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Abstract 

Precise relative position determination of satellite formation elements in near 

circular orbits is the focus of this thesis. A Bayes filter is used for the estimator 

with the dynamics solution obtained by solving the time periodic, linearized system 

via Floquet Theory. This approach is similar to that of the traditional Clohessy- 

Wiltshire treatment, however much more of the system's behavior is retained by using 

a time periodic linear system. The dynamics model includes all zonal harmonics of 

the earth as well as sectoral, tesseral, and air drag perturbations. The filter algorithm 

was given three types of simulated measurements: relative Carrier-Phase Differential 

GPS data, Standard Positioning System GPS data and range measurements between 

each satellite. Simulations were conducted to investigate the accuracy obtainable 

with these measurements. Results obtained are on the order of the noise of the 

measurements (as low as 2 centimeters in each coordinate axis). 

XI 



ESTIMATION OF RELATIVE SATELLITE FORMATION 

ELEMENT POSITIONS IN NEAR 

CIRCULAR ORBITS 

/.   Introduction 

1.1    Background Information 

The path to understanding any subject usually begins with the introduction of 

fundamental terms and their definitions. The process of understanding more recent 

space system architectures is no exception to this trend, thus this work will begin with 

a fundamentally oriented approach as well. Technological advances over the last few 

years have increased the complexity and size of current space system architectures. 

One type of architecture that has received increasing attention is one which has a 

distributed nature. This type of architecture has three important terms that must 

be properly delineated from each other to allow proper understanding of the subject. 

These terms are a satellite cluster, a satellite formation, and a distributed satellite 

system. These terms are often used interchangeably as though they were synonyms; 

however, as they are described in a paper by Shaw [27], their definitions do differ. 

The following text shall illustrate this difference. 

A satellite cluster is simply a group of two or more satellites located in dif- 

ferent, yet possibly similar, orbits performing a desired mission for a local area as 

if it were one large satellite. This work will refer to the individual satellites within 

a satellite cluster as elements, and the cluster's particular application will drive the 

positioning of these elements. In general, they are positioned in one of two ways. 

First, the application of the cluster may require no special geometry of the formation, 

only that the cluster elements be distributed. This is usually found when a system 



is designed with more satellites than are required to accomplish its mission. In other 

words, two or more satellites service the same locality and the mission could be ac- 

complished with less than the total number. The rationale behind this type of cluster 

is to provide sufficient redundancy so that mission performance will not experience 

significant degradation during an individual element's failure. The second paradigm 

to cluster design is the more common positioning scheme. This scheme is used when 

the cluster geometry must have a specific shape and that the relative positions of 

the spacecraft to each other be known with some degree of accuracy, sometimes even 

to exquisite levels. This type of satellite cluster is referred to as a formation since 

the cluster geometry is designed with purpose and operational steps are taken to 

maintain that geometry. Sensing applications, such as space-based radar, would use 

a formation instead of a cluster as the elements would need to coordinate amongst 

themselves to form a single aperture. Formations may use active or passive tech- 

niques to control the shape of the formation. The decision of what control method 

to employ depends on the application and how important the formation geometry 

plays in mission execution. For example, the formation's mission may drive opera- 

tions to explicitly maintain not only relative positions but a specific orientation as 

well. This would imply active control methods such as thrusters. Unfortunately, this 

type of formation drives control costs to unrealistic levels if the mission duration of 

the cluster is of any significant length. A more realistic approach is to reduce control 

costs by allowing the elements to follow trajectories about a reference orbit. While 

the resultant motion of the spacecraft will cause the orientation of the formation 

to change (and possibly the relative distances between the spacecraft), the trajec- 

tories chosen will maintain the elements within a predetermined envelope of space. 

Thus, the formation will remain together with less maneuvering costs. The concept 

of satellite formation flying has been a topic of considerable study for well over a 

decade. In fact, P. S. Visher was given a patent for the concept in 1983 [29]. At 

this point, it is important to note that a cluster or formation may be a subset of a 



larger architecture called a distributed satellite system. A distributed satellite sys- 

tem is any space system composed of many satellites designed to coordinate as one 

to accomplish its mission for a large region, or at least larger than one locality. This 

may sound identical in its definition to a satellite cluster, but the difference is that 

a satellite cluster services a local area while a distributed satellite system services a 

global, or larger, area. 

The reasons for using a satellite cluster or formation, as opposed to a sin- 

gle larger satellite, include providing on-orbit redundancy, reliability, survivability, 

reducing cost and improved performance (or possibly enabling performance that can- 

not be accomplished via a single satellite). An example demonstrates these gains 

easily. Imagine a satellite cluster comprised of ten satellites. Each satellite within 

the cluster contributes to the overall objective of the system. If one were to fail, the 

integrity of the system is not totally lost as the remaining nine can still function to 

achieve mission objectives. While the overall capability of the system may be tem- 

porarily diminished, it is not completely lost. Also, if the cluster is operating with 

more than the required number of elements to perform its objectives, the mission 

may not experience any degradation to its minimum advertised capability due to the 

on-orbit redundancy. A related concept to reliability is survivability. The above ex- 

ample illustrated continued system performance during a failure, and thus improved 

reliability. Survivability also implies continued performance but after the infliction 

of damage due to adversaries or on-orbit mishaps. Both scenarios are very similar 

as failure is involved in either case. However, the latter case is much more of a con- 

cern for DoD users, specifically the military. Military systems could improve their 

survivability by either moving current surface, or near-surface missions, to space or 

distributing current space-based systems into clusters or formations. 

While the advantages of reliability, survivability, and redundancy are appeal- 

ing, the biggest draw to the idea of satellite clusters may be the gain in perfor- 

mance or the enabling of performance not otherwise possible. In applications such 



as radar, performance that could not normally be accomplished by one satellite can 

be achieved with a distributed system. In particular, potential improvements to 

ground moving target indication (GMTI) radar systems are very attractive since the 

resolution of such a space-based system has the potential to be much greater than 

current systems. This improvement can be made by distributing a system to form 

a synthetic aperture. By enlarging the size of the cluster, and thus increasing the 

size of the aperture, the resolution increases. If the radar wavelength, A, and the 

range, R, to the target is assumed constant, the ground resolution, r, of the radar is 

inversely proportional to the size of the synthetic aperture [16]. 

r = — (1) 
2S K 

Presently, the United States Air Force (USAF) employs the Joint Surveillance and 

Targeting Attack Radar System (JSTARS) within regions of military interest to 

detect ground targets. This airborne mission could be moved to the space arena for 

potentially dramatic improvement in ground resolution. A space-based version of 

JSTARS would not only enhance mission performance but also reduce the system's 

vulnerability to attack. This topic has been looked at from various angles, including 

signal processing, detection probability, and orbit design [26, 15, 11]. 

While observing missions seem to be the common theme, space-based radar is 

not the only application being studied. The following represent just a few of the ideas 

currently under review. The European space agency has developed an elaborate 

formation for its cluster mission to study the Earth's magnetosphere. The Orion 

project, funded by NASA Goddard Space Flight Center, is a low-cost demonstration 

of GPS uses in formation flying. The laser interferometer space antenna (LISA) 

mission is a heliocentric formation flying mission designed to detect gravity waves. 

Also, the Air Force Research Laboratory's (AFRL) TechSat21 program is a satellite 

formation that will act as a virtual satellite. Among its functions will be that of 

space-based radar [23]. 



1.2   Satellite Formation Flying Issues 

Several technical issues must be overcome in order to enjoy the advantages 

of satellite formation flying. When one thinks of problems that would arise from 

a system of this sort, the first thing that comes to mind is keeping them together. 

The methods to overcome this problem range from tethers to precision sensor and 

actuator systems using state of the art inertial sensors or Global Positioning System 

devices to maintain formation. Tethers may not require active control to maintain 

formation, however the dynamics behind keeping the system stable are extremely 

complicated to say the least. Active methods using sensors and actuators are usu- 

ally comprised of thruster firings to perform stationkeeping. Active methods also 

have dynamics issues that have to be addressed as well as precise estimation of el- 

ement positions and control schemes. If the mission duration is short enough or 

the positioning requirements loose enough (or both), a designer may opt for neither 

of the above solutions. A more simple (and cheaper) passive method is to choose 

the initial conditions of the formation such that the formation experiences limited 

secular effects. Thus, the formation will feel as little of the effects that cause disper- 

sal. This was the control method chosen by the Magnetospheric Multiscale Mission 

(MMS). They chose slight differences in two of the classical orbital elements, specifi- 

cally the right ascension of the ascending node (RAAN) and the inclination, to allow 

the formation to maintain itself over its mission duration [18]. A few stationkeeping 

maneuvers are expected but they are few and relatively small. While the method 

to control the relative positions of the elements and the orientation of the formation 

geometry is important, it is not the only issue that faces formation flying. The major 

issues include cooperative control, formation geometry design, orbit determination, 

and getting the system synchronized to act as one. 

The work of Sabol et al [23] investigated four different types of formation 

geometry. These are an in-plane formation, an in-track formation, a circular forma- 

tion, and a projected circular formation. The in-plane formation was the simplest 



of the formations they studied. It consisted of several satellites populating the same 

orbital plane but separated by mean anomaly. The in-track formation is a slight 

variation of the in-plane in that the satellites share the same ground track. This 

was accomplished by varying the orbital planes by right ascension of the ascending 

node. The last two maintain the geometry described in their name with the dif- 

ference to the latter being that this cluster only maintains a fixed distance in the 

along-track/cross-track plane. Sabol's results showed that the instability of each 

geometric design increased from in-plane to circular (the order in which they were 

introduced above) as one might assume. The study paints a grim picture for con- 

trol costs. A worst-case scenario has estimates totaling near 50 meters per second 

annually to mitigate the effects of perturbations on the designed orbits. 

Control cost is a leading, if not the leading, challenge facing the implementa- 

tion of formation flying. If control costs cannot be lowered to more realistic levels, 

the money and effort required to make satellite formations a workable reality will 

outweigh any advantages gained by their use. Simply put, the concept will not be 

practical. Andrew Sparks of the AFRL has written several papers on this topic, and 

one in particular [28] shows results consistent with Sabol et al. However, he does 

show control costs as low as .022 meters per second per day (near 20 meters per 

second per year) by varying the orbital parameters in his models. Regardless, 20 

meters per second per year is still an impractical fuel requirement. Control costs 

this large translate to short lifespans and increased budgets which argue against the 

feasibility of satellite formations. 

Research into the position estimation of the elements within a formation, either 

relative or absolute, has received little attention. However, this area of research is an 

important one as many formation flying missions require that the relative positions 

of each element with respect to the others be known with at least some degree of 

accuracy. The degree of accuracy depends on the mission. Space-based radar ap- 

plications require positions to be known to one tenth of the radar's wavelength [3]. 



Several Masters theses at the Air Force Institute of Technology have been focused 

on the topic of position estimation[29, 12, 9]. Most of them used a U-D covariance 

factorization Kaiman filter that operated on range data exchanged between the satel- 

lites. The relative position error between the satellites estimated by this filter was on 

the order of 3 cm. A more recent study by Captain Jeffery Davis [8] using a Bayesian 

approach attempted to estimate relative satellite positions by using absolute data. 

While the research did not have favorable results, it does serve as the starting point 

and a source of lessons learned for this research. 

1.3   Problem Description/Objectives 

All of the issues discussed previously are integral to a successful system de- 

sign, however this work will focus on the estimation of the relative positions of the 

elements within a formation. While determination of the relative positioning of the 

spacecraft is the primary objective of this work, some consideration will also be given 

to determining the absolute positions. The ideal result of this thesis would be to 

create an estimator that has extremely precise relative positioning performance (on 

the order of centimeters) and adequate absolute positioning (on the order of tens 

of meters). While absolute positional information is necessary to establish commu- 

nications with the ground segment and for determining field of view, its accuracy 

requirement is more lax than the relative requirement for space-based applications 

such as radar or earth sensing missions. Absolute positioning knowledge with error 

in the hundreds of meters may be acceptable in most cases since the area covered 

by the ground antenna's uplink radiation at orbital altitudes can be on the on the 

order of kilometers. 

Recursive estimation techniques will be used in this thesis to determine if 

relative range information from satellite timing signals, Global Positioning System 

(GPS) data and Carrier Phase Differential GPS data will be sufficient to calculate 

relative satellite positions to the tight accuracy requirements previously described. 



As alluded to earlier, this thesis is a continuation of work done by several AFIT 

students, particularly that of Captain Jeffery Davis. However, while Captain Davis 

investigated this problem from the standpoint of determining relative element posi- 

tions using absolute data, this work does so using only relative data. It is important 

to stress that the previous attempt using only absolute data was not accomplished 

with favorable results since the filter ran out of significant digits (using a double 

precision computer) causing covariance inversion problems. This work uses only rel- 

ative data to try to separate the relative positioning from the absolute positioning 

problem to avoid this situation. Some of the measurements used were absolute in 

nature (i.e. GPS measurements), however this data was manipulated into a relative 

form prior to use. More details and insights into the particulars of the data used are 

provided in the Methodology section. 

Arguably, the relative dynamics model is the most important part of a satellite 

formation's on-orbit estimator. Any inaccuracies in the dynamics model to predict 

the behavior of the formation will be returned in the form of perceived erratic be- 

havior in the motion of the elements of the formation by the filtering algorithm. 

On-board control mechanisms will then act upon this perceived erratic motion, re- 

sulting in the excessive use of stationkeeping fuel. This action would be especially 

unfortunate as the erratic motion predicted may be nothing but harmless periodic 

motion. If left uncorrected this motion would show the satellites moving within a 

bounded envelope of space. With proper modeling to predict the movement of each 

spacecraft, this motion would be shown to not degrade the spacecrafts' mission and 

thus excessive maneuvering could be eliminated. 

In order to meet the stringent relative positioning accuracy requirements in- 

herent in space-based radar applications, this thesis uses work accomplished by Dr. 

William Wiesel [36, 35] in the area of relative satellite motion as the heart of its 

estimator's dynamics model. Dr. Wiesel is a Professor of Astronautical Engineering 

at the Air Force Institute of Technology.  His relative motion work involves a new 



approach to relative satellite motion about an oblate planet by linearizing about a 

nearly circular periodic orbit as a reference solution. By using Floquet theory to 

solve the linear system, a first order relative motion solution was produced that in- 

cluded all zonal harmonics of the earth's gravitation field, gravitational harmonics, 

and air drag. Analysis shows that this new solution, while similar to the classic 

Clohessy-Wiltshire solution for relative satellite motion, performs three orders of 

magnitude better [36]. This author expects this relative dynamics solution will pro- 

vide sufficient insight into relative satellite dynamics such that satellite formation 

navigation will be improved for space-based radar applications. 



II.   Background 

2.1    Relative Motion 

Relative spacecraft motion has long been a problem for mission analysts who 

plan rendezvous maneuvers. These planners look to the solution devised by Clo- 

hessy and Wiltshire as their primary analysis tool. These two individuals reduced 

the problem of relative satellite motion to the familiar two body problem by assum- 

ing circular orbits, linearizing the system, and then solving the resultant equations of 

motion. This problem was first looked at by Hill in 1878, but it was revisited by Clo- 

hessy and Wiltshire in the 1960's and their work made it practical for engineers [30]. 

While the original intent of these equations was to describe the relative motion of one 

closing spacecraft with respect to a target spacecraft, the Clohessy-Wiltshire (CW) 

solution has been the starting point of analysis for satellite formation dynamics. 

2.1.1    Clohessy and Wiltshire. Although the CW solution is not used 

in this work, a brief description is warranted to highlight the reasons why it was 

replaced with a different, yet analogous, solution in this thesis's filter. As mentioned 

previously, the CW equations are the solution to the linearized circular orbit problem 

and in its simplest form, no perturbations are modeled. The differential form of the 

CW equations, for an earth based scenario, are 

x-2ny- 3n2x = 0, (2) 

y + 2nx = 0, (3) 

z + n2z = 0, (4) 

where n is the mean motion 

— I/JF5- (5) 
V      radius 

10 



and Rradius is the distance from the center of the earth to the target vehicle in circular 

orbit [30]. The standard reference frame is a radial, orbit normal, and in-track frame 

(see Figure 1). Any perturbations to be included within this set of equations would 

In-Track 

Radial 

Figure 1     Clohessy-Wiltshire Reference Frame 

be modeled as acceleration terms on the right hand side of equations 2, 3 and 4. 

