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Abstract 

With renewed worldwide interest in cislunar space, the need for reliable domain 

awareness in that extended region of space is clear.  This investigation quantifies the 

suitability of several possible stations for observer satellites in cislunar space by 

calculating the specific irradiance each would observe as they track satellites in various 

realistic lunar free-return trajectories across a decade, using reflected sunlight.  This 

investigation includes one class of free return trajectories for target satellites, eleven 

distinct observer stations, and three different metrics for comparing the effectiveness of 

each observer station or combination of observer stations for sensing targets using 

reflected sunlight.  The analysis showed that observer satellites in most, but not all, 

observer stations would be more effective than in low Earth orbit, and certain 

combinations of observer stations were significantly more effective.  The exact ranking 

of least to most effective varied depending on the metric used. 
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ASSESSING OBSERVER STATIONS FOR CISLUNAR SPACE DOMAIN 

AWARENESS 

 

I.  Introduction 

Strategic Environment 

Half a century after humanity’s debut in cislunar space, multiple spacefaring 

nations are in friendly competition to operate missions of exploration on and near the 

Moon.  Having succeeded in their first attempt at a lunar mission in 2008 with the 

Chandrayaan-1 lunar orbiter (Department of Space, Indian Space Research Organisation, 

2017), India followed up with a partially successful Chandrayaan-2 mission in 2019, 

consisting of an orbiter still in operation in November 2020, and a lander and rover that 

failed to land safely on the surface.  The Indian Space Research Organisation has 

announced its planned second attempt at a lander and rover as part of Chandrayaan-3, 

likely to be launched in 2021 (Wall, 2020).  Israel also plans to follow a lunar mission 

that fell short of success with a subsequent attempt.  After the failure of their Beresheet 

lunar lander to slow sufficiently for a soft landing on the lunar surface in 2019, Israel’s 

SpaceIL organization announced that it may send a follow-on mission to a different 

destination in the solar system (Bartels, 2019).  China may realize larger lunar ambitions 

through the use of their Long March 5 heavy lift launch vehicle, which they first tested in 

November 2016 (Cheng, 2016).  It was a much smaller Long March 3B that launched 

their Chang'e-4 mission in 2018, which landed the Yutu-2, humanity’s first probe to the 

surface of the far side of the Moon (The Planetary Society, 2020).  To enable that mission 

required a communications relay, and to that end, China used an even smaller Long 
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March 4C to launch the Queqiao relay satellite to a halo orbit around the Earth-Moon L2 

Lagrangian point in May 2018 (Xu, 2018).  The United States, having completed many 

notable crewed and robotic missions to the Moon in the past, naturally has more planned 

for the near future.  NASA’s Artemis program aims to send the first woman and the next 

man to the lunar surface by 2024, in order to mature the technologies necessary for the 

first human presence on Mars (National Aeronautics and Space Administration, 2020). 

Regardless of whether future activities in the region within the Moon’s orbit and sphere 

of influence remain peaceful, safety of all involved will require reliable domain 

awareness in cislunar space.  US Space Domain Awareness has been focused until now 

on the regions between low Earth orbit (LEO) and geostationary Earth orbit (GEO). 

Problem Statement 

Current US national security Space Domain Awareness capabilities are oriented 

toward observing and tracking objects in Earth orbit between LEO and GEO.  Domain 

awareness throughout the vast volume of space between GEO and the Moon’s orbit 

remains unfulfilled because there has traditionally been little need for it, but with growing 

interest in cislunar operations, that need is starting to manifest. 

The vast distances involved preclude active radar:  Since the intensity of radar 

energy will drop with the inverse square of the distance to the target, and the same will 

apply to the radar return, the power required to detect an object using radar will increase 

with the fourth power of distance (Wiesel, Spaceflight Dynamics, 2010).  The US Space 

Force’s COBRA DANE radar is an example of a building-sized active radar used to 

detect and track objects in space in support of the US Space Force’s Space Domain 
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Awareness mission.  It is specifically used for tracking objects in LEO (Fact Sheets: 

COBRA DANE Radar, 2017), at altitudes of only hundreds of kilometers.  Given the 

inverse fourth power relationship between distance and required power, to track the same 

objects hundreds of thousands of kilometers away, such as would be typical in cislunar 

space, would require on the order of one trillion times as much energy.  Radar, whether 

operating on the ground or at any particular location in space, would therefore not be 

suitable for cislunar Space Domain Awareness. 

The most promising remaining option is passive optical sensing of reflected 

sunlight.  Given the many options for placement of optical sensors in cislunar space, and 

with optical sensors currently operating in support of Space Domain Awareness on the 

ground and in LEO, a study is needed to determine whether any cislunar orbits are more 

suitable than LEO, and how those options compare. 

Research Objectives/Hypotheses 

The ultimate objective of this study is to inform Space Domain Awareness 

mission architecture and planning decisions regarding placement of sensors for optimal 

detection and tracking of objects in cislunar space, defined here in terms of the quantity 

of reflected sunlight detectable at a sensor’s location.  Such sensors would need to be 

situated and distributed in such a way as to reliably survey vast volumes of space, and 

detect, track, and maintain custody of objects. 

If the effectiveness of an observer station can be measured simply in terms of the 

quantity of sunlight reflected off a satellite in a circumlunar free return originating at 

GEO altitudes, detectable at the observer’s location, the best observer stations may be in 
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the vicinity of the Earth-Moon L4 or L5 Lagrangian points, since they are equidistant in 

the synodic frame between Earth and the Moon.  Observer stations in the vicinity of the 

Moon itself may be even better, since translunar orbits are roughly similar to elliptical 

Earth orbits, and objects in elliptical orbits spend the majority of their time near apogee; 

in the case of translunar orbits, this would mean they spend more time near the Moon 

than Earth, so an observer near the Moon might be most effective. 

Research Focus 

There are many ways to assess the suitability of an observer station.  A method 

may take into account costs, including the launch cost as a function of delta-V required to 

reach a particular station, or the cost of a sensor as a function of its aperture area, which 

itself may be a function of distance to targets.  It may instead compare only technical 

attributes, such as an orbital station’s level of reliance on station-keeping.  This study will 

not consider any of those factors, although they may be valuable considerations.  Instead, 

this study will focus only on how the geometry of an observer station will determine its 

ability to detect objects in specific cislunar orbits using reflected sunlight. 

Investigative Questions 

This investigation seeks to answer three questions:  1) What general category of 

orbits would put an observer satellite in the position of observing objects in cislunar 

space with the greatest brightness of reflected sunlight?  2) How would the suitability of 

combinations of those categories of orbits compare?  3) What metrics can be used to 

reliably compare the suitability of different such categories of orbits? 
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Methodology 

To answer the investigative questions, this study utilizes a series of realistic 

numerically integrated trajectories, modeling the motion of a target satellite in several 

representative translunar free returns, as well as a set of observer satellites in different 

orbits. 

Irradiance is the measure of incident light that might reach a sensor; for the 

purposes of this study, it is the amount of light energy available to be collected by a 

sensor, having been emitted by the Sun, and reflected by a target satellite.  Irradiance is a 

function of the emitted power of the Sun’s electromagnetic radiation, the cross-sectional 

area and optical properties of the target satellite, and the geometry of the Sun, target, and 

observer. 

At regular intervals throughout the trajectories, the portion of the irradiance 

determined by the geometry is calculated.  In order to account for changes in sun angle 

due to the orbits of the Moon and Earth, each trajectory is repeated at regular intervals 

across a decade.  The irradiance results are transformed into three distinct metrics meant 

to derive meaning from the irradiance data, and then aggregated across the entire decade.  

Finally, the metrics of each observer and many meaningful combinations of observers are 

compared in order to rank observers and combinations of observers from best to worst. 

Assumptions/Limitations 

This initial study comparing several options for observer stations in cislunar space 

only addresses the suitability of different stations, not the satellites themselves, so it does 

not account for the capabilities of actual sensors or of satellites.  Two of the observer 
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stations are stable Earth-Moon Lagrangian points, and one is an unstable Lagrangian 

point; rather than model realistic orbits around or near these points, this study uses the 

calculated locations of these points. 

There is an infinite variety of orbits a satellite could follow in cislunar space, and 

the need for domain awareness applies to all of them.  This study focuses only on one 

category of cislunar orbits:  circumlunar free returns that originate at GEO, that are 

coplanar with the Moon’s orbit, and that pass between the Moon and Earth. 

The precision of an actual orbit determination will depend on the precision and 

the geometry of observations, so the quality of an observer scheme will improve with the 

combination of observer stations in multiple locations viewing the same object from very 

different angles (Wiesel, Modern Orbit Determination, 2010).  This study ignores that 

effect, and addresses only perceived brightness.  It also ignores, in general, the theoretical 

precision of an orbit determination based on observation. 

II. Literature Review 

Chapter Overview 

The purpose of this chapter is to summarize the current state of published research 

on the topic of Space Domain Awareness in cislunar space. 

Relevant Research 

Capt Simon Knister, a previous AFIT Systems Engineering MS student, published 

a thesis that took a systems engineering approach to evaluate systems designed for 

cislunar space domain awareness.  His main goal was to assess the efficacy of systems 

engineering tools for evaluating cislunar Space Domain Awareness systems, but he also 
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used those tools to evaluate two such systems.  He noted that no papers had been 

published on electro-optic Space Domain Awareness architectures meant to observe non-

cooperative objects in cislunar space.  Using the tools he assessed, he compared the cost 

and effectiveness of different cislunar Space Domain Awareness sensor schemes, but he 

only considered two, which utilized ground-based sensors and sensors in LEO, and he 

only considered a target satellite in a quasi-periodic orbit about the Earth-Moon L1 point.  

He found that of those two observer schemes, the one using sensors in LEO was less 

expensive and more effective (Knister, 2020). 

Jacob K. Vendl performed a study similar to the present one for a master’s thesis 

under Marcus J. Holzinger at the University of Colorado at Boulder in 2020.  For 

observer stations, Vendl considered several families of periodic orbits around the Earth-

Moon L1 and L2 points, as well as distant retrograde periodic orbits possessing integer 

m:n resonance with the Moon’s synodic period, and found that several of them performed 

very well.  He used a single metric to evaluate each observer’s ability to detect objects 

using reflected sunlight.  He defined a 20° conical right frustum, a cone with its vertex 

truncated, from the surface of the Earth to the Earth-Moon L2 point, which he asserted 

adequately approximated the volume of cislunar space.  Using realistic characteristics of 

a sensor and a target satellite, he then calculated what percentage of the total volume of 

that frustum represented locations where the target satellite would be detectable by the 

sensor (Vendl, 2020).  Vendl’s study differed from the present one in three key ways:  

First, it did not consider actual target satellite orbits, but instead considered the entire 

volume of cislunar space without regard for how frequently objects may be expected to 

occupy each point in it; second, it modeled observer stations as actual orbits, rather than 
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points fixed to the motion of the Moon; third, it used one metric that applied to what was 

modeled as the entire cislunar domain.  Although the means were very different, Vendl’s 

study achieved some of the goals of the present one, using a very different approach. 

Summary 

Prior to the present study, other very recently published research has investigated 

different parts of the same problem using very different approaches.  To the author’s 

knowledge, none have compared the effectiveness of different observer stations in 

cislunar space at observing specific objects in cislunar space, but one study did 

demonstrate that a realistic system of observers in LEO was more effective than a 

realistic system of ground-based observers, and another demonstrated that observers in 

certain specific cislunar orbits could very effectively view objects throughout cislunar 

space.  The present study does not attempt to assess realistic systems of observers; rather, 

it assesses the ability of satellites in general categories of observer stations to view 

objects in other, specific, orbits.  

III.  Methodology 

Chapter Overview 

The purpose of this chapter is to describe, in detail, how this study was conducted.  

All dynamics modeling, data collection, and aggregation was done using MATLAB. 

Coordinate Systems 

In order to ensure the dynamics are representative of reality, all equations of 

motion used in the numerical integration of Earth, Moon, Jupiter, target spacecraft, and 

those observer stations modeled as actual orbits, are defined with respect to an inertial 
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reference frame.  That frame is centered at the solar system’s barycenter, and is referred 

to in this report as “Sun-Centered Inertial,” or “SCI.”  Since the solar system’s barycenter 

is at all times inside the Sun (Wiesel, Spaceflight Dynamics, 2010), and for simplicity, no 

distinction is made here between that point and the center of the Sun.  The orientation of 

the principal axes in the SCI frame are consistent, but are ultimately of no consequence to 

this study, since all quantities of interest are calculated based on the relative positions of 

the Sun, Earth, Moon, Jupiter, targets, and observers, and the orientations of the principal 

axes in the other two reference frames are defined based on the motion of the Moon and 

Earth. 

