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Abstract 
For a compressor disk, effective vibration suppression requires broadband control, 

and the elimination of inter-blade coupling forces. Previous researchers achieved this using 

an active/passive piezoelectric shunt network. Unfortunately, optimal tuning of the shunt 

requires prior knowledge of the coupling strength, which is not well defined. This thesis 

uses an adaptive parameter estimator to eliminate the inter-blade coupling forces. In 

addition, the passive shunt is replaced with an analogous positive position feedback method. 

The resulting control law was used on a simulated four and eight bladed system. While 

substantial reductions in system response were achieved for the Adaptive/PPF control 

technique, the parameter estimates did not always converge to the correct solution. Similar 

reductions in the response were achieved using PPF control by itself. 

xvi 



VIBRATION SUPPRESSION OF A 

ROTATIONALLY PERIODIC STRUCTURE 
USING AN ADAPTIVE/PPF CONTROL LAW 

I.   Introduction 

1.1     Background 

The jet turbine engine is one of the most maintenance intensive systems on an aircraft. 

The compressor of a typical engine contains numerous bladed-disk assemblies rotating at 

high RPM, alternated with fixed stators. These bladed-disks are constructed of nearly 

identical blades machined to great precision, and positioned symmetrically around a hub. 

As the blades rotate behind the stators, they experience a periodic wake from the 

inlet air flow. The aeroelastic and aeroacoustic loads between the compressor blades and 

the stators are largely undetermined [17]. It is known, however, that the forcing occurs at 

integer multiples of the bladed-disk's rotational frequency, or engine order [5]. If the engine 

order frequency coincides with a natural frequency of the bladed-disk, resonance occurs 

and the compressor blades experience high stress/strain conditions. Repeated exposure to 

this dynamic loading causes high cycle fatigue (HCF) [7]. 

HCF accelerates the wear and deterioration of the compressor blades. Numerous 

man-hours are expended tearing down engines to inspect the blades for fatigue damage. In 

the worst cases, HCF can cause a separation of a compressor blade from its hub, resulting in 

a catastrophic failure of the engine. In fact, HCF was identified as the primary unforeseen 

engine failure mode from 1989 to 1994 [19]. Suppression of the vibrations leading to HCF 

would significantly reduce the life-cycle cost of an aircraft engine. 
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Figure 1.1      Bladed-disk Model 

1.2    Rotationally Periodic Structures 

Compressor disks belong to a class of structure know as rotationally periodic struc- 

tures (RPS). A simple model of the bladed-disk system is shown in Figure 1.1. Cyclic 

symmetry is a convenient assumption when analyzing an RPS, since they consist of spa- 

tially repetitive substructures; thus all substructures are geometrically and dynamically 

similar [16]. For a compressor disk, this implies that: the blades are identical, they are 

uniformly spaced, and the hub is symmetric. If these conditions are met, then the system 

is said to be tuned. 

An RPS possesses several modal families or bands, which correspond to a specific 

cantilever beam bending mode; there are as many linear modes within a band as there are 

substructures [5]. An important feature of a tuned RPS is that in a given mode, all of 

the substructures have the same vibration amplitude and differ only in phase [18]. These 

vibration modes, known as global or extended modes, allow the equations of motion to be 

decoupled [5]. Thus, analysis of a representative substructure is only required, instead of 

the whole structure. 

Unfortunately, real blades have material and manufacturing imperfections. The sys- 

tem is said to be mistuned when these defects cause mass, stiffness, and damping vari- 

ances [15]. Mistuning breaks down the rotationally periodic nature of the compressor disk, 

1-2 



changing global modes into local modes. In a tuned system, the vibration energy is spread 

equally amongst all the blades. Mode localization, however, concentrates the energy in 

several blades, or even a single blade. This results in some blades having a higher steady 

state amplitude than in a perfectly tuned system [4]. More importantly, mode localization 

is amplified by weak or variable inter-blade coupling, be it aerodynamic or structural [20]. 

A variation in blade natural frequency of less than 2% can cause amplitude increases of 

over 100% [15]. Consequently, the HCF problem in bladed-disk assemblies is severely 

aggravated by mistuning effects. 

1.3    Piezoelectric Vibration Absorbers 

Engineers have used mechanical vibration absorbers (MVAs), or tuned mass dampers, 

to control vibrating structures for over a century. Basically, a single degree of free- 

dom (DOF) mass-spring system is added to the structure, and tuned to its resonance 

frequency. When properly tuned, the MVA reduces the response of the system to a nar- 

row band harmonic excitation near the tuning frequency [3]. If a damper is added to the 

absorber, response to broadband excitation is reduced as well. 

The close tolerances of a jet engine make the use of MVAs impractical. Fortunately, 

piezoelectric elements provide an alternative that is small, light weight, and can be bonded 

directly to the structure. Piezoelectric materials transform strain energy into electrical 

energy, and vice versa, so they can be used as both sensors and actuators. Forward created a 

piezoelectric vibration absorber (PVA) using a piezoelectric element and a passive resonant 

electrical circuit, or shunt [9]. He also demonstrated that it is analogous to an MVA. The 

piezoelectric element behaves as a capacitor which is comparable to the spring in an MVA. 

The shunt is comprised of an inductor (comparable to the mass), and a resistor (comparable 

to the damper). As the structure vibrates, the piezoelectric element transforms a portion 

of the strain energy into electrical energy. Tuning the piezoelectric shunt near a structural 

mode dissipates the electrical energy in the resistor, similar to a tuned mass damper [3]. 

Hagood and von Flotow developed an analytical solution for the optimal inductance 

and resistance tuning parameters of a single mode shunt. Their results closely parallel those 
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for an MVA [11]. The inductance adjusts the shunt natural frequency, while the resistance 

changes the response amplitude over some frequency range [14]. Later, Hollkamp added 

more electrical branches onto the shunt to increase the number of electrical resonances, and 

thereby achieved multi-mode vibration suppression. Unfortunately, each individual branch 

of the shunt cannot be treated as a separate single mode shunt. Tuning one electrical 

resonance to suppress a particular mode, detunes the rest of the circuit [12]. Hollkamp 

determined the shunt parameters by a numerical optimization technique. 

The passive piezoelectric shunts discussed above only effect structural response at res- 

onance, and are therefore narrowband devices. While this is sufficient for some problems, 

passive shunts cannot provide the broadband response control required in many applica- 

tions [2]. For broadband control, active feedback is necessary. Fortunately, piezoelectric 

elements can also serve as actuators for feedback control. 

A hybrid active/passive piezoelectric shunt network has been suggested by both 

Agnes [2] and Wang, et al [18]. Wang and Tang studied a system similar to the one 

shown in Figure 1.1, with a PVA attached to each blade. They analytically derived the 

optimal tuning parameters. Unfortunately, the equations depend on the coupling strength, 

a quantity not well defined. 

1.4    Active Vibration Control 

Flexible structures are distributed parameter systems with many vibratory modes. 

All physical systems possess some degree of internal damping which normally increases 

with frequency. Since the bandwidth of any practical controller is finite, there will be 

modes that are beyond its bandwidth, or that are unmodelled within its bandwidth. The 

uncontrolled modes within the bandwidth of the closed loop system result in the well 

known problem of observation spillover. This can destabilize the residual dynamics of the 

system, especially at higher frequencies where the dynamics of the structure are least well 

known [8]. 

In the absence of actuator dynamics, collocated direct velocity feedback is uncondi- 

tionally stable in the presence of observation spillover [10]. Actuator dynamics, however, 
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must be included in any real system, or instabilities may occur. Caughey and Goh de- 

signed a stable velocity feedback controller including actuator dynamics. Unfortunately, 

they showed that the stability is highly dependent on the natural damping of the struc- 

ture [10]. Since damping models are not well known, this is not a practical vibration 

control method. 

The technique of positive position feedback (PPF) was developed by Caughey along 

with Goh, and later Fanson, as an alternative to direct velocity feedback [10], [8]. PPF is 

not affected by spillover, nor is it destabilized by actuator dynamics. While PPF is not 

unconditionally stable, Caughey, et al, showed that the stability criteria is static and unaf- 

fected by the natural damping of the structure. PPF only requires generalized displacement 

measurements, making the use of strain based sensors, such as piezoelectric elements, very 

practical [8]. In fact, if the proper parameters are chosen, the PPF equations are analogous 

to those of the tuned mechanical or piezoelectric vibration absorbers. 

As stated previously, the analysis of a tuned RPS simplifies to that of a single repre- 

sentative substructure. To take advantage of this property for a bladed-disk, one needs to 

take into account the largely unknown inter-blade coupling forces and mistuning affects. 

Ertur, et al, developed an adaptive vibration control technique based on Lyapunov theory. 

Their method cancels unknown bounded disturbances while compensating for uncertain- 

ties [6]. Jarosh used this control technique on a 5 DOF rocket model [13]. He showed 

that it significantly reduced the response compared to a purely passive and purely active 

controller. 

1.5     Thesis Overview 

The main drawback of Wang and Tang's piezoelectric shunt network, is that a priori 

knowledge of the coupling forces is required for optimal tuning. The objective of this 

research was to replace their piezoelectric vibration absorber with PPF control, while 

using Ertur's adaptive control technique to cancel out the unknown inter-blade coupling 

and damping. 

1-5 



The individual theories are more fully explored in the next chapter. Wang and 

Tang's equations for an RPS with multiple piezoelectric shunts are presented. The PPF 

equations of motion and the associated stability criteria are developed for a single DOF 

system. Ertur's adaptive control scheme is also developed and studied. Then, in Chapter 

3, the adaptive and PPF control strategies are combined into a single control law. This 

new technique is used to regulate the response of a single DOF in a 4 DOF model. In the 

fourth chapter, Adaptive/PPF control is expanded to control all the DOFs of the model. 

The technique is also applied to the model of an eight bladed-disk previously developed 

by Duffield [5]. Finally, significant findings, conclusions, and recommendations for further 

research are presented in Chapter 5. 
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II.   Development of Individual Theories 

2.1    Hybrid Active/Passive Piezoelectric Shunt Network 

2.1.1 Background. As a rotationally periodic structure (RPS) vibrates, a 

high strain area normally occurs on all of its substructures [18]; accordingly, each requires 

a PVA. As discussed in Chapter 1, passive piezoelectric shunts are narrowband devices. 

Active control is required for broadband suppression. Agnes and Wang, et al, have both 

suggested a hybrid active/passive piezoelectric shunt network [2], [18]. In this setup, the 

vibration energy of the structure is partially transformed into electrical energy and pas- 

sively dissipated in the shunt circuit. In addition, an active control voltage is supplied to 

the circuit to drive the piezoelectric element, and thereby further suppress vibrations. 

Construction and application of the system is simplified if identical piezoelectric 

patches and shunts are used on every substructure. The problem becomes how to set the 

shunt resistance (R) and inductance (L) parameters. Since an RPS is a multi-DOF system, 

Hagood and von Flotow's optimal tuning procedure does not directly apply [11]. The 

mechanical coupling between the substructures splits the otherwise repeated substructure 

frequency into a group of frequencies [18]. Wang and Tang showed that the mechanical 

coupling can be offset, and optimal tuning achieved, by combining active and passive 

control. 

2.1.2 Equations of Motion. Wang and Tang derived the equations of 

motion (EOM) for an RPS using an active/passive shunt network [18]. They used a tuned 

RPS consisting of N identical cantilevered beams arranged symmetrically around a circular 

hub, with coupling springs between adjacent blades. The individual blades are damped, 

but there are no dampers between blades. An identical piezoelectric patch and shunt 

circuit is attached to each beam. Applying Hamilton's principle to this system, 

/ ' {5T - 6Ub - SUP + 5Wv)dt = 0 (2.1) 
■An 
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where T is the kinetic energy of the whole system, Ub is the potential energy of the beams 

and coupling springs, Up is the elastic and electrical energy of the piezoelectric patches, 

and SWV is the virtual work term. 

First, the kinetic and potential energy of the substructure are expressed in terms of 

the dominant mode of vibration, $(x). The transverse displacement of the jth beam is 

approximated as 

wjfat) a ${x)qj(t) (2.2) 

Expressions for T and Ub are then obtained from elementary beam theory, 

T = ±£>g (2.3) 

j=l i=l 

where h and kc are the equivalent beam and coupling stiffness, respectively. 

Using the constitutive equations for a typical piezoelectric material, the variation of 

the elastic and electrical energy of the patches is 

N 

Up = J2(kPqjöqj + hQjöqj + k2qj5Qj + hQjSQj) (2.5) 
i=i 

where kp is the equivalent piezoelectric patch stiffness, k\ is the inverse of the capacitance 

of the patch, ki is the generalized electro-mechanical coupling coefficient, and Qj is the 

charge of the jth piezoelectric patch. 

If the active voltage input to the jth circuit is Vaj, then the voltage across the 

piezoelectric patch is related to the external circuit by 

Vj = -LQj - RQj + Vaj (2.6) 
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where R and L are the resistance and inductance of the shunt.   Note that for a purely 

passive shunt, Vaj = 0. Thus, the virtual work term is 

N 
(2.7) 

where fj is the generalized external force on the jth beam, and d is the equivalent beam 

damping. 

Substituting Equations 2.3 through 2.7 into Equation 2.1, and letting k - kb + kp, 

Wang and Tang found the discretized EOMs for a substructure to be 

mqj jj +dqj + (k + 2kc) qj - fcc<?j-l - M?+l = ~^2<2j + fj (2.8) 

LQj + RQj + kiQj = -k2qj + Vc aj 
(2.9) 

The EOMs for the whole structure in matrix form are 

MX + DX + KX = GX + F (2.10) 

where the generalized displacement vector is X = [qi,Qi, ...,QN,QN] ', tne generalized 

force vector is F = [fi,Vai,..., /AT, V0JV]
T

, consisting of the external disturbances and active 

voltage input. The generalized mass (M), damping (£>), stiffness (K), and gain (G) 

matrices are 

m 

L 

M = 

m 

L 

R 

D = (2.11) 

R 
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K = 

Xm Xc 0 0 T 
Xc 

T xi Xm Xc 0 

0 T 
Xc 0 

Xc 0 

0 0 T 
Xc Xm Xc 

Xc 0 0 T 
Xc Xm 

G = 

Xg 

Xg 

(2.12) 

with    Xm = 
k + 2kc    0 

0        fei 

-kc   0 
,      Xc = 

0      0 
,    and    Xg = 

0      -k2 

-k2      0 

Note that M, D, K, and G are 2N x 2N. 

2.1.3 Purely Passive Control. In a purely passive control design, there 

is no active voltage input. Using the properties of an RPS, and neglecting all structural 

damping, Wang and Tang transformed the matrix EOMs, Equation 2.10, into N indepen- 

dent 2x2 matrices. Then, following Hagood and von Flotow's approach, they analytically 

determined the optimal tuning parameters for an arbitrary spatial harmonic excitation [18]. 

The optimal inductance and resistance they found are 

L* = 
mk-i 

R* = 
(y/2mki) &2 

k + 2kc[l-cos(^(i-l))] 
(2.13) 

k + 2kc[l-cos(%(i-l))] 

Note that these two equations depend explicitly on i, which is the mode of the external 

disturbance. Thus, using these tuning parameters, identical shunts will only provide op- 

timal vibration suppression if the external disturbance is purely the ith spatial Fourier 

harmonic [18]. Also, prior knowledge of the coupling strength, kc, is required to calculate 

these optimal tuning parameters. 

2.1.4     Active/Passive  Control. To suppress all harmonics optimally, 

Wang and Tang used charge feedback with the following active voltage control 

vaj        vaj    ^ vaj 
(2.14) 
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with 

vV = ^ (2Qi - Qi-i - Qi+i) aj 
(2.15) 

and if N is even, 

(iV-l)/2 

Vaf = ro<5i +      S      h (^j+i + ^'+JV_V    + rN/2Qj+N/2 
i=\ 

(2.16) 

or if A/" is odd, 

(JV-D/2 
(2.17) 

Note that Vj is the current feedback gain. 

Using this active voltage control, the optimal tuning parameters they found are 

L* = 
~~k~ 

R* = 
(y/2mki) k,2 

k 
(2.18) 

Neither of the tuning parameters depend on i; they are optimal for all spatial harmonics. 

It may also appear that the optimal tuning parameters no longer depend on kc. While the 

active control has cancelled out the mechanical coupling effects, prior knowledge of that 

coupling was required to determine the active control voltage. 

2.1.5     Results. Wang and Tang ran numerical simulations with a purely 

passive, purely active, and an active/passive hybrid controller. As expected, the purely 

passive controller was only optimal for one spatial harmonic, and mistuned for all others. 

The hybrid controller actively retuned the shunt network and significantly outperformed 

the passive controller. It also required much less control effort than the purely active 

controller [18]. 

This hybrid controller combines the best of both worlds. The active component de- 

livers high performance broadband vibration suppression, while the passive shunt provides 
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a stable, fail-safe, easily constructed vibration absorber. At least in theory. Inductors 

normally operate in the range of milli-Henries, but the PVAs needed to suppress vibra- 

tions in a compressor disk would require inductors on the order of kilo-Henries [1]. The 

only alternative is to actively synthesize the inductors using op-amps, which negates the 

benefits of a passive system. Another important disadvantage of this technique is that it 

requires prior knowledge of the coupling strength, a quantity which is not well defined [17]. 

2.2    Positive Position Feedback 

2.2.1 Background. Multi-DOF systems, such as an RPS, have numerous 

vibratory modes. Many of these modes are not targeted for control, or lie outside the 

finite bandwidth of the vibration controller. This leads to the well known phenomenon of 

observation spillover, which can destabilize the residual dynamics of the closed loop sys- 

tem [8]. Caughey along with Goh, and later Fanson, developed positive position feedback 

(PPF) because it is not affected by observation spillover, nor is it destabilized by actuator 

dynamics [10], [8]. 

The technique of PPF is introduced by considering a second-order scalar system 

subjected to second-order actuator dynamics 

structure        x + 2(ux + u2x = HUJ
2

T] (2.19) 

actuator       r\ + 2(füjfi) + UJTJ = ujjx (2.20) 

where x and j] are the system and actuator states respectively, C and (f are the system and 

actuator damping ratios (0 < ... < 1), u and u>f are the system and actuator frequencies 

(> 0), and n is the PPF gain (> 0). Caughey and Fanson derived the following theorem 

and proof regarding this system [8]: 

Theorem 

The combined structure and actuator dynamics of Equations 2.19 and 2.20 are Lya- 

punov Asymptotically Stable (LAS) if and only if \i < 1. 
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Proof 

To make the equations symmetric, define the following transformation for 77 

V= I -^7T7 ] ^ 
UJ/J, 1/2 

(2.21) 

Substituting Equation 2.21 into Equations 2.19 and 2.20, and multiplying Equa- 
-1 

tion 2.20 by (-^72)    , gives the following system of equations in matrix form 

,1/2 x 
> + 

2(u       0 

0     2C/w/ 
+ 

v> 
ui 

-UOJf/J, 1/2 

-LüU)f/l X 

1> 
) = 0     (2.22) 

AT 

L is positive definite (L > 0), because it is diagonal, and (, (f, w, and w/ are all > 0. 

It is a known result that for L > 0, Equation 2.22 is LAS if and only if N > 0. So, for any 

nonzero y\ and j/2, if N > 0, then 

r ' u2 B y\ 
yi 2/2 

B U2f 2/2 
> 0 

where B = —ujuifix1!2. Expanding the above 

(2.23) 

2„.2 uly{ + 2Byiy2 + ojjyi > 0 

Adding and subtracting (■£-)   y\ to this gives us 

After collecting terms 

J1- £)■ 
w// 

vl + 
D \ 2 

— )   yl + 2Byiy2 + u)yl > 0 

(2.24) 

Jy\ + 2Byl2/2 + a,2-^2 + (JL^j   y\ - (jVj   y\ > 0 (2.25) 

(2.26) 
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which reduces to 

Figure 2.1      Single DOF System 

J1- B_ 
vl + 

B\ — h/i + w/y2 > 0 

>o 

(2.27) 

The second term in the above expression is always positive. Since the whole expres- 

sion must be positive, the first term must be positive for any nonzero yi, so 

2 

to- - I — )    > 0 

Uf 

w2_,o^_       >0 

.2       , .2 

Therefore, 

u/ - UJZH > 0 

/x < 1 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

2.2.2 Equations of Motion for Single Cart System. To understand 

the use and application of PPF, the single DOF system shown in Figure 2.1 was studied. 

This system is analogous to a single blade of a compressor disk, with the two adjacent 

blades fixed. The blade has mass m. Its structural stiffness and damping are represented 

by fc0 and d0. The inter-blade coupling forces are represented by the stiffness and damping 

parameters, kc and dc. The EOM for this single cart system is simply 
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mx+(d0 + 2dc)x+{k0 + 2kc)x = fd (2.32) 

„ +   'dp + 2^ . + (k0 + 2kc^ x^h (233) 

ml \      m      ) m 

x + 2Qnunx + ulx = (2.34) 

where 

<k0 + 2kc 
iür, 

m 
(2.35) 

is the natural frequency of the structure, (n is the structural damping ratio, and fd is the 

external disturbance. 

Adding a PPF actuator to the system results in the combined EOMs 

x + 2Qnujnx + u?nx = [iJir] + ^ (2.36) 

T) + 2C,fUff] + ujjr] = cojx (2.37) 

The first term on the right hand side of Equation 2.36 is the PPF force provided by the 

actuator, /pp/, divided by the mass of the cart, or 

fppf _ „,.,2„ (2.38) 
m 

= fjwnr] 

Thus, 

fppf = m/iüftr] = fi(k0 + 2kc)r] (2.39) 

Therefore, as you increase the PPF gain, (j,, the control effort of the actuator also increases. 
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2.2.3     Simulation. To numerically solve for the system response, Equa- 

tions 2.36 and 2.37 are first put into state-space form 

x 

x 

> = 

0 1 

_  -wn —2(ncjn 

0 1 

. -<"/ -2C/W/ 

0 
> + 2      i   Jd 

V 

v  *  , 

> + < J]x 

(2.40) 

(2.41) 

The system is modelled using SIMULINK™ (see Figure A.l on p. A-l) and the 

response evaluated. For simulation purposes, an external disturbance of 

fd = 10 sin (udt) (2.42) 

was used, where ud is the disturbance frequency. The system parameters are set such 

that m = 1 Kg, k0 = 100 N/m, kc = 5 N/m, and Cn = 0.01. Using Equation 2.35, 

un — 10.488 rad/sec. 

The simulation outputs the displacement of the cart as a function of time at discrete 

intervals, x{ = x(U). Responses due to different PPF parameter settings are evaluated by 

comparing the Root Mean Square (RMS) of the displacements over a range of disturbance 

frequencies. Herein, 0 < ud < 20 rad/sec, with a step size of 0.02. The RMS of a signal is 

calculated by 

3>rm,s — 
'EL*? 

N 
(2.43) 

where N is the number of samples from t\ to tpf = tf. 

2.2.4 PPF Parameter Selection. Similar to a PVA, the desired response 

is achieved by properly tuning the PPF system. The tuning parameters are the actuator 

frequency (a;/), the damping ratio {(/), and the feedback gain (/i). The question becomes 

how to optimally tune these parameters. An analytical solution was not found in the 

literature. 

2-10 



Instead, a numerical technique was used to iteratively determine the parameters. 

Setting C/ and Uf to typical values, \i was varied. Comparing the RMS plots, the ß that 

minimized the response was chosen. Fixing a at this value and holding Uf at the original 

value, (/ was varied. Once again the (/ that minimized the RMS plot was selected. 

Finally, with ß and £/ fixed, w/ was varied, and again the value that resulted in the best 

performance was chosen. Using these three values as a starting point, the process was 

repeated several times, until the results more or less converged. While not necessarily 

providing parameter values that yield a globally minimum response, it is sufficient for the 

work here. 

2.2.4.1 Selection of PPF Gain. The MATLAB™ code used to run 

the simulation is given in Appendix A. 1.1, beginning on p. A-l. Using the system values 

given in Section 2.2.3, and the process just described, the RMS curves as ß varied from 0 to 

1, with a step size of 0.1, are plotted in Figure 2.2. For the sake of clarity, not all response 

curves are displayed. As expected, when the system is uncontrolled, ß = 0, the response 

spikes at resonance (i.e. ud = uin). At the other extreme, when ß = 1, the response blows 

up at low frequencies. 

Looking closer at the plot, Figure 2.3, as the gain is increased, the response at 

resonance decreases. However, as you push down on the middle of the response curve, 

the sides bulge up. In other words, the response increases at lower frequencies, and to 

a lesser extent also at higher frequencies. The goal is to improve the performance at 

resonance without degrading it elsewhere. To that end, the response curve should be as 

flat as possible at low frequencies through resonance, and then roll off at high frequencies. 

Therefore, ß = 0.4 is selected as the PPF gain, which is the curve marked with an " * " in 

Figure 2.3. 