Since these equations are set to zero (i.e. no non-central force effects), the resultant 

motion can be described as free motion. These equations can either be solved via 

the standard eigenvalue-eigenvector approach or through a more simpler approach 

if one utilizes simple harmonic motion [31]. The solution can be found in texts by 

Wie [30] and Wiesel [31] as well as most astronautical engineering textbooks. 

Under this free motion, the satellites within a formation will follow 2 by 1 

ellipses along the trajectory of the orbit of the satellite and in the vertical plane of 

motion [25]. This motion is periodic and thus while the relative distances between 

the satellites will change, the size of the cluster will be bounded.   The work of 

11 



Sedwick showed that secular and periodic perturbations are considerable forces that 

destroy the simplicity of the free motion model. The key to effective modeling, and 

thus efficient stationkeeping, is to account for all forces that may cause the orbital 

positions to diverge, leaving only benign forces that will cause the satellites to move 

together or move periodically about. 

Even with the inclusion of significant perturbation acceleration estimates, the 

results of the CW solution will probably not be optimistic for the navigation of a 

satellite formation. The approximations made in Hill's equations, namely using a 

time-invariant system, make the dynamics the weak link in most of the work done 

concerning satellite formations. Also, the CW solution is being used for purposes 

other than its original intent. Thus, improvement in the relative dynamics model is 

key in the effort to validate whether the idea of satellite formation flying is feasible. 

2.1.2 Wiesel. Dr. Wiesel's work takes the general idea of the CW solution 

and extends it to include much more of the true dynamics of the system. Rather 

than linearize about a circular orbit, he applies Floquet theory to linearize about a 

near circular, periodic orbit. The advantage of integrating a periodic orbit over a 

single, particular orbit is that more of the behavior of the orbit is understood as time 

approaches infinity [32]. This is due to the fact that the orbit motion is simply a 

repeat of itself every period. The result is a linear, time periodic system instead of a 

linear, constant coefficient system. His work shows two secular terms in its solution. 

It is noteworthy to mention that this appearance of two secular terms is in agreement 

with findings of Schaub and Alfriend and an improvement over the usual one secular 

term discovered due to the earth's oblateness [36, 24]. Thus, it appears that this 

new solution is an improvement over the classic CW solution. Although most of this 

improvement can be attributed to the shift from a time-invariant system to that of 

a time periodic system, the dynamics solution includes many perturbation sources. 

Dr. Wiesel's dynamics model was created such that all major perturbative forces 

could be modeled to better predict satellite behavior and minimize fuel usage.  In 
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summary, this new approach holds three advantages. First, its solution inherently 

retains more information about the orbit over time leading to the introduction of less 

error into the dynamics. Second, it reflects two secular modes. Since both secular 

modes are modeled by the dynamics (rather than the usual one), they each can 

be identified and compensated for without unnecessarily beating them down with 

stationkeeping maneuvers. And finally, this solution allows for the inclusion of a large 

number of the earth's zonal harmonics (this thesis models zonal effects through the 

14th order), gravitational harmonics, and air drag, achieving results closer to reality 

through extensive modeling of perturbations. The following text will overview the 

theory in Dr. Wiesel's paper [36], but by no means is an exhaustive treatment. The 

reader is encouraged to peruse the paper for full details. 

Dr. Wiesel conducts his work from a Hamiltonian perspective. It begins with 

identifying the Hamiltonian function pertaining to the orbital motion of a small body 

about the earth. By using dimensionless units with radius of the earth i?e = 1, the 

gravitational constant G=l, and the mass of the earth Me = 1, the Hamiltonian 

function in the inertial frame is found to be 

n = \{Pl + P2
y+P2

z}-\ 

.4. Ja M2   iU Js M3   ^1 

+   ^{35^-30^ + 3} + ... (6) 

The inertial state vector is defined as J7" = (X, Y, Z, Px, Py, Pz), thus the radius, r, is 

defined as r = y/X2 + Y2 + Z2. The momenta states, (Pi), are just the inertial veloc- 

ity components since the Hamiltonian is in terms of mass per unit satellite. Notice, 

there are no other perturbations included in this Hamiltonian function. One of the 

advantages of Hamiltonian dynamics is the ease of adding perturbations. Additional 

conservative perturbations can be modeled by the addition of the potential function 

of the perturbating force (i.e. sectoral, tesseral, etc.). Nonpotential forces (i.e. air 
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drag) are expanded about the periodic orbit, and then added to the Hamiltonian 

equations of motion for the momenta states [36]. 

Since the orbit in this system does not return to the same position in inertial 

space, a rotation to the nodal frame (where the orbit closes on itself or is periodic) 

is performed to compensate for the regression of the orbit along the equator. The 

resulting Hamiltonian is found to be 

n' = \{P'X
2
 + p? + P?} 

+   Ö(P'xY'-Plx') + V(Z',r), (7) 

where the state vector components marked with a ' are just the inertial coordinates 

rotated into the nodal frame, M. The state vector in the nodal frame is now defined 

by A/7 = (X',Y',Z',P'x,Py,P'z). The V(Z',r) term represents the conservative 

zonal harmonic terms rotated into the nodal frame. This nodal frame is not the only 

frame in which the system is periodic. The system can be moved to the classic CW 

frame and still retain its periodic quality. To do this, first the periodic orbit must 

be transformed to the origin of the current coordinates. This is done by subtracting 

off the periodic orbit from the state vector in the nodal frame, thus the new local 

coordinates are given by 

x = X' - X'0, (8) 

Px = Ko(t), (9) 

y = Y'-Y'0, (10) 

Py = Pyo(t), (11) 

z = Z'- Z'0, (12) 

Pz = P'zo(t), (13) 
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where the quantities subscripted with o correspond to the periodic orbit. This re- 

duces the Hamiltonian to its second order and higher terms evaluated on the periodic 

orbit. Thus, with the new local coordinate vector defined as CT = (x, y, z,px,py,pz), 

the new Hamiltonian becomes 

1 1 
W   = 2[fta/3£a£/3 + 3[^a/37A*£/3£7 + • • • (14) 

The H" terms are fully symmetric partial derivative tensors evaluated on the periodic 

orbit. In other words, 
pß-u' 

(15) 
„       M 

and 

li-r,R^     
d3n' 

(16) aßl    dMadMßM-, 

where repeated Greek indices are summed from one to six. 

Now, a final rotation is accomplished so that the solution will be in the familiar 

CW frame (radial, in-track, cross-track). Figure 1 shows this frame pictorially. This 

thesis requires the generation of a linear system for its estimator, thus the Hamilto- 

nian is truncated after the second order terms. The final form of the Hamiltonian, 

/C, to the second order in the CW frame is 

K* = \KßK$n$z,z5 

+   p-7tftTq, (17) 

where the H term is a fully symmetric partial derivative tensor evaluated on the 

periodic orbit, the 1Z^ terms are six by six block diagonal matrices with two copies 

of the nodal to orbital frame rotation matrix, TZ, on the diagonal, and the Z terms 

are the canonical state vectors in the orbital frame [36]. The p and q terms are 3x1 

vectors containing the momenta and coordinates from the local frame state vector, 

C. The canonical equations of motion are then easily found by applying Hamilton's 
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Equations 

ft - ^ (I«) dpi 

P* = -^, (19) Oft 

to the Hamiltonian function listed above at Equation 6 [10]. 

2.2   Floquet Theory 

Once the equations of motion are known, they can be integrated for one period 

to obtain the desired periodic orbit. Linearized equations can then be generated 

by expanding about this periodic orbit. However, these equations are periodic in 

time, so the approach to solve them will be slightly more complicated than that 

of the Clohessy-Wiltshire solution. The solution used here is based on Floquet 

theory [32]. Floquet discovered that linearizing about a periodic orbit produces 

periodic coefficient linear systems. The time periodic linear differential equations, 

or variational equations, are 

8± = A(t)Sx. (20) 

Floquet discovered that the solution of Equation 20 is the state transition matrix 

and can be defined as 

$(t,0) = F(t)eJtF-1(0), (21) 

where F(t) is a periodic matrix, and J is a Jordon normal form matrix of the system 

frequencies. Usually J is diagonal, and its diagonal elements are termed Poincare 

exponents. This form is similar to the familiar form of the state transition matrix 

for constant coefficient systems. The only difference is that the F matrix is periodic 

in time. 

To obtain $(i, 0), the periodic matrix F(t) and J must be found. This is done 

by calculating the monodromy matrix, $(r,0). Equation 20 can be integrated for 

one period to find the monodromy matrix and the periodic orbit. Thus, the work of 
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finding the monodromy matrix is already accomplished from setting up the problem 

since the equations of variation were integrated once to obtain the reference periodic 

orbit. Remembering that F is periodic in time, Equation 21 at time r becomes 

$(r,0) = F(r)ejTF-1(0) (22) 

and upon some simple mathematical operations it can be seen that F(0) is just the 

eigenvector matrix of $(r, 0). Thus, 

F-1(0)$(T,0)F(0) = ejT. (23) 

These eigenvalues of the monodromy matrix, called the characteristic multipliers, 

can be calculated at F(0) via 

K = e«% (24) 

where u>i are the Poincare exponents found in J. Thus, the elements, and then J 

itself, can be found by rearranging Equation 24 to yield 

wi = -ln\i. (25) 
r 

By substituting the solution found at Equation 21 into the periodic differential equa- 

tions of the system and capitalizing on the information seen above at Equation 25 

about J to simplify things, the following result is obtained. 

F = A(t)F(t) - F(t)J (26) 

Now, after integrating the above equation for one period, the solution matrix from 

Equation 21 can be calculated. However, arriving at this integration is not as simple 

as it may appear since there are two integrals of the motion and thus two pairs of 

zero Poincare exponents.  This makes finding the eigenvectors associated with the 
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zero Poincare exponents, and thus the periodic modal matrix F, a more difficult task. 

The method by which these are identified can be found in the relative motion paper 

by Wiesel [36]. Once they are found, the periodic modal matrix can be formed and 

integration of Equation 26 can be performed. 

The end result is that the inertial position vector of a satellite can be expressed 

as 

X(t) = Tlf {MQ{t) + (n^)TF(t)eJtF-\t0)Z(to)} , (27) 

while the position relative to the periodic orbit in the orbital frame is given by 

Z(t) = F(t)eJtF-\to)Z(t0). (28) 

In this work the solutions obtained via Floquet theory, namely the reference 

nodal state vector J\f0(t) and the periodic modal matrix F(t), are reduced to their 

Fourier series coefficients. This is necessary to obtain a numerically integrable form. 

The method by which they were reduced is based on harmonic analysis, as described 

in Brouwer and Clemence [2]. The method of harmonic analysis is used to find 

numerical coefficients of series when the eccentricity becomes increasingly more than 

that of a near circular orbit or when time periodic functions are involved. It states 

that if u is any independent angular variable and P is the periodic function of u, 

then P can be expressed as 

p(u)   =   -co + ci cos(w) + ci cos(2w) + ... + -cn cos(nco) 

+   si sm(u) + s2 sin(2o;) + ... + snsin(nuj), (29) 

where 

ck   =   -Z%^P(ja)cos(kja),k = 0,1,2,..., n, 
n 

-E^lP(ja) sm(kja), k = 1,2,..., n - 1, (30) sk   —      ~,- 
n   J 
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and 

a-£. (31) 
2n 

It must be noted that since sin(na) = 0, there is no expression for sn. 

2.3    GPS Concepts 

The Global Positioning System (GPS) is an all-weather, 24-hour, absolute 

positioning service maintained by the DoD. GPS is based on the principle of distance 

equals rate times time. Using this principle to time tag its transmissions, a user's 

positional fix can be obtained using a minimum of four satellites to determine the 

four unknowns of the positioning problem. The four unknowns are the three position 

states in the ECEF (earth-centered, earth-fixed) frame and the time ambiguity (the 

offset between the receiver time and the satellite time). Levels of accuracy for the 

GPS Standard Positioning Service (SPS) are advertised to be no less than 100 meters 

(2 drms, 95 percent) horizontally and 156 meters (95 percent) vertically. With the 

recent removal of Selective Availability (SA), the advertised accuracy levels have 

increased to about 25 meters (2 drms, 95 percent) in the horizontal plane and 43 

meters (95 percent) in the vertical plane [13]. It must be emphasized that these are 

the specifications that are specified in the GPS Interface Control Document (ICD) 

200, and that typical performance is much better. Through personal experience of 

this researcher, GPS accuracy without SA is on the order of a few meters in the 

horizontal plane and about twice as bad in the vertical direction. Although much 

improved, even these performance numbers may not be accurate enough to use in 

the applications discussed this far, especially space-based radar. 

2.3.1 DGPS. A significant improvement to GPS SPS accuracy can be 

achieved via Differential GPS (DGPS) methods. These methods are code-based, 

carrier-based, or a combination of the two called carrier-smoothing. Code-based 

techniques produce the least improvement to SPS while carrier-based provides the 
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most. However, this performance increase comes at a cost in system complexity. 

Code-based techniques use pseudoranges (to be discussed momentarily), while the 

carrier-based techniques also use information from the phase of the carrier signal. 

Of course, this implies the carrier-smoothed code techniques lie somewhere in the 

middle. By using code-based techniques a user can acquire positions to within 1-2 

meters of the truth. Carrier-smoothing methods improve that to about .1-.5 meters, 

and pure carrier methods yield positions with error on the order of only .01-.05 

meters. While this latter accuracy is impressive, it must be noted that this type of 

method is not as robust as the others and is much more sensitive to vehicle dynamics. 

Too much motion may cause the receiver to lose lock and require 1-3 minutes to re- 

acquire the signal [20]. 

As mentioned previously, a minimum of four satellites are required to determine 

the three dimensional position of a user and the time offset of the receiver clock. To 

do this, each GPS receiver set calculates a pseudorange (PR or p) for each satellite, 

or the approximate range between the user and the satellite. The reason the range 

is approximate, and thus a pseudorange, is because the time offset is not known. A 

GPS pseudorange can be represented mathematically by the following 

p = r+ c(5tu-5tsv + 5tD), (32) 

where r is the true range, 8tu is the user clock error, 8tav is the satellite clock error, 

and 8tD is the time error due to propagation delays [21]. With four pseudorange 

expressions from four different satellites, all four unknowns can be found. The time 

error due to propagation delays can further be broken down to its individual com- 

ponents due to SA, the troposphere (tropo), the ionosphere (iono), system noise 

(noise), multipath (mp), and receiver hardware noise (hw) via 

Stp = StsA + Sttropo + Stiono + Stnoise + 8tmp + othw ■ (33) 
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Through differencing methods, DGPS removes common errors from two or more 

receivers viewing the same satellites. There are two different types of differencing 

methods, single and double, and both methods simply difference measurements. Sin- 

gle differencing differences individual pseudoranges while double differencing differ- 

ences two single difference measurements. Single differencing is easier to implement, 

however double differencing is used if very precise measurements are required. If the 

Satellite a Satellite a Satellite b 

Receiver 1 Receiver 2 

Single Differencing 

Receiver 1  Receiver 2 

Double Differencing 

Figure 2     Differencing Methods 

single difference measurement is defined as 

Atfasstf-pg, (34) 

then it follows that the double difference measurement is given by 

VAp?»   =   Ap?2-A/12 (35) 
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=   Ara
12 + AcötUl2 + Ac8tatropoi2 + Ac5taion0l2 + Ac8tanoisei2 + Ac8tampi2 

-   Arb
12 - Ac5tui2 - Ac5tb

tropoi2 - Ac5tb
ionoi2 - Ac5tb

noisei2 - Ac8tb
mpi2 

VAp?2   =   VAr?2
6 + VAc5ttpoi2 + VAc^0

6
noi2 + VAc8t±sei2 + VAc<,12- 

Notice that the satellite clock error, receiver clock error and SA are not present in 

the double differenced measurement since these error sources were common between 

the two single differenced measurements. Double differencing techniques also have 

the benefit of reducing the tropospheric and ionosphereic errors. However, this is 

done at the expense of amplifying the multipath and noise by a factor of two [21]. 

