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Preface 

The problem of what to do with multiple models of the same system is one of some 

significance in these times of prolific modeling due to a) the untestable nature of many of 

today's large real-world systems and b) the increasing ease and cost-effectiveness of 

creating mathematical models. Here I provide a method of dealing with a system's 

multiple models, not only to provide some semblance of validation, but also to improve 

each model's performance based on information provided by the other models. 

I would like to thank Dr. Ken Bauer for chairing the committee in this effort. His 

insight into the problem and style of direction were vital to the accomplishment of this 

research. Dr. Mark Oxley deserves my deep appreciation for his help in laying the 

theoretical foundation upon which this method stands. Many thanks also go to Dr. Jim 

Moore for providing guidance from a big picture as well as an editor's perspective. I 

can't imagine a committee that would better complement each other's strengths. Thanks 

also go to the many folks at AMCS AF for providing not only the application on which 

this methodology is tested, but also their keen insights into MASS and NRMO outputs 

that I couldn't have had otherwise. 

Mostly, I thank my wonderful wife Vicki and amazing children Samantha, Sammy, 

Jacob, and Tabitha for providing knowledge of the truly important; wisdom and 

perspective that otherwise would have gone unlearned. Last (and first), I thank God, the 

provider of more than I'll ever comprehend. His divine guidance has proven invaluable. 

Samuel A. Wright 
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AFIT/DS/ENS/00-02 

Abstract 

A methodology is presented which allows comparison between models constructed 

under different modeling paradigms. Consider two models that exist to study different 

aspects of the same system, namely Air Mobility Command's strategic airlift system. 

One model simulates a fleet of aircraft moving a given combination of cargo and 

passengers from an onload point to an offload point. The second model is a linear 

program that optimizes aircraft and route selection given cargo and passenger 

requirements in order to minimize late- and non-deliveries. Further, the optimization 

model represents a more aggregated view of the airlift system than does the simulation. 

The two models do not have immediately comparable input or output structures, which 

complicates comparisons between the two models. I develop a methodology to structure 

this comparison and use it to compare the two large-scale models described above. 

Models that compare favorably using this methodology are deemed covalid. Models 

that perform similarly under approximately the same input conditions are considered 

covalid in a narrow sense. Models that are covalid (in this narrow sense) may hold the 

potential to be used in an iterative fashion to improve the input (and thus, the output) of 

one another. I prove that, under certain regularity conditions, this method of output/input 

crossflow converges, and if the convergence is to a valid representation of the real-world 

system, the models are considered covalid in a wide sense. Further, if one of the models 

has been independently validated (in the traditional meaning), then a validation by 

association of the other model may be effected through this process. , 
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COVALIDATION OF DISSIMILARLY STRUCTURED MODELS 

I. Introduction 

General 

Mathematical models provide representations of real-world systems. These 

representations may take many forms: simulation, optimization, and regression, to name a 

few. Each requires an input set, employs some set of rules and relations, and returns a set 

of dependent variable(s) as output. Inputs consist of input variables that can be observed 

directly in the real-world system (such as the amount of a resource), and input parameters 

that cannot be directly observed (such as a service rate or an efficiency factor). It is 

possible that a real-world system has more than one model that may be employed to 

characterize some unique aspect of the system. For instance, a system that consists of 

implementing a schedule of events of variable duration could be modeled as a simulation 

in order to determine the (distribution of) total time required to complete the schedule. 

Such a model is descriptive in nature and could be used to forecast resource or personnel 

requirements. Alternately, an optimization model may be created in order to determine 

the shortest length of time in which the schedule may be implemented. This model 

optimizes some aspect of the system and could be used to study policy changes, such as 

improvement of the schedule driving the simulation model. Either model (or both) may 

be valid representations of the real-world system in question, and both, assuming their 

validity, should give results appropriate for their respective purposes. 



In order for models to be useful, they should approximate the real-world system to the 

degree to which they are designed, a degree that varies with each system and its 

associated models. Model validation is defined as "substantiating that the model, within 

its domain of applicability, behaves with satisfactory accuracy consistent with the study 

objectives" (Balci 1994). There is a myriad of techniques available to assess the validity 

of simulation models (Balci 1994, Sargent 1996b, or Sargent 1996a), and many of these 

techniques may be applied to more general classes of models. These techniques include 

both objective and subjective tests that may assess the validity of a model's assumptions, 

structure, execution, or output performance. Depending on the study, different aspects of 

model validation may be of paramount importance. Here I focus on models' output 

performances. 

There is a large body of literature related to determining the output validity of a 

model for which real-world data can be obtained (see Law and Kelton 1991, p. 314-322 

or Balci 1994 for examples). However, it is often the case that the system being 

represented cannot be sampled in order to make comparisons. In such a case, a method 

of model output validation is not as obvious. Sargent recommends the comparison of 

simulations to other validated simulations, as well as the comparison of simple 

simulations to known analytic results in cases of non-observable systems (Sargent 

1996b). The use of similarly structured models (specifically, simulations) also has been 

proposed to assist in establishing model credibility (Diener, Hicks, and Long 1992). 

Kleijnen (1995) suggests that if relevant data are unattainable, a sensitivity analysis may 

be performed with the results compared against a system expert's judgment. 



Definitions and General Modeling Paradigm 

In this research, I propose a method of covalidation in which models, either similarly 

(e.g. simulation and simulation) or dissimilarly structured (e.g. optimization and 

simulation), representing the same real-world system (perhaps for which output data are 

unattainable), may be compared. I refer to the covalidation of two (or more) models of 

similar or dissimilar structure representing the same real-world system. In general, 

covalidation is the process of comparing these models, mindful of each model's domain 

of applicability, with the object of relative substantiation. Covalidity can be thought of as 

a matter of degree. In a narrow sense, covalid models are models that perform similarly 

under approximately the same input conditions. In a wider sense, covalid models are 

models that can also be accepted as valid representations of the same real-world system. 

Further, if one of the models has been independently validated from the perspective of its 

intended purpose, models that are covalid relative to that model may be considered valid 

by association. 

The process of determining the degree of covalidity of two or more models represents 

a new paradigm for situations in which two or more models are created for the same real- 

world system. This paradigm is explained using illustrations. Figure 1 represents the 

most basic of these illustrations but encapsulates the heart of my intent. As shown: 1) 

Models are created. 2) An attempt is made to use the outputs of the models to improve 

the inputs of the other models (a method I call "output/input crossflow"). 3) The models 

are compared one to another to determine their closeness to each other and/or reality (I 

assess the outputs as well as the gradients of the outputs and term the method "gradient 



analysis"). A poor comparison leads the modeler to modify the models and return to the 

output/input crossflow. 

1) 

2) 

3) 

Create 
Models 

i' 

Output/Input 
Crossflow 

*  Modify 
Models 

A 

i ' 

Gradient 
Ana lysis 

Figure 1: Modeling Paradigm 

Figure 2 expands upon the modeling paradigm illustrated in Figure 1. Figure 2 

breaks out the major steps of Figure 1 into more specific tasks that help define the 

methodology. I summarize this methodology in the following steps in Figure 2: la) 

Candidate models are built to represent the same real-world system. 2a) Strengths of 

each model are exploited through an informational crossflow. This crossflow utilizes 

knowledge and insights cultivated from the performance of each model to improve the 

performance of the other model(s) in an iterative scheme. 2b) The result of the crossflow 



is a convergence of input and output values (for each model) to a fixed-point that is 

considered to represent the intended modeling situation most closely. 3a) An evaluation 

of the relative closeness of the respective fixed-points occurs. This closeness represents 

the degree of communality of function that exists amongst the models. If the degree of 

communality is low, some or all of the models are not representing the same situation and 

require modification (and returning to Step 2a above). 3b) A determination is made 

concerning the covalidity of the models. 

Relative closeness between models indicates narrow-sense covalidity. Mutual 

closeness to a standard and/or to the real-world system (if such a comparison is possible) 

indicates wide-sense covalidity. If models are covalid in the narrow sense, but not the 

wide sense, the models do not adequately represent the real-world system, and all require 

modification (and returning to Step 2a above). Further, it may be the case that no real- 

world data exists, yet one of the models has been validated by means other than output 

comparison, or has been simply accepted by acclamation (accredited). Models that are 

narrow-sense covalid with such a model may be considered valid (accredited) by 

association. 
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la) Create 
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Figure 2: General Methodology 



Contributions 

This research provides significant contributions to the general field of mathematical 

modeling. An original paradigm is established for the construction, improvement, and 

validation of models. Within this framework, the original notion of the covalidation of 

models is detailed. First, an iterative method is devised that seeks the improvement of 

the inputs to each model considered. Further, it is proven that this method converges to 

fixed-point input values under certain assumptions. Second, a method of gradient 

analysis is devised which allows the direct comparison of the models. Also, we 

demonstrate the entire process on two large-scale, real-world models in use by the United 

States Air Force Air Mobility Command. 

Background 

The ultimate goal of this research is to provide a methodology by which two or more 

large-scale models that model the same real-world system may be compared and 

contrasted. The impetus for this research was interest in the comparison of two such 

models. One model is a large-scale discrete event simulation model that enjoys a 

relatively high level of acceptance. The other is a large-scale linear programming model 

designed to optimize the same general system modeled by the simulation. 

The simulation model is used by the Air Mobility Command (AMC) of the United 

States Air Force and is known as the Mobility Analysis Support System (MASS). The 

Airlift Flow Module (AFM) is the simulation core of MASS. It simulates the movement 

of detailed cargo requirements through the airlift system based on the availability of 

aircraft, air routes, and air base infrastructure and resources. For this research, the terms 



MASS and AFM are used interchangeably. The simulation is deterministic in its mission 

planning while mission execution is stochastic. A synopsis of MASS is given by an 

AMC Studies and Analysis Flight (AMCSAF) point paper prepared for the Congressional 

Budget Office (Merrill, 1993): 

Inputs. Inputs to the MASS include: 

A Time-Phased Force Deployment Data (TPFDD) document containing 
airlift movement requirements 

An airlift network of onloads, offloads, en-route stops, recovery bases, 
and home stations connected by user-defined routes 

An airlift fleet mix of different aircraft types identified by individual tail 
numbers 

Individual aircrews who must be available to allow missions to be flown 

Logistics factors which account for refueling, maintenance, and material 
handling of cargo 

Concepts of operations that include strategic intertheater airlift, aerial 
refueling, intratheater shuttle operations, direct delivery operations, and 
recovery/stage operations 

Planning. Mission planning in the AFM accomplishes: 

Prioritization of requirements by available-to-load dates and required 
delivery dates 

- Prioritized route selection and reservation for flight planning 

Marrying a specific aircraft tail number to the next eligible requirement 

Crew planning to ensure that only the crews eligible to fly do fly 

Execution. Mission execution in the AFM simulates: 

- Typical sortie events, including: taxi-out, takeoff, departure, en-route 
cruise, initial approach, final approach, landing, taxi-in, and ground 
activities for every sortie of the mission 



Ground activity resource allocation and planned delays for: ramp space, 
offloading cargo, refueling, maintenance, onloading cargo, and crew 
changing 

Optionally, detailed loading of each piece of cargo for compatibility with 
doors and remaining space on each aircraft 

Crew activities and monitoring events, including: crew rest, crew monthly 
and quarterly flying hour limits, crew availability, and searches for 
unavailable crews 

Output. Output from the AFM includes: 

Aircraft-related statistics, such as: utilization rate, payload, ground 
service time, flight time, and system delays 

- Aircrew related statistics, such as: crew duty day, number of crews, hours 
flown by each crew, and crew availability 

Cargo related statistics: total tons delivered, tons per day throughput, unit 
and force closure, actual million tons miles per day flown, and cargo 
remaining in backlog 

- Airlift network statistics: typical cycle times, flying times, network 
airfield use, maximum on the ground (MOG) constraints, and system 
bottlenecks 

The other model is a large-scale optimization model developed jointly by the Naval 

Postgraduate School (NPS) and the RAND Corporation known as the NPS/RAND 

Mobility Optimizer (NRMO) (Morton, Rosenthal, and Weng 1996). NRMO models the 

strategic airlift system as a multi-period, multi-commodity network-based linear program 

(LP) with many side constraints. Use of the model is intended to provide insight into 

mobility problems such as fleet and infrastructure adequacy, and the identification of 

system bottlenecks. A summary of the model's characteristics follows: 

Inputs. Inputs to the NRMO include: 

- A TPFDD containing airlift movement requirements 



- An airlift network of onloads, offloads, en-route stops, recovery bases, 
and home stations connected by allowable routes 

- An airlift fleet mix of different aircraft types and their characteristics, 
delineated by the numbers of each type 

- Numbers of aircrews available to perform missions at each base 

Constraints. Constraints in the NRMO ensure: 

Proper aircraft allocation and balance at all nodes of embarkation and 
debarkation 

- Proper aircrew allocation and balance of flow 

Aircraft do not fly more missions than their utilization rate allows 

- Demand is met for each line of requirement 

- Airfield capacity is not exceeded 

Objective Function. The objective function in the NRMO minimizes: 

Amount of non-delivered cargo times a weight factor 

- Amount of cargo delivered late times a weight factor 

- Penalty for reassigning aircraft missions, (negative) bonus for aircraft 
remaining at home station (i.e., maximize the bonus), penalty for crews 
forced to deadhead, each multiplied by a weight factor 

Output. Decision variables from the NRMO include: 

Aircraft-mission statistics: the number of aircraft delivering a particular 
cargo over a route at a particular time or the number of aircraft recovering 
from such a mission at a particular time 

- Aircraft inventory statistics: the number and type of aircraft remaining 
over night at a base 

Aircraft changing roles: numbers of new aircraft allocations or aircraft 
changing roles (cargo hauling to tanker, or tanker to cargo hauling) 

- Cargo related statistics: tons of each type of cargo delivered by a 
particular aircraft at a particular time 

10 



Crew statistics: number of crews available for an aircraft type at a base at 
a particular time and number of deadheading crews 

NRMO's minimization objective function is the weighted sum of three sub-objectives 

that seek to minimize the non-delivery of cargo, the lateness of cargo deliveries, and the 

penalty for performing certain undesirable actions (such as deadheading crews). First, a 

large relative weight is attached to the non-delivery of cargo. Next in relative importance 

is minimizing the lateness of cargo deliveries. Finally, a third, relatively small weight is 

applied to minimizing the penalty for performing undesirable actions. The weights 

applied to each sub-objective are subjective, but they are generally ordered in that weight 

for non-delivery is far greater than the weight for late delivery that, in turn, is far greater 

than the weight of the (negative) bonus. 

The two models have many differences as well as similarities. One similarity is that 

both model strategic airlift and provide certain common outputs, such as the amount of 

cargo delivered. The first major difference between the models is that NRMO optimizes 

the airlift schedule while MASS schedules flights based on the availability of aircraft and 

a prioritized list of routes. The second major model difference is that MASS models 

most event durations as random variables while NRMO employs mean values. A third 

major difference is that while MASS provides a detailed look at many aspects of the 

airlift system, NRMO represents a much more aggregate view of the airlift system. 

The MASS simulation is currently in use by the AMC Studies and Analysis Flight 

(AMCSAF), and though a formal validation has not been accomplished, its results are 

generally accepted as valid. One obstacle to a traditional, output-based validation of 

either model is that there is no way to collect real-world data from a strategic airlift 

11 



system due to the infrequency of actual large-scale conflicts. Desire by AMCSAF to 

have some basis for the use of the NRMO optimization model has provided a motive for 

comparing and contrasting the two models. 

Test Models 

As a lucid demonstration of the proposed methodology, very small-scale test models 

based on the MASS and NRMO models are developed. A small-scale simulation is 

constructed which models the movement of simple blocks of cargo with a fleet of 

identical aircraft from a single onload point to one of two offload points, after which 

aircraft recover to the onload point for further missions. The proportion of missions flown 

to each offload point is user defined. 

A small linear program is also created which optimizes the amount of cargo that can 

be moved across the same airlift system the simulation employs. Input into this model is 

an estimate of the efficiency of ramp space usage, which accounts for the fact that ramp 

space may not be optimally scheduled in practice. The LP outputs the total amount of 

cargo moved as well as the amount of cargo moved to each offload point, thereby 

implying an optimal proportion of use for the two offload points. 

Data used in these models are contrived and are not intended to resemble any actual 

airlift system data. Likewise, results obtained from these models are not intended to 

mimic those of the MASS model, the NRMO model, or those of any actual airlift 

scenario. 

12 



Organization 

The remainder of this dissertation is organized as follows. Chapter II is a literature 

review that provides a background to several techniques used in this research. Concepts 

such as fixed-point analysis, metamodeling, and model comparison are discussed here, 

and a brief coverage of validation literature is offered. Chapter III details the 

methodology developed to conduct this research, including an iterative technique 

designed to exploit the crossflow of outputs and inputs between dissimilarly structured 

models as well as a gradient analysis approach to model comparison. In Chapter III, an 

overview of the methodology is given and I describe how to apply it. Then, the 

theoretical basis for output/input crossflow is provided. This is followed by a small 

example that demonstrates the use of the methodology on small-scale test models. In 

Chapter IV, the method's performance on the MASS and NRMO models is detailed. 

First, a description of the scenarios used in this research is given. Then the actual 

performance of the models with regard to the developed method is described. Finally, I 

conclude the research in Chapter V with a summary and recommendations for further 

research. 

13 



II. Literature Review 

Introduction 

The body of literature concerning the comparison of dissimilarly structured models is 

small. However, the methods developed here for making such comparisons rely largely 

on the adaptation of other well-known techniques. These techniques include fixed-point 

analysis, experimental design, metamodeling, sensitivity analysis, model validation, and 

model comparison. Literature concerning fixed-point analysis are reviewed in the next 

section. Relevant literature pertaining to experimental design, metamodeling, and 

sensitivity analysis are presented in the following section. Selected literature concerning 

validation techniques is reviewed in the next to last section. Model comparison literature 

is covered in the last section. 

Fixed-Point Analysis 

The first major step in implementing the methodology developed here involves the 

convergence of input and output vectors to a fixed point at which I assert two or more 

models are behaving as nearly alike as possible. Works found to be of use in developing 

the proof that not only do fixed points exist given certain assumptions, but that under 

other conditions they may be unique and relatively simple to locate include those by 

Apostol (1974), Border (1985), Istratescu (1981), and Smart (1974). 

Border, Istratescu, and Smart all provide coverage of Brouwer's Fixed Point Theorem 

which establishes that at least one fixed point exists for a mapping which maps a convex 

and compact subset of m-space to itself (Border 1985; Istratescu 1981; Smart 1974). 

14 



Further, Apostol, Istratescu, and Smart give accounts of how to find a unique fixed point 

in the set if the mapping is a contraction mapping (Apostol 1974; Istratescu 1981; Smart 

1974). While this work makes the assumption of a contraction mapping, Border, 

Istratescu, and Smart all provide solutions to determining fixed points given the mapping 

is not found to contract. 

Metamodeling 

Kleijnen and Van Groenendaal (1992) describe the desire for the creation of a simpler 

representation of the real world than even a simulation model presents, a sacrifice of 

accuracy for expedience. Simulations, themselves merely models of an actual system, 

only give responses at a limited number of selected input combinations. The number of 

responses possible is determined by the amount of computer time available. Creation of 

a regression function (metamodel) for some inputs of interest (for some interesting output 

variable) allows the interpolation and (to a lesser degree) extrapolation of the inputs in 

order to predict an output. These inputs of interest could consist of input variables, which 

can be observed directly in the real system (as the amount of a resource), or input 

parameters which cannot be directly observed (as a service rate or an efficiency factor). 

They demonstrate the creation, estimation, and validation of metamodels for both 

stochastic simulations and deterministic simulations. Though they do not explicitly 

describe these techniques for optimization models, optimizations may be thought of as 

deterministic simulations, since the requirement is that for some input to the model, the 

output of the model is deterministic, with zero variance (Kleijnen and Van Groenendaal 

1992). 
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In the estimation of metamodel parameters, Kleijnen and Van Groenendaal (1992) 

suggest the use of ordinary least squares, estimated weighted least squares, or corrected 

least squares regression techniques, depending on the form of the covariance matrix of 

the output variable. Should the experimental input vectors be relatively close (i.e., a 

small design space), ordinary least squares regression should suffice. For the validation 

of metamodels, Kleijnen and Van Groenendaal suggest the simultaneous (Bonferroni) 

testing that the new observations' Studentized prediction error is within the 1 - a/2 

quantile of the standard normal variable (Kleijnen and Van Groenendaal 1992). 

Van Groenendaal and Kleijnen (1996) further discuss the use of an effective design of 

experiments in order to minimize the number of required simulation runs. Their point 

here is that design of experiments combined with regression metamodels provides a more 

sound method of sensitivity analysis than changing one factor at a time or simulating a 

few random samples, while still being simple to implement (Van Groenendaal and 

Kleijnen 1996). 

