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AFIT/GCS/ENG/01M-01 

ABSTRACT 

The Department of Defense utilizes various simulation systems to model 

employment of forces and weapons systems in operational environments. The data files 

that model these environments and weapons systems are extremely large and complex, 

and require many person-hours to develop. Compounding the problem, these data files 

are distributed across multiple systems in a heterogeneous environment. Currently, 

there is no automated means of identifying and retrieving reusable portions of these files 

for reuse in a new scenario under development. This work develops a multi-agent 

system that catalogs the files, and provides the user with a means of identifying and 

retrieving reusable components. Additionally, since the format of the source files varies 

from simulator to simulator, a process for performing scenario component transformation 

is developed and implemented. 
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A SEMANTIC INTERFACE TO SCENARIO COMPONENT REUSE 

IN DOD SIMULATION SYSTEMS 

1.    INTRODUCTION 

The Department of Defense (DOD) uses simulation systems to provide realistic, 

cost-effective training to enhance personnel readiness without needlessly jeopardizing 

their safety. Modern simulators generate complex training scenarios that would be cost 

prohibitive if conventional training techniques were employed. The DOD utilizes training 

systems which provide rehearsal of missions involving land, sea, air, and space based 

forces. The Air Force Research Laboratory Sensors Directorate, Electronic Warfare 

Simulation Branch (AFRL/SNZ) develops and maintains several such mission-level 

scenario systems. These systems include the Extended Air Defense Simulation 

(EADSIM), Suppressor Composite Mission Simulation System (SUPPRESSOR), Joint 

Interim Mission Model (JIMM), and the Simulated Warfare Environment Generator 

(SWEG). Previous research [Col99, Web99, Str99] focused on interoperability and 

reusability of model components. Captain Todd McDonald [McDOO] researched the 

utilization of an extensible multi-agent framework to enhance the aforementioned 

functionality. This work employed agent technology to map SUPPRESSOR scenario 

files into syntactically correct object-oriented data structures. Captain McDonald's 

efforts provided an agent-based frame-work that provides a solid foundation for further 

exploration of the potential benefits of employing agent-based technology to provide 



scenario component retrieval, transformation, and reuse. This present research 

investigates techniques for extracting suitable components from existing scenarios and 

presenting them to the user for reuse in a new scenario. 

1.1 Definition of Terms 

In order to avoid confusion and reduce ambiguity, a definition of key terms used in 

this research effort is provided. The key terms as used in the context of this document 

are as follows. 

• Model: An object-oriented class hierarchy. 

• Scenario Component: A system instance, e.g., an airplane, tank, building, etc. 

• Scenario:   A data repository that contains one instance of a simulation with 
specific player information. 

• Scenario Database: A data repository that contains scenarios. 

1.2 Problem Statement 

The Air Force Research Laboratory, Sensors Directorate, Electronic Combat Branch 

(AFRL/SNZW) employs a set of databases to generate scenarios for its simulation 

systems. The Collaborative Engineering Real Time Database Correlation Tool 

(CERTCORT) is under development by AFRL to provide an interoperability bridge 

between the various simulation systems. Figure 1 depicts the CERTCORT concept. 

The ultimate goal of CERTCORT is the reusability of an existing scenario, or portion 

thereof, in the creation of a scenario for a different type of simulator. AFRL is interested 

in developing a more efficient means of scenario generation. For example, consider the 

situation where an analyst is building a new JIMM scenario. There is an existing 

SUPPRESSOR scenario that meets most or all of the analyst's requirements except, of 

course, its format is not JIMM.   The CERTCORT system will ultimately be capable of 



assisting the analyst in identification of the existing SUPPRESSOR scenario and 

transformation of the scenario to JIMM format. 
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Figure 1:   CERTCORT Vision 

Since the current system does not provide the facilities necessary to identify 

existing, relevant scenarios, users require extensive knowledge of the underlying 

scenario database. These expert users must manually search the volumes of text- 

based scenario source files, and utilize their extensive knowledge to identify certain 

characteristics that determine a scenario's composition.    Utilizing various identifying 



characteristics to determine the content of a given scenario component is known as 

semantic interpretation. Semantic interpretation involves asking questions about a given 

scenario component, such as: 

• What is the type of the scenario player? 

• What type of systems, capabilities, and susceptibilities are attached to the 
scenario player? 

• Is the subject scenario component similar to an existing, known component? 

There is currently a prototype multi-layered agent-based system in place, McDonald 

[McDOO], that retrieves data from SUPPRESSOR text files and instantiates an object 

model. The system uses software agents, acting as information requestors, brokers, 

and providers to supply the user with available scenarios in their entirety. Figure 2 

[McDOO, 209] provides a graphical representation of the CERTCORT agent layers. 
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However, the object model developed by McDonald is very specific to the 

SUPPRESSOR scenario type and does not facilitate the representation of other scenario 

formats (e.g., SWEG, JIMM, etc.). This aspect of the current system reduces scenario 

piecewise reusability. The current system focuses almost entirely on the syntactical 

aspects of the scenario files—how the files are structured, but not what they represent 

(i.e., the semantics). Semantic information conveys what a scenario component 

represents and can only be determined by evaluating the entire scenario component. 

Semantic information, what a component is and does, can be ascertained by analyzing 

the component and noting what sub-components it contains and the characteristics of 

those sub-components. Captain McDonald's research effort excluded the semantic 

broker agent. AFRL desires that the system be capable of presenting multiple levels of 

detail about a scenario's components as well as providing a more coherent and reusable 

representation of those details. For example, if the analyst requests an F-16 as part of 

building a simulation, the semantic broker should know which scenario types contain F- 

16 aircraft, the original source of the scenario components, and their composition. 

1.3    Research Focus 

The design, development, evaluation, and insertion of a semantic broker in the 

information layer of the CERTCORT multi-agent architecture will be the primary focus of 

this research effort. As stated previously, much work has been accomplished toward 

developing a common object model for the various simulation types; however, research 

on the semantic agent aspect is only now coming into focus. For the purposes of this 

research, the semantic agent's responsibilities include: 

1) Presenting the user with an interface suitable for describing the user's data 
requirements. 

2) Maintaining and querying the appropriate data structures. 



3) Presenting the user with the existing scenario components that match the 
requirements. 

4) Providing facilities to transform a selected existing scenario component to the 
desired scenario format. 

In order to successfully retrieve scenario components for a user, the system must 

determine as precisely as possible what data the user wants. The most obvious manner 

of specifying data requirements to the system is through a semantically enriched user 

interface. The current interface does not allow the user to present requirements that are 

sufficiently detailed to permit the semantic agent to extract the required data. The 

semantic agent must provide a means, most likely through a user interface, of 

determining user information requirements. 

After the user's information requirements have been solidified, the semantic agent 

must query existing scenarios to determine if the requested data is present in the 

currently available data sources. These sources may include scenario source files 

belonging to any of the simulators in the CERTCORT system, as well as the native input 

sources to developing these simulator scenarios such as the Multi Spectral Force 

Deployment database. 

Finally, after the data has been gathered, it must be presented to the user in a 

format that facilitates comprehension, traceability to source, and ultimately, reusability. 

In the previous example of the request for an F-16 scenario component, the returned 

scenario components can be displayed, for example, in a Java-based tree structure. 

1.4    Summary 

The Air Force Research Laboratory, Sensors Directorate, Electronic Combat Branch 

(AFRL/SNZW) employs a set of databases to generate scenarios for its simulation 

systems.     AFRL  is  developing  the  CERTCORT system to  integrate the various 



databases and facilitate the migration of scenarios from one simulator format to another. 

However, while the current system is capable of locating existing scenario components, 

it does not present sufficient semantic content to permit the user to determine whether it 

is appropriate for inclusion in a new scenario. This new research investigates methods 

for finding and retrieving existing scenario components, presenting them to the user, and 

preparing selected components for inclusion in a new scenario. Specifically, the primary 

focus of this research is the responsibilities of the semantic broker in the CERTCORT 

Agent Framework depicted in Figure 2. 



2.    LITERATURE REVIEW 

2.1    Introduction 

There are several technologies central to understanding the magnitude of the 

problems involved in providing enhanced component semantics to simulation scenario 

creators. Since the primary focus of this research effort involves the SUPPRESSOR 

simulator, the structure of the SUPPRESSOR scenario files and the various input 

sources to the creation of these files are analyzed. One specific input to scenario 

creation, the Multi-Spectral Force Deployment (MSFD) database, is explored here to 

examine its structure. The CERTCORT class hierarchy is also reviewed to determine 

appropriate extensions to enhance semantics of the model. The role of metadata, what 

it is and how it can be exploited to extract meaning from a scenario component or group 

of components is also examined. Additionally, the visitor design pattern is explored to 

uncover its capabilities and potential use in development of the semantic broker's 

analysis engine. Next, the Java Foundation Class component JTree is scrutinized to 

discover its capabilities and nuances. Since this work involves extending the 

CERTCORT agent framework developed by McDonald [McDOO], the peculiarities of 

layered, multi-agent systems are also extremely relevant to this research. Therefore, the 

applicable areas of agent technology are covered next. The CERTCORT system utilizes 

the ObjectStore database to make its objects persistent, so a review of object-orient 

databases is in order. Since the source files used to generate a specific scenario are 

diverse in both format and content, the constraints and issues specific to heterogeneous 

Multi-Database Systems (MDS) factor into this effort and are the final topic of this 

literature review. 



2.2    Suppressor Overview 

Suppressor is a digital computer model, general-purpose simulation of a possibly 

multi-sided conflict involving some combination of air, ground, naval, and space-based 

forces [SAIC97]. To understand the overall functionality of the Suppressor Composite 

Mission Simulation (SUPPRESSOR), a review of the SUPPRESSOR scenario creation 

Data Sources 

Figure 3:   SUPPRESSOR Scenario Creation and Execution. 

process, the key data sources, and the resulting scenario files is essential.    The 

SUPPRESSOR scenario generation process is depicted in Figure 3.  There are several 

data source input files used to develop a SUPPRESSOR scenario.  These source files 

may include all of the following: 

• Multi-Spectral Force Deployment (MSFD): A file containing player and system 
locations and the command hierarchy. 

• Digital Terrain Elevation  Data (DTED):    A flat file containing a digitized 
representation of the geographical area in which the simulation will occur. 

• Electronic   Warfare   Integrated   Reprogramming   (EWIR)   Database:      A 
document containing the electronic signature parameters and  performance 
capability of weapon systems. 



• Concept of Operations (CONOPS): Any document that contains tactics and 
doctrine for any given force deployment to ensure accurate representation of 
players and systems in the scenario. 

As shown in Figure 3, the analyst uses these data sources to create players and 

systems,   detail   geographic   attributes,   define   threat   parameters   and   weapons 

capabilities, and ensure current doctrine and tactics are being followed. The work of the 

analyst results in the following files [SAIC97,  1-6], which comprise a suppressor 

scenario: 

• Type Database (TDB): Provides a mechanism for the user to describe data that 
is shared by types of players, elements, and systems; or shared across the board 
by more than one type of player, element, or system. 

• Scenario Database (SDB): Contains information specific to each player, such 
as its location, movement path, engagement zones, communication nets, etc. 

• Elevation Database (EDB): Provides the ability to access Defense Mapping 
Agency (DMA) terrain data, transform it, and use it during model execution for 
line of sight checks for sensors, communications, and jammers. 

The TDB contains most of the user's data, and can be used for more than one SDB. 

In fact, usually there will be one TDB per study, with several SDB's for each important 

variation within the study [SAIC96, 3-2]. Additionally, a User Application Names (UAN) 

file contains the study-specific collection of names that allow the user to converse with 

the model [SAIC97,1-6]. 

An interesting feature of SUPPRESSOR is the fact that it requires user provided 

instructions that tell it how to interpret the user data. As stated in Volume I of the 

Suppressor Release 5.4 User's Guide, "Suppressor requires the user to study the 

problem and prepare a set of input instructions to represent the problem or situation." 

The user provides data item definitions that adhere to the syntax of the SUPPRESSOR 

language. By applying the parsing rules of this very specialized grammar, SUPPESSOR 

is able to run and execute the simulation. 

10 



The TDB and SDB files define instructions and data values for player structures. A 

player can be represented at any level of detail, and consists of the following 

organizational components as shown in their hierarchical sequence in Figure 4 [SAIC97, 

2:52]. 

• Locations: A player can have one or more locations, and a location can be 
moving or stationary. 

• Elements: An element is a susceptible component of a player. An element 
belongs to a location and a location has one or more elements. Each element 
has signatures that reflect how it will be perceived by sensors. Elements have 
susceptibilities. 

• Systems: An element may have one or more systems. These systems give the 
player the ability to perform specific functions. There are eight systems that 
elements may have as outlined in Figure 5 [SAIC97, 2:53]. 

• Resources: Some systems have explicitly modeled resources such as bombs, 
missiles, etc. 

• Tactics: Define how a player will use the systems to act on its own and interact 
with other players. Players with no systems have no tactics. There are five 
categories of tactics input parameters as listed in Figure 6 [SAIC97, 2:54]. 

Player Type 

Locations Tactics 

Elements 

Systems Susceptibilities 

Resources Capabilities 

Figure 4:   SUPPRESSOR Player Structure 
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System Usage Generic Function 

Sensor Receiver Allows players to noncooperatively gain 
information   on   other   players;   can   be 
nonlethally    engaged    by    a    disruptor 
system;   covers  four types  of sensors: 
radar, radar warning, infrared, and optics 
receivers. 

SENSE 

Sensor Transmitter Used  in  conjunction with  radar sensor 
receivers,        allowing        players       to 
noncooperatively gain  information about 
other players. 

SENSE 

Communication Receiver Allows players to receive messages from 
other   players;    when    linked   with    a 
communication transmitter, there can be 
two-way   dialogue;   can   be   nonlethally 
engaged by disruptor systems. 

TALK 

Communication Transmitter Allows players to send messages to other 
players. 

TALK 

Weapon Allows players to lethally engage other 
players. 

SHOOT 

Disruptor Allows players to nonlethally engage other 
players  and  affect their ability to gain 
information. 

DISRUPT 

Thinker Processes   information   based   on   input NOTICE 
tactics and intelligence data received and 

DIGEST simulates the processing time required to 
make these decisions. REACT 

Mover Provides   capability   for   a   location   to 
change its position over time; movement 
can be preplanned, and in conjunction with 
a thinking system, reactively modified. 

MOVE 

Figure 5:   Available System Types 

A sensor receiver and, if applicable, sensor transmitter system can simulate one of 

four types of sensors [SAIC97, 2:53-54]: 

• Radar: active sensors which give off energy and reflect that energy back; 
requires linkage of sensor receiver system and sensor transmitter system; 
detects elements. 

• Optics: passive sensors that work off energy emitted by the target from 
something shining on it; requires only a sensor receiver system; detects 
elements. 

• Infrared: passive sensors that work off energy emitted by the target; requires 
only a sensor receiver system; detects elements. 

12 



Warning Receiver: picks up emissions from communication transmitter and 
sensor receiver systems; requires only a sensor receiver; detects systems, not 
elements. 

Lethal Assignment characterizes    the     interrelationships     between 
commanders and subordinates in making and 
receiving assignments 

Lethal Engagement defines   the   guidelines   by   which   players   with 
weapons will engage threats 

Non-Lethal Engagement    defines   the   guidelines   by  which   players   with 
disruptors can engage threats 

Coordination a    multifunctional    area    encompassing    tactics 
associated with intel reporting, engagement 
requirements and zone permissions 

Movement defines the guidelines for maneuvering vehicles 
including those related to launch and terrain 
following, terrain avoidance, threat avoidance, and 
contingency planning 

Figure 6:   Input Parameters to Tactics 

Players can be defined at varying levels of detail, each with different data 

requirements. The level of aggregation and detail used to describe a player will 

influence the amount of data required to represent the player types, the way command, 

control, and communications between players in the scenario is defined, and the 

interrelationships between players [SAIC97, 2:54]. 

Automating the scenario creation process is a goal central to the CERTCORT 

vision. Some work has been done on a translation program that automatically generates 

a partial SUPPRESSOR SDB from a multi-spectral force deployment (MSFD) file. 

MSFD is investigated in the next section. 

2.3    Multi-Spectral Force Deployment (MSFD) 

The MSFD contains information detailing the subordination relationships of units 

from the national command level down to the company and battery levels.    MSFD 

13 



provides the necessary data for command-level force structure analysis. The format of 

MSFD files is one 14-element record per line. These 14 elements are enumerated in 

Figure 7. 

DATA ELEMENT COLUMN(S) 
Source Identifier 1 
Sequence Number 2-8 
Record Type 9 
Blank 10 
Site/Equipment Name 11-21 
Location Lat/Long 22-38 
Site Function 39-40 
Location UTM 41-53 
Unit Subordination Code 54-64 
Map Scale 65 
Spheroid 66 
Site Status 67 
Time Frame 68-72 
Comments 73-80 

Figure 7:   MSFD Data Record Format 

Given this format, MSFD is considered a scenario data input to SUPPRESSOR 

rather than a scenario database file. All SUPPRESSOR scenario database files conform 

to the SUPPRESSOR grammar rules. The MSFD file's records correspond and can be 

mapped to equivalent structures within SUPPRESSOR'S SDB file with minimal 

transformation. 

Previous research ([Col99], [Web99], [McDOO]) has focused on developing a 

common object model for the Collaborative Engineering Real Time Database Correlation 

Tool (CERTCORT). In all of the above mentioned efforts, developing object models for 

SUPPRESSOR and MSFD and integrating them with other CERTCORT data models 

was a main focus. The most current research in this area was performed by McDonald 

([McDOO]), and his object models for SUPPRESSOR and the MSFD database will be 

investigated next. 
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2.4    CERTCORT Common Object Model 

In developing an object model for SUPPRESSOR, McDonald built on previous work 

by Weber [Web99]. McDonald extended Weber's object model and developed a parser 

that maps textual player-structure definitions to player object models. This model is 

shown in Figure 8 [McDOO, 117]. 

Susceptibilities       Command Chain 

8 Possible System Types 
Sensor Receivers 

Sensor Transmitters 
Comm Receivers 

Comm Transmitters 
Weapons 
Movers 

Disrupters 
Thinkers 

Player 

V£ m 
4-1+ 

Location 

^   Flement 

Linkage 

Element 

r -> 
Weapons use ammunition 

Movers use fuel 
Disruptors use expendables 
Thinkers use future players 

System 1 

_^_X. 

Suscepibility 

1 1 « t 1+ 
Resource Capability 

Possible Capability Data Items 
48 Data Items for Sensors Receivers 

20 Data Items for Sensor Transmitters 
10 Data Items for Comm Receivers 

6 Data Items for Comm Transmitters 
10 Data Items for Weapons 

9 Data Items for Movers 
13 Data Items for Disruptors 
4 Data Items for Thinkers 

Figure 8:   SUPPRESSOR Player-Structure Object Representation 

2.4.1    SUPPRESSOR Grammar Parser 

McDonald also developed an object model for the SUPPRESSOR grammar. A 

grammar is made up of keywords, tokens, and production rules. A production rule 

defines a precise, allowable order for a sequence of keywords and tokens.   Each rule, 
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with the exception of the top-level rule, is an expansion of a previous rule in the previous 

level. Since there are a finite number of possible expansions from one level to the next, 

a grammar parser is able to read a file and determine if the text conforms to its grammar 

rules. These grammar rules are also known as the language's syntax. The top-level 

production rule in SUPPRESSOR consists solely of the "EXECUTE" keyword. Each of 

SUPPRESSOR'S input files (TDB, SDB, and EDB) conforms to the SUPPRESSOR 

syntax. The structure of the SUPPRESSOR TDB input file is given in Figure 9 [SAIC97]. 

Occurrences TDB Instructions Comments 

EXECUTE 
INSTRUCTIONS-FOR: 
TDB 
<comment> 
INSERT-MODE    -*— 

REPLACE-MODE   can   be   used   in 
certain circumstances 

0 or more ■ 

PLAYER-STRUCTURE <player-name>       I can only be specified with INSERT 
Oor 
more 
Oor 
more (Location) 

TACTIC <tactic-name> 
^ MODE 

0-1 LINKAGES 

END PLAYER-STRUCTURE 

0 or more - 
TACTIC <tactic-name> 

1 or 
more (Tactic Data Item ) 

END TACTIC 

0 or more- 

SUSCEPTIBILITY <susceptibility-rame> 

1-6 ( Susceptibility Data Item ) 

END SUSCEPTIBILITY 

0 or more ■ 
1 or 
more 

CAPABILITY <capability-name> 

( Capability Data Item ), 

END CAPABILITY 

<tactic-name> must be listed as 
PLAYER-STRUCTURE <tactic-name> 
Player types with thinker systems 
require TACTIC data Item 

23 valid Tactic Data Items 

<susceptibility-name> must be listed as 
PLAYER-STRUCTURE <susceptibility- 
name> 

7 valid Susceptibility Data Items 

<capability-name> must be listed as 
PLAYER-STRUCTURE capability- 
name 

see documentation for list of valid data 
items 

END-INSTRUCTIONS <data option> 

Figure 9:   SUPPRESSOR TDB File Format 

The format of the SDB instructions, although not identical, follows a nested pattern 

similar to the TDB file format. Based on the SUPPRESSOR language syntax, McDonald 
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derived the UML class diagram shown in Figure 10. In the figure, the Boolean attribute 

saveData of the ExecuteCompositeltem class relates directly to the <data-option> in the 

grammar syntax, and its value determines whether scenario execution results are saved 

or discarded. The Boolean attribute hasill provides the capability to use the class 

independent of, or in unison with, a graphical user interface (GUI). At implementation, a 

pointer to a GUI can be found in the userlnterface attribute of ExecuteCompositeltem if 

the instance has been created by a user interface [McDOO, 123]. 

ExecuteCompositeltem 

^haslll: boolean = false 
bsaveData : boolean = false 

^►parse() 
^►phrase() 
^►toTree() 
#verify() 

\ 
UAN TDB SDB ADB EDB DMA ModelExecution 

Figure 10: UML Class Diagram Derived from SUPPRESSOR Syntax 

2.4.2   SUPPRESSOR Object Model 

A SUPPRESSOR scenario is composed of various files that define the players, 

tactics, environment, etc. for a simulation. These files are aggregations of definitions of 

the components and subcomponents that detail the scenario's characteristics. Figure 11 
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[McDOO, 149] depicts the CERTCORT UML class hierarchy that represents these files 

and their components of a SUPPRESSOR scenario. 

In Figure 11, the UAN class represents the user application names set of 

instructions used in the SUPPRESSOR model. The UAN class is composed of a 

collection of definitions relevant to the scenario(s) being studied. These definitions each 

identify a specific group of entities according to their usage in the TDB and SDB [SAIC, 

Vol II: 3-2]. 

SuppressorSim 

<7 

EDB UAN ModelExecution TDB 

1..*/ 
UanDefinition 

/ 
usrNames 1..* 

1 ..*/ 

String 

uanEategory 

UanCategory 

PlayerStructure 

ADB DMA SDB 

1..* 

Capability 

1..* 

Susceptibility 

I 
Side 

Zone Net 

Tactic 

Figure 11: Scenario as an Aggregation of Database File Classes 

Based on Figures 9 and 11, one can discern the data elements that make up a 

PLAYER-STRUCTURE in a TDB file. A TDB file consists of zero or more definitions of 

the following types: PLAYER-STRUCTURE, TACTIC, SUSCEPTIBILITY, and 

CAPABILITY. Strictly speaking, the definition types TACTIC, SUSCEPTIBILITY, and 

CAPABILITY cannot exist without at least one PLAYER-STRUCTURE definition. The 

PLAYER-STRUCTURE is an aggregation of TACTIC, LOCATION, and LINKAGES data 

types. The LOCATION data type is an aggregation of ELEMENT types. The ELEMENT 

type consists of SUSCEPTIBILITY and SYSTEM types, and the SYSTEM type is 

composed of CAPABILITY and RESOURCE types. 
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The scenario database (SDB) contains data that relates all the player descriptions 

found in the TDB to command chain structures, zones, and communication networks as 

well as other inter-player relationships [McDOO, 160]. In addition to information detailing 

various attributes of the scenario, the SDB is composed of zero or more NET and ZONE 

components as well as one or more SIDE components. These components relate to 

communication networks, shared zones, and command structures respectively. 

2.4.3   Multi-Spectral Force Deployment (MSFD) Object Model 

In analyzing the MSFD file structure, McDonald [McDOO, 173-174] notes that of the 

fourteen fields present in an MSFD record, there are six of primary significance to 

analyzing an MSFD record for use as an input source for a CERTCORT-based scenario: 

• Sequence Group: A five digit number that begins with "00001" for the first unit 

in a sequence. The sequence group for a unit that is designated as any type of 

headquarters node or controlling authority will always be "00001" and those units 

authority will have the same sequence group, but a distinct and unique sequence 

code. 

• Sequence Code: A two digit number that is assigned at "01" for all subordinate 

units that report to a given headquarters or controlling authority unit. 

• Record Type: A single character field set to either "A" or "B." All headquarters 

and controlling authority units will be designated by an "A" and each subsequent 

record with a "B" entry indicates that it is subordinate to the closest preceding "A" 

record unit. 

• Site Equipment Name: An eleven-character field that contains the 

site/unit/equipment name. 

• Geographic Location: The latitude and longitude of the unit. 
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• Unit Subordination Code (USC): An eleven-character alphanumeric code that 

uniquely identifies and subordinates each site/unit in the data file. The USC 

reflects the command level structure from the highest national level to the lowest 

company level. 

• Time Frame: A three-digit field that determines which year a unit is forecast at a 

given location. Scenarios typically use only units listed in the MSFD that have a 

common time frame. There are three possible positions for the time frame, 

indicated by the presence of an "X," which can map to three distinct years (i.e. 

1995,2000,2010). 

