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data. No data points other than those provided from the DoD sources mentioned above 

will be used in the research. Additionally, the model derived from this research is 

intended to estimate Command and Control projects only. Once again, the purpose of 

this model is to determine if a more accurate and useful model can be built using specific 

data that relates directly to the software program application, BMC3. 

Thesis Overview 

This chapter provides an overview to the problem DoD faces in estimating BMC3 

software systems. It is questionable whether commercial models, either "as is" or 

calibrated, fulfill the accuracy requirements desired by the DoD (Ferens and Christensen, 

1997). Bad estimates increase the frustration and tension among contractors, program 

managers, and estimators. Contractors overrun budgets, program managers set 

unrealistic goals, and estimators get labeled the "bad guys" because they create 

inaccurate estimates. Therefore it's clearly necessary that something needs to be done to 

create more accurate estimates. 

Chapter II, the Literature Review, provides a summary of the current thinking in 

the industry concerning software cost estimating. The chapter discusses important ideas 

and components to software cost models. The ideas include the basic form that many of 

today's model use. The components section include a description of the key cost driver 

that the literature feels influences the level of effort necessary to develop software 

systems. 

Chapter III, Methodology, details the steps of collecting and scrubbing the data, 

building the model through statistical techniques, and validating the proposed model. 



Chapter IV, Findings, describes the results and findings of the model building 

effort in Chapter III. Included in this chapter is the complete model and the effects each 

of the significant attributes have on the model. 

Chapter V, Conclusions and Recommendations, reviews the findings of Chapter 

IV and determines to what extent the goals set out previously in this chapter are met. 

Additionally, through the conclusions, it is apparent where further research should be 

done. Recommendations concerning future efforts are also included in this chapter. 



II. Literature Review 

Introduction 

The purpose of this chapter is not to give an all-inclusive explanation of software 

estimating. There is a multitude of books, like T. Capers Jones' Estimating Software 

Costs or Barry W. Boehm's Software Engineering Economics, which address this very 

subject. Still, this chapter will cover the basics of software cost estimating. To 

understand software estimating models it's important to understand difficulties involved 

in estimating and why estimating is necessary. It's also important to understand some of 

the key variables and assumptions that other models include in their algorithms. Then 

with knowledge of the key variables and assumptions, the creation of software models 

will make more sense. This chapter discusses how and what statistical models are used to 

create software-estimating tools. Additionally, this chapter discusses past efforts to 

improve effectiveness of software estimating (specifically in the area of Command and 

Control software systems). 

Software Cost Estimating Models 

Stutzke in his article, Software Estimating Technology: A Survey, explains there 

are two basic classes of estimation methods: experience-based estimation and parametric 

models. Experience-based models rely on estimator's knowledge and experience in the 

field; however, the weakness of this methodology is that the estimator may not correctly 

recall or apply the things he knows. Conversely, parametric models are models that are 



based on historical data. Because they are based on historical data, they tend to have a 

particular "perspective." If the data is slanted towards commercial or military data or a 

particular application, the perspective of that model will have a commercial, military, or a 

specific application's flavor. Consequently, when using parametric models, estimators 

should find the model that best fits the type of project they are estimating or make sure 

the model is properly calibrated for that particular environment (Stutzke, 1996). 

Boehm expands Stutzke's two basic categories to seven methods of software cost 

estimation. The seven methods are described in Table 1.1. 

Table 2.1. Strengths and Weaknesses of Popular Models (Boehm, 1981: 329-338) 

Method Description Strengths Weaknesses 
Algorithmic 
Models 

These methods provide one or more 
algorithms, which produce a software 
cost estimate as a function of a number 
of variables, which are considered to 
be the major cost drivers. 

Objective, 
repeatable, 
efficient, able to 
support 
sensitivity 
analysis. 

Model's data 
may not be 
representative, 
may not account 
differences. 

Expert 
Judgment 

This method involves consulting one 
or more experts, perhaps with the aid 
of an expert-consensus mechanism 
such as the Delphi technique. 

