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Abstract

A unique ASIC was designed implementiﬁg the Haar Wavelet transforrﬁ for
image compr&_a_ssion/décompression. ASIC operations include performing the Haar
wavelet transform on a 512 by 512 square pixel image, preparing the image for -
transmission by quantizing and thresholding the transforméd data, and" performing the
inverse Haar wavelet transform, returning the original image with only minor .
degradation. The ASIC is based on an existing foﬁr-chip FPGA implerﬁentation.
Implementing the design using a dedicated ASIC enhances the speed, decreases‘ chip . .
count to a single die, and uses significantly less pdwer compared to the FPGA |
implementation. A reductjon of RAM accesses was realized and étra&eoff between
states and dﬁplication of components for parallel operation were key to the performance
gains. Almost half of the external RAM accesses were removed from the FPGA design.
by incorporating an iﬁtemal register file. This reduction reducéd the nﬁmber of states
needed to process an ‘imagé increasing the imé.ge frame rate by 13% and decreased v/o.
traffic on the bus by 47%. Adding control lines to the ALU components, thus éliminating
unnecessary switching of combination logic blocks, furthér reduced power reqﬁirements.
The 22 mm? ASIC consumes an estimated 430 mW of power when operating at the

maximum frequency of 17 MHz.
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A LOW POWER
APPLICATION-SPECIFIC INTEGRATED CIRCUIT (ASIC)
IMPLEMENTATION OF WAVELET

TRANSFORM / INVERSE TRANSFORM

I Introduction

1.1 Introduction

This document présents a piece in an overall research éffort being conducted by
the Dayton Area Graduation Studies Institutes (DAGSI). Currently, students at ‘Air Force
Institute of Technology (AFIT), University of Cin_cinnati (U0, University of bayton '
(UD), and Ohio State University (OSU) are invo]véd with thé effort of advancéd'
compressmn of video and audio commumcatlons and large image compress1on Wavelet -
image compression using Field Programmable Gate Arrays (FPGA) is the focus of the
UD research. This thesis effort expands upon image compression research by -
implementing the Haar transform/inverse transform on an Application—Speciﬁn:Integrated :
Circuit (AS.IC). | |

The main effort of this research was to create an ASIC with the same functionality
as the existing Very High Speed Integrated Circuit Hardware Description Language

(VHDL) behavioral description of the FPGA design. Efforts were not made to alter the




speciﬁc wavelet chosen for image compression/decompression. Savings in area, speed,
and power are the primary goal. While a mathematical analysis of wavelets was not
explored, a brief discussion of wavelets and their properties accompany this thesis to

provide a theoretical basis.

1.2 Problem Statement

Image processing has always been a slow and difficult task since image .resoluti'on
is directly tied to the number of sample points taken. To increase resolution, one has to
increase the number of sample points. As the number of samplé points increases, so does
the time necessary to complete the computations (1). By using the 2-D Haar transform, a
speedup is realized since the transform compresses the image information into a minimal
number of coefficients. The quality of the reconstructed imagc obtained from the Haar
transform is satisfactory for many applications including this research effort. B‘y
quanfizing the wavelet coefficients, a greater compression ratio is attained allowing for a
faster transrrﬁssion rate. Quantizing the wavelet coefficients causes some image
degradation, however, the tradeof_f betWeén the speed Qf transmitting thé data and the loss
of irhage integrity is necessary. ane the compressed image is received the reverse
transform is applied leaving thé original image with only a minimal loss of integrity. The
integrity loss is relative to the level of quantization and thresholding pérformed. For
many applications, the speedup obtained by transfqrming and quantizing the image

greatly outweighs the minimal loss of the image integrity (2).




The current technology has been mapped on an Annapolis Microsystems
Wildforce board (3). The board consists of 5 Xilinx FPGA 4062XL chips with up to
2Mbytes of SRAM per chip. A PCl interface exists on the board providing several /O
options. External FIFOs, DMA, and a reconfigurable Crossbar between FPGAs are
among the I/O options.

The Wavelet ASIC research effort replaces the 5 FPGA board with a single ASIC.

Figure 1. Wildforce Board (4)

1.3 Methodology

Converting from the FPGA design to an ASIC design required many iterative
design steps. The ﬁrst step is to compile and execute the existing VHDL behavioral
code. Understanding how the current implementation operates is the key to translating
and improving the code. Second, optimizations are performed to obtain a performance

speedup, reduced area, and reduced power consumption. Next, a new behavioral VHDL




description is written to reflect the optimizations and tested. The new description is built

with manageable blocks for easier implementation. A 9-bit adder is an example of a

manageable block since it performs one function. Each block undergoes transitions from

a behavioral description to a structural description and then to a physical layout. Each
step is tested and revisited until it satisfies the required speed, area, power, and
functionality criteria. Selected blocks are grouped together and tested for further

verification. The final step is to test all blocks together.

1.4 Constraints and Assumptions

Validatioﬁ of the FPGA behavioral code is assumed since it has been observed to
produce ic_;xpected results for sample images. Additionally, the Haar transférm
‘ ifnplementation df the code is assumed correct. Mathematical operations performed in .
tiw code ;?Vere alt@;red only to reduce the time to do the calculations. The ﬁnal ASIC
design pfbcess w:és verified against the behavioral VHDL code and produced identical

results.

1.5 Materials and Equipment

All of the design tools used to create the layout operate in a UNIX environment.
The first tool was the Synopsys System Simulator, (VHDLAN), (5). It tested the
behavioral, structﬁral, and functional aspects of the design. Another tool used was the
Synopsys Design Analyzer (5), whichv produces a gate level layout of the behavioral

description. A schematic based design tool, Synopsys Graphical Environment, (SGE),




(5), was used to produce a structural level description of the VHDL code. Netlists are
_also produced by SGE, which are used to obtain the final transistor layout. Octools (6)
translated the netlist into a transistor layout. Magic (7), is used to view and edit the
layout produced by Octools, as well as to produce a transistor layout design. The layout
level of the design is tested with two other tools, IRSIM (8), which tested the
- functionality of the transistor layout by performing a logic level test and High Accuracy
Simulation Program with Integrated Circuit Emphasis (HSPICE) (9,10,1 1),:_which tested

the functionality of the transistor layout with emphasis on accurate timing of the circuit.

1.6 Yhes_is 0verview'

This document is organized into 6 chapters. The first chapter provides an
iﬁtro’duct_ion, overview of ASIC_.design,' the steps used in the design process, and the tools
needed to complete the ASIC‘. design. .

| Chaptér II summarizes current research in wavelet/transform technology.
Research in ASIC design is also presented. Background research in FPGA design is also
described.

Chapter III begins by stating the goals of the Wavelet ASIC. The ori ginal VHDL -
behavioral code is then analyzed. Next, the steps taken to éxecute the Haar transform and -
inverse Haar transform are discussed in detail. Optimizations of the original design are
then presénted. The next Section discusses the design of the new syntheéizeable VHDL

code. The chapter finishes by describing the causes of image degradation.




Chapter IV presents the design at the component level of abstraction. First, the
design steps used to create a component are listed. Each component, as well as each of
the main logic blocks, is described. Next, the different state machines are discussed
along with the design choices made to create them. The custom built internal register file -
is described in detail. Next, the top-level signals are listed along with their functionality.
Finally, the system data buses are discussed.

Chapter V focuses on the verification and validation of the design. Tests made to
the original VHDL behavioral code are discussed first. The design cycle is discussed
along with the tests conducted at each step. The testing of the individuel cemponent is
also described. Finally, the read/write logic is discussed.

In Chapter VI, research conclﬁsions are presented. Research goals end
accomplishments are discussed. The cﬁapter concludes with suggestions for future work

“for both the VHDL level, as well as the component level of research.




II. Literature Review

2.1 Intrqduction

There is an enormous amount of research in transforms. For over 30 years, Fast
Fourier Transforms have been the topic of many booké (12). Wavelet transforms, in
contrast, are relative newcomers but they have spawned many ﬁew signal proceésing
algorithms over the past 10 to 15 years (13). A brief discuSsioh ofh'the 2D Wavelet
T ranéform is i)resented along with an introduction to the Haar wavelet. Wévelets :
introduce various tradeoffs with respect to power, timing, and chip:aréa; A small number
of wavelets were énalyzed for their specific impact in these areas with respect to ASIC
design. Only a few theses were found' that involved end—tc}—end chip design. Specific
points from these theses are diécussed along with their relevance to the Waivelet ASIC
research. The chapter concludes by describing the FPGA design of the Haar Wavelet

transform/inverse transform.

2.2 2D Wavelet Transform

The wavelet transform is popuiar for use in encoding a signal. After
transformation, the input is separated into two sequence‘s. The average values of the
original input are represented in the first sequence while changes are represented in the
second sequence. In other words, the first sequence describes the general trend of the

input and the other sequence shows departures from that trend (14). There are an infinite




number of wavelet transforms and the particular criteria for choosing one over another is
application specific (14). The 2D wavelet transform is an example of a wavelet
transform that exhibits characteristics useful to image processing (2).

Prior to the transform, an image is digitized and represented as a two-dimensional
matrix of pixels. Each pixel value represents an intensity and color value as sampled at
that point. Normally, there is a high correlation between adjacent pixels. Correlation
between neighboring pixels results in redundancy in image information which is
exploited by the transform. The resulting data is ébmpress’ed into a compact reversible
transform of the original image. There are two schemes associated with the
t;ansformation of images for encoding. The schemes are éither causal or noncausal. In_.a :
broad sense, causal transforms permjt a sequential encoding process while noncausal
fransforms require solving large systems of simultaneous equations. Noncausal
transforms pr_ovide a higher compression ratio but are harder to implement since they do
not use a sequentjal encoding method (15). For the ASIC design, the causal transform is
used.

The two most interesting characteristics of an image are its edges and texture.
The characteristics are expressed as variations in the intensity and color of the adjacent
pixels and these variations occur on several different scales. Edges of large objects are-
observable at low resolutions while edges of smaller objects are visible only at higher =
resolutions. At very high resolutions, even the texture of an image is observed as
- variations in intensity. While both edges and texture are distorted when applying

transforms, edges are more pefceptible to the human eye (15).




Each iteration of the 2D Wavelet transform produces four sub-images. First, a
row decomposition is performed and results in a high pass sub-image and a low pass sub-
image. The two sub-images are then decomposed by columns, which produce a total of
four sub-images (low-low, low-high, high-low, high-high) as shown in Figure 2. The
three high pass sub-images contain the edge information. For example, the ‘High, Low’
sub-image contains the horizontal high-pass information and the vertical low-pass

information (2).

|
|
|
!
Low,Low | High,Low
l
|
|

|
u
|

| |

Low,High ! High,High
: .
|
|

Figure 2. Sﬁb-images

The fourth sub-image (low-pass image) is then transformed again producing four
more sub-images with similar information but with lower resolution. The steps are
repeated for a desired number of iterations. Usually the low-pass image after several
iterations doesn't contain any more desirable information so the iteration is ceased (15).

Multiple passes are performed because image intensity changes may occur

gradually. To localize the change in intensity, a low pass filter is applied to the image




which halves the intensity range. The divided intensity range is then examined for
changes. By performing multiple passes, intensity variations are obtained at different
scales. The multiple step transform allows both gradual changes as well as sharp
transitions to be localized and saved for reconstruction of the image. The process of
obtaining edge information at various scales is called multiscale edge detection and is
very useful for image compression (15).

Wavelet compression is effective because the wavelet transform exploits the
correlations in a signal. 1D transforms only exploit correlations in a small segment. 2D
transforms find correlations within a region. The 2D transform, therefore increases the
compression ratio (4). The increased compression ratio is an advantage of the 2D -
wavelet compared to other transforms (16).

Another significant advantage of the wavelet transform (4) is that it solves the -
synchronization problem between multirﬁedia content streams such as adjacent video
signals. Synchronization is also an issue in wireless LAN and Internet communications.
In order to achieve synchronization, a tim_e—control mechanism is needed. ‘A 1D audio
signal can be converted into a 2D signal to form an audio image. By attaching the audio
image to the video image, synchronization is achieved (4).

In this section, the 2D wavelet transform and its application to image proc_essing
was discussed. For a more detailed analysis of wavelets, the interested reader is

encouraged to consult (17).
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2.3 Haar Wavelet

The wavelet chosen for the ASIC design, the Haar wavelet, is possibly the
simplest of all the wavelets. Computation of the Haar wavelet is accomplished by simply -
averaging and differencing the data. These simple calculations are what make the Haar
wavelet suitable for an ASIC implementation. Two types of coefﬁciénts are obtained
from the transform. Scaling coefficients are obtained by averaging two adjacent pixels.
These scaling coefficients represent a course approximation of the image. Wavelet
coefficients are obtained from the differencing of two adjacent pixels. .Wavelet
coefficients contain the fine details of the image.

The Haar wavelet was chosen for its simplicity and speed of computation.
Computation of the scaling coefficients requires adding two pixel values and dividing by
two. . Calculation of the wavelet coefficients requires subtracting two pixel values and -
dividing by two. The inverse transform simply requires subtraction and addition. Using
logical shifts to perform division eliminates the need for a complex divide unit.
Furthermore, implementing a logical shift in hardware requires much less power and
space than an arithmetic logic unit (ALU). Given the computational requirements,.the
Haar wavelet is a simple and easy to implement transform. Computational simplicity .
makes the Haar transform a perfect choice for an initial design implementation. Further
research is being conducted by UD to see if any advantages exist for using different

transforms for their research effort.
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2.4 History of Designs

Iniage compression is a required in many applications. One such application is in
digital photography. Storing high-resolution images requi;es a significant amount of
memory. Better compression results in more images being stored on ab givgn stbrage
media. Qne sucﬁ effort involved designing a VLSI chip for Wavelet Image Cofnpression
(18). | |

The Joint i’hotographié Experts Group (JPEG) image compression al gofithr'n is
widely uséd for reAduction>of image dafa. JPEG is'a real-time video/image processing
application baseddon the Discrete Cosine Transform. Howevef, JPEG has some |
drawbacks, such as artifacts being produced in the decompressed image. The aftifa‘cts are
especially evident at the borders of the 8;(8 sub-image and have resulted in exploration of .
éther methods fof image compression. Schwarzenberg’s VLSI chip design for Wavelet
i>mage compression is based upon‘_wavelet transforms (18). A special Integrated Circuit
(IC) was developgd to perform image compressioﬁ since software implementations of
qompreséing eveﬁ one still image requires a very long time. The speed of the
Schwarzenberg’s transform chip Was obtained by performing certain oberations in
parailel (18).

Schwarzenberg us'es a Separable two—dimensioﬂal wavelet-transform. Performing
a one-dimensionai transfoﬁn on tﬁe rows and then on the columns produces ;1 separable
2-D transform. Schwarzenberg’sldesign used internal RAM for the one-dimensional
transforms allowing fof increased speed since external RAM access was minimized.

Since an ASIC wasn’t actually built, valid operation of the design was based on the
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synthesized code. The synthesized code performed identical to that of the software
version of the wavelet compression (18). The FPGA design uses off-chip RAM to store
intermedr:ate values. The utilization of on chip memory is applied to the Wavelet ASIC
transform design to gain speed.

