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Abstract

Composite materials are strong, lightweight, and stiff making them desirable in
aerospace applications. However, a practical issue arises with composites in that they
behave unpredictably in bolted joints, where damage and cracks are often initiated.

This research investigated a solution to correcting the problem with composite
bolted joints. A novel hybrid composite material was developed, where thin stainless
steel foils were placed between and in place of preimpregnated composite plies during
the cure cycle to reinforce stress concentrations in bolted joints. This novel composite
was compared to control samples experimentally in quasi-static monotonic loading in
double shear configuration in 9-ply and 18-ply layups. It was also investigated in quasi-
static loading in single shear configuration using 18-ply samples in both protruding head
and countersunk head configurations. Progressive failure samples were compared to
stress-strain curves to explain which phenomenon in the material caused certain features
in experimental curves. The final goal of the experimental effort was to perform an initial
cycle fatigue comparison between the novel hybrid and control materials. The parallel
research effort explored creating finite element models that could correctly represent and
predict the behavior of this hybrid system. This was the first effort employing numerical
failure criterion alongside a rigorous experimentation across multiple configurations.

Hybridizing the composite material increased yield load capacity by as much as
25% and increased ultimate load capacity as much as 42%. The finite element models
employed Hashin failure criteria and proved the ability to predict the yield load capacity

to within 6.5% error.

v
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EXPERIMENTAL AND COMPUTATIONAL ANALYSIS OF PROGRESSIVE
FAILURE IN BOLTED HYBRID COMPOSITE JOINTS

I. Introduction and Background

1.1 Motivation

Composite materials are being used in ever increasing quantities as aerospace and
automotive applications demand lighter and stronger structures. However, a major issue
that plagues composite materials is the process of attaching them to other structural
elements. Fasteners are often solely employed to create a serviceable joint or to allow
access to another component. These fastener sites create stress concentrations and crack
initiation sites in the brittle composite materials which can lead to unpredictable failure.
The STeel Reinforced Advanced Thin Unitized Structure (STRATUS) Program led by
the Air Force Research Lab Aerospace Systems Directorate (AFRL/RQ) proposes the
addition of stainless steel foils between and in place of layers of carbon fiber composite
near fastener sites as shown in Figure 1. This technology seeks to combine the high
strength to weight ratio and stiffness of carbon fiber composites with the predictable

toughness and ductile failure nature of stainless steel.

Figure 1: Example Hybrid Structure



1.2 Research Objective

The objective of this work was to investigate the strength and failure
characteristics of the proposed unique carbon fiber/stainless steel hybrid material in three
bolted joint configurations as an improvement to standard composite layups.
Additionally, this research sought to establish preliminary fatigue data for this novel
material for comparison to standard composite joints. Finally, this work sought to
establish efficient finite element methods to characterize the failure phenomena observed
in experimentation and to predict the strength and failure behavior of bolted joints in this

hybrid material.

1.3 Approach

This research sought to fulfill the objectives through experimentation and
computation. Experimentally, this study sought to characterize a hybrid material
comprised of preimpregnated carbon fiber and 301 stainless steel in monotonic quasi-
static bolted bearing loading per ASTM D5961-17 and cyclic loading via ASTM D6873-
08[1], [2]. Computational modeling was evaluated using Abaqus Finite Element (FE)

software [3].

14 Background

Valued for light weight and stiffness, composite materials have become
commonplace in aerospace design. Over a third of the F-35 Joint Strike Fighter is made
of composite materials [4], [5]. The current Boeing 787 and Airbus A350XWB are both
made from over 50% composite materials [6]-[8]. Boeing touts a 20% weight savings

over traditional aluminum construction [6]. Weight savings allows for decreased fuel



consumption and can also allow increased payload capacity. Airbus expects a 25% fuel
efficiency increase in the A350XWB [9]. As composites have increased in use,
considerable efforts have been focused on applying composite materials into design roles
previously filled with metals. Composites have also allowed engineers to explore new
design approaches that take advantage of their unique properties and manufacturing
methods. For example, composites are not only well suited to molding to complex
geometries, technology exists to enable fiber tow direction optimization through fiber
steering and automated tape laying (ATL) capabilities [10]-[12]. Despite the flourishing
development of composite technology, a problem persists that engineers are forced to
face. At some point a composite structure ends and must be joined to some other structure
or have something affixed to it so that the airframe can complete the prescribed mission.
Despite all the work to optimize and take advantage of the outstanding properties of
composite materials, joints in composites highlight their brittle failure nature and
anisotropy. There are many situations that cause joints in composites. The skin of an
aircraft must be somehow joined to a substructure. Aircraft essential systems must be
attached to the structure. Manufacturability is a major cause of composite joints. For
instance, in autoclave cured parts, which are still often preferred over out-of-autoclave
methods, the size of the part is limited by the dimensions of the autoclave. Even in out of
autoclave processing, the material is typically oven cured, where the dimension of an
oven governs part size which lead to joints [13], [14]. Scaled Composites tackled this
problem when they constructed Stratolaunch, the world’s largest composite airframe.
They used traveling ovens to cure the 204 foot (62m) long wing spars [15], [16].

However, this technology is far from being applied to full scale aircraft manufacturing



and mass certification. As large and complex as modern continuous parts are, they still
must be joined with other structural elements to create a complete airframe. Joints are
such an ever present concern that the US Air Force has an ongoing series of programs
largely focused on composite joints and as of 2020, The American Institute of
Aeronautics and Astronautics hosts a special session on Structural Joints and Repairs at
its annual SciTech conference [17], [18]. As engineers push the bounds of composite
manufacturing, the challenge of composite joints seems to remain ever present.

Engineers have approached composite joints in a myriad of ways. Composite
joining may be performed with adhesives, but adhesive only joints prove to be difficult to
certify. Thus, engineers tend toward joints with fasteners or joints that include both
fasteners and adhesives [19]-[21]. In many cases, a joint needs to be removable, so that a
part can be replaced or removed to service another aircraft component. In this case, a
joint with removable fasteners is required.

Semi-permanent and removable fasteners in aerospace structures are as old as
aviation itself, and much technology has been developed on fastened joints in metals.
However, the brittle failure nature and anisotropy of composites amplify the challenges
of fastened joints. The problem arises in how fastened joints fail. Fastener sites create
high stress concentrations in brittle composites and are prone to fatigue due to flight
dynamics and cyclical cabin pressurization. Figure 2 shows the three failure modes
expected in a fastened composite joint: shear-out, net tension, and bearing. Bearing is the
most desirable failure mode since shear-out and net tension tend to be catastrophic

failures, while hole elongation due to bearing is likely to be discovered upon inspection.



Studies have shown that current methods of predicting fatigue life in composite bolted

joints are lacking [18].

Net tension failure Shear-out failure

Bolt \
|/ Vi
Part

/’ N

Transfer Load Bearing failure

Figure 2: Joint Failure Modes [22]

Engineers have addressed fastened joints in composites in a number of ways. A
common method is known as a “pad-up” where the layup is locally thickened near the
fastener. While this does increase the strength of the material locally, it does not address
the perceived shortcomings of the material when analyzed at a stress concentration such
as a fastener. It also creates load eccentricities and often increases the complexity of
underlying substructures and can even adversely affect acrodynamics by forcing changes
to the shape of the vehicle [23]. Other factors have been explored such as addressing the
hole manufacturing, the fastener to hole fit, and the fastener itself [24]-[26]. However,
none of these methods specifically address the material properties of the layup at the
fastener site. Camancho et al demonstrated an improvement in joint efficiency by using a
metal sleeve insert bonded into a bearing hole. While this aided in spreading stress
concentration, this required a secondary bonding step and after adhesive failure, the joint

failed similarly to a joint with no insert [27].



The focus of this research is to specifically address the layup near the fastener site
by adding metal foils between and in place of carbon fiber plies near a fastener site. The
idea of uniting metals and composites is not new. Hybrids comprised of metals and
composites can be traced back to the 1970s in the Netherlands. These materials have
come to be known as Fiber Metal Laminates (FML). FML were pursued because the
laminated nature slowed fatigue crack growth by causing cracks to grow in individual
layers and transfer load into the adjacent composite fibers [28], [29]. FML have
transitioned into modern manufacturing where much of the Airbus A380 fuselage is
composed of GLARE (GLAss REinforced) which is composed of glass fiber and
aluminum. However, these more historic materials tend to be homogenous over their area
[30], [31]. When looking for the ultimate in light weight and stiffness, engineers turn to
carbon fiber composites. In an effort to preserve these properties while still addressing
bolted joints, engineers have focused efforts on improving bearing properties at regions
near fastener sites.

Working with carbon fiber presents its own unique issues compared to other
composite materials such as glass fiber and aramid fibers. While aluminum is prized in
aerospace applications and has proven successful in GLARE applications, the
combination of carbon fiber and aluminum leads to a high risk of galvanic corrosion
which could lead to large scale delamination and structural catastrophe [32]. Some work
has shown promise in sealing the aluminum with chemical treatments or coatings, but
many choose to avoid the combination due to the corrosion dangers [33], [34].

Instead of aluminum, many have turned to titanium as a solution to locally

hybridize with carbon fiber at fastener sites. While titanium does not offer the same



plasticity and toughness as other materials, it is strong, light weight and prized for
corrosion resistance. Titanium avoids the galvanic corrosion danger that exists between
aluminum and carbon fiber. An additional concern in working with carbon fiber
composites is that carbon fiber has a coefficient of thermal expansion (CTE) that is near
zero while metals usually respond much more measurably to changes in temperature.
This difference in CTE means that with any temperature change, thermally induced
stresses are imparted into the structure. This difference is magnified in hybrid composites
since composites are typically cured at elevated temperatures. When the metallic and
composite components are joined at elevated temperatures, thermally induced stresses set
in as the part returns to room temperature. In consideration of an aircraft, a structure
might see temperatures in excess of 100°F (38°C) on the ground and then experience
temperatures cooler than -60°F (-51°C) while airborne. When compared to other common
metals, titanium demonstrates a fairly low CTE of around 5x107/°F (5x107/ °C) [35].
Thus, titanium minimizes thermal expansion. For these reasons, much of the
contemporary research in fiber metal laminate bolted joints focuses on titanium-carbon
fiber composite hybrids [22], [23], [36]-[38]. Yamada et al demonstrated that a titanium-
carbon fiber FML in a bolted joint would delay crack propagation through the thickness
of the material. They noted the best results when titanium foils were placed on either side
of internal 0° plies. In this configuration, with a 25% metal volume fraction, they noted a
58% load capacity increase. Fink et all demonstrated the testing and modeling of a
Titanium-CFRP Hybrid localized to fastener sites. With a 33% metal volume fraction,

they showed an over 100% increase in ultimate bearing strength using a stepped



transition zone. They applied this methodology to construction of a spacecraft payload
adapter and predicted that steel would be promising for these applications [37].

Despite the difference in CTE, steel has been successfully applied to FML
localized to address bolted joints. Petersen et al employed spring steel 1.4310 (301SS) in
their investigation of the transition zone, which is the region where the fiber metal
laminate localized near a fastener transitions into the pure composite. They determined
that a transition zone staggered by at least 10mm (0.39in) provided the highest load
capacity when compared to other transition methods [39]. Lopes et al examined a hybrid
structure comprised of 301 stainless steel with a Hexcel 8552/AS4 preimpregnated
composite. They noted over 100% increase in pinned bearing stress and fatigue cycle
lives that were two orders of magnitude greater than pure composite samples [40].

Most applicably, work at the Air Force Research Laboratory Aerospace System
Directorate as published by Falugi and Knoth demonstrated the efficacy of a carbon
fiber-stainless steel hybrid to improve the bearing strength of a bolted joint. Through
double cantilevered beam (Mode I fracture toughness) testing, they concluded that an
adhesive was necessary to achieve the most reliable bond between the carbon fiber plies
and the stainless steel. They demonstrated that a stepped transition zone allowed the
bolted joint to fail in bearing as opposed to one of the more catastrophic modes such as
net-tension or shear out. Most importantly, with a 50% fiber volume fraction they
demonstrated a 162% increase in ultimate bearing load in a pinned condition and an 84%
increase in the bolted condition [41]. The work presented in this dissertation presents a

continuation of this research by experimentally studying the progressive failure nature of



this material in multiple configurations, and by producing efficient finite element models
to predict the capabilities of joints comprised of this material.

The research presented here is unique because the hybridization of IM7/977-3
preimpregnated carbon fiber composite with stainless steel does not appear to have been
explored in literature outside of the work by Falugi and Knoth. The layup sequences
explored here are unique, as is the study of a hybrid material across multiple
configurations under one body of work. The fatigue data presented is the first effort to
explore cyclical loading in this novel hybrid. Very little modeling exists for this unique
hybrid and the approach of conducting analysis completely in the Abaqus environment is
a first.

Chapter II of this document describes critical areas of theory that support the
remainder of the work presented. Chapter III presents the experimental methodology, and
Chapter IV presents the computational methodology. Chapter V presents results and
discussion of the double shear experimental data, and Chapter VI presents results and
discussion of the computational analysis and a comparison to the double shear
experimental data. Results and discussion on the single shear experimental data are
presented in Chapter VII, and the fatigue experimental results are presented in Chapter
VIII. Finally, Chapter IX presents contributions, conclusions, and recommendations for

future efforts based on the entire body of work.



II. Theory on Critical Topics

This chapter seeks to layout the theoretical background needed to support the
work described in this document. These topics will not be discussed in an exhaustive
nature, but in enough detail that the decisions made in and application to this study are
explained and supported. While this chapter lays out the background theory for this work,
the specifics of the implementation of these theories are discussed in the chapters on
Experimental and Computational Methodology.

A bolted joint in a FML involves many diverse topics. Finite element modeling of
this system brings about even more complexity. Since the material includes a composite
material, failure mechanisms and failure criteria of composites must be considered. Also,
different methods of modeling composites must be considered. For example, a complete
layup can be approximated as a shell or, in cases where extreme detail is required,
multiple elements through the thickness may be used to represent each individual layer.
While addressing the foil, plasticity associated with stainless steel must be considered.
Since the load is resisted though the fastener, a complex contact relationship must be
developed between the fastener and the FML part. Finally, plasticity in the fastener must
be considered to accurately represent bending in the fastener and how this bending affects
load capacity in the specimen. This load scenario brings about numerous, complex
contact relationships.

In the standard bearing test methods (ASTM D5961 and D6873), the fixture is
constrained, and the load is applied to the coupon. Thus, the stress is transferred through
the coupon and into the foil/composite transition zone. The fastener hole in the foil-

composite zone transfers stress into the bolt via the contact interface between the bolt and

10



the coupon. This contact relationship creates the bearing stress of concern in this study. A
contact interaction also occurs between the coupon and fixture. Contact interactions are
required between each stacked layer and to prevent penetration. Furthermore, self-contact
must be established to prevent components from penetrating themselves under large
deformation. This load scenario is diagramed and discussed in detail in Chapter III.

Egan et al have investigated many of these topics in their work on lapped bolted
joints. Figure 3 shows a single lap joint investigated by Egan et al. This joint was
comprised of two coupons of unidirectional carbon fiber fastened with a single
countersunk fastener. This image displays the strengths of modeling techniques such as
advance failure models, layerwise modeling, and contact modeling. These topics and
others will be explored in this chapter. The remainder of this chapter seeks to present the
theory on these topics and some relevant research in which these theories have been
employed. In some cases, a breadth of theory and research are presented to make the case
for selecting a certain methodology for this study. This chapter includes a discussion on
how these theories are collectively employed. The computational work in this study was
carried out using Abaqus software. Thus the computational theory presented is compliant
with or referenced from Abaqus [42]-[44]. The end of this chapter includes a discussion
of failure modes observed in composites and a discussion on various approaches to cyclic

fatigue experimentation.
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Figure 3: Compressive Fiber Damage in Double Lap Joint [44]

2.1  Stress-Strain Relations and Definitions

Finite element modeling is based in continuum mechanics. In the finite element
method, first element strains are calculated using the strain displacement matrix, By, as
shown in Equation 1. This matrix is comprised of derivatives of admissible shape
functions assumed for each type of element. This equation outputs total strain, £t°¢, using

the strain-displacement matrix, and displacements.

£tot

= Bsqu ( 1 )
With total strain calculated, the elastic strain must be calculated so that stress may be
determined. This requires a discussion on types of strains. Strain can be divided into two
types. Elastic strain is deformation that is fully recoverable and is not dependent on the
deformation history. Conversely, plastic strain is not recoverable and is dependent on the
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deformation history. The conclusion has been drawn that stress relies completely on
elastic strain, and that elastic strain and plastic strain are additive to make total strain.
Thus, in order to define elastic strain, £¢, one need only know the plastic strain, ¢?, and

subtract it from the total strain as seen below.

g = ghot _ gp (2)

The issue then becomes knowing the value of this plastic strain. Typically, an equivalent
plastic strain is output as a result of the selected plasticity model and then expressed as
components. These models are discussed more under Damage and Failure Criteria. With
elastic strain known, the stresses can then be calculated using Hooke’s Law by relating

stress, g, to elastic strain using the constitutive matrix, C.

g=C:¢ (3)

In Equation 3, the double dot operator is the double inner product also known as the
dyadic. C is a fourth order tensor and «¢ is a second order tensor, which results in a stress
output as a second order tensor.

If damage (discussed in Damage and Failure Criteria) has been initiated, and damage is in
the evolution stage, these damage stresses are updated here before the internal forces are
calculated.

Finally, internal forces, I, necessary for equilibrium are determined by

szBZdadV (4)

v
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where BT is the transpose of the strain-displacement matrix and o is stress determined
from Equation 3. In an incremental finite element approach, these values of
displacements, strains, and stresses are incremental values instead of total values [45]—
[48].

An understanding of types and implications of different stresses and strains are
also important to this work. Stress can be divided into two types, hydrostatic stress (also
known as pressure stress) and deviatoric stress. Hydrostatic stress can be thought of as
stress resulting from submerging an object in water which produces stress equally around
the object normal to the surface. Hydrostatic stress causes volumetric strain and is related
via the bulk modulus. The naming conventions “hydrostatic stress” and “pressure stress”
often differ by a sign since stress is assumed to be tensile when positive, and pressure is
assumed to be compressive when positive. Hydrostatic stress is given as the average of

the three principal stresses as

1 1
Ohya = gtr(a) 0T Opyq = §(Ukk) = 5(011 + 052 + 033) (5)

In contrast, the component of stress that causes plastic deformation is known as
deviatoric stress. This is simply the total stress with the hydrostatic component subtracted

out. It is given by,

1
I ro_
g =0 — Ghyd or O-ij = O'i]' _§5ij0-kk ( 6 )

where ¢’ is the deviatoric stress, and §;; is the Kronecker delta.

Comparable ideas and values exist for strains where hydrostatic strain is given by
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1 1 1
Ehyd = §tr(£) Or &pyq = §(€kk) = 5(511 + &5 + £33) (7)

And deviatoric strain is given by

1
£ =€— eyyq ore{j=£ij—§5ijekk (8)
Because three-dimensional loading is complex, there needs to be some effective

stress value to predict when a metal fails. Von Mises stress is widely employed in this

case. Von Mises stress, which can be derived from deviatoric strain energy, is given by

(9)

Here, the double dot operator is the double inner product of two second order
tensors. Thus, the output is a scalar value. This is convenient because it gives a one-
dimensional equivalent value that can be compared to known experimental values of
yield. For this reason, this is also referred to as an equivalent stress [45]-[48].

It is also helpful to have a related effective strain. This value, sometimes known as Von

Mises Effective Strain, is given as

Eops = (10)

These effective stresses and strains are commonly written using a bar notation instead of

a subscript notation as seen below [45]-[48].

15



Efr €  and Oy 20 (11)

In classical plasticity methods, once the yield stress has been exceeded, Abaqus
employs associated flow to develop the components of plastic strain from the equivalent
plastic strain in a uniaxially defined stress-strain curve. The components of plastic strain
for the current increment are given as

Agf = A&Pny;

/ (12)

where AP corresponds to the equivalent plastic strain in the user defined curve and n is

the normal to the yield surface given as

!
30

Nj =575 (13)

where 0;; is the tensor form of the deviatoric stress and & is the Von Mises stress.
This relationship as illustrated by Mendelson is shown in Figure 4. Mendelson uses g,

(equivalent stress) to denote Von Mises stress. [45], [49]
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Figure 4: Incremental Stress and Plastic Strain [49]

An additional phenomenon that should be considered is viscoplasticity.
Viscoplasticity describes plastic deformation that is dependent on the strain rate. This is
commonly experienced in impact settings but may occur in settings where local strain
rates are dynamic. The presence of viscoplasticity is heavily dependent on the strain rate
and materials properties. The significance of viscoplasticity in this study is presented in

the section on foil and bolt damage and the chapter on Computational Methodology [50].

2.2 Explicit vs Implicit Modeling

Many decisions in the modeling process are based on the type of analysis being
considered. Since this study included simulation of a dynamic progressive failure,
explicit and implicit dynamic analysis methods were both considered. Generally, explicit
methods obtain values by solving for a given variable at time t + At by using only values
at time t. Explicit methods are conditionally stable based on a maximum time step based
on wave propagation through the system. This stable time step is calculated prior to the

first iteration of the explicit analysis. Implicit methods remove the time step constraint,
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by solving for a given variable at t + At by using inputs from both time t and t +

At. [45]

2.2.1 Explicit Modeling
Abaqus Explicit, which was employed in this research, relies on central difference
integration combined with a “lumped” mass matrix which is mathematically

diagonalized. Central difference first satisfies equilibrium at time t. Accelerations at time
. : A .
t are then used to calculate the velocity at time t + 7t and displacement at t + At. In the

central-difference integration theory, the next (i + 1st) position of a given degree of

freedom is

U+ = U + At(i+1)u(i+%) (14)

where u is a displacement or rotation and i is an increment in an explicit step. Half step

velocity is given as
. . At(iyq) + Aty
(1) = 1y + i (15)

Acceleration is given by

tiqy = MNP — lw) (16)

M is the lumped mass matrix and P ; is a vector of applied loads. ;) is an internal force

vector which is assembled from elemental contributions meaning a global stiffness matrix

is not required. The construction of the internal force vector is discussed further in Stress-
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Strain Relations. This process is explicit because values of velocity and acceleration from
the previous step are used to calculate the next increment. In order to begin the

calculations, Abaqus calculates the initial velocity as

. . At .. 17
41y = o) + =" ) (17)
2

where 1) and i) are initial values of velocity and acceleration. With these
boundary conditions and the initial position defined in the model, calculation is fully
defined and the simulation can begin [45]-[47], [51], [52].

Belytschko et al concluded that explicit methods are well suited for complex
contact relationships like the ones investigated in this study. Egan et al concluded that for
a “simple” model, explicit and implicit methods in Abaqus produced similar results,
while the explicit methods took about 3.5 times longer to run. However, they suggest that
as damage focused models become more complex, the explicit method is advantageous.
Much of Egan’s follow-on research on countersunk bolted joints includes explicit
modeling. Explicit solution methods also allow for a wide range of contact definitions

and automatic or fixed time incrementation [42]-[44].

2.3  Geometric Nonlinearity

Due to the complex nature of the failure modes of these materials and the
intention to characterize progressive failure, nonlinearity in both geometry and materials
are considered. Materials nonlinearity is covered under damage and failure criteria.
Mathematically, the nonlinear terms in strain come from a Tayler Series Expansion

employed during the derivation. The equation seen below including the quadratic terms is
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commonly known as Green Strain. Here, u terms are displacements and x° terms are the
undeformed positions. This is the default for shells and beams in Abaqus Standard that
assume small strains [46].

1 [% % Uy, 0u,, (18)

Joo2|0x)  ox? ~ ax) 0x}

To simplify calculations, engineers often make an assumption of small displacements and
rotations and only consider the linear terms. This results in what is known as the small or

infinitesimal strain tensor. [53], [54].

4T3 ox)  0x} (19)

Functionally, Abaqus Explicit defaults to employing logarithmic strain (true

strain) to account for geometric nonlinearity calculated as

er=In (\/F - FT)

(20)
Where F is the deformation gradient tensor given as
aui
Fj =6+ o) (21)

Where §;; is the Kronecker delta, u terms are displacements and x° terms are the

undeformed positions.
Egan, McCarthy, and Frizzell concluded that in a double-lap countersunk joint, it

was most efficient to omit geometric nonlinearity in implicit modeling to ensure
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convergence and computation efficiency. It is important to note that Egan et al were
working with a standard composite panel instead of a hybrid. Thus, they did not face
large deformations and plasticity in metals. However, they noted that in an explicit

model, the Abaqus default state of including geometric nonlinearity produced stable

simulations [43].

24 Composite Modeling Methods

One of the first decisions to make when constructing a model containing
composites is how to represent the laminate. Numerous methods have been studied and
may be placed into four main categories: Three-Dimensional elasticity (3D), Equivalent
Single Layer (ESL), Zig-Zag, and Layerwise (LW). 3D theories treat the composite as a
solid. Equivalent Singe Layer modeling constructs a representative shell that mimics the
properties of a given layup. ESL models effectively create a two-dimensional solution to
a three-dimensional problem and are unable to properly represent the transverse stress
field. Zig-Zag models employ the superposition of a polynomial displacement field with
a Zig-Zag function. These methods still have trouble with transverse stresses. Layerwise
modeling constructs individual layers with at least one, but often many elements through
the thickness of each layer. This method represents interlaminar relationships,
discontinuities and stress concentrations well. For this reason, the layerwise approach is
predominant in the study of bolted and countersunk joints [55], [56].

Abaqus contains a “Composite Layup” tool that is a complex ESL-type system. It

tends to model macroscopic composite shell parts well. However, it does not provide the
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detail and mesh refinement required when the focus is on progressive failure near a

loaded discontinuity [45], [46].

2.5 Computational Damage and Failure Criteria

Damage and failure criteria drive modern-day modeling capabilities. In general,
there are three phases of damage and failure: initiation, evolution (or stiffness
degradation), and element deletion. Damage initiation is typically thought of as the point
at which the material has yielded. However, in many cases, the user is allowed to define
the exact definition of damage initiation. Damage evolution typically describes how the
material behaves through some deformation or degradation resulting in failure. The user
is typically able to define failure, and then the user is allowed to delete the element when
failure criteria are met if so desired. In the different criteria presented below for specific
components, the method by which each criterion fits into these three phases is discussed

[45], [46].

2.5.1 Ductile Damage

Since this study examined progressive failure and based on preliminary testing, it
was expected that the stainless steel foils would yield. While plasticity in the bolt is
undesirable, it was considered a possibility in experimentation and modeling. This
section describes the user input and mathematical theory behind damage in ductile
materials and concludes with a single element example.

To define a ductile metal, the user is able to define an equivalent stress-strain

curve. The user is able to define elasticity by inputting the elastic modulus. Yield and
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plasticity are defined tabularly as true stresses and true plastic strains. At yield, the user

inputs the yield stress and a zero value for true plastic strain.

2.5.1.1 Damage Initiation and Evolution
For materials exhibiting plastic deformation, damage is initiated at a user defined
stress or strain. Then, the damage variable, d, evolves with respect to time as
. L&

—pl (22)
Uy

where, L. is the element characteristic length based on element geometry. For a first
order element, it is the typical length of a line across an element. For a second order
element, it is half of this length. A first order element is defined by a linear shape
function with two nodes on an edge, while a second order element is defined by a
quadratic shape function with three nodes along an edge. For membrane and shell
elements, it is calculated as the square root of area. Characteristic length is established for
each element at the beginning of the analysis and is held as a constant reference

throughout the analysis. P! is the equivalent plastic strain rate which is the strain rate

with respect to the time step. ﬁ}’l is the user specified effective plastic displacement at

failure. Buentello employed a value of ﬁjfl as 1/6™ of the characteristic length of critical

elements [47]. In this study, due to the extremely thin elements, when a displacement
failure criteria was used, it was set to the thickness of the material. Effective stress, which
can be thought of as reduced load carrying capacity, is then calculated based on this

damage variable as
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c=(1-d)o
(23)

Thus, when the damage evolution variable is equal to one, the material is fully degraded.

The user may choose to delete the element at a given value of d.

2.5.1.2 Ductile Damage Example

Figure 5 shows a single 3D stress element representing a ductile metal that was
loaded in tension until failure. Figure 6 shows the output of the simulation. Figure 6A
(upper subplot) displays the stress v. strain while Figure 6B (bottom subplot) displays
damage initiation and evolution variables. In this case, the model scenario was a simple
bilinear elastic-plastic curve with linear displacement damage. Element deletion was used
for demonstration purposes. As the element reaches the defined yield stress, damage is
initiated (represented by a solid red line in Figure 6B). As the sample is loaded through
the plastic region, the damage initiation variable is defined by normalizing the stress at
the current step by the failure stress. When the defined failure stress is reached, the
damage initiation variable reaches a value of 1 which initiates damage evolution. This
begins calculating a damage evolution variable, d from equation 22 (represented by a
dot-dashed green line in the lower subplot). As the damage evolution (or stiffness
degradation) variable increases, it linearly degrades the stiffness in the stress-strain plot
as defined by equation 23. When damage evolution reaches a value of 1, the stiffness is
fully degraded. In this example, element deletion is employed, so that when the stiffness

is fully degraded the element is deleted. This is represented by the element status
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represented by the blue dashed trace in the lower subplot. When the element is deleted,

the status transitions from 1 to 0.

Figure 5: Ductile Damage Single Element Model
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Figure 6: Ductile Damage Single Element Example Output

2.5.1.3 Explicit Step Implementation
In an explicit time step, the equivalent stress in an element is compared to the user
input yield stress. If yield has not occurred, equivalent plastic strain is set to zero and the

stresses are output. If yield has occurred, the equivalent plastic strain is calculated based
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on the user defined stress-strain curve, and damage initiation is checked by comparing the
current equivalent plastic strain with the user input damage initiation strain. If no damage
has occurred, the stresses and equivalent plastic strains are output. If damage has
occurred, the damaged stresses are fed into the central difference approximation. If
element deletion is used, the element is deleted, and the status is updated at the user
defined value of the damage evolution variable. In the section on Consolidation of
Computational Theory, this is integrated into the entire explicit step flow in Block 4 of

Figure 20.

2.5.2 Composite Damage

Numerous failure criteria have been developed, studied, and applied as composite
materials have been developed. A 1996 FAA study performed an exhaustive study on 26
of the most common criteria. These criteria can be split into three main categories: limit,
interactive, and separate mode criteria. Limit criteria consider stresses with corresponding
materials properties. Interactions are not considered. Interactive criteria employ a
polynomial involving all stress components. Separate mode criteria consider matrix and
fiber failure separately. The FAA study cites a survey by Burk of AIAA members that
showed that at the time, the majority of users employed the limit style criteria of
maximum stress and maximum strain criteria. However, this study goes on to say,
“At the lamina level, those criteria (such as the Hashin-Rotem criterion) which separate
the fiber failure mode from the matrix failure mode are the most reasonable and
accurate[57].” Hashin failure has become the most commonly used set of criteria in

unidirectional composite analysis and is built into Abaqus [58].
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This section first lays out composite damage initiation and damage evolution
criteria then walks through a simple single element example. Finally, the implementation

into an explicit step is described.

2.5.2.1 Composite Damage Initiation
2.5.2.1.1 Hashin Failure
Hashin criteria (Hashin and Rotem, 1973 [59]; and Hashin, 1980 [60]) describe
damage initiation and failure in unidirectional fiber reinforced composites. These
methods have been widely employed in the modeling of polymer matrix composites and
have been successfully applied to bolted joints in fiber metal laminates. As discussed in
the previously mentioned NASA study, Hashin failure is beneficial because it separately
represents failure modes in the fibers and the matrix. It also separates tensile and
compressive properties and loading of each [24], [38], [58], [61]-[63]. Thus, four
separate criteria are observed, and each may be analyzed separately in finite element
software. The Hashin damage initiation criteria, as employed in Abaqus, are given below.