2.2.4.2 Selection of Actuator Damping Ratio. The MATLAB™ 

code used to run this simulation is given in Appendix A.1.2, beginning on p. A-2. Since the 

structure is lightly damped, (n = 0.01, one of the purposes of the PPF actuator is to add 

damping to the system. The damping ratio, (/, was varied from 0 to 1, with a step size of 

0.1. The RMS plots are shown in Figure 2.4. When the actuator provides no additional 
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18 20 

Figure 2.2     RMS    of   Displacement    for    the    Single    Cart    System    as    /i    varies 
(u>f = un, C/ = 0.4) 

10 12 
o)   (rad/sec) 

Figure 2.3     A Closer Look at the RMS of Displacement for the Single Cart System as /i 
varies (w/ = un, (f = 0.4) 
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a), (rad/sec) 

Figure 2.4     RMS    of   Displacement    for    the    Single    Cart    System    as    (f    varies 
(ujf = u)n,fj, = 0.4) 

damping, (/ = 0, the response spikes on both sides of the resonance frequency. This is 

typical for lightly damped systems. 

Taking a closer look at the plot, Figure 2.5, as the damping is increased, the amplitude 

of these two peaks decreases, but the response at resonance increases. Once again, the 

goal was to minimize the response over the whole range of frequencies. Thus, C/ = 0.4 was 

chosen as the actuator damping ratio; the " * " curve again. 

2.2.4.3    Selection of Actuator Frequency. The MATLAB™ code 

used to run this simulation is given in Appendix A. 1.3, beginning on p. A-4. Intuitively, it 

is expected that the actuator should be at least as fast as, if not faster than, the natural 

frequency of the structure controlled. The actuator frequency, u>f, is varied from 0 to 

20, with a step size of 1. The RMS plots are shown in Figure 2.6. When the system 

is uncontrolled, Uf = 0, the maximum amplitude is at the resonant frequency. As u>f is 

increased, the peak occurs at a higher disturbance frequency, ud, and its amplitude is 

reduced. 
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Figure 2.5     A Closer Look at the RMS of Displacement for the Single Cart System as (/ 
varies (uf = u>n, \i = 0.4) 

Taking a closer look at the plot, Figure 2.7, while the amplitude is decreased above 

the resonant frequency, it is also increased below resonance. Since the goal again is to 

minimize response throughout, w/ = 10.488 = un was selected; the " * " curve once more. 

2.3    Adaptive Vibration Control 

2.3.1 Background. To take full advantage of the benefits of positive position 

feedback in an RPS, like a compressor disk, the largely unknown inter-blade coupling forces 

must be dealt with. Ertur, et al, developed an adaptive vibration control strategy based 

on Lyapunov theory. This regulation controller cancels unknown bounded disturbances, 

while eliminating parametric uncertainties, such as the coupling stiffness and damping 

parameters [6]. 

2-14 



10 12 14 16 18 20 

Figure 2.6     RMS    of   Displacement    for    the    Single    Cart    System    as   u/    varies 
(M = 0.4,C/ = 0.4) 

10 12 
co. (rad/sec) 

Figure 2.7     A Closer Look at the RMS of Displacement for the Single Cart System as UJJ 

varies (ß = 0.4, C/ = 0.4) 
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The equations of motion for a discrete flexible structure are 

Mq + Dq + Kq = f (2.44) 

where q represents the physical coordinates of the system, / is the forces on the system, 

and M, D, and K are the system mass, damping, and stiffness matrices respectively. 

The controlled and uncontrolled coordinates of the system, qc and qu respectively, are 

now defined as subsets of q. Equation 2.44 is then rearranged and partitioned as follows 

Mc     0 

0     Mn 

+ 
qc 

qu 

> + 
K       K 

= < 
fc 

Ju 

(2.45) 

Note that in Ertur's development of this theory, fc only takes into account the applied 

control forces on qc. He does not explicitly deal with disturbances applied to the controlled 

coordinates. 

Equation 2.45 is divided into the equations of motion for the controlled coordinates 

Mcqc + Dcqc + Kcqc = fc - Dcuqu - K^q-u (2.46) 

and for the uncontrolled coordinates 

Muqu + Duqu + Kuqu = fu - Ducqc - Kucqc 
(2.47) 

To regulate the controlled coordinates, Equation 2.46 is rewritten as 

Mcqc + Dcqc + Kcqc = fc - D^u -Kcuqu = fc- Yr$r (2.48) 

where Yr is a regression matrix based on qu and qu, and $r is an unknown parameter 

vector containing the elements of Dcu and Ä"cu. 
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Ertur suggests the following control law: 

fc = Yr$r - Dfqc - Kfqc (2.49) 

where Df and Kf are loosely referred to as the controller damping and stiffness matrices. 

The adaptation law for the parameter estimates, <I>r, is 

$r = -rrT
J PX, T\ (2.50) 

where Xc = 

and TT = 

-iT 

Qc    Qc 
;  Tr is a symmetric, positive definite, gain matrix (Tr = Tj > 0), 

0    {M~lYry P is found from the Lyapunov equation, 

AT
rP + PAC = -Q (2.51) 

with P = PT > 0, Q = QT > 0, and 

Ar = 
0 I 

-M-1 (Kc + Kf)   -M-1 {Dc + Df) 
(2.52) 

Equations 2.49 and 2.50 guarantee asymptotic stability of the controlled states, Xc, 

and boundedness of the uncontrolled coordinates, qu, under the following assumptions: 

(Al) Mc = Mj > 0 

(A2) fu is bounded 

(A3) The roots, A, of |A2MU + XDU + Ku\ = 0, have negative real parts 

(A4) Df and Kf are selected so that the roots, A, of |A2MC+A (Df + Dc) + {Kf + Kc) \ = 0, 

have negative real parts 

For the proof, see Ertur [6]. Note that there is no guarantee of convergence for the param- 

eter estimates. Assumptions A3 and A4 are equivalent to saying that Ac, Equation 2.52, 
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Figure 2.8     Cyclic 4 DOF System 

and Au are negative definite; where 

A,, — 
-M~lKu   -M~1DU 

(2.53) 

2.3.2    Equations of Motion for a Four Cart System.       The 4 DOF 

cyclic system shown in Figure 2.8 is studied to better understand the application of this 

adaptive control law. The system is drawn linearly, but it is analogous to the rotary 

periodic structure of a compressor disk. The blades, or carts, have mass m;, and their 

structural stiffness and damping are represented by k0i and d0i. The inter-blade coupling 

forces are expressed in terms of kij and dij, where i,j = 1...4; by convention m; is the left 

cart, and rrij is the right cart. A simpler chain system is obtained by cutting the spring 

and damper between carts 1 and 4. The external control and disturbance forces on each 

of the carts are represented by /j. The EOMs for this system are 

Mx + Dx + Kx = f (2.54) 

where 

M = 

m1 0 0 0 

0 m2 0 0 

0 0 m3 0 

0 0 0 m4 

x = < 

Xl 

X2 

X3 

£4 

f={ 

h 
h 

h 
(2.55) 
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D = 

d-oi + ^41 + du -d\2 ° 

—d\2 do2 + d\2 + <^23 —^23 

0 -C?23 ^03 + C?23 + ^34 

-da 0 -C?34 

K = 

fcoi + &41 + &12 — &12 0 

— &12 ^02 + k\2 + k23 -&23 

0 -/C23 ^03 + ^23 + &34 

-fc4l 0 -^34 

-d4i 

0 

-<^34 

<^04 + <^34 + ^41 

-fc4l 

0 

-^34 

^04 + ^34 + &41 

(2.56) 

(2.57) 

The objective of this example is to regulate the position of cart 2, which means that 

qc = x2 and qu 

Vfl2 0 0 0 

0 m\ 0 0 

0 0 m3 0 

0 0 0 m4 

X\     X3     X4 

X2 

. Thus, rearranging Equation 2.54, yields 

Xl 

X3 

£4 

+ 

do2 + ^12 + <^23 

+ 

-dn 

-d23 

0 

ko2 + h2 + &23 

-di2 ~d23 0 

doi + du + d\2 0 —du 

0 ^03 + ^23 + du -d34 

—G?41 -^34 C?04 + C?34 + d4l 

— ^12 

-&23 

0 

-fc 12 -A> 23 0 

fcoi + ^41 + &12 0 -&41 

0 kQ3 + fc23 + &34 -^34 

— &41 _^34 ^04 + ^34 + &41 

X2 

Xi 

±3 

i4 

(2.58) 

< 

X2 

Xl 
>      =   < 

f                         \ 

h 

h 
> 

X3 h 
XA l/4   j 
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Comparing the above with Equation 2.45, repeated below, 

Mc     0 

0     Mu 

results in 

Qc 

qu 

+ 
L>'c     Ucu 

J-'uc     Uu 

1c 

In 

> + 
<7c fc 

Ju 

Mc = m2 

fc = h 

qc = X2 

(2.59) 

(2.60) 

Kc = k02 + fcl2 + &23 

Dc = do2 + d\2 + d23 

(2.61) Kcu = 

Qu X\      X3     X4 (2.62) ■Lscu — 

ki2     -&23     0 

-di2     -d23     0 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

After making these substitutions into Equation 2.48, the controlled coordinate EOM 

becomes 

Mcqc + Dcqc + Kcqc = fc - Kcuqu - D^q-u 

= fc -ki2    -&23    0 qu - -d\2     -^23    0 qu 

- fc~ {-k\2X\ - k23X3 - di2Xi - d23X3) 

= fc- Yr$r (2.67) 

where the regression matrix is Yr = X\     X3     X\     X3 , and the unknown parameter vec- 

tor is <frr = kl2     ^23     d\2     ^23 The control force is now found from Equation 2.49 

fc = Yr$r - Kfqc - Dfqc 

= (-ki2Xi - k23X3 - ^12*1 - ^3X3) - KfX2 - Dfx2 (2.68) 
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Kf and Df must meet the requirements of assumption A4, p. 2-17, and are chosen to give 

the desired performance. They are defined in terms of an actuator with damping ratio, (f, 

and frequency, uif, so that Kf = oJJMc and Df = 2(fUjfMc. 

The adaptation law for the parameter estimates is given by Equation 2.50 

$r = -TrT1 PXC 

where for the 4 DOF system 

71 0 

72 

73 

0 74 

>0 (2.69) 

-pT   o (M-lYry 
ra2 

0 Xl 

0 X3 

0 Xl 

0 is . 

(2.70) 

Xr = 
4c 

> = 
%2 

X2 

(2.71) 

To simplify the Lyapunov equation, Equation 2.51, Q is assumed diagonal, and se- 

lected so that XjQXc results in an energy term. Thus, 

X2     X2 
Qu      0 

0      Q22 

X2 

X2 

= QnA + Q22X2 (2.72) 
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The first term in the above expression is the spring potential energy associated with cart 2, 

and the second term is the kinetic energy. After normalizing, Q is 

Q = 
l 

o 

0 

m2 

fco2+fcl2+fc23 
0   u. 7l2 

= QT >0 (2.73) 

It may appear that Q depends on coupling strength between carts. However, unlike 

Wang and Tang's technique, exact knowledge of kn and k2z is not required. The lower 

diagonal term is the inverse of the square of the natural frequency of cart 2 when the 

adjacent carts are fixed. This value can be found experimentally. 

With the Q defined above, and Ac from Equation 2.52, the Lyapunov equation is 

solved for P, which in generic terms is 

P = 
Pn   P2i 

P21    P22 

(2.74) 

Therefore, substituting Equations 2.69 through 2.74 into Equation 2.50, and per- 

forming some matrix algebra, the adaptive parameter estimate law for the 4 DOF system 

becomes 

$r = - [ — 
1 

7712 

71 0 

72 

73 

74 

Xl kn 

x3 

±1 
> P21     P22 

j    X2 

I   i2   . 
> = - < 

ha 
di2 

±3 d-23 

(2.75) 

The only variables left unassigned in the above equation are the gains (71, ..., 74). 

The gains allow for adjustments in the parameter estimation process. Unfortunately, Ertur 

gives no assistance in determining these values. Since there is no analytical solution for 

the gains, they are found through experimentation. 
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2.3.3     Simulation.      To model the 4 DOF system in SIMULINK™ the EOMs 

are put into state-space form, so Equation 2.54 becomes 

> = 
[0j4x4 L-'J4x4 

-M~lK   -M~lD 

X [0]4x4 
< \ + 

X 
^           ) 

-M'1 
f (2.76) 

In this simulation, the system is tuned. This means that all of the carts have iden- 

tical: mass, rrn = 1 Kg; stiffness, k0i = 100 N/m; and coupling, % = kc = 5 N/m, where 

i,j - 1...4. Using these values, the mass and stiffness matrices, M and K respectively, 

are found from Equations 2.55 and 2.57. Also, assuming a structural damping ratio of 

Cn = 0.01, the damping matrix, D, is calculated from 

D = # 2C„(*rtf*)i #J *r£>* 

2Cn^nl 0 

2Cn^n4 

(2.77) 

where \I> is the system mass normalized modal matrix. 

An external disturbance of fd = 10 sin (ujdt), is applied to cart 3 only. The distur- 

bance frequency was set equal to the lowest natural frequency of the system, ud = ton. 

As previously stated, the controller stiffness and damping are defined as Kf = tüjMc 

and Df = 2(fUJfMc, respectively. The controller frequency was also set equal to the lowest 

natural frequency of the system, Uf = u)n. A relatively high damping ratio of (f = 0.7 was 

used. 

The stability of the system is guaranteed if assumptions Al through A4, p. 2-17, 

are satisfied. For this system, Mc = Mj = m2 > 0, so Al is met. Since the disturbance is 

sinusoidal, and therefore bounded, A2 is also fulfilled. Lastly, A3 and A4 are satisfied if Ac, 

Equation 2.52, and Au, Equation 2.53, are negative definite; these are checked numerically 

by the simulation. 

2.3.4 Results. The SIMULINK™ model of the 4 DOF system with adaptive 

control only on cart 2 is shown in Figures A.2 and A.3, on p. A-6. The MATLAB™ code 
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Figure 2.9     Displacements (m) for the Uncontrolled Chain System 

used to run the chain system simulation is given in Appendix A.2.1, beginning on p. A-7. 

The MATLAB™ code used to run the cyclic system simulation is given in Appendix A.2.2, 

beginning on p. A-9. 

2.3.4.1 Chain System. The first model studied was a 4 DOF chain sys- 

tem. In this setup, the spring and damper between carts 1 and 4 are cut (i.e. k^ = d±\ = 0). 

This means that while the disturbance can move sequentially through the carts, it cannot 

wrap around the ends. Keep in mind that adaptive control is only employed on cart 2, and 

the disturbance is only applied to cart 3. A plot of the uncontrolled response of the system 

is shown in Figure 2.9. All cart displacements have a maximum amplitude of roughly 1 to 

1.5 meters. 
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10 20 30 40 50 60 

Figure 2.10     Displacements (m) for Chain System: Adaptive Control, Tr = 104I 

Figure 2.11      Control Force (N) for Chain System: Adaptive Control, Tr = 1041 
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Figure 2.12     Parameter Estimates for Chain System: Adaptive Control, Tr = 104I 
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The selection of gains is required to implement the adaptive control technique. Ini- 

tially, Tr = I was picked. The magnitude of Tr was increased by a factor of 10 until the 

parameter estimates converged; this occurred at Tr = 1041. As shown in Figure 2.10, with 

adaptive control turned on, the response of cart 2 is negligible. There is also the added 

benefit that cart 1 is completely isolated from the disturbance, so its response is negligible 

as well. The responses of carts 3 and 4 remain largely unchanged. The control force, shown 

in Figure 2.11, is sinusoidal in nature with roughly the same frequency as the disturbance 

and a slightly lower amplitude. The parameter estimates are shown in Figure 2.12. Note 

that in parameter estimate plots, ktj and d^ are the estimated values of kij and d^ respec- 

tively. It is interesting that even though the response in cart 2 is completely suppressed, 

not all of the parameter estimates have converged to their correct values. The estimator 

determined that kx2 is identically zero, and produced a high estimate for dX2. 

Referring back to the parameter estimate law, Equation 2.75, kX2 and dx2 depend on 

71 and 73 respectively. It is reasonable to assume, that adjusting these values will effect the 

estimates. Varying 71 did not effect kX2 at all. However, setting 73 = 0.01 x 104, caused dX2 

to converge to the correct value. The displacement, control force, and parameter estimate 

plots for this new Tr are shown in Figures 2.13 through 2.15. All responses are similar to 

those for the previous Tr, except now dX2 immediately converges. 

There is still a problem with the parameter estimate for kx2. Examining the es- 

timation law, Equation 2.75 again, kx2 is directly related to the displacement of cart 1. 

The response of cart 1 is basically zero from the start of the simulation. This may cause 

problems for the estimator. The simulation was rerun with adaptive control turned off 

for the first ten seconds. This allowed cart 1 to build up a response before the estimator 

started. The results are shown in Figures 2.16 through 2.18. All of the parameter esti- 

mates now converge to the correct values. The response of carts 1 and 2 are still completely 

suppressed. 

2.3.4.2     Cyclic System.        The next model studied was a 4 DOF cyclic 

system. A plot of the uncontrolled response of the system is shown in Figure 2.19. There 
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Figure 2.13     Displacements      (m)      for      Chain      System: Adaptive      Control, 
Tr = 104 x diag(l, 1,0.01,1) 
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Figure 2.14     Control     Force      (N)     for     Chain     System: 
rr = 104xdiag(l, 1,0.01,1) 

Adaptive     Control, 

5. 0 

ST 

30        40        50        60 

10        20        30        40        50        60 

10        20        30        40        50        60 

*- ün = 0 00477 

Figure 2.15     Parameter     Estimates     for     Chain     System: Adaptive     Control, 
Tr = 104 x diag(l, 1,0.01,1) 

2-29 



20 30 

Figure 2.16     Displacements (m) for Chain System:  Adaptive Control turned on at t 
10 sec, Tr = 104 x diag(6,1,0.00045,1) 
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Figure 2.17     Control Force (N) for Chain System:  Adaptive Control turned on at t 
10 sec, Tr = 104 x diag(6,1, 0.00045,1) 
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Figure 2.18     Parameter Estimates for Chain System:   Adaptive Control turned on at 
t = 10 sec, Tr = 104 x diag(6,1, 0.00045,1) 
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Figure 2.19     Displacements (m) for the Uncontrolled Cyclic System 

are no tangible differences between the uncontrolled response of the cyclic system and the 

chain system, Figure 2.9. 

As with the chain system, the gain matrix for adaptive control, Tr, was selected 

through a trial and error process. The gains used for the chain system did not produce 

acceptable results for the cyclic system. A value of Tr = 102 x diag(1000,100,1,1) was 

finally settled on. The displacements for the cyclic system are shown in Figure 2.20. The 

response of cart 2 is again completely suppressed. However, since this is a cyclic system, 

cart 1 is not isolated from the disturbance. Its response is substantially reduced, but no 

longer negligible. The adaptive control also appears to have more of an effect on the whole 

system. The responses of both carts 3 and 4 are noticeably lower than in the chain system, 

Figure 2.10. Now that cart 2 is influenced by all of the other carts, the controller also has 
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Figure 2.20     Displacements      (m)      for      Cyclic      System: Adaptive      Control, 
IV = 102 x diag(1000,100,1,1) 
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Figure 2.21      Control     Force     (N)     for     Cyclic     System: Adaptive     Control, 
Tr = 102 xdiag(1000,100,l,l) 

£  0 
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-1-d, =0.00477 
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Figure 2.22     Parameter     Estimates     for     Cyclic     System: Adaptive     Control, 
Tr = 102 x diag(1000,100,1,1) 
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Figure 2.23     Displacements (m) for Cyclic System:  Adaptive Control turned on at t = 
10 sec, Tr = 103 x diag(100,100,1,1) 

to do more work. This shows up in a slightly higher control force, Figure 2.21, than in the 

chain system, Figure 2.11. 

The parameter estimates, Figure 2.22, all converge quickly to the correct values, 

although there are some minor offsets in the damping parameters. Unlike the chain system, 

there is no problem with the estimate for fci2. In the cyclic system, vibration energy can 

be transferred from cart 4 to cart 1, which gives cart 1 a discernible response. As was seen 

in the chain system, when cart 1 was allowed to first build up a response before adaptive 

control was started, the estimate for fci2 converged quickly to the correct value. 

For comparison purposes, the cyclic system was also run with a delayed start of 

adaptive control. The results are shown in Figures 2.23 through Figure 2.25. At steady- 
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Figure 2.24     Control Force (N) for Cyclic System:  Adaptive Control turned on at t 
10 sec, Tr = 103 x diag(100,100,1,1) 

Figure 2.25     Parameter Estimates for Cyclic System:   Adaptive Control turned on at 
t = 10 sec, Tr = 103 x diag(100,100,1,1) 
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State, the maximum amplitudes of the displacements are similar to when control was 

started immediately. The magnitude of the control force is slightly higher, most likely 

because the controller had to overcome a greater initial amount of vibration energy when 

turned on. Unexpectedly though, the parameter estimates are noticeably worse. The 

offset in the damping parameters is larger, although not alarmingly so. More importantly, 

though, the estimate for ki2 is considerably off, and even starts out negative. 

2.3.4.3    Summary. It appears quite evident, at least for the stiffness 

parameters, that the estimator requires a minimum level of input to work properly. This 

was clearly demonstrated by the estimates of kx2, the stiffness of the spring between carts 

1 and 2. In the chain system, when cart 1 was isolated from the disturbance, and thus had 

zero response, the estimator could not estimate ki2. However, when cart 1 was allowed to 

build up a response before the estimator started, the result converged to the correct value 

quickly. This was also the case in the cyclic system. 

If the other inputs to the estimation law are at acceptable levels, then the individual 

gains (71, ..., 74) allow for some adjustments in the convergence of the parameter esti- 

mates. The relative scaling of the gains will raise or lower the value of convergence. That 

is of course if you are in the neighborhood of a feasible solution. There are some combi- 

nations of the gains which will cause the estimates to converge to significantly incorrect 

values. It is important to note that even if this happens, the response of the system may 

be substantially reduced. 

Finally, it should be pointed out, that the actual values of the estimated parameters 

are unknown in a real system. That is in fact why they are estimated. This raises the 

question, should the gains be set to drive the estimates to uncertain parameter values, or 

should the deciding factor merely be system performance. 

2.4     Synopsis 

This chapter introduced three individual theories. First, a hybrid active/passive 

piezoelectric vibration absorber developed by Wang and Tang [18] was studied. The EOMs 

were derived and the optimal tuning parameters found. While providing superior perfor- 
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mance to a purely active or purely passive system, it requires a priori knowledge of the 

coupling strength, which is not well defined. 

Next, the active control theory of positive position feedback (PPF) was presented 

and the stability requirements explained. The EOMs were then developed for a single DOF 

system. This system was simulated, and the optimal tuning parameters were found. 

Finally, an adaptive parameter estimation and control technique suggested by Ertur, 

et al, was explored. Their method cancels unknown bounded disturbances while compen- 

sating for uncertainties [6]. The EOMs were developed for a 4 DOF system. The response 

of the system to a simulated sinusoidal disturbance were presented and discussed. 

In the following chapter, Ertur's adaptive control and PPF are combined into a single 

control methodology for a 4 DOF system. The adaptive parameter estimator eliminates 

the coupling forces, and then the vibrations are suppressed by PPF. 
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III.    Combined Adaptive/PPF Control 

for a Single Degree of Freedom 

3.1    Motivation 

In a compressor disk, effective vibration suppression requires broadband control ef- 

fort, and elimination of the inter-blade coupling forces. Wang and Tang's hybrid ac- 

tive/passive piezoelectric shunt network achieved this with greater performance than a 

purely active or purely passive system. The active component delivered high performance 

broadband vibration suppression, while the passive shunt provided a stable, fail-safe, eas- 

ily constructed vibration absorber. Unfortunately, optimal tuning of the passive shunt 

requires prior knowledge of the coupling strength, a quantity not well defined. Also, for 

typical applications it is necessary to actively synthesize inductors for the passive shunt 

network. This negates any benefits of a passive system, and complicates implementation. 