The choice of an experimental design is a rather subjective issue which is determined 

by, among other things, the number of runs possible (access to computer time), the 

number of input factors, the desired resolution of the design, and which factor 

interactions are interesting. Full factorial designs vary each factor to two different levels 

about the design center, and the center point may be added, as well. Fractions of the full 

factorial designs may be used to reduce the number of runs required. However, the 

resolution of the design also decreases, thereby decreasing the number of estimated 

interactions possible. Kleijnen advocates the use of resolution III or resolution IV 

designs when performing simulation sensitivity analysis, depending on the requirements 
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of the study. No matter which specific design is used, however, Kleijnen suggests 

factorial designs since their orthogonality yields unbiased estimators with small variances 

(Kleijnen 1996). Other techniques for reducing the number of required runs are Plackett 

and Burman designs and the use of Taguchi's methods. These methods, as well as 

complete overviews of experimental design are covered in detail in Box and Draper 

(1987) and Montgomery (1991). 

Taylor, Auclair and Mykytka (1995) propose that the quality of an estimated 

metamodel is affected much more by the metamodel specification than by the number of 

replications performed to make the parameter estimates. In their study of M/M/k queues, 

it was determined that the proper specification of the metamodel (e.g., linear or 

multiplicative) had a dramatic impact on the validity of the metamodel, while efforts 

consisting of lengthening simulation runs or adding more simulation replications were 

generally not worthwhile (Taylor, Auclair, and Mykytka 1995). 

Johnson, Bauer, Moore, and Grant (1996) describe the use of response surface 

methodology (RSM) and kriging techniques to estimate the value of the optimal objective 

function of a linear program over a range of right-hand-side values that may encompass 

multiple critical regions. The result is a simple method for performing optimality 

analysis while at the same time gaining insight into the relationships between the 

objective function value and the right-hand-side vector over the specified range (Johnson 

et al. 1996). The significance of their study is that creating metamodels of optimizations 

can be an effective technique, even over multiple critical regions where it is known that 

the overall function is not linear, but piece-wise linear. 
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The validity of using metamodels for simulation models is addressed by Friedman 

and Pressman (1988). They create metamodels for three different simulation models and 

conclude that the simulation metamodel is indeed a valid analysis technique for 

simulation models. While they show that the metamodels are relatively stable across 

different streams of random number inputs, they also suggest creating at least two 

metamodels based on separate output data in order to verify the consistency of a given 

simulation model (Friedman and Pressman 1988). 

Validation 

In order for models to be useful, they should reflect the real-world system to the 

degree to which they are designed. Model validation is defined as "substantiating that the 

model, within its domain of applicability, behaves with satisfactory accuracy consistent 

with the study objectives" (Balci 1994). There are a myriad of techniques available to 

assess the validity of simulation models, and many of these techniques may be applied to 

more general classes of models, such as mechanistic or optimization models. These 

techniques include both objective and subjective tests of models, assessing the validity of 

model assumptions, model structure, behavior of model execution, and the model's 

output performance, among other tests. Depending on the study, different aspects of 

model validation may be of paramount importance. Though real-world strategic airlift 

system data is not readily available or attainable, this effort concentrates on models' 

output performances. 

Balci (1994) suggests validation techniques based on the input and output of 

simulations. First, black-box testing is used to assess the accuracy of the input-output 
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transformation. However, he states, just because 1,000 input values are tested does not 

imply high confidence in the model's accuracy since 1,000 input values probably 

accounts for only a very small fraction of the possible input values. The higher the 

percentage of input values tested, the greater the confidence placed on the assessed 

accuracy of the input-output transformation. Separately, Balci proposes that sensitivity 

analysis be performed in order to ensure the most influential input parameters and 

variables are set as accurately as possible. Balci also provides a validation procedure 

based on simultaneous confidence intervals in order to account for simulation models in 

which multivariate responses are of interest (Balci 1994). 

Sargent (1996b) provides an overview of the simulation validation process. He 

stresses that if a simulation is constructed to answer a variety of questions, the validity of 

the simulation needs to be addressed with respect to each of the questions, generally 

requiring several sets of experimental conditions to cover the domain of the model's 

intended use. For its intended purpose and over its intended domain, operational validity 

may be obtained if the simulation's output behavior accurately models the actual system. 

Sargent suggests comparing the output of the simulation model to those determined 

analytically (if possible) or to another (validated) simulation. He also reiterates Balci's 

call for sensitivity analysis in order to determine which parameters should be most 

accurately modeled and suggests comparison to the sensitivities of the real-world 

parameters. Sargent cautions that operational validity cannot be claimed, however, 

unless the simulation is tested with at least two different sets of experimental conditions 

(Sargent 1996b). 
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Kleijnen (1995b) provides another overview of the validation process. Of additional 

interest here, Kleijnen asserts that sensitivity analysis is very important when establishing 

the credibility of simulations which model real-world systems with unobservable outputs. 

This sensitivity analysis should be used to validate the reaction of the output to changes 

in the input, as predicted by system experts (Kleijnen 1995b). In a related article, 

Kleijnen (1995a) also stresses that it is difficult to mimic all the relevant factors of a real- 

world system in a simulation model and that the resulting differences may yield 

simulation inaccuracies in addition to those related to the stochastic nature of the 

simulation (Kleijnen 1995a). The relevance of this assertion to the situation of 

comparing two differently structured models is clear, and though the input parameters in 

models may be completely specified, care must be taken in order to assure they are 

consistent between the models. 

While nearly all the literature concerning model validation focuses directly upon 

validation of simulation models, Adelman (1992) reviews experimental validation 

techniques which have been applied to structural optimization problems. He laments the 

lack of real-world optimization validation examples and suggests the lack of such 

examples may be one reason for the apparent lack of interest in optimization validation. 

Adelman suggests that validating an optimization consists of (1) analysis correlation: 

establishing the accuracy of the underlying analysis (optimization objective function and 

constraints) and (2) design validation: comparing the results of the optimization 

procedure with conventional (existing) results or with test (experimental) case results. 

Three questions which are answerable using experimental studies are (1) did the 

optimization produce a solution with improved performance compared to some baseline, 
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(2) did the tests verify the predicted (optimized) performance of the design, and (3) are 

any designs in the neighborhood of the predicted optimum better than the predicted 

optimum (Adelman 1992). 

Model Comparison 

The literature is scarce concerning the comparison of two (or more) response 

surfaces. There is more literature available concerning the comparison of mechanistic 

models (Box and Hill 1967; Box, Hunter, and Hunter 1978; Hunter and Reiner 1965) or 

the comparison of simulation models (Law and Kelton 1991). These topics are not 

without parallel relative to the present topic. Further, the use of similarly structured 

models (specifically, simulations) has been proposed to assist in establishing model 

credibility (Diener, Hicks, and Long 1992). 

Hunter and Reiner (1965), improved upon by Box and Hill (1967), suggest a method 

of model improvement in which successive input design points are added to a 

mechanistic model based on maximizing the difference in response of the two (current 

and updated) models. While this study is concerned with comparison of existing models, 

Hunter and Reiner's method of maximum model displacement could be applied to two 

(or more) existing models being compared to a reference (Hunter and Reiner 1965). 

Box and Hunter (1962) and Box, Hunter, and Hunter (1978) provide ideas for testing 

models based on the premise that "in an adequate model constants stay constant when 

variables are varied" (Box and Hunter 1962; Box, Hunter, and Hunter 1978). The 

method suggests the recalibration of parameters across an independent variable. If the 

recalibration yields the same values for the parameters across the independent variable's 
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domain, the model is determined to be adequate. This may not be practical for a response 

surface of many independent variables, unless insightful information concerning these 

variables is known in advance of the study. Their point is, however, that in order to 

adequately test a model, it must be put in jeopardy across important ranges of variables. 

This implies using data other than the data that was used to create the model for 

validation testing. 

Law and Kelton (1991) suggest comparisons based on constructing confidence 

intervals concerning the difference in responses between two competing simulation 

models. The confidence intervals are created using either a paired-t or a modified two- 

sample-t method. Both methods require independent, identically distributed (IID) 

observations from each model, but for the paired-t test, replications between the two 

models need not be independent. For testing that the models are the same, if the 

confidence interval constructed about the response (at an appropriate level of 

significance) contains zero, the difference between the two models (for that response) 

cannot be said to be significant. 

When analytic methods or real-world data are not available, Diener, Hicks, and Long 

(1992) suggest the qualitative and quantitative comparison of similar (simulation) 

models. They present a methodology, specific to simulations which model the same 

situation, which qualitatively compares the models based on 1) simulation background 

and documentation, 2) simulation features and input database, and 3) simulation model 

usability. For the quantitative comparison, first a measure of merit is chosen which both 

models can provide and which can supply a meaningful measure, consistent with their 

purpose. Next, common input structures must be created for each model. Then, common 
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experimental factors are chosen. An experimental design is chosen and experimental 

trials are run. Lastly, statistical tests are run on the gathered data. Specifically, a paired 

difference test is run to determine whether a difference in output or a difference between 

identical treatments exists between the simulations. The application of their technique is 

not intended to validate a simulation as much as to increase its acceptability (Diener, 

Hicks, and Long 1992). 

The preceding literature forms a basis for the methodologies presented in the next 

chapter. The process of metamodeling using response surfaces and regression techniques 

allows the formation of a common model type in order to apply model comparison 

methods. Known validation techniques along with other views concerning model 

comparison provides a sound basis for the comparison of differently structured models. 
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III. Methodology 

Overview 

This chapter details the methodology developed to conduct this research, including an 

iterative technique designed to exploit the crossflow of outputs and inputs between 

dissimilarly structured models, as well as a gradient analysis approach to model 

comparison. First, key concepts used in the development of the methodology are defined. 

Then, the crux of the chapter follows the blueprint laid out in Figure 1. A framework for 

the development of multiple models from a real-world system is offered. This section 

represents the formalization of block 1 from Figure 1, and it provides a foundation for the 

crossflow and gradient analysis methods. Then, the theoretical basis for the method of 

output/input crossflow is provided. This section is represented by block 2 in Figure 1 and 

provides a mathematical development of the method as well as a proof that the crossflow 

can result in the convergence to a single set of inputs for the models in question. The 

next section describes the use of gradient analysis to determine the extent of models' 

covalidity. This section is represented by block 3 in Figure 1. This chapter concludes 

with an example that demonstrates the use of the methodology on small-scale test 

models. 
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Modeling Vocabulary 

A Mapping Matrix for Multiple Models. The general theory of mappings defined on 

models needs the concept of groups. Let G be a group of objects with © as a binary 

operation defined on G. The definition gives the required properties. 

Definition. Let G be a nonempty set with equality (=) defined. Let © be a binary 

operation such that: 

1. G is closed with respect to ©, that is, for all g{,g2eG then gx © g2 e G ; 

2. G is associative with respect to ©, that is, for all gx, g2, g3 e G then 

{gl®g2)®g3 = gl®{g2®g3); 

3. G has a unique identity with respect to ©, that is, there exists ee G such that for 
all g G G then g © e = g and e ® g = g ; and 

4. G has a unique inverse with respect to ©, that is, given gxe G there exists a 
unique g2£G such that gx® g2=e. 

I will be using mappings on groups. Let G and H be two groups, and let A:G —> H 

be a mapping with domain of A equal of G, denoted by 3) (A) = G. 

Let Gx,G2,...,Gm and Hx,H2,...,Hn be groups. For each pair of indices 

(/, j)e {l,2,..., «}x{l,2,..., m\, define the mapping Ay : Gj —» Hi. The output of the 

mapping may be written as A^\gj). For each m-tuple of objects 

8 = (gi>82>-■ ->8m)e G\xG2x-'-xGm >the mapping A,.:GxxG2x...xGm -» Ht is defined 

as 

Ai(g)=A-i(ft)©A2(ft)©-©^k») (i) 

25 



In Equation (1), © denotes the particular binary operation for //,. 

I define the n by m matrix of mappings A: G, x G2 x • • • x Gm —> Hl x H2 x • • • x Hn 

acting on a vector of inputs g as 

A(g) = 

Ai A2   ■ "      Am Si 

4i A2   ■ ''     Am £2 

Ai A2   • "     Am. _om 

1 1 1 

A>(gl)©A2(S2)©-"©Am(Sm) 
2 2        2 

4l (S.)©A2 (#2 )©••-©Ämtern) 

4,1 (Si)© 4,2 (*2)©" -©Ämtern). 

(2) 

Obviously, this is not matrix multiplication but the action of the mappings on the 

objects in the group. The entries of the objects may be scalars or vectors in some vector 

space. The entries of the nbym matrix of mappings each function such that entry (i,j) in 

the mapping matrix is a function that maps the object of the/h group, Gj, to the element 

of the ith group, Hj. This places two restrictions on each element of a mapping matrix. 

First, every entry in the/h column must accept as input the object found as the/h element 

of the m-dimensional vector g = (g,, g2,..., gm )T. Second, every entry in the ith row 

must provide output compatible with the ith element of the n-dimensional vector 

h = (hl,h2,...,hn)
r. Executing the mapping matrix on an input vector will occur similar to 

the function of normal matrix-vector multiplication except instead of multiplying the (/, j) 
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entry in the matrix by the/h entry in the vector, the mapping at the (/,_/) entry in the 

matrix acts on the/h entry in the vector. 

The special mapping that maps all objects in G; to the identity object in Ht will be 

denoted by 0, the "zero" mapping. If Hi = G;, then the special mapping that maps g to, 

is called the identity mapping and is denoted by /. 

An example of how a mapping matrix operates is given in Equation (3). 

A(g): 
Ai / A13 Si 

0 A22 / S2 

Ai 0 A33_ _S3_ 

An{gl)@g2®Ai3{g3) 

0®A22{g2)®g, 

A3l{gi)®0®A33{g3) 

Ai(si)©s2©A3(s3) 
2 

^22(82)® 83 
3 

Ai(si)©A3(s3) 

(3) 

Note that if there are more than one non-zero entries in a row of the mapping matrix, the 

format of those entries' output must be compatible with the binary operation denoted by 

the particular ® symbol. (Throughout this research, I use vector addition for this 

operation.) Further, if one of those entries is an "/", the format of the output must be the 

same as that of the input to accommodate the element-by-element summation. In 

Equation (3), for instance, H} = G2 and H2=G3. 
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Aggregation of Models. I define the aggregation as the reduction of a countable 

number, n, bits of information (descriptors of reality) to m bits of information, where m < 

n. Since one cannot perceive reality at the finest granularity possible, I assume that all 

transformations of information from reality to the mathematical realm include some level 

of implicit aggregation. I consider this implicit rather than explicit aggregation since it is 

considered implausible to create a mathematical representation at the finest granularity of 

reality, if such a representation exists, and aggregate from there. 

A single state of reality may be aggregated in more than one manner, each manner 

valid for its specific purpose. For example, suppose reality includes, in part, the fact that 

in parking space "1" at a given base "A" there stands a C-141, gray in color, possessing a 

specific tail number, interior cargo volume equal to its interior length times its width 

times its height, with one slightly loose bolt on one of its wheels, and clearly having a 

multitude of other possible levels of description. Also, in parking space "2" at the same 

base, is a C-5 with a set of attributes comparable to those for the C-141. A person 

interested in modeling a system which includes these aircraft (assumed to be the only 

aircraft at base A) may express the information as "number of C-141 s at base A = 1 and 

number of C-5s at base A = 1." The expression of the properties of aircraft into 

mathematical values is an example of implicit aggregation. Alternatively, a more 

generic model may require translation of the information concerning the aircraft at base 

A as "number of aircraft at base A = 2." Other models may require much more detail 

regarding the reality of aircraft at the base. 

Assume two mathematical representations exist for the same system and that all 

information in representation "2" may be derived through aggregations of the information 
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found in representation "1". The term more aggregate will be used to describe the 

aggregation level of representation "2" relative to representation "1". The term less 

aggregate (or equivalently, more disaggregate) will be used to describe the aggregation 

level of representation "1" relative to representation "2". Note that it is possible in a 

mathematical representation for certain information to exist at a more aggregate level 

while other information exists at a less aggregate level than in another mathematical 

representation. In such a case, the terms more aggregate, less aggregate, or more 

disaggregate will not be used to describe the relative aggregation levels of the 

representations. Rather, the representations may be said to have mixed aggregations 

(with respect to each other). The terms more aggregate, less aggregate, and more 

disaggregate, however, may be used in describing the specific information (within the 

representations) for which they apply. 

Modeling the Real World 

"A system is a collection of items from a circumscribed sector of reality that is the 

object of study or interest" (Pritsker 1986). "A system is defined to be a collection of 

entities, e.g., people or machines, that act and interact together toward the 

accomplishment of some logical end" (Law and Kelton 1991). Pritsker's definition 

chisels a system from a larger picture, namely reality, while Law and Kelton build a 

system from smaller components. I acknowledge that either description adequately 

defines a system as referred to here. A system may be as simple as a single-server 

barbershop or as complex as the global economy, of which the single-server barbershop 

may be a part. A system may have a logical beginning and end, such as the opening and 
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closing times of the barbershop, or may be on-going without a definite beginning or an 

obvious end, as in the global economy. 

A mathematical model is a mathematical description of a system, and is referred to 

here simply as a model. Models represent the system "in terms of logical and 

quantitative relationships" that are "manipulated and changed" to determine the model's 

reaction, and therefore the system's reaction—if the mathematical model is valid (Law 

and Kelton 1991). (Since the systems here are of a temporal nature, I relate the 

representations of these systems to models of a temporal nature. Though a system's (and 

therefore its model's) temporality is not necessary for the devised methodology to 

succeed, the paradigm is easily illustrated under this assumption.) A model can represent 

a system from its beginning to its end, or only part of the system could be modeled (i.e., 

half of a day at the barbershop, or a year of the global economy). Either way, a model is 

assumed to have a definite beginning and end, at which points the state of the model may 

be sampled (regardless of the ability to sample the system at these points), revealing the 

model's input and output, respectively. 

The Real World and Real-World Systems. Define 9GTea] to be the condition of reality 

at some system onset time (t = 0). 3oreai includes the exact position of every physical 

thing, the true capabilities and limitations of every physical thing, the physical, mental 

and emotional state of every individual, all plans, as well as the state of any other thing at 

t = 0. In addition to this, all information available at t = 0 is part of 9QKa\ (regardless of 

whether such information is actually known or not). This includes the entire history of 
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reality (i.e., the state of reality at all times t < 0) and all physical, mental, emotional, and 

other actual laws (known or unknown) which govern the universe. 

Define ^Ka\ to be the collective states of reality at every time t > 0 until some system 

termination time (t = termination). 3/reaI includes the exact position of every physical 

thing, the true capabilities and limitations of every physical thing, the physical, mental 

and emotional state of every individual, all plans and intentions, as well as the state of 

any other thing at every time 0 < t < termination. In other words, whereas 9&ieai is the 

state of every component of reality at t < 0, ?/reai is that state at every 0 < t < termination. 

5" is defined as everything that happens between time "zero" and time "termination" 

which causes changes in the state of reality. The execution of all the laws (known or 

unknown) which govern reality and the choices individuals make is considered part of 3. 

3*>reai sys is defined as the state of a system at all times up to and including system 

onset time (t < 0). 9QKa\ sys is merely the subset of information from 5Greai that defines that 

circumscribed sector of reality that is the object of study. It is clear that 9Qiea\ sys c: ££reai, 

and I define the function which selects the subset 3Sreai sys as $%. After each general 

definition for a system or model component, an example illustrative of my specific 

application, namely the strategic airlift system, is given. Consider the strategic airlift 

system. The initial set of information that describes this system is 5Greai sys and includes 

such things as the exact position of every physical thing which influences the strategic 

airlift system, including cargo, infrastructure, equipment, resources, personnel, 

atmospheric conditions, the true capabilities and limitations of every piece of equipment 
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in the strategic airlift system, the physical, mental and emotional state of each individual 

having anything to do with the strategic airlift system, the plans for the movement of 

cargo, the flights of aircraft, and the scheduling of crews, as well as the state of any other 

thing which could be involved in the strategic airlift system at t = 0. In addition, all 

information concerning the strategic airlift system available (whether known or not) at t = 

0 is part of 3<>reaisys- This includes the history of the strategic airlift system and all 

physical, mental, emotional, and other laws (known or unknown) which govern the 

strategic airlift system. 

^reai sys is defined as the collection of system states at every time t > 0 until some 

system termination time. Again, ^/reai Sys c "2/reai and the function which selects the subset 

^reai sys is defined as Sy. "2/reai sys for the strategic airlift system includes such things as the 

exact position of every physical thing which influences the strategic airlift system, 

including cargo, infrastructure, equipment, resources, personnel, and atmospheric 

conditions, the true capabilities and limitations of every piece of equipment in the 

strategic airlift system, the physical, mental and emotional state of each individual having 

anything to do with the strategic airlift system, the movement of cargo, the flights of 

aircraft, and the actual scheduling of crews, as well as the state of any other thing 

involved in the strategic airlift system at every time 0 < t < termination. Whereas 9£Tea\ sys 

is the state of every component of the strategic airlift system at t < 0, ^/reai sys is that state 

at every 0 < t < termination. 

3sys is defined as everything that affects the system (i.e., modifies or acts on 9GKd\ sys) 

between the defined onset and termination times. The execution of all the laws which 
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govern the system and the choices made by individuals involved in the system are 

considered part of 3sys. The execution of all physical laws concerning the strategic airlift 

system—the loading of cargo, the flying of aircraft, the changing of the weather, and the 

failure of equipment—are considered part of 3sys. Also, decisions of individuals involved 

in the strategic airlift system—the decisions to execute the airlift plans, to fly an aircraft, 

whether to climb above the cloud or fly through it, whether a pilot gets out of bed or not 

when her alarm goes off in the morning—are all considered part of 3sys. Figure 3 

presents a graphical description of these relationships. 

