, 668, 681) 0.125 <.001
1100 Tria(1010, 1060, 1070) >0.75 0.09
1500 Tria(1390, 1410, 1470) 0.236 0.12
2100 Norm(1980, 28) >0.15 0.33
2700 Norm(2550, 33.3) >0.15 0.76
3700 Norm(3490, 44.9) >0.15 0.23
4900 Norm(4620, 58.5) >0.15 0.87
7200 Norm(6770, 83.6) >0.15 0.15
14100 Norm(13200, 162) >0.15 0.90

Batch Size 20
Life Dist/Parameters Arena p-value Shapiro-Wilk
300 NA
700 Tria(660,681,701) 0.0206
1100 Tria(1020,1060,1080) >0.75
1500 Tria(1380, 1440,1460) 0.3
2100 Norm(1980, 28.3) >0.15 0.17
2700 Norm(2540, 28.9) >0.15 0.28
3700 Norm(3500, 51) >0.15 0.20
4900 Norm(4590,46.8) >0.15 0.42
7200 Norm(6760, 97.6) >0.15 0.05
14100 Norm(13300,153) >0.15 0.68

use the Chi Squared test for the triangular distributions and the Kolmogorov-Smirnov

value for the normality of the data. The Shapiro-Wilk test is included in SAS JMP. Five

or six histogram intervals were used to visually analyze the data, based on Sturge's Rule.

Beyond a lifetime of 1500, the data is clearly normally distributed for both batch sizes.

The component lifetimes at or prior to 1500 have failure detection times that are too

bunched together to be normally distributed and are better fit using a triangular

distribution. Two example histograms are presented in Figure 16 and Figure 17.

65

Figure 16. Failure Time Distribution for 1500 Life

\

x /

^--_

Figure 17. Failure Time Distribution for 3700 Life

66

False Alarm Rate. Unlike the failure detection time results, the false alarm rates

for the different batch sizes are quite different. Table 5 presented earlier in the chapter

clearly shows a difference in the number of false alarms for a batch size of 10 and a batch

size of 20 (batch size of 5 results in higher false alarm rates than 10). In modeling the

false alarm rates the goal is to be as accurate as possible. For the results presented in

Table 5 a false alarm consists of at least one misclassified batch by the neural network.

This may not be the best "rule" to use in defining a false alarm, but provides a reasonable

starting point.

The false alarm data from the batch size 10 data indicates a different definition of

false alarm may be needed. One possibility is that a false alarm could be defined as two

false alarm batches in a row. This makes sense, however the Signal Generator algorithm

is built such that the transient event conditions are truly random. Out of all the

replications performed, the false alarms for the batch size 20 data are roughly uniformly

distributed (using Arena Input Analyzer). As a result there are not any occasions where

two sequential batches are falsely predicted as failing. The batch size 10 data are

distributed according to a beta distribution, but similarly there are no sequential batches.

Another possible "rule" for assigning false alarms would be to classify a false alarm as

any replication that had two or more false alarm batches at any point during the

replication. This leads to lower false alarm rates, but does not have any operational or

logical basis.

Based on the results from the failure detection study and the false alarm study, the

batch size 20 data was used in ALSim to modify the PHM component. The failure

detection time for the batch size 20 data is very similar to the batch size 10 data, but has

67

more reasonable false alarm rates. For this research effort a false alarm will be classified

if any batch in a replication is falsely classified as failing by the neural network. That

means the false alarm probabilities in Table 5 will be used. Perhaps further research can

be done in this area to discover a more appropriate method.

ALSim Inputs

The Signal Generator and neural network analysis were done to build a

distribution of failure detection times, and add false alarm capability to ALSim. The

changes to ALSim to incorporate these changes are straightforward. The only Java class

in ALSim that needs to be modified is PHM. Currently, in the PHM class a detection

factor is used to determine when PHM detects a component failure. The failure detection

time distribution replaces this detection factor, and a simple uniform random draw adds

the false alarm capability.

Failure Detection Time. ALSim currently logs three notional line replaceable

units (LRUs), for which the mean time between failures 433.7 hours, 833 hours, and

952.31 hours. The Signal Generator was used to build a signal for a component with

mean time between failure of 3000. Realistically the time units on the Signal Generator

are seconds or minutes, not hours. This difference in time requires a logical and flexible

method for scaling the Signal Generator results into ALSim.

One possible solution to the scaling problem is scale the results using the

cumulative exponential distribution. Table 8 shows how the scaling would look for all

68

Table 8. Scaling Lifetime

Cumulative Dist 0.10 0.21 0.31 0.39 0.50 0.59 0.71 0.80 0.91 0.99
Signal Gen Life (3000) 300 700 1100 1500 2100 2700 3700 4900 7200 14100
LRU 1 (952.31) 100 220 340 490 675 875 1150 1550 2250 4575
LRU 2 (833) 85 190 300 430 590 775 1000 1350 2000 4000
LRU 3 (433.7) 50 100 160 225 300 400 525 700 1000 2000

three LRUs. The mean time between failure for LRU 1 is 952.31 hours. If the random

failure draw results in a failure of 875 hours, the failure detection time and probability of

false alarm would coincide with the Signal Generator lifetime of 2700. The difficulty in

using this approach is that you assume that everything in the Signal Generator, batch size

study, and neural network analysis scales from 3000 seconds or minutes to 952.31 hours.

Another approach for solving the scaling problem is to look for characteristics or

trends in the Signal Generator data for different component lifetimes that can easily be

implemented in ALSim. Generalized trends are sufficient for developing a meaningful

PHM modeling approach, and don't require such strict assumptions as presented above.

Table 9 shows the average failure detection time as a percent of the component lifetime

for the batch size 20 results and batch size 10 results. Although there is a difference at

Table 9. Failure Detection Time Trend

Life 300 700 1100 1500 2100 2700 3700 4900 7200 14100 Average
Failure Detection (20) 300 675 1054 1425 1980 2542 3495 4594 6764 13257
Percent of Life 100% 96% 96% 95% 94% 94% 94% 94% 94% 94% 95%
Failure Detection (10) 292 669 1047 1424 1975 2551 3486 4617 6773 13205
Percent of Life 97% 96% 95% 95% 94% 94% 94% 94% 94% 94% 95%

69

lifetime of 300 (confirmed in Table 6), beyond that the detection times are virtually the

same. In fact, the mean of average failure detection time as a percent of life for both

batch sizes is 95%. This average failure detection time provides a simple and flexible

method for incorporation of our Signal Generator data into ALS im.

To test how robust this approach was, all the failure detection time data was

converted to a percent of component life and put into Arena Input Analyzer. For each

component life (300 to 14100), the failure detection times across 30 replications were

simply divided by the component life. This yielded 300 values between 0.90 and 1.00

(90% to 100%). Putting these values into Arena Input Analyzer yields the following

histogram (Figure 18).

Figure 18. Failure Detection Time as Percent of Life (1)

70

The left side of the histogram starts with value 0.914, and the right side ends with 1.00.

The data is best fit using a lognormal distribution, and is not normally distributed because

of the influence of the high percentages associated with component lifetime 300 and 700.

All of the component lifetime 300 data has failure detection time of 300, which leads to

30 instances of 1.0. Removing the component 300 and 700 data yields the following

histogram (Figure 19). It is reasonable to remove these two early data points because

they represent a small percentage of the actual lifetimes. The histogram is best fit with a

Figure 19. Failure Detection Time as Percent of Life (2)

normal distribution with mean .944 (94.4%) and standard deviation 0.0141 (1.41%). The

Kolmogorov-Smirnov p-value for the distribution being normally distributed is 0.15. The

interpretation of these results is that the average failure detection time is 94.4% of the

71

component lifetime with standard deviation of 1.41%. The failure detection time in

ALSim was modified using this information.

False Alarms. The false alarm data is more difficult to generalize because it is

time dependent. The longer a component is in use the greater the probability it will

experience a false alarm. Scaling from the Signal Generator component lifetimes is

shown in Table 10. To read Table 10, consider LRU 1 component lifetime of 400.

Table 10. False Alarm Scaling

False Alarm Rate 0.02 0.04 0.06 0.08 0.11 0.12 0.14 0.18 0.27 0.38
Signal Gen Life (3000) 300 700 1100 1500 2100 2700 3700 4900 7200 14100
LRU1 (952.31) 100 220 340 490 675 875 1150 1550 2250 4575
LRU 2 (833) 85 190 300 430 590 775 1000 1350 2000 4000
LRU 3 (433.7) 50 100 160 225 300 400 525 700 1000 2000

The probability of a false alarm with this component lifetime is 0.08. Said differently,

8% of the time a component with this life will experience a false alarm. To add this

capability to ALSim, conditional statements were added to the PHM class for each LRU.

ALSim Operation. The PHM component of ALSim now has a built in failure

detection time distribution, and false alarm capability. The PHM component operates by

first selecting a component lifetime which represents the point at which the JSF will have

to be grounded because the component has completely failed. This function is unchanged

from Capt Rebulanan's work. After the component lifetime is determined, a uniform

(0,1) random draw is performed to determine if a false alarm will occur. The random

number is compared to the false alarm rate for the component lifetime. If the random

72

number is less than the false alarm rate than a false alarm does occur. Another uniform

random number draw (0, 0.9 x component life) is used to determine the time of the false

alarm. The maintenance system responds to false alarms as if it were a true failure. If the

uniform (0, 1) false alarm random draw is greater than the false alarm rate then the

system operates until failure detection. The failure detection time is determined using a

normal (0.944, 0.0141) random draw and multiplying the result by the component life.