Since the shunt network is no longer truly passive, replacing it with a simpler, purely 

active system is desirable. The PVA is analogous to an MVA, but this is an impractical 

solution for a compressor disk. The PPF method discussed in Section 2.2 is also analogous 

to an MVA and provides active vibration suppression that is guaranteed stable. The 

question is whether or not PPF is equivalent to a PVA. To answer this, consider again the 

N-DOF cyclic system used by Wang and Tang, see Section 2.1.2. This time, however, N 

identical PPF actuators are used instead of PVAs. The EOMs are 

mixi + dx1 + (k + 2kc) xx - kc (xN + x2) = (lu^m^i + fd\ 

ryi + 2(füjff]i + J]r\\ = ujxi 

I (3-1) 

mNxN + dxN + (k + 2kc) xN - kc (xN-i + £i) = iiul_NmNr]N + fdN 

T)N + 2C/W/77JV + u}r)N = ujfXN 
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where Ji  = k+2kc. In matrix form, these equations become 

MX+DX+KX=GX+F (3.2) 

where X = [xi, r/i, ...,xpj, TIN}
T

 is the generalized displacement vector; F = [/di, 0,..., fdN, 0] 

is the generalized force vector consisting of the external disturbances. The generalized mass 

(M), damping (£>), gain (G), and stiffness (K) matrices are 

T 

M = 

m\ 

K = 

mN 

Xm Xc 0 0 xi 
T 

Xc Xm Xc 0 

0 T xi 0 

Xc 0 

0 0 T 
Xc Xm Xc 

Xc 0 0 T 
Xc Xm 

D = 

di 

2C/w/ 

G = 

Xai 

djv 

2(fuf 

(3.3) 

X9iv 

(3.4) 

with    Xm = 
k + 2kc    0 

0 to, 
Xc = 

0 0 ^limi 
,    and Xgi — 

0 0 J\ 0 

Note that M, D, K, and G are 2N x 2iV. The PPF equations of motion, Equation 3.2, are 

nearly identical to those derived by Wang and Tang for a PVA, Equation 2.10. The only 

significant difference in the two methods lies in the force vectors. Wang and Tang used 

an active voltage control in the shunt equations to cancel the mechanical coupling effects. 

PPF does not have an active input force. Therefore, to eliminate the coupling effects, PPF 

will be augmented with Ertur's adaptive control technique, Section 2.3. 
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Figure 3.1     Cyclic 4 DOF System 

3.2    Development 

3.2.1     Equations of Motion for a Four Cart System. To begin 

with, the Adaptive/PPF control law is developed for vibration suppression of a single 

substructure in an RPS. The 4 DOF cyclic system, studied in Section 2.3.2, and shown 

again in Figure 3.1, is used here as well. The system is drawn linearly, but it is analogous 

to the rotary periodic structure of a compressor disk. The blades, or carts, have mass m*, 

and their structural stiffness and damping are represented by k0i and d0i. The inter-blade 

coupling forces are expressed in terms of ktj and <%, where i, j = 1...4; by convention m; 

is the left cart, and rrij is the right cart. The external control and disturbance forces on 

each cart are represented by fc. It was established, see Equation 2.54, that the EOMs for 

this system are 

Mx + Dx + Kx = f (3.5) 

where the matrices and vectors are defined in Equations 2.55 through 2.57. A PPF actuator 

is now added to cart 2 of this system, with the following form 

172 + 2(fLüff]2 + ^jm = ^2 (3.6) 

Note that there is only one PPF actuator in this example; the subscript 2 merely signifies 

that it is on cart 2. 

As before, the objective of this example is to regulate the position of cart 2, thus 

X2 and 772 are the controlled coordinates in the adaptive control technique.   This means 

that qc = X2   m 
T 

and qu = X\      £3      £4 . So augmenting Equation 3.5 with Equa- 
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tion 3.6, and rearranging into the controlled/uncontrolled partitioned form, yields 

mi 0 0 0 0 

0 1 0 0 0 

0 0 m\ 0 0 

0 0 0 m3 0 

0 0 0 0 1714 

m 
Xl 

£4 

> + (3.7) 

d-02 + d\2 + ^23 0 

0 2C/w/ 

-di2 0 

-d23 0 

0 0 

&02 + &12 + &23 0 

-d\2 

0 

-^23 

0 

0 

0 

doi + d^i + du 0 -^41 

0 ^03 + ^23 + C^34 -^34 

—dn -C?34 C?04 + <^34 + <^41 

X2 

m 
Xi 

X3 

£4 

> + 

0 U( 

-k\2 

-^23 

0 

0 

0 

0 

-k\2 

0 

"&23 

0 

0 

0 

fcoi + ^41 + &12 0 —/C41 

0 fco3 + &23 + &34 -^34 

— &41 -^34 &04 + ^34 + &41 

/              \ f 
X2 

m 
< X\ 

X3 

,  =  < 

XA \ 

h 

h 
h 
h 

It is obvious from the above and Equation 2.58 that the uncontrolled part of the 

system remains unchanged. Comparing Equation 3.7 to Equation 2.45, results in 

Mc = 

Dr = 

Kr = 

771,2      0 

0        1 

do2 + dl2 + ^23 0 

0 2C/w/ 

ko2 + k\2 + k23     0 

0 ui f J 

(3.8) 

(3.9) 

(3.10) 

fc = 

D„,= 

J^mi, — 

h 
h2 

-d\2 -d23 0 

0 0 0 

-k\2 -k23 0 

0 0 0 

(3.11) 

(3.12) 

(3.13) 
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The controlled coordinate EOMs, the top half of Equation 3.7, are 

Mcqc + Dcqc + Kcqc = fc - Kcuqu - Dcuqv (3.14) 

Thus, substituting Equations 3.12 and 3.13 into Equation 3.14 and performing some 

matrix algebra, the controlled coordinate EOMs become 

Mcqc + Dcqc + Kcqc = fc - 
-ki2Xi - k23Xs - di2Xi - d23±3 

0 
(3.15) 

Recall that for adaptive control, the controlled coordinate EOMs are rewritten as 

Mcqc + Dcqc + Kcqc = /c - Yr$r (3.16) 

Therefore, comparing Equations 3.15 and 3.16, the regression matrix, Yr, and un- 

known parameter vector, <frr, are 

Yr 

X\      X3      X\      X3 

0     0     0     0 
(3.17) *r = -< 

fcl2 

d\2 

v   ^3   , 

(3.18) 

Note that the parameter vector, <frr, is the same as before. The adaptive control law is still 

estimating the stiffness and damping coupling parameters between cart 2 and the adjacent 

carts. 

3.2.2    Adaptive/PPF Control Law.       Ertur suggested the following con- 

trol law: 

fc = Yr$r- Dfqc - Kfqc (3.19) 
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The generic controller damping and stiffness matrices, Df and Kj respectively, are 

now replaced by PPF. Only the displacement states, qc, are used for PPF, so letting Df = 0 

and Kppf = -Kf in Equation 3.19, the new Adaptive/PPF control law becomes 

fc = Frl>r + Kppf qc (3.20) 

Substituting Equations 3.8 through 3.10, and Equation 3.20 into Equation 3.16, gives 

m2     0 

0        1 

X2 

m 
+ 

do2 + d\i + e?23        0 

0 2C/w/ 

+ ko2 + h2 + ^23      0 

0 UJ, 

X2 

m 
= Kppf < 

X2 

m 

X2 

m 

)+Yr (*r - *r) (3.21) 

If the adaptive parameter estimator works properly, the coupling forces are cancelled 

(i.e. I>r - <i>r -> 0), and Equation 3.21 reduces to PPF only. Comparing Equation 3.21 to 

the standard PPF formulation, Equations 2.19 and 2.20, it is obvious that 

Kppf — 
u> 

0     nm2ul2 with 
2    _  (^02 + fci2 + ^23) 
nz m2 

(3.22) 

It may appear that Kppf depends on coupling strength between carts. However, 

unlike Wang and Tang's technique, exact knowledge of fci2 and fc23 is not required. The 

natural frequency of cart 2 when the adjacent carts are fixed, u;„2, can be found experi- 

mentally. 

3.2.3 Adaptive Parameter Estimation. As in the purely adaptive case, 

the parameter estimates, <lr, are found from the adaptation law 

$r = -rrT
i PXC (3.23) 
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where as before 

Now, however, 

rr = 

71 0 

72 

73 

0 74 

>0 (3.24) 

Xr=( 
1c ■ 

> — x2 m X2 m 
qc 

(3.25) 

and using Equations 3.8 and 3.17 

W*I       o (Mj-'n)' 

0 0 Xl 0 

0 0 X3 0 

0 0 ±i 0 

0 0 X2, 0 

(3.26) 

P is still found from the Lyapunov equation, Equation 2.51, but the definition of Ac 

is changed for PPF. Substituting Df = 0 and Kppf = -Kf into Equation 2.52 gives 

Ar = [0]2x2 [J]2x2 

-M-l{Kc-Kppf)   -M-lDc 

(3.27) 

As before, Q is assumed diagonal, and chosen so that XjQXc results in an energy 

term. Thus, 

X2    m    x2    V2 

Qn      0       0 0 

0 Q22     0 0 

0        0 Q33 0 

0       0       0 Q44 

X2 

m 
x2 

m 

i.2 > = Qnxi + Q22V2 + Qwx2 + Quvi 

(3.28) 
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The first term in the above expression is the spring potential energy for cart 2, and the third 

term is the kinetic energy. The second and fourth terms are the pseudo spring potential 

and kinetic energy associated with the PPF actuator. After normalizing, Q is 

Q = 

1 0 0 0 

0 
m20J2

n2 

0 0 

0 0 1 

^2 
0 

0 0 0 1 
m2ul2 

= QT>0 (3.29) 

where u^2 is defined in Equation 3.22. 

With the Q defined above, and Ac from Equation 3.27, the Lyapunov equation is 

solved for P, which in generic terms is 

P = 

Pll P21 P31 P41 

P21 P22 P32 P42 

P31 P32 P33 P43 

P41 P42 P43 P44 

(3.30) 

Therefore, substituting Equations 3.24 through 3.26 and Equation 3.30 into Equa- 

tion 3.23, and performing some matrix algebra, the adaptive parameter estimate law for 

the 4 DOF system becomes 

$r = - I — 
1 

mi 

71 

72 

73 

74 

Xi 

X3 

XI 

%3 

P31     P32    P33    P34. 

X2 k\2 

X2 

> = - < 
^23 

d\2 

m t 

(3.31) 

3.2.4     Stability. Ertur proved the stability of the controlled states and 

boundedness of the uncontrolled coordinates given four assumptions, see Section 2.3.1. 

These guarantees also hold for the new Adaptive/PPF control method presented here, 

under the following five assumptions: 
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(Al) Mc = Mj > 0 

(A2) fu is bounded 

(A3) The roots, A, of \\2MU + XDU + Ku\ = 0, have negative real parts 

(A4') KPpf is selected so that the roots, A, of |A2MC + XDC + (Kc - Kppf) \ = 0, have 

negative real parts 

(A5') 0 < /i < 1 

The first three conditions are identical to Ertur's. The fourth is obtained from his A4 

by setting Df = 0 and Kppf = -Kf. The fifth condition is a statement of the stability 

requirement for PPF, see Section 2.2. Assumptions A3 and A4' are equivalent to saying 

that Ac, Equation 3.27, and Au, Equation 2.53, are negative definite. 

3.3    Simulation 

To model the 4 DOF system in SIMULINK™ the EOMs are put into state-space 

form, so Equations 3.5 and 3.6 become 

[0]4X4 [^4x4 

-M~lK   -M~XD 

0 1 

-bPi     —2(fU>f 

(.1 > + [0]4x4 

\ij -M"1 / 

< M 
r 0 

{ m J 1   1 10 
> h2 

(3.32) 

(3.33) 

In this simulation, the tuned cyclic system is used. This means that all of the carts 

have identical: mass, m{ = \ Kg; stiffness, k0i = 100 N/m; and coupling, hj = kc = 5 N/m, 

where i,j = 1...4. Using these values, the mass and stiffness matrices, M and K respec- 

tively, are found from Equations 2.55 and 2.57. Also, assuming a structural damping ratio 

of (n = 0.01, the damping matrix, D, is calculated from Equation 2.77. 

Similar to a PVA, the desired response is achieved by properly tuning the PPF 

actuator. The tuning parameters are the actuator frequency (uf), the damping ratio ((/), 
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and the feedback gain (fi). These are set using the values determined in Sections 2.2.4.1 

through 2.2.4.3: fj, = 0.4, Q = 0.4, and uf = un. 

The stability of the system is guaranteed if assumptions Al through A5', on p. 3-9, are 

satisfied. For Mc as defined in Equation 3.8, Al is met. Since the disturbance is sinusoidal, 

and therefore bounded, A2 is also met. A3 and A4' are satisfied if Ac, Equation 3.27, and 

Au, Equation 2.53, are negative definite; these are checked numerically by the simulation. 

Lastly, since \x = 0.4, A5' is fulfilled. 

3.3.1 Sinusoidal Disturbance. Two separate disturbances are used in 

this simulation. First, an external disturbance of fd = 10 sin (udt), is applied to cart 3 only. 

The disturbance frequency was set equal to the lowest natural frequency of the system, 

Ud = <*>„. 

3.3.2 Cyclic Disturbance. The second disturbance simulates the periodic 

forcing a compressor disk experiences as it rotates behind fixed stator blades in a turbine 

engine. A generic harmonic excitation that differs only in phase from blade to blade, is 

modelled as 

U = AJ»* < 

1 

pj4>N-\ 

2irE0(i - 1) 

N 
i = l,...,N (3.34) 

where A is the amplitude, tod is the frequency, <fo is the inter-blade phase angle, and E0 is 

the engine order of the disturbance. 

For the 4 DOF system, assuming the same amplitude and frequency as the sinusoidal 

disturbance (A = 10, ud = un), and E0 = l, Equation 3.34 reduces to 

fdi = 10 cos {ujdt + 4>i — 
?r(i — 1) 

z = l,...,4 (3.35) 

3-10 



3.4    Results 

The SIMULINK™ model of the 4 DOF system with Adaptive/PPF control only 

on cart 2 is shown in Figures A.4 and A.5, on p. A-12. The MATLAB™ code used to 

run the cyclic system simulation is given in Appendix A.3.1, beginning on p. A-13. The 

MATLAB™ code used to find the system RMS responses is given in Appendix A.3.2, 

beginning on p. A-15. 

3.4.1     For a Sinusoidal Disturbance. The first model studied was 

the 4 DOF cyclic system experiencing a sinusoidal disturbance applied to cart 3 only. 

Keep in mind that when Adaptive/PPF control is active, it is only employed on cart 2. 

When not controlled, this system is identical the one used in Section 2.3.4.2; a plot of the 

uncontrolled response is shown in Figure 2.19, on p. 2-32. All cart displacements have a 

maximum amplitude of roughly 1 to 1.5 meters. 

As with the purely adaptive technique, Tr was initially set equal to the identity 

matrix. It was increased by a factor of 10 until achieving satisfactory responses and near 

convergence for the parameter estimates. The individual gains, (71, ..., 74), were then 

adjusted to improve convergence. Finally, a value of Tr = 101 x diag(100, 20, 0.01,1) was 

selected. This is an order of magnitude lower than in the purely adaptive simulations. 

As you can see in Figure 3.2, the response of cart 2 is completely suppressed almost 

immediately. The response of carts 1 and cart 4 are also substantially reduced. The control 

forces are shown in Figure 3.3. The adaptive control is sinusoidal in nature; it starts out 

low and ramps up to a steady-state amplitude roughly the same as the disturbance. The 

adaptive control reaches steady state when the all parameter estimates converge to their 

exact values, see Figure 3.4. 

It is obvious from Figure 3.3, that the adaptive control has to work continuously to 

eliminate the coupling effects. The PPF control, on the other hand, works at the beginning 

and then ramps off quickly. The adaptive control isolates cart 2 from the disturbance so 

that once the PPF control suppresses the response, it has no more work to do. 
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Q  —^AA<V\AA"AAAÄAV/AVW-^" 

JO 20 30 40 50 60 

Figure 3.2     Displacements (m) for Cyclic System: Adaptation / PPF Both On, Sinusoidal 
Disturbance, Tr = 101 x dia5(100,20,0.01,1) 
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50 60 

Figure 3.3      Control Forces (N) for Cyclic System: Adaptation / PPF Both On, Sinusoidal 
Disturbance, Tr = 101 x dia5(100,20,0.01,1) 

Z      0 

10 20 30 40 50 60 

10 20 30 40 50 60 

- i- Ü,, = 0.00477 

10 20 30 40 50 60 

. _ d    = 0.00477 

20 30 40 50 60 
Time (sec) 

Figure 3.4     Parameter Estimates for Cyclic System: Adaptation / PPF Both On, Sinu- 
soidal Disturbance, rr = 101 x diap(100,20,0.01,1) 
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10 20 30 40 50 60 

Figure 3.5     Displacements (m) for Cyclic System: Adaptation on / PPF off, Sinusoidal 
Disturbance, Tr = 101 x diag{100, 20,0.01,1) 
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10 20 30 40 50 60 

Figure 3.6     Control Forces (N) for Cyclic System: Adaptation on / PPF off, Sinusoidal 
Disturbance, Tr = 101 x diop(100,20,0.01,1) 

I5 

10 20 30 40 50 60 

10 20 30 40 50 60 

10        20        30        40        50        60 

Figure 3.7     Parameter Estimates for Cyclic System: Adaptation on / PPF off, Sinusoidal 
Disturbance, Tr = 101 x dia^lOO, 20,0.01,1) 
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Figure 3.8     Displacements (m) for Cyclic System: Adaptation off / PPF on, Sinusoidal 
Disturbance, Tr = 101 x diag(100, 20,0.01,1) 

Next, the simulation was rerun with PPF control turned off. This was done by 

setting the output of the PPF control force to zero; Kppf was still used in calculations for 

the parameter estimator. The displacement, control forces, and parameter estimates are 

shown in Figures 3.5 through 3.7. As you can plainly see, the steady-state displacements 

are nearly identical to when both adaptive and PPF control are used, Figure 3.2, although 

cart 2 does takes slightly longer to converge. The parameter estimates also take longer to 

converge, and do not achieve their exact values. 

Finally, PPF control was turned on, and adaptive control turned off. As before, 

this was done by setting the force output of the adaptive estimator to zero. As shown 

in Figure 3.8, the displacements of carts 1, 3, and 4 are once again identical to the fully 

3-16 



g     5- 

Figure 3.9     Control   Forces   (N)   for   Cyclic   System:     Adaptation   off   /   PPF   on, 
rr = 101 x diag(100, 20, 0.01,1) 

controlled and adaptive only cases. The response of cart 2 is substantially reduced, but 

since it is no longer isolated from the coupling effects by adaptive control, there is a steady- 

state amplitude. It is also observed from Figure 3.9, that unlike the fully controlled case, 

the PPF force now has to operate continuously to suppress the response. 

There are three control configurations: Adaptive/PPF, Adaptive-Only, and PPF- 

Only. The effectiveness of these three options are compared using the RMS of the response 

for cart 2. The RMS of x2 is calculated from Equation 2.43, over the frequency range 

0 < ud < 20 rad/sec. The results are shown in Figure 3.10. Note that the responses are 

normalized by the maximum RMS for the uncontrolled system. As you can see, all three 

options substantially reduce the response at resonance. However, the Adaptive/PPF and 

Adaptive only control perform the best. 

3.4.2    For a Cyclic Disturbance. The 4 DOF cyclic system was next 

subjected to the cyclic disturbance described in Section 3.3.2. Adaptive/PPF control is still 

employed only on cart 2. The uncontrolled response of the system is shown in Figure 3.11. 

All cart displacements achieve a steady-state amplitude of roughly 1 meter. 

Using the same process as described for the sinusoidal disturbance, a value of Fr — 

101 x diag(l, 100,1,1) was selected. The displacements for the system are shown in Fig- 
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Figure 3.10     RMS of Cart 2 Displacement for Sinusoidal Disturbance 
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Figure 3.11      Displacements (m) for Cyclic System: Uncontrolled, Cyclic Disturbance 
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10 20 

Figure 3.12     Displacements (m) for Cyclic System: Adaptation / PPF Both On, Cyclic 
Disturbance, I\. = 101 x diag(l, 100,1,1) 
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Figure 3.13     Control Forces (N) for Cyclic System: Adaptation / PPF Both On, Cyclic 
Disturbance, Tr = 101 x diag{l, 100,1,1) 

10 
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10 20 30 40 50                        6 
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-i-tl„ = 0.00477 

10        20        30        40        50        60 

10        20        30        40        50        60 
Time (sec) 

Figure 3.14     Parameter Estimates for Cyclic System: Adaptation / PPF Both On, Cyclic 
Disturbance, Tr = 101 x diag(l, 100,1,1) 
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ure 3.12. As with the sinusoidal disturbance, the response of cart 2 is almost immediately 

suppressed. It is interesting that while the response of cart 1 remains largely unchanged 

from the uncontrolled case, the responses of carts 3 and 4 actually increase. Once again, 

the control forces plot, Figure 3.13, shows that adaptive control works continuously to can- 

cel the coupling effects. The PPF control, however, works only in the early stages. With 

cart 2 isolated by adaptive control, PPF is only necessary until the response is suppressed. 

The parameter estimates are shown in Figure 3.14. It is immediately obvious, that 

while all parameters converge quickly, they do not converge to the correct values. The 

offset in fc23 is negligible, but the estimator determined that ku is identically zero. The 

estimates for di2 and d23 are also incorrect, but of greater concern is that d23 converges to 

a negative value. 

The simulation was run again with PPF control turned off. The displacements, 

control forces, and parameter estimates are shown in Figures 3.15 through 3.17. The 

response of cart 2 is still completely suppressed, although it does take longer to converge 

than in the fully controlled case. Again, the response of cart 1 remains largely unchanged 

from the uncontrolled case, while the responses of carts 3 and 4 increase. The adaptive 

control force is substantially higher in the beginning, but eventually reaches the same 

steady-state amplitude as the fully controlled case. The parameter estimates take much 

longer to converge, and still do not achieve the correct values. 

Finally, PPF control was turned on, and adaptive control turned off. The displace- 

ments are shown in Figure 3.18. The response of cart 2 is substantially reduced, but since 

it is no longer isolated from the coupling effects by adaptive control, there is a steady- 

state amplitude. Once again, the response of cart 1 remains largely unchanged from the 

uncontrolled case, while the responses of carts 3 and 4 increase. It is also observed from 

Figure 3.19, that unlike the fully controlled case, the PPF force now has to operate con- 

tinuously to suppress the response. The steady-state amplitude of the PPF-Only control 

force is approximately the same as for the adaptive only case, Figure 3.16. 

As before, the effectiveness of the three control configurations are compared using 

the RMS of the response for cart 2.   As you can see in Figure 3.20, all three options 
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Figure 3.15     Displacements (m) for Cyclic System:   Adaptation on / PPF off, Cyclic 
Disturbance, Tr = 101 x diag(l, 100,1,1) 
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10 20 30 40 50 60 
Time (sec) 

Figure 3.16      Control Forces (N) for Cyclic System:   Adaptation on / PPF off, Cyclic 
Disturbance, Tr = 101 x diag(l, 100,1,1) 
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--d, =0.00477 

- (- d, = 0.00477 

Figure 3.17     Parameter Estimates for Cyclic System: Adaptation on / PPF off, Cyclic 
Disturbance, Tr = 101 x diag(l, 100,1,1) 
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Figure 3.18     Displacements (m) for Cyclic System:   Adaptation off / PPF on, Cyclic 
Disturbance, Tr = 101 x diag(l, 100,1,1) 
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Figure 3.19     Control Forces (N) for Cyclic System:   Adaptation off / PPF on, Cyclic 
Disturbance, rr = 101 x diag(l, 100,1,1) 

Figure 3.20     RMS of Cart 2 Displacement for Cyclic Disturbance 
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substantially reduce the response at resonance. However, once again, the Adaptive/PPF 

and Adaptive-Only control perform the best. 

3.4.3 Summary. The new Adaptive/PPF control law completely suppressed 

the response of cart 2 for both disturbances. For the sinusoidal disturbance on cart 3 only, 

the responses of carts 1 and 4 were substantially reduced. For the cyclic disturbance, on 

the other hand, the response of cart 1 remained largely unchanged, while carts 3 and 4 

actually increased. Turning off PPF control only significantly effected the response of cart 

2, causing it to take longer to converge. When PPF was turned on, and adaptive control 

turned off, cart 2 was no longer isolated from the coupling, and its response had a steady- 

state amplitude. The other responses remained largely unaffected. Comparing the RMS of 

displacement for cart 2, all three control configurations substantially reduced the response. 

However, the Adaptive/PPF and Adaptive-Only control performed the best. 

The parameter estimator for the Adaptive/PPF control worked flawlessly for the 

sinusoidal disturbance. Unfortunately, there were problems when the cyclic disturbance 

was used. The estimates failed to converge to the correct values, and one of the damping 

estimates even converged to a negative number. There are two possible causes for these 

problems. First, recall that in the development of the adaptive estimator, there is no 

guarantee that the parameter estimates will converge. In fact, there is no guarantee that 

there is a unique solution to the estimation law. In this case, the estimator may have a 

found a solution where the estimates do not converge to the actual values, but still produce 

a control force that results in good performance. The second possible cause is that there 

is a disturbance applied to cart 2. Even though all of the stability requirements were met, 

Ertur's adaptive control technique was not developed with a disturbance applied directly 

to the controlled coordinate. 