The UML diagrams in Figures 12 and 13 show the class hierarchies derived from 

the MSFD file record structure to represent the headquarters-subordinate relationships 

MSFD 1..* MsfdRecord 

records 

hqSubChains 

1..* 

MsfdUnit 1 

MsfdHq subordinates MsfdSubordinate 

Figure 12: MSFD UML Diagram 

and command chains respectively. Figure 12 defines two types of units for MSFD: 1) 

Headquarters units (MsfdHq), and 2) Subordinate units (MsfdSubordinate). This 

derivation of the MSFD format also results in a class named MsfdRecord, which is the 

entire collection of MSFD records from the MSFD input file. Therefore, an MSFD object 

is an aggregate of MsfdRecord objects, each of which has a one-to-one correlation to an 
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MsfdUnit object.  The class hierarchy in Figure 13 [McdOO, 178] represents the seven 

command chain levels of the MSFD. The MsfdCommandChain class provides a 

MSFD records                           1 ..* MsfdRecord 

parent records 

commandChains 
MsfdCommandChain 

~A 

0..* subordinates 

1..* 

ChainNationalTheater ChainArmyGroup 

ChainArmyCorps 

ChainCompanyBattery 

ChainBattalion 

ChainDivisionalNode 

ChainRegimentalBrigade 

Figure 13: MSFD Command Chain Representation 

generalized form of command authority representation, and adds the capability to store 

both parent and subordinate unit relationships [McDOO, 178]. The seven subclasses of 

the MsfdCommandChain class correspond directly to the six command authority levels 

of MSFD. The seventh subclass ChainDivisionalNode corresponds to units designated 

as division-level. 

2.5    Metadata 

A database is a self-describing collection of integrated records [Kro99, 14]. The 

portion of a database that contains this self-describing information is the data dictionary 

or metadata. Essentially, metadata is data about data. For example, if a particular 

column in a relational DBMS contains a numeric value representing an employee's age, 

the metadata concerning this column might be that it must be a positive integer. In a 

relational DBMS, this metadata is stored in special tables called system tables. Figures 

14 and 15 provide examples of two types of system tables containing metadata. 
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Table Name, > Number of Columns Prirriary Key 
Student 4 StudentNumber 
Adviser 3 AdviserName 
Course 3 ReferenceNumber 
Enrollment 3 {StudentNumber, ReferenceNumber} 

Figure 14: Example SysTables System Table 

The table in Figure 14 contains a record for each table present in the database. 

These records store the number of columns of each table, and each table's primary key. 

The table in Figure 15 contains the columns of every table in the database.  This 

table specifies the table to which the column belongs, the column's data type, and its 

length. Depending on the application, it may prove useful to store additional information 

Column Name Table Name Data Type Length 
StudentNumber Student Integer 4 
FirstName Student Text 20 
LastName Student Text 30 
Major Student Text 10 
AdviserName Adviser Text 25 
Phone Advisor Text 12 
Department Advisor Text 15 
ReferenceNumber Course Integer 4 
Title Course Text 10 
NumberHours Course Decimal 4 
StudentNumber Enrollment Integer 4 
ReferenceNumber Enrollment Integer 4 
Grade Enrollment Text 2 

Figure 15: Example SysColumns System Table 

in this table.  For example, if there were a column that contained each student's weight, 

it would be useful to know whether the unit of measurement was pounds or kilograms. 

In addition to these two tables, there are system tables for indexes, keys, and other 

facets of the database structure. 

Application metadata is another variant used to store the structure and format of 

user forms, reports, queries, and other application components [Kro99]. This metadata 

is created and updated by the DBMS's design tools subsystem when forms, reports, etc. 
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are created and modified; and utilized by its run-time subsystem when generating these 

components and linking them to data elements in the tables. 

Traditionally, Database Management Systems (DBMSs) have not maintained other, 

more semantic data. For example, some data in the database may be derived from 

processing several databases. To build on the previous example of the column 

containing each student's weight, consider the following scenario. There are two 

separate and heterogeneous databases that must be processed and compiled into a 

third composite database containing all students. The first database contains U.S. 

students and maintains their weight attribute measure in pounds. The other contains 

European students and maintains the weight field measure in kilograms. In order to 

consolidate the two databases, a standard unit of measure must be adopted and a 

conversion process documented. This conversion process should be documented in the 

metadata of the derived database. However, the current generation of DBMS metadata 

facilities are not equipped to represent this conversion process. It was this lack of 

capability that led the Secretary of Defense to sponsor RAND research that led to 

development of the RAND Metadata Management System [Cam95]. 

2.5.1    RAND Metadata Management System 

The RAND Metadata Management System (RMMS) is a system that manages 

metadata associated with the relational database management system operated by the 

Military Operations Simulation Facility (MOSF). 

As motivation for developing RMMS, the RAND researchers enumerate several 

examples that exemplify the need for, and use of, metadata. A few of these are listed 

below [Cam95, 3]. 
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• Social science studies integrating census data over many decades must be able 

to compare the Schemas of different versions of data because through the years 

different data fields have been recorded. For example, census surveys early in 

the century asked if households had a flush toilet. 

• Different environmental waste databases maintain contaminant levels differently, 

for instance, as concentration percentages or as a pair of weights representing 

solid waste and total waste. To compare contaminants across two such 

databases requires knowledge of the representations and conversion procedures 

each uses. 

• Metadata is an ideal resource for browsing, making it possible to identify, for 

example, databases that contain information on military airfield and runway 

assets. Metadata serves to link references from standard data elements such as 

"airfield" and "runway" to the databases that contain data for these data 

elements. 

As these examples illustrate, metadata is essential to heterogeneous database 

interoperability. The goal of a metadata management system is to centralize and 

standardize metadata information and associated procedures [Cam95, 4]. 

The RAND researchers addressed five major issues during development of RMMS. 

The first issue involved the need for complete, thorough, and standard data 

documentation. System manuals, when provided, are useful for the system 

administrator, but are of little use to users who want to know the content of the database. 

Often there is no formal documentation regarding the organization and semantics of the 

database. 

The second issue raised was the need to record and manage information about 

different versions of databases.   In organizations that use databases generated from 
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outside sources, the issue of what to do with the old version when new ones arrive must 

be resolved. If several versions of the database are required to be available, a means 

must be implemented to store these old versions and procedures must be adopted to 

ensure their compatibility with any future update to the associated DBMS. 

The need to maintain a history of the changes made to database tables, schema, 

and data values was also addressed in the RAND effort. The metadata management 

system should be capable of maintaining a history of data values and schema changes. 

This would permit the re-creation of previous versions of the database. 

The fourth issue addressed by RAND was the need to facilitate derived databases 

for input to simulation models and for sharing among models. A metadata management 

system should facilitate generation and storage of metadata for a derived database. 

This generation and storage should be performed automatically when a derived 

database is created, and should include the sources and process used in the derivation. 

The last issue raised by the RAND researchers was the need to standardize the 

names of data elements that are (1) conceptually the same but named differently or (2) 

named the same but conceptually different. This issue is directly related to 

interoperability conflicts among heterogeneous data sources. The metadata 

management system must be able to resolve the naming issues and perform 

conversions on any data fields that, for example, have the same meaning, but are 

represented in different units of measure. 

Most commercial DBMSs include a repository called a data dictionary. The data 

stored in this repository is generated during schema creation and is generally limited to 

those characteristics specified in the data definition language [Cam95, 9]. These 

characteristics normally include items such as table name, number of columns, primary 

key, and owner name.    A column table may contain data on the column name, 
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associated table, data type, length, and whether or not nulls are permitted. Other 

information is also stored in the data dictionary, but most of this information is only 

relevant for the operation and optimization of the DBMS [Cam95, 9]. This repository 

cannot be used to store semantic information such as units of measure, procedures for 

conversion, or in the case of a derived table, the sources and derivation process. 

RMMS uses conventional relation DBMS techniques to deal with the various issues 

previously discussed. The RMMS approaches the documentation problem by providing 

the capability to store information about databases, tables, and column entities. RMMS 

augments the DBMS provided system tables with inter- and intra-table relationships, 

attribute domain information, and aliases. 

RMMS addresses the history issue by recording all changes made to a database. 

When modifications are made the pre-change value is recorded in a metadata table. 

There are three "history" metadata tables as defined below [Cam95,12]. 

• Value  History Table:     store old values from data tables that have  been 

subsequently updated 

• Table History Table: store changes to a table as a whole (i.e. a name change) 

• Column History Table: store changes to the schema 

To facilitate database derivation, RMMS maintains a specialized metadata relevant 

to derived databases, procedures to automate the process of deriving metadata from 

external database metadata, and a trigger mechanism for automatically updating derived 

databases when an external source changes. To achieve these functions, RMMS 

provides a registry of external data sources, which is linked to metadata on those 

sources. 

Data element standardization was achieved through the use of aliases and 

conversion procedures.   RMMS defines a standard name for each data element, then 
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links these to the various aliases and necessary conversion procedures. There are two 

benefits to this approach: 1) When creating derived databases, the new columns can be 

named using the standard element names, which reduces ambiguity; and 2) When 

performing queries, users can refer to the standard element name and obtain references 

to the various aliases. This approach maintains the independent structure of the 

heterogeneous data sources. 

The RMMS architecture, depicted in Figure 16 [Cam95, 16], has two major 

components. The first is called the "Data Encyclopedia." The data encyclopedia is a 

database of metadata concerning all application databases. There is only one data 

encyclopedia for all the application databases. The other component is the "Data 

Dictionary," which is a set of metadata tables that augments the system tables for each 

application database. There is one data dictionary for each application database. 

Figure 16 shows these two components and their relationship to the DBMS and 

application databases. In the figure, "scfe" is an acronym for "standard data element," 

and "md' is an abbreviation for "metadata." 

Although the RMMS system was developed for use with a relational DBMS, the 

basic principal of using metadata to provide interoperability among heterogeneous data 

sources and enhance the semantic content of the overall system can be applied to 

object-oriented DBMSs and, to a lesser extent, flat file systems as well. This research 

will further investigate the possible use of these techniques to enhance the 

representation of scenarios and their individual components. 
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Figure 16: RMMS Architecture 

2.6    The Visitor Pattern 

The visitor design pattern has been described in Design Patterns: Elements of 

Reusable Object-Oriented Software [Gam95]. Visitor allows the addition of new 

operations without modification of the class of elements on which it performs. The visitor 

pattern provides a framework for packaging related operations into an object separate 

from their classes-a visitor object. Each class then implements the acceptVisitor 

method shown in Figure 17. When an object accepts a visitor, it calls the visit method of 
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the visitor object and passes itself as a parameter in the method call.  The visitor class 

defines a method for each class of objects it knows how to analyze. 

public Object acceptvisitor (Visitor visitor, Object data) 

{ 

return visitor.visit(this, data); 

} 
Figure 17: The acceptvisitor method 

By employing visitor, all methods needed to perform semantic analysis on the over 

one hundred CERTCORT object classes could be located in one file—controlled by the 

semantic broker. This is accomplished by creating, through either inheritance or an 

interface, a visitor class. This class contains a semantic analysis method, a.k.a. a 

visitor, for each target class to be analyzed. All the code required to analyze any class 

in the system is conveniently located in one file. 

The benefits of utilizing the visitor design pattern are two fold. First, the visitor 

pattern places all code that performs a specific function in one file, as opposed to the 

traditional object-oriented approach, which spreads the methods throughout the classes 

on which the methods operate. 

The second major benefit of visitor is that once the target classes have been 

modified to accept visitor objects, additional new visitor classes (methods) can be added 

without alteration of the current classes. By eliminating the need to modify existing, 

proven code, the visitor pattern removes the potential that an "enhancement" will 

introduce anomalies through inadvertent changes to the class structure. The visitor 

pattern facilitates ease of maintenance, since all methods that perform a similar function 

are co-located. Therefore, when an enhancement is needed or a bug discovered in a 

method implemented using visitor, only one file needs to be modified. 
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One potential use of the visitor pattern is depicted in Figure 18. The information 

layer's semantic agent creates a semantic analysis visitor (SAV) object, then passes the 

SAV object in a call to the acceptVisitor method in the root node of the object tree under 

analysis. The acceptVisitor method in the root object utilizes the visit method in the SAV 

object parameter to call back the SAV object with itself as the parameter. The SAV 

object now has the root of the object tree and can perform its analysis and present its 

results to the semantic agent. 

Object Tree Under 

Figure 18: Use of SAV to Analyze Object Tree 

In short, extending the CERTCORT class hierarchy structure to fit the visitor pattern 

will facilitate development of the semantic information broker, and permit additional new 

visitor classes to be added without alteration of the current classes. Ease of 

maintenance is a major benefit of the visitor pattern, since all methods that perform a 

similar function are co-located and existing code does not require modification. During 

the design and implementation portions of this effort, the possibility of employing the 

visitor pattern to develop portions of the semantic information broker extension to the 

information layer of CERTCORT will be explored. 
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2.7    JTree 

The Java Foundation Classes (JFC) include a rich set of windowing components 

called Swing [Ste99]. The Swing classes allow graphical user interfaces (GUIs) to be 

developed without relying on the native windowing facilities of the operating system. 

JTree is a component of the JFC. Figure 19 [Ste99, 25] outlines JTree terminology and 

provides essential definitions for each. JTree provides a mechanism to present 

hierarchical data for display. The JTree component does not actually contain the data, it 

merely provides a view of the data. The objects that contain the data to be displayed in 

the JTree must be associated with the JTree object. This can be done in one of two 

ways. 

Node:    Any position within the JTree where data 
associated with the object is being represented. 
Path:   A collection of a contiguous set of nodes.   A 
path can contain one or many nodes.   A null path 
indicates a zero node path or an empty path.    A 
collection of nodes will consist of a strict ancestry line. 
Leaf: A special kind of node. As its name implies, this 
is the node at the end of a path. 
Root: A special kind of node. In comparison to a leaf, 
a root's parent information is never examined.  It's the 
highest point within the hierarchy.    A root's parent 
information either does not exist or does not need to be 
displayed. 
Parent: Represents a node's relationship with another 
node. In a parent/child relationship, the parent is 
analogous to a super class within the realm of object- 
oriented concepts. 
Child:   Represents a node's relationship with another 
node.     In  a  parent/child  relationship,  the  child  is 
analogous to a subclass of its parent.  It inherits all the 
properties associated with its parent. 
User Object: Refers to the business object associated 
with a node.   While not required, all user objects will 
usually be of the same class type. 
Editor:    A component (usually an extension of a 
JComponent) that has the unique role of allowing the 
user to change the data of a specific node. 
Renderer: This is a component (usually an extension 
of a JComponent) that has the unique role of deciding 

. how a node's data is to be displayed within the context 
of the JTree when a user isn't editing the data. (Note: 
Using an AWT component as an editor or renderer 
may generate unwanted results.) 
TreeModelEvents: Swing provides the following three 
types of events: 
1. Expansion event - an event generated when a 
node is collapsed or expanded. 
2. Model events - there are four types of model 
events: 

a. node changed - generated after a node is 
changed. This is the only event the TreeModel 
interface supports with the method 
valueForPathChangedfJreePath path, Object 
newValue). While this method could be 
implemented to represent any of the four types of 
model events, typically this represents the node 
changed event, and the DefaultTreeModel class 
implements it as such. 

b. node inserted - generated when a node is 
inserted into the JTree 

c. node removed - generated when a node is 
removed from the JTree 

d. structure changed - a "catchall" event used when 
something drastic has happened to the structure 
of the JTree. It's the most expensive event as it 
may result in a repaint of the entire JTree. 

3. Selection event - an event generated when the 
selection of a node takes place. 

Figure 19: JTree Terminology 

The first method  involves "wrapping" the object that contains the data in a 

DefaultMutableTreeNode object. This method is sufficient if the JTree will only be used 
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to display read-only information. If the data in the JTree must be editable, this approach 

has several drawbacks [Ste99, 26-27] as outlined below. 

• It demands that the application constructing the JTree take full responsibility for 
constructing and maintaining all the hierarchical relationships between each 
node. 

• The responsibility of keeping concurrent data accurate falls back on the 
application containing the JTree. 

• The DefaultMutableTreeNode is not a thread-safe class. 

The second, and preferred, method associating the data object to the JTree is to 

implement the MutableTreeNode interface. Implementing the interface provides a 

"bridge" between the user object class being displayed and the Swing MutableTreeNode 

interface [Ste99, 27]. This bridge provides a means of translating API calls invoked in 

the JTree to corresponding methods in the user's object. Implementing the interface 

eliminates any requirement for the user object class to know the functionality of the 

JTree and vice versa. 

The JTree component of Swing in the JFC provides the ability to view hierarchical 

data in an "outliner-style" tree. The most flexible means of utilizing the functionality of a 

JTree is through implementation of its MutableTreeNode interface. Use of the JTree's 

capabilities will be further explored in development of the semantic broker's user 

interface. 

Since any approach to enhancing the semantics of simulation components will 

involve the application, or at a minimum the understanding of, multi-agent systems, this 

topic is discussed next. 

2.8    Agent Technology 

An agent is a computer system that is situated in some environment, and that is 

capable of autonomous action in this environment in order to meet its design objectives 
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[Wei99, 29]. An agent performs actions on or in its environment and monitors the results 

of its actions. It uses this feedback to determine if the desired state has been achieved 

or if further action is required. Although an agent normally cannot exercise total control 

over its environment, most agents have some influence over a portion of their 

environment. The collection of actions an agent has available to modify its environment 

is known as its effectoric capability. Since most real world environments are non- 

deterministic, the same action may leave the environment in different states depending 

on whether the pre-conditions of the action were satisfied. This fact makes it essential 

that agents be capable of deciding which action to perform and of dealing with the failure 

of an attempted action. There are five environmental properties that affect the 

complexity of the decision-making process [Wei99]. 

• Accessible vs. Inaccessible: an environment is accessible if an agent can 
obtain complete, accurate, up-to-date information about the environment's state. 

• Deterministic vs. Non-Deterministic: an environment is deterministic if an 
action has one guaranteed affect. 

• Episodic vs. Non-Episodic: in an episodic environment, the performance of an 
agent is dependent on a number of discrete episodes, with no link between its 
performance in different scenarios. 

• Static vs. Dynamic: in a static environment, the agent can assume only its 
actions change the environment's state. In a dynamic environment there are 
other processes, over which the agent has no control, affecting the agent's 
environment. 

• Discrete vs. Continuous: an environment is discrete if there are a fixed, finite 
number of actions and percepts in it. 

The most complex environments are those that are inaccessible, non-deterministic, non- 

episodic, dynamic, and continuous [Wei99]. 

2.8.1    Intelligent Agents 

The previous definition of an agent would include a simple thermostat, since such a 

device is capable of monitoring its environment and performing actions to modify it.  To 
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extend an agent into the realm of intelligent agents, it must be capable of flexible 

autonomous action to meet its objectives. This flexibility embodies three things [Wei99]: 

• Reactivity: able to perceive their environment and respond in a timely fashion; 

• Pro-Activeness: able to exhibit goal-directed behavior by taking the initiative; 

• Social Ability: capable of interacting with other agents (and possibly humans). 

Intelligent agents must verify that the pre-conditions of an action are satisfied before 

executing the action. Also, an intelligent agent must decide what to do in the event 

another process changes the state of the environment, and nullifies the pre-conditions, 

while the action is being performed. Usually this results in a failure of the action, so the 

agent must determine another course of action that achieves its design goals. 

2.8.2 Agents and Objects 

At first glance, agents seem very similar to objects. After all, objects encapsulate 

their data and provide methods that access this data. Therefore, objects seem to have 

autonomy over their state. However, the public methods contained in the object are 

executed by external procedures. It has no control over when or if these methods are 

executed, and it has no ability to decide whether it is in its best interest to execute the 

method. An object has no control over its behavior. 

By contrast, an agent receives a request to perform a specific action. The agent 

decides whether accomplishing the action will help it achieve its goals. If so, the agent 

complies with the request. However, control lies with the agent, and the agent controls 

its behavior. 

2.8.3 Agent Architectures 

The framework within which an agent senses its environment and executes actions 

to influence that environment is the agent's architecture.   In his book [Wei99], Gerhard 
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Weiss considers four architectural classes of agents. These are logic based, reactive, 

belief-desire-intention, and layered architectures. 

Logic based agents act as theorem provers in a framework where both its desired 

behavior and the environment's state are represented symbolically. Agents use the 

rules of formal logic to deduce which actions will lead to goal satisfaction. 

Reactive architectures are based on the concept that intelligent, rational behavior is 

inseparably linked to the environment in which the agent operates, and intelligent 

behavior is the aggregation of simpler agent-environment interactions. In reactive 

architectures, agents sense their environment and map perceptual input directly to 

actions. Formally, this might be written as situation -> action. To deal with the 

possibility a particular perceptual input maps to more than one action, many reactive 

agents employ layers to determine which action will be performed. Under this 

architectural scheme, lower layer actions inhibit higher layer actions. This allows high 

priority actions to be placed in the lower layers where they will have execution priority 

over lower priority actions in the higher layers. 

Belief-Desire-Intention (BDI) agent architectures attempt to give agents the ability to 

understand practical reasoning. In this framework, an agent develops an intention 

based on a set of available options. This intention drives future means-ends reasoning, 

constrains future decision making processes, and persists until environmental changes 

make the intended goal unachievable. 

Layered architectures decompose an agent into different layers, each of which deals 

with a different type of behavior. In general terms, there are two types of layering: 

horizontal and vertical. 

In a horizontally layered architecture, each layer is directly connected to the sensory 

input and action output.  These architectures normally include a mediator function that 
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determines which layer has control. This mediator eliminates conflicts when two layers 

simultaneously detect an environmental change and generate actions. However, 

designers must construct the mediator so it knows how to resolve all possible conflicts 

between layers. In a system with n layers, each of which can suggest m actions, there 

are rrf possible agent interactions to be considered [Wei99, 62]. Defining rules for 

resolving each of the possible conflicts dramatically increases the complexity of the 

design and introduces a system bottleneck. 

Vertically layered architectures require all perceptual input to travel up to the highest 

level before an action is determined. In the vertically layered architecture, all input is 

sensed by exactly one layer, and all actions are performed by exactly one layer. The 

input layer is always the lowest, or bottom, layer. The layer that performs actions 

depends on whether the architecture is one-pass or two-pass. In a one pass vertically 

layered architecture, input enters the bottom layer and actions are executed by the top 

layer. A two-pass vertically layered architecture requires that input enter the bottom 

layer and pass upward through all layers above. Once at the top layer, that layer 

determines an action and passes it down to the next lowest level. Each successively 

lower layer processes the action, adds additional actions as appropriate, then passes it 

to the next lower level. When the action reaches the lowest layer, it is executed. This 

architecture reduces the number of possible layer interactions to be considered 

significantly; but reduces the fault tolerance of the system, since control must pass to 

each layer before a decision can be made. 

2.8.4   Multi-Agent Systems 

To accomplish real-world goals, most agent-based systems employ many agents 

working  together to accomplish  the  desired  objectives.     These  systems  provide 
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frameworks for agent communication and interaction. Agents communicate via 

message passing. The interaction protocol defines which messages may be sent in 

response to a received message as well as those that may be sent to initiate 

interactions. In this respect, an interaction protocol governs an exchange of a series of 

messages called a conversation. 

Coordination of agent activities is essential in a distributed, multi-agent system. 

Coordination can be divided into two categories depending on whether the agents are 

non-antagonistic or competitive. Cooperation among the former is coordination, while in 

the latter case it is termed negotiation [Wei99, 83]. In a system where some agents 

compete and others coordinate their efforts, each agent must maintain a model of other 

agents in its environment and update the model as new agents enter the environment, 

goals change, etc. 

The contract net protocol [Wei99, 100-101] is a widely used protocol for distributed 

tasks. Under this protocol, an agent wanting a task performed is called the manager, 

and agents able to perform the task are called contractors. The manager agent 

announces the task to be performed, receives and evaluates bids from contractor 

agents, awards a contract to a suitable contractor, and receives and synthesizes the 

results. The contractor agents receive the task announcements, evaluate their capability 

to perform a specific task, decline or bid on the task, perform the task if their bid was 

accepted, and report their results. In the contract net protocol, agent roles are not 

predetermined. This allows an agent that previously acted as a contractor to bid on a 

task, to break that task into sub-tasks, and, acting as a manager, announce several of 

those sub-tasks open for bid. The resulting manager-contractor links form a control 

hierarchy for task sharing and result synthesis [Wei99, 101]. 
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The multi-agent CERTCORT layered framework manipulates data stored as objects. 

To provide persistence for these objects, an object-oriented database management 

system is utilized. The capabilities and vulnerabilities of these systems is dicussed next. 

2.9    Object-Oriented Database Management Systems 

An object-oriented database management system (OODBMS) provides object 

persistence and the consistency of atomic transactions. These systems free application 

designers and programmers from the task of developing and implementing a persistency 

scheme for each application developed. 

2.9.1    Object-Oriented Database System Manifesto 

When Malcolm Atkinson and company [Atk89] wrote "The Object-Oriented 

Database System Manifesto" in 1989, they outlined the main features and characteristics 

a system must have to qualify as an OODBMS. These features include: 

• Complex Objects: objects composed of other objects. The manifesto lists the set, 
list, and tuple as the minimum set of constructors. 

• Object Identity: can be existence based or value based. A system that maintains 
object identity based on a unique attribute value places the burden of maintaining 
uniqueness of object identifiers and referential integrity on the user. In a system that 
supports existence based object identity, the system ensures uniqueness of 
identifiers and maintains referential integrity. 

• Encapsulation: the data structure and methods that manipulate it are wrapped in 
an interface. The only means of accessing the data structure is through the methods 
defined in the interface. Encapsulation provides some level of logical data 
independence, since the underlying implementation of an object can be changed 
without changing the interface and the applications that use the data. 

• Class: a template for creating an object. A class contains two aspects: an object 
factory and an object warehouse [Atk89, 7]. The object factory is used to create new 
objects of the class, and the object warehouse is the collection of all objects that are 
instances of the class. 