9G real 

£ '% 

9G real sys 
sys 

V real 

A *& 

% real sys 

Figure 3: Real World and Real-World System Relationship 

Representing a Real-World System Mathematically. In order to create a model for a 

real-world system, the system needs to be represented with more mathematically 

meaningful terminology than is found in the definitions of Soreai sys, 3%y%, or ^ai sys- What 

is required is a method of characterizing objects that exist in reality with mathematical 

representations. Of course, these representations are generally created through the 
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implicit aggregation performed mentally (even subconsciously) by those interested in a 

particular system. 

I define XT as an countable-dimensional mathematical representation of9QKa\sys. 

Also, Vge is defined as the mapping from £Greai sys to an XT. Clearly, the number of 

possible XT'S which represent a particular system is very large, and each can be thought 

to have been mapped separately from 9Qrea\ sys (through its own '"P<g"). I define the 

collection of all functions that translate %KS\ sys to specific XT's as 9aj. The collection of 

all possible mathematical representations XT that may be translated from a specific 3creai 

sys is defined as Xrep. A scenario is defined as a specific set of input values required for 

the execution of a model. An element of XT representing a scenario is labeled xT. 

YT is similarly defined as a countable-dimensional mathematical representation of 

^reai sys- I use VT to represent the output of a model from a specific scenario (yr e YT). 

Here, 'Py is defined as the mapping from ^ai sys to YT. Again, the number of possible 

YT'S which represent a system is very large, and each can be thought to have been 

mapped separately from %evA sys (through its own "9®"). I define the collection of all 

functions that translate ^/reai sys to specific YT's as fy. The collection of all mathematical 

representations YT translated from a specific ?/reai sys is defined as Yrep. Yrep, then, is the 

collection of every aggregation of the information found in 3/reai sys- For the strategic 

airlift example, this could include not only that a particular piece of cargo has traveled 

from wherever it was at t = 0 along some path during 0 < t < termination to wherever it is 

at t = termination (if some model also provides information at that level of 
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disaggregation), but also that it has moved a certain number of miles, that a certain 

amount of bulk-sized cargo moved so many miles, that a certain amount of cargo has 

moved successfully, that a certain requirement had a particular closure time (earliest time 

at which all cargo in the requirement has been moved), as well as that a certain 

percentage of the delivery requirements were met. 

T is defined as a "truth model" of the system. T maps a specific XT into a specific 

YT. Its exact form is probably unknown. However, if a system is observable in some 

manner, a mathematically meaningful representation of the system input (an XT) which is 

mapped (via T) into a mathematically meaningful representation of the system output (a 

Yj) can be seen. Obviously, any XT may be mapped into any YT, regardless of causality. 

Therefore, the collection of all possible truth mappings is defined as T. Following the 

strategic airlift example, though we cannot define the mathematical form of a desired T, 

we could say that a particular T, say Ti, maps some number of available C-5s and C-17s 

into some values for "bulk tons moved," "over-sized tons moved," and "out-sized tons 

moved." Another T, perhaps T2, maps some number of C-5s and C-17s into the number 

of total tons moved. And yet another T maps total planes to the number of total tons 

moved. Figure 4 shows the extraction of mathematically useful information from the real 

world. 
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Figure 4: Obtaining Mathematical Representations from the Real World 

Modeling a Real-World System. Given m models (m > 1) created for a system, let X,- 

be the set of information which is required as input to the zth model, 1 < i < m. This 

required input set for a desired model is available as one of the realizations of XT. In 

other words, X, e Xrep. However, all of the information that is required may not be 

readily mapped from reality (arrival and service rates, for example), and approximations 

must be made for such information. Therefore, if all information required for a model is 

obtainable from reality, we can say X,- = XT, but often, X, is an approximation of XT. The 

input to a model representing a particular scenario is shown as x„ where x,- e X;. 

Y; is the set of information that is derived from model i, i.e., model i's output. This 

set of information is available as one of the possibilities of Yx, and so Y, e Yrep. 

However, Y, is the output of a model and as such the values which comprise Y, are 

approximations of those which comprise YT (for a given Yrep). The realization of a 
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specific Y, (in other words, the output of a model having run a specific scenario) is 

labeled y,-, where y, e Y,. 

M, is defined as the ith model. M, is a mapping from X,- to Y, which is created in an 

attempt to emulate the truth mapping T from X,- to Y,. For a unique input x„ we write the 

unique output as M,(x,) or, equivalently, y(. All variables and parameters that comprise a 

specific model are considered inputs to the model (X,), and are not part of the model per 

se (e.g., service rates). However, specific requirements of a modeling type that cannot be 

reasonably taken from Xrep are considered part of the model (e.g., random number seeds). 

Models may be created to represent any desired level of detail and any or all parts of the 

system being modeled. In other words, for the strategic airlift system, a model may be 

created which simulates to a great level of detail the various aspects of strategic airlift. 

Or, a model may be created which accepts as inputs a number of aircraft and the number 

of days during which to fly and simply outputs throughput. Alternatively, a detailed 

model could be created to determine the length of time required to fly from one base to 

another. As each of these purposes exists in the real-world strategic airlift system, each is 

considered a model relative to that system, though their purposes and methods clearly 

differ from each other. 

Determining the proximity of M,- (which maps from X,- to Y,) to the corresponding T 

mapping (from X,'s corresponding XT to Y,'s corresponding YT) represents an attempt at 

model validation. Typically, however, we do not know much about the mathematical 

form of T. In lieu of comparing M, to T for validation, then, we may attempt to ensure 

(for a scenario) x,- = XT and determine the proximity of y, to yx. Complete validation 

would require this comparison for every possible scenario, but this is typically prohibitive 
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so a representative subset of scenarios is generally chosen and comparisons are made 

from this scenario subset. A problem exists in that some or all of the information in XT 

or YT may be difficult to obtain either directly or indirectly from observation (such as 

input parameters), or perhaps the truth scenario has not been (or cannot be) executed. 

These possibilities can make validation based on output performance difficult or 

impractical. If only part of XT or Yj is observable, a partial validation may occur over 

that observable part. In general then, output-based validation may take place at the 

intersections of X,- and the observable portion of XT (X,- n Xj 0bs)> and of Y, and the 

observable portion of YT (Y,- n YT 0bs)- 

If two (or more) models, say M,- and My, are constructed for the same system, it is 

possible to make comparisons between the models. These attempts to determine the 

proximity of M, to M; will be labeled covalidation efforts. If the form of the models is 

identical (such as linear regressions in which only coefficients are different), we may 

compare M, to M;- directly. However, the most likely case is that the models do not share 

the same form. In this case, we would like to ensure x,- = x7- and determine the proximity 

of y,- to yj for all scenarios x,- e X,- corresponding to x;- e X/. (Again, a representative 

subset of all possible scenarios will suffice.) However, it is not generally the case that the 

exact same objects exist in X, (or Y;) as X,- (or Yj). For this reason, covalidation requires 

ensuring the values in each model in X,- n X,- are equivalent, and evaluating the difference 

(not necessarily a strict subtraction) between the models with respect to the values of 

their common output in Y, n Y/. 
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Output/Input Crossflow 

Introduction/Ground Rules. Here, an iterative method is employed in which selected 

inputs as well as outputs may converge. The purpose of this iterative scheme is to effect 

the output/input crossflow between the models. That is, one model's output (or a 

function of that output) is supplied as input to the other model. For instance, NRMO 

provides as output the optimal selection of aircraft routes, while MASS accepts as input 

the frequency of route usage. On the other hand, MASS provides output that can be 

translated to the efficiency of parking space use, an input parameter required by NRMO. 

In dealing with dissimilarly structured models, the differences between the models 

must be carefully examined and exploited. Typically, dissimilarly structured models not 

only have different input (including both variable and parameter) sets, but they could also 

have different levels of aggregation as well as different capabilities in terms of modeling 

the actual system. In order to make a reasonable assessment of the models' covalidity, 

however, these differences must be examined. 

Structurally different models commonly employ different levels of data aggregation. 

For instance, the MASS simulation models the strategic airlift system to a high level of 

fidelity in terms of its level of detail compared to the NRMO optimization model. When 

comparing such models, each model's designed level of aggregation should be 

maintained. In other words, the fidelity of models should not be compromised for the 

sake of "fair comparison." For example, optimistic optimization results could prove to be 

the result of unwarranted aggregation, since it may be the case that the unrealistic 

divisibility of aircraft or units of cargo in the optimization results in more cargo 

movement than is actually possible. Further, by maintaining the appropriate levels of 
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aggregation in each model, the covalidation process may also provide information on the 

appropriateness of such aggregation. 

Whether or not to use the different modeling capabilities inherent in each model 

should be carefully considered on a case by case basis before model comparison is 

performed. In general, the "extra" capabilities of one model compared to the other model 

should be switched off, if possible. For example, since NRMO can effectively model 

aerial refueling aircraft operations while MASS cannot, the NRMO capability should be 

turned off during the comparison. If this is not possible, selection of the input variables 

or parameters should be such that the capability exercises no significant effect. 

An exception to this general rule occurs when inherent differences in the modeling 

paradigms used allow one model to adequately model a system aspect while the other 

cannot. A simple example of this is that NRMO does not model the variability inherent 

in many airlift processes, relying instead on mean values, while MASS models the 

random distributions of such variables. This difference in capabilities accounts for a 

fundamental difference between the two models, one for which comparisons in terms of 

covalidation are desired. 

A difficult area is ensuring a rough parity in inputs between the two models, 

particularly models of different types or models that operate at different aggregation 

levels. Even when a particular input feeds both models, if the level of aggregation for 

this input is different between the two models, special care must be taken to ensure 

equitable representation. 

After all else has been accomplished in order to ensure the models are executing the 

same scenario, it is likely, due to the differing natures of the modeling paradigms used, 
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that the models will not yield the same result in terms of some common output. This is 

expected since, for instance, one model creates a schedule based strictly on the placement 

of required cargo movements on the TPFDD while the other model optimizes this 

schedule in order to maximize the movement of the cargo. A possible solution to this 

problem involves taking what is learned from the execution of one model and using it to 

improve the execution of the other. For this effort, I propose adapting certain outputs of 

each model for use as inputs to the other. Given the different world-views inherent in the 

models, it seems reasonable to assume that lessons learned from the output of one model 

may be used to improve the use of the other model. It is desired to select outputs of each 

model that can serve as inputs to the other. In general, it is not clear that finding such 

outputs to crossflow is possible. However, since optimization models provide the "best 

solution" while simulation models can provide estimates of system parameters, it seems 

reasonable that information could be meaningfully exchanged between these particular 

model types. 

A Practical Application of the Crossflow Method. Here, an iterative scheme is 

presented that demonstrates the crossflow of outputs to inputs between two models, 

Model i and Model j. The application is described in Figure 5. In the figure, the 

superscript n denotes the current iteration number. Each model has an input set: X,- and 

X7 are the complete input sets required for each model. X7, and Xy- are subsets of X,- and 

Xj, respectively, that represent the input derived from or modified in reaction to the other 

model's output (i.e.: from the output of Model; to the input of Model i, or vice versa; X,,- 

=fji(Yji)). For the first model execution, some (subjective) nominal values are placed on 

these inputs that, during later iterations, will be derived from the output of the other 
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model. Likewise, Y, (or Y;), is the complete output set from model / (or model j) and Yy- 

(or Yß) is a subset of Y, (or Yy) that contains output which is utilized by the other model 

(output from the simulation to be used as input to the optimization or vice versa). The 

output subset used by the other model is "filtered" appropriately through the/jy andfß 

feedback functions to make it usable as input for the other model. This filtering can be 

realized as a direct mathematical relationship or reflected as changes in policy or by 

adding model constraints. 

At each iteration, a check is made to determine if the stopping criterion has been met. 

This criterion can be that a model's input has converged. Alternatively, successive 

iterations may indicate that a point of diminishing returns has been reached with this 

process. Either way, the final iteration inputs (denoted by "*") are deemed those which 

are as close to each other as possible, and they are used as the experimental design center 

for the ensuing model comparison. 
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Model i (M.) Y" 

*"ß = .^(Y;r') 

Increment n by 1 

Y". 
ji 

V 

Use 
x* = x;' 

x* = xf 
as model inputs 

Y" 
•j 

X*- = /ff(Y£) 

Model; (Mp x5 

Figure 5: Iterative Scheme 

In Figure 5: 

n is the iteration number 

Model i input/output 

X; is input to model i 

Xß =fß(Yji) is input to model i that is derived from output of model; 

Y, is output of model i 

Ytj e Y, is output from model / that is to be used as input to model; 
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Model / input/output 

Xj is input to model j 

Xy =fij(Yjj) is input to model j that is derived from output of model i 

Yj is output of model j 

Yji e Y. is output from model j that is to be used as input to model i 

Prior to developing the particulars of model comparison, I summarize the two basic 

steps taken to achieve a crossflow of outputs and inputs between models. First, the 

input/output structures of the models are carefully studied and appropriate adjustments 

are made due to the differences in level of detail and capability. Next, output/input links 

are determined which allow for a potentially meaningful crossflow. 

The information provided by these links is used in an iterative fashion aimed at 

improving both models. This iterative scheme results in convergence to a fixed point of 

inputs and outputs (which may not be identical for each model). The input fixed points 

should represent a state where the models represent similar situations. The output fixed 

points can provide the first indication whether or not the models are performing 

analogously. The mathematical theory supporting the successful performance of 

output/input crossflow is begun in the following subsection. 

Mathematical Development. As stated, there are likely values that are part of X, or X; 

that may only be approximated, since they are unobservable in XT. It is possible that the 

output of another model may provide insight as to the true measure of such an input. The 

function that translates the output from model / to the input of model j is denoted byfjj. 

Specifically,^- maps the subset Yy- of Y, to the subset Xy of X,-. In general, the function fa 

can be thought of as mapping the entire y, e Y, vector to the entire x/ e X7 vector, which 
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represents some (likely incremental) change to the original X;. As noted, it is likely that 

most of y; will not be used by/jy and, correspondingly, that most of the new Xj vector will 

consist of values from the original x; vector. Figure 6 describes these relationships 

between models and their feedbacks graphically. A dotted line in the figure denotes that 

a set is drawn from a collection of sets. 

f-> 

X rep rep 

*-i 

Figure 6: Relationships between Models 

We wish for the opportunity of feedback between models to be more general, 

however. For instance, we desire to allow feedback from several models to a single 

model. Also, we do not wish to rule out feedback from a model to itself. For this reason, 

I redefine the output of thcfjj function as a vector that contains only the change to X,- 

suggested by model i. In other words, the majority of the/j/(Y,-) vector will contain "0" 
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values, meaning that either the function does not affect these input parameters or 

variables or that the function does influence these parameters or variables, but no change 

is suggested at this iteration. The non-zero values indicate how much a particular 

parameter or variable is to be changed from the last iteration. In this way, more than one 

model (including itself) may affect another model's input. I use the notation/^(y,) to 

denote this mapping of the output of model i to the incrementally changed x; vector. 

However, fijiyi) is not the only input to X/. The entire new x/ vector is the vector sum 

(denoted by the © symbol) of each of the/ty(yO vectors where k = 1,..., m for m models 

that represent the system, as shown here. 

^j=Aj(yj)®f2j(yj)®-®fmj(yj) (4) 

Of course, if one of the m models (say model /) does not provide feedback to model j, 

then fij(yj) should yield an appropriately-sized "0" vector. 

It is important to note that with this definition of mapping to X;, care must be taken 

that each input variable or parameter is only changed via a single model. If it is desired 

that more than one model affect a single input variable or parameter, another method of 

determining X; (such as averaging the non-zero values for a particular element in X,) may 

be developed. This work employs only vector summation in determining X, (and the 

assumption that each parameter or variable is affected by at most one model). 

Note that so far, the new x,- vector consists only of the change to the old xy vector. I 

define the result of the feedback fjj(yj) as the sum of the old x, and any desired feedback 

from model j to itself. In this way, the vector sum of all the/t/yO vectors (as described 
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in Equation (4) above) now represents the exact vector we wish to use as input into model 

j during the next iteration. This process is illustrated in Figure 7 where the new input to 

model j consists of the vector summation of the/fc/y*) vectors. 

** 

M. 
YJ 

h n 

Figure 7: Generalized Relationships between Models 

Input/Output Partitions. It is convenient for clarity to consider X,- and Y, as being 

comprised of three partitions (each). X,- consists of one partition that can be compared to 

X,- in order to determine that x, = Xy and, therefore that two models are modeling the same 

scenario. X,- n X, effectively determines this partition of X,- (although it is doubtful in 

practice that every opportunity to compare values between the models will be taken 

advantage of, depending on the size and complexity of the input sets). There is another 

partition of X,- that consists of the information taken from another model to be used in 

model i. X,- nfp(Yj) (that is, the non-trivial portion of^,-(Y/)) determines this part of X,-, 

and I have labeled this partition previously as X;(. The elements of the final partition of 
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X/ are simply every variable or parameter in X,- that is not a member of the other two 

partitions. 

Y; is similarly partitioned. The first partition of Y, is comprised of that information 

which may be compared to Y/ in a covalidation effort. Y, n Y, determines this partition. 

The second partition consists of the information in Y, used to feedback to model j. This 

information is found in the non-trivial portion of/)/(Y/) n X,-, which I have previously 

labeled as Yy. Finally, the information not used for comparison to another model or for 

feedback comprises the final partition in Y,. While it is not prohibited for a variable to 

belong to more than one partition of X, or Y„ it is generally the case that the three 

partitions are mutually exclusive and collectively exhaustive partitions for X,- and Y,-. 

If partitions are constructed for m models (m > 2), the union of each pair-wise 

partition may be considered. For instance, the first partition in X, consists of (X, n 

Xi) u ... u (X,- n XM) u (X,- n X/+0 u ... u (X,- n Xm) (omitting the trivial possibility 

of comparison to itself). Similarly, the second (feedback) partition consists of (X, n 

fnC^i)) u ... u (X, n/m;(Ym)) (allowing the possibility for feedback to itself). In Y„ the 

first partition consists of (Y, n Y7) u ... u (Y,- n Y/.i) u (Y,- n Y,-+i) u ... u (Y,- n Ym) 

(again omitting the possibility of comparison to itself). The feedback partition consists of 

(fu(Yi) n Xi) u ... u (fim(Yi) n Xm) (allowing the possibility for feedback to itself). The 

partitioning of a system of more than two models makes it likely that the partitions are 

not mutually exclusive and collectively exhaustive. Consider two models, each of which 

outputs a certain parameter. The parameter could be fed back from one or both models to 
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a third model and the parameter could also be a point of comparison between the two 

models from which it is output. 

Defining the Crossflow Mathematically. We wish to define a composition which 

maps a vector of m model inputs, Xj,.. .,Xm (each of which is an input vector to one of m 

models), back onto itself. Further, this mapping will account for the m models acting 

upon the inputs and for any feedback desired between the models. The vector of model 

inputs Xi,...,Xm I call X (i.e., X =Xi,...,Xm)T, as shown in Equation (5). 

X = 

X, 

X. 

(5) 

Similarly, I define a vector of model outputs Yi,...,Ym called Y (i.e., Y =Yi,...,Ym) , 

as shown in Equation (6). 

(6) 

As M; maps X,- to Y,-, I construct a diagonal mapping matrix of models Mi,... ,Mm, 

designated M, which maps X into Y . This diagonal mapping matrix is constructed by 
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entering M, as the ith diagonal element on the mapping matrix. All other elements of the 

mapping matrix are "0", as described by Equation (7). 

M = 

Mj     0     •••     0 

0     M9    •••     0 

0       0 M. 

(7) 

The matrix mapping of m models working on their respective inputs can be written as in 

Equation (8). 

M(x) = 

where x e X and y e Y 

M, 0 

0 Mj 

0 0 

M M 
M2 (x2) 

M„(x„) 

y2 

= y 

o 
o 

M„ 

(8) 
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An m by m mapping matrix of feedback functions, denoted by / , is also constructed 

and shown in Equation (9). In this matrix, entry (i,j) contains the feedback function^,. 

For all fji,j i=- i, the feedback is the change to be applied to the input of the z'th model based 

on the output of the/h model. In other words, fp,j ^ /, returns a "0" for all entries except 

the variables or parameters requiring changes. For these, the difference between the 

original value of the variable or parameter and the desired value is returned. The 

feedback fü is constructed as the input (from the current iteration) to the t model with 

any "feedback to self variables or parameters modified accordingly. 

/ 

J\\       J2\      '"      fm\ 

JY1       J22      '"      fml 

Jim      J 2m J mm 

(9) 

In this way, the /"" row contains both the input to model i as well as the desired changes to 

be applied to this input. The vector is determined by the vector sum of each model's 

feedback to model i (including fa). As demonstrated in Equation (4), when the z'th row is 

applied to the m model outputs, the result is x,-. Note that this construction allows the 

possibility that more than one model could influence a single parameter in model i. If 

this is the case, feedback values may be appropriately weighted (equally weighted to 

reflect an average, perhaps) or some other method may be employed to resolve the 

multiple feedback, but here I assume^, is constructed such that only one model is 

allowed to affect any one element of the x,- vector. The vector consisting of the changes 
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made to all m models, (xj, x2,..., x„,)T, has already been labeled x . The mapping matrix 

/ , then, maps Y into X as follows: 

7G0= 

/ml "yi" 

J ml y2 

f 
J mm _ .y». 

