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AFIT/DS/ENG/01-02 

Abstract 

An indirect adaptive and reconfigurable flight control system is developed. The 

three-module controller consists of 1) a system identification module, 2) a parameter 

estimate smoother, and 3) a proportional and integral compensator for tracking 

control. Specifically: 1) The identification of a linear discrete-time control system's 

open-loop gain is addressed. The classical Kaiman filter theory for linear control 

systems is extended and the control system's state and loop gain are jointly estimated 

on-line. Explicit formulae for the loop gain's estimate and estimation error covariance 

are derived. The estimate is unbiased and the predicted covariance is reliable. 2) An 

adaptive smoother is developed to reduce the fluctuations automatically in the gain 

estimate, and bursting, caused by instances of poor excitation. 3) Special attention is 

given to the design of a proportional and integral tracking controller. The outputs of 

the system identification and gain smoother modules are used to adjust the tracking 

controller's gain continuously in order to compensate for a possible reduction in the 

loop gain due to control surface area loss, thus achieving the benefits of adaptive and 

reconfigurable control. The performance of the adaptive and reconfigurable controller 

in the face of a simulated control surface failure is examined in carefully designed 

experiments. The adaptive controller developed in this dissertation and illustrated 

in a flight control context is applicable to a wide range of control problems. 
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Adaptive and Reconfigurable Flight Control 

/.   Introduction 

Feedback is used to address the deleterious effects brought about by the un- 

structured environment in which the controlled plant is operating. This includes 

plant parameter uncertainty, unmodeled dynamics and input disturbances. At the 

same time, the benefits of feedback control are limited by actuator saturation and 

sensor noise, in particular when high gain feedback control is used [11]. 

System identification fits well into the feedback control paradigm for it allows 

us to acquire the estimates of the plant's parameters from measurements on the 

system's inputs and outputs using algorithms and software, but without adding 

extra hardware, i.e., sensors or actuators [13]. Thus, the uncertainty is reduced 

and lower gain feedback might be used. Unfortunately, system identification, which 

entails the estimation of all the (linear) plant's parameters, resides in the realm of 

nonlinear filtering. Moreover, system identification for adaptive and reconfigurable 

flight control requires a) the accurate and reliable estimation of the aircraft's stability 

and control derivatives with on-line operation, b) accurate and reliable estimation 

at low SNR, c) the use of a small sample, and d) no human intervention. 

In the statistical linear regression paradigm, static system identification of 

the parameters of the dynamical system affords reliable real-time operation [19]. 

Static system identification is also well suited to aircraft parameter estimation since 

measurements of aircraft states and state rates are readily available [3, 5, 6]. 

It is shown in this dissertation that, in linear control systems, and provided that 

the dynamics (A) matrix is known, the exclusive estimation of the critical parameters 

of the control (B) matrix only is also reducible to a problem in linear regression and 



therefore is amenable to linear analysis. Hence, a rigorous, and unbiased real-time 

estimate of the parameters of the control matrix and a reliable predicted estima- 

tion error covariance can be obtained. The classical Kaiman filter theory for linear 

control systems is extended and the control system's state and loop gain are jointly 

estimated. Explicit formulae for the loop gain's estimate and predicted estimation 

error covariance are obtained. In this dissertation, this approach is pursued. A sim- 

plified (single input) version of this problem is addressed and an algorithm for the 

estimation of a single-input flight control system's critical loop gain parameter is 

developed [26]. The inclusion of a "forgetting factor" into this basic algorithm, or 

the employment of a sliding window, will afford the real-time identification of a time- 

varying parameter - the plant's open-loop gain. Thus, adaptive and reconfigurable 

flight control is possible. 

Although the estimation problem addressed in this dissertation is amenable to a 

rigorous analysis and solution, the end-to-end adaptive control problem is nonlinear 

due to the presence of an unknown plant parameter. Therefore, we do not have 

the benefit of a Separation Theorem. Hence, an adaptive smoother is developed in 

this dissertation to reduce the fluctuations automatically in the parameter estimate 

caused by measurement noise, and bursting, caused by instances of poor excitation, 

prior to the use of the parameter estimate in the controller. As we move from window 

to window, the fluctuations in the parameter estimate are further exacerbated by 

the presence of modeling error. Hence the importance of the parameter estimate 

smoother. 

Furthermore, special attention is given to the design of a proportional and inte- 

gral tracking controller. The outputs of the system identification and gain smoother 

module are used to adjust the tracking controller's gain continuously. 

Thus, an indirect adaptive and reconfigurable control system is developed. The 

controller consists of three modules: 1) A system identification module, 2) a parame- 

ter estimate smoother, and 3) a proportional and integral compensator for tracking 
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Figure 1.     Adaptive and Reconfigurable Flight Control System 

control. The architecture of an indirect adaptive and reconfigurable flight control 

system which incorporates the on-line loop gain identification algorithm, adaptive 

loop gain estimate smoother, and tracking controller developed in this dissertation 

is shown in Figure 1. 

1.1    Assumptions 

The plant dynamics are assumed to be known. We proceed under the assump- 

tion that the loss in elevator surface area does not significantly change the overall 

aircraft dynamics. For this reason, the identification of the aircraft's dynamics (A) 

matrix parameters is not undertaken and the focus is on the control matrix B, viz., 

the identification of the open-loop plant's gain, a reduction of which models the 

degree of failure, i.e., control surface area loss. 

The system order is assumed known. Model order determination is not ad- 

dressed in this dissertation for it is not a dominant issue in flight control [21]. The 

"short-period" aircraft dynamics approximation is used and the very low frequency 



Phugoid dynamics can be neglected [18, 21]. This is so because the period of the 

Phugoid oscillation is about sixty seconds whereas the period of the short-period 

oscillation is about one second. Moreover, since this research deals with inner loop 

control and control surface failure, the control time horizon is short. This is to 

prevent aircraft departure, in particular when the open-loop plant is not stable and 

feedback control is used for stabilization. Thus, the time scale of interest for es- 

timation and control is rather short, and neglecting the Phugoid is justified. The 

bandwidth of the actuator is sufficiently high and therefore the actuator and the 

aircraft's "short-period" dynamics are separated, and a first-order actuator model 

is satisfactory. These assumptions are validated in the simulation experiments, in 

which the unmodeled high frequency actuator, low frequency Phugoid dynamics, and 

parametric uncertainty, are included. 

The aircraft model is assumed to be statically unstable to apply to modern 

fighter aircraft. Our three-module controller can also handle a stable aircraft plant, 

since the tracking controller is easier to design for a stable plant. 

The benefit accrued from using a reduced order plant model for model based 

control design: When dealing with the short-period approximation of an aircraft, 

both the a (angle of attack) and q (pitch rate) signals are available for feedback, 

as is the elevator deflection 6e, and thus full-state feedback control is possible - see, 

e.g., Figure 3 in the sequel. 

1.2   System Identification Problem Statement 

Indirect adaptive control relies on system identification. The plant truth model 

of the system identification algorithm is the linear discrete-time single-input multiple- 



output stochastic control system (as shown in Figure 1) 

xk+1   =   Axk + Kbuk + Twk,     E(wkwl) = Q, xk e 9£n               (1) 

xQ   =   N(x0PQxx) (2) 

K   =   N(K0,POKK) (3) 

yk+i   =   Cxk+l (4) 

zk+i   =   yk+1+vk+u     E(vk+1vl+1) = R (5) 

where 

fc = 0,l,....,iV-l 

In the special case of a single output, the matrix C is a row vector cT and the 

measurement Eq. (5) is simplified to 

zk+i = yk+i + vk+i,      vk+1 = N(0, a2) (6) 

In the specific flight control application under consideration, the states a and q 

denote the aircraft's angle of attack and pitch rate, respectively, and the control 

signal <5e is the elevator deflection. 

The dynamics matrix A, the control vector 6, the observation matrix C and 

the vector V are all known. The process noise intensity, Q, and the sensor noise 

intensity, R (or cr2), are also known. In addition, the prior information specified in 

Eqs. (2) and (3) is provided. For an unfailed plant (aircraft) the loop gain K = 1 (by 

definition), until a failure at time £/ reduces the control derivative, and K = Kx < 1 

thereafter [3]. 

For a multiple-input system, the second term in the right-hand side of Eq. (1) 

becomes BKuk, where B is the control matrix, K is the loop gain matrix and uk is the 

input vector. In this dissertation we will deal with the single-input multiple-output 

stochastic control system only, since our aircraft plant is a single-input multiple- 



output model.  However, the methodology in this dissertation can be applied to a 

multiple-input multiple-output plant. 

The objective is to identify the scalar loop gain K from the input sequence 

UO,UI,....,UJV_I and the recorded measurements, zi,z2,..--,zN. A rigorous system 

identification algorithm is developed. The classical Kaiman filter theory for linear 

control systems [4, 5, 6, 7] is extended and the control system's state and loop gain 

are jointly estimated. Explicit formula for the loop gain's estimate and predicted 

estimation error covariance are derived. The estimate of the system's state and 

the covariance of the state estimation error are also obtained. A sampling rate of 

100Hz is used and in our estimation algorithm the continuous-time plant dynamics 

are discretized accordingly. 

1.3   Adaptive and Reconfigurable Control System 

The proposed three-module adaptive and reconfigurable control system is shown 

in Figure 1. The pilot inputs a pitch rate command, qc, which is the reference signal 

for the adaptive controller. The commanded input is passed through a low pass 

prefilter and into a proportional (P) or proportional and integral (PI) controller de- 

signed to yield good tracking performance. The identification algorithm, i.e., the 

modified Kaiman filter, is fed with the noise corrupted measurements of the states 

of the plant, am and qm, and the input to the plant, 8e. The a, q and K estimates 

of a, q and K, respectively, are provided by the modified Kaiman filter/system iden- 

tification module at each time sample. The a, q and 8e (elevator deflection angle) 

are fed back and summed with the reference signal r in the proportional and in- 

tegral (linear) tracking compensator. The system identification module outputs an 

estimate K of the loop gain and computes the loop gain estimation error variance. 

This information is fed to an adaptive smoother module which calculates a smoothed 

estimate Ks of K. The filtered loop gain estimate (Ks) is fed back into the forward 

path after the summing junction of the states and signal r, but before the actuator, 



to compensate for the changing open-loop gain K due to plant failure, i.e., a loss 

in control surface area. Thus, the control signal 6£c which is the input to the actu- 

ator is formed from the feedback filtered state measurements, the reference signal, 

and the output of the system identification and adaptive smoother modules. The 

indirect adaptive and reconfigurable control design methodology developed in this 

dissertation and illustrated in a flight control context is applicable to a wide range 

of control problems. 

The plant model is representative of the longitudinal dynamics of an F-16 

class aircraft. The open loop plant is unstable and feedback control is used for 

stabilization. The first order actuator model used herein is representative of the 

elevator of an F-16 class aircraft. 

This dissertation is organized as follows. The basic concept of the system iden- 

tification is presented in Chapter 2. The system identification algorithm for loop gain 

estimation is provided in Chapter 3. The adaptive loop gain smoothing algorithm is 

developed in Chapter 4 and the design of the linear tracking controller is discussed 

in Chapter 5. The aircraft model is discussed in Chapter 6. The experimental setup 

and the simulation results are presented in Chapter 7, followed by conclusions in 

Chapter 8. 



II.   System Identification 

2.1    Introduction 

This chapter provides general background knowledge of relevant and applicable 

system identification techniques. Both the classical and digital signal processing 

based method are explained and examples are given. Also, some concerns and design 

considerations related to system identification are addressed. 

When modeling a system, there are two approaches to be considered, the de- 

ductive and empirical approaches [22]. With deductive modeling, the laws and equa- 

tions found in physics and engineering are used to derive the proper model. With the 

empirical approach, i.e., statistical system identification, least squares and Kaiman 

filter estimates are used to form a model for predicting the dynamics of the system. 

System identification has more applications than just for modeling purposes. 

It is also a useful technique for model order reduction of a plant or compensator, for 

measuring or estimating parameters, and for real time adaptive control. 

One of the challenges that needs to be addressed is modeling error, especially 

when the real order n of a best model (by some specified criterion) for the system is 

not known. Additional error sources are disturbances such as process and measure- 

ment noises. When determining the unknown parameters of a higher order model, 

the excess parameters of the physical system should equal zero. However, this does 

not happen because of noise. Rather, the critical parameter estimates are biased. 

Over-modeling is not advisable in system identification. Although it may seem log- 

ical to over-model a system, the extra parameters would be redundant and would 

make the determination of the critical system's parameters impossible. Therefore, it 

is better to under-estimate the order of the unknown system than to over-estimate 

it. Under-modeling requires determining values for the parameters that yield the 

best fit over a desired bandwidth. 



2.2   Frequency Domain-Based Continuous-Time System Identification 

Discrete-time system identification is well suited for a digital signal processing- 

based algorithm. Special attention needs to be given to continuous-time system 

identification. 

Consider the continuous-time transfer function [22] 

__. .      y{s) 61s"-1 + b2s
n~2 + .... + bn_lS + bn 

H{S) = —r^r =  : ö  ■ {<) 
u(s)      sn — aisn~L — a2s

n~z — .... — an_is — an 

If we chose the input to be 

Ufc(i) = s'mujkt, 0 < t (8) 

then the output is the phasor 

yk(t) = {Ak + jBk) s'mujkt 

= yjA\ + B\ sin(wfct + 0) 

= Asm(iokt + (/)) (9) 

where 

fh =  Arr t.fl.rW 
*Ak 

ArctanÄ . (10) 

Letting s = juj and substitution into H(s) 

H(s)   =   ^ = Ak + jBk u(s) 

MM)""1 + b2(juk)n-2 + .... + bn_xjuk + bn 

(jcok)n - a^JLUk)71'1 - a2(jujk)n-2 -....- an_i(jujk) - an 
(11) 



Cross-multiplying and reducing creates a linear equation from which the unknown 

coefficients a, and 6; can be obtained. 

n n 

Ak+jBk = Y,(Ak +jBk){juk)-iai + J^CW'&i (12) 

Expanding the equation gives 

1/, ~ w ! ! ! ! N Ak+jBk     =     -(^fc + jßfc)( — ai 3 03 + -Fa5 ^07 + ...) 
J tUfc Wfc Wfe CJfc 

+ -( —&1 - —^3 + —fr5 - —h + ...) 
3  uk u% u% uk 

r.   w 1 1 1 N 
+ (Afe + jJ3fc)( 2 °2 + ~Ta4 6 a6 + -) 

wfc       wfc       ^fc 

+(-^ + ^4-466 + ...)- (13) 
wfc       uk      wk 

Multiplying both sides by j and expanding, we are able to match the real and 

complex portions of the right hand side the equation with the left. This will allow 

us to solve for the unknown coefficients: 

,  , 1 1 1 1 —Bk   =   Ak{—ai ^a3-\ ra5 fa7 + ...) 
uk ul u% u\ 

1        1        1 
+Bk{—a2 4-0.4 H g-o6 — ...) 

uk wfc uk 

Uk LOk Uk Ulk 

r,    ,    1 1 1 1 N Ak   =   Bk{—-ai ^a3 + —^a5 Ya7 + ...) 
uk u% ub

k uk 

A   r       1 1 l \ 
+Ak( 2a2 + — a4 6ae + -) uk uk uk 

+(-^ + ^4- \h + ...)■ (14) Wfc Wfc Wfc 

For an nt/l order SISO system, the control system is specified by 2n parameters. 

For this reason, we chose n sinusoidal test functions, each one producing 2 equations. 
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2.2.1    Second Order Example.      Given the transfer function [22] 

His) = "l 

s2 + 2(tuns + üül 

Knowing that we can measure the output phasor, the unknown parameters, £ and 

üün, can be solved using the technique described in Eqs. (11)-(14): 

A + jB = u>l 
-u2 + 2(conjoj + col' 

Cross-multiplying and simplifying yields 

{A + jB)(tü2
n -uo2 + 2(ujnjuj) = u2

n 

which implies 

(A - l)J*n - 2BLv(u>n - Aio2 + j(Buj2
n + 2Ato^un - Bu2) = 0. 

Separating the imaginary and real terms yields 

(A-l)u2
n-2BüjC>Lün   =   Au2 

Buj2n + 2ALü(un   =   BLü
2
. 

Solving for natural frequency and damping ratio, the unknown parameters, yields 

/    A2 + B2 

Un   =   iA2 + B2-AU 

2^/{A2 + B2-A) (A2 + B2) 

Recall, A and B are coefficients of the output phasor and can be directly measured. 
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2.3   Stochastic Analysis 

A goal of system identification is to find a "best fit" model of the system 

being analyzed [19]. The stochastic analysis acknowledges the noise in the measured 

input and output data. Using a least-squares approach, the sum of the squared 

errors between the true output of the model and the measured output is minimized. 

Using the least-squares approach and stochastic modeling, large errors and poor 

measurements are given less weight than more accurate measurements. The use of 

digital signal processing requires that our once-continuous system is now discretized. 

In the case of a dynamic system, a system output can be described as [8, 19, 22] 

yk+i = axyk + a2yk-i + •••• + anyk_n+1 + biuk + b2uk_x + .... + bmuk_m+i       (15) 

and the measurement equation as 

zk+x = yk+1 + vk+i,      vk+i € N(0, a2) (16) 

or 

Vk = zk- vk (17) 

which may contain process and disturbance noise. Therefore, 

Zk+i-Vk+i   =   ai(zk — Vk) + a2(zk-i — vk-.1) + .... + an(zk_n+i-vk_n+i) 

+b1uk + b2uk_i + .... + bmuk-m+i. (18) 

By defining a noise vector, Vk+i, we can rearrange the above equation as 

Zfc+i = axzk + a2zk^i + .... + anzk-n+x + biuk + b2uk^i + .... + bmuk_m+1 + Vk+i (19) 

where 

Vfc+i = vk+i - axvk - a2vk_i -....- anvk-n+\- (20) 

12 



Now, the measurement equation is denned as 

Z = HQ + V,     E{VVT) = R (21) 

where 

Z± 

'     zk+i     \ 

Zk+2 

\  Zk+N+l   I (JV+l)xl 

G^ 

(»A 

O-n 

h 

\  bm  ) 

(  vk+1   \ 

, v± 
Vu fc+2 

(22) 

V   Vk+N+1  J {N+l)xl 

(m+n)xl 

and 

/ 

H± 

Zk Zk-i 

Zk+l zk 

Zk-n+1 Uk Uk-l 

Zk~n+2 Uk+1 uk 

Uk-m+l 

Uk-m+2 

\ 

I    Zk+N     Zh+N-1     " " "      Zk+N-n+1     Uk+N     Uk-\-N-l /   (JV+1) x(m+n) 
(23) 

In this notation, m is the number of measurements and n is the number of 

parameters to be identified. We can now find the Least Squares estimate, 6, and 

the estimation error covariance matrix P [2, 22]. 

