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Abstract 

In this research the electromagnetic scattering of a plane wave from a two-dimensional 

cavity embedded in an infinite, perfectly conducting ground plane is investigated. The 

plane wave is assumed to be under transverse electric (TE) polarization with respect to the 

x-axis. The cavity may be empty or filled with an arbitrary homogeneous, lossy material. 

A coupled set of scalar integral equations that govern the electromagnetic scattering is 

implemented. 

An approximate solution to the scalar integral equations is found via a Method 

of Moments (MoM) algorithm. The algorithm is implemented in a computer code, and 

approximations to the total magnetic field on the cavity surface and aperture as well as the 

normal derivative of the total magnetic field on the cavity aperture are obtained. These 

fields are then used to calculate the two-dimensional monostatic RCS signatures of various 

test cavities. 

The numerical results from the algorithm are shown to agree well with the RCS 

signatures calculated by other well-known methods and published results. In addition to 

being accurate, the algorithm is very computationally efficient. The process results in 

simply solving a relatively small, well-conditioned matrix system for each incident angle 

to produce the unknown fields. Analytical and numerical error analysis shows the method 

to have approximately O(h) order of convergence, where h is an indication of the fineness 

of the mesh used to discretize the cavity. 
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ANALYSIS AND NUMERICAL SOLUTION OF AN INTEGRAL EQUATION 

METHOD FOR ELECTROMAGNETIC SCATTERING FROM A CAVITY IN A 

GROUND PLANE 

I.   Introduction 

1.1    Motivation 

The study of electromagnetic plane wave scattering and the measurement of the radar 

cross section (RCS) of targets has been of much interest in recent years to the military 

aircraft industry. Many practical applications arise which require knowledge of the RCS 

signature of a target. The RCS of a target is essentially a measure of the detectability of 

the target by a radar system. More rigorously, in three dimensions, the RCS or echo area 

is defined as the area intercepting the amount of power that, when scattered isotropically, 

produces at the receiver a density that is equal to the density scattered by the actual target 

[6]. In two dimensions the RCS parameter is referred to as the echo width or alternatively 

as the radar cross section per unit length of the target. 

The accurate prediction and calculation of the RCS signature of targets is vitally 

important to today's military. The ability to control the RCS signatures of friendly air 

vehicles as well as the ability to detect and identify enemy air vehicles are both significant 

determining factors in the outcome of an air campaign. The camouflage of stealthy aircraft 

is one example of the need to minimize a friendly target's RCS signature. Stealth aircraft 

have proven to be a highly effective means of utilizing the element of surprise in an attack 

while providing increased survivability for American pilots, as evidenced by their success 

in the Persian Gulf War. 

It may also be desirable in certain instances to be able to enhance the RCS signature 

of a friendly air vehicle. For example, the use of unmanned, remotely-piloted air vehicles 

to gather reconnaissance information and/or serve as decoys to confuse enemy defenses 

may be a very effective technique in certain tactical scenarios.   Such a vehicle would 



typically be much smaller than a fighter-size aircraft and consequently would have a smaller 

RCS signature. The ability to enhance the RCS signature of a smaller unmanned air 

vehicle, thereby reducing an enemy's capacity for distinguishing between it and a fighter- 

size aircraft, may be advantageous. 

In either situation, whether reducing the RCS or enhancing the RCS of a target, 

it is necessary to have efficient methods of calculating the RCS signature of a scattering 

body. Complex objects such as military aircraft have many different design factors that 

can contribute to their RCS signature, but of particular interest is the prediction of the 

RCS patterns of cavities on the target's body. Cavities on an aircraft can include jet 

engine inlet ducts and exhaust nozzles, cavity-backed antennas, as well as cracks and gaps 

in the metallic body of the aircraft. Cavities are of such importance because the RCS 

of a cavity can potentially dominate the total RCS signature of an aircraft, and because 

the accurate prediction of cavity RCS can be very computationally challenging. Indeed, 

there is a wealth of mathematical and engineering literature on the design and analysis of 

electromagnetic cavities. (See, for example [1], [2], [3], [11], [16], and [24].) It would be 

far too expensive and time consuming to rely solely on real world measurements in the 

study of RCS reduction and enhancement, so accurate mathematical models and efficient 

computational algorithms capable of predicting RCS patterns are much desired. 

1.2    Organization 

The goal of this research is to develop an efficient and accurate method of calculating 

the scattered fields of an incident plane wave impinging on an open cavity embedded in 

a ground plane. These scattered fields can then be used to determine the RCS of the 

cavity. To accomplish this goal, a set of coupled integral equations (developed in [26]) are 

implemented and solved. In Chapter II, the cavity geometry and the problem statement 

are discussed as well as the fundamental concepts from electromagnetics and the conditions 

satisfied by all of the fields in the problem. Chapter III contains the development of the 

vector integral equations that govern the electromagnetic scattering of a plane wave from a 

cavity. The vector integral equations are then converted to a set of scalar integral equations. 



Chapter IV contains a brief introduction to the general Method of Moments (MoM) 

procedure along with the approximate solution of the scalar integral equations through 

the development of a MoM algorithm. Chapter IV also contains an explanation of how 

certain singular integrals arise from the theory and how they can be treated so that they 

evaluate numerically. An estimate of the order of convergence of the MoM algorithm is 

also presented in this chapter. The numerical results are presented in Chapter V, including 

plots of the fields along the cavity aperture and cavity surface, plots of the monostatic 

RCS signatures of several test cavities, and relative error plots of the method. Chapter VI 

contains a summary of the results found along with recommendations for future research. 

1.3   Related Work 

The problem of predicting the electromagnetic scattering from a cavity in a ground 

plane has been fairly well studied, and there are many different techniques and approaches 

to solving the problem. As expected, these techniques have their advantages as well as their 

disadvantages. Some are more computationally efficient then others, while some provide 

more stable and accurate solutions. Presented here is a very brief overview of some of the 

more popular methods. 

The generalized network formulation (GNF) was developed by Harrington and Mautz 

in 1976 to calculate the scattering from an open, perfectly conducting cavity in free space 

[14]. Their method partitions the cavity problem into two "simpler" problems, the exterior 

cavity problem and the interior cavity problem. Each of the two simpler problems is 

treated individually using equivalence relationships, then the composite problem is solved 

by enforcing the continuity of the tangential fields across the aperture of the cavity. The 

primary drawback to the GNF method is that the fields are not uniquely determinable 

at a countably infinite set of discrete, resonant frequencies [21]. At such frequencies a 

spurious, nonsensical solution is produced by the method. And since it is extremely difficult 

to determine the resonant frequencies of an arbitrarily shaped cavity, this is a rather 

significant drawback. Despite this hindrance, however, the GNF method has served as a 

springboard for many other methods. In fact, most integral equation approaches employ 

some form of a GNF implementation. 



Other popular techniques used to solve the scattering problem have included the 

finite element method or the more popular hybrid finite element methods. These hybrid 

methods often combine traditional finite elements with boundary integral equations to solve 

the scattering problem from a cavity in a ground plane [18]. They have the advantage of 

being able to model cavities filled with arbitrary, inhomogeneous materials since the entire 

cavity interior is discretized with finite elements. Also, the spurious resonance problem 

discussed earlier can be avoided by introducing penalty functions to the equations [22]. 

However, the methods are typically more computationally burdensome due to the required 

meshing of the entire cavity interior and exterior. But this is admittedly becoming less 

and less of a problem as the performance of computers and the ease of the storage of 

information are dramatically improving. 

Integral equation methods represent another very popular family of techniques for 

solving the cavity scattering problem. The electric field integral equation (EFIE) and mag- 

netic field integral equation (MFIE) methods are easy to implement, but typically only 

work well for simple geometries. As mentioned earlier, since most integral equation meth- 

ods are based on the GNF, they suffer from the problem of spurious resonances. However, a 

new integral equation method was introduced by Asvestas and Kleinman [4] in 1994. They 

developed a set of coupled vector integral equations for a three-dimensional unfilled cavity- 

backed aperture in a perfectly conducting ground plane, which were purportedly uniquely 

solvable at all frequencies. In his dissertation, Wood extended Asvestas and Klenman's 

coupled vector integral equations to be able to account for material filled cavities [26]. 

The method he developed can be applied to electrically large and electrically small cavi- 

ties, and it will not suffer from the problem of spurious resonances. Also, the technique 

requires solving only for the unknown fields along the cavity surface and aperture, so it 

is very computationally efficient. Based on the work presented in his dissertation, Wood 

and Wood developed a related set of scalar integral equations for the scattering from a 

material filled two-dimensional cavity in a ground plane of an electromagnetic wave under 

transverse magnetic (TM) polarization [27]. This current research effort focuses on the 

complement of this problem, considering an incident field under transverse electric (TE) 

polarization. 



II.   Theoretical Background 

In this chapter, the general geometry of the embedded cavity is presented along with 

the formal problem statement. Some fundamental electromagnetic theory is then given, 

followed by the conditions that must be satisfied by all of the fields in the scattering 

problem. Finally, the Green's functions and dyadic functions necessary for the solution of 

the problem are defined. 

2.1    Cavity Geometry 

Consider the geometry of the two-dimensional cavity shown in Figure 1. The aper- 

ture, or cavity opening, is denoted as a, and the surface of the cavity is called S. The 

interior of the cavity is denoted as D with boundary dD = a\JS and outward pointing unit 

normal vector n. The normal vector n is defined almost everywhere, that is it is defined 

all along dD except for a finite number of edges, corners, or tips. The ground plane and 

the surface of the cavity are perfect electric conductors (PEC), and the upper half plane is 

free space with electric permittivity eo and magnetic permeability fiQ. The interior of the 

cavity D may either be empty or filled with a homogeneous material having permittivity 

ei and permeability fii. The complement of a in the ground plane is called ac. 

(eo, /io) 
Si 

\ 
\ 

1 

<TC 

1 
\ 
\ a 

1 
/ 

/ ac 

/ -X        D (ciiMi)  j 

PEC V. S X. 
Figure 1     Cavity Geometry 



The symbol r will be used as a position vector, that is r = xx 4- yy + zz in three 

dimensions. For the two-dimensional problem, the projection of the position vector into 

the j/2-plane is used. It is of the form p — r • (yy + zz) = yy + zz. The image of an object 

will be defined as the reflection of the object across the ground plane or aperture. For 

example, the images of S and D in Figure 1 are Si and Di, respectively. The image of a 

point given by p = yy + zz is the point pi = p ■ Ij = yy — zz, where I, = yy — zz is the 

image dyadic. The image of an object will always be denoted with the subscript i after it. 

Similarly, a field vector function is defined to be A(r) = Ax(r)x + Ay(r)y + Az(r)z, and 

its image is defined as A,(r) = Ax(f)x. + Ay(r)y — Az(r)z. 

