
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2001

A Flexible Framework for Collaborative Visualization Applications A Flexible Framework for Collaborative Visualization Applications

Using Java Spaces Using Java Spaces

Sean C. Butler

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Butler, Sean C., "A Flexible Framework for Collaborative Visualization Applications Using Java Spaces"
(2001). Theses and Dissertations. 4584.
https://scholar.afit.edu/etd/4584

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F4584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4584?utm_source=scholar.afit.edu%2Fetd%2F4584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

H

A FLEXIBLE FRAMEWORK FOR COLLABORATIVE

VISUALIZATION APPLICATIONS USING JAVASPACES

THESIS

Sean C. Butler, Second Lieutenant, USAF

AFIT/GCE/ENG/01M-01

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20010/06 144

AFIT/GCE/ENG/OlM-01

A FLEXIBLE FRAMEWORK FOR COLLABORATIVE

VISUALIZATION APPLICATIONS USING JAVASPACES

THESIS
Sean C. Butler, B.S.

Second Lieutenant, USAF
AFIT/GCE/ENG/OlM-01

Approved for public release, distribution unlimited.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GCE/ENG/OlM-01

A FLEXIBLE FRAMEWORK FOR THE DEVELOPMENT OF COLLABORATIVE

VISUALIZATION APPLICATIONS IN JAVASPACES

THESIS

Presented to the Faculty of the

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the Degree of Master of Science in

Computer Engineering

Sean C. Butler, B.S.

Second Lieutenant, USAF

March 2001

Approved for public release, distribution unlimited.

AFIT/GCE/ENG/OlM-01

A FLEXIBLE FRAMEWORK FOR COLLABORATIVE

VISUALIZATION APPLICATIONS USING JAVASPACES

Sean C. Butler
Second Lieutenant, USAF

Approved:

\ Jf\ ^4^
Timothy M. Jacobs, Ph.D., LtCol, USAF (Chairman)

E> WgO\
date

Scott A. Deloach, Ph.D., Maj, USAF (Reader) date

Karl S. Mathias, Ph.D., Maj, USAF (Reader) date

Acknowledgements

I would like to express my sincere appreciation to my faculty advisor, Lt. Col.

Timothy Jacobs, for his guidance and support throughout the course of this thesis effort.

I would also like to thank Dr. Douglas Holzhauer and Capt. Robert Duncomb of the Air

Force Research Laboratory, Information Directorate, for all of their invaluable time spent

making this research possible.

Sean C. Butler

IV

Table of Contents

Page

Acknowledgements iv

List of Figures vii

List of Tables viii

Abstract ix

I. Introduction 1

Overview 1
. Collaboration 1

Information Visualization 3
Application Frameworks 5

Problem Background 5
Problem Statement 6
Research Obj ectives 6

Framework Design Goals 7
Scope and Limitations 8

Document Overview 9

II. Background 10

Collaborative Computing 10
Visualization Techniques 11

Parallel Coordinates 11
Other Basic Techniques 13

Application Frameworks 13
The Jini and JavaSpaces Technologies 14
Existing Frameworks 16

Kurkowski's Information Visualization Framework 16
NCSAHabanero 17
Java Shared Data Toolkit (JSDT) 18
Tango Beans 18

The Rome Laboratory Joint Battlespace Infosphere Effort 19
Summary 19

Page

III. Framework Approach and Design 21

Framework Design Overview 21
Framework Implementation Detail 22

The ColVis Class 23
The CVMessage Class 25
The CWisualization Class 26
The DataWrapper Class 27

The ColVis Toolkit 28
Implementing a ColVis-based Collaborative Visualization Application 29
Summary 30

IV. Application Implementation 32

Application Overview 33
Framework Benefits 35
Performance Analysis 37
Summary 39

V. Conclusion and Summary : 41

The ColVis Framework 41
Support of Decomposition of Functionality 41
Facilitating Reuse in Future Software Development 42
Development of Components Improving Existing Analysis Techniques 42
Allow for Adequate Flexibility 43

Secondary Goals Achieved 43
Summary 44

VI

List of Figures

Figure Page

2.1 An application utilizing parallel coordinates to represent
five-dimensional data about major league baseball players'
performance in the 2000 baseball season 12

3.1 Conceptual Framework Overview 22

3.2 Partial Framework Class Diagram 23

3.3 Code for a Simple ColVis-based Application 29

4.1 Demonstration Application 32

4.2 HP AC Interface Module 34

4.3 Plume visualization rendered on whiteboard 34

vii

List of Tables

Table Page

3.1 ColVis Public Methods of Interest 24

3.2 CVMessage Public Methods of Interest 25

3.3 CWisualization Public Methods of Interest 27

3.4 DataWrapper Public Methods of Interest 28

vm

AFIT/GCE/ENG/OlM-01

Abstract

The complexity of modern tasks is rising along with the level of technology. Two

techniques commonly used to deal with complexity are collaboration and information

visualization. Recently, computer networks have arisen as a powerful means of

collaboration, and many new technologies are being developed to better utilize them.

Among the newer, more promising of these technologies is Sun Microsystems'

JavaSpaces™, a high-level network programming API. This thesis describes a tool for

developing collaborative visualization software using JavaSpaces—an application

framework and accompanying toolkit.

In addition to a detailed description of the framework, the thesis also describes an

application implemented using the framework, discusses the benefits of development

under the framework, evaluates the performance of JavaSpaces in the context of the

framework, and addresses the issue of network bandwidth limitations, which are a

concern when developing visualizations that deal with large data sets.

IX

A FLEXIBLE FRAMEWORK FOR COLLABORATIVE

VISUALIZATION APPLICATIONS USING JAVASPACES

Chapter 1 - Introduction

1.1 Overview

As the state of technology advances, there is an ever-increasing level of complexity

inherent in the products utilizing that technology, be it software, architecture, or even the

planning and coordination of a modern military mission. The amount of data associated

with this complexity is rapidly becoming correspondingly vast. One of the primary tools

our civilization has developed to deal with dauntingly complex projects is collaboration,

the practice of multiple individuals working in concert to achieve a common goal.

Another tool is information visualization, the study of how best to represent data in a

visual form to aid in comprehension.

1.1.1 Collaboration

While collaboration has been utilized to one degree or another since before recorded

history, relatively recently we have focused on improving the efficiency of working

together. With the advent of widespread computer networks and the Internet, a new,

powerful tool .for collaboration has been made available to us, and only now are we

making significant strides towards finding the optimal means of utilizing it.

The Java™ programming language is a relatively new development with remarkable

potential for exploiting computer networks. The primary appeal of Java is, without

question, its ability to run on any platform that has the appropriate virtual machine. This

property makes Java the ideal language for network programming, as the same software

can be used on every machine on a heterogeneous network. As a result, there have been

several forays into developing Java-based network and collaboration APIs, ranging from

relatively low-level communication protocols like RMI (Remote Method Invocation) to

collaboration development toolkits like Habanero®. One of the more recent and

intriguing of these is JavaSpaces™.