The Least Square estimate is 

6 = {HrHYYHLZ (24) 

and the parameter estimation error covariance is 

2f vT TT\-1 P = cr\H1H) (25) 
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So far, the measurement and/or process noise has not been taken into account 

properly. A more rigorous method would be to solve for the parameter estimates 

using a weighted pseudo-inverse to account for noise in the system. The minimum- 

variance estimate is [4, 5]: 

%MV = (HTR7lH)-lHTR7lZ (26) 

and the minimum-variance estimation error is 

Pmv = {HTR-lH)~l (27) 

where R is the weighting matrix. 

Eq. (24) calculates the parameter estimates using an unweighted pseudo- 

inverse. This is possible when the weighting matrix, R, is assumed to be a scaled 

unity matrix, viz., when cross-correlation does not exist and all scalar noises have 

the same variance. When this assumption is made, R = cr2I, where i" is the identity 

matrix and a2 the variance of the noise, drops out of the parameter estimate equation 

and only a2 enters the calculated parameter estimation error covariance matrix. 

2.4    Calculating R 

R is affected by the noise created by our sensors when measuring the output 

of the system. Many times, R is represented as a diagonal matrix with a2 along 

the diagonal and zeros in the off-diagonal spaces, which implies no cross-correlation. 

This is often deemed adequate, knowing that each output has its own independent 

sensor to take measurements. In truth, the measurement noises are correlated and 

the sensors are coupled to some extent [22], and this causes off-diagonal terms in the 

R matrix. Earlier, in Eq. (5), we described R as being the expected value of the 

measurement noise times the transpose of that noise. It is shown from Eq. (22) that 

14 



the measurement noise is actually a noise vector, V. This noise vector now produces 

off-diagonal terms in the R matrix. 

The matrix R, using a two parameter estimation problem example, is now 

defined as 

R   = E{VVT) = E 

( ( 

=   E 

' I vM \ 

\   \ Vfc+jv J 

\ 

\ 

vk+,  ■■■  vk k+N 

=   E 

Vk+i - a\Vk 

Vk+2 - «l^fc+l 

Y \ Vk+N - aiVk+N-l  J 

vk+i - CLiVk   vk+2 - Oi^fc+i    :   Vk+N - aiVk+N^i 

(vk+i - aivk) {vk+i - aiVk)       {vk+i - aivk) (vk+2 - a>ivk+1) 

(vk+2 - aivk+1) (ffc+i - aivk)    (vk+2 - axvk+i) (vk+2 - a,ivk+1) 

\ 

f a2 + a2a2 —aa2 0 0 

—aa2 a2 + a2a2 —aa2 0 

0 2 —aaz a2 + a2a2 2 —aaA 

0 0 2 —aaA a2 + a2a2 

\ 

-aa ■ J 

(28) 
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Finally, 

( \ + a 

R   = a 

=   a2R. 

-a 0 

—a      1 + a2      —a 

0 -a      1 + a2 

\ 

■ / 

(29) 

(30) 

Now, Eqs. (26) and (27) become 

eMV   =   {HTR-1H)-1HTR-lZ 

Pmv   =   a\HTR-lH)-\ 

(31) 

(32) 

Note that the intensity of noise, a, does not affect the parameter estimate QMV- 

In summary, the parameters of an unknown dynamic system can be identified 

by using a sinusoidal test function as an input to that unknown plant and observing 

the phasor output. However, care must be taken not to over-model the unknown 

plant. When noise is included in the system dynamics, a stochastic analysis of the 

measurement situation must be performed to account properly for the effects of noise. 

A discrete-time plant model was also discussed and the input and measurement 

equations, now with a noise term, were defined . It was then shown how the strength 

of the noise can be represented as a weighting matrix, R, and applied to the least 

squares formula, to provide more accurate parameter estimates. 
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III.   Stochastic Modeling 

A Kaiman filter is a data processing algorithm that uses all available data, 

such as plant model, initial conditions, and statistical descriptions of any biases, 

measurement noise or process noise [15, 16]. This information is fed into the propa- 

gate/update algorithm which then optimally derives an estimated value for the sys- 

tem's state in a way that minimizes estimation error variance. The rigorous Kaiman 

filtering paradigm for linear systems can be extended to provide an estimate of the 

control matrix B. Our main result is the following system identification algorithm. 

3.1    System Identification Algorithm 

Since digital signal processing is used, a discrete-time dynamical model consid- 

ered in this work is used. The loop gain system identification algorithm is developed 

by Sillence [26] and is concisely presented in Theorem 1. 

Theorem 1  Consider the following linear estimation problem. The linear dynamical 

system is 

xk+l = Axk + Kbuk + Twk,    E{wkwl) = Q,    k = 0,1,...., iV - 1 (33) 

the prior information is 

x0   e   JV(äf0,PoJ (34) 

K   e   N(K0,PoK) (35) 

the output signal 

yk+1 = Cxk+i (36) 
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and the observation equation is 

zk+1 = yk+1 + vk+i,    E(vk+ivl+1) = R. (37) 

The matrices A, b, C and T are known. The respective Gaussian zero mean process 

noise and measurement noise covariance matrices, Q and R, are also known. The 

open-loop gain K is not known. 

Denote by xk and Kk the respective estimates of the state xk and the loop gain 

K at time k, given the measurements record zi,..., zk, the input sequence uQ, ...,Uk-i, 

and the prior information on x0 and K.  The covariance of the estimation error of 

the vector is denoted by the partitioned matrix Pk = 
\K ) \ PLK    P"KK 

Initially, set 

x0 = x0,    KQ = K0,    P0XX = P0x,    poKK = PoK,    PoxK - 0. (38) 

Then, for k = 0,1,..., TV — 1, the state and gain estimates are updated as follows 

xk+i   =   Axk + Kkbuk + Kx(zk+i - CAxk - KkCbuk) (39) 

Kk+l   =   Kk + KK(zk+1-CAxk-KkCbuk) (40) 

where the Kaiman gains 

Kx   =   {APkxxA
TCT + uk[APkxK{Cb)T + b(CApkxK)T] 

+u2
kPkKKb(Cb)T + TQTTCT} x {CAPkxxA

TCT 

+uk{CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

+u2
kPkKK{Cb){Cb)T + CYQYTCT + R}-1 (41) 
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and 

KK   =   [(CAPkxK)T + ukPkKK(Cb)T}x {CAPkxxA
TCT 

+uk[CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

+utPkKK(Cb)(Cb)T + CVQYTCT + R}-1. (42) 

Furthermore, the estimation error covariances are 

Pk+lxx   =   {[APkxxA
T + uk(APkxKbT + bplKAT)} 

WkVkKKbbT + YQYT}-1 + CTR-'C}-1 (43) 

Pk+iKK   =   PkKK - l(CAPkxK)T + ukPkKK(Cb)T] x {CAPkxxA
TCT 

+uk[CAPkxK(Cb)T + [Cb){CApkxK)T] 

WkpkKK{Cb){Cb)T + CYQYTCT + RY1 

x[(CAPkxK) + ukpkKK(Cb)} (44) 

Pk+lxK   =   APkxK + ukPkKKb - {APkxxA
TCT + uk[APkxK{Cb)T + b(CAPkxK)T] 

WkpkKKb{Cb)T + YQYTCT} 

x{CAPkxxA
TCT + uk[CAPkxK{Cb)T + (Cb)(CAPkxK)T] 

WkpkKK(Cb){Cb)T + CYQYTCT + R}-1 

x[(CApkxK)+ukPkKK(Cb)}. (45) 

D 
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3.2   Proof of Theorem 1 

We shall require the complete Matrix Inversion Lemma (MIL) 

Lemma 2 Assume the relevant matrices are compatible and invertible. Then 

(A1 - AiA^As)'1 = Ar1 + A?A2 {A, - A^lA2)'
1 A3A^. (46) 

D 

Since the unknown loop gain is a constant, we augment the dynamics as follows. 

Kk+1 = Kk. (47) 

Hence, the augmented state dynamics evolve in 5ft"+1 and are 

KM   I       \  0     \        \Kt \ 0 

and the measurement equation is 

zk+i = ( c ; o) ( V J \ Kk+l 

+ vk+1. (49) 

As can be seen, the equations are similar to that of the deterministic model except 

for noise now being modeled into the system. Here, the wk and vk+i represent the 

process noise and measurement noise, respectively. The covariances of these noises 

are represented by Q and R in the stochastic model. The values of Q and R were 

defined in Chapter 1. 

The prior information at time instant k is 

Xk   ^N ?    |,Pfc| (50) 
Kk J \\ Kk 
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where 

Pk = 
*kxx      PkxK 

PkxK     PkKK 

is the estimation error covariance matrix. The elements of Pk are 

(51) 

Pkxx£W*\  PkxKeMn,  pkKKeKl. (52) 

Hence, before the zk+i measurement is recorded, the augmented state 

£fc+i 

Kk+i 
e   N 

A   ukb \   I   xk 

0     1    J  \ Kk 

A   ukb \       I   AT    0 
Pk 

0     1 
+ 

=   N 

ukbT   1 

Axk + Kkbuk 

Kk 

(       APkxxA
T + uk{APkxKbT+ 

bplKAT) + ulPkKKbbT + TQTT 

\ PkxK
AT + ukPkKKbT 

VQTT   0 

0       0 

\ \ 
APkxK +

ukPkKKb 

P^KK I J 
(53) 

Next, apply the Bayesian estimation formula and obtain 

x+ = xk+K(z- Hxk) (54) 
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Kk+i 

Axk + Kkbuk 

Kk 

Axk + Kkbuk 

Kk 

+ K Zk+l - ( c ; o) 

+ K \Zk+i - CAxk - ukKkCb) 

Axk + Kkbuk 

Kk 

(55) 

where the Kaiman gain 

/ 

K   = 

APkxxA
T + uk(APkxKbT+ 

bplKAT) + ulPkKKbbT + TQTT 

pLK
AT + ukPkKKbT 

\ 

ApkxK + ukpkKKb 

Pk 

x 

KK 

a T 

X {CAPkxxA
TCT + uk [CAPkxK{Cb)T + (Cb)(CAPkxK)T] 

WkpkKK{Cb){Cb)T + CYQTTCT + R\ 

( AP,ATCT uk ApkxK(Cbf + b(CAPkxKf 

WkpkKKb{Cb)T + TQTTC TnT 

Finally, 

V (CAPkxK)T + ukPkKK(Cb)T 

{CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxKf] 

+u2
kpkKK(Cb){Cb)T + CTQTTCT + R}"1. 

Pk+i{x,K) - Pk{x,K) ~ K \C   :    0 J Pk(XtKy 

\ 

X 

(56) 

(57) 
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Hence, we calculate 

Pi k+l(x,K) 

(       APkxxA
T + uk{APkxKbT+ 

bplKAT)+ulPkKKbbT + TQTT 

\ 
ApkxK +ukpkKKb 

\ PlxK
AT+UkPkKKbT Pku I 

{APkxxA
T& + uk 

X 

APkxK(Cb)T + b(CAPkxK)T_ 

+ulpkKKb(Cb)T + TQTTCT} 

x {CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

WkpkKK{Cb){Cb)T + CTQTTCT + RYl x [CAPkxxA
T 

+uk (CAPkxKbT + CbApT
kxKA

T) + u\PkKKCbbT + CTQVT] 

(CAPkxK)T + ukPkKK(Cb)T 

{CAPkxxA
TCT + uk [CApkxK{Cbf + (Cb)(CAPkxK)T] 

+ulPkKK(Cb)(Cb)T + CTQTTCT + R}-1 x [CAPkxxA
T 

\   +uk {CAPkxKbT + CbAPlKAT) + ulPkKKCbbT + CTQTT] 

{APkxxA
TCT + uk [APkxK(Cb)T + b(CAPkxKf_ 

+ulpkKKb(Cb)T + TQrTCT} 

{CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T 

+ulPkKK(Cb)(Cb)T + CTQTTCT + Ä}"1 

x (CApkxK + ukpkKKCb) 

{CApkxK)T + ukPkKK(Cb)T 

{CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T 

+ulPkKK{Cb){Cb)T + CTQTTCT + R}' 

x (CApkxK + ukpkKKCb) 

x 

-l 

\ 

(58) 
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Thus, 

Pk+ixx   =   [APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + uipkKKbbT + TQTT] 

x {[APkxxA
T + uk(APkxKbT + bplKAT) + u\VkKKbbT + TQ^}-1 

-CT {CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T} 

+u2
kPkKK(Cb)(Cb)T + CYQYTCT + R}-1 c) 

x [APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + u\pkKKbbT + TQTT}.      (59) 

Next, apply the MIL (Lemma 2) to the expression in the outer curly brackets 

from Eq. (59), viz., 

{[APkxxA
T + uk(APkxKbT + bP

T
kxKA

T) + u\pkKKbbT + rgrT] ~l 

-CT {CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

WkpkKK{Cb){Cb)T + CTQYTCT + R}-1 Cy1 

where we set 

Ä!   =   [APkxxA
T + uk(APkxKbT + bpT

kxKA
T)+ulPkKKbbT + TQTT}-1 

A2   =   CT 

A3   =   C 

A,   =   {CAPkxxA
TCT + uk [CAPkxK{Cb)T + (Cb)(CAPkxK)T] 

WkpkKK{Cb){Cb)T + CYQYTCT + R] 
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we obtain 

{[APkxxA
T + uk(APkxKbT + bplKAT) + u\VkKKbbT + TQTT]'' 

-CT {CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

+u2
kPkKK(Cb)(Cb)T + CTQTTCT + R}-1 C}"1 

[APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + u\pkKKbbT + TQTT} 

+ [APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + u\pkKKbbT + TQTT] CT 

x {{CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

+u2
kPkKK(Cb){Cb)T + CVQVTCT + R} 

-C [APkxxA
T + uk(APkxKbT + bplxKA

T) + ulPkKKbbT + VQTT] C^1 

xC [APkxxA
T + uk{APkxKbT + bpT

kxKA
T) + u\VkKKbbT + TQT1 

Reducing the above gives 

[APkxxA
T + uk(APkxKbT + bP

T
kxKA

T) + u\pkKKbbT + rgr3 

x {[APkxxA
T + uk{AVkxKbT + bplKAT) + ulPkKKbbT + TQTT]~l + CTR~'c} 

x [APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + u\VkKKbbT + TQTT] . 

Hence, Eq. (59) can now be reduced to 

Pk+lxx   =   {[APkxxA
T + uk{APkxKbT + bpT

kxKA
T) + u\VkKKbbT + TQTT] ~l 

+CTR-lCy\ (60) 
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In addition, 

Pk+iKK   =   PkKK-[{CApkxK)T + ukPkKK(Cb)T] 

x {CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

WkPkKK(Cb)(Cb)T + CTQTTCT + R}-1 (CAPkxK + ukVkliKCb) 

(61) 

and 

Pk+lxK   =   APkxK + ukPkKKb - {APkxxA
TCT + uk [APkxK(Cb)T + b{CAPkxK)T] 

WkpkKKb(Cb)T + TQTTCT} 

{CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK)T] 

+u2
kPkKK(Cb)(Cb)T + CTQTTCT + R}'1 (CAPkxK + ukVkKKCb). (62) 

We also partition the Kaiman gain vector as follows 

(63) 

where 

Kx   =   {APkxxA
TCT + uk[APkxK(Cb)T + b(CAPkxKf 

WkpkKKb{Cb)T + YQYTCT] 

x {CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CAPkxK) 

+ulPkKK(Cb)(Cb)T + CTQTTCT + R}-1 (64) 
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and 

KK   =   [(CAPkxK)T + ukPkKK(Cb)T} 

x {CAPkxxA
TCT + uk [CAPkxK(Cb)T + (Cb)(CApkxKy 

+u2
kPkKK(Cb)(Cb)T + CTQTTCT + R}-\ (65) 

Hence, we finally obtain 

xfc+i   =   Axk + Kkbuk + Kx(zk+i - CAxk - KkCbuk) (66) 

Kk+l   =   Kk + KK{zk+l-CAxk-KkCbuk). (67) 

D 

Proposition 3 An additional application of the MIL will reduce the number of ma- 

trix inversions such that only the low-order matrix 

CAPkxxA
TCT + uk [CAPkxK{Cb)T + (Cb)(CAPkxK)T] 

+u2
kPkKK(Cb)(Cb)T + CTQTTCT + R 

needs to be inverted. 

D 

3.3   Discussion 

It is important to realize that the absence of complete plant information, viz., 

the uncertainty in the loop gain parameter K, causes both the parameter and the 

state estimation error covariances to be dependent on the input signal - see, e.g., 

the covariance equations (43)-(45) in Theorem 1. This is a major departure from 

the classical state estimation paradigm in linear control theory. Thus, the loop gain 

estimate K (and also the loop gain estimation error covariance) are now control- 
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dependent. Obviously, the best loop gain estimate is obtained at the end of the 

estimation interval, at time N. In addition, the algorithm-provided loop gain and 

state estimates are correlated. Furthermore, the loop gain and state estimates' de- 

pendence on the input signal is nonlinear. The input signal dependence of the loop 

gain and state estimation error covariances, is a unique manifestation of the dual con- 

trol effect. This means that the estimation error variance is dependent on the input 

signal, which is not the case in classical linear state estimation/Kalman filtering. 

3.3.1    Example 1.        Consider the classical Kaiman Filter paradigm where 

the loop gain K is known, i.e., K = 1. In this special case 

POKK = °>     PoxK = 0.     VkKK = 0,     pkxK = 0        for all k = 1,2,3,.... 

and it follows that 

Pk    —    Pkxx 

KK   =   0 

Kx   =   (APkxxA
T + TQTT)CT 

x (CAPkxxA
TCT + CYQTTCT + R) 

Pk+ixx   = 

-l 

-l 
(APkxxA

T + TQYTY+CTR-lC 

Thus, the classical Kaiman filter formulae are recovered. 