2.2   Problem Statement 

In the problem considered, a known incident plane wave whose electric and magnetic 

fields are represented by (Einc,Hinc) impinges on the cavity giving rise to the unknown 

scattered electric and magnetic fields (Es, Hs) as shown in Figure 2. The incident plane 

wave propagates at an incident angle 0 < 9 < ix with respect to the positive y-axis. 

Under transverse electric (TE) polarization, the magnetic field of the incident plane wave 

is parallel to the longitudinal x-axis, that is Hinc = (uinc,0,0). The electric field of the 

incident wave has both a y- and a ^-component. 

Figure 2     Incident and Scattered Fields 



The given incident fields are defined to be those fields that exist in unbounded free 

space. The scattered fields are those that are caused by the presence of the scatterer, in 

this case the embedded cavity. They are defined in terms of the total field and the reflected 

field as Es = E - Einc - Eref and Hs = H - Hinc - Href, where E = E(r) is the total 

electric field intensity in the region in volts per meter, and H = H(r) is the total magnetic 

field intensity in the region in Amperes per meter. The reflected fields Eref and Href are 

defined to be those scattered by an unbroken, PEC ground plane located at z — 0. 

2.3   Field Conditions 

The upper half plane and the interior of the cavity are restricted to be source free so 

that the only source introduced will be the incident plane wave. Therefore, the total fields 

in D and its reflection in the upper half plane Dj satisfy the following Maxwell's equations 

for homogeneous, linear, isotropic, source-free media. Using the e3"* time convention, these 

equations are given as 

V x E = -jwfiH (1) 

V x H = jweE (2) 

V • E = 0 (3) 

V • H = 0 (4) 

where u is the radian frequency (radians/second), \x is the magnetic permeability of the 

medium (Henrys/meter), e is the electric permittivity of the medium (Farads/meter), and 

j — yf-[ is the imaginary unit [6]. Taking the curl of equations (1) and (2) and substituting 

in appropriate terms reveals that both E and H satisfy the homogeneous wave equation 

V x V x E(r) - fc2E(r) = 0 (5) 

V x V x H(r) - fc2H(r) = 0 (6) 

where k = u^JIe is the propagation constant or wave number of the medium in inverse 

meters. 



In addition to satisfying Maxwell's equations for a source-free region, the total fields 

must also satisfy certain boundary conditions. Since the ground plane and the surface of 

the cavity S are perfect electric conductors, the tangential component of the total electric 

field will be "shorted out" there. So the electric field must satisfy the boundary conditions 

n x E(r) = 0 for r G S (7) 

z x E(r) = 0 for r G ac (8) 

where ac is the complement of the aperture in the ground plane (i.e. the part of the ground 

plane that is undisturbed by the presence of the cavity). Furthermore, the tangential 

components of the total electric field and the total magnetic field must be continuous 

across the aperture a. This can be written as 

lim 

lim 
(J->0 

z x E(r + <5z) - z x E(r - Si) 

zxH(r + <5z)-zxH(r-Jz) 

= 0 

= 0 

for r € a 

for r G a 

(9) 

(10) 

The final field conditions that must be satisfied pertain to the scattered fields. Specifically, 

the Sommerfeld radiation conditions must be satisfied at infinity 

lim   fr • VEs(r) + jfc|r|Es(r)l = 0 
|?|-KX> L J 

lim   [r - VHs(r) + jfc|r|Hs(r)l = 0 
|r|-K» L -I 

as well as the regularity conditions [26]: 

(11) 

(12) 

lim  |r|Es(?) = 0 
|r|-»-oo 

(13) 

lim  |r|Hs(r) = 0 
|r|-KX> 

(14) 



2.4    Green's Functions 

The three-dimensional scalar Green's function commonly associated with electromag- 

netic radiation and scattering problems is defined as 

e-]kR 
G(k;f,r') = -— 

R ?'i 

where r = xx + yy + zz and r' = x'x + y'y + z'z are position vectors in unprimed and 

primed coordinates, respectively. (This will be converted to the two-dimensional case and 

applied to the current problem later in the thesis.) In [26], the Green's function in equation 

(15) was shown to satisfy the distributional differential equation 

V2G + k2G = -S(r - ?') (16) 

where S is the Dirac delta distribution. The Green's function also satisfies the scalar 

analogues of the radiation and regularity conditions given in the previous section. 

Define the auxiliary scalar functions 

GD(k; r, r') = G(k; r, r') - G(k; r, ?J) (17) 

GN(k; r, r') = G(k; r, r') + G(k; ?, ?{) (18) 

as linear combinations of the scalar Green's function in equation (15) with different argu- 

ments. The function Go is refered to as the Dirichlet scalar half-space Green's function, 

and GN as the Neumann scalar half-space Green's function. Next, define the dyadic func- 

tion 

T{k; r, r') = -jkVG(k; ?, ?') x I (19) 

where I = xx + yy + zz is called the idemfactor. 

Finally, define the auxiliary dyadic functions 

?! = -jk (VGN x It + VGD x zz) (20) 



and 

T2 = -jk (VGD x It + VGN x zz) , (21) 

where I* = xx + yy is called the transverse idemfactor. It can be shown that the auxiliary 

dyadic functions in equations (20) and (21) satisfy the homogeneous boundary conditions 

zxT, =0 for z = 0 (22) 

z x V x To = 0 for z = 0 (23) 

as well as the equations 

z • [Ä(r) x V x fx (fc; r, r')] = 2z • [Ä(r) x V x T(fc; r, r')] for z = 0        (24) 

z • [Ä(r) x F2(A;; r, r')] = 2z • [l(r) x F(fc; r, r')] for z = 0        (25) 

The scalar and dyadic functions presented in this section were first introduced in 

[4], and then in [26]. They are the fundamental building blocks in the development of the 

coupled vector integral equations for the scattering problem which are presented in the 

next chapter. 

10 



III.   Integral Equation Theory 

In this chapter, the fundamental theorems and the coupled set of vector integral equations 

developed by Asvestas and Kleinman in [4] and extended by Wood in [26] are presented. 

The set of vector integral equations is converted to a set of scalar integral equations for the 

two-dimensional scattering problem under TE polarization which will be solved approxi- 

mately by a Method of Moments algorithm. 

3.1    Fundamental Theorems 

All of the theorems presented in this section first appeared in [4] and were later 

extended in [26]. The proof of the theorems can be found in [26]. The theorems are as 

follows. 

Theorem 1 Let V be a homogeneous region with regular boundary dV, n be the outward 

unit normal vector on dV, and T = r(A;;r,r') be defined as in equation (19). If A = A(r) 

satisfies V x V x A - k2A = 0   V   r € V, then 

f   n • [Ä x (v x r) + (v x Ä) x rl ds = < 
jltV'xA(f')   r'eV 

(26) 

0 r' <£V 

where V is the closure of V; that is, the union of V and its boundary. 

Theorem 2 Let V, V, dV, h, and A be defined as in Theorem 1. Let Ti be defined by 

equation (20), V{ be the image of V with respect to the xy-plane, and V{ be the closure of 

Vi. Then 

I    n-  A x (v x Ti) + (v x Ä) x Ti  ds = < 

jkY x A(r') 

3k [VJ x A(r<)' 

0 

?'<EV 

r'eVi 

r'^UFj 

(27) 
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Theorem 3 Let V, V, dV, Vi, Vi, h, and Ä be defined as in Theorem 2. Let T2 be defined 

by equation (21). Then 

f n- [A x (v x r2) + (v x Ä) x r2 ds = < 

jkV x Ä(r') r' G V 

-jfcfvixÄ(?J)l. t'€Vi (28) 
L J I 

0 r'^VUVi 

In the preceding theorems, the del operator V differentiates with respect to unprimed 

coordinates, while V' differentiates with respect to primed coordinates. Also, the operator 

V^ is the same as V' except that -^ is replaced by ^. It is pointed out in both [4] and 

[26] that the theorems do not hold when r' lies exactly on the region's boundary dV, but 

that they are valid as r' approaches dV from either the interior or the exterior of V. 

The theorems relate a vector function evaluated at a point to an integral over a closed 

surface. Also, notice that they are stated in very general terms. The only requirements 

are that the vector function A(r) satisfy the homogeneous wave equation and that the 

outward pointing unit normal vector n be defined almost everywhere on dV. 

3.2   Applications of the Fundamental Theorems 

The theorems presented in the previous section can now be applied to the embedded 

cavity scattering problem. This is accomplished by associating V" with either the cavity 

volume D or the upper half space, z > 0, and by letting A(f) take on the various field 

components of the cavity scattering problem. 

Application 1 Let V = D, A = H, and r' G D in Theorem 1.   By applying 

Maxwell's equation (2) and the boundary condition in equation (7), Theorem 1 can be 

rewritten as 
k\yxE(r') = - f    (n x H(f)) • V x f(h;r, f')ds 

JdD V ' 

-3hYi j (z x E(r)) • r(fci;r,r')Ar. 

(29) 
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In equation (29), Y\ = ^/ei/^i is the intrinsic admittance of the cavity material. This 

application shows that the total electric field at any point in the cavity volume is a function 

of the tangential electric and magnetic fields on the cavity surface and aperture. 

Application 2 Let V = D, A = E, and ?' G D in Theorem 1. By applying 

Maxwell's equation (1) and the boundary condition in equation (7), Theorem 1 can be 

rewritten as _ 
k\Z{H.{r') = I (z x E(r)) • V x f(ki;r,r')da 

Ja (30) 

-jkiZi f (n x H(r)) -F(fci; ?,?')* 

where Z\ = ^//xi/ei is the intrinsic impedance of the cavity material. This application 

demonstrates that the total magnetic field at any point in the cavity volume is a function 

of the tangential electric and magnetic fields on the cavity surface and aperture. 

Application 3 Let V be the upper half space (z > 0), A = Es, and z' > 0 in 

Theorem 2. By applying Maxwell's equation (1) and the conditions in equations (8), (22), 

and (24), Theorem 2 can be rewritten as 

=M^oHs(r') = f £ x E(?) • V x T(k0; r, r')da. (31) 
* Jo- 

According to the third application, the scattered magnetic field at any point in the upper 

half space is a function of the tangential electric field on the cavity aperture. 

Application 4 Let V = D, A = E, and f'eflin Theorem 3.  Using Maxwell's 

equation (1) and the conditions in equations (7), (23), and (25), Theorem 3 can be rewritten 

as 
jfciH(?') = 2 f (z x H(r)) • f(ki;r,r')da 

+ f (nxH(f))-r2(fci;f,f')<fa 
J s 

This application shows that the total magnetic field at any point in the cavity volume is a 

function of the tangential magnetic field on the cavity surface and aperture. 