JavaSpaces is a new high-level API for sharing objects over a network developed by Sun

Microsystems, creators of Java. Its simple, yet powerful approach to network

communication has drawn a significant amount of interest, but it is still a fledgling

technology. Currently, a team at the Information Directorate of the Air Force Research

Laboratory (AFRL) at Rome, New York is researching the possibility of integrating a

large quantity of military information resources into a JavaSpaces-based network, under

the ambitious Joint Battlespace Jjrfosphere (JBI) project. The JBI is a Department of

Defense initiative to develop a system to make military intelligence data from various

sources more easily accessible to commanders [10]. However, tools developed for the

JavaSpaces API are still scarce, to say the least, so it would be of interest to develop a

proof-of-concept to show that it is practical to utilize JavaSpaces in such a project.

Clearly, collaboration would be an area of great interest when working with a large

collection of military information, to be able to better understand and use the information.

In addition, the sheer quantity of data requires the application of information

visualization techniques so that it may be readily understood and acted upon. This is

especially important when dealing with megabytes of raw simulation output data, which

is all but meaningless until processed into some visual form.

An important property of a synchronous collaborative tool (that is, one in which the

participants are working together at the same time) is interactivity. A collaborative tool

will be awkward and unwieldy if response times are not nearly immediate; interactive

response times for simple, frequent tasks should be in the range of approximately one

second or less [13]. Thus, a primary concern when developing this application will be

the performance of the JavaSpaces API. Since the API is at such a high level, it is

expected that the performance might suffer as a result; this is an issue of concern for this

research.

1.1.2 Information Visualization

Though information visualization has been around since the first time someone drew a

picture to better understand a situation, it has lately been closely associated with

computers for several reasons. Not only have computers become ubiquitous in modern

life, but now powerful processors capable of rendering detailed three-dimensional images

in real-time are available at affordable prices to just about anyone, thanks to the recent

revolution in graphics cards.

In addition, computers add a new dimension to visualizing information that was

previously impractical: users can now interact with the visualization. This opens a whole

new world beyond the traditional pie charts and bar graphs. Users can now specify

viewpoints in 3-D scenes, quickly filter the information being displayed to the desired

level of detail, modify the visualization's parameters to their own tastes, and much more.

Information visualization is so deeply ingrained into computer systems that we take much

of it for granted. For instance, graphical operating systems are a way to visualize the

complicated functionality of a computer without overwhelming the user. WYSIWYG

(What You See Is What You Get) word processors can be considered to utilize

information visualization.

When dealing with complex sets of data that influence time-critical decision-making, it is

important to be able to convey the information to the user in an efficient and accurate

manner. A great deal of work has been done researching elegant and flexible techniques

for displaying assorted classes of data, and several groups have developed toolkits

implementing these techniques. Stuart Card's Readings in Information Visualization

provides a compilation of such research [3]. It would be useful to design or adapt such a

toolkit for any visualization framework, in order, to further speed the application

development process.

1.2 Application Frameworks

A technique that has been used for over twenty years to facilitate the development of

large software applications is the application framework. A framework is commonly

defined as "the skeleton of an application that can be customized by an application

developer." [6] It defines a set of interfaces, abstract classes, and possibly even

fundamental concrete classes representing the common elements of a given type of

application. These components can then be reused between different applications of the

same category in order to save time and effort.

1.3 Problem Background

Rome Laboratory produces a variety of simulations, such as weather data and chemical

plume analyses. The output of these simulations tends to be in the form of a nigh-

unintelligible gridded data set, possibly in binary form. Of course, if one is to make any

use of this data, it will have to be visualized in some way. These data sets can be large

enough to be too unwieldy to transmit across networks regularly, particularly across a

relatively slow Internet connection. Thus it is impractical to share the actual data set with

remote users who wish to view it.

Clearly, the data set must be processed or filtered in some way on the server side to

reduce network traffic. This could mean constructing the visualization on the server and

sending it to the clients, or reducing the data set to just that which is relevant to what a

user wishes to examine. This problem will have to be addressed when developing a

collaborative visualization tool designed to operate over an arbitrary network.

In order to demonstrate the functionality of the framework developed in this research, an

application will be created to visualize the output of a chemical plume simulation and

allow collaborative interaction with the visualization. In addition, the issue of network

bandwidth restrictions will be addressed.

1.4 Problem Statement

The goal of this research is to develop a highly modular, flexible collaborative

visualization framework and toolkit utilizing the JavaSpaces API. The product should be,

at its core, generic enough to handle a broad class of visualizations and collaboration

methods without reducing to nothing more than a set of interfaces lacking any substantial

supporting code. Ideally, an application developed within this framework should achieve

interactive response times, if the JavaSpaces API is capable. To demonstrate the

functionality of the framework, an application will be developed within it, operating on

data produced by chemical plume simulation software provided by Rome Laboratory.

This application may serve as a proof-of-concept model for the migration of a portion of

the Joint Battlespace Infosphere to JavaSpaces.

1.5 Research Objectives

The ultimate goal of this research is to produce an aid to the development of JavaSpaces

applications for visualizing various data sets within a collaborative environment, without

inordinate sacrifice of flexibility, performance, or robustness. Should this prove

unattainable, a secondary objective would be to provide feedback on the appropriateness

of JavaSpaces as a backbone for communicating large numbers of complex data sets in

interactive environments, as well as providing a stepping-stone for future efforts in this

area of research.

1.5.1 Framework Design Goals

The idea to develop a collaborative visualization framework was inspired by

Kurkowski's thesis detailing a general information visualization framework [11]. Thus,

the goals of this research would be similar to those found in his thesis, along with

addressing any perceived shortcomings.

In his thesis, Kurkowski enumerates the following goals:

- Support decomposition of functionality

- Facilitate reuse in future software development

■■■■- Develop visualization components that improve upon existing analysis

capabilities

In addition to the above goals, this research aims to utilize and demonstrate the viability

of the JavaSpaces technology, as well as address the issue of network bandwidth

consumption when transmitting large data objects.

The primary shortcoming noted in the design of Kurkowski's visualization framework

was a lack of flexibility. Any application built using the framework would have the same

set of user interaction widgets, though the developer could customize the interface to

some degree by adding drop-down menu items. In addition, certain interaction

functionality was pre-defined, notably setting a left-mouse-click to re-center the viewing

window, and automatically including zooming functionality, whether it was appropriate

for the application or not.

A possible reason for the inflexibility of the framework is that it aimed for too broad a

class of applications (visualizations). As a result, extraneous code was forced into the

framework where it did not belong in order to lend it substance. In an attempt to correct

this shortcoming, this research is targeted at a narrower subset of applications:

collaborative visualizations utilizing JavaSpaces. A reasonable degree of flexibility is a

major consideration in the design of the framework.

