
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2001

A Semantic Interface to Scenario Component Reuse in DoD A Semantic Interface to Scenario Component Reuse in DoD

Simulation Systems Simulation Systems

Lawrence A. Breighner

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Breighner, Lawrence A., "A Semantic Interface to Scenario Component Reuse in DoD Simulation Systems"
(2001). Theses and Dissertations. 4577.
https://scholar.afit.edu/etd/4577

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F4577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4577?utm_source=scholar.afit.edu%2Fetd%2F4577&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

A SEMANTIC INTERFACE TO SCENARIO COMPONENT
REUSE IN DOD SIMULATION SYSTEMS

THESIS

Lawrence A. Breighner, Captain, USAF

AFIT/GCS/ENG/01M-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

20010706 165

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense or U.S.

Government.

AFIT/GCS/ENG/01M-01

A SEMANTIC INTERFACE TO SCENARIO COMPONENT REUSE
IN DOD SIMULATION SYSTEMS

THESIS

Presented to the faculty of the Graduate School of Engineering & Management

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Lawrence A. Breighner, B.S.

Captain, USAF

March 2001

Approved for public release, distribution unlimited.

AFIT/GCS/ENG/01M-01

A SEMANTIC INTERFACE TO SCENARIO COMPONENT REUSE
IN DOD SIMULATION SYSTEMS

Lawrence A. Breighner, B.S.

Captain, USAF

Approved:

Michael L Talbert, Ph.D., Major, USAF
Chairman^

(^£>vi*~

Thomas C. Hartrum, Ph.D.
Committee member

Karl Mathias, Ph.D., Major, USAF
Committee member

Date

Date

2.0 f~&£ Zoo /
Date

ACKNOWLEDGMENTS

I owe much appreciation to those who have contributed to this work. To Major

Michael Talbert, thanks for your encouragement and expert guidance, and for allowing

me latitude in my research to explore and develop unfamiliar concepts and ideas.

Thanks also to Major Karl Mathias for our discussions concerning the feasibility of a

workable common object model, and to Dr. Tom Hartrum for his tireless efforts to bring

this old student back up to speed.

Above all, my wife deserves much praise and admiration for her selflessness

through our AFIT experience. She was always there to listen to my problems and

grievances, and never complained about being an "AFIT widow." Even while pregnant

with our son , she maintained her resilience and never grumbled about my absence

at her maternity appointments.

Lawrence A. Breighner

IV

TABLE OF CONTENTS

Table of Contents v

Table of Figures vii

Abstract ix

A Semantic Interface to Scenario Component Reuse in DOD Simulation Systems 1

1. Introduction 1

1.1 Definition of Terms 2
1.2 Problem Statement 2
1.3 Research Focus 5
1.4 Summary 6

2. Literature Review 8

2.1 Introduction 8
2.2 Suppressor Overview 9
2.3 Multi-Spectral Force Deployment (MSFD) 13
2.4 CERTCORT Common Object Model 15

2.4.1 SUPPRESSOR Grammar Parser 15
2.4.2 SUPPRESSOR Object Model 17
2.4.3 Multi-Spectral Force Deployment (MSFD) Object Model 19

2.5 Metadata 21
2.5.1 RAND Metadata Management System 23

2.6 The Visitor Pattern 28
2.7 JTree 31
2.8 Agent Technology 32

2.8.1 Intelligent Agents 33
2.8.2 Agents and Objects 34
2.8.3 Agent Architectures 34
2.8.4 Multi-Agent Systems 36

2.9 Object-Oriented Database Management Systems 38
2.9.1 Object-Oriented Database System Manifesto 38
2.9.2 ObjectStore 39

2.10 Multi-Database Systems 40
2.11 Summary 42

3. Methodology 43

3.1 Introduction 43
3.2 Development Tools 43

3.2.1 Object Modeling 43
3.2.2 Programming Language 45

3.3 General Approach 46
3.3.1 Scenario Component Representation 46
3.3.2 Component Generation 49
3.3.3 Relevant Component Retrieval 53
3.3.4 Component Transformation 57

3.4 Semantic Broker Architecture 60
3.4.1 Scenario-Registry Application 61
3.4.2 SemanticGateway Application 65

3.5 Summary 72

4. Implementation 73

4.1 Introduction 73
4.2 Design Issues 73

4.2.1 Scenario Class Hierarchy 73
4.2.2 Component Generation 77
4.2.3 Signature Analysis and the SCDB 78

4.3 Semantic Broker Major Components 81
4.3.1 ScenarioRegistry Application 83
4.3.2 SemanticGateway Application 89
4.3.3 SemanticGateway - ScenarioRegistry Interaction 111

4.4 Semantic Broker Demonstration 112
4.4.1 Java Packages ..113
4.4.2 Hardware and Software Platforms 113
4.4.3 Component Retrieval Test Cases 113

4.5 Extending the Semantic Broker 116
4.6 Summary 118

5. Conclusions and Recommendations 119

5.1 Introduction 119
5.2 Summary of the Research 119
5.3 State of CERTCORT 121
5.4 Future Research Recommendations 122

5.4.1 Developing a Builder Agent 122
5.4.2 Extending the Signature Concept 123
5.4.3 Extending the Semantic Broker's Transformation Capabilities 123

5.5 Summary 123

Appendix A. Selected Source Code 125

A.1. Component Generation 125
A.2. Relevant Component Retrieval 129
A.3. Component Transformation 135

Appendix B. Metadata 146

Bibliography 153

Vita 155

VI

TABLE OF FIGURES

11:
12:
13:
14:
15:
16:

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure
Figure
Figure
Figure
Figure
Figure .
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47

CERTCORT Vision 3
CERTCORT Agent Framework 4
SUPPRESSOR Scenario Creation and Execution 9
SUPPRESSOR Player Structure 11
Available System Types 12
Input Parameters to Tactics 13
MSFD Data Record Format 14
SUPPRESSOR Player-Structure Object Representation 15
SUPPRESSOR TDB File Format 16
UML Class Diagram Derived from SUPPRESSOR Syntax 17
Scenario as an Aggregation of Database File Classes 18
MSFD UML Diagram 20
MSFD Command Chain Representation 21
Example SysTables System Table 22
Example SysColumns System Table 22
RMMS Architecture 28
The acceptVisitor method 29
Use of SAV to Analyze Object Tree 30
JTree Terminology 31
Scenario Component Representation 47
Sample Scenario Component Representation 49
SemanticGateway Component Generation 50
Sample MetaSyntaxUnit Definitions 53
Signature Analysis Approach 54
Level of Abstraction Tradeoff 56
Translation Categories of Data Items 58
Application-Level View of Semantic Broker Architecture 60
ScenarioRegistry Application Main Components and Data Sources 61
Component Analysis 64
SemanticGateway Application's Major Components 65
SemanticGatewayAgent Conversation Process 67
Component Transformation Classes and Data Source 70
Transform Metadata File Format 71
Semantic Broker Scenario Component Class Hierarchy 74
Signature Analysis Classes 79
Semantic Broker System-Level View 82
ScenarioRegistry Application Class Diagram 83
ScenarioRegistryAgent Class Hierarchy 85
Scenario Registry Data Class Diagram 86
ScenarioRegistryGUI Window 88
SemanticGateway Application Class Diagram 90
SemanticGateway Application 91
SemanticGatewayAgent Class Diagram 93
Source Registry Class Diagram 94
Source Registry Graphical User Interface 96
SignatureSelector Window 98
SignatureSelector Popup Menu 99

VII

Figure 48: SemanticGateway Application with Signature Selected 100
Figure 49: SemanticGateway Window After Relevant Component Retrieval Process...
 101

Figure 50: SemanticGateway: Retrieve Component Details Menu 102
Figure 51: SemanticGateway: Component Details Expanded 103
Figure 52: Transformation Sub-System Class Diagram 105
Figure 53: TransformEngine Class xFormModel and xFormComp Methods 106
Figure 54: Component Transformation Process 108
Figure 55: Transformation Menu of the SemanticGateway 109
Figure 56: ComponentViewer Window 110
Figure 57: Transformed Component with Untranslatable Components 111
Figure 58: SemanticGateway - ScenarioRegistry Interaction 112
Figure 59: Homogeneous Test Configuration 114
Figure 60: Heterogeneous Test Configuration 115
Figure 61: Research Impact on CERTCORT Agent Framework 120
Figure 62: State of CERTCORT Functionality 121

VIII

AFIT/GCS/ENG/01M-01

ABSTRACT

The Department of Defense utilizes various simulation systems to model

employment of forces and weapons systems in operational environments. The data files

that model these environments and weapons systems are extremely large and complex,

and require many person-hours to develop. Compounding the problem, these data files

are distributed across multiple systems in a heterogeneous environment. Currently,

there is no automated means of identifying and retrieving reusable portions of these files

for reuse in a new scenario under development. This work develops a multi-agent

system that catalogs the files, and provides the user with a means of identifying and

retrieving reusable components. Additionally, since the format of the source files varies

from simulator to simulator, a process for performing scenario component transformation

is developed and implemented.

IX

A SEMANTIC INTERFACE TO SCENARIO COMPONENT REUSE

IN DOD SIMULATION SYSTEMS

1. INTRODUCTION

The Department of Defense (DOD) uses simulation systems to provide realistic,

cost-effective training to enhance personnel readiness without needlessly jeopardizing

their safety. Modern simulators generate complex training scenarios that would be cost

prohibitive if conventional training techniques were employed. The DOD utilizes training

systems which provide rehearsal of missions involving land, sea, air, and space based

forces. The Air Force Research Laboratory Sensors Directorate, Electronic Warfare

Simulation Branch (AFRL/SNZ) develops and maintains several such mission-level

scenario systems. These systems include the Extended Air Defense Simulation

(EADSIM), Suppressor Composite Mission Simulation System (SUPPRESSOR), Joint

Interim Mission Model (JIMM), and the Simulated Warfare Environment Generator

(SWEG). Previous research [Col99, Web99, Str99] focused on interoperability and

reusability of model components. Captain Todd McDonald [McDOO] researched the

utilization of an extensible multi-agent framework to enhance the aforementioned

functionality. This work employed agent technology to map SUPPRESSOR scenario

files into syntactically correct object-oriented data structures. Captain McDonald's

efforts provided an agent-based frame-work that provides a solid foundation for further

exploration of the potential benefits of employing agent-based technology to provide

scenario component retrieval, transformation, and reuse. This present research

investigates techniques for extracting suitable components from existing scenarios and

presenting them to the user for reuse in a new scenario.

1.1 Definition of Terms

In order to avoid confusion and reduce ambiguity, a definition of key terms used in

this research effort is provided. The key terms as used in the context of this document

are as follows.

• Model: An object-oriented class hierarchy.

• Scenario Component: A system instance, e.g., an airplane, tank, building, etc.

• Scenario: A data repository that contains one instance of a simulation with
specific player information.

• Scenario Database: A data repository that contains scenarios.

1.2 Problem Statement

The Air Force Research Laboratory, Sensors Directorate, Electronic Combat Branch

(AFRL/SNZW) employs a set of databases to generate scenarios for its simulation

systems. The Collaborative Engineering Real Time Database Correlation Tool

(CERTCORT) is under development by AFRL to provide an interoperability bridge

between the various simulation systems. Figure 1 depicts the CERTCORT concept.

The ultimate goal of CERTCORT is the reusability of an existing scenario, or portion

thereof, in the creation of a scenario for a different type of simulator. AFRL is interested

in developing a more efficient means of scenario generation. For example, consider the

situation where an analyst is building a new JIMM scenario. There is an existing

SUPPRESSOR scenario that meets most or all of the analyst's requirements except, of

course, its format is not JIMM. The CERTCORT system will ultimately be capable of

assisting the analyst in identification of the existing SUPPRESSOR scenario and

transformation of the scenario to JIMM format.

MSFD

c
E
R
T
C
0
R
T

1^- ^|, . ,ppnr-,.w j

^ w DTED JIMM/SWEG

EWIR MOSAIC ^ W

4 w CONOPS EADSIM

4 fe
CIB CEESIM

4 w DFAD RISS ^ p

^ w Documents DEES

^~-J.
^ p

I
I

'<o

Figure 1: CERTCORT Vision

Since the current system does not provide the facilities necessary to identify

existing, relevant scenarios, users require extensive knowledge of the underlying

scenario database. These expert users must manually search the volumes of text-

based scenario source files, and utilize their extensive knowledge to identify certain

characteristics that determine a scenario's composition. Utilizing various identifying

characteristics to determine the content of a given scenario component is known as

semantic interpretation. Semantic interpretation involves asking questions about a given

scenario component, such as:

• What is the type of the scenario player?

• What type of systems, capabilities, and susceptibilities are attached to the
scenario player?

• Is the subject scenario component similar to an existing, known component?

There is currently a prototype multi-layered agent-based system in place, McDonald

[McDOO], that retrieves data from SUPPRESSOR text files and instantiates an object

model. The system uses software agents, acting as information requestors, brokers,

and providers to supply the user with available scenarios in their entirety. Figure 2

[McDOO, 209] provides a graphical representation of the CERTCORT agent layers.

Collaboration Layer

Assistant Layer

Information Layer

Information
Broker

(Server)

1
1
1
1
1
1 \ \

1
1
1
1
1
1

\ ,/ \ \ / \ /
v ' \ \ \

II
I i

Information
Requestor

(Client)

\ ;
V ;

Collaboration
Assistant

-^
Semantic j

Broker m

(Server)

N.

\
\

1
nformation
Provider
(Client)

/
^ Scenario

—
Builder

Assistant

Figure 2: CERTCORT Agent Framework

Current
Research
Focus

However, the object model developed by McDonald is very specific to the

SUPPRESSOR scenario type and does not facilitate the representation of other scenario

formats (e.g., SWEG, JIMM, etc.). This aspect of the current system reduces scenario

piecewise reusability. The current system focuses almost entirely on the syntactical

aspects of the scenario files—how the files are structured, but not what they represent

(i.e., the semantics). Semantic information conveys what a scenario component

represents and can only be determined by evaluating the entire scenario component.

Semantic information, what a component is and does, can be ascertained by analyzing

the component and noting what sub-components it contains and the characteristics of

those sub-components. Captain McDonald's research effort excluded the semantic

broker agent. AFRL desires that the system be capable of presenting multiple levels of

detail about a scenario's components as well as providing a more coherent and reusable

representation of those details. For example, if the analyst requests an F-16 as part of

building a simulation, the semantic broker should know which scenario types contain F-

16 aircraft, the original source of the scenario components, and their composition.

1.3 Research Focus

The design, development, evaluation, and insertion of a semantic broker in the

information layer of the CERTCORT multi-agent architecture will be the primary focus of

this research effort. As stated previously, much work has been accomplished toward

developing a common object model for the various simulation types; however, research

on the semantic agent aspect is only now coming into focus. For the purposes of this

research, the semantic agent's responsibilities include:

1) Presenting the user with an interface suitable for describing the user's data
requirements.

2) Maintaining and querying the appropriate data structures.

3) Presenting the user with the existing scenario components that match the
requirements.

4) Providing facilities to transform a selected existing scenario component to the
desired scenario format.

In order to successfully retrieve scenario components for a user, the system must

determine as precisely as possible what data the user wants. The most obvious manner

of specifying data requirements to the system is through a semantically enriched user

interface. The current interface does not allow the user to present requirements that are

sufficiently detailed to permit the semantic agent to extract the required data. The

semantic agent must provide a means, most likely through a user interface, of

determining user information requirements.

After the user's information requirements have been solidified, the semantic agent

must query existing scenarios to determine if the requested data is present in the

currently available data sources. These sources may include scenario source files

belonging to any of the simulators in the CERTCORT system, as well as the native input

sources to developing these simulator scenarios such as the Multi Spectral Force

Deployment database.

Finally, after the data has been gathered, it must be presented to the user in a

format that facilitates comprehension, traceability to source, and ultimately, reusability.

In the previous example of the request for an F-16 scenario component, the returned

scenario components can be displayed, for example, in a Java-based tree structure.

1.4 Summary

The Air Force Research Laboratory, Sensors Directorate, Electronic Combat Branch

(AFRL/SNZW) employs a set of databases to generate scenarios for its simulation

systems. AFRL is developing the CERTCORT system to integrate the various

databases and facilitate the migration of scenarios from one simulator format to another.

However, while the current system is capable of locating existing scenario components,

it does not present sufficient semantic content to permit the user to determine whether it

is appropriate for inclusion in a new scenario. This new research investigates methods

for finding and retrieving existing scenario components, presenting them to the user, and

preparing selected components for inclusion in a new scenario. Specifically, the primary

focus of this research is the responsibilities of the semantic broker in the CERTCORT

Agent Framework depicted in Figure 2.

2. LITERATURE REVIEW

2.1 Introduction

There are several technologies central to understanding the magnitude of the

problems involved in providing enhanced component semantics to simulation scenario

creators. Since the primary focus of this research effort involves the SUPPRESSOR

simulator, the structure of the SUPPRESSOR scenario files and the various input

sources to the creation of these files are analyzed. One specific input to scenario

creation, the Multi-Spectral Force Deployment (MSFD) database, is explored here to

examine its structure. The CERTCORT class hierarchy is also reviewed to determine

appropriate extensions to enhance semantics of the model. The role of metadata, what

it is and how it can be exploited to extract meaning from a scenario component or group

of components is also examined. Additionally, the visitor design pattern is explored to

uncover its capabilities and potential use in development of the semantic broker's

analysis engine. Next, the Java Foundation Class component JTree is scrutinized to

discover its capabilities and nuances. Since this work involves extending the

CERTCORT agent framework developed by McDonald [McDOO], the peculiarities of

layered, multi-agent systems are also extremely relevant to this research. Therefore, the

applicable areas of agent technology are covered next. The CERTCORT system utilizes

the ObjectStore database to make its objects persistent, so a review of object-orient

databases is in order. Since the source files used to generate a specific scenario are

diverse in both format and content, the constraints and issues specific to heterogeneous

Multi-Database Systems (MDS) factor into this effort and are the final topic of this

literature review.

2.2 Suppressor Overview

Suppressor is a digital computer model, general-purpose simulation of a possibly

multi-sided conflict involving some combination of air, ground, naval, and space-based

forces [SAIC97]. To understand the overall functionality of the Suppressor Composite

Mission Simulation (SUPPRESSOR), a review of the SUPPRESSOR scenario creation

Data Sources

Figure 3: SUPPRESSOR Scenario Creation and Execution.

process, the key data sources, and the resulting scenario files is essential. The

SUPPRESSOR scenario generation process is depicted in Figure 3. There are several

data source input files used to develop a SUPPRESSOR scenario. These source files

may include all of the following:

• Multi-Spectral Force Deployment (MSFD): A file containing player and system
locations and the command hierarchy.

• Digital Terrain Elevation Data (DTED): A flat file containing a digitized
representation of the geographical area in which the simulation will occur.

• Electronic Warfare Integrated Reprogramming (EWIR) Database: A
document containing the electronic signature parameters and performance
capability of weapon systems.

• Concept of Operations (CONOPS): Any document that contains tactics and
doctrine for any given force deployment to ensure accurate representation of
players and systems in the scenario.

As shown in Figure 3, the analyst uses these data sources to create players and

systems, detail geographic attributes, define threat parameters and weapons

capabilities, and ensure current doctrine and tactics are being followed. The work of the

analyst results in the following files [SAIC97, 1-6], which comprise a suppressor

scenario:

• Type Database (TDB): Provides a mechanism for the user to describe data that
is shared by types of players, elements, and systems; or shared across the board
by more than one type of player, element, or system.

• Scenario Database (SDB): Contains information specific to each player, such
as its location, movement path, engagement zones, communication nets, etc.

• Elevation Database (EDB): Provides the ability to access Defense Mapping
Agency (DMA) terrain data, transform it, and use it during model execution for
line of sight checks for sensors, communications, and jammers.

The TDB contains most of the user's data, and can be used for more than one SDB.

In fact, usually there will be one TDB per study, with several SDB's for each important

variation within the study [SAIC96, 3-2]. Additionally, a User Application Names (UAN)

file contains the study-specific collection of names that allow the user to converse with

the model [SAIC97,1-6].

An interesting feature of SUPPRESSOR is the fact that it requires user provided

instructions that tell it how to interpret the user data. As stated in Volume I of the

Suppressor Release 5.4 User's Guide, "Suppressor requires the user to study the

problem and prepare a set of input instructions to represent the problem or situation."

The user provides data item definitions that adhere to the syntax of the SUPPRESSOR

language. By applying the parsing rules of this very specialized grammar, SUPPESSOR

is able to run and execute the simulation.

10

The TDB and SDB files define instructions and data values for player structures. A

player can be represented at any level of detail, and consists of the following

organizational components as shown in their hierarchical sequence in Figure 4 [SAIC97,

2:52].

• Locations: A player can have one or more locations, and a location can be
moving or stationary.

• Elements: An element is a susceptible component of a player. An element
belongs to a location and a location has one or more elements. Each element
has signatures that reflect how it will be perceived by sensors. Elements have
susceptibilities.

• Systems: An element may have one or more systems. These systems give the
player the ability to perform specific functions. There are eight systems that
elements may have as outlined in Figure 5 [SAIC97, 2:53].

• Resources: Some systems have explicitly modeled resources such as bombs,
missiles, etc.

• Tactics: Define how a player will use the systems to act on its own and interact
with other players. Players with no systems have no tactics. There are five
categories of tactics input parameters as listed in Figure 6 [SAIC97, 2:54].

Player Type

Locations Tactics

Elements

Systems Susceptibilities

Resources Capabilities

Figure 4: SUPPRESSOR Player Structure

11

System Usage Generic Function

Sensor Receiver Allows players to noncooperatively gain
information on other players; can be
nonlethally engaged by a disruptor
system; covers four types of sensors:
radar, radar warning, infrared, and optics
receivers.

SENSE

Sensor Transmitter Used in conjunction with radar sensor
receivers, allowing players to
noncooperatively gain information about
other players.

SENSE

Communication Receiver Allows players to receive messages from
other players; when linked with a
communication transmitter, there can be
two-way dialogue; can be nonlethally
engaged by disruptor systems.

TALK

Communication Transmitter Allows players to send messages to other
players.

TALK

Weapon Allows players to lethally engage other
players.

SHOOT

Disruptor Allows players to nonlethally engage other
players and affect their ability to gain
information.

DISRUPT

Thinker Processes information based on input NOTICE
tactics and intelligence data received and

DIGEST simulates the processing time required to
make these decisions. REACT

Mover Provides capability for a location to
change its position over time; movement
can be preplanned, and in conjunction with
a thinking system, reactively modified.

MOVE

Figure 5: Available System Types

A sensor receiver and, if applicable, sensor transmitter system can simulate one of

four types of sensors [SAIC97, 2:53-54]:

• Radar: active sensors which give off energy and reflect that energy back;
requires linkage of sensor receiver system and sensor transmitter system;
detects elements.

• Optics: passive sensors that work off energy emitted by the target from
something shining on it; requires only a sensor receiver system; detects
elements.

• Infrared: passive sensors that work off energy emitted by the target; requires
only a sensor receiver system; detects elements.

12

Warning Receiver: picks up emissions from communication transmitter and
sensor receiver systems; requires only a sensor receiver; detects systems, not
elements.

Lethal Assignment characterizes the interrelationships between
commanders and subordinates in making and
receiving assignments

Lethal Engagement defines the guidelines by which players with
weapons will engage threats

Non-Lethal Engagement defines the guidelines by which players with
disruptors can engage threats

Coordination a multifunctional area encompassing tactics
associated with intel reporting, engagement
requirements and zone permissions

Movement defines the guidelines for maneuvering vehicles
including those related to launch and terrain
following, terrain avoidance, threat avoidance, and
contingency planning

Figure 6: Input Parameters to Tactics

Players can be defined at varying levels of detail, each with different data

requirements. The level of aggregation and detail used to describe a player will

influence the amount of data required to represent the player types, the way command,

control, and communications between players in the scenario is defined, and the

interrelationships between players [SAIC97, 2:54].

Automating the scenario creation process is a goal central to the CERTCORT

vision. Some work has been done on a translation program that automatically generates

a partial SUPPRESSOR SDB from a multi-spectral force deployment (MSFD) file.

MSFD is investigated in the next section.

2.3 Multi-Spectral Force Deployment (MSFD)

The MSFD contains information detailing the subordination relationships of units

from the national command level down to the company and battery levels. MSFD

13

provides the necessary data for command-level force structure analysis. The format of

MSFD files is one 14-element record per line. These 14 elements are enumerated in

Figure 7.

DATA ELEMENT COLUMN(S)
Source Identifier 1
Sequence Number 2-8
Record Type 9
Blank 10
Site/Equipment Name 11-21
Location Lat/Long 22-38
Site Function 39-40
Location UTM 41-53
Unit Subordination Code 54-64
Map Scale 65
Spheroid 66
Site Status 67
Time Frame 68-72
Comments 73-80

Figure 7: MSFD Data Record Format

Given this format, MSFD is considered a scenario data input to SUPPRESSOR

rather than a scenario database file. All SUPPRESSOR scenario database files conform

to the SUPPRESSOR grammar rules. The MSFD file's records correspond and can be

mapped to equivalent structures within SUPPRESSOR'S SDB file with minimal

transformation.

Previous research ([Col99], [Web99], [McDOO]) has focused on developing a

common object model for the Collaborative Engineering Real Time Database Correlation

Tool (CERTCORT). In all of the above mentioned efforts, developing object models for

SUPPRESSOR and MSFD and integrating them with other CERTCORT data models

was a main focus. The most current research in this area was performed by McDonald

([McDOO]), and his object models for SUPPRESSOR and the MSFD database will be

investigated next.

14

2.4 CERTCORT Common Object Model

In developing an object model for SUPPRESSOR, McDonald built on previous work

by Weber [Web99]. McDonald extended Weber's object model and developed a parser

that maps textual player-structure definitions to player object models. This model is

shown in Figure 8 [McDOO, 117].

Susceptibilities Command Chain

8 Possible System Types
Sensor Receivers

Sensor Transmitters
Comm Receivers

Comm Transmitters
Weapons
Movers

Disrupters
Thinkers

Player

V£ m
4-1+

Location

^ Flement

Linkage

Element

r ->
Weapons use ammunition

Movers use fuel
Disruptors use expendables
Thinkers use future players

System 1

_^_X.

Suscepibility

1 1 « t 1+
Resource Capability

Possible Capability Data Items
48 Data Items for Sensors Receivers

20 Data Items for Sensor Transmitters
10 Data Items for Comm Receivers

6 Data Items for Comm Transmitters
10 Data Items for Weapons

9 Data Items for Movers
13 Data Items for Disruptors
4 Data Items for Thinkers

Figure 8: SUPPRESSOR Player-Structure Object Representation

2.4.1 SUPPRESSOR Grammar Parser

McDonald also developed an object model for the SUPPRESSOR grammar. A

grammar is made up of keywords, tokens, and production rules. A production rule

defines a precise, allowable order for a sequence of keywords and tokens. Each rule,

15

with the exception of the top-level rule, is an expansion of a previous rule in the previous

level. Since there are a finite number of possible expansions from one level to the next,

a grammar parser is able to read a file and determine if the text conforms to its grammar

rules. These grammar rules are also known as the language's syntax. The top-level

production rule in SUPPRESSOR consists solely of the "EXECUTE" keyword. Each of

SUPPRESSOR'S input files (TDB, SDB, and EDB) conforms to the SUPPRESSOR

syntax. The structure of the SUPPRESSOR TDB input file is given in Figure 9 [SAIC97].