Double differencing techniques are not unique to code-based methods (methods 

using pseudoranges). Carrier-based methods also use difference measurements. The 

rationale behind the development of carrier-phase differences is identical to that of 

the code-based difference measurements since carrier-phase measurements are sub- 

tracted to reduce errors from common sources (i.e. ionosphere, troposphere, etc.). 

While their derivation is similar in approach to the code-based differences, they 

are not derived here since the importance of why measurements are differenced has 

already been shown. The reader is directed to Kaplan [13] for their derivation. 

2.3.2 CDGPS. To provide accuracy on the order of a few centimeters, 

CDGPS techniques incorporate the use of the signal carrier frequencies to provide 

phase information. These techniques are based on interferometric measurements 

of the satellite carrier frequencies. Measurements of the Doppler shift are taken, 

integrated to calculate the carrier advance at every epoch, and are then combined 

with receiver carrier-phase measurements to aid in the resolution of the carrier cycle 

ambiguity. Performance is on the order of 20 cm in dynamic applications [13]. 

This level of accuracy will increase as the random nature of the problem gives way 

to determinism. Thus, a system that is extremely deterministic may experience 

accuracy on the order of a few centimeters since the motion of the subject is limited 
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to more predictable paths. This statement confirms the need for a precise relative 

motion model for this work. Since the satellite formation dynamics used in this 

thesis are very deterministic, it could be expected that a generated CDGPS solution 

would have very little error induced by dynamics. Additionally, the formation's 

operating regime (i.e. space) is above the densest portion of the earth's atmosphere, 

so the potential for CDGPS-improved accuracy is further increased. Recall the 

expression for the code-based double difference measurement defined by Equation 

36. Since the satellite formation will reside completely above the troposphere, the 

tropospheric delay term vanishes, further reducing error sources. It is estimated 

that the troposphere accounts for eight percent of position error for earth or near- 

earth applications [21]. Although this argument uses a code-based measurement for 

illustration rather than a carrier-based measurement, it is still correct since both 

types of difference measurements are generated with the goal to eliminate common 

error sources. 

2.3.3 GPS in Space. Space-based GPS applications have been an avid 

area of research. Within the last few years, the focus from generic programs to 

relative spacecraft navigation has been pronounced. The Orion Project, supported 

by NASA Goddard Space Flight Center, is a concept demonstration that a cluster 

can use CDGPS and closed loop autonomous control to navigate the formation of 

spacecraft [14]. The main focus of any relative navigation problem is the search 

algorithm to resolve the integer carrier-phase ambiguity. Two such efforts have been 

accomplished by Cox and Binning [7, 1]. Mr. Cox's work [7] uses a combination 

of code and carrier-phase measurements in a Kaiman filter. Some of the filter's 

states are dedicated to estimating the integer, carrier-phase ambiguities. In an effort 

to find the ambiguity set most probable and faster, the Least Squares Ambiguity 

Decorrelation Algorithm (LAMBDA) method is employed. The LAMBDA method 

was developed by Peter Teunissen in 1993 and searches for the smallest constant- 

probability-density ellipsoid centered at the Kaiman ambiguity vector estimate and 
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uses the integer vector found on its surface. The general idea is that the method 

decorrelates highly correlated phase ambiguities by performing an ambiguity trans- 

formation that attempts to diagonalize the ambiguity states covariance matrix [20]. 

While total diagnalization is not possible, the resulting covariance matrix is highly 

de-correlated. This result increases the probability that the correct ambiguity set is 

found and the process is sped up. While there has been a push to use GPS for orbit 

determination, one paper in particular [4] warns the GPS community of the dangers 

of relying solely on GPS for determining a satellite's position/velocity vector. This 

work emphasizes that GPS data, even precise CDGPS data, must be used in concert 

with a filtering algorithm that includes enough determinism to compensate for the 

poor semi-major axis determination provided by GPS solutions. 

2.4    Bayesian Estimation 

A Bayes filter was chosen as the heart of the estimator for this work. A Kaiman 

filter probably could have worked as well and thus would have echoed the approach 

of others in similar efforts, however a Bayes filter was deemed a much more natural 

choice due to the deterministic nature of this problem. Additionally, the Bayes 

algorithm is simpler to implement, considering a Kaiman Filter may have a hard 

time with the extreme accuracy of the data and thus would require additional effort 

to correct for this shortcoming [33, 17]. 

The Bayes filter is a type of recursive filter, which in its simplest form reverts to 

a least squares form. The Bayes filter algorithm used in this thesis was adapted from 

Dr. Wiesel's class notes from MECH 731, Modern Methods of Orbit Determination 

[33]. However, there is nothing unusual about this formulation and it should echo 

any other estimation text on the subject. The following text will illustrate the overall 

flow of the Bayesian algorithm at the heart of this effort's estimator. At this point, 

only the shell of the filter needs to be presented. Specific details concerning the 

construction of the state vector, the observation relation, the linearization matrix 
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and the data to be used is covered in the Methodology section.   The flow of the 

Bayesian algorithm is represented by Figure 3. First, the old estimate of the state 

Start         J 

i ' 
Set previous estimate 
and its covariance to 
the reference estimate 
and covariance. 

-► Read in measurement 
or observation and its 
associated time stamp. 

z 
Propagate the state 
and state transition 
matrix to the 
observation time. 

Calculate the residual 
vector, the linearization 
matrix and the 
observation matrix. 

Yes 

Calculate and add to 
running sums for 
corrections to the 
state and covariance. 

No 

Add state corrections 
to achieve new 
reference state vector. 

Calculate new 
covariance and the 
estimate of the 
state correction. 

Figure 3     Bayesian Algorithm 

and its covariance need to be advanced to the new epoch time. The previous estimate 

becomes the reference estimate by setting 

i-ref x(-) (36) 

for each new observation time U. Next, the state and state transition matrix, $, are 

propagated to time U. The residual vector, n, the linearization matrix, Hi, and the 
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observation matrix, Tj, are then calculated by the expressions 

ri = Zi-G(x,t), (37) 

ff, = ^(xre/CtM), (38) 

Ti = HMti,to), (39) 

where G(x,t) is the observation relation correlating the states to the measurement 

data. Then, the newly calculated terms are added to the sums below 

E^fQT'Tu (4°) 
i 

Y,TfQT1^ (41) 
i 

where Q is the observation covariance matrix associated with measurement noise. 

At this point, any residuals greater than a predetermined threshold (expressed 

in multiples of standard deviations) are rejected. The previous steps are repeated 

until data is processed. Then the new covariance of the state correction is obtained 

by 

p-x(+) = P-'H + ETTQT
1
^. (42) 

6x(to) = P{+) (p-'Hi* ~ **/) + Y,T[Qrh^j 

Also, the estimate of the state correction is found via 

v \ 
(43) 

The last calculation then corrects the reference solution according to 

Xrc/+i(to) = xre/(io) + Sx(t0). (44) 

Finally, convergence is checked. If convergence is not achieved, then the whole pro- 

cess starting after the first step, is repeated. Conversely, if there is convergence and 
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at least two iterations have been performed, then xre/+i becomes the new estimate 

with covariance P(+). 
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777.   Methodology 

3.1    Problem Definition 

The main objective of this thesis is to provide centimeter level accuracy in 

the estimation of relative satellite positions. Further, it is desired to separate the 

absolute positioning problem from the relative. This will be attempted by using 

only relative positional information. Estimates of the absolute measurements on the 

order of tens of meters or worse will suffice if the estimates of the relative positions 

can be obtained on the order centimeters (the magnitude of the noise). Before any 

attempt to achieve these objectives, preliminary work is required. This work includes 

selecting a formation design, to include the number of satellites, their geometry and 

the reference periodic orbit. Also, the basic Bayesian filtering code and the truth 

model for measurement generation must be developed and tested. This section will 

explain these details as well as describe the state vector and the specific filters used 

in this thesis. 

3.1.1 Satellite Formation Selection. This work will use a cluster composed 

of three satellites. Since this is an arbitrary number, it is a matter of simple expansion 

to include more than three. In fact, the filter code is written to incorporate any 

number of satellites. The only real limit on the cluster size is processing power since 

the covariance to be inverted grows by six rows and columns with every additional 

satellite. Thus, a ten satellite cluster would require an inversion of a 60 by 60 

covariance matrix! This may be readily handled by any PC on the market, however 

processing power in space is a commodity that should not be unnecessarily wasted. 

For the purposes of this thesis, the satellites will be in no specific formation. 

This is for ease of calculation and not likely to be the most optimal for mission 

design. This work is focused on estimating the relative positions of the elements of 

a formation with respect to each other and not the optimal design for the cluster 
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geometry. Thus, the only true design strategy implemented was to choose the clus- 

ter element positions such that no secular modes were excited.  This was done to 

suppress secular terms that would encourage the formation to drift apart and was 

accomplished by setting the fourth and sixth Floquet modal variable (modal vari- 

ables are discussed further in Section 3.1.2) to zero. The spacecraft are spaced about 

200 meters from the periodic orbit vector, but in no definitive pattern (see Table 1 

for approximate positions of each spacecraft in the CW frame). The periodic orbit 

vector has its origin at the center of the earth and its tip at the average position of 

the formation elements in the CW frame. The reference periodic orbit modeled is 

nearly circular and it has an altitude of 637 kilometers with inclination of one radian. 

Although several efforts have focused on formations with inclinations of 90 degrees 

to eliminate the nodal regression [23, 28], this simplification was avoided since most 

missions will not be polar. Additionally, the perturbations experienced by non-polar 

formations need to be investigated. 

Table 1     Approximate Spacecraft Positions in CW Frame 
Radial (meters) In-Track (meters) Cross-Track (meters) 

Satellite 1 -125 39 -147 
Satellite 2 125 39 278 
Satellite 3 -147 -48 -48 

3.1.2   State Definition.         The goal of this effort is to estimate the true 

element positions of a satellite formation to within a few centimeters. This implies 

that the states to be used are physical in nature and in a frame of choice (i.e. 

inertial, ECEF, orbital, CW, etc.). However, the problem reveals more about itself 

if states are chosen within phase space, or more specifically using Floquet modal 

variables. While abstract, these phase states tend to offer more information about 

the dynamical system than physical states. 

The Floquet modal variables are essentially transformed orbital frame physical 

states. Thus, it follows from Section 2.2 that the Floquet modal variables have six 
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eigenvectors, one for each of the satellite's states. These eigenvectors form three 

modes. Three is expected rather than six (one for each eigenvector) since the real 

and imaginary parts of the complex modes in the formation of the modal matrix 

F in Section 2.2 are isolated according to method of Calico and Wiesel [35]. The 

three modes are the eccentricity mode, the energy mode, and the angular momentum 

mode. The first mode consists of the perturbations of the eccentricity of the periodic 

orbit and the advance of perigee. The second mode consists of the in-track velocity 

and period change of the periodic orbit. The third mode consists of the change in the 

node of the satellite relative to the periodic orbit and the change in the inclination. 

Thus, each satellite's state is proportional to the following 

X modal 
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(45) 

/ 

where m^ represents the ith complex mode with its two j parts, Ae is the pertur- 

bation of the eccentricity, Au is the advance of the argument of perigee, Av is the 

in-track displacement, AT is the change in period, AQ is the change in the node, 

and Ai is the change in inclination. Wiesel shows that to prevent the formation 

from dispersing, the fourth and sixth state need to be kept to zero and the secular 

terms of the third and fifth suppressed. As long as the cluster states (i.e. geometry 

of the cluster) are chosen to limit the introduction of secular terms into the system, 

specifically in-track dispersion, the rest of the terms will have periodic fluctuations 

and the cluster will remain intact [35]. 

While the insight gained by using Floquet modal variables is extremely impor- 

tant, the end result is to know physical positions.  Thus, once convergence in the 
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filter is achieved the physical states must be obtained through the transformation 

that was alluded to earlier. The relation between the physical state and the modal 

state is 

/x\ 

y 

z 

X 

V 

\* J 

■^-physical [") = jP(t)e-7tF(0)-1Xp/l2/sica,(io) = F(t)eJ^Xmodai(t0).      (46) 

At this point, it is important to point out a subtle peculiarity found within each 

filter's relative dynamics routines investigated by this thesis. Since the filters use 

modal states instead of physical states within their relative dynamics models, they 

do not use the exact form of the State Transition matrix detailed in Section 2.2. 

Instead, each one uses a hybrid form shown in the latter part of Equation 46. The 

effective State Transition matrix of each filter is explicitly given by 

®nuP,= d?{t)physical =F{t)eJV. ? filter dx(t0) 
(47) 

modal 

This is only slightly different than the standard definition given in Section 2.2 since 

that section defines it as 

$ standard 
dx(t) modal 

dx(t0) modal 
= Fity^FiO)-1. (48) 

Thus, in this work's filters, the effective form of the State Transition matrix serves 

two purposes. In addition to the traditional role of propagating the state vector, it 

also represents the transformation matrix between the Floquet modal variables and 

the physical states. 
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3.2 Initial Bay es Filter Model 

An initial Bayes Filter was built to demonstrate the functionality of the algo- 

rithm detailed in Section 2.4. A simple test case of a linearly increasing, two-state 

system with constant acceleration was chosen as the test system. In addition to 

the equations in Section 2.4 required to execute the Bayesian algorithm, a dynamics 

routine and observation relation processor were created to reflect this simple system. 

The sample runs only consisted of a handful of data points, and tests included per- 

fect data and noisy data. The perfect data yielded zero residuals and convergence 

while the noisy data caused the estimator to produce appropriately sized residuals 

and state corrections. 

3.3 Truth Model 

A truth model is used to output not only the true state but also corrupted data 

for the filter. The truth model interacts with the filter according to Figure 4. The 

truth model contains the equations of motion and variation for the two body motion 

in the reference periodic orbit discussed previously. The equations of motion are 

developed in Section 2.1.2, and the equations of variation are found by linearizing 

about the equations of motion. The initial states of the system, output data noise 

values, and other initialization flags and variables are stored in a file represented as 

the Sample Run Parameter File in Figure 4. This file is used to initialize the truth 

model and allow it to generate data consistent with the goals of a particular data 

run. As previously mentioned, the equations of motion are integrated for one orbit 

to obtain the periodic orbit. This solution is reduced to its Fourier series coefficients 

and is stored in a file that is represented in Figure 4 as the Reference Orbit Data File. 

This file also contains the Fourier series representation of the Floquet solution as well. 

This data is used by both the truth model and the Bayes filter. While the truth model 

and Bayes filter both use this data for predictions of the system dynamics, the truth 

model uses numerical integration as opposed to the filter's linear algebra techniques. 
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Sample Run 
Parameter File 

Reference Orbit 
Data File 

Floquet Modal 
Variables Free 
of Intentional 
Error 

Truth Model 

Simulated 
GPS, CDGPS, 
and Range 
Measurements 

Bayes Filter 

Reference 
State Vector 
and 
Covariance 

Filter Output 

Figure 4     Truth Model and Bayes Filter Interaction 

The truth model uses a Hamming predictor-corrector algorithm to find the system 

states at time intervals specified in the input file. The truth model can handle a 

user specified level of zonal harmonics of the earth in its calculations. Although this 

work used zonal terms up to the 14th order, the order can be increased, or decreased, 

depending on the desired modeling needs of the simulation. Finally, the truth model 

also incorporates the earth's tesseral and sectoral harmonics and air drag upon user 

request. 