• Inheritance: allows the extension of a general class into one or several more 
specialized classes. Additionally, inheritance helps in factoring out shared 
specifications and implementations in applications [Atk89, 8]. 
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• Late Binding: allows the same operation name to be used for multiple, different 
classes of objects. Late binding means that method parameters are bound to object 
class types at runtime. The runtime system determines which method to call based 
on the data type and number of parameters. 

• Extensibility: means that the system comes with a set of predefined types and new 
types can be added. When new types are added they can be used in the same ways 
as predefined types. 

• Persistence: means that objects are stored when an application terminates and can 
be retrieved and loaded the next time the application is started. 

• Secondary Storage Management: the set of mechanisms required to manage 
large databases. These mechanisms include index management, data clustering, 
data buffering, access path selection, and query optimization [Atk89, 12]. 

• Concurrency: the ability of the system to allow multiple users to access the system. 

• Recovery: the ability of the system to recover from hardware and software faults. 

• Ad Hoc Query Facility: provides the user with the ability to express non-trivial 
queries concisely and is application independent. 

Since the manifesto was written, several OODBMS packages have entered the 

mainstream. While still not as popular as relational systems, they are gaining ground in 

some areas. The OODBMS utilized in CERTCORT is ObjectStore, and, as such, it will 

be the focus of the remainder of this OODBMS discussion. 

2.9.2   ObjectStore 

ObjectStore provides native support for storing objects. The term native meaning 

no conversion of the object (i.e. object-relational mapping) is required to make the object 

persistent. ObjectStore uses a postprocessor on the Java class file to add the additional 

code to make the object persistent. However, the security mechanisms in Java prohibit 

changes to built-in classes. Therefore, container classes like Vector and Hashtable 

cannot be annotated by the compiler. One solution to this problem is to substitute "work- 

alike" versions of these classes provided with ObjectStore. This approach requires 

some code modification, but the changes are relatively minor.   Two other issues that 

39 



should be addressed are the requirement for transactions, and the need to specify 

whether objects should be retained after a transaction. First, all manipulation of 

persistent objects must be done within the confines of a transaction. Any attempt to 

modify objects outside transaction boundaries causes an exception. The second issue 

deals with what happens to the contents of an object after transaction completion. If the 

user does not specify a retainment level, after transaction completion the objects are 

hollow. This means the shell of the object is there, but any attempt to access attributes 

will result in an exception. 

The CERTCORT system utilizes ObjectStore to achieve object persistence, but the 

source databases for SUPPRESSOR, MSFD, etc. are essentially heterogeneous flat 

files from various sources. This fact makes a review of multi-database systems 

essential, and this topic will be covered next. 

2.10 Multi-Database Systems 

Multi-database systems are composed of separate, heterogeneous, autonomous 

data sources. The heterogeneity may manifest itself in the structure of the database or 

the Database Management System (DBMS) in use.   These systems are autonomous 

because, quite often, the various local databases are not under the control of a single 

person or organization.    One reason is the case of several organizations sharing 

portions of their data in order to facilitate a strategic partnership.  These organizations 

need to share data to gain a competitive advantage, but at the same time cannot give up 

control of their information resources.   Several issues arise in the attempt to resolve 

differences among heterogeneous data sources. 

•    Schema   Differences:     These   can   be  eliminated   by  developing   specialized 
procedures to retrieve data from each unique source. 
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• Identical data item, different names: This problem can be overcome by making 
each source's attribute name an alias and referencing a common standard data 
element. 

• Different Units: Even if two data elements are identically named and have the 
same overall meaning, differences in units of measure must be rectified in order to 
share data among the various sources. 

To make interoperability of heterogeneous sources transparent to the users of the 

system, these syntactic and semantic differences must be overcome. One approach to 

resolution of this problem is to develop and maintain a data dictionary and data 

encyclopedia as were discussed in section 2.4.1. 

Developing a global schema and designing methods that map the elements of the 

heterogeneous sources into the unified structure is another approach to solving this 

problem. This method employs schema integration techniques to develop the global 

schema, and runtime routines to populate the schema from the various data sources. 

Ashby's thesis [AshOO] work focused on applying formal methods and knowledge-based 

engineering techniques to develop a transformation system that integrates 

heterogeneous data sources into a common object model. Colonese [Col99] also 

focused her efforts on developing a common object model for heterogeneous sources; 

however, her work focused on utilizing manual schema integration techniques and an 

Integration Dictionary that provides semantic interoperability among the sources. 

The CERTCORT data sources, in some respect, fall into the category of federated 

databases. Each source is created by a different organization and has a different 

structure. However, the way CERTCORT source data is used differs dramatically from 

most conventional databases. The ultimate goal of CERTCORT is to allow reusability of 

scenario components across simulator platforms. Each source database has its own 

unique syntax and the representation of scenario components varies substantially from 

one simulation system to the next.   These factors make the development of a global 
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schema for CERTCORT a massively complex problem. Additionally, translators must be 

developed to convert, for example, a scenario component from SUPPRESSOR to the 

Joint Interim Mission Model (JIMM). This functionality will permit users to create new 

scenarios from components of several different scenarios in several different formats. 

2.11  Summary 

This  chapter presented  a  review of the various technologies that form the 

cornerstone of this research.   First, the structure of the SUPPRESSOR scenario files 

and the various input sources to the creation of these files was studied.    The 

CERTCORT class hierarchy was reviewed to determine appropriate extensions to 

enhance semantics of the model.   The role of metadata, what it is and how it can be 

exploited to extract meaning from a scenario component was examined.   The visitor 

design pattern was explored to uncover its capabilities and potential use in development 

of the semantic broker's analysis engine. The Java Foundation Class component JTree 

was scrutinized to discover its capabilities and  nuances.    Agent technology was 

researched to examine the portions of that technology applicable to this research. 

Object-oriented databases, and, in particular, ObjectStore were explored to understand 

their capabilities and  limitations.     Finally,  the constraints and  issues specific to 

heterogeneous Multi-Database Systems were the final topic of this literature review.   In 

the next chapter, a general methodology is developed to apply these technologies to 

extending the semantic representation capabilities of CERTCORT. 
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3.    METHODOLOGY 

3.1 Introduction 

This chapter defines the methodology used to develop a semantic broker capable of 

providing users with effective scenario component retrieval and transformation. It begins 

with a brief discussion of the tools used to perform the analysis, design, and 

implementation of the semantic broker. Following the discourse on tools is a discussion 

of the general approach utilized in the design of the semantic broker. Here, the subjects 

of scenario component representation (i.e. the object model), component generation, 

relevant component retrieval, and component transformation are discussed. Finally, the 

design of the semantic broker is discussed in detail. 

3.2 Development Tools 

The development of the semantic broker agent utilizes object-oriented tools and 

techniques. This section identifies those tools and provides some insight into their 

capabilities and the benefits of their use. 

3.2.1    Object Modeling 

Object-oriented development encompasses the analysis, design, implementation, 

and maintenance of software systems using layers of abstraction to model the real-world 

system. The object-oriented approach has the following three advantages [Mul97,15]: 

• The stability of models with respect to real-world entities. 

• Iterative construction, which is made easier by the weak coupling between 

components. 

• The ability to reuse elements across development projects. 
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Object-oriented development utilizes a modeling language during the analysis and 

design phases to accurately capture the entities and relationships in the real-world 

system being modeled. 

3.2.1.1   Unified Modeling Language 

In the early 1990's, James Rumbaugh, Grady Booch, and Ivar Jacobson were 

developing three separate object-oriented methodologies. These were Object Modeling 

Technique (OMT), Booch*93, and Use Cases, respectively. As the differences between 

the three techniques began to dwindle, these three pioneers determined to collaborate 

and consolidated their methods into the Unified Method. The Unified Method has further 

evolved and is now known as the Unified Modeling Language (UML). 

UML provides the notation necessary to describe the elements and associations of 

a problem and the tools required to express the selected solution to the problem. These 

two activities are known as analysis and design, respectively [Mul97, 11]. UML defines 

six different types of models and nine different types of diagrams. Of these, only the 

class diagram is used extensively in this effort. The class diagram shows the static 

structure of the system—its entities and their associations. UML is used throughout this 

work for the purpose of documenting problem areas and solutions, and is one of the 

three modeling languages supported by the modeling environment selected for this 

research. 

3.2.12   Rational Rose 

The Rational Rose (Rose) object modeling environment is produced by Rational 

Software Corporation, Santa Clara, California. The Rose modeling tool is used 

throughout this research to develop the UML diagrams. Rose provides a point-and-click 
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modeling environment and has limited code generation facilities.   Rose is capable of 

generating Java or C++ shells, depending on the selected implementation language. 

3.2.2    Programming Language 

The Java programming language is used as the implementation language for this 

research. Java was developed by Sun Microsystems to be simple, reliable, and 

architecture neutral. This programming language has many desirable features including 

[Far98, 6-21]: 

• Object-Oriented Environment: Java is a pure object-oriented programming 
language. A data structure or function cannot exist or be accessed at runtime 
except as an element of a function. 

• Abstract Interfaces: An interface describes the operations, messages, and 
queries a class of objects is capable of servicing without providing any information 
about how these operations are implemented. This feature allows 
implementation-neutral interfaces to be specified for a system. 

• Platform Independence: Java source code is compiled into bytecodes and can 
be executed on any Java Virtual Machine (JVM) regardless of the JVM's 
underlying hardware and operating system. 

• Exception Handling: Java supports throwing and catching exceptions, both 
system- and application-defined. 

• Network Support: Java includes multilevel support for network communications. 
Low-level sockets can be established between processes and data 
communication protocols can be layered over the socket connection. 

• Security: Java provides both a secure local environment and the ability to 
engage in secure remote transactions. 

• Multithreading Support: In Java, any class can extend the Java.lang.Thread 
class by providing its own implementation of a run() method. When started, this 
object will execute in a separate thread. 

These features combine to produce a programming language that is robust, better 

facilitates implementation of object-oriented designs, and is truly platform independent. 

At the time of this research, Sun Microsystems' most recent version of the Java 

language   is  the  Java   Development  Kit   1.3  (JDK   1.3).     This  release   provides 

45 



enhancements with regard to execution times for certain operations.   Sun's JDK 1.3 is 

utilized in this research for implementation of the semantic broker agent. 

3.3    General Approach 

This section provides a description of the general approach selected to develop the 

semantic broker in this research. First the object model used to represent scenario 

components is presented, followed by a discussion of the semantic broker's functions. 

3.3.1    Scenario Component Representation 

To facilitate the addition of new simulator types without necessitating major changes 

to the scenario component model, the semantic broker utilizes a generic or common 

model for scenario component representation. This model is shown in Figure 20. 

Utilizing this object model for scenario components allows the representation of 

virtually any simulator system's scenario components. However, this method requires 

that the details of each component type be provided through metadata. As the figure 

shows, a MetaComponent consists of SComponents, and each SComponent is derived 

from a MetaSyntaxUnit. Additionally, each SComponent object can have one or more 

child SComponent objects. 

In this scheme, a MetaComponent object represents the semantics of a scenario 

component. For example, a MetaComponent object named SAM Missile is comprised of 

the components that make up a surface-to-air missile in a simulation scenario. The 

MetaComponent class contains semantic information about the scenario component. 

Ideally, a MetaComponent object would have a name attribute value that identifies the 

real-world object represented by the scenario component. Additionally, it would also 

contain information in its comments attribute describing the capabilities and limitations of 

the scenario component. 
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Objects of the MetaSyntaxUnit class represent the syntax definition of a specific 

scenario component (i.e. PLAYER-STRUCTURE, TACTIC, COMM-RCVR, etc.) of a 

specific type of scenario source (i.e. SUPPRESSOR, SWEG, JIMM, etc.). During 

scenario source file parsing, the file parser references these objects to determine how to 

proceed with parsing of the component definition. 

MetaComponent 
^>type: String 
^>name: String 
^source: String 
^>score: double 
^comments: Vector 

^y 

1..* 

SComponent 
^type: String 
^>name: String 
^source: String 
%score: double 
^comments: Vector 
^characteristics: Vector 

1 

component 

0..*   derived from     1 
MetaSyntaxUnit 

^»beginToken: String 
^>endToken: String 
%nestedltems: Vector 

0..* 
sub-component 

Figure 20: Scenario Component Representation 

In addition to providing semantic representations of entire scenario components, 

(e.g. a PLAYER-STRUCTURE in SUPPRESSOR) the semantic broker must also be 

able to provide semantic interpretations of portions of scenario components. For 

example, an analyst may require a communication receiver. It is unlikely that such a 

system exists as a high-level component like a PLAYER-STRUCTURE, but in all 
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probability the required scenario component does exist as a sub-component of a 

PLAYER-STRUCTURE. The component representation shown in Figure 20 facilitates 

representation of these sub-components as well, since it does not differentiate between 

components and their sub-components except through the parent-child association. 

Figure 21 provides an example of how a portion of two SUPPRESSOR PLAYER- 

STRUCTURE scenario components are represented using this scenario component 

representation. During component generation (the process of creating object 

representations from source file text definitions), the parser creates two containers of 

MetaComponent objects. The first, called metaComponents, contains links to the high- 

level scenario components (in this case PLAYER-STRUCTURE components). The 

second container, called metaSubComponents contains links to the high-level 

component's sub-components (in this case TACTIC components). The extra container 

for the sub-components is a specially created index used to avoid lengthy traversals 

when performing searches for sub-components. 

The scenario component representation scheme shown in Figures 20 and 21 

provides extensibility for adding new types of simulation system data sources. Adding a 

new type requires providing a MetaSyntax file that contains syntax definitions for all the 

components of the new system's scenario source file format, and providing a parser that 

is capable of generating components from the new scenario type's source files. 

The scenario component object model presented here is extremely simple. Under 

the scheme presented, the object tree representation of a scenario component is 

composed entirely of SComponent objects. This, of course, excludes the 

MetaComponent root object, which merely exists to enhance the semantics of the 

component. This object model provides the greatest flexibility in representing different 

simulation type's scenario components. Under this scheme, virtually any type's scenario 
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components can be accurately represented.   The simplicity of the object model also 

affects the complexity of the component generation process. 

metaComponents : 

MetaComponent 

name = SAM Battery 
comments = ... ^_^_^_^ 
components =   | y |     |   ~| 

SComponent 

type = PLAYER-STRUCTURE 
name = sam-a 
comments = ... ^_^_^_^ 
components =  | f | ^ |   ~| 

SComponent 

type = TACTIC 
name = sam-a_tactics 
comments = ... ^_^_^_^ 
components =  | » | » | »~| 

SComponent 

type = LOCATION 
name = 1 
comments = ... ^_^_^ 
components =  | ♦ | » | » 

"TT-1—~ ttt 

MetaComponent 

name = SAM Missile 
comments = ... 
components = u 

SComponent 

type = PLAYER-STRUCTURE 
name = sam-a_missile 
comments = ... ^_^_^ 
components =  lj»| f | 

SComponent 

type = TACTIC 
name = sam-a_missile_tactics 
comments = ... ^_^_^_^ 
components =  | » | » |   1 

i     i 
-T—r 

tt 
SComponent 

type = LOCATION 
name = 1 
comments = ... ^_^_^_ 
components =  | ♦ | ♦ \f~ 

ttt 

metaSubComponents = 

Figure 21: Sample Scenario Component Representation 

3.3.2   Component Generation 

To accomplish the task of generating scenario components from the text-based files 

of the scenario source database, a text parser is required that can translate the 
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components from their textual definitions to SComponent object trees. In order to 

facilitate the analysis of scenario source components, both source and signature 

components must be generated by the semantic broker. The classes and data sources 

involved in the component generation process are depicted in Figure 22. 

SemanticGateway Application Scenario-Registry Application 

MetaSyntaxUnit 

1..* 

references 

1 

Parser 

♦loadMetaSyntax() 
♦generateComponents() 
♦getSubComponentlndex() 

Signature 
Component 
Database 

Signature 
Component 
Definition 
File    (Text- 
Based) 

Meta Syntax 
Unit Database 

Scenario 
Component 
Definition 
File   (Text- 
Based) 

Scenario Source 
Database 

Figure 22: SemanticGateway Component Generation 

Both the SemanticGateway application and the ScenarioRegistry application utilize 

parsers to generate SComponent object tree representations of scenario components. 

The SemanticGateway application uses parsers to generate new signature components 

for the Signature Component Database (SCDB). The SCBD is discussed in Section 

3.3.3.1 along with signature analysis. For the purposes of this discussion, it is sufficient 

to understand that signature components are created from text files containing signature 
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definitions. These files are very similar in format to scenario source files. Both signature 

and scenario components are generated from their text-based definition only once, then 

they are stored in their object format in the SCDB and Scenario Source Database, 

respectively. 

The Scenario/Registry application utilizes parsers to generate components from a 

scenario source definition file when it is registered with the system. These source 

components are stored in the Scenario Source Database and are accessed and 

compared to the query's signature object during the relevant component retrieval 

process. This topic is discussed in detail in Section 3.3.3. 

The generateComponents method of the Parser class parses the scenario source 

file and returns a list of scenario components. Actually, the list contains the root 

SComponent objects of the object tree representation of each scenario component 

definition contained in the source file. A call to the Parser object's 

getSubComponentlndex returns a list of references to the sub-components of each 

scenario component. Essentially, this list is a flattened hierarchy and eliminates the 

need to perform an exhaustive search of each object tree when looking for a specific 

sub-component. This separate index is shown in Figure 21 of Section 3.3.1. 

There is a parser for each type of scenario source files the system recognizes. 

Each of these parsers must extend the Parser class. Parser objects create and 

maintain a list of MetaSyntaxilnits for the type of source file being parsed. There is a 

MetaSyntaxilnit object for each type of component that can be extracted from a 

scenario. These objects contain the start and stop tokens for a particular component 

and the types of nested items. Parser objects create MetaSyntaxUnit objects from 

syntax definitions found in the MetaSyntaxUnit Database (MSUDB). The syntax for 

MetaSyntaxUnit object definitions is: 
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START-TOKEN [attribute*] [ component | componentRef ]* END-TOKEN 

This definition requires that a component definition begin with a valid START- 

TOKEN followed by optional attributes, followed by either one or more component or 

componentRef tokens (also optional), followed by an END-TOKEN; which may be the 

keyword NULL if the component has no stop label. 

This definition requires an explanation of the difference between a component and a 

componentRef in the syntax definition. If a component token appears in the definition, 

the child component's definition is nested inside the parent component's definition. If the 

componentRef token appears, only a component type and identifier are nested inside 

the parent's definition. In the latter case, the actual definition of the child component is 

located elsewhere in the scenario file representation, and must be linked with its parent 

after all components have been generated. Figure 23 provides a sample of 

MetaSyntaxUnit definitions for SUPPRESSOR data sources. 

Use of the MSUDB provides some level of flexibility in determining level of detail at 

which components are generated. For example, as defined in Figure 23, ZONE- 

CHARACTERISTICS components have attributes but no nested child components. This 

means that all items between the start and end tokens are treated merely as 

characteristics of the parent component, and, as such, cannot exist on their own. Since 

these characteristics are not components, they have no semantics. However, changing 

the definition of this component to include child components, and, of course, adding the 

definitions for those child components, allows the level of detail of the ZONE- 

CHARACTERISTICS component to be increased. It is important to note that this 

change in level of detail is achieved without modification of source code. 
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Extensibility of the component generation portion of the semantic broker architecture 

is achieved in the following manner. When a new simulator type is added to the 

semantic broker framework, the following software and data sources must be provided: 

• Signature and source component generators that extend the abstract Parser 
class. 

• Syntax definitions for the new system's components must be added to the 
MSUDB. 

• Definitions of prototypical components of the new system must be added to the 
Signature Component Database. 

Adding the above software components facilitates component generation for the 

new system and sets the stage for relevant component retrieval. 

PLAYER-STRUCTURE attribute component END PLAYER-STRUCTURE 
TACTIC component END TACTIC 
CAPABILITY component END CAPABILITY 
LINKAGES attribute NULL 
SUSCEPTIBILITY component END SUSCEPTIBILITY 
ASG-CMD-CHAIN attribute M7LL 
EVALUATION-RATES attribute END EVALUATION-RATES 
INTELL-REPORT-FREQ attribute END INTELL-REPORT-FREQ 
MAX-MSG-ATTEMPTS attribute M7LL 
MAX-SNR-PERCEPTIONS attribute M7LL 
MOVE-TO-ENG attribute M7LL 
MSG-RPT-GUIDE attribute END MSG-RPT-GUIDE 
SALVO-FIRING attribute END SALVO-FIRING 
SNR-RPT-GUIDE attribute END SNR-RPT-GUIDE 
ZONE-CHARACTERISTICS attribute END ZONE-CHARACTERISTICS 
THINKER componentRef NULL 
SNR-RCVR componentRef NULL 

Figure 23: Sample MetaSyntaxUnit Definitions 

3.3.3   Relevant Component Retrieval 

To retrieve relevant scenario components from the myriad of source files available, 

users must specify their requirements in a query. Traditional query languages, such as 

the Standard Query Language (SQL), are not useful here, since the object 

representations of scenario components are not standardized in size or complexity. 

Additionally, a search for even a simple scenario component would require an extremely 
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complex SQL query, if, in fact, SQL could be used at all. To deal with this problem, this 

research utilizes signature analysis to identify relevant components. 

3.3.3.1   Signature Analysis 

To facilitate the development of a semantic broker capable of retrieving relevant 

scenario components, this research utilizes a database of signature components, which 

the semantic broker uses to analyze the contents of existing scenario components.  A 

high-level abstraction of this signature analysis approach is shown in Figure 24. 

User selects                 ) 
desired signature        A 
through GUI          ~\y Relevant Component List 

/   Component 
/^    Analyzer returns "   + (        relevant 
V-    components to 

O 
GUI 

Selected Signature 
Component Component 

Analyzer       <f^ 

1       GUI 

CD W 1— ^—K^_^y 

Sic 
Con 

C 
M 

A 

nature 
iponent 
bject 
odels 

k i 

Scenario 
Component 

Object 
Models 

d        Z^\ CT~ 

SCDB 
Scenario 
Source 

Database 

Figure 24: Signature Analysis Approach 

In the figure, the Component Analyzer utilizes a signature component to determine 

which components in the Scenario Source Database to include in the relevant 

components list returned to the GUI. Signature components are essentially generic 

definitions of semantic entities. For example, the signature component for an air 

interceptor defines the essential sub-components and characteristics a scenario 

component must have to be interpreted as an air interceptor. The signature is a 

baseline entity, and any component that contains it as a subset will be interpreted as 

relevant.  Each signature component has a semantic tag that identifies its contents (e.g. 

54 



Air Interceptor, Bomber, etc.), and comments that describe the capabilities of the 

signature. 

Returning now to Figure 24, the list of signature components is retrieved from the 

SCDB into the Graphical User Interface (GUI) where it is presented to the user in the 

form of a scrollable list. The scrollable list contains the semantic tags associated with 

each of the signature components. The user selects the desired signature component 

from the list. The selected signature component is then sent to the Component Analyzer 

where it is used to search for existing scenario components matching its composition. 

The output of the Component Analyzer is a list of existing scenario source components 

deemed relevant by its analysis process. Furthermore, this list of components is sorted 

based on the relevance score assigned to each component by the Component Analyzer. 

The Component Analyzer scores a scenario component on how well its sub-components 

and characteristics match the signature component's sub-components and 

characteristics. The closer an existing component matches the signature component, 

the higher that component's relevance score. The relevance score ranges from zero to 

one. A scenario component that scores a one contains, within its object tree structure, 

an exact replica of the signature component. The relevance score assigned by the 

Component Analyzer is largely determined by the semantic representation's level of 

abstraction. 

3.3.3.2   Level of Abstraction 

In designing a semantic broker, a key design decision is the level of abstraction 

involved in representing the semantics of scenario components.   Figure 25 provides a 

graphical depiction of the design tradeoff.   The more abstract the representation, the 

more likely the system will overwhelm the user with too many "relevant" components. 
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Conversely, the more detailed the representation, the more likely the system will miss 

relevant components or return an empty list as a result. 

The obvious solution to this problem is a compromise between very abstract and 

very detailed representations. Therefore, signature components are as generic as 

possible. From this generic baseline a user may increase the level of detail and thereby 

decrease the number of perceived relevant components returned by the Component 

Analyzer. 

# Perceived 
Relevant 

Components 

Level of 
Abstraction 

Figure 25: Level of Abstraction Tradeoff 

The relevant component retrieval process presented here uses signature 

components as complex query structures. The user selects a generic signature 

component (e.g. Air Interceptor, Bomber, etc.), modifies its attribute values and sub- 

components to match the desired search criteria, and initiates a search. Relevant 

scenario source components are scored based on how closely their structure and 

characteristics match those of the signature component. Once a list of relevant 

components has been produced, the user selects the most suitable one for inclusion in 
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the new scenario. If the selected relevant component's type (i.e. SUPPRESSOR, 

SWEG, etc.) is different than that of the scenario being constructed, the component will 

have to be transformed to the target format. 

3.3.4   Component Transformation 

Component transformation is the process of translating a scenario component 

developed to execute in one simulator system to conform to the syntax of another 

simulator's format. In situations where the translation is too complex to be handled by 

the automated process, or the scenario item does not have a comparable counterpart in 

the target scenario format, techniques must be developed to effectively represent the 

nontransferable data in a manner that allows the human analyst to deal with the 

problem. 

Transformation of components from one simulator format to another is perhaps the 

most difficult facet of scenario reuse. A successful transformation technique must 

effectively deal with all the translation categories outlined in Figure 26 [LSA98]. It should 

be noted here that, in the figure, the original author's use of the phrase data item has 

been replaced with component to conform to the terminology of this report. The 

categories of Figure 26 run the gamut from components that are identical, and no 

translation is required, to situations where the component in Model-A can not be 

represented in Model-B. 