Conclusions

This chapter outlined the results of this thesis effort. Employing the methodology

discussed in Chapter 3, the results led to a more accurate and realistic PHM component of

ALSim. The batch size study and false alarm analysis showed that using a batch size of

20 leads to the most realistic failure detection times and false alarm rates. The impact of

varying the neural network classification rule was also presented. The baseline

classification of .5 healthy, and .5 failing was used to model PHM.

Using the established neural network and a batch size of 20 the Signal Generator

was run to generate 450 replications for each component lifetime. The projection of the

neural network onto these replications yields the failure detection time and false alarm

rate information needed in ALSim. The final step was to put the failure detection time

distribution and false alarm rate into ALSim. The failure detection time was

implemented easily because the trend was that failure of a component was detected at

approximately 95% of its life. The false alarm rate had to be scaled from the Signal

73

Generator lifetimes to the ALSim LRU lifetimes. This was accomplished using the

exponential distribution.

74

V. Conclusions and Recommendations

The objective of this thesis research was to develop a PHM modeling

methodology to employ in the JSF ALS im model. It's important to remember that once

the JSF is operational the PHM modeling implementation will be a given. Data will exist

on the PHM capability, but in the meantime this research provides a useful tool for

decision makers trying to make a decision on a system that is not yet built. This research

provides insight into how PHM operates, and the sensitivity of PHM to changing aircraft

conditions. It is important to properly model and understand the PHM system being used

in the JSF, because it is the enabling technology of the autonomic logistics system.

This thesis effort began with an extensive literature review. The purpose of the

literature review was to find information that could be used to model PHM. Journal

articles on PHM, predictive maintenance strategies, data analysis and simulation

techniques were found and presented. The literature review provided a framework to

solve the problem - the methodology. The methodology developed to model PHM

involved analyzing a prognostic sensor signal with a neural network to determine when

the component associated with the prognostic would fail. Additionally, the neural

network enabled false alarm data to be determined. The preferred approach to build and

train the neural network was to use actual JSF prognostic data. Unfortunately that data is

not available. To overcome this, an interactive model was built in Java that generates a

prognostic signal based on user input.

75

A key part of the methodology was finding a way to enter the signal data into the

neural network. The raw signal was purposefully transient in nature to be as realistic as

possible. Entering the raw signal would have led to poor classification accuracy,

resulting in an unreasonable number of false alarms and unreasonable failure detection

times. A batching strategy was developed and implemented to overcome the transient

nature of the signal.

After the methodology, the results were presented. The impact of batch size on

false alarm rate and failure detection time was shown. The conclusion was that the batch

size must be chosen such that it sufficiently masks the transient effects. A batch size too

small produces unreasonable false alarm rates, and a batch size too large delays the

detection of an impending failure. Another important factor in determining appropriate

false alarm rate and failure detection times is the neural network assignment rule. The

neural network had to classify a batched signal as healthy or failing. If the assignment

rule is implemented to minimize false alarms the failure detection time increases.

Conversely, the network can maximize the lead-time in detecting a failure, but the false

alarm rate will be higher. The best method to optimize the neural network classification

is to use ALSim to differentiate between the two strategies.

For the Signal Generator settings used in this analysis a very simple failure

detection time capability was added to ALSim. On average a failure is detected at 95%

of its life. The analysis clearly showed that false alarms are time dependent and need to

be modeled as such. Basically the longer a component operates the higher its probability

of experiencing a false alarm. The ALSim modifications were minor to implement the

failure detection time. Since the false alarm data is time dependent, the analysis results

76

from the Signal Generator had to be scaled to the existing LRUs in ALSim. The ALSim

false alarm modifications were then entered as conditional statements.

Further Study

This thesis effort really was a proof-of-concept demonstration. It showed that

batching a prognostic signal and then building a neural network to predict whether the

signal is healthy or failing is a reasonable approach to model PHM. This approach

quantifies the false alarm rate and develops a distribution of failure detection times for a

component. The goal in the future is to be able to implement the modeling strategy using

actual JSF data.

Until the actual data becomes available, there is additional analysis that can be

done to characterize PHM and ALS. Clearly this research involved many assumptions

that could be analyzed using a sensitivity analysis. One example is the Signal Generator

failure signal. Currently the failure portion of the signal is assumed to be linear, and

starts at roughly 90% of the component life. This failure start time could be varied to

look at the impact of the failure detection time; or exponential or quadratic functions

could be used to approximate the failure signal. Another example of sensitivity analysis

would be to run the Signal Generator at several different settings and train the neural

network. The results presented in this effort are very specific and probably are not robust

to changing input conditions.

77

Another possible follow-on effort could look at how statistical process control

(SPC) could be used to model PHM. An SPC approach could look at building limits

around a prognostic signal to detect failure.

78

Appendix A. Signal Generator Code

/* Capt Mike Malley **
** GOR01M **
** **

** Last modified: 27 Dec 00 *

This simple extension of the java.awt.Frame class
contains all the elements necessary to act as the
main window of an application.

import java.awt.*;
import javax.swing.JTextArea;
import java.lang.String;
import java.util.*;
import java.io.*;

public class JsfGui extends Frame
{

public JsfGui()
{

settings.");

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.

//{{INITCONTROLS
setLayout(null);
setSize(875,572);
setVisible(false);
openFileDialog 1 .setMode(FileDialog.LOAD);
openFileDialog 1 .setTitle("Open");
//$$ openFileDialogl .move(24,420);
labelTitle.setText("JSF PHM Signal Generator");
labelTitle.setAlignmentQ'ava.awt.Label.CENTER);
add(labelTitle);
labelTitle.setBackgroundfjava.awt.Color.blue);
labelTitle.setForeground(java.awt.Color. white);
labelTitle.setFont(newFont("Dialog", Font.BOLD, 16));
labelTitle.setBounds(36,12,231,49);
textExplain.setEditable(false);
textExplain.setText("The JSF PHM Signal Generator builds a PHM sensor signal based on the selected

add(textExplain);
textExplain.setBounds(36,84,228,60);
textMean.setText(" 100");
add(textMean);
textMean.setBounds(204,156,63,24);
textLife.setText("300");
add(textLife);
textLife.setBounds(204,192,63,24);
labelMean.setText("Signal Nominal Mean");
add(labelMean);
labelMean.setBounds(48,156,136,19);
labelVariance.setText("ComponentLife");
add(labelVariance);
labelVariance.setBounds(48,192,136,19);
panelWearin.setLayout(null);

79

add(pane1Wearin);
pane1Weariti.setBounds(336,24,348,97);
labelWearin.setText("Signal Sensitivity to Component Wearin");
labelWearin.setAlignment(java.awt.Label.CENTER);
panelWearin.add(labelWearin);
labelWearin.setBackground(newjava.awt.Color(255,128,0));
labelWearin.setForeground(java.awt.Color.white);
labelWearin.setFont(new Font("Dialog", Font.BOLD, 14));
labelWearin.setBounds(0,0,348,24);
weartimeScrollbar.setBlockIncrement(3);
panelWearin.add(weartimeScrollbar);
weartimeScrollbar.setBounds(0,48,153,21);
wearrateScrollbar.setBlockIncrement(5);
panelWearin.add(wearrateScrollbar);
wearrateScrollbar.setBounds(192,48,153,21);
labelWearTL.setText("0");
panelWearin.add(labelWearTL);
labelWearTL.setBounds(0,24,45,26);
labelWearTU.setText(" 15");
labelWearTU.setAlignment(java.awt.Label.RIGHT);
panelWearin.add(labelWearTU);
labelWearTU.setBounds(108,24,45,26);
labelWearRL.setText("0");
panelWearin.add(labelWearRL);
labelWearRL.setBounds(192,24,45,26);
labelWearRU.setText("50");
labelWearRU.setAlignment(java.awt.Label.RIGHT);
panelWearin.add(labelWearRU);
labelWearRU.setBounds(300,24,45,26);
label5.setText("3");
label5.setAlignment(java.awt.Label.CENTER);
panelWearin.add(label5);
label5.setBackground(java.awt.Color.lightGray);
label5.setBounds(48,24,45,26);
label6.setText("15");
label6.setAlignment(java.awt.Label.CENTER);
panelWearin.add(labelö);
label6.setBackground(java.awt.Color.lightGray);
label6.setBounds(240,24,45,26);
label7.setText("Wearin time as % of life");
label7.setAlignment(java.awt.Label.CENTER);
panelWearin.add(label7);
label7.setBounds(0,72,144,24);
label8.setText("Wearin occurrence rate (%)");
label8.setAlignment(java.awt.Label.CENTER);
panelWearin.add(label8);
label8.setBounds(l 92,72,156,24);
panel 1 .setLayout(null);
add(panell);
panel 1 .setBackgroundQ'ava.awt.Color. white);
panell.setBounds(336,156,348,97);
label9.setText("Signal Sensitivity to Changing Flight Conditions");
label9.setAlignment(java.awt.Label.CENTER);
panel l.add(label9);
label9.setBackground(java.awt.Color.red);
label9.setForeground(java.awt.Color. white);
label9.setFont(new Font("Dialog", Font.BOLD, 14));
label9.setBounds(0,0,348,24);
flightScrollbar.setBlockIncrement(5);
panel 1 .add(flightScrollbar);
flightScrollbar.setBounds(60,48,201,21);
labelFlightL.setText("0");
panel 1 .add(labelFlightL);
labelFlightL.setBounds(60,24,45,26);
labelFlightU.setText("50");
labelFlightU.setAlignmentCJava.awt.Label.RIGHT);
panel 1 .add(labelFlightU);
labelFlightU.setBounds(216,24,45,26);