Application 5 Let V be the upper half space (z > 0), A = Hs, and z' > 0 in 

Theorem 3. By applying Maxwell's equation (2) and the conditions in equations (8), (23), 

13 
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and (25), Theorem 3 can be rewritten as 

3(r') - f z x E(r) • T(k0; r, r')da. (33) 
Ja 

Z^ES'-" 

According to this application, the scattered electric field at any point in the upper half 

space is a function of the tangential electric field on the cavity aperture. Equation (33) 

will be used later to determine the monostatic RCS values once the unknown tangential 

field components have been found. 

The applications of the fundamental theorems define the total fields in the cavity 

volume and the scattered fields in the upper half space in terms of the tangential field 

components on the cavity surface S and the cavity aperture a. So it is sufficient to 

find these tangential field components to solve the cavity scattering problem. Examining 

equations (29) through (33), it is apparent that there are two different types of field 

quantities involved. The left hand sides of equations (29)-(33) involve field quantities 

evaluated at points away from the boundary of the cavity dD, whereas the right hand 

sides of the equations involve the tangential components of the total fields evaluated on 

dD. 

In order to make equations (29)-(32) more useful, consider letting r' approach dD 

and then sifting out the tangential component of the result as suggested by Wood in [26]. 

Begin by fixing a point r on dD so that n is the outward unit normal vector at r, and 

then cross multiply the equations by n. Finally, let r' = r + <5n and evaluate the limit as 

S ->■ 0. Wood [26] also presents a theorem to help facilitate the limiting process. 

Theorem 4 Let V be a volume with regular boundary dV, r be a fixed point on dV, n be 

the outward unit normal vector at r, andT(k;r,r') be defined as in equation (19). If A(r) 

is continuous on dV, then 

Hmnxf   A(r") • F(fc; r", t')ds" = T^A(r) + hx f   A(r ") • T(k; ?", r)ds"     (34) 
?'-►? JQV * JdV 

where the upper sign is taken ifr'->r from the exterior of V, and the lower sign is taken 

ifr'-+r from the interior of V. 
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Application la Fix r G a so that n = z, and set r' = r - <5z, where <5 > 0. Cross 

multiplying equation (29) by z and taking the limit as <5 ->■ 0 via Theorem 4 simplifies the 

equation to 

-If 
2 
i^z x E(r') = z x /"    fn x H(F)) • V x r(*i; ?, r')ds       for r' G a. (35) 

Notice that the second integral in equation (29) vanished in the limiting process. This is 

because z x |Yz x E(r)) .r(fci;r,r') = 0 when r G a and r' G a. This new application 

shows that the tangential electric field on the aperture a can be expressed as a function of 

the tangential magnetic field on dD. 

Application 2a Fix r G a so that n = z, and set r' = r - Sz, where S > 0. Again, 

cross multiplying equation (30) by z and taking the limit as 6 ->■ 0 using Theorem 4, the 

equation can be written as 

^z x H(?') = z x I (z x E(r)) • V x Y{k^v,v')da 

-jkiZi* x  f (n x H(r)) • f(h;r,r')ds        for r' G a. 

(36) 

'5 

This application now says that the tangential magnetic field on a can be expressed as a 

function of the tangential magnetic field on S and the tangential electric field on a. 

Application 3a Fix r G a so that n = z, and set r' = r + <5z, where 6 > 0. Cross 

multiply equation (31) by z and take the limit as S -»• 0 using Theorem 4 to obtain 

zM^zx Hs(r') = zx (zxE(r>Vx T{k0; r, v')da       for r' G a. (37) 
Ja 

Recall that Hs = H-Hinc-Href. Also note that along the aperture since zxHinc = zxHref, 

equation (37) can be rewritten as 

f»zx H(r') - 2Hinc(r') 

x I z x E(r) • V x r(fc0;r,r')da       for r' G a. 
Ja 

(38) 

z 
la 
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Application 4a Fix r G S and set r' = r — Si, where 6 > 0. Cross multiply equation 

(32) by fi' and take the limit as <5 -*• 0 using Theorem 4 to obtain 

^n' x H(r') = 2n' x  f (z x H(r)) • T(ki]f,r')da 

+n' x  I (fi x H(r)) • F2(*i; ?, r')ds       for r' G S. 

(39) 

The equations in Applications 2a and 3a can be combined and simplified. Doing so 

results in a system of three coupled vector integral equations that govern the electromag- 

netic scattering from an embedded cavity in a perfectly conducting ground plane. Formally, 

the system of vector integral equations can be written as 

z x f (z x H(r)) • V x F(fci; r, r')da + z x f (fix H(r)) • V x F(fci; ?, r')ds 
JA > ^ Js V J (40) 

= =^iz x E(r')        for r' G a, 

_äx /", x i(r) ■ { V X f «?'f" '"» - V X F"f'•f'») «far + AZl t jt*Z°z X ii(f 0 

-Ziz x / fi x H(r) • f(fci;r,r')ds = 3kQZ0z x Hinc(r')        for r' G a, 
Js 

(41) 

and 

2A' x  f (z x H(r)) • T(A;1; r, ?')dff + fi' x  f (fi x H(r)) ■ r2(*i; r, r')<fa 
«/ 0" i/o 

= ^n' x H(?')        for r' G S. 

(42) 

5.3   Derivation of Scalar Integral Equations 

In this section, the vector integral equations (40)-(42) are converted to a system of 

scalar integral equations for the scattering problem, where the incident plane wave is under 

transverse electric (TE) polarization. The derivation is similar to the method presented 

in [27] where scalar equations were developed for transverse magnetic (TM) polarization. 
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The necessary field quantities and unknowns are defined and then substituted into the 

vector equations. These are then simplified and converted to scalar equations which can 

be solved approximately by a Method of Moments (MoM) algorithm. 

Under TE polarization, all of the components of the magnetic field are parallel to 

the longitudinal z-axis. For a plane wave, define the magnetic portion of the incident field 

to be 

Hinc(y,z) = (jkoiycose+zsine)^ (43) 

and the unknown total magnetic field as 

H(y,z)=u{y,z)± (44) 

where u(y,z) is some unknown continuous function. Then applying Maxwell's equations, 

the corresponding incident and total electric fields can be shown to be 

Einc(y, z) = Zo(sin0y - cos0z)e^sinö+*cosö) (45) 

and 

E(w, z) = Vw x x. (46) 

It should be pointed out here that the vector integral equations in the previous section 

are valid in three dimensions as well as in the two-dimensional problem now considered. 

The only differences are that the field quantities are no longer functions of the longitudinal 

variable x and that the appropriate two-dimensional Green's function must be used instead 

of the three-dimensional Green's function. This will be defined when the scalar equations 

are solved in a later section. For notational purposes, the two-dimensional position vector 

p = yy + Z2. will now be used in regard to the field quantities. Doing so, the tangential 

field components appearing in equations (40)-(42) can be defined as follows. 

£ x H(p) = u{p)y       for pEa (47) 

n x B.(p) = u{p)h x x        for pES (48) 
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fixE(/3) = -^x       for p E a (49) 

zxHinc(p) = ^MfesM)y        forpGcr (50) 

Now these quantities can be substituted into the vector integral equations, which can then 

be simplified to produce scalar integral equations. 

3.3.1    Scalar Equation 1.       The only other term appearing in equation (40) that 

still needs to be defined is the curl of the dyadic function T. Recall that it was of the form 

F=-jfcVGxI (51) 

For readability, the arguments of the Green's functions and of the dyadic functions will 

be suppressed for the remainder of this chapter. Also, in order to indicate which wave 

number appears in the argument of the Green's functions, it will be understood that 

G\ = G(ki;p, p') and Go = G(ko; p, p'). Given this notation, it can be shown that the curl 

of the dyadic function in equation (40) can be written as 

V x T = -jh (kfGiI + VVGi) (52) 

where 

VVGl = ~Wyy + ~MZZ + dzTyyx + WTzzy (53) 

is the Hessian of the two-dimensional Green's function. Substituting each of the newly 

defined components into the first vector integral equation yields 

z x f u(p)y ■ {-jki) (fc?dl + VVGi) da 

(54) 

+z x J (u(p)h x x) • (-jh) (^Gil+ VVGi) dl = ^dU
df*- 

Denote the components of the newly formed integral equation as J + // = III. To begin 

simplifying the first part, take the dot product with y as follows. 

r r (crC 
I = z x J    u{?)y (-jfc?Gi) - ]kxu{p) \-QY-Y + 

d2Gt A     SPGi S 
— ' z 

dzdy 
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Now taking the cross product of z with the integrand reduces I to 

d2G{ 
J = x 

f T d G\ 
da. (56) 

The second part of the integral equation can be written as 

II = z x / -jkiu{p)h ■ 
Js 

X X (ifc?GiI + VVGi)]<fl (57) 

where the identity (a x b) • c = a • (b x c) has been used [9]. Next, performing the cross 

product within the integrand yields 

r r Fßc 
II = z x / -jkiu{p)h ■   fc2Gi(zy - yz) - -g^y^ 

PG^. , 92G!_ , 92Gi_ 
dl. 

(58) 

Dotting n into the integrand and then taking the cross product of z with the integrand 

reduces it to 
r \    ( d G \ 

II = x / jhu(p)  nz f klGi + -jp±\ - nv 
cPd 

dl (59) ydydz_ 

where ny and nz are the appropriate components of the outward pointing unit normal 

vector along S.  Finally, the right hand side of the first vector integral equation can be 

written as 
fci du(p) 

III = x- 
2j   dz 

Dotting x into both sides of the integral equation represented by the newly formed I+11 

777, dividing both sides by jki, and simplifying reduces equation (40) to 

(60) 

J u(p) ^2Gx + ^) da + js u{ß)   nz (fc2Gx + ~^) - ny 
U2G   . d*GA d'G, 

-ldu(p') 
2     dz 

dy2 J     "y dydz 

p' €0". 

dl 

(61) 

Equation (61) is now a scalar integral equation which is in a form that can be solved 

approximately by the numerical MoM algorithm. 
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3.3.2   Scalar Equation 2.     Substituting the field components into the second vector 

integral equation results in 

-z 
1(7 

x j ~^-it- [(fcjGif + WGi) - (*gG0i + VVGo)] da 

+3klZl+
2
3koZ°u(p')y -ZtixJ (u(p)h x x) • (-jklVG1 x I) dl (62) 

= jk0Z0e>ko^cosHzs[n^y       for p' e CT. 

As before, break equation (62) into four parts so that it is of the form I + II + III = IV. 