A convenient way of displaying translunar orbits might show Earth on the left, the 

Moon on the right, and the Earth-Moon Lagrangian points fixed, as in Figure 1.  That 

coordinate system is defined here as fixing Earth’s location at the origin, fixing the 

Moon’s location at the coordinates (1,0,0), and orienting the 1-2 plane so that the Moon’s 

instantaneous motion in orbit around Earth is tangent to the 1-2 plane with a positive 3-

component.  That reference frame is defined here as “Earth-Centered, Moon Fixed,” or 

“ECMF,” and is akin to the Earth-Moon synodic frame, only translated, since the Earth-

Moon synodic frame is centered at the Earth-Moon barycenter. 
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Figure 1. Earth, Moon, and Relevant Lagrangian Points in ECMF 

 

Although not as useful for displaying results, a third reference frame serves 

primarily as an interim step in transformations between SCI and ECMF.  That frame is 

centered on Earth, but shows the Moon’s motion relative to Earth.  That reference frame 

is defined so that the instantaneous motion of the Moon relative to Earth is tangent to the 

1-2 plane, and is counterclockwise about the positive 3-axis.  By centering on Earth and 

not rotating, it negates Earth’s motion about the Sun.  It is useful for displaying the 

Moon’s motion in orbit about Earth, and the motion of any satellite in an orbit coplanar to 

the Moon’s orbit, because it will always confine that motion to the 1-2 plane without any 

other distortion.  It is defined here as “Earth-Centered, Non-Rotating,” or “ECNR.” 
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Transforming Between Reference Frames 

 Transforming between the three aforementioned reference frames is necessary for 

two reasons:  First, the dynamics are most easily modeled in the SCI frame, but plots 

used for verifying that the trajectories look right are displayed in the ECMF frame; 

second, the initial conditions for targets and observers are defined in the ECMF frame, 

but need to be entered into the dynamics in the SCI frame. 

 A MATLAB function called “SCI_to_ECMF” was devised and is employed to 

transform position vectors from the SCI frame to the ECMF frame, based on the Earth’s 

and the Moon’s state vectors.  (There was no need to transform velocities from SCI to 

ECMF.)  It does so through the following steps, illustrated using an object’s position 

vector defined in SCI as [𝑥 𝑦 𝑧]𝑇, Earth’s state vector defined in SCI as 

[𝑥𝐸𝑎𝑟𝑡ℎ 𝑦𝐸𝑎𝑟𝑡ℎ 𝑧𝐸𝑎𝑟𝑡ℎ �̇�𝐸𝑎𝑟𝑡ℎ �̇�𝐸𝑎𝑟𝑡ℎ �̇�𝐸𝑎𝑟𝑡ℎ]𝑇, and the Moon’s state vector 

defined in SCI as [𝑥𝑀𝑜𝑜𝑛 𝑦𝑀𝑜𝑜𝑛 𝑧𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛]′. 

Displace the coordinates to be centered at the Earth’s center: 

[
𝑥′

𝑦′

𝑧′

] = [

𝑥 − 𝑥𝐸𝑎𝑟𝑡ℎ

𝑦 − 𝑦𝐸𝑎𝑟𝑡ℎ

𝑧 − 𝑧𝐸𝑎𝑟𝑡ℎ

] 

Scale the resulting vector to make the Earth-Moon distance equal 1: 

[
𝑥′′

𝑦′′

𝑧′′

] =

(

  
 1

|

𝑥𝑀𝑜𝑜𝑛 − 𝑥𝐸𝑎𝑟𝑡ℎ

𝑦𝑀𝑜𝑜𝑛 − 𝑦𝐸𝑎𝑟𝑡ℎ

𝑧𝑀𝑜𝑜𝑛 − 𝑧𝐸𝑎𝑟𝑡ℎ

|
)

  
 

[
𝑥′

𝑦′

𝑧′

] 

Rotate about the 3-axis to make the Moon appear on the 1-3 plane: 

𝜃 = − tan−1 (
𝑦𝑀𝑜𝑜𝑛 − 𝑦𝐸𝑎𝑟𝑡ℎ

𝑥𝑀𝑜𝑜𝑛 − 𝑥𝐸𝑎𝑟𝑡ℎ
) 
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[

𝑥′′′ 𝑥𝑀𝑜𝑜𝑛
′ �̇�𝑀𝑜𝑜𝑛

′

𝑦′′′ 𝑦𝑀𝑜𝑜𝑛
′ �̇�𝑀𝑜𝑜𝑛

′

𝑧′′′ 𝑧𝑀𝑜𝑜𝑛
′ �̇�𝑀𝑜𝑜𝑛

′
] = [

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥′′ 𝑥𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛

𝑦′′ 𝑦𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛

𝑧′′ 𝑧𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛

] 

Rotate about the 2-axis to make the Moon appear on the 1-axis: 

𝜙 = tan−1 (
𝑧𝑀𝑜𝑜𝑛

′

𝑥𝑀𝑜𝑜𝑛
′ ) 

[

𝑥′′′′ 𝑥𝑀𝑜𝑜𝑛
′′ �̇�𝑀𝑜𝑜𝑛

′′

𝑦′′′′ 𝑦𝑀𝑜𝑜𝑛
′′ �̇�𝑀𝑜𝑜𝑛

′′

𝑧′′′′ 𝑧𝑀𝑜𝑜𝑛
′′ �̇�𝑀𝑜𝑜𝑛

′′
] = [

cos𝜙 0 sin𝜙
0 1 0

− sin𝜙 0 cos𝜙
] [

𝑥′′′ 𝑥𝑀𝑜𝑜𝑛
′ �̇�𝑀𝑜𝑜𝑛

′

𝑦′′′ 𝑦𝑀𝑜𝑜𝑛
′ �̇�𝑀𝑜𝑜𝑛

′

𝑧′′′ 𝑧𝑀𝑜𝑜𝑛
′ �̇�𝑀𝑜𝑜𝑛

′
] 

Rotate about the 1-axis to make the Moon's motion tangent to the 1-2 plane with a 

positive 2 component: 

𝜓 = − tan−1 (
�̇�𝑀𝑜𝑜𝑛

′′

�̇�𝑀𝑜𝑜𝑛
′′ ) 

[

𝑥𝐸𝐶𝑀𝐹

𝑦𝐸𝐶𝑀𝐹

𝑧𝐸𝐶𝑀𝐹

] = [
1 0 0
0 cos𝜓 − sin𝜓
0 sin𝜓 cos𝜓

] [
𝑥′′′′

𝑦′′′′

𝑧′′′′

] 

 A MATLAB function called “ECMF_to_SCI” was devised and is employed to 

transform states in the ECMF frame into state vectors in the SCI frame, based on the 

Earth’s and the Moon’s state vectors, and certain arguments defining an object’s position 

and velocity in relation to a specified body (Earth or Moon).  Those arguments include 

orbital radius, two angles similar to latitude and longitude, an azimuth angle that defines 

the direction of the velocity about the local radius vector from the center of the body, and 

a speed factor that is the multiple of the circular orbit speed.  A speed factor of one would 

produce a circular orbit, absent sufficient perturbing forces to disrupt the circular orbit.  

Defining a state vector in SCI this way necessarily produces a velocity perpendicular to 

the local radius vector, but that meets the needs of this study.  Latitude, longitude, and 
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orbital radius in ECMF together define the location part of a state vector in SCI.  An 

angle referred to here as “Latitude” is defined as the angle from the negative 1-axis, and 

longitude is defined as the angle about the negative 1-axis from the positive 2-axis.  

Azimuth is defined as the angle of the velocity vector about the local radius, such that it 

is measured from the positive 2-axis if latitude is zero.  The ECMF_to_SCI function 

transforms states using the following steps, illustrated using an object’s position 

arguments, Earth’s state vector defined in SCI as 

[𝑥𝐸𝑎𝑟𝑡ℎ 𝑦𝐸𝑎𝑟𝑡ℎ 𝑧𝐸𝑎𝑟𝑡ℎ �̇�𝐸𝑎𝑟𝑡ℎ �̇�𝐸𝑎𝑟𝑡ℎ �̇�𝐸𝑎𝑟𝑡ℎ]′, and the Moon’s state vector 

defined in SCI as [𝑥𝑀𝑜𝑜𝑛 𝑦𝑀𝑜𝑜𝑛 𝑧𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛 �̇�𝑀𝑜𝑜𝑛]′.  The position 

arguments include:  orbital radius from the center of the specified body, 𝑟; latitude, 𝜆; 

longitude, 𝜙; speed factor, 𝑠; and azimuth, 𝛾. 

Create the rotation matrix, which is a matrix of the ECMF basis (column) vectors 

expressed in SCI.  The 1-axis basis vector, which is a component of the rotation matrix, is 

just the unit vector from Earth to the Moon: 

𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
1,𝑆𝐶𝐼 =

1

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
[

𝑥𝑀𝑜𝑜𝑛 − 𝑥𝐸𝑎𝑟𝑡ℎ

𝑦𝑀𝑜𝑜𝑛 − 𝑦𝐸𝑎𝑟𝑡ℎ

𝑧𝑀𝑜𝑜𝑛 − 𝑧𝐸𝑎𝑟𝑡ℎ

] 

Find the 3-axis basis vector using the cross product of the 1-axis and the Moon's motion 

relative to Earth, and scaling it to a unit vector: 

𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
3,𝑆𝐶𝐼
′ = 𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

1,𝑆𝐶𝐼 × [

�̇�𝑀𝑜𝑜𝑛 − �̇�𝐸𝑎𝑟𝑡ℎ

�̇�𝑀𝑜𝑜𝑛 − �̇�𝐸𝑎𝑟𝑡ℎ

�̇�𝑀𝑜𝑜𝑛 − �̇�𝐸𝑎𝑟𝑡ℎ

] 

𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
3,𝑆𝐶𝐼 =

𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
3,𝑆𝐶𝐼
′

|𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
3,𝑆𝐶𝐼
′ |

 

Find the 2-axis basis vector using the cross product of the other two: 
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𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
2,𝑆𝐶𝐼 = 𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

3,𝑆𝐶𝐼 × 𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
1,𝑆𝐶𝐼 

Assemble the rotation matrix: 

𝑅𝐸𝐶𝑀𝐹𝑡𝑜𝑆𝐶𝐼 = [𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
1,𝑆𝐶𝐼 𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

2,𝑆𝐶𝐼 𝐸𝐶𝑀𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
3,𝑆𝐶𝐼] 

Assemble the position vector, starting in ECMF, but scaled, and without accounting for 

the angles: 

𝑟 = [
−𝑟
0
0

] 

Account for the latitude by rotating about the negative 3-axis by the latitude: 

𝑟′⃗⃗  ⃗ = [
cos(−𝜆) − sin(−𝜆) 0
sin(−𝜆) cos(−𝜆) 0

0 0 1

] 𝑟 = [
cos 𝜆 sin 𝜆 0

− sin 𝜆 cos 𝜆 0
0 0 1

] 𝑟  

Account for the longitude by rotating about the 1-axis by the longitude: 

𝑟′′⃗⃗ ⃗⃗ = [
1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

] 𝑟′⃗⃗  ⃗ 

Apply the transport theorem, Equation (1), in order transform the velocity from the 

ECMF frame to the SCI frame.  To do this requires first to find the circular orbital speed 

in order to convert the speed factor into an actual speed.  The steps that follow will 

assume the reference body is Earth. 