In addition to framework design goals, there are certain considerations associated with

visualization and collaboration that must be taken into account. Visualizations must be

able to respond to user input promptly to maintain a sense of interactivity. Any

collaborative application must provide some means of verbal/linguistic communication,

since it is the natural way for humans to communicate in society. To rob users of that

ability would frustrate them and hinder communication and, consequently, collaboration.

1.5.2 Scope and Limitations

The resulting framework and toolkit will be aimed at visualizing simulation output data

from Rome Labs; specifically, a tool for visualizing chemical plume data will be

implemented using this framework. The data sets to be used will be supplied by Rome

Laboratory, and are expected to be actual simulation output. The toolkit will not be

particularly extensive, but should include basic collaboration utilities such as a chat room,

whiteboard, and logging capabilities, as well as some visualization tools. Voice and

video communication facilities would likely be best achieved through COTS software or

other means, rather than a JavaSpaces-based tool, since JavaSpaces appears ill suited to

streaming data. Network communication with JavaSpaces is accomplished through

sharing Java objects, which would be awkward to adapt for streaming media.

1.6 Document Overview

Within chapter two is in-depth discussion of related background material, including

related work in the field of collaborative/visualization frameworks. Chapter three covers

the design and implementation of the framework itself, with some discussion of its utility,

including a description of the interface. Chapter four discusses the application

implemented using the framework, noting the benefits gleaned from using the framework

over coding the entire application from the ground up. The results and analysis of some

basic performance testing is also found therein. Finally, chapter five contains

conclusions and a brief summary of the research.

Chapter 2 - Background

2.1 Collaborative Computing

According to Michael Schräge in his book, Shared Minds, collaboration is a purposive

relationship, at the heart of which rests a desire or need to solve a problem, create, or

discover something, within a set of constraints. The constraints he brings up are

expertise, time, money, competition, and conventional wisdom (upon which he

elaborates, "the prejudices of the day"). [12]

While most of us envision collaboration as something that takes place among several

people working together, conversing, taking notes, and building on each other's ideas,

Jason Wood, in his PhD thesis on collaborative visualization, discusses the easily-

overlooked aspect of asynchronous collaboration, which occurs when several people

interact at different times, for instance, leaving messages on a bulletin board or sending

emails. [14]

With collaboration more clearly defined, what tools make for more effective

collaboration? Schräge goes on to point out that a shared space to work with is vital. A

blackboard, for instance, has been an effective collaboration tool for centuries, with little

modification, but it has its obvious limitations. For instance, it has limited space, and

there is no record kept of passages that have been erased to clear room. Furthermore,

words written on a blackboard can often be nearly or completely illegible, and

rearranging items is inconvenient. The conversation that accompanies a session of

10

collaboratively utilizing a blackboard is ephemeral, and is lost except for the fallible

memory of the participants. [12]

A computer-based collaborative tool can solve several of these problems. The limitation

of space can be solved in various ways, from zooming in and out to simply opening more

windows as needed. Computers can maintain records of past activity in persistent

memory, and written annotations can be typed instead of hand written to eliminate the

problem of legibility. In addition, computers can automate the rapid generation of

complicated visual representations of data, which otherwise could not be done in a real-

time setting. Thus, there has understandably been a great deal of interest in utilizing

computers as tools to improve collaboration. [12]

2.2 Visualization Techniques

A significant amount of research has been invested in developing generalized techniques

for visualizing a wide range of data sets in order to avoid having to design a custom

visualization for each application. The package developed in this research includes a

small toolkit implementing some of these various techniques.

2.2.1 Parallel Coordinates

Alfred Inselberg describes a method of visualizing data sets consisting of more than three

dimensions on a two-dimensional display medium in his paper "Multidimensional

Detective". He describes a simple technique that involves plotting data elements as lines

on a graph, whose axes run parallel to each other. These "parallel coordinates" offer

11

several benefits. Amongst those, Inselberg cites a low representational complexity, the

flexibility of being able to represent any number of dimensions, and the uniform

treatment of each variable. [8]

|gä Catcher Comparison and Analysis

IPiazza, Mike

Kendall, Jason

«Johnsen, Charles

Pioyur 1

Piazza, Mike

Player 2
'Kendall, Jason

AVG HR R

n n q!

£> &

W

i>

in

R8I

n

i!

(!

i.

![

45

SB

o
fl

[£i Normalize to position

S Anti-Aliasing

Return to Overview

Figure 2.1 An application utilizing parallel coordinates to represent five-dimensional
data about major league baseball players 'performance in the 2000 baseball season.

An example of an implementation of the parallel coordinates data visualization technique

is shown in Figure 2.1. In this example, five commonly referenced baseball statistics are

represented for a set of professional baseball players. It is an effective representation for

discerning overall trends and patterns in the data set, such as the observation that

12

catchers, with few exceptions, generally tend to have very few stolen bases (SB), and that

one catcher stands out from the pack in the categories of home runs (HR) and runs batted

in (RBI). Inselberg uses a 16-coordinate data set to demonstrate the technique in his

paper, illustrating the flexibility of the method [8].

2.2.2 Other Basic Techniques

Other less exotic visualization techniques are also found in the toolkit, including simple

line and bar graphs. While not the product of cutting-edge research into visualization,

they have long been a standby for visualizing uncomplicated data sets.

2.3 Application Frameworks

An application framework illustrates the architecture of a software system in order to

make development easier. It describes the objects and interactions within the system,

saving time in the analysis and design of an application. In essence, this effectively

reuses the high-level design work of software development. In addition, a framework

will often provide a significant amount of functional code, which also speeds the

implementation phase. [6]

Further projects can reuse components from earlier systems, since they were developed

using the framework's defined interface. This not only saves time programming, but can

also enhance the quality, performance, reliability, and interoperability of software. This

is due to the fact that once a module is finalized, it is likely to have undergone a great

deal of debugging and refinement, and thus can generally be considered stable. This in

13

turn allows programmers to concentrate on new modules when attempting to isolate

problems with an application in development. [6]

Frameworks take advantage of all of the primary advantages of object-oriented

programming [6]:

Data abstraction- Frameworks contain objects of abstract data types whose

implementations may vary behind a common interface.

Polymorphism- A framework allows a developer to mix and match different

components and makes it possible to develop generic components to work with

varied objects.

Inheritance- Frameworks typically provide abstract base classes from which

custom components are derived, which makes development of new components

easier.

2.4 The Jini and JavaSpaces Technologies

The Jini Connection Technology is envisioned to facilitate "impromptu networks" of

heterogeneous devices [9]. In theory, once a Jini network is set up, a user should be able

to plug in a Jini-enabled network device, such as a PDA (Personal Digital Assistant),

wireless phone, or printer, and expect it to immediately be able to access the network and

the assorted services available on it, without requiring any time-consuming set-up and

configuration.