The truth model manipulates the states found via integration to form the two 

types of data output to the filter, free modal variables and measurements. The free 

modal variables are the Floquet modal variables without any intentional noise added. 
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The measurements used in this work include GPS, CDGPS, and range data generated 

from internal clock pulses by each satellite. These three types of measurements, Z{, 

are related to the physical states according to the following expressions. For the 

DGPS measurements the relation is 

'CDGPS 

(      _     \ 

Vi-Vi 

Z\ -Zi 

(49) 

where i = 2,3,..., n for n satellites. The range measurements are represented by 

Irange = \?i ~ Tj\ = yj{xt ~ Xjf + (# ~ Vjf + (*j ~ Zj)2, (50) 

where i = 1, 2,3,..., n, j = 2,3,..., n, i ^ j, and n is the number of satellites. The 

last measurement output from the truth model is that of a GPS measurement for 

satellite one and it can be represented as 

ZlGPS — Rabsolute ~ Mpo — 

V*1 / 

(51) 

where Rabsoiute is the absolute position vector to the satellite in the orbital frame and 

Rp0 is the position vector of the periodic orbit (see Figure 5). This GPS measurement 

introduced an absolute flavor to the filter's measurements. The reasons for doing this 

will be described momentarily in Section 3.4.1. As mentioned earlier, the truth model 

applies Gaussian noise to the output measurements upon user request, resulting in 

^noisy — ^perfect   <   "noise- (52) 

Normally, the input to the filter is in the form of the above equation.   However, 

during testing the noise was removed for analysis and debugging. anoise represents 
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In-Track 

Radial 

Figure 5     GPS Measurement 

the Gaussian noise associated with the instrument covariance, Q, used in the Bayes 

algorithm. The noise represents an estimate of the errors found in each of the 

position or range determining systems. The noise at each time step is generated 

by a Gaussian pseudo random number generator. The magnitude of the error is 

within a user specified, integer multiple of an estimated standard deviation bound 

for each given measurement source. The user input corresponds to the instrument 

noise covariance matrices embedded in the filter code. 

The instrument noise covariance matrices are populated with variances cor- 

responding to each data type. The simulated CDGPS measurements', GPS mea- 

surements', and range measurements' noise are estimated to have a 1-sigma error 

bound {adata-type) of 3 centimeters, 3 meters, and 2 centimeters in each axis of the 

CW frame, respectively. The assumption of 3 centimeter error in each axis for 

the CDGPS measurements is consistent with, and in some cases more conservative 
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than, several GPS papers showing the potential accuracies of such measurements 

[6, 1, 19, 7]. The resulting instrument covariance matrix, Q, for each measurement 

type can be represented as 

Q = 

^data-type U . . . U 

o •••   o ; 

; o ••• o 

o ...    o ajata_ type  _ 

(53) 

Since the instrument covariance was created as a diagonal matrix, the measurements 

are modeled as having uncorrelated errors. While this may not be completely ac- 

curate, it is a reasonable approximation since any correlations of error within the 

measurements should not be very large or persistent. 

3.4    Filters 

Once the initial filter algorithm described in Section 3.2 was validated, the 

simple linear system was replaced with the system of interest to this thesis, that of 

a satellite formation. The perturbations modeled within this system are the earth's 

zonal harmonics. Although the truth model simulates tesseral, sectoral, and air drag 

perturbations, they were not included and are recommended for future work. In all, 

three different filters were investigated. Two versions were planned in advance and 

the third was included as a consequence of findings during implementation. Each 

filter differs from the others in the way its dynamics routine and observation relation 

processor are constructed. 

In each filter, the dynamics routine is based on the theory presented in Sec- 

tion 2.1.2 and transformation (from the Floquet modal variables to physical states) 

described in Section 3.1.2. Due to this previous description, it is not covered in 

much detail here. While all the filters have the same dynamics model at their heart, 

not all of the filters propagate the same states. However, each are alike in that the 
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dynamics routine takes in the modal reference state vector and current time step as 

input variables, and returns the physical states and state transition matrix at the 

current time step. 

While the dynamics routine is specific to the relative satellite navigation prob- 

lem in its design and thus required massive overhaul from the simple linear system, 

the observation relation routine is created using the same approach used to formulate 

G(x, t) and H before (for the simple linear system). G(x, t) is still the function that 

describes the measurements in terms of the states and H is found by taking partial 

derivatives of G(x,£) with respect to each element of the state. In other words, 

#. = ^(xre/(*M)- (54) 

The observation relation processor in each filter is based on the algorithms discussed 

in the Bayesian Estimation section. This processor takes the physical states output 

by the dynamics routine and forms estimates of the measurements at the given time 

step in the manner described in Section 3.3. The following subsections explicitly 

show G(x,i) and H for three satellites for each filter design and points out any 

other significant differences. 

3.4.I Two Relative Data Filters - CDGPS and Range Data. The initial 

measurements used in this thesis were selected to be purely relative due to lessons 

learned in previous work performed by Captain Davis. He found that absolute 

measurements wasted precious significant digits since the measurements started at 

the center of the earth. Thus, the covariance became excessively large and would 

not invert. If the cluster element positions are measured from a closer reference (in 

this work the reference periodic orbit), more significant digits are available to allow 

precision on the order of centimeters or less without inversion problems. Hence, 

CDGPS measurements and range measurements between the cluster elements were 

the only measurements initially used. While it is true that CDGPS measurements 
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are absolute in nature, they were fed into the filter as a differenced measurement 

(recall Equation 49) and the measurements themselves are absolute only in a relative 

sense to the other satellite formation elements. For the range data the relations are 

^ >i - X2)2 + {V\ - V2)2 + (*i - z2)
2 

^xRange        i ^{Xl - x3)
2 + (j/i - y3)

2 + (zi - zzf 

TJ(X2 ~ Xzf + (2/2 - Vzf + (*2 ~ Z3)
2   ^ 

(55) 

and                                                                                                  . 
X!-x2           3:1-13                Q 

P12                        P13 

3/1-2/2          ?/i -V3             Q 

P12                        P13 

Z1-Z2                 Z1-Z3                       Q 
P12                        P13 

0             0             0 

0             0             0 

0              0              0 

— (Xl—3:2)                      A                           3:2—3:3 

P12                                                       P23 

-(S/1-OT)                   A                       3/2-Ü/3 
P12                                                       P23 

TjT              _   < 

*-*-Range 

-(^1-22)                   Q                       22-23 
Pi 2                           "                          />23 

0             0             0 

0             0             0 

0             0             0 
Q                                     -(3:i-X3)                 -(3:2-3;3) 

P13                        P23 

Q                    -(2/I-2/3)          -(2/2-3/3) 
P13                        P23 

Q                   -(21-Z3)         -(22-23) 
/>13                        P23 

0             0             0 

0             0             0 

(56) 

0             0             0 
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where p^ is the range between the satellite pair.  For the relative DGPS data the 

relations are 
x2 — x\ 

GDGPS = < 

V2-yi 

Z2-Z1 

XZ -X\ 

2/3-2/1 

Z3-Z1 

and 

H DGPS 

(57) 

(58) 

-10 0000100000000000 

0 -1 0 000010000000000 

0 0-1000001000000000 

-10 0 000000000100000 

0 -1 0 000000000010000 

0  0-1000000000001000^ 

Initial testing using only two satellites showed that the covariance would not invert 

using only CDGPS or range data since these measurements led to half the states 

being unobservable. The observability problem is not an issue for the range data 

when more than two satellites are modeled, but is always present for the CDGPS 

data no matter how many satellites are used. Since the modal variables for two 

satellites propagate as 

Xl(t)modal     —     6    X-l{to)modah 

(59) 

and the orbital position and velocities are found by 

X(t)'physical — Fitj^V^modaV (60) 
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the difference in the orbital frame position and velocity vector propagates as 

AX(i)physical     =     -X-2\t)physical ~ ■&-l\t)physical 

—     F(t) (X.2(t)modal — Xi(t)modoO 

=     F(t)eJt(X2(t0)modal-Xl{to)modal). (61) 

These equations show that both sets of Xi(t0)modai cannot be determined, only their 

difference. This means one would expect six zero eigenvalues in the covariance matrix 

of the states, or half the states being unobservable, in a twelve state system. This 

argument was verified using singular value decomposition analysis. Only six non-zero 

singular values were found for the twelve-state system. 

Absolute measurements were introduced to resolve the observability problem 

for both relative data filters when only two satellites were modeled and for the 

CDGPS filter when any number were modeled. The absolute measurement chosen 

was the absolute position of the satellite designated as the leader, satellite one. In a 

real estimation system, each element of the cluster would perform as if it were the 

"leader" satellite. This absolute measurement was fed into the estimator in the form 

of a GPS measurement, however it was massaged into a pseudo-relative form prior 

to being used to avoid the inversion problems encounterd before by using absolute 

measurements. The measurement can be represented as 

Z 1GPS — 

( \ 
Xi 

\Zl ) 

Rabsolute ~ Rpoi \°^) 

where Rabsolute is the absolute position vector to the satellite in the orbital frame 

and Rp0 us the position vector of the periodic orbit (see Figure 5). For the absolute 
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GPS data the measurement relations are 

GGPS — " (63) 

and 

HGPS = < 

100000000000000000 

010000000000000000 

001000000000000000 

(64) 

34.2 Relative State Filter - CDGPS Data. As a result of the initial failure 

using purely relative CDGPS data, it was shown earlier that the differences in the 

physical states could be propagated via 

AX(i)physical — F(t)e  * (X2(£o)modaJ — ^-l(to)modal) (65) 

Thus, a new filter that used CDGPS measurements was constructed with the above 

expression as its dynamics routine. CDGPS measurements were chosen arbitraily; 

range measurements will work just as well. This new filter, termed the relative state 

filter, has a state vector that is represented as the differences in the modal states 

between two satellites rather than the modal states themselves. For the two satellite 

system used, this change reduced the number of states from twelve to six. The state 
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vector for this differential filter is given by 

AX ■modal 

( x2l-xu \ 
X22 — X\2 

X2s — Xi3 

X2A — Xit 

X2s - Xl5 

V x2e - xu j 

(66) 

modal 

Since the dynamics relation is shown by Equation 65, the only thing left to define 

is the observation relation correlating the states to the measurements. After propa- 

gating the physical states at each time step, it can be seen that the first three terms 

of the relative physical state vector is already in the form of the observation relation 

for the CDGPS data defined previously. 

/ \ 
x2 -Xi 

AX ■physical{l ,2,3) 2/2-2/1 

Z2-Z1 

G CDGPS 

/ physical 

( \ 
X2 - Xi 

2/2 — 2/1 

Z2-Z1 

(67) 

Therefore H for a two satellite system using CDGPS measurements is just 

H GPS 

10 0 0 0 0 

0 10 0 0 0 

0   0   10   0   0 

(68) 

3.5   Data Runs 

Data runs are accomplished with each of the three filters: the relative data 

filter using range data, the relative data filter using CDGPS and GPS data, and 

the relative state filter using CDGPS data. Each run uses 24-hours worth of data 

with the data generated at 100 evenly spaced intervals (every 14.4 minutes). Each 
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data run is accomplished twice. First the filter is fed data with no noise, and then 

the filter ran again with data having noise appropriate to the measurement type 

(see Section 3.3) to simulate a more realistic response. The filters are summarized 

pictorially in Figure 6. 

Inputs 
(Form)* 

CDGPS Data  
(Satellite n - Satellite 1) 

r,PS Data 
(Satellite 1 - Reference 
Periodic Orbit) 

Range Data  

1=1,2,.. ,n,j = ZX-,n,i*j 

CDGPS Data 
(Satelliten-Satellite 1) 

* for n satellites 

Relative Data Filter 
CDGPS Data 

Relative Data Filter 
Range Data 

Relative State Filter 
CDGPS Data 

Outputs 

Relative Element 
Positions in CW Frame 

Relative Element 
Positions in CW Frame 

Relative Element 
Positions in CW Frame 

Figure 6     Filter Diagrams Showing Inputs and Outputs 
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IV.   Results and Analysis 

Now that the filter has been completed and its proper functioning verified, data 

runs can be accomplished and the results analyzed. Examination of the residuals, 

or the difference between the true observations and the filter's predicted ones, can 

lead to significant insight into the performance of the filter. Ideally, residuals should 

be random and small, thus any pattern, bias, or anomalous residual sizes should be 

investigated. The following sections first investigate filter residuals using noise free 

measurements. If all is working correctly, the residuals will show the amount of error 

in the system. This should reflect the noise floor set by the noise covariance matrices 

in the filter code for each respective measurement type. Once the behavior of the 

system is characterized without noise, plots of the residuals with noise added are 

analyzed. All plots shown in this chapter are with respect to the CW frame (radial 

(x), in-track (y), and cross-track(z)). Overall, the filters performed well but worse 

than expected under initial designed conditions. Since residuals are not expected 

when using error-free measurements (or at least not large ones), an error source, or 

sources, was determined to be at work in the production of the residuals shown in 

the error-free measurement plots. The filter algorithm was verified, thus it was not 

identified as an error source. Instead, the error was attributed to differences in the 

relative motion solution between the filter and the truth model as well as effects from 

linearization. The error sources will be discussed in further detail, where appropriate, 

in the subsequent discussions. 

4.1    Relative Data Filter - CDGPS Filter 

Figures 7 and 8 show the first pass residuals for the CDGPS filter's CDGPS 

measurements and GPS measurements, respectively. In both figures, the in-track 

measurements appear to walk away from zero rather quickly and secularly. The 

residuals also show periodic fluctuations in their values. Both of these trends may 
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be attributed to a reference periodic orbit mismatch (to be discussed in more detail 

later) since the filter and truth model see a different reality. These trends are evident 

in this filter's residuals as well as the other two studied in this work. Figure 9 is a 

tighter look at the data in Figure 8. It shows the behavior of the radial and cross- 

track residuals for the GPS measurements. While the in-track measurements diverge 

quickly (as seen in Figure 8), these two measurements oscillate about zero and gain 

error at a much slower pace. 

First pass residuals do not mean too much since the filter has not yet con- 

verged. However, the trends of the first pass residuals will affect how the filter will 

converge and thus will impact the last pass residuals. Figure 10 and Figure 11 show 

the last pass residuals for the CDGPS filter's CDGPS measurements and GPS mea- 

surements, respectively. Figure 12 is a close up of Figure 11. After 24-hours worth of 

measurements, the residuals appear to still be diverging. However, the rate is much 

slower than that seen in the first pass residuals. The filter has bounded the error to 

be less than about 30 cm. The satellite pair comprised of 1 and 3 seem to perform 

marginally better than that of 1 and 2. This gain in performance can be attributed 

to the geometry of the cluster. Satellites 1 and 3 are closer together than satellites 1 

and 2. The last pass GPS residuals no longer diverge, however they oscillate about 

zero error with max magnitudes near 500 meters. This poor performance in the ab- 

solute positioning is due to the reference periodic orbit mismatch stated earlier. The 

truth model integrates the formation's equations of motion, calculates the physical 

states at every time interval, and subtracts the assumed reference periodic orbit to 

obtain absolute GPS measurements with respect to the periodic orbit. The filter 

propagates the states via the state transition matrix, which is based on the same 

assumed periodic orbit. The states obtained are in the form of absolute GPS mea- 

surements with the reference orbit subtracted, thus they are identical in form to the 

truth model GPS measurements and no further manipulation is needed. Both the 

filter and the truth model use the same Fourier series coefficient representation of the 
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reference periodic orbit in the aforementioned calculations, however the difference 

in the implementation appears to be causing error in the calculation of the states. 

Specifically, the brute force integration of the equations of motion is showing that 

the assumed reference periodic orbit used in each filter is not the true periodic orbit 

of the system. Consequently, large oscillating residuals are seen in the absolute data 

(Figurell and Figure 12) and small oscillations are seen in all of the relative data 

plots. Figure 13 and 14 shows the filter's performance when noise was inserted into 

the measurements. The performance was almost identical to that of the error-free 

measurements. 

Overall, the filter converged to a solution with residuals much greater than were 

expected. In fact, even with error free measurements the residuals for each measure- 

ment type are larger than their corresponding measurement covariances programmed 

into each filter. Residuals were expected to be much smaller and only due to nu- 

merical or minor filter/truth model differences. Even with error introduced by error 

sources other than predetermined measurement noise, the residuals should have been 

no larger than the order of the noise of each measurement type expected by the filter 

- 3 centimeters in each axis for the CDGPS measurements (1-sigma) and 3 meters 

in each axis for the GPS data (1-sigma). The fact that large residuals were encoun- 

tered indicates that the filter's dynamics model has a flaw. The large residuals in the 

absolute measurements are not related to this flaw since they have been shown to be 

caused by the reference periodic orbit mismatch. The flaw in the filter's dynamics 

model was initially identified as the lack of second order dynamics in the solution. 

The reference periodic mismatch may be affecting the relative measurement residuals 

to some extent, but the largest contributor to the unexpected size of these residuals 

was believed to be caused by second order effects. 