Quick, able to 
factor 
differences, such 
as new 
techniques or 
architectures. 

May be biased; 
either optimistic 
or pessimistic. 

Analogy This method involves reasoning by 
analogy with one or more completed 
projects to relate their actual cost of an 
estimate of the cost of a similar new 
project. 

Estimate is based 
on actual 
experience on a 
project. 

Project may not 
be 
representative 
of the estimated 
project. 

Parkinson A Parkinson principle ("Work expands 
to fill the available volume") is 
invoked to equate the cost estimate to 
the available resources. 

Lots of bells and 
whistles (if your 
into that sort of 
thing). 

Not particularly 
accurate and 
supports poor 
practices. 



Price-to-Win The cost estimate developed by this Wins contracts. Purely 
method is equated to the price believed subjective, 
necessary to win the job (or the based on what 
schedule believed necessary to be first the customer 
in the market with a new product, 
etc.). 

wants to hear. 

Top-Down An overall cost estimate for the project Includes all Low-level 
is derived from global properties of the system level technical 
software product. The total cost is requirements like difficulties are 
then split up among the various integration, over looked. 
components. training, and Components 

manuals. may be left out. 

Bottom-Up Each component of the software job is Looks at each May overlook 
separately estimated, and the results individual system level 
aggregated to produce an estimate for component and requirements 
the overall job. errors tend to like integration, 

balance each training, and 
other out. manuals. 

The key for estimators is to determine which of these methods is most useful in their 

particular situation. Each method has its particular strengths and weaknesses that may be 

capitalized on in a specific situation and often the models compliment each other (Boehm 

1981: 341). Still, it's important to note that not all models may produce objective 

estimates. Boehm feels the Parkinson and the Price-to-Win methods don't produce good 

objective measures of the effort required for developing software (Boehm, 1981: 341). 

In the beginning stages of a program, when little is know about a program's 

requirements, expert judgement and rules of thumb may be most useful in estimation. 

Then, when the requirements become more established, more advanced techniques may 

be employed. 



Model Building 

Throughout this paper, the focus of estimating models will lean more towards 

parametric or algorithmic models that are based on historical data. Parametric models are 

popular because they are relatively easy to use; even novice estimators can quickly begin 

estimating programs. 

Literature describing the actual techniques for building software cost estimating 

models is somewhat sparse for such a mainstream activity. The reason for this is that 

most of the commercial software costs estimating tool vendors regard their estimating 

methods and algorithms as trade secrets (Jones, 1998: 20). Nevertheless, we have a 

general idea of what most models look like. According to Caper Jones in his book, 

Estimating Software Costs, most software estimating models follow a form similar to the 

one illustrated in Figure 2.1. 

X Project 
Attributes 

ESTIMATES 

- Effort 

- Costs 

Figure 2.1. Basic cost estimating model (Jones, 1998: 6) 

Program Size Overview 

The first block in Figure 2.1, project size, is traditionally measured and reported 

in one of two ways. The first way to measure size is counting lines of code and the 
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second way to measure size is by counting function points. Both counting methodologies 

are described in the following paragraphs. 

Probably the most significant and important piece of data to collect is the size of a 

software development program. Size is important because it is usually the key variable in 

most estimation models. Nevertheless, one should be careful when talking about size 

because there are various ways to measure the size of a computer program. Two of the 

more popular methods are counting Source Lines of Code (SLOC) and measuring 

Function Points. Both methods are currently used within the software industry, with 

Function Points being the newer of the two measures. Size is relatively easy to compute 

and therefore is a popular if not necessary component for software cost models. Conte 

states that size is probably the most important factor for many software development 

models. He also explains that size is also important for developing a secondary factor, 

productivity (Conte, 1986: 32).   Productivity is a factor of size divided by the effort to 

build a software project, which results in a number that describes the number of man- 

hours to complete a line of code. 

Function Points. Of the two sizing methodologies, Function Point sizing is the 

newer of the two and less commonly used within the Department of Defense (DoD). 