Adother research effort involved implementing a VLSI architecture for 2-D
discrete \;vavelet rransfonns (DWT). The architecture ‘was designed to process input
signals in real—time. The VLSI DWT design used three programmable parallel filters, a
storage umt and a control unit, which minimized the hardware costs. The 2-D DWT
de31gn outperformed the d1rect approach, wh1ch uses the l—D DWT. The direct approach
only executes the transform in a row like fashion, which exploits correlatlons in small
segments':,.not‘ in regions. - The direct approach has malry sixortcomings such as a lorrg
lqtency trme and the requirement for a large memory space. Becaﬁse of these }
shortcomings the 1-D DWT isn’t widely used. The VLSI DWT approach had
i)erformance benefits over a direct apr)roach makirlg if suirable for many re.al-time
video/image applications (19).

| Singh, et al. (20), designed another application using a 2-D discrete wavelet
transforrrn. Parallel computatron of the wavelet was proposed. The design is modular
rrlaking it scalable to different levels of wavelet decomposition. A prototype architecture
was implemented for an 8 x 8 image. The Singh architectrlre \ras synthesized and
verified. Then a iayout was designed in Cadence. The Singh design boasts fewer latches :
by utilizing control pipelining to generate the control signals. Control pipelining |

eliminated the need for latches for the horizontal dimension of the first stage processing
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elements. The design used 3 stages of wavelet decomposition (20). The Haar wavelet
implemented in the Wavelet ASIC also incorporates a 3-stage wavelet transform.
Zhang, et al. (21), proposed a 3D DWT. The 3-D transform is decomposed into

three steps. Each step is a 1-D transform in the x, y, and z direction. Although the 3-D
DWT outperforms the 2-D DWT by 40-90%, the 2-D and 1-D transforms still have their
uses (21). The number of coefficients is proportional to the accuracy of the transform.
Furthermore, as the number of coefficients increases, so does the time it takes to compute -
the transform. The 3-D DWT architecture was imﬁlemented with minimal "érea and
pfedic’ts the consumption of less power. Low power was achieved in the 3-:D DWT:
design by using low powef building block cells, uéing central control design, which
minimizes circuit complexity, eliminating redundaﬁt médules, and by consfantly :
éompromising tradeoffs of power, speed, and circﬁit éomplexity. The 3-D DWT design
was verified with- Synopsys software énd is reported t§ use only 0.5W of power _witﬁ a
total delay of 91.65 ns while operating at .a frequency of 272 MHz (21).

| Another architecture was proposed by Lafruit, et al. (22), which greétly reduced
power and memory usage. Lafruit’s architecture reads the image déta line by line, which
results in'a great area savings for on-chip storage. The method of ;eadihg Iiné by line
reduces complexity, which in turn reduces power consumption (22). Reading the data
line by line was not used in the Wave]ét ASIC design but an attempt to minimize the
number of reads and writes was a goal. The Wavelet ASIC design uses internalvregisters
to store image pixel values until the computation is completed and the resuits are written
to memory yielding a speedup over the existing methodology. As with Lafruit, et al.

reduction of power is obtained by minimizing memory access (22).
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Hunt (23) explored some of the design issues associated with VLSI designs.
Among the issues were the choices for synchronous versus asynchronous timing.
Synchronous timing eliminates race conditions and other potential hazards by reducing or
iﬁcreasing the clock cycle time. The speed of combinational circuitry is not a concern if
the clock cycle time is adjusted to account for the circuitry’s operating speed. Power
consumption of clock circuitry, however, is quite large since the clock is always
switching. Switching is what uses power in CMOS designs. With an asynchronous
design the power and area are reduced. However, with the absence of a cldck, extra
cpntrol circuitry is needed which sometimes offsets the area sﬁvings. With synchronous
circuits, the speed is directly tied to the longest delay. An attempt to equally distribute‘ ,
the workload across all states should be made. thimizing portions of a synchronous
design, which are not in slow sections of the code doesn’t increase performance: With
asynchronous circuits the opposite is true. Since the next stage is waiting on- the previous
stage, the sooner it is completed the better (23). Aspects of both synchronous and
asynchronous timing are used in the design of ASIC research effort.

Another design choice is deciding between performing operations in parallel by -
- replicating components or operating in a serial fashion. For example, one can choose to
use a single 32-bit adder and perform consecutive additions or replicate the:-adder and do
additions in parallel. The former needs less die aréa but takes a longer time to compute
which decreases throughput. The complexity of a single adder design is also ihcreased.
By replicating the adder, one can achieve faster operation and higher throughput. The

cost is an increase in die area. The control circuitry is decreased in the parallel design but
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not enough to offset the replication of components (23). Tradeoffs between adding extra
states and parallelism are a major part of the Wavelet ASIC research.

* Hauser looked into VLSI concerns, as well as Discrete Fourier Transform (DFT)
implementations and their advantages of being placed on a chip (1). The DFT uses a
finite set of sample points making it suitable for implementation on a digital computer
Again, as the number of sample points grow, the time to compute the transformand th§
power needed to perform the computation also increases. Since the DFT uses
multiplications to execute, time and power usage are issues.

Winograd demonstrated a reduction in the number of multiplications required by

- the DFT in 1978 (1). The class of algorithms known as the Winograd Foutier Transform

Algorithms (WFTs) is able to compute a DFT with a minimal number of multiplications.

The drawback tothe WFT is the size of the algorithm. In other words, the size doesn't

“easily map to that of a VLSI chip. Hauser showed by using the Good-Thomas Prime

Factor Algorithm (PFA) in conjunction with the WFT, the size of the algorithm is
reduced and easily maps onto that of a VLSI chip (1). Since the goals of the Wavelet
ASIC are low power and fast computation, the Haar wavelet transform is the best choice

because it requires only addition, subtraction, and shifting to compute it's coefficients.

2.5 Current Research

Research at the University of Dayton implements the Haar wavelet fransform
using a Field Programmable Gate Array (FPGA) (Figure 3). An image is captured via a

camera and then transformed, quantized, and encoded creating a compressed image. To
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retrieve the original image, the process is reversed. The reconstructed image is the

output from the inverse transform step.

Camera and

Frame Grabber Wavelet Corhpression
P T | ."—_____—_—___—_______"___-_——___'""":
; P
. . '
_}@_’ il: Transform y| Quantizer »| Encoding ;
5 ¥ :
e N S |

<< Compressed Image Data Transmission <<

Wavelet De-compression

Figure 3. Image Compression/Decompression Flowchart

The FPGA design starts with a behavioral VHDL c'odevlevel description. The
VHDL code is used to program the FPGAs to perform the required tasks. The transform
portion of the design is driven by the top level file, Compression.vhd. The
Compression. vhd file uses 5 other VHDL files to perform the transform of the image. As
Figure 4 shows, the image is processed first by TOWS and then by c_olumns.f First, one row
is read in avnd‘ packed. Next, the Haar transform is applied. After the row has been
transformed it is unpacked. The three-step process is executed on all the rows. Next, the -

image is processed in column order. One column is read in and packed. Next, the
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column is transformed. After the column has been transformed it is unpacked. The three-
st.ep process is executed on all the columns. Three iterations of the row/column process
are executed by the transform portion of the FGPA design. The files used by
Compression.vhd and the@r functionality are listed below. -

Compression.vhd — Implements the 5 VHDL files listed in Figure 4,

- Pack4row.vhd, Pack4Column.vhd - Packs four 8-bit pixel valués into a
single 32-bit integer. Packing the data speeds up the wavelet transform -
4-fold. Pack4row.vhd packs an image pixel row to % its original size;
Péck4Column.vhd packs an image pixel column.

HaarVideo.vhd — Transforms one row/column of image data into wavelet
coefficients (High Frequency coefficients) and scalfng function -
coefficients (Low Frequen¢y coefﬁcients) -

Unpack4row.vhd, Unpack4Column; vhd — Unpacks four 8-bit pixel values
from a single 32-bit integer. Unpack4row.vhd unpacks: pixels in an entire
image pixel row; Unpack4Column.vhd unpacks pixels in an entire image
pixel column.

The inverse transform half of the design is driven by the top level file,
Decompression.vhd. The Decompression.vhd file uses 5 other VHDL files to perform the
transform of the image. As Figure 5 shows, the image is processed first by columns and
then by rows. First, one column is read in and packed. Next, the Inverse Haar transform
is api)lied. After the column has been inverse transformed it is unpacked. The three-step
process is executed on all the columns. Next, the image is processed in row order.: One

row is read in and packed. Next, the row is inverse transformed. After the row has been

18




Compression.vhd

Pack4row.vhd Unpack4row.vhd Pack4Column.vhd Unpack4C01umn..vhd
A 4
HaarVideo.vhd
< <
‘Loop Through All Rows Loop Through All Columns
4
Loop Through Multiresolution Levels

Figure 4. Compression.vhd File Flowchart (4)

inverse transformed it is unpacked. The three-step process is executed on all the rows.

The inverse transform portion of the FPGA design executes three iterations of the

column/row process. The files used by Decompression.vhd and their functionality are

listed below.

Decompression.vhd — Implements the 5 VHDL files listed in Figure 5.
Pack4row.vhd, Pack4Column.vhd — Same as in Compression.vhd.
InvhaarVideo.vhd — Inverse transforms wavelet coefficients (High
Frequency coefficients) and scaling function coefficients (Low Frequency -
coefficients) into one row/column of image data.

Unpack4Column.vhd, Unpack4row.vhd — Same as in Compression.vhd.
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Decompression.vhd

Pack4column.vhd Unpack4colurhn.vhd Packdrow.vhd Unpack4row.vhd
A 4
InvhaarVideo.vhd
< . - <
~ Loop Through All Columns Loop Through All Rows
«
Looﬁ Through Multiresolution Levels

Figure 5. Decompression.vhd File Flowchart (4)

- VHDL files for the main components are synthesized by the Wildforce
system and the results are programmed onto the Wildforce board FPGAs (3). Software
i'nferfaces are used to control the programmed che on the FPGA . First, the front-end
code., written in C, is used to load an image into memory. The Wildforce FPGA
imp]:ementation can héndle ifr;age sizes of 16 x 16, 32‘x 32, 64 x 64, 128 x 128, 256 x
256,512 x 512, and 1024 x 1024 square pixels. After loading the image, the front-end
codeAgives control to the Compress.vhd component by granting memory accesé. The
image data is. proqessed as shown in Figure 4. Wﬁen fhe Compress. vhd component
completes, tl;e software takes control and simﬁlates transmission of the compressed

image. After simulated transmission, control is given to the Decompress.vhd (Figure 5)
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component, which decodes the image data and executes the inverse transform. After the
image has been reconstructed, another program, written in C, 1s used to display the
image. The image has some degradation but is acceptable for many applications.

Static Random Access Memory (SRAM), which is used to store the image data, is
located on a separate FPGA. The memory access time is two clock cycles from memory
read to valid data on the data lines. A write operation takes one clock cycle. The bus
controller and the memory controller are contained oni other FPGA:s.

Testing individual pieces as they were converted to FPGA compatible software
was accomplished by running the other components not yet converted with the ones now
on the FPGAs. Funcﬁonality of the VHDL code was demonstrated when a recognizable
image appeared on the screen. The FPGA implementation has run at clock speeds up to
20 MHz. Advancements are qurrently in work to decrease the execution time of both the

transform and inverse transform (4).

2.6 Summary

This chapter described many past énd present research projects. First, the 2-D
wavelet transform was analyzed for its applications relating to image processing. Next,
the Haar wavelet was introduced. The Haar wavelet was chosen for the ASIC
transform/inverse transform because of its siniplicity. After introducing the Haar
wavelet, research using other transforms was studied to gain an overall understanding

about their applications relating to image processing. Finally, specific details from
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different ASIC designs were studied. Many of the lessons learned from the different

ASIC research efforts are applied to the Wavelet ASIC design.

22




III. Design Overview

3.1 Introduction

The behavioral VHDL code used to implement the Haar transform/inverse
transform was obtained from the Universify of Dayton (UD) (4). Since the supplied
VHDL code was written for FPGAs it wasn't readily synthesizeable and many changes
were needed. The steps taken to translate the FPGA VHDL code to synthesizeable code
are discussed in this chapter. Places to improve the code are described. The design flow
of the synthesizeable VHDL code is explained and the differences between the FPGA
code and the synthesizeable code are highlighted. Finally, degradation due to quantizing, -
thresholding, and shifting are discussed along with its impact on the usefulness of the

image.

3.2 Goals

The goals of the ASIC research were directly tied with the current parameters of
Wild Force Board application. Using the maximum operating speed of 20 MHz and the
total number of states needed to transform one image, the FPGA design transforms one
image every 196.609 ms. By increasing the operating speed and/or decreasing the
number of states needed to process an image, the ASIC design will increase the frame
rate. Adding control signals to the ALU components forcing them to switch only when
necessary will minimize power usage. Chip area will be minimized by custom designing .

critical portions of the Wavelet ASIC. The FPGA implementation supports image sizes
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from 16 x 16 to 1024 x 1024. For simplicity, the Wavelet ASIC uses a set image size of

512 x 512.

3.3 Analysis of Original Code

The analysis process began by compiling and testing the behavioral
VHDL code received from UD. Initial tests were developed to determine the order pixels
were accessed. Next, different operations performed on the pixels were analyzed.
Operations performed on the pixels varied dependin g on the iteration of the transform
and where in the image the current pixel information was obtained. The code was
analyzed to determine the order of algorithm operations. Figure 6 shows the design flow
of the FPGA code for the transform section. Only the specifics for the row operations are :
shown. Column operations occur in the same manner as that of the rows. The only
difference is in the order the pixels are processed. Row operations read in the pixels from -
left to right. The column operations read in the pixels from the top to bottom.

The first step in the process is the packing of data. The FPGA implementation
contained no internal storage, requiring intermediate values to be stored in off chip RAM. -
To minimize the RAM accesvses the data Was packed for later retrieval. Since pixel
information only exists in the 8 least significant bits of a 32-bit memory word, the FPGA
impleméntation reads in four locations and packs them into one 32-bit word. The 32-bits
are then stored back to RAM for later retrieval. Subsequently all memory read accesses

retrieve 4 pixels instead of only one.
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The next step is the transform, which operates on the packed data. The packed

data is read in, transformed, and written back to RAM. Once the packed data has been

Wait for Grant .
\ Initialize image

variables
Set variables for | |
Row operations™ |
Y
Done Read 4 Pack into .
Reading g-bit | 32-bit > ga’t‘t‘:tpﬁii
Row? Pixels Word ato
Calculate
Read 2 4 Wavelets Write
32-bit and 4 Scalers » Transformed
Words (Transform) Data to RAM
Unpack .
?26 ?:Jditz ) into 8 values: Write 8 valuesg
W(‘)r ds "] 4 Wavelets "] ToRAM
and 4 Scalers

Transform Done Reset
Reading All With three All
Columns .
passes? Variables
¢ Yes

Sﬁgntlze Encode

Threshold > (not doing

The Data this step)

Figure 6. Flowchart Showing Transform Steps of FPGA Behavioral Code
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transformed it is read in, unpacked, and stored as 8-bit pixel information within a 32-bit
word. Three transform passes are performed on each image. During each subsequent
pass the image size is decreased by a factor of four. The first pass processes an image
size of 512 by 512 square pixels. The second pass processes an image size of 256 by 256
square pixels. The third and final pass processes an image size of 128 by 128 square
pixels (Figure 7).

During the first pass, the transform processes the original image. Each
subsequent pass bperates on the scaling coefficients produced by the previous pass
(Figure 8). Details of the subsequent passes of the wavelet transform are e‘xplained in
Section 3.5. Each iteration only alters the original position of the current image i.e. the
Ihemory locations of the 256 by 256 square image are read in. After being‘ calculated, the
coefficients are written out to the same memory locations of the original 256 by 256
square image. After the three passes are performed, the image is quantized, thresholded
and encoded. Details of the quantize and threshold steps are contained in section 3.4.
The encode step is not part of the ASIC research and will not be discussed. After three
passes, the transform is complete. Next, the inverse transform is applied.

