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AFIT/GAP/ENP/01M-04 

Abstract 

Silicon carbide (SiC) has a wide band gap at high temperature, a good candidate 

material to meet future Air Force needs for wide-band-gap semiconductor devices for 

opto-electronics and high power electronics in aerospace applications. Defects generated 

during growth and fabrication are largely responsible for degradation of SiC properties, 

so surface chemistry of SiC is very important in the surface fabrication and control of 

epitaxial SiC films. Computer simulation is an economic and efficient approach to model 

the surface chemistry of silicon carbide. A hybrid quantum mechanics/molecular 

mechanics (QM/MM) method had been proven a sufficient way to model bulk SiC 

surfaces. In this method a small cluster modeled by a QM method is embedded in a bulk 

framework that can be modeled by a MM method. The key to use the QM/MM to model 

silicon carbide surface chemistry is to find a QM method that can accurately model the 

silicon carbide clusters. 

Density Functional Theory (DFT) is chosen as a QM calculation method in this 

paper. Comparing the DFT calculation results with experimental results, the calculation 

results of geometry predictions, electron affinities (EA) and vibration frequencies are in 

good agreement with the experimental results. Sixteen optimized ground state structures 

were found using DFT:3BLYP method for the SimCn (m<4,n<4) system. A root mean 

square average EA offset of-0.1 eV is found compared with the available experimental 

results. The factors that affect the accuracy of electron affinity calculation are discussed. 

The CPU time scaling of DFT calculations in SiC systems is also discussed. 
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USE OF QUANTUM MECHANICAL CALCULATIONS TO 

INVESTIGATE SMALL SILICON CARBIDE CLUSTERS 

I. Introduction 

1.1 Motivation 

Silicon carbide (SiC) has a wide band gap, high electron mobility, high 

breakdown field, high thermal conductivity, radiation resistance, and good 

mechanical properties at very high temperature [1], excellent chemical stability, 

high stiffness, and high hardness [2]. As a result, SiC has great promise in a wide 

variety of applications in both commercial and military sectors. These include 

uncooled electronics in space systems, high temperature electronics for turbine 

engine control, automotive applications, and well logging. Moreover, silicon 

carbide is a good candidate material to meet future Air Force needs for wide- 

band-gap semiconductor devices for opto-electronics and high power electronics 

in aerospace applications. 

At present, the processing chemistry of silicon carbide is not well known. 

To know the surface chemistry of silicon carbide is very important for fabricating 

semiconductor surfaces and controlling epitaxial silicon carbide film growth. 

Particularly important are carbon-rich defects produced during etching and 

oxidation. Accurate computer simulations can provide the understanding of 

surface chemistry at atomic and molecular level for etching and oxidation. It will 



be a significant step in controlling the performance of silicon carbide 

semiconductor devices if mechanism of defect formation is understood. Hence 

modeling the surface of silicon carbide bulk material is interesting.   (Bulk defects 

are also of interest because bulk defects produced by SiC irradiation are important 

for space applications.) 

The chemical reactions on surfaces are often modeled using molecular 

clusters. To accurately model small clusters, high-level ab initio quantum 

mechanical (QM) computational methods are needed. To understand the basic 

idea of molecular modeling, the basic concepts of quantum calculation methods 

are summarized. 

1.2 Quantum Calculation Method Glimpse 

Discussion of the principles used in quantum calculation methods can be 

found in the next chapter. Descriptions of the abbreviation of commonly used to 

describe semi-empirical methods, ab initio methods and density functional theory 

methods are listed in Appendix A. Briefly, quantum mechanical calculation 

methods are classified into three areas, which are described below: 

1.2.1 Semi-empirical Methods (SE). SE methods use approximate 

methods to solve the matrix element integrals found in quantum chemistry 

methods for solving the Schrödinger equation. Some are taken from experiment 

data, some are neglected, and some are estimated by fitting to experimental data. 

SE should only be used for chemical species similar to those for which it is 



parameterized. Since the experimental parameters used are generally not 

determined for compounds in unusual bonding situations, or distorted compounds, 

it may produce unreliable results for strained bonding. Based on the different 

approximation levels, SE methods have various implementations and commercial 

packages. The methods include completed neglect of differential overlap 

(CNDO); intermediate neglect of differential overlap (INDO); neglect of diatomic 

differential overlap (NDDO); modified neglect of differential overlap (MNDO); 

Austin Model 1 (AMI), an extension of the earlier MNDO/3 Hamiltonian. SE 

methods are often used to model large systems that cannot be practically modeled 

using ab initio methods. In this paper, we will use the AMI method for 

comparison. 

1.2.2. Ab initio Computations. Ab initio methods are first principle 

methods that do not require empirical parameters and can be used for any 

molecular system. They usually use the Hartree-Fock (HF) method as a starting 

point to solve the Schrödinger equation using the self-consistent-field (SCF) 

iteration process. 

The HF method uses the Hartree average potential to approximately treat a 

many electron system as a single electron in the average field that generated by 

the other electrons and nucleus. This makes it possible for one to solve a multi- 

electron Schrödinger equation. The wave function represents the molecular 

orbital, which is a linear combination of atomic Orbitals (LCAO). Each of the 

atomic orbital is represented by a single electron wave function that is formed 



from a number of functions called basis set functions. 

The famous Variational Principle applies to all ab initio methods. It states 

that for an approximate wave function the approximate energy is always greater 

than the exact energy. So the lower the energy, the more accurate is the 

calculation. In Hartree-Fock approximations, the average potential assumption 

ignores the electron-electron correlation, thus HF has its limits in modeling 

energy and cannot accurately model electronic correlation energy in electron rich 

systems. For higher level ab initio calculation methods (post HF), such as multi- 

configuration self-consistent-field (MCSCF), or complete active space (CAS). 

MCSCF and CAS calculation methods consider electron correlation. They are 

proven accurate calculation methods, which are exhaustively used by physicists 

and chemists. But they are computationally expensive. 

The wave function is represented as a linear combination of N-electron trial 

functions. In post HF calculations, if the basis were complete, one would obtain 

the exact energies not only of the ground state but also of all excited states of the 

system. However, in reality only a finite set of N-electron trial functions is used. 

Increasing the size of basis set results in the more accurate energy. On the other 

hand, increasing the basis set will dramatically increase the computing time. 

Unlike SE methods, ab initio methods require computing each of the matrix 

element integrals in solving Schrödinger equation, therefore, they are very time 

consuming and may not be practical for large systems. 



1.2.3. Density Functional Theory (DFT) Methods. DFT methods 

combine the theory of statistical physics with quantum chemistry. Kinetic energy 

and potential energy are represented as functions of electron density for a 

stationary state. DFT methods can simplify the problem of solving wave function 

to an easier problem of solving the electron density, p = xF*lF . The Hamiltonian 

is a functional of electron density. In Density Functional Theory, the functional 

terms and the corresponding coefficients are optimized using statistics physics 

and experimental results, so the average electron correlation is considered. This 

leads to more accurate result than a HF method. In this work, DFT:B3LYP 

method [3] is used, which uses a hybrid functional with parameters from 

statistical physics and HF molecular orbital theory. A brief comparison of the 

three methods is listed in the Table 1. 

Table 1. A brief comparison of different calculation method 

Calculation Method Semi-empirical (SE) DFT Ab initio 
Accuracy Not reliable Good Good 
Cost Cheap Expensive Very expensive 
Larger System 
(>20 atoms) 

Very fast Unknown Impractical 

Ground State OK Good Good 
Excited State OK Restricted Very good 
Electron affinity 
Calculation Good Excellent OK 
Geometry 
Optimization Poor Good Very good 

Table 1 shows that SE methods have the advantage of being fast, ab initio 

methods have the advantage of being accurate, but impractical for large systems, 

and DFT has advantage of being accurate and efficient, but its usage is limited to 



the ground electronic state. 

1.3 Previous Research Review 

Surfaces are often modeled using molecular clusters, which are too small to 

accurately represent the mechanical environment of bulk materials. Even these 

small sized clusters require high cost in computation time using ab initio methods 

with large basis sets. In order to accurately model chemical reactions at a surface, 

the clusters are required to be large enough to represent the bulk material. For 

such a large system, an accurate calculation of very large clusters using large 

basis sets by ab initio method is impractical. Shoemaker [4] has successfully 

modeled Si and SiC surface chemistry using a hybrid Quantum Mechanics and 

Molecular Mechanics (QM/MM) method. He used the quantum ab initio 

calculations to optimize a small cluster embedded in a large system, which can be 

calculated by Molecular Mechanics (MM) method. This new embedded cluster 

model is called the Surface Integrated Molecular Orbital / Molecular Mechanics 

(SIMOMM). In this method, the 'action' region where the actual chemical occurs 

is treated quantum mechanically, while the spectator region that primarily 

provides the effect of the surrounding bulk is treated using molecular mechanics. 

It has been shown that SIMOMM is especially effective for a system, such as 

semiconductors, in which the surface reaction is localized [16]. The key of the 

SIMOMM model is to combine a highly accurate ab initio method with a 

highly efficient molecular mechanics method. This approach minimizes time- 

consuming electronic structure computations while maintaining the effect of the 



"bulk" constraint. It is less useful for conductors with large electronic 

delocalization. 

In order to find the optimized cluster structure, many studies have been done 

on pure carbon or pure silicon [17-20]. Carbon-carbon bonds have significant a 

and n bonding, which favors linear minimum energy structures for carbon cluster 

structures. Silicon-silicon mostly involves a bonding. The minimum energy 

structures of silicon clusters tend to have three-dimensional structure. Study of 

molecular sized silicon carbide clusters compared to carbon clusters and silicon 

clusters is of fundamental interest. Recent studies on SiC clusters are summarized 

in Table 2. 

Shown in Table 2, Rittby [5,6,7] reported geometry optimization studies on 

SiiC, SisC, and C2Si3 clusters, using a Hartree-Fock method with a low-level 

basis set: 6-3 IG. The ground state structures of these clusters were found to be 

linear. This compares well with the previous experimental result that reported by 

Karfafi [9-11] using IR spectroscopy. V.D. Gordon [12] calculated SiC4 and SiCö 

cluster, using low level to very high level ab initio method, with medium size and 

large size basis sets. Compared to the experiments by McCarthy [13] using 

Fourier transform microwave spectroscopy (FTM), the calculation is in good 

agreement with experiment. Duan et al. [14] from our group intensively studied 

the Si2C3 cluster using various calculation methods. Comparing the electron 

affinity calculated by a DFT method with the experiment result by Dr. 

Lineberger's [15], the average absolute error is only -0.027 eV, which is excellent 

agreement with the experimental result. Electron affinity was found to be more 



sensitive to the accuracy of the calculation than structure or vibration frequencies. 

Table 2. A summary of previous research on SimC„ clusters 

Experiment Calculation 
Cluster Method Calculation Method* Research Accuracy vs. 

& Research Group Experiment 
Group 
IR Spectrum C. M. L. 3% average error 

Si2C, By Z.H. HF/6-31G Rittby to frequencies, 
Si3C, Kafafi [8] [5,6,7] intensities and 
Si2C3 W.R.M. 

Graham [9-11] 
isotopic shifts 4% 
error to isotopic 
shifts 

Fourier DFT-B3LYP/ cc- V. D. 
transform pV5Z /cc-pVDZ Gordon Average error of 

SiC4 microwave [12] bond length is less 
SiC6 (FTM) 

Spectroscopy 
ByM.C. 
McCarthy [13] 

CCSD (T) 
CCSD-T 

CCSD 

MP2, HF-SCF 

than 0.0015Ä 

Photoelectron X. Duan Using 
spectroscopy HF/ cc-pVDZ [14] DFT:B3LYP/ 
(PES) MP2/ cc-pVDZ//HF/ aug-cc-pV5Z // 

Si2C3 By Lineberger cc-pVDZ B3LYP/ cc-pVDZ 
etal [15] DFT-B3LYP/CC- 

pVDZ 
DFT-B3LYP/CC- 
pVTZ+ // B3LYP/ cc- 
pVDZ 
DFT-B3LYP/CC- 
pV5Z+ // B3LYP/ cc- 
pVDZ 
MCSCF(20,20)/cc- 
pVDZ 
CAS(8, 10)/cc- 
pVDZ+ 
MCQDPT2(8, 10)/cc- 
pVDZ+// CAS(8, 
10)/cc-pVDZ+ 

0.027 eV absolute 
EA error 

Using MP2/ 
cc-pVDZ//HF/ 
cc-pVDZ 
0.435 eV absolute 

EA error 

Using 
DFT:B3LYP/ 
cc-pVDZ 
0.257 eV absolute 

EA error 

* For detailed descriptions of calculation method and basis set please see 
Appendix A 



1.4 Problem Statement 

In order to model silicon carbide surfaces using the QM/MM method, the 

key is to find the QM methods that can accurately predict the structure and 

electronic properties of silicon carbide clusters. It is also fundamentally 

interesting to compare silicon carbide cluster molecules with pure silicon and pure 

carbon clusters. It has been learned from previous research by Duan et al that 

DFT provides more accurate electron affinity results and takes less computer time 

than ab initio MP2 and CAS calculations using the same basis sets [14]. Based on 

these results, DFT: B3LYP is selected as the main QM method in this work. 

1.4.1. Comparison with Experimental Results. After choosing the QM 

method, it is used to find optimized minimum energy or stable structure of each 

silicon carbide cluster (SimCn). To make sure of the accuracy of the calculation, 

comparison of calculation results is made with experimental results for observed 

clusters. We collaborate with Dr. Lineberger's group, who conduct PES 

experiments on silicon carbide clusters produced by a cathode discharge. Their 

results are listed in Table 3 for SimCn (m+n=4, 5, 6, 7, 8) clusters mass selected 

from the plume. These gas phases SimCn clusters have analogy with surface or 

bulk defects of silicon carbide that we wish to be able to model. 



Table 3. Experimental results using Photo Electron Spectroscopy (PES) on 
SimCn clusters by Dr. Lineberger's group at the University of Colorado 

m+n 4 5 6 7 8 
Cluster C3Si CSi3 C4Si C3Si2 C4Si2 C5Si2 C6Si2 

Electron 
Affinity 
EA (eV) 

2.845 
(2.839) 

1.535 2.327 1.769 2.556 2.136 
(2.131) 

2.049 

Frequency 
cm'1 

-48 315 565 420 845 40 3735 
1950 490 1105 910 1175 340 
2015 12575 2120 1485 1860 8105 
2185 2720 1930 2665 

3905 

Geometry 
Information 

Anion: 
linear 

Neutral: 
rhombic. 

Linear 
nearly 
degenerate, 
r 

Anion: 
rhomboidal 
c 

Neutral: 
Rhomboidal 

Anion: 
Linear 

Neutral: 
Linear 

Anion: 
Linear 

Neutral: 
Linear 

Anion: 
Linear 
c 

Neutral: 
Linear 

Anion: 
Linear 

Neutral: 
Linear 

1.4.2. Factors Influencing Molecular Modeling. The size of the 

molecular model of the SimCn cluster is also important. As the numbers m and n 

increase, the cluster structure predicted from molecular modeling will approach 

the structures that can represent the bulk material well. However, in this paper, 

we will only accomplish the molecular modeling for small size gas phase SimCn 

clusters due to limited time. 

Choice of basis set for the composite of trial wave function may greatly 

affect the calculation result. A larger basis sets gives more potential for accurate 

description of the wave function. Therefore, the effects of basis set used during 

calculations will be investigated. From the practical viewpoint, the time scaling 

of the DFT method with cluster size and the size of basis sets is worth some effort 

10 



too. So far, no one knows the time scaling of DFT calculation for SiC systems. 

Semi-empirical methods are fast and are used to model large systems. But 

SE methods are only good for those systems that the parameters suit (please see 

early section 1.1). A semi-empirical method, AMI, which is parameterized for 

silicon compounds, will be studied for silicon carbide systems. Comparisons with 

experimental result will reveal the accuracy and reliability of AMI calculations. 