Finally, as with the purely adaptive system in Chapter 2, the gains (71, ..., 74) 

allow for some adjustments in the convergence of the parameter estimates if you are in 

the neighborhood of a feasible solution. However, there are some combinations of the 

gains which will cause the estimates to converge to significantly incorrect values.   Once 
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again, it is important to note that even if this happens, the response of the system may 

be substantially reduced. 

3.5    Synopsis 

In this chapter, Ertur's adaptive control technique and PPF were combined into a 

single control methodology for a one DOF of a multi-DOF system. The adaptive parameter 

estimator eliminated the coupling forces, and then the vibrations were suppressed by PPF. 

This technique was used to control a single cart of the 4 cart system. The simulated system 

was subjected to both a sinusoidal disturbance on a single cart, and a harmonic disturbance 

that cycles through all of the carts. Response plots were presented and discussed. 

In the following chapter, the Adaptive/PPF control technique is expanded to control 

all 4 DOFs of the system. In addition, the system is mistuned, so that the coupling springs 

are no longer identical. Finally, an eight bladed model is also studied. 
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IV.    Combined Adaptive/PPF Control 

for Multiple Degrees of Freedom 

4.1    Development for 4 DOF System 

4.I.I     Equations  of Motion. In Chapter 3 it was demonstrated that 

Adaptive/PPF control significantly reduces the response of a single substructure in an 

RPS. In this chapter, the control theory is expanded to include all of the substructures in 

the RPS. The 4 DOF cyclic system studied in Chapters 2 and 3 is used again here, see 

Figure 3.1 on p. 3-3. Recall that the carts have mass rrn , and their structural stiffness 

and damping are represented by kQi and d0i. The inter-blade coupling forces are expressed 

in terms of % and <% , where i, j = 1...4. The external control and disturbance forces on 

each cart are represented by fo. As before, the EOMs are 

Ml 

(        > /        \ /■        \ /             \ 
Xl Xl Xl h 

X2 
> +D< 

±2 
> +K< 

X2 
>   =   < 

h 
> 

X3 X3 X3 h 

XA \          J 
XA 

K             J 
XA 

K              J l/4   J 

(4.1) 

where the mass, damping, and stiffness matrices (M, D, and K respectively) are defined in 

Equations 2.55 through 2.57. Using identical PPF actuators on each cart, with a damping 

ratio of Q and a frequency of ujf, results in the following additional equations 

'                > 
»71 

'            > 
»71 

(      \ 
^i 

< > + 2C/w/ < > +coj< 
V2 

> = < 
h2 

> 
h3 

k ^ . > ^ . , ^ . hd 

(4.2) 

Before, vibrations were only suppressed in a single cart. The objective now is to 

regulate all of them. The Adaptive/PPF control theory is applied to each cart individually, 

with the controlled coordinates equal to the displacement and actuator states for that 
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cart. The procedure is essentially the same as in Section 3.2.1. Beginning with cart 1, this 
nT r IT 

means that qc\ = x\   m and qu\ = Thus, combining X2     V2     %3     V3     %\     »74 

Equations 4.1 and 4.2, and rearranging into the controlled/uncontrolled partitioned form 

yields 

mi    0 

0     1 

0 

0 

7712 

1 

m3 

1 

7714 

1 

Xl 

m 
X2 

m 

X3 

m 

m 

> + 

doi + d4i + di2 0 -d12   0      0     0 -d41   0 

0 2C/w/ 0      0      0     0 0      0 

-di2 0 

0 0 

0 0 Dui 

0 0 

-d4i 0 

0 0 

fol + &41 + h2 0 -fci2   0      0      0 -fc4i   0 

0 2C/w/ 0      0      0      0 0      0 

-kn 0 

0 0 

0 0 tful 

0 0 

-&41 0 

0 0 

Xl 

m 

X2 

m 

X3 

m 
£4 

m 

Xl 

m 
X2 

V2 

X3 

m 
X\ 

> + 

> = < 

/1 

h 
h2 

h 
h3 

h 
HA 

(4.3) 
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Comparing the above to the standard form, 

Mcl 0 
< 

0 Mul _ \ 

<7ci 

9ul 

+ -Del       -Ccul 

DUcl Ail 

<?cl + 
Kc\       Kcal 

Kuci    Ku\ 

<M 

qu\ 
> = < 

fcl 

ful 

ults in 

Mcl = 
TOi     0 

0       1 

Al   = 
doi + d4 

0 

i + di2 0 

2C/w/ 

tfcl = 
feoi + &41 + ^12      0 

0 m 

(4.4) 

(4.5)        fd 

(4.6)      Deui = 

(4.7)     Kcui = 

/i 

^i 

-di2 0 0 0 -d4i 0 

0 0 0 0      0 0 

-kn 0 0 0 -fc41 0 

0 0 0 0      0 0 

(4.8) 

(4.9) 

(4.10) 

The controlled coordinate EOMs, the top half of Equation 4.4, are 

Mci'qci + Dciqci + Kc\qci = fa - -Kcui<M - Aui^l (4.11) 

Thus, substituting Equations 4.9 and 4.10 into Equation 4.11 and performing some 

matrix algebra, the controlled coordinate EOMs become 

Mciqci + Dciqci + Kciqci = fa 
—ki2X2 — k4iX4 — ^12^2 — ^41^4 

0 
(4.12) 

Recall that for adaptive control, the controlled coordinate EOMs are rewritten as 

Mcqc + Dcqc + Kcqc = fc- Yr$r (4.13) 

Therefore, comparing Equations 4.12 and 4.13, for cart 1 the regression matrix, Yri, 

and unknown parameter vector, $ri, are 
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Yrl = 
X2    X4     X2    X4 

0     0     0     0 
(4.14)      srl = _ ki2     &41     du    ^41 (4.15) 

In general, the controlled coordinate EOMs for each cart of the 4 DOF cyclic system 

are given as 

Mciqci + Dciqci + Kciqci = /ci - Yri$r i = l,...,4 (4.16) 

where 

Qa = < 
Vi 

(4.17) fci = 
fi 

(4.18)      Md = 
rrii    0 

0     1 
(4.19) 

Dd = 
0 2C/w/ 

(4.20)     #ci = 
fcoi + fyi-l),i + fci,(*+1)      ° 

LO, 

(4.21) 

Note that for the 4 DOF cyclic system, cart 1 connects to cart 4. So for i = 1, i - 1 = 4, 

and for z = 4, i + 1 = 1. 

Therefore, applying the same procedure as before, the regression matrices and un- 

known parameter vectors for carts 2, 3, and 4 are 

Yr rl 
X\      £3      X\      X3 

0     0     0     0 
(4-22)      $r2 = &12     &23    di2    d- 23 (4.23) 

Yr3 = 
X2     X4     X2     X4 

0      0      0      0 
(4-24)      $. = &23     &34     <^23     d34 (4.25) 
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Yr4 = 
x\   xs   xi   x3 

0     0     0     0 
(4-26)      *. = &41     ^34     ^41     d; 34 (4.27) 

4.1.2     Adaptive/PPF  Control Law. The control law developed for 

controlling a single cart in Section 3.2.2 still applies here, but now there is a control 

force for each cart. Note that identical PPF actuators are assumed, so the same gain, /i, 

is used for each one. Thus, the general form of the control law is 

fci — Yri®ri + Kppfi 1c i = l,...,4 (4.28) 

where 

Kppfi — 
0     umiul 

LUr 0 
with 

k0i + k(i_1)d + k, 

mi 
(4.29) 

4.1.3    Adaptive Parameter Estimation.        As with the control law, the 

estimator law is identical to the one developed for a single cart in Section 3.2.3. In general, 

®ri —      J- ri ■"• i ±i-"-ci (4.30) 

where 

•L ri — 

71 0 

72 

73 

0 74 

> 0 ,    Xci = < "pi 

qCi 
0    {M^Yrtf        (4-31) 
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The individual Pt matrices are solutions to the Lyapunov equation, AT
ciPi + Pi Aci = -Qi , 

with Pi = P? > 0, Qi = Qf > 0, and where 

A-. [0]2x2 ^2x2 

-M^{Kci-Kpph)   -M^Dci 

(4.32) 

The Qi matrices are defined in a similar manner to the Q developed for controlling a single 

cart, Equation 3.29. In general this is 

Qi = 
0     -^5 

0       0 

0       0 

0 

1 

0 

0 
QT>0 (4.33) 

where u?ni is defined in Equation 4.29. Thus, using the above result, along with substituting 

Equations 4.19 through 4.21 and 4.29 into 4.32, the Lyapunov equation is solved for Pt. 

The adaptive estimate law is then found by substituting the solution for Pi , as well 

as Equations 4.17, 4.19, and 4.31, into Equation 4.30. After simplification, this yields 

*r 
771; 

71 

72 

73 

74 

Y1 [P31     P32    P33    P3A] 

0       0       0        0 

Xi 

Vi 

Xi 

Vi 

} ,   i = l,...,4 

(4.34) 

where Yri and $ri are defined in Equations 4.14, 4.15, and 4.22 through 4.27. 

4.1.4 Stability. In Section 3.2.4, stability requirements were developed for 

Adaptive/PPF control. It was demonstrated that the 4 DOF system is stable when only 

one of the four carts is controlled. This is now extended to controlling all of them. Stability 

is guaranteed, as long as the following five assumptions are satisfied (for i = 1,..., 4): 

(Al) Mci = Mc
r

i>0 
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(A2) fui is bounded 

(A3) The roots, A, of \X2Mui + XDui + Kui\ = 0, have negative real parts 

(A4') The roots, A, of \\2Mci + XDC + {Kci - Kppfi) | = 0, have negative real parts 

(A5') 0 < fi < 1 

The mass matrix, M, is positive definite and diagonal, which means that all of the Mc 

submatrices are symmetric and positive definite; the first condition is therefore satisfied. 

The unknown forces, fui, are comprised of the external cyclic disturbance and the control 

forces on the other carts. Since both of these are individually bounded, fui is bounded, 

and the second condition is met. The PPF gain is \x = 0.4, which satisfies assumption A5'. 

To determine if assumptions A3 and A4' are met, the system is looked at as a whole, 

see Equation 4.4. Assumption A4' requires that the controlled portion of the system is 

stable. This is equivalent to saying that Acl, as defined in Equation 4.32, is negative 

definite (< 0). However, assumption A3 also requires that the uncontrolled part of the 

system is stable when uncoupled from the controlled part. In other words, it requires that 

the following is also stable 

Mu\qui + Duiqu\ + Ku\qu\ = fu\ (4.35) 

But this can be rewritten as 

Mc2 

M ul 

Qc2 

Qu2 

> + 
DC2      DCU2 

DUC2     Du2 
> + 

KC2      KCU2 

KUC2      KU2 

(4.36) 

Note that the tilde above matrices signifies that the coupling terms to the previous carts are 

removed. Reapplying assumptions A3 and A4', this new system is stable if the controlled 

and uncontrolled parts are independently stable. The controlled portion is stable if A& < 0. 
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Again, the uncontrolled part is rewritten as 

M, c3 

M u3 

DC3      DCU3 

DUC3     DU3 KUC3      KU3 

(4.37) 

Once again, which system is stable if Ac3 < 0, and the following system is stable 

Mrtqd + -DC4<?c4 + Kc4qU4 = /C4 (4.38) 

Finally, this system is stable for Ac4 < 0. Therefore, A3 and A4' reduce to the requirement 

that Aci < 0 for alH = 1,..., 4. This is checked during the simulation. 

4.1.5 Simulation. The 4 cart system is now simulated with Adaptive/PPF 

control on all of the carts. Both tuned and mistuned systems are studied. To model the 

4 DOF system in SIMULINK™ the structure and actuator EOMs, Equations 4.1 and 4.2 

respectively, are first put into state-space form: 

x 

x 
> = 

[0]4x4 [-^J4x4 

-M-lK   -M-XB 

X [0]4X4 < \ + 
X 

K         ) 
-M-1 

f 

[0]4x4 

/ [-^4x4 -"? in 
L-'J4x4 

-2C/W/ [7]4x4 

< 2 > + 
[0]4x4 

1^4x4 

h 

(4.39) 

(4.40) 

The PPF tuning parameters are set using the values determined in Sections 2.2.4.1 

through 2.2.4.3: fi = 0.4, (f = 0.4, and Uf = un. 

The gain matrices for the adaptive estimators, Yri, can be set independently for each 

individual cart. However, for ease of set-up and analysis, it is assumed that they are all 

identical. The matrix was determined experimentally in a manner similar to that used in 

Chapter 3. The value finally chosen was rr = 1021. 

For these simulations, the system is only subjected to the cyclic disturbance, de- 

veloped in Section 3.3.2.   The disturbance frequency is still equal to the lowest natural 

4-8 



frequency of the system, ud = un. This time, however, the engine order, E0, of the distur- 

bance is varied to study its effect. Thus, the disturbance force is given by 

/Ä = 10cos(Wdt + &) <t>i = 7TEo{l~l) i = l,...,4 (4.41) 

4.1.5.1 Tuned System. As in previous simulations, for the tuned sys- 

tem, all of the carts have identical: mass, m* = 1 Kg; stiffness, k0i = 100 N/m; and cou- 

pling, kij = kc = 5 N/m, where i,j = 1...4. Using these values, the mass and stiffness 

matrices, M and K respectively, are found from Equations 2.55 and 2.57. Also, assuming 

a structural damping ratio of Cn = 0.002, the damping matrix, D, is calculated from Equa- 

tion 2.77. The damping is lower than in previous simulations, so it is easier to compare 

the results with those found by Duffield in his research [5]. 

4.1.5.2 Mistuned System. Up until now, all of the systems studied 

have been perfectly tuned. This means that all of the carts are identical and experi- 

ence the same coupling and damping forces. Unfortunately, this is an idealization, since 

all real systems have material and manufacturing imperfections. The system is said to 

be mistuned when these defects cause mass, stiffness, and damping variances [15]. To 

study the effects of mistuning, the structural stiffness of each cart, kQi, was varied. This 

also changes the damping, since it is calculated as a function of the stiffness. Castanier 

and Pierre showed that the maximum amplitude magnification factor of a compressor 

bladed-disk with various random mistuning strengths peaked at a standard deviation of 

a « 0.01 [4]. A random mistuning pattern was created using this a as a goal, and such 

that the mean was near zero: Afcoi = -0.014017, Ak02 = 0.002013, Ak03 = 0.012155, and 

A&04 = -0.000299 N/m. These values result in a a = 0.011, and a mean = 0.00004. 

The individual cart stiffness parameters are then calculated by k0i = k0(l + Afcoi), where 

ko = 100 N/m is the nominal stiffness. All of the carts are still assumed to have identical: 

mass, mi = 1 Kg; and coupling, ktj = kc = 5 N/m, where i,j = 1...4. The mass, damping, 

and stiffness matrices (M, D, and K respectively) are then calculated as in the tuned 

system. 
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4.1.6 Results. The SIMULINK™ model of the 4 DOF cyclic system with 

Adaptive/PPF control on all carts is shown in Figures A.6 and A.7, beginning on p. A-17. 

The MATLAB™ code used to run the simulation is given in Appendix A.4.1, beginning 

on p. A-19. The MATLAB™ code used to find the system RMS responses is given in 

Appendix A.4.2, beginning on p. A-22. 

4.1.6.1 For the Tuned System, with EQ = 1. The first model studied 

was the tuned system subjected to a cyclic disturbance, with E0 = 1. A plot of the 

uncontrolled response is shown in Figure 4.1. All cart displacements achieve a steady-state 

amplitude of roughly 1 meter. 

The response of the system with all carts controlled is shown in Figure 4.2. As you 

can see, the steady state amplitudes of the displacements are all identical and substantially 

reduced. The responses are not completely suppressed as they were for the single control 

system, Figure 3.12. It is also quite obvious that the control system looses tracking, causing 

brief pulses of increased amplitude at regular intervals. However, the maximum amplitude 

is still considerably less than the uncontrolled response of the system. 

The adaptive and PPF control forces are presented in Figures 4.3 and 4.4. They too 

exhibit the same pulsing at the same intervals as the displacement plots. This is expected 

since the actuators have to work harder to bring the system back under control. The 

"steady-state" amplitude of the adaptive forces is approximately double that of the single 

control system, Figure 3.13. The initial amplitude of the PPF forces is equivalent to the 

initial amplitude for the single control system. However, now the PPF forces do not die 

out as they did before. 

The stiffness and damping parameter estimates are shown in Figures 4.5 and 4.6. 

Recall that k and d are the actual parameters, whereas k and d are the estimates. There 

are two plots for each parameter, because now there are two estimators that calculate 

them, one on either side of the spring or damper. The estimates take nearly 30 times 

as long to converge as in the single control system, Figure 3.14. After they do converge, 

they immediately loose convergence, and then reacquire. This gives the plots a distinctive 
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Figure 4.1      Displacements (m) for the Tuned Cyclic System: Uncontrolled, Cyclic Dis- 
turbance, E0 = i, rr = io21 
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sawtooth pattern.   The point where the estimates loose convergence coincides with the 

pulsing exhibited in the displacement and force plots. 

Of greater concern is that the two estimators for each parameter are finding equal 

and opposite values. It is demonstrated in later plots that this is not just a sign error. The 

stiffness parameters are converging to the correct value, but the estimators to the right 

of the spring find a negative answer. For the damping parameter the left estimator finds 

the negative solution. The damping estimates are also significantly off from their correct 

values; much greater error than in any of the single control cases. 

Next, the simulation was run with PPF control turned off. As you can plainly see 

in Figure 4.7, the response of the even carts is completely suppressed, while it remains 

largely unchanged from the uncontrolled values for the odd carts. None of the response 

plots exhibit the pulsing that was seen in the full Adaptive/PPF case. The adaptive forces, 

Figure 4.8, for the even carts reach a steady-state amplitude comparable to the full control 

case. The controllers for the odd carts appear to work in the beginning, and then the force 

drops off to zero. 

The parameter estimates are shown in Figures 4.9 and 4.10. It is noted that all of 

the parameter estimates from the odd carts diverge from the correct values, albeit very 

slowly for the damping. This is most likely the reason that the response of the odd carts 

is not effected. 

Finally, the simulation was run with PPF control on, and adaptive control off. The 

responses of all of the carts are substantially reduced and identical, Figure 4.11. They 

are also on par with the response of the single cart controlled by PPF-Only, Figure 3.18. 

However, the amplitudes of the PPF forces, Figure 4.12, are slightly greater than for the 

single control case, Figure 3.19. 

The three control configurations (Adaptive/PPF, Adaptive-Only, and PPF-Only) 

along with the uncontrolled system are compared using the maximum RMS of the cart 

displacements. The RMS for each cart is calculated over a frequency range of 0 < u>d < 20 

rad/sec. The maximum RMS for each configuration is the maximum RMS out of all the 

carts at every uj..   The results are shown in Figure 4.13.   Note that the responses are 
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Figure 4.2     Displacements (m) for the Tuned Cyclic System: Adaptation/PPF Both on, 
Cyclic Disturbance, E0 = l,Tr = 1021 
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Figure 4.3     Adaptive Forces (N) for the Tuned Cyclic System:  Adaptation/PPF Both 
on, Cyclic Disturbance, E0 = 1, Tr = 10 I 
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Figure 4.4     PPF Forces (N) for the Tuned Cyclic System:   Adaptation/PPF Both on, 
Cyclic Disturbance, E0 — 1, Tr = 1021 
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Figure 4.5      Stiffness  Parameter  Estimates  for  the  Tuned   Cyclic  System:     Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = 1, Tr = 102I 
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Figure 4.6     Damping Parameter  Estimates for  the  Tuned  Cyclic  System:    Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = 1, Tr = 1021 
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Figure 4.7     Displacements (m) for the Tuned Cyclic System: Adaptation on / PPF off, 
Cyclic Disturbance, E0 = 1, rr = 1021 
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Figure 4.8     Adaptive Forces (N) for the Tuned Cyclic System: Adaptation on / PPF off, 
Cyclic Disturbance, E0 — 1, rr = 10 I 
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Figure 4.9     Stiffness Parameter Estimates for the Tuned Cyclic System: Adaptation on 
/ PPF off, Cyclic Disturbance, E0 = 1, Tr = 1021 

4-20 



15 

10 

-10h 

-15 
0 

O   Cart #1 (L) 
A   Cart #2 (R) 

=#= =£= 6 fr 

200    400    600    800   1000   1200   1400   1600   1800   2000 

5L 
-10 

-15 

=£= 

O   Cart #2 (L) 
A   Cart #3 (R) 

=#= =#= ■6 & 

200    400    600    800   1000   1200   1400   1600   1800   2000 

15 

10 - 

< s c ■a -5 

-10 

-15 

O Cart #3 (L) 
A Cart #4 (R) 

=#= 

200    400    600    800   1000   1200   1400   1600   1800   2000 

15 

10 

E 

^ 

=#= & 

O   Cart #4 (L) 
A   Cart #1 (R) 

■6 e- 

0    200    400    600    800   1000   1200   1400   1600   1800   2000 
Time (sec) 
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Figure 4.11      Displacements (m) for the Tuned Cyclic System: Adaptation off / PPF on, 
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Figure 4.12     PPF Forces (N) for the Tuned Cyclic System:  Adaptation off / PPF on, 
Cyclic Disturbance, E0 = 1, Tr = 1021 
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Figure 4.13     Maximum RMS of Displacements for the Tuned Cyclic System: Cyclic Dis- 
turbance, E0 = 1 

normalized by the maximum RMS for the uncontrolled system. All configurations appear 

to perform well at the lower frequencies. It is immediately obvious, however, that the 

Adaptive-Only control produces very poor results; at best, the response no better than the 

uncontrolled system. The Adaptive/PPF and PPF-Only controls perform equally well, 

resulting in a near zero response. 

4.1.6.2 For the Tuned System, Varying E0. The tuned system with 

full Adaptive/PPF control is used again here. This time however, the effects of varying the 

engine order of the disturbance are studied. First, the simulation was run with E0 = 3. The 

displacement, force, and parameter estimate plots were nearly identical to those for E0 = 1, 

see Figures 4.2 through 4.6. The only difference was in the parameter estimates. As with 

E0 = 1, the two estimators for each parameter found equal and opposite answers. However, 

4-24 



for E0 = 3, the left estimator found the negative solution for the stiffness parameters and 

the positive solution for the damping parameters. This is the reverse of E0 = 1. 

Next, the simulation was run again with EQ = 4. The uncontrolled response, Fig- 

ure 4.14, is approximately 20 times greater than the response for E0 - 1. When Adap- 

tive/PPF control is turned on, the response of all four carts is substantially reduced, 

Figure 4.15. Unlike E0 = 1, there is no pulsing, or loss of convergence, in the displacement 

or force plots, Figures 4.16 and 4.17. The adaptive force amplitudes for E0 = 4 are roughly 

equivalent to those for E0 = l, but the PPF forces have nearly doubled in magnitude. The 

parameter estimates are shown in Figures 4.18 and 4.19. As you can see, the two estimators 

for each parameter find the same solution in this case. However, the stiffness parameters 

diverge from the correct values. 

Finally, the simulation was run with E0 = 12. The response of the system was 

identical to the response for E0 = 4. It is not surprising that these two engine orders 

produce similar responses. When the forcing phase angle coincides with a system mode, 

the mode is excited. Therefore, engine orders with similar forcing phase angles should 

produce similar responses. Referring to Equation 4.41, the nominal phase angle for E0 = 4 

is 2ir, and for E0 = 12 it is 6n, which are equivalent. Duffield demonstrated this property 

experimentally using an 8 bladed disk [5]. This is also most likely the reason that E0-\ 

and E0 = 3 are producing equivalent responses, but the parameter estimates are reversed. 

The nominal phase angles for these two cases are § and ^ respectively. These are similar, 

but opposite in phase. 

The maximum RMS of the cart displacements for E0 = 1, 3, &4 are shown in Fig- 

ure 4.20. Note that the range on the RMS axis is 0 to 0.01. The RMS response is 

significantly reduced for all engine orders when compared to the normalized uncontrolled 

peak value of 1, see Figure 4.13. Note that the curves for E0 = 1 & 3 are nearly identical. 

4.1.6.3 For the Mistuned System, E0 = 1. The effects of mistuning 

on the cyclic system are now studied. The uncontrolled response of the mistuned system 

is shown in Figure 4.21. It is immediately obvious that the steady-state amplitudes of the 
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Figure 4.14     Displacements (m) for the Tuned Cyclic System: Uncontrolled, Cyclic Dis- 
turbance, E0 — 4, Tr = 10 I 
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Figure 4.15     Displacements (m) for the Tuned Cyclic System: Adaptation/PPF Both on, 
Cyclic Disturbance, E0 = 4, Yr = 1021 
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Figure 4.16     Adaptive Forces (N) for the Tuned Cyclic System: Adaptation/PPF Both 
on, Cyclic Disturbance, E0 = 4, Tr = 1021 
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Figure 4.17     PPF Forces (N) for the Tuned Cyclic System: Adaptation/PPF Both on, 
Cyclic Disturbance, E0 = 4, Tr = 1021 
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Figure 4.18     Stiffness  Parameter Estimates for the  Tuned  Cyclic System:    Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = 4, Tr = 1021 
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Figure 4.19     Damping Parameter Estimates for the Tuned Cyclic System:    Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = A,Tr = 102 I 
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Figure 4.20     Maximum RMS of Displacements for the Tuned Cyclic System:  Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = 1, 3, &4 
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individual carts are no longer equal, like they were for the tuned system. This demonstrates 

the effect of mode localization brought on by the mistuning. 