14

In addition, the Jini network should robustly handle the dynamic environment that is the

product of network devices constantly entering and leaving the community or otherwise

changing in state. Aside from changing network topology, Jini also addresses the

problems of network reliability, latency, bandwidth limitations, and security. While Jini

is written in Java, any programming language can theoretically interact with a Jini

network, as long as there is a piece of Java code that describes the interface to the service

provided. [5]

JavaSpaces is a simple, high-level network API for Java, built upon Jini. It offers a

remarkably elegant interface for network programming, with only four major methods for

interacting with the shared space: read, write, take, and notify. JavaSpaces abstracts

network communication into a virtual shared memory space, referred to as a JavaSpace.

Applications communicate indirectly through this space; a "sender" writes an object into

the space, while any interested party can then read the object from the space. [7]

The read and take methods both allow an application to access an object in a JavaSpace,

but the take method removes the object from the space. This handles concurrency issues,

as once an application takes an object from a JavaSpace, it can be sure that no other

processes will modify the object while it is being used. Once a process that has taken an

object from a JavaSpace is finished with the object, it can then write it back to the

JavaSpace. The notify method sends an event to a process when an object matching a

given "template" enters the space. [7]

15

An application can find objects that it is interested in by creating a template. This

template is an instance of the object it wishes to read from the JavaSpace. It sets the

attribute fields of the template to values matching the characteristics of the object it is

looking for, using a null value as a wildcard. For instance, an application could look for a

Faculty object whose department attribute is set to "Computer Science" by setting the

corresponding attribute in the template, leaving all other fields null. The template is then

passed into the read, notify, or take method, as appropriate. [7]

2.5 Existing Frameworks

There are several existing software frameworks for collaborative computing or

information visualization, but no known frameworks that deal with both areas.

2.5.1 Kurkowski's Information Visualization Framework

In 1999-2000, Stuart Kurkowsi developed a framework for information visualization

applications, which was the subject of his thesis [11]. His framework was written in C++

and utilized the Fox API for GUI implementation. While his thesis investigated an

interesting area of research, the finished product came up short of his goal, in that it was

appropriate only for a very limited set of visualization applications that had nearly

identical user interfaces.

A possible reason for this result is that the class of applications that he selected was too

broad to be able to factor out a great deal of common code, but rather than leave most of

the code to the specific application, he moved more of it to the framework level than was

16

reasonably justifiable. He moved the majority of the GUI components to this level,

allowing user control of only pull-down menu items. This could often result in leaving

useless GUI components in the application or artificially restricting an application

designer to a specific set of GUI controls.

2.5.2 NCSA Habanero

Habanero is a framework for collaboration applications written in Java [4]. It functions

by providing state and event synchronization for multiple copies of a Java software tool.

Habanero replicates an application across all clients using it, then maintains a consistent

shared state though the sharing of state-changing events, which are defined by the

application programmer. Habanero ensures that all such events are seen by all clients in

the same order. In addition, it provides an arbitrator mechanism that restricts what

actions can be performed by which clients at any given time. Unfortunately, this

arbitrator makes socket connections to each client, which does not scale well. Because of

that, a multicast implementation is being investigated. Habanero provides a set of tools

including text and voice chat, a drawing tool, and a shared whiteboard, as well as record

and replay functionality.

The primary disadvantage to Habanero is that it displays the same screen to all

participants. This means that all users of the same application will have the same

interface and see the same information. This can be a significant limitation when

different users of the application have different roles.

17

2.5.3 Java Shared Data Toolkit (JSDT)

JSDT is Sun Microsystems' collaborative application framework offering [2]. It handles

message passing through a session abstraction and several shared data

structures/mechanisms, including shared byte arrays, token-based distributed

synchronization, and object-passing through serialization across a channel. JSDT

provides the functionality to manage objects, which allows the application to control

participant access to certain objects. A JSDT application can be implemented using any

of a number of underlying communications protocols, either TCP sockets, RMI (Remote

Method Invocation), HTTP, or LRMP (Lightweight Reliable Multicast Protocol).

2.5.4 Tango Beans

Tango Beans, developed by Lucasz Beca, Geoffrey C. Fox, and Marek Podgorny at the

Northeast Parallel Architectures Center, is also a collaborative application framework [1],

but unlike JSDT and Habanero, it provides a component-based API, based on

JavaBeans™. Tango Beans addresses the limitation of simply sharing display of the

application, which is what Habanero provides. The authors of the Tango Beans paper

illustrate this advantage by giving the example of an application in which a student and

teacher might have different interfaces. Since Tango Beans is based on JavaBeans, it is

deployed on the web as an applet, and uses the same mechanism as JavaBeans to

construct an applet from individual beans.

18

2.6 The Rome Laboratory Joint Battlespace Infosphere Effort

The Information Directorate of Air Force Research Laboratory at Rome, NY has several

groups working on a Department of Defense project known as the Joint Battlespace

Infosphere, or JBI. This project is envisioned to make militarily interesting data available

from various sources to any commander who needs access to it. One source of data is

simulation output of, for example, chemical plume behavior forecasts.

One team at Rome Laboratory is working on the problem of representing this data in a

format convenient for efficient transmission across a network and utilization in assorted

client applications. They are attempting to port their application code to the Java

programming language in order to have a common object format, and are interested in

investigating the possibility of using JavaSpaces as the underlying network protocol,

since Jini is already being configured and installed on the network, and JavaSpaces seems

well suited to their application.

JavaSpaces is a fledgling technology, and is still relatively unproven in industry. Thus, it

would be of interest to this team to develop a proof-of-concept application to examine the

aspects of the JavaSpaces API as well as explore other issues dealing with handling

simulation output data in network applications.

2.7 Summary

The goal of this research is, in short, to create a JavaSpaces-based framework for

collaborative visualization applications. To demonstrate its functionality, a proof-of-

19

concept application for Rome Laboratory will be implemented. The purpose of the

application is to investigate the viability of utilizing JavaSpaces to share simulation

output data across a network, as well as to test the research framework. In this chapter,

background information regarding general, visualization, and collaborative application

frameworks has been presented, along with material explaining the Jini and JavaSpaces

technology, as well as the motivation for the proof-of-concept application.

20

Chapter 3 - Framework Approach and Design

This chapter discusses the design and implementation of the underlying JavaSpaces-

based collaborative visualization framework. Topics covered include framework design

considerations and a detailed implementation overview and interface definition.

3.1 Framework Design Overview

Analysis of Kurkowski's visualization framework revealed that there was little

framework functionality that could be implemented for visualizations without sacrificing

a great deal of flexibility. On the other hand, a significant amount of work could be done

in the interface between a visualization and the collaborative/network component. Thus,

the vast majority of the framework elements described here deal with this aspect.

Visualization development aids are better restricted to a toolkit.

The core of the framework is implemented as the ColVis (Collaborative Visualization)

class. This class handles all network interaction, and is the application developer's

primary interface to the framework functionality. It maintains a shared communication

channel in an existing JavaSpace, as well as a set of visualization modules specified by

the application developer. The visualization modules can send messages to the space and

be notified of new messages via the ColVis class. The flow of network messages is

illustrated in Figure 3.1. Limited additional functionality is supported, primarily state-

awareness functions such as the ability to retrieve a list of current visualizations or

participants, and user state functions.