1.5 Objective Scope 

The objective is to apply DFT: B3LYP as the QM calculation method, AMI 

as the semi-empirical method to model silicon carbide clusters. Restricted open 

shell method, ROHF, is used in AMI calculations, the restricted open shell 

method, RODFT, is used in DFT calculations. 

1) Si2C3 isomer geometry predictions using AMI method will be compared 

with ab initio methods [14] and with the experimental results [15]. 

Predictions of geometry, electron affinity and vibration frequency 

calculations will also be perform on SimCn clusters (m + n = 4, 5, 6, 7, 8) 

using the AMI method for comparison with experiment results [15] to 

reveal the accuracy of AMI calculation for the SimCn system. 

2) To find the quantum mechanical method that can accurately model SiC is 

the goal. In this work, the density functional theory DFT: 3LYP method is 

selected. First, we compute ground state structures of SiC clusters using 

the DFT method. The structures will be mapped out as shown in Table 4. 

11 



Table 4. The mapping table of DFT calculation on SimCn cluster 

c 
Si 

1 2 3 4 

1 To So So So 

2 So So So So 

3 To So So So 

4 So To So So 

To indicates a triplet state; So indicates a singlet state. 

As the number of Si atoms (m) and carbon atoms (n) increase, the model 

discussed in this paper will be increasingly closer to bulk SiC materials. 

This work will focus on the range m < 4, n < 4. 

3)  Based on the structure, the electron affinity and vibration frequencies of 

each cluster will be calculated by the DFT method. The accuracy and the 

reliability of DFT calculations will be investigated by comparing the 

calculation results with available experimental results [15]. After the 

comparison, we will know if the DFT method can accurately describe SiC 

systems. Then other factors that may affect the accuracy of calculation 

will be investigated, such as the size of basis size, the properties of basis 

sets (adding diffuse functions in basis sets). The CPU time scaling of DFT 

12 



calculations will be discussed from two directions, one is the time scaling 

with the size of basis sets, and the other is the size of the cluster. 

1.6 Thesis Outline 

Chapter one:      The first chapter will introduce QM modeling methods, describe 

the importance of silicon carbide material and the purpose of modeling SiC 

surface chemistry, and outline the research plan. 

Chapter two:      The second chapter introduces quantum chemistry theory and the 

calculation principles that are used in this paper. It classified into following steps: 

1) Basic concepts and principles of quantum chemistry. 

2) The fundamental principle of ab initio calculation: Hartree-Fock self- 

consistent-field (HF-SCF). 

3) Semi-empirical method AMI based on the HF-SCF. 

4) The Density Functional Theory (DFT). 

Chapter three:     The third chapter compares the AMI method calculation results 

with DFT calculation results and with experimental results. It points out where 

AMI method fails to accurately model the SiC system. 

Chapter four:     The fourth chapter compares DFT calculation results with 

experimental results pointing out that the DFT method successfully models the 

ground state SiC system. The factors that affect the accuracy of DFT calculation, 

13 



such as the basis set, the property of basis sets are investigated. The relationship 

of the DFT computation time with the size of system is also discussed. 

Chapter five:      Summary and conclusions are given in the last chapter. 
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II. An Overview of Quantum Computational Theory 

In this chapter, sections 2.1-2.5 follow the theory of Attila Szabo and Neil S. 

Ostlund in "Modern Quantum Chemistry", with detailed discussion and examples 

[21] 

2.1 One Particle Wave Equation 

Since Austrian physicist Erwin Schrödinger found a differential equation in 

1925, the so-called wave equation, the soul of quantum theory has been how to 

solve this partial differential equation (PDE) H^ = E*¥ (where H is the 

Hamiltonian operator, T is the wave function and E is total energy). The wave 

function contains all the information in which physicists and chemists are 

interested. In most cases, one is concerned with atoms and molecules without 

time-dependent interactions, the time-independent Schrödinger equation. For a 

single particle system, such as hydrogen atom, the coulomb potential is only 

related to the distance between electron with nucleus, ie., the Hamiltonian only 

have one variable, r, so one can use separable variables method; then it is not 

difficult to solve the PDE, the solutions of which have the form: 

¥(r,0,0 = i/(r)0(0)0(0 (2-1) 

2.2 Many Electron Wave Function 

For N, number of electrons, and M, number of nuclei, using A and B to 

represent the nuclei, and i, j to represent the electrons, if RA , RB represent the 

position of nuclei and r;, rj represent the position of electrons in Cartesian 
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coordinates, the Hamiltonian can be written as: 

N 1 
Hmal = 2 ~~^ Electronic kinetic energy 

1=1 ^ 

M i 

+V V^ Nuclear kinetic energy 
tt2MA 

N    M 

^ ^ —— Electron-nucleus coulomb potential (attractive) 
i=l  A=\  riA 

N     M     1 

+V V — Electron-electron coulomb potential (repulsive) 
i=l  j>i rij 

M     M    'y   rj 

+V V   A B Nucleus-nucleus coulomb potential (repulsive) 
A=\ B>A   &AB 

(2-2) 

Then the Schrödinger equation will look like: 

HTo,al
x¥(rl,r2,r3,....rN) = E*¥(rl,r2,r3, rN)   . (2-3) 

The solution to this PDE is a wave function in which nuclear and electronic 

motions are coupled and the electron-electron motions are coupled. Because of 

the coupling term in the Hamiltonian expression, one cannot apply the variables 

separable principle to solve the PDE. We cannot solve this problem exactly, so 

certain approximations are necessary. 

2.2.1. Born-Oppenheimer Approximation. American physicists Born and 

Oppenheimer suggested that one could approximately treat the nuclear positions 

as fixed at RA (RA is a parameter, related to chemical bond lengths), because the 

great difference in mass of electrons and nuclei. Electrons move very fast around 
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nuclei; nuclei move very slowly by comparison to electrons. Thus, the electronic 

wave function depends explicitly on the electron coordinates and parametrically 

on the nuclear coordinates under the Born-Oppenheimer approximation. The RA 

parameterized electronic Hamiltonian can be written as: 

N 2 
Hel = ^T —Vf Electronic kinetic energy 

1=1 2 

N    M y 
- ^T ^ j2—4T~Y Electronic coulomb potential at fixed nuclear 

1=1  A=\ <?.-i) 

coordinate RA 

N      M      1 

+ Vy — Electron-electron coulomb potential 
i=l  j>i rij 

Hel, the electronic Hamiltonian, can be further simplified as: 

N        1 N      N      1 

^^SeVf-^r^fSZ1 (2-4) 
i=l    -^ i=l j>i fy 

N N     N    i 

1=1 i=i j>i 'y 

where V A., called core Hamiltonian, denoted as Hc
e°

re, is independent from the 
1=1 

N     N    i 

electron-electron coupling V V —. The electron-electron coupling potential, 
1=1   j>i 'ij 

makes the PDE too difficult to solve directly. Perturbation theory is used to 

obtain approximate solution. Approximate solutions can be improved and 

enhanced based on the Variational Principle. 
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2.2.2. Variational Principle. The time-independent Schrödinger equation 

is an eigenvalue equation: 

H„»=%) (2-6) 

Where B.Tolal is a Hermitian operator, | \y) is the wave function represented as a 

linear combination of basis sets, and E is the energy. For a many particle system, 

the Schrödinger equation cannot be solved exactly, one need to find an 

approximate approach to the solutions of the eigenvalue equations.   One can 

select the solutions to be normalized wave functions: 

[y/[yi) = \ (2-7) 

To solve this PDE, the wave function is required to be well behaved and satisfy 

appropriate boundary conditions (e.g. vanish at infinity). The expectation value 

of the Hamiltonian, is an upper bound to the exact ground state energy. 

yJ\H\\(/) = E\y/) (2-8) 

Using Lagrange's indeterminate multipliers method, mathematical manipulation 

can easily prove that: 

(y,\H\y,)>E0\¥) (2-9) 

The equality only holds when: 

M=ko) (2-10) 

Since E>E0, one's interest is to find the minimum energy of this eigenfunction. 

The lower the energy one finds, the higher the accuracy. 



2.3 Electronic Wave Function 

2.3.1. The Anti-symmetry Principle. Electrons are identical, moving 

rapidly around the nuclei with either spin up or spin down. Because the non- 

relativistic Hamiltonian operator makes no reference to spin, we simply make the 

wave function dependent on spin. Without concerning spin, a two electron 

system with one electron at position (*,, y,,z,) and the another at (x2,y2,z2), the 

general wave function is v¥(xl,yl,zl,x2,y2,z2). For simplicity of notation 

x¥(xl, y{, z,, x2, y2, z2) is abbreviated as just ¥(1,2), with 1 representing the 

coordinates of particle 1 and 2 representing the coordinates of particle 2. The 

probability of finding the first particle within the differential volume 

drx = dxxdyxdzx and the second particle within dx2 = dx2dy2dz2, integrated over 

all space, the total probability of all possible arrangements of the two particles 

must be unity, giving the normalization condition: 

jJT* (1,2)^(1,2)^7,^72 = 1 (2-11) 

The probability distribution ¥2 = ¥*¥ should be unaffected by changes in the 

arbitrary particle labels, 

VF2(1,2) = VP2(2,1) 

¥(1,2) = ±¥(2,1) 

Bosons particles have integral spin; Fermions particles have half spin. Thus, all 

wave functions must be either symmetric (+) or anti-symmetric (-) with regard to 

exchange of the labels of any identical particles, under the condition of ignoring 
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the spin effect. With the spin, therefore, an additional requirement must added to 

a wave function: a many-electron wave function must be anti-symmetric with 

respect to the interchange of the coordinates x both space and spin for any two 

electrons, this also called the anti-symmetry principle. It can be denoted as: 

T (•*),■■' jX^- ■• ,Xj,- ■• ,xN) = — x(x,,---,Xy,- •• ,xt,- ■• ,xN) (Z-lzJ 

2.3.2. Spin Orbitals and Spatial Orbitals. An orbital is defined as a wave 

function for a single particle (e.g. an electron). A molecular orbital is the 

molecular electronic wave function. The spatial portion of a molecular orbital, a 

spatial orbital, y/t{r) is a function of the particle's position vector r. A spin 

orbital is the spatial orbital with a factor designing spin up (denoted by a) ox 

spin down (denoted by ß). So, \y/j(r)\ dr is the probability of finding the 

electron in the small volume element dr at the distance r (where r is a position 

vector). 

Spatial molecular orbitals form an orthonormal set such that: 

\y/]{r)¥j{r)dr = Sij (2-13)    . 

If the set of spatial orbitals {y/^ were complete, then any arbitrary function could 

CO 

be written as/(r) = V C^,-(r), where the Ci are constant coefficients. The spin 

orbital can be denoted by spatial orbital with spin factor: 

_,YSr) 
\r)-\(r) (2-14) 
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where a represents spin up, ß represents spin down. If spatial orbitals are 

orthogonal, the spin orbitals are orthogonal too. 

j X'i (x)Xj (x)dx =< %i \Xj >= Sv (2-15) 

2.3.3 Hartree Products. Before considering the form of the exact wave 

function for a fully interacting system, neglecting electron-electron repulsion then 

equation (2-5) becomes: 

X= £ k (2-16) 

Alternatively, h{i) might be an effective one-electron Hamiltonian that includes 

the effects of electron-electron repulsion in some average way. Thus, h(i) will 

have a set of eigenfunctions, which are a set of spin orbitals {%j}. 

\rfMd~ejZMd (2-17) 

N 

Because V h{ is a sum of one-electron model Hamiltonians, a wave function 
i=i 

which is a simple product of spin orbital wave functions for each electron, written 

as: 

x¥HP(xl,x2,---,xN) = zi(x1)Zj(x2}--%k(xN) (2-18) 

is an eigenfunction of K: 

KWHP = EKf'HP 

The total energy E is just the sum of the spin orbital energies of each of the spin 

orbitals appearing in X¥HP: 
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E = ei + £j+-+sk (2-19) 

Such a many-electron wave function, *¥   , is called a Hartree product. 

2.3.4 Slater Determinant. A Hartree product is an uncorrelated electron 

wave function, because the probability of finding electron number one at a given 

point in space is independent of the position of electron number two when XVHP\% 

used. In reality, electron one and electron two are correlated; because of electron- 

electron repulsion electron one will "avoid" regions of space that occupied by 

electron two. Also, the Hartree product does not account of the 

indistinguishability of electrons, but specifies the electron one as occupying spin 

orbital %., and the electron two as occupying Xj ■ The antisymmetry principle 

requires electronic wave functions be antisymmetric with respect to the 

interchange of the space and spin coordinates of any two electrons. Therefore, 

Slater determinant is a better approach to write the electronic wave function as 

follows: 

*¥, (rl,r2,...rN) 
INI 

X\(r\)        Xl(r\) 

X\(r2)       X2(r2) 

X\(rN)       Xl(rN) 

X N\(r\) 

XN{r2) 

X\(rN) 

(2-20) 

where   ,— is a normalization constant and y,, is a spin orbital. The Slater 
VJVT () 

determinant wave function is commonly abbreviated as Det ¥, (rl,r2,---,rN) 
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Exchange of electrons corresponds to swapping two rows in the matrix, which 

will change the sign of the determinant satisfying the anti-symmetry requirement. 

If two columns in the matrix are identical, i.e. two electrons of the same spin are 

placed in the same orbital, the determinant is zero, as required by the Pauli 

exclusion principle. 

2.3.5. Basis Sets. The choice of the trial wave functions is important to the 

solution. The most commonly used choice is linear combinations of atomic 

Orbitals (LCAO). Since the atomic orbitals can be chosen as orthonormal 

functions, this is a finite generalized Fourier series expansion of the molecular 

orbitals. The atomic orbitals are composed of basis functions called a basis set. 

The basis sets are a summation of series expansion of electron spatial orbitals. 

The most common and the easiest approach is to use Slater function orbitals. 

Slater orbitals work well in describing the electron's properties, but unfortunately, 

they produce difficulties during computation. In order to increase calculation 

efficiency, some approximation and standard basis set functions are needed. If 

Gaussian functions are used instead of Slater functions the four-center integrals 

that are most time consuming in computation can be changed to two-center 

integrals. Two-electron integrals can be calculated rapidly and efficiently with 

Gaussian functions. However, Gaussian functions are not optimum basis 

functions and have functional behavior different from the known functional 

behavior of molecular orbitals. 
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The Minimal ST0-3G Basis Set. One can use fixed linear combinations of 

the primitive Gaussian functions to form a contracted Gaussian: 

<G>-RA) = IVl>rK„,r-RA) (2-21) 
P=\ 

Where L is the length of the contraction, dpu is the contraction coefficient, apu is 

contraction exponent. By a proper choice of L, dpu, and apu, the contracted 

Gaussian function can be made to assume any functional form consistent with the 

primitive functions used. For example, in the Figure 1, there is a least square fit a 

Slater Is function. For L=l: 

Off (£ = 10,STO-IG) = Of/(0.270950) (2_22) 

ForL=2: 

Off (£= 1.0, STO-2G) = 0.678914Of/(0.151623) + 0.430129Of/ (0.851819) 

(2-23) 
ForL=3: 

OffF(%= l.0,STO-3G) = 0.4446350^(0.109818) 

+0.535328O[f(0.405771) + 0.154329O<f (2.22766) 

(2-24) 

Higher Level Basis Sets. The reason why we need higher basis sets is the 

Minimal STO-3G Basis Set (MGS) provides poor results, because MGS does not 

have the ability to expand or contract the orbital in response to different bonding 

situations. Theoretically, increasing the basis sets size will increasing the 

accuracy. On the other hand, higher level basis sets formed by adding specific 
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functions to the basis set, such as using a split-valence or 'double zeta' technique 

to treat the electrons in different sub-shells differently, as well as the polarization 

and the size of atoms, can also improve the quality of basis set. Commonly used 

basis sets are listed in Appendix A. 

e 

0.5 

0.4 

0.3 

0.2 

D.l - 

Radius (a.u) 

Figure 1. The quality of the least-squares fit of a Is Slater function obtained 
at the STO-1G, STO-2G, and STO-3G (g = 1) 

Larger sized basis sets result in more accurate results. Using infinite of 

basis set we may get the exact solution. However, the actual calculation methods 

have their limits because the currently used methods are all finite approximate 

methods. The dependence of calculations on size of one-electron and N-electron 

basis sets is summarized in Figure 2. When one adds up all those terms in the 

molecular orbitals, the Hartree-Fock calculations become complex very quickly. 