Then the first part can be written as 

I = z x f — ^x ■ fl (fc?Gi - fcgGo) + VV (Gi - Go)l da. (63) 

Taking the dot product within the integrand reduces the equation to 

j = z x f _L^ (kfGl _ k2Go) x rfa. (64) 

Notice that x • [VV (Gi — Go)] vanished in the previous step. This is due to the fact that 

the Green's functions Gi and Go have no x components, so consequently, the Hessian of 

G\ — Go has no x component. Finally, taking the cross product of z with x in J reduces 

it to 

I = y— f ^ (fc?Gi - *§G0) da. (65) 

Part II of equation (62) is already in simplified form. The third part can be reduced by 

first performing the cross multiplication of the gradient of Gi with the idemfactor to obtain 

III = jhZiz x / {u(p)h x x) 
Js 

öGi__öGi_     dGi_     dGi„/ 
dy dz dz dy 

dl.        (66) 

Next, taking the dot product of x with the right side of the integrand, followed by cross 

multiplying the integrand with ii simplifies part III to 

III = jk^z x  f u{p) (ny^p- + n*^f) * dl (67) 
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The kernel of equation (67) is easily recognized as the normal derivative of G\. So, cross 

multiplying z with the integral simplifies it to 

III = yjfciZi f   (^ dl. (68) 

The right hand side of equation (62) is already in simplified form, so the final step is to 

take the dot product of y with both sides of the equation represented by I+11+1II = IV. 

Doing so gives the second simplified scalar integral equation as 

1     f du(p) . 2 I ^ (fc?Gi - k2
0G0) da + jhZ, I u(p) 

juei Ja   dz 

dGi 
dn 

dl 
(69) 

+ 3-u{p') (fciZi + k0Z0) = jk0Z0^ycose+zsine\  p' E a. 

3.3.3   Scalar Equation 3.       Substituting the necessary components into equation 

(42) simplifies it to 

2n' x  / u(p)y ■ (-jfciVGi x !) da+ 

n' x  f {u(ß)n x x) • [{-jh) (vGD xlt + VGN x zz)] dl = ^«(p')A' x x,      p' E S 

(70) 

where It = xx+yy, and Go and GN are defined as in equations (17) and (18), respectively. 

In a similar fashion as before, the first part of the equation, denoted as I, can be rewritten 

as 

J = 2n 'xLu{m'l{~3ki){it 
dGi _     dGi _ 

-xz -—xy + 
dz 

da. (71) 

Performing the dot multiplication then gives 

/ = -2jki{h' x x) I u{p)-^da (72) 

as the simplified version of I. The second part of the integral equation can be written as 

II = -jfcin' x / {u(p)n x x) 
Js 

-dGD^     dGD„     dGD„dGN„ 
xy + ——yx -—zx + ——xz 

dz dz dy dy 
dl      (73) 
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where the required cross products have been performed.   Again, applying the identity 

(a x b) • c = a • (b x c), the second part of the integral equation can be reduced to 

i7 = -jkih' x  / u(p)h- 
Js 

dGD..8GD^ 
dl. (74) 

Recognizing the kernel of the integrand in equation (74) as the gradient of Gp being dotted 

with n allows the second part to be simplified as 

II = -jk^h' x x) f u{p)^dl. (75) 

Since the third part of the third integral equation is already simplified, the only thing 

left to do is to dot the vector (n' x x) into both sides of the equation represented by 

I + II = III and divide both sides by — jk\. This gives the final simplified form of the 

third scalar integral equation as 

2 j' u{p)^da + jU(fi^dl = ^u(p'),  p'ES. (76) 

Equations (61), (69), and (76) represent the scalar form of the three coupled vector 

integral equations that govern the electromagnetic scattering from an embedded cavity in 

a PEC ground plane under TE polarization. The integral equations are now in a form 

which can be approximately solved for the unknown fields using a numerical technique. 

The numerical MoM algorithm is developed in the following chapter. 
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IV.  Numerical Solution 

In this chapter, the general procedure of solving a linear operator equation via the Method 

of Moments (MoM) is discussed. This is followed by the development of a MoM algorithm 

designed to find an approximate solution to the three scalar integral equations (61), (69), 

and (76). In applying the MoM algorithm, certain singular integrals arise and must be 

handled properly. This chapter demonstrates how such integrals can be treated so that 

they can be evaluated numerically. Finally, the error of the MoM algorithm is considered 

and an estimate of the order of convergence of the method is given. 

4-1    Method of Moments 

The basic premise behind the Method of Moments is to transform a linear operator 

equation into a system of simultaneous linear equations. The method was first conceived 

by a Russian scientist named Galerkin in 1915 to solve elastodynamic problems. Since 

then many scientific disciplines have utilized the idea to find an approximate solution 

to problems involving linear integral and differential operators. While many scientists 

contributed to the development of the theory, in 1967 Roger Harrington of Syracuse Uni- 

versity presented a unified approach to solving electrodynamic problems, including the 

electromagnetic scattering problem, in a generalized moment method formulation [8]. 

The MoM is applied to problems in which the unknown quantity is embedded in an 

integrand or is the argument of a differential operator and cannot be solved for analytically. 

The process of a linear operator acting upon the unknown to produce a functional effect 

can be written mathematically as 

L[u] = /, (77) 

where L is the linear operator, u is the unknown function, and / is the effect or the forcing 

function. The unknown quantity u is first expanded in terms of a chosen basis function 

set, that is 
00 

«=    £   /n*n, (78) 
n= 
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where the In are unknown expansion coefficients and the \I/n are functions from the chosen 

basis set. Obviously, an infinite number of terms cannot be used in the computation of 

an approximate solution to equation (77), so the series is truncated to a finite number of 

terms plus a final term which represents all of the truncated terms, i.e. the error e. This 

is shown by the equation 
N 

u = J2Ini>n + e. (79) 
n=l 

Substituting the above expression for u into equation (77) gives 

N 

= /, (80) ^2 Inipn + e 
_n=l 

which due to the linearity of L can be written as 

N 

X;i„(L[lM) + r« = /. (81) 
71=1 

In equation (81), re is called the residual. For an accurate approximation it is desirable to 

minimize the residual. This is accomplished by taking an inner product with a family of 

testing functions, 0m, which are forced to be orthogonal to the residual. That is, 

(0m,r£) = O, (82) 

where the inner product is defined to be 

(&m,A) = Jem-Adl. (83) 

To perform the testing procedure, the inner products of both sides of equation (81) are 

taken with the testing functions which gives 

N 

J2 In (L hM , em> + (6m, re> = <6m, />. (84) 
n=l 
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Applying the orthogonality condition of equation (82) and rearranging terms results in 

N 

{QmJ) = ^2ln(L[M,em), for m = l,2,...,iV. (85) 
n=l 

For the choice of N basis functions and N testing functions, the equations in (85) represent 

a system of N linear equations with N unknowns, the expansion coefficients In. This can 

be written in matrix notation as 

[V]Nxl = [Z]NxN[I)Nxl, (86) 

where 

[v]m = <era,/> 

[z]mn = (LM,&m) (87) 

[i]n = in 

for 

m=1.2....,tf m 

n = l,2,...,N. 

In equation (87), [V]m is often called the voltage vector or the excitation vector, [Z]mn is 

referred to as the impedance matrix or the coupling matrix, and [I\n is called the current 

vector or the solution vector [10]. 

Oftentimes the integrations involved in calculating the elements of the coupling ma- 

trix are difficult to perform, so it is desirable to choose a set of testing functions that will 

simplify the process. One of the most commonly used techniques to obtain approximate 

solutions to these integrations is called point matching. The point matching procedure 

simply requires that equation (81) be satisfied exactly at discrete points, called match- 

points, in the region of interest. This is accomplished by using Dirac delta functions as 

testing functions. In doing so, the inner product in equation (83) boils down to a function 

evaluation which can be easily performed [12]. 
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4-2    Cavity Discretization 

In order to find approximate solutions to the scalar integral equations (61), (69), and 

(76), the cavity perimeter 3D = a U S is discretized into non-overlapping segments. Let 

there be a total of N± segments along the cavity aperture a and a total of N2 segments 

along the cavity surface S. The segments are defined by the node points {yk,Zkih) as m 

Figure 3. For each node, (yk,Zk) represent the (y, z) coordinates of the point, and /jt is the 

arc length measured clockwise from (yu z\) to (yt, Zk) along dD. In the example shown in 

Figure 3, JVi = 2 and N2 = 5. 

(yuzuh) (y2,Z2,l2)               {V3,ZZ,h) 
S     0 

(i/7i 27,f7)        ^j D                              \ 

(ye, Z6,h) 

(ys,Z5,h) 

Figure 3     Cavity Discretization 

4-3   Method of Moments Algorithm 

In this section, the MoM is applied to the three coupled scalar integral equations 

(61), (69), and (76) to find approximate solutions. The procedure is very similar for all 

three equations, so some of the details have been omitted from the development of the 

MoM algorithm for the second and third equations for brevity. Later in the chapter, an 

explanation of how to program the MoM algorithm on a computer as well as how to deal 

with certain singular integrals that arise is given. 
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4-3.1    Solution Scheme for Equation 1.        In this section the MoM algorithm is 

developed for the first scalar integral equation. Recall that it is of the form 

jf u(p) (fc?Gl + ^) da + Js u(p) [„, (kfGl + ^) d2Gy 
n, t,y 

dydz 

-ldu(p')      , 
(89) 

where G\ is the appropriate two-dimensional Green's function. The unknown quantities 

in equation (89) are 

u(p)        pea (90) 

u(p')       p'eS (91) 

^      pea (92) 

which represent the total magnetic field along the cavity aperture, the total magnetic field 

along the cavity surface, and the normal derivative of the magnetic field along the cavity 

aperture, respectively. 

The first step in the MoM procedure is to expand the unknowns in terms of the 

chosen basis function set. Using pulse basis functions, the unknowns in equations (90), 

(91), and (92) can be approximated as 

Ni+N2 

u(l)*t   J2   anPn(l),   fflsdD (93) 
71=1 

^«£^(0,     ^€CT (94) 
71=1 

where an and bn are the unknown expansion coefficients and pn(t) is the pulse basis func- 

tion. Note that the vector position functions are now defined in terms of the arc length I 

along the perimeter of the cavity. The pulse basis function is then defined to be 

1 In < I < ln+l 
Pn(l) = { ■ (95) 

0 otherwise 
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As mentioned earlier, Dirac delta functions will be used as the testing functions to employ 

the point matching technique and simplify calculations. This is defined to be 

Qm(l)=s(l-lmH) 

where 

lm+h = 
*m + <"m+l 

(96) 

(97) 

is the midpoint or matchpoint of each segment. 