Fiber Tension (671 < 0):

PN 2 A 2
¢t _ (%11 T12
Fy —(ﬁ talsr

Fiber Compression (6,7 < 0):

(24)

(25)
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Matrix Tension (65, = 0):

Rt — 811\ 12\’
m = \yT a 5L
(26)
Matrix Compression (G5, < 0):
P 2 C 2 ~ A 2
e — (@) (Y_) _q| Bz, (fg)
m = T T c L
28 28 Y S (27)

In the equations above

XT is the longitudinal tensile strength

X¢ is the longitudinal compressive strength

YT is the transverse tensile strength

Y¢ is the transverse compressive strength

ST is the longitudinal shear strength

ST is the transverse shear strength

a is a coefficient determining the shear stress contribution

011, 022, T15 are diagonal components of the effective stress tensor &
This effective stress tensor is related to the true stress by a damage matrix, M (Equation
28). This diagonal matrix consists of damage variables for the fibers, matrix and shear, as

recorded in Equations 29 and 30.

0=Mo (28)

Where
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(1—-df)
1
M= 0 a—ay 0 (29)
0 0 —1
(1 - ds)-

where d¢, dp,, and d;; are defined from the relationship

g - df if 6;,20
F\ds if 61, <0

4 _{dfn if 65,20 (30)
mTdS, if 6y <0

ds=1—-(1-df)(1-df)Q—db)(1—df)

In Equation 30, the specific damage variables are the damage evolution variables
presented later (Equation 42). Prior to damage initiation, these damage variables are zero.
Thus, M is the identity matrix, meaning effective stress is equal to the actual stress until
damage is initiated by one of the four criteria (Equations 24-27) reaching a value of one.
As damage occurs, M grows, increasing effective stress. This allows failure in a single
mode to affect other modes. [46], [60]

Hashin failure criteria or components thereof are commonly used in composite
modeling and have been employed in composite bearing and FML bearing simulation.
Zhou et al employed Hashin Criteria to model fiber failure in single-lap multi-bolt joints
[25], and Zu et al demonstrated good characterization of a FML bolted joint using Hashin
[24]. While Hashin criteria does require a large number of materials properties, several

sets of properties are available for the IM7/977-3 material used in this research.
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2.5.2.1.2 Puck Failure
Puck proposed that a third matrix failure mode was possible as depicted in Figure
7. Namely, that the matrix may fracture at some angle in addition to the two modes

allowed in Hashin criteria.

Mode A

Tnl

Figure 7: Possible Modes for Hashin (A and B only) and Puck Failure Criteria [64]

This seems like a vast improvement, but has been shown to not significantly
change a failure prediction [64]. Working with Puck failure creates some complications.
First, much of the related research is published in German. Second, this criterion has not
been integrated into the standard Abaqus software package, and thus is not employed in
this research [65], [66].

In the last decade, a number of three-dimensional composite failure criteria have
been studied by groups like Hundley et al [38], Zhou et al [25] and Donadon et al [63].
However, none appear to be widely accepted or applied to date and none are inherent to

Abaqus.

2.5.2.2 Composite Damage Evolution
The proposed damage initiation criteria assume linear elastic behavior up until

failure. Then, the load carrying capacity considered during damage evolution is also
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assumed to be linear. While these do omit nonlinearity, they are widely accepted as
representing brittle composites well [46], [67], [68] .

After damage has initiated via some criterion, such as Hashin, Abaqus uses a
damage elasticity relationship where stress is related to strain through a damage elasticity

matrix as seen in Equations 31 and 32.

o=C,¢
(31)
C,4 1s the damage elasticity matrix given as
Cd = B (1 — df)(]‘ — dm)vlez (1 - dm)EZ 0
0 0 (1-d,)GDp] (32)

D=1- (1 - df)(l - dm)V12V21

where E is the elastic modulus, G is the shear modulus, v is the Poisson’s Ratio,
ds and d,,, are the previously employed damage variables used in failure initiation
described in Equation 42. [45], [46]

With the stress-strain relation developed, the damage variable evolves as seen in

Figure 8.
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Figure 8: Equivalent Stress vs Equivalent Displacements

It is important to note that the values in Equation 31 are stress and strain matrices. Here,
equivalent stresses and strains, as laid out in Equations 33-40, are derived from the
components stress and strain matrices of the relationship in Equation 31. It is also
important to note that the plot in Figure 8 represents only one mode of the four
considered: fiber tension, fiber compression, matrix tension, and matrix compression.
Equations 33-40 develop equivalent stresses and strains used to define damage evolution
in each of the four described modes. These are calculated based on total stress and strain
values accumulated at the current increment. These equations are also used in the
calculation of the damage variable described later in Equation 42.

Fiber Tension (6;; = 0):
65; =1I° /(311)2 + ag?, (33)

re (o Ner) + atypep
e 81i/L¢

(34)
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Fiber Compression (6,1 < 0):

6écqc = L%(—&41)

re = Zozan)
“ 8Ls/Le

Matrix Tension (65, = 0):

5gcllt = L¢ /(522>2 + 5122

me _ $022)(€22) + T12612

(0} =
ed Soat/LE
Matrix Compression (6,, < 0):

6;72'16‘ - LC ’<_€22)2 + 8122

mc —

(—0220{—€22) + T12612

eq 6;T(lzt/LC

where L is the characteristic length.

(35)

(36)

(37)

(38)

(39)

(40)

The ( ) symbol is the Macaulay operator which is defined for all a € R real numbers as
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_a+|al
2

(a) (41)
Finally, the damage variable for any given mode is given as seen in Equation 42. By
referencing this variable, the user has a quick understanding and characterization of

failure in each of the 4 modes in each element. If the damage variable exceeds 1, the
element has failed. Abaqus will output the element STATUS which, for a selected mode,

displays the elements that have failed with respect to this damage variable.

_ ‘qu (Seq B 5361
5eq (Sécq - gq

(42)

where, Sé’q is the equivalent displacement at which the damage criterion was met and 5§q

is the fracture equivalent displacement for the given mode. Based on this damage

variable, the user can decide to delete the element or keep it in place [46], [69],[70].

2.5.2.3 Composite Damage and Failure Example
While this set of equations may seem complex, when considered in each mode
(such as fiber tension) separately, they are much simpler to understand. Even in fairly
complex load scenarios, for a given element, there is usually only one or two critical
modes. To demonstrate the functionality of Hashin damage initiation and composite
damage evolution, a single element example model was developed as depicted in Figure

9. The element was loaded in tension with the fiber direction at a 15° angle to the
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direction of the applied force. This angle caused both matrix tension and fiber tension in

the element.

Figure 9: Composite Damage Single Element Model

Figure 10 depicts the output of the composite single element model. The top
subplot (Figure 10A) depicts stress v. strain. The center plot (Figure 10B) shows fiber
tension damage initiation and evolution and the bottom subplot shows matrix tension
criteria. Upon initial loading, the values of both the fiber tension and matrix tension
damage initiation variables rise. Fiber tension damage initiation is represented by a solid
red line in the middle subplot (Figure 10B). Matrix tension damage initiation is
represented by the dashed red line in the bottom subplot (Figure 10B). As loading
increases, the fiber tension initiation variable reaches a value of 1 which triggers
calculation of the damage evolution variable. As depicted by the green dashed line in the
center subplot (Figure 10B), the fiber tension damage evolution variable increases, which
in turn drives down the stress capacity of the element. In this case, the element deletion
was not employed so the element maintains 1% of its stiffness. Since fiber tension
reached a value of 1 and matrix tension did not, this element should be characterized as

having failed in fiber tension.
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Composite Damage and Failure
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Figure 10: Composite Damage Single Element Example Output

2.5.2.4 Explicit Step Implementation

In an explicit step, stresses from the stress-strain relations are used to calculate an
effective stress tensor based on damage (Eq 28 and 29). If no damage has occurred, this is
equal to the stress values from the stress-strain relations. Then, these effective stresses are
run through the Hashin failure criteria to predict failure (Eq 24-27). If any of the criteria
reaches a value of one, failure is initiated in that mode. If failure is not initiated, the
elastically derived stresses and strains are output. If damage has occurred, effective
stresses and strains are calculated (Eq 33-40), and then the damage evolution variable is
calculated (Eq 42). Finally, the damaged stresses (Eq 31) can be calculated using the
damage elasticity matrix (Eq 32). These damaged stresses are then used in the calculation

of the internal elemental forces. If desired by the user, the element is deleted at a given
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value of d and the element status updated [45], [46]. In the section on Consolidation of
Computational Theory, this is integrated into the entire explicit step flow in Block 6 of
Figure 20. As a comment on the stability of Hashin failure, throughout this work, when
coupled with continuum shell elements, the composite layers never drove the critical time

step size.

2.5.3 Cohesive Layers and Interactions

When using a layerwise modeling method, one must consider how to define the
surface interfaces between stacked plies. This region is known as the interlaminar matrix
region. If the composite layers are simply tied together, the system becomes far stiffer
than a realistic composite layup. Additionally, ties do not provide a way to describe
delamination behavior. For this reason, other methods are required to define this region.
The two most common ways to represent this region are to employ cohesive element or
cohesive interactions. These are usually covered under the overarching term “cohesive
zones.” These two methods are also considered in adhesively bonded joints such as the
adhesive used in the layup in this study. The main difference is that there is no inherent
thickness of a cohesive interaction while the cohesive layer is modeled using a cohesive
element of a given representative thickness. Properties of cohesive interactions are
defined using interaction properties much like a user would define contact. Cohesive
elements are defined by applying materials properties to a set of cohesive elements. As a
result, cohesive interactions output values such as contact opening and sliding and

contact stresses while cohesive elements output element stresses and strain.
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Cohesive zones are typically modeled using traction-separation laws. Similar to
the composite damage, cohesive damage involves damage initiation, damage evolution,
and element deletion. These definitions are similar for both cohesive interactions and
cohesive elements [45], [46].

This section discusses common cohesive damage initiation and cohesive damage
evolution methods. Then a single element finite element model is presented as an

example. Finally, the implementation into an explicit step is presented.

2.5.3.1 Cohesive Damage Initiation

Using cohesive elements, strains are defined as

On 85 8¢

= — &. =
T, °

STL __'gt =
To To

(43)

where §,,, §;, and &; are relative displacements of the cohesive layer and T, is the original

thickness of the layer [45], [46].

Elastic behavior for cohesive elements is given as

th Enn  Ens  Ett] (6n
t ={tst = |Eps Egs Egl|l{est=Ee (44)
Le Ent Est Ett €t

In cohesive interactions, since thickness is not considered, the elastic behavior is written

in terms of relative displacements as,

tn Knn  Kns  Kie] (On
t ={ts¢=|Kns Kss Kst|(0s¢=K8 (45)
tt Knt KSt Ktt 6t
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Figure 11 shows a typical traction-separation response. Below, t2, t?, and t? represent
peak displacement in the normal, shear, and transverse shear directions respectively.
Simlary, &2, €0, and € represent peak strains. These values are based on known materials
properties. In many cases, these parameters are published by material manufacturers and
developed by researchers through experimentation in specific applications. Traction and

strain values without the zero superscripts are values measured throughout deformation.

[45], [46]

traction &

tad

(b0 ) O (. ,00 ) saparation

Figure 11: Traction-Separation Response [46]

Damage initiation, the positive sloped portion of Figure 11, is typically modeled using a
stiffness and one of the following criteria: maximum strain, maximum stress, quadratic
strain, quadratic stress. These are presented below. In all cases, damage is assumed to be
initiated when the criteria is equal to one. The ( ) operator is the Macaulay operator as
discussed and presented in equation 41. It is used here to show that pure normal
compressive stress does not initiate damage in traction-separation methods. As the names

imply, maximum stress and strain criteria take the maximum value in any component
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direction compared to its peak capacity input by the user. If at any time this value meets
or exceeds one for any element, that element has sustained damage. These first two
methods do not combine loading directions. The quadratic methods allow damage to

grow quadratically and consider the combination of modes [45], [46].

Maximum nominal stress
(t,) t; t
max —2,—‘;,—8 =1 (46)
th ts U

Maximum nominal strain

<£n> & &
max{—o,—o,—o =1 (47)
n € &t

Quadratic nominal stress
2 2
(tn) ts)>  (t
S +{—3} +15t =1 (48)
tn ts te
Quadratic nominal strain

<£n) 2 gs 2 gt ?
S 5 5] - (49)

2.5.3.2 Cohesive Damage Evolution
To aid in calculation of damage evolution, Abaqus calculates an effective

displacement as [71]:
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S = \/(On)? + 62 + 62 (50)

This is rolled into the linear deformation-based damage evolution variable as

A D)
Smax (57];—521) (51)

where 6% is the maximum value of effective displacement through the deformation
history.

Damage evolution can also employ various energy methods as opposed to the stress-
strain methods above. These are convenient because many common tests are employed
that yield these energies.

The linear energy method employs the same basic equation as in Equation 51. However,

in this case, the effective displacement at failure is defined as

C
5/ =26 (52)
m 0

Ters

where Tff £ 1s the effective traction at damage initiation and G is mixed mode fracture

energy calculated differently in different methods. The calculation of this mixed mode
fracture energy for various criteria is the subject of much research.

These selected damage variables feed into the following set of equations from
which Abaqus calculates the properties of the cohesive zones at the step being

considered.
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. _{ (1-D)t, fort, =0

"~ |, otherwise (no damage to compressive stif fness)
ts=(1- D)Es

te = (1—-D)t,

(53)

where t,,, t,, and t; are the stress components assuming no damage [45], [46].

Figure 12 shows how energy methods are employed in traction-separation laws in
Abaqus. In essence this is a multidimensional version of the plot shown in Figure 11.
Here the Benzeggagh-Kenane (B-K) criterion is being used to calculate G¢. This model is
geared toward situations where the critical fracture energies in both shear directions are

expected to be the same. The B-K criterion are given as
6¢ = Gf + (6¢ - 6H {2}’ (54)
where
Gs = G, + Gy and Gy = G, + G (55)

The user should input the critical energies GS and G¢ and the material parameter 7 [45],

[46].
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Figure 12: Mixed Mode Response In Cohesive Interactions or Elements [46]

Figure 12 plots the traction mode along the 2 axis and the shear mode along the 1 axis.
The damage initiation and progress are plotted in the third direction. The plots lying on
the 1-3 plane represent the shear mode independently and the plot in 2-3 plane represents
the tensile mode independently. The three-dimensional plot represents the mixed mode
damage criterion. In effect, these mixed-mode methods form an equivalent traction-
separation behavior much like one would consider an equivalent stress and strain. Here
however, fracture energies are the quantities being mixed [45], [46].

The use of cohesive zones is now inherent in much of the current composite
fastener research. Frizzel et al employed an optimized cohesive layer shape with
Benzeggagh—Kenane criteria in GLARE to model delamination at the critical area near

the bolt while preserving computational efficiency [72].
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2.5.3.3 Cohesive Single Element Example

Figure 13 depicts a single element model to explain cohesive behavior. A
cohesive element is used here since its simplicity provides the clearest example.
However, cohesive behavior defined by cohesive interactions functions in much the same
way computationally, since both used the same set of equations for traction-separation
behavior (equations 46 to 55) after the initial elastic behavior is characterized (equation
44 or 45). This element is loaded in tension over the area of a thin cohesive layer. A
clamped boundary condition is placed on the bottom layer and a displacement is
commended to the top surface. Figure 14 shows the response of this single element
model. Figure 14A (top subplot) shows stress v. strain, while Figure 14B (bottom
subplot) shows quadratic stress initiation criteria and linear damage evolution criteria. As
the element is loaded, the damage initiation variable (represented by the solid red line)
rises. When it reaches a value of 1, the damage evolution variable (green dashed line)
rises and begins to degrade the element stiffness. Finally, the element is deleted forcing

the status (dotted cyan line) to a value of 0.

Figure 13: Cohesive Damage Single Element Model
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Figure 14: Cohesive Damage Single Element Example Output

2.5.3.4 Explicit Step Implementation

In an explicit step assuming quadratic nominal stress damage initiation and a
linear deformation damage evolution (Eq 51), cohesive strains are first calculated by
comparing the top and bottom surfaces of the cohesive layer (Eq 43). Then, the cohesive
stresses are calculated using a standard elastic relationship (Eq 44 or Eq 45). Next, the
quadratic nominal stress damage initiation value is calculated (Eq 48). If this value is less
than one, there is no damage and the stresses and strains are output. If damage is initiated
(value greater than or equal to one), the effective displacements are calculated (Eq 50).
These are then used to calculate the damage evolution variable (Eq 51). The damaged
stresses are calculated (Eq 53) and sent to the internal force calculation. If selected, fully

degraded elements are removed and the status is output [45], [46]. In the section on
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Consolidation of Computational Theory, this is integrated into the entire explicit step

flow in Block 5 of Figure 20.

2.6 Contact and Interaction

In order to produce the most relevant multi-part models, one must consider how
the parts and surfaces relate to one another when they contact and interact. Since explicit
modeling methods are advantageous in damage focused models, the methods of contact
and interaction definition discussed here are all compatible with the Abaqus explicit
modeling environment.

Contact is generally described in pressure-overclosure relationships, where
pressure is a function of the distance between two surfaces. If there is a measurable
distance between two surfaces, this is known as clearance. The condition of two surfaces
moving toward one another to remove this clearance is known as closure. Thus, the
tendency for two surfaces to penetrate one another after closure is known as overclosure.
This pressure-overclosure relationship is also commonly referred to as the contact
stiffness [45], [46], [73].

Contact is still a widely explored field and the exact calculation methods vary
greatly depending on the software package and pressure-overclosure relationship. Thus, a
general process is presented here [45], [46], [73].

A basic method of representing the pressure-overclosure relationship is called
“hard” contact as seen in Figure 15. This assumes no pressure until the surfaces are in
contact at which point any possible pressure is allowed. This, however, creates a

numerical discontinuity.
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Figure 15: Hard Contact [74]

Thus, it is computationally advantageous for a user to be able to control more details in
the pressure-overclosure relationship. The most common method is known as the penalty

method.

Figure 16: Penalty Method Spring Model [75]

In the penalty method, the stiffness defined by the pressure-overclosure
relationship can be thought of as a spring as depicted in Figure 16. In Figure 16, F is the
penetration force, k is the penetration stiffness, and §,, is the normal penetration distance.

The penalty method is named as such because it allows this small amount of penetration
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and then penalizes the “spring” stiffness based on penetration depth to achieve a stable
solution. Abaqus defaults to automatically selecting an optimized penalty stiffness. While
Figure 16 depicts a simple example of penalty contact in the normal direction, the penalty
method is also able to handle frictional relationships. Based on Figure 17, Stefancu et al

present how this is handled in software in the equations that follow [76].

Figure 17: Penalty Method Nodal Penetration [76]

Figure 17 shows a nodal penetration into an element with both normal and
tangential components. The potential energy of the pressure-overclosure relationship is

minimized using the first variation of potential energy as

Ol = f,09n + f:09: = kngndg: + sgn(guakngndg: (56)

where
fn 1s the normal force
f¢ s the tangential force

k,, is the normal penalty term
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k; is the tangential penalty term

Jn 1 the normal penetration

g: 1s the tangential penetration

Uq 1s the coefficient of friction

4 is the variational (or functional) derivative

sgn is the sign operator which takes the sign of the parenthetical quantity

(i.e. the last term takes the sign of g;)

From this relationship, the normal and tangential forces emerge as

fa = kngn (57)

fe = —sgn(ge)takngn (58)

These forces are distributed to nodes as external nodal forces. Abaqus allows the user to
define the coefficient of friction, uy, with respect to slip rate and temperature. The slip
rate definition allows the user to tailor the relationship based on static and dynamic
frictional relationships [47], [73], [75], [76].

Abaqus allows the user to define contact as general contact or by using contact
pairs. General contact is aptly named in that it handles most general contact situations
well by allowing equal interpenetration between parts. Contact pairs employ a master-
slave relationship in which there is no resistance to the master surface penetrating the

slave surface, but there is resistance to the slave surface penetrating the master surface. In
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some modern versions of software, the “master” surface is referred to as “surface 1” and
the “slave” surface is referred to as “surface 2" or the “accessory” surface. These are
typically useful in more complex contact situations such as the interaction between a part
and a fastener [46], [50].

When using contact, there are special considerations when defining meshes and
selecting contact pair surfaces. General convention is to make the stiffer surface master
and model it with a coarser mesh. This prevents the master from being able to penetrate
the slave surface during the initial kinematic calculation. Figure 18 shows a properly

defined mesh relationship on the left and a poorly defined mesh on the right.

slave nodes cannot penetrate

master segments
P

f Y panetraton

master surface
(segmeants) slave surface
{nodes)
-

o

master node can penetrate
slave segment

Figure 18: Master-Slave Discretization [45]

2.6.1 Explicit Step Implementation

In general, in an explicit step, the kinematic state of the system is first calculated
without considering contact. Then, penetrations are mathematically sought out. Next,
based on the penalty stiffness, a local solver is used to minimize the potential energy of

the system as the penetrations are corrected so that the contact constraints are enforced.
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The results of the minimization are restoring forces which are distributed as external
nodal loads and corrected nodal positions. In other words, when penetrations are
detected, the forces to correct those penetrations are calculated based on the penalty
stiffness. To preserve energy conservation, those forces are distributed to the adjacent
nodes [45], [46], [73]. In the section on Consolidation of Computational Theory, this is

integrated into the entire explicit step flow in Block 3 of Figure 20.

2.7 Residual Stress and Thermal Expansion

There are multiple sources of residual stress that can be considered in Fiber Metal
Laminates. Two are most evident: residual stresses from manufacturing the foil and
residual stresses due to mismatched coefficients of thermal expansion (CTE) and high
cure temperature.

During metal forming procedures, residual stresses are imparted into materials.
This can be seen in many machining operations, where a material deforms during
machining due to the release of this residual stress. Despite the presence of these stresses,
they are expected to play much less of a role in this study compared to the thermal
stresses.

Thermal stresses are imparted during cure cycles. Then, aircraft often see large
temperature cycles on each flight which can range from over 100°F on the ground to
around -50 °F at altitude. Prussak et al showed the formation of residual stress in FML as
seen in Figure 19 [77]. This plot shows the progression of temperatures and resultant
strains through the cure cycle. At time ¢, just before the cure cycle begins, the samples

are at ambient room temperature, T,.. Then, as temperature increases and the matrix
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begins to cure, the materials are joined by the matrix. This cure point is known as the
stress-free temperature, Tss. Then, as the cure temperature increases, the compressive and
tensile stresses are induced. Finally, as the material cools and exits the cure cycle, the
final residual stresses and strains are realized as the comparison between the material at

the stress-free temperature,Tsf, and the environmental ambient temperature, T;..

Tension

Compression

Figure 19: Formation of Residual Stress in Curing [77]

The process described above and shown in Figure 19 can be exacerbated when a large
difference in coefficient of thermal expansion exists between materials. Table 1 shows
the CTE for some of the materials referenced throughout this document. It is noteworthy
that GLARE constituents have closer CTE than those FML with carbon fiber

constituents, but the differences are on the same order of magnitude [77].
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Table 1: Coefficients of Thermal Expansion

Approximate Coefficient

Material of Thermal Expansion (10°%/°F)
[10%/°C]
Aluminum Alloys [35] 13 [23]
301 Stainless Steel [35] 9.41[17]
Titanium Alloys [35] 5.019.0]
Hextow IM7 Carbon Fibers [78] -0.36 [-0.65]
Glass Fibers [79] 5.019.0]

Despite the existence of these cure induced stresses, it seems that they do not have
major effects on the structures in operational or experimental settings. Frizzell stated that
there were no negative effects from cure induced stresses in a GLARE repair to the C-5
Galaxy [80]. Hosseini-Toudeshky et al showed that varied residual stresses due to
different cure cycles did not significantly affect fatigue crack propagation [81]. Da Costa
et al showed that up to 2000 temperature cycles to simulate flight did not have significant
effects on the tensile strength or interlaminar shear strength of a FML [82]. Fink et al
predicted variation in thermal stress due to cure temperatures would have no significant
effect on bearing strength in a carbon-titanium FML [37]. While there are studies to show
that cure induced stresses in a carbon-steel FML are higher, as one might expect due to
the wider difference in CTE [83], there is no evidence to show that these stresses are
detrimental. Also there does not seem to be significant work on how to address these
thermal stresses, if they indeed need to be addressed at all. Smart cure cycles have been
proposed, but this has not been tested with the composite employed in this study [77].

Thus, the main question to be asked with cure induced stresses is, how much does
the consideration of thermal stresses drive the ability to model bolted joints in FML
properly?
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Hausmann et al proposes an analytical solution to predict thermal stresses in a
fiber metal laminate based on known materials properties in the following set of
equations [83].
AT (e — ay)
MTT 1—v, 1 (59)

Ec v ' Ey

oM (60)

Where
oy 1s the thermal stress in the metal
ay 1s the metal coefficient of thermal expansion
E),is the metal elastic modulus
oc is the thermal stress in the composite
o is the composite coefficient of thermal expansion (longitudinal)
E is the composite elastic modulus
AT 1is the temperature change (negative for cooling)

v, 1s the volume fraction of the composite with respect to the thickness

Using this calculation method, the thermal stresses in the layup proposed in the
study are calculated to peak at 44.6ksi (308MPa) tensile in the metal and 22.6ksi (156)
compressive in the composite, which equate to almost 32% of the yield stress of the metal

and almost 9% of the ultimate stress of the composite. While these are substantial, they

54



are high estimates in that they do not consider a compliant adhesive layer between the
composite and foil.

In this work residual stresses due to manufacturing are not considered directly,
but the computational properties of the foils are developed based on experimentation by
Roberts [67]. The computational research evaluates the consideration of thermally
induced cure stresses, which are those stresses that results from materials with dissimilar
thermal expansion properties bonding at high cure temperatures and then cooling to

ambient temperatures.

2.8 Consolidation of Theory for Computation

It is important to understand how the modeling methods explored to represent this
scenario will relate to one another computationally. The flow chart in Figure 20 shows
the logic flow during each iteration of an explicit dynamic analysis. Logically, at the
beginning of each iteration, time = t, accelerations, velocities, and locations as well as
equivalent plastic strains are coupled with user input materials properties, parameters for
failure criteria, and boundary conditions. These values are first used to develop stress-
strain relationships. These stress-strain relationships feed the central difference system of
equations and are input into failure criterion for Ductile Damage (Block 4), cohesive
damage (Block 5), and composite damage (Block 6) (see Figure 20). For cohesive
damage (Block 5) assuming traction-separation behavior, the calculation process is the
same after the initial stresses are calculated. The failure criteria develop the stress values
experienced in the material and process the damage initiation, evolution, and element

removal. Meanwhile, the contact algorithm (Block 3) takes in the updated kinematic state
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from the central difference calculation and first allows penetration. Once these contact or
penetration points are located, the pressure-overclosure relationship is solved using a
local solver which minimizes potential energy. Pressures are distributed as external forces
to nodes, and element positions for the current iteration are updated. Final outputs are an
updated kinematic state, updated equivalent plastic strain, stresses, strains, and element
status [45]-[47], [73]. For space efficiency, equations throughout the paper are referenced

by the flow chart. Dashed outlines indicate a logical decision point.
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Figure 20: Finite Element Method Logic Flow Chart [45]-[47]
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2.9 Composite Failure Modes

In order to interpret results presented in the work, an understanding of
phenomenon that occur during bearing failure is necessary. Bearing failure in this study is
localized and mostly compressive. It is dominated by two main observable failure modes
at the fiber level. The first is fiber kinking. Fiber kinking in brittle carbon fibers is akin to
buckling in more ductile materials. While individual fibers can kink, in bearing failure,
typically all fibers through the thickness of a given ply kink in a similar region. These are
observed as fiber kinking bands. In the optical micrographs included throughout this
document, the goal was to capture the behavior through the entire thickness of the layup.
Thus, the fiber kinking bands are not observable on the individual fiber level, but rather
appear as a band at the ply level. For that reason, Figure 21 shows example Scanning
Electron Microscope (SEM) images from samples in this study depicting what is
happening at the fiber level to cause fiber kinking bands. Figure 21A shows a typical
fiber kinking band across a ply. Figure 21B shows a commonly occurring feature known

as a wedge or “V” kink [84].
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Figure 21: SEM Fiber Kinking Examples A) Typical Kink Band B) Wedge Kink

The second common failure mode is matrix cracking. This is the failure of the
matrix between fibers. It is often coupled with fiber kinking in adjacent layers. This is
depicted in Figure 22 where fiber kinking is marked with a bright green “FK” and matrix

cracking is marked with a white “MC.”

0.0200in (0.508 mm

Figure 22: Coupled Fiber Kinking and Matrix Cracking
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The final failure type detected in bearing samples is delamination. This occurs
when the bond between two layers is broken. In conventional composites, this may be the
interlaminar matrix region between two composite plies. In fiber metal laminates, this can
also be the interface involving a metallic layer or adhesive layer. Delamination may be
localized or spread over a large area. Delamination is especially dangerous in composites
that experience compression, because the delamination is often not detectable by visual
inspection but can drastically reduce compressive strength [71]. Figure 23 shows several
examples of delamination in a composite bearing sample as observed through the

thickness of the layup.

|
Localized Large Area
Belamination Delamination
=, b AN . T aay - —

0.156in (3.96mm)

Figure 23: Delamination

2.10 Approaches to Cyclic Fatigue Experimentation

In classical fatigue testing, typically a stress and cyclic rate are set and the
experiment results in a number of cycles until failure for the given parameters. These
tests can be used to develop a relationship between the stress amplitude (S) and number
of cycles (N) commonly known as an S-N curve. A typical S-N curve is depicted in
Figure 24. Typically, as the stress amplitude increases, the fatigue life (number of cycles

before failure) decreases. In theory, as stress becomes sufficiently low, an infinite fatigue
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life is reached. There is likely some limit for these very low stress values, but testing to
those high cycle counts is typically deemed unnecessary or overly burdensome. While
these classical methods produce useful results, they often require large numbers of

samples, intensive statistical analysis, and long run times [85], [86].