21

JavaSpace

CVMessages

GoWis

CVChat
Toolkit

Components

(iistom
Visualization
Components

Figure 3.1: Conceptual Framework Overview

3.2 Framework Implementation Detail

There are three classes in the framework that are important to understand in order to

implement visualization applications. The ColVis class is the backbone for network

communications and maintaining visualization-independent state. The CVMessage class

is used for representing messages passed across the network via the JavaSpace. The

CVVisualization class is the base class from which all visualization modules inherit. In

order to help reduce the network bandwidth consumption of large data objects, a

22

DataWrapper class has been included which allows the user to easily compress the

contents of a raw data file. Each of these classes are described in detail, accompanied by

a table defining their key public methods, in the following sections. A partial class

diagram of the ColVis framework is shown in Figure 3.2.

CVSnapshotHistory

The application instantiates all of the t\
visualization components and adds them
to an instance of ColVis, then finishes by
calling the display() method in ColVis.

O-
CVSnapshot

Custom Visualization Components

Visualization components f^
communicate by passing
CVMessages to ColVis,
which broadcasts them to
and receives them from
the network/Javas pace.

Figure 3.2: Partial Framework Class Diagram

3.2.1 The ColVis Class

The ColVis class sends messages to and receives messages from the shared JavaSpace.

In addition, it handles any moderator functionality, maintains a list of session participants

and active visualization modules, and displays the chat and visualization frames.

23

The ColVis class can be used to develop collaborative visualization applications using

very few methods. At the most basic level, one can simply use the default constructor to

instantiate an unmoderated ColVis, then add visualization modules with calls to

addVisualization(CWisualization). In this way, the developer adds each visualization

module instance (custom or from the toolkit) that is to be included in the application, and

then finally calls displayQ to create the graphical user interface (GUI). Other methods

are provided for more advanced functionality (see Table 3.1), but one could use only the

few aforementioned methods to create a very capable application.

Table 3.1: ColVis Public Methods of Interest

CoMs(boolean isModerated)

CoiVis()

Constructor takes boolean parameter defining whether the

application is moderated. Defaults to unmoderated.

voidaddVisualization(CVVisualization)

voidremoveVisualization(CWisualization)

Add a visualization instance to be displayed as a tab in the

visualization frame (CWisframe), or remove an existing

visualization. displayO mus*be called to effect changes in the GUI.

void displayO Display application GUI, once visualization modules have been set.

boolean isConnected() Returns true if application is currently connected to a channel.

boolean isModerator()

boolean isModerator(String participant)

boolean canSpeak()

boolean canSpeak(String participant)

User state accessors used when a channel is moderated. A

moderator can change the state of another participant, and a muted

participant cannot contribute to a collaborative session by sending

any messages to the JavaSpace. The default methods return the

state of the local user.

Vector getVisualizationsO

CVChatgetChatO

void setChat(CVChat)

Vector getParticipantNamesO

int getNumParticipantsO

String getName()

void setName(String)

Assorted available accessors and mutators

The getVisualizationsO method returns a Vector of

CWisualizations, and the getParticipantNamesO method returns a

Vector of Strings.

24

3.2.2 The CVMessage Class

The CVMessage class forms the basic message objects that are passed across the network

via the JavaSpace. Due to restrictions of the JavaSpaces technology, all its fields are

public, so they can be accessed and changed directly. Of particular note are the sender,

type, and content fields, all of which are of type java.util.String. The sender field is

usually automatically set by ColVis to the name of the local user whenever a

visualization module sends a message. The type and content fields are usually set by the

constructor when the CVMessage is instantiated. These are used as a quick and

convenient means to determine the purpose of a message. The simplest messages can be

defined using only those two fields, or, in some cases, just the type field. However, a

mechanism exists for creating more elaborate messages. A CVMessage may have any

number of java.lang.Object parameters, which are set using the addParameter(Object)

method, and later accessed using the getParameter(int index) method. The key methods

of CVMessage are summarized in Table 3.2.

Table 3.2: CVMessage Public Methods of Interest

Method Description

CVMessage(String type, String content) Constructor

void addParameter(Object)

void removeParameter(Object)

Object getParameter(int index)

Methods to add/remove java.lang.Object parameters to the

CVMessage, which can be accessed later, by index, using the

getParameter method.

25

3.2.3 The CWisualization Class

The CWisualization class is the abstract base class, extending the JPanel class from the

Java Swing package, from which all visualization modules will inherit. It contains

methods which simplify the communication with the network for the user. Encapsulated

behind an interface method, it uses an instance of ColVis (assigned in the constructor or

via a mutator method) to send and receive network messages. The class also maintains

basic user interface attributes of the visualization, such as the title as it appears on its tab,

as well as whether or not the visualization is shared (that is, whether or not it is allowed

to send and receive messages via the JavaSpace).

Since CWisualization is a child of the JPanel class, its children can also use the public

methods found therein. The appearance of the visualization module is determined by

laying out graphical components within it just as one would with a JPanel in Java's

Swing package, The key public methods of CWisualization are summarized in Table

3.3.

26

Table 3.3: CWisualization Public Methods of Interest

Method Description

CWisualizationO

CWisualization(ColVis)

CWisualization(ColVis, String title)

Constructors. A CWisualization will default to being shared unless

the no-argument constructor is used. An assigned instance of

ColVis is necessary to send and receive network messages.

void sendMessage(String type, String content)

void sendMessage(CVMessage)

Sends a message to the channel across the network, via the

assigned instance of ColVis, if this CWisualization is shared.

String getType() Returns the String "Visualization" if not overridden. Can be used in

conjunction with the getVisualizationsQ method in ColVis to form a

list of instances of a particular type of visualization module, by

iterating through the complete list and checking the return value of

getTypeQ.

abstract void notify(CVMessage) Must be implemented in child class. Defines how the visualization

module handles incoming CVMessages from the network.

Whenever a new message arrives, ColVis will call each

CWisualization's notify(CVMessage) method, passing in the

incoming message. Can be implemented as an empty function,

which indicates the module ignores all incoming messages.

boolean isShared()

void setShared(boolean)

String getTitle()

void setTitle(String)

Icon getlcon()

void setlcon(lcon)

String getToolTipText()

void setToolTipText(String)

Assorted available accessors and mutators

The title, icon, and tool tip text affect the appearance of the

visualization module's tab in the application. As noted earlier, a

module that is not shared cannot send or receive messages via the

network.

3.2.4 The DataWrapper Class

The DataWrapper class was created to address the issue of network bandwidth concerns

when transmitting large data objects. It allows the user to easily convert a raw data file

into a compressed format, which is serializable, so that it may be written into a

JavaSpace. To utilize the DataWrapper class, one implements a derived class that

provides a method to return a Java object created from parsing the raw data, found in a

27

protected byte array field called data []. A summary of the key methods in the

DataWrapper class can be found in Table 3.4.