Now the approximations in equations (93) and (94) can be substituted for the un- 

knowns in Equation (89) to produce 

"L       fin "\        rin+i 
V]a>n Pn{l) klGlM + d2G^ 

dy2 

;,   ,   &GWY 

dl 

+   £   an Pn(l) LJkfG.ilJ') + ^^-)-n d^iW) 
dydz 

dl (98) 

Nt 

- 53 ~Yb^Pn{l)- 
n=l 

Next the inner product used will be defined as 

<eraiA> = jT  A.6(l'-lm+,)dl' (99) 

where V is the total arc length around the perimeter of the cavity. Taking the inner product 

with 0m of both sides of equation (98) gives 

£L      rr r'»+i ? an L In+1 Pn{l) rGl(/' °+~W\s (''" L+^>dldU 

Nl
 -\      rT , \ 

(100) 
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Using the sifting property of the Dirac delta function, equation (100) simplifies to 

n=i     ■/'» 

N1+N2        rin+1 

A 

+ 
n=JVi+l -IV, 4-1 ■''n \ 

+ 
92Gi(UmH)\ g2gi(Mm+i) 

n=l 

This can be written more concisely as 

Ni N1+N2 

n=JVi+l 

dy2 -n„ 
dydz 

dl 

Nx 

Ni N1+N2 *   JVi 

(101) 

(102) 
n=l n=l 

where 
Wn+l       „        / \ 

«mn= *?Gi(Mm+iJ + 
ö2Ci(Mm+i) 

9y2 <ff (103) 

and 

Wn+1 

Pron =z   I 
Jin 

M *fci (Um+|) + 
ö2Gi(Mm+i)\ ^(M^I) 

dy2 — ntl dydz 
dl    (104) 

for m = 1,2,3,..., JVX and n = 1,2,3,..., Nx + N2. Equations (103) and (104) can now 

be used to fill the entries of a matrix of the form 

owi,i 

The linear system 

«1,1      •••       Ol,JVi        ßl,Ni+l      ••■       ßl,Ni+N2       2 0 

OlNi,Ni     ßNi,Ni+l     ■•■     ßNi,Ni+N2     0 

(105) 

Al 

r         - 0 
On — ^ 

.  bn  . 0 

(106) 
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contains 2Ni + N2 unknown expansion coefficients but only JVi equations. The remaining 

equations necessary to obtain a unique solution will come from the other two scalar integral 

equations. 

4.3.2   Solution Scheme for Equation 2.       In this section the MoM algorithm for 

the second scalar integral equation is developed. The equation is 

— / ^ (*?<?! - klGo) da + jhZ, f u{p)d-^dl 
jueiJa   dz Js on ^ 

+ 3-u(p') (hZ, + k0Z0) = 3kQZQ<?k^™e+z™e\  p' E ex. 

Proceeding in a similar fashion as the previous section, pulse basis functions are used 

to expand the unknowns in terms of the expansion coefficients an and bn. Discretizing 

equation (107), taking the inner product with the delta testing functions, and rearranging 

terms gives 

3^1 t^ -^-E6« r+i [fc?Gi (M-H) - ^ (M-+I)] di 
WC

1  %Ty Jin L V ' V /J 

,* *+* rln+1  dGx (Mm+|) 

+i J2an (fciZi+fc°z°)+jkiZi X, °" /    —fa— 
n=l n=JVi+l       Jl" 

= ^oZ0/
o(y™^COSÖ+^^Sinö). 

dZ 
(108) 

Equation (108) can be written as 

where 

-ff E °" +     E     ön7?mn + X 6"7mn = f \ym+^ Zm+\) i (109) 
n=l n=iVi+l n=l 

H=|(fciZi + *öZ0), (HO) 

rln+l dGi (1,1     ,1 ) 
w=jfci^i /   —^r1^' (1U) 

7mn=^7 r+i [fc?Gi (M-+I) ■ k2°G° iij^)}*»    (u2) 
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and 

f(ym+^Zm+i)=3k0Z0' 
jko(v    , i cos9+z   . l sinö) 

(113) 

for m = 1,2,3,..., iVi and n = 1,2,3,..., iVi + N2. Now equations (110), (111), and (112) 

are used to compute the elements of a matrix of the form 

Ao = 

H   ■■■    0     VhNi+i m,N1+N2    7i,i 71,JVi 

0 H   r^jVi.iVx+i    ••■    WuNi+Nt   7iVi,i    ■■•    7JVi,iVi 

(114) 

The system represented by A2 provides an additional iV~i equations with the same unknowns 

as the system in (106). The third integral equation will provide the other necessary N2 

equations. 

4-3.3   Solution Scheme for Equation 3.        In this section the MoM algorithm is 

developed for the final scalar integral equation which is given by the formula 

2J^—do- + JsU{pl—dl -1 
u(p'),  p'tS. (115) 

Following the same procedure as before, equation (115) is discretized using pulse basis 

functions, and the inner product is taken with the delta testing functions. This results in 

the equation 

n=l       •"" 

W. 0Gi(Z, lm+h) "1+^       /•<»+! 8GD(l, lm+1) 

dz 
-dl + 

— JV, _l_l J ln 

-1 

7l=iVl+l 

N!+N2 

X)     On- 
n=Ni+l 

dn 
-dl 

This can be more simply written as 

JVi Ni+N2 

I 
n=l n=N\ + l 

Ni+N2 "1 m-r*i-z ■*     j'j-r^'ü 

n=ATi+l 

(116) 

(117) 
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where 
fln+l Olrl(,l     ,1 

VW = 2 /  g^-Ä (118) 

and 
rln+ldGD{l,lm+^) 

Un =   /  ^     dl ^       ^ 

for m = Ni + 1, Ni + 2,..., Ni + iV2 and n = 1,2,3,..., Nx + N2. Using these equations, 

the following matrix can be computed 

VWi+l.l      •••       ^Ni+l,Ni      £NI+1,NI+1 + 2     "" ^N1+l,Ni+N2 0    •••     0 

(120) 

Notice that there is an N2 by Ni submatrix of zeros appearing on the right side of .A3. 

This is because the unknown in (92) does not appear in equation (115). Using this MoM 

algorithm, the coupled set of integral equations has been converted to the linear system 

Au = /, where 

A = [ Al   A2   A3]   , (121) 

«=[ai    ...   aNl+N2    bi   ...   bNi \   > U22) 

and 
rp 

/=[0   ...   0   /(l1+i)   ...   f(lNl+,)   0   ...   0]   - (123) 

4-4    Computing the Impedance Matrix 

Now that the MoM algorithm has been developed, it is necessary to simplify the 

equations used to compute the elements of the impedance matrix A. For example, equa- 

tions (103) and (104) are not currently in a form that can be easily implemented in a 

computer code to produce the elements of A\. By applying some common identities and 

defining some of the expressions in the MoM algorithm, the elements of A can be easily 

calculated. 
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Recall the three-dimensional scalar Green's function was defined earlier as 

e-3kR 
G3D(k;r,f') 

A-KR (124) 
7"» I -+ -♦ R= r — r 3    i?'i 

where r = xx. + yy + zz, and r' = x'x + y'y + z'z, are position vectors in unprimed and 

primed coordinates, respectively. The two-dimensional Green's function can be found by 

making use of the identity 

/ 

00  „—jkR 1       . . 
—dx = ±HJ?Hk\p-p'\) = G™(k;p,p'), (125) 

where H™ is the Hankel function of the second kind, and again, p = r • (yy + zz) is the 

projection of the position vector onto the yz-plane. 

For each segment on dD defined by [Zn,Zn+i], (y„,zn) represents the first node point 

and (yn+i,z„+i) represents the second node point. Using these node points, the compo- 

nents of the position vector along dD can be defined in terms of the arc length as 

and 

y{l) =Vn + -j fy- (l/n+l - Vn) 

z{l) =Zn + - \- (zn+i - Zn) . 

(126) 

(127) 

The components of the discrete set of matchpoints, which are the midpoints of the seg- 

ments, can be expressed as 

2/m+i 
Vm + Vm+l 

zm+\ - 

2 2 
(128) 

Using these definitions, the difference \p — p'\ in equation (125) can be expressed as 

dm{l) — y(l) - ym+ij 
l2 

z(l) Zm+\ (129) 
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Then the two-dimensional Green's function for the MoM algorithm can be expressed as 

G (fc; I, lm+1) = 1 [Jo (k ■ dm(l)) - jY0 (k ■ dm(l))] (130) 

4.4.I    Computing A\.     Recall the amn elements of Ai are given by the equation 

<W = \ klGi[l,lm+ij 
Jin 

d2G, 
+ K+f) 

dy2 dl. (131) 

This can be rewritten as 

Or, = J^1   |i?i2) (kidm(l)) + 1 d2Hf] (hdm(i)) 
4j dy2 dl. (132) 

Using the properties of Bessel functions, the second derivative term in equation (132) can 

be simplified to 

^%M1) = kl [_*(*) (Mm(0) + -L^Hf) (Mm(0) (133) 

Plugging this expression back into equation (132) for the second derivative term and sim- 

plifying reduces to 

-H[2) (fcidm(/)) dl. (134) 
/•'"+1     fci amn ~ L   wm(iy 

where if|2) (fcidm(Z)) = Ji (fcidm(Z)) - jY\ {hdm{l)) is the first order Hankel function of 

the second kind. 

Equation (134) can now be easily implemented in a computer code. However, care 

must be taken when m = n, that is when the integration is performed over a segment 

containing the current match point. When m = n, dm(l) = 0 at each matchpoint 

(ym+i,zm+k) and the expression in equation (134) becomes a singular integral. There 

are many techniques for handling the numerical integration of such singular integrals. One 

of the most efficient techniques is to remove the singularity from the integrand, integrate 

the singularity analytically if possible, then add its contribution back to the original inte- 

gral. In order to apply this technique to the current problem, the singular nature of the 
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integrand must first be understood. In the limit as the argument of the Neumann function 

goes to zero [6], 

Yi(x) 
-2 
■KX 

as   x 0+. (135) 

Given this asymptotic approximation, consider removing the singularity from the integrand 

of equation (134) in the following manner. 

an 
kl    U(Mm(0)-.7*i(*i<W0)-     2J /•'"+1   fci    r 

k    4*U0 I irkidm{l) 
dl 

+ lim 
fln+l 

Jin 

(136) 

6^0+ Jin      2ir[dm(l) + 8\' 
Tdl. 

Now the first integral in equation (136) can be integrated numerically, and the second 

integral can be computed analytically to determine its contribution to the entire integral. 