25 



For example, consider the diatomic molecule HF, for six atomic orbitals to 

represent each molecular orbital. If one uses 6 Gaussian functions to represent 

each atomic orbital, one would have 36x36x6 complicated integrations to 

perform for a single iteration of the HF- SCF calculation procedure. Sometimes, 

we have to trade off accuracy with cost. 

50 

40 

30 

to 
EO 

*o 
1» 

e 
IO 

Hartree-Fock 
Limit 

Exact   Result 

-*—  Full   Ci 

• IO IOO IOOO      10,000 
Number of  Slater   Determinants     (2*) 

Figure 2. Dependence of calculations on size of basis sets 

2.4 Ab Initio Hartree-Fock Self Consistent Field (HF-SCF) 

2.4.1. Hartree-Fock Approximation. Assume there is an average static 

electric field generated by (N-l) electrons to form a spherical potential V;(r) 

which is centered at the nucleus. VHF(i) are called Hartree-Fock potentials. 

With this assumption, a many particle system can be broken down to a single 

electron system, under the condition of an average potential V   (i). Define the 

Fock operator as: 
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/(0 = £4v?-Fto)) + r"'(i) (2-25)' 
1=1   *• 

where /(/) is an effective one-electron operator. Under this one-electron model, 

Schrödinger equation can be written as: 

/(0;rt*,) = **(*,) (2"26> 

The solution of PDE equation (2-26) yields a set of orthonormal Hartree-Fock 

spin orbitals {% } with orbital energies {sk}. Now one attempts to find a set of 

spin orbitals {%a} to form a Slater determinant wave function 

| *o/ = \X\X2'"XaXb'"XN) *■        ' 

According to the variational principle, the best spin orbitals are those which 

minimizes the electronic energy: 

Eo = {%\H   I %> = X(<#*) + ^1WW 
a Z  aft 

= £ (fl|Ä|a> + -2 [aa|ta] - [ab\ba] (2-28) 
a 2 ab 

One can systematically vary the spin orbitals {%J, constraining them to remain 

orthonormal: 

(z.k»>=*„ ■ <2-29> 

until the energy E0 is a minimum, hi doing so, one obtains an equation that 

minimizes E0. This equation is the Hartree-Fock integro-differential equation: 

A(l)*fl(l) + E[J|*>(2)|V^ 
b*a b*a 

(2-30) 

Where h(l) is the core Hamiltonian, %a is the best spin orbital that minimizes the 
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energy, % is the other possible spin orbital. To simplify the equation (2-30), 

define the coulomb operator: 

W) = \\zb(2)(tfdx2 = \xb\2)r^Xb(2)dx2 (2-31) 

Where Jb(l)%a(l) represent electron one in %a experiencing a one-electron 

coulomb potential (attraction); % (I) is a one-electron model spin orbital. Define 

one particle model exchange operator: 

Kb(\) = jzb\2>l~2Xa(2)dx2. (2-32) 

KA\) is a non-local operator, which has no classic meaning. It is arises from 

electron's anti-symmetric nature. Two identical electrons cannot exit in the same 

spin orbital. Rewriting the one particle model Fock operator in the form of 

coulomb operator and exchange operator gives: 

f(l) = h(\) + ^Jb(\)-^Kb(l) (2-33) 
b*a b*a 

The Hartree-Fock (HF) equation is: 

AZa) = ea\Za) (2-34) 

Notice that the Fock operator is a function of the spin orbital, so equation (2-34) is 

a pseudo eigenvalue equation, ie. HF equations are non-linear equations needing 

to be solved by iterative procedures. The Hartree-Fock Self Consistent Field (HF- 

SCF) flow chart is show in Figure 3. 
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Figure 3. The flow chart of HF-SCF calculation 

2.4.2. Closed-Shell Hartree-Fock. Restricted spin orbitals are constructed 

to have the same spatial function for both a and ß spins. For the closed-shell 

Hartree-Fock method, a restricted set of spin orbitals has the form: 

y/.{r)a(a) 

and the closed-shell restricted ground state wave function is 

(2-35) 

%) = \ZlZ2-ZN-lZN) = \VlVl-VaVa-V'NI2V Nil (2-36) 
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The general spin orbital HF equation (2-31) is converted to a spatial eigenvalue 

equation, where each of the occupied spatial molecular orbitals, 

{y/a \a = 1,2, • • •, N / 2}, is doubly occupied. The sum over all spin orbitals is equal 

to the sum over those with spin up and those with spin down: 

N     N .N N 

/ i / , A, aAb       / i A, a / , A. b 
ab a 3 

Nil Nil 

Nil N/2 

a      b 

= Y^¥a¥b^¥a¥b + ¥a¥b^Wa¥b (2-37) 

Equation (2-28) reduces to an equation involving spatial orbitals; the Hartree- 

Fock energy of a closed-shell ground state is: 

Nil Nil Nil 

V/a) + T,ll2(V/aV/«\V/bV/b)-(VaV/b\V/
bVa)    (2~38) 

a      b 

EQ=2^(y/a\h\ 
a 

or with simplified notation: 

N/2 N/2 

EQ = 2£ (a\h\a) + £ l(ab\ab) - (ab\ba) (2-39) 

2.4.3. Solve Hartree-Fock Roothaan Equation. In 1964, Roothaan [14] 

used matrix techniques to solve HF equation in restricted spin orbitals (RHF) 

case. It can be summarized as following procedure{RA} 

1)   Specify a molecule (a set of nuclear coordinates, atomic numbers {ZA} , 

and number of electrons N) and a basis set {cf)u} 
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2) Calculate all required molecular integrals, Suv, H^re, and (uv\ A,cr) 

3) Diagonalize the overlap matrix S and obtain a transformation matrix X 

Obtain a guess at the density matrix P 

4) Calculate the matrix G of equation from the density matrix P and the two- 

electron integrals (wv| XG) 

5) Add G to the core-Hamiltonian to obtain the Fock matrix F = Hcore + G 

6) Calculate the transformed Fock matrix F' = X+FX 

7) Diagonalize F' to obtain C and 8 

8) Calculate C = XC 

2 

9) Form a new density matrix P from C using Puv = 2^ CuaC*m 
a 

10) Determine whether the procedure has converged, ie., determine whether 

the new density matrix of step (10) is the same as the previous density 

matrix within a specified criterion. If the procedure has not converged, 

return to step (5) with the new density matrix. 

11) If the procedure has converged, then use the resultant solution, represented 

by C, P, F, etc., to calculate expectation values and other quantities of 

interest. 

2.4.4. Matrix Element Technique in Roothaan Equation. Since spin has 

been eliminated, the calculation of molecular orbitals becomes equivalent to the 

problem of solving the spatial integro-differential equation 

f{\)%{rl) = s^i{r\) (2-40) 
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A set of K known basis functions {{<pu (r)\u = 1,2, • • •, K) is introduced and the 

unknown molecular orbitals are expanded in the linear expansion: 

^■=ZQ,A i=l,2,....,K (2-41) 
u=\ 

Using the linear expansion (2-38) by substituting (2-37), one obtains the equation: 

/(.)ZCvA(.) = ^ZC^v(.)^(i) (2-42) 
u=\ u=\ 

By multiplying both sides by <fu (1) and integrating it, the integral-differential 

equation is turned into a matrix equation: 

V V 

To solve matrix equation (2-43): 

1)   Define overlap matrix S having elements: 

v(l) 
(2-43) 

s = fo < 

2)   Define Fock matrix F having elements: 

EF«vC, = SiISwCv/ i=l,2,3, K 
V V 

In the form of matrix: 

(2-44) 

(2-45) 

(2-46) 

FC = SC£ (2-47) 

where C is a Kx K square matrix of the expansion coefficients Cui: 

C = 

(C c M2 

r 
*-"21 

c 

c c 

c„ 
c Ik 

a 
(2-48) 

kk J 
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s- 

^,000 
0 e2 0 0 
0     0    '•.    0 

v0     0     0    BkJ 

(2-49) 

The matrix e is a diagonal matrix of the orbital energies ei. 

3)   The density matrix is defined as: 
H 

P   =2YC C* (2-50) 
a 

If an electron described by the spatial wave function y/a (r), then the 

probability of finding that electron in a volume element dr at a point r is 

I |2 |^a(r)| dr . The probability distribution function (charge density) is 

I |2 ya(r)   • If a closed-shell molecule is described by a single determinant 

wave function with each occupied molecular orbital y/a containing two 

electrons, the total charge density is: 

N_ 

Ar)=2£|Wf 
a 
N_ 

= 2£*Fa>y*'a(r) 
a 
N_ 

=z 
a v 

JV 

2 

2YC c* /  /     ua    va ®u(r)®l(r) 

^uvOu(rWv(r) 

(2-51) 

(2-52). 

Using the Fock operator: 
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N_ 
2 

f(l) = h(l) + X2Jfl(l)-K» (2-53) 
a 

the Fock matrix F is defined in the basis {<!>„} with elements: 

FUv=ko;(l)f(l)0(l) 
J V 

N 
2 

= Hr + Z 2(«v|flfl) - HflV) (2"54) 

=Hr+lp 
XS 

{uv\8X)—(wA|^v) (2-55) 

= Hcore+G (2-56) 
«V UV V ' 

where //cc"'e is the one-electron term, which is fixed for a given basis set system; 

Guv is the two-electron term which depends on the density matrix P and the two- 

electron integrals: 

(uv\AS) = J^Jr20; (1)0,(1)^0; (2)0,(2) (2-57) 

There are a large number of two-electron integrals to evaluate for HF calculations. 

This is the major difficulty in Hartree-Fock calculations and all ab initio 

calculations. 

2.4.5. Hartree Fock limit. In the HF calculation, the Fock operator in (2- 

53) has three terms, the core Hamiltonian h{\), coulomb integral term ]T./6(1) 
b*a 

and exchange term ^ Kb (1). For this coulomb term, HF method treats the 
b*a 

electron as an independent particle, ignoring the electron-electron correlation 

term. Thus, the use of the uncorrelated electronic wave function in the HF-SCF 

model will produce larger errors for chemical reactions that involve bond making 
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and breaking compared to the calculation of equilibrium properties. Increasing 

the size of the basis set may improve HF-SCF answer, which will converge to a 

limit, the so-called Hartree-Fock limit. The correlation energy is defined as the 

difference between the exact energy and the energy at the Hartree-Fock limit: 

Econation = Eexact ~ EHF ■ Trie correlation energy at equilibrium is typically 20-30% 

of the dissociation energy, ie., the correlation errors are large. 

2.5 Post Hartree-Fock Calculations 

2.5.1 Configuration Interaction (CD. The basic idea is to diagonalize the 

N-electron Hamiltonian in a basis of N-electron functions (Slater determinants), 

ie., represent the exact wave function as a linear combination of N-electron trial 

functions and use the linear variational method. If the basis were complete, one 

would obtain the exact energies not only of the ground state but also of all excited 

states of the system. In principle, CI provides an exact solution for many-electron 

problems. In practice, however, one only can handle a finite set of N-electron 

trial functions; consequently, CI provides only upper bounds to the exact energies. 

One way to construct determinantal trial functions are to use weighted sums of 

Hartree-Fock molecular orbitals obtained by solving Roothaan's equations. The 

form of full CI wave function can be written as: 

l«>o>=cbi%)+z<W+zd^ irs 
vab 

a<b 

+ 2/&W+   XC|^)+-" (2-58) 
a<b<c a<b<c<d 
r<s<t r<s<t<u 

35 



Where |O0) is the exact many-electron wave function, |¥0) is a reasonable 

approximation to |O0), l^) is a possible singly excited determinants (which 

differ from l^)), 1^") is the doubly excited determinants, etc., and cr
a is the 

relevant coefficient of excited determinants. 

Given the trial function of Equation (2-46), one can find the corresponding 

energies by using the linear variational method. The lowest eigenvalue will be an 

upper bound to the ground state energy of the system. The higher eigenvalues 

will be upper bounds to excited states for the system. The difference between the 

lowest eigenvalue and the Hartree-Fock energy obtained within the same one- 

electron basis is called the basis set correlation energy. As the one-electron basis 

set approaches completeness, this basis set correlation energy approaches the 

exact correlation energy. For a given one-electron basis set, full CI is the best one 

can do. 

2.5.2. Multi-configuration self-consistent field (MCSCF) calculation. 

The canonical Hartree-Fock orbitals are not the best choice of orbitals for use in 

CI calculation. Consider a multi-determinantal wave function, containing a 

relatively small number of configurations, and vary these orbitals so as to 

minimize the energy. This is called the multi-configuration self-consistent field 

(MCSCF) method. The MCSCF wave function is a truncated CI expansion: 

I^CFHE'/W (2-59) 
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in which both the expansion coefficients (c,) and the orthonormal orbitals 

contained in j^} are optimized. The general equations are more complicated 

than Roothaan's restricted Hartree-Fock equation. The result is much closer to 

the exact solution. 

2.5.3. The completed active space (CAS) calculation. CAS combines the 

SCF computation with a full CI involving with a subset of orbitals, which is 

known as the active space. It is a very high-level ab initio calculation method. 

2.6 Semi-empirical HF-SCF Method (AMI) 

In order to calculate larger molecules inexpensively, additional 

approximations are required beyond those used in the ab initio method. The most 

difficult and time-consuming procedure of the ab initio method is the computation 

of the large number of two electron (repulsion or exchange) integrals, such as the 

matrix elements in Equations (2-44), (2-45), (2-46). One important fact is that the 

overlap between different atomic orbitals of an electronic model usually is very 

small, and can be approximately neglected. For example, the overlap between Is 

and 2p orbitals from the same atom is essentially zero. The overlap between two 

different atomic orbitals describing the molecular orbital of an electron is referred 

as differential overlap (DO). If the atomic orbitals originate from the same atom, 

it is called monatomic differential overlap; if from different atoms it is called 

diatomic differential overlap. By assuming differential overlap to be negligible, a 

large number of integrals involved in the Fock operator can be set to zero. This 
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neglect of differential overlap (NDO) formed the basis for the first semi-empirical 

method. According to the approximation level, there are various models, such as, 

completed neglect of differential overlap (CNDO); intermediate neglect of 

differential overlap (INDO), neglect of diatomic differential overlap (NDDO); 

modified neglect of diatomic overlap (MNDO). The Austin Model 1 (AMI) 

semi-empirical Hamiltonian method was used in this thesis. AMI is an extension 

of the earlier version of MNDO/3 Hamiltonian. In attempted to correct MNDO's 

deficiency by assigning a number of spherical Gaussian functions to each atom to 

mimic correlation effects [22]. The flow chart of AMI SCF calculation is showed 

in Figure 4. 