Remark 4 If x0 is known, viz., x0 6 iV(xo,0); i.e., PQx = 0, and only the loop gain 

parameter K is not known, i.e., PQXX = 0, poxK = 0, one nevertheless has to deal 

with an uncertain x at time k (even ifT — 0 and if there is no process noise) and 

%k    \ 
one must propagate I    ^     I  and -Pfc(n+1)x(n+1)- 

Kk J 
D 
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3.3.2   Example 2.     Special case: C is a row vector (i.e., a scalar measurement 

is being used), then the estimation algorithm is 

xk+i   =   Axk + Kkbuk + Kx(zk+i - CAxk - KkCbuk) 

Kk+i   =   Kk + KK(zk+1 - CAxk - KkCbuk) 

where the Kaiman gain for state estimation is 

Kx   =   ^{APkxxA
TCT + uk[(Cb)APkxK + (CAPkxK)b} 

+ul(Cb)PkKKb + YQTTCT} 

and where the scalar X is given by 

X   4   CAPkxxA
TCT + 2ukCbAPkxK 

+u2
k{Cb)PkKK + CTQTTCT + R. 

The Kaiman gain for loop gain estimation is 

[CAPkxK + ukCbApkKK] 
KK =  . 

Finally, the estimation error covariances are 

ft+i„   =   {{APt„AT + uk(APll,KbT + bplKAT)+ulptKxbbT + rQrT} 

A^c 

Pk+lKK     —    VkKK 

[CApkxK + ukCbApkKKf 
X 

A        ^            ,     [CApkxK+ukCbApkKK] 
Pk+ixK   =   AVkxK + ukpkKKb —  

x {APkxxA
TCT + uk [(Cb)APkxK + [CApkxK)b] 

+ul(Cb)PkKKb + VQTTCT}. 
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In summary, a system identification algorithm was developed to identify 

system's loop gain, K. 
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IV.   Adaptive Parameter Smoothing 

In conventional indirect adaptive control a two-module controller consisting of a 

compensator and a system identification module is used. The compensator is syn- 

thesized on-line using a model-based controller design methodology. The system 

identification module provides the plant parameter estimate. The latter is used in 

the on-line compensator synthesis algorithm to update the plant model and thus 

modify the compensator accordingly, which yields adaptive control action. There 

is a tendency to rely on assumed certainty equivalence and directly insert the pa- 

rameter estimate into the compensator synthesis formula. This course of action is 

to a large extent motivated by the classical solution of the LQG problem in which 

an LQR state feedback compensator is used in tandem with a Kaiman filter which 

provides the state estimate [17]. 

At this point it is worthwhile to recall the LQG paradigm momentarily: the 

plant is linear and known and the cost functional is quadratic in the state and con- 

trol signals. The state estimation problem for linear control systems with known 

dynamics, control and observation (A, B, C) matrices resides in the realm of lin- 

ear regression, and therefore the Kaiman filter solution of the minimum variance 

state estimation problem yields an unbiased estimate of the state. An LQR com- 

pensator directly operates on the Kaiman filter-provided state estimate, viz., the 

LQR compensator is used in tandem with the Kaiman filter. The LQG controller, 

which consists of two modules, the Kaiman filter and the fixed LQR compensator, 

is optimal. 

Our plant, specified in Eqs. (1) - (5), is linear, however it contains the un- 

known parameter K which quantifies the degree of control power loss in the control 

effector. Thus, the state and the plant parameter K are to be jointly estimated. It 

is remarkable that also our system identification algorithm, as stated in Theorem 1, 

yields an unbiased state and parameter estimate and a reliable predicted estimate 
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error covariance. Moreover, in the special case where poKK = 0 and KQ = 1, viz., the 

parameter is known and therefore the (linear) plant is completely known, the clas- 

sical Kaiman filter state estimation formulae are recovered - see, e.g., Example 1 in 

Chapter 3. Indeed, our derivation of the system identification algorithm is rigorous 

and: 

• The estimate is unbiased. 

• The predicted covariance of the estimation error is reliable. 

In addition, it is noteworthy that when the plant is completely known and one 

is exclusively interested in the state estimate, as is the case in the classical Kaiman 

filtering paradigm, the quality of the state estimate, viz., the predicted covariance 

of the state estimation error, is not dependent on the plant input. Indeed, the 

covariance of the state estimation error is not used in the LQG controller. However, 

in the adaptive control case, where the plant parameter K is not known, the predicted 

state and parameter estimation error covariance are dependent on the plant input 

- see, e.g., Eqs. (43) - (45). Thus, in adaptive control, the quality of the state and 

parameter estimate is dependent on the input signal. Evidently, when the predicted 

estimation error covariance is small, the quality of the parameter estimate is good, 

and, conversely, when the predicted estimation error covariance is large, we cannot be 

certain about the true value of the parameter and the system identification algorithm- 

provided parameter estimate might be far from the true parameter. Thus, the control 

signal-dependence of the quality of the parameter (and state) estimate motivates 

one to refer to the excitation quality of the control signal. Good excitation yields a 

predicted parameter estimate error variance which is small, and thus is conducive to 

a well designed parameter estimation experiment. 

The following is crucial. In our specific situation where the system identifica- 

tion algorithm is rigorously derived, an unbiased state and parameter estimate and 

a reliable computed (predicted) estimation error covariance are obtained.   Hence, 
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the excitation quality is indeed directly reflected in the size of the predicted state 

and parameter estimation error covariance. In other words, we have a direct mea- 

surement of the, otherwise somewhat nebulous, degree of excitation - it is given by 

the size of the computed parameter estimation error variance, provided the latter 

is reliable, which, in our case, it is. Indeed, the importance of the computed para- 

meter estimation error variance being reliable cannot be overestimated. When an 

erroneous computed estimation error variance is used in, e.g., state estimation, the 

state estimate becomes "biased" and one then refers to filter divergence. This is 

a common occurrence in extended Kaiman filtering [16, 17]. Our work hinges on 

the computed parameter estimation error variance being reliable, by virtue of the 

rigorous system identification algorithm developed in Chapter 3. 

Now, the dependence of the quality of the system identification algorithm- 

provided parameter and/or state estimate on the control signal is the root cause 

of the dual control effect observed in nonlinear stochastic control and in adaptive 

control [17]. When the straightforward assumed certainty equivalence principle 

is used in adaptive control, the dual control effect is responsible for the bursting 

phenomenon often observed in adaptive control [1, 17]. This then invalidates the 

applicability of assumed certainty equivalence outside the very circumscribed LQG 

paradigm, where the quality of the estimate is not dependent on the control signal 

and the separation principle upon which certainty equivalence hinges is rigorously 

proven. 

4-1    Fixed-Weights Parameter Filter 

Evidently, when the estimation error variance is large, due to low excitation, 

and in the absence of a Separation Theorem [1, 12, 25, 27], we are not encouraged to 

boldly insert the new plant parameter estimate into the compensator synthesis equa- 

tion. Indeed, when the parameter estimation error variance is large, measurement 

noise will cause the parameter estimate to vary wildly from window to window, as 
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Step response of 1st order low-pass filter. Time constant is 0.1 second. 

Figure 2.     Step response of 1st order low-pass filter. Time constant is 0.1 second. 

observed in the simulation experiments in Figure 26. Since in the conventional adap- 

tive control paradigm the parameter is stipulated to vary "slowly", we realize that 

the system identification algorithm-provided parameter estimates may be far from 

their true value. This then motivates us to smooth the parameter estimate, viz., to 

pass the parameter estimate through a fixed low-pass filter. This obviously removes 

the fluctuations in the parameter estimate, viz., it removes the deleterious effects 

of noise, and by doing so, provides a better parameter estimate to be subsequently 

used in the compensator synthesis. 

Consider the following first-order filter modeled by the scalar continuous-time 

state equation: 

x(t) = --x(t) + -u{t) (68) 
T T 

Since our sampling time is 0.01 seconds, the required time constant is about r = 0.1. 

Figure 2 shows that this low-pass filter can smooth out the edge of the input signal. 
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Now, the discretized low-pass filter of Eq. (68) [10] is: 

Xk+i = adxk + bduk (69) 

where 

AT 

and 

ad   =   e~~,     AT = 0.01 sec,     r = 0.1 sec. (70) 
/•AT ■, 

bd   =    /      -e'Ut (71) 

ad + bd = 1 (72) 

Based on Eq. (68), the first-order low-pass filter used for smoothing the para- 

meter estimate is 

Kksmoothed = Ax Kk_lsmoothed + (1 - A) x Kk (73) 

where the weight A is a fixed number and 0 < A < 1. Unfortunately, the low- 

pass filter inevitably introduces a lag in the parameter estimation process. This is 

why we are using a low order low-pass filter for smoothing the parameter estimate. 

The lag introduced by the fixed low-pass parameter filter is particularly problematic 

in reconfigurable control, where a (flight) critical parameter is subject to possibly 

abrupt change. 

The performance of the low-pass filter for smoothing the parameter estimate 

and the performance of the adaptive control system which uses this filter is discussed 

in Chapter 7 in the sequel. 
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4-2   Adaptive Parameter Filter 

The simplicity afforded by a fixed low-pass filter which exclusively operates on 

the parameter estimate provided by the system identification algorithm is appealing. 

Note however that the fixed low-pass filter does not use the available predicted para- 

meter estimation error variance, which, we recall, is reliably provided by the system 

identification algorithm. Using the predicted estimation error variance information 

which is provided by our rigorous system identification algorithm, one can selectively 

employ smoothing. In our specific situation in which the system identification algo- 

rithm is rigorously derived and therefore the parameter estimate is not biased and 

the parameter estimation error variance is reliable, and when the parameter esti- 

mation error variance is small, one is justified in directly using the plant parameter 

estimate in the on-line compensator synthesis formula. Indeed, when the parameter 

estimation error variance is small we can employ assumed certainty equivalence, for 

then we know that the parameter estimate must be close to the true parameter value 

(only if that computed error variance is reliable). Then, there is no need to filter the 

parameter estimate and therefore the lag caused by passing the parameter estimate 

through a low pass filter is now removed. If however the parameter estimation error 

variance is large and we are not confident using the system identification - provided 

parameter estimate in the compensator synthesis, it is then advantageous to rely 

on filtering; this is tantamount to postulating that the parameter does not change 

much during the short time interval under consideration and therefore in the on-line 

compensator synthesis we partially rely on the old parameter estimate. In this case 

one introduces some lag. 

Hence, we now make the filter dynamics dependent on the parameter estima- 

tion error variance provided by the upstream system identification module, and in 

doing so we adaptively filter the loop gain estimate. These insights into the estima- 

tion situation at hand suggest the following strategy: 
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Set the weight of the current parameter estimate provided by the system iden- 

tification algorithm, 1 — Afc, to satisfy 

log10(l - Afc) = lQ{SNRk_SNRk_wi) (74) 

where wt is the moving window length used in the system identification algorithm, 

and the Signal to Noise Ratio (SNR) at time k is defined as 

SiVi?* = 20 log10(—) (75) 

Thus, A decrease in the SNR as moves from estimation window k — wlto estimation 

window k has the effect of decreasing the reliance on the most recent loop gain 

estimate, Kk. 

Hence, the adaptive filter for the parameter estimate is 

Kk     thil = Afc x Kfc_x     ,. . + (1 - Afc) x Kk (76) ^smoothed ^ "-     ^smoothed \ "-/ ^ ^ ' 

where the weight Afc, 0 < Afc < 1, is adjusted according to 

Afc = l-10   """-i (77) 

and where aKk is the predicted parameter (K) estimation error variance provided 

by the system identification module at time instant k. 

The adaptive parameter estimate filter, Eqs. (76) and (77), automatically 

smoothes the parameter estimate and removes bursting. The performance of the 

adaptive filter for smoothing the parameter estimate and the performance of the 

adaptive and reconfigurable control system which uses this filter is discussed in Chap- 

ter 7 in the sequel. 
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4-3   Discussion 

In the conventional adaptive control paradigm one assumes that while the 

plant parameter is not known, is time dependent, and is subject to change and 

therefore needs to be identified on-line, the parameter changes slowly relative to the 

plant dynamics. Reconfigurable control takes adaptive control to a higher level, and 

allows for abrupt changes in the parameter, as would be the case under plant failure 

conditions. Hence, the reduction of the lag in the parameter estimate is vary relevant 

to reconfigurable control. Moreover, reducing the lag in the parameter estimate is 

particularly important when the plant under consideration is open loop unstable, 

feedback control is used for stabilization, and the parameter under consideration 

is the critical open loop gain. Now, the adaptive parameter estimate smoother 

developed herein uses all the available information on the plant parameter provided 

by the on-line system identification module and hence the lag and the error in the 

plant parameter estimate calculated by the smoother and sent to the compensator 

is minimized. 

Hence, in this dissertation a novel adaptive and reconfigurable control architec- 

ture is developed which implements an automatic anti-bursting measure that entails 

an adaptive plant parameter smoother in tandem with the system identification 

module. In summary, a three-module adaptive and reconfigurable digital controller 

consisting of a system identification algorithm, an adaptive parameter estimate low- 

pass filter, and an on-line PI compensator synthesis formula, is developed. 
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V.   Tracking Controller 

In flight control, the aircraft physical system can be adequately represented as a 

mathematical model and one can synthesize a model-based feedback controller. The 

control law used entails full state feedback [10]. Full state feedback is indeed possible 

because in the controller design we use a low order truth model of the plant. 

Although our indirect adaptive control approach uses a stochastic dynamic 

model to account properly for measurement noise, it is nevertheless desirable to 

consider a deterministic model first for the purpose of control design. Also, the clean 

states are calculated deterministically, for later comparison with the algorithm's 

provided estimates when noise is included in the simulation. 

In this dissertation, special attention is given to the design of the (linear) 

tracking controller so that carefully thought out adaptive and reconfigurable flight 

control experiments can be performed. In this chapter, we introduce a new design 

methodology to design the tracking controller and analyze the effect of control surface 

failure on the tracking controller. Our simulation experiments validate the benefits 

of adaptive control, above and beyond the benefits of conventional feedback control. 

5.1    Tracking Controller Design in State Space 

Consider the following continuous-time m-input, Z-output plant 

where x G *Rn, A G 3?"xn, B G $nxm, u£$m,y 6 5R(, C G 5ft/xn, D G $mxn, 

E G Wxn, and m + p = I. Let w = Dx be an m x 1 vector representing the outputs 

that are required to follow anmxl reference signal r [9]. In steady state, we would 
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like to have 

y 
"V 1          » X = A.X+ DU 

y = Cx X 
— , 

F 

Figure 3.     Conventional Tracking Control System 

w = r,     Vr e Rv 

5.1.1    Conventional Tracking Controller.      The conventional tracking control 

law is 

u = r-Fx,     FEW1 (78) 

where F is a stabilizing feedback matrix. A conventional closed loop tracking control 

system is shown in Figure 3. Thus, the closed-loop system is 

x   =   (A-BF)x + Br 

y   =   Cx. 

Indeed, there is an inordinate amount of attention given to stabilizing feedback 

control laws of the form (78) in the control literature. 

The steady state analysis of the tracking control law (78) is now performed: 

x   — 

V   = 

-{A-BF)~lBr 

Cx 

' D 

E 
{A-BF)-lBr (79) 
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where the barred quantities represent steady state values. We want asymptotic 

tracking, 

w = Dx = r (80) 

i.e., 

r = -D{A - BF)-lBr ,   Vr (81) 

which yields the requirement 

D{A-BF)-1B = -Im. (82) 

Hence, not only must the matrix F be a stabilizing feedback, but it must also be 

chosen such that the tracking condition (82) holds, which is quite a restriction. 

5.1.2 Alternative Tracking Controller.      Use the tracking proportional con- 

troller 

u = Krr — Fx 

where Kr 6 sftmxm  is the reference input signal gain. 

Now, the steady state analysis yields the tracking condition 

Kr = -{D(A-BF)-1B)-\ (83) 

We now have the freedom to chose the feedback matrix F by assigning the poles of 

the closed-loop system matrix arbitrarily, provided, of course, that the poles locate 

in the left-half complex plane; in other words, we can chose the natural frequency 

and thus, the bandwidth of the (closed-loop) tracking loop. 

5.1.3 PI Tracking Controller.      A PI controller can work by increasing the 

system type without significantly changing the dominant roots of the characteris- 
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tic equation.  This is done by placing a zero close to the origin to counteract the 

integrator pole located at the origin. 

In order to include integral action in state space, we need to augment the plant: 

x   =   Ax + Bu 

z   =   r — Dx 

y     =     CX = |  X 

where z G 3?m is the "charge" on the integrator. 

Use the linear tracking control law 

u = r — Kxx — Kzz 

where 

F=[KX, KZ),   Kxe 3rx",   K, 

Hence, the augmented closed-loop dynamics are 

e 5Rmxm. 

x  \ /  A-BKX   -BKZ  \      x  \      IB 

z ) \      -D 0       J  \  z  I       \ Im 

x  \       I  D   0  \   I  x 

r (84) 

C   0 
z  I       \  E   0  I   \  z 

According to Eq. (82), we need 

.  .   A - BKX   -BKZ \      ( B    . 
DO \=-Im. (85) 

-D 0 \    Im 
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First, we need to chose the proportional feedback gain Kx to render A — BKX stable. 

In addition, we want to chose the integral gain Kz such that the augmented system 

matrix is stable, and thus invertible, and, in addition, Eq. (85) holds. 

In fact, the following holds: 

A — BKX is stable =4> A — BKX is invertible 

We require the following 

( M   N   . 
Lemma 5  Consider the partitioned matrix where N is anxm matrix, 

P is a I x n matrix, and M is a n x n square and invertible matrix. The inverse of 

the partitioned matrix is 

M   N\ ( M~l - M-lN{PM-lN)-lPM~l   M^NiPM^N)'1 

P    0 ) \ (PM^N^PM-1 -{PM-lN)~l 

D 

The following holds. 

Theorem 6 Asymptotic tracking is guaranteed with integral action, provided that 

we chose a stabilizing proportional feedback Kx and a non-zero integral gain Kz s.t. 

the closed-loop system matrix is stable. 