/ll      /21 

/l2        /22 

y \m       ^ 1m 

7n(y,)©/2,(y2)©-©/ral(yJ' 
/i2(yi)©/22(y2)©--©/m2(ym) 

/,m(yi)©/2m(y2)©-©/mm(ym) 

(10) 

= x 

The desired composition of mappings from X back to itself, then, is merely a 

function of x e X that I will call F. The construction of this function of x is shown in 

Equation (11). 

F(X) = /(M(X)) 

=/G0 (ii) 
= x 

The complete expansion of F is demonstrated in Equation (12). 
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F(x) = F 

/ll J2\ 

J\l J22 

J \m J 2m 

/ll /2I 

/l2 J22 

J\m J: \m       J 2m 

Jml 

J ml 

f J mm 

Jm\ 

J ml 

f J mm 

M, 

0 

0 

M, 

0       0 

M,(Xl)' 

M2(x2) 

0 

0 

M„ 

Mffl(xm)_ 

/11(M1(x1))e/21(M2(x2))e...e/ml(Mm(xm))" 
/12(M1(x,))e/22(M2(x2))©...e/m2(Mm(xra)) 

/lm(M1(x1))©/2m(M2(x2))©...0/mm(Mm(xm)) 

■/„(y,)©/2,(y2)©"-©/«i(yJ" 
/i2(y.)©/22(y2)©-©/m2(ym) 

/lm(y,)©/2m(y2)©-©/mm(ym). 

X, (12) 

This composition accepts each model's initial input, executes each model once, and 

delivers feedback to each model's input based on the model runs. The result is an 

updated set of model inputs which, assuming the validity of the feedback functions, 

provide better estimates for some of the input values than the initial set of approximated 

inputs. Successive applications of F are denoted by superscript, as are the iteration 
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numbers on an element of X (whose initial value for a particular scenario is assumed to 

be x° e X), as illustrated in Equation (13). 

xH=f(xn-1) 

= F2(x"-2) 
/      /    w (13) 

=F(r-'(x0)) 

= F"(x°) 

Since we desire successive iterates to approach some "truth" or "best" value, we 

would like to know that such a value exists, under what conditions we can actually find it, 

and lastly, how to find it. In order to address these issues, we need to make some 

assumptions concerning X, M, and / . Recall that X is the vector of model input sets 

Xi,...,Xm. Each of these X, is a set in R"' where 1 < n,< ». Further, we assume each X, 

is closed and bounded, or compact. This implies that X is also compact for 

n = V nt < °°. Assume that the composition / "Mis continuous. Though this 

assumption is not true in general and may seem questionable, recall that / only returns a 

change to inputs whose initial estimates are in question. All other inputs to the 

composition are continuous, since they do not change at all. The estimated inputs, then, 

are real-valued variables such as arrival and service rates, or efficiency factors. Given 

that the variables affecting / are real-valued, the assumption of the composition's 

continuity is realistic. Given these conditions, it can be stated by Brouwer's fixed-point 

theorem that F has a fixed point in X (Border 1985). Of note is that while there is at 
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least one fixed point in X, the stated assumptions are not enough to assert that the fixed 

point is unique. If, however, the composition F is a contraction, it can be proved that 

there is only one fixed point. 

Definition: Fixed Point and Contraction. Let F: 9Q -» % be a function from a 

metric space (%, d£) into itself. A point %* is called a fixed point of % if F(x* j= X* . 

The function F is called a contraction of % if there is a positive number a < 1, such that 

^(F(x,')iF(xJ"))<arf^(x,',x>) forall^',^;in^ (14) 

(Apostol, 1974). In other words, this inequality requires that the value of the distance 

between the images under F of any two elements of % be less than the value of the 

distance between the elements. 

Proof of Feedback Convergence. Theorem: If the composition F = / ° M is a 

contraction of the complete metric space (9G, d&), then F has a unique fixed point in 

SQ. 

Let d be a metric on 9G (a set of X), such that (9Q, J„) is a metric space. Now, 

each 3Gi is an n,-dimensional vector on which some metric deg (the Euclidean metric is 

a reasonable choice) can be assumed to exist, and therefore, each (%i, d% ) is a metric 

space. I now design a metric d$, for % such that I can determine the value of the metric 
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for each of the m 9Qt, 's and determine the value of dq for the resulting m-dimensional 

vector. The choice of metrics is arbitrary, but the Euclidean distance for m-dimensional 

vectors or an Euclidean metric determined after applying positive, non-zero weights 

based on the relative importance of each model is valid and seems reasonable. Since this 

metric defined on % is a metric developed by the combination of m other (valid) 

metrics, it is clear that the resulting metric is itself a metric, and (3Q, d$.) is a metric 

space. Further, since % has already been assumed to be a compact set, {9G ,dq.) is also 

a complete metric space. Given that (9Q, dq,) is a complete metric space, if it can be 

asserted that F = / ° M is a contraction mapping on 9Q, I will show that F has a 

unique fixed point in 3Q (Apostol 1974). Further, this fixed point is invariant regardless 

of the metric used, and an intuitive and simple method exists for determining the fixed 

point in 9Q. 

However, determining that F is indeed a contraction mapping is likely not a trivial 

task, given the complex nature of mathematical models. Decomposing F into / and M 

may be helpful for determining whether F is a contraction or not. I consider from the 

output of M that partition of each % that is used for feedback to other models. Further, 

I assume that M is Lipschitz continuous across this partition. (Since the other partitions 

of the ^ 's are not used by / , Lipschitz continuity is not established across these 

partitions. Despite the limited mapping (from 9Qi to a partition of ^) considered, I 

continue to use M as its description.) 
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Definition: Lipschitz Continuity. A function F is said to be Lipschitz continuous at a 

point x' if there exists ß > 0, L > 0, and a unit hypersphere B( x') such that 

F(»;)-F(»'-) < L ~ J       ~l 
X    —x (15) 

whenever xj e 5(x' j, x; ^ x'. Notice that this condition is a relaxed form of the 

condition required for a function to be a contraction. The general application of the 

Lipschitz condition is to ensure the existence of a derivative of the function at x' if ß > 1 

(Apostol 1974). 

This implies that there exists 0 < Li < °° such that the following condition holds. 

dg(M(x,')tM(xy'))<L1^(x,',x'') forallx"',x;' in 3G (16) 

Now I can show that there exists some non-trivial / such that F must be a contraction. 

First, / must also be Lipschitz continuous. This property implies that there exists 0 < L2 

< °o such that the inequality in Equation (17) holds. 

ddf(f\f(fJhL2dy(f>fJ) forall^V'inä (17) 

If I combine the implications based on the assumptions of Lipschitz continuity, Equation 

(18) is obtained. 
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= L2^(M(X'')IM(X^)) (18) 

Since / is constructed by the modeler, it is clear that a non-trivial / may be specified 

which forces the product L2Li < 1. In this manner, the composition F = / ° M may be 

forced to be a contraction mapping on % with a = L2Li < 1. 

The property of contraction in F allows the use of an iterative method for 

determining the fixed point of F in SG . Initially, some x° e 9Q is selected. While it 

seems logical to select an x° thought to be close to the fixed point, the selection of x° 

does not determine whether or not the fixed point will be found, but could affect the 

number of iterations required to find it. With an initial x°, M, the diagonal mapping 

matrix of models, is performed (i.e., each model is run using their respective x(° e 9Qi, i = 

l,...,m). Next, the feedback matrix / is implemented, and the result is x1. This cycle 

from x° to x1 is the first iteration. (Each iteration may alter only those inputs which are 

affected by the feedback functions, all other inputs values remain fixed.) Repeating the 

process during a second iteration yields x2. From the assumption that F is a contraction 

of %, it follows that x1 and x2 are closer to each other (in terms of the selected metric) 

than x° and x1. I define a sequence {x"| of iterates as the sequence given by 
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~0     ~1 
X     ,   X :F(X°), X

2
 =F

2
(^°)=F(F(X

0
)),..., x" =F-(«0) (19) 

An implication of the nth iteration is given in Equation (20). 

d^\Z"-l)=d^(z"->),F(zn-2)) 

<ad^(x"-l,Zn'2) 
(20) 

Inductively, I arrive at Equation (21). 

^(x^x-"-0<a"-^(x-\x-°) 
= can-1 

(21) 

In Equation (21), c = d^[xl,x°). Applying the triangle inequality for m > n, Equation 
36 

(22) is obtained. 

m-l 

d&(xm,xn)^d&(xk+1,xk) 
k=n 

m-l 

<c£a* 
k=n 

an-am 

= c  
1-oc 

C        n < a 

(22) 
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Since a<l, a" —> 0 as n—> °°. This implies that {x"} is a Cauchy sequence in {%, 

d^.). However, 9Q is a complete metric space, so there exists a point x e % such that 

x'1 —> x . Under the assumption of the continuity of F, I find the fixed point by taking 

the limit of the sequence {x j. 

f(x*)=f(\imxn 

= limF(^n) 
(23) 

= limx-n+1 

/I—>°° 

= X 

Therefore, x   is the fixed point of F. Further, finding the fixed point is simply a matter 

of performing repeated applications of the mapping F until satisfactory stopping criteria 

have been satisfied. Ultimately, this criteria should be that the models' inputs have 

converged at x  . 

If absolute convergence does not occur in a reasonable number of iterations, however, 

there are several possible explanations and courses of action. The most discouraging of 

these is that the F mapping is not actually a contraction mapping. This phenomenon can 

be detected if the difference between successive input values grows instead of decreases. 

Related to this problem, the F mapping could be only marginally a contraction (i.e., a 

from Equation (14) very close to 1.0), and successive iterates become very marginally 
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closer. In either of these cases, a new / may be sought so the composition F is a 

(stronger) contraction mapping. 

Another problem that may prevent convergence to x   is that successive iterations 

indicate that a point of diminishing returns has been reached. This case may be 

manifested in one of two ways. First, iterates may steadily approach the fixed point, but 

the high fidelity of model inputs allows very incremental changes to the input values, so 

the actual fixed point may be attainable only through very many iterations. Another 

possibility is that limitations of the models prohibit the use of the actual fixed point as an 

input, and the method may alternate between points near the actual fixed point. In either 

of these cases, the use of the last input values is acceptable as a proxy for the actual x  . 

If the F mapping is indeed a contraction mapping, I can be confident that this point is 

very close to the actual fixed point. 

It is an interesting note that convergence occurs not only in the model inputs, 9Q , but 

also in the model outputs, 3/. This is easily demonstrated by first performing F on the 

fixed point, x  e 3G. Of course, the result is x  . However, if one performs only the 

model portion of the F = / °M composition on x*, a fixed output is obtained, as well, 

which I denote by £*. 

M(X*)=£* (24) 
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Gradient Analysis 

In this section I develop a means for assessing the "closeness" of the models. At the 

conclusion of the iterative method, we have fixed points from each model that may be 

compared. Rather than simply relying on this comparison made at a point, I propose 

estimating the gradient of each model relative to selected inputs and comparing these 

vectors. Metamodels constructed across a small experimental design of relevant input 

variables provide a convenient means of effecting this comparison. Both models are 

executed (during the iterative scheme) at the same basic input settings. The final input 

settings from the iterative scheme become the center point of an experimental design 

aimed at estimating the local gradients of each model. A comparison of these gradient 

estimates indicates whether or not the models respond in a similar fashion to 

perturbations in the selected inputs. 

The method I develop allows comparison between both the relative closeness of 

average model outputs and estimates of gradients of the models representing the 

sensitivity of a selected output to a set of common inputs. Using this method, I am able 

to investigate both the relative predictive values of the metamodels (through the output 

comparison) as well as compare the metamodels' abilities to provide description of the 

physical system (through comparison of local gradients). The method is summarized in 

the following subsections. The first describes the creation of an experimental design, and 

the second describes the comparison of the resulting metamodels. 

Experimental Design. The experimental design chosen for this study is based on the 

desire to evaluate the sensitivities of a single output to changes in key inputs. The choice 

of design depends on the study. The number of model executions to be performed is 
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limited by the size of the models, the number of input factors to be varied, the desired 

design resolution, and the number of replications to be made at each design point (to 

reduce the output variability of simulations) (Box and Draper 1987). 

The result of the iterative scheme is a fixed point of the models' inputs. This fixed 

point provides the input set to each model (to include parameters and variables) which 

corresponds as nearly as possible to the inputs and outputs (as applicable) of the opposing 

model. This input establishes the center point for the experimental design. It is 

significant that the convergence that results from the iterative scheme is valid only for the 

design point upon which the scheme was performed. I am assuming that the 

perturbations used in the experimental design are small enough so that the effect of using 

the same fixed points across the entire design is insignificant. 

Since exercising the technique across a wide experimental design may yield 

convergence to greatly different sets of specific model inputs, the iterative method would 

require repetition at each design point. For instance, a large change in the number of 

available aircraft (or any resource) may significantly affect optimal routing (one of the 

crossflow variables). For this reason and since one of the goals is gradient approximation 

at the center design point, I assume that design points are very close to one another (say, 

approximately plus or minus ten percent) and that the potential differences in fixed 

points are unimportant. The desired closeness of the design points creates a trade-off 

with the number of runs required for a model with output variability (such as a 

simulation) so that a statistically significant difference may be seen between the design 

points. 
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Model Comparison. I recognize there there are a number of methods available for 

comparing the result of the experimental design. This research describes two methods. 

The first method is demonstrated on the illustrative example of the next section. This 

method considers the fact that, if two models are the same, their outputs for a given set of 

inputs, should equal each other. Therefore, the difference between the output sets should 

be zero. Further, the gradients of an output of interest with respect to the inputs of 

interest should be the same, also. In other words, the way in which an input affects one 

model should be the same way it affects the other model, if the models are covalid. This 

implies that the difference between the gradients of interest of the models should also be 

zero (for two identical models). 

The proposal, then, is to take the (design) point-by-(design) point difference between 

the outputs of each model. In this application, I compare a simulation model in which 

several runs are performed at each design point with an optimization model where only 

one run is required at each design point. I take the difference between each simulation 

run and the corresponding optimization run, since if I operate the optimization multiple 

times at the point, the same result would be obtained. A regression model created from 

these difference points should be a "zero" model, with only random variation providing 

any deviation from zero. Not only should the mean equal zero, but the coefficients 

should all be zero, as well. The analysis of the regression statistics, then, provides the 

extent to which the two models are covalid. Of course, the specific application 

determines how close to zero the regression model has to be to deem the models covalid, 

but the significance of the model, the significance of the coefficients, and the amount of 
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variation explained by the model (R2) are factors that can help in making the 

determination. 

The other method I employ takes advantage of the difference between optimization 

and the simulation model. This method considers that the resulting gradient direction 

found by each model should be similar. As such, the angle between the gradient vectors 

created by each metamodel should be relatively small. 

Box and Draper describe the computation of a confidence region around the 

coefficients of a linear regression that I employ here. A confidence region shaped as a 

hypercone is constructed about the gradient vector of the simulation metamodel (chosen 

since there will likely be more variability in this metamodel). The following equation is 

used to determine the angle about the determined gradient vector the confidence region 

extends (Box and Draper 1987). 

sin#: 

1/2 

(k-l)s2
bFa(k-l,vb) 
k 

i=\ 

(25) 

In the equation, 9 is the angle the confidence region extends from the estimated gradient 

vector, k is the number of variables estimated, b is the set of coefficients, Sb is the 

standard error of each coefficient, and Vb is the number of degrees of freedom on which Sb 

is based. 

If the gradient vector of the optimization model lies in the constructed hypercone, we 

may not declare that a difference exists between the two gradient vectors. The closeness 
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of the mean values of the metamodels should also be considered, however, before making 

a determination as to the two models covalidity. 

Illustrative Example 

In order to demonstrate the use of the proposed methodology, an example is given 

using very small-scale test models that represent the MASS and NRMO models. Data 

used in these small-scale surrogates are notional only and no inferences should be made 

from the data or results to either the MASS and NRMO models or to any actual airlift 

scenario. 

The Baby Models. The scenario posed is that 50 similar aircraft must fly as many 

missions as possible from a home base to either of two air bases (A and B) in 15 days. 

The air bases can handle 10 and 5 aircraft maximum on the ground (MOG) at a time, 

respectively, and are different distances from the home base. Sensitivities of both the 

number of aircraft and the amount of available MOG are of interest here. In the 

simulation (Baby MASS), the flight times to (and from) each base and the ground time of 

the aircraft at bases A and B are random variables, while the optimization (Baby NRMO) 

assumes a mean value. (See Appendix A for a more detailed account of both the 

simulation and optimization models.) 

The simulation accepts as input a proportion of use for the two bases (the percentage 

of missions flown to each base), while the optimization yields optimal values for this 

proportion. Similarly, since it is not possible in practice to optimally schedule the ground 

spaces available at the bases (as an optimization model would), the optimization accepts 

as input a MOG efficiency factor. The simulation may yield a practical maximum 
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number of aircraft that can be serviced at a base from which a better estimate for MOG 

efficiency may be derived. The iterative scheme uses this information to attempt 

convergence to some "optimal" proportion of base visitation and MOG efficiency. 

Output/Input Crossfiow Method. Table 1 shows the results of the iterative scheme 

with 60 runs being made at each iteration (for the simulation). The table displays two 

rows of information for each iteration. In the Baby MASS column, the top row of each 

iteration shows the percentage of aircraft sent to each base, while the bottom row displays 

the average number of missions flown to each base, as well as the total average number 

of missions flown over the 15 day period. In the Baby NRMO column, the top row 

shows the MOG efficiency applied to Base B (the bottlenecked base), while the bottom 

row again shows the number of missions flown to each base, as well as the total number 

of missions flown. 

A fifty-fifty split was used as the nominal value for the proportion of aircraft sent to 

each base, and 1.0 was used as the starting MOG efficiency. When the simulation results 

indicated a bottleneck at a base, a MOG efficiency was calculated based on the number of 

aircraft which were actually able to be serviced at the base and the amount of service time 

the aircraft had at the base (see Appendix A). For a Baby NRMO run, the number of 

planes routed to each base is determined. This proportion is used as direct input for the 

subsequent Baby MASS run (see Appendix A). 
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Table 1: Iterative Scheme for Test Models 

i 
Baby MASS Baby NRMO 

A B Total A B Total 

1 
0.5 0.5 <-% efficiency —> 1.0 
87.2 92.5 179.7 52 140 192 

2 
0.2857 0.7143 <-% efficiency —> 0.9479 

51.1 130.3 181.4 56.1 132.7 188.8 

3 
0.3127 0.6873 <-% efficiency —> 0.9337 

55.8 128.4 184.2 57.2 130.7 187.9 

4 
0.3202 0.6798 <-% efficiency -» 0.9234 

57.0 127.0 184.0 58.0 129.3 187.3 

5 
0.3257 0.6743 <r-% efficiency —> 0.9212 

57.7 126.7 184.4 58.1 129.0 187.1 

6 
0.3269 0.6731 <-% efficiency —> 0.9172 

57.7 126.1 183.8 58.5 128.4 186.9 

7 
0.3290 0.6710 <-% efficiency —> 0.9063 

58.4 124.6 183.0 59.3 126.9 186.2 

8 
0.3348 0.6652 <-% efficiency —> 0.9126 

60.0 125.5 185.5 58.8 127.8 186.6 

9 
0.3314 0.6686 <-% efficiency —> 0.9099 

58.5 125.1 183.6 59.0 127.4 186.4 

10 
0.3329 0.6671 <-% efficiency —> 0.9098 

59.3 125.1 184.4 59.0 127.4 186.4 

11 
0.3329 0.6671 <-% efficiency —> 0.9098 

59.3 125.1 184.4 59.0 127.4 186.4 

As seen in Table 1, a stopping criterion is met since the Baby NRMO results for the 

10th and 11th iterations are identical, indicating convergence. This input value 

convergence is shown graphically in Figure 8. The final output values indicate that an 

average of 184.4 missions are flown in Baby MASS (with standard error of 2.21) and 

186.4 missions are flown in Baby NRMO. The comparison of these output values across 

the iterations is shown in Figure 9. The converged base-use proportions and MOG 

efficiency are used throughout the experimental design for gradient estimation. 
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Figure 9: Throughput Convergence 

Experimental Design. Metamodels are created using the number of aircraft and the 

amount of MOG at base B as independent variables perturbed over a 22 plus center point 

experimental design. (MOG at base B is selected since base B proved to be a system 

bottleneck.) The number of planes is varied plus and minus 10 percent (to 55 and 45 
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planes, respectively) and the MOG at base B is varied by plus and minus 1 unit of MOG 

(to 6 and 4 MOG units, respectively). The number of missions flown is the dependent 

variable. 

The metamodel results are summarized in Table 2. Note that for the Baby NRMO 

model, the only error comes from specification bias. Since there is no random error in 

Baby NRMO's metamodel, it is clear that none of the design points are outside the 

critical region found at the design's center, i.e., the basis did not change at any of the 

design points. The metamodels are also shown graphically in Figures 10 and 11 with the 

number of missions flown shown on each of the vertical axes. 