The second half of the FPGA design recreates the original image from the wavelet .
transformed data file. The first step is to decode the encoded data file. Decoding details
are not addressed, as encoding was not implemented in the ASIC development effort.
The inverse transform process. is simply the reverse of the transform process. The Haar
transformed data is read in, packed, and written back out to memory. The packed ’data is

then later read back in, inverse transformed, and written back out to memory. Finally, the
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Figure 8. Result of One Transform Iteration

‘restored packed integer image is read back in, unpacked, and then written back to :
memory.
One difference between the transform and inverse transform is how the data is

accessed. During the inverse transform, data is processed first by columns and then by
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rows, which is opposite to that of the transform process. Another difference is the -
operations used to inverse transform the data. Details of the inverse transform operations
are discussed in section 3.5. The order in which the memory locations are accessed is
also different. The transform step operates on adjacent pixels creating coefficients. The
coefficients are written to separate halves of the image. The inverse transform then
operates on the coefficients. In other words, the memory accesses for the inverse
transform are not sequential as in the transform step.

There are still three iterations. After each iteration the image is increaséd by four.
That is, the first pass processes an image size of 128 by 128 square pixels. The second
pass processes an image size of 256 by 256 square pixels. The third and final pass
processes an image size of 512 by 512 square pixels. The first and second pass produce
coefficients relative to their respective transform operations. The third pass produces the
transform-degraded values ofj the original pi){els.;Details of the degradation are explained
in the section 3.10.

The FPGA transform"'design takes 3,932,176 states to complete a three level
transform and quantization of an image. The time to process one frame is 196.609 ms at
a 20MHz operating speed. Appendix C contains a detailed breakdown of states for the
FPGA design. The frame rate only measures the processing time of an image that already
exists in memory. Associated operations like loading a new image into memory and
transmitting the image would obviously affect the; frame rate.

The FPGA code can process images of different sizes. The image width and
height are located in memory locations one and two, respectively. When the FPGA code

reads in the image size information, the internal counters are set to indicate the size of the
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image being processed. A 512 by 512 square image is the only size image handled in the
ASIC research, therefore, the details of dealing with the different sized images is not

addressed. The details for quantizing and thresholding are discussed next.

3.4 Quantize and Threshold Rules

In the FPGA code, the quantize step is performed after both the row and the
column transforms have been completed for all three iterations. The specific rules for
quantizing and thresholding are presented next. SEe (24) for the specific, detailed
ihformation on the qﬁantizing and threshélding process and theory. For explanation
purposeé, numbers are assigned to each quadrant. The nu:mbering (Figure 9) is used to

illustrate the different quantizing and thresholding rules for each quadrant.
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Figure 9. Quadrant Layout

In all passes the scaling coefficients are left alone. The reason some quadrants in Figure

9 have the same number is that the rules for processing those quadrants are the same.
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The values are represented in hardware as 8 bits of data. When speaking of position of

the bits the number is referenced from left to right as bit 7, bit 6, ..., bit 1, bit 0. Bit 0 is

the least significant bit (LSB) and bit 7 is the most significant bit (MSB). The quantize

and threshold steps alter the data which increases the compression ratio. The following

quantization and threshold rules were taken straight from the FPGA code. The steps are

executed in order for each value.

Quadrants 0:

Steps:

Quadrants 1:

Steps:

Quadrants 2:

Steps:

Quadrants 3:

Steps:

Quadrants 4:

Steps:

el ol

LECES

.. No altering of the data.

. If number is negative and the LSB is equal to ‘1’ then add 2 to the

number.

. Set the LSB equal to zero.

. If number is negative and one or more of the lower two bits are equal to
* ‘1’ then add 4 to the number.

Set low two bits equal to zero.

. If number is negative and one or more of the lower two bits are equal to

‘1’ then add 4 to the number.
Set low two bits equal to zero.
If value is less than —64 set equal to —64.

. If value is greater than 64 set equal to 64.

. If number is negative and one or more of the lower three bits are equal

to ‘1’ then add 8 to the number.
Set low three bits equal to zero.
If value is less than —64 set equal to —64.

. If value is greater than 64 set equal to 64.
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Quadrants 5:
Steps:
1. If number is negative and one or more of the lower three bits are equal
to ‘1’ then add 8 to the number.
2. Set low three bits equal to zero.
3. If value is less than —8 set equal to —8.
4. If value is greater than 8 set equal to 8.

Quadrants 6:
Steps: '

1. If number is negative and one or more of the lower four bits are equal

to ‘1’ then add 16 to the number.

Set low four bits equal to zero.

3. If value is less than -8 set equal to —8.

4. If value is greater than 8 set equal to 8.

®

3.5 Wavelet Transform/Inverse Transform portions of the code

The Haar transform is very simple. The scaling coefficient is the sum of
two pixels divided by two. The wavelet coefficient is the difference of two pixels divided:
by two. To retrieve the original pixel values the inverse Haar transform is executed. The
sum of the scaling coefficient and the wavelet coefficient retrieves the first pixel. .
Subtracting the wavelet coefficient from the scaling coefficient retrieves the second pixel.

The pixels are recovered with no loss in value. Table 1 depicts this process.

Pixel Value Scaler Wavelet inverse
Pixel 1 5|(5+6)/2=5.5 |(5-6)/2=-0.5 |5.5+(-0.5)=35
Pixel 2 6 55-(-05)=6

Table 1. Example of Transform/Inverse Transform

The image is transformed first by rows and then by columns. When the rows are
transformed the left side of the image space consists of scaling coefficients and the right

side of the image consists of wavelet coefficients (Figure 10. Image B). Next, the image
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is transformed by columns. When the column transform is complete the image consists

of four quadrants (Figure 10. Image C). Upper left is the scaling coefficients. The upper
right is wavelet coefficients showing the horizontal edges of the image. The lowerleft is
wavelet coefficients showing the vertical edges of the image. The bottom right quadrant

is wavelet coefficients showing the diagonal edges of the image (2).

Figure 10. Transform of Image

Figure 10, Image C, shows the first iteration of the transform. The second
iteration would only operate on thé upper left quadrant (Figure 10. Image C). It would
produce the same four quadrants as the first iteration but of different resolution levels (2).
The third pass would operate on the upper left quadrant from the second iteration. The

résult of three iterations is shown in Figure 10, Image H.
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Figure 11. Quadrants of the Three Transform Passes

The inverse transform would é)perate on the image in reverse order to the
transform process by first processing the columns and then the rows. The first pass
Wouid operate on the squares labeled ‘0’ and ‘1’ in Figure 11. The second pass would
operate on the result of the first and the squares labeled with a “2°. The final pass would
operate on the whole image recovering the original image. Since the calculations are
being performed in hardware, fractional values are lost during integer division, and the
original image isn’t perfectly recovered. Other factors such as quantizing and
thresholding the data are the major reason for distortion in the final retrieved image. For
a more detailed description of these distortions, reference Section 3.10. Next, the steps

taken to convert from the FPGA VHDL code to synthesizeable code are discussed.
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3.6 Converting the Original FPGA Code to Synthesizeable Code

Once the behavioral level VHDL code was working it was necessary to convert it
to a synthesizeable form. Converting the FPGA compatible code to synthesizeable code
was a complex task. The following statement is an example of the coding style used in
the original VHDL behavioral code.

indx1(18 downto 0) <= indx(18 downto 0) + 10;
Similar types of statements occurred simultaneously in the behavioral VHDL code. The
first problem with above segment of code is the utilization of Bit vectors. AFIT synthesis
tools are not compatible with the bit vector construct (;‘)f the VHDL language. All bit
vectors had to be converted to individual bits, making the code longer and harder to
follow. The ‘+ signs were also inappropriate. The following analysis assumes that 4
additions occur simultaneously. At least three methods are available to implement:
additions. The first method implements four adders that operate simultaneously. The
second method places' each addition in a different state, thus solving the problem serially.
The second method takes four times as long to compute but requires only one adder.
Other combinations such as two adders and two states were explored.. An analysis of
extra states and replication of components was done to decide what combinations of
states and adders were best. The analysis is explained in section 4.6.
The tradeoffs for multiple additions are as follows:

1. Multiple adders vs;orking in parallel increase power usage and increase overall

area.
2. A single adder increases the execution time because extra states are needed.
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3. A combination of multiple adders and more states provided the best solution

for the ASIC design, allowing for some speedup without the area becomingtoo

large.

Many of the defined signals were not used> in the ori ginal behavioral VHDL code.
If two values are added they must be the same size since the ‘+” operator was used. For
example:- |

newaddress(18 downto 0) <= address(18 downto 0) + count(18 downto 0)
Evén if count only used four bits, count must be 19 bits long in order for the addition
operation to compile in VHDL. As part of generating synthesizeable VHDL, all
unnecessary bits were removed from the code.

Another non-synthesizeable portion of the behavioral VHDL was the code for the
&ata latcfles. Changes were requi;ed so latches wbuld properly synthesize. Figure 12
éhows ar; example of some code that was changed to synthesize properly. When the reset
ﬁne was placed before the clock edge detection liﬁe, as it was in the FPGA code, the
component wouldn’t synthesize. Figure 13 shows the conéct way to program a latch for

synthesis.

if (RESET ="'1") then
PAKPXVS5 <="0";
elsif ((CLOCK ='1") and ( CLOCK'event ) ) then
if (ReadPixel3 ='1") then
PAKPXVS5 <="1";
else —no change
PAKPXVS5 <= PAKPXVS;
end if;
end if;

Figure 12. Incorrect Way to Code a Latch
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if ((CLOCK ="'1") and ( CLOCK'event ) ) then
if (RESET ="1") then

PAKPXVS5 <="0"
elsif (ReadPixel3 ='1") then
PAKPXVS <="1"

else —no change
PAKPXVS5 <= PAKPXVS5;
end if;
end if;

Figure 13. Correct Way to Code a Latch

The FPGA code used many RAM accesses to process an image. With some
additional logic the RAM accesses were reduced. The details for reducing the Ram

accesses and the savings from the reduction are explained in the following section.
3.7 Optimizations on the Original Code

Analysis of the initial behavioral VHDL code showed that the three stages of
Wavelet transform operations (Pack, Transform, Unpack) could be combined reducing
RAM accesses by 47%. As with most designs, off-chip memory accesses are a
performance bottleneck. Minimizing the number of memory accesses greatly reduces the
overall executiorj time. The FPGA implementation included no internal data storage
provisions requiring RAM reads/writes of intermediate values to be stored in off-chip
memory. The inclusion of an internal register file eliminated the storing and retrieving of
intermediate values. Pixels were simply read in once, transformed, and written back out
to RAM. Appendix B analyzes the exact savings from combining the three memory

access steps. The additional steps to quantize and threshold the data were also
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incorporated with the column transform step. In the FPGA code, the quantize step is
performed after both the row transform and the column transform have been completed.
By incorporating the quantize step into the column transform step, one additional
memory access is eliminated. The details to the reductions in RAM accesses are
presented in Appendix B. Combining all the above operations eliminated all the reads
and writes the original code needed to execute the quantize step. For a 512 by 512 square
image the savings were 524,288 memory accesses. Of course, the logic was more
complex and the need for a 256 by 8-bit internal register file utilized more chip area. The
fotal chip area used by the internal register file and its associated address decode logic is
8,969,114 lambda®. See Appendix B. Savings of Ram Accesses, for detailed Read/Write

access numbers. Table 2 summarizes the total savings for a 512 by 512 image.

Total Ram Accesses by Old System 2,588,672
Total Ram Accesses by New System | 1,376,256

Savings over FPGA implementation 47%

Table 2. Total Savings in Ram Accesses

The next section explains the steps taken to develop the new synthesizeable VHDL code.

3.8 Developmen.t of the Synthesizeable VHDL Code

To constrain the scope of the research, noncritical portions of the FPGA design
were not implemented. The noncritical portions are explained in this section. The
specifics of the new VHDL behavioral code are also discussed. Detailed differences

between the ASIC and the FPGA design are addressed. Some of the logic used
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specifically for the FPGA design is incorporated in thé synthesizeable VHDL code. The
extra logic, ‘artifacts’ are listed.

The Encoder/Decoder portions of the original algorithm were not implemented as
part of the Wavelet ASIC design. The encoder simply reduced the transformed data file
for transmission while the decoder expanded the compressed file back to its original size.
Another functionality not implemented was the capability to process a variable size
image. Rather, a constant 512 x 512 image size was used for the ASIC research.
However, only a few minor design changes would be required to process any size image
smaller than 512 by 512.. The memory used by the FPGA started the image data at
location 10. Since no internal storage existed, data relevant to the operation was kept in
locations O through 9 and loaded every time it was needed. The same data memory
mapping was retained for the ASIC development. As the design progressed it was found
the data stored in locations O through 9 was not needed for the ASIC research. The
impact of the FPGA fnemory address offset added one stéte to each of the four state

machines use in thc ASIC.

The original VHDL code allowed for a variable input of the number of transform
levels to perform. Based on tests using the FPGA implementation, three transform levels
was determined to be the optimum number of levels to perform (4). Therefore, the ASIC
design used three transform levels for every image. Due to the hardwiring of thre¢ levels,
the transform counter was reduced to 2-bits. Anqther signal, icolumn, was reduced from
19-bits to 10 bits. It was originally 19-bits long to accommodate for the ‘+” operation
restrictions. Eliminating unnecessary signals made the code more compact and reduced

unnecessary steps later in the design process.
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Another change to the behavioral VHDL code was to break it into smaller more
manageable files. The original VHDL code for each main section (Transform, Quantize,
etc...) was contained in one file. To properly synthesize the design, smaller files, each
containing less logic, were needed. First, the state machine and the state control signals
were separated out. Next, all of the Arithmetic Logic Unit (ALU) type operations
" (Additions, Subtractions, Incrementers, etc...) were removed. Each of the operations was
moved to their own separate file. The signals necessary for the operations were passed as
input and output parameters to each file. Any component that could stand-alone was
- more efficiently implemented if synthesized by itself. Typically, design tools are more
- efficient when small modules are used.  Testing the modules is also much easier and
faster when it contains only a single operation.

Another artifact from the FPGA implementation code is bus arbitration. Bus
arbitration along with the other FPGA'’s artifacts is implemented in the event the ASIC -
design is ever interfaced with the continuing FPGA effort. The ASIC design requires the
assertion of the bus grant signal to a Iogic zero for the operations to begin. The original
code did not allow for the bus grant signal to be deasserted once it was granted. The bus
grant logic is the same for the ASIC as that of the FPGA design.

Since the FPGA artifaéts are not needed by the ASIC design, further work on the
ASIC design may require the removal of all the extra logic, clock cycles, chip area, and

. power needed to execute the additional steps. .-
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3.9 Basic Operation of the New VHDL Code

The operation of the ASIC design is discussed in this section. The process begins
by resetting the ASIC’s states and ends when the image is retrieved. Both the transform
and inverse transform processing steps are explained. |

As shown in Figure 14, the process begins by resetting the states in the ASIC.
Once the reset signal is asserted the top-level state machine (Appendix A.1) is initiated.
The first state asserts the bus request. The circuit femains in a bus request state until the
bus grant input is asserted indicating the bus has been given to the Haar ASIC for use.
Once the bus grant is received, the image variables are initialized and processing of the
image begins. First, the image pixel values are read in row by row. The first four pixels
(in locations 0,1,2,3) are read from memory. The image's pixels are numbered 0 to
262,143 starting in the upper left corner as you view the image and proceeding left to
right as shown in Figure 15.