The first conversion category in Figure 26 is self-explanatory. At first glance, the 

second category seems identical to the first. However, the second category differs in the 

following way: In the first, the component in Model-A is identical to that in Model-B (i.e. 

Data Item Model-A = Data Item Model-B). In the second category, all the keywords 

present in the component of Model-A are present in that of Model-B; however, the 
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component of Model-B may, in fact, have more keywords that are not present in the 

component of Model-A (i.e. Data Item Model-A c Data Item Model-B). In the case 

where the component of Model-B has more keywords than that of Model-A, the values of 

those additional keywords must be set to some predetermined innocuous value. 

Conversion 
Category Definition Transformation 

Compatible Component in both models 
with no keyword differences. 

None. 

Fully Upward 
Compatible 

Component in both models 
with all Model-A keywords in 
Model-B. 

None. 

Upward Translatable Component in both models, 
some keyword differences, but 
no functional differences. 

Either 1) add the Model-A 
keyword as a synonym or 
2) translate the Model-A 
keywords into Model-B 
keywords. 

Convertible Component in both models, 
both keyword and functional 
differences, including 
components where the 
ordering has changed. 

Logic is built into the 
transformation program 
that converts Model-A to 
Model-B, with each 
convertible data item 
having a module dealing 
explicitly with it. 

Replaceable Component in Model-A only, 
but functionality is represented 
in one or more Model-B data 
items. 

Automation may be too 
difficult and will require the 
intervention of a user to 
manually adjust. 

Non-Replaceable Component in Model-A only 
and functionality not 
represented in Model-B. 

Traceability in Model-B via 
commented-out data item 
blocks may be appropriate, 
along with comments 
indicating the reason why 
they cannot be put into 
Model-B format. 

Figure 26: Translation Categories of Data Items 

The third category in Figure 26 deals with the situation where the component exists 

in both Model-A and Model-B; however, some of the keywords have exactly the same 

meaning, but different names.   In this case of synonymous keywords, their relationship 

can be documented in metadata and referenced during transformation.  This alleviates 
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the need to hard code every synonym relationship in the code and increases the 

flexibility of the system. 

The last three categories of transformations exemplify the difficulties encountered in 

scenario reuse. The fourth category illustrates a situation in which it may be impossible 

to avoid hard-coding the transformation process in the source code. The fifth 

transformation category deals with transformations where the functionality of a 

component in Model-A is split-up among several components in Model-B. In some 

cases, it may be possible to hard-code these transformations in the source code; 

however, in others the process may be so complex that it requires a human analyst's 

intervention. The last category of transformations, while easier to deal with than those of 

the previous category, has the most serious effect on the new scenario. Here the 

untransformed component from Model-A can be placed in Model-B and commented out; 

however, the functionality of that component is completely lost and will have to be 

recreated manually. 

The component transformation process involves translating a scenario component 

of a given format to that of a different format. There are several problems that may arise 

during component transformation. Some of these may be insurmountable for the 

automated process and require human intervention. 

The object model selected to represent scenario components is extremely simple. 

The component generation process has been design to allow the addition of new 

scenario source types without modification of existing source code. The component 

transformation process relies heavily on metadata to alleviate the need to represent 

transformation relationships in source code. These design decisions were made with 

flexibility of the overall design in mind. 

59 



Relevant component retrieval and component transformation are the two main 

functions of the semantic broker. Scenario source files that must be searched during the 

relevant component retrieval process may be distributed across multiple systems. The 

architecture of the semantic broker was designed with this in mind. 

3.4    Semantic Broker Architecture 

The architecture of the semantic broker is distributed to contend with the dispersed 

nature of the scenario source files. The semantic broker is divided into two applications, 

the SemanticGateway application and the ScenarioRegistry application. Software 

agents are utilized by both applications to request data, process signature-based 

queries, and receive replies. Figure 27 provides an application-level view of the 

semantic broker's two components. As the figure shows, there is one SemanticGateway 

application and multiple ScenarioRegistry applications. In fact, there is one 

ScenarioRegistry application for each system that contains source files to be searched 

during the relevant component retrieval process. In the following sections, the designs 

of these two applications are covered in detail. 
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Figure 27: Application-Level View of Semantic Broker Architecture 
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3.4.1    ScenarioRegistry Application 

In the semantic broker architecture, a ScenarioRegistry application executes on 

each system where scenario source files are registered. Figure 28 shows the major 

components and data sources of the ScenarioRegistry application. Excluded from this 

diagram are the MetaComponent and SComponent classes, which are used to create 

the component object trees. The functions of the ScenarioRegistry application are: 

• Maintains a database of references to all registered scenario source files on the 
system. This database is its Source Registry Database (SRDB). The acronym 
SRDB and the term registry are used interchangeable throughout this work. 

• Provides a Graphical User Interface (GUI) through which the user updates the 
contents of the application's SRDB. 

• Accepts requests for its SRDB data, and returns the information to the requestor. 

• Accepts signature-based queries, performs the relevant component retrieval, and 
returns its results to the requestor. 

registryRequestConv_R 

0..1 

Parser 

ScenarioRegistryAgent 

ComponentAnalyzer 

Scenario 
Component 

Definition File 
(Text-Based) 

1 1 ScenarioRegistryGUI 

Source Registry 
Database 
(SRDB) 

Figure 28: ScenarioRegistry Application Main Components and Data Sources 
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The design of the Scenario/Registry application is divided in two main components: 

1) The ScenarioRegistryGUI, which performs the first two functions listed; and 2) The 

ScenarioRegistryAgent, which performs the last two functions listed. These components 

will be discussed in turn. 

3.4.1.1 ScenarioRegistryGUI 

The ScenarioRegistryGUI portion of the ScenarioRegistry application provides a 

user interface to the contents of the application's SRDB. Through this interface, users 

register new scenarios and their files, and provide references to the metadata required 

to parse and analyze these files. The ScenarioRegistryGUI displays its registry's data in 

a manner consistent with the hierarchical nature of the data contained in the SRDB. The 

data in the SRDB allows the ScenarioRegistry application to track the origin of scenario 

source files. The origin information consists of abstract source (i.e., scenario) as well as 

physical source (i.e., path and filename). 

The ScenarioRegistryGUI is the portion of the ScenarioRegistry application the user 

sees. When started, however, the user interface creates a ScenarioRegistryAgent and 

executes it on a separate thread. 

3.4.1.2 ScenarioRegistryAgent 

The ScenarioRegistryAgent is the workhorse of the ScenarioRegistry application. 

Objects of this type serve as the interfaces between each ScenarioRegistry application 

and the SemanticGateway application. ScenarioRegistryAgent objects accept requests 

for data, perform the necessary action to retrieve the data, and return the data to the 

requesting SemanticGateway application. One type of data request is a signature-based 

query. When a signature-based query is received, the component analysis process 

begins. 
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3.4.1.2.1  Component Analysis 

When the ScenarioRegistryAgent receives a signature-based query, it creates a 

registryRequestConv_R     object     to     respond     to     the     requestor. The 

registryRequestConv_R object represents a conversation between agents. The 

ScenarioRegistryAgent then accesses the Scenario Component Database and retrieves 

the appropriate source component object models. For example, if the signature 

component's type is SUPPRESSOR, only component object models generated from 

registered SUPPRESSOR source files will be searched. 

The ScenarioRegistryAgent utilizes the signature component to analyze scenario 

source files and determine their composition. Analysis results in the generation of a list 

of relevant scenario components. Each component is assigned a precision score— 

based on the number of sub-components and characteristics matched. Figure 29 shows 

how a signature component is utilized to analyze source components. 

The analysis process begins with the ScenarioRegistryAgent creating a 

ComponentAnalyzer object and passing the selected signature component and the list of 

source components as parameters. SComponent objects know how to compare 

themselves to other SComponent objects and return a similarity score. The 

ComponentAnalyzer object calls the analyzeComponent method of each root present in 

its source component list and passes the signature component as the parameter. Each 

root's analyzeComponent method returns a similarity score based on its comparison of 

itself to the signature component. The ComponentAnalyzer object returns a list of those 

source components whose similarity score is greater than zero. The returned list is 

sorted on similarity score in descending order. The registryRequestConv_R object 

sends this sorted list to the requestor (i.e., the SemanticGateway application). 
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Figure 29: Component Analysis 

3.4.1.2.2 Registry Forwarding 

The other type of request for data the ScenarioRegistryAgent receives is a registry 

request. These requests are sent by the SemanticGateway application when it needs to 

update its system-wide source registry. 

To respond to these requests, the ScenarioRegistryAgent creates a 

registryRequestConv_R object. This object calls the getRegistry method in its parent 

object (i.e., the ScenarioRegistryAgent), which returns the contents of the registry. The 

registry is then sent to the requestor. 

The ScenarioRegistry application is responsible for registering and providing access 

to the scenario source files on a particular system.   The functions of maintaining a 
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system-wide registry, signature selection, compiling relevant component search results, 

and component transformation fall into the realm of the SemanticGateway application. 

3.4.2   SemanticGateway Application 

The SemanticGateway application serves as the user's interface to the semantic 

broker. Through this application, a user selects a query signature and tailors its content, 

initiates the system-wide relevant component retrieval process, and transforms scenario 

components to a selected target format. Figure 30 shows the major components and 

data sources of the SemanticGateway application. 

SemanticGatewayAgent 

1                            1 
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parent ♦transformComponent() 

♦setSignature() 

communicates by 

registryRequestConvJ 

%un() 

Figure 30: SemanticGateway Application's Major Components 

Each SemanticGateway object has one SemanticGatewayAgent object, which it 

dispatches to update its System-Wide Source Registry Database (SWSRDB) and 

perform relevant component queries. Additionally, the SemanticGateway object creates 
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SourceRegistryGUI, SignatureSelector, and TransformEngine objects. These objects 

are used to provide a user interface to the source registry, enable editing and selection 

of signature components, and facilitate component transformation, respectively. These 

classes are discussed in greater detail in the following sections. 

3.4.2.1   SemanticGatewayAgent 

The SemanticGatewayAgent class provides the mechanism through which the 

SemanticGateway application interfaces with the multiple Scenario-Registry applications 

distributed     system-wide. The     SemanticGateway    object    dispatches    the 

SemanticGatewayAgent object to perform two operations critical to the semantic 

broker's overall functionality: 

1) Requesting registry updates from each Scenario-Registry application registered in 
the SemanticGateway application's System-Wide Source Registry Database 
(SWSRDB). 

2) Sending signature-based queries to each registered ScenarioRegistry application 
and compiling the relevant component result sets from each response. 

3) Requesting relevant component details from ScenarioRegistry applications. 

To perform any of these functions, the SemanticGatewayAgent creates one or more 

registryRequestConvJ objects. These objects initiate a conversation with each of the 

ScenarioRegistry applications referenced in the SWSRDB. This process is shown in 

Figure 31. 

In the figure, the heavy dotted line between the SemanticGatewayAgent object and 

the registryRequestConvJ objects represents the fact that the SemanticGatewayAgent 

object created these objects and maintains a reference to them. There is one 

registryRequestConvJ object for each ScenarioRegistry application that must be 

contacted. Each of these objects sends a message to its assigned ScenarioRegistry 

application requesting the applicable service (i.e., registry update or relevant component 
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search). The ScenarioRegistry application performs the requested action and packages 

its result set in a reply message it sends to the registryRequestConvJ object that 

requested the service. When it has received a reply, the registryRequestConvJ object 

passes its result set to the SemanticGatewayAgent and terminates. After all 

conversations have terminated, the SemanticGatewayAgent consolidates the result sets 

and passes the aggregate set to the SemanticGateway. 
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SemanticGatewayAgent 
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request 

Workstation B 

ScenarioRegistryApplication 
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Workstation C 

ScenarioRegistryApplication 

reply 

request 

Workstation D 

ScenarioRegistryApplication 

Figure 31: SemanticGatewayAgent Conversation Process 

The SemanticGatewayAgent class works with the ScenarioRegistryAgent class to 

provide an interface between the SemanticGateway and ScenarioRegistry applications. 

In order to contact the ScenarioRegistryAgent objects, the SemanticGatewayAgent 

object relies on the scenario agent references stored in the SWSRDB. 
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3.4.2.2   System-Wide Source Registry Database (SWSRDB) 

In order to maintain traceability of components, the semantic broker must be 

capable of tracking the source (i.e., the machine name, path, and filename) of each 

component generated. To facilitate this requirement, the SemanticGateway maintains 

the SWSRDB. This database contains the following information for each type of 

scenario source registered (e.g., SUPPRESSOR, SWEG, etc.): 

• A reference to the file containing scenario component syntax definitions. 

• A reference to the parsers used to generate signature and source components. 

• A reference to transforms used in translating components from this source type to 
a specified target type. 

• A reference to metadata used during component transformation. 

• One reference (i.e., host and port number) to each ScenarioRegistry application 
that contains scenario source files of this type in its registry. 

The information contained in the SWSRDB is updated by two different sources. 

First, each time the SemanticGateway application is started, it requests a registry update 

from each of the ScenarioRegistry applications registered in the SWSRDB. The 

responses from these requests are used to update the scenario information in the 

database. The failure of a registered application to respond, results in that application's 

registry entry being labeled as UNAVAILABLE. 

The second means through which the SWSRDB receives updates is the 

SourceRegistryGUI. The SourceRegistryGUI class provides an interface through which 

users can update the contents of the SWSRDB. When a new simulator scenario type is 

added to the SWSRDB, the user must provide the metadata, parser, and transformation 

data necessary for the SemanticGateway to perform component generation, component 

analysis, and component transformations. Additionally, when a new ScenarioRegistry 

application is added to the system, its existence must be registered in the SWSRDB 
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before it will be recognized by the SemanticGateway application and utilized during the 

relevant component retrieval process. 

The SWSRDB is a repository of the information required by the semantic broker to 

perform its functions. This database is updated automatically upon startup of the 

SemanticGateway application, and can be manually updated by the user at any time 

through the SourceRegistryGUI. The SemanticGateway application function that most 

heavily relies on the information in the SWSRDB is component transformation. 

3.4.2.3   Component Transformation 

The translation of a scenario component from its source format to a target format of 

choice is known throughout this work as component transformation. In the 

SemanticGateway application, component transformation is initiated by the user through 

the SemanticGateway object. This object references the SWSRDB to obtain references 

to transform metadata files and transform classes, and passes this data to a newly 

instantiated TransformEngine object. The TransformEngine class is the workhorse of 

component transformation in the SemanticGateway application. Figure 32 shows the 

classes and data sources involved in the component transformation process, and a 

description of the process follows. 

To facilitate all the different categories of transformations presented in Section 3.3.4, 

Figure 26, the SemanticGateway application creates a TransformEngine object, and 

passes it the transform metadata reference mentioned above. The TransformEngine 

object creates a TransformMDParser object and parses the metadata file containing the 

transform metadata for the source-to-target transformation. This metadata file is 

contained in the Transform Metadata Database (TMDB). During the initialization 

process, the TransformEngine also instantiates the Transform objects referenced in the 
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metadata and maintains a reference to each of these. Next, the TransformEngine object 

processes each SComponent object beginning with the root. Based on transform 

category information supplied through the transformation metadata, the 

TransformEngine object accesses and utilizes the appropriate sub-class of Transform 

object. Collectively, the Transform objects handle the translation of the component from 

source to destination format, and return the resulting SComponent object to the 

TransformEngine object. 

1 TransformEngine 

references 

1..* 
1..* TransformMD 

creates 

TransformMDParser 

references 

Component 

transforms 

Transform 

Cat1 Transform 

Transform 
Metadata 

Cat3Transform 

Cat2Transform 

Cat5Transform 

Cat4Transform Cat6Transform 

Figure 32: Component Transformation Classes and Data Source 

Extensibility in the component transformation portion of the semantic broker is 

achieved by providing a set of Transform sub-classes that extend the Transform class 

and define the process of transformation for each of the cases identified in Section 3.3.4, 

Figure 26. Additionally, the inclusion of a new simulator scenario source requires that 

metadata be provided in the TMDB. 
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The TMDB shown in Figure 32 maps a component type to one of the categories 

listed in Figure 26. The data in the TMDB effectively maps each component type to a 

specific transform category, and provides the necessary details to allow the Transform 

object to perform the translation. Figure 33 provides the transform metadata file format 

for the first three transformation categories. In Figure 33, an asterisk represents the fact 

that there may be one or more of an item or group, and square brackets are used to 

group two or more items. The last three transformation categories represent the most 

difficult aspects of the transformation process, and are not detailed here. The fourth 

category requires some Transform object implementation specific logic in order to 

perform the transformation. The fifth category is the most difficult to implement, since 

the software must determine whether user intervention is required and, if so, must 

present the user with the problem and recommend possible solutions. This category is 

beyond the scope of this work, and such transformation will be handled in the same way 

as Category 6 transformation. Category 6 transformations, as implemented in this work, 

provide comments in the target scenario stating which component of the source scenario 

could not be translated. 

CATEGORY 1 
<component type>* 
END CATEGORY 1 
CATEGORY 2 
[ <component type> 
<keyword not in source>* 
END <component type> ]* 
END CATEGORY 2 
CATEGORY 3 
<component type> 
[ <source keyword> <destination keyword> ]* 
END <component type> 
END CATEGORY 3 

Figure 33: Transform Metadata File Format 
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3.5    Summary 

This chapter begins with a review of the tools used in the analysis, design, and 

implementation phases of this research effort. Next, a discussion of the general 

approach used to design the Semantic Broker in this research covers the topics of 

scenario component representation, relevant component retrieval, and component 

transformation. Finally, the design of the semantic broker is presented in some detail 

including the classes necessary for its implementation and the data sources it will utilize. 

This chapter outlines the semantic broker as it will be implemented in this research. 

In Chapter 4, the SemanticGateway and ScenarioRegistry applications are developed 

and tested. 
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4.    IMPLEMENTATION 

4.1 Introduction 

This chapter discusses the functionality of the Semantic Broker as implemented in 

this research. The resulting tool is presented primarily as a proof of concept vehicle with 

minimal intent to maximize the efficiency of the tool's algorithms or data structures. The 

chapter begins with a discussion of some design issues that were encountered during 

detailed design and implementation of the Semantic Broker. Next, the two main 

components of the broker, the SemanticGateway and ScenarioRegistryGUI applications, 

are discussed. These two components provide all the functionality necessary to provide 

scenario source registration, relevant component retrieval, and scenario component 

transformation. This is followed by a review of test data collected concerning the 

component retrieval portion of the tool. Finally, the requirements for extending the 

Semantic Broker to include additional simulation types (e.g., JIMM, EADSIM, etc.) are 

discussed. 

4.2 Design Issues 

During implementation, three key issues came to light that are worthy of mention 

here. These include the class hierarchy used to represent scenarios and its reliance on 

metadata, scenario component generation, and signature analysis. 

4.2.1    Scenario Class Hierarchy 

The Semantic Broker's design utilizes a simple class hierarchy to represent scenario 

components and relies on metadata to interpret scenario source files and transform 

selected components. The class hierarchy utilized in this research to represent scenario 
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components is shown in Figure 34. This simple class hierarchy allows one object model 

to be used to build object representations of any simulator's scenario components. 

MetaComponent 
l^>type: String 
%name: String 
^source: String 
<%>score: double 
^comments: Vector 
(^.components: Vector 
^signature: boolean 

TT 
1. 

SComponent 
%>type: String 
%name: String 
^source: String 
^>score: double 
^comments: Vector 
^components: Vector 
^characteristics: Vector 
^»optional: boolean 

1 
component 

derived from   1 

MetaSyntaxUnit 
^>beginToken : String 
^>endToken : String 
%nestedltems Vector 

0..* 
sub-component 

Figure 34: Semantic Broker Scenario Component Class Hierarchy 

This model is used to represent both signature and source components. Signature 

components are essential for signature analysis, which is covered in Section 4.2.3. 

However, there is a difference in the structure of the object trees of signature 

components vs. source components. The root of a signature component object tree is a 

MetaComponent object. Every other node in the signature object tree is an 

SComponent object. The role of the MetaComponent class in relation to signature 

components is that of a descriptor. The MetaComponent object root of each signature 

component contains a name attribute that provides a descriptive name for the signature, 
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and a comments attribute that contains comments that further describe the signature 

component, its capabilities, and its limitations. 

A source component object tree is composed entirely of SComponent objects. 

However, the MetaComponent class has a role in relation to source component trees 

also. Here the MetaComponent object represents an entire collection (source file) of 

source components. The MetaComponent object's components attribute contains a 

vector of pointers to the root SComponent object for each source component generated 

by the file parser. Essentially, the role of the MetaComponent class in relation to source 

components is to represent a scenario source file and provide links to the scenario 

source components defined within it. 

The attributes of the MetaComponent and SComponent classes have similar 

names, and one may consider simply making the SComponent class extend the 

MetaComponent class. However, doing so would violate sound software engineering 

principles, since these two classes lack the IS A relationship. Because of this, although 

the attributes have similar names, some have different meanings. The attributes of the 

MetaComponent class are listed below. Attributes that have the same name and 

meaning as an attribute of the SComponent class are annotated as such and are not 

repeated in the paragraph describing the SComponent class' attributes. 

• type: The type of scenario source or signature component (i.e. SUPPRESSOR, 
SWEG, etc.). 

• name: This attribute contains the name of the file from which the scenario or 
signature component was generated. 

• score: This attribute is the score assigned to the object during signature 
analysis. SComponent attribute score has the same meaning. See Section 
4.2.3 for details on signature analysis. 

• source: This is the location of the scenario source file from which the object was 
generated. For signature components, this attribute is null. SComponent 
attribute source has the same meaning. 
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• comments. This attribute contains comments about the capabilities and 
limitations of the component. SComponent attribute comments has the same 
meaning. 

• components: This attribute contains a set of sub-components for this object. 
SComponent attribute components has the same meaning. 

• signature: This attribute is set to true if the object is a signature component. 

As mentioned previously, most of the attributes of the SComponent class have the 

same names as the attributes of the MetaComponent class. However, the meaning of 

two of the SComponent class' attributes differ significantly as outlined below. 

• type: The type of scenario component represented (PLAYER-STRUCTURE, 
COMM-RCVR, etc.). 

• name: The name of the scenario component as defined in the scenario source 
file. 

• optional: This attribute is checked during signature analysis to determine if a 
signature component or sub-component is mandatory. The value of this attribute 
is true by default and is irrelevant in source component objects. 

The simplicity of this object model facilitates the modeling of virtually any simulation 

scenario source type. However, this approach requires extensive use of metadata to 

determine how to interpret source files during parsing. This metadata is provided 

through instances of the MetaSyntaxUnit class. 

MetaSyntaxUnit objects are utilized by file parsers to determine the correct 

interpretation of scenario components as they are encountered in the scenario source 

file. There is a MetaSyntaxUnit object for each type of scenario component and sub- 

component that can possibly be represented in the source scenario format. Each 

MetaSyntaxUnit object contains the following attributes: 

• beginToken: The parser uses this attribute to determine that a new scenario 
component, or sub-component, definition follows. The value of this attribute is 
also the value of the type attribute of the new SComponent object that will be 
created to represent this scenario component. 

• endToken: The parser uses this attribute to determine when the end of the 
scenario component definition has been reached.   In some cases, this attribute 
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will have the value null, which indicates that the scenario component's definition 
has no terminating token. In these cases, the parser uses the fact that it has 
encountered a valid startToken to determine it has reached the end of the current 
scenario component's definition. 

•    nestedltems.   This attribute contains the types of items that may be nested 
within the begin and end tokens of the specified scenario component definition. 

The scenario source file parser maintains a list of these MetaSyntaxilnit objects.  It 

builds this list from a text-based meta syntax file that contains syntax definitions for each 

type of scenario component that can exist in a scenario source file.   There is a meta 

syntax file for each scenario source type (e.g., SUPPRESSOR, SWEG, EADSIM, etc.). 

A portion of the syntax file for SUPPRESSOR scenario source files is shown in Section 

3.5.2.2, Figure 30. MetaSyntaxilnit objects are the key to the parser's ability to perform 

component generation. 

4.2.2   Component Generation 

SComponent objects are instantiated by a component generator designed 

specifically to parse scenario source files of the specified type and create object trees 

that represent the scenario component definitions in the file parsed. The component 

generator references MetaSyntaxilnit objects to determine how to interpret components 

as they are read from the file. In the Semantic Broker system, all component generators 

must extend the abstract class Parser. 

The Parser class provides a method, load MetaSyntax, to parse the file containing 

the syntax structure for the scenario source file. The syntax structure is provided in a 

text-based file. From this file, MetaSyntaxilnit objects are instantiated. The component 

generator class must implement the Parser class's abstract method 

generateComponents. This method references the data structure containing the 

MetaSyntaxilnit objects to determine how to instantiate each scenario component 

contained in the source file being parsed.  The generateComponents method returns a 
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Java Vector containing the root objects of all scenario components contained in the 

target source file. Component generators instantiate object model representations of 

scenario components for both scenario sources and new signature components being 

added to the Signature Component Database (SCDB). 

4.2.3   Signature Analysis and the SCDB 

The Semantic Broker, as designed and implemented in this research, utilizes 

signature analysis to identify scenario components that may be of interest to the user. 

The signatures are object representations of generic components of a specific scenario 

type. Essentially, a signature component is a complex query structure. A signature can 

be modified by the user to represent scenario components of varying levels of detail. 

For example, the user might select a signature component named "Bomber" from the list 

of available signatures, then modify the signature's sub-components and characteristics 

to match the search criteria. The user could then use the Semantic Broker to retrieve 

source components that match the search criteria (i.e., the signature). 

Since signatures are object representations of generic components of a specific 

scenario type, there is a separate set of signatures for each type of scenario source 

(e.g., SUPPRESSOR, SWEG, etc.) for which the system is capable of searching. The 

SCDB contains a set of object model representations of signature components for the 

various simulator scenario types the system is capable of analyzing. 