Initial Guess of Geometry 

Assign Parameters 

SCF Calculation 

New 
Geometry No 

Yes 

Energy 
Converge 

1 
Result 

Figure 4. The flow chart of AM1-SCF calculation 
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Another simplification in the SE method is to treat interaction integrals as 

element-specific parameters. The number of parameters required to describe an 

element corresponds to the number of interaction terms in the approximate 

Hamiltonian used. Examples of parameters are the one-electron energy of an 

atomic orbital of an ion (bare nucleus + core electrons) resulting from the removal 

of all valence electrons, an atomic Slater orbital exponent, or the exponent in 

Gaussian describing core-core repulsion. The ultimate success of the SE method 

hinges on the validity of the approximate Hamiltonian used and on the values of 

the parameters used. Ideally, one would want the parameters that describe each 

element to be completely independent of the molecular environment. In reality, 

the specific molecular environment does affect the atomic parameters. In order to 

make the application of the method generic, the parameters are selected to 

minimize the least square error for selected molecular properties for a large set of 

molecules. In accepting experimental parameters the variational principle is no 

longer valid. 

It should be noted that the use of experimental data to determine the 

parameters in SE method results in chemical usefulness and efficiency. Because 

SE can significantly reduced the computational time, it can be applied to large 

systems, such as bulk materials, surface modeling, and polymer calculations. In 

some case, SE can predict the better results than Hartree-Fock ab initio methods. 

However, to improve the agreement with the experiment, more terms are added to 

the approximation model, consequently, the physical meaning of each term 
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becomes more poorly defined and SE technique becomes more of a curve fit than 

a physical model. Complete discussions of SE methods see reference [23]. 

2.7 Density Functional Theory (DFT) 

2.7.1. Basic Principle of DFT Method. Many body quantum problems can 

be rigorously recast in the form of an auxiliary single-body problem. Ground 

state observable are uniquely determined by ground state electron density, p. 

Observables, like energy, are a function of the ground state electron density. In 

DFT theory, the particle-particle interactions are represented as a density- 

dependent single-particle potential. In this potential are included direct (Hartree) 

contribution and exchange-correlation part, which is a functional of electron 

density. The exact density functional is unknown, so the objective of DFT is to 

derive simple approximations to the density functional (DF). 

The standard approximation for the exchange-correlation energy functional 

(X-C) is the local density approximation (LDA). The true X-C energy density is 

replaced by the X-C energy density of an electron gas. 

2.7.2. A Simplified Derivation of DFT Theory. 

Et(p)    =   T(p)    +   U(p)    +  Exc(p) (2-60) 

Et(p) is the total energy of a system where T(p), the kinetic energy of a 

system of non-interacting particles is a function of density p. U(p) is the classical 

electrostatic energy due to columbic interaction. Exc(p) is an interaction includes 
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all many-body contribution to the total energy, in particular the exchange and 

correlation energies the exact form of which is not known. 

Choose an orthogonal basis set, then: 

Yt Yj) = Sl, 

The charge density is given as: 

P(r)=Z   IwWI2 

T%U-\*\,: 
n     N -z 

R„-r 
O i(r) 

+|ZZ( «WV™ TT^tA) 
'1       '2 

N 7—7 N 7^.7 
+y Y— Z£- + V Y— ^ 

a   ßZa^a      ^ß a   ßZa^a      ^-ß 

(2-61) 

(2-62) 

(2-63) 

^S'CZ/^T^V^^L^VZS 
zz« 

&-H/   2 ri      r2|/        a   ^«^a -^ 

%). =<-p(ri)VN>     +      <p(r,)-^> 

electron-nucleus electron-electron        nucleus-nucleus 

+      <VNN>      (2-64) 

1 
Exc(p) is usually separated into exchange and correlation functional components 

which are local or non-local in density, ie.: 

Exc(p) = Jexc[p(r)] p(r)dr (2-65) 
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Sxc(p)=£x(p)     +      £X,NL(P,VP)       +      ec(p)+ 

exchange 
local 

exchange 
non-local 

correlation 
local 

SC,NL(P,VP) 

(2-66) 

correlation 
non-local 

£xc (p) is exchange-correlation energy per particle in a uniform electron gas. 

2.7.3. Local Density Approximation (LDA). LDA assumes that the 

charge density varies slowly on an atomic scale (i.e. each region of a molecule 

actually looks like a uniform electron gas) and the non-local functional 

components sx, NL (p,Vp) and sC; NL(P,Vp ) can be ignored. In this paper, LDA 

was applied. For detailed discussions and the presentation of the non-local 

density approximation (NLDA) please see reference [24]. 

2.7.4. Beck's Three-Parameter Hybrid Functional. Using LYP 

Correlation Functionals, there are a lot of functionals from which to choose to 

serve individual application purposes. Based on SiC cluster results from previous 

calculations [14], we choose Beck 3LYP type functional [25]. It has the form of: 

A*ExSlater + (1_A)*ExHF +ß* ^Becke + ^VWM + c* ^ non-local (2-67) 

The non-local correlation is provided by the LYP expression, and VWN is 

functional III (not functional V) [26], the constants A, B, and C are those 

determined by Beck by fitting to the Gl molecule set. 
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2.7.5. Computation Process. Similar to HF calculation, the matrix 

elements were employed to calculate the energies in which we are interested; the 

first step is to write the total energy expression as: 

Et(p)=£  O, 
2 

% ) + UH)(^/W + ^-^)) + ^      (2-68) 

To minimizing Et with respect to p, subject to the orthonormality constraints [27], 

the following term is set to zero: 

TJ-EJ>,(*'I*/}=0 <2-69> 

where Sy are Lagrange Multipliers.   Then, the Kohn-Sham Equation is: 

■K+V,+u„<j>)\Qt =€,<!>, (2-70) 
V2 

I    2 

dp 
where uxc is a universal functional of electron density. This step is similar to HF's 

initial guess for the wave function. Then the total energy including exchange and 

correlation term is a function of electron density: 

E, =Z^+/AH)(^(^)-^(P)-^ + ^ (2-72) 

A local combination atomic orbital approximation solution results from the 

following choice of wave function form: 

^=EQZH (2-73) 
u 

where %u is the spin orbital wave equation just like in the HF-Roothaan equation. 

In the matrix form: 
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HC = fSC (2-74) 

The H matrix elements are given as: 
V2 

l- — + Vc(r) + u'x{r)\y/i = eiy/i 

V2 

[- — + Vc(r) + uxc(r)tyi = £iy/i 

V2 

(2-75) 

Xv(rl) (2-76) "wv — ( Xu(rX 

The S matrix elements are: 

S«v = \Xu(r\)\Xv(r\)j V-'ll) 

The DFT calculation process first evaluates u   = —(psxc), the universal 
dp 

electron density functional, then other steps are very similar to solving HF- 

Roothaan equation. Because of this extra term, DFT calculations are more 

expensive than HF calculations. However, DFT calculations included both 

exchange and correlation terms, which the HF calculation ignores. Therefore, 

comparable DFT calculations are more accurate than HF calculations.   The SCF 

calculation process is shown in Figure 5 below. 
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--V2Vc(r) = 4np(r) 

I 
uxc(r) = f[p(r)] 

V2 

[- — + K (?) + uxc (r)] Wi = ^V t 

(.Hpq-£iSpq)Ciq  =0 

ÄM=J®;(r)<D,(r)dr 

1 
d£/a/?=o £ = £[A * ] 

a 

Figure 5. The flow chart of DFT-SCF calculation 
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A brief comparison of HF method and DFT method equations follow: 

HF (1928, 1930) DFT (1964, 1965) 

E = E[V,Ra] (la)   E = E[p,RJ (lb) 

£ = JV£>,+X-V</r        (2a)   E = T(p) + U(p) + Exc(p) (2b) 

T = |^1(l),^2(2),--^(«)| (3a)   p(r) = X0CCk-Wr (3b) 

dE/ff¥ = 0 (4a)   dE/dp = 0 (4b) 

V2 V2 

[- — + Vc(r) + u,
x(r)-\\i/i=ely/i   (5a)   [- — + Vc(r) + uxc(r)]y/l=el\i/l (5b) 

The explanation of these equations follows: 

la:    Total energy is expressed as a function of total wave function 

lb:   Total energy is written as a function of total electron density 

2a:    Total energy is an expectation value of the exact Hamiltonian 

2b:   Total energy is decomposed in a formally exact way into three terms 

3a:    Total wave function is approximation zed by Slater determinant 

3b:    Total density is decomposed into single-particle density that originates from 

one particle wave function 

4a:    Variational principle applied to the Slater determinant 

4b:   Variational principle applied to the total electron density 

5a:    Hartree-Fock Equation: One particle eigenvalue equation 

5b:    Kohn-Sham Equation: One particle effective Schrödinger equation 
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III. Assessment of Accuracy of AMI Method for Silicon Carbide System 

All AMI calculations were carried out using a Sgi 02 workstation, which 

has IRX 6.5 operating system. The software package of GAMESS version 10 Jan 

2000 is used for AMI calculations. The initial geometric coordinates were 

obtained from HyperChem 4.0 AMI/MM calculation on Pentium 200. Restricted 

open shell calculations (ROHF) were used for all calculations. 

As a semi-empirical method, AMI has the advantage of being fast. On the 

other hand, it has the disadvantage of poorly predicting geometries for molecules 

different from those used to determine parameters. Similarly, SE methods can 

predict the energies close to the experiment results, when they are parameterized 

with both experimental energies and structures that are similar to those used to 

derive parameters. Following is a comparison study on SimCn clusters (m + n =4, 

5, 6, 7, 8) using AMI method with DFT method and experiment results. 

3.1 Comparison Study of Si2C3 Isomers Using AMI, HF and DFT Methods 

Six linear and eight non-linear Si2C3 isomers are found with singlet (So) and 

triplet (To) minimum energy optimization using HF and DFT calculation [see 14]. 

These structures are showed in Figure 6. 
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Figure 6. The structures of Si2C3 isomers predicted by HF and DFT methods 
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Six linear and six non-linear Si2C3 isomers are found with singlet (So) and 

triplet (To) minimum energy optimization using AMI method. The nonlinear 

structures are showed in Figure 7 

Figure 7. The non-linear Si2C3 isomers structures predicted by AMI method 

Comparing the listed structure in Figure 6 and Figure 7, the linear structures 

predicted by AMI method are similar to the linear structures predicted by HF and 

DFT method, but with different bond lengths. The bond lengths of linear 

structure of S12C3 isomers are listed in Table 5. For nonlinear structures, the AMI 

method only predicts that there are six nonlinear structures for Si2C3 isomers (see 

Figure 7), but HF and DFT method predict that there are eight nonlinear structures 

for Si2C3 isomers (see Figure 6). Comparing Figure 6 and Figure 7, AMI method 

is not able to predict the three-dimensional structures of Si2C3 isomers. 
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Table 5. The bond length comparison for linear Si2C3 isomers calculations 
using by different methods 

Isomer Bond Length Parameters 
AMI HF* DFT* 
So To S0 T0 So T0 

LI Sym. 
Dooh (-'ooh Dooh Dooh Dooh Dooh 

Si,-C2 1.552 1.511 1.672 1.739 1.704 1.763 

c2-c3 1.276 1.318 1.287 1.282 1.297 1.296 
C3-C4 1.242 
C4-C5 1.587 

L2 Sym. 
«^ooh L'ooh v^ooh «^ooh *^ooh v--ooh 

Si,-C2 1.555 1.549 1.671 1.866 1.695 1.750 
C2-Si5 1.533 1.544 1.649 1.670 1.675 2.024 
Si5-C3 1.549 1.552 1.667 1.667 1.687 1.750 
C3-C4 1.260 1.261 1.262 1.264 1.282 1.293 

L3 Sym. 
v^ooh ^ooh L'ooh v-'ooh >^ooh v--ooh 

Sii-Si5 1.977 1.918 2.127 2.156 2.169 2.233 
Si5-C2 1.597 1.592 1.717 1.760 1.718 1.725 
c2-c3 1.279 1.277 1.278 1.248 1.294 1.291 
C3-C4 1.283 1.287 1.285 1.341 1.304 1.317 

L4 Sym. 
v^ooh t-'ooh v-'ooh v-'ooh L-ooh v^ooh 

Si,-C2 1.581 1.565 1.702 1.719 1.745 1.772 
Sii-C3 1.249 1.255 1.751 1.783 1.748 1.761 
C3-C4 1.639 1.625 1.251 1.223 1.274 1.263 
C4-Si5 1.574 1.580 1.714 1.847 1.740 1.793 

L5 Sym. 
Dooh Dooh Dooh L-ooh Dooh Dooh 

Sii-C2 1.609 1.629 1.791 1.800 1.770 1.806 
S11-C3 1.603 1.536 1.660 1.658 1.700 1.698 
C3-Si5 1.652 
Si5-C4 1.823 

L6 Sym. 
v.'ooh L-ooh L-ooh l^ooh v-^ooh 

Sii-C2 1.588 1.491 1.594 1.846 1.743 
Sii-Sis 2.010 2.242 2.074 2.102 2.162 
Si5-C3 1.535 1.544 1.679 1.672 1.689 
C3-C4 1.278 1.280 1.267 1.269 1.290 

* Other than AMI method are calculated by Duan[14]. 

Observing Table 5, one can see that AMI predicts the shortest bond lengths 

among these three methods. For the same symmetry structure, NL6, in singlet 
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optimization, for the bond length between Sii and C2 (see Fig. 6 and Table 5) 

AMI predicts 1.588 Ä, HF predicts 1.594Ä, and DFT predicts 1.743Ä. By 

comparing all bond length listed in the Table 5, one can see that the order of bond 

length by different calculation methods is: AMI < HF < DFT. There are only a 

few exceptions, such as the C3-C4 bond length in structure L4, where AMI 

predicts larger bond length than HF by 0.40 Ä and larger than DFT by 0.36 Ä; 

and the C3-C4 bond length in structure L6, where AMI predict larger bond length 

than HF by 0.01 Ä. The DFT method predicts average bond length larger than 

AMI method by 0.165 Ä, and the HF method predicts average bond length larger 

than AMI method by 0.139 Ä. 

Besides the differences in bond lengths, AMI is not able to predict NL6 and 

NL4, the three-dimensional structures found using HF and DFT methods. 

Because AMI predicts the bond lengths too short, the repulsion forces are too 

high in three-dimensional structures. However, all above three methods, AMI, 

HF, and DFT are agreed that LI is the ground state structure. 

The electron affinity results calculated by several methods are listed in 

Table 6 [14] (see next page). Results show that the DFT method using large basis 

set (cc-pV5Z+) predicts the best result for electron affinity, which is excellent 

agreement with the experimental result. Notice that AMI predicts a better result 

than HF method, and DFT method using medium basis set (cc-pVDZ). 
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Table 6. A comparison of electron affinity results of Si2C3 cluster using 
different method with experiment result 

Calculation So To Do EA" 

AMI 0.000 1.653 -1.572 1.572 
HF/cc-pVDZ 0.000 0.904 -0.675 0.637 

B3LYP/cc-pVDZ 0.000 0.530 -1.474 1.512 

B3LYP/CC- 
pV5Z+// 

B3LYP/cc-pVDZ 
0.000 - -1.704 1.742 

Experiment 1.769 
Other than AMI me thod are conducted by Duan [ 14] 

*EA= AE(SQ -D0) + AZPE(S0 -D0) 
**Reference [15] 

Comparing the calculation results with experiment results, the HF method 

predicts a very poor result. At the medium basis set level cc-pVDZ, both DFT 

and HF method predictions for electron affinity are less accurate result than the 

AMI method. As basis sets increased up to cc-pV5Z+, DFT gives more accurate 

result than both AMI and HF method. The absolute error of DFT method in 

electron affinity calculation is 0.027 eV, which is excellent agreement with the 

experiment result. 