Stress Amplitude

Number of Cycles

Figure 24: Example S-N Curve

Nicholas and Maxwell proposed an accelerated step test method. Instead of
setting a stress and experimentally determining a number of cycles to failure, they
proposed setting a number of cycles and determining a stress which they call the fatigue
limit stress (FLS). They do this by setting a number of cycles and running that number of
cycles at each step in a series of steps at evenly spaced increasing stress amplitudes.
Figure 25 shows an example of this approach. To initiate the process, a percentage of a
known load is selected. This is usually set as a percentage of yield stress or a similar

quantity. Setting a low value for initial stress amplitude is more conservative, but setting
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too low of a value for the starting stress will force a larger number of steps, increasing the
overall run time. In this example in Figure 25 the stress amplitude begins at 85% of the
known stress value, and each step increases by 5% of that value. Maxwell also refers to
these steps as “blocks.” Closely spaced steps can provide more fidelity, but they will
cause more steps which will increase the overall run time. Steps that are too closely
spaced can cause cumulative effects on future steps. Maxwell calls this phenomenon of
cumulative effects “coaxing.” The benefits of this method are most realized when the
number of cycles is selected based on a specific lifetime of interest, and initial stress and
stress step size are carefully chosen to minimize the overall run time. Maxwell points out
that a wide statistical variation in cycle life in samples such as composites may require a

wide range of steps for similar samples [85], [86].
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Figure 25: Example Steps for Accelerated Method

To be considered a viable test, a sample must complete one full block and at least

one cycle of the next block. Based on these criteria, the sample will reach an established
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stop or failure criteria at some number of cycles in the middle of a block. Then a fatigue

limit stress can be calculated using a linear interpolation as [85], [86],

0, = 0y + Ao (Nf “”) (61)
life
Where
- 0, 1s the Fatigue Limit Stress
- 0y 1s the stress for the block in which the failure criterion is met
- Ao is the increase in stress after each block is complete
- Ngg; is the number of cycles complete in the block in which the failure
criterion was met
- Nyjf, is the assigned cycle count being investigated

This method in effect, allows experimenters to build an S-N curve in reverse of the usual

method at a specific life cycle or range of cycle counts that are of specific concern.
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III. Experimental Methodology

This chapter explains every aspect of how the experimental portion of this study
was executed. It begins with a discussion of the approach which communicates an
overview of how the experimentation was undertaken. Then deviations from the ASTM
standard and test fixture development are explained. The selection of each process and
each material is presented, and the statistical planning and statistical design of
experiments is laid out. Specifics about manufacturing are discussed in addition to pre-
test characterization and preparation. The specific methodologies used to conduct the
quasi-static experimentation and cyclic fatigue experimentation are detailed. The chapter
concludes with statistical analysis and post-test characterization techniques. Results are

presented in Chapter V: Experimental Results and Discussion.

3.1 Approach

The experimental portion of this study sought to characterize the bearing
properties of this hybrid material through monotonic quasi-static testing per ASTM
D5961-17 and cyclic loading via ASTM D6873-08. These standards employ test coupons

as pictured in Figure 26.

5.50in (140mm)

0

1.50in o
(38.1mm) 0° Direction

A
v

Hole Diameter = 0.3125in (7.938mm)

Figure 26: Coupon Configuration
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3.1.1 Quasi-Static Experimental Testing Approach

The quasi-static study began with the simplest case in the simplest configuration,
which is a 9-ply layup in double shear. Then, complexity was increased to more
operationally representative joints. An 18-ply layup was studied in double shear, and then
advanced into single shear in both protruding head and countersunk head configurations.
The double shear configuration was performed in accordance with ASTM D5961
Procedure A, while the single shear configurations were conducted per Procedure C.

In order to characterize the failure mechanisms that occurred in the bearing
samples, both full failure and progressive failure samples were collected. Full failure, as
described in this study, are samples that were deformed past 30% hole elongation
(bearing strain). The ASTM standard recommends targeting 50% bearing strain (ASTM
D5961-17 Para 11.4.7) [2]. However, through the course of this study with the given
materials, any deformation past 30% crushed the material so severely that it could no
longer be analyzed, or it approached a critical edge distance and failed in net section
failure. Halting the sample at 30% hole elongation kept the bearing region intact, so the
damage could be observed via post-test evaluation and microscopy. In similar work, larve
et al halted tests at 10% hole elongation to preserve the bearing region for post-test
evaluation [87]. Progressive failure samples were deformed to lesser strains that were
targeted to capture the specific failure modes that caused phenomena of interest in data
from the full failure samples. For example, Figure 27 shows a stress-strain curve for a
given sample. When looking at this chart, one would like to understand what physical
phenomenon in the layups are allowing features such as yield, the load redistributions

from 5% to 15% strain, and the large load drop around 16% strain. In order to capture
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those physical phenomenon, progressive failure samples were displaced until the bearing
strain corresponding to that feature was reached, at which point the sample was quickly
unloaded (detailed in Quasi-static Experimental Methodology). Example potential

progressive failure targets are depicted in Figure 27 as dotted vertical blue lines.
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Figure 27: Progressive Failure Description

3.1.2 Fatigue Experimental Testing Approach

For the fatigue portion of the study, 18-ply samples were considered in double
shear and single shear protruding configurations also in accordance with Procedures A
and C of ASTM D5961.

Fatigue testing was planned which would run samples to low cycle counts (n =
10,100,500, 1000) at a stress equal to 85% of the quasi-static ultimate stress. The intent
was to compare and contrast any failure initiation in the fatigue samples with the failure
demonstrated by the quasi-static samples. However, the low cycle counts produced less

permanent hole elongation than expected, which limited comparative analysis. Thus, a
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more traditional approach was explored that defined a stop criterion at a given hole
elongation. The samples were loaded cyclically until this stop criterion was met. The
number of cycles was recorded. This method proved to be effective but was extremely
time consuming with some tests lasting many days. Finally, due to limited test laboratory
availability, an accelerated step method was employed. This step method was proposed
by Maxwell and Nicholas [85], [86]. Instead of using a fixed stress and experimentally
determining a cycle life, the step method sets a number of cycles and then steps through a
series of increasing stress values. Each step at a given stress is referred to as a block.
When the failure criteria are met, the failure stress can be calculated based on the number
of cycles completed in the block in which the sample failed. This process is detailed in

Cyclic Fatigue Experimental Methodology.

3.2 Deviations from ASTM Standard

Pre-test estimates suggested that the peak load of the hybrid material was
expected to be around 6.50 kips (28.8KN). These pre-test estimates were calculated using
a load capacity estimation iteratively developed in an optimization study by Brewer et al
[88] which was based on experimental data by Falugi and Knoth [41]. The estimation

was calculated as

Pyield = 2tang(O-foilyielcﬁlfoil + O-brcompncomp)

(62)

Py = 1-1(Pyield) (63)

where
Pyic14 Was the estimated bearing yield of the hybrid

- Py was the estimated ultimate bearing strength
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- tayg Was the average thickness of a foil and composite ply

- D is the bolt diameter

- Nfoir and Ngoy Were the number of each ply expected

Of il 1414 WS the published yield value for the foils

Obr comp WS the yield stress of a pinned control sample from Falugi

and Knoth [41]

The factor of 2 was used to convert values acquired in a pinned condition into a bolted
condition. This pre-test estimate of 6.5 kips was remarkably close to the largest stress
value of just under 6 kips reached in this research. Assuming pure shear, the standard
0.250in (6.35mm) fastener was expected to yield at 4.66 kips (20.7KN) based on
manufacturer specified properties. This shear was calculated by simply dividing
estimated load over the cross-sectional area of the bolt. In order to avoid large scale
fastener yield and possible fastener fracture when testing was advanced to single shear
applications, a 0.3125in (7.938mm) Hi-Lok bolt was employed. This kept the fastener
type and diameter consistent throughout all test configurations. Assuming a 0.3125in
(7.938mm) diameter Hi-Lok of the same alloy, a yield of 7.29 kips (32.4KN) was
expected. This gave confidence that the fastener would not demonstrate large scale
plasticity [2], [89]. This resulted in a width to diameter (W/D) ratio of 4.8 versus the

standard W/D ratio of 6 [90].

3.3 Test Fixtures
Since a larger bolt was needed and increased loads were expected, new fixtures

were locally manufactured from 17-4PH stainless steel. The hole diameter was increased
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to 0.3125in (7.938mm). In keeping with the standard, the dimensions of the bosses
(pictured in Figure 29) that interface with the samples were increased to maintain their
dimensionality at twice the hole diameter. Thus, the nominal diameter of the bosses
increased from 0.500in (12.7mm) to 0.6251in (15.9mm). Increasing the boss diameter
served two purposes. First, it maintained the ratio between the diameter of the hole and
the boss, so that future research could make a clear comparison to a test conducted with
standard fixtures. Second, since the boss tends to mimic a washer, increasing the boss
diameter kept the dimensions of the boss close to the dimensions of a standard washer.
The wall thickness of the double shear fixture was increased from 0.120in (3.05mm) to
0.150in (3.81mm) to handle increased loading from the hybrid composite and for
robustness in related cyclic testing. This increased the stress capacity of the fixture by
25% while maintaining a boss thickness of 0.0300in (0.762mm) which still allowed it to
mimic a standard washer. Similarly, material was added to the stress concentration near
the grip area in the single shear fixture. In this case, material was not added to achieve a
certain dimensionality, but was simply left at the major dimensions of the material blank.
This not only added strength, but it reduced machining time and complexity.

Before machining, finite element analysis in Abaqus was used to verify the
loading in the updated fixtures as depicted in Figure 28. Based on coarse conservative
models, the double shear model (Figure 28A) showed a factor of safety of around two,
while the single shear fixture showed a factor of safety of over five. It is noteworthy that
throughout testing with periodic measurements, no plastic deformation was detected in

the fixtures.
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Figure 28: Updated Fixture Finite Element Models

Since new fixtures were being machined, this provided an opportunity to make the task of
extension measurement more robust. A knife edge was milled into the rear portion of the
fixture, so that a clip-on displacement gauge could be employed. This knife edge was
coupled with a locally machined knife edge tab that was bonded to the face of the coupon
using Hysol 9394 and cured at 150°F for 1 hour [91]. The theory employed for this knife
edge tab was that the fixture remains relatively fixed compared to the bearing surface,
and the distance between the two knife edges increases as the hole elongates. Any elastic
deformation in the short distance between the bonded knife edge and the hole is assumed
to be negligible compared to deformation that happens at the bearing surface causing hole
elongation. A post-test comparison showed that the head displacement reached values
almost 0.0091in (0.2mm) which equates to about 3% strain. Thus, adding the knife edge
gave a much more accurate characterization of what was happening at the hole. The
bonded knife edge tab was positioned with a jig to ensure that the two knife edges would

be in the center of the range of the extension gauge. In the original single shear fixture, a
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stress concentration existed where the grip portion transitioned into the body of the
fixture. In the updated fixture, material was added back here (not machined away) to
make the fixture more robust. Figure 29 shows a modified double shear fixture compared
to a conventional fixture. Figure 30 shows an updated single shear fixture as compared to
the conventional version. Figure 31 shows both of the updated fixtures and how the clip-
on extension gauge is used in conjunction with the integral and bonded knife edges.

Dimensioned drawings of the updated fixtures are included in Appendix L.
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Figure 29: Double Shear Test Fixtures A) Conventional B) Updated
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3.4  Material and Process Selection
This section explains not only what materials and processes were selected, but

also the factors that influenced those selections.

3.4.1 Preimpregnated Carbon Fiber and Epoxy System

IM7/977-3 unidirectional carbon fiber was selected for this study, because it is a
state of the art material used on modern aircraft such as the United States Military’s F-35
[92]. It has been studied in depth by AFRL in the Composite Airframe Life Extension
programs [18]. This material system incorporates unidirectional Hexcel IM7 carbon fiber
preimpregnated with CYCOM 977-3 thermoset epoxy resin by Solvay [78], [93]. This
system is intended to be autoclave cured at 350°F (177°C) for 6 hours. The material is
cold stored at 0°F (-17.8°C) for up to 12 months. An example of the uncured prepreg is

shown in Figure 32.

Figure 32: Uncured IM7/977-3 Preimpregnated Carbon Fiber
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3.4.2 Stainless Steel Foils

301 stainless steel shim material with a thickness of 0.004 in (0.1016 mm) was
chosen for this study. The material was manufactured by Ulbrich Stainless Steels &
Special Metals, Inc. and sourced through Trinity Brand Industries. The material has a
published yield strength of 167.8ksi (1157MPa) and fracture elongation of 21%, while
possessing a Rockwell C hardness of 43 [94]. The selection was made by engineers at
AFRL/RQ due to the inherent toughness of stainless steel coupled with its corrosion
resistant properties. Also, it avoids the galvanic corrosion effects of introducing
aluminum into a carbon fiber structure [95]. For many alloys, titanium has a higher yield
strength, but stainless steels demonstrate more ductile failure, enabling detection through
inspection or vibration instead of catastrophic failure [96]. The material was also selected
because fiber metal laminates have been widely studied with aluminum and titanium
alloys, but far less work has included stainless steel. A complete table of properties is

provided in Appendix H.

3.4.3 Stainless Steel Preparation

The metal preparation process was that recommended by AFRL/RX. This process
has been proven by Kondash et al to provide a consistent surface roughness for bonding
while limiting distortion in the material [97]. While much of the research has been done
on aluminum bonding, where this process produces an average surface roughness of
24pin (610um), it has been proven to produce a similarly consistent surface on stainless
steel with only slightly reduced surface roughness of 19uin (480um). This process

began by cleaning the surface of the material with 90% isopropyl alcohol and then
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blasting with a 240-grit aluminum oxide. This grit-blast procedure was followed by a
brush application of 3M™’s AC-130-2 Sol-Gel solution [98]. Finally, the foil was coated
with Solvay BR 6747-1 primer to seal and stabilize the surface [99]. During the process,
technicians use a sacrificial “traveler panel” that accompanies the main panels being
processed. This allows engineers to quantify and quality check the processes without risk
of contaminating the main panels. Figure 33 shows a main panel (left) and traveler panel
(right) just after application of primer. The specific details of this metal preparation are

outlined in Appendix E.

Traveler
Panel

Figure 33: Stainless Steel Priming

3.4.4 Adhesive
Early testing by Falugi and Knoth indicated that an adhesive was necessary to
ensure a consistent bond between the composite and metal subjected to mode I

delamination (double cantilevered beam) [41]. Thus, the thinnest cure-ready adhesive
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was selected. The adhesive, AF191U, is a film adhesive made by 3M commonly used for
composite-metal bonding. This material is 0.0025in (0.064mm) thick and is unsupported,

meaning it contains no fibrous support material [100], [101].

3.4.5 Layup

The layup chosen for this study includes & 45°, 0°, and 90° plies arranged
symmetrically repeated in multiples of the following stacking sequence:
[45/0/-45/0/90/0/-45/0/45]n. This layup has been widely studied by the Air Force
Research Laboratory, and similar layups are commonly employed in aircraft skins and
structural members. The control layup sequence was [45/0/-45/0/90/0/-45/0/45] for the 9-
ply case and [45/0/-45/0/90/0/-45/0/45]2 for the 18-ply case.

Research by Egan et al demonstrated that the majority of the bearing load is
carried by the 0° plies. Figure 34 depicts the radial stress in a single lap joint
configuration which shows most of the stress in the 0° plies. The 0° plies, represented in
blue, show higher stress capacity around more of the bolt hole than the other layers. In
multiple studies, Egan et al have used computational models that predict overall bearing

behavior well to demonstrate this phenomenon at the ply level [42], [43].
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Figure 34: Radial Stress in a Single Lap Joint
(Derived from Egan et al [43])

Thus, for structural efficiency in the hybrid, the 0° plies were kept intact, and the foils
replaced the internal -45° and 90° layers. The resulting hybrid layup sequence near the
bearing hole was [45/0/|SS|/0/|SS|/0/|SS|/0/45] for the 9-ply case and
[45/0/|SS|/0/|SS|/0/|SS|/0/45]2 for the 18-ply case. In this notation, |SS| describes a
stainless steel foil with a ply of AF-191 adhesive on either side.

The work by Egan et al not only demonstrated that most of the stress in a lap joint
is carried in the 0° plies as shown above, Figure 34 also shows that little of the stress is
carried by the head of a countersunk fastener in the single lap joint. In other words, the
majority of the stress in a countersunk lap joint is carried by the shank of the fastener.

In Figure 34, the plies closest to the viewer contain the countersink. For this reason, a

shank-only layup was developed that only hybridized near the shank of the fastener. This
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was only considered in the 18-ply layup because the 9-ply layup was not thick enough to

accept a countersink. Figure 35 shows a countersunk fastener for reference.

LT

Figure 35: Countersunk Hi-Lok Fastener

The metal foils transition into the composite at 2.00in (5.08cm) and 3.00in
(7.62cm) into the layup. These depths are not necessarily optimized, but were
demonstrated by Falugi and Knoth to ensure the sample fails in bearing instead of the foil
shearing out of the surrounding composite [41]. The 9-ply layup tables are depicted in
Figure 36, and the 18-ply layups are shown in Figure 37 [90]. These show the stacking

sequence of each material and orientation of each material through the thickness of the

laminate near the bearing hole.

Legend
0° IM7/977-3 Preimpregnated Carbon Fiber

90° IM7/977-3 Preimpregnated Carbon Fiber
45° IM7/977-3 Preimpregnated Carbon Fiber
-45° IM7/977-3 Preimpregnated Carbon Fiber
AF 191U Film Adhesive

301 Stainless Steel Foil

Figure 36: 9-Ply Layup Diagrams A) Control B) Hybrid
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Figure 37: 18-Ply Layup Diagrams A) Control B) Hybrid C) Shank-Only Hybrid

3.4.6 Fasteners and Torque

This study employed three different Hi-Lok fasteners corresponding to the three
configurations. All had a diameter of 0.3125in (7.938mm). They were constructed of
alloy steel with a tensile strength of 160.0ksi (1103MPa) and a shear strength of 95.0ksi

(655MPa). They are depicted in Figure 38 and details are provided in Table 2 [89], [102].
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Figure 38: Hi-Loc Fasteners

Table 2: Fastener Details

Grip Length
(in) [mm]
HL 18-10-13 Double Shear Protruding 0.8125 [20.64]
HL 18-10-20 | Single Shear Protruding | Protruding 1.250 [31.75]
HL 19-10-20 | Singe Shear Countersunk | Countersunk | 1.250 [31.75]

Configuration Head

In order to apply a specific controlled torque and still allow the joint to be
separated easily, a standard 0.3125in (7.938mm) fine thread nut was employed. Though
the Hi-Lok system employs a UNJF (Unified National J Series Fine) thread which
employs a radius on the thread minimum diameter, no binding from the UNF (Unified
National Fine) nuts was noted [103]. Since the Hi-Lok is a ‘blind’ fastener, meaning it
has no head to which a tool may be applied, a torque extension was employed to allow
access to the hex socket in the tail, (threaded end) of the fastener. Figure 39 depicts the

blind head and hex socket in the tail of the Hi-Lok.
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Smooth Hi-Lok ol
Head Hex Socket in
Hi-Lok Tail

Figure 39: Hi-Lok Fastener Details

The target torque was 60 in-lbs (6.78N). This is about half of the torque targeted
by most of the compatible Hi-Lok collars. This value was selected so that it represented a
decayed torque value. Torque decay is a phenomenon that has been observed in
composites in which torque and bolt preload relaxes during service [70], [104]. Thus, this
torque represented a conservative amount of preload decay. Also, this torque corresponds
to a bolt preload of around 9631bf (4.28kN) which is in the middle of the range of preload
values studied in the Composite Airframe Life Extension programs [18], [105]. The
relationship between torque and bolt tension is given by,
T =KFD (64)
Where
T is applied torque
F is the bolt clamping force
K is the torque friction constant (equals 0.2 for dry fasteners)

D is bolt diameter (0.3115 in for the Hi-Lok fasteners)
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Since a torque extension was required, an alternate torque wrench setting had to
be calculated. The relationship is given by:

Ly (65)

Tset = Tqes I
ext~w

Where
Tser 1s the torque wrench setting required to reach the desired torque value
T4es 1s the desired torque on the fastener
Ly, 1s the length of the torque wrench
Ly 1s the length of the torque extension
Based on this calculation, the final torque wrench setting was 50in-1b. Figure 40 shows

the tools that were required to torque the Hi-Lok fastener.

Torque Wrench

e e

Drive Adapter
Torque Extension

Figure 40: Tools Required for Hi-Lok Fasteners

3.5 Statistical Planning

In the quasi-static experimentation portion of this study, the purpose of three
primary samples was to establish a consistent stress-strain curve shape, from which
progressive failure test points could be determined. Also, loads were expected to be
compared with control samples. Thus, the number of samples of each configuration drove

the ability to draw conclusions about the means of two different sample types. ASTM

82



recommends five samples (replicates) in each configuration [2]. However, discretion is
allowed in the test standards to reduce this number if valid test results may be obtained.
To estimate the number of samples required prior to any experimentation for this study,
previous hybrid bolted test data was explored. Those data demonstrated a standard
deviation in ultimate strength of 42.51bf (189N). That value was expected to be
representative in this series of tests. As shown in Table 3, the confidence interval length
is also presented as a percentage of what was considered a high conservative estimated
maximum load of 10,000bf (44,500N) and then a lower estimated load of 60001bf
(26,700N). This is also seen graphically in Figure 33. These values are presented using
the estimated 42.5Ibf (189N) estimation and also twice that value at 85.0lbf (378N).

In Table 3, a 95% confidence interval length based on a Student’s T distribution
was calculated using this estimated standard deviation [106]. Throughout this work, a
95% probability (significance of « = 0.05) was employed. The confidence interval about

mean X is given as

S
.f i t(a ’n_l)ﬁ (66)

Where
X is the sample mean
t(a,n-1) 18 the upper value for the t distribution with n — 1 degrees of
freedom
S is the sample standard deviation

n is the number of samples

83



Thus, the confidence interval length, L.;, away from the mean is given as,

S
Ler = tia n-1) \/_ﬁ (67)

As an example, for n = 6 assuming a 42.51bf (189N) standard deviation

42.51fb

Loy =257 ——
CI \/8

= 44.61bf (68)

Table 3: 95% Confidence Interval Width Predictions

Assuming 42.51bf (189N) Stdev Assuming 85.01bf (378N) Stdev
et |t | s ot
Length(b) pey gy | Lenem PR oD
. _(dHIN

2 | 382[1670] 3.82 6.36 764 [3400] 7.64 12.7
3 106 [470] 1.06 1.76 211[939] 2.11 3.52
4 67.6 [301] 0.68 1.13 135 [602] 1.35 2.25
5 52.8 [235] 0.528 0.880 106 [469] 1.06 1.76
6 44.6 [198] 0.446 0.743 89.2 [397] 0.892 1.49
7 39.3 [175] 0.393 0.655 78.6 [350] 0.786 1.31
8 35.5[158] 0.355 0.592 71.1[316] 0.711 1.18
9 32.7 [145] 0.327 0.544 65.3 [291] 0.653 1.09
10 | 30.4[135] 0.304 0.507 60.8 [270] 0.608 1.01
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Figure 41: Confidence Width v. Sample Size

From this, it was expected that the three primary samples would allow a
confidence interval length just over 2001bf (§890N) or around 3.5% of the expected peak
load. Furthermore, as the progressive failure samples were processed, the sample size
increased each time for the specified load range. For example, by the time the 6™ sample
was tested over the most narrow load range, the confidence interval was expected to be
down to under 1001bf (445N). ASTM E122 has a method of calculating a required
number of samples, but in this case, that method provides trivial solutions of less than
one required sample [107]. Figure 41 shows graphically that increasing the number of
results should return slightly smaller confidence intervals, but it shows a diminishing

return on the time and materiel resources to produce those samples.
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3.6 Statistical Design of Experiments

3.6.1 Controlled Variables

Controlled variables in this study were ply count, hybridization, and configuration.
Ply count and hybridization were controlled via layup. Ply count is the number of layers of
material included in each layup. This was tested at 9 plies and 18 plies. Hybridization is
the lack or presence of the stainless steel foils. Hybridization was tested as control (no
metal), hybrid (metal through the entire thickness) and a shank-only hybrid (metal only
near the shank of the countersunk bolt). Configuration was controlled as double shear,

single shear protruding head, and single shear countersunk head.

3.6.2 Nuisance Variables

Nuisance variables were coupon panel position, cure cycle, hole diameter, and test
environment temperature. Coupon panel position was tracked to test whether or not the
source location of a coupon from a given panel was significant. As seen in Figure 42,
coupons were assigned integer values as unique identifiers and another integer value
representing panel position. If significant differences existed in the properties of coupons
from the same panel, this would indicate that an issue occurred during layup or cure.
Tracking panel position allowed these differences to be investigated and ruled out to
ensure the properties were consistent over the area of the panel. Since six panels could be
cured in one cure cycle, three separate cure cycles were required to cure 13 panels. To be
able to test for the statistical significance of cure cycle, the control and hybrid panels

were spread across the three cure cycles. Ideally, each cure cycle is exactly the same, and
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properties do not vary between cure cycles. The panel arrangement in each cure cycle is

shown in Table 4.

Coupon Number

3 4 5

Figure 42: Coupon Panel Position

Table 4: Cure cycles

C-04 H-04 | C-05 H-05 C-08
C-06 H-06 [ C-07 H-07 H-08
C-12 H-11 S-01

Hole diameter was measured using pin gauges graduated in by 0.0010in
(.025mm) and undersized by 0.00030in (0.0076mm). The laboratory room temperature,
which varied between 69°F and 74°F during testing, was recorded using a desktop
thermometer.

The samples were organized across test configurations such that variation from
panel position and cure cycle was most widely spread. Additionally, care was taken to be
sure this variation was distributed across the full failure and progressive failure samples.
In the 9-ply and shank-only panels, only one panel was manufactured, thus variation from
source panel and cure cycle could not be distributed. For the naming convention, the first

letter “C” or “H” denotes control or hybrid, respectively. The following number identifies
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the panel. The final number uniquely identifies the individual coupon. Table 5 lists how

the coupons were originally distributed during the planning phase. However, due to

careful machining, in many of the panels, seven coupons were able to be machined.

Also, during testing, the fatigue testing regime was updated, and more samples were

desired at lower strains in double shear. Thus, the coupons were actually distributed and

tested as listed in Table 6 where samples that were added to the test plan or transferred to

a different test configuration are noted with a dashed underline. This distribution of the

coupons is important because it allowed for the testing of the statistical significance of

the controlled and nuisance variables. If the coupons were not carefully distributed across

test configurations, aliasing could be induced into the statistical analysis making the data

less statistically conclusive.

Table 5: Coupon Distribution as Planned

Quasi-Static
18-Ply Single
Shear

Cyclic Loading
18-Ply Single
Shear

9-Ply Double 18-Ply Double

18- Ply Single Shear 18-Ply Double

Shear

C-12-1 H-11-1
C-12-2 H-11-2
C-12-3 H-11-3
C-12-4H-11-4
C-12-5 H-11-5
C-12-6 H-11-6

Shear

C-04-1 H-04-1
C-05-4 H-05-4
C-06-2 H-06-2
C-07-5 H-07-5
C-08-3 H-08-3

C-08-6 H-08-6

Protruding
C-04-2 H-04-2
C-05-5 H-05-5
C-06-3 H-06-3
C-06-6 H-06-6
C-07-1 H-07-1

C-08-4 H-08-4

Countersunk

C-04-3 H-04-3 S-01-1
C-04-6 H-04-6 S-01-2
C-05-1 H-05-1 S-01-3
C-06-4 H-06-4 S-01-4
C-07-2 H-07-2 S-01-5

C-08-5 H-08-5 S-01-6

Shear

C-04-4 H-04-4
C-05-2 H-05-2
C-06-5 H-06-5
C-07-3 H-07-3
C-07-6 H-07-6

C-08-1 H-08-1

Protruding
C-04-5 H-04-5
C-05-3 H-05-3
C-05-6 H-05-6
C-06-1 H-06-1
C-07-4 H-07-4

C-08-2 H-08-2

Notes for quasi-static:
o Black font-Full Failure Samples

O

Green font-Progressive Failure Samples
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9-Ply Double 18-Ply Double

Shear

C-12-1 H-11-1
C-12-2 H-11-2
C-12-3 H-11-3
C-12-4 H-11-4
C-12-5 H-11-5
C-12-6 H-11-6

Table 6: Coupon Distribution as Tested

Quasi-Static

Shear

C-04-1 H-04-1
C-05-4 H-05-4
C-05-7 H-05-7
C-06-2 H-06-2
C-06-7 H-07-3

C-07-5 H-07-5
C-08-3 H-07-6

H-08-6

18-Ply Single
Shear
Protruding

C-04-2 H-04-2
C-05-5 H-05-5
C-06-1 H-06-3
C-06-3 H-06-6
C-06-6 H-07-1
C-07-1

C-08-4

18-Ply Single Shear | 18-Ply Double

Countersunk

C-04-3 H-04-3 S-01-1
C-04-6 H-04-6 S-01-2
C-05-1 H-05-1 S-01-3
C-06-4 H-06-4 S-01-4
C-07-2 H-07-2 S-01-5
C-08-5 H-08-5 S-01-6

Cyclic Loading

Shear

C-04-4 H-04-4
C-05-2 H-05-2
C-06-5 H-06-5
C-07-3
C-07-6
C-08-1

18-Ply Single
Shear
Protruding
C-04-5 H-04-5
C-05-3 H-05-3
C-05-6 H-05-6
C-07-4 H-06-1
C-08-2 H-06-7

Notes:

3.7

Manufacturing

For this work, thirteen 6.00in by 8.00in (15.2cm by 20.3cm) composite and

hybrid composite panels were constructed in the AFRL/RQ clean room. This facility

houses a modern, fully outfitted composite manufacturing operation. A complete list of

the materials required to construct the samples used in this research is listed and

explained in Appendix A. While much of this manufacturing process may be perceived as

standard composite manufacturing, many considerations had to be made to properly

construct the novel hybrid material. Thus, much of the process is detailed here to explain

the unique considerations required to manufacture the hybrid panels.
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3.7.1 Material Preparation

Before layup could begin, the materials had to be prepared to be included in the
layup. The preimpregnated composite, stainless steel, and AF-191 adhesive, all had
different specific preparation requirements.

Preparation began by processing the 301 stainless steel foils to be included in the
layup. First, the foils were cleaned thoroughly with 90% isopropyl alcohol. Then, the foil
was affixed to a G10 fiberglass frame so that each side could be grit blasted in a blasting
cabinet with 240-grit aluminum oxide pressurized with nitrogen. Figure 43A shows the
blasting cabinet that was used to prepare the foils and Figure 43B shows the size of the

blasting media compared to a U.S. quarter.

5 Blasting Cabinet” /| Blasting media
: US Quarter

Figure 43: Layup Components A) Blasting Cabinet B) Blasting Media

After blasting, the foil was then fastened to a G10 fiberglass window, so that both
sides could be treated in one operation. A Sol-Gel treatment was applied to each surface.
Finally, Solvay BR-6747-1 water-based primer was applied to stabilize the surface.

Figure 44 depicts the life of a stainless steel foil through its preparation. Figure

44 A shows the foil after being affixed to the fiberglass backing and cleaned. Figure 44B
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shows the panel after grit blasting, where the blasted surface shows a stark contrast when
compared to the pristine surface which was cover by tape during blasting. Here the
prepared area of the sample displays a stark contrast to the unprepared surface near the
edge. After grit blasting, the panel was affixed to a G10 fiberglass frame to expose both
sides. Figure 44C shows the panel after the Sol-Gel Treatment was applied and Figure

44D shows the panel after primer was applied.

G10 Fiberglass Backer

Pristine SS Foil

Foil After Sol-Gel
Treatment

Figure 44: Stainless Steel Foil Preparation
A) After Cleaning B) After Media Blasting
C) After Sol-Gel Solution D) after Priming
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The foils were cut using a standard office paper cutter. The process was attempted
on numerous sheet metal shears, but the thin gauge of the material caused inconsistent
results. In most cases when using a sheet metal shear, the foils would simple fold as if a
sheet metal break were employed. The paper cutter gave the most consistent, repeatable,
and straight cut of all the options explored.

Preparation of the foils was by far the most labor intensive of all the preparatory
processes, with each panel requiring four to six man-hours to prepare. Due to the labor
requirement and prioritization amongst other programs, foils were the item requiring the
longest lead time.