The function of signature analysis is performed by the ComponentAnalyzer class in 

conjunction with the analyzeComponents method of the MetaComponent class and the 

analyzeComponents and analyzeAttributes methods of the SComponent class. These 

classes and their inter-relationships are shown in Figure 35. 
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ComponentAnalyzer 
^»signature: MetaComponent 
%sourceComponents: Vector 
%relevantComponents: Vector 

analyzes 

1 

♦getRelevantComponents() 

1 

utilizes 

source component 

1..* 

signature MetaComponent 

1 ♦analyzeComponents() 

0 

sub-component 

\   1 

component 

SComponent 

0..* ♦analyzeComponents() 
♦analyzeAttributes() 

Figure 35: Signature Analysis Classes 

The constructor for the ComponentAnalyzer requires two parameters: a 

MetaComponent signature object, a Java Vector containing a MetaComponent object for 

each set of source components to be analyzed. After instantiating the 

ComponentAnalyzer object, its getRelevantComponents method is called to initiate the 

relevant component retrieval process. This method iterates through the vector of 

MetaComponent objects and calls each object's analyzeComponents method with the 

signature's root MetaComponent object as the parameter. This method, in turn, calls the 

analyzeComponents method of each of the SComponent objects in its components 

vector with the root SComponent object of the signature as the parameter. At this point, 

the process becomes recursive: the SComponent object's analyzeComponents method 
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first calls the object's analyzeAttributes method. This method returns a score based on 

the number of characteristics that match the signature SComponent object's 

characteristics. The analyzeComponents method then iterates through the input 

signature SComponent object's components attribute. For each of the signature's sub- 

components, this method searches the source component's vector of sub-components 

to determine if the source component has a matching type of sub-component. If so, this 

sub-component's analyzeComponents method is called with the signature sub- 

component as the parameter. This recursive process continues until the leaf nodes of 

the signature component's object model have been analyzed. 

The SComponent object's analyzeComponents method returns a double. The 

highest score possible is one and indicates that the source component was the same 

type (e.g. PLAYER-STRUCTURE, COMM-RCVR, etc.) as the signature, and has a sub- 

component object tree that includes all the sub-components of the signature. A score of 

one does not, however, mean the source component is an exact match to the signature 

component. It indicates that the signature component's object model is a subset of the 

source component's model. This requirement can be formally stated as Vcc(cc eS A a e 

R AXCCC), where A is the signature, S is the applicable set of scenario source files, and 

R is the set of relevant components. The set of relevant components is compiled by 

each of the MetaComponent objects and returned to the ComponentAnalyzer object, 

which aggregates all relevant components and returns the entire set. 

The implementation of the Semantic Broker uses a simple object model to represent 

scenario components. This simplicity provides the flexibility necessary to allow the 

model to represent virtually any scenario source type. Specialized parsers are utilized to 

create object representations of scenario components from text definitions—a process 

known as component generation.  Signature analysis is utilized to facilitate the retrieval 
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of relevant scenario components from the available source files. Signature components 

are stored in the Signature Component Database. These functions are performed by 

different components of the Semantic Broker. 

4.3    Semantic Broker Major Components 

The design of the Semantic Broker utilizes multi-agent technologies to provide 

signature-based search capability across distributed platforms. The use of the Java 

programming language enhances the ability of the system to operate in a heterogeneous 

environment. The Semantic Broker system is divided into two main components: the 

SemanticGateway application, and the ScenarioRegistry application. Figure 36 provides 

a system-level view of how these two components interact. 

Through the SemanticGateway application's GUI, the user builds a signature-based 

query to specify, as generically as possible, the kinds of scenario components that are of 

interest. As shown in the figure, the SemanticGateway application sends this search 

criteria to each ScenarioRegistry application. The ScenarioRegistry applications provide 

an interface to all scenario source files present on systems B, C, and D. This interface is 

dual faceted. First, the ScenarioRegistry application provides a GUI through which 

users register scenarios and their associated source files. Second, the ScenarioRegistry 

application provides an agent-based interface to all scenarios contains in its registry. 

When a ScenarioRegistry application receives a relevant component query, it searches 

its applicable scenario source object models and responds with a set of references to 

the relevant components it contains in its Scenario Component Database. 

Once the references to the relevant components have been received, the 

SemanticGateway application allows the user to view each reference's comments and 

retrieve details on a selected component.    Requesting the details of a component 
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reference causes the SemanticGateway application to send a request to the appropriate 

ScenarioRegistry application requesting the details of the component. The 

ScenarioRegistry application responds by returning the entire object model of the 

component to the SemanticGateway application. After the details have been received, 

the user may expand each level of detail to determine if the component is suitable for 

inclusion in a new scenario. If the selected component is a different type (i.e., 

SUPPRESSOR vs. SWEG) than the scenario under construction, the user may, with 

certain limitations, transform the component to the target format. 

C^3 
Figure 36: Semantic Broker System-Level View 

Both the SemanticGateway and ScenarioRegistry applications utilize agent 

technology to perform various functions. The following sections detail the 

implementation of these applications. 
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4.3.1    ScenarioRegistry Application 

The ScenarioRegistry application provides an interface, for both the user and the 

SemanticGateway application, to all scenario source files referenced in its registry. 

Figure 37 provides a class diagram for the ScenarioRegistry application. The 

components of the ScenarioRegistry application perform the following Semantic Broker 

functions: 

• Provide their registry contents on request from the SemanticGatewayAgent 
object. This allows the SemanticGateway application to update its system-wide 
registry of available scenario registry agents. 

• Receive signature-based queries from a SemanticGatewayAgent object, perform 
the query on their registered scenario source files and respond with the set of 
references to the relevant components generated by the query. 

• Respond to requests for the details of a relevant component reference by 
replying with a message containing the entire object model representation of the 
relevant component. 

• Provide a GUI that allows the user to register scenarios and their source files. 

ScenarioRegistry Agent 

1 

references/sends 

sends 

ComponentAnalyzer 

analyzes 

utilizes 

relevant component 

0..* 

1..* MetaComponent 1..* 

SComponent 1..* 

1..* 

Registry Agent 

ScenarioRegistryGUI 

0..* 

RegistrySource 

0..* 

RegistryFile 

generates 

utilizes 

Parser 

Figure 37: ScenarioRegistry Application Class Diagram 
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As the figure shows, there is one ScenarioRegistryAgent object for each 

ScenarioRegistry object. The ScenarioRegistryAgent class provides a machine-to- 

machine interface, via network communications, for the ScenarioRegistry application. 

The ScenarioRegistryGUI class provides a human-to-machine interface to the scenario 

registry. These two components are covered in detail in the following sections. 

4.3.1.1   ScenarioRegistryAgent Class 

The ScenarioRegistryAgent class extends the Agent class of the AFIT Agent MOM 

agent architecture. There is one ScenarioRegistryAgent object for each parent 

ScenarioRegistryGUI object. The ScenarioRegistryAgent object executes in a separate 

thread from its parent and calls methods in its parent to retrieve information in response 

to registry requests and relevant component queries. The ScenarioRegistryAgent 

essentially acts as an information server. It monitors the port specified by the user when 

the ScenarioRegistry application was started. When it receives a request, it spawns 

conversation objects on separate threads and these conversation objects respond to the 

request. Figure 38 shows the class hierarchy of the ScenarioRegistryAgent and 

registryRequestConv_R classes. 

As the figure shows, these "requests" come in the form of Message objects. The 

Message class is part of the AFIT Agent MOM architecture as are the Agent and 

Conversation classes. The ScenarioRegistryAgent and registryRequestConv_R classes 

extend the Agent class and Conversation class respectively. When a Message object is 

received, the ScenarioRegistryAgent creates a registryRequestConv_R object to 

respond. The constructor of this object is passed the Message object, a parent object 

(the agent that created it), an ObjectlnputStream object, and an ObjectOutputStream 

object.    Then the run method of the object is called.    Based on the value of the 
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performative attribute of the Message object, the registryRequestConv_R object calls the 

appropriate method in its parent object to obtain the result set it requires. Once the 

result set has been received, this object writes a Message object containing the result 

set to the ObjectOutputStream. 

Agent 
^>name: String 
^>port: int 

7T 

ScenarioRegistryAgent 
^>parent: ScenarioRegistryGUI 

♦run() 
*retrieveRelevantComponents() 
*getRegistry() 

Conversation 
^>parent: Agent 
^connect: Socket 
%>input: ObjectlnputStream 
^output: ObjectOutputStream 
^>m: Message 
S^connectionHost: String 
^»connectionPort: int 

♦sendMessage() 

receives TV 

Message 
^>host: String 
^>port: int 
^performative: String 
^content: Object 

sends 

responds with o.: registryRequestConv_R 

♦run() 

Figure 38: ScenarioRegistryAgent Class Hierarchy 

The ScenarioRegistryAgent acts as an interface to the scenario registry through 

which the SemanticGateway application can request registry information, signature- 

based queries, and relevant component details. Essentially, the ScenarioRegistryAgent 

provides the machine-to-machine interface to the object model representation of the 

scenario source files on the ScenarioRegistry application's host machine. The human- 

to-machine interface to these resources is provided by objects of the 

ScenarioRegistryGUI class. 

85 



4.3.1.2  ScenarioRegistryGUI Class 

The ScenarioRegistryGUI provides the user interface to the scenario source files in 

the scenario registry. Objects of this class permit a user to register scenario source type 

agent entries and add scenarios and their associated files. Figure 39 shows the class 

diagram for the data contained in the scenario registry. 

ScenarioRegistryGUI 
registry : Vector of RegistryAgent 

RegistryAgent 
^>type: String 
%>host: String 
%port: int 
%name: String 
^>sourceParsers : Vector of String 
^scenarios : Vector of RegistrySource 
^>msfFile: String 

"0" 

RegistryFile 
^name: String 
Sparser: String 0.. 

O 

0..* 

RegistrySource 
%name: String 
^location : String 
^>files : Vector of RegistryFile 

Figure 39: Scenario Registry Data Class Diagram 

The ScenarioRegistryGUI class' attribute registry is a Java Vector that contains 

instances of the RegistryAgent class. There is a RegistryAgent object for each scenario 

source type registered in the registry database. The attributes of the RegistryAgent 

class are: 

• type:      This   attribute   contains   the   type   of   scenario   source   files   (e.g. 
SUPPRESSOR, SWEG, etc.) referenced by the RegistryAgent object. 

• host The name of the system on which this ScenarioRegistryAgent operates. 

• port The port number on which the ScenarioRegistryAgent operates. 

• name: The name of the RegistryAgent object. 
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• sourceParsers: This attribute is a Vector containing String objects that 
reference scenario source file parser classes. Java's reflection tools are utilized 
to instantiate objects from these strings at runtime. 

• msfFile: This attribute is a String object that contains the name of the meta 
syntax file containing the scenario component syntax definitions for the type of 
scenario source files this RegistryAgent object references. 

• scenarios: This attribute is a Vector that contains RegistrySource objects. 

A RegistrySource object represents a simulation scenario, and there is one 

RegistrySource object for each scenario registered with a RegistryAgent object. The 

attributes of the RegistrySource class are: 

• name: This attribute is a String object that contains the name of the scenario. 

• location: This attribute is a String object that contains the path to this scenario's 
files. 

• files: This attribute is a Vector that contains RegistryFile objects. 

A RegistryFile object represents a source file for a given scenario. RegistryFile 

objects have two attributes: 

• name: This attribute is a String object that contains the filename of the 
referenced scenario source file. 

• parser. This attribute contains the class name of the Parser that knows how to 
generate components from the scenario source file referenced by this 
RegistryFile object. Java's reflection tools are used to instantiate the appropriate 
Parser object from the string contained in this attribute. 

The ScenarioRegistry application is initialized by executing the main method of the 

ScenarioRegistryGUI class and providing the desired port number as a command-line 

argument. The main method creates a ScenarioRegistryGUI object. The 

ScenarioRegistryGUI class extends the java.swing.JFrame class and its constructor 

performs the following initialization functions: 

• Creates a ScenarioRegistryAgent object and executes it on a separate thread. 

• Loads its stored registry contents into memory. 

• Generates a JTree representation of the registry's contents. 
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The main method then displays the ScenarioRegistryGUI object by calling its show 

method. This causes the window shown in Figure 40 to be displayed. 

ffl*) Scenario Registry Agent (Host: enntOSH, Pott: 2500] 

J Source Agents 
ü 

B 

Q. 

B- 

B- 

•# Meta Syntax File: SUPPRESSOR.MSF 
Cjj Source Parsers 

1 ♦ SourceSuppParser ^  
C|S Sample3 (D:\SUPPRESSOR\Sampte3) 

1 ♦ tdb_51 .dat (Parser Class: SourceSuppParser) 
_J Sample (D:\SUPPRESSOR\Sample)     A  

1 # tdb_52.dat (Parser Class: SourceSuppParser) 
*i Sample2 (D:\SUPPRESSOR\Sample2) 

-   ♦ tdb_54.dat (Parser Class: SourceSuppParser) 

■A 

-B 
-C 

D 

E 

Figure 40: ScenarioRegistryGUI Window 

As shown in the figure, the ScenarioRegistryGUI displays the contents of its registry 

in a JTree. The title area of the window displays the name of the host machine and the 

port the ScenarioRegistryAgent object is monitoring. In the figure, the nodes of the 

JTree have been labeled to allow a cross-reference between this figure and the objects 

of the underlying data structure shown in Figure 39. 

A. This node was generated from a RegistryAgent object contained in the 
ScenarioRegistryGUI object's registry Vector. The fact that there is only one 
child node at this level indicates that there is only one RegistryAgent object in the 
registry Vector. 

B. This node displays the value of the msfFile attribute of the RegistryAgent object 
referenced by A. 

C. This node references a source parser class name. This node was generated 
from the String object(s) contained in the RegistryAgent object's sourceParsers 
Vector. 

D. This node displays the contents of a RegistrySource object. 

E. This node displays the contents of a RegistryFile object. The class name of the 
Parser object that will be used to parse the file referenced is displayed in 
parentheses after the filename. 
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The user can update the contents of the registry by selecting an item with the 

mouse and clicking the right mouse button to display a popup menu. Through this 

menu, the user can add, delete and modify RegistryAgent, RegistrySource, and 

RegistryFile objects. 

The ScenarioRegistry application provides an interface to the scenarios referenced 

in its registry. It responds to requests for its registry data and signature-based queries, 

and sends the specified data to the requestor. This is a portion of the overall 

functionality of the Semantic Broker. The functions of signature selection, system-wide 

scenario source registration, aggregation of all relevant component queries, and 

component transformation lie in the SemanticGateway application. 

4.3.2   SemanticGateway Application 

The SemanticGateway application is the core component of the Semantic Broker, 

and provides access to the system-wide source registry, signature selector, component 

retrieval, and transformation of selected relevant components. Figure 41 shows a high- 

level class diagram for the SemanticGateway application. The SemanticGatewayAgent 

SourceRegistryGUI classes are covered in detail in subsequent sections, and the 

TransformEngine and ComponentViewer classes are discussed in Section 4.3.5, which 

covers component transformation. The SourceRegistry class is covered in Section 

4.3.2.2 in conjunction with the SourceRegistryGUI class. 

Notably absent from this diagram is the ComponentAnalyzer class. 

ComponentAnalyzer objects are utilized to perform a signature-based query on a 

collection of scenario components and determine which, if any, should be included in the 

set of relevant components returned to the user. Relevant component retrieval is a core 

function of the semantic broker; however, this process is conducted in each of the 
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ScenarioRegistry applications referenced by the RegistryAgent objects in the system- 

wide source registry. 

SemanticGateway 

SemanticGatewayAgent SourceRegistry 

0.: 
0..*    signature 

relevant component 

MetaComponent 

TransformEngine ComponentViewer 

SourceRegistryGUI 
transforms displays 

1--*\ /I..* 

MetaComponent 

SComponent 

Figure 41: SemanticGateway Application Class Diagram 

Figure 42 shows the SemanticGateway application window at initialization. The title 

area of the window displays the name of the host machine and the port the 

SemanticGatewayAgent is monitoring. In the figure, the upper half of the window is 

divided into two panes. The upper pane displays the list of relevant components 

returned in response to a signature component based query. The lower pane displays 

the comments associated with the selected component or sub-component. The lower 

half of the window displays the currently selected signature. The menu bar at the top of 

the window provides access to the source registry, signature selection, component 

retrieval, and component transformation functions. 
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Figure 42: SemanticGateway Application 

The SemanticGateway application requests and receives registry information from 

each Scenario-Registry application, and also sends signature-based queries to these 

applications. To facilitate the retrieval of these data, the SemanticGateway creates an 

instance of a SemanticGatewayAgent object and executes it in a separate thread. 

4.3.2.1   SemanticGatewayAgent Class 

The class diagram of the SemanticGatewayAgent is shown in Figure 43.   The 

diagram shows the AFIT Agent MOM base Agent and  Conversation classes the 

SemanticGatewayAgent and registryRequestConvJ classes extend.   Since there may 

be   multiple   ScenarioRegistryAgents,   distributed   across   multiple   machines,   the 

SemanticGatewayAgent must create a separate conversation with each agent to request 
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its results. The SemanticGatewayAgent must keep track of all these conversations, so it 

knows when all responses have been received. 

To deal with this problem, the responsibility of tracking conversation progress has 

been delegated to the SemanticProcess class. When the SemanticGateway calls the 

retrieveRelevantComponents or getRegistry method of the SemanticGatewayAgent a 

SemanticProcess object is created with the appropriate type attribute value (getRelevant 

or sendRegistry) and a unique processNo attribute value. As new 

registryRequestConvJ objects are created, they are added to the SemanticProcess 

object's conversations vector. As each of these conversations receives its reply, it calls 

the addToResultSet method of its process attribute object with a vector containing its 

results as the parameter. The SemanticProcess object's addToResultSet method adds 

the contents of the input vector to its resultSet attribute, decrements its activeConvCount 

attribute by one, and checks this attribute to determine if its value is less than one. If this 

test passes, all replies have been received and the processComplete method of its 

parent object is called with itself as the parameter. The SemanticGatewayAgent object's 

processComplete method calls the appropriate method of its parent, based on the value 

of the SemanticProcess parameter's type attribute, and passes the SemanticProcess 

object's resultSet as the argument. The SemanticProcess object is then deleted from 

the processes attribute of the SemanticGatewayAgent. 

The SemanticGatewayAgent initiates conversations with ScenarioRegistryAgent 

objects to request registry data and signature queries, then collects the result sets from 

those agent's replies. Since there may be multiple ScenarioRegistryAgents distributed 

across several systems, the SemanticGateway application provides the capability to 

register and track these agents. This is accomplished through the source registry. 
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Agent 

%>name: String 
%port: int 

~K 

SemanticGateway 
^>agent: SemanticGatewayAgent 

♦updateRelevant() 
♦addToRegistry() 

parent 1 

1 

SemanticGatewayAgent 
^parent: SemanticGateway 
(^processes : Vector of SemanticProcess 

♦run() 
%etrieveRelevantComponents() 
*getRegistry() 
*processComplete() 

Conversation 
%>parent: Agent 
^.connect: Socket 
%input: ObjectlnputStream 
%output: ObjectOutputStream 
%m : Message 
^connectionHost: String 
ibconnectionPort: int 

♦sendMessage() 

0..* 

SemanticProcess 
%type: String 
%processNo: long 
%activeConvCount: int 
^resultSet: Vector 
%parent: SemanticGatewayAgent 
^conversations : Vector of Conversation 

♦getResultSet() 
♦addToResultSet() 

Figure 43: SemanticGatewayAgent Class Diagram 

4.3.2.2   Source Registry 

In the Semantic Broker architecture, the source registry contains all information 

required by the broker to access metadata and data files needed to generate scenario 

component object models, search for relevant components, and transform selected 

components   to   a   target   format.      This   includes   keeping   track   of   available 

ScenarioRegistryAgent objects. 

The functionality of the source registry is contained in the SourceRegistryGUI and 

SourceRegistry classes.   SourceRegistryGUI objects present the user with a means of 

reviewing and updating the contents of the system-wide source registry. SourceRegistry 
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objects are created by the SemanticGateway parent object during its initialization to 

instantiate the source registry data structure stored format. Figure 44 shows the classes 

that are part of the source registry portion of the SemanticGateway application. 

SemanticGateway 

l|>sourceRegistry: Vector 

♦setRegistry() 

SourceRegistryGUI 

(%parentObject: SemanticGateway 
^sourceTypes : Vector of RegistryType 

RegistryType 

^name: String 
^sigParser: String 
^msfFile: String 
^sigDataFile: String 
^sourceParsers : Vector of String 
^transforms : Vector of RegistryTransform 
^scenarios: Vector of RegistryAgent 

RegistryTransform 

Q^name: String 
^commentDelimiter: String 
^sourceType: String 
^targetType: String 
^xFormMDFile: String 
^xFormClasses : Vector of String 

O- 

-O. 

SourceRegistry 

^sourceTypes: Vector of RegistryType 

♦getSourcesf,) 

RegistryAgent 

d^type: String 
<%host: String 
(%port: int 
d^name: String 
^sourceParsers: Vector of String 
^scenarios : Vector of RegistrySource 
^msfFile: String 

RegistrySource 

^name: String 
(^location: String 
^files : Vector of RegistryFile 

0 

RegistryFile 

§>name: String 
»parser: String 

Figure 44: Source Registry Class Diagram 

The SourceRegistryGUI and SourceRegistry classes each contain a Vector of 

RegistryType objects. A RegistryType object represents a simulator type (e.g. 

SUPPRESSOR) and its attributes contain the file names for signature data and 

metadata, as well as a string representing the class name for the signature Parser sub- 

class.   Java's reflection mechanisms are employed to instantiate the applicable Parser 
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object from its string representation. Additionally, a RegistryType object contains a 

vector of RegistryTransform objects and a vector of RegistryAgent objects. 

RegistryTransform objects represent a particular transformation process (e.g. 

SUPPRESSOR-to-SWEG). RegistryTransform objects contain sourceType and 

targetType attributes, a string representing the name of the file that contains the 

transformation metadata, and a vector of String objects that contains the names of the 

transform classes. As with the parser in the RegistryType object, Java's reflection tools 

are utilized to instantiate the applicable transforms from the String objects in the 

xFormClasses vector attribute. 

The RegistryAgent, RegistrySource, and RegistryFile classes are discussed in detail 

in Section 4.3.1.2. A RegistryType object's scenarios attribute contains a RegistryAgent 

object for each ScenarioRegistryAgent referenced in the system-wide source registry 

and a RegistryTransform object for each transformation (e.g., SUPPRESSOR-to-SWEG) 

available for the applicable scenario type. 

Figure 45 the Graphical User Interface (GUI) for the source registry. The GUI 

utilizes a Java JTree to graphically represent the organization of the source registry 

data. 

In the figure, the letters provide a cross-reference between the JTree nodes in the 

figure and the underlying data structure presented in Figure 44. 

A. RegistryType: This object registers SUPPRESSOR as a source type for 
scenario components. After the name of the source type, the GUI displays the 
number of scenario agents that have been registered for that source type. The 
tree displays the class name of the signature parser, and the file names of the 
signature file and the syntax metadata file. It is important to note here that the 
signature file listed in this tree is accessed when adding new signatures to the 
SCDB. This file is text based and must be parsed and converted to object form. 

B. RegistryTransform: This object registers the SUPPRESSOR - SWEG 
transformation capability. The source and target type attributes are listed as well 
as the filename of the transformation metadata file and the comment delimiter for 

95 



the target type scenario format. The comment delimiter is used where a 
component, or portion thereof, cannot be transformed to the target format. In 
these cases, the name of the untranslatable source component is commented to 
notify the user of the transformation anomaly. 

C. This node's children are the names of the Transform classes for this 
transformation capability. See Section 4.3.5 for details on how transformations 
are accomplished in the Semantic Broker system. 

D. RegistryAgent: This object registers a SUPPRESSOR ScenarioRegistryAgent 
located on host ennto5li, port 2500. Each time the SemanticGateway application 
is started or the source registry is updated, the registry will request an update 
from each registered ScenarioRegistryAgent to determine whether each is 
operational. Registry entries for RegistryAgent objects that reference 
ScenarioRegistryAgent objects that are unavailable will have UNAVAILABLE 
displayed after their host name and port number. 

.^Source Hegistrw HEI 13 

3 Source Types 
B §3 SUPPRESSOR (1 Scenario Agents)   -^ ^ 

} * Signature Parser SigSuppParser 
f # Signature File: SUPPRESSOR.MDF 
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\ « Source Type: SUPPRESSOR 
\   * Target Type: SWEG 
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- * tdb_52.dat (Parser Class: SourceSuppParser) 
fi £| Sample2 (D:\SUPPRESSOR\Sample2) 

■ ♦ tdb_54.dat (Parser Class: SourceSuppParser) 
B-tp Sample3 (D:\SUPPRESSOR\Sample3) 

1 # tdb_51 .dat (Parser Class: SourceSuppParser) 

Figure 45: Source Registry Graphical User Interface 

The source registry allows the user to configure the Semantic Broker to recognize 

the available scenario types, sources and files, and the necessary Parser and Transform 
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sub-classes. Once the source registry has been configured, a signature can be used to 

retrieve relevant components. 

4.3.2.3   Component Retrieval 

Component  retrieval  is  one  of the  core  functions  of the  SemanticGateway 

application. Component retrieval provides the user with the capability to identify existing 

scenario components for reuse in a simulation scenario currently under development. 

Since, under the scheme developed in this research, reusable components are identified 

based on their similarity to a signature component, component retrieval begins with 

signature selection. 

Signature Selection 

The Semantic Broker maintains all signature components in the SCDB. Objects of 

the SignatureSelector class provide the user with a GUI that allows the modification, 

deletion, and selection of signature components. The Signature Selector window is 

accessed via the Search menu of the SemanticGateway application. 