Proof: 

We apply Lemma 5 with 

M   =   Ad = A-BKx 

N   =   -BKZ 

P   =   -D 
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and we use Eq.  (85). Hence, the inverse of the augmented matrix that features in 

the "tracking condition", Eq. (85), is 

( Ad    -BKZ ' 

-D       0 

Kil ~ A?BKt{DA?BKz)-*DA?   -A^BK^DA^BK,)-1 

-{DAjBKj-iDA? -(DAjBK,)-1 

Applying the tracking condition, Eq. (85), we calculate 

Aa    -BKZ \      I   B 
DO' 

D       0      /      \ Im 

\-ind-i 
T 

DA? - DAfBK^DAjBK^DA-t 

-DAjBK.iDAjBK,)-1 

B 
= 0     -I„ 

I m 

=     -Im (86) 

as required. Eq. (86) show that the "tracking condition" for PI control always holds, 

no matter what the feedback control gains Kx and Kz are, provided that Kx and Kz 

stabilize the augmented dynamics matrix. 

D 

Remark 7 The non-zero integral gain Kz obviously influences the closed-loop dy- 

namics of the tracking control system; in other words, how fast we approach the 

asymptote. Moreover, the closed-loop system needs to be stable for the tracking con- 

dition to apply. 

D 
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Figure 4.     Tracking Control System with Variable Open-Loop Gain K 

5.1.4    Tracking under Failure.        We now consider the continuous-time m- 

input, /-output plant with variable open-loop gain matrix K - see, e.g., Fig. 4: 

x   =   Ax + Bu = Ax + BKu 

D 
y   =   Cx = ( I x 

E 

where 

K = 

fci    0 

0    k2 

0 \ 

0 

\ 0     0    • • •    km j 

is an m x m diagonal matrix, and kt is the degree of failure for different control 

surfaces. 

For an unfailed control system, the open-loop gain matrix K remains an iden- 

tity matrix, i.e., fci, k2,..., km = 1. If the control surfaces i fails at time £/, the 

control derivative is reduced, and 0 < kt < 1, i.e., the open-loop gain matrix K is no 

longer an identity matrix. When B is changed to BK, Eq.  (79), and consequently 

Eq. (83) become 

' D 
y 

E 
{A - BKF)~lBKr 

and 

KT = -{D(A - BKF^BK)'1 

45 



respectively. When failure occurs, the open-loop gain changes, viz., 0 < ku k2,.-, 

km < 1.. Then, with a set state feedback gain F we get from the "tracking condition", 

Eq. (82), and using Eqs. (80), (81) and (83), 

w   =   -D(A-BKF)-lBKr 

+   -D{A-BF)-1Br = r 

and 

Kr   =   -{D{A-BKF)-lBK)-1 

±   -{D{A-BF)-lB)-\ 

Thus, the conventional proportional tracking controller can no longer track the ref- 

erence (command) signal correctly. 

Now, include a variable K in our PI tracking control system. Then Eq.  (84) 

becomes 

x   \       I   A-BKKX   -BKKZ  \   /  x  \ BK 

and the tracking condition, Eq. (85), becomes 

DA?K - DA-JKBK{DA-JKBK)-'DA^K V ^ f BK 
-DA-JKBK{DA-JKBK)-' j        y    j 

BK 
0   -/ 

I 

-/ (87) 
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where 

AdK   =   A-BKKX 

BK   =   BKKZ. 

Thus, Eq. (87) shows that, even when the open loop gain matrix is allowed to vary, 

the "tracking condition" will always hold when PI control is employed, irrespective 

of the open loop plant gain K and the feedback control gains Kx and Kz, provided 

that stability is preserved. Asymptotic tracking is guaranteed; however, in the face 

of control surface failure, the tracking performance suffers. 

In summary, whereas the conventional tracking controller and the proportional 

controller can no longer maintain asymptotic tracking performance in the face of 

control surface failure, a PI controller will. When control surface failure occurs, the 

fixed PI controller can preserve asymptotic tracking performance. The proportional 

and integral gains need to be chosen such that closed-loop stability is universally 

achieved, so that the asymptotic tracking result applies. Evidently, nothing is said 

here about transient performance. 
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VI.   Aircraft Model and Fixed PI Controller 

In this research, an F-16 class aircraft flying at Mach 0.9 at 20,000 feet is con- 

sidered. The short period pitch dynamics approximation is used. The pitch dynamics 

are unstable and hence the aircraft relies on feedback control for stabilization. The 

relevant states are a and q, the aircraft angle of attack and pitch rate, respectively, 

and the control variable is the elevator deflection 6e. Thus, the plant truth model 

used in the system identification algorithm is 

a   =   Zaa + Zqq + KZ6e6e (88) 

q   =   Maa + Mqq + KM6e5e. (89) 

The Z stability and control derivatives are 

Za = -1.3433, Zq = 0.9946, Z6e = -0.1525 

and the M stability and control derivatives are 

Ma = 3.5, Mq = -1.0521, M6e = -24.3282. 

Hence, in (continuous-time) state space form, the bare aircraft (plant) dynamics are 

x   =   Ax + bu 

-1.3433    0.9946   \ /  -0.1525    . /    x 
\x + \u (90) 

3.5       -1.0521  / \  -24.3282 

where the state 
a 

x 
q 
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Bode Diagram of 1st order actuator for F-16 class A/C 

Frequency (rad/sec) 

Figure 5.     Bode Diagram of firstst-order actuator for F-16 class A/C. 

and the control variable u is the elevator deflection 6e. The above second-order plant 

model is the truth model used in the system identification algorithm. 

In the linear tracking controller, the reference signal r is summed with the 

states a and q feedback. The controller-generated command to the elevator, <56c, is 

applied to a first order actuator model -^^ with a bandwidth of 20 rad/sec. The 

actuator output, 6e, is the input to the plant. A first-order actuator model suffices 

in the "low frequency" bandwidth of the pitch dynamics as shown in Figure 5. A 

more elaborate fourth-order actuator model [21] is 

6e(S) (20.2)(5097.96)(144.8)  
6ec(S) ~~ (S + 20.2)(S2 + 10085 + 5097.96)(S + 144.? 

(91) 

and its Bode plot is shown in Figure 6.   However the first-order actuator model 

captures the lag characteristics of the actuator in the bandwidth of interest. 
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Bode Diagram of 4th order actuator for F-16 class A/C 

U -loo 

Frequency (rad/sec) 

Figure 6.     Bode Diagram of fourth order actuator for F-16 class A/C. 

Augmenting the dynamics and control matrices with the first-order actuator 

dynamics yields the third-order augmented plant 

x   =   Ax + bu 

( Ln, £>n £f\ 

Ma   Mq   M6e 

0      0-^ 

\ (°) 
x + 0 

) U; 
(92) 

Now the states are 

x 

/ a\ 

\K ) 
The control signal is conventionally generated according to 

(93) 

8ec = r- (Ka    Kq    KSe)x (94) 
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Table 1.     Longitudinal Dynamics with s imple Tracking Controller. 
System Eigenvalues 

Open-loop -20.0 -3.0691 0.6737 
Closed-loop, K=l -14.4615+15.5040J -14.4615-15.5040J -1.4724 

Closed-loop, K=0.8 -1434894+12.4774J -1434894-12.4774J -1.4165 
Closed-loop, K=0.4 -18.0087 -11.2516 -1.1351 
Closed-loop, K=0.2 -24.3672 -5.3706 -0.6576 
Closed-loop, K=0.09 -26.5020 -3.8255 -0.0679 
Closed-loop, K=0.08 -26.6776 -3.7210 0.0032 

and the first order actuator dynamics is 

1.      lc 
0e = 0e + -Öec 

T T 
(95) 

where r = 0.05 sec. The above third-order plant model is the truth model used for 

tracking controller design. The longitudinal dynamics are given in Table 1. 

The closed loop dynamics A matrix is now formed using the state feedback 

tracking control law in Eq. (94). The resulting A and b closed loop matrices are 

Art     = 

B, cl 

A + b( 

(( Z, 

-Ka   -Kq   -K6e 

Ma   Mq   M6e + 

0 0     -i 

z„ 
) 

0 

0 

\ 

-Ka   -Ka   -Ks 

\lrJ 

zSe 

Ma        Mq MSe 

\-iKa   -
l-Kq   -l(l + K6e) ) 

/o\ 

\"rj 

(96) 
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so we get 

x = Adx + Bdr. (97) 

This proportional controller does not in general yield asymptotic tracking. Hence, 

it is modified in the sequel. 

The F-16 class plant is open-loop unstable. This is a normal characteristic of 

advanced fighter aircraft. Using full state feedback, the flight control system is sta- 

bilized. The ensuing closed loop linear state feedback control system is very robust; 

a well designed simple tracking controller, Eq. (94), can handle open-loop gains as 

low as K\ = 0.08 while preserving stability, although tracking performance is sig- 

nificantly degraded after the degree of failure increases to K\ = 0.2. At lower K\ 

values, the feedback stabilization action becomes ineffective and the closed loop sys- 

tem becomes unstable, as shown in Table 1 and Figure 7. In this work, two tracking 

controllers are considered, a fixed proportional controller and a fixed Proportional 

plus Integral (PI) controller. 

6.1    Proportional Controller 

The tracking controller is now designed. Based on it, a proportional controller 

and an alternative fixed PI controller will be designed in the following sections. 

To find the gain needed to improve tracking performance, the augmented 

closed-loop state space equation is used. The reference signal r{= q) is the exogenous 

input and control signal is 

6ec = Krr - {Kaa + Kqq + KSe6e). (98) 

At steady state, x = Acix + KrBdr = 0. Writing the augmented state space equation 

with the necessary gain, Kr, at steady state, 

0 = Aclx + KrBc,r (99) 
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Figure 7.     Simple tracking step responses with various open-loop gains K\. 
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and solving for x yields 

x = KrAcl
LBdr (100) 

Substituting the above into the output equation 

y — ex (101) 

gives us 

y = Krc(Ad
lBdr (102) 

It is desired for the output to track a step input. For this to happen 

y = r (103) 

which implies 

1 = KrCAjBd (104) 

must hold. Solving for u gain Kr, yields 

Kr 
1 

cA^Bd 

(105) 

which gives the required reference signal gain needed for proper tracking. This gain 

is then applied to the system before the feedback loop as shown in Figure 1. This 

adjusts our Bci to the following 

Brl = 

/ 0 \ 

0 (106) 
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Table 2.     Longitudinal Dynamics with Proportional Tracking Controller. 
System Ei genvalues 

Open-loop -20.0 -3.0691 0.6737 
Closed-loop, K=l -14.4615+15.504J -14.4615-15.504j -1.4724 

Closed-loop, K=0.8 -14.4894+12.4774 -14.4894-12.4774 -1.4165 
Closed-loop, K=0.4 -18.0087 -11.2516 -1.1351 
Closed-loop, K=0.2 -24.3672 -5.3706 -0.6576 
Closed-loop, K=0.09 -26.5020 -3.8255 -0.0679 
Closed-loop, K=0.08 -26.6776 -3.7211 0.0032 

The gains needed for Ka, Kq and K$e are 

Ka   =   0.283 

Kq   =   0.876 

KSe   =   -0.4. 

So, the proper tracking dynamics are obtained. 

Tracking is achieved using a fixed proportional controller. Table 2 shows the 

eigenvalues of the closed-loop system using the fixed proportional tracking controller. 

Once again, the open-loop plant is unstable and feedback stabilization is used. 

The closed-loop system becomes unstable again when the degree of control surface 

loss becomes excessively large, viz., K\ = 0.08 as shown in Table 2 and Figure 8. 

However, the tracking performance degrades significantly after the degree of failure 

increases to K\ = 0.2. 

6.2   PI Controller 

Designing a PI controller in state space for good tracking performance requires 

the system dynamics to be further augmented. Now 

z = r — q (107) 
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Figure 8.     Proportional controller step responses with various open-loop gains K\. 
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and 
/ 

x = 

V 

Za    Zq    Zse    0 

Ma   Mq   M6e   0 

0      0-^0 

0-100 

x + 
0 

0 

V1/ 

r + 
0 

l 
r 

V0/ 
where the states are now 

x = 

/a\ 

9 

6e 

(108) 

(109) 

V 2 / 
and, as before, r is the reference signal. The "charge" on the integrator is z. Now 

the PI control law is 

6ec = r - Kaa - Kqq - K6e6e + Kzz. (110) 

The new closed-loop system matrices Ad and Bd are 

A cl A + b[-Ka 

( 

M, 

\    ° 

q 

T 

-1 

-Kq   -K6e   Kz 

M6e        0 

_{W<Sel       Kz. 
T T 

Bd   = 
0 
l 

v1; 

(in) 
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Table 3.     Longitudinal Dynamics with PI Tracking Controller 
System Eigenvalues 

Open-loop -20.0 -3.0691 0.6737 N/A 
Closed-loop, K=l -14.4560+15.4990J -14.4560-15.4990J -1.4733 -0.01 

Closed-loop, K=0.8 -14.4841+12.4721J -14.4841-12.4721J -1.4169 -0.0103 
Closed-loop, K=0.4 -18.0244 -11.2266 -1.1328 -0.0116 
Closed-loop, K=0.2 -24.3692 -5.3625 -0.6480 -0.0157 
Closed-loop, K=0.09 -0.0352+0.0683J -0.0352-0.0683J -26.5027 -3.8222 
Closed-loop, K=0.08 0.0005+0.0732J 0.0005-0.0732J -26.6782 -3.7181 

The proportional and integral gains needed to obtain good tracking performance are 

Kn   = 

K„   = 

K,    = 

Kx   = 

0.283 

0.876 

-0.4 

0.01. (112) 

Thus, tracking is achieved using a fixed PI controller. Table 3 shows the poles 

of the open-loop plant and the poles of the closed-loop system when this fixed PI 

controller is used for tracking control. As can be seen in Table 3 and Figure 9, 

the bare plant is originally open-loop unstable. State feedback stabilizes the a, q, 

and Se states of the unimpaired closed-loop flight control system. As the loop gain 

K is lowered from a value of 1, which corresponds to having no failure, to a value 

of K\ « 0.08, an almost complete longitudinal control surface loss, the closed-loop 

system reverts to instability again. However, the tracking performance degrades 

significantly after the degree of failure increases to K\ = 0.2. 

In this chapter, the deterministic aircraft model of the control system is devel- 

oped. It was shown how the [A , b] plant is augmented with actuator dynamics, and 

the tracking control law was introduced. Because the "standard" tracking controller 

could not properly track a step input, a proportional and a PI controller are imple- 
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merited for two different case studies. The closed loop matrices were found for both 

fixed controllers and the gains were designed by pole assignment. 
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VII.   Simulation Results 

1.1    Experimental Setup and Tracking Control 

One would like a feedback control system to be robust enough to perform within 

specifications in the face of parametric uncertainty, e.g., control surface loss due to 

failure or battle damage, and in the presence of measurement noise and unmod- 

eled dynamics. As the critical open-loop gain K decreases from K = 1 to K <C 1, 

which represents a transition from no failure to substantial control surface loss, the 

tracking of the reference signal slips. Even though failure, viz., a reduction in the 

control derivative, causes a fixed controller's tracking performance to deteriorate, 

still, a correct system identification algorithm will properly estimate the degree of 

failure. In fact, poor tracking caused by failure increases excitation, which boosts 

the performance of the system identification algorithm. Hence one is motivated to 

use the available signals required for feedback control in an on-line system identi- 

fication algorithm and subsequently adjust the controller's gain on line in order to 

account for the failure-induced reduction in the plant's open-loop gain, thus recov- 

ering performance and achieving adaptive and reconfigurable control action. This 

control concept, illustrated in Figure 1, is implemented in our simulation. 

In most of our MATLAB [14] simulations, the command signal consists of 

4 pitch rate (qc) doublet commands, having an amplitude of ±10 deg/sec and a 

period of 4 seconds, giving a 16 seconds measurement record. The input command 

represents a pilot "exciting the stick" maneuver, used in flight test. The doublets are 

passed through a low pass prefilter, ^ . Such a prefilter is currently used in F-16 

aircraft. The pulsed command signal and the ensuing reference pitch rate command 

signal are shown in Figure 10. Except when specified otherwise, a control surface 

failure is induced at £/ = 8 seconds into the flight in all the test runs. This translates 

into a jump in the parameter K from 1 to K = K\, 0 < K\ < 1. In our experiments 

the simulated degree of failure is known and is parameterized by K\. Thus, during 
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Reference input signal as pitch rate command 

Time {sec) 

Figure 10.     Reference input signal - pitch rate command. The "frequency" is 7r/2 
rad/sec and the amplitude is 10 deg/sec. 

the first 8 seconds, we simulate an unimpaired A/C, and at t = tf = 8 seconds we 

simulate an elevator surface loss, so that for the remaining 8 seconds we control an 

impaired A/C. Hence, the open-loop gain 

Kit) 
1     for 0 < t < 8 

Ki   for 8 < t < 16 

where 

0 < K, < 1. 

In addition, measurement (sensor) noise is properly injected into the simula- 

tion. Thus, the measured pitch rate is qm = q + vq, where vq = N (0,a^), and the 

measured angle of attack is am = a + va, where va = N(0, a2
a). Given that both a 

and q observations are used for system identification, the following definition of SNR 

is used: 

(113) SJVÄ^201og.   /a™« + ^9max 
2 {ol + w***) 
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where the weighting 

w =     . (sec) 
VIP1P2I 

and pi, P2 are the poles of the open loop plant (the short period approximation): 

pi = 0.6737       V2 = -3.0691. 

In our simulations, 

"max ~ 7 deg.,        qmax «11 deg/sec. 

The experimental results presented in Figures 35-24 were obtained using a fixed 

oa = 0.03 deg. 

For the SNR experiments of 40 and 60 dB, a scaled aq and aa are used. We 

initially let aq. = 0.05 deg/sec, and aai = 0.05 deg and we get 

aq = kaqi,      aa = kaai (114) 

where the SNR scaling parameter k>0. The SNR is now expressed as 

SNR ±201ogJ o
ahlWlqhl, (115) y 2 (cr£ + u;2(T^J A;2 

and therefore, for a specified SNR, the parameter k is determined according to 

„„    SNR /«max + U'29max /,,M fc = 10" 20   x,     7 ^ (116) 

and in the simulation experiments, cra and aq are adjusted according to Eq. (114). 