It is noteworthy that when one side of the foil was grit blasted, stored residual
manufacturing induced stresses were released causing the foil to roll as shown in Figure
45. Once the opposite side was grit blasted, the opposing stresses were released, causing

the foil to lie flat.
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Surface

Figure 45: A) Rolled Stainless Steel Due to Released Manufacturing Stresses
B) Stainless Steel Lying Flat after Full Grit Blast

The prepreg and adhesive film are maintained in cold storage. For this reason, the
material had to be extracted from cold storage for approximately 12 hours to thaw. The
material could then be cut using a Gerber 2D plotting cutter (Figure 46). In operation, the
composite material was always placed in the same orientation on the table as it came off
the roll. The fiber direction was varied by changing the position of the shape being cut
with reference to the table. In other words, to cut a 45° ply, the raw material remained in

the same configuration and the tool path was rotated by 45°.
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Control Computer

Cutting Head

Figure 46: Gerber Cutter

3.7.2 Panel Layup

The layup process began with establishing a right-angle jig at a workstation as
depicted in Figure 47A. Fiber directions and transition points were labeled. Each ply was
positioned in the jig and initially compressed with a roller. After each layer was applied,
the stack was debulked for three minutes under vacuum at 120°F (48.9°C) as shown in
Figure 47B. Debulking removes bulk trapped gasses introduced during layup and initially
consolidates the plies. Engineers recorded each layer on a layup table to ensure that the
prescribed order was followed. After all layers were applied, the panel was debulked for

60 minutes.
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Panel During Layup Panel Befriig*Debulked
Under Vacuum Membrane

...............................

Figure 47: Composite Layup Jig

It is important to note that the stainless steel foils and film adhesive were integral
to the layup and were co-cured in the primary cure cycle. Figure 48A depicts the layup of
a layer of stainless steel as it transitions into a piece of prepreg. Figure 48B shows the
layup process as the protective film is removed from the adhesive which has been applied

over a layer of prepreg and stainless steel.

IM7/977-3 Prepregr IM7/977-3 Prepreg )

4

/Butt Joint

Figure 48: Layup Components

During layup, some difficulties were noted in working with the AF-191U

adhesive. Two common defects are shown in Figure 49. The first defect was a tear
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(Figure 49A) that rendered the affected adhesive plies unusable. This was not attributable
to any material handling error. Second, seams attributed to manufacturing were common
(Figure 49B). These seams were placed in the carbon fiber sections of the layup instead

of at the critical junction with the stainless steel.

Defect

Figure 49: AF-191U Adhesive Defects

It was also noted that at the clean room temperature that remained near 68°F (20°C), the
adhesive was brittle. Often, the adhesive would tear when attempting to remove it from
the backer material. Heating the adhesive on the bed of the debulk table for one minute

(held at 120°F (49°C)) made the material more compliant and easier to work with.

3.7.3 Vacuum Bagging and Cure Considerations

The panels were vacuum bagged and cured using standard procedures for
IM7/977-3 composite materials. The processes are described in Appendix B and the cure
cycle specific by Hexcel Composites is included in Appendix D.

Of the four cure cycles performed for this research (described in section 3.6.2 and

Table 4), two performed nominally as expected and two displayed behavior that gave
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cause for concern. Figure 50 shows four cure cycles conducted for this study. The top
plot shows the temperature measured at the platen (curing surface) using a thermocouple.
The middle plot shows the pressure measured inside the autoclave which is expected to
be high throughout most of the cycle. The bottom plot represents the pressure inside the
vacuum bag which is expected to be less than or equal to zero throughout most of the
cycle indicating vacuum. Cure cycles B and C performed nominally. In cure cycle D,
around 70min into the cycle it appears that a slight leak developed in the system allowing
a positive pressure of about 3psi (21kPa) inside the vacuum bag. However, this relatively
low pressure remained constant through the remainder of the 6hr pressure hold. Further
evidence of the leak is demonstrated around the 430min point when vacuum was
reintroduced to the vacuum bag. At this point a positive pressure of almost 20psi
(138kPa) was reached. Since this vacuum bag had surpassed the leak down test, this leak
is attributed to a poor connection between the autoclave vacuum system and the vacuum
bag. Per lab technicians, the vacuum connectors inside the autoclave had been
problematic in other recent cure cycles. Because the pressure deviation from the
prescribed cure cycle was small throughout the 6hr hold time, the panels cured in cure
cycle D appeared nominal in ultrasonic scans, and coupons from those panels did not

display any measurable difference in mechanical properties.
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Figure 50: Cure Cycles

What is most noteworthy in Figure 50 is the erroneous behavior of cure cycle A.

A computer software crash corrupted the recipe files which control the autoclave system.

When the first six panels were cured, instead of ramping temperature and pressure, the

system incorrectly commanded the peak temperature and pressure immediately upon

initiation of the cure cycle. This effectively clamped down the edges of the panels that

were still near room temperature which prevented compaction of the panels. This

rendered the affected panels unusable. Evidence of this will be shown in the section on

Nondestructive Inspection.

3.7.4 Coupon Machining

The machining processes are critical to the discussion of this research as the

addition of the stainless steel complicated machining. These were the current best
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practices for machining the hybrid composite material as of the time this research was

conducted. Laying out the machining methodology here provides a baseline for future

machining optimization efforts. The samples were sectioned from the panels as shown in

Figure 51, using a diamond blade set up in a 3-axis mill using a mist coolant (Figure 52).

The first precision cut on the panel was to ensure that the shorter foils extended exactly

2.00in (5.08cm) into the part. The extra width of the panels allowed ample material to

compensate for the width of the diamond blade, known as the kerf. In many panels,

quality manufacturing and careful machining allowed for a 7 coupon.

12.00in
(30.48mm)
VY N
i"\_ ~
o o o | &
! L
0.750in E
Short Foit | (19-1mm). =
I D B B Termination | T
o __JLomgFol } | ] I
— Termination
g B 0.3123in
o 8| .- =
= | (7.938mm) =
e = ﬁ, o
Excess for
1 5in saw kerf
(38.1mm) and spacers

i

Figure 51: Panel Cut Layout
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Figure 52: Composite Milling Setup

Hole diameter and concentricity are critical dimensions for bearing samples.
Figure 53A depicts the benchtop CNC mill that was used to drill the samples for this
study. This machine was used so that a “pecking” method could be programmed. Pecking
simply means that the bit contacts and cuts the material in an intermittent pattern. After
cutting for a short time, the bit retracts allowing chips to clear and allowing both the bit
and part time to cool. Figure 53B depicts the brad point bit that is optimized for cutting
composite materials. Shown next to the bit is what engineers have coined as the “hybrid
donut.” When this bit is employed in a pure composite, it cuts the outside of the hole first
then chips out the center of the hole. This ensures a clean bore. However, in this hybrid
scenario, the presence of the steel and the complexity of the hybrid results in this donut of
material shearing out of the hole and binding the bit with unpredictable timing.
Machinists discovered that if the donut were not removed quickly, the bit would attempt
to force the donut through the part creating vibration that ruined the bearing surface of

the hole and tear-out on the back surface of the coupon.
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Figure 53: A) Composite Drilling Setup B) Brad Point Bit

3.8 Pre-Test Coupon Characterization and Test Preparation

3.8.1 Measurement

Final coupon dimensions of length, width, and thickness were recorded using
calipers with a fine graduation of 0.0005in (.013mm) resulting in a measurement
accuracy of 0.00025in (0.0063mm). Width and thickness were recorded at three reference
points as depicted in Figure 54. The weight of each sample was recorded using an

electronic balance with an accuracy of 0.005grams as a check for any manufacturing

CITOIS.

Reference A
Reference B
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Figure 54: Measurement Reference Points
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Final hole dimensions were measured with pin gauges, depicted in Figure 55, which
allow for a far more consistent measuring method for holes than calipers. The pin gauges
are undersized by 0.00030in (0.0076mm) to allow the gauge to be inserted into a hole of
the labeled dimension of the gauge. Since the pin gauges are graduated in 0.0010in

(0.025mm) increments, this method has a measurement error of 0.0005in (0.013mm).

Figure 55: Pin Gauges

3.8.2 Nondestructive Inspection (NDI)

Ultrasonic c-scans were performed on each manufactured panel before machining
to verify that panels were compacted and cured properly. This system passes ultrasonic
energy through a sample which bounces off a sonic mirror and passes back through the
part. The amount of energy returned to the receiver is recorded as a percentage of the
magnitude of the original signal.

The pre-machining scans were critical in this work. Figure S6A depicts a control

panel that was cured in cure cycle A for which the recipe was corrupt. Figure 56B depicts
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a similar panel that was cured in cure cycle B which performed properly. The panel from
the corrupt cure cycle shows a large variation in sound transmission toward the middle of

the panel. In the worst cases, the sound transmission is less than 10%. In contrast, the

panel from cure cycle B predominantly shows homogenous sounds throughout the panel.

Figure 56: Control Panel Pre-Machining Ultrasonic Scans
A) Corrupt Cure Cycle B) Nominal Cure Cycle

Scans of hybrid panels were less conclusive than those of the control panels. The
presence and spacing of the stainless steel proved to be highly attenuative. This
attenuation and the stepped transition zone of the hybrid forced NDI personnel to scan
each hybrid panel in three separate scans as depicted in Figure 57. In region 1 of the
panel depicted in Figure 57A, there is no metal, so the noise in this section is attributed to
the 12 plies of adhesive interleaved between 18 composite plies. In region 2 of the panel
depicted in Figure 57B, the signal was increased to 40dB to pass the sound through the
two stainless foils and 12 layers of adhesive between 16 composite plies. In the bearing
section of the panel (region 3) depicted in Figure 57C, the system is transmitting energy
through 6 stainless foils, 12 adhesive layers and 12 composite plies. With attenuation

from varying materials and the maximum gain setting of 50dB, the noise in these scans is
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so high that the scans are not especially useful for flaw detection. X-ray scans were also

tested but were only sufficient to show the location of the foils. They did not provide any

discernable information on the composite material or compaction of the panel.

Figure 57: Hybrid Panel Pre-Machining Ultrasonic Scans
A) Region 1-18dB B) Region 2-40dB C) Region 3-50dB
Panels were also scanned after machining to ensure that there were minimal
machining induced defects. Examples are depicted in Figure 58. Just as noted in the pre-
machining scans, the control results were useful in ensuring that no machining induced
defects were present. However, the high energy levels and attenuative nature of the
hybrid caused a great deal of noise in the signal, which effectively masked any

conclusive evidence that could be drawn from the scans.
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Figure 58: Ultrasonic C-scans A) Control Coupons-7dB B) Hybrid Coupons-50dB

3.8.3 Test Sample Preparation
After machining and NDI, grip tabs and the extension gauge knife edge tabs were bonded
to the coupons. The surfaces were first scuffed with 80grit abrasive paper and cleaned
with 90% isopropyl alcohol. Jigs were machined to ensure that the knife edge was
properly aligned and located the correct distance from the hole. The grip tabs were
locally machined from 0.050in (1.30mm) thick fiberglass with a 7° angle to avoid a stress
concentration as the grip tab transitions into the surface of the coupon. Drawings of these
jigs and grip tabs are included in Appendix L. HySol 9394 epoxy was applied to each
mating surface, clamps were applied, and the samples were placed in a 200°F (93°C)
oven for 1 hour to cure [91]. The samples were removed from the oven and allowed to
cool for a minimum of 12 hours. Engineers learned through the process that the most
repeatable method was to bond the grip tabs, oven cure, then bond the knife edge tabs
followed by a final oven cure. Figure 59 depicts a sample having the knife edge tab

located and bonded.
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Figure 59: Bonding of Grip Tabs and Knife Edge Tabs

3.9  Quasi-static Experimental Methodology
Since progressive failure characterization was a chief goal of this work, 61
samples were subjected to monotonic quasi-static testing in three bolted bearing

configurations.

3.9.1 Double Shear Methodology

Figure 60A shows the double shear experimental setup, and Figure 60B shows a
sectioned view of a three-dimensional model. Figure 60B also shows the resultant load
path. In this load scenario, a tensile load is applied to the coupon while the fixture is held
static. A resultant bearing load is generated between the bolt and the specimen hole. Due

to this configuration, much of the loading near the hole is compressive in nature.
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Figure 60: A) Double Shear Experimental Setup B) Sectioned View of 3D Model

Testing was conducted using a 22kip (97.86kN) capacity MTS servo-hydraulic
load frame with a FlexTest40 controller. Load was measured with an MTS 661.20F-03
force transducer through a model 494.26 conditioner. Based on an MTS calibration, over
the test range, this device has a measured accuracy within £0.15% which equates to an
accuracy of £121bf (+53N). Hole elongation was measured with an MTS 632.03E-30
clip-on displacement gauge (as shown in Figure 60A). This displacement gauge was
calibrated using a MTS 650.03 extensometer calibrator with an error of £0.05%. With the
displacement gauge calibrated over its range of 0.500in (12.7mm), this results in a hole
elongation accuracy of £0.00025in (+£0.0064mm). Head displacement was recorded as a
backup for hole elongation using a linear variable displacement transformer (LVDT)

through a 494.16 conditioner. Over the range of extension values explored in this study, it
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had a maximum error of 0.45% which equates to an accuracy of £0.00091in (£0.023mm).
Time was recorded as a reference.

Procedurally for the double shear case, the fixture and coupon were configured on
the bench. A spacer of the same thickness as the coupon was placed between the two
sides of the fixture and temporarily secured with tape. With the fixture and coupon
aligned against the flat benchtop, the fastener was hand tightened to prevent rotation of
the coupon with respect to the fixture. The grip end of the fixture was inserted into the
top grip of the test frame, and the grip end of the coupon was inserted into the lower
grips. Stops were preset on the grips to ensure that the coupon and fixture remained
centered. With grip pressure set to 2000psi (13.79MPa), the top grip was closed on the
fixture. Then, the top grip was closed while the load control was activated with a target
value of zero. This insured that no load was applied during gripping. After torqueing the
fastener to 60 in-1bf (6.8Nm), the extension gauge was clipped onto the knife edges.
Coupons were loaded in displacement control at 0.050in/min (1.27mm/min). When the
stop criterion based on extension gauge reading was met, the samples were unloaded in
load control at 1001bf/s (445N/s). Load, head displacement, gauge displacement, and time
were recorded at 10Hz. Stop criteria for the full failure samples evolved throughout the
course of testing. It was determined that very little useful information could be gathered
past 30% hole elongation or 0.094in (2.38mm). After the test was complete and the
sample was unloaded, both grips were released, and the sample was removed from the

fixture on the bench.
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3.9.2 Single Shear Methodology

Figure 61A shows the single shear experimental setup, and Figure 61B shows a
three-dimensional model sectioned through the center of the coupon. This load scenario
produces a resultant compressive load between the coupon and the bolt similar to that of
the double shear case. However, due to the single shear condition, bending is allowed in
both the bolt and fixture. In addition to the load at the bearing surface, this load scenario
also places significant compressive loading between the head of the fastener and the
surface of the coupon. In effect, the system is attempting to pull the bolt head through the

thickness of the coupon.
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Figure 61: A) Single Shear Experimental Setup B) Sectioned View of 3D Model

109



In order to conduct the single shear testing, the lower grip was rotated 90° to
interface with the fixture. This fixture arrangement allows the tester to ensure that the
load is being transmitted through the center of the coupon. This reconfiguration process,
which required loading the test frame to near its maximum capacity, was conducted by
lab technicians in accordance with MTS instructions. Afterwards, the alignment of the
system was verified. Load, hole elongation, head displacement, and time were recorded
as described in section 3.9.1.

For the single shear configuration, the fixture was placed in the upper grips based
on the thickness of the coupon being considered. A stop was set on the grips to ensure
that the coupon was properly aligned with the fixture. The bolt was hand tightened to
prevent rotation. After checking alignment with a straight edge, the lower grips were
closed using the load control procedure described previously. After torqueing the
fastener, the test program was run using the established parameters. With the stop criteria
met and the sample unloaded, the coupon was removed from the fixture while the fixture

remained configured in the upper grips.

3.9.3  Quasi-Static Mechanical Property Analysis

3.9.3.1 Stress-Strain Calculations
The monotonic quasi-static testing output the following values: head
displacement, extension gauge displacement, load, and time. These data were coupled
with coupon measurements to process raw data into comparable results.

First raw stress was calculated as
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P
Opr =7 =57 (69)
Where

o is stress

P is the applied load measured from the load cell
A is the bearing area

D 1s the bolt diameter

t is the coupon thickness near the bearing hole

Raw strain, which can be thought of as normalized displacement, was calculated

using the following relation:

IS

Eraw — 1 (70)

i

Where
Erqw 18 the raw strain (before slack correction)
d is hole elongation measured by extension gauge

Diameter and hole elongation references are detailed in Figure 62.

d, Hole Elongation

7
\

-

D, Diameter

Figure 62: Bearing Strain Calculation References

Bolt diameter was employed in the strain calculation because it was a consistent value
between control and hybrid samples, and because the contact area that makes up the

stress is defined by the bolt diameter.
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3.9.3.2 Data Correction and Comparative Measures

In order to develop the data correction value so that other measures used to
compare data could be developed, the procedure below was carried out. In the bolted
joints there was some amount of slack between the bolt and the bearing surface of the
hole. If the bolt was at its lower tolerance limit (acceptable dimension) and the hole was
at its upper tolerance limit, the slack in the hole could be up to 0.002in (0.051mm). The
strain correction removed this slack and forced a line through the linear region of a stress-
strain curve to pass through the origin. This allowed for an accurate comparison between
samples. Per ASTM D5961, the raw data was processed as explained in the following
steps and as depicted in Figure 63.

1. Raw stress-strain (dashed red trace in Figure 63) was plotted.

2. Reference points were selected to define the slope of the linear elastic region
(green asterisks in Figure 63). Since test articles may vary widely, ASTM leaves the
selection of these references points up to the user, as long as they are consistent across
samples being compared. For the samples considered here, these reference points were
selected as 40ksi and 70ksi (276MPa and 483MPa) in all configurations besides the
single shear countersunk configuration, where 50ksi and 80ksi (345MPa and 483MPa)
were used. These stress values ensured an appropriate linear approximation throughout

all samples.

3. The chord stiffness was calculated, using the reference points described in item

2 as
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Grefhi ~ Orefiow
Echora = — (71)
g‘refhl- greflow

Where
E nora 18 the chord stiffness (elastic modulus)

Oref is the stress at the high reference point

Oref,,, 1S the stress at the low reference point

Erefp; is the strain at the high reference point

Eref ., is the strain at the low reference point

4. With the chord stiffness determined, it along with the reference points was used
to plot a line through the reference points (dashed green in Figure 63).

The basic equation of a line, commonly represented as

y=mx+b (72)

can be converted into relevant terms as

Orefn; — Echordgrefhi +b (73)

Where b is the y-intercept of the line

5. After solving for the y intercept, the correction factor, £z, was determined by
setting the right side of Equation 73 to zero to find the x-intercept of the line as
€crEchora + b =0 (74)
which simplifies to the x-intercept simplifies to
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&£ =
¢r E chord ( 75 )

where the value of this x-intercept, &, in strain units is the value of the offset
that is subtracted from the raw strain to produce the corrected strain value. In order to
plot or perform calculations using corrected strain data, this correction factor must first be
applied to each collected data point for the given sample. This corrected strain is easily
converted into corrected displacement by multiplying the corrected strain by the bolt

diameter. This strain correction is shown in the lower left corner of Figure 63.

6. The “corrected” data were plotted (bold red trace in Figure 63) by applying
this correction factor to every point to shift the data such that the linear region passes
through the origin. This allows for parallel comparison between samples. A solid green
line plotted through the corrected data in Figure 63 confirms that the slope of the

corrected linear region passes through the origin.
7. A 0.2% strain offset was used to define yield, as this is the classic method to
define a departure from linear behavior. The 0.2% offset is represented as a solid blue

line in Figure 63, and yield is represented with a blue asterisk.

8. A 1% strain offset was used for further comparison between samples. This

same 1% offset was also used by larve et al to compare behavior in composite bearing
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samples [87]. This 1% offset is represented by a magenta line and the corresponding 1%

strain is represented by a magenta asterisk in Figure 63.

To summarize the example given in Figure 63, the 40ksi and 70ksi (276MPa and
552MPa) reference points are denoted by green asterisks, and the bearing chord stiffness
(modulus) is represented by a dashed green line passing through them. The corrected data
is represented by the solid red line, with the corrected stiffness represented by the solid
green line. Note that the solid green line also passed through the origin as defined by the
strain correction. The solid blue line represents the 0.2% offset which passes through the
corresponding blue asterisk representing yield. The solid magenta line represents the 1%

offset which passes through the corresponding magenta asterisk.
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Figure 63: Sample Data Processing Example
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Since values such as yield and ultimate stress are point values, another value was
desired that could be used to compare samples throughout damage and failure. Strain
energy is the most common method for portraying this. Strain energy presented here is
defined as the area under the load-displacement curve. Strain energy density is defined as
the area under the stress-strain curve. Since each sample has a unique nonlinearity at
loading and the samples were not fully fractured, a range over which to integrate had to
be established for each configuration. Those bounds were established based on the
following strains in each configuration as:

e 9-Ply Double Shear: 1%-30% strain

e 18-Ply Double Shear: 1%-12% strain

e 18-Ply Single Shear Protruding: 1%-30% strain

e 18-Ply Single Shear Countersunk: 1%-25% strain

While lower bounds were established to avoid differences in loading slack, the upper
bounds were established to avoid introducing large variation from failure late in the hole
elongation of each sample. In other words, after a sample had failed, it still maintained
some load carrying capacity, but this behavior was erratic. Including those data would
reflect an artificially high strain energy and would complicate comparison between
samples. Areas were calculated using the MatLab trapezoidal integral approximation. An
example of the strain energy density for the 18-Ply double shear configuration is shown
in Figure 64. As defined above, the strain energy in this configuration is calculated

between 1% and 12% strain.
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Figure 64: Strain Energy Density Example

3.10 Cyeclic Fatigue Experimental Methodology

The fatigue portion of this study employed methods similar to the quasi-static
experiments. However, due to material and test equipment limitations, only 18-ply double
shear and 18-ply single shear protruding head samples were considered. The Hi-Lok pins
were also employed for the fatigue study and were torqued in the same fashion. Load,
hole elongation, head displacement, and time were recorded as described in section 3.9.1.

All fatigue samples were loaded in sinusoidal tension-tension loading. This
enabled the best comparison between the fatigue samples and the monotonic samples
which were only loaded in tension. In effect, only one side of the bearing hole is loaded.

Loading in tension versus compression prevents buckling instability in the system. A load
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rate of 1Hz was employed. This rate was targeted so the tests would run in an efficient
amount of time while also maintaining a relatively slow load rate.

Preliminary samples were loaded sinusoidally at 1Hz by setting the peak tensile
load to 85% of the average maximum quasi-static load determined in the full failure
monotonically loaded samples for each given configuration. For example, the peak
fatigue load for the 18-ply double shear control samples was determined based on the
average maximum load of the control monotonic full failure samples. The minimum load
was set to 100 Ibf. This was a sufficiently low load to consider the joint virtually
unloaded. A load near zero was avoided so that slack in the bolted joint was not
reintroduced during each cycle. This also prevented compressive loading in the case that
the controller overshot the commanded value. An example sinusoidal loading from this

research is pictured in Figure 65.

Sinusoidal Fatigue Loading

Load (kips)
Load (kN)

Cyclic Loading
Load Limits
Peaks and Valleys
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Figure 65: Sinusoidal Fatigue Loading Example

The MTS built-in peak-valley compensation (PVC) was employed to keep the

actual peak (load at the crest of the sinusoid) and valley (load at the trough of the
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sinusoid) values as close as possible to the commanded values. It was observed that 10 to
20 cycles were usually required for the peak-valley compensation to become effective.
Load, displacement, hole elongation (via extension gauge), and cycle count were
recorded. In most cases, the values were recorded only at peaks and valleys using MTS
built-in peak-valley acquisition to limit the size of the data and post processing time.
These peaks and valleys are marked with green circles in Figure 65. A few of the low
cycle count samples were recorded at 10 Hz for demonstration purposes. These
preliminary samples were allowed to run until a target hole elongation was reached. This
target hole elongation was used instead of allowing complete fracture of the hole so that
the fiber level failure phenomena could be compared with the failure of the quasi-static
samples. After the stop criterion was met, the sample was unloaded at 1001bf (445N) per
second.

Due to test time constraints and limited sample quantities, an accelerated step test
method based on publications by Maxwell and Nicholas was adopted for the majority of
the fatigue samples. In order to use test time most efficiently, a block (step length) of n =
1000 cycles was selected. For each configuration, the first step began with the peak load
at 85% of average maximum of the full failure quasi-static samples. Then, for each
subsequent block, the step was increased by 2.5%. This work verified previous behavior
observed in the Composite Airframe Life Extension program that the IM7 showed
sensitivity to load rate. Thus, load steps were programmed out to 125% of the average
maximum quasi-static load. Figure 66 shows the commanded peak load for this step
method graphically. In this load scenario, the load was still applied sinusoidally as

pictured in Figure 65.
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Figure 66: Steps for n = 1000 cycles

For this study, a test was considered relevant if it completed at least one full block and 20

cycles of the block in which the stop criterion was met.

3.10.1 Cyclic Property Analysis

After the stop criterion was met in the accelerated step method, an effective stress
for n = 1000 cycles could be calculated. Loads were converted to stresses using the
standard method discussed in section 3.9.3 Quasi-Static Mechanical Property Analysis.
The effective fatigue stress or “Fatigue Limit Stress” (FLS) as preferred by Nicholas was

calculated using a linear interpolation as defined by Nicholas where [86],

Ne. :

ae=ao+Aa< fall) (76)
life

where

- 0, 1s the Fatigue Limit Stress for n = 1000

- 0y 1s the stress for the block in which the failure criterion is met
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- Ao is the increase in stress after each block is complete (2.5% of the
average maximum quasi-static load for this study)

- Npg 1s the number of cycles complete in the block in which the failure
criterion was met

- Nyjf, is the assigned cycle count being investigated (n = 1000 here)

3.11 Statistical Analysis

It was important to demonstrate how conclusive the experimental results were. In
order to better understand the results, statistical analysis was performed on both the
quasi-static experimentation and the cyclic fatigue experimentation. In order to compare
data, for each mean the sample standard deviation, sample size, and a 95% confidence
interval are presented. The confidence interval was calculated for each mean using
Equation 66. The difference in means is shown in the units of the two means and then is
shown as a percentage of the reference mean. The reference means are those of the
control samples in all cases except where the shank-only hybrid is compared to the full
hybrid. In that case, the shank-only means are the reference.

In order to draw conclusions from data, means were compared to test for
statistical significance. One cannot simply calculate two means and begin to draw
conclusions. The variance in each sample set influences what conclusions if any can be
drawn from given data. If error in either sample set is exceptionally large compared to
difference in means, the difference may not be statistically significant. Statistical
significance was tested using a two-tailed Student’s t-distribution. This assumes that the

error values associated with means are different. “Two-tailed” means the test checks for
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significance in the case that either of the two means being compared is larger. Thus, the

null and alternative hypotheses are

Ho:py = Uy
Ha:#1¢ﬂ2 (77)

Where u is the mean of a probability distribution

The test statistic for a difference of means with difference sample size and variance is

defined as
X, — X
to — 1 2
St 52 (78)
n, n

X is the sample mean
S is the sample standard deviation

n is the number of samples

Since this value does not exactly follow a t-distribution, a close approximation is found

by calculating the degrees of freedom as

G G )

t was calculated using Excel as a function of the degrees of freedom and the significance

as
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t=1t1-a/2v) (80)
By comparing the test statistic, t,, to the value of the t-distribution, one can decide if the
two means are significantly different. Here, “significant” means there is statistical
evidence to support the conclusion. If |ty| < t, then the null cannot be rejected meaning
there is not enough statistical evidence to prove that the means are different. If |ty > t
then the null hypothesis is rejected, and the data contain enough evidence to conclude
that the means are statistically different [106].

In order to test significance of factors, data for the controlled and nuisance factors
for each sample were entered in to JMP statistical analysis software [108]. Least squares
effects test models were performed. Conclusions drawn here are based on assumptions of
normality and constant variance. Normality was verified using the Shapiro-Wilk test.
Plots of individual effects versus each response gave no indication that the data departed

from the constant variance assumption.

3.12 Post-Test Characterization

After testing was complete, the samples were sectioned in the 0° direction through
the hole, so that the damage through the thickness of the material could be investigated to
understand the failure mechanisms that occurred during testing. A subset of samples was
sectioned through the hole in the 45° direction for additional analysis. For samples
analyzed with a scanning electron microscope (SEM), the samples were also sectioned in
the 0° direction to allow them to fit in the SEM cell. Figure 67 depicts the sample

sectioning used for this work. A detailed drawing is attached in Appendix L.
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Figure 67: Coupon Sectioning

After sectioning, the samples were investigated using a Zeiss optical microscope
using 1x and 0.625x lenses. This allowed for analysis of behavior at the ply and fiber tow
level. While optical microscopy provided characterization through the thickness of the
layup, the resolution was not sufficient to capture behavior at the individual fiber level.
To characterize behavior at the fiber level, a scanning electron microscope (SEM) was
employed. The samples were clamped into a dedicated SEM fixture which was lined with

conductive tape to prevent charging. The SEM and fixture are shown in Figure 68.
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Figure 68: A) Scanning Electron Microscope B) Specimens in SEM Fixture
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IV. Computational Methodology

Finite element modeling for this research analyzed control and hybrid layups in 9-
ply and 18-ply double shear configurations using Abaqus software by Dassault Systémes.
Work was primarily performed in Abaqus/CAE (Complete Abaqus Environment) [3].
Modeling was performed using U.S. (imperial) units to match the units employed in the
experimental study and those commonly employed by AFRL in similar work. Because of
the complexities of the progressive failure problem being evaluated, explicit simulation
was employed in a stacked, layerwise configuration. The coupons were modeled to a
length of 3.5in (8.9cm). This modeled the entire coupon, except the grip section.
Similarly, the experimental fixture was modeled except for the grip portion. Modeling the
grip portions of the fixture and coupon would unnecessarily increase the number of
elements and contact interaction complexity. Since the damage in the experimental
samples was focused very near the bearing hole and no damage was noted in the
transition region, the transition was not modeled to avoid unnecessary complexity. The
configuration of the finite element model is depicted in Figure 69. Details will be
explained as the chapter progresses. Figure 70 depicts a close-up section view of the
coupon as it interacts with the fixture and bolt. Note that, in keeping with the layerwise

modeling technique, each layer of the coupon is modeled as a separate part.
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Figure 69: Finite Element Model Configuration

Figure 70: Finite Element Model Configuration-Section View
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In order to limit initial overclosures (surface intersections), the bearing hole
diameter was modeled at the largest allowable tolerance 0.3135in (7.963mm), and the
bolt diameter was modeled at the lowest allowable tolerance 0.3115in (7.912mm). Initial
overclosures were also prevented by matching the element size of the bolt and coupon

bearing surface as close as allowed by the fiber aligned mesh configuration.

4.1 Bolt and Fixture Representation

4.1.1 Hi-Lok Bolt Representation

When looking to represent the Hi-Lok bolt, the only information provided on the
Hi-Lok fasteners by manufacturer Lisi Aerospace are a tensile strength of 160ksi
(1100MPa) and a shear strength of 95ksi (660MPa) [109], [110]. This information alone
is not sufficient to construct a simple bilinear elastic-plastic model. In many cases,
authors simply model the fastener as purely elastic with no failure criteria with the
assumption that the Hi-Lok is much stronger than the parts being fastened [111].
However, due to the metal included in the hybrid and the high loads seen in
experimentation, it was desirable to be able to detect localized plasticity in the fastener.
The Hi-Lok product specifications also show that the material complies with the
following standards: AMS6415, AMS6349 or AMS6382, and AMS6322. Here “AMS”
refers to Aerospace Material Specifications, which is a set of standards maintained by the
Society of Automotive Engineers (SAE). This cross references to the American Iron and
Steel Institute (AISI) steel alloy designated AISI-4340. Detailed materials properties that
closely match the tensile strength specified by the Hi-Lok specifications are available

from MatWeb [112]. A complete list of materials properties is available in Appendix H.
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Since tabular stress-strain data are not available, a bilinear model was developed based on
the yield stress, elastic modulus, ultimate tensile strength, and elongation at break. Since
fracture was not expected in the bolt, damage evolution and element deletion were not
considered for this material.