The SignatureSelector window is shown in Figure 46. The SignatureSelector GUI 

uses a JTree to display the hierarchical structure of the signature components. 

Selecting a signature component with the mouse causes the comments for that 

signature to be displayed in the lower pane of the window. These comments can be 

updated by the user to enhance future user's understanding of the signature's 

capabilities and limitations. This is accomplished by updating the text in the Comments 

for Selected Signature text area and clicking the Update Comments button. 

Modification and deletion of existing sub-components, as well as the addition of new 

sub-components and characteristics, is possible via a popup menu displayed when the 

right mouse button is depressed and released. 
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Figure 46: SignatureSelector Window 

Figure 47 shows the SignatureSelector object's popup menu. The Mandatory and 

Optional menu items allow the user to tell the search engine whether a particular sub- 

component is absolutely essential for a source component to be included in the set of 

relevant components compiled during the search. The Add, Edit, and Delete menu 

items are self-explanatory, and the Select menu item sets the currently selected 

component as the search signature that will be used by the SemanticGateway 

application for relevant component retrievals. The Select button in the upper right-hand 

portion of the window serves the same function as the Select menu item. Selecting a 

signature component via either method causes the SignatureSelector object to display 

an information dialog box verifying the users signature selection. 

The SignatureSelector is terminated by closing the window. This action updates the 

SCDB to reflect any changes accomplished by the user. After a signature has been 

selected, relevant components can be retrieved from the available scenario sources. 
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Figure 47: SignatureSelector Popup Menu 

Relevant Component Retrieval 

Source component analysis is performed by measuring a source component's 

degree of similarity to the selected signature component. Essentially, the signature 

component is a query structure, and source components are scored on how well they 

meet the query criteria. The subject of signature analysis was covered in Section 4.2.3. 

Figure 48 shows the SemanticGateway window after the signature selection 

process has been completed. The selected signature component, an Airborne 

Controller, is displayed in the lower half of the window. To retrieve relevant source 

components, the user selects Retrieve Relevant Components from the Search menu. 
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Figure 48: SemanticGateway Application with Signature Selected 

This action causes the SemanticGateway object to call the 

retrieveRelevantComponents method of its SemanticGatewayAgent object. The 

SemanticGatewayAgent accesses the source registry's collection of available 

RegistryAgent objects and initiates a conversation with each referenced agent. Each 

agent queries its collection of scenario source files, and returns the resulting set of 

relevant component references to the Conversation object that initiated the conversation. 

As each conversation terminates, its results are included in the overall result set. After 

all conversations have terminated, the SemanticGatewayAgent calls the updateRelevant 

method of its parent SemanticGateway object. This effectively updates the list of 

relevant component references displayed in the upper half of the SemanticGateway 

window. The resulting updated SemanticGateway window is shown in Figure 49. 
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Figure 49: SemanticGateway Window After Relevant Component Retrieval Process 

The relevant component references are displayed in the upper half of the window, 

and the comments associated with the selected relevant component reference are 

displayed in the text area below the relevant component pane. Here again, a JTree is 

used to display the hierarchical structure of the relevant source components. The 

relevant component references are sorted in descending order based on their relevance 

score. As discussed in Section 4.2.3, a relevance score of T indicates that the source 

component contains the entire structure and characteristics of the signature exactly. 

By selecting a relevant component reference, clicking the right mouse button, and 

selecting Retrieve Component Details from the popup menu; the user directs the 

SemanticGateway to retrieve the entire object model for the selected reference. This 

menu is shown in Figure 50.   The SemanticGateway retrieves the object model by 
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calling the getCompDetails method of its SemanticGatewayAgent object. The 

SemanticGatewayAgent object creates a registryRequestConvJ object and passes it a 

Message object with attribute performative equal to getCompDetails and attribute 

content equal to the relevant component reference. The registryRequestConvJ object 

then contacts the ScenarioRegistry application indicated by the relevant component 

reference. 
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Figure 50: SemanticGateway: Retrieve Component Details Menu 

After the ScenarioRegistry application responds with the object model, the model's 

nodes are added to the appropriate relevant component reference node. The user can 

then expand the relevant component and examine its sub-components to determine if it 

is suitable for reuse in a new scenario. Figure 51 shows the SemanticGateway window 

after the details for the selected relevant component reference have been retrieved and 
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the JTree updated.   Once selected for reuse, a component formatted for a different 

simulator type than required must be transformed to the desired format. 
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F/gt/re 51: SemanticGateway: Component Details Expanded 

4.3.2.4   Component Transformation 

The SemanticGateway divides transformations into six categories [LSA98].  These 

were discussed in detail in Section 3.5.2.4. Transformations are performed by an 

instance of the TransformEngine class. Transformation metadata is utilized to determine 

which class of transform object to use to translate a specific component or sub- 

component. References to this metadata and the transform classes used during the 

transformation process are contained in the source registry. The use of transformation 

metadata allows the methods of the TransformEngine class to be generic, and the 

division of the transforms into categories permits large components to be translated one 
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sub-component at a time. This avoids the problem of one untranslatable sub-component 

rendering the entire component untranslatable. The specifics of the transformation 

process are moved into the transform classes. This feature makes the system more 

easily extendable, since none of the core source code requires modification to add a 

new transformation (e.g. SUPPRESSOR - SWEG, SUPPRESSOR - JIMM, etc.). 

In Chapter 3 of this work, a class diagram is described for the proposed design of 

the transformation portion of the SemanticGateway application. This class diagram is 

shown in Section 3.4.2.3, Figure 32. A more detailed diagram that shows the actual 

implementation of the classes of the transformation sub-system is shown in Figure 52. 

In the Semantic Broker architecture, all transform classes must extend the Transform 

class. This research developed the Transform sub-classes necessary to translate 

SUPPRESSOR scenario components to SWEG components. The abstract class 

Transform contains the abstract method transform, and each class that extends it must 

provide its implementation of this method. 

The Semantic Broker architecture requires that a transform class be provided for 

each of the six transform categories detailed in Section 3.3.4, Figure 26. These classes 

are referenced in the source registry via String objects that contain their class names. 

Reflection is utilized to instantiate objects from the registry's string reference. There is 

no requirement that the transforms for the six categories be unique, so, for example, the 

same transform class name could be provided for both Category 5 and Category 6 

transformations. 

The SemanticGateway application performs transformations by creating a 

TransformEngine object and passing to it the appropriate RegistryTransform object. The 

constructor of the TransformEngine class performs the following functions: 
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• Extracts the source and target types, the Transform class string references, and 
the transformation metadata filename from the RegistryTransform object. 

• Instantiates the Transform sub-classes referenced in the RegistryTransform 
object by calling its getTransforms method. This method utilizes Java's reflection 
tools to instantiate Transform objects from the strings stored in the xFormClasses 
attribute of the RegistryTransform object. 

• Creates an MDParser object for the metadata file referenced by the 
RegistryTransform object. 

• Calls the loadXFormMetadata method to initialize the xFormMD attribute with the 
transformation metadata. 

MDParser 
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(^xFormMDFile: BuffereReader 
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TransformEngine 

^xFormMD: Vector 
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Figure 52: Transformation Sub-System Class Diagram 

The SemanticGateway application then calls the TransformEngine object's 

xFormModel method and passes the root object of the selected scenario source 

component as the argument.    This method calls the xFormComp method, which 
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transforms the SComponent object passed as the argument to the xFormModel method. 

Figure 53 contains the source code for the xFormModel and xFormComp methods. 

public SComponent xFormModel(SComponent o) 
{ 
this.sourceComp = o; 
SComponent rtn = null; 

// Transform input parameter 'o1 

rtn = xFormComp(o); 

// Transform the sub-components of input parameter 'o' 
// and add them to the transformed component. 
int i ; 
Vector comps = o.getComponents(); 
for (i =0; i < comps.size(); i++) 
rtn.addComponent(xFormModel((SComponent)comps.get(i))); 

return rtn; 
} 

public SComponent xFormComp (SComponent o) / xFormModol 
{ /     method called 

SComponent rtn; recursively for 
// Find transform metadata object. If not found ' 
// abort component transformation. 
TransformMD xformMD = f indXFormMD (o. getType () ) ;  ^Component 
if (xformMD == null) 

return null; 

// Retrieve Transform sub-class object based on category 
// data contained in tranformation metadata object. If 
// transform is null abort. 
Transform xform = (Transform)this.xForms. 

get (xformMD. getCategoryO - 1) ; 
if (xform == null) 

return null; 

// Set transform metadata, then call Transform object's 
// transform method- with source component as parameter, 
xform.setXFormMD(xformMD); 
rtn = xform.transform(o); 
return rtn; 

} 

Figure 53: TransformEngine Class xFormModel and xFormComp Methods 

The xFormComp method translates the name of the component and its 

characteristics. The sub-components of the argument are ignored by this method. The 

sub-components are each treated as the root of another scenario component object 
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model. Therefore, for each sub-component, the xFormModel method is called 

recursively with the sub-component's root object as the parameter. This design feature 

allows a portion of a scenario component to be untranslatable without rendering the 

entire component untranslatable. A component that cannot be transformed is simply 

annotated as such, and the process continues with its sub-components. As can be 

discerned from closely examining the source code of the xFormModel method, the 

component parameter is translated first using the xFormComp method, then the 

xFormModel method is called recursively for each of the sub-components. This line in 

the source code of Figure 51 is identified by the callout. This process continues until the 

leaf nodes of the source component have been reached and transformed. 

Figure 54 provides a graphical representation of the how these two methods are 

employed to transform scenario components. As the figure shows, the non- 

SComponent attributes of the SComponent object passed to the xFormModel method 

are transformed by the xFormComp method. The SComponent attributes, those 

contained in the components attribute, are transformed individually by recursively calling 

xFormModel n times, where n is the number of SComponent objects in the 

"components" Vector attribute of the current SComponent object. 

In the figure, the SComponent objects are labeled (i.e. A, A.1, A.2, A.2.1, ...) to 

indicate their hierarchical relationship. Only the root of the transformed component is 

shown (with T suffix). Of course, the object model shown in Figure 54 is very small and 

the object representation of almost any scenario component is many times more 

complex. After the leaf nodes of the component object model have been transformed, 

and the recursive calls have terminated, the original call to xFormModel returns the root 

of the transformed component to the SemanticGateway application. 
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Figure 54: Component Transformation Process 

To transform a scenario component, the user first completes the signature selection 

and relevant component retrieval processes. Once this is done, the user selects a 

component from the relevant component list, then selects a transformation option from 

those listed in the Transform Component sub-menu of the Transformation menu. Figure 

55 shows the SemanticGateway window with this popup menu displayed. 
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Figure 55: Transformation Menu of the SemanticGateway 

In the figure, there is only one transformation option listed. This is because the 

Transform Component sub-menu items are generated automatically based on the 

available RegistryTransform objects in the source registry. By selecting the 

SUPPRESSOR - Sl/VEG transformation option, the user causes the SemanticGateway 

application to execute its transformComponent method, which effectively translates the 

selected component to the target format (i.e., SWEG). The resulting transformed 

component is displayed in an instance of the ComponentViewer class. The 

ComponentViewer class provides a GUI that allows the user to inspect the transformed 

component. The ComponentViewer window with the transformed SUPPRESSOR 

scenario component is shown in Figure 56. 
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Figure 56: ComponentViewer Window 

As shown in the comments pane of the ComponentViewer window in Figure 56, the 

SemanticGateway application's transformComponent method annotates the comments 

of the transformed component to ensure that future users of the component will know the 

original scenario format and the scenario file from which it was transformed. 

The design of the tranformation sub-system allows sub-components to be 

untranslatable without rendering the entire component unusable. In Figure 57, the JTree 

has been expanded to show some of the TACTIC sub-components that could not be 

transformed because they are not available in the target format. 

These items are identified by the "$ ITEM NOT AVAILABLE IN TARGET FORMAT: 

<SOURCE TYPE>." The '$' is the comment delimiter for the target format. This item is 

configurable in the source registry by editing the associated RegistryTransform object. 

Annotating the untranslatable sub-components allows the user to easily identify where 
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transformation  problems  occurred  and  which  sub-components  must  be  manually 

translated. 
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Figure 57: Transformed Component with Untranslatable Components 

Since the goal of this research did not include developing a repository for 

transformed components or developing facilities to construct new scenarios from the 

transformed components, transformed components are discarded when the 

ComponentViewer window is closed. 

4.3.3   SemanticGateway- ScenarioRegistry Interaction 

The purpose of this section is to give the reader a better understanding of the 

interaction between the SemanticGateway application and the ScenarioRegistry 

applications. Figure 58 shows the primary classes of each application. 

The figure shows the applications, their agents, and the conversation objects that 

communicate between them.     Network communication via Java Socket objects is 

111 



depicted by dashed lines. In the figure there is only one ScenarioRegistry application, 

so only one registryRequestConvJ object was created by the SemanticGatewayAgent 

to contact it. In practice there could be multiple ScenarioRegistry applications. In these 

cases a separate registryRequestConvJ object would be created to connect with and 

request information from each ScenarioRegistryAgent. 

SemanticGateway 

^agent: SemanticGatewayAgent 

♦updateRelevant() 
♦addToRegistryf) 

ScenarioRegistryGUI 

^agent: ScenarioRegistryAgent 

1 

SemanticGatewayAgent 

♦retrieveRelevantComponents() 
♦getRegistryf) 
%>rocessComplete() 

> 

0..* 

SemanticProcess 

♦addToResultSet<) 
♦addConversation() 

0 

ScenarioRegistryAgent 

♦retrieveRelevantComponents() 
♦getRegistry() 

Message 

registryRequestConvJ 

^process: SemanticProcess 

♦sendMessage() 
♦receiveMsg() 

responds with 

1 

registryRequestConv_R 

^parent: ScenarioRegistryAgent 

♦sendMessage() 

Figure 58: SemanticGateway - ScenarioRegistry Interaction 

4.4    Semantic Broker Demonstration 

This section begins with a discussion of the supporting software required to compile 

and run the semantic broker system. Next the virtual machine, compiler, and hardware 

platforms are discussed. Finally, the software is configured and tested to determine 

relevant component retrieval feasibility in operational conditions. 
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4.4.1 Java Packages 

In order to compile and execute the semantic broker software, the afit.mom package 

must be available. This package contains the base classes for the AFIT Agent MOM 

multi-agent development API. The location of this package is critical. For example, if 

the semantic broker software is in the C:\CERTCORT\SemanticBroker directory, the 

afit.mom class files must be in the C:\CERTCORT\SemanticBroker\afit\mom directory. 

All other packages imported by the semantic broker software are part of the standard 

Java packages delivered with Sun Microsystems' Java Development Kit 1.3 (JDK 1.3). 

4.4.2 Hardware and Software Platforms 

The semantic broker software has been developed in the Java programming 

language with the latest release (1.3) as its preferred runtime environment. Although 

developed and tested on the Windows NT/Intel platform, the portability of the Java 

language, with its platform independent Java Virtual Machine (JVM), makes the 

semantic broker capable of operation across heterogeneous platforms without 

modification of the source code. 

4.4.3 Component Retrieval Test Cases 

In order to determine the feasibility of using this component retrieval tool when 

reasonably large numbers of scenario source files are available, the Scenario 

Component Database for the test cases was constructed from 40 SUPPRESSOR 

scenario TDB files. Each of the 40 source files contained 21 PLAYER-STRUCTURE 

components, and the total size of the test database was approximately 10.7 mega bytes 

(MB) on each ScenarioRegistry machine. Two separate hardware configurations were 

employed during testing. The first tests the software on homogeneous platforms, and 

the second compares retrieval times across heterogeneous systems. 
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4.4.3.1   Homogeneous Test Configuration 

Figure 59 shows the configuration of the hardware and software utilized for the 

homogeneous tests.  All hardware platforms involved in this testing were Intel Pentium 

based workstations running Microsoft Windows NT. The semantic broker software was 

compiled under Sun Microsystems' JDK 1.3, and each workstation was running version 

1.3 of the Java Virtual Machine (JVM).    The tests utilized four separate signature 

components, and the component retrieval process was conducted five times for each 

signature—at a different sensitivity threshold each time. 

Hardware: 
Intel Pentium II, 500 MHz 
128 MB RAM 

Software: 
OS: Windows NT 4.0 
JVM: 1.3 

ScenarioRegistry 

Hardware: 
Intel Pentium II, 500 MHz 
128 MB RAM 

Software: 
OS: Windows NT 4.0 
JVM: 1.3 

SemanticGateway 

Hardware: 
Intel Pentium II, 500 MHz 
128 MB RAM 

Software: 
OS: Windows NT 4.0 
JVM: -1.3 

ScenarioRegistry 

-i—r r^=) T—r r^=i 

Signature Component Utilized 
Threshold 

0.5 0.6 0.7 0.8 0.9 
Bomber (Penetrator) 532/2.45 304/2.19 228/2.17 76/2.1 76/2.09 
COMM-RCVR112 380/0.34 380/0.36 380/0.45 380/0.41 380/0.44 
Airborne Controller 608/3.17 304/2.96 152/2.91 76/2.87 76/2.86 
Fighter (Ground Attack Aircraft) 380/2.53 304/2.65 152/2.45 152/2.44 152/2.44 

Figure 59: Homogeneous Test Configuration 

This configuration utilized two workstations running the ScenarioRegistry 

application. Each of these applications accessed a Scenario Component Database of 

10.7 MB. Therefore the total search space for these test cases was approximately 22 

MB. Figure 59 also contains the results of the tests in the table in the lower portion of 

the figure. The left column lists the signature component utilized, and the remaining five 
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columns show the number of components retrieved/retrieval time (sec) for each of the 

sensitivity thresholds. 

Contrary to what might be expected, the retrieval times were reasonably consistent 

regardless of the sensitivity threshold setting. The higher the threshold setting, the 

higher a source component's relevance score must be in order to be included in the 

relevant component set returned to the SemanticGateway application. At a higher 

threshold setting, there are fewer relevant component references returned by each 

ScenarioRegistry application. The heterogeneous tests showed similar results. 

4.4.3.2   Heterogeneous Test Configuration 

The second configuration tested the semantic broker software in a heterogeneous 

environment. This configuration is depicted in Figure 60. 

Hardware: 
Sun Ultra 10 

1 GBRAM 
Software: 

OS: Solaris 
JVM: 1.2.1 

ScenarioRegistry 

Hardware: 
Intel Pentium II, 500 MHz 
128 MB RAM 

Software: 
OS: Windows NT 4.0 
JVM: 1.3 

SemanticGateway 

Hardware: 
Sun Ultra 10 
1 GBRAM 

Software: 
OS: Solaris 
JVM: 1.2.1 

ScenarioRegistry 

T—T 

Signature Component Utilized 
Threshold 

0.5 0.6 0.7 0.8 0.9 
Bomber (Penetrator) 532/4.71 304/4.6 228/4.57 76/4.54 76/4.54 
COMM-RCVR112 380/0.46 380/0.41 380/0.39 380/0.40 380/0.42 
Airborne Controller 608/6.25 304/6.04 152/5.99 76/5.95 76/5.97 
Fighter (Ground Attack Aircraft) 380/5.12 304/4.95 152/4.87 152/4.86 152/4.87 

Figure 60: Heterogeneous Test Configuration 

As the figure shows, this configuration employed two Sun Microsystems Ultra 10 

workstations   running   the   ScenarioRegistry  applications.      Each   Sun   workstation 
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contained 1 giga byte (GB) of memory. Version 1.2.1 of Sun Microsystems' JVM was 

installed on these machines. An Intel Pentium based workstation was utilized to run the 

SemanticGateway application. This machine had 128 MB of memory and version 1.3 of 

the JVM. 

The size of the Scenario Component Database utilized for this test configuration 

was the same size as that used in the previous configuration. The response times of the 

heterogeneous configuration are comparable to that of the homogeneous configuration. 

The fact that the heterogeneous configuration's retrieval times are approximately twice 

that of the homogeneous configuration is most likely due to the conversions that are 

required when cross-platform communications are joined. Additionally, the Sun 

machines were running an older version (1.2.1) of the JVM, which may also contribute to 

their slower retrieval times. 

Another interesting result of the tests was the time difference caused by signature 

components of different sizes. Since the component analysis process is controlled by 

the structure (i.e., the size) of the signature component, selection of a smaller signature 

component (e.g., COMM-RCVR) results in a faster component retrieval time. 

4.5    Extending the Semantic Broker 

The use of metadata, especially in the transformation portion of the semantic broker, 

increases the extendibility of the system. This section discusses the additional files and 

source code required to add new simulator scenario search and transformation 

capabilities. 

When a new simulator scenario source is introduced, the system's source registry 

must be updated for the system to recognize the source files. This requires the addition 

of the following data files and Java .class files: 
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• Signature Data File: This file contains a text-based representation of the 
desired signature components for the new scenario type. The contents of this file 
will make up the initial signature database for the new type. 

• Syntax File: This file tells the signature and source parsers how to interpret the 
signature and source files. 

• Signature Parser: This is a Java .class file. It must extend the abstract class 
Parser. 

• Source Parser: This is also a Java .class file. It must extend the abstract class 
Parser. 

To add a new transformation capability to the system, the source registry must be 

updated with the associated data files and Parser class names, so the system 

recognizes the new transformation capability.   The data files and Java .class files that 

must be added are: 

• Transformation Metadata File: This file contains information concerning the 
transformation categories of all source components and sub-components. 
Characteristic transformations are included here, as well as additional 
characteristics that are present in the target format, but not supported in the 
source format. 

• Transformation Classes: These are Java .class files. Each must extend the 
abstract class Transform and implement its abstract transform method. 

The system needs a reference to six Transform classes. Any or all of these may be 

duplicates (i.e., reference the same class); however, in practice having only one 

transform class would not be effective. 

No changes are required to the SemanticGateway application to update menu 

options because menus that can change due to added source types or transformation 

capabilities are generated from the content of the source registry at run-time. Therefore, 

updating the source registry to reflect an additional source type, for example, will 

automatically update the application's menus the next time it is started. 
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4.6    Summary 

This chapter presents the implementation of the Semantic Broker as outlined in 

Chapter 3. The tool presented in this chapter is a proof of concept vehicle, and, as such, 

does not contain optimized data structures or algorithms that provide peak efficiency of 

space and execution time. 

The chapter begins with a discussion of some design issues that came to light 

during development of the broker. These include the object model used to represent 

scenario components and generation of those object representations. Additionally, the 

topic of signature component analysis is covered to provide the reader with some level 

of understanding of its use in this research. Next, the implementation of the two main 

components of the broker, the SemanticGateway and Scenario/Registry applications are 

discussed in detail. Following this was a short section on the results of tests conducted 

on the component retrieval algorithm to estimate its performance on reasonably large 

source databases. Finally, extending the tool to include new source types and 

transformation capabilities is covered. 

Chapter 5, the final chapter of this work, follows. It provides conclusions arrived at 

as a result of this research, as well as some recommendations for future research in this 

area. 
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5.    CONCLUSIONS AND RECOMMENDATIONS 

5.1     Introduction 

This chapter begins with a summary of the work conducted during the course of this 

research. This is followed by a discussion of the impact this research has had on the 

state of the CERTCORT system. Finally, several areas of future research that would 

further extend the capabilities of the CERTCORT system are discussed. 

5.2    Summary of the Research 

This research developed an agent-based system that provides users with an 

automated means of identifying existing scenario components and preparing them for 

reuse in a new scenario. Figure 61 shows how the tool developed in this work fits into 

the layered architecture of the CERTCORT multi-agent framework. 

The Semantic Broker has two main components: the SemanticGateway application 

and the ScenarioRegistry application. The Scenario/Registry application resides in the 

Information Layer of the framework, while the SemanticGateway application is 

positioned in the Assistant Layer. This places the SemanticGateway application in the 

same layer as the Scenario Builder Assistant, which has yet to be developed completely. 

Future research may determine that the SemanticGateway should be integrated into the 

Scenario Builder Assistant, since finding suitable existing scenario components and, if 

necessary, transforming them to the desired format, are key features of a Scenario 

Builder Assistant. This assistant is part of the original CERTCORT system as 

envisioned in [McDOO, 209]. 

The signature analysis approach developed in Chapter 3 and implemented in 

Chapter 4 facilitates the identification of existing components, and the transformation 
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methodology developed in this work provides translation capabilities, within limits, 

between scenario formats. The key to both these functions is the simple object model 

utilized to represent scenario components. Its use permits the representation of virtually 

any scenario format and places the scenario components in a simulator system 

independent format. 

Collaboration Layer 

Current 
Research 
Focus 

\ \ 
\ \ 

s/               \ 

ScenarioRegistry 1                       | 
1                        | 

Application 
(Server) 

1                        | 
1                        1 
1                        1 
1                        1 

1 
1 

/ 

/                        / ;                   / /                    ; / 
; 

Scenario 
Builder 

Assistant 

Figure 61: Research Impact on CERTCORT Agent Framework 

The tool developed in this research provides agent based scenario component 

retrieval and contains limited transformation capabilities. A key feature of the system is 

its extensibility. New simulator scenario source types can be added to the system 

without modification of existing source code. This extensibility is achieved through an 

extensive utilization of metadata to provide details on component generation and 

component transformation. The software developed in this research has furthered the 

state of the CERTCORT tool. 
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5.3    State of CERTCORT 

With the addition of the Semantic Broker system, the CERTCORT tool is now 

capable of providing automated facilities for the identification of reusable scenario 

source components, retrieval of those components, and transformation of components to 

a selected target format. Figure 62 provides a graphical representation of the state of 

CERTCORT's functionality. 

SWEG SUPPRESSOR 

*** 
JIMM EADSIM 

Figure 62: State of CERTCORT Functionality 

In the figure, functionality that has not yet been fully developed is denoted by 

dashed lines around those components. As the figure shows, currently the CERTCORT 

tool has the following capabilities: 
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• Instantiating object model scenario component representations from text based 
scenario files into a common object model. 