 𝑟 ̇(𝑡) 
𝑆𝐶𝐼 = 𝑟 ̇(𝑡) 

𝐸𝐶𝑀𝐹 + �⃗⃗� 𝐸𝐶𝑀𝐹 𝑆𝐶𝐼⁄ × 𝑟 (𝑡) (1) 

𝑣 
𝐸𝐶𝑀𝐹 = 𝑠√

𝜇𝐸𝑎𝑟𝑡ℎ

𝑟
 

Assemble and rotate the velocity vector so that it is in the ECMF basis and is referenced 

with respect to Earth: 
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𝑟 ̇(𝑡) 
𝐸𝐶𝑀𝐹 = [

1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

] [
cos 𝜆 sin 𝜆 0

− sin 𝜆 cos 𝜆 0
0 0 1

] [
1 0 0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾 cos 𝛾

] [
0

𝑣 
𝐸𝐶𝑀𝐹

0
] 

Find the angular velocity of the ECMF frame with respect to the SCI frame: 

�⃗⃗� 𝐸𝐶𝑀𝐹 𝑆𝐶𝐼⁄ =
1

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
2
[

𝑥𝑀𝑜𝑜𝑛 − 𝑥𝐸𝑎𝑟𝑡ℎ

𝑦𝑀𝑜𝑜𝑛 − 𝑦𝐸𝑎𝑟𝑡ℎ

𝑧𝑀𝑜𝑜𝑛 − 𝑧𝐸𝑎𝑟𝑡ℎ

] × [

�̇�𝑀𝑜𝑜𝑛 − �̇�𝐸𝑎𝑟𝑡ℎ

�̇�𝑀𝑜𝑜𝑛 − �̇�𝐸𝑎𝑟𝑡ℎ

�̇�𝑀𝑜𝑜𝑛 − �̇�𝐸𝑎𝑟𝑡ℎ

] 

Rotate the angular velocity into the ECMF basis, then apply the transport theorem: 

𝑟 ̇(𝑡) 
𝑆𝐶𝐼 = 𝑟 ̇(𝑡) 

𝐸𝐶𝑀𝐹 + (𝑅𝐸𝐶𝑀𝐹𝑡𝑜𝑆𝐶𝐼
−1�⃗⃗� 𝐸𝐶𝑀𝐹 𝑆𝐶𝐼⁄ ) × 𝑟′′⃗⃗ ⃗⃗  

Rotate the velocity vector with respect to the SCI frame into the SCI basis, and account 

for the velocity of Earth: 

[

�̇�𝑆𝐶𝐼

�̇�𝑆𝐶𝐼

�̇�𝑆𝐶𝐼

] = 𝑅𝐸𝐶𝑀𝐹𝑡𝑜𝑆𝐶𝐼 𝑟 ̇(𝑡) 
𝑆𝐶𝐼 + [

�̇�𝐸𝑎𝑟𝑡ℎ

�̇�𝐸𝑎𝑟𝑡ℎ

�̇�𝐸𝑎𝑟𝑡ℎ

] 

Observers 

 Fourteen distinct observer stations were modeled, as listed in Table 1.  The 

observer stations labeled “stationary” are stationary in the Earth-Moon synodic frame, 

and are approximated as stationary in the ECMF frame.  They are not modeled as orbits, 

but rather calculated based on the geometry at any given moment.  This includes the 

unstable Earth-Moon L1 Lagrangian point, and the stable L4 and L5 points, which are 

defined in the Circular Restricted Three-Body Problem (CR3BP) and displayed in Figure 

1, with the Moon and Earth to scale.  The CR3BP simplifies the motion of a satellite in a 

system with two massive bodies by assuming that the motion of the two massive bodies 

is circular about their mutual barycenter, that they are both point masses, and that the 

satellite does not affect the motions of the two massive bodies.  The five Lagrangian 
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points are solutions to the CR3BP that are fixed in the frame that rotates with the two 

massive bodies (Wiesel, Spaceflight Dynamics, 2010).  Since the mutual Earth-Moon 

orbit is roughly circular, and any realistic satellite is much less massive than either body, 

the CR3BP is a somewhat accurate representation of the Earth-Moon system, and is 

useful for conceptualizing orbits in cislunar space, but it is not used to model those orbits 

in the present study.  Instead, Earth, Moon, and satellite orbits are numerically integrated 

in three dimensions using realistic initial conditions, thus not confining the Earth-Moon 

motion to circular orbits.  The locations of L1, L4, and L5 are calculated at each timestep 

based on an approximation of the instantaneous Earth-Moon motion as circular.  Since 

the CR3BP does not perfectly describe the Earth-Moon system, the Earth-Moon 

Lagrangian points do not, strictly speaking, exist, but do approximately represent reality.  

Likewise, their inclusion here, not in the context of the CR3BP, is meant to provide rough 

locations of quasi-periodic orbits that do exist. 

The L4 and L5 points are located at corners of equilateral triangles in the plane of 

the Moon’s motion, preceding and following the Moon, respectively.  The L1 point is 

located on the line between the Moon and Earth, at the point at which the Moon’s gravity 

negates enough of Earth’s gravity to enable a circular orbit about Earth closer than the 

Moon, but with the same orbital period as the Moon (Wiesel, Spaceflight Dynamics, 

2010).  The location of that point is found analytically based on that principle, and 

ultimately by numerically solving Equation (2) for 𝐷𝐿1.  𝐷𝐿1 is the distance along the 

Earth-Moon line from the Moon to L1.  The derivation of Equation (2) from Newton’s 

law of universal gravitation and Newton’s second law, both expressed along the Earth-

Moon axis, is included in Appendix A. 
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𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)
2

=
𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2 + (

𝜇𝐸𝑎𝑟𝑡ℎ

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
3

 (2) 

 

There exist quasi-periodic orbits around these Lagrangian points (Wiesel, 

Spaceflight Dynamics, 2010) that may be of interest to mission planners; the purpose of 

modeling these points as stationary in the ECMF frame is simply to assess the suitability 

of the general vicinities of these points and orbits contained within for observer stations.  

Likewise, Observer Station #4 is the point on the lunar surface facing Earth.  This point 

may actually move slightly relative to the lunar surface throughout the course of the 

Moon’s orbit due to libration, but this is not modeled here, and is assumed not to 

significantly affect the results.  Observer Station #14, the point at 800 km altitude above 

the point on Earth’s surface facing the Moon, is meant to represent the best possible view 

from LEO, and to a lesser extent, from any ground-based observer.  It may approximate 

the view of a constellation of observer satellites in LEO. 
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Table 1. Observer Stations 
Observer 

# 
Description Type 

1 L1 stationary 

2 L4 stationary 

3 L5 stationary 

4 Moon's nadir point on lunar surface stationary 

5 SV in low circular lunar orbit coplanar with Moon's orbit (1) orbiting 

6 SV in same plane as #5, offset by 120° orbiting 

7 SV in same plane as #5, offset by 240° orbiting 

8 SV in low circular lunar orbit in the plane orthogonal to both other planes (2) orbiting 

9 SV in same plane as #8, offset by 120° orbiting 

10 SV in same plane as #8, offset by 240° orbiting 

11 SV in low circular lunar orbit in the plane orthogonal to the Earth-Moon vector (3) orbiting 

12 SV in same plane as #11, offset by 120° orbiting 

13 SV in same plane as #11, offset by 240° orbiting 

14 notional LEO nadir point at 800 km altitude stationary 

 

 The observer stations labeled “orbiting” are modeled as actual three-dimensional 

orbits, and determined by numerically integrating the equations of motion.  The ones 

listed are all in low circular lunar orbit, at an orbital radius of 2.2 times the lunar radius.  

For brevity, the three planes will be referred to by the numbers indicated in bold face.  

This ensures that a constellation of three satellites evenly distributed across a single plane 

would all maintain line of sight with each other.  Although two satellites may also be 

used, nominally 180° apart in the same orbit, but offset by the appropriate angle to 

guarantee they would always maintain line of sight, the combination of three satellites 

evenly spaced in the same orbit serves as a simple and workable model of the same 

arrangement.  Either would eliminate the susceptibility of a single satellite to eclipsing by 

the Moon. 

 The three planes of the satellites in low circular lunar orbit are chosen as mutually 

orthogonal planes in order to fully envelope the population of possible circular orbits at 
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that altitude.  In reality, to maintain any of those planes would require station-keeping, 

but maintaining one of those planes may not be necessary, since any real satellite in one 

of these orbits may be allowed to drift between the three planes.  A projection of the trace 

of the three-dimensional orbit of one such satellite, starting in Observer Station #5, 

numerically integrated across six hours, and then for contrast, for 100 days, is shown in 

Figure 2.  The contrast seems to indicate the satellite drifts out of its original plane.  This 

model does not account for any asphericity of the Moon, nor of any resulting asymmetry 

in its gravitation field; that influence would likely serve to only increase the tendency for 

satellites in low lunar orbit to drift out of their original orbital planes.  The actual 

tendency of these orbital planes to drift is beyond the scope of this study.  The 

aggregation of the results for combinations of these orbits should serve to represent actual 

constellations in similar orbits. 

 

Figure 2. Observer Station #5 Propagated for 6 Hours and 100 Days (all units in km) 

 To eliminate any doubt that a satellite drifts out of its original plane, the same 

orbit propagation is repeated for Observer Station #8, whose orbit plane can be viewed on 

edge in a 1-2 projection in ECMF.  This is shown in Figure 3.  It should be noted that in 

these figures, a circle representing the Moon, to scale, is added above the plots of 
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trajectories, so they do not accurately distinguish when the satellite passes in front of and 

behind the Moon.  In the case especially of the right-hand plot in Figure 3, the profile of 

the Moon would not be visible otherwise. 

 

Figure 3. Observer Station #8 Propagated for 6 Hours and 100 Days (all units in km) 

 Although nine separate low circular lunar orbits are modeled, labeled observer 

stations #5 through #13 in Table 1, they are not hereafter all treated as distinct.  Rather 

than compare the effectiveness of one satellite against another in the same plane, one 

satellite (observer stations #5, #8, and #11) is compared to the combination of all three in 

its own plane. 

Performing the Numerical Integration 

 MATLAB’s ode45 function is used to numerically integrate the trajectories of 

Earth, Moon, Jupiter (when needed), targets, and those observers that are modeled with 

actual orbits.  The equations of motion used are summarized below.  The state vector, 

which includes the states of Earth, Moon, target, observers, and when needed, Jupiter, is 

defined in Equation (3) along with its first time derivative.  Each element of the state 

vector shown in Equation (3) is actually multiple scalar elements.  For example, 𝑟 𝐸𝑎𝑟𝑡ℎ is 

actually the three components of Earth’s location with respect to the Sun in the SCI 
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frame,  𝑥𝐸𝑎𝑟𝑡ℎ, 𝑦𝐸𝑎𝑟𝑡ℎ, and 𝑧𝐸𝑎𝑟𝑡ℎ; likewise, 𝑟 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 1−9 is actually the 27 analogous 

components of the vectors to each of those observers.  When Jupiter’s influence is 

included, the state vector has 78 elements; otherwise, it has 72. 

 𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑟 𝐸𝑎𝑟𝑡ℎ

𝑟 𝑀𝑜𝑜𝑛

𝑟 𝑇𝑎𝑟𝑔𝑒𝑡

�̇� 𝐸𝑎𝑟𝑡ℎ

�̇� 𝑀𝑜𝑜𝑛

�̇� 𝑇𝑎𝑟𝑔𝑒𝑡

𝑟 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 1−9

�̇� 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 1−9

𝑟 𝐽𝑢𝑝𝑖𝑡𝑒𝑟

�̇� 𝐽𝑢𝑝𝑖𝑡𝑒𝑟 ]
 
 
 
 
 
 
 
 
 
 
 
 

, �̇� =

[
 
 
 
 
 
 
 
 
 
 
 
 
 �̇� 𝐸𝑎𝑟𝑡ℎ

�̇� 𝑀𝑜𝑜𝑛

�̇� 𝑇𝑎𝑟𝑔𝑒𝑡

�̈� 𝐸𝑎𝑟𝑡ℎ

�̈� 𝑀𝑜𝑜𝑛

�̈� 𝑇𝑎𝑟𝑔𝑒𝑡

�̇� 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 1−9

�̈� 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠 1−9

�̇� 𝐽𝑢𝑝𝑖𝑡𝑒𝑟

�̈� 𝐽𝑢𝑝𝑖𝑡𝑒𝑟 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3) 

 The equations of motion that are integrated using ode45 are based on Newton’s 

law of universal gravitation, to include the gravitational influence of the Sun, Earth, 

Moon, and when needed, Jupiter, on each other and on the target and observers.  The 

gravitational influence of the target and observers on each other is neglected, and all 

bodies and objects are modeled as point masses for simplicity.  This means the perturbing 

effects of the asphericity of the Earth and Moon are neglected.  To integrate these 

equations of motion, ode45 requires a function that takes the state vector as input and 

returns its first time derivative.  That purpose-built function does so, notionally, by first 

calculating the component of each object’s acceleration vector that is caused by the 

gravitational influence of each other body, splitting that into components in the 1-, 2-, 

and 3-axes of the SCI frame, then summing them along each axis for each body or object.  

For example, the magnitude of the component of Earth’s acceleration that is caused by 



22 

the Sun-Earth gravitational attraction, 𝑎𝐸𝑎𝑟𝑡ℎ, 𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ, is given in Equation (4), where 

𝜇𝑆𝑢𝑛 is the Sun’s gravitational parameter, the product of its mass and the universal 

gravitational constant, and 𝑟𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ is the scalar distance from the Sun to Earth.  The 

fully assembled second time derivative of the vector from the Sun to Earth is given in 

Equation (5).  To split each acceleration component into 1-, 2-, and 3-axis components, it 

is multiplied by the ratio of the signed component of the position vector (e.g., 𝑥𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ, 

essentially a 1-dimensional position vector taken along the Sun-Earth vector, consisting 

of a magnitude and a sign, positive or negative, and equivalent to 𝑥𝐸𝑎𝑟𝑡ℎ − 𝑥𝑆𝑢𝑛) to the 

magnitude of the position vector (e.g., 𝑟𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ).  Since the gravitational force is 

attractive, the acceleration must always be in opposition to the position vector, so the 

terms are all negative. 