Still, there are some avid proponents of Function Points that believe it is a superior 

method of sizing software systems. Function Points are based on external attributes of a 

software project, which consists of the following five primary elements: (1) external 

inputs, (2) external outputs, (3) external inquiries, (4) internal logical files, and (5) 

external interfaces (Jones, 1998: 303). 
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Inputs 
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Outputs 
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Application 
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Points 
= 

Figure 2.2. Components of Function Points (Symons, 1991: 22) 

Function points can be extremely difficult to calculate, but are easy to understand 

because the measured attributes are externally apparent. Charles Symons explains that 

Function Points are a combination of information processing size (IPS) and general 

application characteristics (Symons, 1991). Figure 2.2 illustrates Charles Symons' basic 

structure for calculating Function Point size. 

Function Points are an interesting concept and are gaining wider acceptance in the 

estimating community. Still, the Department of Defense (DoD) hasn't jumped on board 

the Function Point bandwagon. Most of the models used by the DoD and most of their 

databases are SLOC based. This may be something the military may want to look into in 

the future; Jones contends that because of the completeness of military specification, 

DoD projects would be ideal to estimate using Function Point sizing methods. 

Source Lines of Code (SLOC). Even though it may seem simple to simply count 

the SLOC, it is more complex than it appears. The problem with counting SLOC is that 

not everybody agrees what qualifies as a line of code (Conte, 1986: 32).   An 

uncomplicated solution would be to simply count the lines or carriage returns; however, 

blank lines and comment lines probably shouldn't be included in the count. Within 

industry there are two distinctly different SLOC counting methods: physical and logical. 
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Physical SLOC counting is simply counting the number of carriage returns. Logical 

SLOC is determined by counting logical units (for example, an IF-THEN-ELSE 

statement is considered a logical unit). The methodology employed may make a 

significant difference. An Institute for Defense Analysis (EDA) study concluded that 

physical code counts are generally about 20% higher than logical code counts 

(Cummings et al., 1998). Within the industry, most researchers agree blank lines and 

comment lines shouldn't be included. If they were included, analysts could easily inflate 

the size of the software program (Conte, 1986: 34).   The following is a definition for 

lines of code that is commonly accepted throughout the industry: 

A line of code is any line of program text that is not 
a comment or blank line, regardless of the number of 
statements or fragments of statements on the line. This 
specifically includes all lines containing program headers, 
declarations, and executable and non-executable 
statements. (Conte, 1986: 35) 

Still, with this definition in hand there is some ambiguity concerning how or what 

to count when counting SLOC. Even with all this definitions, counting logical SLOC can 

be difficult because much of the count may be left up to interpretation. 

There are many compelling reasons why SLOC is a widely used metric. SLOC 

metrics are relatively easy to count (easier for physical lines of code). Line of Code 

measurements can easily be mathematically converted to another sizing methodology, 

including function points. Additionally SLOC is the most popular metric used in many 

of today's commercial software estimating tools (Jones, 1998: 319). 

Reuse of Code and Effective Size. The Naval Center for Cost Analysis comments 

that not only knowing the amount of source code necessary, but also knowing the 
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"condition" of the code is also important (Cummings et al., 1998).   Many developed 

software systems aren't built from the ground up. There may exist projects or programs 

that are used to create new software systems. In determining the size of a software 

system it simply wouldn't be correct to consider reused code the same as newly 

developed code. Still, reused code simply doesn't come free of charge without any added 

effort. To account for the size of projects using both new and reused code a unique 

measure is employed called "effective sizing" or "equivalent sizing." The equivalent 

SLOC (ESLOC) takes into account the fact that reused code doesn't take the same 

amount of effort to put into a program as new code. One method for determining the 

effective size of programs uses an Adaptation Adjustment Factor (AAF) that is based on 

engineering judgment of distributed effort between percent design modification (DM), 

percent code modification (CM), and percent integration and test modification (IM). For 

example the AAF may appear as follows: 

AAF = 0.4DM + 0.3CM + 0.3IM (2.1) (Boehm, 1981) 