Table 3.4: DataWrapper Public Methods of Interest

Method Description

DataWrapper()

DataWrapper(String dataFileName)

Constructors. If you pass a filename as a parameter, it will

automatically load the specified file.

void readFromFile(String dataFileName) Load specified file

void zip() Compress data

void unzip() Decompress data

3.3 The ColVis Toolkit

The toolkit classes were created to extend the basic capabilities provided in the core

framework, as well as providing added code reuse benefits. Some module types will be

commonly found in many collaborative and/or visualization applications. Some of these

general-purpose components were implemented in a toolkit to be packaged with the

framework.

Perhaps the most important 'utility module' is the CVWhiteboard. In addition to

providing the classic collaborative functionality of a whiteboard, it also serves as a means

to easily display and annotate visualization output. Among its features are text

annotation, icon/stamp creation, and the ability to load background images.

The CVSnapshotHistory is a complementary component to the CVWhiteboard. It allows

the user to capture "snapshots" of the whiteboard at any time, which can later be restored

to any whiteboard. This allows the user to copy an image from one whiteboard to

28

another, create a running history of the whiteboard session, or restore a whiteboard to an

earlier state if unwanted changes have been made.

Other toolkit components are included, including basic visualization modules and a

control center to dynamically add or remove whiteboards and snapshot history modules at

runtime.

3.4 Implementing a ColVis-based Collaborative Visualization Application

In order to implement an application using this framework, first one creates any number

of visualization modules by inheriting from the base CVVisualization class. Then, the

user instantiates them, adds them to an instance of ColVis, and finally calls the displayO

method in ColVis. This process is generally best placed in the main method of a class

consisting of nothing else. An example of the code required to set up the application

using a pair of modules found in the toolkit is found in figure 3.3.

public class CVApplication
{

public static void main(String [] args)
{

ColVis cv = new ColVis();

CVWhiteboard wb = new CVWhiteboard(cv);
wb.setTitle("Main Whiteboard");
cv.addVisualization(wb);

CVSnapshotHistory history = new CVSnapshotHistory(cv, wb) ;
history.setTitle("Snapshots");
history.setShared(false);
cv.addVisualization(history);

cv.display();
}

Figure 3.3: Code for a simple ColVis-based application

29

As seen in figure 3.3, it requires fewer than a dozen lines of code to implement this

simple, yet non-trivial ColVis-based application. The above application creates a

whiteboard and a snapshot history, which can capture "snapshots" of the whiteboard at

various points in time and restore them later, if the user wishes. Any changes to the

whiteboard are propagated to the whiteboards of all other users on the same channel

using this application. In addition, it was deemed necessary that some means of verbal

communication be included in any collaborative application. A simple chat module was

chosen to integrate into the framework over other methods of verbal communication for

several reasons. As mentioned in the first chapter, JavaSpaces was not designed for

streaming media. In addition, text chat uses very little bandwidth, is intuitive to use, and

is easy to implement.

3.5 Summary

The framework allows visualization modules to be developed independently of each

other and assembled in various combinations to form different collaborative visualization

applications. Ideally, the functionality of the modules will complement each other,

resulting in an application whose overall power is greater than the sum of its components.

This high degree of modularity addresses the goal of functional decomposition.

Another goal taken into consideration in the design of the framework was the principle of

software reuse. The very nature of the framework facilitates code reuse, as well as design

reuse. Every application developed using this framework will reuse the network

communication code found in the ColVis class, as well as the chat module. In addition, it

30

is likely that toolkit modules or possibly even custom components could be reused in

different applications, as well.

The DataWrapper class was developed in response to the research goal of addressing the

issue of limited network resources. This class helps solve the excessive bandwidth

problem associated with sending large data objects across a network.

Maintaining a high degree of flexibility was a primary concern during the design of the

ColVis framework. This was addressed by writing a minimal amount of visualization

code into the framework, which primarily concerns itself with encapsulating the network

communication. Thus, a visualization developer has little restriction on the appearance or

function of a visualization module, besides those imposed by the Java Swing API. All

visualization modules will appear within a tabbed pane within a single frame, and the

network modules always appear the same, but this seems to be a reasonable tradeoff to

significantly improve the simplicity and modularity of development.

31

Chapter 4 - Application Implementation

An application for collaboratively visualizing chemical plume simulation output data was

developed in order to demonstrate the functionality of the framework. (See Figure 4.1)

In addition to validating the functionality of the ColVis framework, this application was

also intended to act as a proof-of-concept demonstrating the viability of JavaSpaces as a

foundation for future network applications at AFRL in Rome, NY. This chapter

describes this application and analyzes the performance of both the application and the

framework.

iajxJ: \<SZ;Z:.:.:
■ Command:

I'll II' IIMIil.

LtCol Jacobs tmoderataj
2U Sutler

HjColVis Visualizations. si^ra Uajxj
Whtteboaid [.Snapshot History.) HPAC hrterface;' Controls I

Cm i ent VisiirtU^-ift'cfjs:
Whiteboard
Snapshot History
HPAC Interface
Controls

Add Visualization

Not fogged into a channel.

UCol Jacobs joins channel.
2U Butler joins channel,
2U Butler: Ready when you are, sir.

iialxi

Send

Figure 4.1 Demonstration Application- This 'Controls' module allows certain modules to

be added and removed at run-time

32

4.1 Application Overview

The chemical plume collaborative visualization application consists of a number of

general-purpose collaborative toolkit modules (a whiteboard, snapshot history, and

visualization control panel) in addition to a specially designed visualization module. This

custom module provides a user interface to the HPAC (Hazard Prediction and

Assessment Capability) simulation software and generates a visualization of the resulting

output. This module presents users with a simplified front-end (see figure 4.2) to HPAC,

allowing them the ability to specify significant parameters for the simulation. If the

module is designated as shared, then any participant may modify the simulation input

parameters. When the simulation is executed, the module then takes the output data and

generates a visualization of it, rendering it onto a whiteboard module of the user's choice

(see figure 4.3). If the whiteboard is shared, all users who have a copy of the whiteboard

will see the resulting visualization; otherwise it will only be displayed locally on the

user's machine. Once a visualization is output to a whiteboard, it may then be

subsequently annotated by any user that has access to it, using any tool available on the

whiteboard, including text annotation, placing icons, drawing tools, etc.