This is done by performing the integration and then taking the limit as S goes to 0 as 

shown below. 

lim 
6->0+ Jin 27T [dm{l 

2^ 

(0 + fl 
2 

** = k ym+i - ln+i    ym+h ~ h m+i      •»» 
(137) 

'n+1      'n       «n+1      '" 7T (/n+l - In) 

So in order to numerically calculate the diagonal entries of the amn submatrix (where 

m = n), the following formula can be used 

-  f 
JU 

''"+1     ki 

in     4jdm(l) 
Ji{kidm{l))-3Yi{kidm{l))- 23 

irkidm(l) 
dl- 

7T (ln+l - in) 
(138) 

The ßmn elements of A\ are found using the formula 

ßmn=  [n+l    UZ     fc?Gi (Mm+|) + 
•>ln V By1 

-nv dydz 
dl.    (139) 

Notice that in order to calculate these integrals it will be necessary to find an expression 

for the components of the outward pointing normal vector along dD as well as another 

partial derivative of the two-dimensional Green's function.   First, to obtain the normal 
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vector, define a unit vector that is tangent to the perimeter of the cavity pointing in the 

clockwise direction. That is, 

1, 
(Vn+l -Vn)y+ (Zn+1 ~ *n) Z 

tfi+1      In 
(140) 

Then the unit normal vector pointing out from the surface and aperture of the cavity can 

be found by taking the cross product of x with ln. This results in 

n = x x ln = -y- — + z- ——. (141) 

This gives the components of the unit normal vector required in equation (139). Specifi- 

cally, they are 

nz = 

zn+l      zn 

Vn+l - Vn 

'n+1      *ra 

Given that 

G!(/,/m+i) = ^2)(Mm(/)), 

it was found in the previous section that 

d2H™ {kxdm{l)) 
dy2 k\ -H® {hdm{l)) + J^JjjH® (hdm(l)) 

(142) 

(143) 

(144) 

Furthermore, it can be shown that 

d2H^ (hdm(i)) 
dydz 

k\ 
(y(0-Vm+l) («(0-^m+l) 

[dm(l)Y 
H™ (hdm(l)) + 

2HJ2) (hdm(l)) 
hdm{l) 

(145) 
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Substituting these expressions back into equation (139) and simplifying the results gives a 

more useful form of the ßmn equation. That is, 

ßn 
rln+1 kl "W (hdm(l)) f"+1 K     (2 

k        *     ° nz + 
(y(0 - ym+i) 

—nz + n 

+|i?{2) (hdm(l)) [dm(l)f 

+ 

[dm(l)]2 

(y(Q-ym+§) 

[dm«)}3        y~     (y(l)-ymH)' 

H? (*i«U0) j^p (y(0 - J/m+i) (*(/) - z^i) «B. 

(*(Q-zm+i) 

(y(0-ym+i), 

fclw(2) 

4j 
(146) 

Equation (146) can now be easily implemented in a computer code to calculate the ßmn 

elements of the impedance matrix. Also, since m = 1,2,..., iVY and n = iV"i + 1, N\ + 

2,... ,Ni + N2, p(l) € S and p'(l) € a. In other words, the match points for the ßmn 

entries all lie on the cavity aperture a and the integrations are all performed over segments 

on the cavity surface S. So the metric dm(l) is never 0 and the integrand in equation (146) 

is never singular. 

44.2 Computing A2. The first Ni by iV"i submatrix of the A2 matrix is composed 

of all zeros except for the diagonal elements. They are all constant and are given by the 

expression 

H=±(k1Zl + kQZQ), 

which can be easily calculated in the computer code. 

Recall that the rjmn terms are given by the formula 

(147) 

r»„+i 3Gi(Mm+i) 
Vmn=jk1Z1J^  dl. (148) 

Rewriting this equation with the equivalent form of the two-dimensional Green's function 

gives 

Vmn = — /         Qn dl, (149) 
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which requires the computation of the normal derivative of the Hankel function. The 

normal derivative of a continuous function / with continuous first and second partial 

derivatives in a region defined by a simply connected path C is given by the formula 

|£ = A-V/, (150) 

where n is the outward pointing unit normal vector to C [20]. In order to compute the 

normal derivative in equation (149), define the unit normal vector in the same manner as 

the previous section. That is, 

n=-y- r + zl i~- (151) 
»n+l — ln ln+l      ln 

The gradient of the Hankel function can be shown to be 

v;42) (hdm(i)) = -k^   , ^   ffi2) (*i<W0)y 
dm(l) 

(*(0 - *m+\)      ,2) 

(152) 

Taking the dot product of n with equation (152), plugging back into equation (149) and 

simplifying results in 

r'n+i 
Vmn = j n+1 ^4^)^i2) (M™«)) [~% (v(0 ~ W|) " «- (*« " *m+\)] <«.   (153) 

which is now in a form that can be computed numerically. Notice that in this case, p(l) € S 

and p'(l) 6 a since all of the matchpoints are contained in segments along the aperture 

while the integrations are performed over segments along the surface S. So the expression 

dm(l) will never be zero and there are no singularities to consider. 

The 7mn elements of the A2 matrix are given by the formula 

Imn = -J- fn+1 [kfG, (l, Zm+|) - k*Go (l, lmH)] dl, (154) 
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which when rewritten with the appropriate Hankel functions substituted in for the two- 

dimensional Green's functions appears as 

7mn = —  [ln+1 \f42) (kl(im(l)) - fH^ (k0dm(l)) 
3"£i Jln       L4J 43 

dl. (155) 

In the case where m^ n, equation (155) can be readily implemented in a computer 

code to produce the 7mn elements of A2. However, since p(l) € a and p'(l) € a, dm(l) 

will be zero at the matchpoints. This will make the Neumann functions in the integrand 

of equation (155) singular when m — n. In order to efficiently calculate the numerical 

integration in these instances, again consider removing the singularity, integrating it ana- 

lytically, and adding its contribution back to the total integral. Notice, however, that in 

the degenerate case (k0 = fci, i.e. an unfilled cavity) the integrand in equation (155) will 

be zero for every value of m and n. In this case, the 7mn submatrix may simply be set to 

all zeros with no treatment of the singularity necessary. 

The asymptotic small argument approximation of the zeroth order Neumann function 

is given by 

Y0(x)&-\n(^) as   x -)• 0+, (156) 
IT     V 2 / 

where 7 « 1.7810724 is Euler's coefficient [20]. Since the two Hankel functions appearing 

in equation (155) differ by only the wave number ki in their argument, a general treatment 

of how to remove the singularity where the wave number is simply k will be given for 

brevity. Consider the equation 

7mn=   [ln+lH^(kdm(l))dl. (157) 
Jln 

The singularity in the Neumann function can be removed by writing 

rl 

I In 

l-ln+l 

7mn=   / Jo{kdm(l))-J 
Jln 

Jln 

Y,{kdm{i))-h^kdm{l) 

IT 2 
dl 

ln+1 2lln^^ldl. 

(158) 
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The first integral in equation (158) can now be numerically calculated in the computer 

code without any problems, while the second integral contains the removed singularity. In 

order to integrate the singularity analytically, consider splitting up the natural logarithm 

in the following manner. 

rin+i    7fc 

'sing = Jl f       \n^ + \n(dm(l))dl. 
*  Jin 2 

(159) 

By breaking the integral up, the first term in the integrand is simply a constant and the 

second term can be integrated by carefully considering its nature. Begin by integrating 

the constant piece. 

■*sing = JA in (if) {i       -ln)-
2-l fn+l In (dm(l)) dl. (160) 

7T V  2  ) 7T Jln 

The natural logarithm term in the remaining integral is symmetric about the matchpoint, 

so the integral can be rewritten as 

■"sing = -^ In (^) (Wi " '») " 7 [ln+l In (f - *n+i) dl, (161) 

or equivalently as 

■•sing 
9i      /<vfr\ An   /"('n+i-M/2 

= -fl\n(^)(ln+l-ln)-^ ln(l)dl. 
7T V  2  / 7T  J0 

(162) 

Integrating the natural logarithm and simplifying gives the contribution of the removed 

singularity as 
ty(ln+i ~ • 

»sing ix [        nV 4 ) 
(163) 

If ln+i — ln is denoted as A„, the treated form of equation (155) can be written as 

'Ymn — ** {/'"+' nf> (M.(0) + 2i >» *±®* + ^ [i - >" (*£*)]} 4wei 

0    r /■'»+! -^-{fn+lH^{k,dm{l))An 
4wei UJ„ u 7T 

2j,_ jk0dm(l)dl     2jAn 

7T 
-ln(^)]} 

(164) 
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4-4-3    Computing A3.      Finally, the elements of the A3 matrix must be computed. 

The ipmn elements are given by the equation 

^=2 /  —W^*- (165) 

This is rewritten with the appropriate two-dimensional Green's function as 

^mn=2jJln       fo ^ (166) 

The partial derivative of the Hankel function with respect to z is 

(167) 

So equation (165) can be expressed as 

VVJ 2j yJn dm(/) 

which is now in a form that can be readily implemented in a computer code. Notice also 

that since p(l) € a and p'(l) G S there is no singularity to consider when performing the 

numerical integration. 

The £mn elements of the A3 matrix were found to be given by the equation 

rln+i dGD{l,lm+x) 
U = /         fa——dl. (169) 

In this equation, Go is defined to be 

GD faß,p') = G fa p,p') - G faß,#) (170) 

where 

p'^y'y-z'z (171) 
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is the reflection of the position vector p'(l) across the aperture of the cavity. For calcula- 

tions involving G{ki\p,p'i), a new metric for \p(l) - p'(l)\ must be employed. Define 

«) y{l)-ym+i   + z{l) + zm+h (172) 

to be such a metric. Then taking the gradient of G (hi; p, p') and of G (fei; p, p ■) as before, 

and using the same unit normal vector as defined in equation (151), the normal derivative 

of GD (ki; p, p'j) can be found. Doing so allows equation (169) to be rewritten as 

4  Jln 

(y(0-ym+i) ^ (z(0-*m+i) 
+ nz 

n,L 

dm{l) 

(y(l)-ym+i)        (z(l) + zm+i) 

H[
2)
 (hdm(l)) 

(173) 

dL(l) 
+ nz 

dl(l) 
H^ihdUH^dl. 

Even though p(l) 6 S and p'(l) £ 5, notice that the newly defined metric in equation 

(172) will never be zero. So there will be no trouble with singularities when numerically 

integrating the Hankel function that involves Sm{l). However, the Hankel function that 

contains dm(l) may pose some problems when the numerical integration is performed over 

a segment containing the current matchpoint. So if m = n, the singularity should be ex- 

tracted and integrated separately. The same procedure presented in equations (135)-(138) 

can be followed to remove the singularity by subtracting out the asymptotic small argument 

approximation of the first order Neumann function from the integrand and integrating it 

separately. 

It should be pointed out here that the singularities that arise in filling the diagonal 

elements of the amn and £mn submatrices are quite strong. There is another much more 

easily implemented method of dealing with such strong singularities that is commonly used 

in computational electromagnetics. Essentially this involves redefining the coordinates of 

the matchpoint when calculating the self-impedance terms (where m = n). By "bumping" 

the matchpoint a distance of say one hundredth of a wavelength away from the cavity 

along the outward pointing normal vector, the metric dm(l) will never actually be zero. 
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This will allow the numerical integration to be performed, and any error introduced in the 

solution when the system is solved should be negligible. 