Occurrences TDB Instructions Comments

EXECUTE
INSTRUCTIONS-FOR:
TDB
<comment>
INSERT-MODE -*—

REPLACE-MODE can be used in
certain circumstances

0 or more ■

PLAYER-STRUCTURE <player-name> I can only be specified with INSERT
Oor
more
Oor
more (Location)

TACTIC <tactic-name>
^ MODE

0-1 LINKAGES

END PLAYER-STRUCTURE

0 or more -
TACTIC <tactic-name>

1 or
more (Tactic Data Item)

END TACTIC

0 or more-

SUSCEPTIBILITY <susceptibility-rame>

1-6 (Susceptibility Data Item)

END SUSCEPTIBILITY

0 or more ■
1 or
more

CAPABILITY <capability-name>

(Capability Data Item),

END CAPABILITY

<tactic-name> must be listed as
PLAYER-STRUCTURE <tactic-name>
Player types with thinker systems
require TACTIC data Item

23 valid Tactic Data Items

<susceptibility-name> must be listed as
PLAYER-STRUCTURE <susceptibility-
name>

7 valid Susceptibility Data Items

<capability-name> must be listed as
PLAYER-STRUCTURE capability-
name

see documentation for list of valid data
items

END-INSTRUCTIONS <data option>

Figure 9: SUPPRESSOR TDB File Format

The format of the SDB instructions, although not identical, follows a nested pattern

similar to the TDB file format. Based on the SUPPRESSOR language syntax, McDonald

16

derived the UML class diagram shown in Figure 10. In the figure, the Boolean attribute

saveData of the ExecuteCompositeltem class relates directly to the <data-option> in the

grammar syntax, and its value determines whether scenario execution results are saved

or discarded. The Boolean attribute hasill provides the capability to use the class

independent of, or in unison with, a graphical user interface (GUI). At implementation, a

pointer to a GUI can be found in the userlnterface attribute of ExecuteCompositeltem if

the instance has been created by a user interface [McDOO, 123].

ExecuteCompositeltem

^haslll: boolean = false
bsaveData : boolean = false

^►parse()
^►phrase()
^►toTree()
#verify()

\
UAN TDB SDB ADB EDB DMA ModelExecution

Figure 10: UML Class Diagram Derived from SUPPRESSOR Syntax

2.4.2 SUPPRESSOR Object Model

A SUPPRESSOR scenario is composed of various files that define the players,

tactics, environment, etc. for a simulation. These files are aggregations of definitions of

the components and subcomponents that detail the scenario's characteristics. Figure 11

17

[McDOO, 149] depicts the CERTCORT UML class hierarchy that represents these files

and their components of a SUPPRESSOR scenario.

In Figure 11, the UAN class represents the user application names set of

instructions used in the SUPPRESSOR model. The UAN class is composed of a

collection of definitions relevant to the scenario(s) being studied. These definitions each

identify a specific group of entities according to their usage in the TDB and SDB [SAIC,

Vol II: 3-2].

SuppressorSim

<7

EDB UAN ModelExecution TDB

1..*/
UanDefinition

/
usrNames 1..*

1 ..*/

String

uanEategory

UanCategory

PlayerStructure

ADB DMA SDB

1..*

Capability

1..*

Susceptibility

I
Side

Zone Net

Tactic

Figure 11: Scenario as an Aggregation of Database File Classes

Based on Figures 9 and 11, one can discern the data elements that make up a

PLAYER-STRUCTURE in a TDB file. A TDB file consists of zero or more definitions of

the following types: PLAYER-STRUCTURE, TACTIC, SUSCEPTIBILITY, and

CAPABILITY. Strictly speaking, the definition types TACTIC, SUSCEPTIBILITY, and

CAPABILITY cannot exist without at least one PLAYER-STRUCTURE definition. The

PLAYER-STRUCTURE is an aggregation of TACTIC, LOCATION, and LINKAGES data

types. The LOCATION data type is an aggregation of ELEMENT types. The ELEMENT

type consists of SUSCEPTIBILITY and SYSTEM types, and the SYSTEM type is

composed of CAPABILITY and RESOURCE types.

18

The scenario database (SDB) contains data that relates all the player descriptions

found in the TDB to command chain structures, zones, and communication networks as

well as other inter-player relationships [McDOO, 160]. In addition to information detailing

various attributes of the scenario, the SDB is composed of zero or more NET and ZONE

components as well as one or more SIDE components. These components relate to

communication networks, shared zones, and command structures respectively.

2.4.3 Multi-Spectral Force Deployment (MSFD) Object Model

In analyzing the MSFD file structure, McDonald [McDOO, 173-174] notes that of the

fourteen fields present in an MSFD record, there are six of primary significance to

analyzing an MSFD record for use as an input source for a CERTCORT-based scenario:

• Sequence Group: A five digit number that begins with "00001" for the first unit

in a sequence. The sequence group for a unit that is designated as any type of

headquarters node or controlling authority will always be "00001" and those units

authority will have the same sequence group, but a distinct and unique sequence

code.

• Sequence Code: A two digit number that is assigned at "01" for all subordinate

units that report to a given headquarters or controlling authority unit.

• Record Type: A single character field set to either "A" or "B." All headquarters

and controlling authority units will be designated by an "A" and each subsequent

record with a "B" entry indicates that it is subordinate to the closest preceding "A"

record unit.

• Site Equipment Name: An eleven-character field that contains the

site/unit/equipment name.

• Geographic Location: The latitude and longitude of the unit.

19

• Unit Subordination Code (USC): An eleven-character alphanumeric code that

uniquely identifies and subordinates each site/unit in the data file. The USC

reflects the command level structure from the highest national level to the lowest

company level.

• Time Frame: A three-digit field that determines which year a unit is forecast at a

given location. Scenarios typically use only units listed in the MSFD that have a

common time frame. There are three possible positions for the time frame,

indicated by the presence of an "X," which can map to three distinct years (i.e.

1995,2000,2010).

The UML diagrams in Figures 12 and 13 show the class hierarchies derived from

the MSFD file record structure to represent the headquarters-subordinate relationships

MSFD 1..* MsfdRecord

records

hqSubChains

1..*

MsfdUnit 1

MsfdHq subordinates MsfdSubordinate

Figure 12: MSFD UML Diagram

and command chains respectively. Figure 12 defines two types of units for MSFD: 1)

Headquarters units (MsfdHq), and 2) Subordinate units (MsfdSubordinate). This

derivation of the MSFD format also results in a class named MsfdRecord, which is the

entire collection of MSFD records from the MSFD input file. Therefore, an MSFD object

is an aggregate of MsfdRecord objects, each of which has a one-to-one correlation to an

20

MsfdUnit object. The class hierarchy in Figure 13 [McdOO, 178] represents the seven

command chain levels of the MSFD. The MsfdCommandChain class provides a

MSFD records 1 ..* MsfdRecord

parent records

commandChains
MsfdCommandChain

~A

0..* subordinates

1..*

ChainNationalTheater ChainArmyGroup

ChainArmyCorps

ChainCompanyBattery

ChainBattalion

ChainDivisionalNode

ChainRegimentalBrigade

Figure 13: MSFD Command Chain Representation

generalized form of command authority representation, and adds the capability to store

both parent and subordinate unit relationships [McDOO, 178]. The seven subclasses of

the MsfdCommandChain class correspond directly to the six command authority levels

of MSFD. The seventh subclass ChainDivisionalNode corresponds to units designated

as division-level.

2.5 Metadata

A database is a self-describing collection of integrated records [Kro99, 14]. The

portion of a database that contains this self-describing information is the data dictionary

or metadata. Essentially, metadata is data about data. For example, if a particular

column in a relational DBMS contains a numeric value representing an employee's age,

the metadata concerning this column might be that it must be a positive integer. In a

relational DBMS, this metadata is stored in special tables called system tables. Figures

14 and 15 provide examples of two types of system tables containing metadata.

21

Table Name, > Number of Columns Prirriary Key
Student 4 StudentNumber
Adviser 3 AdviserName
Course 3 ReferenceNumber
Enrollment 3 {StudentNumber, ReferenceNumber}

Figure 14: Example SysTables System Table

The table in Figure 14 contains a record for each table present in the database.

These records store the number of columns of each table, and each table's primary key.

The table in Figure 15 contains the columns of every table in the database. This

table specifies the table to which the column belongs, the column's data type, and its

length. Depending on the application, it may prove useful to store additional information

Column Name Table Name Data Type Length
StudentNumber Student Integer 4
FirstName Student Text 20
LastName Student Text 30
Major Student Text 10
AdviserName Adviser Text 25
Phone Advisor Text 12
Department Advisor Text 15
ReferenceNumber Course Integer 4
Title Course Text 10
NumberHours Course Decimal 4
StudentNumber Enrollment Integer 4
ReferenceNumber Enrollment Integer 4
Grade Enrollment Text 2

Figure 15: Example SysColumns System Table

in this table. For example, if there were a column that contained each student's weight,

it would be useful to know whether the unit of measurement was pounds or kilograms.

In addition to these two tables, there are system tables for indexes, keys, and other

facets of the database structure.

Application metadata is another variant used to store the structure and format of

user forms, reports, queries, and other application components [Kro99]. This metadata

is created and updated by the DBMS's design tools subsystem when forms, reports, etc.

22

are created and modified; and utilized by its run-time subsystem when generating these

components and linking them to data elements in the tables.

Traditionally, Database Management Systems (DBMSs) have not maintained other,

more semantic data. For example, some data in the database may be derived from

processing several databases. To build on the previous example of the column

containing each student's weight, consider the following scenario. There are two

separate and heterogeneous databases that must be processed and compiled into a

third composite database containing all students. The first database contains U.S.

students and maintains their weight attribute measure in pounds. The other contains

European students and maintains the weight field measure in kilograms. In order to

consolidate the two databases, a standard unit of measure must be adopted and a

conversion process documented. This conversion process should be documented in the

metadata of the derived database. However, the current generation of DBMS metadata

facilities are not equipped to represent this conversion process. It was this lack of

capability that led the Secretary of Defense to sponsor RAND research that led to

development of the RAND Metadata Management System [Cam95].

2.5.1 RAND Metadata Management System

The RAND Metadata Management System (RMMS) is a system that manages

metadata associated with the relational database management system operated by the

Military Operations Simulation Facility (MOSF).

As motivation for developing RMMS, the RAND researchers enumerate several

examples that exemplify the need for, and use of, metadata. A few of these are listed

below [Cam95, 3].

23

• Social science studies integrating census data over many decades must be able

to compare the Schemas of different versions of data because through the years

different data fields have been recorded. For example, census surveys early in

the century asked if households had a flush toilet.

• Different environmental waste databases maintain contaminant levels differently,

for instance, as concentration percentages or as a pair of weights representing

solid waste and total waste. To compare contaminants across two such

databases requires knowledge of the representations and conversion procedures

each uses.

• Metadata is an ideal resource for browsing, making it possible to identify, for

example, databases that contain information on military airfield and runway

assets. Metadata serves to link references from standard data elements such as

"airfield" and "runway" to the databases that contain data for these data

elements.

As these examples illustrate, metadata is essential to heterogeneous database

interoperability. The goal of a metadata management system is to centralize and

standardize metadata information and associated procedures [Cam95, 4].

The RAND researchers addressed five major issues during development of RMMS.

The first issue involved the need for complete, thorough, and standard data

documentation. System manuals, when provided, are useful for the system

administrator, but are of little use to users who want to know the content of the database.

Often there is no formal documentation regarding the organization and semantics of the

database.

The second issue raised was the need to record and manage information about

different versions of databases. In organizations that use databases generated from

24

outside sources, the issue of what to do with the old version when new ones arrive must

be resolved. If several versions of the database are required to be available, a means

must be implemented to store these old versions and procedures must be adopted to

ensure their compatibility with any future update to the associated DBMS.

The need to maintain a history of the changes made to database tables, schema,

and data values was also addressed in the RAND effort. The metadata management

system should be capable of maintaining a history of data values and schema changes.

This would permit the re-creation of previous versions of the database.

The fourth issue addressed by RAND was the need to facilitate derived databases

for input to simulation models and for sharing among models. A metadata management

system should facilitate generation and storage of metadata for a derived database.

This generation and storage should be performed automatically when a derived

database is created, and should include the sources and process used in the derivation.

The last issue raised by the RAND researchers was the need to standardize the

names of data elements that are (1) conceptually the same but named differently or (2)

named the same but conceptually different. This issue is directly related to

interoperability conflicts among heterogeneous data sources. The metadata

management system must be able to resolve the naming issues and perform

conversions on any data fields that, for example, have the same meaning, but are

represented in different units of measure.

Most commercial DBMSs include a repository called a data dictionary. The data

stored in this repository is generated during schema creation and is generally limited to

those characteristics specified in the data definition language [Cam95, 9]. These

characteristics normally include items such as table name, number of columns, primary

key, and owner name. A column table may contain data on the column name,

25

associated table, data type, length, and whether or not nulls are permitted. Other

information is also stored in the data dictionary, but most of this information is only

relevant for the operation and optimization of the DBMS [Cam95, 9]. This repository

cannot be used to store semantic information such as units of measure, procedures for

conversion, or in the case of a derived table, the sources and derivation process.

RMMS uses conventional relation DBMS techniques to deal with the various issues

previously discussed. The RMMS approaches the documentation problem by providing

the capability to store information about databases, tables, and column entities. RMMS

augments the DBMS provided system tables with inter- and intra-table relationships,

attribute domain information, and aliases.

RMMS addresses the history issue by recording all changes made to a database.

When modifications are made the pre-change value is recorded in a metadata table.

There are three "history" metadata tables as defined below [Cam95,12].

• Value History Table: store old values from data tables that have been

subsequently updated

• Table History Table: store changes to a table as a whole (i.e. a name change)

• Column History Table: store changes to the schema

To facilitate database derivation, RMMS maintains a specialized metadata relevant

to derived databases, procedures to automate the process of deriving metadata from

external database metadata, and a trigger mechanism for automatically updating derived

databases when an external source changes. To achieve these functions, RMMS

provides a registry of external data sources, which is linked to metadata on those

sources.

Data element standardization was achieved through the use of aliases and

conversion procedures. RMMS defines a standard name for each data element, then

26

links these to the various aliases and necessary conversion procedures. There are two

benefits to this approach: 1) When creating derived databases, the new columns can be

named using the standard element names, which reduces ambiguity; and 2) When

performing queries, users can refer to the standard element name and obtain references

to the various aliases. This approach maintains the independent structure of the

heterogeneous data sources.

The RMMS architecture, depicted in Figure 16 [Cam95, 16], has two major

components. The first is called the "Data Encyclopedia." The data encyclopedia is a

database of metadata concerning all application databases. There is only one data

encyclopedia for all the application databases. The other component is the "Data

Dictionary," which is a set of metadata tables that augments the system tables for each

application database. There is one data dictionary for each application database.

Figure 16 shows these two components and their relationship to the DBMS and

application databases. In the figure, "scfe" is an acronym for "standard data element,"

and "md' is an abbreviation for "metadata."

Although the RMMS system was developed for use with a relational DBMS, the

basic principal of using metadata to provide interoperability among heterogeneous data

sources and enhance the semantic content of the overall system can be applied to

object-oriented DBMSs and, to a lesser extent, flat file systems as well. This research

will further investigate the possible use of these techniques to enhance the

representation of scenarios and their individual components.

27

DBMS

RMMS database

values <sde domain name>

sde_numeric_domain_range

standard domains

standard data element

version_hi story

database

Application Database 1

md enum statistics

mdjrange_stati sties

md_numeric_domain_range

md value enum

md_value_history_<tab!e name>

application tables

md_co lu m n_h istory

moMableJiistory

md links

md_dependencies

md column extend

md table extend

metadata tables

Application Database 2

application tables metadata tables

RMMS
Data

Encyclopedia

RMMS
Data

Dictionary

Figure 16: RMMS Architecture

2.6 The Visitor Pattern

The visitor design pattern has been described in Design Patterns: Elements of

Reusable Object-Oriented Software [Gam95]. Visitor allows the addition of new

operations without modification of the class of elements on which it performs. The visitor

pattern provides a framework for packaging related operations into an object separate

from their classes-a visitor object. Each class then implements the acceptVisitor

method shown in Figure 17. When an object accepts a visitor, it calls the visit method of

28

the visitor object and passes itself as a parameter in the method call. The visitor class

defines a method for each class of objects it knows how to analyze.

public Object acceptvisitor (Visitor visitor, Object data)

{

return visitor.visit(this, data);

}
Figure 17: The acceptvisitor method

By employing visitor, all methods needed to perform semantic analysis on the over

one hundred CERTCORT object classes could be located in one file—controlled by the

semantic broker. This is accomplished by creating, through either inheritance or an

interface, a visitor class. This class contains a semantic analysis method, a.k.a. a

visitor, for each target class to be analyzed. All the code required to analyze any class

in the system is conveniently located in one file.

The benefits of utilizing the visitor design pattern are two fold. First, the visitor

pattern places all code that performs a specific function in one file, as opposed to the

traditional object-oriented approach, which spreads the methods throughout the classes

on which the methods operate.

The second major benefit of visitor is that once the target classes have been

modified to accept visitor objects, additional new visitor classes (methods) can be added

without alteration of the current classes. By eliminating the need to modify existing,

proven code, the visitor pattern removes the potential that an "enhancement" will

introduce anomalies through inadvertent changes to the class structure. The visitor

pattern facilitates ease of maintenance, since all methods that perform a similar function

are co-located. Therefore, when an enhancement is needed or a bug discovered in a

method implemented using visitor, only one file needs to be modified.

29

One potential use of the visitor pattern is depicted in Figure 18. The information

layer's semantic agent creates a semantic analysis visitor (SAV) object, then passes the

SAV object in a call to the acceptVisitor method in the root node of the object tree under

analysis. The acceptVisitor method in the root object utilizes the visit method in the SAV

object parameter to call back the SAV object with itself as the parameter. The SAV

object now has the root of the object tree and can perform its analysis and present its

results to the semantic agent.

Object Tree Under

Figure 18: Use of SAV to Analyze Object Tree

In short, extending the CERTCORT class hierarchy structure to fit the visitor pattern

will facilitate development of the semantic information broker, and permit additional new

visitor classes to be added without alteration of the current classes. Ease of

maintenance is a major benefit of the visitor pattern, since all methods that perform a

similar function are co-located and existing code does not require modification. During

the design and implementation portions of this effort, the possibility of employing the

visitor pattern to develop portions of the semantic information broker extension to the

information layer of CERTCORT will be explored.

30

2.7 JTree

The Java Foundation Classes (JFC) include a rich set of windowing components

called Swing [Ste99]. The Swing classes allow graphical user interfaces (GUIs) to be

developed without relying on the native windowing facilities of the operating system.

JTree is a component of the JFC. Figure 19 [Ste99, 25] outlines JTree terminology and

provides essential definitions for each. JTree provides a mechanism to present

hierarchical data for display. The JTree component does not actually contain the data, it

merely provides a view of the data. The objects that contain the data to be displayed in

the JTree must be associated with the JTree object. This can be done in one of two

ways.

Node: Any position within the JTree where data
associated with the object is being represented.
Path: A collection of a contiguous set of nodes. A
path can contain one or many nodes. A null path
indicates a zero node path or an empty path. A
collection of nodes will consist of a strict ancestry line.
Leaf: A special kind of node. As its name implies, this
is the node at the end of a path.
Root: A special kind of node. In comparison to a leaf,
a root's parent information is never examined. It's the
highest point within the hierarchy. A root's parent
information either does not exist or does not need to be
displayed.
Parent: Represents a node's relationship with another
node. In a parent/child relationship, the parent is
analogous to a super class within the realm of object-
oriented concepts.
Child: Represents a node's relationship with another
node. In a parent/child relationship, the child is
analogous to a subclass of its parent. It inherits all the
properties associated with its parent.
User Object: Refers to the business object associated
with a node. While not required, all user objects will
usually be of the same class type.
Editor: A component (usually an extension of a
JComponent) that has the unique role of allowing the
user to change the data of a specific node.
Renderer: This is a component (usually an extension
of a JComponent) that has the unique role of deciding

. how a node's data is to be displayed within the context
of the JTree when a user isn't editing the data. (Note:
Using an AWT component as an editor or renderer
may generate unwanted results.)
TreeModelEvents: Swing provides the following three
types of events:
1. Expansion event - an event generated when a
node is collapsed or expanded.
2. Model events - there are four types of model
events:

a. node changed - generated after a node is
changed. This is the only event the TreeModel
interface supports with the method
valueForPathChangedfJreePath path, Object
newValue). While this method could be
implemented to represent any of the four types of
model events, typically this represents the node
changed event, and the DefaultTreeModel class
implements it as such.

b. node inserted - generated when a node is
inserted into the JTree

c. node removed - generated when a node is
removed from the JTree

d. structure changed - a "catchall" event used when
something drastic has happened to the structure
of the JTree. It's the most expensive event as it
may result in a repaint of the entire JTree.

3. Selection event - an event generated when the
selection of a node takes place.

Figure 19: JTree Terminology

The first method involves "wrapping" the object that contains the data in a

DefaultMutableTreeNode object. This method is sufficient if the JTree will only be used

31

to display read-only information. If the data in the JTree must be editable, this approach

has several drawbacks [Ste99, 26-27] as outlined below.

• It demands that the application constructing the JTree take full responsibility for
constructing and maintaining all the hierarchical relationships between each
node.

• The responsibility of keeping concurrent data accurate falls back on the
application containing the JTree.

• The DefaultMutableTreeNode is not a thread-safe class.

The second, and preferred, method associating the data object to the JTree is to

implement the MutableTreeNode interface. Implementing the interface provides a

"bridge" between the user object class being displayed and the Swing MutableTreeNode

interface [Ste99, 27]. This bridge provides a means of translating API calls invoked in

the JTree to corresponding methods in the user's object. Implementing the interface

eliminates any requirement for the user object class to know the functionality of the

JTree and vice versa.

The JTree component of Swing in the JFC provides the ability to view hierarchical

data in an "outliner-style" tree. The most flexible means of utilizing the functionality of a

JTree is through implementation of its MutableTreeNode interface. Use of the JTree's

capabilities will be further explored in development of the semantic broker's user

interface.

Since any approach to enhancing the semantics of simulation components will

involve the application, or at a minimum the understanding of, multi-agent systems, this

topic is discussed next.

2.8 Agent Technology

An agent is a computer system that is situated in some environment, and that is

capable of autonomous action in this environment in order to meet its design objectives

32

[Wei99, 29]. An agent performs actions on or in its environment and monitors the results

of its actions. It uses this feedback to determine if the desired state has been achieved

or if further action is required. Although an agent normally cannot exercise total control

over its environment, most agents have some influence over a portion of their

environment. The collection of actions an agent has available to modify its environment

is known as its effectoric capability. Since most real world environments are non-

deterministic, the same action may leave the environment in different states depending

on whether the pre-conditions of the action were satisfied. This fact makes it essential

that agents be capable of deciding which action to perform and of dealing with the failure

of an attempted action. There are five environmental properties that affect the

complexity of the decision-making process [Wei99].

• Accessible vs. Inaccessible: an environment is accessible if an agent can
obtain complete, accurate, up-to-date information about the environment's state.

• Deterministic vs. Non-Deterministic: an environment is deterministic if an
action has one guaranteed affect.

• Episodic vs. Non-Episodic: in an episodic environment, the performance of an
agent is dependent on a number of discrete episodes, with no link between its
performance in different scenarios.

• Static vs. Dynamic: in a static environment, the agent can assume only its
actions change the environment's state. In a dynamic environment there are
other processes, over which the agent has no control, affecting the agent's
environment.

• Discrete vs. Continuous: an environment is discrete if there are a fixed, finite
number of actions and percepts in it.

The most complex environments are those that are inaccessible, non-deterministic, non-

episodic, dynamic, and continuous [Wei99].

2.8.1 Intelligent Agents

The previous definition of an agent would include a simple thermostat, since such a

device is capable of monitoring its environment and performing actions to modify it. To

33

extend an agent into the realm of intelligent agents, it must be capable of flexible

autonomous action to meet its objectives. This flexibility embodies three things [Wei99]:

• Reactivity: able to perceive their environment and respond in a timely fashion;

• Pro-Activeness: able to exhibit goal-directed behavior by taking the initiative;

• Social Ability: capable of interacting with other agents (and possibly humans).

Intelligent agents must verify that the pre-conditions of an action are satisfied before

executing the action. Also, an intelligent agent must decide what to do in the event

another process changes the state of the environment, and nullifies the pre-conditions,

while the action is being performed. Usually this results in a failure of the action, so the

agent must determine another course of action that achieves its design goals.

2.8.2 Agents and Objects

At first glance, agents seem very similar to objects. After all, objects encapsulate

their data and provide methods that access this data. Therefore, objects seem to have

autonomy over their state. However, the public methods contained in the object are

executed by external procedures. It has no control over when or if these methods are

executed, and it has no ability to decide whether it is in its best interest to execute the

method. An object has no control over its behavior.

By contrast, an agent receives a request to perform a specific action. The agent

decides whether accomplishing the action will help it achieve its goals. If so, the agent

complies with the request. However, control lies with the agent, and the agent controls

its behavior.

2.8.3 Agent Architectures

The framework within which an agent senses its environment and executes actions

to influence that environment is the agent's architecture. In his book [Wei99], Gerhard

34

Weiss considers four architectural classes of agents. These are logic based, reactive,

belief-desire-intention, and layered architectures.

Logic based agents act as theorem provers in a framework where both its desired

behavior and the environment's state are represented symbolically. Agents use the

rules of formal logic to deduce which actions will lead to goal satisfaction.

Reactive architectures are based on the concept that intelligent, rational behavior is

inseparably linked to the environment in which the agent operates, and intelligent

behavior is the aggregation of simpler agent-environment interactions. In reactive

architectures, agents sense their environment and map perceptual input directly to

actions. Formally, this might be written as situation -> action. To deal with the

possibility a particular perceptual input maps to more than one action, many reactive

agents employ layers to determine which action will be performed. Under this

architectural scheme, lower layer actions inhibit higher layer actions. This allows high

priority actions to be placed in the lower layers where they will have execution priority

over lower priority actions in the higher layers.

Belief-Desire-Intention (BDI) agent architectures attempt to give agents the ability to

understand practical reasoning. In this framework, an agent develops an intention

based on a set of available options. This intention drives future means-ends reasoning,

constrains future decision making processes, and persists until environmental changes

make the intended goal unachievable.

Layered architectures decompose an agent into different layers, each of which deals

with a different type of behavior. In general terms, there are two types of layering:

horizontal and vertical.

In a horizontally layered architecture, each layer is directly connected to the sensory

input and action output. These architectures normally include a mediator function that

35

determines which layer has control. This mediator eliminates conflicts when two layers

simultaneously detect an environmental change and generate actions. However,

designers must construct the mediator so it knows how to resolve all possible conflicts

between layers. In a system with n layers, each of which can suggest m actions, there

are rrf possible agent interactions to be considered [Wei99, 62]. Defining rules for

resolving each of the possible conflicts dramatically increases the complexity of the

design and introduces a system bottleneck.

Vertically layered architectures require all perceptual input to travel up to the highest

level before an action is determined. In the vertically layered architecture, all input is

sensed by exactly one layer, and all actions are performed by exactly one layer. The

input layer is always the lowest, or bottom, layer. The layer that performs actions

depends on whether the architecture is one-pass or two-pass. In a one pass vertically

layered architecture, input enters the bottom layer and actions are executed by the top

layer. A two-pass vertically layered architecture requires that input enter the bottom

layer and pass upward through all layers above. Once at the top layer, that layer

determines an action and passes it down to the next lowest level. Each successively

lower layer processes the action, adds additional actions as appropriate, then passes it

to the next lower level. When the action reaches the lowest layer, it is executed. This

architecture reduces the number of possible layer interactions to be considered

significantly; but reduces the fault tolerance of the system, since control must pass to

each layer before a decision can be made.

2.8.4 Multi-Agent Systems

To accomplish real-world goals, most agent-based systems employ many agents

working together to accomplish the desired objectives. These systems provide

36

frameworks for agent communication and interaction. Agents communicate via

message passing. The interaction protocol defines which messages may be sent in

response to a received message as well as those that may be sent to initiate

interactions. In this respect, an interaction protocol governs an exchange of a series of

messages called a conversation.

Coordination of agent activities is essential in a distributed, multi-agent system.

Coordination can be divided into two categories depending on whether the agents are

non-antagonistic or competitive. Cooperation among the former is coordination, while in

the latter case it is termed negotiation [Wei99, 83]. In a system where some agents

compete and others coordinate their efforts, each agent must maintain a model of other

agents in its environment and update the model as new agents enter the environment,

goals change, etc.

The contract net protocol [Wei99, 100-101] is a widely used protocol for distributed

tasks. Under this protocol, an agent wanting a task performed is called the manager,

and agents able to perform the task are called contractors. The manager agent

announces the task to be performed, receives and evaluates bids from contractor

agents, awards a contract to a suitable contractor, and receives and synthesizes the

results. The contractor agents receive the task announcements, evaluate their capability

to perform a specific task, decline or bid on the task, perform the task if their bid was

accepted, and report their results. In the contract net protocol, agent roles are not

predetermined. This allows an agent that previously acted as a contractor to bid on a

task, to break that task into sub-tasks, and, acting as a manager, announce several of

those sub-tasks open for bid. The resulting manager-contractor links form a control

hierarchy for task sharing and result synthesis [Wei99, 101].