The aa, aq and SNR values are shown in Table 4. 

We inject Gaussian noise of intensity cra = 0.03 [deg] and aq = 0.1108 [deg/sec] 

using the random numbers generator of MATLAB [14] to simulate measurement 
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Table 4. SNR Values. 
cFq deg / sec aa deg SNR dB 

0.56 0.03 25.54 
0.11 0.03 38.96 
0.06 0.06 40 
0.01 0.03 47.49 
0.006 0.006 60 

noise for the a and q signals. The measurement noise is propagated throughout the 

feedback control system. The controller's sampling rate is 100 Hz. The estimate of 

the open-loop gain, K, is continuously calculated by using the system identification 

algorithm (Theorem 1) using, in most experiments, a moving data window of length 

0.3 seconds (30 samples). The estimated gain is smoothed, and, in most experiments, 

the gain information is used in the proposed controller at each sample time - thus 

achieving on-line operation of the adaptive and reconfigurable control system. 

The performance of each of the three modules of the adaptive and reconfig- 

urable controller, viz, 1) the system identification module, 2) the parameter estimate 

smoother, and 3) the tracking controller, is now separately assessed, followed by an 

evaluation of the operation of the complete adaptive and reconfigurable controller. 

During the simulations of SNR's effects, several SNRs listed in Table 4 are 

used in order to analyze the SNR's effect on the estimation and tracking perfor- 

mance. The window size effects on the performance of our three-module adaptive 

and reconfigurable controller will be investigated too. For more realistic, we will 

also include unmodeled dynamics (Phugoid dynamics, fourth-order actuator, and 

parameter modeling error) into our basic model, and investigate the effects. 

7.2   Estimation Performance 

7.2.1 Expanding Window System Identification. The estimation perfor- 

mance guaranteed by the novel system identification algorithm stated in Theorem 

1 is experimentally validated, and the results of the open-loop gain identification 
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experiments are presented. The plant truth model used in the system identification 

algorithm is 

a   =   Zaa + Zqq + KZ6e 

q   =   Maa + Mqq + KMSe 

viz., the state evolves in 3£2 and the control signal is u = 8e. A discrete-time 

\q / 
version of the plant which corresponds to a sampling rate of 100Hz is embedded 

in the system identification algorithm. In our experiments, the quality of the prior 

information given to the system identification algorithm is intentionally chosen to 

be poor. It therefore takes the system identification algorithm some time to settle 

down and output the correct parameter estimates. 

Figures 11-14 show how the system identification algorithm, using an ex- 

panding horizon Kaiman filter (Theorem 1), estimates the open-loop gain K as the 

degree of failure increases. The true open-loop gain K and the identified open-loop 

gain K when using the fixed PI tracking controller mechanization are shown. The 

parameter estimate shown are output by the expanding window system identifica- 

tion algorithm and the parameter estimate smoother is not used. The settling time 

is fairly long. However, the settling time is shortened when Ki is small. This is 

clearly a nonlinear phenomenon. Also note the large parameter estimation errors 

(spikes) near t = 0, before the estimation window fills up; also, it is evident that the 

initialization transient terminates at time t ~ 4 sec. 

The estimation performance for various degrees of failure, and the estimation 

time delay defined when the K estimate is within 10% of the true K after failure 

(Ki), is summarized in Table 5. 
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Table 5.     Open-loop gain estimation performance with expanding data window. 
Fixed PI tracking controller and no parameter estimate smoother. 

Actual Post-Failure 
Open-Loop Gain K\ 

Final Est. 
Value K 

Relative Est. 
Error(%) 

Time Delay 
(sec.) 

0.8 0.8878 10.98 8.52 
0.6 0.7311 21.86 11.81 
0.4 0.4602 15.06 12.65 
0.2 0.2073 3.63 4.77 
0.1 0.1006 0.64 2.20 

Loop gain K estimate when expanding win. ID algo. is used. Failure K=0.8 at 8 sec 

■  ■ ■  Actual K 
— Estimated K using expanding window ID algo. 

- 

r—^ 

^-— 

- - 

Time(sec) 

Figure 11. Open-loop gain estimation when Kx = 0.8, aa — 0.03 deg and aq = 
0.1108 deg/sec when an expanding window system ID algorithm is 
used. 
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Loop gain K estimate when expanding win. ID algo. is used. Failure K=0.6 at 8 sec 
iii 

Actual K 
  Estimated K using expanding window ID algo. 

- 

r—-^ 

\,                             - 

- 

Time(sec) 

Figure 12. Open-loop gain estimation when K\ = 0.6, aa = 0.03 deg and aq = 
0.1108 deg/sec when an expanding window system ID algorithm is 
used. 

Loop gain K estimate when expanding win. ID algo. is used. Failure K=0.4 at 8 sec 

Actual K 
  Estimated K using expanding window ID algo. 

■ 
- 

- V 
1                       1                       1 

Time(sec) 

Figure 13. Open-loop gain estimation when K\ = 0.4, aa = 0.03 deg and aq = 
0.1108 deg/sec when an expanding window system ID algorithm is 
used. 
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Loop gain K estimate when expanding win. ID a!go. is used. Failure K=0.2 at 8 sec 

0.6 ■ 

■■■■   Actual K 
  Estimated K using expanding window ID algo. 

) 

,                                    |                     ' . 1  

Time(sec) 

Figure 14. Loop gain estimation when K\ = 0.2, aa = 0.03 deg and aq = 
0.1108 deg/sec when an expanding window system ID algorithm is 
used. 

7.2.2 Moving-Window System Identification. The long parameter estima- 

tion delays observed when an expanding horizon Kaiman filter is used motivates us to 

use a moving-window filter. A moving-window (or, equivalently, finite memory data 

window) is preferred because, in the case of a failure, when a jump in the value of 

the open-loop gain K occurs, the latter is identified faster than in the case where the 

expanding horizon window system identification algorithm is used. By using the re- 

cursive system identification algorithm (Theorem 1 in Chapter 3) inside a 0.3 second 

window (of 30 samples), estimates of the parameters of interest are calculated. The 

window is then shifted one sample time and the estimation process is repeated. This 

yields the first parameter estimate at 0.3 seconds into the flight. Prior information 

with negative a and q states and an initial guess of K = 0.8 are intentionally used to 

test the moving-window estimation algorithm's response to a poor initial guess. For 

all of the windows, the same prior information of a = —1.4414 degrees, q = —2.4314 

degrees/second, and K = 0.8 is used.  The initial states a and q variances are 0.1 
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K est. from exp. hr. & moving window for PI contr. & K=0.8 at 8sec 

Time(sec) 

Figure 15. Comparison of expanding horizon and moving window estimation with 
fixed PI tracking controller. aa = 0.03 deg and aq = 0.1108 deg/sec . 
Ki = 0.8. 

[deg2], 1 [(deg/sec)2], respectively, and the variance of the parameter K initial guess 

is 0.4. 

Setting the post failure open-loop gain at K\ = 0.8, K\ = 0.6, Ki = 0.4, 

and Ki = 0.2, we compare the open-loop gain (K) estimation performance of the 

moving-window system identification algorithm and the expanding window system 

identification algorithm. The fixed PI tracking controller, and no parameter estimate 

filter, are used - see, e.g., Figures 15 to 18. One can see that the moving-window 

is faster to settle on an estimate, while the expanding horizon system identification 

algorithm takes more time to reach its final estimate value. Obviously, the estimate 

provided by the expanding window Kaiman filter is smoother than the estimate 

provided by the relatively short sliding window. At the same time, the negative 

effect on estimation performance of a very short window (<C 0.3sec) is also evident 

near t = 0. 
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K est. Irom exp. hr. & moving window lor PI contr. & K=0.6 at 8sec 

Time(sec) 

Figure 16. Comparison of expanding horizon and moving window estimation with 
fixed PI tracking controller. aa = 0.03 deg and aq = 0.1108 deg/sec . 
Kx = 0.6. 

K est. from exp. hr. & moving window for PI contr. & K=0.4 at 8sec 

8 10 
Time(sec) 

Figure 17. Comparison of expanding horizon and moving window estimation with 
fixed PI tracking controller. aa = 0.03 deg and aq = 0.1108 deg/sec . 
Kx = 0.4. 
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K est- from exp. hr. & moving window for PI contr. & K=0.2 at 8sec 

10 12 14 16 
Time(sec) 

Figure 18. Comparison of expanding horizon and moving window estimation with 
fixed PI tracking controller. aa = 0.03 deg and aq = 0.1108 deg/sec . 
Kx = 0.2. 

In Figures 15 to 18, the true parameter ± the predicted standard deviation 

of the parameter estimate calculated by the moving-window system identification 

algorithm are also shown. About 50.84%, 50.97%, 50.53%, and 51.78% of the K 

estimates, K, fall inside the predicted la bound for K\ = 0.8, K\ = 0.6, K\ = 0.4, 

and K\ = 0.2, respectively. Also note that when the moving-window system iden- 

tification algorithm is used, for certain data windows, the excitation in the window 

is poor, and these particular windows yield poor parameter estimates. At the same 

time, the predicted parameter estimation error's standard deviation, aK, is large, 

which shows that the system identification algorithm is performing as expected. The 

poor estimates occur when the window slides past the peaks of the input command, 

as shown in Figures 15 to 18, i.e., the spikes in the parameter estimate seem to be 

correlated with the input peaks, as is evident in Figure 19. The input command is 

then near-constant, which yields poor excitation, which is reflected in a large aK; 

this is bad for adaptive control. 
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qc vs Ke from moving window for PI contr. & Failure K=0.6 al 8 sec 
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Figure 19. The reference command and the estimate K provided by the mov- 
ing window system identification algorithm. aa = 0.03 deg and <rq = 
0.1108 deg/sec. Kx = 0.6. 

In this regard, Figures 20 and 21 show the estimation performance and tracking 

performance when the command signal is a unit step function, i.e., a 1 deg/sec 

pitch rate step command. Although now, due to the low SNR, and low excitation, 

the parameter estimate is not so good and the estimation error variance is high, 

nevertheless, about 69.27% of the K estimates, K, fall inside the predicted lcr bound 

of K. Evidently, the theoretical score is 68.3% - which, again shows that the system 

identification algorithm performs as expected. 

We finally note that, good estimation performance is recorded when the am- 

plitude of the input step is 10 deg/sec. This is due to the higher SNR in this 

experiment. 

7.2.3   Barker Code Sequence as Reference Signal.        The input signal de- 

termines the excitation and thus strongly affects the estimation performance of the 
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Critical Loop Gain K Estimated for failure K=0.6. Window size is 30 

- Estimated K with Moving Win. 
Actual K 

- Predicted 1- a bounds for Est. K 

' 0 2 4 6 8 10 12 14 16 

Time (sec) 

Figure 20. Loop gain K estimate provided by moving window identification algo- 
rithm with unit step (ldeg/sec pitch rate) input . Window size=30. 
Kx = 0.6. 

SP outputs with moving win. ID & unit step input. Failure K=0.6 at 8sec Window size is 30 

I   VuM1', 
I       ' l ,' 

Reference command 
a output 
q output 

\, n'-v'"., A ■/■ ^^<r^,jsy^>\?J\!^<\^>,\/u\> »VvVi'VISvl JJ' 

8 10 12 14 16 
Time (sec) 

Figure 21. q and a response when unit step (ldeg/sec pitch rate) command is 
applied. Moving window system ID algorithm and fixed PI controller 
are used. aQ = 0.03 deg and aq = 0.1108 deg / sec . Kx = 0.6. 
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10 deg/sec 

r = 0 

12     3    4    5     6    7 9    10   11   12   13 

Figure 22.     13-bit Barker code. 

system identification algorithm - as opposed to classical linear state estimation, i.e., 

Kaiman filtering. The estimation benefits ensuing from using a strongly exciting 

13-bit Barker code-like pilot command, as shown in Figure 22, are illustrated in this 

section. The Barker code is used in radar. Since there are three different "frequen- 

cies" in the 13-bit Barker code sequence, when it is used as the input command, 

we get strong excitation. In our simulation, each bit of the Barker code represents 

1 second, and the total simulation time is now 13 seconds. The amplitude is 10 

deg/sec. The failure is now simulated at tj = 6 sec. 

Fig. 23 shows the estimation performance of our moving-window system identi- 

fication algorithm when the 13-bit Barker code is used as the reference signal. There 

are some spikes occurring during bits 1-5, 6-7, and 8-9, in the less excited period of 

the input sequence. After bit 10, the estimation performance is very good, since the 

input sequence is strongly exciting. Moreover, the estimation's settling time is very 

short. 
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K Estimate with moving win. ID & Barker code input signal. Failure K=0.6 at 6sec 
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Figure 23. K estimate when moving window system ID algorithm, fixed PI Con- 
troller and 13-bit Barker input reference signal are used. aa = 0.03 deg 
and ag = 0.1108 deg/sec . Failure at tf = 6 sec. and K\ = 0.6. 

The use of a strongly exciting 13-bit Barker code-like pilot command yields 

good estimation performance and it amply illustrates the effect of the input signal 

on system identification performance. 

7.3   Smoothing Filter Performance 

7.3.1    Fixed-Weights Smoother. The estimates of K obtained from the 

(short) moving-window system identification algorithm, with low excitation, and at 

relatively low SNRs, have a high aK, viz., they fluctuate. Hence, we use the fixed 

weights filter, Eq. (73) in Chapter 4, to smooth the parameter estimate before 

sending the latter to the PI controller module. 

Smoothing of the system identification algorithm's parameter estimate helps 

to reduce the negative effects of noise, and consequently, bursting, a.k.a., poor esti- 

mation performance (during episodes of weak excitation) causing poor control per- 

formance.  Thus, smoothing the system identification provided parameter estimate 
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improves the end-toend tracking performance of the adaptive control system. Figure 

24 shows the direct effect of smoothing on the loop gain estimate. The dashed lines 

represent a ±20% error bound about the true loop gain, K. We can see that the 

fixed-weights smoothing filter significantly reduces the fluctuation in the K estimate. 

However, smoothing increases the identification time, which is of particular 

importance in a control surface failure scenario for an open-loop unstable aircraft. 

In Figure 25, the open-loop gain estimates shown are smoothed using various filter 

weights. As can be seen, when A = 0.7 is used, the delay in failure detection time 

is greater than in the unsmoothed estimates case but is less than when the heavier 

smoothing weights A = 0.8 and A = 0.9 are used. A reduction in estimation delay 

comes at the expense of less smoothing. One must decide if this is an appropriate 

trade-off. Moreover, increasing the window length also helps to reduce the negative 

effects of noise and poor excitation, viz., the fluctuations in the open-loop gain 

estimate are reduced, but not as effectively as when a low-pass filter for the parameter 

estimate is used. 

7.3.2 Adaptive Smoother. A fixed-weights smoother will reduce the fluctu- 

ations in K, but it will uniformly increase the identification delay, and, consequently, 

response time, of the identification algorithm, as is evident in Figure 25. 

Figure 26 clearly shows the relation between the parameter estimate K and the 

predicted standard deviation of the parameter estimation error, aK. The "spikes" 

in K occur when aK is large. This indicates that our rigorously derived estimation 

algorithm indeed yields a reliable predicted parameter estimation error variance. 

Hence, we can confidently use the crK information. Moreover, Figure 27 shows the 

spikes in the parameter estimate to be strongly correlated with a sudden increase in 

the predicted parameter estimation error variance - in other words, whenever there 

is a spike in the o-K(k)/crK(k — w{) ratio; wt denotes the window length.  We used 
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Unsmoothed K   v.s. Smoothed K   using Moving window & K=0.6 at 8 sec 

Time(sec) 

Figure 24. Nonsmoothed and 90% fixed weights smoothed loop gain estimate K 
when moving window system ID algorithm is used. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.6. 

1 05 
The effects of smoothing on failure detection time, K=0.6 at 8 sec 
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Figure 25. The effect of the fixed weights smoothing of estimated parameter on the 
settling time when moving window system ID is used. aa = 0.03 deg 
and aq = 0.1108 deg/sec. Kx = 0.6. 
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Actual K 
. Estimated K with moving win. 

Time(sec) 

Figure 26. Loop gain estimate and predicted estimate error standard deviation 
when moving window system ID is used. aa = 0.03 deg and aq = 
0.1108 deg/sec. Kx = 0.6. 

Table 6.     The Percentage of K Estimates Falling Into the 1-Sigma Range. 
K K Inside 1-er 

Not smoothed 50.97% 
70% Smoothed 52.64% 
80% Smoothed 55.59% 
90% Smoothed 61.02% 

Adaptively Smoothed 65.90% 

this insight to design an adaptive smoother, as specified in Eqs.   (76) and (77) in 

Chapter 4. 

Figure 28 shows the relation between the unsmoothed parameter estimate K, 

adaptively smoothed parameter estimate K and the adaptively adjusted weight Afc 

used in the adaptive parameter smoother. It indicates that Afc « 1, i.e., use the pre- 

viously smoothed estimate Ksmooth{k— 1), when there is high fluctuation in estimated 

K. When the fluctuation is low, Afc « 0, i.e., use the current estimate K(k). The 

adaptive smoother did function as we expect and adaptively reduce the fluctuation in 
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Figure 27. Loop gain estimate and (TK{k)/oK(k — wi) when moving window system 
ID is used. aa = 0.03 deg and aq = 0.1108 deg/sec. Kx = 0.6. (where 
wi denotes the window length) 

The relation between adaptive smoothing and   Xk. K=0.6 at 8 sec 

h=^ 

Nonsmoothed K 
. Adaptively Smoothed K 

^WV-fW ^v*\ 

\!- 

Time(sec) 

Figure 28. Loop gain estimate and Afc when moving window system ID and adap- 
tive smoother are used. aa = 0.03 deg and aq = 0.1108 deg/sec. 
Kx = 0.6. 
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The effects of smoothing on failure detection time, K=0.6 at 8 sec 
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Figure 29. The effects of estimated parameter smoothing on the settling time 
when moving window system ID is used. aa = 0.03 deg and aq = 
0.1108 deg/sec. Kx = 0.6. 