Another similar method of dealing with strong singular integrals in computational 

electromagnetics is the method of equivalent separation. Using this method, a small in- 

cremental distance is added to dm{l) on every segment [10]. This is another way of not 

allowing the argument of the Hankel functions to ever be zero, thereby obtaining finite val- 

ues when the integrations are performed. However, this technique introduces a phase error 

into the integrands, which can have a significant effect on the accuracy of the solution. 

4-5   Error Estimate 

In this section an estimate of the order of convergence of the MoM algorithm is 

developed. Consider using a mesh of equally sized segments to discretize the perimeter of 

the cavity dD. Let h be the length of each segment. In the L2-norm, the total error in the 

approximation of u(l) is given by 

|e/i||z,2 *   E   fn+1Hl)-uhn\2dl. (174) 

where Uhn is the approximate average value (a constant) of u(l) on each segment defined by 

P»nWi] [5]- Notice that the approximation Uhn as well as the interval [/n^n+i] depend on 

the mesh size h. Since a point matching scheme was used at the midpoint of each segment, 

u(cn) = Uhn for every midpoint cn = (ln+i - ln)/2. Furthermore, by the Mean-Value 

theorem, there exists a point dn in each interval [/n,Zn+i] such that 

\\*h\\L*<*   E  /"+V(dn)-(f-c„)|2df. (175) 

Taking the maximum of |Z — cn\ on each segment gives 

ML* < 
\ 

rln+1\ .,. ,   h2 
Y-^   fn+1 

E /   k(dn) 
nedDJln        ' 

dl. (176) 
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Now taking the maximum of u'(l) on each segment and doing the integration reduces the 

inequality in (176) to   

||eA||La < j£max«'(I)-j. (177) 
V nedD 

Since equally sized segments were used to discretize the cavity, the summation under the 

square root can be replaced giving 

iML»<y£-mwti'(Q-Y. <178) 

where T is the total arc length along the perimeter dD. Finally, simplifying gives the error 

estimate in the L2-norm as 

l|eÄ||x,a < £>/T • max u'{l) = C-h = 0(h). (179) 

According to (179), if a total of N segments are used along dD to approximate u(l), and 

then the mesh is refined by cutting the length of each segment in half for a total of 2N 

segments, the error in the approximation of u(l) should be cut approximately in half. This 

estimate of the order of convergence will be examined in the next chapter by considering 

the relative error in the solutions of several test cavities. 
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V.   Numerical Results 

In this chapter, the integral equation method is applied to several test cavities to calculate 

their monostatic RCS signatures. The results found are then compared with those found 

by RAM2D [7] and by a hybrid finite element/Fourier transform code [25], and the method 

is shown to be very accurate. The chapter also contains some error history plots which 

agree with the predicted convergence estimate presented in the previous chapter. 

5.1    Computing the Monostatic RCS 

Once the unknown fields have been computed for a given incident angle, a method for 

calculating the backscatter RCS is required. In order to develop such a method, consider 

the following mathematical definition of the RCS of a two-dimensional target. 

2 

1, (180) 02-D = , lim   2ir \p'\ 
l/O'l-K» 

Es(p */> 

Einc(/5') 

where \p'\ = p' is the distance from the target to the observer, and Es and Einc are the 

scattered and incident electric fields, respectively [6]. Recall the radiation integral given 

by Application 5 in equation (33) was 

-jko EV) = f z x E(p) • r(fc0; p, p')da. (181) 
Ja 

This will give the necessary numerator in equation (180). The denominator is already 

known since it is simply the given incident electric field. In order to compute Es(p') in 

terms of the magnetic fields, apply Maxwell's equation (2) to obtain 

EV) = ^ f z x (—V x H(d) • f(k0; p, p')da. (182) 
«0 Ja VJwe0 / 

Letting H(p) = ux, perform the two vector cross products and substitute the appropriate 

expression in for V to reduce the equation to 

*s(ß,) = k^TQ I £*' (_^oVG°x !) ^ (183) 
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Cross multiplying the gradient of the Green's function with the idemfactor and dotting 

the result with x simplifies the scattered electric field to 

**>-ZIMfr-!2*h 
Denote 

(185) R = V(y-y')2 + (z-z')2 

so that 

Go = ±-Hi2)(koR).                                             (186) 

Then taking the appropriate partial derivatives of the Hankel function allows equation 

(184) to be rewritten as 

ßV)^/>P>(w(y^-^)-           («7) 

Considering the geometry in Figure 4, it is apparent that R « p' as \p'\ -*• oo since 

y and z are restricted to the aperture of the cavity. Furthermore, since z G a, z = 0 and 

R can be rewritten as 

(188) R=V(y-y')2 + (z')2- 

z    ' 

A0        y' 

z' 

y 

Figure 4     Geometry of p' 
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This can be further simplified to 

= V(p')2 + y2-iy'y 

(189) 

= P'\ 1 + GO- 
2ycos{9) 

P> 

= p'-ycoS(e) + ö(±r) 

In the limit as R ->• oo, the large argument approximation of the Hankel function is 

Jim H[2\k0R)^J—-^ ,-jkoR (190) 

This allows the scattered electric field to be approximated as 

E {P > ~ W6o V 2J7T i d/ * \    yE3/2 Ä3/2 J 
B^_L ] da.      (191) 

Recall the incident electric field was given as 

EinV) = Zo(sin0y - cos0z)e*^sine+*cosö). (192) 

Now, plugging equations (191) and (192) into (180) and simplifying yields 

02-D ~ 27T 

z° v 2^fc0 y^ ^ *      ;TOO\ 
y^3/2      i?3/2  ;aa 

|Zo(sin0y — cosöz)^ 
(193) 

Recognizing that  lim y/^/yR = 1, and lim y/R = 0, and again applying the geometry 
p'—»00 n'-»no 

in Figure 4, this can be rewritten as 
p'->oo 

02-D ~ 27T 

V/HZ(- sin(0)y + cos(ö)z) jf ^v ^(0)d(7 

Ksiney-cosöz)!" 
(194) 
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Finally, converting the integral into a summation and simplifying the result reduces the 

RCS equation to 
1   V^i.  A    Jfcoy„+i cos(6) ,      . 

71=1 

where the bn are the approximations to || on each segment, A„ = ln+\ — ln is the length 

of each segment, yn+i is the matchpoint of each segment, and 9 is the angle of incidence. 

5.2   RCS Plots 

The integral equation method is applied to several test cavities in this section, and the 

monostatic RCS signatures are computed for incident angles between 90° and 180°. The ac- 

curacy of the method is considered by comparing the plots with the RCS values calculated 

by RAM2D [7] as well as with the results from a hybrid finite element/Fourier transform 

code written by Van [25]. The RAM2D code is a commercial grade two-dimensional scat- 

tering problem solver, and Van's finite element code has been benchmarked against other 

existing known results. 

5.2.1 Test Cavity 1. For the first test case, consider the cavity in Figure 5. It 

is a rectangular cavity with dimensions 1 meter wide by 0.25 meters deep. The interior 

of the cavity is unfilled, which is denoted by the free space parameters (eo,/^o)- So in this 

case, ei = eo and ßi = HQ. Let an incident plane wave under TE polarization and with 

frequency 300 MHz impinge on the cavity to produce the scattered fields. The incident 

wave will have a wavelength of A = 1 meter, and its wave number or propagation constant 

will be k = 2ir. Notice that since the cavity is unfilled, the incident field's propagation 

constant is the same in the upper half plane as it is within the interior of the cavity. 

The MoM algorithm was employed using 10 pulse basis functions per wavelength. 

This results in having 10 segments on the aperture (iV"i = 10) and 16 segments on the 

surface of the cavity (iV"2 = 16), making Au = f a 36 by 36 linear system. The unknown 

expansion coefficients were approximated by the method to produce the total magnetic 

field on the perimeter of the cavity and the normal derivative of the total magnetic field on 

the aperture of the cavity. The magnitudes of these field quantities (in Amperes/meter) 
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0.25A 
(eo,A*o) 

1A 

Figure 5     Geometry of unfilled rectangular cavity 

are shown in Figures 6, 7, and 8 for an incident angle of 8 = 90°. (It should be pointed out 

here that more than 10 pulse basis functions per wavelength were used to produce the plots 

of the fields in the following 3 figures. Actually, 25 pulses were used so that the graphs 

would be fairly smooth. However, only 10 pulses per wavelength were used to compute the 

RCS values.) 

In Figures 6, 7, and 8 notice that the fields all have a symmetric shape with respect 

to the center of the cavity. This is to be expected when a symmetric cavity is illuminated 

by a plane wave at normal incidence. Finally, in Figure 9 the graph of the monostatic RCS 

values computed by the integral equation method is plotted for several angles between 

90° and 180°. The integral equation method output is compared with the RCS values 

computed by RAM2D in the figure, and excellent agreement is observed. So the MoM 

algorithm was able to produce very accurate results while only having to solve a 36 by 36 

linear system for each incident angle. 
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Magnitude of total magnetic field on aperture 
T 

Figure 6     Magnitude of the total magnetic field on the aperture, normal incidence 
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Magnitude of total magnetic field on cavity surface 

Figure 7     Magnitude of the total magnetic field on the cavity surface, normal incidence 
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Magnitude of normal derivative of magnetic field on aperture 

_0.5 -0.4        -0.3 -0.2        -0.1 0.1 0.2 0.3 0.4 0.5 

Figure 8     Magnitude of the normal derivative of the magnetic field on the aperture, 
normal incidence 
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90 100 

Monostatic RCS (unfilled rectangular cavity) 

110 120 130 140 150 

Incident and Observation Angle (degrees) 

160 170 180 

Figure 9     Monostatic RCS signature of an unfilled rectangular cavity. Integral equation 
method (o) and RAM2D (—) 
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5.2.2 Test Cavity 2. For the second test case, another unfilled rectangular cavity 

is illuminated by a 300 MHz plane wave under TE polarization. Consequently, the wave- 

length of the incident field is A = 1 meter and the propagation constant is again k = 2iv 

both in the upper half plane and the interior of the cavity. However, this time the cavity 

is much deeper and a little bit wider. As shown in Figure 10, the cavity is 1.2 meters wide 

and 0.8 meters deep. 

(3),A*o) 

A 

/  (Einc,Hinc) 

i L 

0.8A 

' 

(eoiPo) 

1.2A 

Figure 10     Geometry of a deep rectangular cavity 

The MoM algorithm was again employed using 10 pulse basis functions per wave- 

length. Due to the geometry of the cavity, this resulted in a total of 12 segments on the 

cavity aperture {N\ = 12) and 28 segments on the cavity surface (N2 = 28). So the total 

number of unknown expansion coefficients is 52, making Au = f a 52 by 52 linear system. 