 𝑎𝐸𝑎𝑟𝑡ℎ, 𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ =
𝜇𝑆𝑢𝑛

𝑟2
𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

 (4) 

 

 �̈� 𝐸𝑎𝑟𝑡ℎ =

[
 
 
 
 
 −

𝑎𝐸𝑎𝑟𝑡ℎ, 𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ𝑥𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

𝑟𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛𝑥𝑀𝑜𝑜𝑛𝐸𝑎𝑟𝑡ℎ

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ𝑥𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

𝑟𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ𝑦𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

𝑟𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛𝑦𝑀𝑜𝑜𝑛𝐸𝑎𝑟𝑡ℎ

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ𝑦𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

𝑟𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ𝑧𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

𝑟𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛𝑧𝑀𝑜𝑜𝑛𝐸𝑎𝑟𝑡ℎ

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

−
𝑎𝐸𝑎𝑟𝑡ℎ, 𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ𝑧𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

𝑟𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ ]
 
 
 
 
 

 (5) 

 

 When Jupiter’s gravitational influence is included, the terms equivalent to 

Equation (5) for the Moon and Jupiter also have three components each, but for the target 

and observers, which are subject to the gravitational influence of four rather than three 

bodies, there are four terms.  Equation (6) shows the fully assembled second time 

derivative of the vector from the Sun to Observer 1, and serves as an example.  When 
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Jupiter’s gravitational influence is not included, all terms related to Jupiter are omitted; in 

that case, Equation (5) has only two terms in each component, and (6) has three. 

 �̈� 𝑂𝑏1 =

[
 
 
 
 
 −

𝑎𝑂𝑏1, 𝑆𝑢𝑛𝑂𝑏1𝑥𝑆𝑢𝑛𝑂𝑏1

𝑟𝑆𝑢𝑛𝑂𝑏1

−
𝑎𝑂𝑏1, 𝐸𝑎𝑟𝑡ℎ𝑂𝑏1𝑥𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

𝑟𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

−
𝑎𝑂𝑏1, 𝑀𝑜𝑜𝑛𝑂𝑏1𝑥𝑀𝑜𝑜𝑛𝑂𝑏1

𝑟𝑀𝑜𝑜𝑛𝑂𝑏1

−
𝑎𝑂𝑏1, 𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1𝑥𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

𝑟𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

 

−
𝑎𝑂𝑏1, 𝑆𝑢𝑛𝑂𝑏1𝑦𝑆𝑢𝑛𝑂𝑏1

𝑟𝑆𝑢𝑛𝑂𝑏1

−
𝑎𝑂𝑏1, 𝐸𝑎𝑟𝑡ℎ𝑂𝑏1𝑦𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

𝑟𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

−
𝑎𝑂𝑏1, 𝑀𝑜𝑜𝑛𝑂𝑏1𝑦𝑀𝑜𝑜𝑛𝑂𝑏1

𝑟𝑀𝑜𝑜𝑛𝑂𝑏1

−
𝑎𝑂𝑏1, 𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1𝑦𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

𝑟𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

−
𝑎𝑂𝑏1, 𝑆𝑢𝑛𝑂𝑏1𝑧𝑆𝑢𝑛𝑂𝑏1

𝑟𝑆𝑢𝑛𝑂𝑏1

−
𝑎𝑂𝑏1, 𝐸𝑎𝑟𝑡ℎ𝑂𝑏1𝑧𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

𝑟𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

−
𝑎𝑂𝑏1, 𝑀𝑜𝑜𝑛𝑂𝑏1𝑧𝑀𝑜𝑜𝑛𝑂𝑏1

𝑟𝑀𝑜𝑜𝑛𝑂𝑏1

−
𝑎𝑂𝑏1, 𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1𝑧𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

𝑟𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1 ]
 
 
 
 
 

 (6) 

 The calculation of second derivative components thus far described is sound, but 

Equations (4) and (5), or their equivalents, each involve a division, which is relatively 

computationally demanding.  To make the computation more efficient, 𝑟3 terms are 

calculated, and the two divisions are combined into one, as shown in Equations (7) and 

(8), which are analogous to Equations (5) and (6), respectively.  Using this method, the 

computing time was observed to reduce by approximately 20%. 

 �̈� 𝐸𝑎𝑟𝑡ℎ =

[
 
 
 
 
 
 −

𝜇
𝑆𝑢𝑛

𝑥𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

𝑟3
𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

−
𝜇

𝑀𝑜𝑜𝑛
𝑥𝑀𝑜𝑜𝑛𝐸𝑎𝑟𝑡ℎ

𝑟3
𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

−
𝜇

𝐽𝑢𝑝𝑖𝑡𝑒𝑟
𝑥𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

𝑟3
𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

−
𝜇

𝑆𝑢𝑛
𝑦

𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

𝑟3
𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

−
𝜇

𝑀𝑜𝑜𝑛
𝑦

𝑀𝑜𝑜𝑛𝐸𝑎𝑟𝑡ℎ

𝑟3
𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

−
𝜇

𝐽𝑢𝑝𝑖𝑡𝑒𝑟
𝑦

𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

𝑟3
𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

−
𝜇

𝑆𝑢𝑛
𝑧𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

𝑟3
𝑆𝑢𝑛𝐸𝑎𝑟𝑡ℎ

−
𝜇

𝑀𝑜𝑜𝑛
𝑧𝑀𝑜𝑜𝑛𝐸𝑎𝑟𝑡ℎ

𝑟3
𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

−
𝜇

𝐽𝑢𝑝𝑖𝑡𝑒𝑟
𝑧𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ

𝑟3
𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝐸𝑎𝑟𝑡ℎ ]

 
 
 
 
 
 

 (7) 

 

 �̈� 𝑂𝑏1 =

[
 
 
 
 
 −

𝜇
𝑆𝑢𝑛

𝑥𝑆𝑢𝑛𝑂𝑏1

𝑟3
𝑆𝑢𝑛𝑂𝑏1

−
𝜇

𝐸𝑎𝑟𝑡ℎ
𝑥𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

𝑟3
𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

−
𝜇

𝑀𝑜𝑜𝑛
𝑥𝑀𝑜𝑜𝑛𝑂𝑏1

𝑟3
𝑀𝑜𝑜𝑛𝑂𝑏1

−
𝜇

𝐽𝑢𝑝𝑖𝑡𝑒𝑟
𝑥𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

𝑟3
𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

 

−
𝜇

𝑆𝑢𝑛
𝑦

𝑆𝑢𝑛𝑂𝑏1

𝑟3
𝑆𝑢𝑛𝑂𝑏1

−
𝜇

𝐸𝑎𝑟𝑡ℎ
𝑦

𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

𝑟3
𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

−
𝜇

𝑀𝑜𝑜𝑛
𝑦

𝑀𝑜𝑜𝑛𝑂𝑏1

𝑟3
𝑀𝑜𝑜𝑛𝑂𝑏1

−
𝜇

𝐽𝑢𝑝𝑖𝑡𝑒𝑟
𝑦

𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

𝑟3
𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

−
𝜇

𝑆𝑢𝑛
𝑧𝑆𝑢𝑛𝑂𝑏1

𝑟3
𝑆𝑢𝑛𝑂𝑏1

−
𝜇

𝐸𝑎𝑟𝑡ℎ
𝑧𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

𝑟3
𝐸𝑎𝑟𝑡ℎ𝑂𝑏1

−
𝜇

𝑀𝑜𝑜𝑛
𝑧𝑀𝑜𝑜𝑛𝑂𝑏1

𝑟3
𝑀𝑜𝑜𝑛𝑂𝑏1

−
𝜇

𝐽𝑢𝑝𝑖𝑡𝑒𝑟
𝑧𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1

𝑟3
𝐽𝑢𝑝𝑖𝑡𝑒𝑟𝑂𝑏1 ]

 
 
 
 
 

 (8) 

 

The numerical integration is allowed to continue for the duration of the target’s 

free return, terminating when it reaches its closest approach to Earth, or aborting if it 
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collides with the Moon or Earth.  An event function is used to achieve this.  A closest 

approach to Earth is detected when the target’s distance from Earth stops decreasing and 

starts increasing; the integration then stops, and the results are recorded.  A collision is 

detected when the distance to the Moon or Earth is less than or equal to that body’s 

nominal radius; when that happens, the integration is aborted, the data from that run is 

discarded, and a message reporting this collision is displayed on the command prompt. 

 Rather than use ode45 to integrate across the entire trajectory at once, determining 

a variable timestep itself, a constant timestep of 150 seconds is defined, and ode45 is 

made to numerically integrate from timestep to timestep.  Units of seconds are used, 

rather than non-dimensional time.  Within each 150 second timestep, ode45 numerically 

integrates from beginning to end, determining its own variable timestep within those 150 

seconds, but the trajectory it calculates is discarded, and only the state at the end of each 

150 second timestep is recorded.  This produces a trajectory array with elements spaced 

at regular intervals.  Integration tolerances of 1.5×10-6 (relative) and 1.5×10-9 (absolute), 

which are eight and eleven orders of magnitude smaller than the timestep, were used. 

 This numerical integration is repeated at regular intervals throughout the 2025-

2035 decade in order to establish a representative population of Sun/Earth/Moon 

configurations.  A 150-second timestep was chosen somewhat arbitrarily:  It was small 

enough to produce a large enough data set, as well as a relatively smooth trajectory; and 

it was large enough so each trajectory run took no longer than 12 hours. 
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Determining Initial Conditions 

 The initial conditions of planetary bodies, including Earth, Moon, and Jupiter, are 

established using MATLAB’s planetEphemeris function, which uses the Chebyshev 

coefficients provided by NASA’s Jet Propulsion Laboratory (JPL) (MathWorks, 2020).  

JPL produces that data based on precise observations of the motion of bodies in the solar 

system, combined with numerical integration of the equations of motion, which account 

for the gravitation influence of all major Solar System bodies, and account for each one’s 

asphericity.  The planetEphemeris function allows the use of any of several versions of 

JPL’s Development Ephemeris (DE) package, but the commonly used DE405 package 

produced by JPL in 1997, which is the MATLAB function’s default choice, suited the 

needs of this study.  Subsequent DE versions include the influence of a greater number of 

bodies, such as DE421, which includes the influence of 343 asteroids in the main asteroid 

belt, but this is far more precision than would be needed to establish realistic initial 

conditions for the Moon and Earth for use in modeling cislunar trajectories (Jet 

Propulsion Laboratory, 2014).  Since the dynamics are modeled in a Sun-centered 

reference frame, the Sun’s coordinates are always set in that frame as (0,0,0), and all 

other coordinates are defined in relation to the Sun’s location. 

 The initial conditions for the target satellite are set using the ECMF_to_SCI 

function and a second purpose-built function, best_latitude2, which finds the latitude 

initial condition that will generate the most symmetric free return, with respect to the 

Earth-Moon axis.  This is a low-fidelity one-variable optimization.  The speed factor 

initial condition was found by trial and error for each class of free returns.  A two-

variable optimization, and one of higher fidelity, that determines the optimal latitude and 
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speed factor to achieve a symmetric free return with a specified perilune distance may be 

useful for subsequent research, but the present intent is to model a representative 

population of free returns, not the same free return many times.  The one-variable 

optimization produces free returns with varying perilune distances, so it meets the needs 

of the present study.  The best_latitude2 function uses such an optimization, but does so 

with a simple walk, varying the latitude by a specified constant amount each try.  This 

may not produce a perfectly symmetric free return, but it meets the needs of the study. 

 The initial conditions of the orbiting observers are also established using the 

ECMF_to_SCI function, but using the Moon as the body of reference. 

Calculating Specific Irradiance 

At any given moment, the location of a target satellite in relation to the Sun, 

Earth, Moon, and observer will produce an irradiance at the observer that depends on the 

irradiance of the Sun, the area of the observer’s sensor, and its optical properties.  That 

irradiance is given in Equation (9) (Hecht, 2016). 

𝐼 = 𝐼𝑠𝑢𝑛

𝐴

𝑟2

2

3

𝐶𝑑

𝜋
(sin 𝛼 + (𝜋 − 𝛼) cos 𝛼) (9) 

Where: 

𝐼 = Irradiance 

𝐴 = Cross-section area of the optical sensor 

𝑟 = Distance from Target to Observer 

𝐶𝑑 = Coefficient of diffuse reflection 

𝛼 = Angle from the Sun to Target to Observer 

 

Since the properties of the Sun, and the particulars of the observer satellite are 

beyond the scope of this investigation, a specific irradiance that negates their effect serves 

as a more relevant figure of merit.  That specific irradiance, 𝐼∗, is given in Equation (10). 
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𝐼∗ =
3

2
𝜋

𝐼

𝐼𝑠𝑢𝑛𝐴𝐶𝑑
=

𝑠𝑖𝑛𝛼 + (𝜋 − 𝛼) 𝑐𝑜𝑠𝛼

𝑟2
 (10) 

 

This specific irradiance is a function only of geometry, and serves as a suitable 

figure of merit for comparing the effectiveness of different observer stations.  For the 

purposes of this analysis, it is measured in units of km-2.  This produces very small values 

of specific irradiance, raising the possible concern that machine precision may artificially 

limit the analysis, but the results did not suggest this.  It should be noted that since the 

𝐼𝑠𝑢𝑛 term is removed from the expression in Equation (10), the calculation of 𝐼∗ would be 

no different in a different solar system.  This is acceptable because the intent of this study 

is to compare observer stations, not to establish an accurate absolute performance metric. 