Unsmoothed K   v.s. Smoothed K   using Moving window & K=0.6 at 8 sec 
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Figure 30. Loop gain estimate K and smoothed Ks when moving window system 
identification, fixed weights smoother and adaptive smoother are used. 
aa = 0.03 deg and aq = 0.1108 deg/sec. Kx = 0.6. 
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parameter estimate. Figures 29 and 30 show the parameter estimation performance 

comparison with no smoother, a fixed-weights smoother, and an adaptive smoother 

for K, when the failure index is Kx = 0.6 at £/ = 8 seconds. We can see that the 

adaptive smoother, Eq. (76), not only yields the fastest identification time, but also 

is more effective than a fixed-weights smoother. Table 6 shows the percentage of K 

falling inside the predicted la bounds when no smoother, a fixed-weights smoother 

and an adaptive smoother are used. We see that the adaptive smoother significantly 

"helps" the parameter estimation algorithm. 

7.4    Tracking Controller Performance 

In the tracking control experiments, the fixed linear PI tracking controller de- 

sign in Chapter 5 is exercised first. This is a fairly robust controller and it yields a 

solid benchmark against which the adaptive and reconfigurable controller's perfor- 

mance is gauged. Next, the tracking performance of our adaptive and reconfigurable 

control system is evaluated. The tracking performance when using the "exciting" 

13-bit Barker code sequence pilot command is also discussed. 

7.4-1 Fixed Proportional Controller Performance. In general, post-failure 

tracking performance of the fixed proportional controller for the various reduced 

open-loop gain values is similar to that of the PI controller. The post-failure tracking 

performance of the proportional controller becomes unacceptable when the critical 

loop gain is reduced to K\ = 0.2. When the critical loop gain is further reduced, 

tracking performance deteriorates rapidly as shown in Figures 31 to 34. 

7.4.2 Fixed PI Controller Performance. Our fixed PI tracking controller 

developed in Chapter 5 is, by design, fairly robust. In the simulation experiments, 

at time t = 8 sec. into the flight, the open-loop gain K is reduced to K\ = 0.8, 

Ki = 0.6, K\ = 0.2, Kx = 0.1 and Kx = 0.06. Although no discernible loss in 

post-failure tracking performance is recorded for K\ = 0.8 in Figure 35 (due to the 
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Short Period outputs for PR contr. & Failure K=0.8 at 8 sec 

■ q command 
a 
q  

10 12 14 16 
Time(sec) 

Figure 31.     Pitch rate q and angle of attack a responses when the fixed proportional 
controller is used. aa = 0.03 deg and aq = 0.1108 deg/sec. Kx = 0.8. 

Short Period outputs for PR contr. & Failure K=0.4 at 8 sec 

6 8 
Time(sec) 

10 12 14 16 

Figure 32.     Pitch rate q and angle of attack a responses when the fixed proportional 
controller is used. aa = 0.03 deg and aq = 0.1108 deg/sec. Ki = 0.4. 
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Short Period outputs for PR contr. & Failure K=0.2 at 8 sec 

8 10 12 14 
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Figure 33.     Pitch rate q and angle of attack a responses when the fixed proportional 
controller is used. aa = 0.03 deg and aq = 0.1108 deg/sec. Kx = 0.2. 

Short Period outputs for PR contr. & Failure K=0.1 at 8 sec 

10 12 14 16 
Time{sec) 

Figure 34.     Pitch rate q and angle of attack a responses when the fixed proportional 
controller is used. aa = 0.03deg and aq = 0.1108deg/sec. K\ = 0.1. 
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Short Period outputs for PI contr. & Failure K=0.8 at 8 sec 

Reference command 
a output 

■ q output    

Time(sec) 

Figure 35.     Pitch rate q and angle of attack a responses when the fixed PI controller 
is used. aa = 0.03 deg and aq = 0.1108 deg/sec. Kx = 0.8. 

robustness of the fixed PI controller), the degradation in tracking performance is 

pronounced for K\ — 0.2, as seen in Figure 38. Although the control system does 

not become unstable until a degree of failure which corresponds to K\ = 0.08 - see, 

e.g., Table 3 - the post-failure tracking performance of the fixed PI controller falls out 

of acceptable limits before this point, approximately when the loop gain K\ < 0.2 

- see, e.g. Figure 38, where the results for Kx = 0.2 are shown. When the K value 

further decreases to K\ = 0.1 and below, as shown in Figures 39 and 40, post-failure 

tracking performance of the fixed PI controller deteriorates significantly and is not 

acceptable. In both cases, when either the fixed PI or the proportional tracking 

controller were used, very similar identification results were obtained. 

7.4-3   Adaptive and Reconfigurable Control. 

7-4-3.1    Expanding Window System Identification.       Now, a "conven- 

tional", two-module, adaptive and reconfigurable controller is implemented.   The 
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Short Period outputs for PI contr. & Failure K=0.6 at 8 sec 

Time(sec) 

Figure 36.     Pitch rate q and angle of attack a responses when the fixed PI controller 
is used, aa = 0.03 deg and aq = 0.1108 deg/sec. K\ = 0.6. 

Short Period outputs lor PI contr. & Failure K=0.4 at 8 sec 

Reference command 
a output 
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Time(sec) 

Figure 37.     Pitch rate q and angle of attack a responses when the fixed PI controller 
is used. aa = 0.03 deg and aq = 0.1108deg/sec. K1 = 0.4. 
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Short Period outputs lor PI contr. & Failure K=0.2 at 8 sec 
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Figure 38.     Pitch rate q and angle of attack a responses when the fixed PI controller 
is used, aa = 0.03 deg and aq = 0.1108 deg/sec. K\ = 0.2. 

Short Period outputs for PI contr. & Failure K=0.1 at 8 sec 
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Figure 39.     Pitch rate q and angle of attack a responses when the fixed PI controller 
is used, a a = 0.03 deg and aq = 0.1108 deg/sec. K\ = 0.1. 



Short period outputs for fixed PI contr. & Failure K=0.06 at 8sec 
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Figure 40.     Pitch rate q and angle of attack a responses when the fixed PI controller 
is used. aa = 0.03 deg and aq = 0.1108 deg/sec. K\ = 0.06. 

controller entails an expanding window system identification module and a variable 

gain controller. When the expanding window-based system identification algorithm 

is used to estimate the states a, q, and the open-loop gain parameter (K) for degrees 

of failure of Kx = 0.8, Kx = 0.6, Kx = 0.2, Ki = Q.l and Kx = 0.06, and no parame- 

ter estimate smoothing filter is used, the tracking performance is shown in Figures 41 

- 45. After the point of failure, a considerable error between the estimated pitch rate 

and the commanded pitch rate develops. This is mainly due to the estimation lag 

in the expanding window system identification module. However, the tracking per- 

formance improves as time passes, and the expanding window system identification 

algorithm settles on a good parameter estimate, and the pitch rate then tracks the 

commanded pitch rate. When the open-loop gain dropped to K\ = 0.06 in Figure 42, 

tracking at t « 10 second is temporarily poor, because the parameter identification 

delay is long, and the fixed PI tracking controller is only able to tolerate a failure of 

Ki = 0.08 before the control system becomes unstable. However, after a temporary 

lapse, the adaptive and reconfigurable controller affords a recovery at t « 16 second. 
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SP outpuls when expanding window system ID is used. Failure K=0.8 at 8 sec 

■ Reference command 
a output 

■ q output  

0 2 4 6 8 10 12 14 16 
Time(sec) 

Figure 41. q and a responses when expanding window system identification al- 
gorithm and reconfigurable control are used. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.8. 

SP outputs when expanding window system ID is used. Failure K=0.6 at 8 sec 

  Reference command 
—    a output 
 q output  

6 8 10 12 14 16 
Time(sec) 

Figure 42. q and a responses when expanding window system identification al- 
gorithm and reconfigurable control are used. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.6. 



SP outputs when expanding window system ID is used. Failure K=0.2 at 8 sec 

■ Reference command 
a output 

■ q output 
i i 

6 8 10 12 14 16 
Time(sec) 

Figure 43. q and a responses when expanding window system identification al- 
gorithm and reconfigurable control are used. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.2. 

SP outputs when expanding window system ID is used. Failure K=0.1 at 8 sec 

Reference command 
a output 

■ q output 

6 8 10 
Time(sec) 

12 14 16 

Figure 44. q and a responses when expanding window system identification al- 
gorithm and reconfigurable control are used. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.1. 
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SP outputs when expanding window system ID is used. Failure K=0.06 at 8 sec 

Figure 45. q and a responses when expanding window system identification al- 
gorithm and reconfigurable control are used. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.06. 

7.4.3.2 Moving-Window System Identification. The tracking perfor- 

mance of the complete, three-module, adaptive and reconfigurable controller, using 

the moving-window system identification algorithm, is shown in Figures 46 - 49. Af- 

ter the failure, and when K\ = 0.8, only a small tracking error occurs between the 

commanded pitch rate and the pitch rate output. As the degree of failure increases, 

the tracking error increases too. However, the tracking performance is much better 

than that of the fixed PI tracking controller, and the previously discussed two-module 

adaptive tracking controller using an expanding window-based system identification 

algorithm. Concerning the latter, the estimation lag is now reduced. This is ev- 

ident when we compare Figures 45 and 49, where the open-loop gain dropped to 

K1 = 0.06. In Figure 45 where the estimation lag was high, tracking immediately 

after the failure was no longer acceptable because the fixed PI tracking controller is 
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SP outputs when moving win. ID algor. & adaptive smoother are used. Failure K=0.8 at 8 sec 

Figure 46.     q and a response when moving window system ID algorithm & adaptive 
smoother are used. aa — 0.03deg and aq = 0.1108deg/sec. K\ = 0.8. 

only able to tolerate a failure of K\ = 0.08 before letting the control system become 

unstable. 

7.4-3.3 13-bit Barker Code Command. Figure 50 shows the track- 

ing performance of the fixed PI controller when the dynamic 13-bit Barker code 

sequence is used as reference command. Figures 51 and 52 illustrate the tracking 

performance of our two and three-module adaptive and reconfigurable controller 

using the expanding window system identification algorithm and moving-window 

system identification algorithm, respectively, when the dynamic 13-bit Barker code 

sequence is used as reference command, and the control surface loss is K\ = 0.6 

and it occurs at tf = 6 seconds. The tracking performance of the moving-window 

system identification algorithm is superior to that of the expanding window system 

identification algorithm and is slightly better than the fixed PI controller's; recall, 

however, that the fixed PI controller cannot handle a severe failure, e.g., K\ = 0.2. 
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SP outpuls when moving win. ID algor. & adaptive smoother are used. Failure K=0.6 at 8 sec 

Figure 47.     q and a response when moving window system ID algorithm & adaptive 
smoother are used. aa = 0.03deg and aq = 0.1108deg/sec. K\ = 0.6. 

15 
SP outputs when moving win. ID algor. & adaptive smoother are used. Failure K=0.2 at 8 sec 
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Figure 48.     q and a response when moving window system ID algorithm & adaptive 
smoother are used. aa = 0.03deg and aq = 0.1108deg/sec . Kx = 0.2. 
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SP outputs when moving win. ID algor. & adaptive smoother are used. Failure K=0.06 at 8 sec 

■ Reference command 
a output 

■ q output 

0 2 4 6 8 10 12 14 16 
Timefsec) 

Figure 49.     q and a response when moving window system ID algorithm & adaptive 
smoother are used. aa = 0.03 deg and aq — 0.1108 deg / sec. Ki = 0.06. 

q and a response when fixed PI contr. & Barker code input signal is used. Failure K=0.6 at 6sec 

  q command 
— a output 
 q output 

10 12 
Time (sec) 

Figure 50. q and a response when fixed PI controller & 13-bit Barker code input 
signal are used. aa = 0.03deg and aq = 0.1108deg/sec. Failure at 
t=6 sec. and K\ = 0.6. 
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SP outputs with Expending Kaiman Filter ID & Failure K=0.6 at 6sec 

Time (sec) 

Figure 51. q and a response when expanding window system identification algo- 
rithm & 13-bit Barker code input signal are used. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Failure at t=6 sec. and K\ = 0.6. 

SP outputs with moving win. ID & Barker code input signal. Failure K=0.6 at 6sec Window size is 30 

q command 
a output 
q output 

Time (sec) 

Figure 52. q and a response when moving window system ID algorithm & 13- 
bit Barker code input signal are used. aa = 0.03 deg and aq = 
0.1108 deg/sec. Failure at t=6 sec. and K\ = 0.6. 
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7.5 SNR Effects 

With the moving-window system identification algorithm, the accuracy of the 

results strongly depends on the measurement's Signal-to-Noise Ratio (SNR). This 

is due to the short data window used to calculate the estimates. In the previous 

section, a SNR of 38.9557dß {<ra = 0.03 [deg] and aq = 0.1108 [deg/sec]) was used. 

In this section several additional SNRs listed in Table 4 are experimented with in 

order to analyze the SNR's effect on the estimation and tracking performance. 

Figures 53 to 57 show that, as the measurement's Signal-to-Noise Ratio in- 

creases, the accuracy of the parameter estimate increases, and the tracking perfor- 

mance also increases. The fluctuations in the gain estimate, and bursting, caused by 

instances of poor excitation, is significantly reduced at high SNRs. 

7.6 Window Size Effects 

The effect of the length of the data window on the estimation and tracking 

performance of the system identification algorithm are investigated. We set the 

window sizes wt used in the moving-window system identification algorithm at 50, 

40, 30, 20, and 10, the post-failure open-loop gain at Kx = 0.6, and the Signal-to- 

Noise Ratio of the measurement is SNR = 38.9557<ii3. 

Figures 58 to 61, and Figure 54 show that a larger window size yields better 

parameter estimates and consequently better tracking performance. Using longer 

windows reduces the fluctuations in the parameter estimate, and bursting. However, 

as shown in Figure 62, longer windows bring about a delay in the estimation of the 

loop gain after the failure. 

7.7 Unmodeled Dynamics Effects 

7.7.1 Unmodeled Phugoid Dynamics. When we add the Phugoid dynamics 

to our short period A/C model with the first-order actuator augmented dynamics - 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=25.5421dB. 

Time (sec) 

SP outputs of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=25.5421dB 
15 

10 

5 -/ 

S    0 

-5 

-10 

-15 

I                   I                   I 

/              II                         /           ll 

i i                  i 

/             V 

/   A       / /          /' 
/          ' 

/      r           /     /   P /       ■' >N         /    ''  V- ''      r           '   \ '\ /       / 
'   \" /       M      | /       \ I     l 1    X"   - 

" 
\\    l 

x     '    X y 

^    / 
ll  / 

\      ii          \ r 

V               V    ' V    '           V 
^ij-^^ji ,;^J' vT~^r                                                            >s~17- 

  Reference command 
— a output 
 q output 

1                                     1 i                   i i 

8 
Time (sec) 

10 12 14 16 

Figure 53. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. SNR = 25.5421oLB 
(cra = 0.03deg and aq = 0.55534deg/sec). Failure at t=8 sec. Kx = 
0.6. 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=38.9557dB. 
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SP outputs of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=38.9557dB. 

Time (sec) 

Figure 54. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. SNR = 38.9557tiB 
(<ra = 0.03 deg and aq = 0.1108 deg / sec). Failure at t=8 sec. Kx = 0.6. 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=40dB. 
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Figure 55. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. SNR = 4QdB (aa = 
0.0602 deg and <rq = 0.0602 deg/sec). Failure at t=8 sec. Kx = 0.6. 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=47.4847dB. 
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Figure 56. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. SNR = 47.4847<iB 
(aa — 0.03 deg and aq = 0.01108 deg/sec). Failure at t=8 sec. K\ = 
0.6. 
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1.6 
K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=60dB. 
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SP outputs of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 30 SNR=60dB. 
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Figure 57. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. SNR = 60dB (aa = 
0.00602 deg and aq = 0.00602 deg/sec). Failure at t=8 sec. Kx = 0.6. 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 50 SNR=38.9557dB. 
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SP outputs of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 50 SNR=38.9557dB. 
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Figure 58. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. Window size is 50, 
<ja = 0.03 deg and aq = 0.1108 deg/sec. Failure at t=8 sec. K\ = 0.6. 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 40 SNR=38.9557dB. 
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SP outputs of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 40 SNR=38.9557dB. 
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Figure 59. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. Window size is 40, 
aa = 0.03deg and aq = 0.1108deg/sec. Failure at t=8 sec. Kx = 0.6. 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 20 SNR=38.9557dB. 

Time (sec) 

SP outputs of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 20 SNR=38.9557dB. 
15 

-15 

  Reference command 
• — ■ a output 
 q output 

8 
Time (sec) 

10 12 14 16 

Figure 60. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. Window size is 20, 
aa = 0.03deg and aq = 0.1108deg/sec. Failure at t=8 sec. K\ = 0.6. 
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K Est. of A. & R. flight control system. Failure K=0.6 at 8sec Window size is 10 SNR=38.9557dB. 
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Figure 61. Smoothed K and tracking performance when moving window system 
ID algorithm and adaptive smoother are used. Window size is 10, 
aa = 0.03 deg and aq = 0.1108 deg/sec. Failure at t=8 sec. K\ = 0.6. 
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The effects of window size on failure detection time, K=0.6 at 8 sec 
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Figure 62.     The effects of window size on the settling time when moving window 
system ID is used. aa = 0.03 deg and aq = 0.1108 deg/sec. K\ = 0.6. 

see, e.g., Eq. (90) - the new augmented dynamics are 

x   =   Ax + bu 
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The Z stability and control derivatives now are 

Za = -1.3433,  Zq = 0.9946,  Zv = 0,  Ze = -0.001,  Z6e = -0.1525 

the M stability and control derivatives now are 

Ma = 3.5,  Mq = -1.0521,  Mv = -0.0003,  Me = 0,  MSe = -24.3282 

and the X stability and control derivatives are 

Xa = 33.4778,  Xq = -26.0592,  Xv = -0.0119,  Xe = -32.1873,  XSe = 21.6603 

The above fifth-order plant model is then the truth model used in the simulation, 

with the same system identification algorithm, parameter estimate smoother and PI 

tracking controller as used in the previous simulations. Thus, we have introduced 

low frequency unmodeled dynamics. 