37

The multi-agent CERTCORT layered framework manipulates data stored as objects.

To provide persistence for these objects, an object-oriented database management

system is utilized. The capabilities and vulnerabilities of these systems is dicussed next.

2.9 Object-Oriented Database Management Systems

An object-oriented database management system (OODBMS) provides object

persistence and the consistency of atomic transactions. These systems free application

designers and programmers from the task of developing and implementing a persistency

scheme for each application developed.

2.9.1 Object-Oriented Database System Manifesto

When Malcolm Atkinson and company [Atk89] wrote "The Object-Oriented

Database System Manifesto" in 1989, they outlined the main features and characteristics

a system must have to qualify as an OODBMS. These features include:

• Complex Objects: objects composed of other objects. The manifesto lists the set,
list, and tuple as the minimum set of constructors.

• Object Identity: can be existence based or value based. A system that maintains
object identity based on a unique attribute value places the burden of maintaining
uniqueness of object identifiers and referential integrity on the user. In a system that
supports existence based object identity, the system ensures uniqueness of
identifiers and maintains referential integrity.

• Encapsulation: the data structure and methods that manipulate it are wrapped in
an interface. The only means of accessing the data structure is through the methods
defined in the interface. Encapsulation provides some level of logical data
independence, since the underlying implementation of an object can be changed
without changing the interface and the applications that use the data.

• Class: a template for creating an object. A class contains two aspects: an object
factory and an object warehouse [Atk89, 7]. The object factory is used to create new
objects of the class, and the object warehouse is the collection of all objects that are
instances of the class.

• Inheritance: allows the extension of a general class into one or several more
specialized classes. Additionally, inheritance helps in factoring out shared
specifications and implementations in applications [Atk89, 8].

38

• Late Binding: allows the same operation name to be used for multiple, different
classes of objects. Late binding means that method parameters are bound to object
class types at runtime. The runtime system determines which method to call based
on the data type and number of parameters.

• Extensibility: means that the system comes with a set of predefined types and new
types can be added. When new types are added they can be used in the same ways
as predefined types.

• Persistence: means that objects are stored when an application terminates and can
be retrieved and loaded the next time the application is started.

• Secondary Storage Management: the set of mechanisms required to manage
large databases. These mechanisms include index management, data clustering,
data buffering, access path selection, and query optimization [Atk89, 12].

• Concurrency: the ability of the system to allow multiple users to access the system.

• Recovery: the ability of the system to recover from hardware and software faults.

• Ad Hoc Query Facility: provides the user with the ability to express non-trivial
queries concisely and is application independent.

Since the manifesto was written, several OODBMS packages have entered the

mainstream. While still not as popular as relational systems, they are gaining ground in

some areas. The OODBMS utilized in CERTCORT is ObjectStore, and, as such, it will

be the focus of the remainder of this OODBMS discussion.

2.9.2 ObjectStore

ObjectStore provides native support for storing objects. The term native meaning

no conversion of the object (i.e. object-relational mapping) is required to make the object

persistent. ObjectStore uses a postprocessor on the Java class file to add the additional

code to make the object persistent. However, the security mechanisms in Java prohibit

changes to built-in classes. Therefore, container classes like Vector and Hashtable

cannot be annotated by the compiler. One solution to this problem is to substitute "work-

alike" versions of these classes provided with ObjectStore. This approach requires

some code modification, but the changes are relatively minor. Two other issues that

39

should be addressed are the requirement for transactions, and the need to specify

whether objects should be retained after a transaction. First, all manipulation of

persistent objects must be done within the confines of a transaction. Any attempt to

modify objects outside transaction boundaries causes an exception. The second issue

deals with what happens to the contents of an object after transaction completion. If the

user does not specify a retainment level, after transaction completion the objects are

hollow. This means the shell of the object is there, but any attempt to access attributes

will result in an exception.

The CERTCORT system utilizes ObjectStore to achieve object persistence, but the

source databases for SUPPRESSOR, MSFD, etc. are essentially heterogeneous flat

files from various sources. This fact makes a review of multi-database systems

essential, and this topic will be covered next.

2.10 Multi-Database Systems

Multi-database systems are composed of separate, heterogeneous, autonomous

data sources. The heterogeneity may manifest itself in the structure of the database or

the Database Management System (DBMS) in use. These systems are autonomous

because, quite often, the various local databases are not under the control of a single

person or organization. One reason is the case of several organizations sharing

portions of their data in order to facilitate a strategic partnership. These organizations

need to share data to gain a competitive advantage, but at the same time cannot give up

control of their information resources. Several issues arise in the attempt to resolve

differences among heterogeneous data sources.

• Schema Differences: These can be eliminated by developing specialized
procedures to retrieve data from each unique source.

40

• Identical data item, different names: This problem can be overcome by making
each source's attribute name an alias and referencing a common standard data
element.

• Different Units: Even if two data elements are identically named and have the
same overall meaning, differences in units of measure must be rectified in order to
share data among the various sources.

To make interoperability of heterogeneous sources transparent to the users of the

system, these syntactic and semantic differences must be overcome. One approach to

resolution of this problem is to develop and maintain a data dictionary and data

encyclopedia as were discussed in section 2.4.1.

Developing a global schema and designing methods that map the elements of the

heterogeneous sources into the unified structure is another approach to solving this

problem. This method employs schema integration techniques to develop the global

schema, and runtime routines to populate the schema from the various data sources.

Ashby's thesis [AshOO] work focused on applying formal methods and knowledge-based

engineering techniques to develop a transformation system that integrates

heterogeneous data sources into a common object model. Colonese [Col99] also

focused her efforts on developing a common object model for heterogeneous sources;

however, her work focused on utilizing manual schema integration techniques and an

Integration Dictionary that provides semantic interoperability among the sources.

The CERTCORT data sources, in some respect, fall into the category of federated

databases. Each source is created by a different organization and has a different

structure. However, the way CERTCORT source data is used differs dramatically from

most conventional databases. The ultimate goal of CERTCORT is to allow reusability of

scenario components across simulator platforms. Each source database has its own

unique syntax and the representation of scenario components varies substantially from

one simulation system to the next. These factors make the development of a global

41

schema for CERTCORT a massively complex problem. Additionally, translators must be

developed to convert, for example, a scenario component from SUPPRESSOR to the

Joint Interim Mission Model (JIMM). This functionality will permit users to create new

scenarios from components of several different scenarios in several different formats.

2.11 Summary

This chapter presented a review of the various technologies that form the

cornerstone of this research. First, the structure of the SUPPRESSOR scenario files

and the various input sources to the creation of these files was studied. The

CERTCORT class hierarchy was reviewed to determine appropriate extensions to

enhance semantics of the model. The role of metadata, what it is and how it can be

exploited to extract meaning from a scenario component was examined. The visitor

design pattern was explored to uncover its capabilities and potential use in development

of the semantic broker's analysis engine. The Java Foundation Class component JTree

was scrutinized to discover its capabilities and nuances. Agent technology was

researched to examine the portions of that technology applicable to this research.

Object-oriented databases, and, in particular, ObjectStore were explored to understand

their capabilities and limitations. Finally, the constraints and issues specific to

heterogeneous Multi-Database Systems were the final topic of this literature review. In

the next chapter, a general methodology is developed to apply these technologies to

extending the semantic representation capabilities of CERTCORT.

42

3. METHODOLOGY

3.1 Introduction

This chapter defines the methodology used to develop a semantic broker capable of

providing users with effective scenario component retrieval and transformation. It begins

with a brief discussion of the tools used to perform the analysis, design, and

implementation of the semantic broker. Following the discourse on tools is a discussion

of the general approach utilized in the design of the semantic broker. Here, the subjects

of scenario component representation (i.e. the object model), component generation,

relevant component retrieval, and component transformation are discussed. Finally, the

design of the semantic broker is discussed in detail.

3.2 Development Tools

The development of the semantic broker agent utilizes object-oriented tools and

techniques. This section identifies those tools and provides some insight into their

capabilities and the benefits of their use.

3.2.1 Object Modeling

Object-oriented development encompasses the analysis, design, implementation,

and maintenance of software systems using layers of abstraction to model the real-world

system. The object-oriented approach has the following three advantages [Mul97,15]:

• The stability of models with respect to real-world entities.

• Iterative construction, which is made easier by the weak coupling between

components.

• The ability to reuse elements across development projects.

43

Object-oriented development utilizes a modeling language during the analysis and

design phases to accurately capture the entities and relationships in the real-world

system being modeled.

3.2.1.1 Unified Modeling Language

In the early 1990's, James Rumbaugh, Grady Booch, and Ivar Jacobson were

developing three separate object-oriented methodologies. These were Object Modeling

Technique (OMT), Booch*93, and Use Cases, respectively. As the differences between

the three techniques began to dwindle, these three pioneers determined to collaborate

and consolidated their methods into the Unified Method. The Unified Method has further

evolved and is now known as the Unified Modeling Language (UML).

UML provides the notation necessary to describe the elements and associations of

a problem and the tools required to express the selected solution to the problem. These

two activities are known as analysis and design, respectively [Mul97, 11]. UML defines

six different types of models and nine different types of diagrams. Of these, only the

class diagram is used extensively in this effort. The class diagram shows the static

structure of the system—its entities and their associations. UML is used throughout this

work for the purpose of documenting problem areas and solutions, and is one of the

three modeling languages supported by the modeling environment selected for this

research.

3.2.12 Rational Rose

The Rational Rose (Rose) object modeling environment is produced by Rational

Software Corporation, Santa Clara, California. The Rose modeling tool is used

throughout this research to develop the UML diagrams. Rose provides a point-and-click

44

modeling environment and has limited code generation facilities. Rose is capable of

generating Java or C++ shells, depending on the selected implementation language.

3.2.2 Programming Language

The Java programming language is used as the implementation language for this

research. Java was developed by Sun Microsystems to be simple, reliable, and

architecture neutral. This programming language has many desirable features including

[Far98, 6-21]:

• Object-Oriented Environment: Java is a pure object-oriented programming
language. A data structure or function cannot exist or be accessed at runtime
except as an element of a function.

• Abstract Interfaces: An interface describes the operations, messages, and
queries a class of objects is capable of servicing without providing any information
about how these operations are implemented. This feature allows
implementation-neutral interfaces to be specified for a system.

• Platform Independence: Java source code is compiled into bytecodes and can
be executed on any Java Virtual Machine (JVM) regardless of the JVM's
underlying hardware and operating system.

• Exception Handling: Java supports throwing and catching exceptions, both
system- and application-defined.

• Network Support: Java includes multilevel support for network communications.
Low-level sockets can be established between processes and data
communication protocols can be layered over the socket connection.

• Security: Java provides both a secure local environment and the ability to
engage in secure remote transactions.

• Multithreading Support: In Java, any class can extend the Java.lang.Thread
class by providing its own implementation of a run() method. When started, this
object will execute in a separate thread.

These features combine to produce a programming language that is robust, better

facilitates implementation of object-oriented designs, and is truly platform independent.

At the time of this research, Sun Microsystems' most recent version of the Java

language is the Java Development Kit 1.3 (JDK 1.3). This release provides

45

enhancements with regard to execution times for certain operations. Sun's JDK 1.3 is

utilized in this research for implementation of the semantic broker agent.

3.3 General Approach

This section provides a description of the general approach selected to develop the

semantic broker in this research. First the object model used to represent scenario

components is presented, followed by a discussion of the semantic broker's functions.

3.3.1 Scenario Component Representation

To facilitate the addition of new simulator types without necessitating major changes

to the scenario component model, the semantic broker utilizes a generic or common

model for scenario component representation. This model is shown in Figure 20.

Utilizing this object model for scenario components allows the representation of

virtually any simulator system's scenario components. However, this method requires

that the details of each component type be provided through metadata. As the figure

shows, a MetaComponent consists of SComponents, and each SComponent is derived

from a MetaSyntaxUnit. Additionally, each SComponent object can have one or more

child SComponent objects.

In this scheme, a MetaComponent object represents the semantics of a scenario

component. For example, a MetaComponent object named SAM Missile is comprised of

the components that make up a surface-to-air missile in a simulation scenario. The

MetaComponent class contains semantic information about the scenario component.

Ideally, a MetaComponent object would have a name attribute value that identifies the

real-world object represented by the scenario component. Additionally, it would also

contain information in its comments attribute describing the capabilities and limitations of

the scenario component.

46

Objects of the MetaSyntaxUnit class represent the syntax definition of a specific

scenario component (i.e. PLAYER-STRUCTURE, TACTIC, COMM-RCVR, etc.) of a

specific type of scenario source (i.e. SUPPRESSOR, SWEG, JIMM, etc.). During

scenario source file parsing, the file parser references these objects to determine how to

proceed with parsing of the component definition.

MetaComponent
^>type: String
^>name: String
^source: String
^>score: double
^comments: Vector

^y

1..*

SComponent
^type: String
^>name: String
^source: String
%score: double
^comments: Vector
^characteristics: Vector

1

component

0..* derived from 1
MetaSyntaxUnit

^»beginToken: String
^>endToken: String
%nestedltems: Vector

0..*
sub-component

Figure 20: Scenario Component Representation

In addition to providing semantic representations of entire scenario components,

(e.g. a PLAYER-STRUCTURE in SUPPRESSOR) the semantic broker must also be

able to provide semantic interpretations of portions of scenario components. For

example, an analyst may require a communication receiver. It is unlikely that such a

system exists as a high-level component like a PLAYER-STRUCTURE, but in all

47

probability the required scenario component does exist as a sub-component of a

PLAYER-STRUCTURE. The component representation shown in Figure 20 facilitates

representation of these sub-components as well, since it does not differentiate between

components and their sub-components except through the parent-child association.

Figure 21 provides an example of how a portion of two SUPPRESSOR PLAYER-

STRUCTURE scenario components are represented using this scenario component

representation. During component generation (the process of creating object

representations from source file text definitions), the parser creates two containers of

MetaComponent objects. The first, called metaComponents, contains links to the high-

level scenario components (in this case PLAYER-STRUCTURE components). The

second container, called metaSubComponents contains links to the high-level

component's sub-components (in this case TACTIC components). The extra container

for the sub-components is a specially created index used to avoid lengthy traversals

when performing searches for sub-components.

The scenario component representation scheme shown in Figures 20 and 21

provides extensibility for adding new types of simulation system data sources. Adding a

new type requires providing a MetaSyntax file that contains syntax definitions for all the

components of the new system's scenario source file format, and providing a parser that

is capable of generating components from the new scenario type's source files.

The scenario component object model presented here is extremely simple. Under

the scheme presented, the object tree representation of a scenario component is

composed entirely of SComponent objects. This, of course, excludes the

MetaComponent root object, which merely exists to enhance the semantics of the

component. This object model provides the greatest flexibility in representing different

simulation type's scenario components. Under this scheme, virtually any type's scenario

48

components can be accurately represented. The simplicity of the object model also

affects the complexity of the component generation process.

metaComponents :

MetaComponent

name = SAM Battery
comments = ... ^_^_^_^
components = | y | | ~|

SComponent

type = PLAYER-STRUCTURE
name = sam-a
comments = ... ^_^_^_^
components = | f | ^ | ~|

SComponent

type = TACTIC
name = sam-a_tactics
comments = ... ^_^_^_^
components = | » | » | »~|

SComponent

type = LOCATION
name = 1
comments = ... ^_^_^
components = | ♦ | » | »

"TT-1—~ ttt

MetaComponent

name = SAM Missile
comments = ...
components = u

SComponent

type = PLAYER-STRUCTURE
name = sam-a_missile
comments = ... ^_^_^
components = lj»| f |

SComponent

type = TACTIC
name = sam-a_missile_tactics
comments = ... ^_^_^_^
components = | » | » | 1

i i
-T—r

tt
SComponent

type = LOCATION
name = 1
comments = ... ^_^_^_
components = | ♦ | ♦ \f~

ttt

metaSubComponents =

Figure 21: Sample Scenario Component Representation

3.3.2 Component Generation

To accomplish the task of generating scenario components from the text-based files

of the scenario source database, a text parser is required that can translate the

49

components from their textual definitions to SComponent object trees. In order to

facilitate the analysis of scenario source components, both source and signature

components must be generated by the semantic broker. The classes and data sources

involved in the component generation process are depicted in Figure 22.

SemanticGateway Application Scenario-Registry Application

MetaSyntaxUnit

1..*

references

1

Parser

♦loadMetaSyntax()
♦generateComponents()
♦getSubComponentlndex()

Signature
Component
Database

Signature
Component
Definition
File (Text-
Based)

Meta Syntax
Unit Database

Scenario
Component
Definition
File (Text-
Based)

Scenario Source
Database

Figure 22: SemanticGateway Component Generation

Both the SemanticGateway application and the ScenarioRegistry application utilize

parsers to generate SComponent object tree representations of scenario components.

The SemanticGateway application uses parsers to generate new signature components

for the Signature Component Database (SCDB). The SCBD is discussed in Section

3.3.3.1 along with signature analysis. For the purposes of this discussion, it is sufficient

to understand that signature components are created from text files containing signature

50

definitions. These files are very similar in format to scenario source files. Both signature

and scenario components are generated from their text-based definition only once, then

they are stored in their object format in the SCDB and Scenario Source Database,

respectively.

The Scenario/Registry application utilizes parsers to generate components from a

scenario source definition file when it is registered with the system. These source

components are stored in the Scenario Source Database and are accessed and

compared to the query's signature object during the relevant component retrieval

process. This topic is discussed in detail in Section 3.3.3.

The generateComponents method of the Parser class parses the scenario source

file and returns a list of scenario components. Actually, the list contains the root

SComponent objects of the object tree representation of each scenario component

definition contained in the source file. A call to the Parser object's

getSubComponentlndex returns a list of references to the sub-components of each

scenario component. Essentially, this list is a flattened hierarchy and eliminates the

need to perform an exhaustive search of each object tree when looking for a specific

sub-component. This separate index is shown in Figure 21 of Section 3.3.1.

There is a parser for each type of scenario source files the system recognizes.

Each of these parsers must extend the Parser class. Parser objects create and

maintain a list of MetaSyntaxilnits for the type of source file being parsed. There is a

MetaSyntaxilnit object for each type of component that can be extracted from a

scenario. These objects contain the start and stop tokens for a particular component

and the types of nested items. Parser objects create MetaSyntaxUnit objects from

syntax definitions found in the MetaSyntaxUnit Database (MSUDB). The syntax for

MetaSyntaxUnit object definitions is:

51

START-TOKEN [attribute*] [component | componentRef]* END-TOKEN

This definition requires that a component definition begin with a valid START-

TOKEN followed by optional attributes, followed by either one or more component or

componentRef tokens (also optional), followed by an END-TOKEN; which may be the

keyword NULL if the component has no stop label.

This definition requires an explanation of the difference between a component and a

componentRef in the syntax definition. If a component token appears in the definition,

the child component's definition is nested inside the parent component's definition. If the

componentRef token appears, only a component type and identifier are nested inside

the parent's definition. In the latter case, the actual definition of the child component is

located elsewhere in the scenario file representation, and must be linked with its parent

after all components have been generated. Figure 23 provides a sample of

MetaSyntaxUnit definitions for SUPPRESSOR data sources.

Use of the MSUDB provides some level of flexibility in determining level of detail at

which components are generated. For example, as defined in Figure 23, ZONE-

CHARACTERISTICS components have attributes but no nested child components. This

means that all items between the start and end tokens are treated merely as

characteristics of the parent component, and, as such, cannot exist on their own. Since

these characteristics are not components, they have no semantics. However, changing

the definition of this component to include child components, and, of course, adding the

definitions for those child components, allows the level of detail of the ZONE-

CHARACTERISTICS component to be increased. It is important to note that this

change in level of detail is achieved without modification of source code.

52

Extensibility of the component generation portion of the semantic broker architecture

is achieved in the following manner. When a new simulator type is added to the

semantic broker framework, the following software and data sources must be provided:

• Signature and source component generators that extend the abstract Parser
class.

• Syntax definitions for the new system's components must be added to the
MSUDB.

• Definitions of prototypical components of the new system must be added to the
Signature Component Database.

Adding the above software components facilitates component generation for the

new system and sets the stage for relevant component retrieval.

PLAYER-STRUCTURE attribute component END PLAYER-STRUCTURE
TACTIC component END TACTIC
CAPABILITY component END CAPABILITY
LINKAGES attribute NULL
SUSCEPTIBILITY component END SUSCEPTIBILITY
ASG-CMD-CHAIN attribute M7LL
EVALUATION-RATES attribute END EVALUATION-RATES
INTELL-REPORT-FREQ attribute END INTELL-REPORT-FREQ
MAX-MSG-ATTEMPTS attribute M7LL
MAX-SNR-PERCEPTIONS attribute M7LL
MOVE-TO-ENG attribute M7LL
MSG-RPT-GUIDE attribute END MSG-RPT-GUIDE
SALVO-FIRING attribute END SALVO-FIRING
SNR-RPT-GUIDE attribute END SNR-RPT-GUIDE
ZONE-CHARACTERISTICS attribute END ZONE-CHARACTERISTICS
THINKER componentRef NULL
SNR-RCVR componentRef NULL

Figure 23: Sample MetaSyntaxUnit Definitions

3.3.3 Relevant Component Retrieval

To retrieve relevant scenario components from the myriad of source files available,

users must specify their requirements in a query. Traditional query languages, such as

the Standard Query Language (SQL), are not useful here, since the object

representations of scenario components are not standardized in size or complexity.

Additionally, a search for even a simple scenario component would require an extremely

53

complex SQL query, if, in fact, SQL could be used at all. To deal with this problem, this

research utilizes signature analysis to identify relevant components.

3.3.3.1 Signature Analysis

To facilitate the development of a semantic broker capable of retrieving relevant

scenario components, this research utilizes a database of signature components, which

the semantic broker uses to analyze the contents of existing scenario components. A

high-level abstraction of this signature analysis approach is shown in Figure 24.

User selects)
desired signature A
through GUI ~\y Relevant Component List

/ Component
/^ Analyzer returns " + (relevant
V- components to

O
GUI

Selected Signature
Component Component

Analyzer <f^

1 GUI

CD W 1— ^—K^_^y

Sic
Con

C
M

A

nature
iponent
bject
odels

k i

Scenario
Component

Object
Models

d Z^\ CT~

SCDB
Scenario
Source

Database

Figure 24: Signature Analysis Approach

In the figure, the Component Analyzer utilizes a signature component to determine

which components in the Scenario Source Database to include in the relevant

components list returned to the GUI. Signature components are essentially generic

definitions of semantic entities. For example, the signature component for an air

interceptor defines the essential sub-components and characteristics a scenario

component must have to be interpreted as an air interceptor. The signature is a

baseline entity, and any component that contains it as a subset will be interpreted as

relevant. Each signature component has a semantic tag that identifies its contents (e.g.

54

Air Interceptor, Bomber, etc.), and comments that describe the capabilities of the

signature.

Returning now to Figure 24, the list of signature components is retrieved from the

SCDB into the Graphical User Interface (GUI) where it is presented to the user in the

form of a scrollable list. The scrollable list contains the semantic tags associated with

each of the signature components. The user selects the desired signature component

from the list. The selected signature component is then sent to the Component Analyzer

where it is used to search for existing scenario components matching its composition.

The output of the Component Analyzer is a list of existing scenario source components

deemed relevant by its analysis process. Furthermore, this list of components is sorted

based on the relevance score assigned to each component by the Component Analyzer.

The Component Analyzer scores a scenario component on how well its sub-components

and characteristics match the signature component's sub-components and

characteristics. The closer an existing component matches the signature component,

the higher that component's relevance score. The relevance score ranges from zero to

one. A scenario component that scores a one contains, within its object tree structure,

an exact replica of the signature component. The relevance score assigned by the

Component Analyzer is largely determined by the semantic representation's level of

abstraction.

3.3.3.2 Level of Abstraction

In designing a semantic broker, a key design decision is the level of abstraction

involved in representing the semantics of scenario components. Figure 25 provides a

graphical depiction of the design tradeoff. The more abstract the representation, the

more likely the system will overwhelm the user with too many "relevant" components.

55

Conversely, the more detailed the representation, the more likely the system will miss

relevant components or return an empty list as a result.

The obvious solution to this problem is a compromise between very abstract and

very detailed representations. Therefore, signature components are as generic as

possible. From this generic baseline a user may increase the level of detail and thereby

decrease the number of perceived relevant components returned by the Component

Analyzer.

Perceived
Relevant

Components

Level of
Abstraction

Figure 25: Level of Abstraction Tradeoff

The relevant component retrieval process presented here uses signature

components as complex query structures. The user selects a generic signature

component (e.g. Air Interceptor, Bomber, etc.), modifies its attribute values and sub-

components to match the desired search criteria, and initiates a search. Relevant

scenario source components are scored based on how closely their structure and

characteristics match those of the signature component. Once a list of relevant

components has been produced, the user selects the most suitable one for inclusion in

56

the new scenario. If the selected relevant component's type (i.e. SUPPRESSOR,

SWEG, etc.) is different than that of the scenario being constructed, the component will

have to be transformed to the target format.

3.3.4 Component Transformation

Component transformation is the process of translating a scenario component

developed to execute in one simulator system to conform to the syntax of another

simulator's format. In situations where the translation is too complex to be handled by

the automated process, or the scenario item does not have a comparable counterpart in

the target scenario format, techniques must be developed to effectively represent the

nontransferable data in a manner that allows the human analyst to deal with the

problem.

Transformation of components from one simulator format to another is perhaps the

most difficult facet of scenario reuse. A successful transformation technique must

effectively deal with all the translation categories outlined in Figure 26 [LSA98]. It should

be noted here that, in the figure, the original author's use of the phrase data item has

been replaced with component to conform to the terminology of this report. The

categories of Figure 26 run the gamut from components that are identical, and no

translation is required, to situations where the component in Model-A can not be

represented in Model-B.

The first conversion category in Figure 26 is self-explanatory. At first glance, the

second category seems identical to the first. However, the second category differs in the

following way: In the first, the component in Model-A is identical to that in Model-B (i.e.

Data Item Model-A = Data Item Model-B). In the second category, all the keywords

present in the component of Model-A are present in that of Model-B; however, the

57

component of Model-B may, in fact, have more keywords that are not present in the

component of Model-A (i.e. Data Item Model-A c Data Item Model-B). In the case

where the component of Model-B has more keywords than that of Model-A, the values of

those additional keywords must be set to some predetermined innocuous value.

Conversion
Category Definition Transformation

Compatible Component in both models
with no keyword differences.

None.

Fully Upward
Compatible

Component in both models
with all Model-A keywords in
Model-B.

None.

Upward Translatable Component in both models,
some keyword differences, but
no functional differences.

Either 1) add the Model-A
keyword as a synonym or
2) translate the Model-A
keywords into Model-B
keywords.

Convertible Component in both models,
both keyword and functional
differences, including
components where the
ordering has changed.

Logic is built into the
transformation program
that converts Model-A to
Model-B, with each
convertible data item
having a module dealing
explicitly with it.

Replaceable Component in Model-A only,
but functionality is represented
in one or more Model-B data
items.

Automation may be too
difficult and will require the
intervention of a user to
manually adjust.

Non-Replaceable Component in Model-A only
and functionality not
represented in Model-B.

Traceability in Model-B via
commented-out data item
blocks may be appropriate,
along with comments
indicating the reason why
they cannot be put into
Model-B format.

Figure 26: Translation Categories of Data Items

The third category in Figure 26 deals with the situation where the component exists

in both Model-A and Model-B; however, some of the keywords have exactly the same

meaning, but different names. In this case of synonymous keywords, their relationship

can be documented in metadata and referenced during transformation. This alleviates

58

the need to hard code every synonym relationship in the code and increases the

flexibility of the system.

The last three categories of transformations exemplify the difficulties encountered in

scenario reuse. The fourth category illustrates a situation in which it may be impossible

to avoid hard-coding the transformation process in the source code. The fifth

transformation category deals with transformations where the functionality of a

component in Model-A is split-up among several components in Model-B. In some

cases, it may be possible to hard-code these transformations in the source code;

however, in others the process may be so complex that it requires a human analyst's

intervention. The last category of transformations, while easier to deal with than those of

the previous category, has the most serious effect on the new scenario. Here the

untransformed component from Model-A can be placed in Model-B and commented out;

however, the functionality of that component is completely lost and will have to be

recreated manually.