As a semi-empirical method, AMI is very efficient. During the geometry 

optimization calculation of SimCn (m + n = 6) clusters, the AMI method takes 

only about a few minutes to finish a single geometry optimization calculation. It 

takes HF method 2 hours, and it takes the DFT method more than 10 hours to do 

it. A question is raised, why SE AMI method gives better electron affinity results 

than HF method in calculation? Because in the HF approximation, the correlation 
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energy had been ignored (see chapter 2, section 2.4.6), as a result, HF always has 

poor performance in calculation of electron affinity. As a semi-empirical method, 

AMI is parameterized by experiment data, such as energies. Thus it is not 

surprising that the SE method gives a result close to the experiment results. 

On the other hand, HF and DFT predict more accurate geometries than the 

AMI method. As a SE method, AMI is parameterized in a way that lacks 

flexibility to model SiC systems, so the bonding predicting in AMI is too short in 

the SiC system. The SE method does not have flexibility of user assigned basis 

sets, so the basis sets are small (AMI and most SE methods use a "minimum basis 

set"), and there is no possibility to add diffuse functions to the basis set. For the 

SiC cluster system, Si atom is big and polarizable. It normally requires adding 

diffuse function to the basis functions, so the SE AMI method fails. 

3.2 Study SimCn Cluster Structures ( m+n = 6) Using AMI Method 

In order to assess the AMI method more carefully, we studied the predicted 

structures for SimCn cluster (m+n=6) with singlet and triplet energy optimization 

using AMI method. The structures of isomers are listed in Figure 8 (see next 

page). Structures #1 through #7 are shown in order of increasing energy. Other 

structures than #7 are not included in this paper, because their energy is too high. 

The detailed energy data are listed in the Appendix B. During optimizing, it is 

observed the structures of singlet states and the triplet states are very similar, so 

they will not be separately displayed. 
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Figure 8. The structures of SimCn clusters predicted by AMI method 
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Observing Figure 8, one can conclude that: 

1) The lowest energy singlet and triplet structures tend to be linear, when 

number of silicon atoms less than or equal to 3, recalling the properties of 

pure C clusters. Pure Si clusters tends to form the three-dimensional 

structure, and pure C tends to form the linear structure. With the number 

of Si atom increasing in SimCn cluster, the mixed clusters are expected to 

show pure Si cluster characteristics, such as tendency toward non-linear 

structure. On the other hand, when C atoms are the majority in the cluster 

molecule, the cluster tends to from the linear structure characteristic of 

pure C clusters. 

2) For AMI calculations of #6 structure of Si3C3 and #5 structure of S12C4 

triplet structure energies are lower than singlet energies. The difference 

between singlet energy and triplet energy is about 0.1 eV for #6 structure 

of Si3C3, about 0.6 eV for #5 structure of Si2C4. It might be true that AMI 

tends to favor triplet energy state. Another interpretation is that AMI 

method does not have enough flexibility, so it treats different clusters in 

the same manner. 

3) Lowest energy structures minimize the number of weak Si-Si bonds, and 

then minimize the number of Si-C bonds.   Si atoms go to terminal 

positions. C-C bonding is strong bonding, and C atoms are found to be 

multi-bonded. 

For the ground state structures (#1 structures), compare to the ground 
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structure and electron affinities of same clusters predicted by DFT method and 

experimental results are shown in Figure 9. 

AMI 
a   > » » -a » •.—— 

Structures a—a-»-a-»-«i      T° 
To V 

To 

AMI EA (eV)        3.335 1.135 2.280 1381 -0.0142 

DFT 

Structures 

DFT EA(eV)       3 09 

Experimental EA (eV) 2.56 

Figure 9. A comparison of AMI predictions, DFT predictions and 
experimental result for SimC„ clusters (m+n=6) 

Looking at Figure 9, one can see that the AMI method and DFT method 

predict different ground state structures for SiC clusters. Both methods predict 

the SiC clusters have bent structures as the Si atoms increase to more than 3 

atoms. AMI predicts all 5 structures in Figure 9 are in triplet state, DFT method 

predicts there are 3 molecules in singlet states and two molecules in triplet states. 

Comparing the calculation results of AMI method and DFT method to 

experimental results, the DFT method gives more accurate results. 
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3.3 Comparison of AMI Calculations and DFT Calculations with 

Experimental Results for SimCn Clusters (m+n=4,5,6,7,8) 

To estimate the reliability of AMI calculation, a more complete comparison 

study is performed for SimCn clusters range from m+n=4 to 8. The comparison 

subjects include geometry optimization, electron affinity calculations and 

vibration frequency calculations using AMI method and DFT method compared 

with experimental results. The detailed data are listed in the Table 7. The AMI 

method and DFT method both predict the same structures that experimental 

results show. However, the DFT method provides more accurate and more 

reliable results than the AMI method does. The root mean square error of 

electron affinity calculation by DFT method has negative offset 0.1 eV, and AMI 

method has 0.728 eV negative offsets. The electron affinity calculation results 

and the experimental results from Table 7 are plotted in Figure 10. 

By looking at the Figure 10, one can see that the DFT method predicts the 

exact same electron affinity tendency as the experimental results, while AMI 

method predictions oscillate badly back and forth. For AMI, there are two very 

bad results among 6 clusters. One bad result came from SisC cluster, AMI 

predicts it has triplet ground state but DFT predicts it has singlet ground state 

structure. 
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Table 7. A comparison of AMI and DFT calculations with experimental 
results for SimC„ clusters (m+n=4, 5, 6, 7, 8) 

Cluster Si3C SiC3 SiC4 Si2C3 Si2C4 Si2C5 

Expt. 
Structure 

Rhombic Linear Linear Linear Linear Linear 

AMI 
Prediction 

Rhombic 
To 

Linear 
T0 

Linear 
So 

Linear 
So 

Linear 
To 

Linear 
To 

AMI 
Energy 
(eV.) 

So 0.0000 0.000 0.000 0.000 0.000 0.000 
To -0.984 -0.959 -0.294 1.817 -1.137 1.619 
D 
0 

-1.771 -3.889 -2.136 -1.573 -2.101 -2.116 

AMI 
EA 
(eV) 

0.786 2.926 2.134 1.572 0.963 2.114 

AMI 
Freq. 
(cm"1) 

fi 336 584 329 591 65 

f2 368 1577 1356 1103 1000 343 

f3 2207 2078 1835 1835 2311 
Expt. 
Freq. 
(cm1) 

fi 315 1950 565 420 845 40 

f2 490 2015 1105 910 1175 340 
f3 2185 2120 1860 1860 

Expt. 
EA 
(eV) 

1.535 2.839 2.327 1.769 2.556 2.136 

AMI 
EA 
Error 

-0.749 0.087 -0.193 -0.197 -1.593 -0.022 

Error 
(cm"1) 

f. -21 438 -19 91 254 -25 

AMI 
Error 
(cm"1) 

f2 122 -22 -251 -193 175 -3 

AMI 
Error 
(cm"1) 

f3 -218 -350 25 

DFT 
EA 
(eV) 

1.491 2.694 2.285 1.684 2.378 2.087 

DFT 
Error 
(eV) 

-0.044 -0.147 -0.042 -0.085 -0.178 -0.049 

Error = calculation result - experimental result 
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Si3C SiC3 SiC4 Si2C3 Si2C4 Si2C5 

-♦- Expt.        -0-AM 1 -0- DFT 

Figure 10. EA results calculated by AMI and DFT method compared with 
experimental results for SiC clusters 

For triplet state structure of Si3C (shown in Figure 12), the C atom may be 

single bonded with the bottom two silicon atoms, and double bonded with the top 

silicon atom. This is unlikely because of the strained geometry and the tendency 

of silicon not to form double bonds. Alternatively, in the singlet three lone pairs 

may reside on three of the four atoms; either there is a pair of lone unbonded 

electrons with the top Si or on the carbon. In the triplet, there is a non-bonded 

single electron on both the center Si and C, which contribute to electron spin 

equal to 1. A more electropositive carbon favors the triplet electronic state. 

Because of predicting the wrong electronic state, AMI gives incorrect result. The 

relative errors for AMI and DFT methods are shown in Figure 11. 
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Si3C SiC3 SiC4 Si2C3 Si2C4 Si2C5 

-♦-AM1   -o-DFT 

Figure 11. The EA calculation errors of AMI and DFT method 

From Figure 11, one can see that DFT method provides accurate and 

reliable results comparing to the experiment results. Since AMI results oscillate, 

one can conclude that AMI cannot give reliable results. The mean square root of 

errors in electron affinity calculation, DFT method has a negative offset 0.1 eV, 

ie, since DFT method gives stable results, one can use the mean square root of 

errors to correct other calculations that do not have experimental results to 

compare to. 

Duan [14] has shown that for Si2C3 ROHF, B3LYP, MCSCF(20,20) and 

CAS(8,10) calculations all predict a similar centrosymmetric linear geometry as 

the ground So state. In the To state, the electronic correlation corrections in DFT 

or post SCF methods predict longer bond lengths for Si-C and C-C bonds than 
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does the HF method. In T0, the Si-C bonds stretch about 0.06Ä while the C-C 

bond does not change, with respect to the values for the S0 state. The cluster in 

the T0 state has a calculated energy about 0.9 - 1.9 eV higher than energy of the S0 

state depending on the calculation methods. The HF method gives lowest T0 

energy while the CAS (8,10) calculation produces the highest one. Correlation 

corrected methods of B3LYP, MCSCF (20,20), and CAS(8,10) result in T0 

energies ranging from 1.4 eV to 1.9 eV. Increasing the quality of the basis set 

seems to increase the singlet-triplet gap. The HF methods predict that carbons 

adjacent to silicon atoms to be too electopositive, favoring the triplet state. HF 

methods, including AMI, which have small basis sets do not accurately predict 

relative energies of the singlet and triplet states. 
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IV. Study of SimC„ Clusters (m < 4, n < 4) Using DFT Method 

For this study, all DFT calculations were performed on a Sgi 02 workstation 

with IRX 6.5 operation system IRX 6.4, using the software package "Jaguar" 4.0. 

The restricted open shell calculation method (RODFT) was used throughout the 

calculations. 

4.1 Study the Ground State Structures of Small SiC Clusters 

Ground state means the lowest energy electronic state. Structure means the 

arrangement between different atoms in molecules, and the distances between 

those atoms. To find the ground state structure for each molecule is the most 

essential task for molecular modeling. In this work, ground state structures are 

obtained by predicting optimized structures with minimum singlet and triplet 

energies. 

4.1.1. Mapping the Ground State Structures. Sixteen ground state 

structures are found using DFT: B3LYP functional and cc-pVDZ //cc-pVDZ(-D) 

calculations. They are listed in Figure 12. 
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ISi 2Si 3Si 4Si 

Figure 12. The ground state structure of SimCn clusters predicted by DFT 
method 

For linear structures in Figure 12, one concludes that clusters with even total 

number of atoms tend to have the triplet ground state structure. The linear 

clusters with odd total number of atoms tend to have the singlet ground state 

structure. All bent structures are singlet ground states. As the silicon atom 

number increases to 3 or above, no linear ground state structure is founded.   In 

this mxn = 4x4 system, we see that the mixed silicon carbide clusters tend to 

show characteristics like pure silicon cluster when the silicon atom increases to 3 

or more. These structures tend to be nonlinear and three-dimensional. When the 
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number of carbon atoms is much larger than the number of silicon atoms in the 

mixed cluster, the cluster tends to show the characteristic of pure carbon. These 

clusters tend to have linear structures. 

4.1.2. Difference in structure between the singlet, triplet and doublet 

states. In AMI calculations, there is little change between singlet and triplet 

structures. But in DFT calculations, some of the structures are significantly 

changed. The Si-C bonds in triplet states tend to have a longer bond length and 

the structure tends to expand relative to structures found in the singlet ground 

state. The doublet state bond lengths are between singlet state and triplet state 

values, but closer to the singlet state. For instance, these clusters and their 

structures are shown in the Figure 13. 
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Sn -944.601121 -944.575858 -944.649768 

So -982.668917 -982.651510 

So "020.728641 

-982.746645 

1020.559614 -1020.788808 

So    -1196.021594 -1195.930076 -1196.101824 

S0     -1310.233110 -1310.2045553 -1310.308155 

Figure 13. The geometry change with different electronic state (singlet, 
triplet, doublet state) for certain clusters 
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The dots between two atoms show that the bond lengths are longer than 

usual bond lengths. For C2Si3, C4Si3 and dSi4 clusters, triplet state and doublet 

states have longer Si-C bond lengths than the singlet states. The Si-Si bond 

lengths are the opposite, for C2Si3, C3Si3 and CiSi4 clusters, the Si-Si bond lengths 

are shorter than for the singlet state structures.. These clusters in Figure 13 have 

three characters in common. 

1) They are rich-silicon clusters; 

2) They have bent structures; 

3) They have singlet ground state structures. 

The explanations follow. 

When carbon and silicon atoms form the chemical bonds, carbon atom is 

very flexible. Carbon atoms favor sp, sp2, and sp3 hybridization. On the other 

hand, silicon atoms only favor sp3 hybridization. For the rich silicon clusters, the 

silicon atoms are dominant, ie, the sp3 hybridizations are dominant, and therefore, 

they have bent structures. In addition, silicon atoms that we can observe from 

Figure 12 and Figure 13 tend to be at the terminal positions of molecules where it 

is able form a double bond or to form a pair of lone electrons that is proven to 

form stable in silicon electronic structures. This pair of lone electron will 

contribute to the zero multiplicity spin in the molecules, so we see singlet ground 

states. In singlet state, silicon rich molecules form strained multiple single 

chemical bonds to achieve the stable structures, so we see these singlet state 

structures tend to be more compact than triplet structures. 
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4.2 Calculate the Electron Affinity (EA) 

Dr. Lineberger's group used photo-electron-spectroscopy (PES) to detect 

some silicon carbide clusters produced by cathodic discharge. The experiment 

results are listed in the Table 3. The principle of PES uses Einstein's 

photoelectron effect formula: 

Eb ~ ^photon ~ ^kinetic ~ <& ' (4"1) 

where Eb is the core-electron binding energy, Ephoton is the excited photon 

energy, Ekinetjc is the kinetic energy of electron in vacuum which can be detect, O 

is the spectrometer work function, which is a constant for a given analyzer. In 

this process a photon interacts with an atom or molecule liberating an electron. 

From this process, a lot of properties of materials are revealed. For example, the 

lowest electron binding energy is the electron affinity (EA). Dr. Lineberger's 

group has observed and analyzed several silicon carbide clusters' ground state 

PES spectra, and measured the electron affinities and vibration frequencies. We 

compare calculation results to Dr. Lineberger's experimental results, to determine 

the accuracy and reliability of the calculations. 

It is a very difficult task to accurately calculate the electron affinity by 

quantum mechanical method. The principle is to use the formula: 

EF,=En-E . (4-2) EA 0 amon V     *v 

Where EEA is the energy of electron affinity (EA), E0 is the ground state energy, 

and Eanion is the ground state the energy of anion. The ground state energy can be 

calculated by optimizing the minimum energy of ground singlet or triplet state. 
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Here, singlet means the valence electrons of this molecule has multiplicity of one 

and zero charge; triplet means the valence electrons of this molecule has 

multiplicity of three and zero charge; the anion energy, ie., doublet energy, where 

doublet means the valence electrons of this molecule has multiplicity of two and 

with "-1" electron charge. The calculation accuracy of electron affinity is not 

only dependent on the accuracy of the calculation of both the ground state (singlet 

or triplet) energy and the doublet energy. According to the variational principle 

(discussed in chapter two), with the increasing of basis sets, the calculation energy 

result should be more close to the exact energy. However, since the energy of 

both ground state and doublet state become more accurate as the number of basis 

functions increase, one cannot guarantee that the electron affinity result becomes 

more accurate. Because the electron affinity is the difference between ground 

state energy (singlet or triplet) and doublet state energy (anion), the subtraction of 

two energies may cancel out the improvement in energy with increasing basis set. 