Table 2: Comparison of Test Model Results 

Baby MASS Baby NRMO 

Coefficient 

Mean 174.6 186.4 
Planes 10.1 13.0 

MOG at B 15.6 11.3 
Interaction 5.6 0.0 

P-Value 

Mean 0.0 0.0 
'   Planes 0.0 0.0 
MOG at B 0.0 0.0 
Interaction 0.0 1.0 

Coefficient Standard Error 0.65 0.00 
SSR 90441.8 1184.7 
SSE 30170.6 0.0 
SST 120612.4 1184.7 
p* 295.8 10073834 

F* Significance 0.00 0.00 
R2 0.750 1.0 
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6    MOG      5' 

Figure 10: Baby MASS Metamodel 

Aircraft 
6    MOG      5 

Figure 11: Baby NRMO Metamodel 

I create a new set of dependent variable data (termed "difference" data) by taking the 

difference between the Baby NRMO and the Baby MASS data at each design point. I 

then construct a metamodel for this "difference" data, again using MOG at base B and the 
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number of aircraft as the independent variables. In this instance, however, the dependent 

variable represents the difference in the number of missions between the Baby NRMO 

and the Baby MASS models (at each design point). The results of the "difference" model 

are given in Table 3. 

Table 3: "Difference" Model Results 

Difference 

Coefficient 

Mean 11.8 
Planes 2.9 

MOG at B -4.3 
Interaction -5.6 

P-Value 

Mean 0.0 
Planes 0.0 

MOG at B 0.0 
Interaction 0.0 

Coefficient Standard Error 0.65 
SSR 14115.4 
SSE 30178.9 
SST 44294.3 
p* 46.1 

F* Significance 0.0 
R2 0.319 

The significance of this "difference" model implies disparities between the two 

models, with a large amount of the discrepancy reflected in the interaction term. Also, 

there is a significant difference in mean values between the two models (compared to the 

center point arrived at through the iterative scheme). The relatively large "difference" 

model is mainly the result of the MASS and NRMO models being evaluated across a 

relatively wide experimental region. (The MOG at base B factor is set at five units of 

MOG plus or minus 20 percent.) In order to alleviate this problem, the fixed-point could 
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be re-determined at each design point or the design space could be lessened (recall that I 

recommend a deviation from the center point of ten percent). Here, however, the design 

space could not be narrowed, since the MOG at base B factor cannot be fractionalized in 

the simulation. 

Determination of Covalidation. To determine the models' covalidity, the preceding 

facts and statistics are considered, as well as the specific use of the models and how 

imperative it is that the models yield identical outputs. 

From the "difference" model regression summarized in Table 3, it is seen that all the 

coefficients and the mean of the model are significant, which implies that the models do 

not represent the same reality and are therefore not covalid. From a more practical 

standpoint, however, we see the models' similarity in Figures 10 and 11 and from the 

regressions that, at least, the coefficients are all of the same sign and same order of 

magnitude. Depending on the application, this alone could justify that the models are 

performing similarly enough to deem them covalid. Consider also that the "difference" 

model R2 is only 0.319, which implies that the "difference" regression can only account 

for about 32 percent of the variation of the responses about the mean. The apparent lack- 

of-fit suggested by this low R2 could be used as further evidence of the covalidity of the 

models. 

The important consideration here is that each application of this method is different 

and that each requires its own specific qualifications for covalidity. No one statistic can 

provide a blanket "goodness-of-covalidity" measure, and it is my contention that 

attempting to develop such a statistic would undermine the uniqueness of each specific 

application of this method. Comparing two (or more) models should occur across many 
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applicable fronts, if possible. Further, the degree of closeness required for a declaration 

of favorable comparison will differ from case to case, as well. Actually requiring a 

"difference" model to be zero in order to declare two models covalid should be reserved 

only for applications in which it is required to have identical models. Some lesser degree 

of closeness should be sufficient for most applications. This level of closeness may be 

described by the significance of the "difference" model coefficients, by the R statistic, or 

by some other objective statistic relevant to the particular case. 
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IV. Results 

Introduction 

This chapter documents the performance of the covalidation methodology on the 

actual MASS and NRMO models at two distinct scenarios. I developed a scenario and 

translated it into two sets of inputs, one for each model. Further, a second scenario (as 

well as applicable input sets) was created from the first in order to provide an indication 

of covalidation at more than a single input point. Each scenario was exercised using the 

method of output/input crossflow until a convergence of input values was reached. This 

iterative method was conducted three times for each scenario using different feedback 

functions in each case. Finally, each scenario was used as the center of a 26 plus center 

point experimental design for gradient comparison. 

This chapter is organized much as the basic modeling paradigm presented in Figure 1. 

The first section corresponds to block 1) in Figure 1; the basic scenario developed by 

modelers at AMCSAF is summarized. The following section, representing block 2) in 

Figure 1, presents the setup of the output/input crossflow with respect to two distinct 

feedback functions. The next section covers the experimental design used to conduct the 

gradient analysis applied to the result from the output/input crossflow application (block 

3 in Figure 1). The results from the actual performance of the output/input crossflow 

method are presented in the subsequent section, followed by a section concerning the 

actual performance of the gradient analysis, and finally, the decision as to covalidation is 

discussed. 
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The Scenarios 

The notional scenario used for this research uses a fleet of 160 military aircraft mixed 

among C-5s, C-17s, and C-141s, plus several wide body passenger (wbp) aircraft from 

the Civil Reserve Air Fleet (CRAF). These aircraft are used to fly some 26,000 short 

tons (stons) of cargo and 35,700 passengers from five onload bases (primarily McGuire 

and Charleston Air Force Bases (AFB) for the military aircraft and John F. Kennedy 

(JFK) International Airport for the CRAF) to six offload bases (mainly Bahrain, Dhahran, 

and King Abdul Aziz International Airports in Saudi Arabia) over a 20-day period. Each 

cargo mission from the continental United States (CONUS) is flown either direct to its 

destination, or through one of four en route bases in Europe, specifically Mildenhall, 

England; Ramstein, Germany; and Moron and Rota, Spain (the passenger carrying CRAF 

aircraft use separate civil airports in Europe as their en route stops). 

The scenario contains delivery requirements through the 20th day after the start of the 

scenario, but I only collect data for the first 15 days. This is done so that I may obtain 

statistics from the initial surge of cargo requirements into the theater, while not implying 

that cargo requirements end after 15 days. The cargo requirements are mixed among 

bulk (palletized) cargo, over-sized cargo (cargo that will not fit on a pallet, but will fit on 

a C-130, C-141, or larger aircraft), and out-sized cargo (cargo that will not fit on a C-130 

or C-141 aircraft, but will fit on a C-5 or C-17 aircraft). 

The initial aircraft fleet is a combination of 60 C-5 aircraft, 50 C-17 aircraft, 50 C- 

141 aircraft, and 25 wide body passenger CRAF aircraft. These aircraft are first available 

for missions on the first two days of the scenario. In MASS, the initial location of the 

military aircraft is specified as either McGuire or Charleston AFB, and the 25 CRAF 
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aircraft begin at JFK International Airport. In NRMO, the initial location of aircraft is 

not specified, and the model operates such that the aircraft are initially located where they 

are first required. 

The infrastructure available at the various bases used in the MASS and NRMO 

models are for the most part implicitly assumed in the values of the input variable 

"MOG." This MOG value (often referred to as "working MOG") is intended to provide a 

measure of the maximum number of aircraft a base can support in terms of runway usage, 

taxiing, parking, loading, unloading, and refueling during a designated period of time. 

One important base function that is explicitly modeled is the daily total fuel available at 

the base (as opposed to the number of fuel trucks or fuel pumps available, which is 

included in MOG). Depending on assumptions of the availability of resources, each base 

is given either a particular value for its MOG and fuel, or a value that indicates the 

resource is unconstrained. Infrastructure at bases in the United States is considered 

unconstrained. This assumption implies that both MOG and fuel at CONUS bases are 

unlimited. Bases in Saudi Arabia are considered to have unlimited fuel, but limited 

MOG. The en route bases in Europe have both limited fuel and MOG. 

The modified scenario, used to provide a look at covalidation at a second point, was 

created using the base scenario as a starting point. The delivery requirements were then 

increased by 50 percent to create a total requirement of 39,000 short tons of cargo and 

53,500 passengers delivered. Other than the delivery requirements, the scenarios are 

identical. However, this does not imply that the iterative method converges to the same 

fixed point. For reference, the scenarios are referred to as the "small scenario" and the 

77 



"big scenario." See Appendix B to view the pertinent inputs used by the MASS and 

NRMO models for the small and big scenarios. 

The Iterative Method of Output/Input Crossflow 

The performance of the iterative method on two or more models is highly dependent 

upon the choice of feedback functions used in the iterations. With guidance from 

AMCS AF, I examined the input of each model to determine parameters (in NRMO) 

whose values had little justification and variables (in MASS) that could benefit from the 

optimizing nature of a linear program (LP). In addition to determining input parameters 

and variables that could be improved upon, I needed to find parameters and variables that 

could be derived from the opposing model's output. The crossflows between MASS and 

NRMO arrived at for this study include the mix of military aircraft type which may be 

derived from NRMO and input to MASS, and the MOG efficiency parameter in NRMO 

which may be derived from MASS output. 

Mix of Military Aircraft. The initial fleet of military aircraft utilized in the scenario 

consisted of 60 C-5s, 50 C-17s, and 50 C-141s. MASS utilizes these allocated aircraft as 

they become available, without determining whether a particular aircraft is the best 

choice to transport a particular cargo requirement or not. All aircraft are, therefore, used 

in approximately the same proportions as their availability and utilization (ute) rates 

allow. (The ute rate dictates a percentage of time flying which a particular aircraft type 

may not exceed when averaged over a model specified period of time.) 

This method of scheduling aircraft for missions has proven historically not to be 

optimal. For instance, AMCSAF conducted a study where the addition of an aircraft type 
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(without the removal of any other aircraft) actually reduced throughput during a scenario, 

presumably because the new aircraft type was not as efficient as the aircraft already 

included in the study. 

It is considered reasonable, then, that altering the mix of aircraft available to a MASS 

study might similarly alter the throughput realized by the study. An optimal aircraft mix 

is not necessarily what the NRMO model provides, however. NRMO starts its run with 

an initial mix of aircraft, just as MASS. However, NRMO is free to use (or not use) each 

aircraft in any way it deems appropriate for the movement of cargo. It may be implied 

that this method of aircraft use suggests a more efficient aircraft mix than is found by 

using the aircraft in the proportions in which they are provided. Therefore, I determine 

the percentage of all military missions that each military aircraft type fly as output from 

NRMO. Then, assuming the total size of the military fleet used (160 aircraft) remains 

constant, I determine a new number of each type of military aircraft to be used by the 

MASS model using Equation (26). For i = {C-5, C-17, C-141}, 

/ 
Planes?™ = min 

f        \Acn A 
round 

V 

Msn, 
^xl60 

vTotalMsn y 
, Avail, 

^ 
(26) 

In Equation (26), Planes?™ is the number of aircraft type / to be used as MASS input 

during the next iteration; Msn, is the number of missions performed by aircraft type i 

during the first 15 days of the scenario (from NRMO); TotalMsn is the total number of 

missions performed by all military aircraft types during the first 15 days of the scenario 

(from NRMO); and Avail, is the maximum number of aircraft type i available for use. 
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The min function simply takes the least of the two arguments, but the round function used 

is somewhat different than a typical round function. Since there are three aircraft types 

and the sum of the Planes?™ must be 160, the round function rounds the two aircraft 

types closest to an integer to that integer, while the remaining Planes?™ is evaluated such 

that the sum of all Planes?*w equals 160. 

Note that if one of the military aircraft types, C-17 for instance, returns Planes£™7 = 

Availc-i7, Equation (26) is not sufficient to evaluate the other aircraft types since the total 

number of aircraft must remain constant at 160. In this case, the other aircraft types must 

use Equation (27) to evaluate the new number of that aircraft type to be employed in the 

next iteration. I leave open the possibility of more than one aircraft type equaling its 

maximum number available, though this may not be possible due to the value of the 

Avail,-constants. For k={ke i3 Planes?™ = Avails}, j = i-k, 

Planes"™ = round 1 x 
f \ 

new Msn,. „ 
160-]T Planes?' 

TotalMsn-^Msn v 
(27) 

The necessary assumption concerning the input set is that it be compact. The 

assumption concerning the feedback function is that it is continuous. Any input that does 

not change due to a feedback function is constant, and therefore is compact. Also, the set 

of potential aircraft mixes must be compact. The aircraft mix consists of three inputs: the 

number of C-5s, the number of C-17s, and the number of C-141s. Each of these is an 
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integer value with a minimum of 0 and a maximum of the lesser of the number of that 

type of aircraft available and 160 (the total size of the allowable fleet), so the set of 

variables representing the numbers of military aircraft is compact. 

It is not as easy to determine the validity of the assumption that mandates continuity 

of the function that transforms the NRMO output of aircraft mix to MASS. The actual 

output from NRMO consists of the number of missions flown by day, by aircraft (which 

may not, in NRMO, be integer valued). The percentage of missions each type of military 

aircraft flew as compared to all military missions, then, is known and continuous, with a 

minimum of 0 and a maximum of 1. These percentages multiplied by the total number of 

aircraft in the fleet (up to a maximum of the number of that aircraft type available for use 

by the scenario) should provide the number of each military aircraft type I wish to use as 

the initial fleet mix in MASS. However, since MASS will not accept fractional aircraft 

as input, an integer must be assigned to each value. This presents a problem since the 

feedback function is no longer continuous. However, we may contrive the "rounding" 

function to look continuous, where, in a one-dimensional example, the "steps" of the 

function which maps real numbers to their closest integers are actually not steps and have 

derivatives at the step points that are less than infinity. The output of NRMO being 

continuous, this should not pose a problem since the probability of landing exactly on one 

of the steps is zero. 

MOG Efficiency. The function used to feedback MASS output to NRMO input is the 

MOG efficiency of the three primary offload bases. MOG efficiency in NRMO is a 

measure of how efficiently we anticipate a particular base is able to utilize its MOG. 

This number is an attempt to compensate for the fact that parking spaces, fuel trucks and 
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stations, MHE, taxiways, etc. cannot be optimally scheduled and utilized in real-life 

operations. Currently, NRMO runs are devised so that this MOG efficiency value is 0.68 

for all bases (though the model is capable of separate MOG efficiency values for each 

base). The value 0.68 is the multiplication of two separate MOG efficiencies: 1) 0.8 

which accounts for scheduling inefficiencies and 2) 0.85 which accounts for aircraft 

queuing inefficiencies. These values may or may not provide a reasonable estimate of 

the inefficiencies of working MOG on average, but they almost certainly do not 

accurately reflect the inefficiencies experienced by every base, as these inefficiencies are 

likely to differ from base to base. 

Deriving the MOG efficiency feedback function from MASS output to NRMO input 

is not a straightforward task, however, and the actual function is open to some debate. In 

fact, two forms for the feedback function were used for this research. Some of the MASS 

outputs available which could be considered useful in the creation of such a feedback 

function include the minimum, average, and maximum numbers of aircraft which are 

present at each base and the numbers of daily landings and takeoffs that occur at each 

base. Also of use is the input of the amount of MOG available at each base. 

The first MOG efficiency feedback function used in this research is the average 

number of planes at a base divided by the actual amount of MOG available at a base. For 

a base that is considered a bottleneck, this function should provide an indication of the 

proportion of planes that can actually be serviced at a base to the theoretical maximum 

number of planes capable of being serviced at the base, or the efficiency of MOG at the 

base. In MASS (and NRMO), MOG is divided into wide-body (C-5) and narrow-body 

(C-17 and C-141) MOG values that compete with each other for the total MOG at a base. 
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In order to combine these values into one value that could be used to compare against the 

average number of aircraft present at the base, I adjusted the theoretical MOG at each 

base by the proportion of narrow-body to wide-body aircraft that actually landed at the 

base. For instance, at a base with a MOG of 26 narrow-body aircraft or 13 wide-body 

aircraft (as was used for the MOG at Bahrain in this research), I multiplied the proportion 

of narrow-body aircraft landings (to all landings) by 26 and added this to the proportion 

of wide-body aircraft landings multiplied by 13. This method of determining an 

equivalent MOG value for this example base is illustrated in Figure 12. 
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Figure 12: Equivalent MOG at a Typical Base 

The result of this feedback function is the theoretical maximum number of aircraft on the 

ground at the base given that aircraft arrive to the base in the determined proportion of 

narrow to wide bodies. This feedback function is shown as Equation (28). Fory = 

{OBBI, OEDR, OEJN} (the primary offload bases), 
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Avgplanes ,• 
M0GEffavgact7w=———  '     ,.  (28) 1        NBlandings, WBlandings, 
 ^- x NBMOG, + ^- x WBMOG, 
ALLlandingsy ALLlandingsy 

In Equation (28), MOGEffavgact"evv is the MOG efficiency of base; to be used as 

NRMO input during the next iteration ("avgact" denotes that I take the average number 

of planes divided by the actual MOG at the base, and the term may be used to refer to 

this feedback function); Avgplanes, is the average number of planes at base j over the 

course of the scenario (from MASS); NBlandings, (WBlandings,) is the number of 

narrow-body (wide-body) aircraft landings at base; during the scenario (from MASS); 

ALLlandingSy is the total of narrow-body and wide-body aircraft landings at base j during 

the scenario (from MASS); and NBMOG, (WBMOG,-) is the amount of MOG available 

for use at base 7 by narrow-body (wide-body) aircraft. 

Again, an assumption for the input set is compactness. The inputs to NRMO that do 

not vary due to feedback from NRMO are constant and therefore compact. The feedback 

of MOG efficiency requires that the set of possible MOG efficiency values be compact. 

Of course, the minimum possible MOG efficiency value is 0.0. The upper bound could 

be 1.0 if the MOG value actually represented a hard constraint. However, it is possible 

that more than the MOG amount of aircraft may use a base at a given time in the MASS 

model, so the upper limit of MOG efficiency may be greater than 1.0. However, an 

arbitrary upper bound (which at the very most could be represented by the total number 
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of aircraft in the fleet divided by the allowable MOG at a base) could be enforced if 

required. 

The assumption of continuity of the feedback function causes no problems in this 

case, since we divide a real number by a real number and use the resulting real number 

directly as the output of the feedback function. 

The second function used to feedback MOG efficiency from MASS to NRMO is 

similar to the first, but uses MASS output to necessitate MOG efficiency values between 

0.0 and 1.0 (inclusive). In this case, the average number of aircraft on the ground is 

divided by the average (over the days of the study) of the maximum number of aircraft on 

the ground (for each day). Of course, the average for any given day cannot be greater 

than the maximum for that day, so the averaging of each over the length of the simulation 

cannot produce a MOG efficiency of greater than 1.0. Since MASS may, at times, place 

more aircraft on the ground at a base than is feasible, it is considered that this MOG 

efficiency function (given in the following equation) may better indicate the actual MOG 

efficiency for a base. 

Avgplanes , 
MOGEffavgmaxT1^^- — J- y (29) 

^TMaxplanes^ 
d=Q , 

days 

In Equation (29), MOGEffavgmax"evv is the MOG efficiency of base7 to be used as 

NRMO input during the next iteration ("avgmax" denotes that I take the average number 

of aircraft divided by the average of the daily maximum number of aircraft at the base, 
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and the term may be used to refer to this feedback function); Avgplanes,- is the average 

number of planes at base; over the course of the scenario (from MASS); days is the 

number of days considered in the scenario; and Maxplanes^ is the maximum number of 

aircraft on the ground at basey on day d (from MASS). 

The assumptions of compactness and continuity in the feedback function cause no 

problems in this case. The MOG efficiency is limited to real values between 0.0 and 1.0 

(inclusive), and the feedback function in this case is clearly continuous (for the same 

reasons as the other case of MOG efficiency feedback). 

The output/input crossflow method for my application is depicted as in Figure 13. 

Figure 13: Relationship between MASS and NRMO 

Experimental Design 

Recall that we wish to construct metamodels across a small experimental design of 

relevant input variables to provide a convenient means of effecting a rational comparison 

of the models. I constructed two experimental designs; one around the input point of 
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convergence corresponding to the small scenario and one around the input point of 

convergence of the big scenario. I employed system experts at AMCSAF to assist in the 

development of the pertinent input variables used in the experimental design. An 

important factor to realize is that each input variable we wish to use as a factor in the 

experimental design must be present as an input variable into each model. 

First, the number of military aircraft available for use was varied. Regardless of the 

breakdown of C-17, C-5, and C-141 aircraft arrived at during the iterative procedure, the 

total size of the military fleet is 160 aircraft. I varied the size of this total fleet by as 

much as ten percent by varying the number of C-5 and C-17 aircraft by eight aircraft each 

from the base case (as described later, the iterative method drove the number of C-141 

aircraft to zero, so I did not vary this input variable from that value). In this way, if the 

number of both C-5s and C-17s are high (low), the total fleet is ten percent larger 

(smaller) than the base case. If the number of C-5s is high while the number of C-17s is 

low, or vice-versa, the total number of aircraft in the fleet is the same as that in the base 

case, regardless of the specific number of C-5s or C-17s in the fleet. 