In the example above the design requires a 40 percent redesign, code requires 30 percent 

redesign, and test requires 30 percent redesign. After calculating AAF, ESLOC is 

calculated using the following formula: 

ESLOC = New SLOC + (AAF * reused SLOC)        (2.2) (Boehm, 1981) 

The biggest drawback with the method explained above is that engineers aren't infallible 

when estimating the percentages for DM, CM and EVI. Consequently, size estimates for 

reused pieces of code may only be as good as the best guesses of your best engineers. 
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Project Attributes 

The second block illustrated in Figure 2.1, project attributes, may include (but not 

restricted to) the following information: 

1. Rate at which a project's requirements may change 
2. Developing team's experience with this kind of project 
3. The standards that will be employed, i.e. ISO, DoD 
4. Programming languages utilized 
5. Programming processes or methods 
6. Reusable code 
7. Development tools used 
8. Office dynamics/environment 
9. Schedule pressure (internal or external) 
10. Complexity of the project 

(Jones, 1998: 6) 

Then, by factoring project size and attributes, one can estimate a software project's 

schedule, effort, costs, and deliverables. 

Next to size, the most important data for software models are the projects 

attributes. These are the characteristics that make the development project unique. Each 

software development effort has special needs or attributes that will either increase or 

decrease the amount of effort necessary to complete a project. For example, it makes 

sense that a project that is inherently more difficult than normal will take more effort to 

complete. 

An important attribute that seems to make a difference is the programming 

language used to develop the project. This seems especially true when the projects are 

written in second-generation languages (2GLs) versus third-generation languages (3GLs). 

After all, 3GLs were developed to make writing and understanding programs easier 

(Cummings et al., 1998). The reason for the difference in ease of use is that 2GL 

languages are one step above machine language and are awkward to use, while 3GL 
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languages and above are closer to spoken language and easier to write and understand 

Cummings et al., 1998). Assembly language is the primary 2GL language utilized by 

past DoD projects. The NCCA completed a study to determine if productivity levels are 

affected by whether a project is written in 2GL or 3GL. They found there is a significant 

productivity difference between the two generations of language. However, they found 

that no significant difference occurred between different 3GLs(Cummings et al., 1998). 

Consequently, it seems estimators need to pay particular attention when considering 

differences in language generation. 

There are a number of other variables that are believed to have a significant effect 

on the amount of effort used to develop software. These variables fall into four basic 

categories; which include personnel, technology, processes, and environment (Jones, 

1998: 7-8).   The levels of experience the personnel have seem like a common sense 

factor. The personnel category may include factors like programming experience, 

language experience, or operating environment experience. As with everything else in 

our lives, technology may significantly influence how things are done. For example, 

technology drives whether automated tools or manual methods are used in writing code. 

Of course, programmers using automated tools would be expected to have a higher 

productivity rate than those not using them (Jones, 1998: 7).   It's also obvious that the 

processes a team uses will affect their productivity. On the other hand the environmental 

influence on productivity is not as obvious. Environmental factors include where people 

work, and the relations they have with those around them. Jones states, "surprisingly, 

access to a quiet, noise-free office environment is one of the major factors that influences 

programming productivity" (Jones, 1998: 7). 
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Another item that should be considered is the type of application the software 

provides. Military applications are notably different than commercial applications. 

Additionally, there is a lot of variety within military application; whether the software is 

used in an aircraft, ship, or in space may make a significant difference (Jones 1998, 99- 

100).   Furthermore, of all the military applications one seems to stand out, specifically 

Command and Control systems. The Naval Center for Cost Analysis (NCCA) explains 

that Command and Control systems are more software dependent than non-BMC3 

systems. Consequently, their productivity may be lower than traditional military systems 

(Cummings et al., 1998). 

Algorithmic Models 

Models that employ various algorithms derive their algorithms from statistical 

techniques. Regression analysis is a method used to determine the relationship of 

dependent variables and independent variables. In the case of software development, the 

dependent variable is the level of effort to develop computer programs and the 

independent variables are the drivers that influence the level of effort necessary for 

development. According to Conte, Dunsmore, and Shen a large number of models, both 

linear and nonlinear, have been proposed for effort estimation (Conte et al., 1986: 279). 