80

label 15.setText(" 10");
label 15.setAlignrnent(java.awt.Label.CENTER);
panel l.add(label 15);
label 15.setBackground(java.awt.Color.lightGray);
label 15.setBounds(l 32,24,45,26);
labell7.setText("Adverse flight condition occurrence rate (%)");
labell7.setAlignment(java.awt.Label.CENTER);
panell .add(labell7);
labell7.setBounds(36,72,252,24);
panel2.setLayout(null);
add(panel2);
panel2.setBounds(336,288,348,97);
labell8.setText("PHM Failure Prediction");
labell8.setAlignment(java.awt.Label.CENTER);
panel2.add(labell 8);
label 18 .setBackground(new java.awt.Color(0,l 28,0));
labell8.setForeground(java.awt.Color.white);
labell8.setFont(new Font("Dialog", Font.BOLD, 14));
labell8.setBounds(0,0,348,24);
controlScrollbar.setBlocklncrement(l);
panel2.add(controlScrollbar);
controlScrollbar.setBounds(0,48,l 53,21);
failureScrollbar.setBlockIncrement(5);
panel2.add(failureScrollbar);
failureScrollbar.setBounds(l 92,48,153,21);
labelControlL.setText(" 1");
panel2.add(labelControlL);
labelControlL.setBounds(0,24,45,26);
labelControlU.setText("6");
labelControlU.setAlignment(java.awt.Label.RIGHT);
panel2 .add(labelControlU);
labelControlU.setBounds(108,24,45,26);
labelFailureL.setText("0");
panel2.add(labelFailureL);
labelFailureL.setBounds(192,24,45,26);
labelFailureU.setText("20");
labelFailureU.setAlignmentQava.awt.Label.RIGHT);
panel2.add(labelFailureU);
labelFailureU.setBounds(300,24,45,26);
label23.setText("3");
label23.setAlignment(java.awt.Label.CENTER);
panel2.add(label23);
label23.setBackground(java.awt.Color.lightGray);
label23 .setBounds(48,24,45,26);
label24.setText("20");
label24.setAlignmentöava.awt.Label.CENTER);
panel2.add(label24);
label24.setBackground(java.awt.Color.lightGray);
label24.setBounds(240,24,45,26);
label25.setText("Control limit settings");
label25.setAlignment(java.awt.Label.CENTER);
panel2.add(label25);
label25 .setBounds(0,72,144,24);
label26.setText("Variability in failure start");
label26.setAlignment(java.awt.Label.CENTER);
panel2.add(label26);
label26.setBounds(l 80,72,168,24);
textMTBF.setText("3000");
add(textMTBF);
textMTBF.setBounds(204,228,63,24);
labelMTBF.setTextC'Component MTBF ");
add(labelMTBF);
labelMTBF.setBounds(48,228,136,19);
panel3 .setLayout(null);
add(panel3);
panel3.setBackground(java.awt.Color.yellow);
panel3.setBounds(36,276,228,101);
button 1 .setLabel("Run Simulation");

81

pane13 .add(button 1);
button 1 .setBackground(java.awt.Color.lightGray);
button 1 .setBounds(48,12,134,50);
labe!Reps.setText("Number of Replications");
pane13.add(labe1Reps);
labelReps.setBounds(l 2,72,136,19);
textReps.setText("30");
panel3 .add(textReps);
textReps.setBackground(java.awt.Color. white);
textReps.setBounds(156,72,63,24);
setTitle("JSF Signal Generator");
//}}

//{{INITMENUS
menul.setLabel("File");
menu 1 .add(newMenuItem);
newMenuItem.setEnabled(false);
newMenuItem.setLabel("New");
newMenuItem.setShortcut(newMenuShortcut(java.awt.event.KeyEvent.VK_N,false));
menul .add(openMenuItem);
openMenuItem.setLabel("Open...");
openMenuItem.setShortcut(newMenuShortcut(java.awt.event.KeyEvent.VK_0,false));
menu 1 .add(saveMenuItem);
saveMenuItem.setEnabled(false);
saveMenuItem.setLabel("Save");
saveMenuItem.setShortcut(newMenuShortcut(java.awt.event.KeyEvent.VK_S,false));
menul .add(saveAsMenuItem);
saveAsMenuItem.setEnabled(false);
saveAsMenuItem.setLabel("Save As...");
menul .add(separatorMenuItem);
separatorMenuItem.setLabel("-");
menu 1 .add(exitMenuItem);
exitMenuItem.setLabel("Exit");
mainMenuBar.add(menu 1);
menu2.setLabel("Edit");
menu2.add(cutMenuItem);
cutMenuItem.setEnabled(false);
cutMenuItem.setLabel("Cut");
cutMenuItem.setShortcut(newMenuShortcut(java.awt.event.KeyEvent.VK_X,false));
menu2.add(copyMenuItem);
copyMenuItem.setEnabled(false);
copyMenuItem.setLabel("Copy");
copyMenuItem.setShortcut(newMenuShortcut(java.awt.event.KeyEvent.VK_C,false));
menu2.add(pasteMenuItem);
pasteMenuItem.setEnabled(false);
pasteMenuItem.setLabel("Paste");
pasteMenuItem.setShortcut(newMenuShortcut(java.awt.event.KeyEvent.VK_V,false));
mainMenuBar.add(menu2);
menu3.setLabel("Help");
menu3.add(aboutMenuItem);
aboutMenuItem.setLabel(" About...");
mainMenuBar.add(menu3);
//$$ mainMenuBar.move(0,420);
setMenuBar(mainMenuBar);
II}}

Il'{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSym Window);
SymAction ISymAction = new SymAction();
openMenuItem.addActionListener(lSymAction);
exitMenuItem.addActionListener(lSymAction);
aboutMenuItem.addActionListener(lSymAction);
SymAdjustment lSymAdjustment = new SymAdjustment();
weartimeScrollbar.addAdjustmentListener(lSymAdjusrment);
wearrateScrollbar.addAdjustmentListener(lSymAdjushnent);
flightScrollbar.addAdjustmentListener(lSymAdjustment);
controlScrollbar.addAdjustmentListener(lSymAdjustment);

82

failureScrollbar.addAdjustmentListener(lSymAdjustrnent);
button 1 .addActionListener(lSymAction);

}

public JsfGui(String title)
{

this();
setTitle(title);

}

/**
* Shows or hides the component depending on the boolean flag b.
* @param b if true, show the component; otherwise, hide the component.
* @see java.awt.Component#isVisible
*/

public void setVisible(boolean b)
{

if(b)
{

setLocation(50,50);
}
super.setVisible(b);

}

static public void main(String args[])
{

try
{

//Create a new instance of our application's frame, and make it visible,
(new JsfGui()).setVisible(true);
}
catch (Throwable t)
{

System.err.println(t);
t.printStackTraceO;
//Ensure the application exits with an error condition.
System.exit(l);

}
}

public void addNotify()
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSize();

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(getInsets().left + getlnsets().right + d.width, getInsets().top + getInsets().bottom+ d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].gefLocation();
p.translate(getlnsets().left, getInsets().top);
components[i] .setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check.
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
java.awt.FileDialog openFileDialogl = new java.awt.FileDialog(this);