The electron affinity calculation results and the experimental results silicon 

carbide clusters are listed in Table 8.   One can see that the DFT method predicts 

good agreement with experimental results. Also, DFT calculations provide results 

for clusters that were not observed by experiments. 
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Table 8. Electron affinity (EA) results in eV calculated by DFT:B3LYP/cc- 
pVDZ+ method for SimC„ clusters 

\ m 
1 Si 2 Si 3 Si 4Si 

1 c 
2.259 

To 

0.930 

So 

1.491 
So 

1.535* 

2.312 

So 

2C 
1.665 

So 

1.383 

So 

1.539 

So 

0.964 

So 

3C 
2.692 

To 
2.845* 

1.684 
So 

1.769* 

2.296 

So 

1.869 

So 

4C 
2.285 

So 
2.327* 

2.378 
To 

2.556* 

1.887 

So 

2.237 

So 

5C 
2.043 

So 
2.136 

6C 
2.689 

To 
2.409 

To indicates the triplet state, So indicates the singlet state. 

Furthermore, using these calculations can help us to explain some 

phenomena encountered in experiments. For instance, Dr. Lineberger's group 

found during these experiments that they did not observe any rich-silicon clusters 

with silicon number more than 3. For the CSi3 cluster, they are not able to see 

until it is cooled down in temperature. Use of DFT calculation results we can 

give an explanation illustrated in Figure 14. 
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C4Si4 Add energy 0.114 eV > CSi3 +   C3Si" 

C4Si4 Add energy 1.675 eV > CSi3" +   C3Si 

C3Si3 Add energy 1.729 eV CSi2 +   C3Sr 

C3Si3 Add energy 2.193 eV t CSi2" +  C2Si 

♦ Need more energy to create rich-Si anion than create 
rich-C anion. 

CSi5 has electron affinity =1.270   eV 

C5Si has electron affinity =3.091   eV 

♦ Rich-C anion is more stable than the rich-Si anion. 

Figure 14. The stability of silicon-rich clusters and their anions 

From Figure 14, one can conclude that silicon-rich cluster anions are hard to 

make and difficult to keep. This may be the reason that Dr. Lineberger's group 

did not see rich silicon clusters in PES. In order to see rich silicon clusters, we 

predict that they need to observe rich silicon cluster in neutral state instead of 

anion state. 

4.3 Evaluation of Accuracy and Reliability of DFT Calculations 

In this work, the purpose is to find the quantum mechanical calculation 

method that can accurately model the small SiC clusters. In order to evaluate the 

accuracy of calculations, we compare the calculation results with experimental 
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results. The comparison of DFT results with the experimental results is listed in 

Table 9. 

Table 9. A comparison of DFT calculation results with experimental results 

Cluster Si3C SiC3 SiC4 S12C3 S12C4 S12C5 Si2C6 

Experiment 
Structure Rhombic Linear Linear Linear Linear Linear Linear 

DFT 
Prediction 

Rhombic 
So 
Fig. 4-1 

Linear 
To 
Fig. 4-1 

Linear S0 

Fig. 4-1 
Linear S0 

Fig. 4-1 
Linear 
To 
Fig. 4-1 

Linear S0 

Fig. 4-1 
Linear 
To 
Fig. 4-1 

DFT 
Calculated EA 
(eV) 

1.491 2.692 2.285 1.684 2.378 2.087 2.689 

Calculated 
Frequency 
(cm"') 

fi 326 571 466 759 36 2096 

f2 499 2013 1182 904 381 

fa 1085 1895 1577 1657 2067 

Exp. EA (e ;V) 1.535 2.839 2.327 1.769 2.556 2.136 2.409* 
* 

Exp. 
Frequency 
(cm"') 

f. 315 1950 565 420 845 40 3735** 

f2 490 2015 1105 910 1175 340 

fa 12575* 
* 

2185 1860 1485 1860 8105 

EA 
Error 

-0.044 -0.147 -0.042 -0.085 -0.178 

Error of fi 
cm"' 11 6 46 -86 -4 

Error of f2 

cm"' 9 -2 77 6 41 

Error of fj 
cm"' 35 92 -203 

*Calc ulati on method DFT: 3B LYP/ccpv] DZ+7/cc-p1 VDZ 

** Experimental result might have an error 

Table 9 shows that all the results predicted by DFT method are in good 

agreement with experimental results. The average error of electron affinity 

calculations is less than -5% using medium size of basis set (DFT: B3K/cc- 
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pVDZ+). The largest absolute error of electron affinity calculation is for the 

C4Si2 cluster, which is -0.178 eV. The mean square root of error is -0.1 eV, 

which is close to the largest absolute error, so we can use the mean square error 

offset to correct those EA calculation results that they do not have the experiment 

to compare to.   For vibration modes, the calculation vibration frequency results 

have an average mean square root error of-72.5 cm'1 wave numbers. 

4.3.1. The Geometry Change Respecting Different Size of Basis Sets. 

The geometry optimization is sensitive to the size of the basis sets, but less 

sensitive than the energy. Basically, the accuracy increases with the size of the 

basis sets. However, the geometry optimization is very time consuming. For 

example, a single geometry optimization for Si2C4 cluster takes 5 hours using 

basis set cc-pVDZ (-d), takes 10 hours using basis set cc-pVDZ, and takes 500 

hours using basis set cc-pVTZ+.    In order to save the computing time and still 

accurately model clusters, the common technique is to optimize molecule 

structures at the lower basis set level, such as cc-pVDZ(-d). Then optimize those 

structures having lowest energy using larger basis sets. Using this technique, we 

get the ground state structures that are listed in the Figure 12. We choose cc- 

pVDZ(-d) basis sets for first geometry optimization, and optimize those structures 

with relatively low energy using cc-pVDZ basis set. It is needed to know if there 

any difference with geometry if we choose much larger basis sets to optimize 

them, for instance using cc-pVTZ+ instead of using cc-pVDZ. 
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The geometry change of clusters respecting the different size of basis sets is 

studied on two molecules. The selection is base on two reasons. First, these two 

clusters have been observed and detected by Dr. Lineberger's group, so we have 

the experimental results to compare with the calculation results. Second, C4S12 

represents the linear structure cluster and rich-carbon cluster, while S13C 

represents bent structure cluster and rich-silicon cluster. Here we use letter'A to 

represents the optimized structure which is calculated at the condition of choosing 

basis set cc-pVDZ (medium size); letter B represents the optimized structure that 

is calculated at the condition of using basis set cc-pVTZ+ (larger sized basis set), 

shown in Figure 15. A and B structures are similar. A detailed comparison of 

bond length and bond angle is listed in the Table 10. The computer time for 

getting structure A is about 10 hours on Sgi 02 workstation. For structure B, the 

same calculation requires more than 500 hours. 

Si2C4 

Si3C 

Figure 15. The clusters used to study the geometry change 

using different basis sets 
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Table 10. A comparison of examples of geometry changes 

with different basis sets 

Si3C 
Structure 

State 

A* 

So                   Do So 

g ** 

Do 

Differences Between 
A&B 

So                   Do 

Bond Length (Ä) 
No. Basis 
Functions 

68 
Bond Length (Ä) 

220 
Bond Length (Ä) 

Sii-C4 1.778 1.805 1.762 1.789 -0.016 -0.016 
Si2-C4 1.967 1.930 1.944 1.913 -0.023 -0.017 
Si3-C4 1.778 1.805 1.778 1.805 0 0 
Sii-Si2 2.471 2.445 2.446 2.421 -0.025 -0.024 
Si2-Si3 2.471 2.444 2.471 2.445 0 0.001 

Bond Angle 
(°) 

SirC4-Si2 

82.413 81.684 82.400 81.600 -0.013 -0.084 

Si2C4 

Structure 

State 

A* 

To                   Do To 

g ** 

Do 

Differences Between 
A&B 

To                 Do 

Bond Length (Ä) 
No. of Basis 

Functions 
92 

Bond Length (Ä) 
320 

Bond Length (Ä) 
Sii-C2 1.738 1.713 1.725 1.702 -0.013 -0.011 
c2-c3 1.282 1.283 1.271 1.298 -0.011 0.015 
C3-C4 1.301 1.309 1.293 1.275 -0.008 -0.034 
C4-C5 1.282 1.283 1.271 1.298 -0.011 0.015 
C5-Si6 1.738 1.713 1.725 1.702 -0.013 -0.011 

*   A is the structure optimized using basis set cc-pVDZ. 
** B is the structure optimized using basis set cc-pVTZ+ . 
So - singlet state, To - triplet state, Do - doublet state 

From Table 10, one can conclude that the changes in geometry with basis set 

size are small. For cluster Si3C, the average bond length changed 0.013 Ä, the 

average bond angle changed 0.048 ° when the basis set function increase about 3 

times from 68 to 220, and the CPU time increased from 5 hours to 500 hours. For 

cluster C4Si2, the average bond length changed 0.014 Ä, and there was no bond 

angle change, when the number of basis set functions increase from 92 to 320, 
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more than 3 times larger. 

At this point, it can be easily concluded that the geometry will not change or 

only have a very small change after the basis set is increased to a certain level. 

Knowing this can save us a lot of work and CPU time. In SiC system, cc-pVDZ 

seems a good stopping point for geometry optimizing. However, one may wonder 

that small change in geometry may cause a tremendous change in electronic 

properties. Therefore, comparison of single point calculations for energy is 

necessary for structures A and B. 

4.3.2. The electron affinity change for SiC clusters using different size 

of basis sets.   We learned in the above section that the geometry changes 

between structure A and B are very small in SiC clusters. Structure A is the 

structure optimized at the basis sets of cc-pVDZ (lower basis sets), structure B is 

the structure optimized at the basis set of cc-pVTZ+ (higher basis sets). One 

wants to know if these small geometry changes lead to large changes in electronic 

properties of SiC clusters. The single point calculations are performed using 

various basis sets, where single point calculation means calculating the 

molecule's energy using different basis sets at frozen structures A and B (no 

geometry optimization). The result of energies and electron affinities are listed in 

Table 11. Observing the comparisons between A and B, the difference of electron 

affinity between structure A and structure B are zero or 0.001 eV, which means 

that there is no change or very small change between structure A and structure B 

in electron affinity results. 
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Table 11. The electron affinity comparison between structure A and B 

Cluster CSi3 

Basis Set 
A* 

Energy (eV) 
So          Do 

Energy (eV) 
So          Do 

EA result (eV) 
A                    B 

(eV) 

EAA -EAB 

(eV) 
cc-pVDZ+ 0.000 0.000 0.000 0.000 1.491 1.491 0 
cc-pVTZ -1.082 -0.947 -1.109 -0.972 1.355 1.355 0 
cc-pVTZ+ -1.109 -1.082 -1.136 -1.108 1.464 1.463 0.001 
Experimental 
Result (eV) 

1.535 

Cluster C4S12 

Basis Set 
A* 

Energy (eV) 
To          Do 

ß** 

Energy (eV) 
To          Do 

EA result (eV) 

A              B 

EAA -EAB 

(eV) 
cc-pVDZ+ 0.000 0.000 0.000 0.000 2.378 2.358 0.020 
cc-pVTZ -1.615 -1.502 -1.588 -1.497 2.265 2.267 -0.002 
cc-pVTZ+ -1.636 -1.613 -1.639 -1.628 2.354 2.356 0.002 
Experimental 
Result (eV) 

2.556 

*A is the structure optimized using DFT: B3LYP/cc-pVDZ; 
**B is the structure optimized using DFT: B3LYP/cc-pVTZ+//cc-pVDZ 
So indicate the singlet state, To indicate the triplet state, Do indicate the 

doublet state 

4.4 The Electron Affinity Results Versus Basis Sets 

The choice of basis set directly effect on the choice of trial wave function, 

so it effect on the accuracy of calculation results. A comparison of electron 

affinity results and their accuracy respect to the selection of basis sets are listed in 

Table 12. 
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Table 12. A comparison of electron affinity calculation accuracy versus the 
size of basis set 

Cluster Si3C SiC3 SiC4 Si2C3 Si2C4 Si2C5 Si2C6 

cc-pVDZ 
No. basis 
function 

68 60 74 78 92 106 120 

EA Results 
(eV) 

1.289 2.392 2.000 1.470 2.192 1.932 2.522 

cc-pVDZ+ 
No. basis 
function 

104 96 119 123 146 169 192 

Results 
(eV) 

1.491 2.692 2.285 1.684 2.378 2.087 2.689 

cc-pVTZ 
No. basis 
function 

144 136 169 173 206 239 272 

EA Results 
(eV) 

1.355 2.564 2.134 1.532 2.265 1.962 2.600 

cc-pVTZ+ 
No. basis 
function 

220 212 264 268 320 372 424 

EA Results 
(eV) 

1.464 2.694 2.265 1.652 2.354 2.043 2.668 

Experiment 
EA result 

1.535 2.839 2.327 1.769 2.556 2.136 2.409** 

Errors using 
cc-pVDZ 

0.245 0.447 0.327 0.299 0.365 0.204 

Errors using 
-pVDZ+ 

0.044 0.147 0.042 0.085 0.178 0.049 

Errors using 
cc-pVTZ 

0.18 0.275 0.193 0.237 0.291 0.174 

Errors using 
cc-pVTZ+ 

0.071 0.145 0.062 0.117 0.202 0.093 

*Calcuk ition met hod: DF1 r: 3BLYP 
**This might indicate an error in experiment. 

The electron affinity results in Table 12 are plotted in Figure 16. 
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Figure 16. The relationship of calculation accuracy with choice of basis sets 

Something unusual appeared in Table 12 and Figure 16. According to 

variational principle, with increasing basis set, one should get better energy 

results. Here we found that during single point calculation, the value of EA error 

is on the order of: cc-pVDZ > cc-pVTZ > cc-PVTZ+ > cc-PVDZ+. Taking Si3C 

cluster as an example, the number of basis function is in the order of 68, 144, 220, 

104. The number of basis function of cc-pVDZ+ is less than the number of basis 

functions of cc-pVTZ and cc-pVTZ+, but the electron affinity result using cc- 

pVDZ+ is more accurate than the result using cc-pVTZ and cc-pVTZ+. Why? It 

is obvious that adding diffuse function to the basis sets significantly improved the 

electron affinity accuracy from basis sets cc-pVDZ to cc-pVDZ+. However, 

comparing the basis set both having diffuse functions, cc-pVDZ+ and cc-pVTZ+, 
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even though their electron affinity results are very close to each other and to the 

experimental results, why does cc-pVDZ+ basis sets give more accurate electron 

affinity results than using basis sets cc-pVTZ+? 

Recall from section 4.2 the definition of electron affinity is the energy 

difference of doublet state and the ground state singlet (triplet) state. From 

chapter two we know that the energy calculated using ab initio method or DFT 

method is an approximate energy, which improves with basis set improvements, 

according to variational principle. The more basis functions one uses, the lower 

energy one gets, and the more accurate results. In order to look closely to see 

how the energy improved respecting to the difference size of basis set, a detailed 

calculation energy results are in Table 13. 

Observing Table 13, one can see that the energies are decreasing with 

increasing basis set, which is consistent with variational principle. However, the 

energy-decreasing rate is different with respect to the differences in basis sets. 

The ground state energies (singlet, or triplet state) decrease faster than the anion 

energies (doublet state) when the size of basis functions is enlarged without 

adding diffuse functions. On the other hand, anion energy decreases faster than 

the ground state energy when only adding diffuse functions to the basis sets. 