The other variables I used as factors in the experimental design are the fuel available 

to military aircraft at the four en route bases. The base amount of fuel at these en route 

bases is 800,000 gallons per day available at each Mildenhall, Ramstein, and Moron, and 

250,000 gallons per day available at Rota. The total amount of fuel available per day at 

the en route bases, then, is 2,650,000 gallons. Using a method similar to the varying of 

aircraft, I wish to vary the amount of total fuel available by some small relative amount; I 

selected a change representing just under ten percent of the total fuel available; 249,000 

gallons per day. Spread over the four en route bases, a "low" value decreases the amount 

87 



of fuel at a base by 62,250 gallons, and a "high" value increases the fuel at a base by 

62,250 gallons. Even though the percent change from the base value to a "high" or "low" 

value is different for Rota than for the other bases, if all bases are "high," the overall 

increase in fuel is almost ten (-9.4) percent, and if two bases are "high" while two bases 

are "low," the total amount of fuel at the en route bases is equal to the amount of fuel 

available in the base case. Similarly, if three bases' fuels are "high" while the other is 

"low," the total daily fuel available at the en route bases is almost five (-4.7) percent 

greater than the base case. 

With six factors to vary, a full-factorial design yields a total requirement of 26, or 64, 

design points. Including the center point in the design, each experimental design (the 

small and big scenarios) consists of 65 design points, which are run on the MASS and 

NRMO models for comparison. I run 30 replications of the MASS model at each design 

point to narrow the confidence region established by the created metamodel. Table 4 

below shows the coded design using -1 for "low" values and +1 for "high" values. In the 

table, the en route bases are identified by their International Civil Aviation Organization 

(ICAO) identifiers where ED AR refers to Ramstein, Germany; EGUN is Mildenhall, 

England; LEMO is Moron, Spain; and LERT is Rota, Spain. 
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Table 4: Experimental Design for MASS and NRMO Models 

i 
Number of Aircraft Fuel at En Route Bases 
C-5 C-17 EDAR EGUN LEMO LERT 

1 -1 
-1 

-1 

-1 

-1 

-1 

2 +1 
3 -1 

+1 
4 +1 
5 -1 

-1 
+1 

6 +1 
7 -1 

+1 
8 +1 
9 -1 

-1 
-1 

+1 

10 +1 
11 -1 

+1 
12 +1 
13 -1 

-1 
+1 

14 +1 
15 -1 

+1 
16 +1 
17 -1 

-1 
-1 

-1 

+1 

18 +1 
19 -1 

+1 
20 +1 
21 -1 

-1 
+1 

22 +1 
23 -1 

+1 
24 +1 
25 -1 

-1 
-1 

+1 

26 +1 
27 -1 

+1 
28 +1 
29 -1 

-1 
+1 

30 +1 
31 -1 

+1 
32 +1 
33- 
64 Repeat above experiments with LERT = +1 +1 

65 0                    0         |         0                    0                   0 0 
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Performance Results— Output/Input Crossflow Method 

This section examines the actual performance of the output/input crossflow method 

on the MASS and NRMO models with respect to the small and big scenarios. Recall that 

different forms of the feedback functions are also considered. The first three subsections 

examine various feedback functions on the small scenario, and the next three subsections 

cover the same feedback functions on the big scenario. 

Military Aircraft Mix and "avgact" MOG Efficiency Feedback Functions. The first 

application of the output/input crossflow method on the small scenario uses the military 

aircraft fleet mix feedback function, Equations (24) and (25), from NRMO to MASS and 

the "avgact" MOG efficiency feedback function, Equation (28), from MASS to NRMO. 

Recall that the MOGEffavgact function implies that the average number of aircraft at a 

base is divided by the actual available MOG at the base to determine the MOG efficiency 

at the base, allowing for the possibility of a MOG efficiency greater than 1.0. Also, I did 

not specify a particular value for the Avail (maximum number of aircraft of a particular 

type available, see Equation (26)) variables in this application of the output/input 

crossflow method, preferring to allow the number of planes to be modified to the extent 

that the method dictates (of course, this has the effect of setting Avail for each aircraft 

type to 160, or the number of aircraft in the entire fleet). 

Table 5 displays how the inputs changed through the iterations. In the table, the 

inputs to NRMO are again labeled with ICAO identifiers, where OBBI represents 

Bahrain, OEDR is Dhahran, and OEJN refers to King Abdul Aziz. The initial inputs are 

displayed as iteration 1. From the first couple iterations, it can be seen that the new 

values for MOG efficiency are influenced by the specific fleet mix used in the MASS 
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model, while the fleet mix is not largely affected by the MOG efficiency values used in 

NRMO. The input for the second iteration shows that both models' inputs are 

significantly changed due to the performance of the other model. This initial change, 

however, is due to the entire input set used by the other model. The MASS input for the 

third iteration is only slightly modified, even though NRMO's MOG efficiency had been 

significantly altered in the second iteration, while the NRMO input for the third iteration 

changes drastically due to the significant change in the MASS fleet mix from iteration 

two. Upon reaching these iteration three values, the changes made to the input values 

decreases to near insignificance, and full convergence of the values occurs by iteration 

nine. 

Table 5: Feedback Values: avgact 

To: MASS NRMO 
Feedback: Planes MOGEffavgact 

Iteration C-17 C-5 C-141 OBBI OEDR OEJN 

1 50 60 50 0.680 0.680 0.680 
2 35 108 17 0.680 1.104 1.140 
3 34 108 18 1.503 0.424 0.812 
4 34 106 20 1.496 0.446 0.817 

5 33 106 21 1.497 0.492 0.762 
6 34 106 20 1.518 0.515 0.785 

7 34 107 19 1.497 0.492 0.762 

8 34 106 20 1.478 0.473 0.779 
9 34 106 20 1.497 0.492 0.762 
10 34 106 20 1.497 0.492 0.762 

TheN 

efficiency 

and thoug 

RMO model proves to be relatively insensitive to changes in the MO 

factor, since, though I end up with MOG efficiency values greater th 

h these values shifted significantly, I see very little suggested change 
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MASS input based on these facts (or in the output of interest, throughput). Figure 14 

shows the convergence of each models' inputs graphically. In Figure 14 (and in all 

similar figures that follow), the values from the first iteration are plotted on the left side 

of the figure. The final two iterations in each figure display the same data and 

demonstrate the convergence. Also, in order to include all the values on the same scale, I 

show the proportion of the fleet for each of the aircraft types, instead of the raw value. 

MASS: C-17 

NRMO: OBBI 

MASS: C-5 

NRMO: OEDR 

MASS: C-141 

NRMO: OFJN 

12345678910 

avgact iteration 

Figure 14: Input Convergence: avgact 

Table 6 displays a comparison of the main output metric of concern, total short tons 

(stons) delivered in the first 15 days of the scenario. Also shown are the percentage 

differences between MASS and NRMO for the three metrics that comprise total stons: 

bulk stons, oversize stons, and outsize stons. Of course, the outputs for each of the 
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models converge as the inputs do, a fact that does not imply that the outputs of the two 

models converge to the same value (which, as seen from the table, they do not). The 

difference between MASS and NRMO in terms of total stons, in fact, hovers around 25.5 

to 27.5 percent, and I notice that neither the MASS nor the NRMO output varies much 

throughout the iterations. Further, MASS is delivering more cargo than NRMO, which 

seems counter-intuitive since one might expect the optimization model to deliver more 

efficiently. 

Table 6: Output Convergence: avgact 

Iter. 
Total stons/day MASS is       % greater than NRMO 

MASS NRMO Bulk Over Out Total 

1 1632.2 1280.0 28.0% 30.3% 20.0% 27.5% 
2 1625.6 1281.5 26.3% 30.5% 19.0% 26.9% 
3 1624.9 1294.4 25.3% 28.3% 19.2% 25.5% 
4 1623.1 1293.8 23.4% 29.6% 18.9% 25.5% 
5 1624.2 1291.2 26.3% 27.7% 20.2% 25.8% 
6 1623.1 1286.6 27.4% 27.7% 20.2% 26.2% 
7 1625.6 1279.2 29.8% 27.8% 20.7% 27.1% 
8 1623.1 1289.6 26.0% 28.6% 18.9% 25.9% 
9 1623.1 1291.2 26.2% 27.6% 20.2% 25.7% 
10 1623.1 1291.2 26.2% 27.6% 20.2% 25.7% 

These discrepancies, the lack of output variation between successive iterates, the 

large output difference between MASS and NRMO, and the fact that the simulation is 

delivering more cargo than the optimization model, can all be justified with one 

explanation: The scenario's movement requirements are not demanding to either model. 

Neither model has a problem with handling such a scenario; however, each model 

handles the situation differently. Recall that MASS delivers requirements using the first 

93 



available aircraft searching for the first available cargo requirement and carrying it using 

the first available route. Therefore, if the model has delivered all required cargo by the 

appropriate date, the model will still search for the next available piece of cargo and 

deliver it, effectively getting ahead on its required deliveries. 

Conversely, NRMO operates in an attempt to minimize non-deliveries and late 

deliveries of cargo and maximize a small bonus for aircraft remaining at their home- 

station. As a result, if NRMO is "caught up" with its required deliveries, the action it 

takes to improve its objective function value is not to go after more cargo, but rather to let 

aircraft sit idle at their home station. For this reason, NRMO only attempts to move 

cargo when it would benefit the objective function to do so. Figure 15 graphically 

depicts the lack of variation in output from one iteration to the next for the three size- 

specific cargo throughput metrics. The indication in this stable output is that neither 

model has any problem in meeting the requirements of the scenario TPFDD. The figure 

also reveals that MASS throughput exceeds NRMO throughput consistently across cargo 

types. 
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Figure 15: Output Convergence: avgact 
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Military Aircraft Mix and "avgmax" MOG Efficiency Feedback Functions. The next 

application of the output/input crossflow method on the small scenario uses the military 

aircraft fleet mix feedback function, Equations (24) and (25), from NRMO to MASS and 

the "avgmax" MOG efficiency feedback function, Equation (29), from MASS to NRMO. 

Recall that the MOGEffavgmax function implies that the average number of aircraft at a 

base is divided by the maximum number of aircraft at the base to determine the MOG 

efficiency at the base, forcing MOG efficiency values to be less than or equal to 1.0. 

Table 7 displays the changing inputs, while Figure 16 shows the convergence in six 

iterations graphically. 

95 



Table 7: Feedback Values: avgmax 

To: MASS NRMO 
Feedback: Planes MOGEffavgmax 

Iteration C-17 C-5 C-141 OBBI OEDR OEJN 

1 50 60 50 0.680 0.680 0.680 
2 35 108 17 0.635 0.594 0.645 
3 35 108 17 0.743 0.420 0.565 
4 34 106 20 0.743 0.420 0.565 
5 34 106 20 0.737 0.459 0.578 
6 34 106 20 0.737 0.459 0.578 

MASS: C-17    -»-MASS: C-5 

NRMO: OBBI -■-NRMO: OEDR 

MASS: C-141 

NRMO: OEJN 

2 3 4 
avgmax iteration 

Figure 16: Input Convergence: avgmax 

Table 8 again shows the relative lack of change in the response of total throughput 

across the iterations while Figure 17 displays this same phenomena applied to the three 

size specific output metrics graphically. 
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Table 8: Output Convergence: avgmax 

Iter. 
Total stons/day MASS is       % greater than NRMO 

MASS NRMO Bulk Over Out Total 

1 1632.2 1280.0 28.0% 30.3% 20.0% 27.5% 
2 1625.6 1279.2 29.8% 27.9% 20.4% 27.1% 
3 1625.6 1292.9 27.9% 27.0% 19.0% 25.7% 
4 1623.6 1292.9 27.8% 26.6% 19.2% 25.6% 
5 1623.6 1291.2 26.3% 27.5% 20.6% 25.7% 
6 1623.6 1291.2 26.3% 27.5% 20.6% 25.7% 
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Figure 17: Output Convergence: avgmax 

Military Aircraft Mix and "ftsam" MOG Efficiency Feedback Functions. In 

considering the performance of the experimental design on the MASS and NRMO 

models, I realized that using either of the preceding sets of convergent inputs would be 

breaking one of this method's fundamental assumptions that inputs for each model be as 

analogous as possible. The problem comes in that while I have been modifying the 
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MASS input with the number of each type of military plane each iteration, I never modify 

the NRMO input of the number of each type of military aircraft. In the "ftsam" MOG 

efficiency feedback scheme, I use the "avgmax" feedback function, Equation (29), as the 

feedback from MASS to NRMO, and I use the same mix of military aircraft feedback 

function, Equations (24) and (25), as the feedback from NRMO to MASS. Now, 

however, I also feed the same aircraft numbers back to the NRMO model ("ftsam" refers 

to/eedback-to-self (regarding the mix of military aircraft feedback function), average 

number of aircraft divided by the average of the daily maximum number of aircraft at the 

base, and the term may be used to refer to this instance). The flow of the output/input 

crossflow method including self-feedback to the NRMO model is depicted in Figure 18. 

X MASS 
MASS 

MASS 

X NRMO 

NRMO 

Planes 

Y NRMO 

Figure 18: Self-Feedback Relationship between MASS and NRMO 

Since this application of the output/input crossflow method is to be used as the center 

point in the experimental design, I wish to allow only a realistic maximum number of 

each aircraft type to participate in the movement of cargo. For this reason, I set the Avail 
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(maximum number of aircraft of a particular type available, see Equation (26)) variable 

from the mix of military aircraft feedback function equal to the maximum number of each 

type available in the actual USAF inventory. The value for Avail chosen for each aircraft 

type represents the entire USAF inventory with a few aircraft of each type taken out for 

training purposes and a few removed to provide back-up aircraft. The final values used 

for this variable are: Availc-n = 102; Availc-5 = 104; and Availc-141 = 96. 

Table 9 shows the input convergence of the "ftsam" application. In the table, it is 

shown that the number of C-141s goes to zero. This event is not unexpected since the C- 

17 and C-5 may carry much more cargo each mission than the C-141. The C-17 hauls 

over twice the average load of the C-141 (45 stons versus 19 stons) while occupying (to 

the degree that the models are concerned) the same amount of MOG. The C-5 requires 

roughly twice the MOG as the C-141 (and C-17), while carrying an average load over 

three times that of a C-141 (61.3 stons versus 19 stons). Since in NRMO a small bonus is 

awarded to the objective function for using as few aircraft as possible (i.e., remaining at 

home station), the most efficient aircraft are used first. In fact, as shown in the table, no 

C-14Is are recommended to move the requirement. Further, C-5 aircraft are preferred to 

C-17s because, while they use more MOG per short ton of cargo, the requirement is 

relatively undemanding to move, even while using the added MOG. The number of C- 

5s, in fact, is driven to the maximum number available (Availc-5). 
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Table 9: Feedback Values: ftsam 

To: MASS/NRMO NRMO 
Feedback: Planes MOGEffavgmax 
Iteration C-17 C-5 C-141 OBBI OEDR OEJN 

1 50 60 50 0.680 0.680 0.680 
2 37 104 19 0.634 0.577 0.650 
3 56 104 0 0.734 0.438 0.571 
4 56 104 0 0.725 0.215 0.602 
5 56 104 0 0.725 0.215 0.602 

Figure 19 displays the convergence of the input values graphically. Notice that with 

the number of aircraft stabilizing so quickly, the MOG efficiency is forced to stabilize 

quickly as well, and the convergence occurs in only five iterations. Again we see the 

robustness of the NRMO model to changes in MOG efficiency. 

MASS: C-17 

NRMO: OBBI 

MASS: C-5       -A-MASS: C-141 

NRMO: OEDR -±-NRMO: OEJN 

2 3 
ftsam iteration 

Figure 19: Input Convergence: ftsam 
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Table 10 displays the output convergence of the "ftsam" application. Of note is the 

improvement of the models' outputs with respect to each other, ending with total 

throughput only 15 percent from each other. Figure 20 shows graphically how the 

oversize and bulk throughput converge while the outsize throughputs diverge slightly. 

Table 10: Output Convergence: ftsam 

Iter. 
Total stons/day MASS is       % greater than NRMO 

MASS NRMO Bulk Over Out Total 

1 1634.2 1280.0 28.2% 30.4% 20.1% 27.7% 
2 1625.9 1338.9 23.1% 18.2% 27.3% 21.4% 
3 1616.3 1355.1 23.3% 15.3% 23.3% 19.3% 
4 1616.3 1403.7 5.4% 17.6% 28.9% 15.1% 
5 1616.3 1403.7 5.4% 17.6% 28.9% 15.1% 
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Figure 20: Output Convergence: ftsam 

101 



Military Aircraft Mix and "bigavgact" MOG Efficiency Feedback Functions. The 

following three applications of the output/input crossflow method use identical feedback 

functions as the first three applications, except they are performed on the big scenario. 

This big scenario differs from the small scenario only in the size of the requirements in 

the TPFDD. Each tonnage in the small scenario TPFDD is multiplied by 1.5 to obtain the 

tonnage in the big scenario. 

The first set of feedback functions applied to the big scenario include the mix of 

military aircraft function, Equations (24) and (25), from NRMO to MASS and the avgact 

(average number of aircraft at a base divided by the actual MOG available at the base) 

MOG efficiency function, Equation (28), from MASS to NRMO. The converging input 

values are shown in Table 11. As observed in the table and in Figure 21, the C-17 is now 

the preferred aircraft for transporting the cargo requirements. This is a result of the C-17 

delivering cargo more efficiently than the C-5 (or C-141) with reference to MOG use. 

With a higher cargo requirement, the MOG at the bases plays a larger role, and efficiently 

utilizing that MOG becomes a higher priority for NRMO than in the small scenario. This 

is the case because in the small scenario, the aircraft can easily carry all of the available 

cargo, regardless of the MOG; in other words, the amount of available cargo is a 

constraint. In the big scenario, however, the amount of MOG at the bases becomes a 

tighter constraint than the amount of available cargo, and NRMO seeks to use the now 

constrained MOG as efficiently as possible. 
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Table 11: Feedback Values: bigavgact 

To: MASS NRMO 
Feedback: Planes MOGEffavgact 
Iteration C-17 C-5 C-141 OBBI OEDR OEJN 

1 50 60 50 0.680 0.680 0.680 
2 76 29 55 0.604 1.121 1.657 
3 74 30 56 0.238 0.745 1.714 
4 75 30 55 0.250 0.792 1.646 
5 75 30 55 0.244 0.770 1.699 
6 75 30 55 0.244 0.770 1.699 
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Figure 21: Input Convergence: bigavgact 

In Table 12, the throughput realized by the MASS and NRMO models is much closer 

in the big scenario than it was in the small scenario. The final iteration total throughput 

difference is only 9.1 percent, as opposed to the 25.7 percent for the small scenario. The 

reason for this improvement is the same as the motive for creating the big scenario. The 

big scenario taxes the strategic airlift system more than the small scenario, and the 
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NRMO model does not have the same opportunity to take advantage of the objective 

function bonus of not using aircraft (i.e., remaining at home station). So whereas the 

MASS model continually tries to move the next requirement in the TPFDD, regardless of 

whether its cargo movement is outpacing this requirement, the NRMO model now finds 

that it must nearly continually pursue the next piece of cargo in order to keep pace with 

the requirement. The result is that, in the big scenario, both models are behaving 

similarly in their pursuit of the next cargo requirement, even though they are acting in 

that way for different reasons. The fact that NRMO still lags nearly ten percent behind 

MASS in throughput suggests that the scenario could be even larger and still be handled 

capably by the models. Figure 22 shows graphically the relative closeness of the 

throughput of the three cargo types. 

Table 12: Output Convergence: bigavgact 

Iter. 
Total stons/day MASS is       % greater than NRMO 

MASS NRMO Bulk Over Out Total 

1 2085.4 1879.8 7.5% 5.9% 36.6% 10.9% 
2 2018.8 1868.7 5.1% 4.5% 26.2% 8.0% 
3 2044.7 1876.1 6.4% 4.4% 30.5% 9.0% 
4 2036.3 1871.0 6.0% 4.1% 32.0% 8.8% 
5 2036.3 1865.8 6.0% 8.1% 18.8% 9.1% 
6 2036.3 1865.8 6.0% 8.1% 18.8% 9.1% 
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Figure 22: Output Convergence: bigavgact 

Military Aircraft Mix and "bigavgmax" MOG Efficiency Feedback Functions. The 

second application of the big scenario uses the "avgmax" (average number of aircraft at a 

base divided by the average of the daily maximum number of aircraft at the base) 

function, Equation (29), to feedback the MOG efficiency value from the MASS model to 

NRMO. Table 13 and Figure 23 display the results. Once again, the C-17 is preferred 

over the other two aircraft types due to its efficient use of MOG. 
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Table 13: Feedback Values: bigavgmax 

To: MASS NRMO 
Feedback: Planes MOGEffavgmax 
Iteration C-17 C-5 C-141 OBBI OEDR OEJN 

1 50 60 50 0.680 0.680 0.680 
2 76 29 55 0.516 0.568 0.651 
3 76 29 55 0.394 0.465 0.597 
4 75 30 55 0.394 0.465 0.597 
5 75 30 55 0.400 0.464 0.601 
6 75 30 55 0.400 0.464 0.601 
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Figure 23: Input Convergence: bigavgmax 

The output convergence from this application of the big scenario is displayed in Table 

14 and Figure 24. Again the throughput difference is considerably smaller than that for 

the same feedback functions applied to the small scenario (8.6 percent versus 25.7 

percent). The reasons for this are the same as those presented in the previous subsection. 
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Table 14: Output Convergence: bigavgmax 

Iter. 
Total stons/day MASS is       % greater than NRMO 

MASS NRMO Bulk Over Out Total 

1 2085.4 1879.8 7.5% 5.9% 36.6% 10.9% 

2 2018.8 1876.8 3.2% 7.3% 17.5% 7.6% 

3 2018.8 1874.3 3.1% 7.9% 16.6% 7.7% 

4 2036.3 1874.3 4.0% 8.8% 17.9% 8.6% 

5 2036.3 1875.2 4.6% 6.4% 24.3% 8.6% 

6 2036.3 1875.2 4.6% 6.4% 24.3% 8.6% 
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Figure 24: Output Convergence: bigavgmax 

Military Aircraft Mix and "bigftsam" MOG Efficiency Feedback Functions. The 

final application of the output/input crossflow method again uses the "avgmax" MOG 

efficiency feedback function, Equation (29), from the MASS to the NRMO model, but 

the NRMO model supplies the result of the mix of military aircraft feedback function, 

Equations (24) and (25), to both MASS and NRMO. This application (termed "bigftsam" 
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for big scenario,/feedback to self, average number of aircraft divided by the average daily 

maximum number of aircraft at the base) is performed in order to ensure the inputs are as 

close as possible for the experimental design, since without the self-feedback of the 

NRMO mix of military aircraft, the two models would be modeling different fleets of 

aircraft. Table 15 shows the convergence of the dynamic inputs, while Figure 25 shows 

the convergence graphically. 