83

java.awt.Label labelTitle = new java.awt.Labe1();
java.awt.TextArea textExplain = new java.awt.TextArea("",0,0,TextArea.SCROLLBARS_NONE);
java.awt.TextField textMean = new java.awt.TextField();
java.awt.TextField textLife = new java.awt.TextField();
java.awt.Label labelMean = newjava.awt.Label();
java.awt.Label labelVariance = new java.awt.Label();
java.awt.Panel panelWearin = new java.awt.Panel();
java.awt.Label labelWearin = newjava.awt.Label();
java.awt.Scrollbar weartimeScrollbar = new java.awt.Scrollbar(Scrollbar.HORIZONTAL,3,2,0,17);
java.awt.Scrollbar wearrateScrollbar = new java.awt.Scrollbar(Scrollbar.HORIZONTAL,15,5,0,55);
java.awt.Label labelWearTL = new java.awt.Label();
java.awt.Label labelWearTU = new java.awt.Label();
java.awt.Label labelWearRL = new java.awt.Label();
java.awt.Label labelWearRU = new java.awt.Label();
java.awt.Label labeb = newjava.awt.Label();
java.awt.Label labelö = newjava.awt.LabeI();
java.awt.Label label7 = new java.awt.Label();
java.awt.Label label8 =newjava.awt.Label();
java.awt.Panel panell = new java.awt.Panel();
java.awt.Label label9 = newjava.awt.LabeI();
java.awt.Scrollbar flightScrollbar = new java.awt.Scrollbar(Scrollbar.HORIZONTAL,10,5,0,55);
java.awt.Label labelFlightL = new java.awt.Label();
java.awt.Label labelFlightU = new java.awt.Label();
java.awt.Label label 15 = new java.awt.Label();
java.awt.Label label 17 = new java.awt.Label();
java.awt.Panel panel2 = new java.awt.Panel();
java.awt.Label label 18 = new java.awt.Label();
java.awt.Scrollbar controlScrollbar = new java.awt.Scrollbar(Scrollbar.HORIZONTAL,3,l ,1,7);
java.awt.Scrollbar failureScrollbar = new java.awt.Scrollbar(Scrollbar.HORIZONTAL,20,l ,0,21);
java.awt.Label labelControlL = new java.awt.Label();
java.awt.Label labelControlU = new java.awt.Label();
java.awt.Label labelFailureL = new java.awt.Label();
java.awt.Label labelFailureU = new java.awt.Label();
java.awt.Label label23 =newjava.awt.Label();
java.awt.Label label24 = newjava.awt.Label();
java.awt.Label label25 = new java.awt.Label();
java.awt.Label label26 = newjava.awt.Label();
java.awt.TextField textMTBF = new java.awt.TextField();
java.awt.Label labelMTBF = newjava.awt.Label();
java.awt.Panel panel3 = new java.awt.Panel();
java.awt.Button buttonl = new java.awt.Button();
java.awt.Label labelReps = new java.awt.Label();
java.awt.TextField textReps = new java.awt.TextField();
ID)

II {{DECLARE_MENUS
java.awt.MenuBar mainMenuBar = new java.awt.MenuBar();
java.awt.Menu menul = new java.awt.Menu();
java.awt.MenuItem newMenuItem = new java.awt.MenuItem();
java.awt.MenuItem openMenuItem = new java.awt.MenuItem();
java.awt.MenuItem saveMenuItem = new java.awt.MenuItem();
java.awt.MenuItem saveAsMenuItem = new java.awt.MenuItem();
java.awt.MenuItem separatorMenuItem = new java.awt.MenuItem();
java.awt.MenuItem exitMenuItem = new java.awt.MenuItem();
java.awt.Menu menu2 = new java.awt.Menu();
java.awt.MenuItem cutMenuItem = new java.awt.MenuItem();
java.awt.MenuItem copyMenuItem = new java.awt.MenuItem();
java.awt.MenuItem pasteMenuItem = new java.awt.MenuItem();
java.awt.Menu menu3 = new java.awt.Menu();
java.awt.MenuItem aboutMenuItem = new java.awt.MenuItem();
//}}

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object = JsfGui.this)

84

JsfGui_WindowClosing(event);

}

void JsfGui_WindowClosing(java.awt.event.WindowEvent event)

{
// to do: code goes here.

JsfGuiWindowClosinglnteraction 1 (event);

}

void JsfGui_WindowClosing_Interactionl (java.awt.event.WindowEvent event)

{
try{

// QuitDialog Create and show as modal
(new QuitDialog(this, true)).setVisible(true);

} catch (Exception e) {
}

}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(java.awt.event.ActionEvent event)

{
Object object = event.getSource();
if (object = openMenuItem)

openMenuItern_ActionPerformed(evenf);
else if (object == aboutMenuItem)

aboutMenuItem_ActionPerformed(event);
else if (object = exitMenuItem)

exitMenuItem_ActionPerformed(event);
else if (object = buttonl)

buttonl_ActionPerformed(event);

}

void openMenuItem_ActionPerforrned(java.awt.event ActionEvent event)

{
// to do: code goes here.

openMenuItem_ActionPerformed_Interaction 1 (event);

}

void openMenuItem_ActionPerformed_Interaction 1 (java.awt.event.ActionEvent event)

{
try{

// OpenFileDialog Create and show as modal
int defMode =openFileDialogl.getMode();
String defTitle =openFileDialogl.getTitle();
String defDirectory = openFileDialogl .getDirectory();
String defFile = openFileDialogl.getFile();

openFileDialogl = new java.awt.FileDialog(this, defTitle, defMode);
openFileDialogl. setDirectory(defDirectory);
openFileDialogl.setFile(defFile);
openFileDialogl .setVisible(true);

} catch (Exception e) {
}

void aboutMenuItem_ActionPerformed(java.awt.event.ActionEvent event)

{
// to do: code goes here.

85

aboutMenuItem_ActionPerformed_Interaction 1 (event);

void aboutMenuItem_ActionPerformed_Interactionl(java.awt.event.ActionEvent event)

{
try{

// AboutDialog Create and show as modal
(new AboutDia1og(this, true)).setVisib1e(true);

} catch (Exception e) {

}
}

void exitMenuItem_ActionPerformed(java.awt.eventActionEvent event)

{
// to do: code goes here.

exitMenuItem_ActionPerformed_Interaction 1 (event);

}

void exitMenuItem_ActionPerformed_Interactionl(java.awt.eventActionEvent event)

{
try{

// QuitDialog Create and show as modal
(new QuitDialog(this, true)).setVisible(true);

} catch (Exception e) {
}

}

class SymAdjustment implements java.awt.eventAdjustmentListener

{
public void adjustmentValueChangedfjava.awt.event.AdjustmentEvent event)

{
Object object = event.getSource();
if (object — weartimeScrollbar)

weartimeScrollbar_AdjustmentValueChanged(event);
else if (object = wearrateScrollbar)

wearrateScrollbar_AdjustrnentValueChanged(event);
else if (object == flightScrollbar)

flightScrollbar_AdjustmentValueChanged(event);
else if (object = controlScrollbar)

controlScrollbarAdjustmentValueChanged(event);
else if (object = failureScrollbar)

failureScrollbar_AdjustmentValueChanged(event);

}
}

/* The following event listeners adjust the labels for each
* scrollbar to reflect the value of the scrollbar */

void weartimeScrollbar_AdjushnentValueChangedQava.awt.event.AdjustmentEvent event)

{
label5.setText(Integer.toString(weartimeScrollbar.getValue()));

}

void wearrateScrollbar_AdjustmentValueChanged(java.awt.eventAdjustmentEvent event)

{
label6.setText(Integer.toString(wearrateScrollbar.getValue()));

}

void flightScrollbar_AdjustmentValueChanged(java.awt.eventAdjusrmentEvent event)

{
label 15 .setText(lnteger.toString(flightScrollbar.getValue()));

}

86

void controlScrollbar_AdjustmentValueChanged(java.awt.event.AdjustmentEvent event)

label23.setText(Integer.toString(contro1Scro11bar.getValue()));

void failureScrollbar_AdjustmentValueChanged(java.awt.event.AdjustmentEvent event)

label24.setText(Integer.toString(failureScrollbar.getVa1ue()));

void buttonl_ActionPerformed(java.awt.event.ActionEvent event)

// This event listener is where the sensor signal is actually built.

// Variable declarations

int replications; //number of replications to be run
int controllimit; //out of bounds control limit
int countl; //count variable used in the reps while loop
int array Life; //integer value of double comp_life
int arrayWearin; //integer value of double wearintime
int arrayFailure; //integer value of double failStart
int arrayFlight; //integer value of double flighttime
int signalLoop; //increments comp_life to run sim in a loop

double comp_life; //expo RV draw for component life (MTBF mean)
double wearintime; //wearin portion of component life
double wearTotal;
double MTBF; //mean time between failure (ave life)
double mean; //mean of sensor signal
double wearinrate; //how often is sensor affected by wearin (%)
double flightrate; //how often is sensor affected by flight (%)
double flighttime; //how long the component is in steady state
double failure; //variability of sensor failure (%)
double failStart; //when component starts to show failure
double batchNumberl; //number of batches for pre-failure signal
double batchNumber2; //number of batches for failure signal
double batchSize; //signal batch size

Random MTBFgen = new Random(); //Life of component
Random failGen = new Random(); //Failure time generator
//get the values for the static variables from the GUI interface
replications = Integer.parseInt(textReps.getText());
controllimit = controlScrollbar.getValue();
MTBF = Double.valueOf(textMTBF.getText()).doubleValue();
mean = Double.valueOf(textMean.getText()).doubleValue();

wearintime = ((weartimeScrollbar.getValue())/100.0)*MTBF;
wearinrate = (wearrateScrollbar.getValue())/100.0;
flightrate = (flightScrollbar.getValue())/100.0;
failure = (failureScrollbar.getValue())/l 000.0;
comp_life = Double.valueOf(textLife.getText()).doubleValue();
wearTotal = wearinrate + flightrate;
//initialize variables not associated with GUI interface
batchSize = 20.0;
signalLoop = (int) comp_life;
int intBatch = (int) batchSize;

/*The simulation starts here and runs until the desired number
of replications have been run*/
while (signalLoop < 1501) {

int totalBatches = 0;
countl = 0;
int lifeNominal [] = new int [((signalLoop/intBatch)) * replications];

int lifeFailure [] = new int [((signalLoop/intBatch)) * replications];
double lifeBatch [] = new double [((signalLoop/intBatch)) * replications];

87

while (countl < replications) {

/* The following calculation determines when the failure portion of the *
* signal will begin (when does the component start to fail). I draw *
* a NORM(0,1) and multiply it by the variance selected with the *
* variance slider and then adding a mean of .10. Finally the value *
* is multiplied by the component life to determine how long the *
* failure signal array will be. */

failStart = ((MTBFgen.nextGaussian()*failure)+.l)*signalLoop;