Setting the post-failure open-loop gain at K\ = 0.6, window size used in the 

moving-window system identification algorithm is 30, and the Signal-to-Noise Ratio 

of the output states measurement is SNR = 38.9557cLB. Figure 63 shows that when 

we include the Phugoid dynamics into our plant, the estimation performance dete- 

riorates somewhat, however, the tracking performance does not change significantly. 

Thus, unmodeled low frequency dynamics are not so problematic. 

7.7.2   Fourth-Order Actuator. We now exchange in the simulation the 

first-order actuator previously used with the fourth-order actuator specified in Eq. 

(91), but without the Phugoid dynamics. Thus, we have introduced high frequency 

unmodeled dynamics. The estimation performance and tracking performance are 

shown in Figure 64. The estimation performance is slightly better compared to 

that when the first-order actuator is used. However, tracking performance degrades 

significantly when the fourth-order actuator is used in the simulation experiment, 
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K estimate with Moving win. ID, Ad. smoother & PI cont. for K=0.6 at 8sec. 
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Figure 63. Phugoid dynamics are included - q response and adaptively smoothed 
K when moving window system ID algorithm and adaptive smoother 
are used. aa = 0.03deg and aq = 0.1108deg/sec. K\ = 0.6. 
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and there is "ringing" when the reference command signal passes the peak value. The 

latter introduces some "dither", viz., excitation, which enhances the performance of 

the system identification algorithm. Indeed, the system identification algorithm is 

not exercised in the presence of high frequency unmodeled dynamics because in the 

estimation algorithm we use the actual actuator deflection measurement. Thus, in 

Figure 64, one clearly sees the beneficial effect of dither on system identification 

performance. 

When we change the control gain KSe from -0.4 to —1.5 to eliminate the 

"ringing", the result is shown in Figure 65. The ringing is reduced, and the estimation 

performance is not appreciably degraded. Note, however, the lag in tracking when 

the fourth-order actuator is used. Thus, to account for the use of a fourth-order 

actuator, we need to fine tune the PI controller gains to reduce the "ringing" effect 

in tracking. 

7.7.3 Unmodeled Phugoid and Fourth-Order Actuator Dynamics. We now 

include in our simulation the Phugoid dynamics and use the fourth-order actua- 

tor to assess their joint effects on identification and tracking performance. The 

moving-window parameter identification algorithm and the adaptive smoother are 

used. Figure 66 shows the estimation performance and the tracking performance 

when the control gain KSe remains -0.4. Now, compare Figure 66 to Figures 63 

and 64. We can see that there is still some "ringing" when the fourth-order ac- 

tuator is used, but the estimation performance is better than that when only the 

Phugoid dynamics are included. Indeed, the inclusion of the fourth-order actuator 

model improves the estimation performance and mitigates the bad influence of the 

Phugoid. 

When we change the control gain Kge to —1.5, the results are shown in Figure 

67. We can see that the "ringing" is reduced as expected, but the estimation perfor- 

mance is slightly degraded. However, the estimation performance is still better than 
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K Estimate when 4th-order actuator is included. Failure K=0.6 at 8sec K       =-0.4 
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Figure 64. Smoothed K and tracking performance when moving window system 
ID algorithm, adaptive smoother and fourth-order actuator are used. 
KSe = -0.4. aa = 0.03deg and aq = 0.1108deg/sec. Failure at t=8 
sec. for K\ = 0.6. 
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K Estimate when 4th-order actuator is included. Failure K=0.6 at 8sec K       =-1.5 
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Figure 65. Smoothed K and tracking performance when moving window system 
ID algorithm, adaptive smoother and fourth-order actuator are used. 
K6e = -1.5. aa = 0.03deg and aq = 0.1108deg/sec. Kx = 0.6. 
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K Est. when Phugoid dynamics & 4th-order actuator are included. Failure K=0.6 at 8sec K    . =-0.4 
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Figure 66. Smoothed K and tracking performance when moving window system ID 
algorithm, adaptive smoother, Phugoid dynamics and fourth-order ac- 
tuator are used. KSe = -0.4. aa = 0.03 deg and aq = 0.1108 deg/sec. 
Kx = 0.6. 
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Table 7.     Longitudinal Dynamics with PI Tracking Controller when modeling error 
Malpha=5 and Kde=-0.4. 

System Eigenvalues (Ma = 5, K6e = -0.4) 

Open-loop -20.0 -3.4325 1.0371 N/A 

Closed-loop, K=l -14.4995+15.4874J -14.4995-15.4874J -1.3857 -0.0107 
Closed-loop, K=0.8 -14.5399+12.4700J -14.5399-12.4700J -1.3047 -0.0112 

Closed-loop, K=0.4 -17.9041 -11.5671 -0.9100 -0.0142 
Closed-loop, K=0.2 -24.3589 -5.7072 -0.2968 -0.0324 

Closed-loop, K=0.15 -0.0374+0.0813J -0.0374-0.0813J -25.3846 -4.9360 

Closed-loop, K=0.1 -26.3211 -4.3121 0.2097 0.0281 

Table 8.     Longitudinal Dynamics with PI Tracking Controller when modeling error 
Malpha=5 anc 1 Kde=-1.5. 

System Eigenvalues (Ma = 5, Kse = —1.5) 

Open-loop -20.0 -3.4325 1.0371 N/A 
Closed-loop, K=l -38.7367 -12.5252 -1.1212 -0.0123 

Closed-loop, K=0.8 -41.6301 -9.7716 -0.9803 -0.0134 
Closed-loop, K=0.4 -46.2408 -5.7282 -0.4012 -0.0252 
Closed-loop, K=0.3 -0.0853+0.0353J -0.0853-0.0353J -47.2415 -4.9833 
Closed-loop, K=0.25 -0.0085+0.0864J -0.0085-0.0864J -47.7250 -4.6534 
Closed-loop, K=0.2 0.0777+0.0185J -0.0777-0.0185J -48.1982 -4.3526 

that when only the Phugoid dynamics are included, but now there is a slight lag in 

tracking. 

7.7.^ Parameter Modeling Error. We now introduce modeling "error" in 

the Ma stability derivative. Thus, in the simulation we set Ma = 5 after the failure. 

Table 7 and 8 show the poles of the open-loop plant and the poles of the closed- 

loop system when the fixed PI controller is used with Ma = 5. In the presence of 

modeling error (Ma = 5), as the loop gain K is lowered from a value of 1 to a value 

of Ki fa 0.1 (when KSe = -0.4) and to a value of K\ « 0.2 (when K6e = -1.5), 

the closed-loop system reverts to instability. As we recall from Section 6.2, without 

parametric modeling error, the fixed PI controller can stabilize the open-loop plant 

until K\ = 0.08. The inclusion of parameter modeling error degrades the stability 

robustness of the flight control system. 
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K Est. when Phugoid dynamics & 4th-order actuator are included. Failure K=0.6 at 8sec K        =-1.5 
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Figure 67. Smoothed K and tracking performance when moving window system ID 
algorithm, adaptive smoother, Phugoid dynamics and fourth-order ac- 
tuator are used. KSe = —1.5. aa = 0.03deg and aq = 0.1108deg/ sec. 
Kx = 0.6. 
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Table £ ).     Estimation performance without/with Modeling Error. 
Window 
Length 

Without Modeling 
Error 

With Modeling Error 
after Failure 

Before Failure After Failure Before Failure After Failure 

Ma = 3.5 Ma = 3.5 Ma = 3.5 MQ =5 

% °Kr l°K % °KCI°K % &K, l°K % VKrJÖK 

40 47.44% 1.0277 36.68% 2.2823 47.44% 1.0261 1.50% 16.2354 

30 55.90% 1.0345 44.50% 1.4514 55.90% 1.0336 2.88% 10.2572 

20 63.25% 0.8615 57.13% 1.1677 63.25% 0.8610 4.13% 5.9566 

10 65.11% 0.8179 60.25% 0.9802 65.11% 0.8176 11.63% 2.7440 

8 63.56% 0.9170 59.88% 0.9990 63.68% 0.9166 16.13% 2.7000 

5 58.79% 1.3711 57.63% 1.1323 58.79% 1.3718 28.25% 1.7006 

Table 9 show the performance of the system identification algorithm after the 

failure in the presence of parametric modeling error. The percentage of the parameter 

estimates K falling inside the predicted la bounds, and the ratio aKe/WK, are shown 

for window sizes wi of 40,30,20,10,8,5. Here aKe is the experimentally obtained 

variance of the parameter estimation error, and aK is the average predicted variance 

of the parameter estimation error: 

VKe = 

\ 
sfc=i 

and 

O-K 

\ 

Ns 

N  Z^aKk 
s fe=l 

and where Ns is the number of samples in our experiments. Thus, 

iV,= I 

1600 -wt     for 0 < t < 16 second,      Ma = 3.5, 

800 -wt      for 0 < t < 8 second,        Ma = 3.5, 

800 for 8 < t < 16 second,      Ma = 5, 

without modeling error 

with modeling error 

with modeling error 

where w; is the moving-window length used in the system identification algorithm. 

Figures 68 to 71 show the estimation and tracking performance when the 

moving-window system identification algorithm and no smoothing filter is used, with- 

out modeling error and with modeling error after the control surface failure.   The 
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change in Ma due to modeling error significantly degrades the estimation perfor- 

mance. This is reflected in an increase in the parameter estimation error variance 

and in the ratio oKJoK ^ 1. Moreover, from Table 9, we can see that in the pres- 

ence of parametric modeling error, the shorter the windows length is, the higher 

the percentage of K estimates falling inside the predicted la bound and the closer 

the predicted parameter estimation error variance is to the experimentally obtained 

parameter estimation error variance. In addition, the parameter estimation error 

variance increases, which indicates that the parameter estimate needs to be heavily 

smoothed before it is sent to the controller. Therefore, considering the estimation 

and tracking performance trade off, the "optimal" choice of window size is 30. 

7.7.5 Unmodeled Phugoid Dynamics, Fourth-Order Actuator, and Parameter 

Modeling Error. We now include in our realistic simulation the Phugoid dynamics, 

use the fourth-order actuator model, and allow for a post failure parameter mod- 

eling error (Ma = 5). We investigate their cumulative effect on identification and 

tracking performance. The moving-window parameter identification algorithm and 

the adaptive smoother are used. The window size is 30, as discussed in the pervi- 

ous section. Figures 72 and 73 show the estimation performance and the tracking 

performance without and with the adaptive smoother, respectively, with the original 

control gain KSe = -0.4. Without the adaptive smoother, the effect of modeling 

error on the estimation and tracking performance is very pronounced. Thus, the 

adaptive smoother performs a crucial function in the presence of modeling error. 

When we change the control gain K6e to -1.5, the results are shown in Figures 

74 and 75 with and without the adaptive smoother, respectively. The "ringing" is 

now reduced, but, due to the change in the control gain KSe, the estimation per- 

formance is degraded. Without the adaptive smoother, the effect of modeling error 

on the estimation and tracking performance is more severe than with the adaptive 

smoother in place. Comparing Figures 75 and 67, we clearly see that the parametric 

modeling error degraded both the estimation and the tracking performance. 
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Figure 68. Parameter estimate K and tracking performance when the moving win- 
dow system ID algorithm is used without smoother. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.6. Window lengths are 40, 30 and 20. 
No modeling error. 
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Figure 69. Parameter estimate K and tracking performance when the moving win- 
dow system ID algorithm is used without smoother. aa = 0.03 deg and 
aq = 0.1108 deg /sec. Kx = 0.6. Window lengths are 10, 8 and 5. No 
modeling error. 
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Figure 70. Parameter estimate K and tracking performance when the moving win- 
dow system ID algorithm is used without smoother. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.6. Window lengths are 40, 30 and 20. 
With modeling error (Ma = 5) after failure. 
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Figure 71. Parameter estimate if and tracking performance when the moving win- 
dow system ID algorithm is used without smoother. aa = 0.03 deg and 
aq = 0.1108 deg / sec . Kx = 0.6. Window lengths are 10, 8 and 5. With 
modeling error (Ma = 5) after failure. 
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K Est. when Phugoid dyns., 4th-order actu. & modeling err. are included w/o smoother. Failure K=0.6 at 8sec K    5e=-0.4 
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Figure 72. Parameter estimate K and tracking performance. Moving window 
system ID algorithm (wl = 30), without smoother. Phugoid dy- 
namics, fourth-order actuator model and parametric modeling error 
(Ma = 5 after failure) are included. K8e = -0.4. aa = 0.03 deg and 
aq = 0.1108 deg/sec. Kx = 0.6. 
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K Est. when Phugoid dyns., 4th-order actuator & modeling error are included. Failure K=0.6 at 8sec K   ^=-0.4 
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Figure 73. Smoothed K and tracking performance. Moving window system ID 
algorithm (wl = 30), with adaptive smoother. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (MQ = 5 
after failure) are included. KSe = -0.4. aa = 0.03 deg and aq = 
0.1108deg/sec. Kx = 0.6. 
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Figures 77 to 79 show the tracking performance of the fixed PI controller, and 

the three-module adaptive and reconfigurable controller (moving-window identifica- 

tion algorithm with adaptive smoother), when the Phugoid dynamics, the fourth- 

order actuator model, and the post failure modeling error (Ma = 5) are included. We 

also set the control gain to the original KSe = -0.4, and the control surface failure 

index is K\ = 0.6, K1 = 0.4, Kx = 0.2. Before the failure, the tracking performance 

of the fixed PI controller and the adaptive and reconfigurable controller are similar. 

However, after the failure, the adaptive and reconfigurable controller outperforms 

the fixed PI controller, in particular, in the severe failure case of K\ = 0.2, when the 

fixed PI controller causes a departure. 

Finally, Figure 76 shows the elevator deflection and deflection rate when the 

fixed PI controller, and the three-module adaptive and reconfigurable controller are 

used. Phugoid dynamics, the fourth-order actuator model, and the post failure pa- 

rameter modeling error (Ma = 5) are included. The case when there is no parameter 

modeling error is also shown (Ma = 3.5). The control gain is set to Kge = —1.5. 

Before the failure, the elevator deflection and deflection rate from the fixed PI con- 

troller and the adaptive and reconfigurable controller are similar. After the failure 

and in the presence of parameter modeling error, the elevator deflection is reason- 

able (—6.46° < 8e < 6.32°), however the elevator deflection rate after the failure and 

when adaptive and reconfigurable control is used is ±65 deg/sec at t « 10 sec. This 

is due to the fact that the smoothed K estimate suddenly drops to Ksmooth ~ 0 - 

see, e.g., Figure 75. When there is no parameter modeling error after the failure, the 

elevator deflection rate when the adaptive and reconfigurable controller is used is in 

the range of ±24 deg/sec. 

When we change the control gain K§e to —1.5, the results are shown in Fig- 

ures 80 to 82. The adaptive and reconfigurable controller outperforms the fixed PI 

controller in all failure cases. In the case of a severe failure (K\ = 0.2), the adaptive 
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and reconfigurable controller shows some lag in tracking, but the fixed PI controller 

causes a departure. 

7.7.6 Unmodeled Phugoid Dynamics, Fourth-Order Actuator, and Parameter 

Modeling Error: Window Length Effect. We include the unmodeled Phugoid 

dynamics, fourth-order actuator, and post failure parameter modeling error (Ma=5) 

into our three-module adaptive and reconfigurable flight control system simulation. 

The performance of the system identification algorithm is assessed when we set the 

window size wt used in the moving-window system identification algorithm at 120, 

100, 80, 60, 50, 40 and 30. The post-failure open-loop gain is set at K1 = 0.6, 0.4, and 

0.2, and the Signal-to-Noise Ratio of the measurement is SNR = 38.9557 dB. Figures 

83 to 89 show the estimation and tracking performance in each case. A larger window 

size yields better parameter estimates, but the tracking performance is reduced. 

Indeed, using longer windows reduces the fluctuations in the parameter estimate, and 

bursting. However, longer windows bring about a delay in the estimation of the loop 

gain after the failure. From Table 10, we can see that in the presence of parametric 

modeling error, the shorter the windows size is, the higher the percentage of K 

estimates falling inside the predicted la bound. At the same time, the parameter 

estimation error variance increases, which indicates that the parameter estimate 

needs to be heavily smoothed before it is sent to the controller. Therefore, when the 

sampling rate is 100 Hz, and considering the estimation and tracking performance 

trade off, the "optimal" choice of window size for inner loop flight control is wt = 30. 

For reference purpose, Table 11 is reproduced for the case when there are no modeling 

error. The adverse effect on estimation performance of modeling error is clearly 

visible. 