The evolution of the bolt model is shown in Figure 71. The head and threaded
portion of the bolt were not modeled to avoid unnecessary complexity. In Figure 71A
only the solid portion of the bolt pictured was employed in the model. The bolt was
partitioned and then seeded at 0.025in (0.64mm) to closely match the node spacing of the
coupon to prevent excess penetration which would complicate the contact calculation.
The partitioning is depicted in Figure 71B. The final bolt mesh is shown in Figure 71C.
The bolt was modeled using 2940 hexahedral coupled temperature-displacement
elements (C3D8T) with a 3D stress behavior and second order accuracy. A schematic of
this element is depicted in Figure 72. Each node has three translational degrees of
freedom as shown at node 6. The temperature-displacement elements were employed so
that a temperature step could be used to apply a tensile load to the bolt (discussed further

under Boundary Conditions and Loading-section 4.6).
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Figure 71: A) Bolt Partition B) Bolt Mesh
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Figure 72: Schematic of 8 Node Temperature-Displacement
3D Stress Element (SC8R)
(Adapted from Buentello [47])

Preliminary models did not include the fixture, but rather modeled only the bolt
and bosses. This however, proved to be too stiff of a constraint and led to premature
failure prediction. Thus, the fixture was added and represented using 682 3D stress
elements (see Figure 72)with reduced integration and second order accuracy. The 17-4PH
stainless steel was represented using an elastic-plastic bilinear model. Since no plasticity
or damage was expected in the fixture, it was modeled using as few elements as possible,
and damage evolution and element deletion were not considered. Plasticity in the fixtures
was never noted in experimentation or computation. The fixture partition and mesh are

shown in Figure 73.
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Figure 73: Fixture A) Partition B) Mesh

The interaction between the bolt and the two sides of the fixture was represented
by tying the nodes on the circumference of each bolt end to the circumference of the hole
on the outside of each of the fixture halves as shown in Figure 74. The bolt nodes were
defined as master, and the fixture nodes were defined as slave nodes in the tie

relationship.

Figure 74: Bolt to Fixture Ties
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4.2 Composite Representation

The composite material was represented using a layerwise technique, meaning
that each ply is represented as a distinct part modeled using at least one layer of elements
through the thickness. In this case, for model efficiency, a single element was used to
represent the thickness of a composite ply. Because Hashin failure criteria were to be
employed, the use of continuum shell elements was required, since 3D stress elements are
not compatible with Hashin Failure in the native Abaqus environment. Figure 75 shows
how a continuum shell element compares with a conventional shell element. While a
node in a conventional shell element has both translational and rotational degrees of
freedom, the thickness of the continuum shell element has a representative finite
thickness. This means that it has nodes representing each face of the part. These nodes

only have translational degrees of freedom.

Q

displacement and rotation

/\ _ degrees of freedom
Conventional shell model -
geometry is specified at the reference surface;
thickness is defined by section property.
Finite Element Model Element

structural body
being modeled

displacement
degrees of freedom only

Continuum shell model -
full 3-D geometry is specified;
element thickness is defined by nodal geometry.

Figure 75: Continuum Shell v. Shell Elements [46]
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Continuum shell elements function similarly to 3D stress elements, but they employ First
-order Shear Deformation Theory (FSDT) constraints. These constraints are common in
composite shell theory and assume that: i) a line normal to the surface drawn through the
thickness can rotate but will remain straight and ii) the change in a shell thickness as it
undergoes deformation is negligible [113]. A schematic of an 8-node continuum shell
element (SC8R) is shown in Figure 76. Each node had three translational (displacement)
degrees of freedom as indicated on node 6. The default thickness direction (normal

direction) is also identified.

Normal
Direction

Degrees of]
Freedom

Figure 76: Schematic of 8 Node Continuum Shell Element (SC8R)
(Adapted from Dassault Systemes [114])

Based on experimental results, the thickness of a ply in a layup was modeled at
0.0051in (0.13mm). A fiber aligned mesh was developed to properly model the
anisotropy of the unidirectional composite while minimizing the number of elements and

nodes.
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4.2.1 Composite Mesh Arrangement

In order to investigate the need for a fiber aligned mesh in this study, three models
were evaluated in the following configurations: fiber aligned, concentric, and misaligned.
The three mesh arrangements considered are shown in Figure 77. While a misaligned
configuration would not generally be considered, it is presented here for comparison to
demonstrate the utility of a proper fiber aligned mesh and the problems posed by using a
concentric mesh to represent a unidirectional composite. Each used a representative
element size at the hole of 0.025in (.064mm) and was based on a 45° fiber alignment in a

single ply of unidirectional IM7/977-3.

B) Aligned Mesh C) Misaligned Mesh

A) Concentric Mesh

Figure 77: Fiber Aligned Mesh Study A) Concentric B) Fiber Aligned C) Misaligned

The material was represented using Hashin criteria for failure initiation and a
linear displacement failure evolution model. In this case, the best mesh would be
sensitive to damage near the hole in the correct direction. In order to prevent masking
damage initiation, the fiber aligned mesh study was conducted using an open-hole
arrangement as seen in Figure 78. With one end constrained using a clamped boundary

condition, a tensile displacement of 0.030in (0.76mm) was commanded as a linear ramp
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over a unit time step. The displacement symbols appear non-uniform because the fiber
aligned mesh makes the node spacing vary. While this research employed plies in £45°,
90°, and 0° directions, this 45° fiber direction combined with the open hole load scenario
was the most effective model to demonstrate a fiber aligned mesh. This is because it not
only required the mesh to locate the initial stress concentration at the sides of the hole, it
also had to define subsequent failure in the correct direction as the crack progressed away

from the hole.

TYV ¥ VYV VVVIVY V YYVVVN VIOTTV

Figure 78: Fiber Aligned Mesh Study Boundary Conditions

Figure 79 depicts an open hole sample comprised of all £45° plies with a 45° ply
on the face. This is a textbook case of what is expected to happen in a 45° ply near a hole.
The failure should begin at the stress concentration at the sides of the hole, and then
progress away from the hole as matrix cracking.

Figure 80 shows the different models as matrix tension damage begins. When
compared with Figure 79, one would expect to see damage in the models begin at the

sides of the hole and then progress along the fiber direction. Figure 80A represents the
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45° aligned fibers using a conventional concentric mesh that would generally be
employed in an isotropic material. Figure 80B represents the material with a mesh that is
aligned with the 45° fiber direction. Figure 80C presents the misaligned configuration
with a 45° fiber direction and a 0°/90° aligned mesh.

Each model configuration predicts the damage onset at the same simulation time
and in the expected location on the side of the hole. In other words, in each case the stress
concentration at the sides of the hole is represented well. However, the concentric mesh
does not correctly predict the matrix cracking in the correct direction. While damage
should propagate in the fiber direction, the concentric mesh shows the damage
propagating laterally away from the hole like one would expect in an isotropic material.
The fiber aligned mesh accurately represents both the initial stress concentration and also
the matrix cracking in the fiber direction. The misaligned mesh generally provides the

same result as the concentric mesh.

Figure 79: Expected Failure in 45° Ply
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Figure 80: 45° Fiber Direction A) Concentric Mesh
B) Fiber Aligned Mesh C) Misaligned Mesh
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Based on this investigation, a fiber aligned mesh was employed for this work. In
addition to modeling effectiveness, the fiber aligned mesh is also more intuitive for a user
to interpret. Since the fiber aligned mesh was developed via face partitions, and
continuum shell elements were used, a bottom up mesh was required. This was defined
using the partitioned faces projected through the thickness of the material. This mesh type

requires that each face of the part be associated with the mesh as a separate step.

4.2.2 Composite Convergence

To determine appropriate element size in the composite, a convergence study was
performed using a 0° fiber orientation with a 0°/90° mesh alignment, with four different
target dimensions for critical elements at the bearing surface. The goal of convergence
was to produce the most effective mesh discretization, based on stress in critical
elements, without requiring unnecessary computation time. Since the fiber aligned mesh
was employed, similar convergence behavior was expected in the +45° mesh. Since
producing each fiber aligned mesh took a considerable number of man hours,
convergence was conducted only on the 0°/90° mesh. The final spacing was then applied
to both the 0°/90° mesh and the +45° mesh. As with the fiber aligned mesh study, Hashin
failure initiation and a linear damage evolution model were employed.

Figure 81 depicts the configuration of the convergence model. The models were
loaded with a fixture that simulated a bolted configuration that consisted of two bosses
with a bolt passing through the bosses and the sample. An encastre (clamped) constraint
was applied to the end of the bolt and the bosses to simulate a bolted double shear

configuration. Penalty contact was employed between the fixture and the sample. A
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displacement was applied at the far end of the sample similar to how the coupon is loaded

in the experimental procedure.

Figure 81: Composite Convergence Model A) X-Y Plane View B) Y-Z Plane

Due to requirements of developing a fiber aligned mesh and the associated
geometry, the size of each element cannot be exactly the same. Thus, mesh refinement
for convergence cannot be based solely on element size. Also, the size of the elements
near the bearing surface is much more critical than the size of the elements far from the
hole. This means that convergence should not be based on the number of elements. Thus,
the best measure for convergence is the critical element spacing near the hole. In other
words, this described how far apart the partition lines are that follow the fiber direction.
This spacing was largely driven by how the fiber aligned mesh fit around the hole. The
final four values for critical element spacing that were considered were 0.0750in,
0.0500in, 0.0250in, and 0.0125in [1.91mm, 1.27mm, 0.635mm, and 0.318mm)] as

depicted in Figure 83.
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A) 0.0750in (1.91mm) B) 0.0500in (1.27mm)
Mesh Spacing Mesh Spacing

C) 0.0250in (0.635mm) || D) 0.0125in (0.318mm)
Mesh Spacing Mesh Spacing

Figure 82: Fiber Aligned Meshes for Convergence
A) 0.0750in (1.91mm) B) 0.0500in (1.27mm)
C) 0.0250in (0.635mm) D) 0.0125in (0.318mm)

The main output used to determine convergence was stress in critical elements at the
sides of the holes, as seen in Figure 83. In each case, the stress in these two elements was

averaged at a hole elongation of 0.0200in [0.508mm].
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Figure 83: Composite Convergence Critical Elements

Table 7: Composite Convergence

. Elapsed Average
emtspuns o e, % Qs
(hr:min) | Stress (ksi) [MPa]
0.01250 [0.3175] | 2006 6:49 352.9 [2433] 1.549%
0.02500 [0.6350] | 1286 1:24 358.4 [2471] 61.28%
0.05000 [1.270] 704 0:48 2222[1532] 2.488%
0.07500 [1.905] 496 0:45 2168114951 |G

Table 7 shows the results of the convergence study. The initial mesh refinement
did not produce a large change in the evaluated stress value (Table 7), but this very
coarse mesh was not desirable due to spatial resolution. The final mesh refinement
produced a small change in the observed stress value only 1.5%, but the computation
time was increased almost five times due to the increase in the element count and the
change in element characteristic length, which reduces the stable time step. The

computation time was important because if this simple model consumed large amounts of
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time, then a more complex laminated model would consume inordinate amounts of time
and computational resources. Considering the stress calculation and run time, the
optimum element spacing near the bearing hole was set to 0.02500in (0.635mm).

Composite materials properties used throughout this work were referenced from
CALE II and Giles and Venkataraman [18], [115].

The interlaminar matrix region was represented using cohesive interactions. These
interactions can be compared to a tie over which the user has control. The damage
initiation stiffness and nominal stress values were taken from Giles and
Venkataraman[115]. Damage evolution used Benzeggagh-Kenane energy criteria with a
B-K exponent of 1.45. In order to prevent the interlaminar matrix and composite matrix
from failing simultaneously, the interlaminar matrix fracture energy values were set to
90% of the fracture energy values of the composite matrix properties defined in CALE II

[18].

4.3  Foil Representation

This section presents how the finite element representation of the foil plies was
developed. First, a finite element investigation is presented that proves that the strain rate
is consistent in the foil, and strain rate specific materials properties need not be
considered. Then convergence of the foil is addressed. Finally, an experimentally
determined elastic-plastic curve is derived from testing by Roberts [67]. This testing also
proves that the stainless steel behaves similarly at a wide range of strain rates, further

suggesting that strain rate dependence need not be considered in quasi-static models.
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4.3.1 Foil Strain Rate Dependence

In order to study strain rate dependence in this study, a basic model of a foil was
developed as depicted in Figure 84. It was assumed that the quasi-static assumption
would hold throughout the simulation, but verification was desired to account for any
dynamic effects that took place near the bolt. The foil was modeled with a concentric
mesh in a pinned configuration. The edges of the foil were constrained in-plane to

confine the damage to the bearing region.

Figure 84: Foil Investigation Model

A bilinear elastic-plastic model was defined for the foil, and a bearing strain of 0.5 (50%
hole elongation) was applied over a unit analytical time step. Maximum principal strains
were tracked over time at three nodes deemed to have the most critical strain values as
depicted in Figure 85A. Von Mises stress and equivalent plastic strain are seen in Figure
85B and Figure 85C. These contour plots correspond well to the behavior of the foil
observed in preliminary pinned hybrid samples (Figure 85D). Finally, the maximum
principle strain at each of the critical nodes is plotted with respect to time in Figure 86.
As time progresses, the strain at the critical elements develops at a rate similar to the

commanded rate of bearing strain (hole elongation). The only departure is due to the foil
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sliding along the pin in the axial direction. Since the strain at the critical nodes does not
vary widely over time as compared to the commanded strain rate, this enabled the

decision to exclude strain rate dependence from this study.
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Figure 85: A) Critical Nodes B) Von Mises Stress
C) Equivalent Plastic Strain D) Foil Deformation in Preliminary Pinned Sample
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Figure 86: Strain at Critical Nodes
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4.3.2 Foil Convergence

The convergence study on the foil was conducted in a similar fashion to the
composite, employing the same bearing loading and boundary conditions. However, the
foil used a structured mesh arranged concentrically around the hole. Criteria for
convergence were peak stress and equivalent plastic strain after a displacement of
0.0200in (0.508mm).

Figure 87 shows the equivalent plastic strain in each of the meshes considered in
the foil convergence study, and Table 8 lists all the results. Since refinement in the
structured mesh has a more linear effect on element count, and the failure criteria for
plasticity are much less intense, simulation times were not affected by mesh refinement.
The final refinement to 0.0250in (0.0635mm) was selected because it produced results
consistent with the previous step, and closely matched the element size selected for the

composite and the bolt to optimize the contact relationships.
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Figure 87: Foil Convergence Equivalent Plastic Stress
A) 0.0250in (0.635mm) B) 0.0310in (0.787mm)

C) 0.0410in (1.04mm) D) 0.060in (1.52mm)

Table 8: Foil Convergence

Element Size Total Erll?i[:s:d Peak Stress % E(i:::tl::m %

(in) [mm] Elements (et (ksi) [MPa] Change Strain Change
0.0250 [0.635] 560 1:03 212.7 [1466] |0.09394% | 0.1141 0.6098%
0.0310 [0.787] 448 1:07 212.9[1468] | 5.610% 0.1148 31.71%
0.0410 [1.04] 312 0:59 201.6 [1390] 1.950% 0.08716 10.39%
0.0600 [1.52] | 208 1:07 | 205.6[1418

146




4.3.3 Final Foil Representation

The foils were represented using coupled temperature-displacement elements with
3D stress (see Figure 72) behavior, reduced integration, and second order accuracy. The
temperature-displacement element type allowed for a temperature step to be assigned to
model the cure induced thermal stresses. The employment of the temperature-
displacement element to model cure induced thermal stress is discussed in Boundary
Conditions and Loading. The part was partitioned concentrically about the hole and then

meshed with a structured mesh as see in Figure 88.

Y

L.

Y

L.

Figure 88: A) Foil Partition B) Foil Mesh

It was hypothesized that published values for 301 stainless steel may not be adequate to
describe the foil due to thinness and processing. A more defined elastic-plastic curve was

also desired. Thus, computation considered both a bilinear elastic plastic model and an
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experimentally determined elastic-plastic curve. Experimentation was performed by
Roberts and published by Roberts and Sherburne et al [67], [116], [117].

To get the most representative results and to use available material, tests were
performed on foils that had been through the surface preparation process. Tests were
performed in accordance with ASTM E345. This test employs a “dog bone” shaped
sample with a 0.500in (12.7mm) gauge width which is loaded in tension. These
displacement rates listed in Table 9 were selected to study target strain rates expected in
bearing experimentation. Table 9 lists the displacement rates at which foil tensile tests

were conducted and the estimated strain rate produced by the given displacement rate.

Table 9: Foil Experimental Displacement and Target Strain Rates

Displacement Rate Displacement Rate S]i‘:;lil::z?e
(in/min) [mm/min] (in/s) [mm/s] (1/s)
0.5265 [13.37] 0.008775 [0.2223] 0.0027
0.05265 [1.337] 0.0008775 [.02223] 0.00027
0.02633 [0.6687] 0.00043875 [.01114] 0.000135
0.005265 [0.1337] | 0.00008775 [0.002223] 0.000027

The results of the foil testing are listed in Table 10 and the statistical analysis of the data
are listed in Table 11. Stress-strain curves are plotted in Figure 89. From Table 10 and
Figure 89 it is most noteworthy that across all tested displacement rates, the curves are
similar. Statistically, based on a two-tailed T-test, there is no discernable difference in the
fracture strain, yield stress and strain, and modulus across the groups. The only
statistically significant difference is in the maximum stress when comparing group 1 and

group 2 to group 4.

148



Table 10: Foil Experimental Data

Group 1: Group 2: Group 3 Group 4
0.5265 in/min 0.05265 in/min 0.02633 in/min 0.05265 in/min
(n=5) (n=5) (n=3) (n=2)
Mean stdev Mean stdev Mean stdev Mean stdev
F;i‘:;:';e 0.1042 | 0.0227 | 0.1145 | 0.0174 | 0.1372 | 0.0993 | 02028 | 0.0294
Ma?kfit)ress 195.1 | 7.8058 | 199.7 | 5.1519 205 20158 | 2085 | 23282
S‘i;‘:“; 0.01345 | 0.001577 | 0.01331 | 0.001415 | 0.01355 | 0.001562 | 0.01312 | 1.27E-04
Yield
| 15322 | 6.662 162.7 1684 | 16147 | 9935 | 15423 | 1.6122
Stress (ksi)
Mz’l‘{’s‘gus 13310 | 1120 | 14400 | 3892 | 14070 | 9966 | 13880 | 3010

In order to create stress strain curves for the computation effort, the data for
Groups 2 and 3 were averaged and decimated to develop a model composed of 10
segments that could be imported into Abaqus to define the plastic behavior of the
material. Since there was a wide range of values for fracture strain, and not a statistically
discernable difference between values, the manufacturer published value of 21%
elongation at break was used. It is important to note that the material certification
provided with the foil does not included an elastic modulus. While a yield stress is
provided, a yield strain is not provided so an elastic modulus cannot be directly
calculated. Other published values for the modulus of this material were all around
30.7msi (211.7GPa) while the modulus developed from the experimental data curve was
a much lower value of 13.3msi (91.7GPa).

Figure 89 depicts this experimentally developed stress strain curve to be used in
computation plotted on the experimental values. This shows that the computational curve
represents the experimental data well. The tabular form of this curve is outlined in
Appendix I.
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Table 11: Foil Statistical Analysis

Group 1 v. Group 2 Group 1 v. Group 3 Group 1 v. Group 4
Diff % Diff |Stat Sig Diff  |% Diff|Stat Sig Diff % Diff|Stat Rel
Fracture Strain | 0.01030 | 9.885 No 0.03300 | 31.67 | No 0.09860 | 94.63 No
Max Stress 4600 | 2358 | No | 9.900 |5.074| No 13.40 | 6.868| Yes
(kips)
Yield Strain -1.400E-04| -1.041 No |1.000E-04(0.7435| No [-3.300E-04(-2.454| No
Yield Stress 9470 | 6.181 | No | 8250 |5.384| No 1.010  [0.6592| No
(kips)
Modulus 1090 8.187 No 759.0 5.701 No 562.000 |[4.221 No
Group 2 v. Group 3 Group 2 v. Group 4 Group 3 v. Group 4
Diff % Diff [Stat Rel Diff % Diff|Stat Rel Diff % Diff|Stat Rel
Fracture Strain | 0.02270 19.83 No 0.0883 | 77.12 No 0.06560 | 47.81 No
Max Stress 5300 | 2.654 | No | 8800 |[4.407| Yes | 3500 |1.707| No
(kips)
Yield Strain 2.400E-04| 1.803 No [|-1.90E-04(-1.427| No -4.30E-04 |-3.173| No
Y‘e('l‘:ils)gess 21220 [-0.7499| No | -8.460 |[-5.200] No 7240 |-4.484| No
Modulus -331.0 -2.298 No -528.0 |-3.666| No -197.0 [-1.400| No
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Figure 89: Foil Tensile Stress-Strain Curves and Computational Curve
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4.4 AF-191U Adhesive Representation

In initial iterations, the adhesive layers were represented using layers of cohesive
elements. However, since the characteristic length of a cohesive element is defined by the
thickness, the thinness of the adhesive drove a small stable time step, drastically
increasing run time. The cohesive elements also proved to be difficult to employ and
troubleshoot. An alternative which was explored was representing the adhesive with
cohesive interactions similar to the interlaminar matrix. This however does not represent
the relative thickness of the adhesive. Thus, in the most representative models, the
adhesive is represented as a continuum using 3D elements described with an elastic
modulus and Poisson’s Ratio. The adhesive layer is then joined to the composite with the
same cohesive interaction properties that represent the interlaminar matrix. The adhesive
is joined to the adjacent foil with cohesive interactions defined using published properties
of the adhesive. The adhesive employed the same mesh as the foil to reduce complexity

in the nodal relationships in the defined interaction properties.

4.5  Assembly definitions

The coupons were laminated in the software much in the same way they were
constructed in the laboratory. Each layer was applied to the coupon and located with
positional constraints. At the mating surface between two composite layers, a cohesive
interaction defined by matrix properties was employed with the 0° ply acting as the
master. At the mating surface between the composite and adhesive, the same matrix
cohesive interaction was applied with the composite acting as the master. At the mating

surface of the foil and adhesive, a cohesive interaction defined by AF191U adhesive
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properties was employed with the foil as the master. For each ply, a contact relationship
was defined between the bearing surface and the bolt with the bolt acting as the master.
A contact relationship was also defined between the plies on either face of the composite

and the bosses of the fixture with the fixture assigned as the master.

4.6 Boundary Conditions and Loading

The boundary conditions and loading for the computational models are shown in
Figure 90. Since the fixture is composed of two parts, a different constraint was applied
to each. The primary side was chosen to be the side that intersected the origin of the
model. The end of this primary fixture that would be in the grips was constrained against
translation in all three cartesian directions ( u; = u, = uz = 0) during the initial step and
throughout the remainder of the computation. Since 3D stress elements were used for the
fixture which do not have rotational degrees of freedom, there was no need to constrain
rotation. In order to allow a bolt load to be applied without causing a bending load in the
fixture, the secondary fixture was constrained only in the 1 and 2 (x and y) directions,
(uq = u, = 0) which allowed the secondary fixture to translate in the 3 (z) direction as

the bolt load was applied.
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Figure 90: Computational Model and Boundary Conditions

Since Abaqus/Explicit does not offer a bolt tension option, the bolt load was

applied using the phenomenon of thermal expansion. In general, for steels, a drop in

temperature will cause the material to contract at a measurable ratio directly related to the

temperature change. This ratio is known as the coefficient of thermal expansion. This

coefficient of thermal expansion can be programmed into Abaqus to simulate the same

response to a temperature change. The end goal is not to investigate some thermal

response, but to use this physical phenomenon to create stress in the bolt which in turn

simulates the clamping force of a fastener. To incorporate this, during the first 10% of the
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explicit analysis, a decreasing linear ramp temperature was input into the bolt using an
Abaqus amplitude defined with a tabular input. This caused the length of the bolt to
attempt to contract. A nonzero coefficient of thermal expansion was defined only along
the length of the bolt (in the 3 direction) so that the diameter of the bolt was not affected.
In this case, the user was required to set the values of plastic potential to a value of 1.
Each end of the bolt was tied to the outside of the hole in the fixture. The resulting
reaction was for a clamping force to be applied to the sample between the fixture bosses.
The target temperature was determined by first calculating how much stress was
required in the bolt cross section using a target bolt load of 9631bf. This was based on the
60in-1bs (6.78N) torque applied during experimentation. The length of the bolt in these

models is defined along the 3 direction.

AL3> (81)

033 = E33633 = E33 (L_
03

For the tested configurations, the resultant stress in the bolt cross section is 12636psi. The
required change in length to produce this stress is given as,
033L 82
AL = 33003 (82)
E33

The coefficient of thermal expansion, «, is given as

AL, (83)

aA=——-=
AT (Ly,)

Thus, the target temperature step is given as.

AL
AT = 3 (84)

a(LOS)
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This resulted in an estimated temperature step of -60.3°F (-33.5°C). This however
assumes that the ends of the shortening material are perfectly constrained. One could
estimate the through-thickness elastic moduli of each material to determine a temperature
step that would account for all of the materials’ properties. However, this still may not
account for all the variables in the models. Since the clamping force operates in the linear
elastic region of the materials, the load is applied in a linear fashion. Thus, the
temperature step was run with the initial target temperature and then was updated using
linear extrapolation and interpolation to converge to within 3.5% of the target stress.

The stress in the bolt cross section was measured by averaging the stress (g33) at the
centroid of each element in the cross section of the bolt in the center of the bolt’s length.

These elements are depicted in Figure 91.
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Figure 91: Bolt Cross Sectional Stress Measurement
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In the hybrid material, when thermally induced stresses were considered, a temperature
step was also assigned to the foil layers resulting in a stress field in each foil. These

thermally induced stresses are shown in Figure 92.
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Figure 92: Thermally Induced Stresses in Foil

The temperature ramps defined for the bolt and foil in the 9-ply hybrid case are shown in
Figure 93. As defined, each part reached its assigned temperature before the displacement
began at Time Step = 0.1. The relative part temperatures for the same case are displayed
in a contour plot in Figure 94. This sectioned image shows that the final temperature in
the bolt reached AT = —350°F (—195°C), which placed a compressive stress on the
fixture and coupon mimicking the tightening of the bolt. The foils reached AT =

—580°F (—322°C) which mimicked the stresses induced during cure. This resulted in a
tensile stress in the foils and a compressive stress in the adhesive and composite layers.
As stated, the bolt temperature step was determined iteratively to achieve the correct

stress in the bolt.
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Figure 93: Bolt and Foil Temperature Ramps
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Figure 94: Sectioned Contour Plot of Relative Part Temperatures - 9-Ply Hybrid

157




The system was loaded by applying a linear displacement boundary condition at
the end of the coupon in the 2 (y) direction (down). This was also described using an
amplitude with a linear input. Just as in the experimental procedure, a displacement was
used instead of a load to allow the system to shed load as displacement occurs. This
displacement boundary condition also constrained the displacement of the coupon in the
other dimension (u; = uz = 0) in the same way the jaws of the test frame do in the
experimental procedure.

Hole elongation was measured at the nodes highlighted in Figure 95, which
correspond to the knife edges used to clip on the extension gauge. Load was measured by
summing the reaction force in the 2 direction (y direction) of the loads on which the
displacement was prescribed. Bearing stress and strain and other values such as yield

were determined using the same procedures applied to the experimental data.

Displacement Nodes

Figure 95: Nodes to Measure Hole Elongation

Load was applied to the system over 10% of a unit step time. If time units were assumed

to represent seconds and the model was run over a time which was physically
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representative, the models would have likely taken weeks to run. Even running over a
unit step, the models took days to run on a 20 core machine. Thus, the time was shortened
to 0.1. The utility of this increased loading rate is judged by two considerations. First,
none of the materials properties were considered to be time dependent, thus none of the
materials behaviors were directly dependent on the overall time step. Second, in order to
ensure that the system was modeling quasi-static behavior, the kinetic energy was
evaluated and compared to the total energy of the system to ensure that kinetic energy did
not exceed 5% of the total energy of the system as is common practice and recommended

by Abaqus [118], [119].
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V. Double Shear Experimental Results and Discussion

This chapter presents the results of the quasi-static monotonic experimentation in
the double shear configuration. The intent of this chapter is to compare and contrast
the behavior of control and hybrid bearing samples in 9-ply and 18 ply layups at the
macroscopic level, while also investigating the phenomena that occur down to the
fiber level which allow progressive bearing failure to take place. First, the results of
the coupon dimensionality are presented to discuss the manufacturability of the hybrid
material. Next, the results of the double shear testing are presented predominately as
load-displacement and stress-strain curves in addition to tabular data. In order to study
the failure mechanisms that allow bearing failure to occur, micrographs of progressive
failure samples are presented. These have been loaded to target specific features of
interest in the full failure data. This chapter also includes a comparison of the 9-ply
and 18-ply results in the double shear configuration. The discussion concludes with a
statistical analysis. The chapter that follows investigates computational modeling of
the double shear scenarios presented here and compares the final finite element model

results to experimental results.

Dimensional Results

Dimensional results reflect the consistency and repeatability of the manufacturing

and processing of the hybrid material. This section specifically investigates the thickness

of the coupons.

Table 12 lists the average thickness per sample measured using a caliper (detailed

in section 3.8.1). Across all the samples used in this research effort, the standard
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deviation in thickness is less than 0.002in (0.05mm), which indicates that the layup and
cure process is consistent for each sample type. The standard deviation values for the
hybrid coupons are actually better than those of the controls, indicating that the hybrids
can be manufactured consistently.

It is noteworthy that due to the addition of the adhesive layers, the hybrid
materials were thicker than the control layups of the same ply count. In Table 12, the
right columns show the thickness increase. While this up to 28% increase in thickness
may be substantial in some applications, the magnitude of 0.0250in (.0634mm) is a small
magnitude compared to the scale of many aerospace structures. The consistency of the
thickness should enable it to be incorporated into designs in a straightforward manner.

The implications of this will be discussed throughout this chapter.

Table 12: Coupon Thickness

. Thickness Thickness
Thickness
Stdev (in) Increase Over Increase Over
Control (in) Control %

Average
Thickness (in)

Layup Type

9-Ply Control 0.04733 0.001506 -- --
9-Ply Hybrid 0.06050 5.477E-04 0.01317 27.82
18-Ply Control 0.09264 0.001934 -- --
18-Ply Hybrid 0.1180 0.001262 0.02539 27.41
18-Ply Shank-Only 0.1087 5.164E-04 0.01603 17.30

Note: for clarity, SI equivalent values not included in text are provided in in Appendix M.