When Adaptive/PPF control is turned on, it nullifies the effects of mode localization 

so that all of the carts have the same "steady-state" amplitudes. The displacements, 

control forces, and parameter estimates for Adaptive/PPF control of the mistuned system 

are shown in Figures 4.22 through 4.26. When compared to the tuned system, Figures 4.2 

through 4.6, it is noted that the responses are nearly identical. The only major differences 

are that the pulses, or periods of lost convergence, initially occur at a later time and at 

a slightly longer interval than in the tuned system. This is an interesting result, since it 

means that there are longer periods of good performance for the mistuned system when 

compared to the tuned system. 

The maximum displacement RMS values for the three control configurations (Adap- 

tive/PPF, Adaptive-Only, and PPF-Only) are plotted in Figure 4.27. These plots are 

similar to the tuned results. Adaptive-Only control is still for the most part no better than 

the uncontrolled system, except at resonance. As with the tuned case, the Adaptive/PPF 

and PPF-Only controls perform equally well, resulting in a near zero response. 

Finally, the maximum RMS values for E0 = 1&4, both tuned and mistuned, with 

Adaptive/PPF control are shown in Figure 4.28. Note that the range on the RMS axis 

is 0 to 0.01, and the normalized uncontrolled peak is 1. It is quite obvious from this 

plot, that for a given E0, the tuned and mistuned systems behaved similarly when using 

Adaptive/PPF control. 

4.1.6.4     Summary. The 4 DOF system was first studied with Adap- 

tive/PPF control on each cart, and subjected to a cyclic disturbance with E0 = 1. Al- 

though the responses were substantially reduced, they were not completely suppressed like 

they were for the single control system in Chapter 3. There are also regular periods when 

the controller seems to loose tracking, and the response pulses to a higher amplitude, which 

is still lower than the uncontrolled system. 

These pulses correspond to when the parameter estimates loose convergence and then 

reacquire. This creates a distinctive sawtooth pattern in the estimate plots. The stiffness 
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Figure 4.21     Displacements (m) for the Mistimed Cyclic System: Uncontrolled, Cyclic 
Disturbance, E0 = 1, Tr = 10 I 
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Figure 4.23     Adaptive Forces (N) for the Mistuned Cyclic System:   Adaptation/PPF 
Both on, Cyclic Disturbance, E0 = 1, Tr = 1021 
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Figure 4.24     PPF Forces (N) for the Mistimed Cyclic System:  Adaptation/PPF Both 
on, Cyclic Disturbance, E0 = 1, Tr = 1021 
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Figure 4.25     Stiffness Parameter Estimates for the Mistimed Cyclic System:   Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = 1, Tr = 1021 
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estimates are converging to the correct values, but the damping estimates are significantly 

greater than the actual values. More disconcerting, however, is that the two estimators 

for each parameter are finding equal and opposite solutions. The left estimators found 

a positive solution for the stiffness parameters, and a negative answer for the damping 

parameters. It appears that the estimators are working against each other. Also, recall 

that the adaptive technique does not guarantee that the estimates will converge, or that 

there is even a unique solution. While the solutions for the parameter estimates are not 

correct, they still provide acceptable response reduction. 

Comparing the maximum RMS plots of three control configurations (Adaptive/PPF, 

Adaptive-Only, and PPF-Only), it is evident that the Adaptive/PPF and PPF-Only con- 

trols perform equally well, resulting in a near zero response. When Adaptive-Only control 

is used, it produces very poor results, and at best is no better than the uncontrolled system. 

This is quite different from the single control case. Recall for the single control system, 

Adaptive/PPF control and Adaptive-Only control provided nearly identical reduction in 

the response. When adaptive control was used on a single cart, it was able to isolate it 

from the others, and completely suppressed the response. It appears now, however, that 

the adaptive estimators on each cart work against each other. 

Next, the simulation was rerun with E0 = 3 for the cyclic disturbance, and the re- 

sponses were nearly identical to those for E0 = l. The only difference was in the parameter 

estimates. As with E0 = 1, the two estimators for each parameter found equal and oppo- 

site answers, but the signs were reversed. When the simulation was run with E0 = 4, the 

steady state response was slightly greater than for E0 = 1 or 3, but there was no pulsing, 

or loss of convergence. This is most likely because the two estimators for each parameter 

find the same solution in this case. Unfortunately, the parameters diverge from the correct 

values. Responses identical to those for E0 = 4, were also found when the simulation was 

run with E0 = 12. 

It is not surprising that identical responses occur when E0 = 4&12; engine orders 

with similar forcing phase angles should produce similar responses. The nominal phase 

angle for E0 = 4 is 2TT, and for E0 = 12 it is 6-K, which are equivalent. This is also most 

likely the reason that E0 = 1 and E0 = 3 are producing equivalent responses, but the 
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Figure 4.29     Model of an 8 Blade Compressor Disk 

parameter estimates are reversed. The nominal phase angles for these two cases are § and 

^ respectively. These are similar, but opposite in phase. 

Finally, mistuning effects on the system were studied for a cyclic disturbance with 

E0 = 1. The simulation demonstrated the occurrence of mode localization; some of the 

carts had higher steady-state amplitudes than the others. When Adaptive/PPF control 

was turned on, the effects of mode localization were nullified, and all carts had identical 

responses. The periods of lost convergence still occur like they did for the tuned system. 

Interestingly, though, the initial pulse occurs at a later time, and the pulses occur at longer 

intervals. RMS plots were generated for tuned and mistuned systems with E0 = 1 & 4. 

With Adaptive/PPF control, the tuned and mistuned systems behaved similarly, for a 

given engine order. 
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4.2    Development for an 8 Blade Compressor Disk Model 

4.2.1 Equations of Motion. Finally, a model of an 8 blade compressor 

disk is studied. As you can see in Figure 4.29, the blades are represented by a point mass, 

rrii, a distance L away from the hub. As with the 4 DOF model, the structural stiffness is 

represented by k0i, and the inter-blade coupling forces are expressed in terms of kij , where 

i,j = 1...8, and by convention m; is the left blade. The external control and disturbance 

force on each blade is represented by /;. Duffield [5] showed that the undamped EOMs are 
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(4.42) 

In matrix form, with damping added, the EOMs become 

M0 + DO + K0 = f (4.43) 

The elements of the mass and stiffness matrices, M and K, are taken from Equation 4.42, 

and the damping matrix, D, is found from Equation 2.77. 

As in the 4 DOF system, using identical PPF actuators on each cart, with a damping 

ratio of (/ and a frequency of tof, results in the following additional equations 

»71 

Vs 

f             \ 

»ft »?i hi 

> + 2(fL0f < > +J) < > = < \     > 

.  »78  . k Vs t , h* . 

(4.44) 
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Recall (see Section 4.1.1) that in general, the controlled coordinate EOMs for each 

substructure of an RPS are given as 

Mciqci + Dciqci + Kciqci = fci - Yri$r i = l,...,N (4.45) 

where Mci, Dci, Kci, qci, and /„ are defined in Equations 4.17 through 4.21. The regres- 

sion and unknown parameter matrices are 

*ri — 

x{i-l)     x{i+l)     x{i-l)     X(i+1) 

0 0 0 0 
$r k(i-l),i     h,{i+l)     d(i-l),i     di,(i+l) 

(4.46) 

Note for the 8 blade system that N = 8, and cart 1 connects to cart 8. So for i = 1, « — 1 = 8, 

and for i = 8, i + 1 = 1. 

4.2.2 Adaptive/PPF Control. The Adaptive/PPF control theory was 

previously developed for a generic RPS with cyclic coupling. The control forces and param- 

eter estimates are calculated from Equations 4.28 and 4.34 respectively, with i = 1,..., 8. 

4.2.3 Stability. As with the 4 DOF system, stability is guaranteed, as long 

as the five assumptions listed in Section 4.1.4 are satisfied for i = 1,.. .,8. The mass 

matrix, M, is positive definite and diagonal, which means that all of the Mc submatrices 

are symmetric and positive definite; the first condition is therefore satisfied. The unknown 

forces, fui, are comprised of the external cyclic disturbance and the control forces on the 

other carts. Since both of these are individually bounded, fui is bounded, and the second 

condition is met. It was shown in Section 4.1.4, that assumptions A3 and A4' reduce to 

the requirement that Aci < 0 for all i = 1,..., 8; this is checked during the simulation. 

Finally, the PPF gain is // = 0.4, which satisfies assumption A5'. 

4.2.4 Simulation. The 8 blade system is simulated with Adaptive/PPF 

control on all of the blades. Both tuned and mistuned systems are studied. To model 

this 8 DOF system in SIMULINK™ the structure and actuator EOMs, Equations 4.43 
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and 4.44 respectively, are put into state-space form: 

1 

[0]8x8 fl8x8 

-M~lK   -M~XD 

[°]8x8 [-^8x8 

-W/Wsxs   -2C/w/[/]8x8 

[0]8x8 ^ > + 
0 -M-1 / 

[0]8X8 

Ms*« 

(4.47) 

(4.48) 

The PPF tuning parameters are set using the same values as for the 4 DOF system: 

/x = 0.4, C/ = 0-4, and Uf — un. The gain matrices for the adaptive estimators, IYJ , are 

assumed identical for each blade. The same values were used as for the 4 DOF system, 

rv = 1021. 

The system is subjected to the cyclic disturbance, developed in Section 3.3.2, with 

E0 = 3. The disturbance frequency is still equal to the lowest natural frequency of the 

system, ujd = u>n. Thus, from Equation 3.34, the disturbance force is given by 

fdi = 10 cos (udt + 4>i) 
37r(i-l) 

i = i,...,; (4.49) 

4.2.4.1 Tuned System. As in previous simulations, for the tuned sys- 

tem, all of the carts have identical: blade length, L = 1 m; mass, m* = 1 Kg; stiffness, 

koi = 100 N/m; and coupling, ktj = kc = 5 N/m, where i,j = 1...8. Also, a structural 

damping ratio of (n = 0.002 is assumed. 

4.2.4.2 Mistuned System. The mistuning pattern used for the sim- 

ulation is the same as the one used by Dufheld [5]: Afc0i = 0.01227, Ak02 = 0.0003, 

AJtos = -0.0003, A&04 = -0.0038, Afc05 = -0.0117, Afc06 = -0.0012, Ak07 = -0.007, and 

Ak08 = 0.0126. These values result in a a = 0.0086, and a mean = 0.0001. The individual 

cart stiffness parameters are then calculated by k0i = kQ(l + Ak0i), where k0 = 100 N/m 

is the nominal stiffness. The rest of the parameters remain unchanged from the tuned 

system. 
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4.2.5 Results. The SIMULINK™ model of the 8 blade system with Adap- 

tive/PPF control on all carts is shown in Figure A.8 on p. A-25. The MATLAB™ 

code used to run the simulation is given in Appendix A.5.1, beginning on p. A-26. The 

MATLAB™ code used to find the system RMS responses is given in Appendix A.5.2, 

beginning on p. A-29. 

The uncontrolled response of the 8 blade system is shown in Figure 4.30. The steady 

state response is nearly half that of the 4 DOF system, Figure 4.1. The response of the 

system with Adaptive/PPF control turned on is shown in Figures 4.31 through 4.35. Note 

that plots are only shown for blades 1 through 4, in order to reduce the number of graphs 

presented. The plots for blades 5 through 8 are very similar, if not identical, to the first 

four blades. 

It is immediately obvious that the controller still looses tracking, causing the dis- 

placement response to pulse in amplitude at regular intervals. This occurs initially much 

sooner than the 4 DOF system, and at shorter intervals. As before, the pulses occur when 

the parameter estimates loose convergence, and then reacquire. Also, the two estimators 

for each parameter still find equal and opposite solutions. 

The maximum RMS responses for the tuned and mistuned systems, with E0 = 3, 

are shown in Figure 4.36; note that the plots are normalized by the mistuned response. As 

you can plainly see, the response of the mistuned system is everywhere greater than the 

tuned system; there is approximately a 20% increase in the maximum blade amplitude. It 

is also noted that the mistuned system has several distinct peaks due to mode localization. 

Next, the three control configurations (Adaptive/PPF, Adaptive-Only, and PPF- 

Only) along with the uncontrolled system are compared using the maximum RMS of the 

blade displacements. The results are shown in Figure 4.37 for the tuned system, and in 

Figure 4.38 for the mistuned system. Note that each plot is normalized by the maximum 

RMS for its uncontrolled case. As you can see, in both the tuned and mistuned systems, 

the Adaptive-Only control produces poorer results than the uncontrolled system at all 

frequencies.    It is also noted that the Adaptive/PPF and PPF-Only controls perform 
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Figure 4.30     Displacements (m) for the Tuned 8 Blade System:   Uncontrolled, Cyclic 
Disturbance, E0 = 3, Fr = 10 I 
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Figure 4.31     Displacements (m) for the Tuned 8 Blade System: Adaptation/PPF Both 
on, Cyclic Disturbance, E0 — 3, Tr — 10 I 
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Figure 4.32     Adaptive Forces (N) for the Tuned 8 Blade System: Adaptation/PPF Both 
on, Cyclic Disturbance, E0 = 3, rr = 10 I 
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Figure 4.33     PPF Forces (N) for the Tuned 8 Blade System: Adaptation/PPF Both on, 
Cyclic Disturbance, E0 = 3, Tr = 1021 
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Figure 4.34     Stiffness Parameter Estimates for the Tuned 8 Blade System:   Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = 3, Tr = 1021 
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Figure 4.35     Damping Parameter Estimates for the Tuned 8 Blade System:   Adapta- 
tion/PPF Both on, Cyclic Disturbance, E0 = 3, Tr = 1021 
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Cyclic Systems: Uncontrolled, Cyclic Disturbance, E0 = 3 
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Figure 4.37     Maximum RMS of Displacements for the Tuned 8 Blade System:   Cyclic 
Disturbance, E0 = 3 

equally well, resulting in a near zero response. Therefore, even though the uncontrolled 

response of the mistuned system is substantially greater than the tuned system, it performs 

as well as the tuned system when PPF control is used. 

4.2.5.1 Summary. The 8 blade system behaved much like the 4 DOF 

system. For E0 — 3, the controller still looses tracking, causing the displacement ampli- 

tudes to pulse at regular intervals. These pulses coincide with the parameter estimates 

converging and then immediately loosing convergence. As before, the two estimators for 

each parameter are finding equal and opposite solutions. 

It was demonstrated that the uncontrolled mistuned system is everywhere greater 

than the tuned system, peaking at nearly 20%. The results presented in Figure 4.36, are 

dynamically similar to those found by Duffield in his numerical simulations for E0 = 3 [5]. 
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He went on to demonstrate similar mistuning effects experimentally. Thus, it is reasonable 

to expect that the theoretical controls used here, may be as effective on experimental 

hardware. 

Finally, using maximum RMS plots, it was shown that Adaptive/PPF and PPF-Only 

controls perform equally well, resulting in a near zero response. 

4.3    Synopsis 

In this chapter, the Adaptive/PPF control developed in Chapter 3 was expanded 

to controlling all of the DOFs of an RPS. The Adaptive/PPF control and parameter 

estimation law were rederived in generic terms. It was then inductively proven that this 

new system is stable. Finally, simulations were run with the 4 DOF cart model used 

previously, and a model of an 8 blade compressor disk. These systems were subjected to 

a cyclic disturbance with various engine orders. The systems were also mistuned to study 

the effects. Response plots were presented and discussed. 

In the next and final chapter, the results of all the previous chapters are summarized. 

Overall conclusions and recommendations for future areas of research are also presented 
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V.    Conclusions and Recommendations 

5.1 Summary 

The research goal was to suppress vibrations in a rotationally periodic structure 

(RPS) analogous to a compressor bladed disk. To that end, this thesis dealt with three 

primary theories. First, the hybrid active/passive piezoelectric shunt network developed 

by Wang and Tang [18] for an RPS was studied. While providing excellent performance, it 

requires prior knowledge of the inter-blade coupling strength, a quantity not well defined. It 

was also shown that the passive part of the system must be actively synthesized for practical 

applications. Next, the active control theory of positive position feedback (PPF) was 

discussed [8]. It was proven that this method is guaranteed stable under certain restrictions. 

The "optimal" PPF tuning parameters were found through numerical simulation. Finally, 

an adaptive parameter estimation and control technique suggested by Ertur, et al, was 

explored [6]. Their method cancels unknown bounded disturbances while compensating 

for uncertainties. 

The main objective of this thesis was to use Ertur's adaptive control technique to 

eliminate the inter-blade coupling forces. In addition, PPF was shown to be a purely active 

replacement for the passive piezoelectric shunt. In Chapter 3, the adaptive control and 

PPF techniques were combined into a single control law. This was used to suppress the 

vibrations of a single DOF in a 4 DOF system. Then, in Chapter 4, the Adaptive/PPF 

control theory was expanded to suppress vibrations in all of the substructures of an RPS. 

Finally, this new control was used with a simulated 8 blade compressor disk subjected 

to a cyclic disturbance. The effects of changing the engine order of the disturbance and 

mistuning the stiffness of the structure were studied. 

5.2 Conclusions 

5.2.1 Adaptive Control for a Single DOF. Adaptive control by itself 

was first used to control a single DOF. The controller was applied to cart 2 of a 4 cart 

chain system, with a sinusoidal disturbance on cart 3.   For this set-up, adaptive control 

5-1 



completely suppressed the response of cart 2. It was shown that the parameter estimator 

requires a minimum level of input in the uncontrolled coordinates to work properly. Since 

cart 1 is isolated from the disturbance, its response was negligible. The estimator was 

unable to determine the parameters between carts 1 & 2 in this case. However, when 

the system was changed to a cyclic system, and cart 1 was no longer isolated from the 

disturbance, all of the parameters converged quickly. 

When the other inputs to the estimation law are at acceptable levels, the individual 

estimator gains (71, ..., 74) allow for some adjustments in the convergence of the stiffness 

and damping parameter estimates. That is, of course, if you are in the neighborhood of a 

feasible solution. There are some combinations of the gains which will cause the estimates 

to diverge from the correct values. This is unacceptable in a real system, because it will 

eventually saturate some component or computer registry. It is important to note that 

even if the parameters converge to the wrong values, the response of the system may be 

substantially reduced. 

Finally, it should be pointed out, that the actual values of the estimated parameters 

are unknown in a real system. That is in fact why they are estimated. This raises the 

question, should the gains be set to drive the estimates to uncertain parameter values, or 

should the deciding factor merely be system performance. 

5.2.2    Adaptive/PPF  Control for a Single DOF. Next, Adap- 

tive/PPF control was used on cart 2 of the 4 cart cyclic system. The response was 

completely suppressed and all parameters converged quickly to their correct values. The 

response was also completely suppressed when the system was subjected to a harmonic 

disturbance that cycled between all carts. However, the parameter estimates did not con- 

verge to the correct values; in fact, one of them even converged to a negative value. There 

are two possible causes for these problems. First, recall that in the development of the 

adaptive estimator, there is no guarantee that the parameter estimates will converge. In 

fact, there is no guarantee that there is a unique solution to the estimation law. The esti- 

mator may find a solution where the estimates do not converge to the correct values, but 

still produce a control force that results in good performance. The second possible cause is 
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that there is a disturbance applied to cart 2. Even though all of the stability requirements 

were met, Ertur's adaptive control technique was not developed with a disturbance applied 

directly to the controlled coordinate. Once again, excellent performance was achieved with 

poor parameter estimates. 

There are three possible control configurations for this system: Adaptive/PPF, 

Adaptive-Only, and PPF-Only. The average RMS response of cart 2 was calculated for 

each configuration over a range of disturbance frequencies. When compared, it was shown 

that Adaptive-Only and Adaptive/PPF control performed the best. However, PPF-Only 

control performed satisfactorily as well. 

5.2.3 Adaptive/PPF Control for all DOFs. Finally, Adaptive/PPF 

control was used on all DOFs of the four cart cyclic system and an 8 blade compressor 

model. When the system is subjected to the cyclic disturbance with E0 = 1 or 3, the 

responses of all substructures were substantially reduced, but not completely suppressed 

like they were for the single control system. There are also regular periods when the 

controller seems to loose tracking, and the response pulses to a higher amplitude, which is 

still lower than the uncontrolled system. 

The parameter estimates nearly converge, immediately loose convergence, and then 

attempt to reacquire. This creates a distinctive sawtooth pattern in the estimate plots. 

The pulses noted in the response plots correspond to when the parameter estimates loose 

convergence. Of greater concern, however, is that the two estimators for each parameter 

are finding equal and opposite solutions. The only difference between E0 = 1&3, was 

that the equal and opposite parameter estimates were reversed. Once again, recall that 

the adaptive technique does not guarantee that the estimates will converge, or that there 

is even a unique solution. While the solutions for the parameter estimates may not always 

be correct, they can still provide acceptable response reduction in some cases. 

The simulation was run again with E0 = 4 &: 12, which produced identical responses 

to each other. However, the steady state response was slightly greater than for E0 = 1 or 3, 

and there was no pulsing, or loss of convergence. This is most likely because the two 

estimators for each parameter find the same solution in this case.    Unfortunately, the 
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parameters diverge. It is not surprising that identical responses occur when E0 = 4 & 12; 

engine orders with similar forcing phase angles should produce similar responses. This 

is also most likely the reason that E0 = 1 & 3 are producing equivalent responses, but 

the parameter estimates are reversed. The nominal phase angles for these two cases are 

equivalent, but opposite in phase. 

Mistuning effects on the system were also studied. The simulation demonstrated 

the occurrence of mode localization; some of the substructures had higher steady state 

amplitudes than the others. When Adaptive/PPF control was turned on, the effects of 

mode localization were nullified, and all substructures had identical responses. For the 

8 blade model, it was shown that the maximum RMS response for the mistuned system 

had several distinct peaks, due to mode localization, and was everywhere greater than 

the tuned response. This is an important finding since it is similar to results reported by 

Duffield [5]. He went on to demonstrate equivalent mistuning effects experimentally. Thus, 

it is reasonable to expect that the theoretical controls used here, may be as effective on 

experimental hardware. 

Finally, the three control configurations (Adaptive/PPF, Adaptive-Only, and PPF- 

Only) were again compared using the average RMS plots. For both the tuned and mistuned 

systems, it was obvious that the Adaptive/PPF and PPF-Only controls performed equally 

well, resulting in a near zero response. When Adaptive-Only control was used, it produced 

very poor results, and at best was no better than the uncontrolled system. This is quite 

different from the single control case. Recall for the single control system, Adaptive/PPF 

control and Adaptive-Only control provided nearly identical reduction in the response. 

When adaptive control was used on a single cart, it was able to isolate it from the others, 

and completely suppressed the response. It appears now, however, that the adaptive 

estimators on each cart work against each other. 

5.2.4 Overall. Adaptive control appears to work well when it is only control- 

ling a single DOF, and there is no direct disturbance. However, there are several problems 

with the theory when you attempt to control all the substructures of an RPS subjected 

to a cyclic disturbance.  First, it was shown that adaptive control used by itself actually 

5-4 



causes a poorer response than the uncontrolled system, most likely because the adjacent 

estimators are working against each other. Second, Adaptive/PPF and PPF-Only con- 

trols performed equally well. It is therefore surmised that the PPF is just overpowering 

the adaptive part. Finally, the estimator solution is not unique; excellent performance is 

achieved, even when the parameter estimates do not converge to the correct values. In 

the end, adaptive control is not worth the extra effort required to determine the estimator 

gains to achieve convergence to uncertain values. 

PPF, on the other hand, works well when controlling a single substructure of an 

RPS or all of them. It is guaranteed stable, and it was shown to provide broadband 

vibration suppression. In contrast to Wang and Tang's piezoelectric shunt network, PPF 

does not require any prior knowledge of the coupling strength, and excellent performance 

was achieved with suboptimal PPF tuning parameters. For these reasons, it is therefore 

concluded that PPF is the best option for vibration suppression in a compressor bladed 

disk. 

5.3    Recommendations for Future Research 

First and foremost, the theoretical results presented here should be verified experi- 

mentally. Duffield describes an 8 bladed experimental test article that he used for modal 

testing [5]. A cyclic disturbance, similar to the one used here, was created by placing 

opposing magnets on the blade tips, and on a rotating flywheel in front of the bladed disk. 