The component transformation process involves translating a scenario component

of a given format to that of a different format. There are several problems that may arise

during component transformation. Some of these may be insurmountable for the

automated process and require human intervention.

The object model selected to represent scenario components is extremely simple.

The component generation process has been design to allow the addition of new

scenario source types without modification of existing source code. The component

transformation process relies heavily on metadata to alleviate the need to represent

transformation relationships in source code. These design decisions were made with

flexibility of the overall design in mind.

59

Relevant component retrieval and component transformation are the two main

functions of the semantic broker. Scenario source files that must be searched during the

relevant component retrieval process may be distributed across multiple systems. The

architecture of the semantic broker was designed with this in mind.

3.4 Semantic Broker Architecture

The architecture of the semantic broker is distributed to contend with the dispersed

nature of the scenario source files. The semantic broker is divided into two applications,

the SemanticGateway application and the ScenarioRegistry application. Software

agents are utilized by both applications to request data, process signature-based

queries, and receive replies. Figure 27 provides an application-level view of the

semantic broker's two components. As the figure shows, there is one SemanticGateway

application and multiple ScenarioRegistry applications. In fact, there is one

ScenarioRegistry application for each system that contains source files to be searched

during the relevant component retrieval process. In the following sections, the designs

of these two applications are covered in detail.

response response
ücenariorcegisiry

^ T 1 r

ocenanorcegisiry

i V k V

niiuimauun request

SemanticGateway

•y

inior

r

maiion request i k I k

y r

response response

Figure 27: Application-Level View of Semantic Broker Architecture

60

3.4.1 ScenarioRegistry Application

In the semantic broker architecture, a ScenarioRegistry application executes on

each system where scenario source files are registered. Figure 28 shows the major

components and data sources of the ScenarioRegistry application. Excluded from this

diagram are the MetaComponent and SComponent classes, which are used to create

the component object trees. The functions of the ScenarioRegistry application are:

• Maintains a database of references to all registered scenario source files on the
system. This database is its Source Registry Database (SRDB). The acronym
SRDB and the term registry are used interchangeable throughout this work.

• Provides a Graphical User Interface (GUI) through which the user updates the
contents of the application's SRDB.

• Accepts requests for its SRDB data, and returns the information to the requestor.

• Accepts signature-based queries, performs the relevant component retrieval, and
returns its results to the requestor.

registryRequestConv_R

0..1

Parser

ScenarioRegistryAgent

ComponentAnalyzer

Scenario
Component

Definition File
(Text-Based)

1 1 ScenarioRegistryGUI

Source Registry
Database
(SRDB)

Figure 28: ScenarioRegistry Application Main Components and Data Sources

61

The design of the Scenario/Registry application is divided in two main components:

1) The ScenarioRegistryGUI, which performs the first two functions listed; and 2) The

ScenarioRegistryAgent, which performs the last two functions listed. These components

will be discussed in turn.

3.4.1.1 ScenarioRegistryGUI

The ScenarioRegistryGUI portion of the ScenarioRegistry application provides a

user interface to the contents of the application's SRDB. Through this interface, users

register new scenarios and their files, and provide references to the metadata required

to parse and analyze these files. The ScenarioRegistryGUI displays its registry's data in

a manner consistent with the hierarchical nature of the data contained in the SRDB. The

data in the SRDB allows the ScenarioRegistry application to track the origin of scenario

source files. The origin information consists of abstract source (i.e., scenario) as well as

physical source (i.e., path and filename).

The ScenarioRegistryGUI is the portion of the ScenarioRegistry application the user

sees. When started, however, the user interface creates a ScenarioRegistryAgent and

executes it on a separate thread.

3.4.1.2 ScenarioRegistryAgent

The ScenarioRegistryAgent is the workhorse of the ScenarioRegistry application.

Objects of this type serve as the interfaces between each ScenarioRegistry application

and the SemanticGateway application. ScenarioRegistryAgent objects accept requests

for data, perform the necessary action to retrieve the data, and return the data to the

requesting SemanticGateway application. One type of data request is a signature-based

query. When a signature-based query is received, the component analysis process

begins.

62

3.4.1.2.1 Component Analysis

When the ScenarioRegistryAgent receives a signature-based query, it creates a

registryRequestConv_R object to respond to the requestor. The

registryRequestConv_R object represents a conversation between agents. The

ScenarioRegistryAgent then accesses the Scenario Component Database and retrieves

the appropriate source component object models. For example, if the signature

component's type is SUPPRESSOR, only component object models generated from

registered SUPPRESSOR source files will be searched.

The ScenarioRegistryAgent utilizes the signature component to analyze scenario

source files and determine their composition. Analysis results in the generation of a list

of relevant scenario components. Each component is assigned a precision score—

based on the number of sub-components and characteristics matched. Figure 29 shows

how a signature component is utilized to analyze source components.

The analysis process begins with the ScenarioRegistryAgent creating a

ComponentAnalyzer object and passing the selected signature component and the list of

source components as parameters. SComponent objects know how to compare

themselves to other SComponent objects and return a similarity score. The

ComponentAnalyzer object calls the analyzeComponent method of each root present in

its source component list and passes the signature component as the parameter. Each

root's analyzeComponent method returns a similarity score based on its comparison of

itself to the signature component. The ComponentAnalyzer object returns a list of those

source components whose similarity score is greater than zero. The returned list is

sorted on similarity score in descending order. The registryRequestConv_R object

sends this sorted list to the requestor (i.e., the SemanticGateway application).

63

ComponentAnalyzer

signatureComponent = #
sourceComponents =

•j»L

SComponent

sourceType = SUPPRESSOR

analyzeComponents()

SUPPRESSOR signature
component used as
parameter in call to each
source component's
analyzeComponents
method

SComponent

sourceType = SUPPRESSOR

analyzeComponents('

SComponent

sourceType = SUPPRESSOR

analyzeComponents()

rr ri
an

SComponent SComponent SComponent SComponent

Figure 29: Component Analysis

3.4.1.2.2 Registry Forwarding

The other type of request for data the ScenarioRegistryAgent receives is a registry

request. These requests are sent by the SemanticGateway application when it needs to

update its system-wide source registry.

To respond to these requests, the ScenarioRegistryAgent creates a

registryRequestConv_R object. This object calls the getRegistry method in its parent

object (i.e., the ScenarioRegistryAgent), which returns the contents of the registry. The

registry is then sent to the requestor.

The ScenarioRegistry application is responsible for registering and providing access

to the scenario source files on a particular system. The functions of maintaining a

64

system-wide registry, signature selection, compiling relevant component search results,

and component transformation fall into the realm of the SemanticGateway application.

3.4.2 SemanticGateway Application

The SemanticGateway application serves as the user's interface to the semantic

broker. Through this application, a user selects a query signature and tailors its content,

initiates the system-wide relevant component retrieval process, and transforms scenario

components to a selected target format. Figure 30 shows the major components and

data sources of the SemanticGateway application.

SemanticGatewayAgent

1 1

SemanticGateway

^signature
^retneveRelevanU
♦updateRegistry(

Jomponents()
parent ♦transformComponent()

♦setSignature()

communicates by

registryRequestConvJ

%un()

Figure 30: SemanticGateway Application's Major Components

Each SemanticGateway object has one SemanticGatewayAgent object, which it

dispatches to update its System-Wide Source Registry Database (SWSRDB) and

perform relevant component queries. Additionally, the SemanticGateway object creates

65

SourceRegistryGUI, SignatureSelector, and TransformEngine objects. These objects

are used to provide a user interface to the source registry, enable editing and selection

of signature components, and facilitate component transformation, respectively. These

classes are discussed in greater detail in the following sections.

3.4.2.1 SemanticGatewayAgent

The SemanticGatewayAgent class provides the mechanism through which the

SemanticGateway application interfaces with the multiple Scenario-Registry applications

distributed system-wide. The SemanticGateway object dispatches the

SemanticGatewayAgent object to perform two operations critical to the semantic

broker's overall functionality:

1) Requesting registry updates from each Scenario-Registry application registered in
the SemanticGateway application's System-Wide Source Registry Database
(SWSRDB).

2) Sending signature-based queries to each registered ScenarioRegistry application
and compiling the relevant component result sets from each response.

3) Requesting relevant component details from ScenarioRegistry applications.

To perform any of these functions, the SemanticGatewayAgent creates one or more

registryRequestConvJ objects. These objects initiate a conversation with each of the

ScenarioRegistry applications referenced in the SWSRDB. This process is shown in

Figure 31.

In the figure, the heavy dotted line between the SemanticGatewayAgent object and

the registryRequestConvJ objects represents the fact that the SemanticGatewayAgent

object created these objects and maintains a reference to them. There is one

registryRequestConvJ object for each ScenarioRegistry application that must be

contacted. Each of these objects sends a message to its assigned ScenarioRegistry

application requesting the applicable service (i.e., registry update or relevant component

66

search). The ScenarioRegistry application performs the requested action and packages

its result set in a reply message it sends to the registryRequestConvJ object that

requested the service. When it has received a reply, the registryRequestConvJ object

passes its result set to the SemanticGatewayAgent and terminates. After all

conversations have terminated, the SemanticGatewayAgent consolidates the result sets

and passes the aggregate set to the SemanticGateway.

Workstation A

SemanticGateway

consolidated results

SemanticGatewayAgent

';>| result sets

I

i registryRequestConvJ

registryRequestConvJ

registryRequestConvJ

reply

request

Workstation B

ScenarioRegistryApplication

reply

request

Workstation C

ScenarioRegistryApplication

reply

request

Workstation D

ScenarioRegistryApplication

Figure 31: SemanticGatewayAgent Conversation Process

The SemanticGatewayAgent class works with the ScenarioRegistryAgent class to

provide an interface between the SemanticGateway and ScenarioRegistry applications.

In order to contact the ScenarioRegistryAgent objects, the SemanticGatewayAgent

object relies on the scenario agent references stored in the SWSRDB.

67

3.4.2.2 System-Wide Source Registry Database (SWSRDB)

In order to maintain traceability of components, the semantic broker must be

capable of tracking the source (i.e., the machine name, path, and filename) of each

component generated. To facilitate this requirement, the SemanticGateway maintains

the SWSRDB. This database contains the following information for each type of

scenario source registered (e.g., SUPPRESSOR, SWEG, etc.):

• A reference to the file containing scenario component syntax definitions.

• A reference to the parsers used to generate signature and source components.

• A reference to transforms used in translating components from this source type to
a specified target type.

• A reference to metadata used during component transformation.

• One reference (i.e., host and port number) to each ScenarioRegistry application
that contains scenario source files of this type in its registry.

The information contained in the SWSRDB is updated by two different sources.

First, each time the SemanticGateway application is started, it requests a registry update

from each of the ScenarioRegistry applications registered in the SWSRDB. The

responses from these requests are used to update the scenario information in the

database. The failure of a registered application to respond, results in that application's

registry entry being labeled as UNAVAILABLE.

The second means through which the SWSRDB receives updates is the

SourceRegistryGUI. The SourceRegistryGUI class provides an interface through which

users can update the contents of the SWSRDB. When a new simulator scenario type is

added to the SWSRDB, the user must provide the metadata, parser, and transformation

data necessary for the SemanticGateway to perform component generation, component

analysis, and component transformations. Additionally, when a new ScenarioRegistry

application is added to the system, its existence must be registered in the SWSRDB

68

before it will be recognized by the SemanticGateway application and utilized during the

relevant component retrieval process.

The SWSRDB is a repository of the information required by the semantic broker to

perform its functions. This database is updated automatically upon startup of the

SemanticGateway application, and can be manually updated by the user at any time

through the SourceRegistryGUI. The SemanticGateway application function that most

heavily relies on the information in the SWSRDB is component transformation.

3.4.2.3 Component Transformation

The translation of a scenario component from its source format to a target format of

choice is known throughout this work as component transformation. In the

SemanticGateway application, component transformation is initiated by the user through

the SemanticGateway object. This object references the SWSRDB to obtain references

to transform metadata files and transform classes, and passes this data to a newly

instantiated TransformEngine object. The TransformEngine class is the workhorse of

component transformation in the SemanticGateway application. Figure 32 shows the

classes and data sources involved in the component transformation process, and a

description of the process follows.

To facilitate all the different categories of transformations presented in Section 3.3.4,

Figure 26, the SemanticGateway application creates a TransformEngine object, and

passes it the transform metadata reference mentioned above. The TransformEngine

object creates a TransformMDParser object and parses the metadata file containing the

transform metadata for the source-to-target transformation. This metadata file is

contained in the Transform Metadata Database (TMDB). During the initialization

process, the TransformEngine also instantiates the Transform objects referenced in the

69

metadata and maintains a reference to each of these. Next, the TransformEngine object

processes each SComponent object beginning with the root. Based on transform

category information supplied through the transformation metadata, the

TransformEngine object accesses and utilizes the appropriate sub-class of Transform

object. Collectively, the Transform objects handle the translation of the component from

source to destination format, and return the resulting SComponent object to the

TransformEngine object.

1 TransformEngine

references

1..*
1..* TransformMD

creates

TransformMDParser

references

Component

transforms

Transform

Cat1 Transform

Transform
Metadata

Cat3Transform

Cat2Transform

Cat5Transform

Cat4Transform Cat6Transform

Figure 32: Component Transformation Classes and Data Source

Extensibility in the component transformation portion of the semantic broker is

achieved by providing a set of Transform sub-classes that extend the Transform class

and define the process of transformation for each of the cases identified in Section 3.3.4,

Figure 26. Additionally, the inclusion of a new simulator scenario source requires that

metadata be provided in the TMDB.

70

The TMDB shown in Figure 32 maps a component type to one of the categories

listed in Figure 26. The data in the TMDB effectively maps each component type to a

specific transform category, and provides the necessary details to allow the Transform

object to perform the translation. Figure 33 provides the transform metadata file format

for the first three transformation categories. In Figure 33, an asterisk represents the fact

that there may be one or more of an item or group, and square brackets are used to

group two or more items. The last three transformation categories represent the most

difficult aspects of the transformation process, and are not detailed here. The fourth

category requires some Transform object implementation specific logic in order to

perform the transformation. The fifth category is the most difficult to implement, since

the software must determine whether user intervention is required and, if so, must

present the user with the problem and recommend possible solutions. This category is

beyond the scope of this work, and such transformation will be handled in the same way

as Category 6 transformation. Category 6 transformations, as implemented in this work,

provide comments in the target scenario stating which component of the source scenario

could not be translated.

CATEGORY 1
<component type>*
END CATEGORY 1
CATEGORY 2
[<component type>
<keyword not in source>*
END <component type>]*
END CATEGORY 2
CATEGORY 3
<component type>
[<source keyword> <destination keyword>]*
END <component type>
END CATEGORY 3

Figure 33: Transform Metadata File Format

71

3.5 Summary

This chapter begins with a review of the tools used in the analysis, design, and

implementation phases of this research effort. Next, a discussion of the general

approach used to design the Semantic Broker in this research covers the topics of

scenario component representation, relevant component retrieval, and component

transformation. Finally, the design of the semantic broker is presented in some detail

including the classes necessary for its implementation and the data sources it will utilize.

This chapter outlines the semantic broker as it will be implemented in this research.

In Chapter 4, the SemanticGateway and ScenarioRegistry applications are developed

and tested.

72

4. IMPLEMENTATION

4.1 Introduction

This chapter discusses the functionality of the Semantic Broker as implemented in

this research. The resulting tool is presented primarily as a proof of concept vehicle with

minimal intent to maximize the efficiency of the tool's algorithms or data structures. The

chapter begins with a discussion of some design issues that were encountered during

detailed design and implementation of the Semantic Broker. Next, the two main

components of the broker, the SemanticGateway and ScenarioRegistryGUI applications,

are discussed. These two components provide all the functionality necessary to provide

scenario source registration, relevant component retrieval, and scenario component

transformation. This is followed by a review of test data collected concerning the

component retrieval portion of the tool. Finally, the requirements for extending the

Semantic Broker to include additional simulation types (e.g., JIMM, EADSIM, etc.) are

discussed.

4.2 Design Issues

During implementation, three key issues came to light that are worthy of mention

here. These include the class hierarchy used to represent scenarios and its reliance on

metadata, scenario component generation, and signature analysis.

4.2.1 Scenario Class Hierarchy

The Semantic Broker's design utilizes a simple class hierarchy to represent scenario

components and relies on metadata to interpret scenario source files and transform

selected components. The class hierarchy utilized in this research to represent scenario

73

components is shown in Figure 34. This simple class hierarchy allows one object model

to be used to build object representations of any simulator's scenario components.

MetaComponent
l^>type: String
%name: String
^source: String
<%>score: double
^comments: Vector
(^.components: Vector
^signature: boolean

TT
1.

SComponent
%>type: String
%name: String
^source: String
^>score: double
^comments: Vector
^components: Vector
^characteristics: Vector
^»optional: boolean

1
component

derived from 1

MetaSyntaxUnit
^>beginToken : String
^>endToken : String
%nestedltems Vector

0..*
sub-component

Figure 34: Semantic Broker Scenario Component Class Hierarchy

This model is used to represent both signature and source components. Signature

components are essential for signature analysis, which is covered in Section 4.2.3.

However, there is a difference in the structure of the object trees of signature

components vs. source components. The root of a signature component object tree is a

MetaComponent object. Every other node in the signature object tree is an

SComponent object. The role of the MetaComponent class in relation to signature

components is that of a descriptor. The MetaComponent object root of each signature

component contains a name attribute that provides a descriptive name for the signature,

74

and a comments attribute that contains comments that further describe the signature

component, its capabilities, and its limitations.

A source component object tree is composed entirely of SComponent objects.

However, the MetaComponent class has a role in relation to source component trees

also. Here the MetaComponent object represents an entire collection (source file) of

source components. The MetaComponent object's components attribute contains a

vector of pointers to the root SComponent object for each source component generated

by the file parser. Essentially, the role of the MetaComponent class in relation to source

components is to represent a scenario source file and provide links to the scenario

source components defined within it.

The attributes of the MetaComponent and SComponent classes have similar

names, and one may consider simply making the SComponent class extend the

MetaComponent class. However, doing so would violate sound software engineering

principles, since these two classes lack the IS A relationship. Because of this, although

the attributes have similar names, some have different meanings. The attributes of the

MetaComponent class are listed below. Attributes that have the same name and

meaning as an attribute of the SComponent class are annotated as such and are not

repeated in the paragraph describing the SComponent class' attributes.

• type: The type of scenario source or signature component (i.e. SUPPRESSOR,
SWEG, etc.).

• name: This attribute contains the name of the file from which the scenario or
signature component was generated.

• score: This attribute is the score assigned to the object during signature
analysis. SComponent attribute score has the same meaning. See Section
4.2.3 for details on signature analysis.

• source: This is the location of the scenario source file from which the object was
generated. For signature components, this attribute is null. SComponent
attribute source has the same meaning.

75

• comments. This attribute contains comments about the capabilities and
limitations of the component. SComponent attribute comments has the same
meaning.

• components: This attribute contains a set of sub-components for this object.
SComponent attribute components has the same meaning.

• signature: This attribute is set to true if the object is a signature component.

As mentioned previously, most of the attributes of the SComponent class have the

same names as the attributes of the MetaComponent class. However, the meaning of

two of the SComponent class' attributes differ significantly as outlined below.

• type: The type of scenario component represented (PLAYER-STRUCTURE,
COMM-RCVR, etc.).

• name: The name of the scenario component as defined in the scenario source
file.

• optional: This attribute is checked during signature analysis to determine if a
signature component or sub-component is mandatory. The value of this attribute
is true by default and is irrelevant in source component objects.

The simplicity of this object model facilitates the modeling of virtually any simulation

scenario source type. However, this approach requires extensive use of metadata to

determine how to interpret source files during parsing. This metadata is provided

through instances of the MetaSyntaxUnit class.

MetaSyntaxUnit objects are utilized by file parsers to determine the correct

interpretation of scenario components as they are encountered in the scenario source

file. There is a MetaSyntaxUnit object for each type of scenario component and sub-

component that can possibly be represented in the source scenario format. Each

MetaSyntaxUnit object contains the following attributes:

• beginToken: The parser uses this attribute to determine that a new scenario
component, or sub-component, definition follows. The value of this attribute is
also the value of the type attribute of the new SComponent object that will be
created to represent this scenario component.

• endToken: The parser uses this attribute to determine when the end of the
scenario component definition has been reached. In some cases, this attribute

76

will have the value null, which indicates that the scenario component's definition
has no terminating token. In these cases, the parser uses the fact that it has
encountered a valid startToken to determine it has reached the end of the current
scenario component's definition.

• nestedltems. This attribute contains the types of items that may be nested
within the begin and end tokens of the specified scenario component definition.

The scenario source file parser maintains a list of these MetaSyntaxilnit objects. It

builds this list from a text-based meta syntax file that contains syntax definitions for each

type of scenario component that can exist in a scenario source file. There is a meta

syntax file for each scenario source type (e.g., SUPPRESSOR, SWEG, EADSIM, etc.).

A portion of the syntax file for SUPPRESSOR scenario source files is shown in Section

3.5.2.2, Figure 30. MetaSyntaxilnit objects are the key to the parser's ability to perform

component generation.

4.2.2 Component Generation

SComponent objects are instantiated by a component generator designed

specifically to parse scenario source files of the specified type and create object trees

that represent the scenario component definitions in the file parsed. The component

generator references MetaSyntaxilnit objects to determine how to interpret components

as they are read from the file. In the Semantic Broker system, all component generators

must extend the abstract class Parser.

The Parser class provides a method, load MetaSyntax, to parse the file containing

the syntax structure for the scenario source file. The syntax structure is provided in a

text-based file. From this file, MetaSyntaxilnit objects are instantiated. The component

generator class must implement the Parser class's abstract method

generateComponents. This method references the data structure containing the

MetaSyntaxilnit objects to determine how to instantiate each scenario component

contained in the source file being parsed. The generateComponents method returns a

77

Java Vector containing the root objects of all scenario components contained in the

target source file. Component generators instantiate object model representations of

scenario components for both scenario sources and new signature components being

added to the Signature Component Database (SCDB).

4.2.3 Signature Analysis and the SCDB

The Semantic Broker, as designed and implemented in this research, utilizes

signature analysis to identify scenario components that may be of interest to the user.

The signatures are object representations of generic components of a specific scenario

type. Essentially, a signature component is a complex query structure. A signature can

be modified by the user to represent scenario components of varying levels of detail.

For example, the user might select a signature component named "Bomber" from the list

of available signatures, then modify the signature's sub-components and characteristics

to match the search criteria. The user could then use the Semantic Broker to retrieve

source components that match the search criteria (i.e., the signature).

Since signatures are object representations of generic components of a specific

scenario type, there is a separate set of signatures for each type of scenario source

(e.g., SUPPRESSOR, SWEG, etc.) for which the system is capable of searching. The

SCDB contains a set of object model representations of signature components for the

various simulator scenario types the system is capable of analyzing.

The function of signature analysis is performed by the ComponentAnalyzer class in

conjunction with the analyzeComponents method of the MetaComponent class and the

analyzeComponents and analyzeAttributes methods of the SComponent class. These

classes and their inter-relationships are shown in Figure 35.

78

ComponentAnalyzer
^»signature: MetaComponent
%sourceComponents: Vector
%relevantComponents: Vector

analyzes

1

♦getRelevantComponents()

1

utilizes

source component

1..*

signature MetaComponent

1 ♦analyzeComponents()

0

sub-component

\ 1

component

SComponent

0..* ♦analyzeComponents()
♦analyzeAttributes()

Figure 35: Signature Analysis Classes

The constructor for the ComponentAnalyzer requires two parameters: a

MetaComponent signature object, a Java Vector containing a MetaComponent object for

each set of source components to be analyzed. After instantiating the

ComponentAnalyzer object, its getRelevantComponents method is called to initiate the

relevant component retrieval process. This method iterates through the vector of

MetaComponent objects and calls each object's analyzeComponents method with the

signature's root MetaComponent object as the parameter. This method, in turn, calls the

analyzeComponents method of each of the SComponent objects in its components

vector with the root SComponent object of the signature as the parameter. At this point,

the process becomes recursive: the SComponent object's analyzeComponents method

79

first calls the object's analyzeAttributes method. This method returns a score based on

the number of characteristics that match the signature SComponent object's

characteristics. The analyzeComponents method then iterates through the input

signature SComponent object's components attribute. For each of the signature's sub-

components, this method searches the source component's vector of sub-components

to determine if the source component has a matching type of sub-component. If so, this

sub-component's analyzeComponents method is called with the signature sub-

component as the parameter. This recursive process continues until the leaf nodes of

the signature component's object model have been analyzed.

The SComponent object's analyzeComponents method returns a double. The

highest score possible is one and indicates that the source component was the same

type (e.g. PLAYER-STRUCTURE, COMM-RCVR, etc.) as the signature, and has a sub-

component object tree that includes all the sub-components of the signature. A score of

one does not, however, mean the source component is an exact match to the signature

component. It indicates that the signature component's object model is a subset of the

source component's model. This requirement can be formally stated as Vcc(cc eS A a e

R AXCCC), where A is the signature, S is the applicable set of scenario source files, and

R is the set of relevant components. The set of relevant components is compiled by

each of the MetaComponent objects and returned to the ComponentAnalyzer object,

which aggregates all relevant components and returns the entire set.

The implementation of the Semantic Broker uses a simple object model to represent

scenario components. This simplicity provides the flexibility necessary to allow the

model to represent virtually any scenario source type. Specialized parsers are utilized to

create object representations of scenario components from text definitions—a process

known as component generation. Signature analysis is utilized to facilitate the retrieval

80

of relevant scenario components from the available source files. Signature components

are stored in the Signature Component Database. These functions are performed by

different components of the Semantic Broker.

4.3 Semantic Broker Major Components

The design of the Semantic Broker utilizes multi-agent technologies to provide

signature-based search capability across distributed platforms. The use of the Java

programming language enhances the ability of the system to operate in a heterogeneous

environment. The Semantic Broker system is divided into two main components: the

SemanticGateway application, and the ScenarioRegistry application. Figure 36 provides

a system-level view of how these two components interact.

Through the SemanticGateway application's GUI, the user builds a signature-based

query to specify, as generically as possible, the kinds of scenario components that are of

interest. As shown in the figure, the SemanticGateway application sends this search

criteria to each ScenarioRegistry application. The ScenarioRegistry applications provide

an interface to all scenario source files present on systems B, C, and D. This interface is

dual faceted. First, the ScenarioRegistry application provides a GUI through which

users register scenarios and their associated source files. Second, the ScenarioRegistry

application provides an agent-based interface to all scenarios contains in its registry.

When a ScenarioRegistry application receives a relevant component query, it searches

its applicable scenario source object models and responds with a set of references to

the relevant components it contains in its Scenario Component Database.

Once the references to the relevant components have been received, the

SemanticGateway application allows the user to view each reference's comments and

retrieve details on a selected component. Requesting the details of a component

81

reference causes the SemanticGateway application to send a request to the appropriate

ScenarioRegistry application requesting the details of the component. The

ScenarioRegistry application responds by returning the entire object model of the

component to the SemanticGateway application. After the details have been received,

the user may expand each level of detail to determine if the component is suitable for

inclusion in a new scenario. If the selected component is a different type (i.e.,

SUPPRESSOR vs. SWEG) than the scenario under construction, the user may, with

certain limitations, transform the component to the target format.

C^3
Figure 36: Semantic Broker System-Level View

Both the SemanticGateway and ScenarioRegistry applications utilize agent

technology to perform various functions. The following sections detail the

implementation of these applications.

82

4.3.1 ScenarioRegistry Application

The ScenarioRegistry application provides an interface, for both the user and the

SemanticGateway application, to all scenario source files referenced in its registry.

Figure 37 provides a class diagram for the ScenarioRegistry application. The

components of the ScenarioRegistry application perform the following Semantic Broker

functions:

• Provide their registry contents on request from the SemanticGatewayAgent
object. This allows the SemanticGateway application to update its system-wide
registry of available scenario registry agents.

• Receive signature-based queries from a SemanticGatewayAgent object, perform
the query on their registered scenario source files and respond with the set of
references to the relevant components generated by the query.

• Respond to requests for the details of a relevant component reference by
replying with a message containing the entire object model representation of the
relevant component.