These cause a nonlinear relationship between electron affinity calculation results 

with the changes in basis sets. Therefore, one cannot expect to always get more 

accurate electron affinity results by simply increasing basis sets. 
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Table 13. A comparison of basis set effect on the energy change 

Cluster 
DFT:3BLYP/cc-pVDZ 

Energy result (a.u.) 
E0 *          ED ** 

DFT:3BLYP/cc-pVDZ+ 
Energy result (a.u.) 
E0 *          ED ** 

Energy Decrease 

(a.u.) 
E0 *          ED ** 

CSi3 -906.53394 -906.58148 -906.53778 -906.59275 0.00384 0.01128 

SiC3 -403.58992 -403.67816 -403.59565 -403.69496 0.00573 0.01680 

SiC4 -441.70644 -441.78005 -441.71286 -441.79713 0.00642 0.01707 

Si2C3 -693.18082 -693.23505 -693.18548 -693.24760 0.00466 0.01255 

C4Si2 -731.23908 -731.31990 -731.24544 -731.33314 0.00636 0.01324 

Si2C5 -769.34107 -769.41233 -769.34821 -769.42517 0.007147 0.01285 

Si2C6 -807.40428 -807.49734 -807.41143 -807.51061 0.007154 0.01327 

Cluster 
cc-pVDZ+ 

Energy result (a.u.) 
E0          ED 

cc-pVTZ+ 
Energy result (a.u.) 

Eo          ED 

Energy Decrease 
(a.u.) 

E0           ED 

CSi3 -906.53778 -906.59275 -906.57864 -906.63264 0.04086 0.03988 

SiC3 -403.59565 -403.69496 -403.63294 -403.73229 0.03729 0.03734 

SiC4 -441.71286 -441.79713 -441.76163 -441.84515 0.04877 0.04803 

Si2C3 -693.18548 -693.24760 -693.23670 -693.29765 0.05122 0.05004 

C4Si2 -731.24544 -731.33314 -731.30573 -731.39257 0.06029 0.05943 

Si2C5 -769.34821 -769.42517 -769.42001 -769.49537 0.07180 0.07020 

Si2C6 -807.41143 -807.51061 -807.49283 -807.59123 0.08139 0.08062 

* Eo indicates the ground state energy; ** ED indicates the doublet state energy 

The energy change with respect to enlarging the basis sets and adding 

diffuse function to basis sets, ie., basis set change from cc-pVDZ+ to cc-pVTZ+ 

is plotted in the Figure 17. 
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C3S S3C SO* S2C3 OtS2 S2C5 S2G6 

• ED change rate -A— Eänion change rate 

Figure 17. The energy change with change of basis sets (from cc-pVDZ+ to 

cc-pVTZ+) for SiC clusters 

E0 indicates the ground state energy (singlet or triplet state); 
Eanion indicates the doublet state energy 

One can see from Figure 18 that, the rate of energy change between ground 

state and the doublet state is very small using basis set cc-pVDZ+ to cc-pVTZ+. 

This is the reason we see in Figure 17 that the electron affinity result using cc- 

pVDZ+ and cc-pVTZ+ are very close. Figure 18 shows enlarging the basis set by 

adding diffuse function into both basis sets, the ground state (singlet or triplet 

state) energy decrease is a little faster than the energy decrease of anion (doublet 



State). One can see that increasing basis set size without adding diffuse functions 

improved mainly the ground state energy. On the other hand, only adding diffuse 

function to basis sets improves mainly the doublet energy (anion energy). For 

same basis set, adding only diffuse function, the energy of the anion (doublet 

state) decreases at a much greater rate than the ground state (singlet or triplet 

state). The different rate of energy change results in a nonlinear change of the 

electron affinity with increasing basis set size. The relationship of energy 

reducing rate versus adding diffuse functions to basis sets from cc-pVDZ to cc- 

pVDZ+ are plotted in the Figure 18. 
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Figure 18. The energy reducing rates respecting to adding diffuse functions 
to basis sets 

Eo indicate the ground state energy, Eanion indicate the doublet state energy 
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Again, take S13C cluster as an example. From Table 13, Figure 17 and 

Figure 18, one can see that the value of energies is become lower with increasing 

the size of basis functions, which is consistent with the variational principle. 

Increasing the basis set size without adding diffuse function, improves 

mainly the ground state energy, so the electron affinity result accuracy is 

improved by more than 4.0% with increasing basis set cc-pVDZ to cc-pVTZ. 

Adding diffuse functions to the basis sets, the energy of doublet state is 

significantly improved. The accuracy of electron calculation is improved more 

than 13% by choosing cc-pVDZ+ instead of cc-pVDZ+. Therefore, when adding 

diffuse functions and enlarge basis set at same time, the accuracy of electron 

affinity might not be improved. The improved energy may be canceled by the 

subtraction. 

In summary, adding diffusing function to the basis set is very important for 

SiC systems, it dramatically increases the accuracy of electron affinity result. 

Because silicon is a big atom with 3s, 3p electrons in its valence shell, the valence 

shell electrons are very different from electrons in the hydrogen atom. Therefore 

it requires more contraction functions, adding polarized functions or adding 

diffuse functions in the basis function to correct hydrogen like approximation. 

4.5 The Time Scale of DFT Calculation 

DFT calculation is cheaper than the post HF ab initio calculations (stated in 

chapter one & two). But no one knows exactly what is the time scaling of DFT 
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calculations for the SiC system. For our practical application, the time scaling is 

important. The CPU time that we discuss here are classified to two types of CPU 

time. First is the average CPU time per SCF iteration. Technically this is the 

only accurate way to scale the computational time. However, the total CPU time 

on a particular computer is important too, so we discusses the CPU time scaling 

of DFT calculation with the average CPU time and the total CPU time separately. 

4.5.1. The Average CPU Time Per SCF Iteration. The relationship of 

CPU time (per SCF iteration) versus size of basis sets is plotted in Figure 19. 
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Figure 19. The average CPU time (per SCF iteration) versus basis sets 

From Figure 19, one can see how the CPU time increases with the size of 

basis set. With mathematical fitting, one can conclude that the average CPU time 
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per SCF iteration of DFT calculation in SiC system approximately exponentially 

increases with the system size (the number of basis functions). For different basis 

sets, the exponential power is increase with the size of basis sets. 

4.5.2. The total CPU time. The total CPU time used in single point 

calculations for SiC clusters are recorded in Table 14 

Table 14. The relationship of total CPU time versus the size of basis sets 

Cluster Si3C SiC3 SiC4 Si2C3 Si2C4 Si2C5 Si2C6 

No. basis 
functions 
cc-pVDZ+ 

104 96 119 123 146 169 192 

Total CPU 
time (sec.) 

2549 815 2185 2066 3472 5765 10849 

No. basis 
functions 
cc-pVTZ 

144 136 169 173 206 239 272 

Total CPU 
time (sec.) 

1961 1160 1517 740 948 3247 5249 

No basis 
functions 
cc-pVTZ+ 

220 212 264 268 320 372 424 

Total CPU 
time (sec.) 

7447 4734 8193 4242 5736 18147 28708 

From Table 14, one can see that the total CPU time has the order of: cc- 

pVTZ < cc-pVDZ+ < cc-pVTZ+. It may looks strange that the number of basis 

function of cc-pVDZ+ (104) is smaller than the number of basis function of cc- 

pVTZ (144), but the total CPU time of cc-pVDZ+ calculation is longer than the 

calculation time of cc-pVTZ. 
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4.5.3. The Total CPU Time vs. Adding Carbon Atom to System. To see 

the increase in CPU time to add a carbon atom, a time scaling relationship for 

adding carbon atoms to the cluster is shown in Figure 20 (Appendix E lists data). 
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Figure 20. The total CPU time versus increasing C atoms in SiC system 

For smaller size of basis sets, cc-pVDZ+ and cc-pVTZ, the total CPU time 

looks almost a linear relationship for the SiC system with increasing number of 

carbon atoms. The order of total CPU time is: cc-pVYZ+ > cc-pVDZ+ > cc- 

pVTZ.   Good fitting is found from Figure 20 for basis set cc-pVTZ+. The total 
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CPU time increases exponentially to the order of 1.6 th power with increasing C 

atoms in the SiC system. 

4.5.4. The Total CPU Time Versus Adding Silicon atom to SiC system. 

A study of adding Si atoms to SiC system is performed. A plot can be view 

in Figure 21, detailed data can be found in the Appendix E. 
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Figure 21. The total CPU time versus increasing Si atoms in SiC clusters 
using cc-pVDZ basis set 

Mathematical fitting of the DFT:B3LYP calculation times using cc-pVDZ+ 

basis set for SiC systems adding Si atoms shows that the total CPU time increases 

with each silicon in the system on the order of the 2.2th power. 
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V. Conclusion 

5.1 Problem Statement Review 

Silicon carbide has a wide band gap. It is a very important semiconductor 

material for high temperature and high power applications. Many previous 

researches had been conducted on pure carbon and pure silicon clusters and 

solids. Only a few research studies had been done on mixed silicon carbide 

clusters. Surface chemistry of silicon carbide remains unknown. At present, 

there are no detailed theoretical or experimental models of silicon carbide surface 

chemistry. Using quantum mechanical method to model silicon carbide surface is 

an economic and efficient approach, which can help understanding of the surface 

chemistry at the atomic and molecular level, contributing to significant control of 

epitaxial silicon carbide film processes. 

Surfaces are often modeled using molecular clusters, which are too small to 

accurately represent the mechanical environment of bulk materials. Shoemaker 

[4] successfully modeled the surface formation using a hybrid quantum mechanics 

and molecular mechanics (QM/MM) method. He used ab initio methods to 

calculate optimized structures of small clusters, and then embedded these clusters 

in a large system using molecular mechanics method to calculate the large system. 

This model combines the accurate ab initio method and the efficient molecular 

mechanics method; which minimize the computation time consuming while 

maintaining the effect of the bulk constraint. 



The key to modeling surface chemistry is to find an accurate ab initio 

method that can be used to accurately model the small cluster. To judge the 

accuracy of ab initio calculations one compares the calculation results with the 

experimental results. The scope of this work is to find the quantum mechanical 

method that can accurately model small silicon carbide clusters, and prepare to 

model the surface chemistry and defect structures of silicon carbide bulk materials 

in the future. 

Dr. Lineberger's group provides experimental results using photoelectron 

spectroscopy (PES). These results include the overall structure, the electron 

affinity, and the vibration frequencies of observed clusters (see reference [15]). 

Previous research shows that a DFT method predicts more accurate electron 

affinity results than very high level ab initio methods, such as CAS (8,10) and 

MCSCF (20,20) [14]. So, a DFT method is employed in this work for modeling 

SimCn cluster molecules. A comparison of experimental results with calculations 

is shows the accuracy and the reliability of DFT calculations. The factors that 

affect the accuracy of DFT calculations, such as the size of basis set and 

properties of the basis set, are discussed.   From a practical point of view, the time 

scaling of DFT method for SiC system is also discussed. 

Semi-empirical method, AMI is also briefly discussed. It focused on the 

accuracy of AMI calculations. 
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5.2 Results Review and Conclusions 

5.2.1. Ground State Structures Predicted by DFT Method. Sixteen 

ground state structures of SimCn clusters (mxn = 4x4), found using DFT: 

B3LYP calculation, have following properties: 

1) The clusters tend to have linear structures when the number of carbon 

atoms is larger than the number of the silicon atoms. Only one exception 

is C4Si3 cluster. For C4Si3, it has a 6-member ring structure (see Figure 4- 

1), all C atoms have double bonds, Si atoms are at the end of molecule. 

The top Si atom share 2 electrons with two Si atoms in the 6-member ring, 

and other two electrons form an pair of lone electrons which is proven to 

be a stable structure. This bonding is very similar to the bonding of C4Si2 

cluster. 

2) SiC molecules tends to have maximum C-C bonds, because C-C bond are 

very strong bonds; SiC molecules tend to have minimum Si-Si bonds, 

because Si-Si bond are weak. The Si atoms go to terminal positions of 

molecules, because Si favors only sp hybridization, which requires 

certain direction to get maximum overlap. 

3) For linear structures, clusters with even total number of atoms have triplet 

ground state structures.   Because in this situation, Si atom always at the 

end of the molecule, the C atoms next to Si atom has triple bonds, for Si 

atom has 4 electrons in its valence shell, one of them form a single bond 

with C atom, two of them form the lone pair of electrons and form a stable 

structure, therefore there is one single electron is left behind at one of the 
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end of linear molecule. Similarly there is another electron left behind at 

another end of this molecule, so there are two unpaired electrons in the 

molecules. They prefer triplet state as their lowest energy state. 

4) Linear structure clusters with odd total number of atoms have singlet 

ground state structures. The bonding in these molecules is different from 

the case discussed in (3). However, one can use same principle to 

interpret it. Because of the symmetry, C-C atom bonds form double 

bonds, Si atoms still prefer go terminal position here have sp hybridization 

instead of sp3 hybridization, and sharing two additional electrons to form 

the double bonds with C atom adjacent to Si, then the rest of the electrons 

of Si atom form a lone pairs electrons which proves to be a stable 

structure. Since both Si atoms at end of the molecules have paired 

electrons, the multiplicity is zero, so the clusters have singlet ground state 

structures. 

5) Three ring bonding (one Si atom and two C atoms), four ring bonding 

(two Si atoms and two C atoms with Si atoms separate by C atoms) and 

six ring bonding (two Si atoms and four C atoms, Si atoms are separated 

by C atoms) have stable structures. The Si atoms still go to terminal 

positions, and C-C atoms are multi-bonded. 

6) As the number of silicon atoms increase to 3 or more, there is no linear 

ground state structure found.   The mixed silicon carbide clusters tend to 

show characteristics like pure silicon clusters having non-linear structures 

when silicon atoms increase to 3 or more in the SimCn cluster 
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m x n = 4 x 4 system. In a same manner, when the numbers of carbon 

atoms are more than the number of silicon atoms, the cluster tends to show 

characteristics of pure carbon clusters, having linear structures. 

7)  Some of the structures of clusters changed for different electronic states 

(singlet, triplet, and doublet state). The triplet state has longer bond 

lengths and structures tend to expand. The doublet state structures are 

between the structures of singlet state and triplet state.   All the structures 

that are bent and all silicon-rich clusters have singlet ground state.   Triplet 

structures stretch out due to the differences in chemical bonding. For 

singlet state structure, the Si-C has double bonds or preferentially Si lone 

pairs. For triplet state structure, the Si-C has single bond. Double bond is 

stronger than single bond, and it is shorter than single bond. Therefore, 

the Si-C distance is larger in triplet state than in the singlet state. 

5.2.2. Compare DFT Results with Experimental Results. Comparing 

the DFT EA results with experiment results, the largest absolute error is -0.178 

eV (7%), the smallest absolute error is -0.042 eV (1.9%), and the average root 

mean square error is less than -0.1 eV, for the medium size of basis set level cc- 

pVDZ+ calculation. DFT gives same tendencies as experiment EA results; 

therefore one can conclude that DFT predicts very stable and accurate EA results. 
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5.2.3. Geometry Does Not Change Much with Different Basis Sets. Two 

clusters are selected to investigate the geometry change using different size of 

basis set. They are linear, carbon-rich cluster Si2C4 and bent, silicon-rich cluster 

Si3C. A represents the structure optimized using basis set cc-pVDZ, B represents 

the structure optimized using basis set cc-pVTZ+. The numbers of basis 

functions of cpVTZ+ are 3 times more than the number of basis functions of basis 

set cc-pVDZ. The difference between A and B in bond length is about 0.011 Ä, 

in bond angle is 0.048°. One can conclude that the geometry change is very small 

when increasing the basis set from cc-pVDZ to cc-pVTZ+. Similarly, the electron 

affinity shows almost no difference between A and B. One can conclude that the 

geometry and the electronic properties of clusters are not affected by their 

optimizing basis set after the basis set reached a certain point. In SiC system, this 

point is at basis set of cc-pVDZ. 