/* Based on the slider values and the failStart calculation the *
* duration of the three phases of flight is known. To create an *
* array that has the length of each phase of flight I need the *
* phase of flight durations to be integers. This requires explicitly *
* casting the double variables as integers. */

arrayLife = (int) signalLoop;
arrayFailure = (int) (failStart);
array Wearin = (int) (wearintime);

/* Based on the random draw and the "failure" slider setting the length *
* of the failure portion of the signal could potentially be less than *
* zero. To solve this problem I add the following loop which completes*
* the action until the failure array is greater than zero. */

while (arrayFailure <= 0) {
failStart = ((MTBFgen.nextGaussian()*failure)+.l)*signalLoop;
arrayFailure = (int)(failStart);

}
/* Based on the random draw to calculate the life of the component *
* there is a possibility that there could be an array out of bounds *
* error. If there is a real short life draw the failure portion of *
* the signal still needs to be calculated. After that any remaining *
* time is given to the wearin portion of the signal. The flight *
* portion of the signal is set to zero. */

arrayFlight = arrayLife - arrayFailure - arrayWearin;
if ((arrayLife - (arrayFailure + arrayWearin)) < 0) {

arrayWearin = arrayLife - arrayFailure;
arrayFlight = 0;

}
/* The following print statements were used for verification *
** purposes only. */

System.out.print ("The component life is " + arrayLife + ". ");
System.out.println("The failure time is " + (arrayLife - arrayFailure) +".");
//System.out.print("The wearin array is " + arrayWearin + ". ");
//System.out.println ("The flight array is " + arrayFlight + ".");

double Sensorl Signal [] = new double [arrayLife]; //total signal array
double wearinSignal [] = new double [arrayWearin]; //wearin signal array

double flightSignal [] = new double [arrayFlight]; //flight signal array
double failureSignal [] = new double [arrayFailure]; //failure signal array

/* PrefailSignal array will be used to store the wearin and **
** flight portions of the signal. */
//double prefailSignal [] = new double [arrayWearin + arrayFlight];

/* Create an instance of the SensorSignal class. */

SensorSignal Sensorl = new SensorSignal();

/* Build three signal portions using methods in SensorSignal class. */

if (array Wearin != 0){
wearinSignal = Sensorl .wearinGenerator(mean, arrayWearin, wearTotal);

88

}
if (arrayFlight !=0){

flightSignal = Sensorl.flightGenerator(mean, arrayFlight, flightrate);
}
failureSignal = Sensorl.fai1ureGenerator(mean, arrayFailure, arrayLife);

/* The following three loops combine the three separate signals into *
* one signal by stacking the arrays into one array. */

/* The next three loops put the wearin and flight portions **
** of the signal together. The final loop is used to build an **
** array that will be used to batch the prefailure signal. */

for (int z = 0; z < wearinSignal.length; z++) {
SensorlSignal[z] = wearinSignal[z];

}
for (int y = 0; y < flightSignal.length; y++) {

SensorlSignal[wearinSigna1.1ength + y] = flightSignalfy];
}
for (int x = 0; x < failureSignal .length; x++) {

SensorlSignal[wearinSignal.length + flightSignal.length + x] = failureSignal[x];
>
/*
for (int t = 0; t < prefailSignal.length; t++) {

prefailSignal[t] = SensorlSignal[t];
}*/

/* The following two segments of code generate the number of **
** batches that the signal will be broken into based on a batch**
** size of 10. The if statement increases the number of **
** batches if necessary. */

batchNumberl = (arrayWearin + arrayFlight + arrayFailure)/batchSize;
intnumBatchesl = (int) batchNumberl;
if ((batchNumberl - numBatches 1) > 0) {

numBatchesl = numBatches 1 + 1;
}
/*
batchNumber2 = arrayFailure/10.0;
int numBatches2 = (int) batchNumber2;
if ((batchNumber2 - numBatches2) > 0) {

numBatches2 = numBatches2 + 1;
}
*/
/* The following array declarations are for the batched **
** signals. nominalNet and failureNet are arrays with 0 **
** and 1 in them respectively. Zero for nominal **
** component not failing and one when the component is **
** failing. */

//double flightBatch [] = new double [numBatchesl];
//double failureBatch [] = new double [numBatches2];
double signalBatch [] =new double [numBatchesl];
int nominalNet [] = new int [numBatches 1];
int failureNet [] = new int [numBatchesl];

// Create batched signal
//flightBatch = Sensorl .batchSignal(numBatchesl, batchSize, prefailSignal);
//failureBatch = Sensorl .batchSignal(numBatches2, batchSize, failureSignal);
signalBatch = Sensorl .batchSignal(numBatchesl, batchSize,

Sensorl Signal);

/* The following 4 loops build the total batched signal **
** and append a column of 0's and 1 's to it to indicate **
** nominal or failure status. */

/*
for (int m = 0; m < flightBatch.length; m++) {

89

signa1Batch[m] = flightBatch[m];

}
*/
/* A batch will be assigned as failing if at least 1 of the

signals in that batch is failing. */

int healthyState;
int failureState;
double prefailBatch;
prefailBatch = (arrayWearin + arrayFlightybatchSize;
healthyState = (int) prefailBatch;
failureState = numBatchesl - healthyState;

for (int m = 0; m < healthyState; m++) {
nominalNet[m] = 1;
failureNet[m] = 0;

}
/*
for (int n = 0; n < failureBatch.length; n++){

signalBatch[flightBatch. length + n] = failureBatch[n];
}
*/
for (int n = 0; n < failureState; n++){

nominalNet[healthyState + n] = 0;
failureNet[healthyState + n] = 1;

}

/* This loop puts the latest replication in an array **
** that will store all the replications. */

for (int i = 0; i < signalBatch.length; i++){
HfeBatch[(totalBatches + i)] = signalBatchfi];
lifeNominal[(totalBatches + i)] = nominalNet[i];
lifeFailure[(totalBatches + i)] = failureNetfi];

}
totalBatches = totalBatches + signalBatch.length;

// First try statement is the raw signal
try{

FileOutputStream file = new FileOutputStreamCval_full.dat");
BufferedOutputStream buff = new BufferedOutputStream(file);
DataOutputStream data = new DataOutputStream(buff);
for (int i = 0; i < SensorlSignal.length; i++){
String s [] = new String [SensorlSignal.length];
s[i] = Double.toString(SensorlSignal[i])+ "\n";
data.writeChars(s[i]);}
data.close();
} catch (IOException e) {
System.out.println ("Error — " + e.toString());
}

try{
FileOutputStream file = new FileOutputStreamCval_wear.dat");
BufferedOutputStream buff = new BufferedOutputStream(file);
DataOutputStream data = new DataOutputStream(buff);
for (int i = 0; i < wearinSignal.length; i++){
String vhml [] = new String [wearinSignal.length];
vhml [i] = Double.toString(wearinSignal[i])+ "\n";
data.writeChars(vhml [i]);}
data.close();
} catch (IOException e) {
System.out.println ("Error — " + e.toStringO);
}

try{
FileOutputStream file = new FileOutputStreamCval_flig.dat");
BufferedOutputStream buff = new BufferedOutputStream(file);
DataOutputStream data = new DataOutputStream(buff);
for (int i = 0; i < fiightSignal.length; i++){

90

String vhm2 [] = new String [flightSignal.length];
vhm2[i] = Double.toString(flightSignal[i])+ "\n";
data.writeChars(vhm2[i]);}
data.close();
} catch (IOException e) {
System.out.println ("Error - " + e.toStringO);

}
try{

FileOutputStream file = new FileOutputStreamCval_fail.dat");
BufferedOutputStream buff = new BufferedOutputStream(file);
DataOutputStream data = new DataOutputStream(buff);
for (int i = 0; i < failureSignal.length; i++){
String vhm3 [] = new String [failureSignal.length];
vhm3[i] = Double.toString(failureSignal[i])+ "\n";
data.writeChars(vhm3 [i]);}
data.close();
} catch (IOException e) {
System.out.println ("Error - " + e.toStringO);
}

// Second try statement is the batched signal for a single rep
/*try {

FileOutputStream file = new FileOutputStream(signalLoop +"_" + countl + "_" + countl + ".dat");
BufferedOutputStream buff = new BufferedOutputStream(file);
DataOutputStream data = new DataOutputStream(buff);
for (int i = 0; i < signalBatch.length; i++){
String s [] = new String [signalBatch.length];
String t [] = new String [signalBatch.length];
String u [] = new String [signalBatch.length];
s[i] = Double.toString(signalBatch[i])+ "\t";
t[i] = Integer.toString(nominalNet[i])+- "\t";
u[i] = Integer.toString(failureNet[i])+ "\n";
data.writeChars(s[i]);
data.writeChars(t[i]);
data.writeChars(u[i]);
}
data.close();
} catch (IOException e) {
System.out.println ("Error -" + e.toStringO);
}*/

countl++;
}
// Third try statement outputs all reps for a given setting
try{

FileOutputStream file = new FileOutputStreamCval_ba20.dat");
BufferedOutputStream buff = new BufferedOutputStream(file);
DataOutputStream data = new DataOutputStream(buff);
for (int i = 0; i < lifeBatch.length; i++){
String meml [] = new String [lifeBatch.length];
String mem2 [] = new String [lifeBatch.length];
String mem3 [] = new String [lifeBatch.length];
meml[i] = Double.toString(lifeBatch[i])+ "\t";
mem2[i] = Integer.toString(lifeNominal[i])+ "\t";
mem3[i] = Integer.toString(lifeFailure[i])+ "\n";
data.writeChars(meml [i]);
data.writeChars(mem2[i]);
data. writeChars(mem3 [i]);
}
data.close();
} catch (IOException e) {
System.out.println ("Error — " + e.toStringO);
}

signalLoop = signalLoop + 1;
if (signalLoop = 301){

signalLoop = 700;
}
if (signalLoop == 701) {

signalLoop = 1100;
}

91

if (signalLoop ==1101) {
signalLoop= 1500;