With piezoelectric patches attached to each blade, this set-up could be used to test the 

Adaptive/PPF control law experimentally. 

Second, in this research, PPF provided excellent performance with suboptimal tun- 

ing parameters. However, this might not be the case for all systems. Ideally, an analytical 

solution for the optimal PPF tuning parameters would be best. However, if this is not 

possible, the problem should be studied with numerical optimization techniques. Prelimi- 

nary work suggests that the PPF problem can be set up as an H2 or H^ control problem. 

This would allow for easier application of the control actuator. 
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Third, the numerical simulations in this research used a single coupling strength 

and mistuning pattern. Further characterization of the system should be accomplished by- 

studying the effects of varying these parameters. 

Finally, while adaptive control proved ineffective for this system, the theory is not 

completely without merit. However, further study is required in several areas. The estima- 

tor solution is not unique. This may be why acceptable performance is sometimes achieved 

even though the parameter estimates diverge from the correct values, or become negative. 

A procedure for selecting the estimator gains should be developed, so that the parameter 

estimates are driven to the desired solution. Also, the interaction of multiple estimators 

should be investigated, to ensure that they are not working against each other. 
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Appendix A.   SIMULINK™ Models and 

MATLAB™ Code 

A.l    PPF Parameter Determination for 1 DOF System 

PPF for One Cart 

& time 

h 1/m 

fd_amp*sin(wd*t) 

*Cy^ f ppf)/m x' = Ax+Bu 
y = Cx+Du 

f_ppf/m 
Carl 

mu*wnA2 eta x' = Ax+Bu 
y = Cx+Du 

PPF Actuator 

Figure A.l      Simulink Model for 1 DOF PPF Parameter Determination 

A.l.l    Matlab Code for PPF Gain Determination. 

'/,  ppfl_mu_rms.m 

•/. 
'/. This m-file runs PPF on a single cart.  The value of the PPF gain, mu, 

'/. is varied from 0 to 1. For each mu, the disturbance freq is swept over 

'/, a range of values and the RMS of the signal is found. 

clear all; close all; 

tfinal = 60; 

'/, System parameters 

m = 1; ko = 100; kc = 5;  zeta_n =0.01;    '/. units:  [m] = Kg, [k] = N/m 

'/, Determine natural freq of cart (wn) 

wn = sqrt((ko + 2*kc)/m); 7. units:  [wn] = rad/sec 

'/, Set disturbance parameters 
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fd_amp = 10; 

'/, Set PPF parameters 

wf = wn;  zeta_f =0.4; 

'/, Set-up cart state-space 

A = [0 1;  -wn"2 -2*zeta_n*wn]; 

'/. Set-up PPF state-space 

Af =   [0    1;     -wf'2    -2*zeta_f*wf];    Bf =   [0;  wf2] ; 

'/, Vary PPF gain to find optimal value 

j = 0; 

for mu = 0.0:0.1:1, 

j = J + i; 

if mu == 0.0, mu_text(j,:) = ['\mu = 0.0']; 

else mu_text(j,:) = ['\mu = ' num2str(mu)]; 

end; 

'/, Iteratively run simulation and determine RMS values 

i = 0; 
for wd = 0:0.02:20 

i = i +  1;     omega(i) = wd;     disp([mu wd]) ;  dispC   '); 
simCppf l_sim'); 
ibegin = min(find(time>=tfinal-30)); 

x_rms(i,j) = rms(x,ibegin); 

clear x; 

end; 

end; 

'/, Save & Plot results 

save rmsl_mu; 

figure; 
plot(omega,x_rms); frame(omega,x_rms,'y' ,wn); 
h = title(['\bf RMS of Displacement for Single Cart System as \mu varies (\omega_f = \omega_n, \zeta_f 

num2str(zeta_f) ')']); 

xlabel('\omega_d (rad/sec)'); ylabel('RMS'); legend(mu_text); 

z = axis; text(wn, 0.95*z(4), ' \leftarrow \omega_d = \omega_n'); 

A. 1.2    Matlab Code for PPF Damping Ratio Determination. 

'/, ppfl_zeta_rms.m 

'/. 
'/. This m-file runs PPF on a single cart.  The value of the PPF damping, 

'/, zeta_f, is varied from 0 to 1. For each mu, the disturbance freq is 

'/. swept over a range of values and the RMS of the signal is found. 
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clear all; close all; 

tfinal = 60; 

'/. System parameters 

m = 1; ko = 100; kc = 5;  zeta_n = 0.01;    '/. units:  [m] = Kg, [k] = N/m 

'/, Determine natural freq of cart (wn) 

wn = sqrt((ko + 2*kc)/m); '/. units:  [wn] = rad/sec 

'/. Set disturbance parameters 

fd_amp = 10; 

'/, Set PPF parameters 

wf = wn; mu = 0.4; 

'/, Set-up cart state-space 

A = [0 1;  -wn~2 -2*zeta_n*wn]; 

'/. Vary PPF damping to find optimal value 

j = 0; 

for zeta_f = 0.0:0.1:0.9, 

j = j + i; 

zeta_f_test = round(100*zeta_f) 

if zeta_f == 0,  zeta_text(j,:) 

elseif zeta_f_test == 10, zeta_text(; 

elseif zeta_f_test == 20, zeta_text(; 

elseif zeta_f_test == 30, zeta_text(; 

elseif zeta_f_test == 40, zeta_text(; 

elseif zeta_f_test == 50, zeta_text(; 

elseif zeta_f_test == 60, zeta_text(; 

elseif zeta_f_test == 70, zeta_text(; 

elseif zeta_f_test == 80, zeta_text(; 

elseif zeta_f_test == 90, zeta_text(; 

else zeta_text(j,:) = ['\zeta_f = ' nu 

end; 

['\zeta_f = 0.00'] ; 

['\zeta_f = 0.10'] 

['\zeta_f = 0.20'] 
['\zeta_f = 0.30'] 

['\zeta_f = 0.40'] 

['\zeta_f = 0.50'] 

['\zeta_f = 0.60'] 

['\zeta_f = 0.70'] 

['\zeta_f = 0.80'] 

['\zeta_f = 0.90'] 

num2str(zeta_f)]; 

7, Set-up PPF state-space 

Af = [0 1;  -wf"2 -2*zeta_f*wf]; Bf = [0; wf"2]; 

'/, Iteratively run simulation and determine RMS values 

i = 0; 
for wd = 0:0.02:20 

i =  i  +  1;     omega(i) = wd;     disp([zeta_f wd]);  dispC   '); 
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simCppf l_sim'); 
ibegin    = min(find(time>=tfinal-30)); 
x_rms(i,j) = rms(x,ibegin); 
clear x; 

end; 

end; 

'/, Save & Plot results 

save rmsl_zeta; 

figure; 
plot(omega,x_rms); frame(omega,x_rms,'y',wn); 

h = title(['\bf RMS of Displacement for Single Cart System as \zeta_f varies (\omega_f = \omega_n, \mu = '. 

num2str(mu) ')']); 

xlabel('\omega_d (rad/sec)'); ylabelCRMS'); legend(zeta.text); 

z = axis; text(wn, 0.5*z(4), ' \leftarrow \omega_d = \omega_n'); 

A. 1.3    Matlab Code for PPF Frequency Determination. 

'/.  ppfl_wf_rms.m 

•/. 
'/. This m-file runs PPF on a single cart. The value of the PPF damping, 

'/, wf, is varied from 0 to 20.  For each wf, the disturbance freq is 

'/, swept over a range of values and the RMS of the signal is found. 

clear all; close all; 

tfinal = 60; 

'/, System parameters 

m = 1; ko = 100; kc = 5;  zeta_n =0.01;    '/, units:  [m] = Kg, [k] = N/m 

'/, Determine natural freq of cart (wn) 

wn = sqrt((ko + 2*kc)/m); '/, units:  [wn] = rad/sec 

'/, Set disturbance parameters 

fd_amp = 10; 

'/, Set PPF parameters 

mu = 0.4; zeta_f =0.4; 

'/, Set-up cart state-space 

A = [0 1;  -wn"2 -2*zeta_n*wn]; 

'/, Vary PPF freq to find optimal value 

j = 0; 
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for wf = 0:20, 

j = j + i; 

if wf < 10, wf_text(j,:) = ['\omega_f =  • num2str(wf)]; 
else    wf_text(j,:) = ['\omega_f = ' num2str(wf)]; 

end; 

'/, Set-up PPF state-space 

Af = [0 1;  -wf"2 -2*zeta_f*wf]; Bf = [0; wf"2]; 

'/, Iteratively run simulation and determine RMS values 

i = 0; 
for wd = 0:0.02:20 

i = i + 1; omega(i) = wd; disp([wf wd]); dispO '); 
simCppf l_sim'); 
ibegin = min(find(time>=tfinal-30)); 
x_rms(i,j) = rms(x,ibegin); 
clear x; 

end; 

end; 

'/, Save & Plot results 

save rmsl_wf; 

figure; 
plot(omega,x_rms); frame(omega,x_rms,'y',wn); 
h = title(['\bf RMS of Displacement for Single Cart System as \omega_f varies (\zeta_f = '. 

num2str(zeta_f) ', \mu = ' num2str(mu) ')']); 
xlabel('\omega_d (rad/sec)'); ylabel('RMS'); legend(wf_text); 
z = axis; text(wn, 0.5*z(4), ' \leftarrow \omega_d = \omega_n'); 
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A.2    Simulation of the Adaptive 4/1 DOF System 

This section contains Matlab and Simulink files for the Adaptive 4 DOF system, with 

only 1 DOF controlled. 

Adaptive System: 4 carts, controling only 1 

Fd kfOl F 

STS— . 

J 
W          " 

*   1 
-^cS- x' = Ax+Bu 

y = Cx+Du 
v  9- ►w h —►! xdot 

Disturbanc e 
Fc 

^   fd 

Cart System 

— 
^   fc2 fc2              y -^  ir 

I        * ^   fc3 

^   fc4 

"f1 Adaptive Parameter 
Estimation & Control 

Timer 
Switch 

T 

Figure A.2      Simulink Model for Adaptive 4 DOF System, with 1 DOF Controlled 

CD- 
y 

y elements: 
1 = x1 
2 = x2 
3 = x3 
4 = x4 
5 = xtdot 
6 = x2dot 
7 = x3dot 
8 = x4dot 

Adaptive Parameter Estimation & Control Law Sub-system 

[x2, x2dol]' 

Parameter Estimation 

P(2,:) 

Selector Yr K 

[x1, 3, xldot, x 3dot]' 3amma 

-lÄmgy> "(phi-ta')/dl ► •o* 

■*© 

Kf'qc + Dt'qc dot 

adapt_switch r-^-| ->CD 
fc2 

[x2, x2dot]' [Kf, Dt] 

Figure A.3     Adaptive Parameter Estimation and Control Sub-system from Model in Fig 
ure A.2 
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A.2.1    Matlab Code for Adaptive 4/1 DOF Chain System. 

'/,  adaptive41t_chain.m 

•/. 
'/. This m-f ile runs a 4 cart chain system with adaptive parameter estimation 
'/. and control on cart #2 only. 

clear all; close all; 

print_switch =0;     '/. Sends plots to printer if = 1 
eps_switch  = 0;      7. Saves plots to eps file if = 1 

'/, Simulation parameters 

tfinal = 60; 

adapt_switch  =1;  '/, turn adaptive control on (1) / off (0) 
disturb_switch = 2;  '/. disturbance on cart #3:  1 = random, 2 = sine 

timer_switch = 10;  '/. adaptive control is off at the beginning of the sim 
'/, and turned on after this many seconds 

'/. System parameters 

N = 4; '/> number of carts 
zeta_n =0.01;      '/, damping ratio 
ko = 100; kc = 5;   '/• ground & coupling stiffness, [k] = N/m 

m(l)  =  1;       m(2)  =  1;       m(3)  =  1;       m(4)  =  1;       'I.   [m]   = Kg 
k0(l)= ko;     k0(2)= ko;     k0(3)= ko;     k0(4)= ko;     '/,   [k]   = N/m 
kl2    = kc;     k23    = kc;     k34    = kc;     k41    =0;       '/. k41 = 0 b/c  it's a chain system 

M = diag([m(l) m(2) m(3) m(4)]);  M_inv = diag(l./[m(l) m(2) m(3)  m(4)]); 

K = [ k0(l)+kl2+k41 -kl2 0 -k41; 
-kl2 k0(2)+kl2+k23 -k23 0; 
0 -k23 k0(3)+k23+k34 -k34; 
-k41 0 -k34 k0(4)+k34+k41] ; 

'/, Determine lowest natural freq of the undamped cart system (wn) 

[evalues.evectors] = eign(K,M); 
wn = sqrt(min(evalues));       '/, lowest natural freq, [wn] = rad/sec 

'/, Form the damping matrix (D) from K, zeta_n, k  the evectors 

D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))»evectors'); 
for i = 1:N,  for j = 1:N,  if K(i,j) == 0, D(i,j) = 0;  end;  end;  end; 
dl2 = -D(l,2); d23 = -D(2,3); d34 = -D(3,4); d41 = -D(4,l); 

'/, Partition out controlled part of system matrices 

Mc=M(2,2); Kc=K(2,2); Dc=D(2,2); 

Mu = diag([H(l,l) M(3,3) M(4,4)]) 
Ku = diag([K(l,l) K(3,3) K(4,4)]) 
Du = diag([D(l,l) D(3,3) D(4,4)]) 

Mu_inv = diag([l/M(l,l) 1/M(3,3) 1/M(4,4)]); 

'/, Set adaptation parameters and find P 
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Gain = le4;  Gamma = Gain*diag([6 1 0.00045 1]); 
'/.Gain = le4;  Gamma = Gain*diag([l 1 1 1]); 

wf = wn;  zeta_f = 0.7;        '/■ freq & damping ratio of adaptive controller 
Kf = wf~2*Mc; Df = 2*zeta_f*wf*Mc; '/, stiffness & damping for controller 

Ac = [0 1;  -(Kc+Kf)/Mc -(Dc+Df)/Mc]; 
q = diag([l m(2)/K(2,2)]); 
P = lyapCAc',q); 

'/, Check stability requirments 

Au = [zeros(3) eye(3);  -Mu_inv*Ku -Mu_inv*Du]; 

if -abs(real(eig(Ac))) "= reaKeig(Ac)), dispC '); dispOAc is not negative definite'); end; 
if -abs(real(eig(Au))) "= reaKeig(Au)), dispC '); dispOAu is not negative definite'); end; 
if abs(real(eig(P))) "= real(eigCP)), dispC '); disp('P is not positive definite'); end; 
if P "= P', dispC '); dispCP is not symmetric'); end; 

'/, Set disturbance parameters 

fd_amp = 10; '/, amplitude of disturbance 
ampl = 0; '/, allows for direct forcing on cart #1, fdl = ampl*fd3 
amp2 = 0; '/. allows for direct forcing on cart #2, fd2 = amp2*fd3 
wd = wn; '/, set disturbance freq = natural freq of system 
eo = 1; '/. engine order for rotary disturbance (not used for this system) 

'/. Set-up the cart state-space system 

A= [zeros(N) eye(N); -M_inv*K -M_inv*D]; 
B = [zeros(N); M_inv]; 
C = eye(2*N); 

'/, Run simulation 

sim('adaptive41t_sim'); 

'/. Generate text for output 

ttext = 'Chain System'; 
if adapt_switch == 1, ttext = [ttext ' Adaptation on Cart #2 turned on after ' num2str(timer_switch) ' sec.']; 

else ttext = [ttext ' Adaptation Off']; 
end; 

if disturb_switch == 1, 
fdtext = ['f_{d3} = Random (mag \leq ' num2str(fd_amp) *)']; 

elseif disturb_switch == 2, 
fdtext = ['f_{d3} = ' num2str(fd_amp) ' sinC num2str(wd) 't)']; 

elseif disturb_switch == 3, 
fdtext = ['\{f_d\}_i = ' num2str(fd_amp) ' cosC num2str(wd) 't + \phi_i)']; 

end; 

fdstr =   '_fd3'; 
if  amp2 ~= 0, 

if  amp2 ==  1,   fdtext =   [fdtext  ',  f_{d2} = f_{d3}']; 
else fdtext =   [fdtext  ',   f_{d2} =   '  num2str(amp2)   '*f_{d3}'];  end; 
fdstr =   [fdstr  '3']; 

end; 
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if ampl "= 0, 

if ampl == 1, fdtext = [fdtext ', f_{dl} = f_{d3}']; 

else fdtext = [fdtext ', f_{dl} = ' num2str(ampl) '*f_{d3}']; end; 

fdstr = [fdstr '1'] ; 

end; 

gtext = [', \Gamma = 10"{' num2str(loglO(Gain)) '} * ' mat2str(diag(Gamma/Gain))]; 

line2  = ['\rm \fontsize{10}' fdtext gtext]; 

dname = ['i:\thesis\figures\appf41\']; 

fname = ['adpt41t_chn_d' num2str(disturb_switch) fdstr '_a'  num2str(adapt_switch) '_t' num2str(timer_switch)]; 

'/. Plot/Save Results 

if eps_switch  == 1, 

diary([dname 'appf41_captions.txt']); 

disp([' ';' ']); disp(ttext); dispC '); 

end; 

plot41_displacements; 

plot41_forces_a; 

plot41_parameters; 

diary off 

A.2.2    Matlab Code for Adaptive 4/1 DOF Cyclic System. 

%  adaptive41t_cyclic.m 

'/. 
'/. This m-f ile runs a 4 cart cyclic system with adaptive parameter estimation 

'/, and control on cart #2 only. 

clear all; close all; 

print_switch =1;      '/, Sends plots to printer if = 1 

eps_switch  =1;      '/. Saves plots to eps file if = 1 

'/. Simulation parameters 

tfinal = 60; 

adapt_switch =1;   '/. turn adaptive control on (1) / off (0) 

disturb_switch =2;  '/. disturbance on cart #3:  1 = random, 2 = sine 

timer_switch = 10;  '/, adaptive control is off at the beginning of the sim 

'/, and turned on after this many seconds 

'/, System parameters 

N = 4; '/■ number of carts 
zeta_n =0.01;      '/. damping ratio 
ko = 100; kc = 5;   '/, ground k  coupling stiffness, [k] = N/m 

m(l)  =  1;       m(2)  =  1;       m(3)  =  1;       m(4)  =  1;       '/.   [m]   = Kg 
k0(l)= ko;     k0(2)= ko;     k0(3)= ko;     k0(4)= ko;     'I.   [k]   = N/m 
kl2    = kc;     k23    = kc;     k34    = kc;     k41    =5;       '/, k41 = 0 b/c  it's a chain system 

M = diag([m(l) m(2)  m(3)  m(4)]);  M_inv = diag(l./[m(l) m(2)  m(3)  m(4)]); 
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K = [ k0(l)+kl2+k41 -kl2 0 -k41; 
-kl2 k0(2)+kl2+k23 -k23 0; 
0 -k23 k0(3)+k23+k34 -k34; 
-k41 0 -k34 k0(4)+k34+k41]; 

'/. Determine lowest natural freq of the undamped cart system (wn) 

[evalues.evectors] = eign(K.M); 
wn = sqrt(min(evalues));       '/. lowest natural freq, [wn] = rad/sec 

'/. Form the damping matrix (D) from K, zeta_n, & the evectors 

D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))»evectors'); 
for i = 1:N, for j = 1:N,  if K(i,j) == 0,  D(i,j) = 0;  end;  end:  end: 
dl2 = -D(l,2); d23 = -D(2,3); d34=-D(3,4); d41=-D(4,l); 

'/. Partition out controlled part of system matrices 

Mc=M(2,2); Kc=K(2,2); Dc=D(2,2); 

Mu = diag([M(l,l) M(3,3) M(4,4)]) 
Ku = diag([K(l,l) K(3,3) K(4,4)]) 
Du = diag([D(l,l) D(3,3) D(4,4)]) 

Mu_inv = diag([l/M(l,l) 1/M(3,3) 1/M(4,4)]); 

'/. Set adaptation parameters and find P 

Gain = le3;  Gamma = Gain*diag( [100 100 11]); 

wf = wn; zeta_f = 0.7;        '/. freq & damping ratio of adaptive controller 
Kf = wf"2*Mc; Df = 2*zeta_f*wf*Mc; '/. stiffness St damping for controller 

Ac = [0 1;  -(Kc+Kf)/Mc -(Dc+Df)/Mc]; 
Q = diag([l m(2)/K(2,2)]); 
P = lyap(Ac',Q); 

'/, Check stability requirments 

Au = [zeros(3) eye(3);  -Mu_inv*Ku -Mu_inv*Du]; 

if -abs(real(eig(Ac))) ~= real(eig(Ac)), dispC '); dispOAc is not negative definite'); end; 
if -abs(real(eig(Au))) "= reaKeig(Au)), dispC '); dispCAu is not negative definite'); end; 
if abs(real(eig(P))) "= real(eig(P)), dispC '); dispCP is not positive definite'); end; 
if P "= P', dispC '); dispCP is not symmetric'); end; 

'/, Set disturbance parameters 

fd_amp = 10; '/, amplitude of disturbance 
ampl = 0; '/, allows for direct forcing on cart #1, fdl = ampl*fd3 
amp2 = 0; '/, allows for direct forcing on cart #2, fd2 = amp2*fd3 
wd = wn; '/, set disturbance freq = natural freq of system 
eo = 1; '/. engine order for rotary disturbance (not used for this system) 

'/, Set-up the cart state-space system 

A= [zeros(N) eye(N); -M_inv*K -M_inv*D]; 
B = [zeros(N); M_inv]; 
C = eye(2*N); 
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'/, Run simulation 

simCadaptive41t_sim'); 

'/, Generate text for output 

ttext = 'Cyclic System'; 
if adapt_switch == 1, ttext = [ttext ' Adaptation on Cart #2 turned on after ' num2str(timer_switch) ' sec.']; 

else ttext = [ttext • Adaptation Of f] ; 

end; 

if disturb_switch == 1, 

fdtext = ['f_{d3> = Random (mag \leq ' num2str(fd_amp) ')']; 

elseif disturb_s«itch == 2, 

fdtext = ['f_{d3} = ' num2str(fd_amp) ' sin(' num2str(wd) 't)']; 

elseif disturb_switch == 3, 

fdtext = ['\{f_d\}_i = ' num2str(fd_amp) ' cosC num2str(wd) 't + \phi_i)']; 

end; 

fdstr = '_fd3'; 

if amp2 "= 0, 

if amp2 == 1, fdtext = [fdtext ', f_{d2} = f_{d3}'J; 

else fdtext = [fdtext ', f_{d2} = ' num2str(amp2) '*f_{d3}']; end; 

fdstr = [fdstr '3']; 

end; 

if ampl ~= 0, 
if ampl == 1, fdtext = [fdtext ', f_{dl} = f_{d3}']; 

else fdtext = [fdtext ', f_{dl} = ' num2str(ampl) '*f_{d3}']; end; 

fdstr = [fdstr '1'] ; 

end; 

gtext = [',  \Gamma = 10"{' num2str(loglO(Gain)) '} * ' mat2str(diag(Gamma/Gain))]; 

line2  = ['\rm \fontsize{10}' fdtext gtext]; 

dname = ['i:\thesis\figures\appf41\']; 

fname = ['adpt41t_cyc_d' num2str(disturb_switch) fdstr '_a' num2str(adapt_switch) '_t' num2str(timer_switch)]; 

'/. Plot/Save Results 

if eps_switch  == 1, 

diary([dname 'appf41_captions.txt']); 

disp([' ';' ']); disp(ttext); dispC '); 

end; 

plot41_displacements; 

plot41_forces_a; 

plot41_parameters; 

diary off 
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A.3    Simulation of the Adaptive/PPF 4/1 DOF System 

This section contains Matlab and Simulink files for the Adaptive/PPF 4 DOF system, 

with only 1 DOF controlled. 

Adaptive/PPF System: 4 carts, controling only 1 

0 ►!   «me    | 

O^ x' = Ax+Bu 
y = Cx+Du 

Cart System 
y_x = [x, xdot]' 

T—H xdot | 

x' = Ax+Bu 
y = Cx+Du 

PPF System 
y_eta = [eta2, eta2dot]' 

y 6ta  »I t=—I 
| Timer 

Switch 

[0;0] 

fc2        [y_x; y_eta] ^- 

Adaptive Parameter 
Estimation with 

PPF Control 

Figure A.4     Simulink Model for Adaptive/PPF 4 DOF System, with 1 DOF Controlled 

d> 
[y_x y.eia) 

Elements: 

t   . xl 
?  = x2 
3   - x3 

x4 
h   = xldot 
R   = x2dot 
7   - x3dot 
y - K«Ot 

9   = ela2 
10 = eia2dot 

Adaptive Parameter Estimation & Control Law Sub-system 

Parameter Estimation 

fx2, ela2, x2dot. eta2do!)' P(3. 