The following paragraphs will review both types of statistical models 

Linear Statistical Models. Linear models are popular because they employ 

equations are simple to understand and use relationships that are relatively easy to 

explain. The basic form of a linear statistical model is illustrated in equation 2.3. 

E = j30+ij3lXi       (
2-3) 
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The dependent variable, E, is the amount of effort necessary to develop software. The Xj 

are the factors or attributes believed to affect effort. The attributes or factors include 

things like size, schedule, personnel experience, complexity of the project, and many of 

the other items mentioned in previous sections (Conte et al., 1986: 279-280). 

Systems Development Corporation (SDC) developed a linear model by looking at 

104 different attributes and then narrowed them down to 14 key attributes. SDC's 14 

attributes include the following: lack of requirements, stability of design, percent math 

instructions, percent I/O instructions, number of subprograms, programming language, 

application, stand-alone program, first program on a computer, concurrent hardware 

development, random access device used, different host, number of personnel trips, and 

military development (Conte et al., 1986: 280-281). 

As shown above with the SDC model, literally hundred of attributes may affect 

effort. Many of these variables may account for the same thing and therefore may be 

accounted for in a single variable. Thus, the volumes of variables may be reduced to a 

smaller subset of variables that tell the same story. Still, one should use caution when 

using or interpreting a linear model. For example, the individual terms, x;, and their 

coefficients should not be interpreted independent of other terms in the model's equation. 

All the terms act in concert with each other to predict the estimated effort (Conte et al., 

1986: 280). Additionally, one should use caution when attempting to estimate a project 

whose attributes or expected effort is outside the range of the model's attributes (Conte et 

al., 1986: 280). 

Nonlinear Statistical Models. Conte, Dunsmore, and Shen reveal that most 

nonlinear models they've studied take on the basic form illustrated in equation 2.4. 

18 



E = (a + bSc)m(X) (2-4) 

As with the linear model the dependent variable, E, is the amount of effort necessary to 

develop software. The S is the estimated size of the project, usually expressed in SLOC; 

a, b, and c are constants derived by regression analysis; and m(X) is an adjustment 

multiplier that depends on one or more attributes denoted by the vector X (Conte et al., 

1986: 281). 

The problem with nonlinear models is that m(X) may be a very complicated 

function of several variables. Consequently nonlinear models tend to be harder to 

understand and more difficult to explain, especially the relationship of the cost drivers 

effect on effort. Still, most commercial models used by the DoD at least partially employ 

some type of nonlinear statistical model (Conte et al., 1986: 300). Additionally, 

nonlinear regression is too complex to lend itself to standard regression analysis 

techniques. Instead, it is more customary to have a general idea of the form of the model, 

or a baseline, and then adjust the model to fit an application's particular needs (Conte et 

al, 1986: 282). 

Commercial Models and Calibration Efforts 

Commercial Model Background. Because of the explosive growth in the software 

industry there has been an equally explosive growth of software estimating packages. 

Both organizations that procure software and those that produce software have a need to 

know the cost of developing and producing finished software systems. As of 1998 there 

are at least 50 commercial software-estimating tools (Jones 1998: 37).    It would be 
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interesting to analyze how each commercial software model estimates development costs. 

Specifically, it would be interesting to analyze the algorithms the models employ and 

how they account for various peculiarities of each development project. With this kind of 

insight, model builders could build new models on the shoulders of those that have been 

built before. Unfortunately there isn't a whole lot of insight into how many of the 

commercial models were built because the algorithms are considered trade secrets and the 

databases the models were derived from are usually proprietary (Jones, 1998: 20). 