}
if(signalLoop==1501){

signalLoop = 2100;
}
if(signalLoop==2101){

signalLoop = 2700;
}
if(signalLoop = 2701) {

signalLoop = 3700;
}
if(signalLoop = 3701) {

signalLoop = 4900;
}
if(signalLoop = 4901){

signalLoop = 7200;
}
if(signalLoop==7201){

signalLoop = 14100;
}

}

}
SensorSignal Class
/* Capt Mike Malley **
** GOR01M **

** Last modified: 27 Dec 00 */

import java.io.*;
import java.util.*;

public class SensorSignal {
// SensorSignal Constructor - creates instance of a sensor signal
public SensorSignal (){
}
/* Method wearinGenerator. This method requires the signal mean, **
** a wearinTime, and wearinSens. The variable wearinTime is **
** simply the amount of time that the wearinGenerator will be **
** used to create a signal. wearinTime becomes the length of the **
** array passed back to the main program. wearinSens is the **
** sensitivity of the sensor to wearin conditions and is a **
** percent. The output of the this method is an array that **
** contains the wearin portion of the sensor signal. */

public double [] wearinGenerator (double mean, int wearinTime,
double wearinSens) {

/* Variable Declarations, seedl and seed2 are created using **
** Java's built-in Mathrandom() method so that each **
** replication has unique values, genl and gen2 are simply **
** instances of Java's 48 bit linear congruential RN that **

92

** will be used to induce randomness into the sensor signal. **
** storageVarl simply stores the uniform RN draw that is **
** compared to wearinSens to determine if a wearin "event" **
** occurs, meanshift is not a shift but replaces the mean **
** when a wearin "event" does occur. Finally, signalCorr is **
** the same as defined in JSFGui. */

long seedl = (long) (Math.random() * 80000000000000L);
long seed2 = (long) (Math.random() * 650000000);

Random genl = new Random(seedl);
Random gen2 = new Random(seed2);
double wearSignal[] = new double[wearinTime];
double storageVarl = 0;
double meanshift;
double signalCorr = .8;
wearSignal[0] = 500.0 + gen2.nextGaussian();

/* The initial wearSignal uses 500 + NORMAL(0,1) because **
** when the mean is set at 100 the signal steady state is **
** 500. If the mean is changed then, the 500 should also be **
** changed. */

for (int a = 1; a < wearSignal.length; a=a+5) {
// a=a+5 because the signal is generated in batches of 5
storageVarl =genl.nextDouble();
// if system experiences a wearin "event"
if (storageVarl <= wearinSens) {

meanshift = mean + (gen2.nextDouble() * 2.25);
// if next five signals do NOT bust array length
if ((a+5) < wearSignal.length){

for (int g = a; g < a+4; g++) {
wearSignal[g] = meanshift + signalCorr*wearSignal[g-l] + gen2.nextGaussian();

}
wearSignal[a+4] = mean + signalCorr*wearSignal[a-l] + gen2.nextGaussian();

}
// (else) next five signals bust array length
if ((a+5)>= wearSignal.length)!

for (int d = a; d < wearSignal.length; d++){
wearSignalfd] = meanshift + signalCorr*wearSignal[d-l] + gen2.nextGaussian();

}
}

}
// (else) if system operates nominally
if (storageVarl > wearinSens) {

// if next five signals do NOT bust array length
if ((a+5) < wearSignal.length)!

for (int i = a; i < a+5; i++) {
wearSignal[i] = mean + signalCorr*wearSignal[i-l] + gen2.nextGaussian();

}

}
// (else) next five signals bust array length
if ((a+5)>= wearSignal.length)!

93

for (int d = a; d < wearSignal.length; d++){
wearSignal[d] = mean + signalCorr*wearSignal[d-l] + gen2.nextGaussian();;

}
}

}
}

return wearSignal;
}

/* Method flightGenerator. This method requires the signal mean, **
** a fiightTime, and flightSens. The variable flightTime is **
** simply the amount of time that the flightGenerator will be **
** used to create a signal. flightTime becomes the length of the **
** array passed back to the main program. flightSens is the **
** sensitivity of the sensor to flight conditions and is a **
** percent. The output of the this method is an array that **
** contains the flight portion of the sensor signal. */

public double [j flightGenerator (double mean, int flightTime,
double flightSens){

/* Variable Declarations, seedl and seed2 are created using **
** Java's built-in Math.random() method so that each **
** replication has unique values. gen3 and gen4 are simply **
** instances of Java's 48 bit linear congruential RN that **
** will be used to induce randomness into the sensor signal. **
** storageVar2 simply stores the uniform RN draw that is **
** compared to wearinSens to determine if a wearin "event" **
** occurs. mean_shift is not a shift but replaces the mean **
** when a wearin "event" does occur. Finally, signalCorr is **
** the same as defined in JSFGui. */

long seedl = (long) (Math.random() * 78000);
long seed2 = (long) (Math.random() * 458900000000000L);

Random gen3 = new Random(seedl);
Random gen4 = new Random(seed2);
double flightSignalf] = new doublefflightTime];
double storageVar2 = 0;
double meanshift;
double signalCorr = .8;
flightSignal[0] = 500.0 + gen4.nextGaussian();

/* The initial flightSignal uses 500 + NORMAL(0,1) because **
** when the mean is set at 100 the signal steady state is **
** 500. If the mean is changed then, the 500 should also be **
** changed. */

for (int b = 1; b < flightSignal.length; b=b+5) {
// b=b+5 because the signal is generated in batches of 5
storage Var2 = gen3.nextDouble();
// if system experiences a flight "event"
if (storageVar2 <= flightSens) {

94

mean_shift = mean + (gen3.nextDouble() * 2.25);
// if next five signals do NOT bust array length
if ((b+5) < flightSignal.length){

for (int e = b; e < b+4; e++) {
flightSignal[e] = mean_shift + signalCorr * flightSignal[e-l] + gen4.nextGaussian();

}
flightSignal[b+4] = mean + signalCorr*fiightSignal[b-l] + gen4.nextGaussian();

}
// (else) next five signals bust array length
if ((b+5)>= flightSignal.length){

for (int c = b; c < flightSignal.length; c++){
flightSignalfc] = meanshift + signalCorr*flightSignal[c-l] + gen4.nextGaussian();

}
}

}
// (else) if system operates nominally
if (storageVar2 > flightSens) {

// if next five signals do NOT bust array length
if ((b+5) < flightSignal.length)!

for(intf=b;f<b+5;f++){
flightSignal[fJ = mean + signalCorr*flightSignal[f-l] + gen4.nextGaussian();

}

}
// (else) next five signals bust array length
if ((b+5)>= flightSignal.length)!

for (int h = b; h < flightSignal.length; h++){
flightSignal[h] = mean + signalCorr*fiightSignal[h-l] + gen4.nextGaussian();;

}
}

}
}

return flightSignal;
}

/* Method failureGenerator. This method requires the signal mean,**
** a failureTime, and compLife. The variable failureTime is **
** simply the amount of time that the failureGenerator will be **
** used to create a signal. failureTime becomes the length of **
** the array passed back to the main program. compLife is the **
** life of the component which is used to increment the signal **
** towards failure. The output of the this method is an array **
** that contains the flight portion of the sensor signal. */

public double [] failureGenerator (double mean, int failureTime,
int compLife) {

/* Variable Declarations, seed is created using Java's **
** built-in Math.random() method so that each replication **
** has unique values. gen5 is simply an instance of Java's **
** 48 bit linear congruential RN that will be used to **

95

** induce randomness into the sensor signal. Limit is **
** arbitrarily set to 510 because the steady-state signal is **
** 500. The point is I had to choose something high enough **
** for the Neural Network to detect failure. Increment is **
** the stepsize that will get from the baseline 500 to 510 in **
** failureTime. */

long seed = (long) (Math.random() * 687420000000L);
Random gen5 = new Random(seed);
double limit = 510.0;
double increment = (limit-500.0)/failureTime;
double failureSignal[] = new double [failureTime];
failureSignal[0] = 500.0 + increment;
for (int c = 1; c < failureSignal.length; c++) {

failureSignal[c] = failureSignal[c-l] + (increment * (0.7 + (0.6 * gen5.nextDouble())));
}
return failureSignal;

}

/* Method batchSignal. This method batches the raw signal into **
** numBatches with each batch having batchSize elements. The **
** method returns an array whose elements are the batched signal. */

public double [] batchSignal (int numBatches, double batchSize, double signalArray []) {