One interesting phenomenon is that per ply, for both control and hybrid samples,
the 9-ply samples are thicker than the 18-ply. A statistical comparison is made in Table
13. Here the values for the 9-ply samples are doubled for comparison. In addition to the
average and standard deviation, the sample size is shown. Finally, a t-test was performed
on the difference in means to test for statistical significance (as described in 3.11
Statistical Analysis). While the difference is not statistically significant in the controls
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due to the relatively large standard deviation in the 9-ply control, the difference is
statistically significant in the hybrid based on the results of the t-test. This suggests that
the 18-ply samples are compacted more completely during manufacturing. This

comparison is discussed further in the monotonic test results.

Table 13: Thickness Statistical Analysis

2x 9-Ply Thickness | 18-Ply Thickness

% |Stat
Diff | Sig
Control Thickness (in) | 0.09467 |0.003011| 6 | 0.09264 |0.001934|33|-0.002030(-2.145 | No
Hybrid Thickness (in) | 0.1210 {0.001095| 6 | 0.1180 |0.001262(33|-0.002970|-2.454 | Yes

Average| Stdev |[N|Average| Stdev |N| Diff

5.2 Monotonic 9-Ply Double Shear Experimental Results

This section compares the bearing response results of the 9-ply control and hybrid
samples. The control samples employed a layup of [45/0/-45/0/90/0/-45/0/45]. To
hybridize the samples, as detailed in Chapter 3, the internal non-0° plies were replaced
with stainless steel foils resulting in a layup of [45/0/|SS|/0/|SS|/0/|SS|/0/45], where |SS]
represents a layer of 301 stainless steel with a layer of AF191U film adhesive on both
sides. This case is considered the least complex because it employed the thinnest layup
which supported the lowest load. The double shear configuration and thinness of the
sample means there was virtually no bending allowed in the bolt. Microscopy of
sectioned samples is presented from both control and hybrid progressive failure coupons
to explain the internal failure mechanism that corresponds to specific features in the

bearing response of each layup.
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Figure 96 shows the corrected load-displacement data for all 9-ply samples.
“Corrected” means that Equations 71 to 75 in Chapter 3 have been used to calculated the
correction factor for each data set. This mathematically removes the slack in the bolted
joint from each test to make them comparable.

In Figure 96, control samples are represented in blue, with the full failure controls
in blue dashed traces and progressive failure controls in blue dot-dashed traces. The
hybrid samples are represented in red with the full failure hybrids in solid red and the
progressive failure hybrids in dotted red traces. Table 14 shows summary data and
statistical analysis comparing the control and hybrid results pictured in Figure 96. The
average and standard deviation are provided for each measure. A 95% confidence
interval is given under the average, and N is the number of samples considered in the
calculation. Comparison between control and hybrid values was performed using a two-
tailed t-test to determine if the difference in the two averages was statistically significant
(see section 3.11). The 95% confidence interval is presented because it offers a different
way of thinking about the comparison of two means. If two means have confidence
intervals that overlap one another, they are not likely to be statistically significant. If the
two confidence intervals do not contain any of the same range of values, then the means
are statistically different.

In Figure 96, the hybrid samples plotted in red demonstrate a marked increase in
bearing load capacity over the control samples represented in blue. As recorded in Table
14, the hybrid material demonstrates a 25% greater yield load, a 35% greater offset load,
and a 42% greater ultimate load capacity over the control. The hybrid demonstrates an

impressive 51% increase in strain energy capacity over the control. This is not only due
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to higher yield and ultimate loads but is also due to the reloading in the hybrid samples
which begins near 0.050in (1.3mm) of hole elongation. In contrast, the control samples
shed load at a steady rate past 0.050in (1.3mm) of displacement. This reloading effect
and other specific phenomena will be discussed further alongside the progressive failure
samples.

When looking at the shape of the hybrid curves versus the shape of the control
curves, an important phenomenon is observed. The controls display sharp unloading and
reloading behavior just after yield, due to load redistribution as individual elements
within the laminate failed. These features often approach a 300Ibf (1330N) load change.
In contrast, the hybrid displays a damping of this behavior creating a more smooth,
ductile failure curve, since the load is being redistributed into the homogenous metallic
foils. In the hybrid, the magnitude of these redistributions is less than 100 1bf (445N). The
specific phenomena that cause these features are discussed in the next sections that cover

progressive failure.
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Figure 96: 9-Ply Load v. Displacements
Table 14: 9-Ply Double Shear Load Based Data
Control Hybrid
Average Average . .o Stat
95% CT) Stdev | N (95% CI) Stdev | N | Diff |% Diff Sig
. . 1.847 2.317
Yield Load (kips) (1.744_1'949)0.09771 6 (2215.2.418) 0.09656| 6 |0.4699| 25.44 | Yes
. 2.038 2.750
Offset Load (kips) (1_968_2‘107)0.06604 6 (2.6422.858) 0.1029 [ 6 |0.7121| 34.95 | Yes
Ultimate Load 2.151 3.054
(kips) (1.999.2.303) 0.06122 (2.8913.218) 0.06590( 3 ]0.9033| 42.00 | Yes
Strain Energy 141.0 213.0
(in-b) (120.7-161.3) 8.185 (201.6.224.4) 4.583 | 3 172.00|51.06 | Yes

While the data thus far has been presented in load-displacement terms, it should

also be considered in terms of stress and strain. Since the bolt diameter is the same in

each case, the stress calculation is essentially normalizing the load by the thickness of the

sample (Equation 69). The strain calculation is normalizing displacement (hole
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elongation) by the bolt diameter (Equation 70). These calculations are detailed in section
3.9.3.

Figure 97 shows the corrected stress-strain data for all 9-ply monotonic samples.
Control samples are represented in blue, with the full failure controls in blue dashed
traces and progressive failure controls in blue dot-dashed traces. The hybrid samples are
represented in red with the full failure hybrids in solid red and the progressive failure
hybrids in dotted red traces. Table 15 shows summary data and statistical analysis of the
data pictured in Figure 97. Here, the control and hybrid results are compared in yield
stress and strain, 1% offset stress and strain, ultimate stress, modulus (Chord
Stiffness)(Equation 71) and the calculated strain energy density (area under the stress-
strain curve) as detailed in Section 3.9.3.

A complicating factor arises when one looks at stress-based values. As depicted in
Figure 97, the curves appear much closer than those observed in the load-based data
(Figure 96). In fact, the gain in ultimate stress due to the hybrid shrinks to 9% and is no
longer statistically significant as recorded in Table 15. The offset stress is still statistically
significant, but has shrunk to a value just over a 5.5% improvement due to hybridization.
Strain energy density (in Table 15) when compared to strain energy (in Table 14) still
maintains an increase of 16% due to the reloading effect in the hybrid samples which
occurs after 15% bearing strain.

The change in the improvement from hybridization when converting to stress-
based values is due to the fact that, despite using the thinnest adhesive available, the
adhesive thickens the layup as noted in the dimensional results (Table 12). While the

adhesive was employed to toughen the foil-composite bond, this study does not find
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delamination to be a critical failure mode near yield, which suggests that other bonding
methods could be investigated.

Using the 9-ply configuration, the addition of the adhesive locally thickens the
finished part by 0.0132in (0.335mm) on average for the 9-ply samples which equates to a
thickness increase of 28% due to hybridization. While this is substantial from a percent
increase, the magnitude of the change is fairly small compared to the scale of many
aerospace structures and the thickness variation in other joint types. The thickness of the
hybrids also has a lower standard deviation than the control which means, despite being
thicker, the dimensionality of the hybrid is consistent. Thus, while no change in thickness
would be ideal, the small magnitude of the increase and the consistency of the thickness
should make designing for this thickening relatively straightforward if the design space
allows for it.

If constant thickness at the joint is required, adjustments to the hybrid
manufacturing process could be pursued to control the total thickness. The AF-191U
Film adhesive employed in this study would have to be removed and replaced with a
thinner solution. Spray adhesives that allow for less buildup could be investigated. Also,
other fiber metal laminates have shown good performance in bolted joints without
employing an adhesive and relying solely on surface preparation [22], [36], [38]. Any of
these updates to manufacturing would require new testing and computation to confirm the

benefits of hybridization.
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Figure 97: 9-Ply Stress v. Strain
Table 15: 9-Ply Double Shear Stress Based Data
Control Hybrid
Average Average . o, e Stat
95% CT) Stdev [N (95% CT) Stdev |N| Diff |% Diff| Sig
. . 125.3 123.0
Yield Stress (ksi) (118.0-132.6) 6.971 |6 (116.7-129.3) 5.996 | 6| -2.353 |-1.877| No
. . 0.04176 0.04194
Yield Strain (0.03920.0.04432) 0.0024 | 6 (0.03939.0.04449) 0.002431| 6 |1.817E-4{0.4350| No
. 138.2 146.0
Offset Stress (ksi) (134.1142.4) 3932 |6 (139.0-152.9) 6.636 |6 7.715 | 5.581 | Yes
. 0.05387 0.0591
Offset Strain (0.05162-0.05613) 0.002150| 6 (0.05173.0.06648) 0.007025| 6 [0.005173| 9.714 | No
. . 149.1 162.6
Ultimate Stress (ksi) (1343.163.8) 5933 |3 (150.6.174.5) 4826 (3| 13.48 |9.045 | No
. 3155 3092
Modulus (ksi) (3032.3278) 116.8 |6 (2936.3248) 149.0 | 6| -62.93 |-1.995| No
Strain Energy 31340 1489 36380
Density (in-lb/in3) (27640-35040) 3 (34360-38410) 815.6 |3 5039 16.08 | Yes
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5.2.1 9-Ply Control Progressive Failure

To enable the study of the features that caused bearing failure, three control
coupons were sectioned through the thickness along the length, as shown in Figure 98. In
the micrographs that follow, the view is in the direction of the blue arrow (into the page)
in Figure 98. The area of consideration is that near the bearing surface highlighted in
bright green. In each case, the bearing surface of the hole is on the left and the viewer is

looking through the thickness of the coupon at the sectioned surface.

—

Figure 98: Sectioned Sample View

Figure 99 shows the stress-strain curves of the 9-ply control progressive failure
samples. Displacement values were selected to target the internal failure mechanism that
allowed the features indicated in Figure 99. Here, results from three different progressive
failure samples loaded to 6.40%, 10.5%, and 17.1% bearing strain are plotted with one of
the full failure samples.

The process of capturing progressive failure was difficult because there is some
uncertainty in the initial loading of the joint which complicates selecting a target
displacement. Also, it is often difficult to arrest the deformation occurring during a test. If
the sample happens to be shedding load at the time, the sample must be unloaded faster
than the damage can propagate.

The micrographs in Figure 100 correspond to the curves in Figure 99. The colors

and line styles of the traces on the plot in Figure 99 match the color and style identified
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beside the title of each image in Figure 100. In each case, the strain listed is the actual
maximum strain after the correction factor was applied. The scale in the sectioned images
is given as 0.156in (3.96mm) which is one bolt radius. This is intended to provide the
viewer a reference to macro-scale hole elongation while viewing microscopic features. In
Figure 100, selected failure modes are identified as Fiber Kinking (FK) shown in green,
Matrix Cracking (MC) shown in white, and Delamination (DL) shown in orange. This
notation is used throughout the rest of the chapter.

Figure 100A shows a sample strained to 6.40% (dotted red trace) which was
targeting the load drop just after yield (Feature 1 in Figure 99). The average yield for all
samples in this configuration is represented by a horizontal black dotted line in Figure 99.
This image, coupled with later 18-ply data, suggests that yield is dominated by in-plane
fiber kinking (noted by “FK”) in the 0° layers. Some slight out-of-plane fiber kinking in
the 0° layers coupled with matrix cracking in the £45° layers is observable. Some early
delamination is also present (noted by “DL”).

The sample in Figure 100B (green dashed trace) was targeting the major load
drop that occurred in the full-failure samples around 7% to 8% strain (Feature 2 in Figure
99). The in-plane fiber kinking from yield is present, but here the sample is dominated by
through thickness cracking and delamination. Delamination exists in both localized
regions and large-scale regions. Even at this strain, the majority of the damage has
occurred between the bosses on the fixture in the bounds of the sample faces. (Fixture
bosses are depicted in Figure 60 in section 3.9.1 and discussed in section 3.3). Most of
the through-thickness cracking is constrained inside one bolt radius (represented by the

image scale).
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Figure 100C shows a 17.1% strained sample (blue dot-dashed trace), which
accounts for the major load drop in the full-failure samples around the 15% strain point
(Feature 3 in Figure 99). While the fiber kinking, through thickness cracking, and
delamination are present, here the failure is dominated by large scale out of plane failure
at the edge of the fixture boss. The full failure samples were crushed to such a degree that

they could not be reliably sectioned for microscopy and are not pictured.
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Figure 99: 9-Ply Control Progressive Failure Samples
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A) 6.40% Strain (Feature 1) B) 10!5% Strain (Feature 2)
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Figure 100: 9-Ply Control Progressive Failure Micrographs

5.2.2 9-Ply Hybrid Progressive Failure

Similar to the control data shown previously, Figure 101 shows the stress-strain
curves for the three 9-ply hybrid progressive failure samples strained to 8.38%, 18.8%,
and 25.8% bearing strain which targeted the features identified. Corresponding
micrographs are shown in Figure 102.

The sample in Figure 102A sought to target the mechanisms causing the knee
point after yield (Feature 1 in Figure 101). Similar to the control, in-plane fiber kinking is
visible in the 0° layers. It is important to note that, in the area visible in these images, the
inner +£45° and 90° layers have been replaced with foils. Only the face lamina oriented at
45° remain. Thus, any internal fiber failure is happening in 0° layers. At this early strain
(8.39%), a small amount of instability has been initiated in the foil. This out of plane
deflection in the metal foils is commonly known as buckling in structural members. The
presence of the ductile foil is halting the matrix cracking that is seen coupled with the

fiber kinking in the control micrographs. This is shown by comparing Figure 100A and B
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(controls) with Figure 102A (hybrid). The hybrid in Figure 102A shows fiber kinking,
but since there are no internal adjacent +45° or 90° plies, the coupling effect cannot take
place.

Figure 102B shows the damage after the major load drop that occurs near the 17%
strain mark (Target Feature 2). The early onset fiber kinking in the 0° layers from yield is
present as is some slight buckling in the foils within half a bolt radius from the bearing
surface (one bolt radius is represented by the image scale). The major feature is the large-
scale buckling that occurs at the edge of the fixture boss which caused the sharp
unloading in Feature 2. This large-scale buckling is accompanied by intense fiber
kinking, fiber breakage, and delamination. Notably, the delamination that occurred
internal to the layup near edge of the fixture boss occurred between the composite layer
and the adhesive. The adhesive remained bonded to the foil, which indicates that surface
preparation of the foil was robust. As one might expect, the foils behaved in a ductile
fashion bending around the fixture boss.

The final progressive failure sample targeted a feature that occurred in the hybrid
but not the control. After the large-scale deformation that occurred at the edge of the
boss, the hybrid demonstrated a reloading noted as Feature 3. Figure 102C shows that
after the buckling occurred, the fixture boss then impinged on a relatively undamaged
section of the sample causing an increase in load capacity. As depicted in Figure 102D,

this load was shed by the continued buckling of the sample against the fixture boss.
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Figure 101: 9-Ply Hybrid Progressive Failure Samples
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53 Monotonic Quasi-Static 18-Ply Double Shear Experimental Results

This section presents the next step in complexity by doubling the layup studied in
the previous section while maintaining the double shear loading configuration. While the
load capacity was expected to be doubled, increasing complexity, the double shear
configuration still limited bending in the bolt. The control layup employed was
[45/0/-45/0/90/0/-45/0/45]2. To hybridize the sample, as detailed in Chapter 3, the
internal non-0° plies were replaced with stainless steel foils resulting in a layup of
[45/0/|SS|/0/|SS|/0/|SS|/0/45]2.

Load-displacement curves for the 18-ply double shear samples are shown in
Figure 103. Control samples are represented in blue, with the full failure controls in blue
dashed traces and progressive failure controls in blue dot-dashed traces. The hybrid
samples are represented in red with the full failure hybrids in solid red and the
progressive failure hybrids in dotted red traces. Table 16 contains detailed comparative
data and statistical analysis for yield, offset, and ultimate loads as well as strain energy.
Strain energy is presented because it measures performance throughout deformation
while the other values are taken from single points. In Table 16, statistical significance in
the far right column compares the means using a t-test as described in section 3.11 to
decide if the two means are statistically discernible.

For both the hybrid and control, a progressive failure sample was excessively
strained due to the inability to unload the sample quickly enough to arrest the
deformation. These are visible in Figure 103 as the long, linear unloading lines that

depart from the rest of the data. An additional hybrid progressive failure sample
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displayed anomalous bearing failure upon unloading as well. These data were kept,
enabling larger samples sizes for other calculations such as yield and modulus.

In Figure 103 it is clear that the hybrid curves (red traces) reach a much higher
load capacity than the controls. The hybrid curves also appear much smoother due to the
ductile nature of the foils which are integral to the layup. A feature here that was not
observed in the 9-ply case is the sharp unloading that occurred between 0.040in and
0.060in (1.0mm and 1.5mm) in the hybrid full failure samples (solid red traces). This
unloading was caused by a catastrophic crack through the thickness of the material that
developed at the hole and propagated to the edge of the sample which effectively shed all
the load capacity of the joint. In contrast, the control displayed a gradual bearing failure
as previously observed in the 9-ply data. Figure 104 compares macroscopic images of
control and hybrid samples loaded to similar hole elongations. The control displays
textbook bearing failure while the hybrid displays the large through thickness crack. This
crack always occurred on the same side of the hole since the internal -45° plies were
replaced with foils which caused asymmetric loading around the circumference of the
hole. The specific phenomena that cause other features are discussed in the next sections

that cover progressive failure.
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Table 16: 18-Ply Double Shear Load Based Data

Control 18-Ply Hybrid 18-Ply

Average | Stdev | N[ Average | Stdev |N| Diff |% Diff| SStiagt

Yield Load (kips) |5 51 93| 0:1329| 7 | o304 a01) | 01247 | 90.4552] 12.40 | Yes
Offset Load (kips) (3';-692‘3129) 0.07285| 6 (5.053'71_;?83) 0.07886| 7| 1.057 | 26.08 | Yes
U'ﬁ’z‘lfitlfs)“’ad wrsorton 01514] 3 | SO0 H0.05972] 4 11.425 | 31.57 | ves
Stra(ii‘l'l _I*l:l‘)‘)ergy e 3483 | 3| (JO9L 1176 | 414474 | 3601 | ves

In the 18-ply case, hybridization produced results similar to those noted in the 9-
ply case but did not produce the same percentage increases. As listed in Table 16, the 18-
ply hybrid produced a yield load 12% greater and an ultimate load 32% greater when
compared to the control, while absorbing 36% more strain energy. A detailed comparison
between the 9-ply and 18-ply double shear cases is presented in section 5.4.

After investigating the 18-ply case in terms of load and displacement, it should be
considered in terms of bearing stress and strain. Figure 105 depicts plots of the 18-ply
double shear control and hybrid samples in terms of bearing stress and strain. Control
samples are represented in blue, with the full failure controls in blue dashed traces and
progressive failure controls in blue dot-dashed traces. The hybrid samples are represented
in red with the full failure hybrids in solid red and the progressive failure hybrids in
dotted red traces. Table 17 shows summary data and statistical analysis of the data
pictured in Figure 105 comparing the control and hybrid results in yield stress and strain,
1% offset stress and strain, ultimate stress, modulus, (Chord Stiffness)(Equation 71) and
the calculated strain energy density (area under the stress-strain curve) as detailed in

Section 3.9.3.
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As noted in the 9-ply configuration, when converting 18-ply data to stress-strain
based values (Figure 105 and Table 17), the thickness increase of the hybrid masks the
gains observed in the load data. Due to the smooth, ductile shape of the hybrid curves, the
yield stress of the hybrid is actually calculated to be almost 13% lower than that of the
control, and the offset stress is almost 3% lower than the control. The difference in the
ultimate stress and modulus is no longer statistically significant. Even with the thickness
masking some of the differences, it is noteworthy that the modulus (chord stiffness) of
the hybrid is significantly stiffer than that of the control. This is because the internal -45°
and 90° layers in the control were providing relatively low stiffness in the loading

direction and were replaced with the stiffer metal foils in the hybrid.

18-Ply Double Shear All Samples: Stress v. Strain
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Figure 105: 18-Ply Double Shear All Samples: Stress v. Strain
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Table 17: 18-Ply Double Shear Stress-Strain Data

Control 18-Ply Hybrid 18-Ply
burese | swev | N[ ANHEE | swev |N| Dir | i
Yield Stress (ksi) (12;%?1-323'8) 6.098 | 7 (10;;_11-184'7) 3773 | 9| -1633 [-12.74] Yes
Yield Strain | o SO 10.002956( 7 | 000 osss) 0001775 9 |-0.006481|-16.09 | Yes
Offset Stress (ks)| o 1oe, | 3982 |6 [ 800K | 2436 | 7| 2556 |-1.810| Yes
Offset Strain [ SPEL 10.001976] 6 | 0,50 prsorm|-001512| 7 |-0.003169|-6.031 | No
U"im(aktsei)Stress s | rasa |3 (JOL3 053 4| 1413 08842 No
Modulus (ksi) (32%’2}‘33) 9336 | 9 (34i2.13§90) 1005 | 10| 156.7 |4.661|Yes
Density (o] s | 3176 | 3| qusioistay | 1822 [4] 6015|4258 | No

5.3.1 18-Ply Double Shear Control Progressive Failure
In order to understand the features that occur in the sample to allow

bearing failure, six of the 18-ply control double shear samples were sectioned and
evaluated through microscopy. Figure 106 shows the stress-strain curves for these
samples and indicates the features that were targeted by the progressive failure samples.
Corresponding sectioned images of these samples are shown in Figure 107.

Due to the availability of more samples, several samples were run to lesser strain
values with the goal of characterizing yield more completely. Figure 107A depicts a
sample loaded to only a 3.39% strain (Feature 1 in Figure 106). While the damage is
difficult to detect, a small amount of permanent deformation is observed in the stress-
strain curve. Similar to that observed by Yamada et al in a carbon-titanium hybrid, this

deformation is attributed to fiber kinking at the bearing surface in the 0° plies [36]. This
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phenomenon is detailed in Figure 108. This behavior is not attributable to machining as it
is not present in the non-loaded sided of the holes.

Figure 107B depicts the behavior in a sample loaded to 4.30% strain to target
yield (Feature 2 in Figure 106). This matches the yield failure noted in the 9-ply controls.
It is dominated by fiber kinking in the 0° plies that begins near the bearing surface.
Figure 107C and D were loaded to target Feature 3. While the early onset fiber kinking is
present, through-thickness cracking has come about rapidly and delamination has
initiated away from the bearing surface.

The sample in Figure 107E targeted the load drop in feature 4. This shows that
this feature was caused by a wedge failure forming through the thickness of the layup
between the fixture bosses. Finally, Figure 107F shows full failure that has occurred as

large-scale crushing outside the radius of the fixture boss.

18-Ply Double Shear Control Progressive Failure
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Figure 106: 18-Ply Control Progressive Failure
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A) 3.39% (Feature 1) B) 4.30% (Feature 2)

C) 6.65% Strain-(Feature 3) ; D) 7.63% Strain (Feature 3)

qug_)__ 10.3% Strain (Feature 4)

“~

e 0.156in (3.96Mm)

Figure 107: 18-Ply Control Progressive Failure Micrographs
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Figure 108: 3.39% Strain Fiber Kinking Detail

5.3.2 18-Ply Double Shear Hybrid Progressive Failure

In order to study the damage that occurred in the 18-ply double shear hybrid
samples, six coupons were studied through microscopy. Stress-strain curves of the
progressive failure samples are presented in Figure 109 where the features targeted by
these samples are labeled. Corresponding images of the sectioned samples are presented
in Figure 110.

As in the control, one sample, pictured in Figure 110A, was strained to target the
behavior just prior to the calculated yield (Feature 1). This is represented by a dotted red
trace in Figure 109. As in the control, permanent deformation is still attributable to fiber
kinking in the 0° plies at the bearing surface.

The next two samples (pictured in Figure 110B and C), were deformed just past

yield (Feature 2), as noted in the dashed green and dot-dashed blue traces representing
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4.04% and 4.14% strain. These two samples both demonstrate that yield is caused by in-
plane fiber kinking in the 0° plies near the bearing surface.

Since the hybrid produced a smoother curve, there were no obvious load drops to
characterize after yield. Thus, progressive displacements were selected inside 10% strain.
As strain progressed to 5.32% (Feature 3- heavy cyan trace), the in-plane fiber kinking
progresses further into the material and mild instability set into the metal foils as shown
in Figure 110D. As the strain progressed past 7% (Feature 4- dotted magenta trace), the
damage was defined by increased fiber kinking and foil buckling. Also, some areas of
coupled fiber kinking and matrix cracking have come about at the internal 45° layers.
Localized delamination is also present. In contrast to the 9-ply hybrid, due to increased
stiffness, the 18-ply hybrid does not demonstrate the full thickness buckling at the edge

of the fixture boss.

18-Ply Hybrid Progressive Failure
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Figure 109: 18-Ply Hybrid Progressive Failure
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A) 2.56% Strain (Feature 1) B) 4.04% Strain (Feature 2)

Figure 110:18-Ply Double Shear Hybrid Progressive Failure Micrographs
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5.4 Comparison of 9-Ply and 18-Ply Double Shear Results

Since the 18-ply layup was formed by repeating the 9-ply layup, a comparison
was made between the performance of the two in both the control and hybrid cases. The
practical question being, how well does the 9-ply predict the behavior of the 18-ply?
Figure 111 compares the average load-displacement curves for the 9-ply and 18-ply

double shear specimens by doubling the load from the 9-ply samples.

Comparison of 9-Ply and 18-Ply Load v. Displacement
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Figure 111: Comparison of 9-Ply and 18-ply Average Load-Displacement

Graphically, the control curves display similarity across the entire displacement.
In the hybrid, the curves display similarity until they depart around the 0.040in (1.0mm)
point. It was at this point that the 9-ply hybrid samples displayed buckling around the
fixture boss while the stiffer 18-ply material displayed a more brittle failure which was
characterized by a crack through the thickness of the layup propagating away from the
hole (Figure 104). Table 18 shows the load data for the 9-ply layup as a predictor of the

18-ply layup. Here again, the experimental values for the 9-ply layup have been doubled
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for comparison. For the control, the 9-ply is an excellent predictor of the 18-ply behavior.
The fact that none of the differences are statistically different means that there is not
statistical evidence to prove that the two means are different. This is further evidenced by
the fact that the 95% confidence intervals largely overlap. For the yield load and offset

load, the difference is less than 1%.

Table 18: Control 9-Ply and 18-Ply Load Data

2x Control 9-Ply Control 18-Ply

‘ggf/ri':glf Stdev |N ‘é:‘j”églf Stdev |N| Diff | % Diff Sstiagt

Yield Load 3.693 3.670
(kips) (3.488.3.899) 0.1954 | 6 (3.547.3.793) 0.1329 | 7] -0.02338 | -0.6331 | No

Offset Load 4.075 4.053
(kips) (3.936-4.214) 0.1321(6 (3.976.4.129) 0.07285[ 6] -0.02218 | -0.5443 | No

Ultimate Load 4.302 4.514
(kips) (3.998.4.606) 0.1224| 3 (4.138.4.890) 0.1514 [ 3] 0.2123 4936 | No

Table 19 shows a similar comparison for the hybrid layups. In this case, the 9-ply
case is not as close of a predictor. It overestimates in yield and offset load almost 11%

and 7%, respectively. There is not statistical evidence to prove that the ultimate loads are

different.
Table 19: Hybrid 9-Ply and 18-Ply Load Data
2x Hybrid 9-Ply Hybrid 18-Ply
(‘Q‘SV;: &) | Stdev (‘;‘SV;Z ‘G | Stdev |N| it |% pitt Sstiagt
Yi‘zﬁ;‘)’ad (4'4‘3'16_43&36) 0.1931 (4.0‘;91_5221) 0.1247 | 9] -0.5080 | -10.96 | Yes
Off(slfith;)"ad soaed s 02058 6f o SO H0.07886| 7 -0.3895 | -7.083 | ves
Ulti‘z‘lfit:s)”’ad o0 01318 3 [ SO0 H0.05972) 4] -0.1692 | 2769 | No
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Further testing and modeling would be required to use a 9-ply layup to predict
thicker layups comprised of the same constituents for specific design purposes. However,
if considering similar testing or estimates for initial design parameters, using 9-ply testing
to predict 18-ply behavior could be useful. 9-ply samples require half the material and
layup time. Since foil prep consumed the largest amount of time, reducing the number of
foils by half could save days of preparation. Testing 9-ply samples requires less load
overall, so preliminary 9-ply samples could be run on a smaller capacity load frame with
less stored strain energy in order to predict parameters for a larger scale test.

A feature that is evident in both the control and hybrid cases is that the modulus
of each is significantly higher in the 18-ply layups. This is attributed to more complete
compaction in the 18-ply layups as discussed in the dimensional results. This difference
not only effects the bearing stress calculation and thus the modulus calculation, but it
effects the overall properties of the composite, resulting in a stiffer material in the more
compacted cases. Similar work has shown that compaction has a direct effect on

composite properties similar to that observed here [120], [121].
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VI. Computational Results for Double Shear

This chapter presents the results of the computational portion of this research as
compared to the double shear experimental results presented in Chapter V. Models were
prepared using Abaqus finite element software. This chapter begins with an overview of
how the models were represented. Then, the computational results are compared to
experimental results separately in 9-ply and 18-ply layups in both control and hybrid
configurations. Computational load-displacement curves are compared to those
determined experimentally and the ply-level computational behavior is compared with
experimental progressive failure microscopy. While over 100 models were developed
throughout the course of this research, this chapter focuses on the four models that were
the most accurate. Other models are presented only to state why certain methods were

included or avoided.

6.1 Model Overview

As detailed in Chapter 3, the finite element models developed in this research
employed layerwise modeling where each ply in the layup was modeled as a different
part. To ensure that the models performed accurately and efficiently, convergence was
performed on the individual components prior to assembling the coupon to optimize
mesh arrangements. The mesh arrangements for the components of the coupons are
shown in Figure 112. The composite layers were modeled using a fiber aligned mesh
arrangement with one continuum shell element through the thickness. The parts
representing the +45°plies (Figure 112A) used 1051 elements per ply and the parts

representing the 0°/90° plies (Figure 112B) used 1060 elements. Both had a target
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element size at the bearing surface of 0.0250in (.135mm). Hashin criteria were used to
describe damage initiation and Benzeggagh-Kenane energy criteria defined damage
evolution in the composite layers. Unabridged modeling parameters are provided in
Appendix I. The foil and adhesive were modeled using the same structured, concentric
mesh arrangement (Figure 112B) using 860 reduced integration 3D stress elements with
elements seeded at 0.0250in (.135mm) at the bearing surface. One element was used
through the thickness. The final foil model used an elastic-plastic curve derived from
experimentation by Roberts [67] with linear damage evolution. Coupled temperature-
displacement elements with 3D stress behavior were used for the foil so that physically
representative cure induced stresses could be investigated. The bulk of the adhesive was

represented as a purely elastic model based on bulk properties of the adhesive.