• Allowing the user to perform signature-based queries to find existing scenario 
components that are suitable for reuse in a new scenario. 

• Assisting the user in the transformation of an existing scenario component to a 
different scenario format. 

The Scenario Builder Assistant shown in Figure 62 has yet to be completely 

developed. A rudimentary version of this assistant was developed in [McDOO].  Further 

development of the Scenario Builder Assistant, as well as the Reuse Component 

Database, should be part of future research in the CERTCORT arena. 

5.4    Future Research Recommendations 

Future research in the CERTCORT area should focus on development of the 

Scenario Builder Assistant, and the inclusion of the Semantic Broker as part of that 

system. Another area of potential research involves extending the signature analysis 

concept to operate with entire scenarios as the search signature. Finally, the 

transformation capabilities developed in this work should be extended to include the 

Category 4 and 5 transformations discussed in Section 3.3.4, Figure 26. 

5.4.1    Developing a Builder Agent 

Development of a Scenario Builder Assistant is the logical next step in extending the 

functionality of CERTCORT. This assistant is essentially a scenario design center—a 

GUI that pulls existing and transformed components together to form a new scenario. A 

shell of this assistant was developed by [McDOO], and this work could form the 

foundation for the new research. 

Since the functions of component retrieval and component transformation are 

essential to any scenario builder intended to make use of existing scenarios, the 
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Semantic Broker developed in this work should be included as a subsystem of the 

Scenario Builder Assistant. 

5.4.2 Extending the Signature Concept 

This research focused on utilizing signature components as search criteria to 

identify existing scenario source components that fit the requirements of a component 

needed for a new scenario under construction. A natural extension of this concept is the 

idea of using entire scenarios as signature components. This would allow users to 

search for and potentially reuse entire scenarios. 

5.4.3 Extending the Semantic Broker's Transformation Capabilities 

This work developed the transforms for Category 1, Category 2, Category 3, and 

Category 6 transformations as defined in Section 3.3.4, Figure 26. Category 4 and 

Category 5 transforms are beyond the scope of this work. These two transform 

categories encompass the most difficult aspects of component transformation, since 

they require the software to interact with the user during the transformation process to 

determine how to proceed. 

5.5    Summary 

This work develops a Semantic Broker capable of providing automated relevant 

component retrieval and component transformation. The foundation of the system is a 

common object model capable of representing virtually any scenario format, and a 

technique of utilizing metadata to allow processes to be less format specific. 

As a result of this work, the CERTCORT tool under development by AFRL is now 

capable of maintaining a registry of available source scenarios and their components, 

identifying relevant scenario components for reuse, retrieving those components from 
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their distributed locations, and transforming, with certain limitations, those components 

to a desired target scenario format. 

Recommendations for future research in this area include the development of the 

Scenario Builder Assistant in the CERTCORT Agent Framework's Assistant Layer, 

extending the signature analysis concept to include entire scenarios, and extending the 

Semantic Broker's transformation capabilities to include Categories 4 and 5. 
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Appendix A.  Selected Source Code 

This appendix contains portions of the source code for the semantic broker system. 

The code presented here is helpful to understanding the component generation, relevant 

component retrieval, and the component transformation processes. 

A.1. Component Generation 

ScenarioRegistryGUI: insertFileTreeNode Method 

This method inserts a RegistryFile object into the SRDB that represents the 

scenario source file entered by the user. The file is parsed, and the object models 

representing its source components are placed in the Scenario Component Database of 

this ScenarioRegistry application. 

public void insertFileTreeNode(SR_DialogInfo o) 

{ 
RegistryFile newFile = new RegistryFile(o.datal); 
newFile.setParser(o.data2); 
DefaultMutableTreeNode newNode = 

new DefaultMutableTreeNode (newFile) ,- 
DefaultMutableTreeNode currentNode = 

(DefaultMutableTreeNode)tree. 
getLastSelectedPathComponent(); 

Object obj = currentNode.getUserObject(); 
if (obj instanceof RegistrySource) 

{ 
RegistrySource regSource = (RegistrySource)obj; 
RegistryAgent reg = 

(RegistryAgent)((DefaultMutableTreeNode)currentNode. 
getParent()).getUserObj ect(); 

if (!reg.findSourceParser(o.data2)) 

{ 
displayError("Error", 

"Parser class not found in type node."); 
return; 

} 

// Construct path name 
String srcFile = null, srcParser = null, msfFile; 
msfFile = reg.getMsfFile () ,- 
if (regSource.getLocation().endsWith(File.separator)) 

srcFile = regSource.getLocation() + 
newFile.getName(); 

else 
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srcFile = regSource.getLocationO + File.separator + 
newFile.getName(); 

// Get string representing class name and call 
// getSourceComponents to generate source components 
srcParser = newFile.getParser(); 
String[] srcParams = {srcFile, msfFile}; 
Vector srcComps = getSourceComponents(srcParser, 

srcParams); 

if (srcComps != null) 

{ 
// Load this type's serialized file 
loadSourceComps(reg.getType()); 
if (this.sourceComps == null) 
this.sourceComps = new Vector(); 

int i; 
// Add new scenario components to serialized database 
for (i = 0; i < srcComps.size(); i++) 

this.sourceComps.add(srcComps.get(i)); 

int filelndex = ((RegistrySource)obj).insertFile(newFile); 
treeModel.insertNodelntofnewNode, currentNode, filelndex); 
TreeNode[] nodes = treeModel.getPathToRoot(newNode); 
TreePath path = new TreePath(nodes); 
tree.scrollPathToVisible(path); 
saveSourceComps(); 

} 
} 

ScenarioRegistryGUI: getSourceComponents Method 

This method uses Java's reflection mechanism to instantiate a Parser object of the 

sub-class referenced by the string p. After the Parser object is instantiated, the method 

generates scenario components from the file referenced in the parameters argument. 

public Vector getSourceComponents(String p, 
String[] parameters) 

{ 
Parser parser = null; 
try 

{ 
Class cl = Class.forName(p); 
Constructor[] constructors = cl.getDeclaredConstructors(); 
parser = (Parser)constructors[0].newlnstance(parameters); 

} 
catch (ClassNotFoundException x) 

{ 
System.err.println(x); 
return null; 

} 
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catch (IllegalAccessException x) 

{ 
System.err.printin(x); 
return null; 

} 
catch (InvocationTargetException x) 

{ 
System.err.printin(x); 
return null; 

} 
catch (InstantiationException x) 

{ 
System.err.printin(x); 
return null; 

} 
// Generate scenario components 
Vector syntax = parser.loadMetaSyntax(); 
Vector comps = parser .generateComponents () ,- 
Vector subComps = parser.getSubComponentlndex(); 
if (subComps != null) 

{ 
// Add subcomponent index to list 
int i ; 
for (i = 0; i < subComps.size(); i++) 
comps.add(subComps.get(i)); 

} 
return comps; 

} 

SemanticGateway: addSignatures Method 

This method opens a file chooser dialog and generates signature components from 

the source file selected by the user. 

public void addSignatures(String arg) 

{ 
StringTokenizer t = new StringTokenizer(arg, " "); 
t.nextToken(); 
String token = t.nextToken(); 
int i ; 
RegistryType regObj = null; 

// Find RegistryType object for selected signature type 
for (i =0; i < this.sourceRegistry.size(); i++) 

{ 
String tmp = ((RegistryType)this.sourceRegistry 

.get(i)).getName(); 
if (token.equals(tmp)) 

regObj = (RegistryType)this.sourceRegistry.get(i); 

} 

// Get user's signature file via a file chooser dialog 
JFileChooser d = new JFileChooser(); 
d.setCurrentDirectory(new File(".")); 
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d.setMultiSelectionEnabled(false) ; 
int  result  = d.showOpenDialog(this); 
if   (result  == JFileChooser.CANCEL_OPTION) 

return; 
File  sigFile  = d.getSelectedFile() ; 
String sigFilename =  sigFile.getPath(); 

//  Extract  signature Parser class name and meta syntax 
//  file name  from RegistryType object. 
String sigParser =  regObj.getSigParser(); 
String!]   sigParams  =   {sigFilename,   regObj.getMsfFile()}; 
Vector sigComps  = getSignatures(sigParser,   sigParams); 
if   (sigComps  == null) 

return; 

//  Load existing signatures of  selected type and 
//  consolidate new into existing list, 
if   (!loadSignatures(regObj.getNameO)) 

this.signatures  = new Vector(); 
consolidateSignatures(sigComps); 
serializeOut(regObj.getNameO   +   ".sig",   this.signatures); 

} 

SemanticGateway: getSignatures Method 

This method uses Java's reflection mechanism to instantiate a Parser object of the 

sub-class referenced by the string p. After the Parser object is instantiated, the method 

generates signature components from the file referenced in the parameters argument. 

public Vector getSignatures(String p, 
String!] parameters) 

{ 
Parser parser = null; 
try 

{ 
Class cl = Class.forName(p); 
Constructor!] constructors = cl.getDeclaredConstructors(); 
parser = (Parser)constructors[0].newlnstance(parameters); 

} 
catch (ClassNotFoundException x) 

{ 
System.err.println(x); 
return null; 

} 
catch (IllegalAccessException x) 

{ 
System.err.println(x); 
return null; 

} 
catch (InvocationTargetException x) 

{ 
System.err.println(x); 
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return null; 

} 
catch (InstantiationException x) 

{ 
System.err.println(x); 
return null; 

} 
Vector syntax = parser.loadMetaSyntax(); 
Vector comps = parser.generateComponents(); 
Vector subComps = parser.getSubComponentIndex(); 

if (subComps == null) 
return null; 

int i ; 
for (i = 0; i < subComps.size(); i++) 

comps.add(subComps.get(i)); 
return comps; 

} 

A.2.   Relevant Component Retrieval 

The relevant component retrieval process is initiated by the SemanticGateway 

application, but is carried out almost entirely by the individual Scenario/Registry 

applications. This section provides the source code for the retrieveRelevantComponents 

method of the ScenarioRegistryAgent, the ComponentAnalyzer class, and the 

analyzeComponents methods of the MetaComponent and SComponept classes. 

ScenarioRegistryAgent: retrieveRelevantComponents Method 

This    method    calls    its    parent's    (i.e.,    the    ScenarioRegistryGUI    object) 

loadSourceComponents method with the signature's type as the parameter. That 

method returns a list of the source components available for the signature's type. This 

method then creates a ComponentAnalyzer object and iteratively passes each source 

component to it. This method returns a Vector containing the source components whose 

relevance score was higher than the threshold parameter. 

public synchronized Vector retrieveRelevantComponents! 
MetaComponent signature, 
double threshold) 

{ 
this.relevantComps = new Vector(); // Reset 
if (signature == null) 
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return relevantComps; 

this.sourceComps = this.parent. 
loadSourceComps(signature.getType() ) ; 

if (this.sourceComps == null) 
return this.relevantComps; 

int j ; 
Vector srcComps, relComps; 

if (this.sourceComps != null) 

{ 
ComponentAnalyzer analyzer = new ComponentAnalyzer(signature); 
for (j =0; j < this.sourceComps.size(); j++) 

{ 
analyzer.setSourceComponents((MetaComponent) 

this.sourceComps.get(j)); 
relComps = analyzer.getRelevantComponents(this.localHost, 

threshold); 
addToRelevant(relComps); 

} 
} 
return this.relevantComps; 

} 

ScenarioRegistryGUI: loadSourceComps Method 

This method checks to see if the source component list needed is currently in 

memory.   If so, a reference to that list is returned.   Otherwise, the source components 

are loaded from their serialized object file. 

public Vector loadSourceComps(String type) 

{ 
String filename = type + ".src"; 

// Check to see if source component vector is null.  If 
// not check to see if source components currently in 
// memory are correct type (i.e. same as signature) 
if (this.sourceComps != null) 
{ 
MetaComponent mComp = (MetaComponent)this.sourceComps.get(0); 
if (mComp.getType().equals(type)) 
return this.sourceComps; 

} 
try 

{ 
ObjectlnputStream in = new ObjectInputStream( 

new FileInputStream(filename)); 

this.sourceComps = new Vector(); 
this.sourceComps = (Vector)in.readObject(); 
in.close(); 
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} 
catch (IOException x) 

{ 
this.sourceComps = null; 
System.err.printin("Unable to open file: " + filename); 
displayError("File Access Error", 

"Unable to open file: " + filename); 

} 
catch (ClassNotFoundException x) 

{ 
this.sourceComps = null; 
System.err.println("Unable to find class."); 
displayError("File Access Error", 

"Unable to find required class definition."); 

} 
return this.sourceComps; 

} 

ComponentAnalyzer Class 

This class is utilized to perform relevant component analysis.    Its constructor 

requires one parameter: a signature component. The using process then sets its 

sourceComponents attribute via the setSourceComponents method, and calls the 

getRelevantComponents method with the host name and sensitivity threshold as 

parameters. 

import j ava.ut i1.*; 
import j ava.io.*; 

public class ComponentAnalyzer 

{ 
protected MetaComponent signature; 
protected MetaComponent sourceComponents; 

public ComponentAnalyzer(MetaComponent sig) 

{ 
this.signature = sig; 
this.sourceComponents = null; 

} 

* Method Name: getRelevantComponents 
* Purpose:    Scores the scenario compponents in the 
* 'sourceComponents' vector based on their 
* similarity to the signature component. 
* Original:    03 Oct 2000 
* Modified: 

public Vector getRelevantComponents(String host, 
double threshold) 
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{ 
if (this.sourceComponents == null) 

return new Vector(); 
MetaComponent mComp, sComp; 
Vector rtn = new Vector(); 
int i, j; 
mComp = this.sourceComponents; 
if (signature.getType().equalsIgnoreCase(mComp.getType())) 
rtn = mComp.analyzeComponents(signature, host, threshold); 

return rtn; 

} 

public void setSourceComponents(MetaComponent o) 

{ 
this.sourceComponents = o; 

} 
} 

MetaComponent Class; analyzeComponents Method 

This method is called by the ComponentAnalyzer class to compare the source 

object model to the signature object model. It is useful to remember here that in a 

source object model, the MetaComponent root object represents a scenario file. It 

contains, in its components attribute, references to each scenario source component 

present in the source file from which it was created. This method iteratively calls the 

analyzeComponents method of each of these SComponent objects, and, if their score is 

higher than the threshold parameter, creates a MetaComponent root for each and places 

it in its return variable. 

public Vector analyzeComponents(MetaComponent sig, 
String host, 
double threshold) 

{ 
SComponent signature = sig.getComponent (0) ,• 
Vector rtn = new Vector(); 
MetaComponent mComp; 
int i ; 
for (i = 0; i < this.components.size(); i++) 

{ 
double score = ((SComponent)this.components.get(i)). 

analyzeComponents(signature); 
if (score > threshold) 

{ 
mComp = new MetaComponent(); 
mComp.setType(sig.getType()); 
mComp.setName(((SComponent)this.components.get(i)). 

getType()+""+ 
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((SComponent)this.components.get(i)). 
getNameO + " (" + this.getType () + 
"; Source: System = " + host + ", " + 
this.getSourceO + ")"); 

mComp. setSource (host + ": " + this.getSourceO); 
mComp.setComments(((SComponent)this.components.get(i)) 

.getComments()) ; 
mComp.setScore(score); 
rtn.add(mComp); 

} 
} 
return rtn; 

} 

SComponent Class; analyzeComponents Method 

This method compares the SComponent object to the input signature SComponent 

object. 

public double analyzeComponents(SComponent signature) 

{ 
double rtn =0.0; 
// If component types don't match return 0.0 
if (!(this.getType().trim().equalsignoreCase(signature. 

getType().trim()))) 
return 0.0; 

// Compare source component's characteristics to those 
//of the signature 
double attrScore = analyzeAttributes(signature. 

getCharacteristics()); 

// If signature component has no sub-components return the 
// characteristic score alone. 
Vector sigComps = signature.getComponents(); 
if (sigComps.size() == 0) 
return attrScore; 

String sigCompType; 
double noMatchingComp = 0.0; 
double tmpMatchCount, hiMatchCount = 0.0; 
boolean found; 
int i, j ; 
// Iterate through signature's sub-components and 
// determine whether source component has a sub-component 
// of a matching type. If so, call that sub-component's 
// analyzeComponents method with the signature sub- 
// component as the parameter. 
for (i = 0; i < sigComps.size(); i++) 

{ 
hiMatchCount = 0.0; 
found = false; 
sigCompType = ((SComponent)sigComps.get(i)).getType(); 
for (j =0; j < this.components.size(); j++) 

{ 
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tmpMatchCount = 0.0; 
if (sigCompType.trim(). 

equalsIgnoreCase(((SComponent)this.components. 
get(j)).getType().trim())) 

{ 
tmpMatchCount = ((SComponent)this.components.get(j)). 

analyzeComponents((SComponent)sigComps.get(i)); 
found = true; 

} 
if (tmpMatchCount > hiMatchCount) 
hiMatchCount = tmpMatchCount; 

} 
noMatchingComp = noMatchingComp + hiMatchCount; 

// If signature component is mandatory and not found, 
// return zero, 
if (!found && 

(!((SComponent)sigComps.get(i)).isOptional())) 
return 0.0; 

} 
double compScore = (double)noMatchingComp/sigComps.size(); 

// If signature component has no characteristics, return 
// the sub-component score. Otherwise, combine the 
// sub-component and characteristics scores and return 
// their average. 
if (signature.getCharacteristics().size() == 0) 
rtn = compScore; 

else 
rtn = (double)((compScore + attrScore)/2); 

return rtn; 

} 

SComponent Class: analyzeAttributes Method 

This method compares the SComponent object's characteristics attribute to the 

input contents of the input Vector and returns a score that is the ratio of String object 

matches to number of String objects in the input Vector. 

public double analyzeAttributes(Vector attributes) 

{ 
int attributeMatches = 0, i, j; 
String sigAttribute, compAttribute = null; 
boolean found; 
if (attributes.size() == 0) 

return 1.0; 
for (i =0; i < attributes.size(); i++) 

{ 
sigAttribute = (String)attributes.get(i); 
found = false,- 
for (j = 0; j < this.characteristics.size() && Ifound; j++) 

{ 
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compAttribute = (String)this.characteristics.get(j); 
if (sigAttribute.trimO . 

equalsIgnoreCase(compAttribute.trim())) 

{ 
attributeMatch.es = attributeMatches + 1; 
found = true; 

} 
} 

} 
return (double)attributeMatches/attributes.size(); 

A.3. Component Transformation 

This section contains the essential code for the transformation process of the 

semantic broker. The transformComponent method of the SemanticGateway class, 

TransformEngine class, Transform abstract class, and the SUPP_SWEG_Xform_1, 

SUPP_SWEG_Xform_2, SUPP_SWEG_Xform_3, and SUPP_SWEG_Xform_6 class 

definitions are provided. 

SemanticGateway Class; transformComponent Method 

This method extracts the required metadata and calls the appropriate methods to 

transform the selected source component. 

public SComponent transformComponent(String menuArg) 

{ 
Registry-Transform regXForm = null; 
DefaultMutableTreeNode selectedNode = 

(DefaultMutableTreeNode)compTree. 
getLastSelectedPathComponent(); 

Object obj = selectedNode.getUserObject(); 
if (!(obj instanceof MetaComponent)) 
return nul 1 ,- 

// Extract source name from menu item selection 
StringTokenizer t = new StringTokenizer(menuArg, " "); 
t.nextToken(); 
String sourceName = t.nextToken(); 

if (!(((MetaComponent)obj).getType(). 
equalsIgnoreCase(sourceName))) 

return null; 

// Extract transform name from menu item selection 
t = new StringTokenizer(menuArg, ":"); 
t.nextToken(); 
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String transformName = t.nextToken().trim(); 

// Extract source location and get root of component 
String sourceLocation = ((MetaComponent)obj).getSource(); 
SComponent source = ((MetaComponent)obj).getComponent(0); 

// Find Registry-Transform object in SWSRDB that contains 
// information about this transformation 
int i ; 
for (i = 0; i < this.sourceRegistry.size(); i++) 

{ 
if (((RegistryType)this.sourceRegistry.get(i)). 

getNameO .equalsIgnoreCase(sourceName)) 
regXForm = ((RegistryType)this.sourceRegistry.get(i)). 

findTransform(transformName); 

} 
if (regXForm == null) 
return null; 

// Create TransformEngine object and transform component 
TransformEngine xFormEng = new TransformEngine(regXForm); 
SComponent rtn = xFormEng.xFormModel(source); 
Vector v = new Vector(); 
// Create MetaComponent root for transformed object. 
MetaComponent root = new MetaComponent(); 
root.setType(regXForm.getTargetType() ) ; 
root.setName(regXForm.getTargetType() + ": " + 

source.getName()); 
root.addComponent(rtn); 
Vector com = (source.getComments()); 
for   (i  =  0;   i  <  com.sizeO;   i+ + ) 
root.addComment((String)com.get(i)); 

root.addComment("TRANSFORMATION INFORMATION:\n" + 
"This scenario component was transformed by the " + 
"CERTCORT SemanticGateway agent.  The " + 
"original component and location were: \n" + 
"SCENARIO TYPE: " + ((MetaComponent)obj).getType() 
+ "\n" + "COMPONENT: " + source.getType() + "\n" + 
"SYSTEM AND PATH: " + 
((MetaComponent)obj).getSource()); 

root.setSignature(true); 
v.add(root); 

// Create ComponentViewer and display transformed object. 
Frame f = new ComponentViewer(v, this, transformName + 

" Transformation"); 
f.show(); 
return rtn; 

TransformEngine Class 

This  class  provides the  necessary data  structures and  methods to facilitate 

component transformations. 
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/*************************************************************** 

* Source file: TransformEngine.Java 
* Purpose: 
* 

* History: 
* Original:  19 Oct 2000, Breighner 
* Modified: 
***************************************************************/ 

import java.util.*; 
import j ava.io.*; 
import Java.lang.reflect.*; 

public class TransformEngine 

{ 
protected String sourceType; 
protected String targetType; 
protected SComponent sourceComp; 
protected Vector xFormMD; 
protected Vector xForms; 
protected Registry-Transform regXform; 

public TransformEngine(RegistryTransform o) 

{ 
this.regXform = o; 
this.sourceType = o.getSourceType(); 
this.targetType = o.getTargetType(); 
this.xForms = getTransforms(); 
MDParser parser = new MDParser(o.getXFormMDFile()); 
this.xFormMD = parser.loadXFormMetadata(); 

} 

/************************************************************* 

* Method Name: xFormModel 
* Purpose:    Transforms the scenario component model whose 
* root is input SComponent object 'o.' 
* Original:    19 Oct 2000 
* Modified: 
********************************************************** 

public SComponent xFormModel(SComponent o) 

{ 
this.sourceComp = o; 
SComponent rtn = null; 

// Transform input parameter 'o' 
rtn = xFormComp(o); 

// Transform the sub-compopnents of input parameter 'o' 
// and add them to the transformed component. 
int i ,- 
Vector comps = o.getComponents(); 
for (i = 0; i < comps.size(); i++) 
rtn.addComponent(xFormModel((SComponent)comps.get(i))); 

return rtn; 

} 
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/************************************************************* 

* Method Name: xFormComp 
* Purpose:    Transform input SComponent 'o.' 
* Original:    19 Oct 2000 
* Modified: 
*************************************************************/ 

public SComponent xFormComp(SComponent o) 

{ 
SComponent rtn; 
// Find transform metadata object. If not found 
// abort component transformation. 
TransformMD'xformMD = findXFormMD(o.getType()); 
if (xformMD == null) 
return null; 

// Retrieve Transform sub-class object based on category 
// data contained in tranformation metadata object. If 
// transform is null abort. 
Transform xform = (Transform)this.xForms. 

get (xformMD.getCategoryO - 1) ; 
if (xform == null) 
return null; 

// Set transform metadata, then call Transform object's 
// transform method with source component as parameter, 
xform.setXFormMD(xformMD); 
rtn = xform.transform(o); 
return rtn; 

} 

/************************************************************* 

* Method Name: getTransforms 
* Purpose:     Instantiates the transform classes from the 
* String objects stored in the RegistryTransform 
* object 'regXform.' 
* Original:    19 Oct 2000 
* Modified: 
****************************************************** 

public Vector getTransforms() 

{ 
Transform transform = null; 
Vector rtn = new Vector() ; 
int i ; 
Vector xFormNames = this.regXform.getXFormClasses(); 
for (i =0; i < xFormNames.size(); i++) 

{ 
try 

{ 
Class cl = Class.forName((String)xFormNames.get(i)); 
Constructor[] constructors = cl.getDeclaredConstructors(); 
String[] parameters = {regXform.getCommentDelimiter()}; 
transform = (Transform)constructors[0].newlnstance(parameters); 

} 
catch (ClassNotFoundException x) 

{ 
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System.err.printin(x); 
return null; 

} 
catch (IllegalAccessException x) 

{ 
System.err.printin(x); 
return null; 

} 
catch (InvocationTargetException x) 

{ 
System.err.printin(x); 
return null; 

} 
catch (InstantiationException x) 

{ 
System.err.printin(x); 
return null; 

} 
rtn.add(transform); 

} 
return rtn; 

} 

* Accessors and Mutators 
* Original: 19 Oct 2000, Breighner 
* Modified: 

public void setSourceType(String s) 

this.sourceType = s; 

public void setTargetType(String s) 

this.targetType = s; 

public void setXFormMD(Vector v) 

this.xFormMD = v; 

public String getSourceType() 

return this.sourceType; 

public String getTargetType() 

return this.targetType; 

public Vector getXFormMDO 
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return this.xFormMD; 

} 

public TransformMD findXFormMD(String s) 

{ 
int i ; 
String b; 
for (i =0; i < this.xFormMD.size(); i++) 

{ 
b = ((TransformMD)this.xFormMD.get(i)).getSourceType(); 
if (b.equals(s)) 

return (Trans formMD)thi s.xFormMD.get(i); 

} 
return null; 

} 

Transform Class 

This abstract class provides the foundation for all transformation sub-classes.   All 

transform classes must extend this class and implement their version of the transform 

method. 