The first row is numbered 0 to 511, the second row is numbered 512 to 1023, and
so on. The image is assumed to reside in memory locations 0 to 262143. The actual
algorithm operates on an image that begins at location 10. The starting address offset is
an artifact from the FPGA implementation. Once the pixel values are read in from
memory the transform is executed producing transform coefficients.

The scaling and wavelet coefficients are calculated from the pixel values. The
two scaling coefficients are written back out to memory as shown in Figure 16

The wavelet coefficients are temporarily written to the internal register file in the

same manner as the scaling coefficients were written out (wavelet coefficient1 is written
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Figure 14. Flowchart Showing Steps to Complete the Haar Transform
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Figure 15. Address Mapping
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Figure 16. Placement of Coefficients Relative to Original Pixel Data

to register location O and the wavelet coefficient2 is written to register location 1). Once
an entire row has been processed the wavelet coefficients are read from the internal
register file and written out to main memory. After the register values are written to

RAM, the scaling coefficients are located on the left half of the current image and the
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wavelet coefficients are located on the right half of the current image (Figure 10,
image B).

Next, the entire image is processed again but in column order. After initialization,
four pixels are read in from memory starting with the left most column. During the
column operations the scaling and wavelet coefficients are created in the same manner as
in the row operations. After the coefficients are calculated, they are quantized and
thresholded. The rules change for quantizing and thresholding depending on which
iteration of the transform is being executed and on which quadrant the current pixels are
being written. The rules for quantizing and thresholding are discussed in Section 3.4.
Referencing Figure 9, the first pass quantizes and thresholds quadrants *5” and ‘6’. The
second pass quantizes andAthresholds quadrants ‘3’ and ‘4’. The third pass quantizes and
thresholds quadrants ‘1° and ‘2’. Once the coefficients have been quantized and
thresholded they are written to RAM or the register file. The wavelet coefficients are
written to the internal register file in the same order as the scaling coefficients were
written out. Once an entire column has been processed the wavelet coefficients are read
from the internal register file and written out to main memory. The scaling coefficients
reside in the top half of the curfent image and the wavelet coefficients iﬁ the bottom half -
of the current image. The algorithm continues until all columns have been processed,
resulting in a fully transformed, quantized, and thresholded image (Figure 10, image C).
The row/column operations continue fof three passes.

The next step, encoding the image, reduces the size of the data file for
transmission yielding a quicker transmission time. The encoding step was eliminated as

it was out of scope for the ASIC development.
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The second half of ASIC design process involves the recreation of the image.
Figure 17 summarizes the inverse transform process. As explained in Section 3.10, the
recreated image is not a perfect replica of the original image.

The process of performing the inverse transform is much the same as the
transform process. However, one difference is that the transformed data file is processed
first by columns and then by rows. Bus arbitration is the same as in the transform case.
Three iterations are required, however, the first iteration of the inverse transform is
performed on the 128 square image, the second on the 256 square image and the third
processes the 512 square image. The order in which the memory locations are accessed
is also reversed.

"The inverse transform continues until all columns have been read in and

. processed. Again each iteration works with a different area of the image. Next, the

entire file is processed again, but in row order. Four pixels are read in from memory.
The order the values are read in and the operations performed are exactly the same as that
of the inverse column operations except the values are read in by rows. All of the rows
are read in and processed.

The column and row inverse transform operations continue for three passes. Each

time the image size is increased by a factor of four. Explicitly stated, the first pass

processes an image size of 128 by 128 square pixels. The second pass processes an
image size of 256 by 256 square pixels. The third and final pass processes an image size
of 512 by 512 square pixels. The first and second pass produce coefficients relative to
their respective transform operations. The third pass produces the full size image with

some degradation. Image degradation is explained in the next section
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3.10 Degradation Due to Shifting, Quantizing, and Thresholding

The Haar wavelet transform introduces no degradation. However, in the VLSI
implementation some degradation is introduced. The ASIC implementaﬁon uses integers
to represent pixel values. Thus, when a divide is performed the exact quotient is not
obtained and fractional remainders are truncated. Doing a shift on the registei' holding
the values performs the divide. A single shift to the right is equivalent to a divide by two.
The problem with a shift is the LSB is discarded. When an even number is shifted a zero
gets shifted out resulting in no loss of data. However, when the number is odd there is a

loss associated with the shift.

1510 = 1111,
Divide by 2 7.510 # 111, - = | To
Multiply by 2 1519 # 1110, = 144

Table 3. Example of Loss of Data Due to a Right Shift

- Table 3 illustrates one place that degradation occurs in the ASIC desi gn. Obviously,
when the inverse transform is executed some of the original pixel values may be altered.
Reference Table 4 for example of actual loss to individual pixels. Pixel 2 is recovered

but Pixel 1 is recovered as a four not a five.

Pixel Value Scaler Wavelet inverse
Pixel 1 5{(5+6)/2=5 (5-6)/2 =-1 5+(-1)=4
Pixel 2 6 5-¢-1)=6

Table 4. Example of Loss Due to Integer Shift
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Degradation increases when negative numbers are involved. To help mitigate the
impact of the loss an additional step was introduced. Depending on the iteration of the
transform and quadrant being transformed, an offset value is added to negative numbers
allowing for a more accurate recovery of the complete image. Degradation still exists but
is lessened by the offset (4), (24).

Some loss of integrity is a tradeoff for increasing execution speed and reducing
power consumption. Executing a bit-wise shift in hardware requires a simple routing of
the signal lines. Implementing a Divide unit is much more complicated, requires a
significant portion of area, and is much slower to execufe than a right shift. The power
used for an integer division operation is much greater than for a right shift operation.
Degradation from the quantization and thresholding of the pixel values limits the overall
accuracy of the reconstructed image. However, to obtain a greater compressiori ratio
over the original image, required for a faster transmission time, degradation was deemed

necessary.

3.11 Summary

The behavioral level VHDL code simulated operation of the wavelet ASIC
properly when run with a 512 by 512 square image size. Reduction of RAM accesses
reduced the power usage and decreased the time needed to transform an image.
Degradation due to the transform, quantize, and threshold steps was a tradeoff for

improvements to execution speed and compression ratio. For some applications the
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degradation would be a hindrance. However, for the ASIC research, the degradation is

an acceptable tradeoff.
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IV. Design Implementation

4.1 Introduction

Detailed design of the Wavelet ASIC is covered in this chapter. Explanation is
from a component level of abstraction. Some components are discussed in great detail.
Others, such as multiplexers, speak for themselves. How the components fit together is
also discussed. Most of the components were generated automatically from a behavioral
description using the Synopsys Design Analyzer Tool (5). Certain blocks of logic, like
the register file and its associated address decode logic, were custom built. Custom built
components are more compact, consume less power, and run faster, but time constraints
don’t always allow for a full.custom design. Off chip memory, bus control, and memory
control were not part of the ASIC design. Only the provided code was translated and

implemented.

4.2 Steps Used to Create a Magic Layout of a Component

The steps used to create a component starting with a behavioral description and -

finishing with a metal level layout in Magic (7) are as follows.

Step 1. Describe the logic in behavioral VHDL.

Step 2. Write a test bench in VHDL to test the code.

Step 3. Compile and test the code.

Step 4. Input the behavioral VHDL to Design Analyzer for synthesis.

Step 5. Optimize until satisfied with the timing and area usage.

Step 6. Convert output of Design Analyzer to input for Synopsys Graphical
Environment (SGE) tool.

Step 7. Using SGE, hand place and route any D Flip Flops.
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Step 8. Create structural VHDL of the logic using SGE.

Step 9. Compile and test the structural level code.

Step 10. Create a netlist of the logic using SGE.

Step 11. Convert netlist to Schematic Driven Layout (SDL) file format used by
Octools.

Step 12. Verify the SDL file by comparing to netlist.

Step 13. Add commands to SDL forcing the ordering of the input and output
signals.

Step 14. Use Octools to produce a Magic Layout of the logic.

Step 15. Use the Magic command ‘drc check’ to verify the correctness of the
Magic layout.

Step 16. Extract a . EXT" file from the layout.

Step 17. Convert ‘.EXT’ file to IRSIM file format.

Step 18. Write an IRSIM test bench and test the logic.

Step 19. Convert ‘. EXT’ file to HSPICE file format.

Step 20. Write an HSPICE test bench and test the logic.

Step 21. Connect with other components then test as a larger block.

The above steps are listed to help clarify when certain steps occur relative to each other.

4.3 Using the Synopsys Design Analyzer

The “increment by 10” component is used to illustrate how the design analyzer
was used to design thé ASIC Wavelet chip. Synopsys Design Analyzer takes behavioral
VHDL code as input and creates a gate level layout of the logic. Design Analyzer can
optimize the design for minimal area or minimal execution time. In the incrementer
example, the first step is to describe the incrementer in behavioral VHDL. After the
VHDL file is compiled and tested, the VHDL is used as input to the Design Analyzer.
During the ASIC development effort, the initial iteration of the design analyzer is set to
optimize the logic for a minimal amounf of areé. After the component is laid out it
usuaﬂy is necessary to optimize it based on the critical path. Subsequent optimization

usually reduces the critical path time considerably as compared with the initial synthesis.
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It has been proven with the Wavelet ASIC research and with past projects from the AFIT
VLSI EENG 695 course, that iterating more that two times isn’t necessary. The area of
the component continues to expand yielding only a minimal increase in speed. The rule
of only optimizing twice was proven with adders, 'subtractors, incrementers, and
multiplexers. For the ASIC effort, components were, at most, optimized twice. The
optimization steﬁs for the incrementer are as follows:

1) Optimize on minimal area : Worst case timing = 13.71ns
2) Optimize on critical path : Worst case timing = 2.81ns

The critical path timing was reduced by 79%. As stated above with an additional

iteration the timing is only reduced by small increments and the area continues to expand.

The area does expand for the second iteration but trading area for a 79% speed up is a

valid exchange.

4.4 Components

A complete list of components and their general description is listed in
Appendix D. Many of the components are used rhore than once in the design. During
some states, simultaneous additions and increnients are executing. Adding additional
states could have éliminated multiple operations occurring in a single state. A tradeoff
was made with the number of states and the number of times to replicate components.
Since incrementers use less area and power than adders, they were used whenever
possible. Another tradeoff was in the control of each of the ALU type components. Each
component had a control line associated with it. The control line caused the component

to only switch when it was supposed to. Without the control line, the component would
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switch whenever any of the input lines fluctuated. Incorporating the component level
control added extra logic and area to the design but offered a savings in power as the
components wouldn’t unnecessarily switch. The HSPICE timing of all the components is

contained in Appendix D.

4.4.1 Adders/Subtractors

There afe three adders and one subtractor used in the Wavelet ASIC. The 8-bit
adder, 9-bit adder and the 9-bit subtractor are all implemented with ripple carry logic.
The timing from using ripple carry logic was sufficient for the small adders. The other
adder was a 19-bit adder; it was implemented as a carry-select adder. The carry-select is
larger in area but produces a much faster adder than the ripple carry logic (25). The
reason for the custom sizing of the adders/subtractors was because certain states had
multiple additions and subtractions being executed simultaneously. In one state the 8-bit
and 9-bit adders and 9-bit subtractor are all being used. In some cases component reuse
was sélected. In one state theré was a need for two 8-bit adders. The 9-bit adder was
used for the second adder with the 9™ bit not being used. Usiﬂg the 9-bit adder saved the

building of a second 8-bit adder and the associated area with the component.

4.4.4.2 Incrementers

Several incrementers are required for the Wavelet ASIC. An increment by 10 was
needed to account for the offset of the starting memory location of the input image. The

19-bit adder could have been used but it was already being used in the same state that the
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increment by 10 is required. Other incrementers were built to accommodate both a 10-bit
input and a 19-bit input. Again, the reason for multiple incrementers was that some states
use more than one incrementer simultaneously. Rather than replicate the 19-bit
incrementer and use it for smaller inputs, the 10-bit incrementer was built saving area and
power.

The incrementers were implementéd as ripple-carry adders. Ripple-carry adders
are sufficient since only the LSB is ‘1’ and all other bits are ‘0’. The incby10 was also
designed using the ripple-carry adder lpgic. Hard coding ‘10’ as the second input
simpliﬁed its design. As explained earlier with ftirther refinements and design choicés
 the inéble component coulci be completely eliminated since the offset by 10 of the

image is an artifact of the FPGA design.

4.4.3 Comparator

A comparator was needed for the code since loops with end conditions needed to be
tested. A comparator module was designed and tested. The following snippet of code
. was taken from the original design:

Or1g1na1 line of code:
(jshift(18 downto 0) >= Column(18 downto 0))

The following lines of code show the implementation of compare logic as written in
behavioral VHDL for synthesis. The code segment only shows two of the 19 bits.
RESUL is the output of the logic. If RESUL equals one then JSHIFT is greater than or

equal to COLUMN. If RESUL equals zero then COLUMN is greater than JSHIFT.
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JRES2 <= ((JSHIFT2 xor COLUMN?2) and JSHIFT2);
CRES2 <= ((JSHIFT2 xor COLUMN?2) and COLUMN?2);
JRES3 <= ((JSHIFT3 xor COLUMN3) and JSHIFT3);
CRES3 <= ((JSHIFT3 xor COLUMN3) and COLUMN3);
if JRES3 ='1' or CRES3 ="1") then

RESUL <= JSHIFT3;
elsif JRES2 ='1' or CRES2 ="'1") then

RESUL <= JSHIFT2;
else

RESUL <="1"
end if;

4.4.4 Multiplexers

Several multiplexers were used in the Wavelet ASIC. All the multiplexers are
listed in Appendix D. Only the larger multiplexers were optimfzed during the design
analyzer phase. Explicitly, the 6 x 19 input and the 7 x 19 input multiplexers were
optimized once to reduce the critical path time. As stated in Appendix D, the 6 x 19 input
multiplexer is the slower of the two. However, the propagétion time is still minimal at

7 3.04 ns.

4.5 Four Parts of Code

The behavioral VHDL code was sectioned into four parts. Row transform (Figure
18), Col transform (Figure 19), Col inverse transform (Figure 20), and Row inverse
transform (Figure 21). Quantizing and thresholding was incorporated into the Column
transform section. Each part was tested separately. The transform pieces were tied
together with a higher-level state machine called transform. The transform section was

then tested (Figure 22 and Figure 23). The inverse transform pieces were tied togethér
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with a higher-level state machine called inverse transform. The inverse transform section

was then tested (Figure 24 and Figure 25). Since the two top-level pieces, transform and

inverse transform, operate independently it wasn’t necessary to test them together.

A high level multiplexer that is controlled by an input signal separates the two

halves. The input signal chooses which half is executed. The other half remains in the

reset state. Two additional signals control which data is routed to the output. The

additional control allows isolation of smaller sections of the chip enabling the verification

of these sections in the event the entire chip does not function correctly.