• Provide a GUI that allows the user to register scenarios and their source files.

ScenarioRegistry Agent

1

references/sends

sends

ComponentAnalyzer

analyzes

utilizes

relevant component

0..*

1..* MetaComponent 1..*

SComponent 1..*

1..*

Registry Agent

ScenarioRegistryGUI

0..*

RegistrySource

0..*

RegistryFile

generates

utilizes

Parser

Figure 37: ScenarioRegistry Application Class Diagram

83

As the figure shows, there is one ScenarioRegistryAgent object for each

ScenarioRegistry object. The ScenarioRegistryAgent class provides a machine-to-

machine interface, via network communications, for the ScenarioRegistry application.

The ScenarioRegistryGUI class provides a human-to-machine interface to the scenario

registry. These two components are covered in detail in the following sections.

4.3.1.1 ScenarioRegistryAgent Class

The ScenarioRegistryAgent class extends the Agent class of the AFIT Agent MOM

agent architecture. There is one ScenarioRegistryAgent object for each parent

ScenarioRegistryGUI object. The ScenarioRegistryAgent object executes in a separate

thread from its parent and calls methods in its parent to retrieve information in response

to registry requests and relevant component queries. The ScenarioRegistryAgent

essentially acts as an information server. It monitors the port specified by the user when

the ScenarioRegistry application was started. When it receives a request, it spawns

conversation objects on separate threads and these conversation objects respond to the

request. Figure 38 shows the class hierarchy of the ScenarioRegistryAgent and

registryRequestConv_R classes.

As the figure shows, these "requests" come in the form of Message objects. The

Message class is part of the AFIT Agent MOM architecture as are the Agent and

Conversation classes. The ScenarioRegistryAgent and registryRequestConv_R classes

extend the Agent class and Conversation class respectively. When a Message object is

received, the ScenarioRegistryAgent creates a registryRequestConv_R object to

respond. The constructor of this object is passed the Message object, a parent object

(the agent that created it), an ObjectlnputStream object, and an ObjectOutputStream

object. Then the run method of the object is called. Based on the value of the

84

performative attribute of the Message object, the registryRequestConv_R object calls the

appropriate method in its parent object to obtain the result set it requires. Once the

result set has been received, this object writes a Message object containing the result

set to the ObjectOutputStream.

Agent
^>name: String
^>port: int

7T

ScenarioRegistryAgent
^>parent: ScenarioRegistryGUI

♦run()
*retrieveRelevantComponents()
*getRegistry()

Conversation
^>parent: Agent
^connect: Socket
%>input: ObjectlnputStream
^output: ObjectOutputStream
^>m: Message
S^connectionHost: String
^»connectionPort: int

♦sendMessage()

receives TV

Message
^>host: String
^>port: int
^performative: String
^content: Object

sends

responds with o.: registryRequestConv_R

♦run()

Figure 38: ScenarioRegistryAgent Class Hierarchy

The ScenarioRegistryAgent acts as an interface to the scenario registry through

which the SemanticGateway application can request registry information, signature-

based queries, and relevant component details. Essentially, the ScenarioRegistryAgent

provides the machine-to-machine interface to the object model representation of the

scenario source files on the ScenarioRegistry application's host machine. The human-

to-machine interface to these resources is provided by objects of the

ScenarioRegistryGUI class.

85

4.3.1.2 ScenarioRegistryGUI Class

The ScenarioRegistryGUI provides the user interface to the scenario source files in

the scenario registry. Objects of this class permit a user to register scenario source type

agent entries and add scenarios and their associated files. Figure 39 shows the class

diagram for the data contained in the scenario registry.

ScenarioRegistryGUI
registry : Vector of RegistryAgent

RegistryAgent
^>type: String
%>host: String
%port: int
%name: String
^>sourceParsers : Vector of String
^scenarios : Vector of RegistrySource
^>msfFile: String

"0"

RegistryFile
^name: String
Sparser: String 0..

O

0..*

RegistrySource
%name: String
^location : String
^>files : Vector of RegistryFile

Figure 39: Scenario Registry Data Class Diagram

The ScenarioRegistryGUI class' attribute registry is a Java Vector that contains

instances of the RegistryAgent class. There is a RegistryAgent object for each scenario

source type registered in the registry database. The attributes of the RegistryAgent

class are:

• type: This attribute contains the type of scenario source files (e.g.
SUPPRESSOR, SWEG, etc.) referenced by the RegistryAgent object.

• host The name of the system on which this ScenarioRegistryAgent operates.

• port The port number on which the ScenarioRegistryAgent operates.

• name: The name of the RegistryAgent object.

86

• sourceParsers: This attribute is a Vector containing String objects that
reference scenario source file parser classes. Java's reflection tools are utilized
to instantiate objects from these strings at runtime.

• msfFile: This attribute is a String object that contains the name of the meta
syntax file containing the scenario component syntax definitions for the type of
scenario source files this RegistryAgent object references.

• scenarios: This attribute is a Vector that contains RegistrySource objects.

A RegistrySource object represents a simulation scenario, and there is one

RegistrySource object for each scenario registered with a RegistryAgent object. The

attributes of the RegistrySource class are:

• name: This attribute is a String object that contains the name of the scenario.

• location: This attribute is a String object that contains the path to this scenario's
files.

• files: This attribute is a Vector that contains RegistryFile objects.

A RegistryFile object represents a source file for a given scenario. RegistryFile

objects have two attributes:

• name: This attribute is a String object that contains the filename of the
referenced scenario source file.

• parser. This attribute contains the class name of the Parser that knows how to
generate components from the scenario source file referenced by this
RegistryFile object. Java's reflection tools are used to instantiate the appropriate
Parser object from the string contained in this attribute.

The ScenarioRegistry application is initialized by executing the main method of the

ScenarioRegistryGUI class and providing the desired port number as a command-line

argument. The main method creates a ScenarioRegistryGUI object. The

ScenarioRegistryGUI class extends the java.swing.JFrame class and its constructor

performs the following initialization functions:

• Creates a ScenarioRegistryAgent object and executes it on a separate thread.

• Loads its stored registry contents into memory.

• Generates a JTree representation of the registry's contents.

87

The main method then displays the ScenarioRegistryGUI object by calling its show

method. This causes the window shown in Figure 40 to be displayed.

ffl*) Scenario Registry Agent (Host: enntOSH, Pott: 2500]

J Source Agents
ü

B

Q.

B-

B-

•# Meta Syntax File: SUPPRESSOR.MSF
Cjj Source Parsers

1 ♦ SourceSuppParser ^
C|S Sample3 (D:\SUPPRESSOR\Sampte3)

1 ♦ tdb_51 .dat (Parser Class: SourceSuppParser)
_J Sample (D:\SUPPRESSOR\Sample) A

1 # tdb_52.dat (Parser Class: SourceSuppParser)
*i Sample2 (D:\SUPPRESSOR\Sample2)

- ♦ tdb_54.dat (Parser Class: SourceSuppParser)

■A

-B
-C

D

E

Figure 40: ScenarioRegistryGUI Window

As shown in the figure, the ScenarioRegistryGUI displays the contents of its registry

in a JTree. The title area of the window displays the name of the host machine and the

port the ScenarioRegistryAgent object is monitoring. In the figure, the nodes of the

JTree have been labeled to allow a cross-reference between this figure and the objects

of the underlying data structure shown in Figure 39.

A. This node was generated from a RegistryAgent object contained in the
ScenarioRegistryGUI object's registry Vector. The fact that there is only one
child node at this level indicates that there is only one RegistryAgent object in the
registry Vector.

B. This node displays the value of the msfFile attribute of the RegistryAgent object
referenced by A.

C. This node references a source parser class name. This node was generated
from the String object(s) contained in the RegistryAgent object's sourceParsers
Vector.

D. This node displays the contents of a RegistrySource object.

E. This node displays the contents of a RegistryFile object. The class name of the
Parser object that will be used to parse the file referenced is displayed in
parentheses after the filename.

88

The user can update the contents of the registry by selecting an item with the

mouse and clicking the right mouse button to display a popup menu. Through this

menu, the user can add, delete and modify RegistryAgent, RegistrySource, and

RegistryFile objects.

The ScenarioRegistry application provides an interface to the scenarios referenced

in its registry. It responds to requests for its registry data and signature-based queries,

and sends the specified data to the requestor. This is a portion of the overall

functionality of the Semantic Broker. The functions of signature selection, system-wide

scenario source registration, aggregation of all relevant component queries, and

component transformation lie in the SemanticGateway application.

4.3.2 SemanticGateway Application

The SemanticGateway application is the core component of the Semantic Broker,

and provides access to the system-wide source registry, signature selector, component

retrieval, and transformation of selected relevant components. Figure 41 shows a high-

level class diagram for the SemanticGateway application. The SemanticGatewayAgent

SourceRegistryGUI classes are covered in detail in subsequent sections, and the

TransformEngine and ComponentViewer classes are discussed in Section 4.3.5, which

covers component transformation. The SourceRegistry class is covered in Section

4.3.2.2 in conjunction with the SourceRegistryGUI class.

Notably absent from this diagram is the ComponentAnalyzer class.

ComponentAnalyzer objects are utilized to perform a signature-based query on a

collection of scenario components and determine which, if any, should be included in the

set of relevant components returned to the user. Relevant component retrieval is a core

function of the semantic broker; however, this process is conducted in each of the

89

ScenarioRegistry applications referenced by the RegistryAgent objects in the system-

wide source registry.

SemanticGateway

SemanticGatewayAgent SourceRegistry

0.:
0..* signature

relevant component

MetaComponent

TransformEngine ComponentViewer

SourceRegistryGUI
transforms displays

1--*\ /I..*

MetaComponent

SComponent

Figure 41: SemanticGateway Application Class Diagram

Figure 42 shows the SemanticGateway application window at initialization. The title

area of the window displays the name of the host machine and the port the

SemanticGatewayAgent is monitoring. In the figure, the upper half of the window is

divided into two panes. The upper pane displays the list of relevant components

returned in response to a signature component based query. The lower pane displays

the comments associated with the selected component or sub-component. The lower

half of the window displays the currently selected signature. The menu bar at the top of

the window provides access to the source registry, signature selection, component

retrieval, and component transformation functions.

90

■mSemantic Gateway Agent (Host: ennt30ad, Poft: 3000]

System Source Registry Search Transformation

Relevant Components --

Eua

* Relevant Components (Threshold = 0.5)

Signature—

Signature

Figure 42: SemanticGateway Application

The SemanticGateway application requests and receives registry information from

each Scenario-Registry application, and also sends signature-based queries to these

applications. To facilitate the retrieval of these data, the SemanticGateway creates an

instance of a SemanticGatewayAgent object and executes it in a separate thread.

4.3.2.1 SemanticGatewayAgent Class

The class diagram of the SemanticGatewayAgent is shown in Figure 43. The

diagram shows the AFIT Agent MOM base Agent and Conversation classes the

SemanticGatewayAgent and registryRequestConvJ classes extend. Since there may

be multiple ScenarioRegistryAgents, distributed across multiple machines, the

SemanticGatewayAgent must create a separate conversation with each agent to request

91

its results. The SemanticGatewayAgent must keep track of all these conversations, so it

knows when all responses have been received.

To deal with this problem, the responsibility of tracking conversation progress has

been delegated to the SemanticProcess class. When the SemanticGateway calls the

retrieveRelevantComponents or getRegistry method of the SemanticGatewayAgent a

SemanticProcess object is created with the appropriate type attribute value (getRelevant

or sendRegistry) and a unique processNo attribute value. As new

registryRequestConvJ objects are created, they are added to the SemanticProcess

object's conversations vector. As each of these conversations receives its reply, it calls

the addToResultSet method of its process attribute object with a vector containing its

results as the parameter. The SemanticProcess object's addToResultSet method adds

the contents of the input vector to its resultSet attribute, decrements its activeConvCount

attribute by one, and checks this attribute to determine if its value is less than one. If this

test passes, all replies have been received and the processComplete method of its

parent object is called with itself as the parameter. The SemanticGatewayAgent object's

processComplete method calls the appropriate method of its parent, based on the value

of the SemanticProcess parameter's type attribute, and passes the SemanticProcess

object's resultSet as the argument. The SemanticProcess object is then deleted from

the processes attribute of the SemanticGatewayAgent.

The SemanticGatewayAgent initiates conversations with ScenarioRegistryAgent

objects to request registry data and signature queries, then collects the result sets from

those agent's replies. Since there may be multiple ScenarioRegistryAgents distributed

across several systems, the SemanticGateway application provides the capability to

register and track these agents. This is accomplished through the source registry.

92

Agent

%>name: String
%port: int

~K

SemanticGateway
^>agent: SemanticGatewayAgent

♦updateRelevant()
♦addToRegistry()

parent 1

1

SemanticGatewayAgent
^parent: SemanticGateway
(^processes : Vector of SemanticProcess

♦run()
%etrieveRelevantComponents()
*getRegistry()
*processComplete()

Conversation
%>parent: Agent
^.connect: Socket
%input: ObjectlnputStream
%output: ObjectOutputStream
%m : Message
^connectionHost: String
ibconnectionPort: int

♦sendMessage()

0..*

SemanticProcess
%type: String
%processNo: long
%activeConvCount: int
^resultSet: Vector
%parent: SemanticGatewayAgent
^conversations : Vector of Conversation

♦getResultSet()
♦addToResultSet()

Figure 43: SemanticGatewayAgent Class Diagram

4.3.2.2 Source Registry

In the Semantic Broker architecture, the source registry contains all information

required by the broker to access metadata and data files needed to generate scenario

component object models, search for relevant components, and transform selected

components to a target format. This includes keeping track of available

ScenarioRegistryAgent objects.

The functionality of the source registry is contained in the SourceRegistryGUI and

SourceRegistry classes. SourceRegistryGUI objects present the user with a means of

reviewing and updating the contents of the system-wide source registry. SourceRegistry

93

objects are created by the SemanticGateway parent object during its initialization to

instantiate the source registry data structure stored format. Figure 44 shows the classes

that are part of the source registry portion of the SemanticGateway application.

SemanticGateway

l|>sourceRegistry: Vector

♦setRegistry()

SourceRegistryGUI

(%parentObject: SemanticGateway
^sourceTypes : Vector of RegistryType

RegistryType

^name: String
^sigParser: String
^msfFile: String
^sigDataFile: String
^sourceParsers : Vector of String
^transforms : Vector of RegistryTransform
^scenarios: Vector of RegistryAgent

RegistryTransform

Q^name: String
^commentDelimiter: String
^sourceType: String
^targetType: String
^xFormMDFile: String
^xFormClasses : Vector of String

O-

-O.

SourceRegistry

^sourceTypes: Vector of RegistryType

♦getSourcesf,)

RegistryAgent

d^type: String
<%host: String
(%port: int
d^name: String
^sourceParsers: Vector of String
^scenarios : Vector of RegistrySource
^msfFile: String

RegistrySource

^name: String
(^location: String
^files : Vector of RegistryFile

0

RegistryFile

§>name: String
»parser: String

Figure 44: Source Registry Class Diagram

The SourceRegistryGUI and SourceRegistry classes each contain a Vector of

RegistryType objects. A RegistryType object represents a simulator type (e.g.

SUPPRESSOR) and its attributes contain the file names for signature data and

metadata, as well as a string representing the class name for the signature Parser sub-

class. Java's reflection mechanisms are employed to instantiate the applicable Parser

94

object from its string representation. Additionally, a RegistryType object contains a

vector of RegistryTransform objects and a vector of RegistryAgent objects.

RegistryTransform objects represent a particular transformation process (e.g.

SUPPRESSOR-to-SWEG). RegistryTransform objects contain sourceType and

targetType attributes, a string representing the name of the file that contains the

transformation metadata, and a vector of String objects that contains the names of the

transform classes. As with the parser in the RegistryType object, Java's reflection tools

are utilized to instantiate the applicable transforms from the String objects in the

xFormClasses vector attribute.

The RegistryAgent, RegistrySource, and RegistryFile classes are discussed in detail

in Section 4.3.1.2. A RegistryType object's scenarios attribute contains a RegistryAgent

object for each ScenarioRegistryAgent referenced in the system-wide source registry

and a RegistryTransform object for each transformation (e.g., SUPPRESSOR-to-SWEG)

available for the applicable scenario type.

Figure 45 the Graphical User Interface (GUI) for the source registry. The GUI

utilizes a Java JTree to graphically represent the organization of the source registry

data.

In the figure, the letters provide a cross-reference between the JTree nodes in the

figure and the underlying data structure presented in Figure 44.

A. RegistryType: This object registers SUPPRESSOR as a source type for
scenario components. After the name of the source type, the GUI displays the
number of scenario agents that have been registered for that source type. The
tree displays the class name of the signature parser, and the file names of the
signature file and the syntax metadata file. It is important to note here that the
signature file listed in this tree is accessed when adding new signatures to the
SCDB. This file is text based and must be parsed and converted to object form.

B. RegistryTransform: This object registers the SUPPRESSOR - SWEG
transformation capability. The source and target type attributes are listed as well
as the filename of the transformation metadata file and the comment delimiter for

95

the target type scenario format. The comment delimiter is used where a
component, or portion thereof, cannot be transformed to the target format. In
these cases, the name of the untranslatable source component is commented to
notify the user of the transformation anomaly.

C. This node's children are the names of the Transform classes for this
transformation capability. See Section 4.3.5 for details on how transformations
are accomplished in the Semantic Broker system.

D. RegistryAgent: This object registers a SUPPRESSOR ScenarioRegistryAgent
located on host ennto5li, port 2500. Each time the SemanticGateway application
is started or the source registry is updated, the registry will request an update
from each registered ScenarioRegistryAgent to determine whether each is
operational. Registry entries for RegistryAgent objects that reference
ScenarioRegistryAgent objects that are unavailable will have UNAVAILABLE
displayed after their host name and port number.

.^Source Hegistrw HEI 13

3 Source Types
B §3 SUPPRESSOR (1 Scenario Agents) -^ ^

} * Signature Parser SigSuppParser
f # Signature File: SUPPRESSOR.MDF
i # Meta Syntax File: SUPPRESSOR.MSF
p-^ Transform: SUPPRESSOR - SWEO < B

\ « Source Type: SUPPRESSOR
\ * Target Type: SWEG
[# Transform Metadata File: 5UPP-5WEG.XFM
I ♦ Target Comment Delimiter: $
B Q3 Transform Classes <4 O

j * SUPP_SWEG_Xform_1
I ♦ SUPP_SWEG_Xform_2
} * SUPP_SWEG_Xform_3
\ ♦ SUPP_SWEGJ(form_4
; * SUPP_SWEGJ(form_5
' • SUPP_SWEG_Xform_B

■'M SUPPRESSOR Scenario Agent (Host: enntOSli, Port: 2500) -4 D
; * Meta Syntax File: SUPPRESSOR.MSF
&■ J2J Source Parsers

1 * SourceSuppParser
!|--£jS Sample (D:\SUPPRESSOR\Sample)

- * tdb_52.dat (Parser Class: SourceSuppParser)
fi £| Sample2 (D:\SUPPRESSOR\Sample2)

■ ♦ tdb_54.dat (Parser Class: SourceSuppParser)
B-tp Sample3 (D:\SUPPRESSOR\Sample3)

1 # tdb_51 .dat (Parser Class: SourceSuppParser)

Figure 45: Source Registry Graphical User Interface

The source registry allows the user to configure the Semantic Broker to recognize

the available scenario types, sources and files, and the necessary Parser and Transform

96

sub-classes. Once the source registry has been configured, a signature can be used to

retrieve relevant components.

4.3.2.3 Component Retrieval

Component retrieval is one of the core functions of the SemanticGateway

application. Component retrieval provides the user with the capability to identify existing

scenario components for reuse in a simulation scenario currently under development.

Since, under the scheme developed in this research, reusable components are identified

based on their similarity to a signature component, component retrieval begins with

signature selection.

Signature Selection

The Semantic Broker maintains all signature components in the SCDB. Objects of

the SignatureSelector class provide the user with a GUI that allows the modification,

deletion, and selection of signature components. The Signature Selector window is

accessed via the Search menu of the SemanticGateway application.

The SignatureSelector window is shown in Figure 46. The SignatureSelector GUI

uses a JTree to display the hierarchical structure of the signature components.

Selecting a signature component with the mouse causes the comments for that

signature to be displayed in the lower pane of the window. These comments can be

updated by the user to enhance future user's understanding of the signature's

capabilities and limitations. This is accomplished by updating the text in the Comments

for Selected Signature text area and clicking the Update Comments button.

Modification and deletion of existing sub-components, as well as the addition of new

sub-components and characteristics, is possible via a popup menu displayed when the

right mouse button is depressed and released.

97

5 Signature Selector

pSigriälüre;:.

i* _J
|| ii■■•/_] Bomber (Penetrator)
j j S Hi Bomber (Penetrator) (3)
1 *: _J COMM-RCVR 112 commjcvr
!lr*:: „J COMM-RCVR 112 radio_rx
,j !+i „j COMM-RCVR 113 cortim_rcvr
il B "„.! COMM-RCVR 114 comrnjcvr
;| 5: Ll COMM-RCVR 114 radio_rx
19 Qj COMM-RCVR 116 comm_rcvr
1»' _J COMM-RCVR 118 comm_rcvr
p p -^J COMM-RCVR 212 radio_tx

, Comments for Selected Signature

(|Chapter 8
jiabn_c»dr Airborne Controller
Me, 1 abnjaadr Player
|[8.2 abn_cadr TactiC3
||B.3 abn_c»dr_thk Thinker
U8.4 abn_cmdi: Sensor Receiver and Transmitter
j 8.5 abn_cmdr Hover
[[This player directs interceptors to their targets, and provides early
ijwarning information to the command post. Thi3 player cannot be
((attacked, because it cannot be seen by anyone.

mm
-±J Select
-J ;

Figure 46: SignatureSelector Window

Figure 47 shows the SignatureSelector object's popup menu. The Mandatory and

Optional menu items allow the user to tell the search engine whether a particular sub-

component is absolutely essential for a source component to be included in the set of

relevant components compiled during the search. The Add, Edit, and Delete menu

items are self-explanatory, and the Select menu item sets the currently selected

component as the search signature that will be used by the SemanticGateway

application for relevant component retrievals. The Select button in the upper right-hand

portion of the window serves the same function as the Select menu item. Selecting a

signature component via either method causes the SignatureSelector object to display

an information dialog box verifying the users signature selection.

The SignatureSelector is terminated by closing the window. This action updates the

SCDB to reflect any changes accomplished by the user. After a signature has been

selected, relevant components can be retrieved from the available scenario sources.

98

•<:lft Signature Selectoi

Signature • •• • • =~4~~

I B--ÜI Airborne Controller
I ! Ö"Si PLAYER-STRUCTURE abn_crndr OPTIONAL
j \ a- _j LOCATION 1 OPTIONAL

B- ^j ELEMENT 11 abn_.cmdr_.ele DISCRETE 1 OPTIONAL

Mandatory

Edit

B'0 TH„
ffiCl COi> Optional;
ffi-Cll con"
i 'CJ COI»1

i-Q eot>
S%_JSNF Delete

I.! ! S^^Select :i : ; .. E _JMOV

-Comments for Selected Signature

drjhk OPTIONAL
mjw OPTIONAL

Sub-Component

^rnäöxöPliüWr
lr_body OPTIONAL

|Ho comments for selected component.

Figure 47: SignatureSelector Popup Menu

Relevant Component Retrieval

Source component analysis is performed by measuring a source component's

degree of similarity to the selected signature component. Essentially, the signature

component is a query structure, and source components are scored on how well they

meet the query criteria. The subject of signature analysis was covered in Section 4.2.3.

Figure 48 shows the SemanticGateway window after the signature selection

process has been completed. The selected signature component, an Airborne

Controller, is displayed in the lower half of the window. To retrieve relevant source

components, the user selects Retrieve Relevant Components from the Search menu.

99

;!)•; Semantic Gateway Agent (Host: ennt30ad. Port: 3000) s
System Source Registry ||||HJ| Transformation

r-Relevant Components- - Select Signature

'j -J Relevant Components Add Signature(s)
■••♦ Number of Compoil
-♦ Retrieval Time: 0 si

PI mmm

''••Signature --— - - ;

! i _J Signature
i; E „j Airborne Controller

& O PLAYER-STRUCTURE abn_cmdr OPTIONAL
B-gj LOCATION 1 OPTIONAL
! E _J ELEMENT 11 abn_cmdr_ele DISCRETE 1 OPTIONAL
I S<J THINKER 111 abn„cmdr_trik OPTIONAL
I i S--3 CAPABILITY abn_cmdrjhk_data OPTIONAL
\ ! ä~\J TIME-BEFORE-DROP OPTIONAL
I j l # 200. (SEC)
! I »ClITIME-TO-THINK OPTIONAL

___L A:;£;i3MMkE&il.a.abn...x^rit.Jhk.0p

Figure 48: SemanticGateway Application with Signature Selected

This action causes the SemanticGateway object to call the

retrieveRelevantComponents method of its SemanticGatewayAgent object. The

SemanticGatewayAgent accesses the source registry's collection of available

RegistryAgent objects and initiates a conversation with each referenced agent. Each

agent queries its collection of scenario source files, and returns the resulting set of

relevant component references to the Conversation object that initiated the conversation.

As each conversation terminates, its results are included in the overall result set. After

all conversations have terminated, the SemanticGatewayAgent calls the updateRelevant

method of its parent SemanticGateway object. This effectively updates the list of

relevant component references displayed in the upper half of the SemanticGateway

window. The resulting updated SemanticGateway window is shown in Figure 49.

100

Semantic Gateway Aqertt IHost: enrrt30ad. Port: 30001

System Source Registry-Search Transformation

Relevant Components ■

ijCi Relevant Components (Threshold = 0.5)
jj r * Number of Components Retrieved; 1216

• ♦ Retrieval Time: 6.48 sec,

|| r ♦ masuggAfctipipta'pi
• PLAYER-STRUCTURE abn_cmdr (SUPPRESSOR; Source: System =

|j ! » PLAYER-STRUCTURE abn_cmdr (SUPPRESSOR; Source: System =
:jl t ♦ PLAYER-STRUCTURE abn_cmdr (SUPPRESSOR; Source: System =
f! i-♦ PLAYER-STRUCTURE abnjmdr(SUPPRESSOR; Source: System;
jj \ * PLAYER-STRUCTURE abn_cmdr (SUPPRESSOR; Source: System =

ÜB

£l

,.*...nL*wrn.mT«.wTT.tf5r itnnnf-rM^<~*r

ennt05lj, D:\SUPPRESSORXSample6Mb_54.dat) Relevance Score: 1
madtiie, D:\8UPPRE8SOR18ample5ttdb_51 .dat) Relevance Score: 1
enrttSuab, D:\SUPPRESSORVSample8ltdb_53.datS Relevance Scoie-1
enntosij. O:tSUPPRESS0raSample6\tdb_53.dat) Relevance Score: 1 H
attlla, D:\SUPPRESSOR\SampleWdb_52.dat) Relevance Score: 1 fi'-'il

r>nrr>ir>nr^ft^«v«t-*w*^t.

(Chapter 8
pabn_c»dr Airborne Controller
H8.1 abn_c«di: Player
ys.2 abn_cmdr Tactics
p.3 abn_cmdr_t!i)£ Thinker

Signature

l"3 Signature
&■ Cä Airborne Controller

jj S3 PLAYER-STRUCTURE abn_cmdr OPTIONAL
I) S 3 LOCATION 1 OPTIONAL"

3--|J ELEMENT 11 abn_cmdr_ele DISCRETE 1 OPTIONAL
B Si THINKER 111 abn_cmdrjhk OPTIONAL
j 3 3 CAPABILITY abn_cmdr_thk_data OPTIONAL
! e 'jj TIME-BEFOPi-DRÖP OPTIONAL
' l » 200. (SEC)

SS _L)TIME-TO-THINK OPTIONAL
S -Qj THINKER 118 abn_cmdr_thk OPTIONAL
i ;;:j COMr*RCVR 112 commjwr OPTIONAL
Ä-CJ COMM-XMTR116 commjcmit OPTIONAL
ffi £j COMM-RCVR113 comm_rcvr OPTIONAL
m ill COfclrVt-XMTR 117 commjomit OPTIONAL _j=Ji

Figure 49: SemanticGateway Window After Relevant Component Retrieval Process

The relevant component references are displayed in the upper half of the window,

and the comments associated with the selected relevant component reference are

displayed in the text area below the relevant component pane. Here again, a JTree is

used to display the hierarchical structure of the relevant source components. The

relevant component references are sorted in descending order based on their relevance

score. As discussed in Section 4.2.3, a relevance score of T indicates that the source

component contains the entire structure and characteristics of the signature exactly.