Table 15: Feedback Values: bigftsam 

To: MASS/NRMO NRMO 
Feedback: Planes MOGEffavgmax 
Iteration C-17 C-5 C-141 OBBI OEDR OEJN 

1 50 60 50 0.680 0.680 0.680 
2 76 29 55 0.516 0.568 0.651 
3 102 41 17 0.413 0.471 0.599 
4 102 53 5 0.464 0.370 0.670 
5 102 57 1 0.516 0.286 0.698 
6 102 58 0 0.537 0.251 0.710 
7 102 58 0 0.533 0.244 0.708 
8 102 58 0 0.533 0.244 0.708 

The number of C-141s used is again (as in the "ftsam" application) driven to zero. In 

this application, however, C-17s are preferred to C-5 aircraft. The number of C-17s 

required is pushed to its maximum (Availc-n = 102) because the C-17 delivers cargo 

more efficiently in terms of MOG use than does the C-5, and the big scenario is 

demanding enough to require conservation of MOG by the models for the cargo to be 

moved. 
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Figure 25: Input Convergence: bigftsam 

Table 16 lists the total throughput of each model as well as the relative difference 

between MASS and NRMO for each throughput category. A point of interest in the table 

is that the relative difference between the models, while starting small (10.9 percent) in 

iteration 1, grows to 18.6 percent by the final iteration. This is due to MASS having use 

of more efficient aircraft which it flies continually without consideration of whether the 

requirement is satisfied or not. The only condition needed for MASS to attempt to move 

the next requirement in the TPFDD is that the requirement is available to load, as 

specified by its available-to-load date (ALD). NRMO, on the other hand, is also using 

the more efficient aircraft, and in fact is able to deliver about six percent more cargo in 

the last iteration than the first, but NRMO does not let itself deliver cargo early unless it 

would help its objective function. NRMO opts instead to allow aircraft to remain at 

home station and obtain the small bonus for doing so. 
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Table 16: Output Convergence: bigftsam 

Iter. 
Total stons/day MASS is       % greater than NRMO 

MASS NRMO Bulk Over Out Total 

1 2085.4 1879.8 7.5% 5.9% 36.6% 10.9% 
2 2038.6 1954.6 4.1% 7.3% -2.9% 4.3% 
3 2269.4 1982.7 11.8% 17.5% 11.3% 14.5% 
4 2329.2 1983.7 16.6% 18.9% 15.0% 17.4% 
5 2361.2 1980.0 16.9% 20.4% 20.6% 19.3% 
6 2371.0 1991.2 15.6% 21.6% 19.2% 19.1% 
7 2371.0 1999.2 20.7% 14.4% 26.9% 18.6% 
8 2371.0 1999.2 20.7% 14.4% 26.9% 18.6% 

Figure 26 graphically displays the convergence of the three throughput categories. 

The fact that the requirement is large enough to at least somewhat stress the airlift 

system, combined with the fact that the most efficient aircraft are allowed to be used, 

results in the most dynamic of these charts. These factors also allowed the total 

throughput for each model to increase with the iteration; the final MASS throughput 

growing almost fourteen percent from the first to the last iteration, and the final NRMO 

throughput growing over six percent. 
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Figure 26: Output Convergence: bigftsam 

Performance Results— Gradient Analysis 

This section examines the performance of the design of experiments on the MASS 

and NRMO models with respect to the small and big scenarios. I use only the "ftsam" 

and "bigftsam" output/input crossflow applications to create experimental designs, since 

they represent the only applications in which the input sets for each model are as similar 

as possible. The input values from the final iteration of each output/input crossflow are 

used as the center point of each design. I run each experiment as listed in Table 4. 

Recall that the factors I vary to create this experimental design include the number of C-5 

and C-17 aircraft and the amount of fuel available at each of the four en route bases, 

Ramstein, Germany; Mildenhall, England; Moron, Spain; and Rota, Spain. Thirty 

replications are run at each point in the MASS model to reduce variation. Of course, I 
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run the NRMO model only once per design point since successive runs yield identical 

results. The constructed metamodels use the output total throughput as the dependent 

variable since it is a high level response of greatest concern to decision makers. If the 

models compare favorably using this output, other responses may be analyzed to 

determine the extent of covalidity. However, if the models do not compare favorably 

using this high level response, a strong claim may be made that the models are not 

covalid for the scenarios under observation. The first subsection details the experimental 

design performed on the small scenario, and the next subsection describes the 

experimental design applied to the big scenario. 

Experimental Design—Small Scenario. The MASS model is run 30 times and 

NRMO is run once at each of the 65 design points. The initial regression metamodel is 

constructed using all six factors plus all two-way interactions. A lack of significance in 

the interaction terms combined with a lack of agreement of which interaction terms were 

significant led to dropping all the interactions and dealing only with the main factors. In 

this way, the metamodels for the MASS and NRMO models are readily comparable. 

Table 17 lists a few statistics concerning the resulting metamodels for MASS and 

NRMO, built with regard to total throughput. (Note that the MASS metamodel is 

constructed using 65 x 30 = 1950 total runs while the NRMO model uses only 65 points.) 

The mean total throughput of the MASS model is 17.5 percent higher than that of the 

NRMO model, roughly as expected given the result of the output/input crossflow method 

(see Table 10). 
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Table 17: Small Scenario Total Throughput Metamodel Results 

MASS NRMO 

Coefficient 

Mean 1616.4 1375.6 
C-5 -0.4 16.2 
C-17 0.9 2.5 

ED AR -0.1 0.0 
EGUN 0.1 -0.3 
LEMO 0.5 -0.7 
LERT 0.1 2.0 

P-Value 

Mean 0.000 0.000 
C-5 0.013 0.000 
C-17 0.000 0.101 

ED AR 0.589 1.000 
EGUN 0.671 0.859 
LEMO 0.001 0.629 
LERT 0.736 0.187 

Coefficient Standard Error 0.149 1.481 
MSR 381.0 2918.9 
MSE 42.6 140.3 

p* 8.94 20.80 
F* Significance 0.0 0.0 

Rz 0.027 0.683 

The only significant factors in the MASS metamodel are the aircraft (C-5 and C-17) 

and the fuel at LEMO (Moron). In the NRMO model, the number of C-5s is the only 

clearly significant factor, and the number of C-17s is marginally significant at the a = 

0.10 level. That the aircraft factors could both be considered significant in each model is 

favorable to the consideration of the models' covalidity for this scenario until it is noticed 

that the signs of the coefficients do not agree for the C-5 factor. Of course, one would 

expect all the coefficient signs to be positive since an increase in any of the factor levels 

means an increase in resources available to deliver cargo. Specifically, the coefficients 

may be interpreted as the change in the total short tons delivered per day due to an 

increase in the factor level by approximately ten percent (eight aircraft for the aircraft 
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factors, 62,250 gallons of fuel for each of the base fuel factors). That the signs on the 

MASS coefficients are not all positive, then, is a matter to look into more closely. 

Recall that the scenario's movement requirements are not demanding for either 

model. MASS delivers requirements using the first available aircraft searching for the 

first available cargo requirement and carrying it using the first available route. Therefore, 

if the model has delivered all required cargo by the appropriate date, the model will still 

search for the next available piece of cargo and deliver it, effectively getting ahead on its 

required deliveries. The MASS model, however, can only pick-up cargo for delivery on 

or after the cargo available-to-load date (ALD). If MASS is picking up all or most of its 

cargo on the ALD, adding resources (or taking away resources to the extent that the 

model can still pick up all the cargo on the ALD) will not affect throughput. This is the 

case for the MASS model operating on the small scenario. The delivery requirement is 

easily handled regardless of small perturbations made to the resource levels studied, and 

the small coefficients are due to both random variation of the responses and nuances in 

the complex simulation model. A look at the R2 indicates that the fitted model does not 

explain a significant portion of the variation of the responses, further demonstrating that 

the MASS regression metamodel is inadequate to explain changes in total throughput due 

to incremental changes in the factors of interest. 

The NRMO regression metamodel displays, as the MASS metamodel, that the fuel at 

the en route bases is not a significant factor when considering this small scenario. The 

significance of the C-5 factor, however, allows the fitted NRMO metamodel to explain 

much more of the response variation than the MASS metamodel. The relatively large 
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value for this factor is explained by the efficiency of the C-5 compared to the C-17 when 

fuel and MOG are not (tightly) constrained, as in the small scenario. 

Experimental Design—Big Scenario. The big scenario is analyzed just as the small 

scenario. Thirty replications at each design point are run for the MASS design of 

experiments for a total of 1950 runs, while the NRMO metamodel is created using just 65 

runs, one from each design point. Again, I construct the metamodels for total throughput 

using only the main effects in order to a linear gradient estimate. 

Table 18 displays the characteristics of the MASS and NRMO metamodels created 

for the big scenario. The first point to note is that both metamodels account for a much 

larger percentage of the variations of the response, as indicated by the R values, than in 

the small scenario. This is due to the fact that the scenario's increased size means that the 

models can no longer easily move the entire requirement in an environment that appears 

unconstrained. In particular, in the MASS metamodel, it is clear that the fuel available at 

the en route bases is becoming a constraint, considering the large coefficients of these 

factors. Interestingly, the NRMO model (delivering about 15 percent less cargo due to 

reasons discussed previously) seems to be on the edge of this fuel constraint, with only 

the fuel at Rota, Spain providing a significant factor. However, this is the base I would 

expect to notice the fuel constraint first since the initial amount of fuel available at Rota 

is less than at the other en route bases (250,000 gallons per day versus 800,000 gallons 

per day), while the amount I vary the fuel remains constant (62,250 gallons per day) 

regardless of the base. 
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Table 18: Big Scenario Total Throughput Metamodel Results 

MASS NRMO 

Coefficient 

Mean 2341.4 1980.8 
C-5 2.3 16.2 

C-17 13.3 12.2 
EDAR 28.4 0.0 
EGUN 23.3 0.9 
LEMO 34.0 0.8 
LERT 34.1 12.9 

P-Value 

Mean 0.000 0.000 
C-5 0.009 0.000 

C-17 0.000 0.000 
EDAR 0.000 1.000 
EGUN 0.000 0.154 
LEMO 0.000 0.196 
LERT 0.000 0.000 

Coefficient Standard Error 0.904 0.614 
MSR 1231511.4 6199.8 
MSE 1567.7 24.1 

p* 785.55 257.15 
F* Significance 0.0 0.0 

Rz 0.708 0.964 

In this big scenario, it is clear that MASS is unable to pick up the requirements on the 

ALD as in the small scenario. This is evidenced by the increased magnitude and 

significance of the coefficients. A comparison of the NRMO coefficients shows that the 

big scenario is more demanding, as well. The exception here is that fuel at the first three 

en route bases in the NRMO metamodel still has little significance in regards to 

throughput. 

Therefore, whereas in the small scenario the metamodels are of limited significance, 

the big scenario metamodels appear much more conducive for comparison. In the 

following subsection, I discuss the comparison of the metamodels and allude to the 

implications of covalidity between the models. 
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Model Comparison. As discussed in Chapter 3,1 consider two methods to assist in 

the determination of models' covalidity. The first method of establishing the significance 

of a "difference" model was exercised on the test models of Chapter 3. The other method 

considers whether one of the metamodel's gradient vectors established in the preceding 

subsections can be found within the confidence region (hypercone) of the other 

metamodel's gradient vector. Of course, this method tests only the similarity of the 

gradient values and should be accompanied by an examination of the differences between 

the mean response values (unless an application is solely concerned with the sensitivity 

of the response to the inputs). 

I treat the small scenario comparison first. Of course, the difference between the 

mean values for the total throughput output of the two metamodels is statistically non- 

zero, so I concentrate here on the analysis of the gradient values. The angle between the 

gradient vector and the extent of the confidence hypercone has been described by 

Equation (25). I construct a 95 percent confidence hypercone about the MASS small 

scenario metamodel gradient vector and determine that the confidence hypercone extends 

27.05 degrees from the gradient vector. The angle between the MASS and NRMO 

metamodel gradient vectors is determined by the taking the arc cosine of the dot product 

of the vectors divided by the product of the magnitude of each vector. I calculate the 

angle between the gradient vectors to be 103.04 degrees. This angle being larger than a 

right angle implies that at least one factor's coefficient is of opposite sign from one 

model to the other. I noted this phenomena in the discussion of the small scenario's C-5 

factor. The gradient comparison results are summarized in Table 19. 
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Table 19: Gradient Comparison Summary 

Scenario 
Angle 

Between 
Gradients 

95% Confidence Region Angle 

MASS NRMO 

Small 103.04 ° 27.05 ° 17.96 ° 
Big 62.61 ° 2.78° 5.03° 

I acknowledge that there is a degree of latitude when making the determination as to 

whether models are covalid or not. For instance, determining the F statistic in Equation 

(25) to a different level of significance would give a different angle to test the gradient 

vectors against (finding a 99 percent confidence region for the small scenario results in an 

angle that extends 32.1 degrees from the MASS metamodel gradient vector). No 

confidence region may extend beyond 90 degrees from the gradient vector, however, 

since the angle is found by taking an arc sine. So I may clearly state that these 

metamodels are not close enough in terms of response or gradients developed with 

respect to inputs of interest to claim that the MASS and NRMO models are covalid at the 

input point identified as the small scenario. 

Next, I examine the big scenario. Again, the difference between the mean total 

throughput values for the metamodels created for the big scenario is so great that the 

means cannot be considered equal. The angle between the gradient vector of the MASS 

model's metamodel and the extent of its 95 percent confidence region hypercone works 

out to only 2.78 degrees. In an examination of Equation (25), I recognize that this is due 

to the large magnitudes of the gradient coefficients. The angle between the MASS and 

NRMO metamodel gradient vectors is found to be 62.6 degrees. 
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Obviously, the NRMO metamodel gradient vector does not exist inside the 

confidence region of the MASS metamodel's gradient vector. I also consider whether a 

confidence region constructed around the NRMO metamodel gradient vector would 

overlap the MASS metamodel gradient vector confidence region. The confidence region 

created around the NRMO metamodel gradient vector extends 5.03 degrees from the 

vector. Therefore, the 95 percent confidence regions for the two metamodels' gradient 

vectors do not overlap. 

Though I cannot claim that the MASS and NRMO models compare favorably enough 

at the small or big scenarios to warrant the claim that they are covalid, some consolation 

may be taken in the fact that the coefficients from the big scenario's metamodels all agree 

in sign. This information may be used by system experts to claim some limited level of 

covalidity between the models at the big scenario, particularly since the signs of the 

gradient coefficients all agree with expectations, namely that an increase in resources will 

yield an increase in total throughput. Also, the fact that for the big scenario gradient 

vectors are closer than in the small scenario could lead experts to consider that an even 

larger, more constrained scenario may produce closer gradient vectors. This 

consideration could lead to the creation of such a scenario, and the entire output/input 

crossflow method and gradient analysis could be performed at this new scenario. 
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V. Conclusions and Suggested Future Research 

Synopsis 

I have devised a method that allows for comparisons between models under different 

modeling paradigms. I began with the description of a general modeling paradigm, 

particularly applicable when multiple models are created to represent the same system. 

The paradigm serves as a framework for the developed methodology. My proposal is to 

use two or more models in concert in order to improve the performance of each. The 

output/input crossflow method is developed to generate this model improvement. 

Through the use of the output/input crossflow method, we hope to arrive at models that 

are as close as possible in terms of their inputs and outputs. I then develop a method to 

characterize the difference not only in the model outputs, but also in the models' 

sensitivities to input variations. The end result is a characterization of the models' 

covalidity. I apply the developed methods both to a pair of small-scale test models and to 

two large-scale models used by AMCSAF to analyze the strategic airlift system, MASS, 

a simulation model, and NRMO, an optimization model. This chapter summarizes the 

research in each of these areas, offers suggestions for further research in this area, and 

finally provides conclusions. 

General Modeling Paradigm 

In defining the general modeling paradigm, I describe mathematically the creation of 

models as they are drawn from the real world. I begin by developing a mathematical 

idiom describing the real world. From this I circumscribe a system and describe the way 
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reality transforms this real-world system from an input state to an output state through 

some "truth" concerning the real-world system. A model is merely an attempt to 

accurately aggregate this circumscription into a mathematical form. The input to a model 

is an attempt to aggregate the state of the system at a defined start time, and the output of 

the model is intended to accurately describe the system at the defined termination time. I 

assert, then, that a model is a mapping from the input to the output. I acknowledge that 

any number of models may be constructed to represent the same system, though each 

model usually requires its own input and output set due to the paradigm (i.e., simulation 

or optimization) and assumptions under which each model is built. 

Models which map their inputs to outputs as designed in light of their corresponding 

real-world system are "valid" models. Often, however, it is not practical to perform a 

comparison between a model and its real-world system, thereby limiting the ability to 

validate the model. If two or more models are created to represent the same real-world 

system, however, a comparison may be performed between the models. Models that 

compare favorably, one to another, are called "covalid" models. Models that merely 

compare favorably to one another can be termed "covalid in the narrow sense," while 

such models, if they should also be determined to compare favorably to the real world, 

may be called "covalid in the wide sense." If one of two covalid models has been 

independently validated, we may claim the other model is "valid by association" with 

respect to those areas of comparison. 
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Output/Input Crossflow 

In the quest to determine the covalidity of two (or more) models, I acknowledge that 

certain assumptions required or inherent in one model may not match those of another 

model. In an attempt to compare models that as nearly as possible resemble one another 

in terms of inputs, I develop the method of output/input crossflow. This method seeks to 

improve the inputs of one model based on the output of another (or others). This iterative 

method requires the user to find feedback functions that translate subsets of output from 

one model into inputs for the other model. Input variables that have potential for this 

type of update include parameters whose initial values have little justification and 

variables that one of the models outputs as "optimum." I prove that there exist feedback 

functions that allow this iterative method to converge at fixed points (regarding the 

parameters and variables used in the crossflow). The resultant input sets are considered 

to represent the represented scenario as nearly as possible. 

I exercised the output/input crossflow method on two test models. The inputs (and 

outputs) converged after 11 iterations. Further, the difference in the relevant output 

metric for the two models decreased (by the last iteration) by 80 percent compared to the 

initial difference between the models. 

I also applied the method to the large-scale MASS simulation and NRMO 

optimization models employed by AMCS AF. Using three different sets of crossflow 

functions on two scenarios each, I achieve convergence in ten iterations or less in every 

case. The results of the attained fixed points provide a more efficient mix of military 

aircraft as used by the MASS model and base-specific values for the efficiency of MOG 

usage in NRMO, values that previously had no empirical justification. 
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Gradient Analysis 

With the input values considered as close as possible, I developed a method to 

compare models that not only considers the mean response at a scenario, but also the 

gradient of the response with respect to specified inputs of interest. I suggest a factorial 

design of experiments with design points no more than ten percent away from the center 

point to approximate the gradient, though I appreciate that there are other methods 

available to approximate these gradients. Linear metamodels are constructed about the 

design center point and the resulting coefficients correspond to the gradient of the 

response with respect to each input. 

I describe two methods for comparing the resultant metamodels. First, I take the 

point-by-point differences between the models' responses and create a metamodel from 

these differences. If the models describe the system identically, the created metamodel 

would be a "zero" model with no significant coefficients (or mean value). The extent of 

the "difference" model's significance, then, is an indication of a lack of covalidity 

between the models. The degree to which the "difference" model must be a "zero" 

model, however, is a judgement required in each application and may vary. 

The second method creates the linear metamodels as described, and compares the 

attributes of these metamodels. A confidence region is created about the gradient vector. 

An angle represents the extent of this confidence region from the gradient vector. The 

angle between the gradient vectors is calculated, and if this angle is less than the angle 

representing the confidence region, the models are declared covalid. 

A gradient analysis was performed on the test models using the "difference" model 

method. While the result was a significant model (implying the models are not covalid), 
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the "difference" model accounted for only a small part of the variance of the responses. 

System experts are required, then, to determine exactly how close models should be 

before they are labeled covalid. This determination should take into account the type of 

models involved as well as the intended use of each model. 