According to Capers Jones, most of these commercial estimating tools share the 

following same basic features: 

1. Database containing hundreds of thousands of software projects 

2. Can perform size predictions 

3. Automatically adjust estimate based on tools, languages and types of products 

4. Predict quality and reliability 

5. Can predict maintenance and support costs 

6. Predict and help prevent problems 

(Jones, 1998: 5) 

Still, Jones states that because of military unique practices and characteristics in 

developing and procuring software many of the commercial tools that were developed 

using non-military data-points are incapable of accurately estimating military projects 

without calibrating the tools (Jones, 1998: 38).   Additionally, Ferens and Christensen 

commented in a recent article, "while these models (commercial models) are 

sophisticated, they do not always produce accurate results, especially in the DoD 
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environment where organizations contract with numerous and diverse software 

development companies" (Ferens and Christensen, 1997, 43). 

Calibration Background. There have been many efforts to calibrate existing 

commercial software models to make them useful in estimating military software 

projects. Ferens and Christensen state, "a solution to the accuracy problem may be to 

calibrate the models to the user's environment" (Ferens and Christensen, 1997, 43). As a 

direct result of Ferens' and Christensen's belief that calibration may help commercial 

models estimate more accurately, starting in 1994 and finishing in 1997, masters students 

at the Air Force Institute of Technology (AFIT) initiated a study of calibrating 

traditionally used models. Over the next few years AFIT calibrated nine different 

commercial models (PRICE-S, REVIC, SASET, SEER-SEM, and SLIM, SOFTCOST, 

CHECKPOINT, COCOMO II, and SAGE). Data from the Air Force's Electronic System 

Center (ESC) and Space and Missiles System Center (SMC) were gathered and used to 

calibrate the above-mentioned models. The data were stratified into various software 

development categories (including unmanned space programs, military avionics 

programs, military ground command and control programs, military mobile programs, 

missile programs, military ground signal processing programs). 

The SMC software database contains fields for over 50 items for each program in 

the database, which include: 

• General information: software level, operating environment, software 

function, development standard, contracting agency, and type of contract 

• Cost, size, and schedule information: effort in person-months, phases 

included, size (in SLOC), schedule and database size 
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• Software characteristics: 28 items, including complexity level, language, code 

mix, development method, and environmental factors. Most of these 

characteristics may be used as inputs to the REVIC, SEER-SEM, and PRICE- 

S models. 

• Maintenance information: Number of years, effort, quality, documentation, 

and number of lines of code added, deleted, and modified. 

(Stukes et al, 1999) 

The following is a basic outline of the methodology the AFIT master students 

used by the last 5 theses efforts in calibrating the various models: 

• if the data set has 8 or fewer, use all for calibration 

• 9 to 11 data points, use 8 for calibration and remainder for validation 

• if 12 or more data points, use 2/3 for calibration and 1/3 for validation 

Statistical criteria were used to determine whether the model accurately estimates 

actual costs. This criteria was used both to determine if the stand-alone model is useful 

and if calibrated model is useful. Then one could see if the calibration improves the 

effectiveness of a model. The following criteria, which was proposed by Conte, 

Dunsmore, and Shen in their book, Software Engineering Metrics and Models, (Conte et 

al., 1986: 172-176), was utilized by the AFIT students: 

Magnitude of Relative Error (MRE) = {estimate - actual\/actual     (2.5) 

Mean Magnitude of Relative Error (MMRE) = (MRE) /n (2.6) 

Root Mean Square (RMS) = [(1/n) (estimate - actual) ]    (2.7) 

Relative Root Mean Square (RRMS) = RMS / [(actual)M)] (2.8) 

Prediction Level (Pred (.25)) = k/n (2.9) 
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In the above equations, n is the number of data points in the sub set and k is number of 

data points with MRE less than .25. According to Conte, et al., a model exhibits a "good" 

fit when the following criteria are met when the models' estimated effort is compared 

with actual effort for a data set: 

• The MMRE is less than 0.25. 

• The RRMS is less than 0.25. 

• The predicted level (or estimated effort) is within 25% of actual effort 

at least 75% of the time. 

(Conte et al., 1986: 172-176) 

Calibration Results. From the AFIT studies mentioned previously, it was 

concluded that there are mixed results when commercial models are calibrated with 

military data. Some models are more suitable than other models depending on their 

application & environment & type of software being developed. Because this thesis 

effort is directed towards the Command and Control area of these calibration efforts, the 

following table shows the results of each model for Command and Control applications. 