[xl,x3, xldol. «3dot]" 

r x   _»p«S>- 

HC 

Adaptive Control 

~m^ D-n 
{-•can 

[x2, eta2] Kppf ppl_»WTtCh     [—^ -| 

Figure A.5      Adaptive Parameter Estimation and PPF Control Sub-system from Model 
in Figure A.4 
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A.3.1    Matlab Code for Adaptive/PPF 4/1 DOF Cyclic System. 

'/. ppf41_cyclic.m 
•/. 
'/. This m-f ile runs a 4 cart cyclic system with adaptive parameter estimation 
'/, and PPF control on cart #2 only. 

clear all; close all; 

print_switch =1;     '/. Sends plots to printer if = 1 
eps_switch  =1;      '/. Saves plots to eps file if = 1 

'/, Simulation parameters 

tfinal = 60; 

ppf_switch  =1; '/. turns ppf control on (1) / off (0) 
adapt_switch = 1; '/. turns adaptive control on (1) / off(0) 
timer_switch  = 10; '/, turn on estimator/control at t = timer_switch 
disturb_switch = 3; '/. disturbance:  1 = random, 2 = sine, 3 = rotary 

'/, System parameters 

N = 4; '/. number of carts 
zeta_n =0.01;      '/. damping ratio 
ko = 100; kc = 5;   '/, ground & coupling stiffness, [k] = N/m 

ml = 1;  m2 = 1;  m3 = 1;  m4 = 1;   '/. [m] = Kg 
kOl = ko;  k02 = ko;  k03 = ko; k04 = ko;  '/. [k] = N/m 
kl2 = kc; k23 = kc; k34 = kc; k41 = kc; 

M = diag([ml m2 m3 m4] ) ; M_inv = diag(l./[ml m2 m3 m4]) 

K = [ k01+kl2+k41 -kl2 0 -k41; 
-kl2 k02+kl2+k23 -k23 0; 
0 -k23 k03+k23+k34 -k34; 
-k41 0 -k34 k04+k34+k41] 

'/, Determine lowest natural freq of the undamped cart system (wn) 

[evalues,evectors] = eign(K.M); 
wn = sqrt (min(evalues));       '/, lowest natural freq, [wn] = rad/sec 

'/, Form the damping matrix (D) from K, zeta_n, & the evectors 

D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))»evectors'); 
for i = 1:N, for j = 1:N,  if K(i,j) == 0,  D(i,j) = 0;  end;  end;  end; 
dl2 = -D(l,2); d23 = -D(2,3); d34=-D(3,4); d41=-D(4,l); 

'/, Set ppf and adaptation parameters 

'/.Gain = lei;  Gamma = Gain*diag( [100 20 0.01 1]); '/. adaptive gain matrix for d = 2 
Gain = lei;  Gamma = Gain*diag([l 100 11]); '/, adaptive gain matrix for d = 3 
mu = 0.4; zeta_f = 0.4; wf = wn; '/, ppf gain, freq & damping ratio 
if ppf.switch "= 0, Kppf = [0 mu*K(2,2); wf"2 0];  else, Kppf = zeros(2); end; 

'/. Partition out controlled & uncontrolled parts of the system matrices 
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Mc = diag([M(2,2) 1]); 
Kc = diag([K(2,2) «f 2]); 
Dc = diag([D(2,2) 2*zeta_f*wf]); 

Hu = diag([M(l,l) 
Ku = diag([K(l,l) 
Du = diag([D(l,l) 

M(3,3) M(4,4)]) 
K(3,3) K(4,4)]) 
D(3,3)  D(4,4)]) 

Mc_inv = diag([l/M(2,2) 1]); 

Mu.inv = diag([l/M(l,i) 1/M(3,3) 1/M(4,4)]); 

'/. Find P 

Ac = [zeros(2) eye(2);  -Mc_inv*(Kc-Kppf) -Mc_inv*Dc]; 
Q = diag([l wf2/K(2,2) M(2,2)/K(2,2) 1/K(2,2)]); 
P = lyap(Ac',Q); 

'/. Check stability requirments 

Au = [zeros(3) eye(3);  -Mu_inv*Ku -Mu_inv*Du]; 

if -abs(real(eig(Ac))) "= reaKeig(Ac)) , dispC '); dispCAc is not negative definite'); end; 
if -abs(real(eig(Au))) "= reaKeig(Au)), dispC '); dispCAu is not negative definite'); end; 
if abs(real(eig(P))) ~= real(eig(P)), dispC '); dispCP is not positive definite'); end; 
if P "= P', dispC '); dispCP is not symmetric'); end; 

'/. Set disturbance parameters 

fd_amp = 10; '/, amplitude of disturbance 
ampl = 0; '/, allows for direct forcing on cart #1, fdl = ampl*fd3 
amp2 = 0; '/. allows for direct forcing on cart #2, fd2 = amp2*fd3 
wd = wn; '/, set disturbance freq = natural freq of system 
eo = 1; '/, engine order for rotary disturbance (not used for this system) 

'/, Set-up the cart & ppf state-space systems 

A= [zeros(N) eye(N); -M_inv*K -M_inv*D]; 
B = [zeros(N); M_inv]; 
C = eye(2*N); 

Af = [0 1;  -wf"2 -2*zeta_f*wf]; 
Bf = [zeros(1,N); 0 10 0]; 
Cf = eye(2); 

'/, Run simulation 

sim('ppf41_sim'); 

'/, Generate text for output 

ttext = 'Cyclic System, Cart #2:'; 
if adapt.switch == 1 & ppf_switch == 1, ttext = [ttext 'Adaptive / PPF Both On *]; 

elseif adapt_switch == 1 & ppf_switch == 0, ttext = [ttext 'Adaptive on / PPF off ']; 
elseif adapt_switch == 0 & ppf_switch == 1, ttext = [ttext 'Adaptive off / PPF on ']; 
elseif adapt_switch == 0 & ppf_switch == 0, ttext = [ttext 'Adaptive / PPF Both Off']; 

end; 

if disturb_switch == 1, 
fdtext = ['f_{d3> = Random (mag \leq ' num2str(fd_amp) ')']; 

elseif disturb_switch == 2, 
fdtext = ['f_{d3> = ' num2str(fd_amp) ' sin(' num2str(wd) 't)']; 

elseif disturb_switch == 3, 
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fdtext = ['\{f_d\}_i = ' num2str(fd_amp) ' cos(' num2str(wd) 't + \phi_i)']; 

end; 

gtext = [',  \Gamma = 10"{' num2str(loglO(Gain)) '} * ' mat2str(diag(Gamma/Gain))]; 

line2  = ['\rm \fontsize{10}' fdtext gtext]; 

dname = ['i:\thesis\figures\appf41\']; 

fname = ['ppf41_cyc_d' num2str(disturb_suitch) '_a' num2str(adapt.switch)... 

'_p' num2str(ppf.switch) '_t' num2str(timer_switch)]; 

'/. Plot/Save Results 

plot41_displacements; 

plot41_forces_ap; 

plot41_parameters; 

A. 3.2    Matlab Code for RMS Response of Adaptive/PPF 4/1 DOF 
Cyclic System. 

'/.  ppf41_cyclic_rms.m 

'/. 
'/. This m-f ile runs a 4 cart cyclic system with adaptive parameter estimation 

*/. and PPF control on cart #2 only.  The RMS values for the displacements and 

7. parameter estimates are calculated over a range of disturbance frequencies. 

'/. It is currently set-up to be called by script file so that several different 

'/, cases can be run at once. 

tfinal = 120; 

timer_switch   = 0 
'/«ppf-Switch    = 0 
*/,adapt_switch  = 0 
'/,disturb_switch = 2 

'/, System parameters 

'/, turn on estimator/control at t = timer_switch 

'/, turns ppf control on (1) / off (0) 

'/, turns adaptive control on (1) / off (0) 

'/. disturbance:  1 = random, 2 = sine, 3 = rotary 

N = 4; '/. number of carts 

zeta_n =0.01;      '/, damping ratio 

ko = 100; kc = S;   '/, ground & coupling stiffness, [k] = N/m 

ml = 1;  m2 = 1;  m3 = 1;  m4 = 1;   '/. [m] = Kg 

kOl = ko; k02 = ko; k03 = ko; k04 = ko;  '/. [k] = N/m 

kl2 = kc; k23 = kc; k34 = kc; k41 = kc; 

M = diag([ml m2 m3 m4]); M_inv = diag(l./[ml m2 m3 m4]) 

K = = C k01+kl2+k41 -kl2 0 -k41; 

-kl2 k02+kl2+k23 -k23 0; 
0 -k23 k03+k23+k34 -k34; 

-k41 0 -k34 k04+k34+k41]; 

'/. Determine lowest natural freq of the undamped cart system (wn) 

[evalues.evectors] = eign(K,M); 
wn = sqrt(min(evalues));       '/. lowest natural freq, [wn] = rad/sec 

'/, Form the damping matrix (D) from K, zeta_n, & the evectors 
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D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))*evectors'); 
for i = 1:N,  for j = 1:N,  if K(i,j) == 0, D(i,j) = 0;  end;  end;  end; 
dl2 = -D(l,2); d23 = -D(2,3); d34=-D(3,4); d41=-D(4,l); 

'/. Set ppf and adaptation parameters 

Gain = lei;  Gamma = Gain*diag([l 100 11]); '/. adaptive gain matrix for d = 3 
mu = 0.4; zeta_f = 0.4; wf = wn; '/. ppf gain, freq k  damping ratio 
if ppf.switch ~= 0, Kppf = [0 mu*K(2,2); wf"2 0];  else, Kppf = zeros(2); end; 

'/> Partition out controlled k  uncontrolled parts of the system matrices 

Mc = diag([M(2,2) 1]); Mc.inv = diag([1/M(2,2) 1]); 
Kc = diag([K(2,2) wf"2]); 
Dc = diag([D(2,2) 2*zeta_f*wf]); 

Mu = diag([M(l,l) M(3,3) M(4,4)]) 
Ku = diag([K(l,l) K(3,3) K(4,4)]) 
Du = diag([D(l,l) D(3,3) D(4,4)]) 

•/. Find P 

Ac = [zeros(2) eye(2); -Mc_inv*(Kc-Kppf) -Mc_inv*Dc]; 
Q = diag([l wf"2/K(2,2) M(2,2)/K(2,2) 1/K(2,2)]); 
P = lyap(Ac',Q); 

'/, Set disturbance parameters 

fd_amp = 10; '/. amplitude of disturbance 
ampl = 0; '/. allows for direct forcing on cart #1, fdl = ampl*fd3 
amp2 = 0; '/, allows for direct forcing on cart #2, fd2 = amp2*fd3 
wd = wn; 7. set disturbance freq = natural freq of system 
eo = 1; '/■ engine order for rotary disturbance (not used for this system) 

'/, Set-up the cart k  ppf state-space systems 

A = [zeros(N) eye(N); -M_inv*K -M_inv*D] ; 
B = [zeros(N); M_inv]; 
C = eye(2*N); 

Af = [0 1;  -wf"2 -2*zeta_f*wf]; 
Bf = [zeros(l,N); 0 10 0]; 
Cf = eye(2); 

'/, Iteratively run simulation and determine RMS values 

i = 0; wd_step = 0.001; 

for wd = 0:wd_step:20.0, 
i = i + 1;  omega(i) = wd;   dispC '); disp( [case_name num2str (wd)]); 
sim('ppf41_rms_sim'); 
ibegin = min(find(time>=tfinal/2)); 
x_rms(i) = rms(x(:,2),ibegin); 

end; 
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A.4     Simulation of the Adaptive/PPF 4/4 DOF System 

This section contains Matlab and Simulink files for the Adaptive/PPF 4 DOF system, 

with all 4 DOF controlled. 

Adaptive/PPF System: Controlling All 4 Carts 

& 
time 

^" 

Disturbance 

x' = Ax+Bu 
y = Cx+Du 

v x 

fc 

Cart System 
y_x = [{x};{xdot}]' 

Selector 

Selector 

Fc 

fd 

fc2 

fc3 

fc4 

Fc_eta 
x' = Ax+Bu 
y = Cx+Du 

Y-eta   ^1 

PPF System 
y_eta = [ {eta}; {etadot} ]' 

[f1;f_eta1] [y_x; y_eta] 

Adaptive/PPF Control for Cart #1 

[f2; f_eta2] [y_x; y_eta] 

Adaptive/PPF Control for Cart #2 

[f3; f_eta3] [y_x; y_eta] 

Adaptive/PPF Control for Cart #3 

[f4; f_eta4] [y_x; y_eta] 

Adaptive/PPF Control for Cart #4 

J—>    xdot 

Jv_xj_y_eta]l_^-Opj. 

Timer 
Switch 

py_x; v_eta1' 

W x; v_etal' 

fy x; y etal' 

fv x: v etaT 

Figure A.6     Simulink Model for Adaptive/PPF 4 DOF System, with all 4 DOF Con- 
trolled 
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Adaptive Parameter Estimation & Control Law Sub-system #1 

Q3- 
[y_x; y_eta] 

Elements: 

1   = x1 
2   = x2 
3   = X3 
4   = x4 
5   = xldot 
6   = x2dot 
7   = x3dol 
8   = x4dol 

9   = elal 
10 = eta2 
11 = Bta3 
12 = eta4 
13 = etaldot 
14 = eta2dot 
15 = eta3dot 
16 = eta4dot 

Parameter Estimation 

[x1, etal, xldot, etaldot]'        P (3,:,1) 

Selector 

[X2, x4, x2dot, x4dot]' 

:»- 
d(Phi hatl/dt , 

Gamma (:,:,1) 

Adaptive Control 

B* adapt_switch 

[0;0] 

PPF Control 

Kppf'oc 

[x1,eta1] Kppf(:,:,1) ppf_switch 

[0;0] 

'P ■ 

O* -H: 

4s°" 

4^ 

►Q—KID 
^ [f1;f_eta1] 

Figure A.7     Adaptive Parameter Estimation and PPF Control Sub-system for Cart 1, 
from Model in Figure A.6 
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A.4-1    Matlab Code for Adaptive/PPF 4/4 DOF System. 

'/, ppf4.m 
•/. 
'/, This m-f ile runs a 4 cart ring system with adaptive parameter estimation 
'/. and PPF control on all carts. The are three settings for the disturbance. 
'/, The first and second have a random or sine input, respectively, always on 
'/, cart #3, with the option to put a multiple of that on cart #1. The third 
'/, is a disturbance rotating between all four, fd_i = cos(wd*t + phi.i). 

clear all; close all; 

print_switch = 0; 
eps_switch  = 0; 

'/, Sends plots to printer if = 1 
'/, Saves plots to eps file if = 1 

'/, Simulation parameters 

tfinal = 1750; 

sim_switch = 1 
disturb_switch = 3 
eo = 1 

mistuned 0; 

ppf.switch    = 1; 
adapt_switch  = 1; 

timer_switch  = 0; 

'/, 1 = standard, 2 = exact parameters, 3 = odd only 
'/, disturbance:  1 = random, 2 = sine, 3 = rotary 
'/, engine order for rotary disturbance 

'/, grounding springs are mistuned if = 1 

'/. turns ppf control on (1) / off (0) 
'/, turns adaptive control on (1) / off (0) 

'/, turn on estimator/control at t = timer_switch 

'/, System parameters 

N = 4; 
zeta.n = 0.002; 
ko = 100; kc = 5; 

'/, number of carts 
'/, damping ratio 
'/. nominal ground & coupling stiffness, [k] = N/m 

ml = 1;  m2 = 1;  m3 = 1;  m4 = 1;   '/. [m] = Kg 
kl2 = kc; k23 = kc; k34 = kc; k41 = kc;  '/. [k] = N/m 

if mistuned == 0, 
kOl = ko; k02 = ko; k03 = ko; k04 = ko; 
ttext = 'Cyclic System'; 

else, 
kOl = ko+4.7787; k02 = ko+5.996; k03 = ko+7.2268; k04 = ko+5.9069; 
ttext = 'Mistuned Cyclic System'; 

end; 

M = diag([ml m2 m3 m4]); M_inv = diag(l./[ml m2 m3 m4]) 

K = [ k01+kl2+k41 
-kl2 
0 
-k41 

-kl2 
k02+kl2+k23 
-k23 
0 

-k23 
k03+k23+k34 
-k34 

-k41 
0; 
-k34; 
k04+k34+k41]; 

'/, Find lowest natural freq (wn) of the undamped system; [wn] = rad/sec 

[evalues.evectors] = eign(K.M); wn = sqrt(min(evalues)); 

'/. Form the damping matrix (D) from K, zeta_n, & the evectors 
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D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))»evectors'); 
for i = 1:N,  for j = 1:N,  if K(i,j) == 0, D(i,j) = 0;  end;  end;  end; 
d!2 = -D(l,2); d23=-D(2,3); d34=-D(3,4); d41=-D(4,l); 

'/. Set adaptation and ppf parameters 

Gain = le2; 
Gamma(:, 
Gamma(:, 
Gamma(:, 
Gamma(:, 

,1) = Gain*diag([l 1  1  1]); 
,2) = GammaC 
,3) = GammaC 
,4) = GammaC ,1) 

'/. adaptive gain matrix for cart #1 
'/, adaptive gain matrix for cart #2 
'/. adaptive gain matrix for cart #3 
'/, adaptive gain matrix for cart #4 

mu = 0.4; wf = wn; zeta_f = 0.4;      '/. ppf gain, freq & damping ratio 

'/, Begin looping through each cart 

for i = 1:N, 

7. Set-up Kppf 

if ppf„switch ~= 0, Kppf(:,:,i)= [0 mu*KCi,i); wf"2 0]; 
else, KppfC:,:,i) = zerosC2); 

end; 

'/, Partition out controlled it uncontrolled parts of the system matrices 

Mc = diag([M(i,i) 1]); 
Kc = diag([K(i,i) wf"2]); 
Dc = diagC[DCi,i) 2*zeta_f*wf]); 

Mc_inv = diagC[l/MCi,i) 1]); 

'/. Calculate P 

Ac = [zeros(2) eyeC2);  -Mc_inv*CKc-KppfC:,:,i)) -Mc_inv*Dc]; 
q = diag([l wf*2/K(i,i) M(i,i)/K(i,i) 1/K(i,i)]); 
P(:,:,i) = lyap(Ac',q); 

'/, Check stability requirments 

if absCrealCeigCPC:,:,i)))) "= reaKeigCPC:,: ,i))) , 
dispC '); dispCt'P' num2strCi) ' is not positive definite']); end; 

if PC:,:,i) "= P(:,:,i)', dispC' '); dispCPP' num2strCi) ' is not symmetric']); end; 

'/, Set-up vectors for selecting Xc_i and Yr_i 

elect_XcCi,:) = [i,  i+2*N,  i+N,  i+3*N] 
if i == 1, select_Yr(i, 

elseif i == N, select_Yr(i, 
else, select_Yr(i, 

end; 

) = [2, N,  2+N, N+N]; 
) = [1, N-l,  1+N, N-l+N]; 
)= [i-1,  i+1,  i-l+N,  i+l+N]: 

end; '/. End looping through each cart 

'/, Set disturbance parameters 

fd_amp = 10;  '/, amplitude of disturbance 
wd = wn;      '/, set disturbance freq = natural freq of system 
if disturb.switch == 3, ampl = 0; else, ampl = 0; end; '/. fdl = ampl*fd3 
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'/, Set-up the cart & ppf state-space systems 

A= [zeros(N) eye(N); -M_inv*K -M_inv*D]; 

B = [zeros(N); M_inv]; 

C = eye(2*N); 

Af = [zeros(N) eye(N); -uf~2*eye(N) -2*zeta_f*wf*eye(N)]; 

Bf = [zeros(N); eye(N)]; 

Cf = eye(2*N); 

'/, Run simulation 

if sim_switch == 1, sim('ppf4_sim');   ttext = [ttext ':  ']; 

elseif sim.switch == 2, sim('ppf4ep_sim'); ttext = [ttext ' (w/ exact parameters):  ']; 

elseif sim.switch == 3, sim('ppf4odd_sim'); ttext = [ttext ': Carts #2&4 - Uncontrolled; Carts#l&3 - '] ; 

end; 

'/, Generate text for output 

timer_txt = ['8 t = ' num2str(timer_switch)]; 
if adapt.switch == 1 & ppf.switch == 1, ttext = [ttext 'Adaptive / PPF Both on ' timer_txt]; 

elseif adapt_switch == 1 & ppf.switch == 0, ttext = [ttext 'PPF off / Adaptive on ' timer_txt]; 

elseif adapt_switch == 0 k  ppf_switch == 1, ttext = [ttext 'Adaptive off / PPF on ' timer.txt]; 

elseif adapt_switch == 0 & ppf_switch == 0, ttext = [ttext 'Adaptive / PPF Both off']; 

end; 

if disturb_switch == 1, 
fdtext = ['f_{d3} = Random (mag \leq ' num2str(fd_amp) ')']; 

elseif disturb_switch == 2, 
fdtext = ['f_{d3> = ' num2str(fd_amp) ' sinC num2str(wd) 't)']; 

elseif disturb_switch == 3, 
fdtext = ['f_{d_i> = ' num2str(fd_amp) ' cos(' num2str(wd) 't + \phi_i)']; 

end; 

if  ampl "= 0, 
if  ampl ==  1,  fdtext =   [fdtext  ',  f_{dl} = f_-[d3}']; 

else fdtext =   [fdtext  ',  f_{dl} =   '  num2str(ampl)   '*f_{d3}']; 
end; 

end; 

fdtext = [fdtext ', E0 = ' num2str(eo)]; 
gtext  = [',  \Gamma = 10"{' num2str(loglO(Gain)) '} * W  mat2str(diag(Gamma(:,:,1)/Gain)) ', ... \}']; 

line2  = ['\rm \fontsize{10}' fdtext gtext]; 

if timer_switch "= 0, timer_str = '_tl'; else timer_str = '_t0'; end; 

if eo < 10, eo_str = ['0' num2str(eo)]; else eo_str = num2str(eo); end 

dname = ['i:\thesis\figures\ppf4\']; 

fname = ['ppf4_d' num2str(disturb_switch) '_e' eo_str '_m' num2str(mistuned)... 

•_p' num2str(ppf_switch) '_a' num2str(adapt_switch)]; 

if sim_suitch == 1, fname = [fname timer_str]; 
elseif sim_switch == 2, fname = [fname 'ep' timer_str] ; adapt_switch = 0;  '/. no parameter estimation plots 

elseif sim.switch == 3, fname = [fname 'odd' timer_str]; 
end; 

*/, Plot Results 

if eps_switch  == 625, 
diary([dname 'ppf4_captions.txt']); 
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disp([' ';' ']); disp(ttext); dispO '); 

end; 

plot4_displacements; 

plot4_forces; 

plot4_parameters; 

diary off 

A.4.2    Matlab Code for RMS Response of Adaptive/PPF 4/4 DOF 
System. 

'/, ppf4_rms.m 
'/. 
'/, This m-f ile runs a 4 cart cyclic system with adaptive parameter estimation 

'/, and PPF control on all carts. The disturbance is fd_i = cos(wd*t + phi_i) . 

'/. The RMS values for the displacements and parameter estimates are calculated 

7, over a range of disturbance frequencies. It is currently set-up to be called 

'/, by script file so that several different cases can be run at once. 