By selecting a relevant component reference, clicking the right mouse button, and

selecting Retrieve Component Details from the popup menu; the user directs the

SemanticGateway to retrieve the entire object model for the selected reference. This

menu is shown in Figure 50. The SemanticGateway retrieves the object model by

101

calling the getCompDetails method of its SemanticGatewayAgent object. The

SemanticGatewayAgent object creates a registryRequestConvJ object and passes it a

Message object with attribute performative equal to getCompDetails and attribute

content equal to the relevant component reference. The registryRequestConvJ object

then contacts the ScenarioRegistry application indicated by the relevant component

reference.

Semantic Gateway Agent (Host ennt30ad. Port: 3ÖÖÖJ

System Source Registry Search Transformation

IjChapter 8
j|abn_cndr Airborne Controller

.1 abn_cmdr Player
!p8.2 abn_cadr Tactics

■18.3 abn_c»dr_tWe Thinker

(Signature - - -- — - - - -

' _J Signature
\l'-' _J Airborne Controller
j, H .J PLAYER-STRUCTURE abn_cmdr OPTIONAL

hi & £j LOCATION 1 OPTIONAL
| . E :jj ELEMENT 11 abn_cmdr_ele DISCRETE 1 OPTIONAL

: I f iS THINKER 111 abn_cmdr_1hk OPTIONAL
i 6 Q CAPABILITY abn cmdrjhk.data OPTIONAL

S ^ TIME-BEFORE-DROP OPTIONAL
f l * 200. (SEC)

83 -::j TIME-TO-THINK OPTIONAL
Sä -U THINKER 118 abn_cmdr_tt)k OPTIONAL
SB-2J COÄA-RCVR 112 COmmjTVr OPTIONAL
feU COMM-XMTR 116 comm_Kmit OPTIONAL
f' CJ COMM-RCVR 113 comm.rcvr OPTIONAL
m 2J COMM-XMTR117 commjonlt OPTIONAL

Figure 50: SemanticGateway: Retrieve Component Details Menu

After the ScenarioRegistry application responds with the object model, the model's

nodes are added to the appropriate relevant component reference node. The user can

then expand the relevant component and examine its sub-components to determine if it

is suitable for reuse in a new scenario. Figure 51 shows the SemanticGateway window

after the details for the selected relevant component reference have been retrieved and

102

the JTree updated. Once selected for reuse, a component formatted for a different

simulator type than required must be transformed to the desired format.

 tm k Semantic Gateway AgenHHast: ennlSüad, Pott; 3ÖÜÖJ

ii!:^im':;!Sourc8;ipMstfe ':!X-ti: '''V"-X:--. rHXWf
(-Relevant Components- :—---•— -- - — -—-

_j Relevant Components (Threshold = 0 5) _^l
II i # Number of Components Retrieved: 1216 gil
I \ * Retrieval Time: 6.48 sec.

B J PLAYER-STRUCTURE abn_cmdr
e CJ LOCATION 1

I B J ELEMENT 11 abn_crndr_ele DISCRETE 1
* D THINKER 111 sbn.cmdrjhk
$ £j THINKER 118 abn_cmdr_thk
,*JC; ::M ^rtUU„n'>»*n..li<.1.**«»i«». .•*■«

2.^

.J

Chapter 8
abn_cmdr Airborne Controller
8.1 abn_cBdx Player
8.2 abnjmdr Tactics
8.3 abn_c»ar_ta* Thinfeer

Signature - • -- — ~- - -. — - — -

_J Signature
Ö--ÜJ Airborne Controller

Ö Cl PLAYER-STRUCTURE abn_cmdr OPTIONAL
Ei CJ LOCATION 1 OPTIONAL

! Ö**ä ELEMENT 11 abn_cmdr_ele DISCRETE 1 OPTIONAL
S ,;J THINKER 111 abn_emdr_thk OPTIONAL

& -3 CAPABILITY abn_cmdrjhk_data OPTIONAL
B 3T1ME-BEFORE-DROP OPTIONAL
; L • 200. (SEC)
* £D TIME-TO-THINK OPTIONAL

I O THINKER 118 abn_cmdr_thk OPTIONAL
* v~l COMM-RCVR112 comm_rcvr OPTIONAL
S ij COMM-XMTR 118 COmm_xmlt OPTIONAL
•B ~_1J COMM-RCVR 113 comm_revr OPTIONAL |Jf
S ■ ■_) COMM-XMTR 117 COmm_xmit OPTIONAL jjj

F/gt/re 51: SemanticGateway: Component Details Expanded

4.3.2.4 Component Transformation

The SemanticGateway divides transformations into six categories [LSA98]. These

were discussed in detail in Section 3.5.2.4. Transformations are performed by an

instance of the TransformEngine class. Transformation metadata is utilized to determine

which class of transform object to use to translate a specific component or sub-

component. References to this metadata and the transform classes used during the

transformation process are contained in the source registry. The use of transformation

metadata allows the methods of the TransformEngine class to be generic, and the

division of the transforms into categories permits large components to be translated one

103

sub-component at a time. This avoids the problem of one untranslatable sub-component

rendering the entire component untranslatable. The specifics of the transformation

process are moved into the transform classes. This feature makes the system more

easily extendable, since none of the core source code requires modification to add a

new transformation (e.g. SUPPRESSOR - SWEG, SUPPRESSOR - JIMM, etc.).

In Chapter 3 of this work, a class diagram is described for the proposed design of

the transformation portion of the SemanticGateway application. This class diagram is

shown in Section 3.4.2.3, Figure 32. A more detailed diagram that shows the actual

implementation of the classes of the transformation sub-system is shown in Figure 52.

In the Semantic Broker architecture, all transform classes must extend the Transform

class. This research developed the Transform sub-classes necessary to translate

SUPPRESSOR scenario components to SWEG components. The abstract class

Transform contains the abstract method transform, and each class that extends it must

provide its implementation of this method.

The Semantic Broker architecture requires that a transform class be provided for

each of the six transform categories detailed in Section 3.3.4, Figure 26. These classes

are referenced in the source registry via String objects that contain their class names.

Reflection is utilized to instantiate objects from the registry's string reference. There is

no requirement that the transforms for the six categories be unique, so, for example, the

same transform class name could be provided for both Category 5 and Category 6

transformations.

The SemanticGateway application performs transformations by creating a

TransformEngine object and passing to it the appropriate RegistryTransform object. The

constructor of the TransformEngine class performs the following functions:

104

• Extracts the source and target types, the Transform class string references, and
the transformation metadata filename from the RegistryTransform object.

• Instantiates the Transform sub-classes referenced in the RegistryTransform
object by calling its getTransforms method. This method utilizes Java's reflection
tools to instantiate Transform objects from the strings stored in the xFormClasses
attribute of the RegistryTransform object.

• Creates an MDParser object for the metadata file referenced by the
RegistryTransform object.

• Calls the loadXFormMetadata method to initialize the xFormMD attribute with the
transformation metadata.

MDParser

(%>syntaxllnits: Vector
(^xFormMDFile: BuffereReader

♦loadXFormMetadata()

TransformEngine

^xFormMD: Vector
^xForms: Vector
^p>regXform: RegistryTransform

♦xFormModel()
♦getTransforms()

RegistryTransform

references

creates

1..*

TransformMD

^category: int
^sourceType: String
^targetType: String

references

SComponent

transforms

1..*

Transform

^category: String
^>xFormMD: TransformMD
SicommentDelimiter: String

*transform()

SUPP_SWEG_Xform_1 SUPP SWEG Xform 3

SUPP SWEG_Xform_2

SUPP SWEG_Xform_5

SUPP_SWEG_Xform_4 SUPP_SWEG_Xform_6

Figure 52: Transformation Sub-System Class Diagram

The SemanticGateway application then calls the TransformEngine object's

xFormModel method and passes the root object of the selected scenario source

component as the argument. This method calls the xFormComp method, which

105

transforms the SComponent object passed as the argument to the xFormModel method.

Figure 53 contains the source code for the xFormModel and xFormComp methods.

public SComponent xFormModel(SComponent o)
{
this.sourceComp = o;
SComponent rtn = null;

// Transform input parameter 'o1

rtn = xFormComp(o);

// Transform the sub-components of input parameter 'o'
// and add them to the transformed component.
int i ;
Vector comps = o.getComponents();
for (i =0; i < comps.size(); i++)
rtn.addComponent(xFormModel((SComponent)comps.get(i)));

return rtn;
}

public SComponent xFormComp (SComponent o) / xFormModol
{ / method called

SComponent rtn; recursively for
// Find transform metadata object. If not found '
// abort component transformation.
TransformMD xformMD = f indXFormMD (o. getType ()) ; ^Component
if (xformMD == null)

return null;

// Retrieve Transform sub-class object based on category
// data contained in tranformation metadata object. If
// transform is null abort.
Transform xform = (Transform)this.xForms.

get (xformMD. getCategoryO - 1) ;
if (xform == null)

return null;

// Set transform metadata, then call Transform object's
// transform method- with source component as parameter,
xform.setXFormMD(xformMD);
rtn = xform.transform(o);
return rtn;

}

Figure 53: TransformEngine Class xFormModel and xFormComp Methods

The xFormComp method translates the name of the component and its

characteristics. The sub-components of the argument are ignored by this method. The

sub-components are each treated as the root of another scenario component object

106

model. Therefore, for each sub-component, the xFormModel method is called

recursively with the sub-component's root object as the parameter. This design feature

allows a portion of a scenario component to be untranslatable without rendering the

entire component untranslatable. A component that cannot be transformed is simply

annotated as such, and the process continues with its sub-components. As can be

discerned from closely examining the source code of the xFormModel method, the

component parameter is translated first using the xFormComp method, then the

xFormModel method is called recursively for each of the sub-components. This line in

the source code of Figure 51 is identified by the callout. This process continues until the

leaf nodes of the source component have been reached and transformed.

Figure 54 provides a graphical representation of the how these two methods are

employed to transform scenario components. As the figure shows, the non-

SComponent attributes of the SComponent object passed to the xFormModel method

are transformed by the xFormComp method. The SComponent attributes, those

contained in the components attribute, are transformed individually by recursively calling

xFormModel n times, where n is the number of SComponent objects in the

"components" Vector attribute of the current SComponent object.

In the figure, the SComponent objects are labeled (i.e. A, A.1, A.2, A.2.1, ...) to

indicate their hierarchical relationship. Only the root of the transformed component is

shown (with T suffix). Of course, the object model shown in Figure 54 is very small and

the object representation of almost any scenario component is many times more

complex. After the leaf nodes of the component object model have been transformed,

and the recursive calls have terminated, the original call to xFormModel returns the root

of the transformed component to the SemanticGateway application.

107

Transformed

Component

SComponent: A

type
name
characteristics

components

SComponent: A(T)

type
name
characteristics

components

• •

SComponent: A.1

type
name
characteristics

components

n

SComponent A.2.1

type
name
characteristics

components

I I I I I

SComponent: A.2.2

type
name
characteristics

components

I I I I I

Figure 54: Component Transformation Process

To transform a scenario component, the user first completes the signature selection

and relevant component retrieval processes. Once this is done, the user selects a

component from the relevant component list, then selects a transformation option from

those listed in the Transform Component sub-menu of the Transformation menu. Figure

55 shows the SemanticGateway window with this popup menu displayed.

108

Semantic Gateway Agent (Host; ennOOad. Poll: 30001

System Source RegtsttY Search Transformation

s Relevant Components

|j -J Relevant Components (Threshold = OS)
♦ Number of Components Retrieved: 1216

:i !■■■■# Retrieval Time: 8,48 sec.

UMB

4

fPLAYE1

1LO

Change SearchThteshold

Retrieve Relevant Component!

||Chapter 8
|jabn_c»<ir Airborne Controller
|8.1 äbnjmdr Player
]|8.2 abn_cmdr Tactics
r|8.3 abn_cmdr__thfe Thinker

! Signature - - - ..

|flj| Signature
ij S■■■ Oil Airborne Controller
l| B -33 PLAYER-STRUCTURE a6n_cmdr OPTIONAL

3-z$ LOCATION 1 OPTIONAL
l! I B CS ELEMENT 11 abn_cmdr_ele DISCRETE 1 OPTIONAL
|| I a J THINKER 111 abn_cmdr_thk OPTIONAL
|] I Eig CAPABILITY 9t>n_cmdr_thk_data OPTIONAL

B-C3 TIME-BEFORE-DROP OPTIONAL
J i ■ » 200. (8EC)

I S CJTIME-TO-THINK OPTIONAL
* I! j THINKER 118 abn.cmdrjhk OPTIONAL

f SlJCOMM-RCVR 112 comm_rcvr OPTIONAL
Sill COMM-XMTR116 C0mm_xmit OPTIONAL
S£j COMM-RCVR113 comm_rcvr OPTIONAL

l IQ COMM-XMTR117 eomrnxmit OPTIONAL

Jl

...^

Figure 55: Transformation Menu of the SemanticGateway

In the figure, there is only one transformation option listed. This is because the

Transform Component sub-menu items are generated automatically based on the

available RegistryTransform objects in the source registry. By selecting the

SUPPRESSOR - Sl/VEG transformation option, the user causes the SemanticGateway

application to execute its transformComponent method, which effectively translates the

selected component to the target format (i.e., SWEG). The resulting transformed

component is displayed in an instance of the ComponentViewer class. The

ComponentViewer class provides a GUI that allows the user to inspect the transformed

component. The ComponentViewer window with the transformed SUPPRESSOR

scenario component is shown in Figure 56.

109

; Component Viewei: SUPPRESSOR - SWEG Transformation

"Components^

„j Component

QöJxJ

-±J Send to Builder

m B y PLAYER-STRUCTURE abti_crndr
i;| Ö-SJ PLATFORM 1

! I \ S-C j ELEMENT 11 abn_cmdr„ele OISCRETE 1
II \ Si-Cl THINKER 111 abn_cmdr_thk
| { i W il] THINKER 118 atm_cmdr_thk
I j ! fl d COMM-RCVR112 commjtvr
II j SjjCOMM-XMTR116comm_Hmit

;| | til-Q COMM-RCVR 113 commjwr
!, „J*/ljjC\ftM^yiMOCR 1.1X£«mis^ ..,..._ ,.,

■■; Comments for Selected Component

^warning information to the coamand post. This player cannot be
i |[attacked, because it cannot be seen by anyone.

:ITRMSFORH&TIOH IHFOPHATIOST:

i;l|This scenario component was transformed by the CERTCDRT SemanticGateway
rjj agent. The original component and location «ere:

' SCEMRIO TYPE: SUPPRESSOR
jjCOHPOHEBT: PiAinEE-STRUCTORE
'ISYSTEH im PATHs ennt30ab: D:\SOTPRESS0R\Saaple6Stdb_S2.dat

Figure 56: ComponentViewer Window

As shown in the comments pane of the ComponentViewer window in Figure 56, the

SemanticGateway application's transformComponent method annotates the comments

of the transformed component to ensure that future users of the component will know the

original scenario format and the scenario file from which it was transformed.

The design of the tranformation sub-system allows sub-components to be

untranslatable without rendering the entire component unusable. In Figure 57, the JTree

has been expanded to show some of the TACTIC sub-components that could not be

transformed because they are not available in the target format.

These items are identified by the "$ ITEM NOT AVAILABLE IN TARGET FORMAT:

<SOURCE TYPE>." The '$' is the comment delimiter for the target format. This item is

configurable in the source registry by editing the associated RegistryTransform object.

Annotating the untranslatable sub-components allows the user to easily identify where

110

transformation problems occurred and which sub-components must be manually

translated.

\ Component Viewer SUPPRESSOR - SWEG Transformation

I - % TACTIC abn_cmdr_tactics
I & D NOMINAL-SUB-REACT-TIME
I ffl U EVALUATION-RATES
I #•_! S ITEM NOT AVAILABLE IN TARGET FORMAT: ASO-CMD-CHAIN
I BO RESOURCE-ALLOCATION

1 ft-2.] $ ITEM NOT AVAILABLE IN TARGET FORMAT ZONE-CHARACTERISTICS
! fr£j $ ITEM NOT AVAILABLE IN TARGET FORMAT: MSG-RPT-ÖUIDE
I ffl-CJ $ ITEM NOT AVAILABLE IN TARGET FORMAT: INTELL-REPORT-FREQ
I * '3 % ITEM NOT AVAILABLE IN TARGET FORMAT: SNR-RPT-OUIDE
I ä {U $ ITEM NOT AVAILABLE IN TARGET FORMAT: MOVE-PLANS
t. __ifc£L;L,«,q^^^

■mUM-lnixl

A i%m&MSiM^§^iiiM

; Comments for Selected Component

Ifljwarning inromation to the command post. Ulis player cannot be
jjlattacked, because it cannot be seen by anyone. |

TOMSFORHATIOH IHFORHATTOH: \
j This scenario component was transf amed by the CERTCORT SejaanticGateway''

agent. The original coaponent and location were:
' SCENARIO TYPE: SUPPRESSOR
I COHPOHEHT: Pt&YER-STRÜCTORE
•SYSTEHÄHD PATH: enntSOab: n:\SUPPRESS0R\Sample6\tdb_52.dat |

_d Update Comments

Figure 57: Transformed Component with Untranslatable Components

Since the goal of this research did not include developing a repository for

transformed components or developing facilities to construct new scenarios from the

transformed components, transformed components are discarded when the

ComponentViewer window is closed.

4.3.3 SemanticGateway- ScenarioRegistry Interaction

The purpose of this section is to give the reader a better understanding of the

interaction between the SemanticGateway application and the ScenarioRegistry

applications. Figure 58 shows the primary classes of each application.

The figure shows the applications, their agents, and the conversation objects that

communicate between them. Network communication via Java Socket objects is

111

depicted by dashed lines. In the figure there is only one ScenarioRegistry application,

so only one registryRequestConvJ object was created by the SemanticGatewayAgent

to contact it. In practice there could be multiple ScenarioRegistry applications. In these

cases a separate registryRequestConvJ object would be created to connect with and

request information from each ScenarioRegistryAgent.

SemanticGateway

^agent: SemanticGatewayAgent

♦updateRelevant()
♦addToRegistryf)

ScenarioRegistryGUI

^agent: ScenarioRegistryAgent

1

SemanticGatewayAgent

♦retrieveRelevantComponents()
♦getRegistryf)
%>rocessComplete()

>

0..*

SemanticProcess

♦addToResultSet<)
♦addConversation()

0

ScenarioRegistryAgent

♦retrieveRelevantComponents()
♦getRegistry()

Message

registryRequestConvJ

^process: SemanticProcess

♦sendMessage()
♦receiveMsg()

responds with

1

registryRequestConv_R

^parent: ScenarioRegistryAgent

♦sendMessage()

Figure 58: SemanticGateway - ScenarioRegistry Interaction

4.4 Semantic Broker Demonstration

This section begins with a discussion of the supporting software required to compile

and run the semantic broker system. Next the virtual machine, compiler, and hardware

platforms are discussed. Finally, the software is configured and tested to determine

relevant component retrieval feasibility in operational conditions.

112

4.4.1 Java Packages

In order to compile and execute the semantic broker software, the afit.mom package

must be available. This package contains the base classes for the AFIT Agent MOM

multi-agent development API. The location of this package is critical. For example, if

the semantic broker software is in the C:\CERTCORT\SemanticBroker directory, the

afit.mom class files must be in the C:\CERTCORT\SemanticBroker\afit\mom directory.

All other packages imported by the semantic broker software are part of the standard

Java packages delivered with Sun Microsystems' Java Development Kit 1.3 (JDK 1.3).

4.4.2 Hardware and Software Platforms

The semantic broker software has been developed in the Java programming

language with the latest release (1.3) as its preferred runtime environment. Although

developed and tested on the Windows NT/Intel platform, the portability of the Java

language, with its platform independent Java Virtual Machine (JVM), makes the

semantic broker capable of operation across heterogeneous platforms without

modification of the source code.

4.4.3 Component Retrieval Test Cases

In order to determine the feasibility of using this component retrieval tool when

reasonably large numbers of scenario source files are available, the Scenario

Component Database for the test cases was constructed from 40 SUPPRESSOR

scenario TDB files. Each of the 40 source files contained 21 PLAYER-STRUCTURE

components, and the total size of the test database was approximately 10.7 mega bytes

(MB) on each ScenarioRegistry machine. Two separate hardware configurations were

employed during testing. The first tests the software on homogeneous platforms, and

the second compares retrieval times across heterogeneous systems.

113

4.4.3.1 Homogeneous Test Configuration

Figure 59 shows the configuration of the hardware and software utilized for the

homogeneous tests. All hardware platforms involved in this testing were Intel Pentium

based workstations running Microsoft Windows NT. The semantic broker software was

compiled under Sun Microsystems' JDK 1.3, and each workstation was running version

1.3 of the Java Virtual Machine (JVM). The tests utilized four separate signature

components, and the component retrieval process was conducted five times for each

signature—at a different sensitivity threshold each time.

Hardware:
Intel Pentium II, 500 MHz
128 MB RAM

Software:
OS: Windows NT 4.0
JVM: 1.3

ScenarioRegistry

Hardware:
Intel Pentium II, 500 MHz
128 MB RAM

Software:
OS: Windows NT 4.0
JVM: 1.3

SemanticGateway

Hardware:
Intel Pentium II, 500 MHz
128 MB RAM

Software:
OS: Windows NT 4.0
JVM: -1.3

ScenarioRegistry

-i—r r^=) T—r r^=i

Signature Component Utilized
Threshold

0.5 0.6 0.7 0.8 0.9
Bomber (Penetrator) 532/2.45 304/2.19 228/2.17 76/2.1 76/2.09
COMM-RCVR112 380/0.34 380/0.36 380/0.45 380/0.41 380/0.44
Airborne Controller 608/3.17 304/2.96 152/2.91 76/2.87 76/2.86
Fighter (Ground Attack Aircraft) 380/2.53 304/2.65 152/2.45 152/2.44 152/2.44

Figure 59: Homogeneous Test Configuration

This configuration utilized two workstations running the ScenarioRegistry

application. Each of these applications accessed a Scenario Component Database of

10.7 MB. Therefore the total search space for these test cases was approximately 22

MB. Figure 59 also contains the results of the tests in the table in the lower portion of

the figure. The left column lists the signature component utilized, and the remaining five

114

columns show the number of components retrieved/retrieval time (sec) for each of the

sensitivity thresholds.

Contrary to what might be expected, the retrieval times were reasonably consistent

regardless of the sensitivity threshold setting. The higher the threshold setting, the

higher a source component's relevance score must be in order to be included in the

relevant component set returned to the SemanticGateway application. At a higher

threshold setting, there are fewer relevant component references returned by each

ScenarioRegistry application. The heterogeneous tests showed similar results.

4.4.3.2 Heterogeneous Test Configuration

The second configuration tested the semantic broker software in a heterogeneous

environment. This configuration is depicted in Figure 60.

Hardware:
Sun Ultra 10

1 GBRAM
Software:

OS: Solaris
JVM: 1.2.1

ScenarioRegistry

Hardware:
Intel Pentium II, 500 MHz
128 MB RAM

Software:
OS: Windows NT 4.0
JVM: 1.3

SemanticGateway

Hardware:
Sun Ultra 10
1 GBRAM

Software:
OS: Solaris
JVM: 1.2.1

ScenarioRegistry

T—T

Signature Component Utilized
Threshold

0.5 0.6 0.7 0.8 0.9
Bomber (Penetrator) 532/4.71 304/4.6 228/4.57 76/4.54 76/4.54
COMM-RCVR112 380/0.46 380/0.41 380/0.39 380/0.40 380/0.42
Airborne Controller 608/6.25 304/6.04 152/5.99 76/5.95 76/5.97
Fighter (Ground Attack Aircraft) 380/5.12 304/4.95 152/4.87 152/4.86 152/4.87

Figure 60: Heterogeneous Test Configuration

As the figure shows, this configuration employed two Sun Microsystems Ultra 10

workstations running the ScenarioRegistry applications. Each Sun workstation

115

contained 1 giga byte (GB) of memory. Version 1.2.1 of Sun Microsystems' JVM was

installed on these machines. An Intel Pentium based workstation was utilized to run the

SemanticGateway application. This machine had 128 MB of memory and version 1.3 of

the JVM.

The size of the Scenario Component Database utilized for this test configuration

was the same size as that used in the previous configuration. The response times of the

heterogeneous configuration are comparable to that of the homogeneous configuration.

The fact that the heterogeneous configuration's retrieval times are approximately twice

that of the homogeneous configuration is most likely due to the conversions that are

required when cross-platform communications are joined. Additionally, the Sun

machines were running an older version (1.2.1) of the JVM, which may also contribute to

their slower retrieval times.

Another interesting result of the tests was the time difference caused by signature

components of different sizes. Since the component analysis process is controlled by

the structure (i.e., the size) of the signature component, selection of a smaller signature

component (e.g., COMM-RCVR) results in a faster component retrieval time.

4.5 Extending the Semantic Broker

The use of metadata, especially in the transformation portion of the semantic broker,

increases the extendibility of the system. This section discusses the additional files and

source code required to add new simulator scenario search and transformation

capabilities.

When a new simulator scenario source is introduced, the system's source registry

must be updated for the system to recognize the source files. This requires the addition

of the following data files and Java .class files:

116

• Signature Data File: This file contains a text-based representation of the
desired signature components for the new scenario type. The contents of this file
will make up the initial signature database for the new type.

• Syntax File: This file tells the signature and source parsers how to interpret the
signature and source files.

• Signature Parser: This is a Java .class file. It must extend the abstract class
Parser.

• Source Parser: This is also a Java .class file. It must extend the abstract class
Parser.

To add a new transformation capability to the system, the source registry must be

updated with the associated data files and Parser class names, so the system

recognizes the new transformation capability. The data files and Java .class files that

must be added are:

• Transformation Metadata File: This file contains information concerning the
transformation categories of all source components and sub-components.
Characteristic transformations are included here, as well as additional
characteristics that are present in the target format, but not supported in the
source format.

• Transformation Classes: These are Java .class files. Each must extend the
abstract class Transform and implement its abstract transform method.

The system needs a reference to six Transform classes. Any or all of these may be

duplicates (i.e., reference the same class); however, in practice having only one

transform class would not be effective.

No changes are required to the SemanticGateway application to update menu

options because menus that can change due to added source types or transformation

capabilities are generated from the content of the source registry at run-time. Therefore,

updating the source registry to reflect an additional source type, for example, will

automatically update the application's menus the next time it is started.

117

4.6 Summary

This chapter presents the implementation of the Semantic Broker as outlined in

Chapter 3. The tool presented in this chapter is a proof of concept vehicle, and, as such,

does not contain optimized data structures or algorithms that provide peak efficiency of

space and execution time.

The chapter begins with a discussion of some design issues that came to light

during development of the broker. These include the object model used to represent

scenario components and generation of those object representations. Additionally, the

topic of signature component analysis is covered to provide the reader with some level

of understanding of its use in this research. Next, the implementation of the two main

components of the broker, the SemanticGateway and Scenario/Registry applications are

discussed in detail. Following this was a short section on the results of tests conducted

on the component retrieval algorithm to estimate its performance on reasonably large

source databases. Finally, extending the tool to include new source types and

transformation capabilities is covered.

Chapter 5, the final chapter of this work, follows. It provides conclusions arrived at

as a result of this research, as well as some recommendations for future research in this

area.

118

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

This chapter begins with a summary of the work conducted during the course of this

research. This is followed by a discussion of the impact this research has had on the

state of the CERTCORT system. Finally, several areas of future research that would

further extend the capabilities of the CERTCORT system are discussed.

5.2 Summary of the Research

This research developed an agent-based system that provides users with an

automated means of identifying existing scenario components and preparing them for

reuse in a new scenario. Figure 61 shows how the tool developed in this work fits into

the layered architecture of the CERTCORT multi-agent framework.

The Semantic Broker has two main components: the SemanticGateway application

and the ScenarioRegistry application. The Scenario/Registry application resides in the

Information Layer of the framework, while the SemanticGateway application is

positioned in the Assistant Layer. This places the SemanticGateway application in the

same layer as the Scenario Builder Assistant, which has yet to be developed completely.