Some of the nine models are not included in this table because there wasn't sufficient 

data to calibrate the models for the command and control application. 

Table 2.2. Results Of Calibrating And Testing Popular Models 

Author (Year) Cost Model MMRE RRMS Pred (0.25) MMRE RRMS Pred (0.25) 
Kressin (95) SLIM 0.62 n/r 0.00 0.67 n/r 0.00 
Rathmann (95) SEER-SEM 0.53 1.03 0.31 0.31 0.30 0.29 
Mertes (96) CHECKPOINT 0.19 0.15 0.50 0.17 0.16 0.50 
Marzo (97) SAGE (SMC) 0.40 0.59 0.37 0.35 0.56 0.41 
Marzo (97) SAGE (ESC) 0.38 0.68 0.27 0.37 0.53 0.22 
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As shown in Table 2.2, none of the programs listed above passed the criteria as 

established by Conte, Dunsmore, and Shen in their book, Software Engineering Metrics 

and Models. Consequently, none of the commercial products, whether they are calibrated 

or not calibrated, adequately estimate Command and Control systems based on the 

criteria. 

Conclusion 

This chapter has illustrated many of the problems and difficulties as well as the 

necessity of accurate software cost estimating. The discussion included what the 

commercial sector is doing in the field of software cost estimating, especially with 

commercial models. It was shown how these commercial models might be calibrated, 

but the calibration didn't significantly improve the accuracy of military estimates. 

Because the commercial models don't satisfactorily estimate software costs, especially in 

the area of Command and Control, it's necessary to look to other sources for software 

estimating. This chapter discussed how software models are created from historical data 

using statistical techniques. The historical data includes the key cost drivers that 

influence the level of effort necessary to develop software systems. With these key 

variables, a new model may be developed that is based totally on like systems and 

hopefully the accuracy will be of an acceptable level. After all, it makes sense that 

models that use general information will generally get you in the ballpark; possibly 

models that use specific information will get ball over the plate. 
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III. Methodology 

Methodology Introduction 

The purpose of this methodology is to build a model that may accurately predict 

the level of effort necessary to develop BMC3 software systems. Past efforts in this area 

have involved calibrating existing popular models with applicable data that is relevant to 

the type of project being estimated. Regression analysis is a technique that is used to 

determine mathematical relationships that may potentially be used to predict future 

responses. In the simplest form, data is analyzed through regression analysis, which 

creates a model that may be used to determine a predicted answer as illustrated in figure 

3.1. 

Data" Regression .»Predicted 
Answer 

Figure 3.1. Linear Regression Illustrated 

This methodology will include selecting and preparing historical data, performing 

regression analysis on that data, and using the regression to predict the development 

cost/effort of software development projects. After the model is created, the results will 

be tested and validated to determine its usefulness. Figure 3.2, the process flow diagram, 

illustrates this process and acts as an outline for the remainder of this chapter. 
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Figure 3.2. Methodology Process Flow Diagram 

Identify Potential Data Sources 

The Data for this study comes primarily from two sources, Electronic Systems 

Center (ESC) and Space and Missiles System Center (SMC). In the past, both centers 

had on going projects to collect software attributes data. The attributes the centers 

collected are based on attributes used by used software estimating models like SEER- 

SEM, PRICE-S, COCOMO, and other popular models. 

SMC Data Base. The Space and Missile Center Software Database (SWDB) was 

developed to access and display data collected and stored by SMC. The SWDB was 

developed under the direction of the USAF Space and Missile Systems Center, with 

assistance from the Space Systems Cost Analysis Group (SSCAG). The SWDB currently 

contains almost 2500 data records. Each of the records contains up to 276 of the 

development effort's attributes (Stukes & Nguyen, 1999). 