To prove this theory, the cluster spacing was reduced by an order of magnitude 

(see Table 2 for approximate positions of each spacecraft after reduction of orbital 

spacing).  Larger residuals can be expected if the second order terms (and higher) 
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neglected in the linearization of the filter's dynamics are not negligible. It was 

expected that if this was the case, reducing the spacing between the spacecraft by 

an order of magnitude would decrease the residuals by two orders of magnitude or 

at least to the noise floor set by the filter for each type of measurement. Figures 15 

through 17 show the results of the first pass. Figures 18 through 20 show the results 

of the last pass. 

Table 2     Approximate Spacecraft Positions In Reduced Formation 

Satellite 1 
Satellite 2 
Satellite 3 

Radial (meters) 
-12.5 
12.5 
-14.7 

In-Track (meters) 
3.9 
3.9 
-4.8 

Cross-Track (meters) 
-14.7 
27.8 
-4.8 

The reduction in orbital spacing has created residuals with magnitudes that 

were expected for the CDGPS measurements, about 3 cm in each axis (1-sigma). 

However, it is seen that the GPS measurement residuals did not change. This is 

expected since the predominant error source in the relative measurement residuals is 

the lack of second order dynamics while the absolute estimates are suffering from the 

reference periodic orbit mismatch mentioned earlier. Figures 21 and 22 shows the 

filter's performance when noise was added to the measurements. The performance 

of absolute positioning was nearly identical to that of the error free data and the 

relative measurement residuals seem to be still largely affected by error other than 

from the measurements. This means that modeling error is the dominating source 

of error in the filter's position estimates and not sensor noise. 
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First Pass Residuals for Satellite 1 & 2 - CDGPS Data 
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Figure 7     CDGPS Filter's First Pass Residuals of CDGPS Data (Noise Free Data 
and Original Orbital Spacing) 
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Figure 8     CDGPS Filter's First Pass Residuals of GPS Data (Noise Free Data and 
Original Orbital Spacing) 
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First Pass Residuals for Satellite 1 - GPS Data 
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Figure 9     Zoom In of CDGPS Filter's First Pass GPS Residuals (Noise Free Data 
and Original Orbital Spacing) 
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Figure 10     CDGPS Filter's Last Pass Residuals of CDGPS Data (Noise Free Data 
and Normal Orbital Spacing) 
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Last Pass Residuals for Satellite 1 - GPS Data 
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Figure 11     CDGPS Filter's Last Pass Residuals of GPS Data (Noise Free Data and 
Normal Orbital Spacing) 
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Figure 12     Zoom In of CDGPS Filter's Last Pass GPS Residuals (Noise Free Data 
and Normal Orbital Spacing) 
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Last Pass Residuals for Satellite 1 & 2 - CD6PS Data 
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Figure 13     CDGPS Filter's Last Pass Residuals of CDGPS Data (Noise Corrupted 
Data and Normal Orbital Spacing) 
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Figure 14     CDGPS Filter's Last Pass Residuals of GPS Data (Noise Corrupted 
Data and Normal Orbital Spacing) 
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First Pass Residuals for Satellite 1 & 2 - CDGPS Data 
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Figure 15     CDGPS Filter's First Pass Residuals of CDGPS Data (Noise Free Data 
and Reduced Orbital Spacing) 
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Figure 16     CDGPS Filter's First Pass Residuals of GPS Data (Noise Free Data and 
Reduced Orbital Spacing) 
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First Pass Residuals for Satellite 1 - GPS Data 
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Figure 17     Zoom In of CDGPS Filter's First Pass GPS Residuals (Noise Free Data 
and Reduced Orbital Spacing) 
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Figure 18     CDGPS Filter's Last Pass Residuals of CDGPS Data (Noise Free Data 
and Reduced Orbital Spacing) 
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Last Pass Residuals for Satellite 1 - GPS Data 
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Figure 19     CDGPS Filter's Last Pass Residuals of GPS Data (Noise Free Data and 
Reduced Orbital Spacing) 
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Figure 20     Zoom In of CDGPS Filter's Last Pass GPS Residuals (Noise Free Data 
and Reduced Orbital Spacing) 
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Last Pass Residuals for Satellite 1 & 2 - CDGPS Data 
0.1 '  1 1 1 1 1 r            i                I 

0.05 a                                           t                             9                 " 

0 

V*        v                                *i/\jir    nv Ij^n&'vv      F   V o 
0.0b   x2-x1 

-*-y2-y1 
-e- z2-zi 

1            1            1            1         -.1 1 1 1  

10 20 30 40 50 60 70 80 90 100 

Last Pass Residuals for Satellite 1 & 3- CDGPS Data 

10 20 30 40 50 60 70 
Observation Number (24-Hour Period) 

80 90 100 

Figure 21     CDGPS Filter's Last Pass Residuals of CDGPS Data (Noise Corrupted 
Data and Reduced Orbital Spacing) 
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Figure 22     CDGPS Filter's Last Pass Residuals of GPS Data (Noise Corrupted 
Data and Reduced Orbital Spacing) 
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4.2   Relative Data Filter - Range Filter 

Figure 23 and Figure 24 show the range filter's first and last pass residuals for 

the noise-free and noise-added runs, respectively. First pass residuals show residuals 

growing from the centimeter level to nearly 2 meters by the end of 24 hours. The 

satellite pair comprised of 2 and 3 show a clear, secular growth in their residuals. 

This growth in the residuals is related to cluster geometry. The effect of formation 

geometry on residual growth was investigated and will be discussed momentarily. 

After filter convergence, the last pass residuals show the error bounded within an 

envelope with maximum magnitudes near 50 meters. The rapid growth of the resid- 

uals relative to the other filters' residuals and the size of the last past residuals 

created uncertainty in the stability of this filter. Singular decomposition analysis 

was performed on the final covariance matrix to characterize the observability of the 

filter's states. The analysis showed that while the filter did have 12 significantly 

large singular values (on the order of 105), it also possessed six very small singular 

values. While they were not exactly zero, their values were near 10~3. This means 

that while the system gains enough observability from the range measurements to 

invert the covariance matrix and converge upon a solution, it is still weakly unstable. 

At this point it is important to recall the form of the range measurements used in 

this filter. Recalling Equation 50, they are given by 

Grange = \ri~rj\i \°") 

which in the case of three satellites translates to 

*jrRange        ' 

yjixx - x2)
2 + (2/i - -V2)2 + (Zl- -z2)

2 

y/(Xl - x3)2 + (yi - -ys)2 + (zi- -z3)
2 

^ ij{x2 - x3)
2 + (y2 - yi)2 + (z2 - z3)

2 _ 

(70) 
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This shows that the filter is gaining relative position knowledge between the position 

states of each pair of spacecraft. This is very similar to the what the other relative 

data filter using CDGPS gains from its measurements. For a three satellite equation, 

they are described by 

x2 — X\ 

GDGPS = " >. (71) 

2/2 — Z/i 

z2- z\ 

x3 -xi 

2/3 — 2/1 

zz- z1 

While the two measurements are similar in that they both give relative positional 

information with respect to a satellite pair, there is one very important distinction. 

The CDGPS measurements do not give as much positional information about the 

entire formation as the range measurements. The CDGPS measurements are differ- 

enced with respect to satellite one. Remember that the assumption of this work is 

that every satellite within the formation will think it is satellite one (or the central 

satellite) as it pertains to the estimation problem. The impact of only differencing 

with respect to satellite one means additional positional information about the rel- 

ative positions of the other spacecraft with respect to themselves is lost. It is this 

information that makes the formation in this relative data filter observable and not 

in the relative data filter using CDGPS measurements. The observability problem 

in the CDGPS filter was fixed by introducing absolute information in the form of a 

GPS measurement referenced to the reference periodic orbit. The inclusion of this 

type of measurement should also make the system more observable in this filter and 

thus eliminate the weak instability. 

Even though the filter is hampered by stability issues, the residuals were still 

thought to be affected by second order effects. Thus, the relative spacing between 

the formation elements was reduced by an order of magnitude. The resulting reduced 
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formation is identical to that of the Relative Data Filter - CDGPS Data. Figures 25 

and 26 show the same information as the previous two figures but with the spacing 

between satellites reduced by an order of magnitude. As hoped, the error bottomed 

out at the noise floor determined by the measurement covariance programmed into 

the filter. Although, it can be seen (like before) that the last pass residuals tend 

to get larger and grow secularly. This can be seen easier when the time scale is 

expanded. Figure 27 and Figure 28 shows the filter's performance over two and 

seven days of data, respectively. This appears to be due to second order secular terms 

in the perturbations of which the filter cannot compensate or due to the stability 

issues mentioned previously. This trend was examined under different spacecraft 

geometries to determine how relative positioning affected residual growth. 

The formation was reconfigured in phase space (by altering the Floquet modal 

variables) rather than in physical space since known terms causing secular growth 

are easier identified and suppressed in phase space. Once the new formation was 

selected, the physical positions of the spacecraft were determined by transforming 

them using Equation 46 in Section 3.1.2. Altering the Floquet modal variables must 

be done with caution so that the initial conditions of the cluster do not cause the 

cluster to disperse. Specifically, the fourth and sixth modal variable were kept at 

zero to discourage secular growth in the error and thus cluster dispersion. One 

data run in particular used an altered formation with the first modal variable of 

one satellite changed from the initial, reduced cluster design. This modal state was 

chosen for alteration as it is not inclined to contribute to cluster dispersion. This 

variable represents the perturbation of the eccentricity and is part of the energy 

mode. The results from this particular data run can be seen in Figures 29 and 30. 

The plots still show secular growth like the other cluster, however the satellite pair of 

2 and 3 do not linearly diverge like before and the secular growth is less severe. It is 

interesting to point out that once converged, the residuals of this new formation are 

actually worse than before. Singular value decomposition was once again performed 
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on this altered formation's covariance matrix. As implied by the larger residuals, the 

previously identified small singular values got smaller. This shows that changing the 

geometry of the formation affects the observability of the system as a whole. While 

this thesis was not concerned with optimal formation design and thus no more effort 

was put into observing different formation's behavior, it is recommended for future 

study. 
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Figure 23     Range Filter's Residuals (Noise Free Data and Normal Orbital Spacing) 
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Figure 24     Range Filter's Residuals (Noise Corrupted Data and Normal Orbital 
Spacing) 
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Figure 25     Range Filter's Residuals (Noise Free Data and Reduced Orbital Spac- 
ing) 
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First Pass Residuals - Range Data 
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Figure 26 Range Filter's Residuals (Noise Corrupted Data and Reduced Orbital 
Spacing) 
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Figure 27 Range Filter's Residuals Over 2 Days (Noise Free Data and Reduced 
Orbital Spacing) 
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First Pass Residuals - Range Data 
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Figure 28     Range Filter's Residuals Over 7 Days (Noise Corrupted Data and Re- 
duced Orbital Spacing) 
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Figure 29     Range Filter's Residuals Over 1 Day (Altered First Floquet Variable 
From Original Cluster) 
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Figure 30     Range Filter's Residuals Over 3 Days (Altered First Floquet Variable 
From Original Cluster) 
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4.3   Relative State Filter - CDGPS Data 

Figure 31 and Figure 32 show the relative state filter's first and last pass 

residuals for the noise-free and noise-added runs, respectively. This system is only 

comprised of two satellites unlike the other two previous filters. Thus, only one 

satellite pair is represented in the plots. In both figures the performance is similar 

regardless of the noise added. This once again shows that the errors in the filter's 

relative motion model are dominating any modeled sensor noise. Similar to the 

other filter using CDGPS data, the in-track residuals show secular growth. The 

filter converges and yields residuals with maximum values near 30 centimeters. This 

error is on the order of the other two filters with the standard, larger spacing. 

The spacing was once again reduced by an order of magnitude to lessen the 

impact of second order effects. Since all three filters use the same formation, this 

reduced formation is identical to the other filter's reduced formation. The results can 

be seen in Figure 33 and Figure 34. It is seen that reducing the spacing in the cluster 

causes the first and last pass residuals to be nearly identical. The with-noise and 

without-noise measurement plots do not look similar at all as the noise dominates the 

error in the with-noise plots. A run was accomplished with a poor initial estimate 

of the system states to verify proper filter functioning. The poor initial estimate 

was created by randomly adding values of the same order of the states to the states. 

The results can be seen in Figure 35 and Figure 36. The plots show that the first 

pass residuals are much larger and that the noise on the measurements no longer 

dominates the residual trends. The filter does converge correctly and the last pass 

residuals are identical to those of the runs when the initial state vector estimate was 

accurate. 
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First Pass Residuals - CDGPS Data 
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Figure 31     Relative State Filter's Residuals (Noise Free Data and Normal Orbital 
Spacing) 
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Figure 32     Relative State Filter's Residuals (Noise Corrupted Data and Normal 
Orbital Spacing) 

65 



First Pass Residuals - CDGPS Data 
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Figure 33     Relative State Filter's Residuals (Noise Free Data and Reduced Orbital 
Spacing) 
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Figure 34     Relative State Filter's Residuals (Noise Corrupted Data and Reduced 
Orbital Spacing) 
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Figure 35     Relative State Filter's Residuals (Noise Free Data, Poor Initial State 
Estimate and Reduced Orbital Spacing) 
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Figure 36     Relative State Filter's Residuals (Noise Corrupted Data, Poor Initial 
State Estimate and Reduced Orbital Spacing) 
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44    Second Order Effects 

The previous sections have shown that the limiting factor in the implementa- 

tion of this filter is the effect of the second order dynamics. If one were to design a 

satellite cluster with spacing on the order of tens of meters as opposed to kilometers, 

this filter would suffice. However, as the data has shown, the residuals even with 

perfect measurements grow unacceptably large. The second order effects can be 

compensated for by including the higher order terms up to the second order during 

linearization via Taylor Series expansion. For each satellite, this can be accomplished 

via 

x = Aa(t)x + ^Baß{t)xaxß + ... + fp, (72) 

where the Greek indices are summed one through six since there are six states for 

each satellite. Thus, the quantities of Aa(t) and Baß(t) are periodic tensors formed 

by taking partial derivatives of the Hamiltonian function. This can be expressed by 

Aijit)   =   X, iadX„dX. 

Bijk(t)   =   X, 
*dXadXjdXk 

X0(t) 

(73) 
X0(t) 

where Xia is a matrix of off-diagonal values of +/-1 required to produce the structure 

of Hamilton's equations of motion [35]. This is not much more work than is already 

accomplished since Baß(t) is only one more round of partial differentiation past what 

is already done to get Aa(t). Additionally, since Aa(t)is mostly zeroes or constants, 

Baß(t) will mostly be populated by zeroes and only require a few derivatives to be 

taken. 

4-5   Relative vs. Absolute Position Estimation 

One of the objectives of this research was to separate the relative positioning 

problem from the absolute positioning problem in the navigation of a satellite for- 
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mation. The data clearly shows that this has been achieved. Past efforts have tried 

to obtain centimeter level estimates in the relative positions by obtaining centime- 

ter level estimates in the absolute positions. This approach had miserable results 

as a majority of the significant digits were wasted in estimating the absolute posi- 

tions. This research, using mostly relative data, produced absolute position estimates 

that, although may be adequate (depending on the application), are relatively poor. 

However, the relative position estimates generated by this filter exhibit error that is 

directly proportional to the error in the measurements. Thus, the accuracy of the 

filter's performance is limited to the type of data used, centimeters in this work. This 

extremely accurate positioning is obtained regardless of the performance of absolute 

positioning. This separation between the relative and absolute positioning problem 

is seen in the residual plots as well as in a closer inspection of the system's covariance 

matrix. 

The covariance for the CDGPS (and GPS) filter is an 18 by 18 matrix and is 

essentially comprised of nine smaller six by six covariance matrices (referred to here 

as covariance sub-blocks). If one views the state vector as one large vector comprised 

of three smaller state vectors for each satellite, it is easier to see this sectioned 

description of the system's covariance matrix. Three of the covariance sub-blocks 

correspond to each satellite and six correspond to each satellite pair. Since there 

are only 3 unique satellite pairings in a three satellite system, there are two copies 

of the same covariance sub-blocks for each pairing. The system's covariance matrix 

and its nine sub-blocks are represented by Equation 74. It can be seen that the 

off-diagonal blocks pertain to satellite pairs (relative positioning) while the blocks 

along the diagonal relate to the state of each satellite (absolute positioning). 