* Source file: Transform.Java 
* Purpose:    This abstract class is the super class of all 
* transforms in the SemanticGateway. All transform 
* classes must extend this class. 
* 

* History: 
* Original:  18 Oct 2000, Breighner 
* Modified: 
***************************************************************/ 

import java.util.*; 
import j ava.io.*; 

public abstract class Transform 

{ 
protected String category; 
protected TransformMD xFormMD; 
protected String commentDelimiter; 

public Transform(String s, String delimiter) 

{ 
this.category = s; 
this.xFormMD = null; 
this.commentDelimiter = delimiter; 

} 

* Method Name: transform 
* Purpose:    Abstract method. Must be implemented in 
* sub-class. 
* Original:    18 Oct 2000, Breighner 
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* Modified: 

public abstract SComponent transform(SComponent o); 

/************************************************************* 

* Accessors and Mutators 
* Original: 18 Oct 2000, Breighner 
* Modified: 

public void setCategory(String s) 

this.category = s; 

public void setXFormMD(TransformMD o) 

this.xFormMD = o; 

public void setCommentDelimiter(String s) 

this.commentDelimiter = s; 

public String getCategory() 

return this.category; 

public TransformMD getXFormMD() 

return this.xFormMD; 

public String getCommentDelimiter() 

return this.commentDelimiter; 

public String toStringO 

return new String (this .category) ,- 

} 

The following four classes extend the Transform class and map to the Category 1, 

2, 3, and 6 transforms discussed in Chapter 3. Category 4 and 5 transformations are 

beyond the scope of this work. Components that fall in those categories are treated as 

Category 6 transformations. 
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SUPP_SWEG_Xform_1 Class 

/*************************************************************** 
* Source file: SUPP_SWEG_Xform_l.java 
* Purpose:    Transform for Category 1 SUPPRESSOR-to-SWEG 
* translations. 
* 

* History: 
* Original:  24 Oct 2000, Breighner 
* Modified: 
***************************************************************/ 

import j ava.ut i1.*; 
import j ava.io.*; 

public class SUPP_SWEG_Xform_l extends Transform 

{ 

public SUPP_SWEG_Xform_l(String commentD) 

{ 
super ("CATEGORY 1", commentD) ,- 

} 

/************************************************************* 

* Method Name: transform 
* Purpose:    Transforms input parameter 'o' from SUPPRESSOR 
* format to SWEG format 
* Original:    18 Oct 2000, Breighner 
* Modified: 
*************************************************************/ 

public SComponent transform(SComponent o) 

{ 
SComponent rtn = new SComponent(); 
rtn.setType(o.getType()); 
rtn.setName(o.getName()); 
rtn.setCharacteristics(o.getCharacteristics()); 
return rtn; 

SUPP_SWEG_Xform_2 Class 

/*************************************************************** 
* Source file: SUPP_SWEG_Xform_2.java 
* Purpose:    Transform for Category 2 SUPPRESSOR-to-SWEG 
* translations. 
* 

* History: 
* Original:  24 Oct 2000, Breighner 
* Modified: 
************************************************************ 

import j ava.ut i1.*; 
import j ava.io.*; 

public class SUPP_SWEG_Xform_2 extends Transform 
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public SUPP_SWEG_Xform_2(String commentD) 

{ 
super("CATEGORY 2", commentD); 

/************************************************************* 

* Method Name: transform 
* Purpose:    Transforms input parameter 'o' from SUPPRESSOR 
* format to SWEG format 
* Original:    18 Oct 2000, Breighner 
* Modified: 
****************************************************** 

public SComponent transform(SComponent o) 

{ 
SComponent rtn = new SComponent () ; 
rtn.setType(o.getType() ) ; 
rtn.setName(o.getName()); 
rtn.setCharacteristics(o.getCharacteristics()); 
int i ; 
String compChar = null, charXFormName = null; 
TransformMD charXForm = null; 
Vector charXForms = this.xFormMD.getSubComponentXForms(); 
for (i =0; i < charXForms.size(); i++) 

{ 
charXForm = (TransformMD)charXForms.get(i); 
charXFormName = charXForm.getSourceType(); 
if (charXFormName.equalsIgnoreCase("NOT-IN-SOURCE")) 

{ 
rtn.addComment(this.commentDelimiter + 

" ITEM NOT AVAILABLE IN SOURCE " + 
charXForm.getTargetType()); 

} 
} 
return rtn; 

} 
} 

SUPP_SWEG_Xform_3 Class 

* Source file: SUPP_SWEG_Xform_3.Java 
* Purpose:    Transform for Category 3 SUPPRESSOR-to-SWEG 
* translations. 
* 

* History: 
* Original:  24 Oct 2000, Breighner 
* Modified: 
***************************************************************/ 

import j ava.ut i1.*; 
import j ava.io.*; 

public class SUPP_SWEG_Xform_3 extends Transform 

{ 

public SUPP_SWEG_Xform_3(String commentD) 
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{ 
super("CATEGORY 3", commentD); 

} 

* Method Name: transform 
* Purpose:    Transforms input parameter 'o' from SUPPRESSOR 
* format to SWEG format 
* Original:    18 Oct 2000, Breighner 
* Modified: 
*************************************************************/ 

public SComponent transform(SComponent o) 

{ 
SComponent rtn = new SComponent(); 
rtn.setType(thi s.xFormMD.getTargetType()); 
rtn.setName(o.getName()); 
int i, j; 
StringTokenizer t; 
String compChar = null, charXFormName = null, 

tmpChar = null; 
TransformMD charXForm = null; 
Vector compChars = o.getCharacteristics(); 
Vector charXForms = this.xFormMD.getSubComponentXForms(); 
for (j = 0; j < compChars.size(); j++) 

{ 
t = new StringTokenizer((String)compChars.get(j), " "); 
tmpChar = ""; 
TransformMD subMD; 
while (t.hasMoreTokens()) 

{ 
String token = t.nextToken(); 
if ((subMD = 

xFormMD.findSubComponentXForm(token)) == null) 
tmpChar = tmpChar + " " + token; 

else 

{ 
if (!tmpChar.equals("")) 

{ 
rtn.addCharacteristic(tmpChar.trim()); 
tmpChar = ""; 

} 
tmpChar = subMD.getTargetType(); 
if (tmpChar.equalsIgnoreCase("NOT-IN-TARGET")) 
tmpChar = this.commentDelimiter + 

" ITEM NOT AVAILABLE IN TARGET FORMAT: " + 
subMD. getSourceType () ,- 

} 
} 
rtn.addCharacteristic(tmpChar.trim()); 

} 
for (i = 0; i < charXForms.size(); i++) 

{ 
charXForm = (TransformMD)charXForms.get(i); 
charXFormName = charXForm.getSourceType(); 
if (charXFormName.equalsIgnoreCase("NOT-IN-SOURCE")) 
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rtn.addCharacteristic(this.commentDelimiter + 
" ITEM NOT AVAILABLE IN SOURCE FORMAT: " + 
charXForm.getTargetType()); 

return rtn; 

SUPP_SWEG_Xform_6 Class 
/*************************************************************** 
* Source file: SUPP_SWEG_Xform_4.Java 
* Purpose:    Transform for Category 4 SUPPRESSOR-to-SWEG 
* translations. 
* 

* History: 
* Original:  24 Oct 2000, Breighner 
* Modified: 
***************************************************** 

import j ava.ut i1.*; 
import j ava.io.*; 
public class SUPP_SWEG_Xform_4 extends Transform 

{ 

public SUPP_SWEG_Xform_4(String commentD) 

{ 
super("CATEGORY 4", commentD); 

} 

/************************************************************* 

* Method Name: transform 
* Purpose:    Transforms input parameter 'o' from SUPPRESSOR 
* format to SWEG format 
* Original:    18 Oct 2000, Breighner 
* Modified: 
******************************************************* 

public SComponent transform(SComponent o) 

{ 
SComponent rtn = new SComponent(); 
rtn.setType(this.commentDelimiter + 

"NOT AVAILABLE IN TARGET FORMAT: " + O.getType()); 
rtn.setName(o.getName()); 
rtn.setCharacteristics(o.getCharacteristics() ) ; 
rtn. setComponents (o. get Components () ) ,■ 
return rtn; 

} 
} 
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Appendix B.  Metadata 

This appendix provides some insight into the actual content of the metadata files 

utilized by the Parser and Transform objects. 

SUPPRESSOR.MSF 

This   file   contains   all   the   scenario   component   syntax   definitions   for   the 

SUPPRESSOR source type. This file is accessed by the Parser object to build a list of 

MetaSyntaxUnit objects. The Parser object then references this list during parsing to 

determine how to interpret a given component. 

PLAYER-STRUCTURE attribute component END PLAYER-STRUCTURE 
TACTIC component END TACTIC 
CAPABILITY component END CAPABILITY 
LINKAGES attribute NULL 
SUSCEPTIBILITY component END SUSCEPTIBILITY 
ASG-CMD-CHAIN attribute NULL 
EVALUATION-RATES attribute END EVALUATION-RATES 
INTELL-REPORT-FREQ attribute END INTELL-REPORT-FREQ 
MAX-MSG-ATTEMPTS attribute NULL 
MAX-SNR-PERCEPTIONS attribute NULL 
MOVE-TO-ENG attribute NULL 
MSG-RPT-GUIDE attribute END MSG-RPT-GUIDE 
SALVO-FIRING attribute END SALVO-FIRING 
SNR-RPT-GUIDE attribute END SNR-RPT-GUIDE 
ZONE-CHARACTERISTICS attribute END ZONE-CHARACTERISTICS 
RESOURCE-ALLOCATION component END RESOURCE-ALLOCATION 
LETHAL-ENGAGE-QUEUE-ADD attribute END LETHAL-ENGAGE-QUEUE-ADD 
LETHAL-ENGAGE-QUEUE-DROP attribute END LETHAL-ENGAGE-QUEUE- DROP 
LETHAL-ENGAGE-START attribute END LETHAL-ENGAGE-START 
LETHAL-ENGAGE-STOP attribute END LETHAL-ENGAGE-STOP 
LETHAL-ENGAGE-FIRING-START attribute END LETHAL-ENGAGE-FIRING-START 
LETHAL-ENGAGE-FIRING-STOP attribute END LETHAL-ENGAGE-FIRING-STOP 
SUSCEPTIBILITY attribute END SUSCEPTIBILITY 
IR-RAD-TABLE attribute END IR-RAD-TABLE 
OPT-CS attribute END OPT-CS 
INHERENT-CONTRAST  attribute NULL 
TGT-REFLECTIVITY attribute END TGT-REFLECTIVITY 
RCS-TABLE attribute END RCS-TABLE 
SNR-ELE-INTERACTIONS attribute END SNR-ELE-INTERACTIONS 
CAPABILITY component END CAPABILITY 
NUM-SIMULTANEOUS-ROUND attribute NULL 
PLATFORM-VEL-ATTEN attribute NULL 
RESOURCE-DISAGGREGATION attribute END RESOURCE-DISAGGREGATION 
WPN-CHARACTERISTICS attribute END WPN-CHARACTERISTICS 
WPN-PK attribute END WPN-PK 
WPN-SPD-CAPABILITY attribute END WPN-SPD-CAPABILITY 
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WPN-TIME-DELAYS attribute END WPN-TIME-DELAYS 
WPN-TIME-DELAY-TABLE attribute END WPN-TIME-DELAY-TABLE 
HITS-TO-ESTABLISH-TRACK attribute NULL 
ONE-M2-DETECT-RNG attribute NULL 
PEAK-GAIN attribute NULL 
EFFECTIVE-EARTH-RADIUS attribute NULL 
VERTICAL-OFFSET attribute NULL 
RCVR-BANDWIDTH attribute NULL 
SENSING-MODE-RATES attribute END SENSING-MODE-RATES 
DETECTION-SENSITIVITIES attribute END DETECTION-SENSITIVITIES 
MTI-ATTENUATION attribute END MTI-ATTENUATION 
ANTENNA-PATTERN attribute END ANTENNA-PATTERN 
SNR-CHARACTERISTICS attribute END SNR-CHARACTERISTICS 
QUALITY-OF-DATA attribute END QUALITY-OF-DATA 
RNG-ALT-CAPABILITY attribute END RNG-ALT-CAPABILITY 
INTERNAL-LOSS attribute NULL 
PEAK-POWER-OUTPUT attribute NULL 
PULSE-REPETITION-FREQ attribute NULL 
XMIT-FREQ attribute NULL 
MAX-PARALLEL-TRACKS attribute NULL 
EFF-BURST-CM-PROB attribute NULL 
SNR-TRACKING-PROBABILITIES attribute END SNR-TRACKING-PROBABILITIES 
SNR-TIME-DELAYS attribute END SNR-TIME-DELAYS 
SNR-DOPPLER-LIMITS attribute END SNR-DOPPLER-LIMITS 
IMPLICIT-CM-INTERACT attribute END IMPLICIT-CM-INTERACT 
TIME-BEFORE-DROP attribute NULL 
TIME-TO-THINK attribute END TIME-TO-THINK 
ACCELERATION-MODE attribute NULL 
REVECTOR-DIST-THRESH attribute END REVECTOR-DIST-THRESH 
ATK-PRIORITIES attribute END ATK-PRIORITIES 
MOVE-PLANS component END MOVE-PLANS 
PLAN attribute END-PLAN 
PLAN-PROFILE attribute END PLAN-PROFILE 
SNR-ANGULAR-LIMITS attribute END SNR-ANGULAR-LIMITS 
MAX-ACCELERATION attribute NULL 
MIN-TURN-RADIUS attribute NULL 
MOVER-ALTITUDE-LIMITS attribute END MOVER-ALTITUDE-LIMITS 
MOVER-CLIMB/DIVE-LIMITS attribute END MOVER-CLIMB/DIVE-LIMITS 
MOVER-SPEED-LIMITS attribute END MOVER-SPEED-LIMITS 
FUEL-USAGE attribute END FUEL-USAGE 
COMM-LOSS-DECENT-TIME attribute NULL 
RELOAD-CHARACTERISTICS attribute END RELOAD-CHARACTERISTICS 
CENTRALIZATION-THRESHOLDS attribute END CENTRALIZATION-THRESHOLDS 
NOMINAL-SUB-REACT-TIME attribute NULL 
LETHAL-ASSIGNMENT-QUEUE-ADD attribute END LETHAL-ASSIGNMENT-QUEUE-ADD 
LETHAL-ASSIGNMENT-QUEUE-DROP attribute END LETHAL-ASSIGNMENT-QUEUE-DROP 
LETHAL-ASSIGNMENT-START attribute END LETHAL-ASSIGNMENT-START 
LETHAL-ASSIGNMENT-STOP attribute END LETHAL-ASSIGNMENT-STOP 
MOVE-OPTIONS attribute END MOVE-OPTIONS 
THINKER componentRef NULL 
SNR-RCVR componentRef NULL 
SNR-XMTR componentRef NULL 
WEAPON componentRef componentRef NULL 
ORDNANCE attribute NULL 
FUTURE-PLAYER attribute NULL 
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MOVER componentRef componentRef NULL 
COMM-RCVR componentRef NULL 
COMM-XMTR componentRef NULL 
DISRUPTOR componentRef NULL 
LAUNCH-CMD-CHAIN attribute END LAUNCH-CMD-CHAIN 
PLAN-PATTERNS attribute END PLAN-PATTERNS 
BACKGROUND-RADIANCE attribute END BACKGROUND-RADIANCE 
PATH-RADIANCE attribute END PATH-RADIANCE 
SEARCH-GLIMPSE-PROB attribute END SEARCH-GLIMPSE-PROB 
REACQ-GLIMPSE-PROB attribute END REACQ-GLIMPSE-PROB 
TRACK-GLIMPSE-PROB attribute END TRACK-GLIMPSE-PROB 
PIXEL-FIELD-OF-VIEW attribute NULL 
SOLAR-IRRADIANCE attribute END SOLAR-IRRADIANCE 
ASG-EVAL-RATE attribute NULL 
ASG-TGT-UPDATE-RATE attribute NULL 
LAUNCH-EVAL-RATE attribute NULL 
LAUNCH-START attribute END LAUNCH-START 
GUNS-FREE attribute END GUNS-FREE 
GUNS-TIGHT attribute END GUNS-TIGHT 
JAMMER-QUEUE-ADD attribute END JAMMER-QUEUE-ADD 
JAMMER-QUEUE-DROP attribute END JAMMER-QUEUE-DROP 
JAMMER-SPOT-ADD attribute END JAMMER-SPOT-ADD 
JAMMER-SPOT-DROP attribute END JAMMER-SPOT-DROP 
MAX-NO-SPOTS attribute NULL 
MAX-POWER-OUT attribute NULL 
MAX-RNG attribute NULL 
DISRUPTOR-CHARACTERISTICS attribute END DISRUPTOR-CHARACTERISTICS 
DISRUPTOR-FREQ-LIMITS attribute END DISRUPTOR-FREQ-LIMITS 
ANTGR-PATTERN attribute END ANTGR-PATTERN 
EMCON/TURN-ON attribute END EMCON/TURN-ON 
EMCON/TURN-OFF attribute END EMCON/TURN-OFF 
LOOK-AHEAD-DISTANCE attribute NULL 
THREAT-VOLUME attribute END THREAT-VOLUME 
RCVR-NOISE attribute NULL 
RECOGNITION-THRESH attribute NULL 
POLARIZATION-EFFECTS attribute END POLARIZATION-EFFECTS 
COMM-JMR-INTERACTIONS attribute END COMM-JMR-INTERACTIONS 
XMTR-BANDWIDTH attribute NULL 
XMTR-POWER attribute NULL 
SNR-JMR-INTERACTIONS attributes END SNR-JMR-INTERACTIONS 
TRANSMISSION-LOSS attribute END TRANSMISSION-LOSS 
INTERCEPT-INTERACT attribute END INTERCEPT-INTERACT 
END METASYNTAX 

SUPP_SWEG.XFM 

This file places each SUPPRESSOR scenario component into a transformation 

category, and provides details pertaining to its translation into the target category (i.e., 

SWEG). 

CATEGORY 1 
PLAYER-STRUCTURE 
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LINKAGES 
FUEL 
ELEMENT 
THINKER 
CAPABILITY 
COMM-XMTR 
COMM-RCVR 
SNR-RCVR 
SNR-XMTR 
MOVER 
WEAPON 
ORDNANCE 
DISRUPTOR 
FUTURE-PLAYER 
TIME-BEFORE-DROP 
MAX-SNR-PERCEPTIONS 
RESOURCE-ALLOCATION 
TACTIC 
SUSCEPTIBILITY 
SNR-ELE-INTERACTIONS 
NUM-SIMULTANEOUS-ROUND 
PLATFORM-VEL-ATTEN 
RESOURCE-DISAGGREGATION 
WPN-CHARACTERISTICS 
WPN-PK 
WPN-SPD-CAPABILITY 
WPN-TIME-DELAYS 
HITS-TO-ESTABLISH-TRACK 
ONE-M2-DETECT-RNG 
EFFECTIVE-EARTH-RADIUS 
VERTICAL-OFFSET 
MAX-PARALLEL-TRACKS 
RCVR-BANDWIDTH 
ANTENNA-PATTERN 
SNR-TRACKING-PROBABILITIES 
SNR-DOPPLER-LIMITS 
SNR-ANGULAR-LIMITS 
SNR-TIME-DELAYS 
XMTR-BANDWIDTH 
XMTR-POWER 
RCVR-BANDWIDTH 
DETECTION-SENSITIVITIES 
EFF-BURST-CM-PROB 
MTI-ATTENUATION 
SNR-CHARACTERISTICS 
RNG-ALT-CAPABILITY 
SNR-TIME-DELAYS 
SNR-DOPPLER-LIMITS 
INTERNAL-LOSS 
PEAK-POWER-OUTPUT 
PULSE-REPETITION-FREQ 
IMPLICIT-CM-INTERACT 
TIME-BEFORE-DROP 
SNR-ANGULAR-LIMITS 
MAX-ACCELERATION 
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MIN-TURN-RADIUS. 
MOVER-ALTITUDE-LIMITS 
MOVER-CLIMB/DIVE-LIMITS 
MOVER-SPEED-LIMITS 
FUEL-USAGE 
COMM-LOSS-DECENT-TIME 
CENTRALIZATION-THRESHOLDS 
RELOAD-CHARACTERISTICS 
NOMINAL-SUB-REACT-TIME 
MOVE-OPTIONS 
LAUNCH-CMD-CHAIN 
MAX-NO-SPOTS 
MAX-POWER-OUT 
DISRUPTOR-CHARACTERISTICS 
MAX-RNG 
INTERCEPT-INTERACT 
LOOK-AHEAD-DISTANCE 
RCVR-NOISE 
RECOGNITION-THRESH 
POLARIZATION-EFFECTS 
COMM-JMR-INTERACTIONS 

. XMTR-BANDWIDTH 
XMTR-POWER 
SNR-JMR-INTERACTIONS 
TRANSMISSION-LOSS 
LOOK-AHEAD-DISTANCE 
THREAT-VOLUME 

END CATEGORY 
CATEGORY 2 
QUALITY-OF-DATA 
AGE-OF-PLATFORM 
PLAYER-NAME 
PLATFORM-ID 

END QUALITY-OF-DATA 
END CATEGORY 
CATEGORY 3 
LOCATION       PLATFORM 
END LOCATION 
TIME-TO-THINK  TIME-TO-THINK 

EVAL-LETHAL-ENGAGE   EVAL-LETHAL-ENGAGE 
EVAL-FIRING EVAL-FIRING 
EVAL-ENGAGE-THREAT   EVAL-ENGAGE-THREAT 
RECOG-MSG RECOG-MSG 
RECOG-SNR-EVENT      RECOG-SNR-EVENT 
RECOG-PHYS-EVENT     RECOG-PHYS-EVENT 
REVIEW-INFORMATION   REVIEW-INFORMATION 
EVAL-ASSIGN-THREAT   EVAL-ASSIGN-THREAT 
ASSIMILATE-INTELL    NOT-IN-TARGET 
CONSIDER-ASG/CANCEL  EVAL-ASG/CANCEL 
EVAL-EMCON-CHANGE    EVAL-EMCON-CHANGE 
EVAL-JMR-QUEUE       EVAL-JMR-QUEUE 
EVAL-JMR-SPOTS       EVAL-JMR-SPOTS 
NOT-IN-SOURCE        DIGEST-ATTACK 
NOT-IN-SOURCE        DIGEST-DEATH 
NOT-IN-SOURCE        DIGEST-INTELL 
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NOT-IN-SOURCE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 

END TIME-TO-THINK 
EVALUATION-RATES 
ASG-EVAL-RATE 
EMCON-EVAL-RATE 
ENG-EVAL-RATE 
JAM-EVAL-RATE 
NOT-IN-SOURCE 
NOT-IN-SOURCE 

END EVALUATION-RATES 
IR-RAD-TABLE 
DIMENSION 
IR-RAD 

END IR-RAD-TABLE 
OPT-CS 
DIMENSION 
OCS 
IR-RAD 
RCS 

END OPT-CS 
TGT-REFLECTIVITY 

DIMENSION 
REFLECTANCE 

END TGT-REFLECTIVITY 
RCS-TABLE 
DIMENSION 
RCS 

END RCS-TABLE 
SENSING-MODE-RATES 
TRACK-SENSING-RATE 
ACQ-SENSING-RATE 
SEARCH-SENSING-RATE 
GUIDANCE-SENSING-RATE 
FIRING-SENSING-RATE 

END SENSING-MODE-RATES 
END CATEGORY 
CATEGORY 6 

INTELL-REPORT-FREQ 
ASG-CMD-CHAIN 
MAX-MSG-ATTEMPTS 
MOVE-TO-ENG 
MSG-RPT-GUIDE 
SALVO-FIRING 
SNR-RPT-GUIDE 
ZONE-CHARACTERISTICS 
INHERENT-CONTRAST 
WPN-TIME-DELAY-TABLE 

DIGEST-LOSS-COMM 
DIGEST-MATERIEL-STAT 
DIGEST-MSG 
EVAL-COMM-METHOD 
EVAL-INTELL-SEND 
EVAL-MNVR 
EVAL-MNVR-QUEUE 
EVAL-REQUEST 
CONSIDER-PLAN 

EVALUATION-RATES 
ASG-EVAL-RATE 
EMCON-EVAL-RATE 
ENG-EVAL-RATE 
JAM-EVAL-RATE 
MOVE-EVAL-RATE 
REQUEST-EVAL-RATE 

REFLECTIVE-EM-SIG-TABLE 
DIMENSION 
SIGNATURE 

REFLECTIVE-EM-SIG-TABLE 
DIMENSION 
SIGNATURE 
SIGNATURE 
RCS 

REFLECTIVE-EM-SIG-TABLE 
DIMENSION 
SIGNATURE 

REFLECTIVE-EM-SIG-TABLE 
DIMENSION 
SIGNATURE 

S ENSING-MODE-RATES 
TRACK-SENSING-RATE 
ACQ-SENSING-RATE 
SEARCH-SENSING-RATE 
GUIDANCE-SENSING-RATE 
NOT-IN-TARGET 
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PEAK-GAIN 
XMIT-FREQ 
ACCELERATION-MODE 
REVECTOR-DIST-THRESH 
ATK-PRIORITIES 
MOVE-PLANS 
PLAN-PATTERNS 
BACKGROUND-RADIANCE 
PATH-RADIANCE 
SEARCH-GLIMPSE-PROB 
REACQ-GLIMPSE-PROB 
TRACK-GLIMPSE-PROB 
PIXEL-FIELD-OF-VIEW 
SOLAR-IRRADIANCE 
ANTGR-PATTERN 

END CATEGORY 
END METADATA 
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