/* Variable declarations. count2, count3, and count4 are **
** simply count variables. lastBatch is the last batch to be **
** calculated. batchSignal will be returned to the main **
** program. */

int count2 = 0;
int lastBatch = numBatches -1;
double batchSignal[] = new double [numBatches];
// Loop to batch until numBatches has been achieved
while (count2 < numBatches) {

double sum = 0;
double average = 0;
int count3 = (int) (count2 * batchSize);
/* If this is the last batch then the sum and average **
** calculations need to be calculated differently. */
if (count2 = lastBatch) {

int count4 = 0;
while (count3 < signalArray.length) {

sum = sum + signalArray[count3];
count4++;
count3++;

}
average = sum/count4;

}
// (Else) when this is not the last batch
if (count2 != lastBatch) {

while (count3 < ((count2*batchSize) + batchSize)) {
sum = sum + signalArray[count3];
count3++;

96

}
average = sum/batchSize;

}
batchSignal[count2] = average;
count2++;

}
return batchSignal;

}

97

Appendix B. ALSim PHM Code

//Source file: C:/ljsf/PHM.java

import com.threadtec.silk.random.*;
import com.threadtec.silk.statistics.*;

/**
* This class represents the PHM system installed in each of the JSF aircraft
**/

public class PHM
{
// double detectionFactor = 0.01; I/O. 1;// represents the 5% PHM detection factor

double detectionFactor = 0.05; //0.1;// represents the 5% PHM detection factor
// double detectionFactor = 0.1; //0.1;// represents the 5% PHM detection factor

double nominalMean = 0.944;
double nominalStd =0.0141;

double[] probabilityFA = {.0156, .0444, .0636,
.0778, .1089, .1156,
.1422, .1822, 2714,
.3778};

double hoursLRUl [] = {0, 100.0, 220.0, 340.0,
490.0, 675.0, 875.0,
1150.0,1550.0,2250.0,
4575.0};

double hoursLRU2 [] = {0, 85.0, 190.0, 300.0,
430.0, 590.0, 775.0,
1000.0,1350.0,2000.0,
4000.0};

double hoursLRU3 [] = {0, 50.0, 100.0,160.0,
225.0, 300.0, 400.0,
525.0, 700.0, 1000.0,
2000.0};

double whenFailed = 0.0; // when during flight failure is detected
double whenDetected = 0.0; // when prognostic kicks-in

// double detectionFactor = 0.050;//0.05; // represents the 5% PHM detection factor
// PHM will detect failure within 5% of actual failure

private boolean notProcessedLRUl = true; // true --> not yet processed by PHM
private boolean notProcessedLRU2 = true;
private boolean notProcessedLRU3 = true;

/* * * * *

* METHODS (OPERATIONS)
*** _ **/

98

/**
* null constructor
**/

public PHM() {}

/* time during flight a failure occured — delta after take-off
* KEY: A part failed, when did failure occur?
*/
public void doPHM(double flightLength, int id)
{

setFailureTime(flightLength, id); // determine when failure occured
}

public void doPHM(double flightLength, int id, LRU1 LRU)
{

if (notProcessedLRU 1)
{

setPrognostic(LRU,id); // future equipment failure
setDetectionTime(LRU,id); // determine when the prognostic is done

}
}

public void doPHM(double flightLength, int id, LRU2 LRU)
{

if (notProcessedLRU2)
{

sefPrognostic(LRU,id); // future equipment failure
sefDetectionTime(LRU,id); // determine when the prognostic is done

}
}

public void doPHM(double flightLength, int id, LRU3 LRU)
{

if (notProcessedLRU3)
{

setPrognostic(LRU,id); // future equipment failure
setDetectionTime(LRU,id); // determine when the prognostic is done

}
}

/**
* this method will only be done if failure occured
* reason: can't fix a/c before or DURING FLIGHT
**/

private void setFailureTime(double flightLength, int id)
{

// ASSUME: PHM detection of failed parts are Uniformly distributed (during flight)
Uniform uniPHMdetect = new Uniform(0.0, flightLength);

whenFailed = uniPHMdetect.sample(); //draw a sample
JDISclass.trackTimeFailed[id]= whenFailed;

}
/**
* allows maintenance to reset PHM
**/

public void clearFailureTime(int id)
{

JDISclass.trackTimeFailed[id]=0.0;
}

99

/**
* the following methods are PHM's guess on when the LRU fails
**/

private void setPrognostic(LRUl LRU, int id)

{
// ASSUME: PHM is 100% accurate, it can predict the exact
// time the equipment fails

whenFailed = LRU.getFailureTime();
JDISclass.trackTimePrognostic[id][0]= whenFailed;

notProcessedLRUl = false;
}
private void setPrognostic(LRU2 LRU, int id)

{
// ASSUME: PHM is 100% accurate, it can predict the exact
// time the equipment fails

whenFailed = LRU.getFailureTime();
JDISclass.trackTimePrognostic[id] [1]= whenFailed;

notProcessedLRU2 = false;

}
private void setPrognostic(LRU3 LRU, int id)

{
// ASSUME: PHM is 100% accurate, it can predict the exact
// time the equipment fails

// Systeraout.println ("\n at PHM.setPrognostic LRU3 not processed?:");
whenFailed = LRU.getFailureTime();
JDISclass.trackTimePrognosticfid] [2]= whenFailed;

notProcessedLRU3 = false;
}
/**
* these methods simulate the time of prognostic
* reason: this is necessary to determine WHEN replacement parts will be ordered
**/
private void setDetectionTime(LRUl LRU, int id)

{
/*
Uniform LRU1FA = new Uniform (0.0, 1.0);
Uniform timeFA = new Uniform (0.0, .9 * LRU.getFailureTime());
double drawFA = LRUlFA.sample();

// ASSUME: PHM detection of failed parts are assumed to be less
// than x% of the actual failure time
Normal drawLRUl = new Normal (nominalMean, nominalStd, 10000);
whenDetected = drawLRUl.sample() * LRU.getFailureTime();

if (whenDetected > 4575)
whenDetected = 4575;

int arrayCount = 0;

if (whenDetected <= 100 && whenDetected >= 0)
arrayCount = 0;

if (whenDetected <= 220 && whenDetected > 100)
arrayCount = 1;

if (whenDetected <= 340 && whenDetected > 220)

100

arrayCount = 2
if (whenDetected

arrayCount = 3
if (whenDetected

arrayCount = 4
if (whenDetected

arrayCount = 5
if (whenDetected

arrayCount = 6
if (whenDetected

arrayCount = 7
if (whenDetected

arrayCount = 8
if (whenDetected

arrayCount = 9

<= 490 && whenDetected > 340)

<= 675 && whenDetected > 490)

<= 875 && whenDetected > 675)

<= 1150 && whenDetected > 875)

1550 && whenDetected > 1150)

2250 && whenDetected > 1550)

<= 4575 && whenDetected > 2250)

if (drawFA <= probabilityFA[arrayCount]) {
whenDetected = timeFA.sample();
if (whenDetected > 0.0) JDISclass.trackTimeDetected[id][0]= whenDetected; // update JDIS

else JDISclass.trackTimeDetected[id][0]= Simulation.time;
}*/

// This is Rene's original code
double PHMfunction = detectionFactor*(LRU.getFailureTime());

whenDetected = LRU.getFailureTime() - PHMfunction;
//
if (whenDetected > 0.0) JDISclass.trackTimeDetected[id][0]= whenDetected; // update JDIS
else JDISclass.trackTimeDetected[id][0]= Simulation.time;

}
private void setDetectionTime(LRU2 LRU, int id)
{

/*
Uniform LRU2FA = new Uniform (0.0, 1.0);
Uniform timeFA = new Uniform (0.0, .9 * LRU.getFailureTime());
double drawFA = LRU2FA.sample();

// ASSUME: PHM detection of failed parts are assumed to be less
// than x% of the actual failure time

Normal drawLRU2 = new Normal (nominalMean, nominalStd, 1000000);
whenDetected = drawLRU2.sample() * LRU.getFailureTime();

if (whenDetected > 4000)
whenDetected = 4000;

int arrayCount = 0;

if (whenDetected <= 85 && whenDetected >= 0)
arrayCount = 0;

if (whenDetected <= 190 && whenDetected > 85)
arrayCount = 1;

if (whenDetected <= 300 && whenDetected > 190)
arrayCount = 2;

if (whenDetected <= 430 && whenDetected > 300)

101

arrayCount = 3;
if (whenDetected <= 590 && whenDetected > 430)

arrayCount = 4;
if (whenDetected <= 775 && whenDetected > 590)

arrayCount = 5;
if (whenDetected <= 1000 && whenDetected > 775)

arrayCount = 6;
if (whenDetected <= 1350 && whenDetected > 1000)

arrayCount = 7;
if (whenDetected <= 2000 && whenDetected > 1350)

arrayCount = 8;
if (whenDetected <= 4000 && whenDetected > 2000)

arrayCount = 9;

if (drawFA <= probabilityFA[arrayCount]) {
whenDetected = timeFA.sample();
if (whenDetected > 0.0) JDISclass.trackTimeDetected[id] [0]= whenDetected; // update JDIS

else JDISclass.trackTimeDetected[id][0]= Simulation.time;
}*/
//
double PHMfunction = detectionFactor*(LRU.getFailureTime());

whenDetected = LRU.getFailureTime() - PHMfunction;
//
if (whenDetected > 0.0) JDISclass.trackTimeDetected[id] [0]= whenDetected; // update JDIS
else JDISclass.trackTimeDetected[id][0]= Simulation, time;