■* system 

'        PP P ' 
■'xi r x\ — x2 r x\— X3 

^X2— XI              *:X2 ±X<l—X% 

■*X3—XI ■'X3—X2 ■*  X3 
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The off-diagonal blocks of the covariance can be defined as 

PXi.x. = E ({6xi - Sxi){Sxi - 8Xj)
T) , (75) 

where 5x is the true error in the physical states and i and j range from one to the 

number of satellites in the problem. Recalling from Section 3.1.2 that the physical 

states, x, are transformed from the modal states, z, via a the transformation matrix 

F, the true error can be expressed as 

8xi = F5Zi. (76) 

Using this relationship and the fact that the modal matrix, F, is deterministic, 

Equation 75 becomes 

PXi_Xj   =   FE((5zi-5zJ)(5zi-Szj)
T)Fa' 

=   F (E(SZi5zf) - E{8Zi5zJ) - E{5Zi5zf) + E(SZiSzf)) FT 

=   F(PZi-PZi-PZi + PZi)F
T. (77) 

The blocks along the diagonal of the covariance are similarly found to be 

PXi   = E(6xiSxJ) 

= E (F5Zi(F5Zi)
T) 

= FE (SziSzf) FT 

= FPZiF
T. (78) 

The above relationships were investigated within the covariance matrices from filter 

runs using both relative and absolute GPS measurements. The results of this effort 

showed a distinct boundary between the two data types. While the filter covariance 

was pessimistic, the covariance values for the relative data were still between 10 and 
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30 times smaller than the magnitudes of the absolute data. The pessimism in the 

filter can be attributed to the lack of second order dynamics in the filter's dynamics 

model, the reference periodic orbit mismatch, and the absence of any effort to tune 

the filter. 

71 



V.   Conclusions and Recommendations 

This work shows that it is possible to estimate relative satellite positions using recur- 

sive Bayesian estimation techniques with relative measurement data as the primary 

measurement type. Each of the three filters studied converged with errors on the 

order of the measurement noise used when the orbital spacing is on the order of 

tens of meters. However, the filter yielded errors an order of magnitude higher when 

the orbital spacing was increased to a much more desirable distance for space-based 

radar applications, on the order several hundred meters. Despite the fact that the 

two relative data filters have been shown to require absolute data to ensure system 

observability, the most important objective of this research has been accomplished. 

This is the separation of the relative positioning problem from that of the abso- 

lute. Even with extremely poor absolute position knowledge, the filter was able to 

converge on a relative solution with exquisite accuracy. In fact, it has been shown 

through this work that the relative motion model inaccuracies are the dominating 

noise source and not the sensor noise added to the measurements. 

Results show that the filter models the cluster diverging as a unit for pertur- 

bations that effect the group as a whole. These perturbations could include air drag, 

gravity harmonics, solar flares, etc. The absolute positioning of the cluster may suf- 

fer under these perturbations, but this does not matter much since centimeter level 

accuracy in the estimate of the system's absolute position is not required for most 

applications. Accuracy on the order of tens of meters should be more than enough 

to perform uplink and downlink communications or reconfiguration maneuvers. On 

the other hand, centimeter or better knowledge of the relative spacecraft positions 

is imperative in applications such as space-based radar where accuracy is needed on 

the order of a tenth of the wavelength used. Thus, the fact that the filter shows the 
j 

cluster degrading as a unit is encouraging to the future of this type of application. 

Also encouraging is the level of accuracy achieved, not only for the implementation 
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of radar but also for maintaining accurate CDGPS estimates. Since the filter is show- 

ing performance on the order of centimeters, this accurate position knowledge can 

be used by a spacecraft's on-board CDGPS system to resolve the unknown integer 

ambiguity experienced when a CDGPS system loses lock on GPS signals. Since the 

system dynamics are very deterministic (and the filter has a position estimate accu- 

rate to within a few centimeters), the filter can trust its dynamics model's position 

predictions during a loss of GPS signal lock to help resolve the integer ambiguity and 

quickly regain lock. This is true if the error in the position is less than the length of a 

GPS wavelength and of course the signal outage does not last any significant amount 

of time. The GPS wavelengths are about 19 centimeters for LI and 24 centimeters 

for L2 (LI and L2 are the downlink frequencies for user data). While the error shown 

in this work is not much lower than the GPS wavelengths, the accuracy obtained is 

still encouraging since GPS carrier-phase filtering algorithms do not usually use LI 

or L2 wavelengths. Instead they use an observable comprised of a combination of 

the wavelengths, called a measurement combination, since LI and L2 wavelengths 

are relatively small. Measurement combinations essentially lengthen the effective 

wavelengths of GPS signals and this added length helps speed up the resolution of 

the integer wavelength ambiguity. In particular, one observable called a Widelane 

measurement has a effective wavelength of 86 cm. This is much larger than the error 

shown in this work and thus the accurate position estimates will speed the resolution 

of the integer ambiguity, or at least help provide a better guess at the ambiguity, 

when GPS signals are not being properly tracked. 

Since this work can be described as a proof of concept, future work should 

focus on improving the initial results obtained. The areas for improvement include 

adding in perturbations, second order dynamics, GPS measurements to the relative 

data filter using range data, and using a fitted reference periodic orbit. The easiest 

recommendation to implement will be the addition of the GPS measurements to the 

range measurement filter.   As mentioned previously, this should make the system 
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more observable and improve the filter's perfomance. The addition of second order 

dynamics should prove to be a little more difficult to implement. The decision to 

not include second order system dynamics in the filter has been identified as the 

reason behind each filter's poor relative position performance when the size of the 

cluster is of several hundred meters. Further work should involve the inclusion of 

second order terms in the linearization of the system dynamics to allow the size of the 

cluster to be expanded. Once this issue is addressed, the cluster can be expanded 

to determine the maximum spacing a cluster may have before the measurement 

accuracies are degraded due to other higher order effects (third order and higher). 

While second order effects are affecting the relative residuals, the absolute residuals 

(and the relative to a smaller extent) are being affected by a reference periodic orbit 

mismatch. It is recommended that future work use a fitted reference periodic orbit 

to remove the periodic oscillations from both the absolute and relative residuals 

as well as improve the overall accuracy of the absolute estimates. This can be 

accomplished by running a periodic orbit estimator in concert with the positional 

estimator. The last significant effort from an improvement perspective should be to 

model the effects of perturbations. The effects of air drag, and tesseral and sectoral 

harmonics should be modeled as a forced solution within the linear dynamics of 

the filter and the effects investigated. Although this work demonstrated accurate 

estimation of relative positions in the absence of perturbations, it is believed that 

if the relative spacing of the formation is not too large, the perturbating forces will 

cause the cluster to be perturbed as a unit and not disperse. Thus, accuracies with 

perturbations should be close to the accuracies obtained in this effort without them. 

Once these four improvement efforts have been accomplished, it is recom- 

mended that implementation issues such as filter tuning, size of the data batch 

to process, and trade-offs in the filter algorithm chosen be investigated. The filter 

should be tuned over many data runs through a Monte Carlo analysis, adjustment 

of the noise covariance values, or a combination of the two. This will make the co- 
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variance output with every estimate more inline with the estimates provided, unlike 

the pessimistic covariance of this work. Of course prior to any tuning efforts, the 

proper length of the data batch interval should be determined so that trends due 

to modeled perturbations can be fully characterized. Although more data is usually 

better, especially when trends in the residuals due to certain perturbations span over 

several days, the batch size may need to be truncated to save time and processing 

power since both of these quantities are not luxuries in a real-time space application. 

Lastly, the Bayes algorithm should be compared against other filtering algorithms, 

such as the Kaiman filter, to see the advantages (and disadvantages) of different 

approaches. Although this author believes that any successful filtering approach will 

require a batch formulation, it may be worthwhile to observe the difference in filter 

performance from a non-batch formulation as well. 

In conclusion, this research has two major successes. First, it has been shown 

that relative spacecraft position estimates can be identified to within the accuracy 

of the measurements used, potentially on the order of centimeters, if the spacing 

between the cluster elements is kept on the order of meters (larger distances if second 

order dynamics are included in the filter). The second major success is probably the 

most important. The relative positioning problem has successfully been detached 

from the absolute positioning problem. Extremely accurate estimates of relative 

spacecraft positions can be made even though knowledge of the absolute positions 

are poor. 
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Appendix A.   Relative Data Filter Source Code 

,,  

// Non-Linear Bayes Algorithm Used to Estimate Satellite Positions in 

// the Orbital Frame, or Clohessy-Wiltshire Frame (Radial, Intrack, 

// Cross-track). This code represents the relative data filters and not the 

// relative state filter. The relative state filter has minor modifications 

// that are described in the thesis text. 

// 

// Created by Captain Ralph Bordner III 

// 17 October 2000 

// Original Version 

// Last revision done on 15 February 2001. 

// 

// This code is written mostly in the C language with a few bits of C++ 

// thrown in as well.  It was written for Borland's C++ Builder 5.  The code 

// was executed on a PHI - 533 MHz system with 128 MB of RAM.' The OS was 

// Winodws 98 and Windows ME. 

// 

// Portions of this code were translated from FORTRAN code written 

// by Dr. William Wiesel, Professor of Astronautical Engineering, AFIT 

// 

»include <vcl> #pragma hdrstop »include <iostream> »include 

<fstream> »include <cstdlib> »include <cmath> »include <conio> 

»include <math> 

using namespace std; 

//  

// Declaration of Additional Funtions Used 

//  

void dynamics(long double phi[][18], long double xpred[], 
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long double &tob, long double modal_ref[], 

long double &phase_angle, int &num_sats, 

long double modal_pred[]); 

void obser_processor(long double &tob, int feiztype, long double 

Qinv[][18], 

long double zpred[], long double h[][18], 

long double xpred[], int &num_sats); 

void matrix_inverter(long double a[][18], long double ainv[][18], 

int &ier, 

long double ftcondnum, int &num_sats); 

void solnla(long double &t, long double &phi, long double Xpo[], 

long double F [][6], long double expJt [][6]); 

//  

// Main Routine 

//  

#pragma argsused 

int main(int arge, char* argv[]) 

{ 

//  

//    Declarations and Initializations 

//  

// Declare the in stream 'in' and 'data' from class ifstream (C++). 

// Declare the out file 'out' and 'input' the regular C way so that 

// file output can be formatted easier. 

ifstream in, data;    // 'in' is the initial state and 'data' is data. 

FILE *out, *input;    // 'out' is Bayes output and 'input' is the 

FILE *sample, *resids; // 'in' file for the next iteration of Bayes. 

FILE *modal_corr, *modal_est; 

FILE *resids_size, *oneday, *phys, *modal, *meas, *type; 

long double modal_minus[18], pinv_minus[18][18], epoch.time, reject; 
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long double modal.ref[18],  observation[9][1000],  time[1000],  z[6]; 

long double tmat[18][18],  htql[18][6],  phase[1000],  phase_angle,  tob; 

long double condnum, h[6][18], xpred[18],  Qinv[18][18],  zpred[18]; 

long double sqroot,  residuals[20][1000][6], htqlr[18], pminus[18][18]; 

long double p[18][18],  phi[18][18],  phip[18][18],  diff.modal[20][18]; 

long double pinv[18][18],  phi_inv[18][18],  modal.ref_mat[20][18]; 

long double converted_resid,   std_dev,   sps_gps_sigma; 

long double physical.states[20][1000][18], modal_pred[18]; 

long double modal_states[20][1000][18]; 

int maxit,  i,  j, nob,  iter,  iob,  ier,  datatype[1000], numdata[1000]; 

int irej,  k,  num,   iztype,  rej_flag[20][1000][6],  max.iter,  flag; 

int size_state,  num_sats,  max,   egm_variable,  tu,   data_points; 

int int_step,   output_type,   seed,   sectoral_flag,  tesseral_flag; 

bool done,  converge,  finished,  eof(); 

//    Debug code to print out covaiance. 

//if((sample=fopen 

// ("c:\\windows\\desktop\\thesis\\working\\bayesfilterWsample.out", 

// "w"))==NULL){ 

// printf("Cannot open file.\n"); 

//} 
//**********************************^ 

// Hard-coded state size - can be rewritten to be brought in via 

// data file. 

num_sats = 3; 

size_state = num_sats*6; 

// Initialize the residual array based on dimensions declared above. 

for(i=0; i<20; i++){ 
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for(j=0;  j<3000;  j++){ 

for(k=0;  k<6;  k++){ 

residuals[i][j][k]  = O.Oe+00; 

} 

} 

} 

//  

//    Read In Initial Values 

//  

// Open the input file from working folder and 

// read in initial estimates. 

in.open("c:\\windows\\desktop\\thesis\\working\\bayesfilter\\state.tf", 

ios::in); 

// Error handling in case file does not open. 

if (!in.is_open())-[ 

cout « "The input file for initialization could not be opened.\n"; 

} 

// Read in epoch time. 

in » epoch_time; 

// Read in initial guess. 

for(i=0; i<size_state; i++){ 

in » modal_minus[i]; 

} 

// Read in value of maximum allowed iterations. 
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in » maxit; 

// Read in residual rejection criteria (in sigma). 

in » reject; 

//    Read in the Inverse Covariance. 

for(i=0;   i<size_state;   i++){ 

for(j=0;   j<size_state;   j++){ 

in » pinv_minus[i][j]; 

} 

} 

// Set the first guess to the previous estimate. 

for(i=0; i<size_state; i++){ 

modal_ref[i] = modal_minus[i]; 

} 

for(i=0; i<size_state; i++){ 

modal_ref_mat[0][i] = modal_ref[i]; 

} 

// Close the 'in' stream. 

in.closeO ; 

//  

//    Read In Data 

//  

// Open observation file and read in data. 

data.open("c:\\windows\\desktop\\thesis\\fromwiesel\\truthmodel\\data.in", 

ios::in); 
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// Error handling in case observation file does not open. 

if (!data.is_open()H 

cout « "The obseration file could not be opened.\n"; 

> 

// Read in observation data. 

i=0; 

while(i<1000){ 

// Read in data type amd time of data sample. 

data.eof(); 

if(data.eof() == true){ 

cout « "End of Data File Reached.\n"; 

break; 

} 

data » time[i] » datatype[i] » phase[i]; 

// Read in measurements depending on type. 

if(datatype[i]==l){ // GPS data - relative 

numdata[i] = (num_sats-l)*3; 

num = numdata[i] ; 

for(j=0; j<num; j++){ 

data » observation[j][i]; 

} 

} 

else if(datatype[i]==2){ // Range data 

numdata[i] = ((num_sats*num_sats-num_sats)/2); 

num = numdata[i]; 
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for(j=0;  j<num;  j++){ 

data » observation[j][i]; 

} 

} 

else{      //    GPS data with absolute flavor 

numdata[i]  = 3; 

num = numdata[i]; 

for(j=0;  j<num;  j++){ 

data » observation[j][i]; 

} 

} 

// Determine if storage array for data is full. 

if(i==2999){ 

cout « "Obsevation buffer full...truncated.\n"; 

} 

// Increment counter and determine number of measurements read. 

nob = i; 

i = i + 1; 

// Close the 'data' stream. 

data.close(); 

//    Open output file. 

if((out=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilterWbayes.out", 

"w"))==NULL){ 
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printf("Cannot open output file.\n"); 

} 

fprintf(out, 

"***0utput from Bayes Filter for Relative Satellite Navigation***\n"); 

fprintf(out, 

"(Output in DU (1678.135 km = 1 DU) unless otherwise stated\n\n"); 

// Output initial state 

fprintf(out, "\nlnitial state vector:\n\n"); 

for(i=0; i<size_state; i++){ 

f printf (out, "'/,+. 15Le\n", modal_ref [i]); 

> 

fprintf(out, "\n"); 

// Set last pass flag to false for processing loop that follows. 

finished = false; 

//  

//     Begin Iteration Loop - Non-Linear Least Squares 

//  

for(iter=l; iter<(maxit+l); iter++){ 

//  

//  Initialize Buffers for Matrix Product Accumulation 

//  

// Initialize htqlr to pminus*(xminus-xref). 