In the past, the SWDB was maintained by a contractor, however, SMC decided 

not to fund the contractor that compiled the database (Carpio, 2000). The majority of the 

records in the SWDB are inadequate in terms of completeness of information. Of the 276 
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fields for any given record, only a portion of the fields may be complete. Additionally, 

the projects and the contractors involved in each project are masked, which makes it 

impossible to verify the validity of the data. Consequently, only a small portion of the 

2500 records is useful. 

ESC Data Base. The ESC database is comprised of 52 separate projects. These 

projects include complete software projects or software sections of larger projects. When 

the sections are broken out of the 52 projects, there are 169 separate records of software 

attribute data. The collection of ESC's data dates back to 1974 when the United States 

Air Force (USAF) and MITRE joined forces to build the database. Recently ESC's 

software database keeping and maintenance was turned over to Tecolote Research, Inc. 

Tecolote migrated the data base from an Microsoft© Excel format to the Automated Cost 

Data Base (ACDB) format that is included as part of the cost estimating relationship 

library embedded in ACEIT©, a cost estimating and modeling tool created by Tecolote. 

This migration makes it easier for estimators to use the data while estimates are created in 

ACEIT©. 

Unlike the SMC database, the ESC database is currently being used and 

maintained. Consequently ESC's data appears to be more useful because of the 

completeness of the data. The ESC database is used to calibrate popular software 

estimating models like REVIC, PRICE-S, SEER-SEM, and COCOMO. Consequently, 

the parameters included in the database are similar to those included in the SMC 

database. While the SMC database includes 276 parameters, the ESC database has just 

over 60 parameters. Like the SMC's software database, many of the 60 parameters are 

not complete. 
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Data Scrub 

Scrubbing the data is an important part of the methodology because not all the 

records in the SMC and ESC databases are useful.   Each record must be checked for 

completeness. However, if all incomplete records were excluded from this analysis, there 

would only be a handful of records to perform the regression. Another cause for concern 

is that the records came from different sources and projects and each source or project 

emphasized different parameters. Still, there seems to be a common thread of relevant 

parameters that many of the records have. Consequently, when checking for 

completeness of records, only a subset of the fields will be required for inclusion in the 

analysis. This subset of fields is discussed more fully in the Data Selection section of this 

chapter. 

Additionally, the data will be reviewed for potential errors or other discrepancies 

that could influence the outcome of the analysis. Those records that have errors or 

discrepancies will be excluded from the sample. 

Data Selection 

The key to the data selection is to find that relevant thread of important variables 

while at the same time striving for a large enough sample to perform the regression 

analysis. To increase the sample size, the number of parameters included in this review 

will be reduced from all possible parameters to only the most seemingly pertinent 

parameters. The parameters selected from the databases are based on basic attributes 

explained by Capers Jones in his book, Estimating Software Costs, and mentioned in 

Chapter II of this thesis. These parameters include the following: 
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1) Rate at which a project's requirements may change 
2) Developing team's experience with this kind of project 
3) The standards that will be employed, i.e. ISO, DoD 
4) Programming languages utilized 
5) Programming processes or methods 
6) Reusable code 
7) Development tools used 
8) Office dynamics/environment 
9) Schedule pressure (internal or external) 
10) Complexity of the project 

(Jones, 1998: 6) 

The records that include the parameters that closely match the descriptions mentioned 

above are included in the analysis. Including only these key parameters, instead of all 

possible parameters, will increase the sample size; while ensuring that the most pertinent 

elements are included for consideration. 

Data Preparation 

There are two types of independent variables, quantitative and qualitative, 

included in regression analysis (McClave et al., 1998: 579).   Quantitative variables are 

measured on a natural numerical scale. For example, the variable "lines of code" is 

considered quantitative. Lines of code may be any value from zero on up to however 

many lines of code are necessary to complete a project. On the other hand, qualitative 

variables are categorical in nature. Many of the parameters mentioned above, like 

inherent difficulty or personnel attributes, are reported as being high, nominal, or low. 

These parameters are clearly qualitative. To make these qualitative variables useful in 

regression analysis, the categorical data should be converted into indicator variables that 

can be used in computer statistical models. For example, two indicator variables should 
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