The calculation of specific irradiance accounts for four conditions in which an 

observer would not be able to observe a target satellite due to obscuration or other 

interference by the Sun, Earth, or Moon:  Target is eclipsed by Earth or Moon, so no 

sunlight can reflect off the target satellite; Earth or Moon is in between target and 

observer, so observer can't see target; target is between observer and Earth or Moon, so 

Earth or Moon is in the background of target, thus obscuring the view; and target is 

between observer and Sun, so observer would have to look directly at the Sun to see 

target.  When any of those conditions are met, the model sets the specific irradiance to 

zero. 

 After the numerical integration is complete, the specific irradiance is calculated 

for each observer and combination of observers at each timestep.  The specific irradiance 
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for a combination of observers is simply the greatest value of specific irradiance from 

among those observers at that moment. 

Metrics 

  The specific irradiance may serve as a suitable figure of merit, but with a 

different value at each timestep and within each numerically integrated free return, it 

must be condensed into some other figure representing an overall trend.  Three metrics 

are defined and used for this purpose, and are aggregated across all of the trajectories 

modeled across the decade of interest.  In the two cases in which it would be meaningful, 

the metric is aggregated across runs separately as an average value, a minimum value, 

and a maximum value achieved.  These form three separate curves. 

Metric 1 is the percentage of times the specific irradiance is greater than or equal 

to a certain threshold value, as a function of the threshold.  As an example, a plot 

comparing Metric 1 for two different observer stations is shown in Figure 4.  In this case, 

the interval is 25 days.  For Metric 1, the higher curve is better.  The “average” curve is 

solid, while the “minimum” and “maximum” curves are shaded. 
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Figure 4. Example of Metric 1, Comparing L1 and L4 

Metric 2 is the worst specific irradiance at each point in a normalized trajectory.  

Even within the same type of free return, the trajectory’s duration can vary.  In order to 

calculate Metric 2, the entire trajectory, terminating when the target satellite returns to 

Earth and reaches its closest approach, is normalized into a duration of 1000 time units.  

At each time unit, the specific irradiance is interpolated from the actual data.  Across 

runs, the lowest value at each normalized timestep is recorded.  An example of the result 

can be seen in Figure 5, again describing the same pair of observers, and with an interval 

of 25 days.  In this case also, the higher curve is better. 
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Figure 5. Example of Metric 2, Comparing L1 and L4 

Metric 3 is the maximum time required to see a particular value of specific 

irradiance, as a function of that value.  An example plot comparing Metric 3 for the same 

two observers, and with the same interval, appears in Figure 6.  “Average,” “Minimum,” 

and “Maximum” curves are again included, and in this case, the lower curve is better. 
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Figure 6. Example of Metric 3, Comparing L1 and L4 

Aggregating Metrics 

The metrics aggregate the specific irradiances calculated throughout each 

trajectory run, but in order to rank observers and combinations of observers generally, the 

metrics need to be aggregated further.  By plotting a metric for two different observers in 

the same plot, it can be clearly seen which observer is better at each point, but to establish 

that one observer is better than another overall would require intelligently weighing the 

value of each of those points.  In the absence of such insight, one observer is judged here 

to be better than another with respect to a particular metric if its average value is greater 

than the other’s average value (or less than, in the case of Metric 3).  The actual average 

need not be calculated, and the sum of values is used instead, eliminating the need to 
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divide both sums by the same number of points.  The MATLAB function sortMetrics was 

built and is used for this purpose.  It utilizes the data file produced by the main script, 

SunEarthMoonFRTargetObservers_decade.m, and produces a comma-delimited file 

ranking all observers and combinations of observers. 

Sensitivity Analysis 

In order to ensure the results are not biased by numerical artifacts, nor errors in 

the dynamics, the model was modified in two different ways as part of a sensitivity 

analysis. 

For the results to be believable, the trajectories of Earth, Moon, target, and those 

observers representing realistic orbits had to be realistic.  The model incorporated the 

gravity of the Sun, Earth, and Moon, but did not include the influences of the other 

planetary bodies, nor of the asphericity of any gravitational fields.  Given the distances 

involved, any errors in the model due to exclusion of the asphericity of gravitational 

fields are assumed to be insignificant, but errors due to gravitational influences of bodies 

other than the Sun, Earth, and Moon were surrogated by adding Jupiter’s gravity to the 

model.  The same runs were repeated with and without inclusion of Jupiter’s gravity in 

order to demonstrate that including Jupiter did not change the results. 

The intent in repeating the same target and observer trajectories at regular 

intervals across a decade was to determine how effective each observer was at detecting 

reflected sunlight across the full range of realistic Sun-Earth-Moon geometric 

arrangements.  If the interval used struck a resonance with the Moon’s orbit, then the 

analysis would fail to model a realistic population of Sun-Earth-Moon geometric 
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arrangements.  In order to minimize the possibility of falling into such a resonance, the 

entire analysis was repeated with two different intervals that, when expressed in days, 

share no prime factors:  25 days and 19 days. 

Summary 

The methodology used in this analysis was designed to accurately model the 

dynamics of the cislunar region, make simplifying assumptions about the trajectories of 

certain categories of observer stations, objectively compare the effectiveness of the 

observer stations, and eliminate the possibility that the results were biased by dynamical 

or numerical errors. 

 

IV.  Analysis and Results 

Chapter Overview 

This chapter reports the four metrics calculated and aggregated across the decade 

of interest. 

Simulated Orbits 

The decade of interest, across which target satellites’ lunar free return trajectories 

were modeled every 19 or 25 days, was January 1, 2025 through January 1, 2035.  The 

first such orbit, departing Earth from a GEO-class altitude of 35,786 km on January 1, 

2025, is shown in the SCI, ECNR, and ECMF frames, in Figure 7, Figure 8, and Figure 9, 

respectively.  The red line, labeled “Object” represents the motion of the target satellite.  

When fixed in the given frame, the Sun, Earth, and Moon are drawn to scale as yellow, 

blue, and gray circles, respectively.  Figure 7 shows that complex motion in the Earth-
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Moon system is difficult to resolve in the SCI frame, whereas Figure 8 and Figure 9 show 

that the ECNR and ECMF frames make it much easier.  Figure 8 demonstrates that the 

target satellite’s orbit is approximately elliptical. 

  

Figure 7. Sample Target Orbit Plotted in SCI, Full View and Zoomed In 

 

 

Figure 8. Sample Target Orbit Plotted in ECNR 
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Figure 9. Sample Target Orbit Plotted in ECMF 

In order to demonstrate how the target orbit differs when the starting date is 

changed, the same plot is shown in Figure 10 alongside its counterpart for the same 

trajectory beginning 15 days later.  Both plots indicate the direction of the Sun, projected 

onto the ECMF frame’s 1-2 plane, at the beginning and end of the trajectory, which 

lasted approximately two weeks.  Of note, the Sun may appear to traverse almost 180° in 

that plane during those two weeks, while Earth would not have passed one tenth of that 

angle in its orbit.  This is due to the rotation of the ECMF frame, which follows the orbit 

of the Moon:  A satellite’s two week orbit would coincide with approximately half of an 

orbit by the Moon, so the initial and final orientations of the Sun in the ECMF frame 

would be approximately 180° separated, and the same orbit reproduced two weeks later 

would show those Sun orientations reversed.  Both effects are apparent in Figure 10. 
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Figure 10. Comparison of Target Orbits 15 Days Apart 

Specific Irradiance Calculated 

 The specific irradiance taken at each of the 11 observer stations across the first 

simulated orbit, a circumlunar free return from GEO beginning January 1, 2025, is 

plotted in Figure 11, and again in Figure 12, zoomed in for emphasis.  This is plot is 

meant simply to demonstrate the appearance of the specific irradiance curves for a single 

trajectory, and to serve as validation that the calculated figures reflect reality.  For 

example, the curve for the observer at L4 peaks early, and the curve for the observer at 

L5 peaks late and higher, since the Sun angle is better at L5’s peak; the curve for an 

observer at a notional LEO nadir point peaks much higher than the others at the very 

beginning and the very end of the trajectory, and near the end drops to zero for the brief 

period when its view is blocked by Earth; the curves for observer stations in low lunar 

orbit show an oscillation, corresponding to their orbits, and the ones representing single 

satellites periodically drop to zero as their views are blocked by the Moon. 
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Figure 11. Specific Irradiance Plotted Across One Target Trajectory 

 

Figure 12. Specific Irradiance Plotted Across One Target Trajectory, Zoomed in for Emphasis 
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 In order to demonstrate how the specific irradiance curves differ when the target 

trajectory is different, the same plot is shown in Figure 13 alongside its counterpart for 

the same trajectory beginning 15 days later.  It should be noted that the vertical axis 

scales are not the same.  This demonstrates that the individual specific irradiance curves 

will differ greatly when the trajectory is initiated at different times, and it demonstrates 

how little insight into the general effectiveness of an observer station such individual 

specific irradiance curves would offer. 

    

Figure 13. Comparison of Specific Irradiance Curves 15 Days Apart 

Metrics Calculated 

 The specific irradiance at any given moment may be less important than the 

specific irradiance trend throughout a target trajectory.  Those metrics are shown below, 

aggregating specific irradiance figures throughout the trajectory.  Metric 1, percentage of 

times specific irradiance is greater than or equal to different thresholds, is shown in 

Figure 14.  In the same way the specific irradiance curves vary greatly with different 

starting times, the metrics should vary as well; therefore, none of the curves in Figure 14 

should be taken as indicative of an observer station’s overall effectiveness.  For this 

particular trajectory, however, Figure 14 can serve to validate Metric 1:  For example. 



39 

each of the curves should indicate 0% when the specific irradiance threshold reaches the 

maximum value the specific irradiance actually reaches; for the observer station at L5, 

this happens at about 1.6×10-10 km-2, which is the maximum value indicated in Figure 11. 

 

 

Figure 14. Metric 1 for a Sample Target Orbit 

 Metric 2, worst specific irradiance at each point in a normalized trajectory, for 

the same target trajectory, is shown in Figure 15.  The same stipulation, that this plot is 

not indicative of observer stations’ general effectiveness, applies.  Since Metric 2 applied 

to a single trajectory is simply the specific irradiance curves scaled to 1000 dimensionless 

time units, it should, and does, appear identical in form to Figure 11.  
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Figure 15. Metric 1 for a Sample Target Orbit 

 Metric 3, maximum time required to see a particular irradiance, for the same 

trajectory, is shown in Figure 16.  The same stipulation regarding applicability once again 

applies, but this plot can again serve to validate Metric 3:  For each observer station, the 

curve must start at the origin, since no time must pass before a specific irradiance of zero 

is observed; further, the point at which each curve reaches its peak must reflect the total 

duration of the trajectory and the maximum specific irradiance measured.  In both ways, 

the plots in Figure 16 behave as expected; for example, the curve representing an 

observer at L5 starts at the origin and reaches its peak at just over 1.6×106 seconds, which 

is consistent with the ~14 days indicated for this trajectory in Figure 9, and 1.6×10-10 km-

2, which again is the maximum value indicated in Figure 11. 
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Figure 16. Metric 3 for a Sample Target Orbit 

Metrics Aggregated 

As Figure 13 makes clear, specific irradiance curves can vary greatly between 

similar target orbits, due to the very different orientation of the Sun compared to the 

Earth-Moon vector.  The metrics similarly trend differently for slightly different orbits. 

A comparison of Metric 1 for the original orbit and the equivalent orbit beginning 

15 days later is shown in Figure 17.  The juxtaposition clearly demonstrates that Metric 1 

is very different when the starting time of the trajectory different by even a few days. 
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Figure 17. Comparison of Metric 1 for Two Target Orbits 15 Days Apart 

 A similar comparison of Metric 2 for the original orbit and the equivalent orbit 

beginning 15 days later is shown in Figure 18.  Since Metric 2, when calculated for a 

single trajectory, is simply the specific irradiance curve scaled to a duration of 1000 

dimensionless time units, the comparison in Figure 18 reflects the comparison of 

corresponding specific irradiance curves in Figure 13, and demonstrates that curves of 

Metric 2 also vary considerably when the trajectory starting time is varied even by a few 

days. 

    

Figure 18. Comparison of Metric 2 for Two Target Orbits 15 Days Apart 

 Finally, a comparison of Metric 3 for the original orbit and the equivalent orbit 

beginning 15 days later is shown in Figure 19.  This juxtaposition similarly shows that 
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curves of Metric 3 are significantly different when the trajectory starting time is varied 

even by a few days. 