Future research may determine that the SemanticGateway should be integrated into the

Scenario Builder Assistant, since finding suitable existing scenario components and, if

necessary, transforming them to the desired format, are key features of a Scenario

Builder Assistant. This assistant is part of the original CERTCORT system as

envisioned in [McDOO, 209].

The signature analysis approach developed in Chapter 3 and implemented in

Chapter 4 facilitates the identification of existing components, and the transformation

119

methodology developed in this work provides translation capabilities, within limits,

between scenario formats. The key to both these functions is the simple object model

utilized to represent scenario components. Its use permits the representation of virtually

any scenario format and places the scenario components in a simulator system

independent format.

Collaboration Layer

Current
Research
Focus

\ \
\ \

s/ \

ScenarioRegistry 1 |
1 |

Application
(Server)

1 |
1 1
1 1
1 1

1
1

/

/ / ; / / ; /
;

Scenario
Builder

Assistant

Figure 61: Research Impact on CERTCORT Agent Framework

The tool developed in this research provides agent based scenario component

retrieval and contains limited transformation capabilities. A key feature of the system is

its extensibility. New simulator scenario source types can be added to the system

without modification of existing source code. This extensibility is achieved through an

extensive utilization of metadata to provide details on component generation and

component transformation. The software developed in this research has furthered the

state of the CERTCORT tool.

120

5.3 State of CERTCORT

With the addition of the Semantic Broker system, the CERTCORT tool is now

capable of providing automated facilities for the identification of reusable scenario

source components, retrieval of those components, and transformation of components to

a selected target format. Figure 62 provides a graphical representation of the state of

CERTCORT's functionality.

SWEG SUPPRESSOR

JIMM EADSIM

Figure 62: State of CERTCORT Functionality

In the figure, functionality that has not yet been fully developed is denoted by

dashed lines around those components. As the figure shows, currently the CERTCORT

tool has the following capabilities:

121

• Instantiating object model scenario component representations from text based
scenario files into a common object model.

• Allowing the user to perform signature-based queries to find existing scenario
components that are suitable for reuse in a new scenario.

• Assisting the user in the transformation of an existing scenario component to a
different scenario format.

The Scenario Builder Assistant shown in Figure 62 has yet to be completely

developed. A rudimentary version of this assistant was developed in [McDOO]. Further

development of the Scenario Builder Assistant, as well as the Reuse Component

Database, should be part of future research in the CERTCORT arena.

5.4 Future Research Recommendations

Future research in the CERTCORT area should focus on development of the

Scenario Builder Assistant, and the inclusion of the Semantic Broker as part of that

system. Another area of potential research involves extending the signature analysis

concept to operate with entire scenarios as the search signature. Finally, the

transformation capabilities developed in this work should be extended to include the

Category 4 and 5 transformations discussed in Section 3.3.4, Figure 26.

5.4.1 Developing a Builder Agent

Development of a Scenario Builder Assistant is the logical next step in extending the

functionality of CERTCORT. This assistant is essentially a scenario design center—a

GUI that pulls existing and transformed components together to form a new scenario. A

shell of this assistant was developed by [McDOO], and this work could form the

foundation for the new research.

Since the functions of component retrieval and component transformation are

essential to any scenario builder intended to make use of existing scenarios, the

122

Semantic Broker developed in this work should be included as a subsystem of the

Scenario Builder Assistant.

5.4.2 Extending the Signature Concept

This research focused on utilizing signature components as search criteria to

identify existing scenario source components that fit the requirements of a component

needed for a new scenario under construction. A natural extension of this concept is the

idea of using entire scenarios as signature components. This would allow users to

search for and potentially reuse entire scenarios.

5.4.3 Extending the Semantic Broker's Transformation Capabilities

This work developed the transforms for Category 1, Category 2, Category 3, and

Category 6 transformations as defined in Section 3.3.4, Figure 26. Category 4 and

Category 5 transforms are beyond the scope of this work. These two transform

categories encompass the most difficult aspects of component transformation, since

they require the software to interact with the user during the transformation process to

determine how to proceed.

5.5 Summary

This work develops a Semantic Broker capable of providing automated relevant

component retrieval and component transformation. The foundation of the system is a

common object model capable of representing virtually any scenario format, and a

technique of utilizing metadata to allow processes to be less format specific.

As a result of this work, the CERTCORT tool under development by AFRL is now

capable of maintaining a registry of available source scenarios and their components,

identifying relevant scenario components for reuse, retrieving those components from

123

their distributed locations, and transforming, with certain limitations, those components

to a desired target scenario format.

Recommendations for future research in this area include the development of the

Scenario Builder Assistant in the CERTCORT Agent Framework's Assistant Layer,

extending the signature analysis concept to include entire scenarios, and extending the

Semantic Broker's transformation capabilities to include Categories 4 and 5.

124

Appendix A. Selected Source Code

This appendix contains portions of the source code for the semantic broker system.

The code presented here is helpful to understanding the component generation, relevant

component retrieval, and the component transformation processes.

A.1. Component Generation

ScenarioRegistryGUI: insertFileTreeNode Method

This method inserts a RegistryFile object into the SRDB that represents the

scenario source file entered by the user. The file is parsed, and the object models

representing its source components are placed in the Scenario Component Database of

this ScenarioRegistry application.

public void insertFileTreeNode(SR_DialogInfo o)

{
RegistryFile newFile = new RegistryFile(o.datal);
newFile.setParser(o.data2);
DefaultMutableTreeNode newNode =

new DefaultMutableTreeNode (newFile) ,-
DefaultMutableTreeNode currentNode =

(DefaultMutableTreeNode)tree.
getLastSelectedPathComponent();

Object obj = currentNode.getUserObject();
if (obj instanceof RegistrySource)

{
RegistrySource regSource = (RegistrySource)obj;
RegistryAgent reg =

(RegistryAgent)((DefaultMutableTreeNode)currentNode.
getParent()).getUserObj ect();

if (!reg.findSourceParser(o.data2))

{
displayError("Error",

"Parser class not found in type node.");
return;

}

// Construct path name
String srcFile = null, srcParser = null, msfFile;
msfFile = reg.getMsfFile () ,-
if (regSource.getLocation().endsWith(File.separator))

srcFile = regSource.getLocation() +
newFile.getName();

else

125

srcFile = regSource.getLocationO + File.separator +
newFile.getName();

// Get string representing class name and call
// getSourceComponents to generate source components
srcParser = newFile.getParser();
String[] srcParams = {srcFile, msfFile};
Vector srcComps = getSourceComponents(srcParser,

srcParams);

if (srcComps != null)

{
// Load this type's serialized file
loadSourceComps(reg.getType());
if (this.sourceComps == null)
this.sourceComps = new Vector();

int i;
// Add new scenario components to serialized database
for (i = 0; i < srcComps.size(); i++)

this.sourceComps.add(srcComps.get(i));

int filelndex = ((RegistrySource)obj).insertFile(newFile);
treeModel.insertNodelntofnewNode, currentNode, filelndex);
TreeNode[] nodes = treeModel.getPathToRoot(newNode);
TreePath path = new TreePath(nodes);
tree.scrollPathToVisible(path);
saveSourceComps();

}
}

ScenarioRegistryGUI: getSourceComponents Method

This method uses Java's reflection mechanism to instantiate a Parser object of the

sub-class referenced by the string p. After the Parser object is instantiated, the method

generates scenario components from the file referenced in the parameters argument.

public Vector getSourceComponents(String p,
String[] parameters)

{
Parser parser = null;
try

{
Class cl = Class.forName(p);
Constructor[] constructors = cl.getDeclaredConstructors();
parser = (Parser)constructors[0].newlnstance(parameters);

}
catch (ClassNotFoundException x)

{
System.err.println(x);
return null;

}

126

catch (IllegalAccessException x)

{
System.err.printin(x);
return null;

}
catch (InvocationTargetException x)

{
System.err.printin(x);
return null;

}
catch (InstantiationException x)

{
System.err.printin(x);
return null;

}
// Generate scenario components
Vector syntax = parser.loadMetaSyntax();
Vector comps = parser .generateComponents () ,-
Vector subComps = parser.getSubComponentlndex();
if (subComps != null)

{
// Add subcomponent index to list
int i ;
for (i = 0; i < subComps.size(); i++)
comps.add(subComps.get(i));

}
return comps;

}

SemanticGateway: addSignatures Method

This method opens a file chooser dialog and generates signature components from

the source file selected by the user.

public void addSignatures(String arg)

{
StringTokenizer t = new StringTokenizer(arg, " ");
t.nextToken();
String token = t.nextToken();
int i ;
RegistryType regObj = null;

// Find RegistryType object for selected signature type
for (i =0; i < this.sourceRegistry.size(); i++)

{
String tmp = ((RegistryType)this.sourceRegistry

.get(i)).getName();
if (token.equals(tmp))

regObj = (RegistryType)this.sourceRegistry.get(i);

}

// Get user's signature file via a file chooser dialog
JFileChooser d = new JFileChooser();
d.setCurrentDirectory(new File("."));

127

d.setMultiSelectionEnabled(false) ;
int result = d.showOpenDialog(this);
if (result == JFileChooser.CANCEL_OPTION)

return;
File sigFile = d.getSelectedFile() ;
String sigFilename = sigFile.getPath();

// Extract signature Parser class name and meta syntax
// file name from RegistryType object.
String sigParser = regObj.getSigParser();
String!] sigParams = {sigFilename, regObj.getMsfFile()};
Vector sigComps = getSignatures(sigParser, sigParams);
if (sigComps == null)

return;

// Load existing signatures of selected type and
// consolidate new into existing list,
if (!loadSignatures(regObj.getNameO))

this.signatures = new Vector();
consolidateSignatures(sigComps);
serializeOut(regObj.getNameO + ".sig", this.signatures);

}

SemanticGateway: getSignatures Method

This method uses Java's reflection mechanism to instantiate a Parser object of the

sub-class referenced by the string p. After the Parser object is instantiated, the method

generates signature components from the file referenced in the parameters argument.

public Vector getSignatures(String p,
String!] parameters)

{
Parser parser = null;
try

{
Class cl = Class.forName(p);
Constructor!] constructors = cl.getDeclaredConstructors();
parser = (Parser)constructors[0].newlnstance(parameters);

}
catch (ClassNotFoundException x)

{
System.err.println(x);
return null;

}
catch (IllegalAccessException x)

{
System.err.println(x);
return null;

}
catch (InvocationTargetException x)

{
System.err.println(x);

128

return null;

}
catch (InstantiationException x)

{
System.err.println(x);
return null;

}
Vector syntax = parser.loadMetaSyntax();
Vector comps = parser.generateComponents();
Vector subComps = parser.getSubComponentIndex();

if (subComps == null)
return null;

int i ;
for (i = 0; i < subComps.size(); i++)

comps.add(subComps.get(i));
return comps;

}

A.2. Relevant Component Retrieval

The relevant component retrieval process is initiated by the SemanticGateway

application, but is carried out almost entirely by the individual Scenario/Registry

applications. This section provides the source code for the retrieveRelevantComponents

method of the ScenarioRegistryAgent, the ComponentAnalyzer class, and the

analyzeComponents methods of the MetaComponent and SComponept classes.

ScenarioRegistryAgent: retrieveRelevantComponents Method

This method calls its parent's (i.e., the ScenarioRegistryGUI object)

loadSourceComponents method with the signature's type as the parameter. That

method returns a list of the source components available for the signature's type. This

method then creates a ComponentAnalyzer object and iteratively passes each source

component to it. This method returns a Vector containing the source components whose

relevance score was higher than the threshold parameter.

public synchronized Vector retrieveRelevantComponents!
MetaComponent signature,
double threshold)

{
this.relevantComps = new Vector(); // Reset
if (signature == null)

129

return relevantComps;

this.sourceComps = this.parent.
loadSourceComps(signature.getType()) ;

if (this.sourceComps == null)
return this.relevantComps;

int j ;
Vector srcComps, relComps;

if (this.sourceComps != null)

{
ComponentAnalyzer analyzer = new ComponentAnalyzer(signature);
for (j =0; j < this.sourceComps.size(); j++)

{
analyzer.setSourceComponents((MetaComponent)

this.sourceComps.get(j));
relComps = analyzer.getRelevantComponents(this.localHost,

threshold);
addToRelevant(relComps);

}
}
return this.relevantComps;

}

ScenarioRegistryGUI: loadSourceComps Method

This method checks to see if the source component list needed is currently in

memory. If so, a reference to that list is returned. Otherwise, the source components

are loaded from their serialized object file.

public Vector loadSourceComps(String type)

{
String filename = type + ".src";

// Check to see if source component vector is null. If
// not check to see if source components currently in
// memory are correct type (i.e. same as signature)
if (this.sourceComps != null)
{
MetaComponent mComp = (MetaComponent)this.sourceComps.get(0);
if (mComp.getType().equals(type))
return this.sourceComps;

}
try

{
ObjectlnputStream in = new ObjectInputStream(

new FileInputStream(filename));

this.sourceComps = new Vector();
this.sourceComps = (Vector)in.readObject();
in.close();

130

}
catch (IOException x)

{
this.sourceComps = null;
System.err.printin("Unable to open file: " + filename);
displayError("File Access Error",

"Unable to open file: " + filename);

}
catch (ClassNotFoundException x)

{
this.sourceComps = null;
System.err.println("Unable to find class.");
displayError("File Access Error",

"Unable to find required class definition.");

}
return this.sourceComps;

}

ComponentAnalyzer Class

This class is utilized to perform relevant component analysis. Its constructor

requires one parameter: a signature component. The using process then sets its

sourceComponents attribute via the setSourceComponents method, and calls the

getRelevantComponents method with the host name and sensitivity threshold as

parameters.

import j ava.ut i1.*;
import j ava.io.*;

public class ComponentAnalyzer

{
protected MetaComponent signature;
protected MetaComponent sourceComponents;

public ComponentAnalyzer(MetaComponent sig)

{
this.signature = sig;
this.sourceComponents = null;

}

* Method Name: getRelevantComponents
* Purpose: Scores the scenario compponents in the
* 'sourceComponents' vector based on their
* similarity to the signature component.
* Original: 03 Oct 2000
* Modified:

public Vector getRelevantComponents(String host,
double threshold)

131

{
if (this.sourceComponents == null)

return new Vector();
MetaComponent mComp, sComp;
Vector rtn = new Vector();
int i, j;
mComp = this.sourceComponents;
if (signature.getType().equalsIgnoreCase(mComp.getType()))
rtn = mComp.analyzeComponents(signature, host, threshold);

return rtn;

}

public void setSourceComponents(MetaComponent o)

{
this.sourceComponents = o;

}
}

MetaComponent Class; analyzeComponents Method

This method is called by the ComponentAnalyzer class to compare the source

object model to the signature object model. It is useful to remember here that in a

source object model, the MetaComponent root object represents a scenario file. It

contains, in its components attribute, references to each scenario source component

present in the source file from which it was created. This method iteratively calls the

analyzeComponents method of each of these SComponent objects, and, if their score is

higher than the threshold parameter, creates a MetaComponent root for each and places

it in its return variable.

public Vector analyzeComponents(MetaComponent sig,
String host,
double threshold)

{
SComponent signature = sig.getComponent (0) ,•
Vector rtn = new Vector();
MetaComponent mComp;
int i ;
for (i = 0; i < this.components.size(); i++)

{
double score = ((SComponent)this.components.get(i)).

analyzeComponents(signature);
if (score > threshold)

{
mComp = new MetaComponent();
mComp.setType(sig.getType());
mComp.setName(((SComponent)this.components.get(i)).

getType()+""+

132

((SComponent)this.components.get(i)).
getNameO + " (" + this.getType () +
"; Source: System = " + host + ", " +
this.getSourceO + ")");

mComp. setSource (host + ": " + this.getSourceO);
mComp.setComments(((SComponent)this.components.get(i))

.getComments()) ;
mComp.setScore(score);
rtn.add(mComp);

}
}
return rtn;

}

SComponent Class; analyzeComponents Method

This method compares the SComponent object to the input signature SComponent

object.

public double analyzeComponents(SComponent signature)

{
double rtn =0.0;
// If component types don't match return 0.0
if (!(this.getType().trim().equalsignoreCase(signature.

getType().trim())))
return 0.0;

// Compare source component's characteristics to those
//of the signature
double attrScore = analyzeAttributes(signature.

getCharacteristics());

// If signature component has no sub-components return the
// characteristic score alone.
Vector sigComps = signature.getComponents();
if (sigComps.size() == 0)
return attrScore;

String sigCompType;
double noMatchingComp = 0.0;
double tmpMatchCount, hiMatchCount = 0.0;
boolean found;
int i, j ;
// Iterate through signature's sub-components and
// determine whether source component has a sub-component
// of a matching type. If so, call that sub-component's
// analyzeComponents method with the signature sub-
// component as the parameter.
for (i = 0; i < sigComps.size(); i++)

{
hiMatchCount = 0.0;
found = false;
sigCompType = ((SComponent)sigComps.get(i)).getType();
for (j =0; j < this.components.size(); j++)

{

133

tmpMatchCount = 0.0;
if (sigCompType.trim().

equalsIgnoreCase(((SComponent)this.components.
get(j)).getType().trim()))

{
tmpMatchCount = ((SComponent)this.components.get(j)).

analyzeComponents((SComponent)sigComps.get(i));
found = true;

}
if (tmpMatchCount > hiMatchCount)
hiMatchCount = tmpMatchCount;

}
noMatchingComp = noMatchingComp + hiMatchCount;

// If signature component is mandatory and not found,
// return zero,
if (!found &&

(!((SComponent)sigComps.get(i)).isOptional()))
return 0.0;

}
double compScore = (double)noMatchingComp/sigComps.size();

// If signature component has no characteristics, return
// the sub-component score. Otherwise, combine the
// sub-component and characteristics scores and return
// their average.
if (signature.getCharacteristics().size() == 0)
rtn = compScore;

else
rtn = (double)((compScore + attrScore)/2);

return rtn;

}

SComponent Class: analyzeAttributes Method

This method compares the SComponent object's characteristics attribute to the

input contents of the input Vector and returns a score that is the ratio of String object

matches to number of String objects in the input Vector.

public double analyzeAttributes(Vector attributes)

{
int attributeMatches = 0, i, j;
String sigAttribute, compAttribute = null;
boolean found;
if (attributes.size() == 0)

return 1.0;
for (i =0; i < attributes.size(); i++)

{
sigAttribute = (String)attributes.get(i);
found = false,-
for (j = 0; j < this.characteristics.size() && Ifound; j++)

{

134

compAttribute = (String)this.characteristics.get(j);
if (sigAttribute.trimO .

equalsIgnoreCase(compAttribute.trim()))

{
attributeMatch.es = attributeMatches + 1;
found = true;

}
}

}
return (double)attributeMatches/attributes.size();

A.3. Component Transformation

This section contains the essential code for the transformation process of the

semantic broker. The transformComponent method of the SemanticGateway class,

TransformEngine class, Transform abstract class, and the SUPP_SWEG_Xform_1,

SUPP_SWEG_Xform_2, SUPP_SWEG_Xform_3, and SUPP_SWEG_Xform_6 class

definitions are provided.

SemanticGateway Class; transformComponent Method

This method extracts the required metadata and calls the appropriate methods to

transform the selected source component.

public SComponent transformComponent(String menuArg)

{
Registry-Transform regXForm = null;
DefaultMutableTreeNode selectedNode =

(DefaultMutableTreeNode)compTree.
getLastSelectedPathComponent();

Object obj = selectedNode.getUserObject();
if (!(obj instanceof MetaComponent))
return nul 1 ,-

// Extract source name from menu item selection
StringTokenizer t = new StringTokenizer(menuArg, " ");
t.nextToken();
String sourceName = t.nextToken();

if (!(((MetaComponent)obj).getType().
equalsIgnoreCase(sourceName)))

return null;

// Extract transform name from menu item selection
t = new StringTokenizer(menuArg, ":");
t.nextToken();

135

String transformName = t.nextToken().trim();

// Extract source location and get root of component
String sourceLocation = ((MetaComponent)obj).getSource();
SComponent source = ((MetaComponent)obj).getComponent(0);

// Find Registry-Transform object in SWSRDB that contains
// information about this transformation
int i ;
for (i = 0; i < this.sourceRegistry.size(); i++)

{
if (((RegistryType)this.sourceRegistry.get(i)).

getNameO .equalsIgnoreCase(sourceName))
regXForm = ((RegistryType)this.sourceRegistry.get(i)).

findTransform(transformName);

}
if (regXForm == null)
return null;

// Create TransformEngine object and transform component
TransformEngine xFormEng = new TransformEngine(regXForm);
SComponent rtn = xFormEng.xFormModel(source);
Vector v = new Vector();
// Create MetaComponent root for transformed object.
MetaComponent root = new MetaComponent();
root.setType(regXForm.getTargetType()) ;
root.setName(regXForm.getTargetType() + ": " +

source.getName());
root.addComponent(rtn);
Vector com = (source.getComments());
for (i = 0; i < com.sizeO; i+ +)
root.addComment((String)com.get(i));

root.addComment("TRANSFORMATION INFORMATION:\n" +
"This scenario component was transformed by the " +
"CERTCORT SemanticGateway agent. The " +
"original component and location were: \n" +
"SCENARIO TYPE: " + ((MetaComponent)obj).getType()
+ "\n" + "COMPONENT: " + source.getType() + "\n" +
"SYSTEM AND PATH: " +
((MetaComponent)obj).getSource());

root.setSignature(true);
v.add(root);

// Create ComponentViewer and display transformed object.
Frame f = new ComponentViewer(v, this, transformName +

" Transformation");
f.show();
return rtn;

TransformEngine Class

This class provides the necessary data structures and methods to facilitate

component transformations.

136

/***

* Source file: TransformEngine.Java
* Purpose:
*

* History:
* Original: 19 Oct 2000, Breighner
* Modified:
***/

import java.util.*;
import j ava.io.*;
import Java.lang.reflect.*;

public class TransformEngine

{
protected String sourceType;
protected String targetType;
protected SComponent sourceComp;
protected Vector xFormMD;
protected Vector xForms;
protected Registry-Transform regXform;

public TransformEngine(RegistryTransform o)

{
this.regXform = o;
this.sourceType = o.getSourceType();
this.targetType = o.getTargetType();
this.xForms = getTransforms();
MDParser parser = new MDParser(o.getXFormMDFile());
this.xFormMD = parser.loadXFormMetadata();

}

/***

* Method Name: xFormModel
* Purpose: Transforms the scenario component model whose
* root is input SComponent object 'o.'
* Original: 19 Oct 2000
* Modified:
**

public SComponent xFormModel(SComponent o)

{
this.sourceComp = o;
SComponent rtn = null;

// Transform input parameter 'o'
rtn = xFormComp(o);

// Transform the sub-compopnents of input parameter 'o'
// and add them to the transformed component.
int i ,-
Vector comps = o.getComponents();
for (i = 0; i < comps.size(); i++)
rtn.addComponent(xFormModel((SComponent)comps.get(i)));

return rtn;

}

137

/***

* Method Name: xFormComp
* Purpose: Transform input SComponent 'o.'
* Original: 19 Oct 2000
* Modified:
***/

public SComponent xFormComp(SComponent o)

{
SComponent rtn;
// Find transform metadata object. If not found
// abort component transformation.
TransformMD'xformMD = findXFormMD(o.getType());
if (xformMD == null)
return null;

// Retrieve Transform sub-class object based on category
// data contained in tranformation metadata object. If
// transform is null abort.
Transform xform = (Transform)this.xForms.

get (xformMD.getCategoryO - 1) ;
if (xform == null)
return null;

// Set transform metadata, then call Transform object's
// transform method with source component as parameter,
xform.setXFormMD(xformMD);
rtn = xform.transform(o);
return rtn;

}

/***

* Method Name: getTransforms
* Purpose: Instantiates the transform classes from the
* String objects stored in the RegistryTransform
* object 'regXform.'
* Original: 19 Oct 2000
* Modified:
**

public Vector getTransforms()

{
Transform transform = null;
Vector rtn = new Vector() ;
int i ;
Vector xFormNames = this.regXform.getXFormClasses();
for (i =0; i < xFormNames.size(); i++)

{
try

{
Class cl = Class.forName((String)xFormNames.get(i));
Constructor[] constructors = cl.getDeclaredConstructors();
String[] parameters = {regXform.getCommentDelimiter()};
transform = (Transform)constructors[0].newlnstance(parameters);

}
catch (ClassNotFoundException x)

{

138

System.err.printin(x);
return null;

}
catch (IllegalAccessException x)

{
System.err.printin(x);
return null;

}
catch (InvocationTargetException x)

{
System.err.printin(x);
return null;

}
catch (InstantiationException x)

{
System.err.printin(x);
return null;

}
rtn.add(transform);

}
return rtn;

}

* Accessors and Mutators
* Original: 19 Oct 2000, Breighner
* Modified:

public void setSourceType(String s)

this.sourceType = s;

public void setTargetType(String s)

this.targetType = s;

public void setXFormMD(Vector v)

this.xFormMD = v;

public String getSourceType()

return this.sourceType;

public String getTargetType()

return this.targetType;

public Vector getXFormMDO

139

return this.xFormMD;

}

public TransformMD findXFormMD(String s)

{
int i ;
String b;
for (i =0; i < this.xFormMD.size(); i++)

{
b = ((TransformMD)this.xFormMD.get(i)).getSourceType();
if (b.equals(s))

return (Trans formMD)thi s.xFormMD.get(i);

}
return null;

}

Transform Class

This abstract class provides the foundation for all transformation sub-classes. All

transform classes must extend this class and implement their version of the transform

method.

* Source file: Transform.Java
* Purpose: This abstract class is the super class of all
* transforms in the SemanticGateway. All transform
* classes must extend this class.
*

* History:
* Original: 18 Oct 2000, Breighner
* Modified:
***/

import java.util.*;
import j ava.io.*;

public abstract class Transform

{
protected String category;
protected TransformMD xFormMD;
protected String commentDelimiter;

public Transform(String s, String delimiter)

{
this.category = s;
this.xFormMD = null;
this.commentDelimiter = delimiter;

}

* Method Name: transform
* Purpose: Abstract method. Must be implemented in
* sub-class.
* Original: 18 Oct 2000, Breighner

140

* Modified:

public abstract SComponent transform(SComponent o);

/***

* Accessors and Mutators
* Original: 18 Oct 2000, Breighner
* Modified:

public void setCategory(String s)

this.category = s;

public void setXFormMD(TransformMD o)

this.xFormMD = o;

public void setCommentDelimiter(String s)

this.commentDelimiter = s;

public String getCategory()

return this.category;

public TransformMD getXFormMD()

return this.xFormMD;

public String getCommentDelimiter()

return this.commentDelimiter;

public String toStringO

return new String (this .category) ,-

}

The following four classes extend the Transform class and map to the Category 1,

2, 3, and 6 transforms discussed in Chapter 3. Category 4 and 5 transformations are

beyond the scope of this work. Components that fall in those categories are treated as

Category 6 transformations.