I have also performed a gradient analysis on the small and big scenarios involving the 

MASS and NRMO models using the confidence region comparison method. Since the 

models' gradient vectors were significantly different in each scenario, the models are not 

considered covalid at the scenarios employed. However, insights from the method point 

to possible scenarios where the models could compare better. 

Future Research 

I have developed a framework about which models representing various real-world 

systems may be constructed and covalidated or validated. An obvious first extension to 

this research is to construct further MASS and NRMO scenarios with TPFDDs for which 

the models would compare more favorably. I have shown that the models may not be 

considered covalid at the two chosen scenario points, but the research also suggests 

regions in the scenario space where the models outputs could be closer than in my 

examples. 

One area of future research that is of interest would be to use the developed methods 

on three or more models. For instance, a model designed to simulate airfield capabilities 

could be used in concert with the MASS and NRMO models to provide even better 

insights to these models concerning MOG use. A required extension for carrying out the 
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gradient analysis portion of the method would be the development of a method for 

performing three-way comparisons between models. 

Another promising use for this research would be to use the developed methods for 

covalidating follow-on models of established, legacy models. Either in newer versions of 

existing models or for actual replacement models, the developed methods provide a 

logical means of determining the reasonableness of using the newer model. Further, the 

methods here would be appropriate for the testing of new functionality added to existing 

models. 

Another contribution would be to develop a method to determine the entire region of 

scenario space over which two models are covalid. The state of being covalid (or better 

yet, valid) at one or two scenario points would go a long way in terms of developing trust 

(or accreditation) in the models over a range of inputs. However, one can not generalize 

the entire scenario space, or even a region of it, based on one or two points. As alluded 

to, I acknowledge that multiple methods exist for performing the comparison of gradient 

metamodels. Further work is required to detail these. It is considered useful to develop 

methods whereby, a determination may be made as to the extent of covalidation, similar 

to determining the angle between gradient vectors as done here. 

One could evaluate a metric developed to represent the extent of covalidity between 

models over an experimental design that spans a significant region of the scenario space. 

The ensuing response surface would point to regions where the models are "most" 

covalid (particularly if non-linear metamodels are created) and also to other regions 

(outside the design space) where the models may compare favorably. In this way, 

designs could be used both to explore areas of the scenario space that meet some 
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established criteria of covalidness and as a means of finding the direction of steepest 

descent to an area of the scenario space that is "more" covalid. 

Another area which requires further exploration is the treatment of the real-world 

system in question as the "truth" model. Performing the output/input crossflow method 

on a "truth" model and an optimization model, for instance, could lead to process 

improvements in the actual system. Performing the method of gradient analysis on the 

optimization model (or multiple models) and the "truth" model provides an innovative 

technique to validate the model(s). 

Conclusion 

I have effectively established an original paradigm regarding the construction, 

improvement, and validation of models that represent real-world systems. This paradigm 

describes the translation of real-world systems to the modeling world, the way in which 

models (and the real-world system) may be enhanced based on the findings of the other 

models (or the system itself), and methods of determining the correctness of the models, 

both in relation to each other and to the real-world system they attempt to characterize. 

This all-encompassing look at the breadth of modeling, from the real-world system to 

the validation of the model can be useful at any level of model creation. While each 

application of this methodology may occur to a different extent, the general paradigm 

may be followed no matter how complex the system or the model. What is more, varying 

complexities of the constructed models are not an issue, either. It is my hope that this 

work may put the creation of future models into a slightly different perspective than in 

the past. 
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First, models have a relation to the real-world system they attempt to represent. 

Ideally, the model's input, output, and function all draw from this real-world system. In 

areas where it is unpractical or impossible to take information directly from the real- 

world system, the modeler makes assumptions and should realize that these assumptions 

may negatively impact the performance of the model. 

Second, instead of considering two models created for the same real-world system as 

rivals, they may be considered allies. Developing multiple perspectives of the same 

divisive topic tends to create a clarity in the consideration of the topic. In the same way, 

multiple models developed for the same system can create a better understanding of the 

system that leads to improvements in both models. By realizing these improvements, the 

hope is to decrease the impact that assumptions have on the models. 

Third, the comparison of models with the real world has long been known to lead to 

increased faith and trust in models. I argue that the comparison of models with each 

other leads to faith and trust that the models are mimicking the real world in the same 

way. This covalidity in the narrow sense may be expanded to a covalidity in the wide 

sense if the models also compare favorably with the real-world system. The important 

note here is that models should have some benchmark of comparison if they are to be 

used in rigorous analysis, and if the real-world system upon which they are based is not 

available for that use, another model can serve as a reasonable proxy. The extent of these 

models' believability relies on this comparison. 

Further, the entire methodology was performed on two large-scale, real-world models 

employed by the United States Air Force Air Mobility Command, the MASS simulation 

and the NRMO linear program. While the conclusion is that the models are not covalid 
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in terms of the scenarios analyzed, the research has illuminated several insights into the 

operations of these models and points to areas of the scenario space where the models 

may compare more favorably. 
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Appendix A. Test Models and Feedback Functions 

Figure 27 shows the basic network used in the test models. In the network for the 

base case (center of experimental design), 50 aircraft are sent from Home to either base A 

or base B. At base A or base B, the aircraft are unloaded and serviced, and they return to 

Home. Scenarios for both the simulation and the optimization cover 15 days. The flight 

and service time distributions shown are used in the simulation, but the optimization 

formulation only reflects the mean times. 

N (2.25, 0.225) 

Ratio to A = 0.5 

exp (0.5) 
MOG = 10 

exp (0.5) 
MOG= 5 

Figure 27: Test Model Network 
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The optimization formulation is shown below. The basic formulation maximizes 

throughput. Constraints are added which limit the number of planes flown each day to 50 

and the number of planes serviced by a base to some fraction (MOG efficiency) of the 

available MOG at the base. Not shown is an additional constraint that accounts for the 

amount of time required for the initial aircraft to reach the bases. 

maximize thmput - V V X(b, t) 
t      b 

subject to: 

]T   ^X(b, flying(t))< plane   Vt 
b   flying (I) 

X(b,t)< MOGeff xMOG(b)   Vb,t 

X(b,t)>0   \fb,t 

where 

b is base A or B 

nsday 1 through 15 

X is number of missions arriving at b during day t 

flying is a vector which accounts for the flight days during a mission to b arriving at t 

plane is total number of aircraft available 

MOG is the maximum number of aircraft simultaneously serviceable by b 

MOGeff'is a measure of how efficiently MOG can be used if b is bottlenecked 
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The equations that derive the input of one test model from the output of the other are 

specified below. The equation which filters Baby MASS output into Baby NRMO input 

calculates the fraction of MOG which the simulation could actually use at a base, given 

that the base was bottlenecked throughout the simulation, and is given as Equation (30). 

MOG eff.= # misslons + avail. MOG / day 
# days (30) 

= MOGeff missions / MOG 

The equation which filters Baby NRMO output to Baby MASS input determines the 

proportion of missions the Baby NRMO optimization flies to each base (A and B), and is 

presented as Equation (31). As a function of total throughput to a base over the entire 

fifteen-day scenario, missions flown per day is determined by how many days to which 

each base is flown. In this scenario, base A was flown to for 13 of the 15 days, and base 

B was flown to for 14 days. 

A    Total to A/# days flown to A , 

B ~ Total to B/# days flown to B 
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Appendix B. Pertinent MASS and NRMO Input 

This appendix displays some pertinent input files used by the MASS and NRMO 

models for the small and big scenarios. With the exception of the TPFDD file, all files 

for the small and big scenarios are identical. Each input file has been truncated to show 

only information required to understand the application, and some fields have been 

omitted as a result. 

Table 20 shows the list of locations used by the scenario. The first column lists the 

ICAO; the first two columns of numbers list the narrow-body and wide-body MOG, 

respectively (connected by an "or" statement); the next column lists the gallons of fuel 

available at the base each day; and the last column lists the common name of the airfield. 

Note that a field with all "9"s effectively provides an unconstrained amount of the 

resource in question. 

Table 20: Scenario Location List 

EDAR    9 or    4  800000 RAMSTEIN AB 
EGUN    4 or    2  800000 MILDENHALL 
LEMD   28 or   14 9999999 BARAJAS 
LEMO    4 or    4  800000 MORON AB 
LERT    2 or    1  250000 ROTA NS 
EDDF 9999 or 9999 9999999 FRANKFURT MAIN 
EGLL   32 or   16 9999999 HEATHROW 
KCHS 9999 or 9999 9999999 CHARLESTON AFB/MUNI 
KJFK 9999 or 9999 9999999 JOHN F KENNEDY INTL 
KWRI 9999 or 9999 9999999 MCGUIRE AFB 
OBBI   26 or   13 9999999 BAHRAIN INTL 
OEDR   10 or    5 9999999 DHAHRAN INTL 
OEJN   13 or    6 9999999 KING ABDUL AZIZ INTL 
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Appendix B 

This appendix displays some pertinent input files used by the MASS and NRMO 

models for the small and big scenarios. With the exception of the TPFDD file, all files 

for the small and big scenarios are identical. Each input file has been truncated to show 

only information required to understand the application, and some fields have been 

omitted as a result. 

Table 20 shows the list of locations used by the scenario. The first column lists the 

ICAO; the first two columns of numbers list the narrow-body and wide-body MOG, 

respectively (connected by an "or" statement); the next column lists the gallons of fuel 

available at the base each day; and the last column lists the common name of the airfield. 

Note that a field with all "9"s effectively provides an unconstrained amount of the 

resource in question. 

Table 20: Scenario Location List 

EDAR    9 or    4 800000 RAMSTEIN AB 
EGUN    4 or    2 800000 MILDENHALL 
LEMD   2 8 or   14 9999999 BARAJAS 
LEMO    4 or    4 800000 MORON AB 
LERT    2 or    1 250000 ROTA NS 
EDDF 9999 or 9999 9999999 FRANKFURT MAIN 
EGLL   32 or   16 9999999 HEATHROW 
KCHS 9999 or 9999 9999999 CHARLESTON AFB/MUNI 
KJFK 9999 or 9999 9999999 JOHN F KENNEDY INTL 
KWRI 9999 or 9999 9999999 MCGUIRE AFB 
OBBI   26 or   13 9999999 BAHRAIN INTL 
OEDR   10 or    5 9999999 DHAHRAN INTL 
OEJN   13 or    6 9999999 KING ABDUL AZIZ INTL 
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Table 21 shows when and where aircraft are introduced into the scenario. The first 

column lists the aircraft type (wbp stands for wide-body passenger aircraft); the second 

column shows the ICAO of the base at which the aircraft are introduced; the third column 

lists the scenario day the aircraft are introduced; the fourth column shows how many of 

that type aircraft are introduced; the fifth column shows the cumulative number of 

aircraft of that type in the scenario; and the last column shows the average number of 

hours per day each aircraft introduced may fly. The number of hours per day represents 

the surge utilization rate that is applied for the first 45 days of a conflict. The wbp 

utilization rate is set by contract. 

Table 21: Scenario Aircraft Use 

WBP KJFK 0 25 25 12 0 
C-141B KWRI 0 20 20 12 2 
C-141B KCHS 0 10 30 12 2 
C-141B KWRI 1 15 45 12 2 
C-141B KCHS 2 5 50 12 2 
C-5 KWRI 0 15 15 10 7 
C-5 KCHS 0 15 30 10 7 
C-5 KWRI 1 15 45 10 7 
C-5 KCHS 2 15 60 10 7 
C-17 KCHS 0 30 30 15 3 
C-17 KCHS 1 15 45 15 3 
C-17 KCHS 2 5 50 15 3 

Table 22 displays the list of requirements, or the TPFDD, used in the small scenario. 

The first column is the simply a sequential requirement identifier; the second column lists 

the available-to-load date, on or after which the requirement is able to be picked up; the 

third column lists the required delivery date, on or before which the requirement must be 

delivered; the two columns of ICAOs list the onload location and the offload location, 
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respectively; the following three columns list the outsize, oversize, and bulk short tons to 

be moved; and the last column lists the number of passengers required to be moved. 

Table 22: Small Scenario Requirements List (TPFDD) 

1 0 4 KWRI OEJN 0 0 8 0 5 0 135 
2 0 4 KCHS EDAR 0 0 2 0 13 0 22 
3 0 4 KWRI OBBI 20 0 0 0 25 0 55 
4 0 4 KCHS OEDR 32 0 42 0 12 0 272 
5 1 4 KWRI OEDR 17 0 8 0 5 0 35 
6 1 4 EDAR OEJN 0 0 12 0 13 0 142 
7 1 5 KCHS OEJN 2 0 90 0 25 0 55 
8 1 5 LEMO OBBI 36 0 55 0 12 0 122 
9 1 5 KCHS OEJN 2 0 90 0 25 0 355 

10 1 6 EDAR OBBI 0 0 62 0 36 0 92 
11 1 6 KWRI OEDR 48 0 227 0 86 0 195 
12 2 6 EDAR KWRI 0 0 2 0 4 0 35 
13 2 6 EDAR OEDR 0 0 12 0 13 0 242 
14 2 6 KCHS OEDR 2 0 90 0 25 0 55 
15 2 6 LEMO OEDR 29 0 47 0 1 0 184 
16 1 6 KCHS OEJN 357 0 524 0 272 0 870 
17 2 6 EDAR OBBI 0 0 28 0 41 0 16 
18 2 6 KWRI OEJN 30 0 52 0 38 0 321 
19 2 6 KCHS OEJN 10 0 61 0 30 0 135 
20 3 6 KCHS EDAR 19 0 42 0 13 0 22 
21 3 7 KWRI OBBI 100 0 0 0 25 0 74 
22 3 7 KWRI OEDR 32 0 55 0 3 0 72 
23 2 7 KWRI OEDR 257 0 487 0 998 0 468 
24 3 7 EDAR OEJN 3 0 14 0 22 0 20 
25 3 7 KCHS OBBI 7 0 0 0 1 0 13 
26 3 7 KWRI OEJN 96 0 535 0 312 0 122 
27 3 7 KCHS OEJN 2 0 90 0 25 0 355 
28 3 7 KCHS OBBI 0 0 19 0 36 0 92 
29 3 7 KWRI OEDR 19 0 127 0 66 0 95 
30 4 7 EDAR KWRI 0 0 2 0 4 0 35 
31 4 8 EDAR OEDR 0 0 12 0 13 0 342 
32 4 8 KCHS OEJN 2 0 90 0 25 0 55 
33 4 8 KCHS OBBI 85 0 2 47 0 80 0 184 
34 4 8 EDDF OEJN 15 0 24 0 72 0 270 
35 4 8 KWRI OBBI 23 0 41 0 127 0 16 
36 4 8 KWRI OEJN 30 0 52 0 38 0 154 
37 4 8 KWRI OBBI 0 0 22 0 89 0 208 
38 4 8 EDAR OBBI 0 0 5 0 3 0 325 
39 4 9 KCHS OEJN 99 0 424 0 280 0 174 
40 5 9 KWRI OEJN 15 0 45 0 14 0 69 
41 5 9 KCHS OEDR 21 0 80 0 48 0 468 
42 5 9 EDAR OEDR 3 0 14 0 22 0 20 
43 5 9 LEMO KCHS 7 0 16 0 1 0 69 
44 5 9 KCHS OBBI 16 0 235 0 12 0 122 
45 5 9 KCHS OEJN 2 0 90 0 25 0 355 
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46 5 10 KCHS OBBI 0 0 19 0 36 0 92 
47 5 10 KWRI OEDR 19 0 127 0 66 0 95 
48 5 10 EDAR KWRI 0 0 6 0 8 0 21 
49 2 10 KJFK OEDR 0 0 12 0 548 0 2249 
50 6 10 KWRI OBBI 0 0 101 0 88 0 55 
51 6 11 KCHS OEDR 94 0 127 0 236 0 348 
52 3 11 KJFK OEJN 9 0 24 0 98 0 1172 
53 6 11 KCHS OBBI 219 0 397 0 164 0 64 
54 6 11 KCHS OEDR 24 0 18 0 62 0 239 
55 4 11 KWRI OEJN 241 0 540 0 119 0 235 
56 4 11 KCHS EDAR 90 0 478 0 213 0 622 
57 6 11 KWRI OBBI 20 0 0 0 25 0 355 
58 7 11 KCHS OEDR 32 0 42 0 12 0 72 
59 7 11 KWRI OEDR 57 0 98 0 65 0 235 
60 7 12 EDAR OEJN 0 0 27 0 17 0 142 
61 5 12 KCHS OEJN 172 0 370 0 159 0 1055 
62 7 12 LEMO OBBI 36 0 55 0 12 0 322 
63 7 12 KCHS OEJN 352 0 690 0 325 0 355 
64 7 12 EDAR OBBI 0 0 62 0 36 0 292 
65 7 12 KWRI OEDR 38 0 253 0 136 0 195 
66 8 12 EDAR OEDR 0 0 12 0 13 0 42 
67 8 13 KCHS OEDR 2 0 90 0 25 0 55 
68 8 13 LEMO OEDR 29 0 47 0 1 0 184 
69 8 13 KCHS OEJN 15 0 24 0 72 0 270 
70 8- 13 EDAR OBBI 0 0 28 0 41 0 16 
71 8 13 KWRI OEJN 30 0 52 0 38 0 291 
72 8 13 KCHS OEJN 10 0 61 0 30 0 135 
73 9 13 KCHS EDAR 74 0 84 0 37 0 522 
74 9 13 KWRI OBBI 100 0 0 0 25 0 674 
75 9 14 KWRI OEDR 32 0 55 0 3 0 272 
76 9 14 KWRI OEDR 17 0 48 0 15 0 468 
77 9 14 EDAR OEJN 3 0 14 0 22 0 420 
78 9 14 KCHS OBBI 47 0 90 0 51 0 13 
79 9 14 KWRI OEJN 16 0 235 0 12 0 222 
80 10 14 KCHS OEJN 2 0 90 0 25 0 355 
81 10 15 KCHS OBBI 0 0 19 0 36 0 92 
82 10 15 KWRI OEDR 19 0 127 0 66 0 495 
83 10 15 EDAR KWRI 0 0 2 0 4 0 35 
84 10 15 EDAR OEDR 0 0 12 0 13 0 342 
85 10 15 KCHS OEJN 2 0 90 0 25 0 155 
86 10 15 KCHS OBBI 29 0 47 0 1 0 184 
87 11 15 EDDF OEJN 15 0 24 0 72 0 270 
88 11 15 KWRI OBBI 23 0 41 0 127 0 16 
89 11 16 KWRI OEJN 30 0 52 0 38 0 1154 
90 11 16 KWRI OBBI 0 0 22 0 89 0 208 
91 11 16 EDAR OBBI 0 0 5 0 3 0 325 
92 11 16 KCHS OEJN 71 0 224 0 0 0 174 
93 11 16 KWRI OEJN 15 0 45 0 14 0 369 
94 12 16 KCHS OEDR 21 0 80 0 48 0 468 
95 12 17 EDAR OEDR 3 0 14 0 22 0 20 
96 12 17 LEMO KCHS 7 0 0 0 1 0 13 
97 12 17 KCHS OBBI 16 0 235 0 12 0 122 
98 12 17 KCHS OEJN 2 0 90 0 25 0 355 
99 12 17 KCHS OBBI 0 0 19 0 36 0 92 

100 12 18 KWRI OEDR 19 0 127 0 66 0 95 
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101 13 18 EDAR KWRI 0 0 6 0 8 0 21 
102 13 18 KJFK OEDR 0 0 12 0 48 0 2242 
103 13 18 KWRI OBBI 0 0 101 0 88 0 55 
104 13 18 KCHS OEDR 14 0 27 0 36 0 48 
105 13 18 KJFK OEJN 79 0 84 0 38 0 462 
106 13 18 KCHS OBBI 214 0 397 0 264 0 564 
107 10 19 KCHS OEDR 424 0 818 0 762 0 1629 
108 13 16 KWRI OBBI 121 0 280 0 148 0 468 
109 13 17 EDAR KWRI 23 0 37 0 53 0 20 
110 14 17 LEMO OBBI 7 0 0 0 1 0 13 
111 14 17 KWRI OEJN 210 0 235 0 12 0 122 
112 14 17 KCHS OEDR 2 0 90 0 25 0 355 
113 14 17 KCHS OBBI 0 0 19 0 36 0 92 
114 14 18 KWRI OEDR 19 0 127 0 66 0 95 
115 15 18 EDAR KWRI 0 0 6 0 8 0 21 
116 15 18 KJFK OEJN 0 0 12 0 48 0 2242 
117 15 18 KCHS OEJN 40 0 351 0 103 0 255 
118 15 18 KCHS OEDR 14 0 27 0 36 0 48 
119 15 19 KJFK OEJN 9 0 24 0 8 0 462 
120 15 19 KCHS OBBI 4 0 97 0 64 0 64 
121 12 19 KCHS OEDR 24 0 18 0 62 0 1629 
122 15 20 KCHS OBBI 4 0 97 0 64, 0 64 
123 8 12 EDAR KWRI 0 0 2 0 4 0 35 

The TPFDD file used for the big scenario is identical to that of Figure 30, except each 

requirement (outsize, oversize, bulk, and passenger) is multiplied by 1.5 and rounded to 

the nearest tenth of a short ton (for cargo requirements) or the nearest whole passenger. 

All other input files for the big scenario are identical to those of the small scenario. 
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