7.7.7 Discussion. From the simulation experiments, we conclude that 

the unmodeled dynamics adversely affect the system identification algorithm. The 

Phugoid dynamics will degrade the estimation performance, but preserve the track- 
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K Est. when Phugoid dyns., 4th-order actu. & modeling err. are included w/o smoother. Failure K=0.6 at 8sec K    . =-1.5 
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K Est. when Phugoid dyns., 4th-order actuator & modeling error are included. Failure K=0.6 al 8sec K   fe=-1.5 
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Figure 75. Smoothed K and tracking performance. Moving window system ID 
algorithm (wl = 30), with adaptive sommther. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (Ma = 5 
after failure) are included. KSe = —1.5. aa = 0.03 deg and crq = 
0.1108deg/sec. Kx = 0.6. 
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Figure 76. Comparison of the elevator deflection and deflection rate when the fixed 
PI controller and the adaptive and reconfigurable controller are used. 
Phugoid dynamics, fourth-order actuator model and with and without 
parametric modeling error (Ma — 5 after failure) included. K$e = —1.5. 
rra = 0.03deg and aq = 0.1108deg/sec. Kx = 0.6. 
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q output when Phugoid dyns., 4th-order actu., modeling er. are included. Failure K=0.6 at 8sec K       5e='0'4 

Figure 77. Comparison of the tracking performance of the fixed PI controller 
and the adaptive and reconfigurable controller. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (Ma = 5 
after failure) are included. K6e = -0.4. cra = 0.03 deg and <rq = 
0.1108deg/sec. #1 = 0.6. 

q output when Phugoid dyns., 4th-order actu., modeling err. are included. Failure K=0.4 at 8sec K       g^"0-4 

Figure 78. Comparison of the tracking performance of the fixed PI controller 
and the adaptive and reconfigurable controller. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (Ma = 5 
after failure) are included. KSe = -0.4. aa = 0.03 deg and aq = 
0.1108 deg/sec. Kx = 0.4. 
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Figure 79. Comparison of the tracking performance of the fixed PI controller 
and the adaptive and reconfigurable controller. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (Ma = 5 
after failure) are included. K6e = -0.4. <ra = 0.03 deg and aq = 
0.1108deg/sec. Kx = 0.2. 

q output when Phugoid dyns., 4th-order actu., modeling err. are included. Failure K=0.6 at 8sec K       ^=-1.5 
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Figure 80. Comparison of the tracking performance of the fixed PI controller 
and the adaptive and reconfigurable controller. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (Ma = 5 
after failure) are included. Kge = —1.5. aa = 0.03 deg and aq = 
0.1108 deg/sec. Kx = 0.6. 
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q output when Phugoid dyns., 4th-order actu.. modeling err. are included. Failure K=0.4 at 8sec K       „=-1.5 
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Figure 81. Comparison of the tracking performance of the fixed PI controller 
and the adaptive and reconfigurable controller. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (Ma = 5 
after failure) are included. K$e = —1.5. aa = 0.03 deg and aq = 
0.1108deg/sec. Kx = 0.4. 

q output when Phugoid dyns., 4th-order actu., modeling err. are included. Failure K=0.2 at 8sec K       ^=-1.5 
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Figure 82. Comparison of the tracking performance of the fixed PI controller 
and the adaptive and reconfigurable controller. Phugoid dynamics, 
fourth-order actuator model and parametric modeling error (Ma = 5 
after failure) are included. Kee = —1.5. aa = 0.03 deg and aq = 
0.1108 deg/sec. Kx = 0.2. 
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Figure 83. Moving window system ID algorithm (wl = 120), with adaptive 
smoother. Phugoid dynamics, fourth-order actuator model and para- 
metric modeling error (MQ = 5 after failure) are included. Kge = —1.5. 
aa = 0.03 deg and aq = 0.1108 deg/sec . Kx = 0.6, 0.4 and 0.2. 
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Figure 84. Moving window system ID algorithm (wl = 100), with adaptive 
smoother. Phugoid dynamics, fourth-order actuator model and para- 
metric modeling error (MQ = 5 after failure) are included. Kge = —1.5. 
aa = 0.03 deg and aq = 0.1108 deg/sec. Kx = 0.6, 0.4 and 0.2. 
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Figure 85. Moving window system ID algorithm (wl = 80), with adaptive 
smoother. Phugoid dynamics, fourth-order actuator model and para- 
metric modeling error (Ma = 5 after failure) are included. Kge = —1.5. 
aa = 0.03deg and uq = 0.1108deg/sec. Kx = 0.6, 0.4 and 0.2. 
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Figure 86. Moving window system ID algorithm (wl = 60), with adaptive 
smoother. Phugoid dynamics, fourth-order actuator model and para- 
metric modeling error (Ma = 5 after failure) are included. Kge = —1.5. 
era = 0.03deg and aq = 0.1108deg/sec. Kx = 0.6, 0.4 and 0.2. 
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Figure 87. Moving window system ID algorithm (wl — 50), with adaptive 
smoother. Phugoid dynamics, fourth-order actuator model and para- 
metric modeling error (Ma — 5 after failure) are included. Kse = —1.5. 
aQ = 0.03deg and aq = 0.1108deg/sec. Kx = 0.6, 0.4 and 0.2. 
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Figure 88. Moving window system ID algorithm (wl = 40), with adaptive 
smoother. Phugoid dynamics, fourth-order actuator model and para- 
metric modeling error (Ma = 5 after failure) are included. K$e = —1.5. 
aa = 0.03 deg and aq = 0.1108 deg/sec . Kx = 0.6, 0.4 and 0.2. 
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Figure 89. Moving window system ID algorithm (wl = 30), with adaptive 
smoother. Phugoid dynamics, fourth-order actuator model and para- 
metric modeling error (Ma = 5 after failure) are included. K$e — —1.5. 
aa = 0.03 deg and aq = 0.1108 deg/sec. Kx = 0.6, 0.4 and 0.2. 
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Table 10.     Estimation performance in the presence of Phugoid dynamics, 4th-order 
actuator and Parameter Modeling Error. 

Window 
Length 

Without Modeling E 
after Failure 

rror With Modeling Error 
after Failure 

Before Failure Aftei Failure Before Failure After Failure 

Ma = 3.5 Ma = 3.5 Ma = 3.5 M , = 5 

% "Kc l°K % VKe/°K % aKc l°K % °KF I^K 

120 Kx = 0.6 8.22% 9.8170 0.50% 36.0085 8.22% 9.8156 0.50% 77.6210 

120 K\ = 0.4 8.22% 11.5906 0.25% 57.9225 8.22% 11.5887 0.50% 68.3467 

120 Ki = 0.2 8.22% 13.8252 0.63% 83.5609 8.22% 13.8230 0.50% 73.8257 

100 Ki = 0.6 12.41% 8.0224 0.50% 29.5165 12.41% 8.0159 0.50% 70.6330 

100 Ki = 0.4 12.41% 9.1891 0.25% 48.3235 12.41% 9.1811 0.50% 58.0828 

100 Ki = 0.2 12.41% 10.5631 0.63% 72.5651 12.41% 10.5541 0.63% 63.5088 

80 Ki = 0.6 15.53% 6.3104 0.37% 20.1849 15.53% 6.3061 0.50% 60.7597 

80 Ki = 0.4 15.53% 6.9205 0.25% 33.9788 15.53% 6.9153 0.88% 52.6956 

80 Ki = 0.2 15.53% 7.6313 0.88% 65.5666 15.53% 7.6254 0.75% 59.2076 

60 Ki = 0.6 15.79% 4.1639 0.50% 11.6378 15.79% 4.1623 1.13% 41.1995 

60 Ki = 0.4 15.79% 4.3869 0.50% 16.8761 15.79% 4.3848 0.88% 40.7393 

60 Ki = 0.2 15.79% 4.6597 0.63% 45.0475 15.79% 4.6572 1.38% 42.5600 

50 Ki = 0.6 20.11% 3.3352 0.88% 8.3933 20.11% 3.3340 1.13% 31.4682 

50 Ki = 0.4 20.11% 3.4691 0.37% 11.0310 20.11% 3.4677 1.38% 31.5668 

50 Ki = 0.2 20.11% 3.6361 0.88% 33.4663 20.11% 3.6343 1.25% 32.6856 

40 Ki = 0.6 20.63% 2.4933 2.88% 5.6118 20.63% 2.4923 1.25% 22.1051 

40 Ki = 0.4 20.63% 2.5778 1.38% 6.8140 20.63% 2.5765 2.00% 23.1365 

40 Ki = 0.2 20.63% 2.6847 1.75% 21.6335 20.63% 2.6832 2.50% 22.2451 

30 Ki = 0.6 29.18% 1.7022 6.63% 3.7504 29.18% 1.7013 2.13% 13.6519 

30 Ki = 0.4 29.18% 1.7489 4.37% 4.1107 29.18% 1.7476 2.25% 15.2254 

30 Ki = 0.2 29.18% 1.8082 4.50% 11.8786 29.18% 1.8066 3.38% 14.6092 

Table 11.     Estimation performance without Phugoid dynamics, 4th-order actiator 
and Parameter Modeling Error. 

Window 
Length 

Without Unmo deled Dynamics 

Before Failure After Failure 
% 0"Ke l~&K % °K,. I~öK 

120 Ki = 0.6 5.43% 7.1464 5.36% 27.1328 
120 Ki = 0.4 5.43% 9.9099 5.37% 50.8629 
120 Ki = 0.2 5.43% 12.8429 11.75% 78.3058 

100 Ki = 0.6 8.99% 4.8353 6.25% 17.2179 
100 Ki = 0.4 8.99% 6.4735 4.88% 35.0398 
100 Ki = 0.2 8.99% 8.2287 10.50% 56.8502 

80 Ki = 0.6 18.72% 3.0250 9.75% 9.7578 
80 Ki = 0.4 18.72% 3.9587 7.50% 23.5718 
80 Ki = 0.2 18.72% 4.9645 19.00% 49.9900 

60 Ki = 0.6 26.45% 1.7476 21.00% 4.7322 
60 Ki = 0.4 26.45% 2.2178 19.13% 10.7741 
60 Kx = 0.2 26.45% 2.7374 33.37% 36.5729 

50 Ki = 0.6 38.62% 1.2928 31.75% 3.0876 
50 Ki = 0.4 38.62% 1.6003 30.38% 6.4874 
50 Ki = 0.2 38.62% 1.9460 46.00% 27.7534 

40 Ki = 0.6 48.49% 0.9132 42.25% 1.9553 
40 Ki = 0.4 48.49% 1.0884 41.63% 3.6867 
40 Ki = 0.2 48.49% 1.2927 52.12% 18.6363 

30 Ki = 0.6 57.33% 0.8237 49.38% 1.5597 
30 Ki = 0.4 57.33% 0.8901 52.88% 1.9257 
30 Ki = 0.2 57.33% 0.9746 53.63% 10.7669 
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ing performance. The fourth-order actuator will degrade the tracking performance, 

but enhance the estimation performance. Using both the Phugoid dynamics and the 

fourth-order actuator model in our simulation experiment, clearly illustrates the in- 

terplay between the various unmodeled dynamics effects on estimation and tracking 

performance. However, the parametric modeling error not only impairs the estima- 

tion performance of the moving window system identification algorithm, but it also 

degrades the tracking performance. 

In the presence of parametric modeling error, the reliability of the system 

identification algorithm is a major concern. Thus, the estimator's performance is 

gauged to a large extent by the ratio VKJ~öK, where aKe is the experimentally 

recorded parameter estimation error variance, and aK is the average of the predicted 

parameter estimation error variance. Unfortunately, the latter is close to 1 when the 

parameter estimation error variance is large. This, in turn, is the motivation for 

using a parameter estimate smoother before using the parameter estimate to adjust 

the controller. The latter invariably introduces an estimation lag, which however 

is minimized when an adaptive parameter estimate smoother is used. With the 

adaptive smoother, the estimation performance is enhanced, and so is the tracking 

performance. 

Most importantly, the benefit of adaptive and reconfigurable control is amply 

illustrated in Figure 82. It is apparent that in the case of a sever failure, with a 

fixed PI controller a departure is on hand, whereas the adaptive and reconfigurable 

controller yields acceptable tracking performance. 
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VIII.   Conclusion and Recommendations 

8.1    Conclusion 

An adaptive and reconfigurable flight control system is developed. The novel 

three-module controller consists of 1) a system identification module, 2) a parame- 

ter estimate smoother, and 3) a robust proportional and integral compensator for 

tracking control. 

Two basic system identification algorithms were described that were useful 

for the determination of the unknown parameters of a dynamical system. We are 

particularly interested in on-line system identification for adaptive and reconfigurable 

flight control. We discussed modeling error, disturbances, and the importance of 

not over-modeling. First, a frequency domain system identification approach for 

estimating the unknown parameters of an nth order continuous-time SISO system 

was discussed. Second, an estimation algorithm was also given when measurement 

noise was taken into account in the modeling of the dynamical system. Because 

of measurement noise, careful stochastic modeling was used and a modified Least 

Squares algorithm was developed. It was shown how the effect of the noise can be 

represented as a weighting matrix, R, in the Least Squares algorithm, and, when 

applied to the least squares algorithm, it provides accurate parameter estimates. 

A new system identification algorithm was developed to identify the plant's 

control matrix, viz., the plant's open-loop gain, K. We allow for measurement 

noise, which is injected into the a (angle of attack) and q (pitch rate) channels 

and propagates through the feedback control system. The system identification 

algorithm is akin to a Kaiman filter and provides estimates of the states, a and 

q, and the critical open-loop gain plant parameter. The Kaiman equations were 

manipulated so that the loop gain can be estimated and explicit formulae for the 

loop-gain estimate and the predicted estimation error variance were derived. The 

rigorous system identification algorithm operates in the presence of measurement 
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noise and provides an unbiased loop gain parameter estimate and a reliable predicted 

parameter estimation error variance. On-line operation is achieved, small samples 

are used, and no human intervention is required. The algorithm is concisely stated 

in Theorem 1. 

High levels of measurement noise and poor excitation increase the parameter 

estimation error variance and this causes the parameter estimate to fluctuate as we 

move from window to window. An adaptive parameter estimate smoother reduces the 

fluctuations automatically in the plant gain estimate used in the "on-line designed" 

compensator. This improves control performance and reduces bursting, caused by 

instances of poor excitation. The adaptive parameter estimate smoother uses all 

the available information on the plant parameter provided by the upstream on-line 

system identification module and hence the lag, and the error in the plant parameter 

estimate calculated by the smoother and sent to the compensator, is minimized. 

Indeed, the role of the parameter estimate smoother is : 1) to reduce the inevitable 

fluctuations in the parameter estimate prior to using the latter in the downstream 

on-line controller synthesis algorithm, and 2) to address the ill effects of modeling 

error and, in particular parametric modeling error, on the performance of the system 

identification algorithm; the latter are an additional cause of large fluctuations in 

the parameter estimate as we move from window to window, and to make matters 

worse, the parameter estimation error prediction is then not reliable. 

Moreover, a model based robust PI tracking controller using full state feedback 

was synthesized. The method used to augment the dynamics to include integral ac- 

tion in a state space formulation was introduced, and the appropriate tracking control 

law was derived. The robust PI tracking controller provided the performance bench- 

mark against which the performance of our adaptive and reconfigurable controller 

was gauged. 

Extensive simulations were performed to validate the novel adaptive and re- 

configurable flight control system. First, the performance of our on-line system iden- 
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tification algorithm was thoroughly investigated. The algorithm was tested in the 

presence of the fixed PI controller. The expanding horizon Kaiman estimates were 

compared to the estimates from the moving-window algorithm. The performance 

of both methods was analyzed and the methods were compared for their ability to 

identify a failure quickly, viz., a loss of control surface area. 

When the fast moving-window system identification was implemented, spots 

of poorer estimation performance, manifested as spikes in the parameter estimate, 

were observed at time instants where the pilot's reference signal peaks. To help 

correct this, a fixed-weights low-pass filter (smoothing module) for the parameter 

estimate was initially tested for different levels of smoothing action. The fixed- 

weights parameter estimate filter introduces a lag into the estimation process. To 

address this problem, an adaptive smoother was developed to reduce the fluctuation 

automatically in the parameter estimate and the estimation lag, and it was shown 

to outperform the fixed-weights smoother. Moreover, the bursting phenomenon is 

automatically mitigated. When the window size is increased, the estimate's fluctua- 

tions decreased. However, a shorter window is able to detect a failure faster than a 

longer window, which is most desirable in reconfigurable control. 

The pilot-like 13-bit Barker code pitch rate command sequence excitation was 

also used in the simulation experiments in a dynamic tracking scenario and the 

estimation performance of our moving-window system identification algorithm was 

evaluated. The moving-window system identification algorithm preforms very well. 

Indeed, the input signal strongly affects the estimation performance of the system 

identification algorithm - as opposed to classical linear state estimation, i.e., Kaiman 

filtering. 

The effects of measurement's Signal to Noise Ratio was investigated. When 

measurement's SNR increases, the accuracy of the parameter estimate increases, 

and the tracking performance also increases. The fluctuations in the gain estimate, 
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and bursting, caused by instances of poor excitation is reduced significantly in high 

SNR. 

The choice of window length for moving-window system identification algo- 

rithm deeply affects the performance. Using longer window lengths can reduce the 

fluctuations in parameter estimate, and bursting, and yield better parameter esti- 

mates and better tracking performance. 

Attention was also given to unmodeled dynamics effects. Simulations includ- 

ing unmodeled Phugoid dynamics, a fourth-order actuator model, and parametric 

error, were performed. The unmodeled Phugoid dynamics degrade the estimation 

performance, and the fourth-order actuator unmodeled dynamics reduce the tracking 

performance. Including both, gives similar tracking performance as with the fourth- 

order actuator model only, but better estimation performance than with Phugoid 

dynamics only. However, parametric modeling error significantly degrades the esti- 

mation and tracking performance of the moving-window system identification algo- 

rithm and is the driving force for using a parameter estimate smoothing module. 

In summary, in the novel three-module adaptive and reconfigurable controller, 

the reciprocal of the estimated loop gain derived from the system identification 

algorithm and processed by the smoothing module is used on-line to adjust the 

compensator, to account for the failure, and thus recover performance. The tracking 

performance of the complete adaptive and reconfigurable control system is shown 

to be superior to the tracking performance of the robust, but fixed, PI tracking 

controller, in particular, in the case of a severe failure. 

The adaptive and reconfigurable controller design methodology developed in 

this dissertation is illustrated in a flight control context. However, this development 

is applicable to a broad range of control problems. 
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8.2 Contributions 

1. Developed three-module adaptive and reconfigurable controller which includes 

an adaptive parameter estimate smoother. Improves estimation performance 

and combats bursting phenomenon. 

2. Established the parameters for the optimal operation of the system identifica- 

tion module, viz., the sampling rate and the window length, and experimentally 

investigated the SNR effect. 

3. Gave attention to the design of a robust tracking controller which accommo- 

dates a control surface loss. 

4. Developed remedial action for the accommodation of modeling errors in indi- 

rect adaptive control; this includes low frequency unmodeled dynamics, high 

frequency unmodeled dynamics, and parametric modeling error. 

8.3 Recommendations for Future Research 

1. This dissertation presented only the single input (pitch rate command) of the 

F-16 class aircraft. The three-module adaptive and reconfigurable controller 

developed in this dissertation should be applied to multiple-input signals to 

test it's ability. One can also create a scenario where the B matrix is changed 

due to structural damage. 

2. To simplify the development of the three-module adaptive and reconfigurable 

controller, this dissertation deal with the measurement's noise only. Process 

noise may be included in the model to give a great insight on how this controller 

is performing. 

3. The system identification module developed in this dissertation to estimate the 

states and the open-loop gain only. The results of the experiments indicated 

that the parameter modeling error (Ma) indeed affected the performance of 

the system identification module.  We mitigated the bad effects by using the 
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adaptive smoother and modifying the control gain (KgJ. One could develop 

another smoothing filter and fine tune the PI controller to improve the per- 

formance of the system identification module when more modeling errors are 

included. One could even modify the system identification module to also 

estimate the stability derivatives. 
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