Each of the four main parts shares base level components: adders, subtractors,

incrementers, and a comparator. Components were duplicated only when necessary to

support simultaneous operation.
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Figure 24. Top Level for Inverse Transform
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Figure 25. Test Bench for Inverse Transform Logic

4.6 State Machines

A total of six state machines control the operation of the Wavelet ASIC

(Appendix A). The workload is distributed across all the states. Effort was made to have

as few states as possible. A tradeoff was made in the replication of components and the

number of states. In some instances a component was duplicated so two things could

happen in one state. Duplication of a component saves one state in the state machine and

ultimately saves thousands of clock cycles.
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For example, an extra state in the portion of the state machine that read in the
pixels for the transform part of the design would be executed 128 times for each row,
since each iteration of the state machine reads in 4 pixels. Take 128 and multiple it by
the number of rows, 512. Next, double the result to account for the columns. Finally, do
the same calculations for two more iterations. Total savings for one 512 by 512 square

image is 172,032 clock cycles. Assume a clock cycle of 50 ns or 20 MHz. The total time

saved is 8.6 ms.

(512/4)*512*2= 131,072 --first iteration

(256/4)*256*2= 32,768 --second iteration
(128/4)*128*2=_ 8,192 --third iteration
172,032 --total for all three iterations

It is obvious that adding an additional state becomes costly very fast. The tradeoff of
adding an extra state is extra area consumed by replicating components to operate in
parallel. Similar design choices are always being made during the ASIC desi gn process.
A minimal comparison was made in effort to reduce the number of states needed
in the state machines. Two pixels are needed in order to execute the Haar transform.
Many methods of reading in the pixels could have been studied. A state machine that
read in two pixels and performed the required operations was created. A state machine
that read in four pixels was also created. The number of cycles necessary to read and
transform four pixels using each method was 35% less when using the state machine that
read in four pixels. Two different sections of the code were analyzed using the two types
of state machines. The number of states listed in Table 5 and Table 6 isn’t the total
number of states needed to process the dqta. Only that portion of the two state machines

that is different was counted. Table 5 shows the savings between the two types of state
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machines for the row transform stage of the design. Table 6 shows the savings between

the two types of state machines for the inverse row transform stage of the design. In both

cases the state machine that read in 4 pixels outperformed the other state machine. A

state machine that read in 4 pixels was also used in the column and row processing

portions of the design.

Type of State Machine

2 Pixels Per lteration

4 Pixels Per lteration

Number of States to Read and Process 4 Pixels

17

11

Number of States for 1 Row

(5612/4)* 17 = 2176

(512/4)*11 = 1408

Number for All Rows first pass

2176"512 = 1114112

1408512 = 720896

Number for All Rows second pass

- 1(256/4 ) 17 * 256 = 278528

(256/4 )" 11 * 256 = 180224

Number for All Rows third pass

(128/4)* 17 * 128 = 69632

(128/4)* 11 * 128 =45056

Time savings assuming 20 MHZ clock

Total Number for Three lterations 1,462,272 946,176
% savings of 4 Pixel Read 0.352941176
0.0258048

Table 5. Savings By Reading 4 Pixels For the Transform of Rows Stage

Type of State Machine

2 Pixels Per lteration

4 Pixels Per Iteration

Number of States to Read and Process 4 Pixels

19

13

Number of States for 1 Row

(512/4)* 19 = 2432

(512/4)*13 = 1664

Number for All Rows first pass

2432°512 = 1245184

1664512 = 851968

Number for All Rows second pass

(256/4 )* 19 * 256 = 311296

(256/4 )* 13 * 256 = 212992

Number for All Rows third pass

(128/4)* 19 * 128 =77824

(128/4)* 13 * 128 =53248

Total Number for Three lterations 1,634,30 1,118,20
% savings of 4 Pixel Read 0.315789474
Time savings assuming 20 MHZ clock 0.0258048

Table 6. Savings Reading 4 Pixels for Inverse Transform of Rows Stage

Using an operating speed of 20 MHz and the total number of states needed to

transform one image, the ASIC design transforms one image every 146.5 ms. See

Appendix C for breakdown of states for the ASIC design. The frame rate only accounts

for the processing time of an image that exists in memory. Associated operations like

loading a new image into memory and transmitting the image would obviously affect the

frame rate.
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As stated, 6 state machines were used in the Wavelet ASIC. It might be possible
to have fewer state machines by having the different parts of the chip use the same state
machine. Reusing state machines is possible by not using any of the control signals
produced by the state machine that are not needed. In other words if a state machine has
10 control lines but you only need 4 of them just use 4 and not connect the others. It is
also possible to only use a subset of the states calculated. For example, if a state machine

produces five state bits and you only need four, just utilize the lower 4 bits.

4.7 Internal Register File

Savings of RAM accesses came by creating a 256 by 8 bit internal register file.
The internal registers required %ewer memory accesses as intermediate values were saved
to the register file rather than writing them back out to RAM. The obvious tradeoff is
chip area for speed. The basic register file desi gn,‘v Figure 26, was taken from Wgste (26).
The basic cell design did not have inverter number 1 in the design. Inverter ‘1’ was
added to correct problems discussed next.

The basic operation of the cell is as folloWs. WriteEnableColumn and
WriteEnableRow are asserted to a logic ‘1°, turning on the n-transistors causing the value
on the WriteData line to feed in to the inQerfer loop (inverters 2 and 4). The write enablé

lines are then brought low and the cell retains the level stored. The feedbaék inverter
(inverter 4) is siéed correctly so it can drive inverter 2 retaining the stored value, but be
overpowered by an n-transistor when a new value is written to the cell. The single n-

transistor would not operate properly in the 0.35 micron technology files no matter what
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‘WriteEnableRow

ReadEnableRow

4
ReadData WriteEnableColumn

Figure 26. Single Register Cell Location

the sizing of the feedback inverter was. Replacing the n-transistors with T-gates had no

positive effect. Basically, the n-transistors were not large enough to out-drive the

| feedback inverter; therefore, the stored value could not be changed. The problem was

 fixed by isolating the cell with an inverter. Inverter 1 was added to the design to isolate

the inner loop (inverters 2 and 4) from the n-transistors. Adding inverter 1 eliminated thé
pfoblem of sizing of the feedback inverter, i.e. the drive of the feedback inverter wasn't a
féctor fo the n-transistors. As long as the drive of the inverter feeding the loop was
bigger 1than the drive of the feedback inverter, the stored value could be changed. With
the addition of inverter 1, it was necessary to add an additional inverter to the output
since the data stored would be inverted upon storage. Therefore, the data had to.'be
inverted when éccessed by a read operation.

A single register cell location was created and tested. The next concern was how
wide to make the ground and Vdd rails of the register cell. A good rule of thumb for rail

thickness is the following. For every milliamp of current there should be 1 micrometer of
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metal (26). In our design tools 5 lambda = 1 micrometer. Therefore, a metal of width 5
would hold 1 mA of current (26). The single register file was tested.

a. Writing a one required 150.8616 pA of current.

b. Reading a one required 25.0854 pA of current.

c. Writing a zero required 249.4874 pA of current.

d. Reading a zero required 10.7905 pA of current.
The largest current needed for a single cell was 150.8616uA. 8 bits can be written at one
time so the total estimated current is 8 x 150.8616 uA = 1.2069 mA. Therefore, making
the rails 10 lambda would allow for 2 mA of current; providing a significant safety
margin. Actual Vdd rails in the register section were increased to 13 lambda because the
minimum spacing of the p-diffusion and the polysilicon needed a minimum spacing of
13 lambda. Since the n-diffusion for the register cell wasn’t as wide as the p-diffusion,
the ground rails were able to be made 10 lambda wide and still satisfy the 13 lambda
spacing requireinent. A second regiéter location was then created and butted ﬁp against

the first location (Figure 27). The two-cell register was capable of being arrayed in

MAGIC.

Power

Register Location 1

Shared Ground

Register Location 2

Power

Figure 27. Two Cell Register Layout
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A small register file of 2 rows by 4 columns was arrayed and tested for current usage.

Results were as follows:

a. Maximum current when writing a zero to all 4 locations: 3.1014 pA
b. Maximum current when writing a one to all 4 locations: 606.3709 pA.

Using the single cell current measurements, the storing of 4 ones should have used
603.4464 pA. It was concluded to keep the rail lines at the current designed widths. The
256x8 bit array with the rail widths as specified above was constructed. The actual array
dimensions are 32 bits wide by 64 bits high register file. Next, the Column and Row

decode circuitry was designed.

4.8 Column and Row Decode For Register File

The column and row decode circuitry was built in a similar manner to the register
file construction. The logic for one row select bit was built and then arrayed. Three
decoding parts were needed. One part was needed for the ReadEnableRow control line.
Another part was needed for the WriteEnableRow control line. The third part was for the
WriteEnableColumn control line (See Figure 26).

There are 10 address lines that lead to the register file. The bits are numbered left
to right: 9,8,7,6,5,4,3,2,1,0. Since the register file is 32 bits wide by 64 bits high, the
decode logic went as follows. The first row of the régister file is locations 0,1,2, and 3.
The second row is 4,5,6, and 7, etc. Only the top 8 bits of the address line are needed to
decode the rows. The first row is accesséd when bi‘ts 9-2 are zero. The second row is
accessed when bits 9-3 are zero and bit 2 is a logic ‘1’. The decode circuitry was

designed to handle the first rows access. Each other row could utilize the same circuitry
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by just selectively inverting the top 8 bits. Two designs for the decode circuitry were
analyzed. One design consisted of only NAND gates and inverters (Figure 28). The
other design consisted of mostly NOR gates, 1 NAND gate and an inverter (Figure 29).

Each design was tested for speed and current usage.

A _
B |
c | , .
D : Row Enable
E ] |
F ] .
G
H __|

Figure 28. Row Enable Using NAND Gates
A
B
C .
D > [ Row Enable
E .
F .
G
H

Figure 29. Row Enable Using NOR Gates

The analysis was done by testing each of the individual gates and then using those

findings for the analysis of the two designs. The results of the test are shown in Table 7.
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Component | Worst Timing | Max Current
Inverter 0.370ns | 132.6154 uA
4 Input NAND 0.515ns |207.5331 uA
4 Input NOR 0.890 ns | 126.6100 uA
2Input NAND | 0.400ns  |171.7821 uA

Table 7. Current and Timing of Some Simple Gates

Analysis for the worst-case path of the NAND configuration:

Timing:

1-4NAND + 2 inverters + 1-2NAND = 0.515 + 0.37 + 0.4 + 0.37 = 1.655ns

Current:

1-4ANAND + 2 inverters + 1-2NAND = 2*207.5331uA + 1*171.7821vA +
3%¥132.6145uA =984.6918uA

Approximate Area Used: 16428 lambda®

Analysis for the worst case path for the NOR configuration:

Timing

1-4NOR + 1 inverter + 1-2NAND = 0.89 + 0.4 + 0.37
Current

1-4NOR + 1 inverter + 1-2NAND = 2*126.6100uA + 1*¥171.7821uA +
1*¥132.6145uA = 557.6157uA
12136 lamda®

= 1.66ns

Approximate Area Used:
For the current calculation, the current of all the gates in the configuration was added
together. The area was simply the total area of all gates used for each configuration. The
bottom line is the NOR configuration uses 56% less current and saves 4k lambda? of area,
while taking approximately the same time to switch. Thus, the NOR configuration was
selected for implementation in the Wavelet ASIC.

The actual decode logic uses a few more gates than the above diagrams since the
R/W and register enable lines are also required (Figure 30). The additional logic is
identical whether one uses the NAND gate or the NOR gate conﬁ guration, so it was left
out of the current and area analysis. The decode logic is the same for the

WriteEnableRow line except the R/W line logic which is driven low to signify writing.

67




Thus the same logic block used for the ReadEnableRow signal is modified with the

addition of two gates for use as the WriteEnableRow control line.

A
B
C .
’ j
E -
F Enable ' -
Read Enable Row
G R/W —
H
R/W Bar —
Write Enable Row

Figure 30. Row Enable Circuitry

The WriteEnableColﬁmn control line uses NAND logic. A two input NAND gate
with an inverter decodes the columns. Like the row decode the inputs are inverted as
necessary. Since each column enable activates 8 columns the decode cjrcuitry is much
simpler than the row decode circuitry. Each address chation of the register is 8 bits long.
So writing to a register location stores 8 bits at a time. A write to the first column
activates register locations 0,4,8,16,20,24, etc. Since so many locations are activated,
only the low two bits are needed to decode the column. Table 8 illustrates the decode
logic for all columns. |

Once the row and column decode circuitry was complete it was connected to the

register file, after which the entire module was tested. Timing for the entire register file

is covered in Chapter 6
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Bit 1 Bit 0 Enable
0 0 Columnt
0 1 Column2
1 0 Column3
1 1 Column4

Table 8. Column Decode of Bits 1 and 0

4.9 Input, Output, Input/Output Pads

Micro Optical Silicon Systems (MOSIS) supplied the input and output pads.
Timing of the pads was not calculated since the pads contained polysilicon 2 for high
voltage transistors, which did not have any SPICE parameters available. A nominal
delay of 1 ns for the input pads and 0.5 ns for the output pads were used in the timing

analysis. Bi-directional pads use the same timing since they aren’t enable controlled.

4.10 Top Level Input, Output, and Bi—directional Pins

‘This section covers the input/output signal pins. The general functionality is
described in Table 9.
4.11 Data Buses

There are four data buses used in the ASIC design.

Memory Address - 19 bits
Memory Data - 8 bits
Register Address - 10 bits
Register Data - 8 bits
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The address bus carries the RAM address off chip. The data bus is bi-directional
moving data to and from the off chip memory. The register bus carries the internal 256-

byte register address. The register data bus is bi-directional moving data to and from the

Number

Signal of Bits |Direction Description

Address 19  |Output Address for RAM

Data 8 [Bidirectional |Data lines for RAM. '
Artitact from the FPGA logic. Signal to host telling|

Ready (3) 1  |Output hardware is ready (3). S
When done goes high the transform or invers

Done 1 |Output transform is complete.

Artifact from the FPGA logic. When this signal is
Busreq 1 Output low the bus is being requested for use.

Artifact from the FPGA logic. When this signal is
low the bus has been granted and processing can
Busgrant 1 Input begin. ,

- These two bits choose which state machine will
be seen on the five state output pins. Either the
top level, row logic, or column logic of whichever
half of the design specified by the Trans/Inverse
StateChoice 2  |input . input pin.

This signal chooses which half of the design is
executed. Either the Transform half or the

Trans/Inverse 1 Input Inverse Transform half.
Clock 1 Input Clock input that drives the design logic.

When this signal is high all state machines are in
Reset 1 Input reset state.
Memstrobe 1 . |Output Signal to RAM that memory is enabled.

Signal to RAM whether want to.read(‘1’) or
Memwrsel 1 |[Output write(‘0’).

Shows the states of whichever state machine was
chosen by the Statechoice and Trans/Inverse

StateChoice 5  |Output pins.
Table 9. List of Pins and Their Functionality

internal register file. Since more than one component drives the two address buses the
output drivers must be connected through tristate buffers allowing only one source to

drive the bus at a given time. The data buses are also driven by more than one source and
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with data flow in different directions. The RAM read/write signal line controls the
direction of the bi-directional pads, which are connected to the data buses. Tristate
buffers control what is placed on the internal register data bus. All output sources of both

data buses are connected to the bus through tristate buffers.

4.12 Conclusions

The edited and synthésizeable behavioral-level VHDL code executed correctly
when applied to a 512 by 512 image size. The sfructural version of the ASIC VHDL was
tested and the results were equ'ivalent to the results of the behavioral-level VHDL tests.
However, many changes were made to the individual components as they progressed
through the design process.

One significant difference from the synthesizeable VHDL and the physical
components is the absence of any signal connected directly to ground. The CAD tools
did not synthesize the code when signals were connected to ground. Grounded signals
were removed from the VHDL code and hand connected in the layout.