}
private void setDetectionTime(LRU3 LRU, int id)
{

/*
Uniform LRU3FA = new Uniform (0.0, 1.0);
Uniform timeFA = new Uniform (0.0, .9 * LRU.getFailureTime());
double drawFA = LRU3FA.sample();

// ASSUME: PHM detection of failed parts are assumed to be less
// than x% of the actual failure time

Normal drawLRU3 = new Normal (nominalMean, nominalStd, 100);
whenDetected = drawLRU3.sample() * LRU.getFailureTime();

if (whenDetected > 2000)
whenDetected = 2000;

int arrayCount = 0;

if (whenDetected <= 50 && whenDetected >= 0)
arrayCount = 0;

if (whenDetected <= 100 && whenDetected > 50)
arrayCount = 1;

if (whenDetected <= 160 && whenDetected > 100)
arrayCount = 2;

if (whenDetected <= 225 && whenDetected > 160)
arrayCount = 3;

if (whenDetected <= 300 && whenDetected > 225)

102

arrayCount = 4;
if (whenDetected <= 400 && whenDetected > 300)

arrayCount = 5;
if (whenDetected <= 525 && whenDetected > 400)

arrayCount = 6;
if (whenDetected <= 700 && whenDetected > 525)

arrayCount = 7;
if (whenDetected <= 1000 && whenDetected > 700)

arrayCount = 8;
if (whenDetected <= 2000 && whenDetected > 1000)

arrayCount = 9;

if (drawFA <= probabilityFA[arrayCount]) {
whenDetected = timeFA.sample();
if (whenDetected > 0.0) JDISclass.trackTimeDetected[id]tO]= whenDetected; // update JDIS

else JDISclass.trackTimeDetected[id][0]= Simulation.time;
}*/
//
double PHMfunction = detectionFactor*(LRU.getFailureTime());

whenDetected = LRU.getFailureTime() - PHMfunction;
//
if (whenDetected > 0.0) JDISclass.trackTimeDetected[id][2]= whenDetected; // update JDIS
else JDISclass.trackTimeDetected[id][2]= Simulation.time;

}
/**
* allows maintenance to reset PHM's prognostics after
* replacement parts are installed
**/

public void resetPrognostic(LRUl LRU)
{

notProcessedLRUl = true;
}
public void resetPrognostic(LRU2 LRU)
{

notProcessedLRU2 = true;
}
public void resetPrognostic(LRU3 LRU)
{

notProcessedLRU3 = true;
}

}

103

Bibliography

Atlas, Les, George Bloor, Tom Brotherton, Larry Howard, Link Jaw, Greg Kacprzynski,
Gabor Karsai, Ryan Mackey, Jay Mesick, Rick Reuter, and Mike Roemer. "An
Evolvable Tri-Reasoner IVHM System." Boeing Company publication. 1-15.
Copyright 1999, The Boeing Company.

Bauer, Ken. Class handout, Artificial Neural Network. School of Engineering and
Management, Air Force Institute of Technology, Wright-Patterson AFB OH,
September 2000.

"Condor Launches New Data Systems & Solutions Internet Aeroengine Service." Data
Systems and Solutions new release, http ://www.ds-s.com/News/News 07.
Released 26 July 2000.

"In-Flight Health Checks aid Aeroengines Maintenance." Data Systems and Solutions
news release. http://www.ds-s.com/News/News_04. Released 29 July 1999.

Blemel, Kenneth. "Dynamic Autonomous Test Systems for Prognostic Health
Management." (AD-A355365). 1998.

Felke, Tim. "Application of Model-Based Diagnostic Technology on the Boeing 777
Airplane," AIAA/IEEE Digital Avionics Systems Conference. 633-639. New
York: IEEE Press, 1994.

Hough, Michael. "The Affordable Solution - JSF," PowerPoint presentation. 1-25.
http://www.jast.mil. 1999.

JetSCAN Oil Analysis System. http://www.ds-s.com/Products/PS JetSCAN. Data
System and Solutions, 27 August 2000.

JSF Program Office. "Joint Strike Fighter Autonomie Logistics Briefing," PowerPoint
presentation. 1-24. http://www.jast.mil/assets/multimedia/autologistics.pdf. 15
February 2000.

Keller, Terry and Mark Eslinger. Digital Signal Processing Technology Transfer for
Machine Monitoring. United States Air Force contract F33615-98-C-2873.

104

Frontier Technology, Incorporated, 4141 Colonel Glenn Highway #140,
Beavercreek OH, 30 August 1999.

Knapp, G. M. and H. P. Wang. "Automated tactical maintenance planning based on
machine monitoring," International Journal of Production Research, 34(3): 753-
765 (March 1996)

Pomfret, Chris. "Search for an Oil or Vibration Related Solution to the GE#4 Bearing
Problem". Facsimile communication between Aerospace Business Development
Associates Incorporated and Air Force Research Laboratory Propulsion
Directorate. 1838, 6 January 2000.

Powrie, H. E. G. and C. E. Fisher. "Engine Health Monitoring: Towards Total
Prognostics," IEEE Aerospace Applications Conference Proceedings. 11-20. Los
Alamitos CA: IEEE Press, 1999.

Rebulanan, Rene. Simulation of the Joint Strike Fighter's Autonomie Logistics System
Using the Java Programming Language. MS thesis, AFIT/GOR/ENS/00M-19.
School of Engineering and Management, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, March 2000.

Scheuren, W. "Safety & The Military Aircraft Joint Strike Fighter Prognostics & Health
Management." 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit July 13-15, 1998, Cleveland, Ohio: 1-7. American Institute of
Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston VA,
July 1998.

Szczerbicki, Edward and Warren White. "System modeling and simulation for predictive
maintenance," Cybernetics and Systems. 29: 481-498(1998).

US Air Force Research Laboratory Propulsion Directorate. Contract F33615-98-C-2873
with Frontier Technology Incorporated. Wright-Patterson AFB OH, 30 Aug 99.

Walls, Michael, Mark Thomas, and Thomas Brady. "Improving system maintenance
decisions: a value of information framework," The Engineering Economist, 44:
151-166 (February 1999).

105

Vita

Captain Michael E. Malley was born in Bloomington, IL. He attended Port St

Lucie High School in Port St Lucie, FL and graduated at the top of his class in 1992.

After graduation he entered the United States Air Force Academy and graduated from

Cadet Squadron 23 in 1996 with a Bachelor Science Degree in Mechanical Engineering.

He married shortly after graduation. His first duty assignment was with the Airborne

Laser System Program Office at Kirtland AFB, NM as a program analyst. After one year

in the Program Office he moved to a system engineering position.

After graduation from AFIT Captain Malley will be assigned to the National

Reconnaissance Office in Chantilly, VA.

106

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
Information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

20-03-2001
2. REPORT TYPE

Master's Thesis
3. DATES COVERED (From - To)

Jun 2000 -Mar 2001
4. TITLE AND SUBTITLE

A METHODOLOGY FOR SIMULATING THE JOINT STRIKE
FIGHTER'S PROGNOSTICS AND HEALTH MANAGEMENT
SYSTEM

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Malley, Michael E, Capt, USAF

5d. PROJECT NUMBER
99-410

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENS)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/01M-11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dayton Area Graduate Studies Institute
Attn: Dr Frank Moore
3155 Research Blvd, Suite 205
Kettering, OH 45420 (937) 257-1346

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Autonomie Logistics System Simulation (ALSim) model was developed to provide decision makers a tool to make informed

decisions regarding the Joint Strike Fighter's (JSF) Autonomie Logistics System (ALS). The ALS provides real-time maintenance
information to ground maintenance crews, supply depots, and air planners to efficiently manage the availability of JSF aircraft. This
thesis effort focuses on developing a methodology to model the Prognostics and Health Management (PHM) component of ALS. The
PHM component of JSF monitors the aircraft status.

To develop a PHM methodology to use in ALSim a neural network approach is used. Notional JSF prognostic signals were
generated using an interactive Java application, which were then used to build and train a neural network. The neural network is
trained to predict when a component is healthy and/or failing. The results of the neural network analysis are meaningful failure
detection times and false alarm rates. The analysis presents a batching approach to train the neural network, and looks at the
sensitivity of the results to batch size and the neural network classification rule used. The final element of the research is
implementing the PHM methodology in the (ALSim).
15. SUBJECT TERMS
Aircraft maintenance; simulation; neural nets; Joint Strike Fighter; prognostic modeling

16. SECURITY CLASSIFICATION OF:

a. REPORT

u
b. ABSTRACT

u
c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

117

19a. NAME OF RESPONSIBLE PERSON
Miller, J.O., Lt Col, USAF AFIT/ENS
19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext 4326
John.Miller@afit.af.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Form Approved
OMB No. 074-0188

	A Methodology for Simulating the Joint Strike Fighter's Prognostics and Health Management System
	Recommended Citation

	/tardir/tiffs/a391305.tiff