    

Figure 19. Comparison of Metric 3 for Two Target Orbits 15 Days Apart 

The three metrics, aggregating specific irradiance data throughout all such 

trajectories across the decade of interest, should be a better indication of the observer 

stations’ overall performance.  Metric 1, percentage of times specific irradiance is 

greater than or equal to different thresholds, aggregated across the decade of interest for 

the 11 observer stations, is shown in Figure 20.  The solid curves indicate the average 

values of the metric across all trajectories for the given values of specific irradiance 

threshold, and the dotted curves indicate the maximum and minimum values.  In all three 

cases, the curves do not necessarily trace values of the metric for one particular 

trajectory, corresponding to a particular trajectory that always had the lowest, highest, or 

average values for the metric for every specific irradiance threshold; rather, each point 

represents the minimum, maximum, or average value reached.  The solid curves appear 

smoother than any of the curves for a single trajectory in Figure 17, and the 

conglomeration of all observer stations in the same plot makes it possible to compare the 

overall effectiveness of different observer stations, with respect to Metric 1.  For 
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example, the curve for L1 is always higher than the curve for the Moon’s nadir point; this 

means that with respect to Metric 1, L1 is a better observer station than the Moon’s nadir 

point.  In other cases, one curve crosses another, so one observer station is not so 

definitively better than another.  For example, the curve for L1 crosses the curve for a 

single satellite in low lunar orbit in a plane parallel to the Moon’s orbit (Plane 1).  To 

determine which observer station is better would depend on which specific irradiance 

thresholds are actually meaningful:  If only values below the crossing point are 

meaningful, then L1 is more effective, but if only values above the crossing point are 

meaningful, then the single satellite in Plane 1 is better.  To determine which values are 

meaningful would require insight about the sensor, and that is beyond the scope of this 

study.  Instead, the effectiveness of two observer stations whose curves cross can be 

compared according to which curve is usually higher, and that can be determined based 

on average values. 

 

Figure 20. Metric 1 Aggregated Across a Decade 
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 Metric 2, worst specific irradiance at each point in a normalized trajectory, 

aggregated across the decade of interest for the 11 observer stations, is shown in Figure 

21.  In this case, the curves are not smoother than those measuring Metric 2 for a single 

trajectory in Figure 18, but they do indicate something more meaningful than those 

curves for a single trajectory, since they reflect the worst values of specific irradiance 

measured across many trajectories. 

 

Figure 21. Metric 2 Aggregated Across a Decade 

Metric 3, maximum time required to see a particular irradiance, aggregated 

across the decade of interest for the 11 observer stations, is shown in Figure 22.  Here, 

solid curves again indicate average values, and dotted curves again indicate minimum 

and maximum values.  Much like with Metric 1, Figure 22 indicates clearly that certain 

observer stations are more effective than others, with respect to Metric 3.  For example, 

the curve for an observer at L1 is always lower than the curve for an observer at the 

Moon’s nadir point; therefore, L1 is a better observer station than the Moon’s nadir point 
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with respect to Metric 3, as it is with respect to Metric 1.  Again, when one curve crosses 

another, insight about the sensor is needed in order to definitively determine which 

observer station is more effective; for example, the curves for an observer station at the 

Moon’s nadir point crosses the curves for observer stations at L4 and L5.  Of note, the 

curve for an observer at L1 does not cross the curve for a single satellite in Plane 1, as it 

did in Figure 20 for Metric 1.  This means that although L1 is a definitively more 

effective observer station than a single satellite in Plane 1, with respect to Metric 1, it is 

not with respect to Metric 3; more to the point, the three metrics do not always rank 

observer stations identically. 

 

Figure 22. Metric 3 Aggregated Across a Decade 

Results of Sensitivity Analysis 

 The sensitivity analysis consisted of repeating the simulation at regular intervals 

across the 2025-2035 decade with and without inclusion of the gravitational influence of 
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Jupiter in the dynamics model, and then repeating it with two different intervals.  The 

results of the sensitivity analysis showed that the analysis overall was not especially 

sensitive either to other-body effects (beyond Sun, Earth, and Moon, and represented by 

Jupiter), or to the interval chosen, but the actual metrics had varying amounts of 

sensitivity to both. 

 The GEO free return was run with starting dates from January 1, 2025 through 

January 1, 2035, at intervals of 25 days, with and without inclusion of the gravitational 

influence of Jupiter in the dynamics model.  The plots comparing Metric 1 for the same 

three observer stations with and without inclusion of Jupiter are shown side by side in 

Figure 23.  While the solid “average” curves appear nearly identical, the shaded 

“minimum” and “maximum” curves appear to vary slightly.  This demonstrates that 

while there may be even just two out of 146 runs in which Metric 1 is significantly 

altered by Jupiter’s gravity, in aggregate, it is not. 

   

Figure 23. Comparison of Metric 1 With and Without Jupiter’s Gravity 

A similar comparison of Metric 2 is shown in Figure 24.  In this case, the two 

plots look significantly different.  This is likely due to the fact that Metric 2 always 

reflects only a single trajectory run at any given point, since it records the worst specific 
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irradiance experienced during any trajectory run at each normalized timestep.  This may 

also indicate that comparing multiple similar orbits normalized into the same 

dimensionless duration may not be a very useful analytical tool.  The results of this part 

of the sensitivity analysis demonstrate not only that Metric 2 is sensitive to the inclusion 

of other-body gravitational influences in the dynamics model, but that slight variations in 

the orbits result in significant variations of the metric; given that the ultimate goal of this 

study is to inform mission architecting and planning decisions where the full variety of 

cislunar orbits are of interest, Metric 2 may not be useful. 

 

Figure 24. Comparison of Metric 2 With and Without Jupiter’s Gravity 

Finally, a similar comparison of Metric 3 is shown in Figure 25.  Similar to the 

case of Metric 1, in the case of Metric 3, the solid “average” curves in the two plots look 

mostly similar, but the shaded “minimum” and “maximum” curves look different.  The 

difference in the shaded curves is again likely due to the fact that they each reflect only a 

single trajectory run at any given point.  The results of this part of the sensitivity analysis 

demonstrate that Metric 3 is only slightly sensitive to the inclusion of other-body 

gravitational influences in the dynamics model. 
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Figure 25. Comparison of Metric 3 With and Without Jupiter’s Gravity 

The rankings and scores (0-100) of all 11 observer stations are likewise shown 

side by side in Table 2 with and without inclusion of Jupiter’s gravity in the dynamics 

model.  The scores are used to distinguish a pair of observer stations that perform nearly 

equally from a pair whose performance gap is much greater.  A score of 0 is assigned to 

the worst ranked observer station, and a score of 100 is assigned to the one that is highest 

ranked.  All other scores are scaled linearly between 0 and 100 with respect to their 

average metric value.  Where the ranking or score is the same with and without inclusion 

of Jupiter’s gravity, both are highlighted in green.  As the table shows, the rankings and 

scores are identical for all three metrics, so even though Metric 2 seemed to vary greatly, 

it ended up remaining essentially unchanged in aggregate; therefore, in aggregate, the 

analysis is not sensitive to other-body gravitational effects. 
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Table 2. Comparison of Metrics With and Without Jupiter’s Gravity 

Observer 

Metric 1 Metric 2 Metric 3 

no Jupiter Jupiter no Jupiter Jupiter no Jupiter Jupiter 

rank score rank score rank score rank score rank score rank score 

L1 6 75.4 6 75.4 4 24.3 4 24.3 7 48.5 7 48.5 

L4 10 0.1 10 0.1 9 7.4 9 7.4 10 0.5 10 0.5 

L5 11 0 11 0 7 8.4 7 8.4 11 0 11 0 

Moon's Nadir 9 5.8 9 5.8 8 7.9 8 7.9 8 19.7 8 19.7 

1 SV in Plane 1 7 73.2 7 73.2 11 0 11 0 3 99 3 99 

3 SVs in Plane 1 1 100 1 100 3 75.3 3 75.3 1 100 1 100 

1 SV in Plane 2 5 89.8 5 89.8 6 20.8 6 20.8 6 96.5 6 96.5 

3 SVs in Plane 2 2 98.5 2 98.5 1 100 1 100 5 97.3 5 97.3 

1 SV in Plane 3 4 90.8 4 90.8 5 22.2 5 22.2 4 98.8 4 98.8 

3 SVs in Plane 3 3 97.8 3 97.8 2 94 2 94 2 99.4 2 99.4 

Notional LEO Nadir 8 22.9 8 22.9 10 7.3 10 7.3 9 2.4 9 2.4 

 

The GEO free return was run again without inclusion of the gravitational 

influence of Jupiter in the dynamics model, with starting dates from January 1, 2025 

through January 1, 2035, but this time at intervals of 19 instead of 25 days.  The plots 

comparing Metric 1 for the same three observer stations using the two different intervals 

are shown side by side in Figure 26.  The “average” curves, and even the “minimum” and 

“maximum” curves appear essentially identical, so Metric 1 does not appear to be 

sensitive to the interval chosen. 

 

Figure 26. Comparison of Metric 1 Using Two Different Intervals 
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A similar comparison of Metric 2 is shown in Figure 27.  In much the same way 

as with the comparison between inclusion and exclusion of Jupiter’s gravity, the two 

plots look significantly different.  This is again likely due to the fact that Metric 2 always 

reflects only a single trajectory run at any given point, and normalizing each trajectory 

into the same dimensionless time length may not be an analytically useful method.  This 

result demonstrates not only that Metric 2 is sensitive to the interval used, but it also 

confirms that slight variations in the orbits result in significant variations of the metric, 

and it suggests that Metric 2 may not be useful for mission architecting and planning. 

 

Figure 27. Comparison of Metric 2 Using Two Different Intervals 

Finally, a similar comparison of Metric 3 is shown in Figure 28.  All “average,” 

“minimum,” and “maximum” curves appear nearly identical for all three observers.  This 

indicates that Metric 3 not sensitive to the interval used. 
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Figure 28. Comparison of Metric 3 Using Two Different Intervals 

The rankings and scores of all 11 observer stations are again shown side by side 

in Table 3, again indicating identical rankings and scores in green.  Table 3 confirms that 

Metric 1 and Metric 3, in aggregate, are relatively insensitive to the interval used, and 

Metric 2, in aggregate, is slightly more sensitive.  That Table 3 shows much less green 

than Table 5 indicates the analysis in general is more sensitive to the interval chosen than 

to other-body gravitational effects. 

Table 3. Comparison of Metrics Using Two Different Intervals 

Observer 

Metric 1 Metric 2 Metric 3 

interval 19 interval 25 interval 19 interval 25 interval 19 interval 25 

rank score rank score rank score rank score rank score rank score 

L1 6 75.4 6 75.8 4 24.3 4 28.9 7 48.5 7 48.6 

L4 10 0.1 11 0 9 7.4 8 11.9 10 0.5 11 0 

L5 11 0 10 0.5 7 8.4 9 10.1 11 0 10 0.3 

Moon's Nadir 9 5.8 9 6.1 8 7.9 7 17 8 19.7 8 20.3 

1 SV in Plane 1 7 73.2 7 73.2 11 0 11 0 3 99 3 99 

3 SVs in Plane 1 1 100 1 100 3 75.3 3 82.9 1 100 1 100 

1 SV in Plane 2 5 89.8 5 89.7 6 20.8 6 19 6 96.5 6 96.4 

3 SVs in Plane 2 2 98.5 2 98.4 1 100 1 100 5 97.3 5 97.3 

1 SV in Plane 3 4 90.8 4 90.8 5 22.2 5 23.8 4 98.8 4 98.8 

3 SVs in Plane 3 3 97.8 3 97.9 2 94 2 92.8 2 99.4 2 99.4 

Notional LEO Nadir 8 22.9 8 23.2 10 7.3 10 10 9 2.4 9 2.3 
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The relative insensitivity of Metric 1 and Metric 3 to inclusion or exclusion of 

Jupiter’s gravity in the dynamics model, and to the interval used between trajectory runs, 

demonstrates that Metric 1 and Metric 3 are reliable, that the conclusions based on them 

are representative of reality, and that they may be useful for the purpose of mission 

architecting and planning.  Metric 1 and Metric 3 have been shown to both effectively 

aggregate information about the performance of an observer station in a way that is 

consistent across many trajectories, and that is not affected by small perturbations to the 

trajectories.  While Metric 2 proved more sensitive to the two variables tested, and may 

therefore not be as useful for mission architecting and planning, it may still have utility in 

assessing a specific observer’s performance against a specific target.  This can be of great 

value in operations. 

General Results 

 Since the sensitivity analysis demonstrated that Metric 1 and Metric 3 were 

suitable for comparing and ranking observer stations generally, but Metric 2 was less so, 

only the results with respect to Metric 1 and Metric 3 are reported here.  The sensitivity 

analysis showed minimal sensitivity of Metric 1 and Metric 3 to the inclusion of Jupiter’s 

gravity in the dynamics model, and to a change in the interval used between trajectory 

runs, but since that sensitivity was not zero, the results reported here are from a run that 

used a more precise choice of each of the variables tested.  That run included Jupiter’s 

gravity in the dynamics model, and used an interval of 11 days instead of 19 or 25.  The 

curves for Metric 1 and Metric 3 of all 11 observer stations are combined in Figure 29 

and Figure 30, respectively. 
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Figure 29. Metric 1 for All 11 Observer Stations 

 

 

Figure 30. Metric 3 for All 11 Observer Stations 
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 Metric 1 and Metric 3 for the “stationary” observers alone are isolated in Figure 

31 and Figure 32, respectively.  Those plots make clear whenever two curves cross that 

one observer is not necessarily always better than another, but one can be said to be 

generally better than another. 