Some sections of code, after being optimized by the design tools, contained
duplicate signals. That is, two different signals were set to the same value in all states.
Since the design tools did not allow for a line to have two names, it was necessary to -
delete one of the names. A manual trace of the VHDL code verified the optimizations.

Annotation of the deletions was enough to allow for manual wiring of the signals later in

the design layout.
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Many of the components that were built with the AFIT tools were less than
optimal. The channel routing technique of Octools provides a poor use of area. In some
cases more than 50 percent of the total area is due to the channel routing. Further
development of the Wavelet ASIC should involve more custom layout or channel-less
routing of the individual sections. A rough estimate of removing channels from the

automated layout could result in an area savings of 40 percent.
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V. Testing and Timing

5.1 Introduction

Testing of the Wavelet ASIC started with the original FPGA VHDL code. The
FPGA VHDL code was run and the results were studied. After the test run results were
noted and understood, incremental design changes and testing began. Small parts of the
FPGA code were transformed into synthesizeable code and retested for correctness. The
synthesizeable pieces were converted into layout level components and tested
individually. After confirming the correct operation of each separate component, the
components were connected together and tested. Components that were custom built
were also tested individually before being connected to the rest of the design. Since the
Wavelet ASIC is composed of four separate engines (Row Transform, Column
Transform, Row Inverse Transform, and Column Inverse Transform), each engine could
be built and tested before moving on to another engine. Once an entire engine was

connected and working correctly, timing for memory accesses was calculated.

5.2 Testing of VHDL Files

The ASIC consists of four main parts: row transform, column transform, column
inverse transform, and row inverse transform. Each part was built and tested separately
before combining and testing with its respective half. For ease of testability and a
reduced execution time, a smaller imvage, 32 by 32 square pixels, was used until the ASIC

was stable. Once the design was stable, the full 512 by 512 square image was input and
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tested. The steps taken to translate the FPGA VHDL code into synthesizeable code are
discussed next.

Each of the main parts originated as a large separate file, making it necessary to
break up each file into small scalable components in preparation for the ASIC design.
The small scalable components, once modeled and tested, were combined creating a
structural VHDL version of the ASIC. The steps taken in parsing of each part was
identical. First, the state machine was extracted and all decisi}on paths were executed.
Second, the logic assigning the control signals was extracted. The control signal logic
was first tested alone making sure the appropriate states drove the correct control lines.
The state logic was then integrated with the state machine and the twé pieces were tested
together. All pafhs of the state machine were simulated. During each state, the
appropriate control lines were checked for accuracy.

Next, it was necessary to extract all of the ALU operations. After analysis it was
observed that three adders and two incrementers were needed along with one subtractor
and one comparator. Each component was modeled and tested for correct functionality.

Once the ALU components were individually verified they were integrated with
the rest of the structural VHDL code. Each of the four main parts of the ASIC was again
tested separately using the separate files integrated by VHDL port mapping (27). A list -
of each of the four main parts of the structural VHDL code and associated components is
found in Appendix E.

The steps used to test each of the main parts are discussed next. The same steps
were used to test each of the main sections. Each sectipn begins by reading in four pixels

from memory. Wavelet operations are performed on the pixels and the results are either
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written back to memory or stored in the register file and later written to memory.
Differences between each of the four main parts are which locations are accessed and in
which order. Obviously, different wavelet operations are performed on the data in each
piece. The tests used to verify correct functionality of the structural VHDL version of the
ASIC are discussed next.

The first test was to see if the correct memory locations were being accessed. As
stated earlier, thrée iterations of the wavelet transform are performed, each on a different
section of the image. Testing verified that the memory addresses were accessed, both for:
reads and writes, in the correct orderv for each of the transform iterations. Once the
correct RAM locations were verified, the addresses used for the internal register file were
tested. Again, the correct locations for reads and writes were accessed for all three
transform iterations. To aid in the testing of memory reads and writes, VHDL
components for modeling the RAM and the internal register file were created and tested.
VHDL components were used by the ASIC design for storing and retrieving of data,
allowing for an accurate simulation of the design at a VHDL behavioral and structural
level.

After verification of the correct data locations access was complete, testing of the -
operations performed on the pixel data was verified. Pixel operations are different
depending on which part of the ASIC design is being run. Each transform section was
tested for accurate manipulation of the data. For the row transform, row inverse
transform, and column inverse transform, the operations were simple. As explained

earlier, only additions, subtractions, and shifts are used. Different pixel values were input
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to the ASIC design. Since pixel values can range from —127 to +127, correct calculations
were verified using both positive and negative pixel values.

The column transform was much more difficult to test because it contained the
steps for quantizing and thresholding of the data. Since the quantize and threshold rules
are different depending upon which iteration and which quadrant of the image you are
currently processing, different tests were run to check each of the situations. For

example, in the lower left quadrant of the first iteration, the output pixel is in the range

- =8,...,+8. _Some of the quadrants allow only the values —8,0, and +8.- To illustrate, one

test produced the ending values of: -20, -9, -3, 5, 17. These numbers were the result
before the rules of threshold and quantize were applied. Once the rules were applied the
five values were: -8, -8, 0, 0, 8. The five values are the correct result for the quadrant
being tested. Appendix F contains the input data used to test each quadrant of each
iteration. The ‘k’ term references the loop variable, which is used to specify which
section of the image is being processed. The pixel values from start to finish are shown
and in the appropriate memory locations. The steps displayed in Aﬁ)pendix F are for the
transform half of the design. The results in parenthesis are the final results output to the
RAM. As shown by the test cases, the range of values for e‘ach quadrant was tested. The

test data, Appendix F, was used to test each of the four pieces and again used to test the

- two halves, Transform and Inverse Transform, of the design. Since the two halves are

independent, no further combining was appropriate.
When structural VHDL code was complete and verified it was time to start

building and testing the components at the physical layout level.
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5.3 Testing Components

This section explains the different tests performed on each of the physical
components. Reasons for optimizing certain components are explained. All of the
components were built and tested individually. Timing was more critical for some
components than others.

Testing the components at a layout level involved two types of tests. The first test
checks the component for correct functionality. There is a one-to-one mapping from the
inputs to the outputs of the structural VHDL to the physical layout level of each
component. The mapping allowed reuse of the test vectors, used to test the VHDL files,
to verify functional accuracy. The second type of test checked each component for
timing of the critical path. The critical path is the longest delay through the component
and, therefore, controls the worst-case timing delay of the component.

The critical path of the ASIC research effort occurs in the states that access RAM.
A RAM access time of 35 ns for both reads and writes was used for the design of the
~ ASIC. The implications of the 35 ns access time are simple. As long as other-operations
occurring in non-RAM access states are faster than 35 ns, the RAM access states would
drive the speed of the Wavelet ASIC design.

The slowest component in the ASIC design is the 19-bit adder. A carry-select -
methodology was used to create the 19-bit adder and produced a simulated execution
time of 5.62 ns, a breakpoint value for all other components. Since operations were
evenly distributed among the different states of the design and none were done in series,

as long as they were faster than 5.62 ns, no other performance optimizations were
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necessary. If multiple additions, for example, are required during a single state, they are
performed in parallel by replicating the adders.

As shown in Table 10, the execution times of some of the smaller components are
longer than larger components. As stated earlier, once the speed of a component was
analyzed and found to be faster than the 19-bit adder, it was no longer optimized for
speed. The only way further optimizations for speed would enhance the design is if the
speed up came from a reduction in area. However, faster execution time comes with the
tradeoff of having larger die area. A complete listing of all the components and their
execution times is contained in Appendix D. Unless otherwise stated, the timing, referred

to in this chapter and Appendix D, was the result of running HSPICE.

Component [Number of Bits |Critical Execution Time (ns)

Adder 19 5.62
Adder 9 4.11
Adder 8 2.80
Subtractor 9 2.95
Incrementor 19 2.12
Incrementor 10 3.16
comparator 10 ‘ 1.85

Table 10. List of ALU Components

5.4 Register File

Most of the components were built using design tools. However, two components
were manuallyi designed and laid out: the register file and the address decode logic for
the register file. First, a one-bit register was designed, laid out, and tested for reading and
writing. Next, two one-bit locations were integrated and again tested for reading and

writing. The two-bit location was replicated into a 4 by 8 bit array, which was tested for
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reading and writing. Then the entire 2048 locations were designed and tested. The layout
of the 2048-bit register array is shown in Figure 31. The bits for each location are
numbered left to right: 7,6,5,4,3,2,1,0. Various locations were tested and timed for both
reads and writes. Table 11 shows the access times for the locations tested. The
maximum time of 2.57 ns is trivial compared to the access time of the off-chip RAM.
The minimal retrieval time allowed both the reading of the internal register file and the
writing of the value to RAM to occur in the same state. Combining the register read with
the RAM write saved time by eliminating one state. Savings from using fewer states was

explained in Section 4.6.

1 2 3

5 6 7
124 125 126 127
252 253 254 255

Figure 31. Register Locations

Next, the decode logic was built, tested, and timed. The timing for the decode
circuitry is shown in Table 12. Signal line references (A, B, C, D, E, F, G, H) refer back
to Figure 30. The input signals, labeled A-H, are switched to test the longest delay of the

decode circuitry, both for a low-to-high transition on the output and a high-to-low
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Timing of 256x8 bit register file

Location Bit Operation| Time (ns)
0 7 Write '0' 1.22
0 7 Read '0' 2.52
0 7 Write '’ 1.52
0 7 Read '1' 2.02
3 0 Write '0' 1.22
3 0 Read '0' 2.16
3 0 Write '1' 1.52
3 0 Read '1' 1.48

124 7 Write '0* 1.22
124 7 Read '0’ 2.15
124 7 Write ‘1’ 1.51
124 7 Read '’ 1.47
127 0 Write '0' 1.22
127 0 Read '0* 2.57
127 0 Write '1' 1.51
127 0 Read '1' 2.00
252 7 Write 'O’ 1.22
252 7 Read '0’ 2.15
252 7 Write '1' 1.51
252 7 Read '1' 1.47
255 0 Write '0' 1.22
255 0 Read '0’ 2.57
255 0 Write '1' 1.51
255 0 Read '1' 2.00
Max time - 2.57

Table 11. Access Times for Register File

Timing of Read Decode Circuitry Timing of Write Decode Circuitry
Output Output
Oto1 1t00 0to1 1t00
AllHto L 1.71ns AllHto L 1.70 ns
AllLtoH 0.457 ns AllLtoH 0.453 ns
ABCGFE are L ABCGFE are L
DHgolL 1.53 ns DHgolL 1.52ns
AllLtoH 0.457 ns AllLtoH 0.454 ns
DCBHGF are L DCBHGF are L
AEgoH 1.34ns AEgoH 1.33 ns
Max time 1.71ns 0.457 ns Max time 1.70ns 0.454ns

Table 12. Timing for Read/Write Decode Logic
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transition on the output. As shown, a maximum switching time of 1.71 ns was

calculated.

5.5 Testing of the Inverse Transform by Rows Section

Due to time constraints, only one of the four sections, the inverse row transform,
was completely integrated and tested as a unit. Expected timing for the remaining three
sections should be similar, sincé the inverse row transform section uses all but one of the
ALU components used in the other sections.

The inverse row transform section was integrated keeping in mind where the other
three sections would be located in the physical layout. See Figure 32 for how the inverse
row transform section is physically integrated and where the other three sections are
placed relative to the inverse row transform section. Once integrated, the inverse row
transform section was tested using IRSIM.

First, data values were read in from RAM. It was chécked that the RAM
locations being accessed for the reads were correct and data was accessed in the right
order. Results of the inverse transform performed on the first half of the image are
written to the internal register file. It was checked that the correct register ﬁlé locations
were being written to and in the correct order. Next, eight different values were input to
the i_nverse row transform section. It was checked that the correct results from the inverse
transform were obtained. Results were then checked for accuracy and placed on the data

bus for storing into the register file.
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Once simulations were run successfully with IRSIM, HSPICE was used to get
more accurate timing information. The timing data obtained by using HSPICE was then
used to facilitate the design of the memory strobe for RAM and the register enable for the
internal register file. The timing diagrams for the inverse row transform section are

described next.
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Figure 32. Layout of ASIC Design
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5.6 Read/Write Logic

Timing of the control lines used to access RAM is critical and has to abide by
certain rules. As mentioned, a RAM access time of 35 ns is used for the ASIC design.
Once all necessary signals are stable the RAM strobe is asserted and remains asserted for
35 ns, the time needed for the RAM to perform either a read or a write operation.

The inverse row transform section contains four different memory read/write
scenarios. A design margin is incorporated ihto the timing of the read and write accesses
for both the RAM and the register file. The design margin is in case the other three
sections, not yet connected, require extra time. Other factors, such as variances inv
fabrication, pad frame delays and routing to and from the pad frame, add dela;ft timé.
When the complete ASIC design is integrated the timing delays will have to be refined.

The first scenario is a read from RAM. Four reads occur sequentially. Figure 33
shows the timing diagram for two sequential reads. Data from the read isn’t latched until
two cycles after the request. External circuitry is required to account for the two-cycle
delay and is consistent with the Wildforce board implementation. The memory address is
valid 12 ns after the clock edge. The memory strobe is asserted 2.5 ns later and stays
asserted for 35.4 ns. Data is latched in on the rising edge of a clock. The 7.1 ns specified
in Figure 33 is the time it takes to latch the data throﬁgh the logic. The actual time the
data needs to be valid is approximately 2 ns before the clock edge until 1 ns after the

clock edge providing a 4.1 ns design margin in the ASIC implementation.
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Figure 33. Read from RAM Timing Diagram

The second scenario is a write to the register file. Four writes occur sequentially
in the operation of the Wavelet ASIC. Figure 34 shows the timing diagram for two
sequential register writes. The data is valid 10.9 ns after the clock edge, while the
register address is asserted 11.1 ns after a clock edge. Then the register enable is asserted
2.4 ns later and stays asserted for 37.0 ns. The actual time it takes for the register file to
store the data is approximately 4.28 ns. The logic that asserts the régister enable also
asserts the memory strobe in a different read/write scenario and, therefore needs to hold
the assertion for at least 35 ns. The write to register file state isn’t on the critical path
state of the ASIC design so the extra time used by the write to registef file state doesn’t

slow down the ASIC operation.
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REGADDRESS

REGDATA

REGRW

The third scenario is a data write to the RAM. Four writes occur sequentially
during normal operation. Figure 35 shows the timing diagram for two sequential writes.
The data is valid 10.9 ns after the clock edge followed by the memory address, which is

valid 12.0 ns after a clock edge. Then the memory strobe is asserted 1.5 ns later and

13.5 ES

<] 11.1 nk
< VALID )—( VALID >
?&-9»'113
—-—-( VALID >——(
7.6 ns —p| |e—

Figure 34. Write to Register File Timing Diagram

stays asserted for 37.0 ns.