33

iCoIViS: Visualizat iorlsl

in Snapshot Histoiy WinÄe Icontro
X. /i*- Ä ^^J- ^TJ

S:tt!'jK..!i(.ri riini;;i..!ii(! I'l'ISMSf fl(Jl.t|l Edit

^iQJxJ

St.in 11S5P1G04, OeoOhrs

&3d,13Sep1994,0800hrs

fV)H! Cl

Amount 1 0

Simiil.'iiofiCooriiiruitijs

Lolittulf? 11 ONto 27.0N

'X-ifviTy Me.;hjnii-n . Edit

UwjiJisilK 16.0Eto32.0E

[ileasi« |ioi:rt: 26.0N, 28 0E Stl

SilTIUldtL»

Details

Figure 4.2 HP AC Interface Module

ColVisiVisualizatiöriS: ■NBHI
Whiteboard : Snapshot History;: hIPAC Interface i Controls i

^injxl-

Figure 4.3 Plume visualization rendered on whiteboard

34

By utilizing the toolkit modules in conjunction with the chemical plume visualization,

one can benefit from added functionality. For instance, one can create a thumbnail record

of the simulation output over time. This is accomplished by adding one or more

additional whiteboards using the control panel, creating a series of visualizations at

various simulation times, and saving each visualization to the snapshot history. Later,

any given snapshot can be restored to a whiteboard for further examination. A simpler

utilization of the supporting modules would be to simply create a local whiteboard to

make a set of annotations to, which can later be copied as a complete image to a shared

whiteboard via the snapshot history. By doing this, the annotations are not viewed by

everyone as they are made- the participants see only a finished, fully annotated image.

4.2 Framework Benefits

Given the framework and toolkit, the custom visualization module was significantly

easier to implement. The network aspects were almost totally hidden, and the toolkit

provided a great deal of supporting functionality, such as handling the display and

collaborative modification of the resulting visualization image.

Reuse of the framework and toolkit components facilitated application development by

reducing the amount of code that needed to be written; however, the benefit gained by the

framework cannot be solely equated to the number of lines of code saved. In order to

implement a custom visualization module, a programmer would need to first acquire an

understanding of the ColVis framework and toolkit. Due to the simplicity of the

35

framework's design and interface, this would have been relatively straightforward, and

certainly much easier than designing the functionality from scratch.

From the ColVis class itself, the programmer would need to know how to implement a

basic application (see Figure 3.1 for an example), as well as understand the

getVisualizationsQ method in order to obtain a list of whiteboards to select an output

destination from. The programmer would also need to understand the format of the

CVMessage class, which primarily consists of two String fields and a Vector of Object

parameters—the constructor, addParameter(Object), and getParameter(int) methods are

all that need to be used. From CVVisualization, the programmer would need to use the

sendMessage(CVMessage) method, as well as understand how to implement the

notify(CVMessage) method, which are both fairly straightforward, as mentioned in the

third chapter. In addition, the getTypeQ method would have to be used to identify which

visualizations are whiteboards. Finally, the programmer would need to use the

setlmage(Image) method in the CVWhiteboard class in order to output the visualization

to a whiteboard.

Not including constructors, the programmer would need knowledge of approximately

nine methods across four framework/toolkit classes in order to develop this application,

plus any methods used to change the visualization module settings from the defaults (ie.

setTitle(String), setShared(boolean), etc.). Most of these methods are exceptionally

straightforward in usage and trivial to understand. Of course, the programmer needs to

36

be familiar with the Java Swing API, as well, in order to design the custom visualization

module.

In addition to the time saved in the design phase of development, which is difficult to

quantify, use of the framework resulted in over 50% code reuse for this application, by a

conservative estimate. Since much of the code contained in the custom module consisted

of simulator input parameters that were never used, but rather included for the sake of

completeness and extensibility, that figure could easily be significantly higher.

4.3 Performance Analysis

Though there was some concern regarding the performance of JavaSpaces due to its high

level of abstraction, rudimentary testing suggests that it is more than adequate. A series

of tests were conducted to determine what level of network traffic a JavaSpace could

sustain. For each test, one machine composed and sent a common type of CVMessage (a

"draw line on whiteboard" message, which is composed of one Float, one Color, and four

Integer parameters, in addition to the basic CVMessage characteristics) across the

network as many times as it was able in five seconds, and reported the number of

messages it was able to send and subsequently read from the network. Taking the lesser

of the two values, a dozen tests were run on both a machine hosting the JavaSpace as well

as a different machine on the same network. The results were somewhat surprising.

The tests on the local machine averaged 131.6 messages in the five-second span (26.3

messages/second), and consistently reported an equal number of received messages as

37

sent messages, indicating a very low latency. The tests on the remote machine, however,

averaged 175.0 messages in the five-second span (35.0 messages/second), at times with a

small discrepancy between sent and received messages. The remote machine, while

suffering from slightly greater latency than the local machine, was actually able to

compose and send more messages per second. This appears to indicate that the

throughput limitation for this particular type of message, each of which amounts to 665

bytes of data, is not JavaSpaces itself, but rather the CPU time available to the computer,

since the remote machine, identical to the local machine, was running fewer processes in

the background, as it was not hosting the JavaSpace and its associated services. If this

hypothesis is correct, if you increase the message size, there would be a point at which

the CPU ceases to be the bottleneck, and the message rate would begin to drop.

However, the message size used in this test, containing six extra Java Object parameters,

is probably representative of a typical high-volume message. In this case, regardless of

the bottleneck, 26-35 messages per second on a LAN should be more than adequate for

most small-scale applications, though further testing is needed to determine scalability.

The other potential performance bottleneck occurs with very large messages, particularly

image files. A typical such message (e.g. a whiteboard-sized image) would be of the

magnitude of 600kB. However, these types of messages would likely be quite rare, and

still do not introduce an unbearable delay on a high-speed network. This type of message

is generated when an image is placed onto a whiteboard, as when a snapshot is restored

or plume visualization is generated. One could possibly reduce the image (and

consequently, message) size by encoding the image into a compressed format. However,

38

that would require significantly more complex code, and could create problems related to

losses incurred in the compression process, depending on what algorithm is used.

If network bandwidth is at a premium, and there is processor time to spare, the plume

visualization module could be modified to transmit the raw data file across the network

instead of the final visualization. Each participant would then generate the visualization

independently. While the raw data file can be 150kB or larger in size, it can be

compressed using an implementation of the abstract DataWrapper class that is contained

in the toolkit to help address network bandwidth issues, a concern when dealing with

gridded scientific data such as the plume simulation output. As an example, a 173kB

ASCII data file was compressed down to 16.8kB using an implementation of this class, a

greater than 10:1 compression ratio. The overhead of a CVMessage is approximately 351

bytes (the size of a message without extra parameters), which is essentially negligible.

4.4 Summary

The demonstration application, consisting of several ColVis toolkit modules and a

custom visualization module developed as a collaborative interface to third-party

chemical plume simulation software, performed to optimistic expectations, and was

considerably easier to implement using the ColVis framework than it would have been

otherwise. Also, JavaSpaces does not appear to be a hindrance to network performance

based on limited testing, though additional testing to determine scalability is needed.

Finally, the DataWrapper class serves as a potential means to reduce network bandwidth

39

usage by acting as an abstract base for developing data objects containing significantly

compressed raw data.

40

Chapter 5 - Conclusion and Summary

The overarching goal of this research was to create a viable framework for the

development of collaborative visualization applications utilizing JavaSpaces. Additional

goals were to devise means of streamlining network traffic to conserve bandwidth and to

demonstrate the viability of JavaSpaces as a networking API. This chapter summarizes

how each of these goals was achieved.