5.2.4. Accuracy of Electron Affinity Calculation versus Basis Sets. The 

size of basis set effects the accuracy of DFT energy calculations. Enlarging the 

size of basis set without adding diffuse function improved the energy of singlet 

state and triplet state energy by 4%. Only adding diffuse functions to basis set 

improved the doublet state energy by 13%. So adding diffuse function to basis set 

improved the electron affinity significantly. However, the electron affinity result 

is determined by the difference between ground state energy (singlet or triplet) 

and the doublet energy. By adding diffuse functions and increasing the basis set 

size at same time, the calculation improvements are both to ground state energy 
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and doublet state energy. Subtraction of these two energies in the electron affinity 

calculation will cancel out large amount of accuracy improvements. 

5.2.5. CPU Time Scale of DFT Calculations Conclusion. The CPU time 

per SCF iteration increases with the number of basis functions with a scaling 

exponent on the order of 1.002. The powers of the exponential relation are 

different with choice of basis set. The scaling power increases with the size of 

basis set. 

The total CPU time for each single point calculation is dependent on what 

the basis set. They have following order: cc-pVTZ+ > cc-pVDZ+ >cc-pVTZ. 

The total CPU time increases exponentially with adding carbon atoms to the SiC 

system to the order of 1.6th power using cc-pVTZ+ basis set. The total CPU time 

increase exponentially with added silicon atoms to the SiC system on the order of 

the 2.2th power using cc-pVDZ+ basis set. 

5.2.6. AMI Calculation Method Summary. AMI predicts poor structures 

for SiC system, the bond length is too short, and the three-dimensional structures 

are not accurately predicted by the AMI method. 

AMI method does not provide the reliable energy results for SiC system. 

Comparing the electron affinity results calculated by AMI method with the 

experimental results, AMI results oscillate badly relative to the experimental 

results while DFT predicts consistently accurate results. Two bad results of AMI 

calculation come from cluster Si3C and cluster Si2C4. For Si3C, AMI predict the 

94 



triplet ground state, DFT predicts the singlet ground state. Comparing the 

electron affinity result, DFT gives more accurate results than AMI method. 

5.3 Possible Experimental Error 

All the DFT calculation is in very good agreement with experiment results 

in geometries, electron affinities and vibration frequencies, except cluster C6Si2. 

Since the experimental result of vibration frequency is 3735 cm'1 for CeSi2, is 

impossibly high, one suspicions that it might be an error in the experiment. 

Therefore, all the comparison studies in this paper are not included comparison 

with cluster C6S12. 
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Appendix A: Calculation Method Abbreviation and Description 

Semi-empirical calculation methods: 

AMI - using AMI Hamiltonian [30, 35-36, 40-41] 

CNDO      - using CNDO Hamiltonian [28] 

INDO       - using INDO Hamiltonian [29] 

MNDO     - using MNDO Hamiltonian [30, 32-39, 41] 

PM3 - using MP3 Hamiltonian [42-43] 

In semi-empirical calculations, different basis sets are not used; instead they 

use parameterized Hamiltonian from experiment results as substitution for 

integrals in quantum calculations. 

Ab initio calculation: 

HF-SCF - using Hartree-Fock average potential substitute the electron- 

electron interaction repulsive potential in Hamiltonian, and using self- 

consistence-field (SCF) iteration process to calculate the HF lowest energy. 

CI    - configuration interaction (CI), is an improvement calculation base on 

HF but brought correlation energy by reprinting exact wave function as a linear 

combination of N-electron trial functions and use the linear variational method. If 

the basis were complete, the exact energies will be obtained not only of the 

ground state but also of all excited stats of the system. 

QCISD - A quadratic CI calculation [59], including single and double 

substations. Also called CCSD 

MP2 through MP5 - Based on a Hartree-Fock calculation (RHF for singlet, 

UHF for higher multiplicities) followed by a Moller-Plesset correlation energy 
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correction [47], and terminate at second-order called MP2 and terminated at fifth- 

order called MP5 [51]. 

MCSCF - The multi-configuration self-consistent field calculation, using a 

multi-determinant wave function, containing a relatively small number of 

configurations, which vary the orbitals to minimize the energy. 

GVB - The general valence bond (GVB) calculation, using the generalize 

balance bond wave function of W. A. Goddard III al et., can be treat as a special 

form of MCSCF wave function. 

CAS - The completed active space calculation, which combine the SCF 

computation with a full CI involving with a subset of orbitals, which is known as 

the active space. This is a very high-level ab initio calculation. 

Density Functional Method (DFT): 

In Hartree-Fock theory, the energy has the form: 

EHF = V+<hp>+^<PJ(p)>-^<PK(p)> 

Where V is the nuclear repulsion energy, P is the density matrix, l/2<hp> is the 

classical coulomb repulsion of the electrons, and -l/2<PK(p)> is the exchange 

energy resulting form the fermion's nature of electrons. 

In DFT, the energy has the form: 

EHF = V+<hp>+±< PJ(p) > +Ex[p] + Ec[p] 

Where Ex[P]is the exchange functional, andEC[P]is the correlation functional 

The difference with HF method is that, in HF case, the Ec[p]=0 and 

Ex[p] = — < PK(p) >, besides the exchange functional and the correlation 

functional, there are three hybrid methods which include a mixture of Hartree- 

Fock exchange with DFT exchange-correlation. 
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Becke's 3 LYP (B3LYP) - is Beck's 3 parameter functional [26], which has 

the form: 

A*ESh,er +„       ^ £HF + ß* ^Becke + £VWN + Q* ^non-local 
X ^ ' X X c c 

Where the non-local correlation is provided by the LYP expression. The constants 

A, B, and C are those determined by Becke by fitting to the Gl molecule set. 

Basis set: 

STO-3G - using 3 optimized primitive Gaussian function to represent Is Slater 

function. It is the minimal basis functions. 

4-3 IG - based on the STO-3G, using two more functions for each of the minimal 

basis functions to improve the accuracy. 

6-3 IG - based on 4-3 IG, using 6 primitive Gaussian functions for inner Is shell 

instead of 4. 

6-3IG* - base on 6-3IG, add polarization function, such as d-type function to the 

first row atoms. 

6-3IG** - base on 6-3IG*, adding p-type function to H. 

cc-pVDZ - using correlation-consistent basis set by adding a set of primitive s 

and p functions to the hybrid (sp)set. 

cc-pVDZ + - based on cc-pVDZ , the neutral sets were augmented with additional 

functions optimized for the atomic anions. It also denote as cc-pVDZ+, "+" 

means added diffuse functions, it also denoted as aug- cc-pVDZ. 

cc-pVTZ - based on cc-pVDZ, but using tripe-zeta instead of double-zeta. 
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cc-pVTZ+ - based on cc-pVTZ , the neutral sets were augmented with additional 

functions optimized for the atomic anions. It also denote as cc-pVTZ+, "+" means 

added diffuse functions, it also denoted as aug- cc-pVTZ. 

cc-pVQZ - based on cc-pVDZ, but using quadruple-zeta instead of double-zeta. 

cc-pVQZ+ - based on cc-pVQZ , the neutral sets were augmented with additional 

functions optimized for the atomic anions. It also denote as cc-pVQZ+, "+" 

means added diffuse functions, it also denoted as aug- cc-pVQZ. 

cc-pV5Z - based on cc-pVDZ, but using five-zeta instead of double-zeta. 

cc-Pv5Z+ - based on cc-pV5Z , the neutral sets were augmented with additional 

functions optimized for the atomic anions. It also denote as cc-pV5Z+, "+" means 

added diffuse functions, it also denoted as aug- cc-pV5Z. 
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Appendix B: The Detailed Energy Data of AMI Calculations for SimCn 

(m+n=6) Clusters 

#1 is the lowest energy structure, ie., the ground state structure 
#7 is the highest energy structure among listed isomers 

Number       of 
Structure #1 #2 #3 #4 #5 #6 #7 

C5Si! 
(a.u.) 

So -26.157769 -26.175566 -26.119430 -26.136743 -26.101254 -26.083174 -26.047980 

To -26.235437 -26.187797 -26.173659 -26.143063 -26.140844 -26.100410 -26.044123 

So - T0 
0.077668 0.012231 0.054229 0.00632 0.03959 0.017236 0.0038574 

Number of 
Structure #1 #2 #3 #4 #5 #6 #7 

C4Si2 

(a.u.) 

So -24.655134 -24.653588 -24.533757 -24.441279 -24.592901 -24.521114 -24.563563 

To -24.700703 -24.694256 -24.600236 -24.595110 -24.569361 -24.587497 -24.582852 

So - To 0.045569 0.040668 0.066479 0.153831 -0.02354 0.066383 0.019289 

Number of 
Structure #1 #2 #3 #4 #5 #6 #7 

C3S13 
(a.u.) 

So -23.02755 -22.988167 -23.025578 -22.936722 -22.966227 -23.016521 -22.972109 

To -23.098609 -23.05104 -23.044579 -23.027449 -23.025540 -23.012889 -22.995861 

So - To 0.071059 0.062873 0.019001 0.090727 0.059313 -0.003632 0.023752 

Number of 
Structure #1 #2 #3 #4 #5 #6 #7 

C4Si2 

(a.u.) 

So -21.443801 -21.389268 -21.291940 -21.248666 -21.315360 -21.323062 -21.311838 

To -21.450578 -21.435154 -21.431154 -21.391419 -21.373265 -21.368737 -21.358832 

So - To 0.006777 0.045886 0.139214 0.142753 0.057905 0.045675 0.046994 

Number of 
Structure #1 #2 #3 #4 #5 #6 #7 

C,Si5 

(a.u.) 

So -19.627295 -19.656747 -19.700308 -19.628229 -19.640077 -19.661001 -19.647772 

To -19.72652 -19.725780 -19.700649 -19.683327 -19.677714 -19.669153 -19.665222 

So - To 0.099225 0.069033 0.000341 0.055098 0.037637 0.008152 0.01745 
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Appendix C: Energy and Electron Affinity Calculations of AMI Method and 

DFT Method for Si„Cm (m+n=6) Clusters 

The energy of SimCn (m+n=6) clusters calculated by AMI method 

Name of Cluster 
C5Sii C4Si2 C3Si3 C2Si4 CiSi5 

Energy 
(a.u.) 

So -26.157769 -24.665134 -23.02755 -21.443801 -19.627295 

To -26.235437 -24.700703 -23.098609 -21.450578 -19.727652 

So - To 0.077668 0.035569 0.071059 0.006777 0.100357 

Do -26.358403 -24.742554 -23.182718 -21.501504 -19.727127 

Electron Affinity 
EA    (eV) 3.334 1.135 2.280 1.381 -0.001 

Experiment 
EA    (eV) 2.556 

Absolute Error 
(eV) 

1.421 

The energy of SimCn (m+n=6) clusters calculated by DFT: B3LYP/cc-pVDZ 
method 

Name of Cluster 
C5Si! C4Si2 C3S13 C2Si4 C,Si5 

Energy 
(a.u.) 

So -497.743447 -731.199176 -982.668917 -1234.127178 -1485.57010 

To -497.758631 -731.239083 -982.651510 -1234.057851 -1485.52253 

So - To 
0.015184 0.013597 -0.017407 -0.0069327 -0.04757 

Do -497.863275 -731.319902 -982.746645 -1234.156321 -1485.58286 

EA 
(eV) 2.837 2.191 2.107 0.790 0.346 

Experiment 
EA    (eV) 2.556 

Absolute Error 
(eV) 

0.365 
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Appendix D: The Detailed Energies Calculated by DFT Method 

Optimizing using DFT: B3LYP/cc-pVDZ 

The Singlet energy of SimCn Clusters 

n 
m 
1 2 3 4 

1 -327.348388 -617.012168 -906.533938 -1196.021594 

2 -365.545578 -655.071615 -944.601121 -1234.127178 

3 -403.396487 -693.180817 -982.636555 -1272.171562 

4 -441.70654 -731.199176 -1020.728641 -1310.23311 

The Triplet energy of SimCn Cluster 
m 

1 
n 
1 
2 
3 
4 

l"he 

-327.370509 
-365.469262 
-403.589924 
-441.638158 

j Doublet energy 

-616.916731 
-654.986419 
-693.049315 
-731.239083 

of SimCn Cluster 

-906.482154 
-944.575858 
-982.609495 

-1195.930076 
-1234.05817 
-1272.153112 
-1310.204553 

n 
1 
2 
3 
4 

rn 
1 

-327.370509 
-365.593016 
-403.678161 
-441.780051 

2 

-617.042556 
-655.115562 
-693.235051 
-731.319902 

3 

-906.581475 
-944.649768 
-982.679133 
-1020.788808 

4 

-1196.101824 
-1234.156321 
-1272.233551 
-1310.308155 

The Lowest energy of SinCm Cluster (singlet or triplet) 

m 
1 -327.370509 -617.012166 -906.533938 -1196.021594 

2 -365.545578 -655.071615 -944.601121 -1234.127178 

3 -403.589924 -693.180817 -982.668917 -1272.171562 

4 -441.70654 -731.239083 -1020.728641 -1310.23311 

Adding a Si atom in anion cluster requiring energy 

Only one Si add one Si add one Si add one Si 

1 0 -289.641657 -289.521772 -289.487656 

2 0 -289.526037 -289.529506 -289.526057 

3 0 -289.590893 -289.4881 -289.502645 

4 0 -289.532543 -289.489558 -289.504469 

Adding a C atom in anion cluster requiring energy 
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n 
m 
1 2 3 4 

1 C 0 0 0 0 
2C -38.2225065 -38.073006 -38.068293 -38.054497 

3C -38.0851455 -38.119489 -38.029365 -38.07723 

4C -38.10189 -38.084851 -38.109675 -38.074604 

Ave -38.136514 -38.09244867 -38.069111 -38.068777 

The average energy required to add a Si atom vs. C 
atom ratio as: 

Si:C 
7.605263158 

Single Point Calculation using DFT: B3LYP/cc-pVDZ+ 

The Singlet energy of SinCm Cluster 
in 

1 
n 
1 
2  -365.611716 
3 
4  -441.712855 
5 
6 

2 

-617.016211 
-655.075402 
-693.185480 
-731.245443 
-769.418134 

3 

-906.537778 
-944.605417 
-982.674490 
-1020.736236 

4 

-1196.026056 
-1234.132368 
-1272.176143 
-1310.239242 

-1485.574892 

The Triplet energy < 3f SinCm Cluster 
m 
1 

n  -327.393520 
1 
2 -365.470021 
3 -403.595652 
4 
5 
6 

The Doublet energy 

2 3 4 

-731.245443 

-807.411431 
of SinCm Cluster 

m 
1 2 3 4 5 

n 
1 -327.476826 
2 -365.611716 
3 -403.694959 
4 -441.797125 
5 -479.879882 
6 

-617.050531 
-655.126418 
-693.247601 
-731.333142 
-769.425174 
-807.510607 

-906.592754 
-944.662163 
-982.759190 
-1020.805843 

-1196.111336 
-1234.167934 
-1272.245072 
-1310.317387 

-1485.5760 
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Appendix E: The Detailed Data of DFT Time Scaling 

CPU time per SCF CPU time per SCF CPU time per SCF 
Name of (sec.) (sec.) (sec.) 
Cluster cc-pVDZ+ cc-pVTZ cc-pVTZ+ 
C2Si2 148.75 
C3Si2 223.57 68.7 380 
C4Si2 326.09 90.15 616.56 
C5Si2 720 320.34 1760 
C6Si2 993 325.37 1858 

CPU time per SCF CPU time per SCF CPU time per SCF 
Name of (sec.) (sec.) (sec.) 
Cluster cc-pVDZ+ 

Average Singlet or Triplet Doublet 
C2Si1 38.22027972 38.07692308 38.36363636 
C2Si2 148.75 144.5 153 
C2Si3 542.98 527.71 558.25 
C2Si4 1379.055 1410.36 1347.75 

C3SM 124.725 101.7 147.75 
C3Si2 264.715 234.29 295.14 
C3Si3 725.375 700 750.75 
C3Si4 1835.33 1808.44 1862.22 
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