// Initialize pinv to pminus. 

for(i=0;  i<size_state;  i++){ 

htqlr[i]   = 0.0e+00; 

for(j=0;   j<size_state;   j++){ 

pinv[i] [j]  = pinv_minus[i] [j]; 
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htqlr[i]   = htqlr[i]   + pinv.minus[i] [j] * (modal .minus [j] 

- modal_ref[j]); 

} 

} 

//  

//     Observation Processing Loop 

//  

for(iob=0;  iob<nob;  iob++){ 

// Extract current observation. 

tob = time[iob]; 

num = numdata[iob]; 

iztype = datatype[iob]; 

phase_angle = phase[iob]; 

for(i=0;   i<num;   i++){ 

z[i]  = observation[i][iob]; 

} 

//  

//          Propogate States and Phi 

//  

dynamics(phi, xpred,  tob, modal_ref, phase_angle, num_sats, 

modal_pred); 

//    Store off  states for plotting. 

for(i=0;   i<size_state;   i++){ 

physical_states[iter-l][iob][i]  = xpred[i]; 

} 

for(i=0;   i<size_state;  i++){ 

modal_states[iter-l][iob][i]   = modal_pred[i]; 
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//  

//    Obtain Matrices for this Observation 

//  

obser_processor(tob,  iztype,  Qinv,  zpred, h,  xpred, num_sats); 

//    Matrix Calculations - Current Observation. 

//    Form the residual vector and test for rejection. 

irej  = 0; 

for(i=0;   i<num;   i++){ 

residuals[iter-1][iob][i]  = z[i]   - zpred [i]; 

sqroot = sqrtl(Qinv[i][i]); 

if(fabsl(residuals[iter-1][iob][i])  > reject/sqroot){ 

rej_flag[iter-1][iob][i]   = 1; 

irej  = 1; 

> 

else rej_flag[iter-1] [iob] [i]   =0; 

//  

// Matrix Calculations 

//  

// Check for observation rejection prior to calculations. 

// If rejected, skip calculations and obtain another 

// observation. 

if(irej==0){ 

//    Form matix product tmat=h*phi. 

for(i=0;   Knurn;   i++){ 
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for(j=0;  j<size_state;  j++){ 

tmat[i][j]  = 0.00e+00; 

for(k=0;  k<size_state;  k++){ 

tmat[i][j]  = tmat[i][j]  + 

h[i][k]*phi[k][j]; 

> 

//    Form matrix product T'*inv(Q). 

for(i=0;   i<size_state;   i++){ 

for(j=0;  j<num;  j++){ 

htql[i][j]   = 0.00e+00; 

for(k=0;  k<num;  k++){ 

htql[i][j]   = htql[i] [j]   + 

tmat [k] [i] *Qinv[k] [j]; 

} 

} 

//    Form product of T'*inv(Q)*T and progressively add. 

for(i=0;  i<size_state;  i++){ 

for(j=0;   j<size_state;   j++){ 

for(k=0;  k<num;  k++){ 

pinv[i] [j]  = pinv[i] [j]   + 

htql[i] [k]*tmat[k] [j]; 

> 

//    Form product T'*inv(Q)*r and progressively add. 
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for(i=0;  i<size_state;   i++){ 

for(j=0;  j<num;  j++){ 

htqlr[i]   = htqlr[i]   + 

htql[i][j]*residuals[iter-1][iob][j] ; 

} 

} 

} 

} 

//  

//   Print first pass residuals 

//  

if(iter==l){ 

fprintf(out,   "**    First Pass Residuals(in meters):     **\n"); 

for(j=0;   j<nob;   j++){ 

flag = 0; 

for(i=0;   i<num;   i++){ 

//    6378.135 km is equal to  1 DU  (mil-spec for 

//    earth radii. 

converted_resid = residuals[0][j][i]*6378135; 

fprintf(out,   "%+.15Le  "   ,   converted.resid); 

if(rej_flag[0][j][i]   == 1){ 

flag = 1; 

> 

} 

if(flag == 1){ 

fprintf(out, "Rejected\n"); 

} 

else fprintf(out, "\n"); 

} 

II- 
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//    Data is processed...improve estimate 

//  

// Invert pinv to find the covariance P. 

// Debug code to print out covariance. 

if((sample=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilterWsample.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

} 

for(i=0; i<size_state; i++){ 

for(j=0; j<size_state; j++){ 

fprintf(sample, "%+.15Le\n", pinv[i][j]); 

} 

fprintf(sample, "\n"); 

} 

fclose(sample); 

matrix_inverter(pinv, p, ier, condnum, num_sats); 

f printf (out, "\n\n\n*** Iteration °/,±  Statistics***\n", iter); 

fprintf(out, "\nCovariance matrix inversion error code = %i\n", 

ier); 

f printf (out, "\nCovariance matrix condition number = °/0.2Lf\n", 

condnum); 

//    Multiply P by T'inv(Q)r to get corrections to states. 

for(i=0;  i<size_state;  i++){ 

diff.modal[iter-1][i]   = 0.0e+00; 

for(j=0;   j<size_state;   j++){ 

diff_modal[iter-l][i]   = diff.modal[iter-1][i] 

+ p[i] [j]*htqlr[j]; 
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} 

} 

// Check convergence. 

converge = false; 

for(i=0; i<size_state; i++){ 

if (fabsKdif f .modal [iter-1] [i]) < 

(0.01*(sqrtl(fabs(p[i][i]))))H 

converge = true; 

} 

} 

// Print iteration. 

fprintf(out, "\nIteration %i state corrections:\n", iter); 

for(i=0; i<size_state; i++){ 

f printf (out, "'/,+. 15Le\n", dif f _modal [iter-1] [i] ) ; 

} 

fprintf(out, "\n"); 

cout « "Filter has completed " « iter « " iteration(s)An"; 

//    Add in state corrections. 

for(i=0;   i<size_state;   i++){ 

modal_ref[i]   = modal_ref[i]   + diff.modal[iter-1] [i]; 

> 

//    Store modal states 

for(i=0;   i<size_state;   i++){ 

modal_ref_mat[iter][i]   = modal_ref [i]; 

} 

//    Print  current best guess. 
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fprintf(out, "\nCurrent state vector at epoch:\n\n"); 

for(i=0; i<size_state; i++){ 

f printf (out, "'/,+ . 15Le\n", modal.ref [i]); 

} 

fprintf(out, "\n"); 

// Check to see if done. 

if(converge==true){ 

finished = true; 

} 

if(iter==l){ 

finished = false; 

} 

if(finished==true){ 

fprintf(out, "\n\n\nCONVERGENCE ACHIEVED.\n\n\n"); 

> 

// If convergence achieved, break out of loop. 

max_iter = 0; 

if(finished == true){ 

max_iter = iter - 1; 

iter = maxit +1; 

} 

> 

//  

//    The EndGame 

//  

if(iob==maxit && finished==false){ 

//  

//   Print Last pass residuals 
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//- 

fprintf(out,   "**    Last Pass Residuals(in meters):  **\n"); 

for(j=0;  j<nob;  j++){ 

flag = 0; 

for(i=0;  i<num;  i++){ 

//    6378.135 km is equal to  1 DU  (mil-spec for 

//    earth radii. 

converted_resid = residuals[max_iter][j][i]*6378135; 

fprintf(out,   "%+.15Le ",  converted_resid); 

if(rej_flag[max_iter] [j] [i]  == 1){ 

flag = 1; 

} 

} 

if(flag == 1){ 

fprintf(out, "Rejected\n"); 

} 

else fprintf(out, "\n"); 

} 

fprintf(out, "\n\n\nConvergence not achieved.\n\n\n"); 

} 

else 

//  

//   Print Last pass residuals 

//  

fprintf(out, "** Last Pass Residuals(in meters): **\n"); 

for(j=0; j<nob; j++){ 

flag = 0; 

for(i=0; i<num; i++){ 

// 6378.135 km is equal to 1 DU (mil-spec for 

// earth radii. 

converted_resid = residuals[max_iter][j][i]*6378135; 

fprintf(out, "%+.15Le ", converted.resid); 
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if(rej_flag[max_iter][j][i]  == 1){ 

flag = 1; 

> 

} 

if(flag == 1){ 

fprintf(out,   "Rejected\n"); 

} 

else fprintf(out,   "\n"); 

} 

// Print covariance matrix. 

fprintf(out, "\n\n\nCovariance Matrix at epoch is:\n"); 

for(i=0; i<size_state; i++){ 

for(j=0; j<size_state; j++){ 

fprintf(out, "%+.15Le\n", p[i] [j]); 

} 

fprintf(out, "\n"); 

} 

// Print state at time of last observation. 

fprintf(out, "\n\n\n***Last Observation Statistics***\n"); 

f printf (out, "\nState at time t: °/,.15Le\n", tob); 

for(j=0; j<size_state; j++){ 

f printf (out, "'/.+ . 15Le\n", xpred[j]); 

} 

fprintf(out, "\n"); 

// Calculate covaiance at last ovservation time 

// via phi*p*phi'. Use the last Phi calculated. 

// Calculate phi*p. 

for(i=0; i<size_state; i++){ 
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for(j=0;  j<size_state;  j++){ 

phip[i][j]  = 0.00e+00; 

for(k=0;  k<size_state;  k++)-[ 

phip[i] [j]  = phip[i] [j]   + phi[i] [k]*p[k] [j]; 

} 

//    Calculate phi*p*phi'. 

for(i=0;   i<size_state;   i++){ 

for(j=0;  j<size_state;  j++){ 

p[i] [j]   = 0.00e+00; 

for(k=0;  k<size_state;  k++){ 

p[i] [j]  = p[i] [jl  + phip[i] [k]*phi[j] [k]; 

} 

fprintf(out,   "\nCovariance at time of last ovservation:\n"); 

for(i=0;   i<size_state;   i++){ 

for(j=0;   j<size_state;   j++){ 

fprintf(out,   '"/.+ . 15Le\n", p[i][j]); 

> 

fprintf(out,   "\n"); 

} 

// Output final time, stae estimate, pinv into file for input 

// into Bayes filter. 

if((input=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilter\\state.new", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 
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fprintf(input,   "%.15Le\n\n", time[nob-l]); 

for(i=0;   i<size_state;   i++){ 

fprintf (input,   "7,+ .15Le\n",  xpred[i]); 

} 

fprintf(input, "\n"); 

fprintf (input, "°/,i\n\n", maxit); 

fprintf(input, "%.15Le\n\n", reject); 

// Invert P. 

matrix_inverter(p, pinv, ier, condnum, num_sats); 

fprintf (out, "\nCovariance matrix inversion error code = °/.i\n", 

ier); 

fprintf(out, "\nCovariance matrix condition number = %.2Lf\n", 

condnum); 

fprintf(out,   "\nCovariance inverse at last observation:\n"); 

for(i=0;   i<size_state;   i++){ 

for(j=0;  j<size_state;  j++){ 

fprintf(out,   "%+.15Le\n", pinv[i][j]); 

} 

fprintf(out,   "\n"); 

} 

for(i=0;  i<size_state;  i++){ 

for(j=0;   j<size_state;   j++){ 

fprintf (input,   "7,+ .15Le\n", pinv[i][j]); 

} 

fprintf(input,   "\n"); 

} 
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// Open files to output residuals, corrections, state 

// estimates, physical states and modal states for plotting. 

if((type=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilter\\type.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

> 

if((meas=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilterWmeas.out", 

"w"))==NULL){ 

printf ("Cannot open file.W); 

} 

if((phys=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilterWphys.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

} 

if((modal=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilterWmodal.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

} 

if((resids=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilter\\resids.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

} 

if((resids_size=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilter\\size.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

} 

if((modal_corr=fopen 
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("c:\\windows\\desktop\\thesis\\working\\bayesfilter\\corrections.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

} 

if((modal_est=fopen 

("c:\\windows\\desktop\\thesis\\working\\bayesfilter\\estimates.out", 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

} 

// Output residual array size [max.iter +1][nob][6] 

// Hard-coded to 6 resids. With 3 sats, the max resids 

// per measurement will be 6 for DGPS data. 

max = max_iter +1;  // Max_iter is zero based so add one. 

f printf (resids.size, "°/0i\n", max); 

fprintf(resids_size, "7,i\n\n", nob); 

// Output all residuals. 

for(i=0; i<max; i++){ 

for(j=0; j<nob; j++){ 

for(k=0; k<6; k++){ 

fprintf(resids, "%+.15Le ", residuals[i][j][k]); 

} 

fprintf(resids, "\n"); 

} 

fprintf(resids, "\n\n\n"); 

} 

for(i=0; i<max; i++M 

for(j=0; j<size_state; j++){ 

fprintf(modal_corr, "7.+ .15Le ", diff_modal[i] [j]); 

} 
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fprintf(modal.corr, "\n"); 

} 

for(i=0; i<max; i++){ 

for(j=0; j<size_state; j++){ 

fprintf(modal.est, "7,+ .15Le ", modal_ref_mat [i] [j]); 

} 

fprintf(modal_est,   "\n"); 

} 

//    Output state estimates. 

//  (currently hard-coded for last iteration) 

for(i=(max-l);   i<max;   i++){ 

for(j=0;  j<nob;  j++){ 

for(k=0;  k<size_state;  k++){ 

fprintf(phys,   "%+.15Le  ",  physical_states[i][j][k]); 

} 

fprintf(phys,   "\n"); 

} 

fprintf(phys,   "\n\n\n"); 

} 

for(i=(max-l);   i<max;   i++){ 

for(j=0;  j<nob;  j++){ 

for(k=0;  k<size_state;  k++){ 

fprintf(modal,   "%+.15Le  ",  modal.states[i][j][k]); 

} 

fprintf(modal, "\n"); 

} 

fprintf(modal, "\n\n\n"); 

} 

// Output datatype and observation matricies. 
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for(i=0;   Knob;   i++){ 

for(j=0;  j<9;  j++){ 

fprintf(meas,   "'/,+ . 15Le ",  observation[j] [i]); 

} 

fprintf(meas,   "\n"); 

} 

for(i=0;   Knob;   i++){ 

fprintf(type, "%i\n", datatype[i]); 

} 

// Prepare input file for next truthmodel data batch. 

// Currently optons for batch are hard-coded. 

if((oneday=fopen 

("c:\\windows\\desktop\\thesis\\fromwiesel\\truthmodel\\oneday.inN, 

"w"))==NULL){ 

printf("Cannot open file.\n"); 

> 

egm_variable = 14; 

tu = 108; 

data_points = 100; 

int_step = 500; 

output_type = 1; 

std_dev = 0; 

seed = 1234567; 

sps_gps_sigma = 0; 

sectoral_flag = 0; 

tesseral_flag = 0; 

fprintf (oneday, "°/,i\n", egm_variable); 

fprintf(oneday, "%.ld %i %i\n", tu, data.points, int.step); 

fprintf (oneday, "°/.i °/.+ .15Le °/.i\n", output_type, std.dev, seed); 

fprintf(oneday, "%+.15Le\n", sps_gps_sigma); 
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II- 

II- 

fprintf(oneday, "7d  %i\n", sectoral.flag, tesseral.flag); 

fprintf(oneday, "%i\n", num_sats); 

k=0; 

for(i=0; i<(size_state/6); i++){ 

for(j=(0+k); j<(k+6); j++){ 

fprintf(oneday, "%+.15Le ", modal.ref[j]); 

> 

fprintf(oneday, "\n"); 

k=j; 

} 

// Clean-up. 

fclose(type); 

fclose(meas); 

fclose(modal); 

fclose(phys); 

fclose(oneday); 

fclose(modal_corr); 

fclose(modal_est); 

fclose(resids_size); 

fclose(resids); 

fclose(out); 

fclose(input); 

//******************************************************^ 

// Debug code to print out covariance. 

//fclose(sample); 

cout « "Program finished - press any key to continue..."; 

getchO ; 

return 0; 
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//  

//    The "dynamics" routine.  It is passed t and modal.ref, and it gives 

//    back the predicted state (x_pred) and the state transition matrix 

//    (phi) at time t. 

Il- 

II 

void dynamics(long double phi[][18], long double xpred[], 

long double fetob, long double modal_ref[], 

long double &phase_angle, int &num_sats, 

long double modal_pred[]) 

{ 

long double Xpo[6],   expJt[6] [6],  F [6] [6],  phi_per_sat[6][6]; 

long double propagate[18][18] ; 

int offset,  factor,  i,  j, k,  size_state; 

//    State size calculation. 

size_state = num_sats*6; 

// Step one in bringing the state to time tob... 