5.1 The ColVis Framework

Several goals were kept in mind when designing the framework, as outlined in the third

chapter. These were:

- Support decomposition of functionality

- Facilitate reuse in future software development

- Develop visualization components that improve upon existing analysis techniques

of the sponsor (Rome Labs)

- Correct the flaws in the Kurkowski information visualization framework, most

notably the lack of flexibility

All these goals have been achieved, to one extent or another, as described in the

following paragraphs.

5.1.1 Support of Decomposition of Functionality

Due to its object-oriented nature, Java lends itself inherently to the ability to decompose

functionality. The ColVis framework further supports decomposition of functionality

41

with separately designed visualization modules that can be installed in various

combinations within the framework.

5.1.2 Facilitating Reuse in Future Software Development

The ColVis framework is particularly suited to code reuse. The underlying framework

code, which handles the network functionality, among other things, would be a part of

any application based upon it, naturally. In addition, several toolkit classes were

developed, comprising some common collaborative/visualization functionality. Most

notable amongst these were a whiteboard and snapshot history module, both of which

could be added/removed from the application at runtime through the use of a control

center module. Also, any visualization modules developed in the framework could be

reused in future applications as-is by simply plugging them in alongside other modules

within the framework, if appropriate.

5.1.3 Development of Components Improving Existing Analysis Techniques

In order to improve the ability to analyze the output of a chemical plume simulation, a

custom module was designed within the framework to allow collaborative control and

analysis of the simulation. It allows any number of users to be able to set key input

parameters to the simulation, then view and annotate a visualization of the results.

Secondary modules allow for additional manipulation of the visualization as described in

the fourth chapter. As a result, geographically separated collaborators could lend their

respective expertise to better analyze the simulation data as a group.

42

5.1.4 Allow for Adequate Flexibility

Flexibility was a key concern in the design of the ColVis framework. The framework

imposes no real restrictions on a visualization module developed within it, beyond

representing the module as a tab within a Java Swing- JTabbedPane. A visualization

module is an implementation of a Swing JPanel, a fundamental and general-purpose GUI

component. The visualization module can send any messages to the network, and handle

incoming messages any way it needs to. The messages can contain any Java objects as

parameters, as long as they are serializable, which is a requirement to be able to write

them into the JavaSpace. The cost of this flexibility is that little code exists in the

framework specifically to aid in the visualization aspect. However, this cost is mitigated

by the presence of a toolkit containing reusable modules implementing basic

visualization techniques, as well as collaborative components.

5.2 Secondary Goals Achieved

In addition to creating a viable JavaSpaces collaborative visualization framework, this

research attempted to devise a means of reducing the bandwidth required by network

traffic. To accomplish this, an abstract data wrapper class was developed that allowed a

user to easily read in a data file and compress it using Java's built in compression

libraries. This method achieved compression ratios as high as 10:1 in practice, a

significant improvement.

43

This research also aimed to demonstrate the viability of the JavaSpaces API as a primary

network communication architecture. The performance was shown to be more than

adequate in rudimentary, limited-scale testing.

5.3 Summary

The ColVis framework is a simple, elegant, and flexible means for rapidly developing

collaborative visualization applications using the JavaSpaces API. Along with several

toolkit classes to allow one to quickly implement a non-trivial application, a custom

module was designed within the framework to demonstrate its functionality. The product

has met all goals established for it and exceeded sponsor expectations, so can safely be

considered a success.

44

References

I] Beca, Lucasz, et al. "Component Architecture for Building Web-based Synchronous
Collaboration Systems".

2] Burridge, Rich. Java™ Shared Data Toolkit User Guide. Sun Microsystems. 1999.

3] Card, Stuart K., et al. Readings in Information Visualization: Using Vision to Think
Morgan Kaufmann. San Francisco. 1999.

4] Chabert, Annie, et al. "NCSA Habanero® - Synchronous collaborative framework
and environment".

5] Edwards, W. Keith. Core Jini™. Prentice Hall. Upper Saddle River. 1999.

6] Fayad, Mohamed E., et al. Building Application Frameworks. Wiley. New York.
1999.

7] Freeman, Eric, et al. JavaSpaces™: Principles, Patterns, and Practice. Addison-
Wesley. Reading. 1999.

8] Inselberg, Alfred. "Multidimensional Detective".

9] "Jini™ Network Technology: Overview", http://www.sun.com/iini/overview

10] "Joint Battlespace Infosphere (JBI)". http://www.rl.af.mil/programs/ibi/

II] Kurkowski, Stuart. "An Information Visualization Solution for the Analysis of
AFM Simulation Output Data". Air Force Institute of Technology, 2000.

12] Schräge, Michael. Shared Minds. Random House. New York. 1990.

13] Shneiderman, Ben. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley. Reading. 1998.

14] Wood, J. "Collaborative Visualization". University of Leeds, School of Computer
Studies. 1998.

45

Vita

2Lt Sean C. Butler was born in Fort Ord, California. He graduated from

West Forsyth High School in May 1996. He completed his undergraduate studies at the

University of Southern California in Los Angeles, California where he graduated with a

Bachelor of Science degree in Computer Engineering and was commissioned in May

1999 through ROTC Detachment 060.

In August 1999, he entered into the Computer Engineering Masters program, Graduate

School of Engineering and Management, Air Force Institute of Technology, his first

assignment. Upon graduation, he will be assigned to the Air Force Information Warfare

Center (AFIWC) at Kelly AFB, San Antonio, TX.

46

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY)

xx-03-2001

2. REPORT TYPE

Master's Thesis
4. TITLE AND SUBTITLE

A FLEXIBLE FRAMEWORK FOR COLLABORATIVE VISUALIZATION
APPLICATIONS USING JAVASPACES

6. AUTHOR(S)

Butler, Sean C, Second Lieutenant, USAF

3. DATES COVERED

Mar 2000-Mar 2001
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Douglas Holzhauer
Air Force Research Laboratory/DFTC
26 Electronics Parkway
Rome, NY 13441-4514
Phone: (315) 330-4920 Email: djh@rl.af.mil

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCE/ENG/01M-01
10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/IFTC
11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

12. DISTRIBUTION/AILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

Lt. Col. Timothy M. Jacobs, ENG, (937) 255-6565 x4279, Timothy.Jacobs@afit.edu

14. ABSTRACT

In addition to a detailed description of the framework, the thesis also describes an application implemented usmg the framework,
discusses the benefits of development under the framework, evaluates the performance of JavaSpaces in the context of the framework,
and addresses the issue of network bandwidth limitations, which are a concern when developing visualizations that deal with large
data sets.

15. SUBJECT TERMS
Collaboration, Visualization, Application Framework, JavaSpaces

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

58

19a. NAME OF RESPONSIBLE PERSON

Lt. Col. Timothy M. Jacobs
19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565 x4279
Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

	A Flexible Framework for Collaborative Visualization Applications Using Java Spaces
	Recommended Citation

	/tardir/tiffs/a391953.tiff