'/.clear all; close all; 

'/. Simulation parameters 

tfinal = 500; 
sim_switch   = 1; 

timer_switch = 0; 

'/.eo        = 1 

'/.mistuned    = 1 

V.ppf- switch  = 1 
'/,adapt_switch = 1 

'/, 1 = standard, 2 = exact parameters, 3 = odd only 

'/, turn on estimator/control at t = timer_switch 

'/, engine order for rotary disturbance 

'/, grounding springs are mistuned if = 1 

'/, turns ppf control on (1) / off (0) 

'/, turns adaptive control on (1) / off(0) 

'/, System parameters 

N = 4; 

zeta_n = 0.002; 
ko = 100; kc = 5; 

'/. number of carts 

'/. damping ratio 
'/, ground & coupling stiffness, [k] = N/m 

ml = 1;  m2 = 1;  m3 = 1;  m4 = 1;   '/. [m] = Kg 

kl2 = kc; k23 = kc; k34 = kc; k41 = kc;  '/. [k] = N/m 

if mistuned == 0, 
kOl = ko; k02 = ko; k03 = ko; k04 = ko; 

ttext = 'Cyclic System'; 
else, 

kOl = ko+4.7787; k02 = ko+5.996; k03 = ko+7.2268; k04 = ko+5.9069; 
ttext = 'Mistuned Cyclic System'; 

end; 

M = diag([ml m2 m3 m4]); M_inv = diag(l./[ml m2 m3 m4]) 

K = [ k01+kl2+k41 -kl2 0 -k41; 

-kl2 k02+kl2+k23 -k23 0; 
0 -k23 k03+k23+k34 -k34; 

-k41 0 -k34 k04+k34+k41]; 

'/, Find lowest natural freq (wn) of the undamped system; [wn] = rad/sec 

[evalues.evectors] = eign(K,M); wn = sqrt(min(evalues)); 
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'/, Form the damping matrix (D) from K, zeta_n, & the evectors 

D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))»evectors'); 
for i = 1:N,  for j = 1:N,  if K(i,j) == 0, D(i,j) = 0;  end;  end;  end; 
d!2 = -D(l,2); d23 = -D(2,3); d34=-D(3,4); d41=-D(4,l); 

'/, Set adaptation and ppf parameters 

Gain = le2; 
Gamma(:, 
Gamma(:, 
Gamma(:, 
Gamma(:, 

,1) = Gain*diag([l 111]);  '/. adaptive gain matrix for cart #1 
,2) = Gamma( 
,3) = Gamma( 
,4) = Gamma( 

,1) 
,1) 
,1) 

mu = 0.4; wf = wn; zeta.f = 0.4; 

'/. adaptive gain matrix for cart #2 
'/, adaptive gain matrix for cart #3 
'/, adaptive gain matrix for cart #4 

'/. ppf gain, freq & damping ratio 

'/, Begin looping through each cart 

for i = 1:N, 

'/, Set-up Kppf 

if ppf.switch "= 0, Kppf(:,:,i)= [0 mu*K(i,i); wf~2 0]; 
else, Kppf(:,:,i) = zeros(2); 

end; 

'/. Partition out controlled &  uncontrolled parts of the system matrices 

Mc = diag([H(i,i) 1]); 
Kc = diag([K(i,i) «f"2]); 
Dc = diag([D(i,i) 2*zeta_f*wf]); 

Mc_inv = diag([l/M(i,i) 1]); 

'/, Calculate P 

Ac = [zeros(2) eye(2); -Mc_inv*(Kc-Kppf(:,:,i)) -Mc_inv*Dc]; 
Q = diag([l wf"2/K(i,i) M(i,i)/K(i,i) 1/K(i,i)]); 
P(:,:,i) = lyap(Ac',Q); 

'/, Set-up vectors for selecting Xc_i and Yr_i 

select_Xc(i,:) = [i,  i+2*N, i+N,  i+3*N]; 
if i == 1,       select_Yr(i, 

elseif i == N, select_Yr(i, 
else,        select_Yr(i, 

end; 

) = [2,  N, 2+N, N+N]; 
) = [1,  N-l,  1+N, N-l+N]; 
) = [i-1,  i+1,  i-l+N, i+l+N]; 

end;  '/, End looping through each cart 

'/. Set disturbance parameters 

fd_amp = 10;  '/, amplitude of disturbance 

'/, Set-up the cart & ppf state-space systems 

A= [zeros(N) eye(N); -M_inv*K -H_inv*D]; 
B = [zeros(N); M_inv]; 
C = eye(2*N); 
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Af = [zeros(N) eye(N); -wf"2*eye(N) -2*zeta_f*wf*eye(N)]; 

Bf = [zeros(N); eye(N)]; 

Cf = eye(2*N); 

'/, Iteratively run simulation and determine RMS values 

i = 0; wd_step = 0.001; 

for wd = 9:wd_step:ll, 

i =  i  +  1;     omega(i) = wd;     dispO   ');   disp( [case_name num2str(ud)]) ; 
sim('ppf4_rms_sim'); 
ibegin    = min(find(time>=(tfinal-100))); 

for j  =  1:N,     x_rms(i,j) = rms(x(:,j),ibegin);  end; 
avg_x_rms(i,l) = sum(x_rms(i,:),2)/N; 
max_x_rms(i,l) = max(x_rms(i,:)); 

end; 

if  eo <  10,  eo_str =   ['0'  num2str(eo)];  else eo_str = num2str(eo);    end 

fname =   ['rms4_e'  eo_str     '_m'  num2str(mistuned)   '_p'  num2str(ppf_switch)   '_a'  num2str(adapt_switch)]; 
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A.5    Simulation of the Adaptive/PPF 8 Blade System 

This section contains Matlab and Simulink files for the 8 Blade Compressor Disk 

Model with Adaptive/PPF control on all 8 blades. Note that the Adaptive Parameter 

Estimation and PPF Control Sub-system is similar in form to Figure A.7 

Adaptive/PPF System: Controlling All 8 Blades 

0- -M    time 

H-^ 1 
1 

H>rs- w ^O F                            k x' = Ax+Bu 
y = Cx+Du 

V X ►1  <?- ► W                                ' '■—►)   xdot 

Disturbanc e 
Ic 

Cart System 

k ,o    |         '- *l 

Selector 

i > 
lv x; v etar    ». -Op* 

Selector 
x' = Ax+Bu 
y = Cx+Du 

v eta  jj 
Fc.eta         w H Timer 

Fc 

y_et 
PPF System 

i = [ {eta}; {eta do )]' 

Switch 

lv x:v etal' ^   Fc1 [f1;f_eta1]          [y_x; y_eta 

^   Fc2 fv x; v etal' 

Ad aptive/PPF Control for Carl #1 

[f2; f_eta2]          [y_x; y_eta] 

^   Fc3 W x;v etal' 

Ad aptive/PPF Control for Carl #2 

[13; Leta3]          [y_x; y_eta] 

^   Fc4 Tv x;v etal' 

Ad aptive/PPF Control for Carl #3 

(f4; f_eta4]          [y_x; y_eta; 

^   Fc5 lv x;v etal' 

Ad aptive/PPF Control for Carl #4 

[fS; !_eta5J         [y_x; y_eta] 

*   Fc6 lv x:v etal' 

Ad aptive/PPF Control for Carl #5 

[f6; f_eta6]          [y_x; y_eta] 

„   Fc7 lv x; v etal' 

Ad aptive/PPF Control for Carl #6 

[f7; f_eta7]          [y_x; y_eta; 

^   Fc8 lv x; v etal' 

Ad aptive/PPF Control for Carl #7 

[18; t_eta8]          [y_x; y_eta] 

Ad aptive/PP F Control for C 3an #8 

Figure A.8      Simulink Model for an 8 Blade System with Adaptive/PPF control on all 
blades 
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A.5.1    Matlab Code for the Adaptive/PPF 8 Blade System. 

'/,  ppf8.m 

•/. 
'/, This m-f ile runs a 8 blade cyclic system with adaptive parameter estimation 
'/. and PPF control on all carts. The are three settings for the disturbance. 
*/. The first and second have a random or sine input, respectively, always on 
'/, cart #3, with the option to put a multiple of that on cart #1. The third 
'/, is a disturbance rotating between all eight, fd_i = cos(wd*t + phi_i) . 

clear all; close all; 

print_switch = 0; 
eps_switch  = 0; 

'/, Sends plots to printer if = 1 
'/. Saves plots to eps file if = 1 

'/, Simulation parameters 

tfinal = 1000; 

sim_switch = 1 
disturb_switch = 3 
eo = 1 

'/,  1 = standard, 2 = exact parameters, 3 = odd only 
'/, disturbance:  1 = random, 2 = sine, 3 = cyclic 
'/, engine order for cyclic disturbance 

mistuned     =0;    '/, grounding springs are mistimed if = 1 or 2 

ppf_switch   =1;    '/. turns ppf control on (1) / off (0) 
adapt_switch  = 1;    '/. turns adaptive control on (1) / off(0) 

timer_switch '/. turn on estimator/control at t = timer_switch 

'/. System parameters 

N = 8; '/. number of blades 
L = 1; '/> length of blade 
zeta_n =0.05; '/. damping ratio 
ko = 100; kc = 5; '/, nominal ground & coupling stiffness, [k] = N/m 

ml = 1; m2 = 1; m3 = 1; m4 = 1; m5 = 1; m6 = 1; m7 = 1; m8 = 1;  '/. [m] = Kg 

kl2 = kc; k23 = kc; k34 = kc; k45 = kc;  '/. [k] = N/m 
k56 = kc; k67 = kc; k78 = kc; k81 = kc;  '/. [k] = N/m 

if mistuned == 0, 
kOl = ko; k02 = ko; k03 = ko; k04 = ko; 
k05 = ko; k06 = ko; k07 = ko;  k08 = ko; 
ttext = 'Cyclic System'; 

elseif mistuned == 1, 
kOl = ko*(l + 0.0122); k02 = ko*(l + 0.0003); 
k05 = ko*(l - 0.0117); k06 = ko*(l - 0.0012); 
ttext =  'Mistuned Cyclic System'; 

end; 

k03 = ko*(l 
k07 = ko*(l 

0.0003); 
0.0074); 

k04 = ko*(l 
k08 = ko*(l 

0.0038); 
0.0126); 

M = diag([ml m2 m3 m4 m5 m6 m7 m8]);  M_inv = diag(l./[ml m2 m3 m4 m5 m6 m7 m8]); 

cp8 = cos(pi/8); L2cp8 = L"2*cp? !; 
K(l,l) = k81 + kl2 + k01/(L2cp8) K(l,8) = -k81 K(l,2) = -kl2 
K(2,2) = kl2 + k23 + k02/(L2cp8) K(2,l) = -kl2 K(2,3) = -k23 
K(3,3) = k23 + k34 + k03/(L2cp8) K(3,2) = -k23 K(3,4) = -k34 
K(4,4) = k34 + k45 + k04/(L2cp8) K(4,3) = -k34 KC4.5) = -k45 
K(5,5) = k45 + k56 + k05/(L2cp8) K(5,4) = -k45 K(5,6) = -k56 
K(6,6) = k56 + k67 + k06/(L2cp8) K(6,5) = -k56 K(6,7) = -k67 
K(7,7) = k67 + k78 + k07/(L2cp8) K(7,6) = -k67 K(7,8) = -k78 
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K(8,8) = k78 + k81 + k08/(L2cp8); K(8,7) = -k78; K(8,l) = -k81; 
K = cp8*K; 

'/, Find lowest natural freq (wn) of the undamped system; [wn] = rad/sec 

[evalues,evectors] = eign(K,M); wn = sqrt(min(evalues)); 

'/. Form the damping matrix (D) from K, zeta_n, fe the evectors 

D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))»evectors'); 
for i = 1:N, for j = 1:N,  if K(i,j) == 0, D(i,j) = 0;  end;  end;  end; 
dl2 = -D(l,2); d23 = -D(2,3); d34=-D(3,4); d45=-D(4,5); 
d56 = -D(5,6); d67 = -D(6,7); d78 = -D(7,8); d81 = -D(8,l); 

'/, Set adaptation and ppf parameters 

Gain = le2; 
Gamma( 
Gamma( 
Gamma( 
Gamma( 
Gamma( 
Gamma( 
Gamma( 
Gamma( 

,1) = Gain*diag([ 
,2) = Gamma(: 
,3) = Gamma(: 
,4) = Gamma(: 
,5) = Gamma(: 
,6) = Gamma(: 
,7) = Gamma(: 
,8) = Gamma(: 

1 1 1]); '/, adaptive 
'/, adaptive 
'/, adaptive 
'/, adaptive 
'/, adaptive 
'/, adaptive 
'/, adaptive 
'/, adaptive 

gain 
gain 
gain 
gain 
gain 
gain 
gain 
gain 

matrix 
matrix 
matrix 
matrix 
matrix 
matrix 
matrix 
matrix 

for cart #1 
for cart #2 
for cart #3 
for cart #4 
for cart #5 
for cart #6 
for cart #7 
for cart #8 

0.4; wf = wn; zeta_f =0.4; '/, ppf gain, freq & damping ratio 

'/. Begin looping through each cart 

for i = 1:N, 

'/. Set-up Kppf 

if ppf.switch ~= 0, Kppf(:,:,i) 
else, Kppf(:,:,i) = zeros(2); 

end; 

= [0 mu*K(i,i); wf"2 0]; 

'/, Partition out controlled & uncontrolled parts of the system matrices 

Mc = diag([M(i,i) 1]); 
Kc = diag([K(i,i) wf"2]); 
Dc = diag([D(l,i) 2*zeta_f*wf]); 

Hc_inv = diag([l/M(i,i) 1]); 

'/, Calculate P 

Ac = [zeros(2) eye(2); -Mc_inv*(Kc-Kppf(:,:,i)) -Mc_inv*Dc]; 
Q = diag([l wf2/K(i,i) M(i,i)/K(i,i) 1/K(i,i)]); 
P(:,:,i) = lyap(Ac',q); 

'/. Check stability requirments 

if -abs(real(eig(Ac))) "= real(eig(Ac)), dispO '); dispOAc is not negative definite'); end; 
if abs(real(eig(P(:,:,i)))) "= real(eig(P(:,:,i))), disp(['P' num2str(i) ' is not positive definite*]); end; 
if P(:,:,i) "= P(:,:,i)', dispC '); disp(['P' num2str(i) ' is not symmetric']); end; 

'/, Set-up vectors for selecting Xc_i and Yr_i 
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select_Xc(i,:)  =   [i,     i+2*N,     i+N, i+3*N]; 
if  i ==  1, select_Yr(i,:) = [2,     N,     2+N,     N+N] ; 

elseif i == N, select_Yr(i,:) = [1, N-l,  1+N, N-l+N]; 

else,        select_Yr(i,:) = [i-1,  i+1,  i-l+N,  i+l+N]; 
end; 

end;  '/, End looping through each cart 

'/, Set disturbance parameters 

fd_amp = 10;  '/. amplitude of disturbance 

wd = wn;      '/. set disturbance freq = natural freq of system 

'/, Set-up the cart & ppf state-space systems 

A= [zeros(N) eye(N); -M_inv*K -M_inv*D]; 

B = [zeros(N); M_inv]; 

C = eye(2*N); 

Af = [zeros(N) eye(N); -wf"2*eye(N) -2*zeta_f*wf*eye(N)]; 

Bf = [zeros(N); eye(N)]; 

Cf = eye(2*N); 

'/. Run simulation 

if sim_s«itch == 1, simCppf 8_sim');   ttext = [ttext ':  '] ; 

elseif sim_switch == 2, simCppf 8ep_sim'); ttext = [ttext ' (w/ exact parameters):  '] ; 

elseif sim_switch == 3, sim('ppf8odd_sim'); ttext = [ttext ':  Even Blades - PPF only; Odd Blades - '] ; 

end; 

'/, Generate text for output 

timer_txt = ['8 t = ' num2str(timer_switch)]; 
if adapt_switch == 1 & ppf_switch == 1, ttext = [ttext 'Adaptive / PPF Both on ' timer.txt]; 

elseif adapt_switch == 1 & ppf_switch == 0, ttext = [ttext 'PPF off / Adaptive on ' timer_txt]; 

elseif adapt_switch == 0 & ppf.switch == 1, ttext = [ttext 'Adaptive off / PPF on ' timer_txt]; 

elseif adapt_switch == 0 & ppf .switch == 0, ttext = [ttext 'Adaptive / PPF Both off] ; 

end; 

if disturb_switch == 1, 
fdtext = ['f_{d3} = Random (mag \leq ' num2str(fd_amp) ')']; 

elseif disturb_switch == 2, 
fdtext = ['f_{d3} = ' num2str(fd_amp) ' sinC num2str(vd) >t)']; 

elseif disturb_switch == 3, 
fdtext = ['f_{d_i} = ' num2str(fd_amp) ' cos(' num2str(wd) 't + \phi_i)']; 

end; 

fdtext = [fdtext ', E0 = ' num2str(eo)]; 
gtext  = [',  \Gamma = 10~{' num2str(loglO(Gain)) '} * \{' mat2str(diag(Gamma(:,:,1)/Gain)) ', ... \}']; 

line2  = ['\rm \fontsize{10}' fdtext gtext]; 

if timer_switch "= 0, timer_str = '_tl'; else timer.str = '_t0'; end; 

if eo < 10, eo_str = ['0' num2str(eo)]; else eo_str = num2str(eo); end; 

dname = ['i:\thesis\figures\ppf8\']; 

fname = ['ppf8_d' num2str(disturb.switch) '_e' eo_str '_m' num2str(mistuned)... 

'_p' num2str(ppf.switch) '_a' num2str(adapt.switch)]; 

if       sim_switch == 1, fname = [fname timer_str]; 
elseif sim_switch == 2,  fname = [fname 'ep' timer_str] ; adapt_switch = 0;  '/, no parameter estimation plots 
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elseif 
end; 

sim_switch == 3,  fname = [fname 'odd' timer_str]; 

'/. Plot Results 

if eps_switch  == 625, 
diary([dname 'ppf8_captions.txt']); 
disp([' ';' ']); disp(ttext); dispC '); 

end; 

plot8_displacements; 
plot8_forces; 
plot8_parameters; 
diary off 

A.5.2    Matlab  Code for RMS Response of the Adaptive/PPF 8 
Blade System. 

'/, ppf8_rms.m 
•/. 
'/. This m-f ile runs a 8 blade cyclic system with adaptive parameter estimation 
'/. and PPF control on all carts. The disturbance is fd_i = cos(wd*t + phi_i) . 
'/, The RMS values for the displacements and parameter estimates are calculated 
'/. over a range of disturbance frequencies. It is currently set-up to be called 
'/, by a script file so that several different cases can be run at once. 

'/.clear all; close all; 

'/,print_switch = 0; 
7.eps_switch  = 0; 

'/. Sends plots to printer if = 1 
'/, Saves plots to eps file if = 1 

'/, Simulation parameters 

tfinal = 500; 
eo = 3 
disturb_switch = 3 
timer_switch = 0 

'/.mistuned =  1 
'/.ppf-switch = 0 
'/,adapt_switch = 0 

'/. engine order for cyclic disturbance 
'/. disturbance: 3 = cyclic only 
'/, turn on estimator/control at t = timer_switch 

'/, grounding springs are mistuned if = 1 
'/. turns ppf control on (1) / off (0) 
'/, turns adaptive control on (1) / off (0) 

'/, System parameters 

N = 8; '/■ number of blades 
L = 1; '/. length of blade 
zeta_n = 0.002; '/. damping ratio 
ko = 100; kc = 5; '/. nominal ground & coupling stiffness, [k] = N/m 

ml = 1; m2 = 1; m3 = 1; m4 = 1; m5 = 1; m6 = 1; m7 = 1; m8 = 1;  '/. [m] = Kg 

kl2 = kc; k23 = kc; k34 = kc; k45 = kc;  '/. [k] = N/m 
k56 = kc; k67 = kc;  k78 = kc; k81 = kc;  '/. [k] = N/m 

if mistuned == 0, 
kOl = ko; k02 = ko; k03 = ko; k04 = ko; 
k05 = ko; k06 = ko; k07 = ko;  k08 = ko; 
ttext = 'Cyclic System'; 

elseif mistuned == 1, 
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kOl = ko*(l + 0.0122); k02 = ko*(l + 0.0003); k03 = ko*(l - 0.0003); 
k05 = ko*(l - 0.0117); k06 = ko*(l - 0.0012); k07 = ko*(l - 0.0074); 
ttext = 'Mistimed Cyclic System'; 

k04 = ko*(l - 0.0038); 
k08 = ko*(l + 0.0126); 

end; 

M = diag([ml m2 m3 m4 m5 m6 m7 m8]);  M_inv = diag(l./[ml m2 m3 m4 m5 m6 m7 m8]); 

cp8 = co 

K(l,l) 
K(2,2) 
K(3,3) 
K(4,4) 
K(5,5) 
K(6,6) 
K(7,7) 
K(8,8) 
K = cp8* 

s(pi/8); L2cp8 = 
k81 + kl2 + kOl/ 
kl2 + k23 + k02/ 
k23 + k34 + k03/ 
k34 + k45 + k04/ 
k45 + k56 + k05/ 
k56 + k67 + k06/ 
k67 + k78 + k07/ 
k78 + k81 + k08/ 

K; 

L~2*cp8; 
(L2cp8) 
(L2cp8) 
(L2cp8) 
(L2cp8) 
(L2cp8) 
(L2cp8) 
(L2cp8) 
(L2cp8) 

K(l,8) 
K(2,l) 
K(3,2) 
K(4,3) 
K(5,4) 
K(6,5) 
K(7,6) 
K(8,7) 

-k81 
-kl2 
-k23 
-k34 
-k45 
-k56 
-k67 
-k78 

K(l,2) = -kl2 
K(2,3) = -k23 
K(3,4) = -k34 
K(4,5) = -k45 
K(5,6) = -k56 
K(6,7) = -k67 
K(7,8) = -k78 
K(8,l) = -k81 

'/. Find lowest natural freq (wn) of the undamped system; [wn] = rad/sec 

[evalues,evectors] = eign(K,M); wn = sqrt(min(evalues)); 

'/, Form the damping matrix (D) from K, zeta_n, & the evectors 

D = real(evectors*(2*zeta_n*sqrt(evectors'*K*evectors))*evectors'); 
for i = 1:N, for j = 1:N, if K(i,j) == 0, D(i,j) = 0; end 
dl2 = -D(l,2); d23 = -D(2,3); d34=-D(3,4); d45 = -D(4,5) 
d56 = -D(5,6);  d67=-D(6,7);  d78=-D(7,8);  d81=-D(8,l) 

end;  end; 

'/, Set adaptation and ppf parameters 

Gain =0.1; 
Gamma(: :,D = Gain*d. iag([l 111]);  '/. adaptive gain matrix for cart #1 
Gamma(: :,2) = Gamma( ,:,1);         '/. adaptive gain matrix for cart #2 

Gamma(: :,3) = Gamma( ,:,1);         '/, adaptive gain matrix for cart #3 

Gamma(: :,4) = Gamma( ,:,1);         '/, adaptive gain matrix for cart #4 

Gamma(: :,5) = Gamma( ,:,1);         '/, adaptive gain matrix for cart #5 

Gamma(: :,6) = Gamma( ,:,1);         '/. adaptive gain matrix for cart #6 

Gamma(: :,7) = Gamma( ,:,1);         '/. adaptive gain matrix for cart #7 
Gamma(: :,8) = Gamma( ,:,1);         '/, adaptive gain matrix for cart #8 

mu = 0.4; wf = wn; zeta_f =0.4; '/, ppf gain, freq & damping ratio 

'/, Begin looping through each cart 

for i = 1:N, 

'/. Set-up Kppf 

if ppf.switch "= 0, Kppf(:,:,i) 
else, Kppf(:,:,i) = zeros(2); 

end; 

[0 mu*K(i,i); wf"2 0]; 

'/, Partition out controlled k  uncontrolled parts of the system matrices 

He = diag([M(i,i) 1]); 
Kc = diag([K(i,i) wf"2]); 
Dc = diag([D(i,i) 2*zeta_f*wf]); 

Mc_inv = diag([l/M(i,i) 1]); 

'/, Calculate P 
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Ac = [zeros(2) eye(2); -Mc_inv*(Kc-Kppf(:,:,i)) -Mc_inv*Dc]; 

q = diag(tl wf-2/K(i,i) M(i,i)/K(i,i) 1/K(i,i)]); 

P(: ,: ,i) = lyap(Ac',Q); 

'/, Check stability requirments 

if -abs(real(eig(Ac))) "= reaKeig(Ac)), dispC '); dispCAc is not negative definite'); end; 

if abs(real(eig(P(:,:,i)))) "= real(eig(P(:,:,i))), disp(['P' num2str(i) ' is not positive definite']); end; 

if P(:,:,i) "= P(:,:,i)', dispC '); disp(['P' num2str(i) ' is not symmetric']); end; 

'/. Set-up vectors for selecting Xc_i and Yr_i 

select_Xc(i,:) = [i,  i+2*N, i+N,  i+3*N]; 

if i == 1, select_Yr(i, 

elseif i == N, select_Yr(i, 
else, select_Yr(i, 

end; 

) = [2,  N, 2+N, N+N]; 

) = [1,  N-l,  1+N, N-l+N]; 

) = [i-1,  i+1,  i-l+N,  i+l+N]; 

end;  '/. End looping through each cart 

'/, Set disturbance parameters 

fd_amp = 10;  '/, amplitude of disturbance 

'/. Set-up the cart & ppf state-space systems 

A= [zeros(N) eye(N); -M_inv*K -M_inv*D]; 

B = [zeros(N); M_inv]; 

C = eye(2*N); 

Af = [zeros(N) eye(N); -wf~2*eye(N) -2*zeta_f*wf*eye(N)]; 

Bf = [zeros(N); eye(N)]; 

Cf = eye(2*N); 

'/. Iteratively run simulation and determine RMS values 

i = 0; wd_step = 0.001; 

for wd = 9:wd_step:ll, 

i = i +  1;     omega(i) = wd;     dispC   ');   disp( [case_name num2str(wd)]); 
simCppf 8_rms_sim') ; 
ibegin    = min(find(time>=(tfinal-100))); 

for j  = 1:N,     x_rms(i,j) = rms(x(:,j),ibegin);  end; 
avg_x_rms(i,l)  = sum(x_rms(i,:),2)/N; 
max_x_rms(i,l) = max(x_rms(i,:)); 

end: 
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