// Call solnla to find the components necessary to build phi. 

// These components are the periodic coefficient matrix, F, and the 

// matrix exponential with J containing the Poincare exponents. 

solnla(tob, phase_angle, Xpo, F, expJt); 

// Generate phi for each sat. 

for(i=0; i<6; i++){ 

for(j=0; j<6; j++){ 

phi_per_sat[i][j]  = 0.00e+00; 

for(k=0;  k<6;  k++){ 
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phi_per_sat[i][j]  = phi_per_sat[i][j]  + F[i][k]*expJt[k][j]; 

} 

} 

> 

//    Form phi_ref based on num of sats by combining individual  "phi's" 

for(i=0;  i<size_state;  i++){ 

for(j=0;   j<size_state;   j++){ 

phi[i][j]   = 0.0e+00; 

} 

} 

offset = 0; 

factor = 1; 

for(k=0;  k<num_sats;  k++){ 

for(i=(0+offset);  i<(6*factor);   i++){ 

for(j=(0+offset);  j<(6*factor);  j++){ 

phi[i][j]   = phi_per_sat[i-offset][j-offset]; 

} 

} 

offset = offset + 6; 

factor = factor + 1; 

//    Multiply phi times moal_ref   

//    this gives physical states at tob  (xpred_ref). 

for(i=0;   i<size_state;   i++){ 

xpred[i]   = 0.0e+00; 

for(j=0;   j<size_state;   j++){ 

xpred[i]  = xpred[i]  + phi[i][j]*modal_ref[j]; 

} 

} 
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} 

//    Multiply exp(Jt) times modal_ref to get modal state at time t. 

for(i=0;   i<size_state;   i++){ 

for(j=0;  j<size_state;  j++){ 

propagate[i][j]   = 0.0e+00; 

} 

} 

offset = 0; 

factor = 1; 

for(k=0;  k<num_sats; k++){ 

for(i=(0+offset);   i<(6*factor);   i++){ 

for(j=(0+offset);  j<(6*factor);  j++){ 

propagated] [j]   = expJt [i-off set] [j -offset] ; 

} 

} 

offset = offset + 6; 

factor = factor + 1; 

for(i=0;   i<size_state;   i++){ 

modal.pred[i]   = 0.0e+00; 

for(j=0;   j<size_state;  j++){ 

modal_pred[i]  = modal.pred[i]  + propagate[i][j]*modal_ref[j]; 

> 

} 

//  

//    The obser_processor routine takes in t, data type, and x_ref, and it 

//    gives back the predicted measurements (z_pred), H, and Q. 

//  

// 

// 
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void obser_processor(long double &tob_ref, int feiztype, long 

double Qinv[][18], 

long double zpred[], long double h[] [18] , 

long double xpred[], int &num_sats) 

■C 

int i, j, size_state, sat_one, sat_two, flip_sign, m, k, sat; 

int factor, offset, loop; 

// State size calculation. 

size_state = num_sats*6; 

// The following code (1) calculates the predicted measurement and (2) H 

// matirx depending on the data type. Data type 1 is Carrier-Phase 

// Differential Global Positioning (CDGPS) data. Date type two is 

// relative range data derived from clock pulses between satellites. 

if(iztype==l){ 

k = 0; 

sat = 2; 

for(i=l; i<num_sats; i++){ 

// Initialize zpred to zero and then populate via G(x) for 

// CDGPS data. G(x) is position of ith satellite minus 

// position of first satellite. 

for(j=0; j<3; j++){ 

zpred[k] = 0.0e+00; 

zpred[k] = xpred[sat*3+j]-xpred[j]; 

k = k + 1; 

} 

sat = sat + 2; 

sat = 1; 
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for(k=0;  k<(num_sats-l);  k++){ 

for(i=0;  i<3;  i++){ 

//    Initialize H to zero. 

for(j=0;  j<size_state;  j++){ 

h[i+k*3][j]  = 0.0e+00; 

} 

//    Form H given G(x)  from above. 

h[i+k*3][i]  = -1.0e+00; 

h[i+k*3][i+sat*6]   = 1.0e+00; 

} 

sat = sat + 1; 

} 

//    Hard-coded Qinv. 

for(i=0;   i<((num_sats - 1)*3);  i++){ 

for(j=0;   j<((num_sats -  1)*3);   j++H 

Qinv[i][j]   = 0.0e+00; 

} 

Qinv[i][i]   =    2.126045e+8;   // 3 cm sigma 

} 

} 

else if(iztype==2){ 

// Initialize zpred data to zero. 

// This algorithm requires 3 satellites 

for(i=0; i<((num_sats*num_sats-num_sats)/2); i++){ 

zpred [i] = 0.0e+00; 

} 
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//    Populate zpred with estimated data given the G(x) 

//    for relative range data. 

sat_one = 0; 

sat_two = 1; 

k = 0; 

for(i=l;  i<num_sats;  i++){ 

for(j=i+l;  j<(num_sats+l);  j++){ 

zpred[k]  = sqrtl( 

(xpred[sat_one*6]  - xpred[sat_two*6])* 

(xpred[sat_one*6]  - xpred[sat_two*6]) 

+(xpred[sat_one*6+l]  - xpred[sat_two*6+l])* 

(xpred[sat_one*6+l]   - xpred[sat_two*6+l]) 

+(xpred[sat_one*6+2]   - xpred[sat_two*6+2])* 

(xpred[sat_one*6+2]   - xpred[sat_two*6+2]) 

); 

k = k + 1; 

sat_two = sat_two + 1; 

} 

sat_one = sat_one +1; 

sat_two = i + 1; 

// Initialize to H to zero. 

for(i=0; i<((num_sats*num_sats-num_sats)/2); i++){ 

for(j=0;  j<size_state;  j++){ 

h[i] [j]   = 0.0e+00; 

} 

> 

// Populate H matrix for range data given G(x) from above. 

sat_one = 0; 
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sat_two = 1; 

k = 0; 

for(i=l;  i<num_sats;  i++){ 

for(j=(i+l);  j<(num_sats+l);  j++){ 

h[k] [sat_one*6]   = 

(xpred[sat_one*6]   - xpred[sat_two*6])/zpred[k]; 

h[k][sat_one*6+l]   = 

(xpred[sat_one*6+l]   - xpred[sat_two*6+l])/zpred[k]; 

h[k][sat_one*6+2]  = 

(xpred[sat_one*6+2]  - xpred[sat_two*6+2])/zpred[k]; 

h[k][sat_two*6]  = -h[k][sat_one*6]; 

h[k][sat_two*6+l]  = -h[k][sat_one*6+l]; 

h[k][sat_two*6+2]  = -h[k][sat_one*6+2]; 

k = k + 1; 

sat_two = sat_two + 1; 

} 

sat_one = sat_one +1; 

sat_two = i + 1; 

//    Hard-coded Qinv. 

for(i=0;   i<((num_sats*num_sats-nnm_sats)/2);   i++H 

for(j=0;   j<((nim_sats*num_sats-num_sats)/2);   j++){ 

Qinv[i][j]  = 0.0e+00; 

} 

Qinv[i][i]  =    3.1890675e+8;  // 2 cm sigma 

} 

} 

else{ 

//    Absolute data relative to the periodic orbit,   (i.e.   GPS) 

for(i=0;  i<(3*num_sats);   i++){ 

zpred[i]  = 0.0e+00; 
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// Populate zpred with estimated data given the G(x) 

// for relative range data. 

offset = 0; 

for(i=0;   i<l;  i++){      // set to num_sats for all 

for(j=0;  j<3;  j++){ 

zpred[j + (offset/2)]  = xpred[j + offset]; 

} 

offset = offset + 6; 

} 

// Initialize to H to zero. 

for(i=0; i<(3*num_sats); i++){ 

for(j=0;   j<size_state;   j++){ 

h[i] [j]  = 0.0e+00; 

} 

} 

// Populate H matrix for the absolute data given G(x) from above, 

offset = 0; 

for(i=0; i<l; i++){ // set to num_sats for all 

for(j=0; j<3; j++){ 

h[j + (offset/2)][j + offset] = 1.0e+00; 

} 

offset = offset + 6; 

} 

// Hard-coded Qinv. 

for(i=0; i<(3*num_sats); i++){ 

for(j=0; j<3*num_sats; j++){ 
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Qinv[i][j]  = O.Oe+00; 

} 

Qinv[i][i]   =    2.126045e+6;   //3 m sigma 

} 

} 

} 

//  

//    Inverts a matrix via Guass eliminaiton with maximal pivoting. 

//  

// 

// 

void matrix_inverter(long double a[][18],   long double ainv[][18], 

int feier, 

long double ftcondnum,  int &num_sats) 

{ 

long double anorm,  tol,   amax,   irr[18],  var,  x[18]; 

long double row_norm_ainv,  row_norm_a,  row_sum; 

int i,  j,   id,   ir,   is,   size_state; 

size_state = num_sats*6; 

// Estimate condition number using row-sum norm (part 1) 

row_norm_a = 0.0e+00; 

for(i=0; i<size_state; i++){ 

row_sum = 0.0e+00; 

for(j=0;   j<size_state;   j++){ 

row_sum = row_sum + a[i][j]; 

> 

if(row_sum > row_norm_a){ 

row_norm_a = row_sum; 
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// Initialize ainv as the identity matrix. 

for(i=0;  i<size_state;   i++){ 

for(j=0;   j<size_state;   j++){ 

ainv[i][j]   = O.Oe+00; 

} 

} 

for(i=0;  i<size_state;  i++){ 

ainv[i][i]   = l.Oe+00; 

} 

//  

//    Calculate Inverse 

//  

// Find max norm of a. 

anorm = 0.0e+00; 

for(i=0;  i<size_state;   i++){ 

for(j=0;   j<size_state;   j++){ 

if(fabsl(a[i][j])  > anorm){ 

anorm = fabsl(a[i][j]); 

} 

> 

//    Set tolerance equal to 2"(-number_of_binary_digits_in_mantissa). 

tol = 1.0e-12; 

ier = 0; 

id = 0; 

for(i=0;   i<size_state;   i++){ 
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irr[i]  = 999; 

} 

r\n-f 

ir = 0; 

is = 0; 

amax = 0.0e+00; 

//    Find max pivot. 

for(i=0;  i<size_state;   i++){ 

if(irr [i]  == 999){ 

for(j=0;   j<size_state;   j++){ 

var = fabsl(a[i][j]); 

if((var - amax)>0){ 

ir = i; 

is = j; 

amax = var; 

} 

> 

} 

} 

//    Singularity test. 

if(amax/anorm < tol){ 

ier = 129; 

> 

//    Forward elimination. 

irr[ir]   = is; 

for(i=0;   i<size_state;  i++){ 

if(i  != ir){ 

var = a[i] [is]/a[ir] [is]; 
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for(j=0;  j<size_state;  j++){ 

a[i] [j]  = a[i][j]   - var*a[ir] [j]; 

> 

a[i] [is]   = O.Oe+00; 

for(j=0;   j<size_state;   j++){ 

ainv[i][j]  = ainv[i] [j]   - var*ainv[ir] [j]; 

} 

} 

'} 

id = id +1; 

}while(id<size_state); 

//    Back subsitution. 

for(j=0;   j<size_state;   j++){ 

for(i=0;   i<size_state;  i++){ 

ir = irr[i]; 

x[ir]   = ainv[i] [j]/a[i] [ir] ; 

} 

for(i=0;   i<size_state;   i++){ 

ainv[i] [j]  = x[i]; 

} 

} 

//    Estimate condition number using row-sum norm  (part 2). 

row_norm_ainv = 0.0e+00; 

for(i=0;   i<size_state;   i++){ 

row_sum = 0.0e+00; 

for(j=0;  j<size_state;  j++){ 

row_sum = row_sum + ainv[i][j]; 

> 

if(row_sum > row_norm_ainv){ 

row_norm_ainv = row_sum; 
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} 

} 

condnum = row_norm_a*row_norm_ainv; 

//  

// S0LN1A - Based on Floquet theory, calculates components necessary 

// for propogating state. 

//  

// 

// 

void solnladong double &t, long double &PHI, long double Xpo[], 

long double F [] [6], long double expJt[][6]) 

{ 

long double ckXpo [6] [30] , skXpo[6][30], tau, Omegaz; 

long double reckF[6][6][30], reskF[6][6][30]; 

long double Omega[2], sine[30], cosine[30], zz, OrbitW; 

long double imckF[6][6][30], imskF[6][6][30]; 

ifstream in; 

int ifirst, maxcoef, npts, i, j, k; 

ifirst = 0; 

maxcoef = 30; 

// Read in datafile if this tis the first call. 

if(ifirst==0){ 

ifirst = 1; 

in.open( 

"c:\\windows\\desktop\\thesis\\fromwiesel\\truthmodel\\orderl .dat", 

ios::in); 
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if(!in.is_open()){ 

cout « "The input file could not be opened.\n"; 

} 

// Orbital Period, nodal regression frame rate. 

in » tau » Omegaz; 

in » npts; 

// Check for storage space. 

if (npts > maxcoefH 

cout « "solnl:  Not enough storage for fourier coefs.\n"; 

// code to exit out 

> 

// The one non-degenerate pair of poincare exponents. 

in » Omega[0]; 

in » Omega[1]; 

// Read in the periodic orgit fourier coefficients. 

for(i=0; i<6; i++){ 

in » ckXpo [i] [0]; 

for(j=0;  j<npts;  j++){ 

in » ckXpo[i] [j+1]   » skXpo[i][j]; 

} 

> 

// Read in fourier coefficients of orbital Floquet modal matrix. 

for(j=0; j<6; j++){ 
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for(i=0;   i<6;   i++)-C 

//    Real part of coefficients. 

in » reckF[i] [j] [0]; 

for(k=0;  k<npts;  k++){ 

in » reckF[i] [j] [k+1]   » reskF[i] [j] [k]; 

> 

} 

> 

in.closeO; 

// Evaluate sine & cosine buffers. 

// Calculate Orbital Frequency. 

OrbitW = 2.0e+00*3.141592653589e+00/tau; 

for(i=0; i<npts; i++){ 

sine[i] = sinl((i+1.0)*(0rbitW*t + PHI)); 

cosine[i] = cosl((i+1.0)*(0rbitW*t + PHI)); 

} 

// Sum the Fourier series. 

for(i=0; i<6; i++){ 

//    The periodic orbit. 

Xpo [i]  = ckXpo [i] [0]; 

for(j=0   ;j<npts;   j++){ 

Xpo[i]  = Xpo[i]  + ckXpo[i] [j+l]*cosine[j] 
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+ skXpo[i] [j]*sine[j]; 

} 

for(j=0;  j<6;  j++){ 

//    The F matrix. 

zz = reckFEi] [j] [0]; 

for(k=0;  k<npts;  k++){ 

zz = zz + reckF[i] [j] [k+l]*cosine[k] 

+ reskF[i] [j] [k]*sine[k]; 

} 

F[i][j]  = zz; 

// Evaluate exp(Jt) from the two Poincare exponents and the structure 

// of the other modes. 

for(i=0; i<6; i++){ 

for(j=0; j<6; j++){ 

expJt[i][j]   = 0.0e+00; 

} 

} 

//    The non-degenerate mode. 

expJt [0] [0] 

expJt [0] [1] 

expJt [1] [1] 

expJt [1] [0] 

cosl( Omega[0]*t ) 

sinl( Omega[0]*t ) 

cosl( Omega[l]*t ) 

sinl( Omega[l]*t ) 

//    The degenerate energy / angular momentum nodes. 

expJt[2][2]   = 1.0e+00; 
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expJt[3][3] = l.Oe+00; 

expJt[4][4] = l.Oe+00; 

expJt[5][5] = l.Oe+00; 

expJt [2] [3] = t; 

expJt [4] [5] = t; 

II- 
II- 
II- 
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well as sectoral, tesseral, and air drag perturbations. The filter algorithm was fed three types of simulated measurements: relative 
Carrier-Phases Differential GPS data, Standard Positioning System GPS data and range measurements between each satellite. 
Simulations were conducted to investigate the accuracy obtainable with these measurements. Results obtainted are on the order of 
the noise of the measurements, which is as low as 2 centimeters in each coordinate axis. 
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