B) 0°/90° Fiber
Aligned Mesh

' A) +45° Fiber
Aligned Mesh

C) Foil/Adhesive
Structured Mesh

Figure 112: Mesh Arrangements
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The final representation for the models considered in this research is depicted in
Figure 90. The coupon was assembled with positional constraints and the layers were
joined with cohesive interactions. Where two composite layers met or where a composite
layer met adhesive, layers were joined with cohesive interactions based on the properties
of the composite matrix using traction-separation laws with Benzeggagh-Kenane energy
criteria. The joint between the adhesive and foil was defined using published properties
of AF191U adhesive defined with traction-separation laws and linear displacement
damage evolution. Contact relationships were defined between the individual components
of the coupon and the bolt with the bolt as the master part. The fixture bosses were
defined as master in contact relationships with the face plies of the coupon. General
contact with self-contact was defined for the rest of the model. The bolt was constrained
to the fixture using ties and the two parts of the fixture were constrained so that the
secondary fixture could move along the bolt axis, which allowed the bolt tightening step
to occur. Since the bolt was meshed using coupled temperature-displacement elements
with 3D stress behavior, a temperature step could be applied to the bolt to take advantage
of thermal expansion (or contraction) to cause a preloading effect on the coupon. The
system was loaded by commanding a displacement at the bottom edge of the coupon as
depicted in Figure 90.

After the simulation was run, load was taken as the sum of the reaction forces in
the y-direction of the nodes to which the displacement was applied. Displacement was
recorded as the difference in displacement in two nodes representing the fixture and

bonded knife edges as discussed in section 4.6 and shown in Figure 95. Critical values
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such as correction factor, yield, offset, and modulus were calculated using the same

process applied to the experimental data (section 3.9.3).

Secondary Fixture
Constraint
(g =u; =0)

Secondary Fixture

Bolt to Fixture Ties

Primary Fixture
Constraint

(w =u; =u3 =0)
/ Primary Fixture

Commanded
Displacement

X

X

Figure 113: Computational Model and Boundary Conditions

The remainder of this chapter presents the results of each case considered. The
materials properties and model parameters were kept constant across all configurations.
The only variations between models were those that represent physical variations
between the models such as the presence of the adhesive and foil and number of plies. A
less obvious example is that the length of the bolt varied in order to accommodate
different material thicknesses. This drove slight variations in the number of elements

used to model the bolt. Since these physical differences in the real-world configurations
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existed and were modeled, a summary table is provided with the discussion of each

modeled configuration on the type and number of elements that were used.

6.2 9-Ply Control Computational Results
In order to establish a baseline for the composite behavior, the modeling effort
and analysis began with the simplest case of the 9-ply control with a layup sequence of

[45/0/-45/0/90/0/-45/0/45]. The summary of the elements employed is listed in Table 20.

Table 20: 9-Ply Control Finite Element Model Summary

Element # of

Component Mesh Element Description Type Elements
Composite | Fiber Aligned |Continuum Shell SC8R 9504
Bolt Structured  |Coupled Temp-Disp with 3D Stress Behavior C3D8T | 2520
Fixture Structured 3D Stress Element-Reduced Integration C3D8R 1364
Total
Elements 13388

As the least complex, this model ran in just over 3 hours using 20 cores. Cores are
essentially independent processors that can be tasked to work in parallel. The default
Abaqus method is to divide the model into regions or “domains” and assign the
calculation for each domain to a single processor which reduces the overall run time of

the given simulation [46].

Before analyzing the output of a model to predict quasi-static behavior, the quasi-
static assumption must be verified with an energy comparison. The most common
practice states that if the kinetic energy remains below 5% of the internal energy, the
system is quasi-static [118], [119]. In an explicit analysis, Abaqus records these energy

values by default as a history output. Kinetic energy is calculable since nodal velocities
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are tracked in the explicit step, and element masses are known. Strain energy (internal
energy) is processed in the software from nodal loads and displacements. Figure 114
shows the kinetic energy compared to the internal energy for this case. Since the load rate
was increased to facilitate more efficient testing, the energy comparison was employed to
ensure that the model was still behaving quasi-statically. The red dashed trace and blue
dot-dashed trace in the upper subplot show the internal (strain) energy and kinetic energy
respectively, while the green dotted trace in the lower subplot shows the kinetic energy as
a percentage of the internal energy. In this case, throughout the computational step time,
the kinetic energy is far below 1% of the internal energy. The initial spike is neglected
since there is initially no load in the system and no resultant strain energy, but there is
motion as the load is applied. Once the application of the bolt load begins, the kinetic
energy to internal energy percentage shrinks rapidly and remains low throughout the
simulation. Theoretically, the model could be executed with the simulation time set equal
to the clock time required to run the experiment. However, in that case, the computation
time would likely extend to days or weeks, on the desired computer systems. Based on

this energy comparison, the quasi-static assumption holds for this simulation.
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Figure 114: 9-Ply Control Energy Comparison

With the quasi-static assumption verified, the 9-ply control finite element model
should be compared to the experimental results. Figure 115 shows the model output
compared to the experimental data, and critical values are listed in Table 21 and Table
22. In Figure 115, the load-displacement curve of the 9-ply control model (bold black
trace) is plotted over the average of the 9-ply control experimental data (blue trace). The
shaded areas represent one and two standard deviations away from the experimental
average. The computational curve predicts the experimental behavior well, with the
model lying within two standard deviations for the majority of the simulation. The first
instance of each failure initiation as well as damage evolution are marked on the
computational curve. Due to the compressive nature of the load scenario, matrix
compression initiation and cohesive damage initiation arise early in the simulation on the
surface that contacts the bolt. Next, matrix tension arises as a result of the Poisson effect

caused by loading fiber compression. Thus, fiber compression damage is initiated next.
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Since the fiber compression mode has the highest stress capacity by far, it dominates the
failure and is equated to the fiber kinking seen in the experimentation. From the model,
yield will occur only after fiber compression damage is well into the evolution stage. Just
after yield, full damage exists in every mode. In looking at the initial loading, it is
important to note that the slack in the bolted joint near 2501bf (1110N) happens at a
similar load in both the experimental and computational curves. This indicates that the

bolt tension application and frictional contact parameters functioned well.
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Figure 115: 9-Ply Computational v. Experimental Results
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Table 21 and Table 22 list critical load-based values and stress-based values
respectively as produced by the finite element model compared to averaged experimental
data. Across all values, the finite element model predicts the experimental average within
10%, with some values near 1% error. From a load perspective, the model over-predicts
the yield load by only 6.5%. Since hole failure in aerospace applications is typically
measured in elongation, the yield displacement prediction with less than 1% error is quite
remarkable. This, in addition to the offset displacement and ultimate load, fall within the
95% confidence interval of the experimental average values. In Table 22, the stress
values deviate from the experimental values slightly more than the load based values.
This is because the final modeled thickness of the IM7/977-3 plies was based on the
thickness of the 18-ply samples. However, from the dimensional statistics, the 18-ply
layups achieved more complete compaction which resulted in an individual ply which
was about 2% thinner. Thus, the modeled thickness of the individual plies in the 9-ply
layup is slightly thicker than the condition as modeled. This resulted in a slight inflation
of stress-based values shown in Table 22. Despite this, the stress values still lie within
10% error. The yield strain, offset strain, and ultimate stress all lie within the 95%

confidence interval of the experimental value.
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Table 21: 9-Ply Control Computational v. Experimental Load Data

9-Ply Control Load-Based
c Experimental . o, 1ipe | Comp Falls
Computational Avg (95% CI) Diff % Diff in 95% CI
. . 1.847
Yield Load (kips) 1.966 (1.744-1.949) -0.1193 -6.458 No
. s 0.01301
Yield Disp (in) 0.01315 (0.01221-0.01380) -1.423E-04 | -1.094 Yes
. 2.038
Offset Load (kips) 2.137 (1.968-2.107) -0.09945 | -4.881 No
s 0.01678
Offset Disp (in) 0.01673 (0.01608-0.01748) 5.102E-05 | 0.3041 Yes
Ultimate Load (kips)|  2.228 a 1ol 0 | 00770 | -3.580 Yes

Table 22: 9-Ply Control Computational v. Experimental Stress Data

9-Ply Control Stress-Based

. Experimental . o, 1v:pe| Comp Falls
Computational Avg (95% CI) Diff "0 Diff in 95% CI
Yield Stress (ksi) 137.5 (11&.%-51.332.6) -12.183 | -9.722 No
. . 0.04176
Yield Strain 004221 | o O 0 [4517E-04| -10s2 | Yes
Offset Stress (ksi) 149.5 138.2 11265 | -8.149]  No
: (134.1-142.4) : :
. 0.05387
Offset Strain 0.05372 (0.05162-0.05613) 1.517E-04 | 0.2815 Yes
Ultimate Stress (ksi) 155.8 e 6730 | -4515|  Yes
: (134.3-163.8) : :
Modulus (ksi) 3419 3155 2641 | -8370]  No
(3032-3278) : .

This model proved the efficacy of this modeling method and set a robust baseline

from which the more complex models could be developed. The most important factor

was the employment of cohesive layers. In early models considered in this research, the
stacked plies were joined using ties. Ties essentially lock the spacing between tied nodes.
A load-displacement curve for the 9-ply control model using ties between composite plies

is pictured in Figure 116. This shows that behavior of the model using ties is far too stiff

to represent the actual system. From here, cohesive elements were employed but
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drastically increased computation times due to the thinness of the layers required to
represent the interlaminar matrix region. The cohesive elements also proved to be very
sensitive boundary conditions, loading, and contact relationships. The employment of
cohesive interactions proved to be accurate as well as more computationally efficient

while also being more intuitive for the user.
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Figure 116: Computational Model Using Ties

Finite element models provide the capability to not only see through-thickness
sections of a sample as with experimental coupons, but they also provide the capability to

study criteria over the entire area of a given ply.
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Table 23 shows the functionality of the Hashin damage initiation criteria at the
computationally determined yield. A contour plot of each ply orientation is presented
depicting Hashin Fiber Compression and Hashin Matrix Compression. The fiber direction
is marked on each image. The bottom row displays quadratic stress damage initiation
criteria for the cohesive interaction used to model the interlaminar relationship. As
expected in the composite layers, the fiber compression damage is initiated near the
bearing surface in the fiber direction while matrix compression damage is initiated near
the bearing surface 90° to the fiber direction. In row 2 of Table 23, fiber compression is
shown as being the most developed in the most central 0° plies. Cohesive damage (last

row of Table 23) is initiated at the nodes near the bearing surface.
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Table 23: Damage Initiation Criteria at Yield

Layer 1 IM7/977-3 (45°)

Layer 2-IM7/977-3 (0°)

Layer 5-IM7/977-3 (90°)

Hashin Fiber Compression

Fiber Direction

Hashin Fiber Compression

Fiber Direction

Layer 7 IM7/977-3 (-45°)

Hashin Fiber Compression

Layer 5 to 6 Interaction

Hashin Matrix Compression

Fiber Direction

Hashin Matrix Compression

k¢

Damage Initiation
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00
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Figure 117 shows 3D sectioned views of damage evolution criteria as compared
to an experimental sample tested to 6.40% strain (Figure 117B), which lies just beyond
yield. Most evident is the fiber compression damage in the 0° plies which dominates the
failure. This damage correlates well to the fiber kinking that arose in the experimental
sample in the 0° plies (Figure 117A compared to Figure 117B). Figure 117C displays
matrix compression failure in the +45° and 90° plies. While this is more widespread and
developed in the computational model, it is indicative of the matrix cracking that has
developed in the experimental sample. Figure 117D plots the damage evolution criteria
for the cohesive interactions. At this point, the damage has not fully evolved (value is less
than 1). While this appears artificially elevated at the nodes on the bearing surface due to
the complexities of contact at those nodes, away from the bearing surface, this is a good
predictor of delamination and crushing behavior as strain progresses.

Behavior closest to yield here was selected because it should be the most
important point to understand from a design perspective. While the behavior at any of the
features is academically interesting, and important to characterize for survivability,
engineers typically design based on factors of safety of yield. Additionally, the models
were displaced to 0.030in (0.76mm) for modeling efficiency. Since the models were
constructed completely in the native Abaqus environment, they simulate bearing behavior
accurately to about 8% bearing strain. Accurate modeling beyond that point would
require the use of user defined subroutines which would increase complexity and
computation time. Because of software requirements, the employment of user subroutines

is nearly logistically impossible on government computer systems.
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DAMAGEFC
SNEG, (fraction = -1.0)
(Avg: 75%)
+9.500e-01
+8.708e-01
+7.917e-01
+7.125e-01
+6.333e-01
+5.542e-01
+4.750e-01
+3.958e-01
+3.167e-01
+2.375e-01
+1.583e-01
+7.917e-02
+0.000e+00

i,

SNEG, (fraction = -1.0)
(Avg: 75%)

‘o

CSDMG General_Contact_Domain
+9.964e-01
+9.133e-01
+8.303e-01

1313882_8% +7.473e-01
+7.917e-01 +6.642e-01
+7.125e-01 +5.812e-01
+6.333e-01 +4.982¢-01
+5.542¢-01 +4.151e-01
+4.750e-01 +3.321e-01
+3.058e-01 +2.491e-01
+3.167e-01 +1.661e-01
+2.375e-01 +8.303e-02
+1.583e-01 +0.000e+00
+7.917e-02

+0.000e+00

Figure 117: 9-Ply Computational v. Experimental Sectioned at 6.4% Strain
A) Fiber Compression Damage B) Experimental Sample
C) Matrix Compression Damage D) Cohesive Damage
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6.3 18-Ply Control Computational Results

With the baseline established in the 9-ply control, the 18-ply control case was

modeled using the exact same properties and criteria which resulted in a layup of

[45/0/-45/0/90/0/-45/0/45]2. Increasing ply count not only increased the number of

elements by 75%, it also increased the number of nodes involved in complex contact

interaction which are computationally expensive. Due to the complexity of doubling the

number of plies, the computation time grew to just over 5 hours on 20 cores. A summary

of the mesh and element arrangement is provided in Table 24. A 10% increase in the

number of elements used to define the bolt was caused by the increase in coupon

thickness.
Table 24: 9-Ply Control Finite Element Model Summary
<. Element # of
Component Mesh ‘Element Description Tynel | [Elements
Composite | Fiber Aligned |Continuum Shell SC8R 19008
Bolt Structured  |Coupled Temp-Disp with 3D Stress Behavior C3D8T | 2800
Fixture Structured 3D Stress Element-Reduced Integration C3D8R | 1364
Total
Elements| 23172

As with the previous case, the energy comparison in Figure 118 demonstrates

that the kinetic energy is less than 1% of the internal energy throughout the simulation,

proving that the analysis is indeed a good quasi-static approximation.
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80 18-Ply Control Computational Energy Comparison
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Figure 118: 18-Ply Control Computational Energy Comparison

Figure 119 depicts the 18-ply control finite element load-displacement curve
(bold black trace) plotted over averaged experimental data (blue trace). The shaded areas
mark one and two standard deviations away from the experimental mean. Here,
throughout the entire curve, the model lies within two standard deviations of the
experimental average and lies with one standard deviation for much of the curve. Despite
increased complexity, the 18-ply case actually follows the experimental average more
closely than the 9-ply. This is attributed to the fact that the 18-ply experimental results
demonstrate a stiffer modulus, which more closely matches the modulus of the
simulation. As in the previous case, the damage initiation and evolution points of each
criterion are marked. As noted in the 9-ply case, yield cannot occur until fiber
compression damage has been initiated. In contrast to the 9-ply simulation, matrix

compression damage here evolves just before the calculated yield value.
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18-Ply Control Computational v. Experimental
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Figure 119: 18-Ply Control Computational v. Experimental Results

Table 25 and Table 26 compare the computational load-based and stress-based

data to the experimental average values. Here, the error in the yield load prediction is

reduced to nearly 4%, while the yield displacement, which is used to measure hole failure

in aerospace applications, displays an error of only 0.11%. The predictions for the 1%

offset are also remarkably close, both lying within the 95% confidence intervals for their

respective values. Because the modeled ply thickness was based off the 18-ply

experimental data, the stress-based values generally display less error than observed in

the 9-ply case. Here all the stress based values in Table 26 lie within the 95% confidence

interval of their respective experimental values.
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Table 25: 18-Ply Control Computational v. Experimental Load Data

18-Ply Control Load Based Data

Computational E"Peg‘s‘:/fnctgl Avel  piff | % Diff ?lfg‘s‘f, /f *g'ls
Yield Load (kips) 3.827 o ;-76_;‘393) -0.1569 | -4.275 No
Yield Disp (in) 0.01257 (o.oﬁ'%l.%ﬁi w | 143805 | 042 | Yes
Offset Load (Kips) 4.084 (39‘%‘?331 ) -0.03108 [-0.7670|  Yes
Offset Disp (in) 0.01586 (0,01()5921.533701) 5.062E-04 | 3.093 Yes
Ultimate Load (kips) 4171 ( 4.1‘;55_‘}.‘;90) 03433 | 7.605 Yes

Table 26: 18-Ply Control Computational v. Experimental Stress Data

18-Ply Control Stress Based Data

Computationall EXPeHImeRAl AV pigr | of iy Comp Falls
Yield Stress (ksi) 133.8 a 2;%?1-323.8) 5643 | -4403|  Yes
Yield Strain 0.04036 (0'037-2:{8%3300) -9.000E-05[-0.2235]  Yes
Offset Stress (ksi) 142.8 (13; "1‘_11-35. Y 1550 |-1.097]  Yes
Offset Strain 0.05092 (0.026‘12_20?0‘?5 i | 0001620 | 3083 | Yes
Ultimate Stress (ksi)]  145.9 a 523.91?2,3) 13.95 | 8.725 Yes
Modulus (ksi) 3489 (3223_2i33) 1280 |-3809|  Yes
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Table 27 shows the Hashin damage initiation at the computationally determined
yield for each ply orientation. An example of the damage in the cohesive interaction is
also provided. As expected, fiber compression damage is initiated near the bearing
surface in the fiber direction while matrix compression is initiated at 90° to the fiber
direction. Damage in the cohesive interactions is isolated to the elements at the bearing
surface. Figure 120 depicts select damage evolution criteria as compared to an
experimental sample stressed to 4.30% strain (Figure 120B), which lies just beyond the
experimental and computational yield. Fiber compression in the model slightly lags but
correctly predicts the location of fiber kinking in the experimental samples (Figure 120A
and B). The damage criteria in matrix compression manifests as matrix cracking in
subsequent experimental samples (see Figure 107). Matrix compression (Figure 120C)
accurately predicts that matrix compression damage has not yet fully evolved in the
sectioned plane being observed in the experimental sample. If that were the case, matrix
cracking would be expected in the experimental sample, but it is not present here. The
interaction damage (Figure 120A) appears to overpredict delamination right at the
bearing surface which is not evident in the experimental sample. This is attributed to the
contact relationship in the model. When examining one node away from the bearing
surface, the cohesive damage displays a much more accurate representation which has

not yet predicted delamination.
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Table 27: 18-Ply Control Damage Initiation Criteria at Yield

Layer 1 IM7/977-3 (45°)

Layer 2-IM7/977-3 (0°)

Layer 14-IM7/977-3 (90°)

Hashin Fiber Compression

Fiber Direction

Hashin Fiber Compression

Fiber Direction

Layer 16-IM7/977-3 (-45°)

Hashin Fiber Compression

Layer 8 to 9 Interaction

Hashin Matrix Compression

Fiber Direction

Hashin Matrix Compression

Fiber Direction

Hashin Matrix Compression

Damage Initiation
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00
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DAMAGEFC

SNEG, (fraction = -1.0)

(Avg: 75%)
+9.417e-01
+8.632e-01
+7.847e-01
+7.063e-01
+6.278e-01
+5.493e-01
+4.708e-01
+3.924e-01
+3.139%9e-01
+2.354e-01
+1.569e-01
+7.847e-02
+0.000e+00

DAMAGEMC
SNEG, (fraction = -1.0)
(Avg: 75%)

+9.500e-01
+8.708e-01
+7.917e-01
+7.125e-01
+6.333e-01
+5.542e-01
+4.750e-01
+3.958e-01
+3.167e-01
+2.375e-01
+1.583e-01
+7.917e-02
+0.000e+00

Kinking/Fiber
Compression
Damage

CSDMG General_Contact_Domain
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

Figure 120: 18-Ply Control Computational v. Experimental
Sectioned at 4.30% Strain
A) Fiber Compression Damage B) Experimental Sample
C) Matrix Compression Damage D) Cohesive Damage
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6.4 9-Ply Hybrid Computational Results

The 9-ply hybrid was modeled using the same criteria as the control cases with
the addition of the properties and damage and failure criteria describing the adhesive and
foil to simulate the [45/0/|SS|/0/|SS|/0/|SS|/0/45] layup. The boundary conditions and
loading were identical to the control cases except for the temperature step initially
applied to the foils to simulate the stresses imparted into the foils during cure, known as
cure induced stress. This occurred during the same computational time that the bolt load
was being applied using a similar thermal process. During this time, a slight displacement
was commanded in the coupon to prevent premature loading of the bearing surface
during the temperature step. This kept the bolt centered in the hole until the bolt and foils
reached stabilized temperatures after which the physically representative displacement
step was applied. Section 6.6 compares the methods used here, to include consideration
of thermally induced stresses, with other models that consider less complex model
considerations.

Table 28 lists the summary of mesh and element arrangements of each
component. This model required a 31% increase in the number of elements as compared

to the 9-ply control which allowed the simulation to run in just over 3 hours on 20 cores.
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Table 28: 9-Ply Hybrid Model Summary

Element # of

Component Mesh Element Description Tynel | Elements
Composite | Fiber Aligned |Continuum Shell SC8R 6342
Adhesive Structured  |3D Stress Element-Reduced Integration C3D8R | 4896
. Coupled Temp-Disp with 3D
Foil Structured Stress Behavior and Reduced Integration C3DBRT | 2443
Bolt Structured  |Coupled Temp-Disp with 3D Stress Behavior C3D8T | 2520
Fixture Structured  |3D Stress Element-Reduced Integration C3D8R | 1364
Total
Elements 17570

Before the results can be evaluated, the assumption of quasi-static behavior must
be verified. Figure 121 depicts the energy comparison to show that the model is a good
quasi-static approximation since the kinetic energy remains below 3% of the internal

energy throughout the commanded displacement.
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Figure 121: 9-Ply Hybrid Computational Energy Comparison

Figure 122 depicts the 9-ply hybrid computational load-displacement curve (bold
black trace) compared to averaged experimental data (red trace). The shaded areas
represent one and two standard deviations from the experimental average. For the

majority of the simulation, the computational curve lies within one standard deviation of
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the experimental data. As in previous cases, the damage initiation and evolution in each
mode are marked as they appeared in the simulation. Plasticity arises in the foils earlier
than expected, but this plasticity lies only in the elements at the contact surface and is not
widespread. In the control cases, damage in the composite fully evolves before or just
after yield. In this case, there is substantial displacement after yield until fiber
compression and the accompanying matrix tension damage fully evolve. This follows the

experimental conclusion that the metal intrinsically changed the failure nature of the

hybrid.
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Figure 122: 9-Ply Hybrid Computational v. Experimental Results
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Table 29 and Table 30 list the load based and stress based data respectively as
compared to the experimental average. In all cases except the yield displacement and
yield strain, the simulation differs from the experimental average by less than 6%. The
error in the yield and offset values is attributed to the error in the modulus. Since the
model begins stiffer than the experimental results, the yield and offset values are
predicted slightly early. The magnitude of the relative differences is small, with the
magnitude of the error in yield displacement being 0.0015in (0.038mm). The yield load
and stress, offset load, displacement, and strain, as well as the ultimate load and stress all
lie within the 95% confidence intervals of the respective experimental values meaning

these values could statistically be the same as the experimental mean.

Table 29: 9-Ply Hybrid Computational v. Experimental Load Data

9-Ply Hybrid Load Based Data
: Experimental Avg . ... | Comp Falls
Computational 95% CI) Diff % Diff in 95% CI
Yield Load (kips) 2.176 o 2 9 0.1406 | 6.071 Yes
0.01306
Yield Disp (in) 0.01199 (0.01227-0.01386) 0.001074 | 8.223 No
. 2.750
Offset Load (kips) 2.751 (2.642-2.858) -0.001322 | -0.04808 Yes
e 0.01841
Offset Disp (in) 0.01748 (0.01611-0.02071) 9.312E-04 | 5.058 Yes
. . 3.054
Ultimate Load (kips) 2.965 (2.8913218) 0.08933 2.925 Yes
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Table 30: 9-Ply Hybrid Computational v. Experimental Stress Data

9-Ply Hybrid Stress Based Data

Experimental Avg . o, 1iee | Comp Falls
(95% CI) Diff ) % Diff | = 950y 1

Computational

. . 123.
Yield Stress (ksi) 1213 " 6.7_3139.3) 1.664 | 1.353 Yes

. . 0.04194
Yield Strain 0.03849 (0.03939-0.04449) 0.003450 | 8.226 No

. 146.0
Offset Stress (ksi) 153.3 (139.0-152.9) -7.350 | -5.036 No

. 0.0591
Offset Strain 0.05612 (0.05173-0.06648) 0.002985 | 5.050 Yes

Ultimate Stress (ksi) 165.3 a G220 5 2747 | -1.690 | Yes

. 3092
Modulus (ksi) 3324 (2936-3248) -232.0 | -7.503 No

Table 31 depicts the damage initiation criteria at yield in select representative
plies in the 9-ply hybrid composite. As in other cases, fiber compression is evident near
the bearing surface in the fiber direction with matrix compression observed 90° to the
fiber direction. The plastic strain in the foil (row 3 in Table 31) is present mostly in the
oblique (+45°) directions and not in the center of the bearing surface. This is because the
load in the center of the bearing surface is supported largely by the stiffer 0° carbon fiber
tows in that location. Plasticity is asymmetrical because the layup contains +45° plies but
the -45° composite plies have been replaced with foils. The matrix damage is initiated
close to the bearing surface while the adhesive damage radiates much farther from the

hole due to much softer materials properties.
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Table 31: 9-Ply Hybrid Damage Initiation Criteria at Yield

Hashin Fiber Compression Hashin Matrix Compression

Damage Initiation
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
: Z . +5.833e-01
Hashin Matrix Compression +5.000e-01
] +4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

Layer 1 IM7/977-3 (45°)

Hashin Fiber Compression

Tei ] L
T

Layer 10-IM7/977-3 (0°)
Fiber Direction

Equivalent Plastic Strain Equivalent Plastic

_Strain

+3.479e-02
+3.189e-02
+2.899e-02
+2.609e-02
+2.319e-02
+2.029e-02
+1.739e-02
+1.449e-02
+1.160e-02
+8.697e-03
+5.798e-03
+2.899e-03
+0.000e+00

Matrix Cohesive Adhesive Cohesive Quadratic Stress

Damage Initiation
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

Layer 12 - Foil

Layer 3-Adhesive

Figure 123 depicts select damage evolution criteria as compared to an
experimental sample stressed to 8.39% strain. Due to other progressive failure targets,
this is the lowest strain sample available in this configuration. The model predicts the 0°

fiber kinking well as compared in Figure 123A and B. The model even predicts the
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through thickness cracking as matrix compression (Figure 123C). The model predicts the
buckling in the foils well, but it occurs to a greater magnitude earlier than noted in the
experimental samples. Figure 123E depicts the out of plane deformation (3 or z direction)
in the foils at the corresponding 8.39% strain point. It shows deformation of almost
0.018in (0.46mm), while the deformation noted in the experimental sample foils is less
than the thickness of the foils at 0.004in (0.010mm). This is attributed to the
shortcomings of the continuum shell elements with respect to predicting through-
thickness stresses and the complex contact relationships occurring at the bearing surface.
It is also suspected that the bond between the foil and adhesive may be stronger than the
available published properties. If experimentation determined a higher failure stress for
the bond, then the curve would retain more stiffness near yield and would also delay
buckling in the foils. This is further proved by examining Figure 123C which depicts a
large area of fully developed delamination at this strain which is not observed in the

experimental sample.
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DAMAGEFC
SNEG, (fraction = -1.0)
(Avg: 75%)

DAMAGEMC
SNEG, (fraction = -1.0)
(Avg: 75%)

+9.500e-01 +9.500e-01
+8.708e-01 +8.708e-01
+7.917e-01 +7.917e-01
+7.125e-01 +7.125e-01
+6.333e-01 +6.333e-01
+5.542e-01 +5.542e-01
+4.750e-01 +4.750e-01
+3.958e-01 +3.958e-01
+3.167e-01 +3.167e-01
+2.375e-01 +2.375e-01
+1.583e-01 +1.583e-01
+7.917e-02 +7.917e-02
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Figure 123: 9-Ply Hybrid Computational v. Experimental Sectioned at 8.39% Strain
A) Fiber Compression Damage B) Experimental Sample
C) Matrix Compression Damage D) Equivalent Plastic Strain
E) Foil Displacement F) Cohesive Damage
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6.5 18-Ply Hybrid Computational Results

The 18-ply hybrid model used the exact same materials properties and modeling
parameters as the 9-ply hybrid. Doubling the layup [45/0/|SS|/0/|SS|/0/|SS|/0/45]2 required
an 80% increase in the total number of elements required. This also increased the number
of nodes involved in contact relationships. Representing the most complex case, the 18-
ply hybrid simulation ran in 11.5 hours. The run time was lengthened by large
deformations reducing the stable time step near the end of the simulation. A summary of
the mesh and element arrangement is listed in Table 32. Due to the increased thickness of
the coupon, the bolt required a 17% increase in the number of nodes. The 18-ply hybrid
used the same procedure used in the 9-ply hybrid to simulate the stresses induced during

cure.