The last scenario is a data read from the register file combined with a write to the
RAM. Figure 35 shows one cycle of the read/write scenario. The register address is
asserted 11..1 ns after the clock edge. Then the register enable is asserted 1.93 ns later
and stays asserted for 35.73 ns. The register takes approximately 7 ns to output data
valid. The memory address is asserted and valid 12.0 ns after the clock edge. The

memory strobe is then asserted 20.35 ns after the clock edge and is valid for 35.74 ns.
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Figure 35. Write to RAM Timing Diagram

For the inverse row transform section, the most complicated and longest state for
reading and writing occurs when the internal register file is accessed for a data read and
the data is then written to RAM. Control lines necessary for the read and write states are
stable long before the memory addresses are stable and therefore are have no impact on
the timing calculations. Worst-case timing of data accesses was used from tests of the
register file to simulate the operation of the register file. The register address is first
decoded in 1.71 ns. Once the address is decoded the location in the register file is
accessed and the ;esults are available on the data lines after 2.57 ns. The data passes
through two multiplexers, 0.42 ns and 0.39 ns, and then through a tristate buffer,

0.396 ns, before being asserted on the RAM data lines. The total time from register

address stable to data stable on RAM data lines is 5.486 ns plus some estimated time for
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Figure 36. Read from Register and Write to RAM Timing Diagram

routing. Incorporating a design margin of 1.5 ns, a total delay time of 7 ns is used to
simulate the rest of the timing delays.

The state control lines are used to generate the internal register file enable and the
RAM strobe. The state control line is asserted after the clock edge and is used to indicate

to the circuitry which state is active. To create the enable and strobe signals, the control
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line is first sent through an inverter yielding the inverse of the control signal (control bar).
Both signals are delayed to create a pulse of approximately' 35 ns in width (Figure 37).
The width has to be greater than 35ns for the RAM strobe and greater than 4.28 ns for the
register enable. The control circuitry schematic used to generate the pulses is shown in

Figure 38. The control circuitry asserts the enable and strobe signals when both control

CLOCK
—»| |¢— 53ns
CONTROL l l
—» |4 55ns ,
CONTROLBAR —-———I J

CONTROL DELAYED ——————I |

CONTROLBAR DELAYED | l'——‘

35.0 ns pulsé

g
PULSE SIGNAL FROM ENABLE l |
AND CONTROL CIRCUITRY

Figure 37. Timing Diagram Showing Pulse Created From Control Signals

signals, state control and state control bar, are logic ‘1. The delay for each of the control
lines and control bar lines is not shown in Figure 38. By delaying the control signals,
they can be ﬁsed to assert the enable and strobe lines. By delaying the control bar signals
even longer, they can be used to clear the enable and strobe lines. The delay blocks in

Figure 38 make the strobe signal line assert and deassert approximately 7 ns after the
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register enable signal asserts and clears. The 7 ns delay is necessary for the register data

to become valid.
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Figure 38. Enable and Strobe Control Circuitry

The critical path, read/write state, limits the speed of the ASIC design. The
memory strobe is cleared 56.09 ns after the clock edge. Adding approximately 2 ns from
the clearing of the memory strobe signal makes the worst-case state timing equal to
58.09 ns. The 2 ns before the next clock edge is a design margin for the ASIC. Further
design optimizations could reduce the buffer time. The 58.09 ns worst-case state time

translates into a maximum operating speed of 17.21 MHz.
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5.7 Conclusion

The inverse row transform was the only section that was fully integrated and
simulated for timing data. A maximum operating speed of approximately 17.21 MHz is
expected. The other three main sections could affect the speed once they are integrated
into the layout. Other factors that affect execution speed are input/output pad delays and
routing to and from the pads. Design margins incorporated into the timing of the ASIC
should account for extra delays. Using an operating speed of 17.21 MHz and the total
number of states needed to transform one image, the Wavelet ASIC design outputs one
transformed image every 170.2 ms or just under six images per second. See Appendix C
for the complete breakdown of states used for the Wavelet ASIC desi gn. The frame rate
only accounts for the processing time of an image that exists in memory. Associated
operations like loading a new image into memory and transmitting the image éould affect
the frame rate if a single port RAM is used.

As shown, the 35 ns RAM access limits the overall speed of ASIC design. A
faster RAM chip could be used but the speed of the ASIC design cannot be increased
without altering the layout, since a 35 ns pulse width is hard-wired into the ASIC design.
Since a RAM read incorporating a two-cycle delay is used as implemented on the
Wildforce board and the FPGA logic, a delay for the read data would need to be buffered
by off chip logic when using a standard RAM chip with a one cycle read access time.
Power needed to operate the Wavelet ASIC is discussed next.

After initialization of the inverse row transform section of the ASIC, the

maximum power used is 220 mW. The maximum power is only for the inverse row
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transform section. Since the more complicated piece of the design is the column
transform section, it is probable that the maximum power used will increase. Measuring
the individual pieces of the inverse row fransform section, it was found that the maximum
power used is 118 mW. Measuring the individual pieces of the column transform

section, it was found that the maximum power used is 212 mW. Using these power
measurements, the estimate of the total maximum power used by the transform row
section is 395 mW. Since the register file was not used in the tests for the inverse row
transform section, the measured power of the register file, 32.1 mW, needs to be added to
the power calculation. Adding the power used by the register file to the power useci by

the transform row section yields a maximum estimated power of 427.1 mW.
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VI. Conclusions and Recommendations

6.1 Conclusions

The steps necessary to take a design from an FPGA implementation to an ASIC

implementation design were discussed. The objective of this research was to first

translate the FPGA VHDL behavioral code to synthesizeable VHDL behavioral code.
Performing the translation uncovered many unnecessary RAM accesses in the FPGA
design. Combining the quantize and threshold steps with the column transform step
saved 47 percent of the RAM accesses.

Another objective was to minimize the power needed by the design. Extra control
circuitry was added to decrease the amount of switching by the transistors. The extra -
control circuitry makes the ALU components active only when they are being used. The
decreased amount of switching has a positive impact on the overall power used by the
design. The estimated maximum power used by the ASIC is 427.1 mW. The power
rating is for the first iteration of the Wavelet ASIC and can be used as a benchmark for
future design work. Comparing the estimated power of the ASIC to that of the FPGA,
11.6 W, a 96 % reduction in power usage is achieved.

Minimizing the area of the Wavelet ASIC was another goal. The total die area
used by the ASIC is 22.138 mm?>. The core of the ASIC is 16.146 mm? without the pad
frame. The size of the ASIC is less than 25 % of the 4 FPGA chips ﬁtilized in the

original FPGA design.
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The final goal was speed. The FPGA design runs at 20 MHz. The 20 MHz
operation translates into a 196;609 ms per frame transform rate or 5 frames per second.
Using an operating speed of 17.21 MHz and the total number of states needed to
transform one image, the ASIC design transforms one image every 170.2 ms or 5.8
frames.per second, a 13 % improvement over the FPGA design. The image rate
calculation is an estimation based on the inverse row transform timing. Using a faster
RAM chip, 10 ns access time, would significantly improve on the frame rate by
approximately 43%, since thé frame transform rate would decrease to 96.95 ms. The

decreased frame rate equates to 10.3 frames per second.

6.2 Recommendations

‘There are several research possibilities regarding the ASIC design. One obvious
extension is to connect the remaining components and present the design for fabrication.
Improvements on area, speed, and power are still possible.

A significant improvement would be in the area used by the ASIC design. The
use of automatic layout tools added a significant amount of area to each of the
components, since a channel routing algorithm was used. The algorithm also limits its
routing to only two layers of metal. Using a non-channel routing technique, as well as
using metal 3 and metal 4 could realize a savings of 40 percent. This estimate is based on
a visual analysis of the individual blocks. An additional way to decrease area is By
adding data buses to handle all traffic to the ALU components. Currently each of the

four components has separate signal lines that trace to the ALU components. Using
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buses to combine many of the signals would reduce the number of multiplexers needed
for each of the ALU components. The area used by signal lines running to the ALU
components would be reduced by approximately a factor of two. By removing
approximately three-fourths of the multiplexers and half of the signal lines,
20,630,143 lambda® and 83,940,000 lambda? would be saved. For the Wavelet ASIC,
25 lambda’ equates to 1 p,m2 in die area. The total savings equates to 0.825 mm” and
3.357 mmz, which totals 4.182 mm? in die area. The cost of using buses would be the
extra area needed to-add a tristate buffer on all signals connected to the buses.
Approximately 1200 signal lines require 1200 tristate buffers at 4736 Jambda? for each
buffer, totaling 5,683,200 lambda®. Subtracting the total tristate buffer area from total
area saved from multiplexers and signal lines gives an estimated savings of 3.955 mm?® in
die area. |
Increasing the operating speed of the ASIC is also possible. The first way to
increase Speed is by reducing the area. If the area is reduced so is the propagation time of
the signals. Another way to increase the opérating speed is to choose a faster RAM.
_ Choosing a faster RAM would reduce the critical path of the design. For example if a
RAM with a 10 ns read/write access time was used, 25 ns could be shaved off the longest
state causing the desi gn speed to increase from 17.21 MHz to 30.22 MHz. The speed
increase would improve the frame rate by 73 ﬁs, yielding 10.3 frames per second.
Another way to increase the output is‘ by redeéigning the state machines. By
simply removing the one state used to calculate the FPGA memory offset and using two

states instead of three to empty the internal register file, 7.1 frames per second would be
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achieved. Using a 10 ns RAM in conjunction with the reduced number of states yields an
output of 12.5 frames per second.

Finally, power consumption would decrease as a result of the reduced number of
signal lines and the reduced number of multiplexers. The design would be smaller and
faster but extra control circuitry needed for the added tristate buffers would require extra
power. A study would have to be done to see whether or not the above changes would
have a positive or negative affect on the power consumption. Estimating the power saved
by subtracting the power from the added tristate buffers from the power of the removed
multiplexers is possible. However, the estimate isn’t very accurate since neither the

multiplexers nor the tristate buffers are switching at the same time.
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Appendix A. State Diagrams

A.I Transform State Diagram

TRANSFORM STATE MACHINE
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A.2 Row Transform State Diagram

READPIX1

READPIX2

INCPIXAD

CHKDNALL

DOROW STATE MACHINE
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A.3 Column Transform State Diagram

READPIX1

READPIX2

CHKDNALL

A 4

ENDSTATE

DOCOL STATE MACHINE

@ WRIT2COF
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A.4 Inverse Transform State Diagram

INVERSE TRANSFORM STATE MACHINE

102



A.5 Inverse Column Transform State Diagram

READPIX1

READPIX2

CHKDNALL

UNCOL STATE MACHINE

@ WRIT4PIX
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A.6 Inverse Row Transform State Diagram

READPIX1

READPIX2

CHKDNALL

Y

ENDSTATE

UNROW STATE MACHINE

O
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Appendix B. Savings of Ram Accesses

B.1 Original Code Ram Accesses

Operation (Original Code) Reads Writes
Read in 4 words, Pack, write out 1 word 512 128
Read in 2 words, Transform, write 2 words 128 128
Read in 2 words, Unpack, write 8 words 128 512
Do these 512 times (512 rows)

Total Ram accesses 393216 393216
Read in 4 words, Pack, write out 1 word 512 128
Read in 2 words, Transform, write 2 words 128 128
Read in 2 words, Unpack, write 8 words 128 512
Do these 512 times (512 cols)

Total Ram accesses 393216 393216
Read in 4 words, Pack, write out 1 word 256 64
Read in 2 words, Transform, write 2 words 64 64
Read in 2 words, Unpack, write 8 words 64 256
Do these 256 times (256 rows)

Total Ram accesses 98304 98304
Read in 4 words, Pack, write out 1 word 256 64
Read in 2 words, Transform, write 2 words 64 64
Read in 2 words, Unpack, write 8 words 64 256
Do these 256 times (256 cols)

Total Ram accesses 98304 98304
Read in 4 words, Pack, write out 1 word 128 32
Read in 2 words, Transform, write 2 words 32 32
Read in 2 words, Unpack, write 8 words 32 128
Do these 128 times (128 rows)

Total Ram accesses 24576 24576
Read in 4 words, Pack, write out 1 word 128 32
Read in 2 words, Transform, write 2 words 32 32
Read in 2 words, Unpack, write 8 words 32 128
Do these 128 times (128 rows)

Total Ram accesses 24576 24576
Total Ram access for transform 1032192| 1032192
Quantize/Threshold image 512 512
512 rows

Total Ram accesses 262144 262144
Grand Total Ram access 1294336] 1294336
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B.2 New Code Ram Accesses

Operation (New Code) Reads Writes
Read in 4 words, Transform, wrifte out 4 words 512 512

Do these 512 times (512 rows)
Total Ram accesses 262144 262144
Read in 4 words, Transform, write out 4 words 512 512

Do these 512 times (512 cols)
Total Ram accesses ' 262144} 262144
Read in 4 words, Transform, write out 4 words 256 256

Do these 256 times (256 rows)
Total Ram accesses : 65536 65536
Read in 4 words, Transform, write out 4 words 256 256

Do these 256 times (256 cols)
Total Ram accesses 65536 65536
Read in 4 words, Transform, write out 4 words 128 128

Do these 128 times (128 rows)
Total Ram accesses 16384 16384

Read in 4 words, Transform, write out 4 words 128 128

Do these 128 times (128 rows)

Total Ram accesses 16384 16384
Total Ram accesses for transform 688128 688128
Quantize/Threshold: done during column transform 0 0
Total Ram accesses 0 0
Grand Total Ram access 688128 688128
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Appendix C. Total States Required for Transform Half of Both The ASIC Design and
The FPGA Design.

C.1 States for Transform Half of FPGA Design.

The transform occurs in three iterations. The three iterations are listed with -
subtotals for each itera_tion. A total number of states is listed for the transform step.
Following the three iterations is the quantize step. The total number of states for the
quantize step are listed followed by a total number of states for the transform and
quantization. The totals are not exact. States that occur only a few times are not used in
the totals. Not using the minimal occurring states simplified the counting process. The

minimal number of extra states would not affect the overall number significantly.
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TRANSFORM Steps

First iteration

Pack4Row

7 states to process 4

pixels 7*128 for one row |896*512 for all rows 458752
Transform

6 States to process 8

pixels 6*64 for one row |384*512 for all rows 196608
Unpack4row

12 States to process 8

pixels 12*64 for one row |768*512 for all rows 393216
Total 1048576
Pack4Col

7 states to read in and

pack 4 pixels 7*128 for one row |896*512 for all rows 458752
Transform

6 States to process 8 :

pixels 6*64 for one row |384*512 for all rows 196608
Unpack4Col

12 States to uhpack

and write out 8 pixels |12*64 for one row |768*512 for all rows 393216
Total 1048576
Subtotal 2097152
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Second lteration

Pack4Row

7 states to process 4

109

pixels 764 for one row  [448*256 for all rows 114688
Transform

6 States to process 8

pixels 6*32 for one row |192*256 for all rows 49152
Unpack4row

12 States to process 8

pixels 12*32 for one row |384*256 for all rows 98304
Total 262144
Pack4Col

7 states to read in and

pack 4 pixels 7*64 for one row |448*256 for all rows 114688
Transform

6 States to process 8 »

pixels 6*32 for one row |192*256 for all rows 49152
Unpack4Col

12 States to unpack

and write out 8 pixels |12*32 for one row |384*256 for all rows 98304
Total 262144
Subtotal 524288




Third iteration

Pack4Row

7 states to process 4

pixels 7*32 for one row |224*128 for all rows 28672

Transform

6 States to process 8

pixels 6*16 for one row |96*128 for all rows 12288

Unpack4row

12 States to process 8

pixels 12*16 for one row |192*128 for all rows 24576

Total 65536

Pack4Col

7 states to process 4

pixels 7*32 for one row |224*128 for all rows 28672

Transform

6 States to process 8

pixels 6*16 for one row [96*128 for all rows 12288

Unpack4Col

12 States to process 8

pixels 12*16 for one row |192*128 for all rows 24576

Total 65536
[Subtotal 131072

TOTAL 2752512

QUANTIZE Steps

9 states to process 2

coefficients 9*256 for one row [2304*512 for all rows | 1179648

GRAND TOTAL 3932160
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C.2 States for Transform Half of ASIC Design

The transform occurs in three iterations. The three iterations are listed with
subtotals for each iteration. A total number of states is listed for the transform step. The
total is not exact. States that occur only a few times are not used in the totals. Not using
the minimal occurring states simplified the counting process. The minimal number of

extra states would not affect the overall number significantly.