141

SUPP_SWEG_Xform_1 Class

/***
* Source file: SUPP_SWEG_Xform_l.java
* Purpose: Transform for Category 1 SUPPRESSOR-to-SWEG
* translations.
*

* History:
* Original: 24 Oct 2000, Breighner
* Modified:
***/

import j ava.ut i1.*;
import j ava.io.*;

public class SUPP_SWEG_Xform_l extends Transform

{

public SUPP_SWEG_Xform_l(String commentD)

{
super ("CATEGORY 1", commentD) ,-

}

/***

* Method Name: transform
* Purpose: Transforms input parameter 'o' from SUPPRESSOR
* format to SWEG format
* Original: 18 Oct 2000, Breighner
* Modified:
***/

public SComponent transform(SComponent o)

{
SComponent rtn = new SComponent();
rtn.setType(o.getType());
rtn.setName(o.getName());
rtn.setCharacteristics(o.getCharacteristics());
return rtn;

SUPP_SWEG_Xform_2 Class

/***
* Source file: SUPP_SWEG_Xform_2.java
* Purpose: Transform for Category 2 SUPPRESSOR-to-SWEG
* translations.
*

* History:
* Original: 24 Oct 2000, Breighner
* Modified:
**

import j ava.ut i1.*;
import j ava.io.*;

public class SUPP_SWEG_Xform_2 extends Transform

142

public SUPP_SWEG_Xform_2(String commentD)

{
super("CATEGORY 2", commentD);

/***

* Method Name: transform
* Purpose: Transforms input parameter 'o' from SUPPRESSOR
* format to SWEG format
* Original: 18 Oct 2000, Breighner
* Modified:
**

public SComponent transform(SComponent o)

{
SComponent rtn = new SComponent () ;
rtn.setType(o.getType()) ;
rtn.setName(o.getName());
rtn.setCharacteristics(o.getCharacteristics());
int i ;
String compChar = null, charXFormName = null;
TransformMD charXForm = null;
Vector charXForms = this.xFormMD.getSubComponentXForms();
for (i =0; i < charXForms.size(); i++)

{
charXForm = (TransformMD)charXForms.get(i);
charXFormName = charXForm.getSourceType();
if (charXFormName.equalsIgnoreCase("NOT-IN-SOURCE"))

{
rtn.addComment(this.commentDelimiter +

" ITEM NOT AVAILABLE IN SOURCE " +
charXForm.getTargetType());

}
}
return rtn;

}
}

SUPP_SWEG_Xform_3 Class

* Source file: SUPP_SWEG_Xform_3.Java
* Purpose: Transform for Category 3 SUPPRESSOR-to-SWEG
* translations.
*

* History:
* Original: 24 Oct 2000, Breighner
* Modified:
***/

import j ava.ut i1.*;
import j ava.io.*;

public class SUPP_SWEG_Xform_3 extends Transform

{

public SUPP_SWEG_Xform_3(String commentD)

143

{
super("CATEGORY 3", commentD);

}

* Method Name: transform
* Purpose: Transforms input parameter 'o' from SUPPRESSOR
* format to SWEG format
* Original: 18 Oct 2000, Breighner
* Modified:
***/

public SComponent transform(SComponent o)

{
SComponent rtn = new SComponent();
rtn.setType(thi s.xFormMD.getTargetType());
rtn.setName(o.getName());
int i, j;
StringTokenizer t;
String compChar = null, charXFormName = null,

tmpChar = null;
TransformMD charXForm = null;
Vector compChars = o.getCharacteristics();
Vector charXForms = this.xFormMD.getSubComponentXForms();
for (j = 0; j < compChars.size(); j++)

{
t = new StringTokenizer((String)compChars.get(j), " ");
tmpChar = "";
TransformMD subMD;
while (t.hasMoreTokens())

{
String token = t.nextToken();
if ((subMD =

xFormMD.findSubComponentXForm(token)) == null)
tmpChar = tmpChar + " " + token;

else

{
if (!tmpChar.equals(""))

{
rtn.addCharacteristic(tmpChar.trim());
tmpChar = "";

}
tmpChar = subMD.getTargetType();
if (tmpChar.equalsIgnoreCase("NOT-IN-TARGET"))
tmpChar = this.commentDelimiter +

" ITEM NOT AVAILABLE IN TARGET FORMAT: " +
subMD. getSourceType () ,-

}
}
rtn.addCharacteristic(tmpChar.trim());

}
for (i = 0; i < charXForms.size(); i++)

{
charXForm = (TransformMD)charXForms.get(i);
charXFormName = charXForm.getSourceType();
if (charXFormName.equalsIgnoreCase("NOT-IN-SOURCE"))

144

rtn.addCharacteristic(this.commentDelimiter +
" ITEM NOT AVAILABLE IN SOURCE FORMAT: " +
charXForm.getTargetType());

return rtn;

SUPP_SWEG_Xform_6 Class
/***
* Source file: SUPP_SWEG_Xform_4.Java
* Purpose: Transform for Category 4 SUPPRESSOR-to-SWEG
* translations.
*

* History:
* Original: 24 Oct 2000, Breighner
* Modified:

import j ava.ut i1.*;
import j ava.io.*;
public class SUPP_SWEG_Xform_4 extends Transform

{

public SUPP_SWEG_Xform_4(String commentD)

{
super("CATEGORY 4", commentD);

}

/***

* Method Name: transform
* Purpose: Transforms input parameter 'o' from SUPPRESSOR
* format to SWEG format
* Original: 18 Oct 2000, Breighner
* Modified:

public SComponent transform(SComponent o)

{
SComponent rtn = new SComponent();
rtn.setType(this.commentDelimiter +

"NOT AVAILABLE IN TARGET FORMAT: " + O.getType());
rtn.setName(o.getName());
rtn.setCharacteristics(o.getCharacteristics()) ;
rtn. setComponents (o. get Components ()) ,■
return rtn;

}
}

145

Appendix B. Metadata

This appendix provides some insight into the actual content of the metadata files

utilized by the Parser and Transform objects.

SUPPRESSOR.MSF

This file contains all the scenario component syntax definitions for the

SUPPRESSOR source type. This file is accessed by the Parser object to build a list of

MetaSyntaxUnit objects. The Parser object then references this list during parsing to

determine how to interpret a given component.

PLAYER-STRUCTURE attribute component END PLAYER-STRUCTURE
TACTIC component END TACTIC
CAPABILITY component END CAPABILITY
LINKAGES attribute NULL
SUSCEPTIBILITY component END SUSCEPTIBILITY
ASG-CMD-CHAIN attribute NULL
EVALUATION-RATES attribute END EVALUATION-RATES
INTELL-REPORT-FREQ attribute END INTELL-REPORT-FREQ
MAX-MSG-ATTEMPTS attribute NULL
MAX-SNR-PERCEPTIONS attribute NULL
MOVE-TO-ENG attribute NULL
MSG-RPT-GUIDE attribute END MSG-RPT-GUIDE
SALVO-FIRING attribute END SALVO-FIRING
SNR-RPT-GUIDE attribute END SNR-RPT-GUIDE
ZONE-CHARACTERISTICS attribute END ZONE-CHARACTERISTICS
RESOURCE-ALLOCATION component END RESOURCE-ALLOCATION
LETHAL-ENGAGE-QUEUE-ADD attribute END LETHAL-ENGAGE-QUEUE-ADD
LETHAL-ENGAGE-QUEUE-DROP attribute END LETHAL-ENGAGE-QUEUE- DROP
LETHAL-ENGAGE-START attribute END LETHAL-ENGAGE-START
LETHAL-ENGAGE-STOP attribute END LETHAL-ENGAGE-STOP
LETHAL-ENGAGE-FIRING-START attribute END LETHAL-ENGAGE-FIRING-START
LETHAL-ENGAGE-FIRING-STOP attribute END LETHAL-ENGAGE-FIRING-STOP
SUSCEPTIBILITY attribute END SUSCEPTIBILITY
IR-RAD-TABLE attribute END IR-RAD-TABLE
OPT-CS attribute END OPT-CS
INHERENT-CONTRAST attribute NULL
TGT-REFLECTIVITY attribute END TGT-REFLECTIVITY
RCS-TABLE attribute END RCS-TABLE
SNR-ELE-INTERACTIONS attribute END SNR-ELE-INTERACTIONS
CAPABILITY component END CAPABILITY
NUM-SIMULTANEOUS-ROUND attribute NULL
PLATFORM-VEL-ATTEN attribute NULL
RESOURCE-DISAGGREGATION attribute END RESOURCE-DISAGGREGATION
WPN-CHARACTERISTICS attribute END WPN-CHARACTERISTICS
WPN-PK attribute END WPN-PK
WPN-SPD-CAPABILITY attribute END WPN-SPD-CAPABILITY

146

WPN-TIME-DELAYS attribute END WPN-TIME-DELAYS
WPN-TIME-DELAY-TABLE attribute END WPN-TIME-DELAY-TABLE
HITS-TO-ESTABLISH-TRACK attribute NULL
ONE-M2-DETECT-RNG attribute NULL
PEAK-GAIN attribute NULL
EFFECTIVE-EARTH-RADIUS attribute NULL
VERTICAL-OFFSET attribute NULL
RCVR-BANDWIDTH attribute NULL
SENSING-MODE-RATES attribute END SENSING-MODE-RATES
DETECTION-SENSITIVITIES attribute END DETECTION-SENSITIVITIES
MTI-ATTENUATION attribute END MTI-ATTENUATION
ANTENNA-PATTERN attribute END ANTENNA-PATTERN
SNR-CHARACTERISTICS attribute END SNR-CHARACTERISTICS
QUALITY-OF-DATA attribute END QUALITY-OF-DATA
RNG-ALT-CAPABILITY attribute END RNG-ALT-CAPABILITY
INTERNAL-LOSS attribute NULL
PEAK-POWER-OUTPUT attribute NULL
PULSE-REPETITION-FREQ attribute NULL
XMIT-FREQ attribute NULL
MAX-PARALLEL-TRACKS attribute NULL
EFF-BURST-CM-PROB attribute NULL
SNR-TRACKING-PROBABILITIES attribute END SNR-TRACKING-PROBABILITIES
SNR-TIME-DELAYS attribute END SNR-TIME-DELAYS
SNR-DOPPLER-LIMITS attribute END SNR-DOPPLER-LIMITS
IMPLICIT-CM-INTERACT attribute END IMPLICIT-CM-INTERACT
TIME-BEFORE-DROP attribute NULL
TIME-TO-THINK attribute END TIME-TO-THINK
ACCELERATION-MODE attribute NULL
REVECTOR-DIST-THRESH attribute END REVECTOR-DIST-THRESH
ATK-PRIORITIES attribute END ATK-PRIORITIES
MOVE-PLANS component END MOVE-PLANS
PLAN attribute END-PLAN
PLAN-PROFILE attribute END PLAN-PROFILE
SNR-ANGULAR-LIMITS attribute END SNR-ANGULAR-LIMITS
MAX-ACCELERATION attribute NULL
MIN-TURN-RADIUS attribute NULL
MOVER-ALTITUDE-LIMITS attribute END MOVER-ALTITUDE-LIMITS
MOVER-CLIMB/DIVE-LIMITS attribute END MOVER-CLIMB/DIVE-LIMITS
MOVER-SPEED-LIMITS attribute END MOVER-SPEED-LIMITS
FUEL-USAGE attribute END FUEL-USAGE
COMM-LOSS-DECENT-TIME attribute NULL
RELOAD-CHARACTERISTICS attribute END RELOAD-CHARACTERISTICS
CENTRALIZATION-THRESHOLDS attribute END CENTRALIZATION-THRESHOLDS
NOMINAL-SUB-REACT-TIME attribute NULL
LETHAL-ASSIGNMENT-QUEUE-ADD attribute END LETHAL-ASSIGNMENT-QUEUE-ADD
LETHAL-ASSIGNMENT-QUEUE-DROP attribute END LETHAL-ASSIGNMENT-QUEUE-DROP
LETHAL-ASSIGNMENT-START attribute END LETHAL-ASSIGNMENT-START
LETHAL-ASSIGNMENT-STOP attribute END LETHAL-ASSIGNMENT-STOP
MOVE-OPTIONS attribute END MOVE-OPTIONS
THINKER componentRef NULL
SNR-RCVR componentRef NULL
SNR-XMTR componentRef NULL
WEAPON componentRef componentRef NULL
ORDNANCE attribute NULL
FUTURE-PLAYER attribute NULL

147

MOVER componentRef componentRef NULL
COMM-RCVR componentRef NULL
COMM-XMTR componentRef NULL
DISRUPTOR componentRef NULL
LAUNCH-CMD-CHAIN attribute END LAUNCH-CMD-CHAIN
PLAN-PATTERNS attribute END PLAN-PATTERNS
BACKGROUND-RADIANCE attribute END BACKGROUND-RADIANCE
PATH-RADIANCE attribute END PATH-RADIANCE
SEARCH-GLIMPSE-PROB attribute END SEARCH-GLIMPSE-PROB
REACQ-GLIMPSE-PROB attribute END REACQ-GLIMPSE-PROB
TRACK-GLIMPSE-PROB attribute END TRACK-GLIMPSE-PROB
PIXEL-FIELD-OF-VIEW attribute NULL
SOLAR-IRRADIANCE attribute END SOLAR-IRRADIANCE
ASG-EVAL-RATE attribute NULL
ASG-TGT-UPDATE-RATE attribute NULL
LAUNCH-EVAL-RATE attribute NULL
LAUNCH-START attribute END LAUNCH-START
GUNS-FREE attribute END GUNS-FREE
GUNS-TIGHT attribute END GUNS-TIGHT
JAMMER-QUEUE-ADD attribute END JAMMER-QUEUE-ADD
JAMMER-QUEUE-DROP attribute END JAMMER-QUEUE-DROP
JAMMER-SPOT-ADD attribute END JAMMER-SPOT-ADD
JAMMER-SPOT-DROP attribute END JAMMER-SPOT-DROP
MAX-NO-SPOTS attribute NULL
MAX-POWER-OUT attribute NULL
MAX-RNG attribute NULL
DISRUPTOR-CHARACTERISTICS attribute END DISRUPTOR-CHARACTERISTICS
DISRUPTOR-FREQ-LIMITS attribute END DISRUPTOR-FREQ-LIMITS
ANTGR-PATTERN attribute END ANTGR-PATTERN
EMCON/TURN-ON attribute END EMCON/TURN-ON
EMCON/TURN-OFF attribute END EMCON/TURN-OFF
LOOK-AHEAD-DISTANCE attribute NULL
THREAT-VOLUME attribute END THREAT-VOLUME
RCVR-NOISE attribute NULL
RECOGNITION-THRESH attribute NULL
POLARIZATION-EFFECTS attribute END POLARIZATION-EFFECTS
COMM-JMR-INTERACTIONS attribute END COMM-JMR-INTERACTIONS
XMTR-BANDWIDTH attribute NULL
XMTR-POWER attribute NULL
SNR-JMR-INTERACTIONS attributes END SNR-JMR-INTERACTIONS
TRANSMISSION-LOSS attribute END TRANSMISSION-LOSS
INTERCEPT-INTERACT attribute END INTERCEPT-INTERACT
END METASYNTAX

SUPP_SWEG.XFM

This file places each SUPPRESSOR scenario component into a transformation

category, and provides details pertaining to its translation into the target category (i.e.,

SWEG).

CATEGORY 1
PLAYER-STRUCTURE

148

LINKAGES
FUEL
ELEMENT
THINKER
CAPABILITY
COMM-XMTR
COMM-RCVR
SNR-RCVR
SNR-XMTR
MOVER
WEAPON
ORDNANCE
DISRUPTOR
FUTURE-PLAYER
TIME-BEFORE-DROP
MAX-SNR-PERCEPTIONS
RESOURCE-ALLOCATION
TACTIC
SUSCEPTIBILITY
SNR-ELE-INTERACTIONS
NUM-SIMULTANEOUS-ROUND
PLATFORM-VEL-ATTEN
RESOURCE-DISAGGREGATION
WPN-CHARACTERISTICS
WPN-PK
WPN-SPD-CAPABILITY
WPN-TIME-DELAYS
HITS-TO-ESTABLISH-TRACK
ONE-M2-DETECT-RNG
EFFECTIVE-EARTH-RADIUS
VERTICAL-OFFSET
MAX-PARALLEL-TRACKS
RCVR-BANDWIDTH
ANTENNA-PATTERN
SNR-TRACKING-PROBABILITIES
SNR-DOPPLER-LIMITS
SNR-ANGULAR-LIMITS
SNR-TIME-DELAYS
XMTR-BANDWIDTH
XMTR-POWER
RCVR-BANDWIDTH
DETECTION-SENSITIVITIES
EFF-BURST-CM-PROB
MTI-ATTENUATION
SNR-CHARACTERISTICS
RNG-ALT-CAPABILITY
SNR-TIME-DELAYS
SNR-DOPPLER-LIMITS
INTERNAL-LOSS
PEAK-POWER-OUTPUT
PULSE-REPETITION-FREQ
IMPLICIT-CM-INTERACT
TIME-BEFORE-DROP
SNR-ANGULAR-LIMITS
MAX-ACCELERATION

149

MIN-TURN-RADIUS.
MOVER-ALTITUDE-LIMITS
MOVER-CLIMB/DIVE-LIMITS
MOVER-SPEED-LIMITS
FUEL-USAGE
COMM-LOSS-DECENT-TIME
CENTRALIZATION-THRESHOLDS
RELOAD-CHARACTERISTICS
NOMINAL-SUB-REACT-TIME
MOVE-OPTIONS
LAUNCH-CMD-CHAIN
MAX-NO-SPOTS
MAX-POWER-OUT
DISRUPTOR-CHARACTERISTICS
MAX-RNG
INTERCEPT-INTERACT
LOOK-AHEAD-DISTANCE
RCVR-NOISE
RECOGNITION-THRESH
POLARIZATION-EFFECTS
COMM-JMR-INTERACTIONS

. XMTR-BANDWIDTH
XMTR-POWER
SNR-JMR-INTERACTIONS
TRANSMISSION-LOSS
LOOK-AHEAD-DISTANCE
THREAT-VOLUME

END CATEGORY
CATEGORY 2
QUALITY-OF-DATA
AGE-OF-PLATFORM
PLAYER-NAME
PLATFORM-ID

END QUALITY-OF-DATA
END CATEGORY
CATEGORY 3
LOCATION PLATFORM
END LOCATION
TIME-TO-THINK TIME-TO-THINK

EVAL-LETHAL-ENGAGE EVAL-LETHAL-ENGAGE
EVAL-FIRING EVAL-FIRING
EVAL-ENGAGE-THREAT EVAL-ENGAGE-THREAT
RECOG-MSG RECOG-MSG
RECOG-SNR-EVENT RECOG-SNR-EVENT
RECOG-PHYS-EVENT RECOG-PHYS-EVENT
REVIEW-INFORMATION REVIEW-INFORMATION
EVAL-ASSIGN-THREAT EVAL-ASSIGN-THREAT
ASSIMILATE-INTELL NOT-IN-TARGET
CONSIDER-ASG/CANCEL EVAL-ASG/CANCEL
EVAL-EMCON-CHANGE EVAL-EMCON-CHANGE
EVAL-JMR-QUEUE EVAL-JMR-QUEUE
EVAL-JMR-SPOTS EVAL-JMR-SPOTS
NOT-IN-SOURCE DIGEST-ATTACK
NOT-IN-SOURCE DIGEST-DEATH
NOT-IN-SOURCE DIGEST-INTELL

150

NOT-IN-SOURCE
NOT-IN-SOURCE
NOT-IN-SOURCE
NOT-IN-SOURCE
NOT-IN-SOURCE
NOT-IN-SOURCE
NOT-IN-SOURCE
NOT-IN-SOURCE
NOT-IN-SOURCE

END TIME-TO-THINK
EVALUATION-RATES
ASG-EVAL-RATE
EMCON-EVAL-RATE
ENG-EVAL-RATE
JAM-EVAL-RATE
NOT-IN-SOURCE
NOT-IN-SOURCE

END EVALUATION-RATES
IR-RAD-TABLE
DIMENSION
IR-RAD

END IR-RAD-TABLE
OPT-CS
DIMENSION
OCS
IR-RAD
RCS

END OPT-CS
TGT-REFLECTIVITY

DIMENSION
REFLECTANCE

END TGT-REFLECTIVITY
RCS-TABLE
DIMENSION
RCS

END RCS-TABLE
SENSING-MODE-RATES
TRACK-SENSING-RATE
ACQ-SENSING-RATE
SEARCH-SENSING-RATE
GUIDANCE-SENSING-RATE
FIRING-SENSING-RATE

END SENSING-MODE-RATES
END CATEGORY
CATEGORY 6

INTELL-REPORT-FREQ
ASG-CMD-CHAIN
MAX-MSG-ATTEMPTS
MOVE-TO-ENG
MSG-RPT-GUIDE
SALVO-FIRING
SNR-RPT-GUIDE
ZONE-CHARACTERISTICS
INHERENT-CONTRAST
WPN-TIME-DELAY-TABLE

DIGEST-LOSS-COMM
DIGEST-MATERIEL-STAT
DIGEST-MSG
EVAL-COMM-METHOD
EVAL-INTELL-SEND
EVAL-MNVR
EVAL-MNVR-QUEUE
EVAL-REQUEST
CONSIDER-PLAN

EVALUATION-RATES
ASG-EVAL-RATE
EMCON-EVAL-RATE
ENG-EVAL-RATE
JAM-EVAL-RATE
MOVE-EVAL-RATE
REQUEST-EVAL-RATE

REFLECTIVE-EM-SIG-TABLE
DIMENSION
SIGNATURE

REFLECTIVE-EM-SIG-TABLE
DIMENSION
SIGNATURE
SIGNATURE
RCS

REFLECTIVE-EM-SIG-TABLE
DIMENSION
SIGNATURE

REFLECTIVE-EM-SIG-TABLE
DIMENSION
SIGNATURE

S ENSING-MODE-RATES
TRACK-SENSING-RATE
ACQ-SENSING-RATE
SEARCH-SENSING-RATE
GUIDANCE-SENSING-RATE
NOT-IN-TARGET

151

PEAK-GAIN
XMIT-FREQ
ACCELERATION-MODE
REVECTOR-DIST-THRESH
ATK-PRIORITIES
MOVE-PLANS
PLAN-PATTERNS
BACKGROUND-RADIANCE
PATH-RADIANCE
SEARCH-GLIMPSE-PROB
REACQ-GLIMPSE-PROB
TRACK-GLIMPSE-PROB
PIXEL-FIELD-OF-VIEW
SOLAR-IRRADIANCE
ANTGR-PATTERN

END CATEGORY
END METADATA

152

BIBLIOGRAPHY

[AshOO] Ash by, M. Tool-Based Integration and Code Generation of Object
Models. MS Thesis, Air Force Institute of Technology (AU), Wright
Patterson AFB, OH, AFIT/GCS/ENG/00M-02, Mar 2000.

[Bla98] Blaha, M., Premerlani, W. Object-Oriented Modeling and Design for
Database Applications. Upper Saddle River, NJ, Prentice Hall, 1998.

[Cam91] Cammarata, S., Shane, D., Ram, P. IID: An Intelligent Information
Dictionary for Managing Semantic Metadata. Santa Monica, CA:
RAND, 1991.

[Cam95] Cammarata, S., Kameny, I., Lender, J., Replogle, C. The RAND
Metadata Management System (RMMS): A Metadata Storage Facility to
Support Data Interoperability, Reuse, and Sharing. Santa Monica, CA:
RAND, 1995.

[Col99] Colonese, E. Developing a Methodology for Integrating Simulation
System Scenario Schemas. MS Thesis, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, AFIT/GCS/ENG/99J-03,
Jun 1999.

[DeL99] DeLoach, S. and M. Wood Multiagent Systems Engineering: The
Analysis Phase. Unpublished document. Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH. Jun 2000.

[DWR99] DeLoach, S., M. Wood, and D. Robinson Designing Multiagent Systems
Using Multiagent Systems Engineering Methodology. Unpublished
document. Air Force Institute of Technology (AU), Wright-Patterson
AFB, OH.

[Far98] Farley, J. Java Distributed Computing. Sebastopol, CA O' Reilly &
Associates, Inc. 1998.

[Gam95] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley
Longman, Inc. 1995.

[Gle90] Gleason, G. Semantic Query Optimization in an Object-Oriented
Semantic Association Model (OSAM). MS Thesis, University of Florida,
AFIT/CI/CIA-89-182, 1990.

[Hod98] Hodge, G. CENDI Metadata Initiatives: Beyond the Bibliographic
Record. Information International Associates, Inc. Oak Ridge, TN: Apr
1998

153

[Kro99] Kroenke, D. Database Processing: Fundamentals, Design, &
Implementation. Seventh Edition, Upper Saddle River, NJ: Prentice
Hall, 1999.

[Lin92] Lindsey, D. A Framework for Classifying and Resolving Semantic
Conflicts Using the Enhanced Entity-Relationship Model. MS Thesis,
Naval Postgraduate School, Monterey, CA, Sep 1992.

[LSA98] LSA Inc. "JIMM Design Document for the Database Conversion
Requirement Spiral." JSF Program Office, Aug 1998.

[McDOO] McDonald, J. Agent Based Framework for Collaborative Engineering
Model Development. MS Thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, AFIT/GCS/ENG/00M-16, Mar 2000.

[Mul97] Müller, P. Instant UML Birmingham, UK: Wrox Press Ltd, 1997.

[SAIC97] Science Applications International Corporation. "Suppressor Release
5.4 User's Guide, Volume I, II, and III." Jun 1997.

[Ste99] Steenbarger, M. Climbing a JTree for the First Time. Java Developer's
Journal. Volume 4, Issue 4,1999.

[Str99] Stratton, P. A Metrics-Based Analysis of Interface Usability
Improvements by Applying Intelligent Agents. MS Thesis, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH,
AFIT/GCS/ENG/99M-18, Mar 1999.

[Sub98] Subrahmanian, V. Asynchronous, Distributed, Scalable, Algorithms for
Intelligent Reasoning with Geographically Dispersed, Hybrid Knowledge
Bases. Contract F30602-93-C-0241. University of Maryland, 1998.

[Web99] Weber, R. Extracting a Common Object Model for DOD Simulation
Systems. MS Thesis, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, AFIT/GCS/ENG/99M-20, Mar 1999.

[Wei99] Weiss, G. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Cambridge, MA: The MIT Press, 1999.

[WoDOO] Wood M. and S. Deloach An Overview of the Multiagent Systems
Engineering Methodology. Proceedings of The First International
Workshop on Agent-Oriented Software Engineering (AOSE-2000).
Limerick, Ireland, June 10, 2000.

[GrT96] Grassman, W. and J. Tremblay Logic and Discrete Mathematics A
Computer Science Perspective. Upper Saddle River, NJ. Prentice Hall,
1996.

154

VITA

Captain Lawrence A. Breighner enlisted in U.S. Air Force in 1987 and was trained

as an F-16 avionics technician and Lowry AFB, CO and Homestead AFB, FL. After

technical training, he was stationed in the 23rd Fighter Squadron at Spangdahlem Air

Base, Germany. While stationed in Europe, he earned a Bachelor of Science degree in

Computer and Information Science from the University of Maryland. He was selected to

attend the Air Force Officer Training School (OTS) in May 1995, and received his

commission in August of that year.

Following graduation from OTS, Captain Breighner attended the Basic

Communications Officer Training course at Keesler AFB, MS. Since his commissioning,

Captain Breighner has served in assignments at Offutt AFB, NE and Whiteman AFB,

MO. In August 1999, Captain Breighner entered the Air Force Institute of Technology as

a graduate student in the computer science program.

155

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DATE (DD-MM-YYYY)
20-03-2001

2. REPORT TYPE
MASTER'S THESIS

3. DATES COVERED (From - To)
JUN00-MAR01

4. TITLE AND SUBTITLE

A SEMANTIC INTERFACE TO SCENARIO COMPONENT REUSE IN
DOD SIMULATION SYSTEMS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

LAWRENCE A. BREIGHNER, CAPT, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P. Street, Bldg 640
Wright-Patterson AFB, OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/01M-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory, Sensors Directorate
Attn: Foster, R.M.
Bldg 620 SID34
2241 Avionics Circle
Wright-Patterson AFB, OH 45433-7303
DSN: 785-2811x4364

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/SNZW

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release, Distribution Unlimited

13. SUPPLEMENTARY NOTES

Advisor: Major Michael L. Talbert, DSN 785-6565 x4280, michael.talbert@afit.edu

14. ABSTRACT
The Department of Defense utilizes various simulation systems to model employment of forces and weapons systems in operational
environments. The data files that model these environments and weapons systems are extremely large and complex, and require many
person-hours to develop. Compounding the problem, these data files are distributed across multiple systems in a heterogeneous
environment. Currently, there is no automated means of identifying and retrieving reusable portions of these files for reuse in a new
scenario under development. This work develops a multi-agent system that catalogs the files, and provides the user with a means of
identifying and retrieving reusable components. Additionally, since the format of the source files varies from simulator to simulator, a
process for performing scenario component transformation is developed and implemented.

15. SUBJECT TERMS
Heterogeneous databases, Simulations, Agents, Semantic Modeling, Object-Oriented, Agent-Oriented Information Systems,
SUPPESSOR, SWEG, Reuse, Signature Analysis, Information Retrieval, Transformation

16. SECURITY CLASSIFICATION OF:
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

166

19a. NAME OF RESPONSIBLE PERSON
Major Michael L. Talbert

19b. TELEPHONE NUMBER (Include area code)
DSN 785-6565 x4280

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

	A Semantic Interface to Scenario Component Reuse in DoD Simulation Systems
	Recommended Citation

	/tardir/tiffs/a391941.tiff