Again, using equation (195) the monostatic RCS values were computed by the MoM al- 

gorithm for incident angles between 90° and 180°, and the results were compared to the 

RCS values computed by RAM2D. In Figure 11, the two sets of data are compared, and 

excellent agreement between the two methods is again observed. 
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Monostatic RCS (deep unfilled rectangular cavity) 
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Figure 11     Monostatic RCS signature of a deep unfilled rectangular cavity. Integral equa- 
tion method (o) and RAM2D (—) 
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5.2.3 Test Cavity 3. For the third test case, a rectangular cavity filled with 

a homogeneous, lossy material is considered. The incident field for the problem is still 

a TE polarized plane wave with frequency 300 MHz and wavelength A = 1 meter. The 

propagation constant in the upper half plane is still fco = 2ir, however the fields will have a 

different wave number within the cavity due to the presence of the lossy material. In this 

case, the cavity is filled with a lossy dielectric material characterized by er = 4 — j, so the 

propagation constant within the material filled cavity is fci = 2%^/4::rj. The dimensions 

of the cavity are the same as the rectangular cavity from the first test case, 1 meter wide 

and 0.25 meters deep. The geometry of the problem is shown in Figure 12. 

(eo,W>) 

 j£l_. 

^ (B inc  TTinc\ 

0.25A     T 

-^ ^B 

1A 

Figure 12     Geometry of a rectangular cavity filled with a lossy material 

The monostatic RCS values were computed and compared with the results found by 

a hybrid finite element/Fourier transform code written by Van [25]. The plots appear in 

Figure 13 and indicate very good agreement between the two methods. In comparing the 

two RCS signatures in Figures 9 and 13, the effect of the lossy dielectric material appears 

to be fairly significant. Both graphs have a null appearing around 9 = 120° and have very 

similar overall shapes, but the RCS values for the filled case are much lower than for the 

unfilled case. This is because the dielectric material absorbs some of the energy of the 

incident field which results in a decreased scattered field. 
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Monostatic RCS (filled rectangular cavity) 

90 100 110 120 130 140 150 
Incident and Observation Angle (degrees) 

160 170 180 

Figure 13     Monostatic RCS signature of a rectangular cavity filled with a lossy dielectric 
material. Integral equation method (o) and finite element method (—) 
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5.24 Test Cavity 4. The fourth test cavity is a deep rectangular cavity filled 

with a homogeneous, lossy dielectric material. Again, the incident field is a TE polarized 

plane wave with frequency 300 MHz. The relative electric permittivity of the medium is 

er = 2 — j which makes the wave number fci = 27Ti/2 - j inside the cavity interior. In the 

upper half plane, the propagation constant is still fco = 27r, and the incident field has a 

wavelength of A = 1 meter. The geometry of the fourth test case is shown in Figure 14. 

The cavity is 1.2 meters wide and 0.8 meters deep. 

Figure 14     Geometry of a deep rectangular cavity filled with a lossy material 

The MoM algorithm was employed using 10 pulse basis functions per wavelength. 

This resulted in solving a 52 by 52 linear system for each incident angle. The RCS val- 

ues given by the integral equation method as well as a comparison with Van's finite ele- 

ment/Fourier transform method are shown in Figure 15. Again, for a very small compu- 

tational effort, strong agreement is observed between the two methods. 
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90 100 

Monostatic RCS (deep filled rectangular cavity) 
-r 

110 120 130 140 150 

Incident and Observation Angle (degrees) 

160 170 180 

Figure 15     Monostatic RCS signature of a deep rectangular cavity filled with a dielectric 
material. Integral equation method (o) and finite element method (—) 
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5.2.5 Test Cavity 5. The final test cavity is a triangular shaped cavity filled with 

a homogeneous, lossy dielectric material. The dimensions of the triangular cavity are 1 

meter wide across the aperture and 0.5 meters deep. The interior of the cavity is filled 

with a dielectric material having relative electric permittivity er = 4 — j. This makes the 

wave number in the interior of the cavity ki = 2-Ky/A - j. The incident field is a 300 MHz 

plane wave under TE polarization. Again, the wavelength of the incident field is A = 1 

meter, and its free space propagation constant is fco = 2n. The geometry of the fifth test 

case appears in Figure 16. 

Figure 16     Geometry of a triangular cavity filled with a lossy material 

Using 10 pulse basis functions per wavelength, the perimeter of the cavity is dis- 

cretized into 10 segments along the aperture and 16 segments along the surface. This 

results in the MoM algorithm solving a 36 by 36 linear system for each incident angle. 

Comparing the RCS values of the integral equation method with those found by the finite 

element/Fourier transform method in Figure 17 again shows very good agreement. 

60 



Monostatic RCS (filled triangular cavity) 

90 100 110 120 130 140 150 160 170 180 

Incident and Observation Angle (degrees) 

Figure 17     Monostatic RCS signature of a triangular cavity filled with a dielectric mate- 
rial. Integral equation method (o) and finite element method (—) 
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5.3   Error History Plots 

In this section, the rate of convergence of the integral equation method is examined. 

In the following experiments, each cavity is initially meshed with N equally sized segments 

of length h, and the MoM algorithm is used to compute the total magnetic field along the 

cavity boundary dD. Then, the mesh is refined by chopping each segment in half so that 

there are a total of 2N segments along dD, and the total magnetic field is recomputed. At 

each step the relative error in the L2-norm is computed using the formula 

error„ 
1K„ - M/in-i lb (196) 

where hn = hn-\j1 indicating that the mesh is chopped in half at each step, u^n is the 

approximate solution at the current size step, and Uhn_1 is the approximate solution at the 

previous size step. 

Error history - Normal 

Figure 18     Relative error history of an empty rectangular cavity for normal incidence 

Test Case 1. For the first experiment, consider the scattering from an unfilled cavity 1 

meter wide by 0.25 meters deep of a 300 MHz plane wave under TE polarization. Let the 

plane wave impinge on the cavity under normal incidence (8 = 90°). Using equation (196), 

the relative error history versus l/h is plotted in Figure 18, and a log2-log2 plot of the 

relative error versus l/h is given in Figure 19. 
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Error Plot: Normal Incident» (Log-Log) 

Figure 19     Log-Log plot of relative error history for normal incidence 

Notice in Figure 18 that at each size step where h is halved, the relative error seems 

to be cut approximately in half. So for h sufficiently small the L2 error rate is approaching 

1 for the solution of an unfilled rectangular cavity under normal incidence. Furthermore, 

the slope of the line in Figure 19 is approximately -1.07 which is indicative of an 0(h) 

method. This agrees with the estimate given in the previous chapter. 

Error History: 10 degrees 

Figure 20     Relative error history of an empty rectangular cavity, 6 = 10° 

Test Case 2. In this experiment, consider the same cavity as in Test Case 1 with a 300 

MHz plane wave under TE polarization impinging on the cavity at an incident angle of 

0 = 10°. According to Figure 20, the L2 error rate also appears to be approaching 1 for 
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this case as the mesh is refined at each size step. And the slope of the line in Figure 21 is 

approximately -1.1 which again agrees with the rate of convergence estimate. 

Error Plot: 10 degrees (Log-Log) 

Figure 21     Log-Log plot of relative error history, 9 = 10° 

Error History for Filled Triangular Cavity 

Figure 22     Relative error history of a filled triangular cavity, 6 = 35° 

Test Case 3. In this experiment, a filled triangular cavity is considered. The cavity is in 

the shape of an isosceles triangle 1.2 meters by 0.8 meters deep. It is filled with a dielectric 

material having relative electric permittivity er = 2.26. Again the incident wave is a TE 

polarized plane wave with frequency 300 MHz, and it is propagating at an incident angle 

of 0 = 35°. The relative error plot in Figure 22 again indicates that for h sufficiently small, 

the rate of convergence is approaching 1 since the relative error is cut approximately in 
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half at each step.   Also, the log2-log2 plot of the relative error versus l//i in Figure 23 

shows a slope of about -1.02 which is consistent with an 0(h) rate of convergence. 

Error Plot: Filled Triangular Cavity (Log-Log) 

Figure 23     Log-Log plot of relative error for a filled triangular cavity, 9 = 35° 
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VI.   Conclusions 

This research has investigated the application of a moment method based integral equation 

scheme to compute the scattering of a TE polarized plane wave from a cavity embedded 

in a PEC ground plane. This is motivated primarily by the need of the United States 

military to accurately model and predict the RCS signatures of targets. The reduction 

and/or enhancement of a friendly air vehicle's RCS signature as well as the detection and 

identification of an enemy air vehicle are crucial to the success of an air campaign. Cavities 

on an aircraft, such as the jet engine inlet ducts and exhaust nozzles, can dominate its 

RCS signature. This coupled with the challenging computational nature of cavities make 

the study of the scattering from cavities vitally important. 

There is a large body of research regarding the cavity scattering problem, and there 

are many good methods for computing the RCS of cavities. Among these are the gen- 

eralized network formulation (GNF), integral equation methods such as the electric field 

integral equation (EFIE) method and the magnetic field integral equation (MFIE) method, 

and the hybrid finite element methods. One of the primary advantages of the method pre- 

sented here is that it does not suffer from the problem of spurious resonances at certain 

frequencies like some of the other methods. Also, it is very computationally efficient since 

only the boundary of the cavity must be meshed to solve the problem. Once the fields 

along the boundary of the cavity are found, the fields everywhere above the cavity can 

be computed for applications such as capturing the RCS signature of the cavity. So very 

accurate results can be produced with a minimal amount of computations required. 

In the previous chapters, the fundamental theorems developed in [4] and [26] were 

converted to vector integral equations that govern the electromagnetic scattering from a 

cavity embedded in a PEC ground plane. A coupled set of scalar integral equations were 

then derived for the problem of a TE polarized plane wave impinging on a two-dimensional 

cavity, where the cavity could either be empty of filled with a homogeneous material. These 

scalar integral equations were then solved via a Method of Moments algorithm, and the 

RCS signatures of several test cavities were computed. The results produced compared 

very well with the results of other methods including RAM2D and a finite element method 

code, and in doing so, the method was very computationally efficient. An estimate of the 
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order of convergence of the method was also developed, and the numerical results indicated 

that it was an accurate estimate. 

This research represents a follow-on effort to work previously accomplished by Asves- 

tas, Kleinman, Wood, and Wood [4], [26], [27], but the problem certainly has not been 

exhausted. There are several areas where future research could be accomplished. First, 

instead of simply having an empty or filled cavity, a thin dielectric coating on the surface 

of the cavity could be modeled or a cavity filled with layers of different materials. Also, 

another area of research would be in comparing the rate of convergence of the method with 

the rates of other methods. Furthermore, while the method has been shown to produce 

accurate results, it would be useful to prove that the method always obtains the unique 

solution to the scattering problem. Finally, the problem considered in this research could 

be extended to the three-dimensional case, since the integral equations are valid in both 

two and three dimensions. 
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