First iteration

Row state

10 states to read in 4

pixels 10*128 for one row [1280*512 for all rows | 655360
1+3*256 +1+1 states

to write out register 771*512 for all rows 394752
Total 1050112
Col state

12 states to read in 4

pixels 12*128 for one row |1536*512 for all rows | 786432
1+3*256 +1+1 to write '

out register 771*512 for all rows 394752
Total 1181184
Subtotal 2231296

Second interation
Row state

10 states to read in 4 |10*64 for one row  |640*256 for all rows 163840
1+3*128 +1+1 to write
out register 387*256 for all rows 99072

Total 262912

Column State
12 statesto read in 4 |12*64 for one row  |768*256 for all rows 196608
1+3*128 +14+1 to write

out register 387*256 for all rows 99072
Total 295680
Subtotal ' 558592
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Third interation

Row state

10 states to read in 4

pixels 10*32 for one row  |320*128 for all rows 40960
1+3*64 +1+1 to write

out register 195*128 for all rows 24960
Total 65920
Column State

12 states to read in 4

pixels 12*32 for one row  |384*128 for all rows 49152
143*64 +1+1 to write

out register 195*128 for all rows 24960
Total 74112
Subtotal 140032
GRAND TOTAL 2929920
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Appendix D. Component Listing and Timing

Each component built for the ASIC design is listed in this appendix. Each
component went through many changes. Some of the steps were not executed for some

of the components. The steps are as follows:

Write Behavioral VHDL (Beh VHDL).

Test Behavioral VHDL (Test Beh).

Executed Design Analyzer (DA).

Number of optimizations performed in Design Analyzer (# Opt).
Timing from Design Analyzer (Design Analyzer Timing Parameters).
DB2SGE conversion (DP2SGE).

Creation of Structural VHDL (Str VHDL).

Test Structural VHDL (Test Struct).

Timing from Synopsys VHDL analyzer (Timing (ns)).

10 Edit SDL file produced by SGE (Edit SDL).

11. Open component in MAGIC (Mag).

12. Size of component in MAGIC (Magic Size).

13. IRSIM timing result of the component (IRSIM (ns)).

14. HSPICE execution (HSPICE).

15. Timing results from HSPICE (HSPICE Timing (ns)).

VO NA LR W~

The ‘X’ indicates the component was run through the associated step. A ‘-----‘ indicates
the component did not run thr-ough the associated step. Information following the
component listing indicates several changes made to the components while they were
being realized into a layout level component. Several signals were removed because they
were either not necessary or they were realized by another signals. Verification of the
unused signals was verified in the VHDL files but not changed. In some cases, buffers

were added to some of the components built using the automated tools.
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Component Changes

unrowla: column 1= [shift 0 shift shift
column 3= |[shift 2
column 5= [shift 4
column 6= |[shift 5
column 8|= |[shift 7
column 7i= |[shift 6
column 9= |[shift 8

uncolld: 11 buffers use 13 dff
1 buffer uses 14 dff

uncollb: 4 buffers use 16 dff

" luncollc 4 buffers use 11 dff

unrowlb 5 buffers use 13 dff

unrowic 3 buffers use 13 dff]
1 buffers use 15 dff

uncolla shift O= 0 shift1=shift3

' shift | 13= |row

shift 8= [row
shift 9= [row
shift 5= " row
shift 6= [row
shift 7= lrow

shift 4= [row

shift 10=  |Jrow

shift | 11}=  [row]

shift 12)= [row

RINID O W N |—= 100 | (O

docollb_behav

scalic7 = tscalic7

scal2¢c7 = tscal2¢7

waveic7 = twavlic7

waveic7 = twaviic7

" [scadd3 = wvadd4

docollc: 4 buffers use 14 dff, 1 buffer use 10 dff
docolld: 1 buffer use 10 dff, 1 buffer use 9 dff
docolle: Removed add9res0 from SGE but it is still in VHDL
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Appendix E. Sections of Code with the Utilized Components.

The list of components contains all the VHDL files used for each of the four main
pieces of the design. The files used to tie each halve together are also listed. It is noted if
the file was implemented or just needed for testing purposes. The list doesn’t specify
how many of each component was used. Referencing the block diagrams will show the .

number of each component utilized.

Row Transform Description Purpose
dorowla Control logic Implemented
dorowlb Control logic Implemented
dorowlc Control logic Implemented
dorowld Control logic Implemented
dorowle Control logic Implemented
dorowsm State Machine Implemented
comparei0 10 bit comparator Implemented
mux3b10 3 by 10 Bit Multiplexer Implemented
incby10 - 19 Bit Increment by 10 Implemented
inc10 10 bit Increment by 1 Implemented
add10 10 Bit Adder Implemented
inc19 19 Bit Adder Implemented
add9 9 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented
mux2 2 by 19 Bit Multiplexer Implemented
mux5 5 by 19 Bit Multiplexer Implemented
mux2b9 2 by 9 Bit Multiplexer Implemented
topdriog Misc Control Logic Implemented
Column Transform

docolla Control logic Implemented
docollb Control logic Implemented
docolic Control logic Implemented
docolld Control logic Implemented
docolle Control logic Implemented
docolsm State Machine Implemented -
mux4b10 4 by 10 Bit Multiplexer Implemented
compare10 10 bit comparator Implemented
incby10 19 Bit Increment by 10 Implemented
inc10 10 bit Increment by 1 Implemented
addi19 19 Bit Adder Implemented
add8 8 Bit Adder implemented
add9 9 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented
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mux3b10 3 by 10 Bit Multiplexer Implemented
mux7b19 7 by 19 Bit Multiplexer Implemented
mux4b19 4 by 19 Bit Multiplexer implemented
mux2b8 3 by 10 Bit Multiplexer Implemented
mux3b9 3 by 9 Bit Multiplexer Implemented
mux4b9 4 by 9 Bit Multiplexer Implemented
topdclog Misc logic Implemented
Column Inverse Transform

uncolla Control Logic Implemented
uncollb Control Logic Implemented
uncolic Control Logic Implemented
uncolld Control Logic Implemented
uncolsm State Machine implemented
mux4b10 4 by 10 Bit Multiplexer Implemented
comparei0 10 bit comparator Implemented
incby10 19 Bit Increment by 10 Implemented
inc10 10 bit Increment by 1 Implemented
add19 19 Bit Adder Implemented
add8 8 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented
mux3b10 3 by 10 Bit Multiplexer Implemented
mux6b19 6 by 19 Bit Multiplexer Implemented
mux2b8 2 by 8 Bit Multiplexer Implemented
topuclog Misc logic Implemented
Row Inverse Transform .

unrowla Control Logic Implemented
unrowlb Control Logic Implemented
unrowlc Control Logic Implemented
unrowld Control Logic Implemented
unrowsm State Machine Implemented
mux4b10 4 by 10 Bit Multiplexer Implemented
compare10 10 bit comparator Implemented
incby10 19 Bit Increment by 10 Implemented
inc10 10 bit Increment by 1 Implemented
addi9 19 Bit Adder Implemented
inc19 19 Bit Increment by 10 Implemented
add8 8 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented
mux3b10 3 by 10 Bit Multiplexer Implemented
mux3b19 3 by 19 Bit Multiplexer Implemented
mux2b8 2 by 8 Bit Multiplexer Implemented
topurlog Misc logic Implemented
Transform Half of Code

transfsm State Machine Implemented
translog Control Logic Implemented
toptria Control Logic Implemented
toptrib Control Logic implemented
toptric Control Logic Implemented
ftrsmchc State Bit Multiplexer Implemented
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Inverse Transform Half of
Code

invtrasm State Machine Implemented

invtriog Control Logic Implemented

topinla Control Logic Implemented

topinib Control Logic Implemented

topinic Control Logic Implemented

ftrsmchc State Bit Multiplexer Implemented

Extra Logic for ASIC

mux3b5 Multiplexer Implemented

clock_gen Clock and Reset signals Testing only

std_logic_vector_to_integer Used for simulated Ram Testing only

memory1 Used for simulated Ram Testing only

ram1_behav Used for simulated Ram Testing only
Used for simulated Register

std_logic_vector19_to_integer | File .| Testingonly
Used for simulated Register

memory2 File Testing only
Used for simulated Register

ram2_behav File Testing only
Simulates 2 cycle read

flipflop_behav delay Testing only
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Appendix F. Data Used for Testing.

| The following data shows the beginning value placed in RAM. It also shows the
intermediate values in the memory locations that are used to compute the ending value
that is subject to the current test. Each location was verified while executing the code.
The final result was verified as well. The result in parenthesis is the actual result written
to RAM. Each quadrant of each iteration was verified. The table shows the steps used
for the Transform half of the code. It was the most complicated as it had many design
fules. The inverse transform half was tested but it wasn’t necessary to use the same range

of inputs, as the operations were always the same in each iteration for each quadrant.

Iteration k=0: Lower Left lteration k=1: Lower Left lteration k=22 Lower Left

Loc|Val {Loc|Val [Loc|Val |EndVal Loc{Val |Loc|{Val |Loc{Val iIEndVal | |Loc{Va |Loc{Val |Loc|Val |EndVa
100 O 10| O 522] -20 (-8)i 10| -82| 10 -82| 266] -82] (-64) 10 -821 10§ 821 138] -82] (-82)
11 O 11| 82 11| 82

42 o 42| 40 2 8| 42 & 42 82| 42| &)

431 80) 43 8 43 82

74 O 74 O -9 (-8) 74 65| 74] -65) 298| 65| (-64) 741 65| 74| 65| 170} 65 (-64)
7B O 75 65 75| 65

106 Of 106 18, 106] 65| 1068| 65 106] 65| 106] 65

107 36 107} 65 107] 65

138] 0O 138] O 586 -3 (0) 138] -21] 138] 21| 330 -21] (20)| | 138] -21] 138} -21] 202} -21]  (-20)
139 O 139 -21 139] -21

1700 O 17} 6 1700 2111700 21 1701 21| 1701 21

171] 12 1711 21 171] 21

202| 20| 202] 101 618] 5 0) 22 201202 10| 362] 5 (@ | 202 20]202] 101234 5 4
203 O 208 O 203 O

24 0234 O 24 0234 O 24 0234 O

23| O 25 0 238 O

26| 68| 266] 34] 6501 17 (8 266] 101} 266| 101} 3944 101 (64)

%71 O 2671 101

208 0208 O 298! -101} 298] -101

299 0O 299} -101
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lteration k=0: upper right (scaler) lteration k=1: upper right (scaler) lteration k=2: upper right (scaler)
Loc|Val |Loc|Val [Loc{Val [EndVal Loc|val JLoc[val |Loc|Val |[EndVal | [Loc|Val |Loc|Val |[Loc|Val |EndVal
10§ -20| 26| -20| 26] -20 (-8 10f -82| 18] -82[ 18] -82{ (-64) 10 -82| 14} -82| 14| -82[ (-82)
11] 20 11| 82 11 8

42| -20] 58 -20 42 -82| 50| -82 42| -82| 46| -82

43 20 43] 82 43| 82

74 9] 90| -9 58] -9 (-8) 74| -65) 82| -65| 50| -65| (-64) 74| -65| 78} -65| 46| -65| (-64)
7B 9 75| 65 75 65

106| -9f 122 -9 106| -65| 114 -65 106} -65| 110} -65

107] 9 1107} 65 107 65

138] -3| 154] -3] 90| - -3 0) 138] 21| 146] -21| 82| -21|  (-20)] | 138} -21} 142{ -21] 78} -21] (-20)
139} 3 139 21 139 21

170{ -3| 186] -3 170 -21| 178 -21 170] -21] 174] -21

171] 3 171 2 171] 21

202| 20)218{ 10| 122| 5 (O)f |202] 20]210] 10 114] 5 @)l ]202| 201 206] 10| 1101 5/ (4
203 0 . 203 0 203 0

234 0]250] O 234 0]242) 0 234] 0]238] 0

235 0 2351 0 25 0

266] 17] 282] 17| 154] 17| (8)l | 266} 101| 274] 101] 146} 101 (64)

267| -17 267]-101

298] 17| 314} 17| 298| 101} 306{ 101

200l -17] | 29| -101

lteration k=0: Lower Right Reration k=1: Lower Ri Iteration k=2: Lower Right _
Loc|Val |Loc}Val {Loc|Val [EndVal Loc|Val [Loc|Val [Loc|Val |[EndVal | [Loc |Val [Loc|Val [Loc|Val |EndVal
10| 0] 26| 0] 538] -24 (-8) 10| -65| 18] -65} 274| -65|  (-64) 10] -65| 14| -65} 142| -65] (64
11} 0 : 11} 65 11] 65

42} O] 58] 48 42] 65| 50| 65 42] 65| 46| 65

43f -96 43| -65 43| -65 ’

740 O] 90| 0]570 -8 (0) 74] -63] 82| -63| 306{ -63| (-56) 74} -63| 78] -63| 174] -63] . (-60)
75| O 75| 63 75| 63

106| 0] 122| 16| 106] 63| 114 63 106| 63| 110{ 63

107} -32; 107] -63 107| -63

138} 0] 154] 0] 602 -1 (V)] 138} -7] 146| -7] 338| -7 (0) {138 -7} 142f -7] 206] -7 (4
139] O 139] 7 139 7

170] 0} 186} 2 170 71178 - 7 170f - 7| 174] 7

171] 4 171} - 7 171] -7

202| 28] 218 14 7] () 202} 48] 210f 24} 370] 12 (8)] |202| 48] 206] 24] 238 12| (12)
203] 0 v 2031 0O 203 0

2341 0{250] O 234 0242 0O 234 0]238] 0

235 0 235 0 2% 0

266| 80} 282] 40| 666| 20| (8)] | 266| 101] 274] 101] 402{ 101 (64)

2671 O 2671101

208} 0]314] O 298| -101] 306{-101

29 0 299 101
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Appendix G. Power Calculation of the FPGA Design.

Using the WildForce board documentation (3), an estimate of the power usage

was calculated. According to the documentation:

Total Power = Base Power + Memory Power + External 1/O Power + Total PE Power

Base Power =3.75W

Memory Power =5 W

External I/O Power = OW

Total PE Power = Number of Pe's * PE Power

Number of Pe’s = 5 (CPEO, PE1, PE2, PE3, PE4)

PE Power = ((.02 * Frequency) + 0.09) * Activity * Size Factor * 5V
Frequency = 20 MHz

Activity is percent of registers that are switching at same time:

(% utilization of flip-flops) * (% active at any given time)

‘Activity = .47 * 40 '

Size Factor for FPGA type 4062XL = 1.23
-PE Power = ((.02 * 20) + 0.09) * 0.188 * 1.23 * 5V =0.567 W
‘Total PE Power =5 * 0.567 W =28 W

Total Power =3.75+5+0+2.8=11.6 W

Activity was estimated based on the Behavioral Code and the Wi}dForce
Documentation. A better estimate could have been calculated by analyzing the files
produced by the WildFOrCe loading program (3); However, since the majority of the total
power is based on the memory and base power, the estimate is sufficient for comparison

purposes.
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