 

Figure 31. Metric 1 for All Observer Stations Stationary in ECMF 
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Figure 32. Metric 3 for All Observer Stations Stationary in ECMF 

 A ranking of the 11 observer stations and 93 meaningful combinations of observer 

stations, with scores, is shown in Table 5 in Appendix B.  A sample excluding the 

combinations is shown in Table 4.  The high ranks and scores of zero for Metric 2 

indicate that combinations of observer stations resulted in much higher values of that 

metric.  It measures the worst specific irradiance seen at each point, and this can be zero 

when any single observer on its own is blocked from viewing the target, but 

combinations of observers are much less susceptible to that effect, so this is not 

surprising. 
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Table 4. Metrics Ranked and Scored for All Observer Stations 

Observer or Combination of Observers 

Metric 1 Metric 2 Metric 3 

Rank Score Rank Score Rank Score 

L1 92 44.5 97 0 96 33.2 

L4 103 0.1 102 0 103 0.3 

L5 104 0 100 0 104 0 

Moon's Nadir Point 102 3.2 101 0 101 13.4 

1 SV in plane1 lunar orbit 94 42.8 104 0 81 67.2 

3 SVs in plane1 lunar orbit 81 58.5 92 0 74 67.9 

1 SV in plane2 lunar orbit 89 52.6 98 0 88 65.5 

3 SVs in plane2 lunar orbit 83 57.6 89 0 86 66 

1 SV in plane3 lunar orbit 88 53.1 96 0 83 67.1 

3 SVs in plane3 lunar orbit 85 57.3 90 0 79 67.5 

notional LEO nadir point 101 13.7 103 0 102 1.5 

 

Investigative Questions Answered 

This study has answered all three investigative questions: 

1) What general category of orbits would put an observer satellite in the position of 

observing objects in cislunar space with the greatest brightness of reflected sunlight? 

The answer is presented in the form of a ranked and scored list of observers and 

combinations of observers in Table 5 in Appendix B.  Among single observer 

stations, constellations in low circular lunar orbit performed the best, and due to the 

tendency for their view of a target satellite to be blocked by the Moon, single 

satellites in low circular lunar orbit performed slightly worse.  L1 performed better 

than L4 or L5, likely because it was closer to the target satellite during the extended 

part of that satellite’s orbit when it is close to the Moon.  Even despite its tendency to 

be blocked by the Moon, a point on the lunar surface at the nadir point performed 

better than L4 or L5, but not as well as L1.  A notional point in LEO on the Moon-

facing side of Earth performed better than the lunar surface nadir point, L4, or L5. 
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2) How would the suitability of combinations of those categories of orbits compare? 

The answer is presented in the form of a ranked and scored list of observers and 

combinations of observers in Table 5, which includes both single observer stations 

and combinations of observer stations.  In general, combinations are more effective 

than individual stations, as would be expected.  Combinations of stations very far 

apart are especially beneficial.  For observers in low circular lunar orbit, 

combinations of multiple such stations produce noticeable improvements, likely 

because they negate the limitation of observation due to eclipsing by the Moon:  

When the Moon blocks one satellite’s view, another well-placed satellite is not 

similarly blocked. 

3) What metrics can be used to reliably compare the suitability of different such 

categories of orbits? 

Metric 1 and Metric 3 have been shown to serve this purpose well, and they were 

used to answer the first two investigative questions.  Metric 2 has been shown to be 

less effective for this purpose, although it may be useful for assessing a specific 

observer’s performance against a specific target, which could be of great value in 

operations. 

Summary 

Since the sensitivity analysis showed that Metric 2 was not suitable for comparing 

observer stations for the purpose of general cislunar Space Domain Awareness mission 

architecting, only Metric 1 and Metric 3 are used here to rank those observer stations and 

combinations of observer stations.  The final results, counting the 11 representative 
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observer stations and several meaningful combinations of observer stations, are shown in 

Table 5 in Appendix B.  A score is also included for each, from zero to 100.  That score 

normalizes the values of each metric so that the observer or combination of observers 

with the highest value is assigned a score of 100, the one with the lowest value is 

assigned a score of zero, and all others are scaled linearly.  The purpose of the scores is to 

show how much better one observer or combination of observers is than another, and also 

when two are actually equal, even if the sorting algorithm has artificially ranked one 

above the other. 

V.  Conclusions and Recommendations 

Chapter Overview 

This chapter summarizes the conclusions of this research, expounds on its 

significance and utility to mission planning, suggests how it may be used to advance the 

state of cislunar Space Domain Awareness, and finally identifies several areas of 

worthwhile follow-up research. 

Conclusions of Research 

The most significant and surprising conclusion from this analysis is that a single 

observer at L4 or L5 would be less effective at observing satellites in circumlunar free 

returns than a constellation of sensors in LEO, based on the chosen metrics.  The full set 

of conclusions concerning how the different observer stations and meaningful 

combinations thereof compare can be seen in Table 5 in Appendix B.  Several useful 

insights can be gleaned from that ranking and the associated scores: 
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• As mentioned, a single observer at L4 or L5 would be less effective at observing 

satellites in circumlunar free returns than a constellation of sensors in LEO, but when 

both L4 and L5 are combined, the result is significantly better than for a constellation 

in LEO.  When L4 or L5 is combined with L1, the result is significantly better still. 

• L4 or L5 combined with L1 will be more effective than any combination of observers 

in low circular lunar orbit or on the lunar surface near the nadir point. 

• An observer on the lunar surface near the Moon’s nadir point will add negligible 

value if there is already an observer near the Earth-Moon L1 point, but the reverse is 

not true:  L1 is a much more effective observer station than the nadir point on the 

lunar surface, likely because the Moon itself blocks so much of the latter’s view.  

This is true of the approximate L1 point itself, but subsequent research would be 

required to determine if the same is true of quasi-periodic orbits in the vicinity of L1, 

to include Halo orbits. 

There is no practical limit to the number of similar insights this analysis could provide, 

since it offers the ability to record any other combinations of observers not listed here. 

Significance of Research 

To the author’s knowledge, this study is the first to investigate the effectiveness of 

several general categories of orbits for use in stationing satellites that would observe 

other objects in cislunar space for the purpose of achieving Space Domain Awareness in 

that domain.  It can inform mission planning for this vital emerging mission, and it 

provides a stepping stone toward further research to determine optimal stations for such 
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satellites, so they could most effectively detect and track objects in many varieties of 

operationally relevant cislunar orbits. 

Recommendations for Action 

Further study would be required before formal mission planning, but the results of 

this study should inform the general architecting of a program meant to achieve cislunar 

Space Domain Awareness.  Based on these results, planners of such a program should 

consider combining data from sensors in LEO with that from sensors in low circular lunar 

orbit. 

Recommendations for Future Research 

This research was meant as an initial investigation into which orbital stations 

would generally perform well and which would perform poorly for the purpose of 

cislunar Space Domain Awareness.  It addressed specific categories of observer stations 

and specific target trajectories using specific metrics.  A logical next step would be to 

expand the set of observer stations, target trajectories, and metrics, in order to determine 

if the same results would emerge. 

Many of the fourteen observer stations addressed in this research were meant to 

represent observer satellites in broad classes of orbits, but there are no limitations in the 

MATLAB code that would prevent them from being replaced with realistic orbits.  In 

particular, stationary points in the ECMF frame approximating solutions to the CR3BP 

that manifest as stationary points in the synodic frame, particularly the L1, L4, and L5 

Lagrangian points, could be replaced with realistic orbits in the vicinity of those points.  

Likewise, the notional point at 800 km altitude above Earth, permanently on the Moon-
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facing side, could be replaced by one or a collection of real LEO orbits representing a 

realistic constellation of observer satellites in LEO.  The present investigation assumed 

the Earth and Moon were uniform spheres, but to accurately model a constellation of 

satellites in LEO would require the inclusion of the Earth’s asphericity and variable 

gravitational field.  In addition to refining the observer orbits, a subsequent investigation 

could also add observers in other novel orbits, such as a constellation in highly eccentric 

Earth orbit arranged such that at least one satellite would always appear to be in a 

translunar free return trajectory. 

This research only addressed one class of target trajectories, coplanar circumlunar 

free returns originating from GEO.  The results may be representative of other cislunar 

trajectories, but this research made no such determination, and makes no such claim.  It 

would, however, be relatively straightforward to repeat it for other types of translunar 

free returns, as well as other realistic cislunar orbits, such as those that orbit the L1, L4, 

and L5 Earth-Moon Lagrangian Points.  Rather than repeat exactly the same free return 

trajectory throughout the decade of interest, the model used in this research produced a 

slightly different trajectory each time, demonstrating a sensitivity to initial conditions, 

and producing no consistency in the perilune distance.  This was taken as an advantage, 

producing a representative family of trajectories rather than a single one, but greater 

precision in the results could be achieved by repeating exactly the same trajectory each 

time throughout a decade, and then repeating the entire analysis for many other specific 

trajectories.  To do this would simply require a function that finds the starting conditions 

necessary for the target satellite to complete a circumlunar free return with a specified 

perilune distance.  When applied to a free return originating from LEO, the analysis 
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failed because those orbits were much more sensitive to the initial conditions, and the 

algorithm used to optimize the initial conditions was not robust enough.  Improving that 

algorithm and applying the analysis to other classes of free returns would be a useful next 

step. 

The metrics could likewise be improved upon, not by adding or modifying 

metrics, but by framing them in terms of realistic mission requirements.  In particular, 

Metric 1, percentage of times specific irradiance is greater than or equal to different 

thresholds, measures how often the specific irradiance is above different thresholds, 

without consideration of which thresholds are meaningful.  A more meaningful version of 

Metric 1, for use in actual mission architecting and planning, would measure how often 

the actual irradiance is above the threshold of detection for a sensor that may be used in 

an actual mission, given the realistic properties of a target satellite.  Likewise, a plot of 

Metric 2, worst specific irradiance at each point in a normalized trajectory, may 

engender greater insight if those minimum thresholds of detection were included as 

horizontal lines on the plot.  Metric 3, maximum time required to see a particular 

irradiance, might also be reported in such a way as to emphasize the particular 

irradiance measures associated with one or several actual sensors under consideration for 

a mission, coupled with actual representative target satellites. 

This study ignored the theoretical precision of an orbit determination, which 

would depend on geometry through a different relation that would irradiance.  A future 

study should take into account precision of orbit determination in comparing observer 

schemes, especially in judging favorably combinations of observer stations that give 

observer views of objects from very different angles. 
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Summary 

This research succeeded in determining which of fourteen chosen observer 

stations was best for observing satellites in circumlunar free return trajectories, although 

that result was different depending on how “best” was defined.  In general, it 

demonstrated that some, but not all, observer stations studied could achieve better 

performance than a constellation of ground-based and/or LEO-based sensors.  The 

conclusions narrowly apply to targets in circumlunar free returns, so further study 

utilizing the tools developed for this study would be warranted, and would further 

contribute to the design of a cislunar Space Domain Awareness mission. 
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Appendix A: Derivation of Equation for Location of Earth-Moon L1 

Expressed along the Earth-Moon axis, Newton’s law of universal gravitation and 

Newton’s second law applied to a satellite become 1-dimensional, with the origin at 

Earth, and the Moon in the positive direction. 

𝐹𝐺𝑟𝑎𝑣𝑖𝑡𝑦,𝐸𝑎𝑟𝑡ℎ − 𝐹𝐺𝑟𝑎𝑣𝑖𝑡𝑦,𝑀𝑜𝑜𝑛 = 𝑀𝑆𝑉𝑎 

Combined with the expression for centripetal acceleration, 
𝑉2

𝑟
, this can be rewritten in 

terms of the orbital period: 

𝐺𝑀𝐸𝑎𝑟𝑡ℎ𝑀𝑆𝑉

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2
−

𝐺𝑀𝑀𝑜𝑜𝑛𝑀𝑆𝑉

𝐷𝐿1
2 = 𝑀𝑆𝑉

𝑉𝑆𝑉
2

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1
 

 

𝐺𝑀𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2
−

𝐺𝑀𝑀𝑜𝑜𝑛

𝐷𝐿1
2 =

𝑉𝑆𝑉
2

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1
 

 

𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2
−

𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2 =

(
2𝜋(𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1)

𝑇𝑀𝑜𝑜𝑛
)

2

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1
 

 

 

𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2
−

𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2 =

(2𝜋(𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1))
2

(𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1)𝑇𝑀𝑜𝑜𝑛
2 

 

(11) 

The period of the Moon’s orbit, 𝑇𝑀𝑜𝑜𝑛, is found by applying Newton’s law of universal 

gravitation and Newton’s second law to the Earth-Moon orbit itself: 

𝐺𝑀𝐸𝑎𝑟𝑡ℎ𝑀𝑀𝑜𝑜𝑛

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
2

= 𝑀𝑀𝑜𝑜𝑛

𝑉𝑀𝑜𝑜𝑛
2

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛
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𝜇𝐸𝑎𝑟𝑡ℎ

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
2

=
𝑉𝑀𝑜𝑜𝑛

2

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛
=

(
2𝜋𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛

𝑇𝑀𝑜𝑜𝑛
)
2

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛
= (

2𝜋

𝑇𝑀𝑜𝑜𝑛
)

2

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 

 

𝑇𝑀𝑜𝑜𝑛
2 =

(2𝜋𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛)2𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ
 

The 𝑇𝑀𝑜𝑜𝑛
2 term can then be substituted into Equation (11). 

𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2
−

𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2

=
(2𝜋(𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1))

2

(𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1)
(2𝜋𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛)2𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ

 

 

 
𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)
2
−

𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2 =

𝜇𝐸𝑎𝑟𝑡ℎ(𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 − 𝐷𝐿1)

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
2𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛

 (12) 

 

The distance from Earth to the Earth-Moon barycenter can be found like any other center 

of mass, and the Earth-Moon distance is simply the sum of that and the distance from the 

Earth-Moon barycenter to the Moon. 

𝑟𝐸𝑎𝑟𝑡ℎ𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

𝑀𝑀𝑜𝑜𝑛

𝑀𝐸𝑎𝑟𝑡ℎ + 𝑀𝑀𝑜𝑜𝑛
= 𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 

 

𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 = 𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛

𝑀𝑀𝑜𝑜𝑛

𝑀𝐸𝑎𝑟𝑡ℎ + 𝑀𝑀𝑜𝑜𝑛
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𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 = 𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 (1 −
𝜇𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
) 

 

This expression for 𝑟𝐵𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑀𝑜𝑜𝑛 can then be substituted into Equation (12). 

𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2
−

𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2 =

𝜇𝐸𝑎𝑟𝑡ℎ (𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 (1 −
𝜇𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
) − 𝐷𝐿1)

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
2𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 (1 −

𝜇𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
)

 

 

𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2

=
𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2

+
𝜇𝐸𝑎𝑟𝑡ℎ (𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 (

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
−

𝜇𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
) − 𝐷𝐿1)

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
3 (

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
−

𝜇𝑀𝑜𝑜𝑛

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
)

 

 

𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)2
=

𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2 +

𝜇𝐸𝑎𝑟𝑡ℎ (𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 (
𝜇𝐸𝑎𝑟𝑡ℎ

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
) − 𝐷𝐿1)

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
3 (

𝜇𝐸𝑎𝑟𝑡ℎ

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
)

 

 

 
𝜇𝐸𝑎𝑟𝑡ℎ

(𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)
2

=
𝜇𝑀𝑜𝑜𝑛

𝐷𝐿1
2 + (

𝜇𝐸𝑎𝑟𝑡ℎ

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛
𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛 − 𝐷𝐿1)

𝜇𝐸𝑎𝑟𝑡ℎ + 𝜇𝑀𝑜𝑜𝑛

𝑟𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑜𝑛
3

 (2) 

 

This is the equation that can be solved numerically for 𝐷𝐿1 in order to locate L1.  
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Appendix B: Full Table of Results 

Table 5. Metrics Ranked and Scored for All Observers and Combinations 

Observer or Combination of Observers 

Metric 1 Metric 2 Metric 3 

Rank Score Rank Score Rank Score 

L1 92 44.5 97 0 96 33.2 

L4 103 0.1 102 0 103 0.3 

L5 104 0 100 0 104 0 

Moon's Nadir Point 102 3.2 101 0 101 13.4 

L1, L4 78 61 58 36 90 50.1 

L1, L5 79 60.6 38 46.2 91 49.8 

L4, L5 100 23.6 64 27.6 98 23.6 

L1, L4, L5 39 76.8 22 84.3 84 66.6 

L1, nadir 91 46.7 86 0.1 93 38.9 

L4, nadir 98 24.4 63 29.5 94 33.9 

L5, nadir 99 24 61 33.2 95 33.2 

L4, L5, nadir 93 43.4 25 69.2 89 52.8 

L1, L4, L5, nadir 38 78.7 13 91.1 63 72 

1 SV in plane1 lunar orbit 94 42.8 104 0 81 67.2 

3 SVs in plane1 lunar orbit 81 58.5 92 0 74 67.9 

1 SV in plane2 lunar orbit 89 52.6 98 0 88 65.5 

3 SVs in plane2 lunar orbit 83 57.6 89 0 86 66 

1 SV in plane3 lunar orbit 88 53.1 96 0 83 67.1 

3 SVs in plane3 lunar orbit 85 57.3 90 0 79 67.5 

L1, 1 SV in plane1 lunar orbit 75 63.2 87 0.1 69 69.5 

L1, 3 SVs in plane1 lunar orbit 62 68.4 72 0.3 64 70 

L1, 1 SV in plane2 lunar orbit 69 66.1 81 0.2 77 67.8 

L1, 3 SVs in plane2 lunar orbit 66 67.6 76 0.3 72 68.2 

L1, 1 SV in plane3 lunar orbit 73 65.2 80 0.2 71 69.4 

L1, 3 SVs in plane3 lunar orbit 65 67.8 74 0.3 66 69.7 

L4, 1 SV in plane1 lunar orbit 76 61.8 82 0.2 52 82.1 

L4, 3 SVs in plane1 lunar orbit 41 75.7 48 38 46 82.7 

L4, 1 SV in plane2 lunar orbit 59 70.5 70 6.3 62 80.5 

L4, 3 SVs in plane2 lunar orbit 45 74.9 54 37.7 60 81.1 

L4, 1 SV in plane3 lunar orbit 57 70.6 57 36.9 54 82 

L4, 3 SVs in plane3 lunar orbit 47 74.5 52 37.8 50 82.4 

L5, 1 SV in plane1 lunar orbit 77 61.5 85 0.1 42 83.1 

L5, 3 SVs in plane1 lunar orbit 43 75.3 32 47.4 34 83.7 

L5, 1 SV in plane2 lunar orbit 61 70.1 71 2.5 58 81.4 

L5, 3 SVs in plane2 lunar orbit 49 74.5 37 46.8 56 82 

L5, 1 SV in plane3 lunar orbit 60 70.2 41 44.1 44 82.9 
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L5, 3 SVs in plane3 lunar orbit 51 74.1 35 47.2 39 83.3 

Moon's nadir, 1 SV in plane1 lunar orbit 90 48 99 0 80 67.2 

Moon's nadir, 3 SVs in plane1 lunar orbit 80 58.5 93 0 75 67.9 

Moon's nadir, 1 SV in plane2 lunar orbit 86 55.5 94 0 87 65.5 

Moon's nadir, 3 SVs in plane2 lunar orbit 82 57.6 88 0 85 66 

Moon's nadir, 1 SV in plane3 lunar orbit 87 53.5 95 0 82 67.1 

Moon's nadir, 3 SVs in plane3 lunar orbit 84 57.4 91 0 78 67.5 

L1, L4, 1 SV in plane1 lunar orbit 36 79.3 47 40.7 32 84 

L1, L4, 3 SVs in plane1 lunar orbit 24 84.5 42 43.6 29 84.5 

L1, L4, 1 SV in plane2 lunar orbit 31 82.2 46 42.8 48 82.4 

L1, L4, 3 SVs in plane2 lunar orbit 27 83.7 44 43.3 45 82.8 

L1, L4, 1 SV in plane3 lunar orbit 33 81.3 45 43 33 83.9 

L1, L4, 3 SVs in plane3 lunar orbit 26 83.8 43 43.5 30 84.3 

L1, L5, 1 SV in plane1 lunar orbit 37 79 31 50.6 27 84.9 

L1, L5, 3 SVs in plane1 lunar orbit 25 84.1 26 55.5 25 85.4 

L1, L5, 1 SV in plane2 lunar orbit 32 81.8 29 54.3 40 83.2 

L1, L5, 3 SVs in plane2 lunar orbit 29 83.3 28 54.9 36 83.7 

L1, L5, 1 SV in plane3 lunar orbit 34 80.9 30 54.2 28 84.8 

L1, L5, 3 SVs in plane3 lunar orbit 28 83.4 27 55.4 26 85.1 

L4, L5, 1 SV in plane1 lunar orbit 35 79.5 60 33.8 16 98.2 

L4, L5, 3 SVs in plane1 lunar orbit 14 92.3 14 88.1 9 98.8 

L4, L5, 1 SV in plane2 lunar orbit 22 87.6 39 45.9 24 96.7 

L4, L5, 3 SVs in plane2 lunar orbit 16 91.4 19 87.2 22 97.2 

L4, L5, 1 SV in plane3 lunar orbit 23 87.4 21 85.8 18 98.1 

L4, L5, 3 SVs in plane3 lunar orbit 18 91.1 17 87.7 12 98.5 

L1, L4, L5, 1 SV in plane1 lunar orbit 12 94.9 12 92.9 6 99.5 

L1, L4, L5, 3 SVs in plane1 lunar orbit 1 100 1 100 1 100 

L1, L4, L5, 1 SV in plane2 lunar orbit 8 97.8 10 98.1 20 98 

L1, L4, L5, 3 SVs in plane2 lunar orbit 5 99.2 5 99.1 13 98.4 

L1, L4, L5, 1 SV in plane3 lunar orbit 10 96.9 9 98.5 8 99.4 

L1, L4, L5, 3 SVs in plane3 lunar orbit 4 99.4 3 99.9 3 99.8 

L1, Moon's nadir, 1 SV in plane1 74 63.6 83 0.1 68 69.5 

L1, Moon's nadir, 3 SVs in plane1 63 68.4 73 0.3 65 70 

L1, Moon's nadir, 1 SV in plane2 68 66.3 78 0.2 76 67.8 

L1, Moon's nadir, 3 SVs in plane2 67 67.6 77 0.3 73 68.2 

L1, Moon's nadir, 1 SV in plane3 72 65.3 79 0.2 70 69.4 

L1, Moon's nadir, 3 SVs in plane3 64 67.8 75 0.3 67 69.7 

L4, Moon's nadir, 1 SV in plane1 70 65.9 62 30 51 82.1 

L4, Moon's nadir, 3 SVs in plane1 40 75.7 49 38 47 82.7 

L4, Moon's nadir, 1 SV in plane2 53 72.8 55 37.1 61 80.6 

L4, Moon's nadir, 3 SVs in plane2 44 74.9 53 37.7 59 81.1 

L4, Moon's nadir, 1 SV in plane3 56 71 56 37 53 82 
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L4, Moon's nadir, 3 SVs in plane3 46 74.6 51 37.8 49 82.4 

L5, Moon's nadir, 1 SV in plane1 71 65.5 59 34.3 41 83.1 

L5, Moon's nadir, 3 SVs in plane1 42 75.3 33 47.4 35 83.7 

L5, Moon's nadir, 1 SV in plane2 54 72.5 50 37.9 57 81.5 

L5, Moon's nadir, 3 SVs in plane2 48 74.5 36 46.8 55 82 

L5, Moon's nadir, 1 SV in plane3 58 70.6 40 44.6 43 83 

L5, Moon's nadir, 3 SVs in plane3 50 74.2 34 47.2 38 83.3 

L4, L5, Moon's nadir, 1 SV in plane1 30 82.9 24 74 15 98.2 

L4, L5, Moon's nadir, 3 SVs in plane1 13 92.3 15 88.1 10 98.8 

L4, L5, Moon's nadir, 1 SV in plane2 19 89.5 23 83.1 23 96.8 

L4, L5, Moon's nadir, 3 SVs in plane2 15 91.4 18 87.2 21 97.2 

L4, L5, Moon's nadir, 1 SV in plane3 20 87.7 20 86.4 17 98.1 

L4, L5, Moon's nadir, 3 SVs in plane3 17 91.2 16 87.8 11 98.5 

L1, L4, L5, Moon's nadir, 1 SV in plane1 11 95.3 11 95.2 5 99.5 

L1, L4, L5, Moon's nadir, 3 SVs in plane1 2 100 2 100 2 100 

L1, L4, L5, Moon's nadir, 1 SV in plane2 7 97.9 8 98.6 19 98 

L1, L4, L5, Moon's nadir, 3 SVs in plane2 6 99.2 6 99.1 14 98.4 

L1, L4, L5, Moon's nadir, 1 SV in plane3 9 97 7 98.7 7 99.4 

L1, L4, L5, Moon's nadir, 3 SVs in plane3 3 99.4 4 99.9 4 99.8 

notional LEO nadir point 101 13.7 103 0 102 1.5 

LEO nadir, L1 55 71.4 69 6.6 92 49.4 

LEO nadir, L4 96 32 65 10.8 99 17.9 

LEO nadir, L5 97 31.9 66 9.6 100 17.7 

LEO nadir, Moon's nadir 95 36.1 68 7.7 97 31.1 

LEO nadir, 1 SV in plane1 52 74 84 0.1 37 83.5 

LEO nadir, 3 SVs in plane1 21 87.7 67 9.4 31 84.1 
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