Table 32: 18-Ply Hybrid Model Summary

Element # of

Component Mesh Element Description Type Elements
Composite | Fiber Aligned |Continuum Shell SC8R 12684
Adhesive Structured |3D Stress Element-Reduced Integration C3D8R 9792

Coupled Temp-Disp with 3D

Foil Structured Stress Behavior and Reduced Integration C3D8RT | 4896

Bolt Structured  |Coupled Temp-Disp with 3D Stress Behavior C3DS8T | 2940

Fixture Structured  |3D Stress Element-Reduced Integration C3D8R | 1364
Total

Elements 31676

Before the results can be analyzed conclusively, the quasi-static assumption must
be verified. The energy comparison in Figure 124 shows that the simulation simulates
quasi-static behavior well as the kinetic energy remains below 2% of the strain energy

throughout the commanded displacement.
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18-Ply Hybrid Computational Energy Comparison
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Figure 124: 18-Ply Hybrid Computational Energy Comparison

Figure 125 depicts the 18-ply computational load-displacement curve (bold trace)
plotted over the experimental average. The shaded areas represent one and two standard
deviations away from the experimental average. The damage initiation and evolution
criteria demonstrate some uniqueness here. In this case, fiber compression evolution
occurs well after yield. This demonstrates that the yield behavior is much more dependent
on the foils. This is also supported by the more ductile shape of the curve as compared to
the controls. The model displays less stiffness compared to the experimental curve which
is also indicative of an adhesive damage initiation stress that is lower than what occurred
in the actual samples. This model proved the requirement to represent the foil using
experimental data instead of published data, and proved the necessity of considering

thermally induced stress in the foil. This is expounded upon in Section 6.6
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Figure 125: 18-Ply Hybrid Computational v. Experimental Results

Table 33 and Table 34 show the hybrid computational load-based data and stress-

based data respectively, as compared to experimental averaged data. Considering that this
is the most complex simulation, it has modeled the yield, offset and ultimate loads
remarkably well with all lying inside 5% error. Here, the simulation has slightly under-

predicted the chord stiffness (modulus) as noted in Table 34, which has, in-turn, induced
errors in where the yield and offset lines pass through the modeled curve. Though the
error by percentage in strain and displacement might seem large, the magnitude of the

error in yield strain is less than 0.5% strain.
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Table 33: 18-Ply Hybrid Computational v. Experimental Load Data

18-Ply Hybrid Load Based Data

Computational E"Peg‘;}/‘:‘é‘gl Avel  pist | % Diff ?;";'5‘:, /faC“Is
Yield Load (kips) 4341 ) 4.(;42-91_3321) 02157 | -5.230 No
Yield Disp (in) 0.01189 (O'O?d?;_gf)?o%) -0.001334 | -12.63 No
Offset Load (kips) 5.250 ( 5.053'71.;?33) -0.1401 | -2.742 No
Offset Disp (in) 0.01647 (0.094241_3?)?58 b | -0.001001 | -7.093 No
Ultimate Load (kips) 5.810 (5.8249.3.?)3 5 0.1295 | 2.180 No

Table 34: 18-Ply Hybrid Computational v. Experimental Load Data

18-Ply Hybrid Stress Based Data

Computational E"Pegls‘:/‘jnctl‘;l Avg| it | % Diff (flf v /facllls
Yield Stress (ksi) 121.0 a 0;‘;_11-184.7) 9173 | -8.203 No
Yield Strain 0.03818 00 bosss) | 0-004391 | -13.00 No
Offset Stress (ksi) 146.3 (ég‘ﬁff(fg) 7606 | -5.484 No
Offset Strain 0.05374 00 tosorm | 0004369 | -8.848 No
Ultimate Stress (ksi) 161.9 a 5;2_11‘25.3) -0.6400 | 03969 |  Yes
Modulus (ksi) 3344 G 443‘65_2’5390) 173.7 | 4.937 No

Table 35 depicts the failure initiation criteria in select layers for the 18-ply hybrid
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model. The fiber compression and matrix compression behave as expected with fiber
compression being initiated in the fiber direction and matrix compression being initiated
90° to the fiber direction. Again, the plasticity in the foil (Table 35 row 3) exists away

from the center of the bearing surface since the load in that region is largely supported by



the stiffer 0° fibers. As also noted in the thinner hybrid, there is a slight asymmetry in the
plasticity due to the existence of +45° plies and the lack of -45° plies. The cohesive
damage on the matrix side of the adhesive is localized near the hole, while the more
compliant adhesive side expands farther away from the hole. The cohesive damage
initiation is very localized in the strong and stiff interlaminar matrix while it is more

widespread in the more compliant adhesive representation (Table 35 row 4).
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Table 35: 18-Ply Hybrid Damage Initiation Criteria at Yield

Hashin Fiber Compression Hashin Matrix Compression

</
o.l', %
R

oS
35
<>
““.0.0./

Damage Initiation
+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
= . . ’ S +5.833e-01
Hashin Fiber Compression Hashin Matrix Compression +5.000e-01

+4.167e-01
A

Layer 15 IM7/977-3 (45°)

+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

Fiber Direction

Layer 21-IM7/977-3 (0°)
Fiber Direction

Equivalent Plastic Strain Equivalent Plastic

_ Strain

+4.907e-02
+4.498e-02
+4.089%e-02
+3.680e-02
+3.271e-02
+2.862e-02
+2.454e-02
+2.045e-02

+1.636e-02
+1.227e-02
+8.179e-03
+4.089%e-03
+0.000e+0Q0

Layer 12 - Foil

Matrix Cohesive Interaction |Adhesive Cohesive Interaction Quadratic Stress
Damage Initiation

+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01

+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00

Layer 24-Adhesive

Figure 126 depicts sectioned contour plots from the 18-ply hybrid model as
compared to an experimental coupon loaded to 5.32% strain, which lies just beyond
yield. As in other cases, the fiber compression damage manifests as fiber kinking in the

0° plies (compare Figure 126A and B). Matrix compression damage is manifest as matrix
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cracking in the 45° plies. At this fairly low strain, mild buckling is visible in the model
(Figure 126D) which matches the coupon. The cohesive damage indicates delamination
between the foil and adhesive that is not present in the foil. This supports the assertion
that an experimental value of the bond between the adhesive and foil should be
determined. This would increase the stiffness in the curve in Figure 125 which would

more accurately predict critical values at yield, offset, and ultimate points.

B B i :
DAMAGEFC 5 i DAMAGEMC
SNEG, (fraction = -1.0) i SNEG, (fraction = -1.0)
(Avg: 75%) o i d (Avg: 75%)
+9.500e-01 7 0 1 . +9.500e-01
+8.708e-01 Y i +8.708e-01
+7.917e-01 ! § K +7.917e-01
+7.125e-01 % +7.125e-01
T 1 . i +6.333e-01
+5.542e-01
+4.750e-01
+3.958e-01
+3.167e-01
i : i T W +2.375e-01
+1.583e-01 g U ‘ +1.583e-01
+7.917e-02 i | & +7.917e-02
+0.000e+00 { 4 ! 5 +0.000e+00
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Figure 126: 18-Ply Hybrid Computational v. Experimental
Sectioned at 5.32% Strain
A) Fiber Compression Damage B) Experimental Sample
C) Matrix Compression Damage D) Equivalent Plastic Strain
E) Cohesive Damage
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6.6 Modeling Technique Comparison
Figure 127 shows the final 18-ply hybrid model compared to other simulations
that considered different modeling techniques for the metal foils. These models represent
the four possible combinations of the following conditions:
- Foil elastic-plastic model based on
o Published values of elastic modulus, yield, and fracture
o Experimentally determined elastic-plastic curve
- Cure induced thermal stresses
o Considered
o Not Considered
The models shown in the dashed green and dotted magenta traces both employed
the published values for the properties of stainless steel. Regardless of the consideration
of the thermal stress, both of these are far stiffer than the experimental samples. The blue
trace employs the experimentally determined properties for the foils. This is much more
compliant than the experimental results. Finally, the black trace plots the simulation that
considered both the experimentally determined foil elastic-plastic curve and the cure
induced stresses. These considerations produce the most accurate results as listed in

Table 33 and Table 34.
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6.7

18-Ply Hybrid Model Considerations
Displacement (mm)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T T T T T T
6 -
25
5 [
20
— 4 [ —_
a Z
= 15 =
®3r g
o O
A —
10
2r Experimental Average
----- Exp StDev
e 2% EXP StDEV
1k % Foil Props+Cure Stress (Most Accurate)]| 5
=== = Exp Foil Props/No Cure Stress
----- Published Foil Props+Cure Stress
0 "= ‘ Published Foil Props/No Cure Stress 0
0 0.005 0.01 0.015 0.02 0.025 0.03

Displacement (in)

Figure 127: 9-Ply Hybrid Model Considerations

Failure Criteria Behavior

This section examines specific elements and nodes to demonstrate how the critical

damage and failure criteria function as the simulations are carried out.

6.7.1 Composite Failure Behavior

Since fiber compression is the dominant failure mode in the composite, the failure

in a critical 0° ply element near the bearing surface was studied to demonstrate the

functionality of Hashin failure criteria. The particular element that was studied is Element

1026 from Layer 4 (0° IM7/977-3 ply) near the center of the layup in the 9-ply control.
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Figure 128 shows composite fiber compression damage evolution criteria that was based
on Hashin damage initiation for this ply. The location of element 1026 is highlighted.
Based on the experimental data and finite element analysis, since this is a 0° ply, this
element close to the bearing surface is expected to experience fiber kinking which

manifests as fiber compression damage in the finite element representation.

Layer 4 O
Element 1026

Figure 128: Fiber Compression Single Element Study Location

Figure 129 follows the damage initiation and evolution criteria for this element as
the simulation occurs. The top plot shows the Von Mises stress in the element which is
dominated by stress in the fiber direction. The middle plot shows the Hashin damage
initiation variable for each of the four modes. The last plot depicts the damage evolution
variable for each mode which equates to stiffness or load capacity degradation for the
given mode. This element experiences almost pure compression in the fiber direction.
Thus, as the bearing load is applied at t = 0.01 (unit time step), fiber compression
damage initiation rises first. Due to the Poisson effect, compression in the fiber direction

produces a resultant stress in the matrix direction which results in matrix tension. Then,

228



around t = 0.067, the Hashin matrix tension damage initiation variable reaches a value
of one, which triggers a matrix tension damage evolution variable. This begins to degrade
the stress capacity of the element in matrix tension which manifests as a drop in the
element stress. During this time, the element is loaded further in fiber compression which
results in Hashin fiber compression initiation near ¢ = 0.078. At this point, the fiber
compression damage variable reaches a maximum default value of D = 0.95 meaning
that the stress capacity in fiber compression is reduced by 95%. During this time, the
matrix tension damage variable remains between 0.35 and 0.50 until the near the end of
the simulation where it approaches a value of 0.90. If element deletion were used, based
on user input, this element would have been deleted as soon as the fiber compression
damage variable reached 0.95. Without using element deletion, the element retains some
stress capacity. Since there was no expectation of material erosion and the critical
elements are in compression throughout this work, element deletion in preliminary
models tended to cause non-physical, nearly instantaneous load drops as elements were
deleted. This did not model the experimental results well and complicated the analysis
due to the rapid change. For these reasons, in the final models presented in this work,

element deletion was not employed.
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Figure 129: Fiber Compression Damage Initiation and Evolution

6.7.2 Foil Ductile Behavior

Figure 130 depicts the single element selected from the 9-ply hybrid simulation
from the center foil. Figure 131 depicts the Von Mises Stress versus Von Mises Strain for
this element as compared to the user input equivalent stress-strain curve. Even in this
complex failure scenario, the model behaves as predicted and defined. The oscillations in
the simulation data are attributable to the wave propagation technique used in explicit
finite element modeling and the complex contact interactions at the bearing surface which
must account for penetration and slip. Since the element never reaches the failure, stress
damage is never initiated so no damage evolution appears in the computational stress-

strain curve from element 576.
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Figure 130: Elastic-Plastic Single Element Study Location
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VII. Single Shear Experimental Results

This chapter presents the results of the quasi-static monotonic experimentation in
the single shear configuration. With a basis established from the double shear results, the
intent of this chapter is to compare and contrast the behavior of control and hybrid
bearing samples in the more complex single shear cases. 18-ply hybrid and control
samples are compared in protruding head and countersunk head configurations at the
macroscopic level while also investigating the phenomena that occur down to the fiber
level, which allow progressive bearing failure to take place. The results of the single
shear testing are presented predominately as load-displacement and stress-strain curves in
addition to tabular data. In order to study the failure mechanisms that allow bearing
failure to occur, micrographs of progressive failure samples are presented. These have
been loaded to target specific features of interest in the full failure data. This chapter

concludes with a statistical analysis of all the quasi-static results.

7.1 Monotonic Single Shear Protruding Head Experimental Results

With the background gained from exploring the less complex double shear cases,
the more complex single shear results can be explored. This load condition is more
complex because the single shear nature allows bending in both the fixture and the bolt.
The layups here are the same 18-ply layups employed in the 18-ply double shear testing.

Figure 132 depicts load-displacement data for the single shear protruding head
samples. Control samples are represented in blue, with the full failure controls in blue
dashed traces and progressive failure controls in blue dot-dashed traces. The hybrid

samples are represented in red with the full failure hybrids in solid red and the
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progressive failure hybrids in dotted red traces. Table 36 lists averaged critical data and
statistical analysis corresponding to the sample results plotted in Figure 132.

When studying Figure 132 overall, the curves appear quite different than those
observed in the double shear configurations. Both the hybrid and control curves pass two
knee points before reaching an initial peak. Then near 0.040in (1.02mm) of displacement
(15% bearing strain) as the control is gradually failing in bearing, the hybrid samples
display a remarkable reloading phenomenon (labeled in Figure 132), that returns to a load
near the original peak. This is explored further alongside the progressive failure
micrographs.

In referencing Table 36, the hybrids demonstrate an increase over the control of
31% in yield load, 25% in offset load, and 37% in ultimate load. However, the most
remarkable improvement is the over 60% increase in strain energy. This is attributed to
the reloading phenomenon observed in the hybrid. In the tested cases, the material
reloaded to a value near that of the previous peak. This will be discussed further in the
hybrid progressive failure section. Since the single shear configuration allows bending in
both the fixture and fastener, reduced maximum loads and chord stiffnesses (moduli) are

observed compared to the double shear configuration.
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18-Ply Single Shear Protruding All Samples: Load v. Displacement
Displacement (mm)
0 0.5 1 15 2 2.5
6 T T T T T
125
5 | -
120
4
’J; —_
£ 115
3+ y .
B /i g
(e} J /| o
i e i -
¥ 7 s -110
21
/ I[I' / = = Control-Full Failure
1 ,' 1,"’ 7 ====Control-Progressive Failure || 5
/ ,./' i/ —— Hybrid-Full Failure
4 ,/' /’ L Hybrid-Progressive-Failure
0 A A | | | /77 5 | 0
0 0.02 0.04 0.06 0.08 0.1 0.12
Displacement (in)

Figure 132: 18-Ply Single Shear Protruding All Samples: Load v. Displacement

Table 36: 18-Ply Single Shear Protruding Load Displacement Data

Control Hybrid
Average | Sedev |N| AYera€C | stdev |N| ifr | % s;agt
Yield Load (kips) [ 550 0:1201 |7 orsa 208 009281( 5 [0.7368| 31.27 | Yes
Offset Load (kips) |2.552 975)[0-05627| 6 | 5 2353 361 0-08948 5 [0.7338 | 25.16 | Ves
U“i‘?lfi;fs)“’ad 008200 01284 |3 [ g ovoa pacy| 01552 3| 1445 | 36.96 | ves
Stra(ii‘l‘] _"l::)‘)ergy o1rosenn | 1422 |3 [0 s | 8:622 3] 1603 | 63.54 | ves

With the data analyzed in terms of load and displacement, it should also be

considered in terms of bearing stress and strain. Figure 133 displays plots for both the

control and hybrid 18-ply single shear protruding head samples in terms of stress and

strain. Control samples are represented in blue, with the full failure controls in blue
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dashed traces and progressive failure controls in blue dot-dashed traces. The hybrid
samples are represented in red with the full failure hybrids in solid red and the
progressive failure hybrids in dotted red traces. Table 37 contains the corresponding
stress-based data for the configuration. As in other cases, the adhesive thickness masks
the gains made by hybridization. The differences in yield and offset stress are no longer
statistically discernible. However, the hybrid demonstrates a statistically significant
increase of over 6% in ultimate stress and a remarkable increase of nearly 27% in strain
energy density, due to the reloading phenomenon that occurs near 12% strain. It is
noteworthy that the hybrid yield and offset occur at strains 10% and 5% greater

respectively than the controls.
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Figure 133: 18-Ply Single Shear Protruding All Samples: Stress v. Strain
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Table 37: 18-Ply Single Shear Stress-Strain Data

Control Hybrid
Average Average . cee Sta
(95% CT) Stdev |N (95% CI) Stdev |N| Diff |% Diff ¢
. . 81.99 84.43
Yield Stress (ksi) (77.61-86.38) 4741 |7 (81.23.87.63) 2580 [5] 244 |2971 |No

. . 0.03342 0.03691
Yield Strain (0.03247-0.03436) 0.001024| 7 (0.03572-0.03810)

, 101.8 64
Offset Stress (ksi) | (071087 | 2785 |6 o670 0mss)

. 0.04876 0.05124
Offset Strain (0.04788-0.04965) 0.0008 | 6 (0.04988-0.05260)

Ultimate Stress (ksi) | (1310008 | 2580 |3 1365 7952)

9.574E-04| 5 10.003496| 10.46 |Yes

2366 |5] -2.151 [-2.113|No

0.001098 | 5 ]0.002478| 5.083 |Yes

3.689 | 3| 8.668 |6.308 |Yes

. 2609 2417
Modulus (ksi) @2517-2701) 99.19 |7 (2334-2500) 66.66 | 5| -192.1 |-7.364|Yes
Strain Energy Density 28480 36130
(in-Ib/in®) (25200-31760) 1320 |3 (34280-37990) 746.3 | 3| 7649 |26.86 |Yes

7.1.1 18-Ply Single Shear Protruding Control Progressive Failure

In order to study the features that brought about bearing failure, four control
samples were run to specific displacements to target features in the data. These curves are
plotted Figure 134 where the targeted features are labeled. Figure 135 depicts the focus
area in the sectioned samples pictured in Figure 136. Figure 136 shows micrographs of
the sectioned samples that correspond to the curves and features in Figure 134.

Due to bending and bolt tension, in this configuration the system can be thought
of as attempting to pull the bolt through the hole as well as into the bearing surface. The
loading at the bearing surface is present just as in the double shear case. However, in the
single shear configuration, a significant component load is pulling the bolt into and

through the sample due to bolt tension and bending in the bolt.
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As seen in Figure 136A, this results in yield behavior that includes coupled fiber
kinking and matrix cracking along planes that are at an angle to the bearing surface. This
behavior corresponds to the first knee point (Feature 1) that occurs around 3% strain
(dotted red trace). A detailed view of this image is presented in Figure 137 which clearly
shows this coupled fiber kinking and matrix cracking behavior.

The samples pictured in Figure 137 B and C and plotted in dashed green and solid
blue traces in Figure 134 targeted the second knee point that occurs in the 6% to 7%
strain range (Feature 2). This knee point is due to the through thickness wedge cracking
displayed in these two micrographs in Figure 137 B and C. This cracking is coupled with
delamination initiating in the bottom plies of the layup.

Figure 137D shows a sample that was stressed just past the ultimate stress
(Feature 3). This is represented by the bold cyan trace in Figure 134. This sample is
dominated by through thickness cracking and delamination that caused the load drop after
reaching ultimate stress. A sectioned full failure sample is displayed in Figure 137D.

This sample displays large scale crushing that occurred at the edge of the bolt head.
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Figure 134: 18-Ply Single Shear Protruding Control Progressive Failure

Figure 135: Single Shear Protruding Sectioned View and Observed Area
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A) 4.57% Strain (Feature 1)

0.156in (3.96mm)

Figure 136: 18-Ply Single Shear Protruding Control
Progressive Failure Micrographs
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| 0.0200in (0.508 mm) SEREEEEE

Figure 137: Coupled Fiber Kinking and Matrix Cracking at 4.57% Strain

7.1.2  18-Ply Single Shear Protruding Hybrid Progressive Failure

Two progressive failure samples were loaded to target specific features of interest
in the hybrid single shear protruding head curves. Figure 138 shows stress-strain data for
these samples and one full failure sample. Figure 139 shows micrographs of the sectioned
samples which correspond to the curves in Figure 138. Due to other requirements, only
two progressive failure samples were available. However, these two samples are very
telling.

Figure 139A shows behavior just after yield at the second knee point (Feature 1 in
Figure 138). While the two knee points due to load redistribution near 3% and 6% strain
in the controls still exist, they are delayed and attenuated by the presence of the stainless
steel. Figure 139A shows that the presence of the steel is preventing through-thickness
cracks from forming as noted in the control samples (Figure 137B and C).

Figure 139B and C show how the reload phenomenon comes about as plotted in

the green dashed and orange dot-dashed traces in Figure 138. As buckling in individual
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foils becomes through-thickness buckling coupled with delamination, a new pristine
bearing surface is effectively presented to the system allowing the system to be reloaded
to a value near the original maximum stress. This is similar to the reloading that occurred
in the 9-ply double shear samples but is more effective here due to the stiffness of the 18-
ply layup. The large-scale delamination that occurs as a result of the load drop in Feature
2 occurs just outside of the bolt head. It is noteworthy that 34% hole elongation in the
hybrid is more conservative than a 35% hole elongation in the control (Figure 139C vs

Figure 139E).
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Figure 138: 18-Ply Single Shear Protruding Hybrid Progressive Failure
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Figure 139: 18-Ply Single Shear Protruding Hybrid
7.2  Monotonic Single Shear Countersunk Head Experimental Results

With a basis established in double shear and protruding head configurations, the
most complex of the cases, single shear countersunk, can be investigated. This case is the
most complex because it not only allows bending in the fixture and bolt like in the
protruding head case, but it also does not constrain both faces of the coupon as in the
other configurations.

Figure 140 shows all the load-displacement data collected in the single shear
countersunk configuration. This includes control and hybrid as in previous
configurations, while also including the shank only hybrid which only includes foils in
contact with the shank region of the bolt (see discussion in Section 3.4.5). In Figure 140,

control samples are represented by blue dashed lines, while control progressive failure
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samples are represented by blue dotted lines. Hybrid full failure samples are represented
by solid red lines while hybrid progressive failure samples are represented by dotted red
lines. Shank-only full failure samples are in dashed green lines and shank-only
progressive failure samples are in dot-dashed green. Table 38 and Table 39 show the
calculated data and statistical significance which correspond to the data in Figure 140.
These two tables compare the shank-only to the control, and the full hybrid to the control
respectively. A table comparing the full hybrid and shank-only data is found in Appendix
J.

In Figure 140, it is clear that the shank-only hybrid (green traces) has
outperformed the control (blue traces) and that the full hybrid (red traces) has
outperformed both the other layup configurations with respect to the ultimate load
achieved. The shank-only and full hybrid also carry more load capacity in the later phases
of bearing failure. The shank-only experiences a load drop around 0.060in (1.5mm) of
displacement (19% strain) which does not exist in the other samples. This will be
discussed further in the examination of the progressive failure samples.

In reference to Table 38, the shank-only hybrid produced a nearly 10% gain in
yield load and over a 20% gain in offset load, ultimate load, and strain energy. However,
from this work, the shank only scenario is not advised.

Since the shank-only layup was asymmetric through the thickness, a significant
bending moment was imparted to the laminate by cure induced stresses. Thus at rest, the
12.0in (30.4 cm) wide panel had a 0.500in (12.7mm) curvature as depicted in Figure 141.
This could potentially produce parts that are unusable due to incorrect geometry. The

curvature and internal stresses also complicated machining. Aside from manufacturability
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limitations, the full hybrid is superior in that it produced a larger improvement over the
control in all measured criteria. The shank-only effect is less evident here because the
procedure-C joint is stiffer than a standard lap joint studied by Egan [43], [44]. While the
shank-only provides a 9.5% increase in yield load (Table 38), the full hybrid provides a
yield load improvement of 15.5% over the control (Table 39). The full hybrid displays

over a 30% improvement over the control in offset load, ultimate load, and strain energy.
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Figure 140: 18-Ply Single Shear Protruding All Samples: Load v. Displacement
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Table 38: 18-Ply Single Shear Countersunk Load-Displacement Data:
Control v. Shank-Only

Control Shank-Only Hybrid
Average | Stdey (N[ 4Ye3EC | Stdev [N| Diff | % Diff Sstiagt
Yizili;;())ad Graaae 01617 (6| 3OO 101325 |60.3177) 9.500 | Yes
off(sl:aitplg)oad v |0:06969| 5[ SIS 10.05481) 5 [0.7105] 212 | Yes
Ulti‘?}i‘i‘:s)“’ad Gsin sy |0:04048 4 [ S22 1005778 5 [0.7155 20.3 | Yes
Stra(iir:l_lfll:)ergy sl 7095 3| 2T | 4041 34033 ] 230 |Yes

Table 39: 18-Ply Single Shear Countersunk Load-Displacement Data:

Control v. Hybrid
Control Hybrid
fost a8€ | Stdev | N| WLSHAZE | Stdev |N| Diff | % Diff Ssti’g
Yiczll:li;())ad ety | 01617 6| s 2505 1015331 6 |0.5178| 1548 | Yes
Off(sgplg)"ad G0 as) 0069691 5 [, 2 10.08678| 5| 1.065 | 3139 | Yes
Ulﬁ‘?lj‘it:s?"ad Gaven 2y 0040481 4 [, S00T 101099 | 3| 1148 | 32.62 | Yes
Stra(i;:lf;l)ergy asrroney| 7095 |3 | sonsse | 7937 |3]63.67| 3631 | Yes

Curvature due to asymmetric layup

Figure 141: Shank-Only Panel Curvature
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Having explored the single shear countersunk data in terms of load and
displacement, it should be investigated in terms of bearing stress and strain. Figure 142
depicts the stress-strain data for all the 18-ply countersunk samples. Control full failure
samples are represented by blue dashed lines, while control progressive failure samples
are represented by blue dotted lines. Hybrid full failure samples are represented by solid
red lines while hybrid progressive failure samples are represented by dotted red lines.
Shank-only full failure samples are in dashed green lines and shank-only progressive
failure samples are in dot-dashed green. Corresponding key data are compared in Table
40 and Table 41.

In Figure 142, in terms of bearing stress and strain, the gains noted in the load-
based data are again being masked by adhesive thickness. All the configurations appear
to reach a similar ultimate stress peak. However, both the shank-only and full hybrid
demonstrate a higher stress capacity than the control as extended bearing failure comes
about past 15% bearing strain. Here the modulus of the controls appears to be stiffer than
those of both hybrids.

In reference to Table 40, the shank-only hybrid has a yield stress 6.5% lower than
that of the control. Differences in the yield strain, ultimate stress, and strain energy
density are not statistically different. The modulus of the shank-only is almost 12% lower
than that of the control, while the offset strain is over 4% greater than that of the control.

In Table 41 the hybrid demonstrates a yield stress 9.5% lower than that of the
control. The modulus is almost 11% lower while the offset strain is over 12% greater in

the hybrid. The remaining values are not statistically conclusive.
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Figure 142: 18-Ply Single Shear Protruding All Samples: Stress v. Strain

Table 40: 18-Ply Single Shear Countersunk Stress-Strain Data:
Control v. Shank-Only Hybrid

Control Shank-Only Hybrid

Average | Stdev werage | suwev |N| Dift | | o

Yield Stress (ksi) | (11011212 | 5263 G 41'2?1%1’9) 3.526 6| -7.480 |-6.467| Yes
Yield Strain [ o (SOT6C0 10.005687| 6 | 500 ouns | 0-003658 |6 0.004408 | 5.794| No

Offset Stress (ksi) | (iaoiom | 1842 (12;'%_11-263.2) 1275 |5| 4426 |3.778 | Yes
Offset Strain | (0 os1on.0awos1) [0-003195 00v s | 0003390 |5 0.01234 | 1441 Yes

U'tim;‘l::i)Stress G | 3866 2| 2002 |5 4290 |3.549|No
Modulus (ksi) | (arsrase | 84.04 tsraie | 3798 |6 -186.9 |-11.94|ves

DS;Z;?‘(?HTE%) Amseas | 6910 (19229(2“_‘2417599) 4639 [3]| 9457 |4.849|No
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Table 41: 18-Ply Single Shear Countersunk Stress-Strain Data:
Control v. Hybrid

Control Hybrid

Average Average . o/ el StAt
(95% CI) Stdev | N 95% CT) Stdev |[N| Diff |% Diff Sig

. . 115.7 104.6
Yield Stress (ksi) (110.1-121.2) 5263 | 6 (101.3-108.0) 4168 | 6| -11.02 |-9.532|Yes

. . 0.07609 0.07686
Yield Strain (0.07012-0.08206) 0.005687| 6 (0.07365-0.08008) 0.0040| 6 |7.733E-04| 1.016 | No
. 117.2 120.5
Offset Stress (ksi) (114.9-119.4) 1.842 | 5 (1182.122.7) 2574 | 5| 3.338 |2.849 |No
0.08564 0.09631

Offset Strain  |0.08168.0.08061)[0-003195| 5 0.0033/ 5| 0.0107 | 12.46 [Yes

(0.09338-0.09925)

Ultimate Stress 120.9 126.2
(ks (a0 | 3866 [ 4| (5305 (3156 3| 5372|4444 |No
1566 1399

Strain Energy 19501 20767
Density (in-b/in’) | (17784-21218) N (19911-21623) EEIRY 1266 | 6492 | No

7.2.1 18-Ply Single Shear Countersunk Progressive Failure

In order to understand the features that allowed bearing failure in the control
single shear countersunk bolted joints, three progressive failure samples and one full
failure sample were sectioned for microscopy. Progressive failure stress-strain curves for
the single shear countersunk configurations are shown in Figure 143 where specific
features of interest are labeled. The area subjected to microscopy for the countersunk
samples is depicted in Figure 144 and micrographs of sectioned samples are shown in
Figure 145 which correspond to the stress-strain curves in Figure 143.

As in previous configurations, yield (Feature 1), represented by the red trace at
7.86% strain, is dominated by fiber kinking in the 0° plies (Figure 145A). This early
damage is localized in the plies in contact with the shank of the bolt due to the bolt

bending allowed by the countersunk configuration and the smaller diameter of the shank
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which concentrates stress. Delamination has already occurred in the lower plies of the
layup.

The sample Figure 145B, represented by the dashed green line in Figure 143
targeted the load drop just after the ultimate stress was reached (Feature 2). This sample
shows coupled fiber kinking and matrix cracking progressing away from the bearing
surface. The delamination noted after yield has progressed further.

Feature 3, the large load drop was targeted by the sample pictured in Figure 145C
(blue dot-dashed trace in Figure 143). Here, since the countersunk head does not
constrain the top surface of the laminate, out of plane buckling has occurred at the edge
of the countersink which is allowed by large scale coupled fiber kinking and matrix
cracking. The angle of the load path between the bolt and bearing surface caused this
failure to come about in a wedge shape.

As bearing failure continues toward 30% bearing strain, as plotted in the orange
trace in Figure 143 and as pictured in Figure 145D, failure is dominated by crushing and
delamination. This is allowed to come about and progress rapidly since the top face of the

laminate is not constrained.
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Figure 143: 18-Ply Single Shear Countersunk Control Progressive Failure

Figure 144: Single Shear Countersunk Focus Area
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A) 7.86% Strain (Feature 1) B) 9.41% Strain (Feature 2)

Figure 145: 18-Ply Single Shear Countersunk Control Micrographs

7.2.2 18-Ply Single Shear Countersunk Hybrid Progressive Failure

In order to compare the failure mechanism in the countersunk joint in the hybrid
material to the control, three progressive failure samples and one full failure sample were
sectioned for microscopy. Figure 146 shows curves for the single shear countersunk
hybrid progressive failure samples. Figure 147 shows micrographs of the sectioned
samples which correspond to the curves plotted in Figure 146.

The sample in Figure 147A corresponds to the red dotted trace in Figure 146
which targeted behavior that allowed yield (Feature 1). As noted in the control, the
damage at this early strain exists in the layers in contact with the shank of the bolt, while
those layers in contact with the head of the bolt are still intact. Fiber kinking is present in
the lower 0° layers which is coupled with buckling in the foils. Delamination has just set
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in in the bottom of the laminate similar to that seen in the control. As strain progresses
slightly as pictured in Figure 147B and plotted in the dashed green trace in Figure 146,
fiber kinking coupled with buckling and delamination has developed further.

The sectioned sample in Figure 147C targeted the behavior just after the ultimate
stress was reached (Feature 2). This shows that the load after ultimate stress was due to
large scale buckling in the lower foils accompanied by widespread delamination. This
buckling corresponds to the through thickness cracking in the control samples at the same
strain (Figure 147C vs. Figure 145C). Since the stress is more focused at the shank, the
bottom foils have buckled further. Unique delamination behavior is seen between the two
top plies (countersink side) because the head of the fastener does not come into direct
contact with these layers. Thus, as the stress is concentrated in the third layer,
delamination sets in between the second and third plies.

The sectioned sample in Figure 147D demonstrates that as the sample approached
full bearing failure, it shed load through complete buckling of the foils which led to

extreme delamination since the top face of the coupon is not constrained.
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Figure 146: 18-Ply Single Shear Countersunk Hybrid Progressive Failure

A) 9.14% Strain
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B) 9.54% Strain (Feature 1)
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Figure 147: 18-Ply Single Shear Countersunk Hybrid Micrographs
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7.2.3 18-Ply Single Shear Countersunk Shank-only Hybrid Progressive

Failure

In order to compare the features allowing bearing failure in the shank-only
samples to the control and full hybrid samples, three progressive failure samples were
sectioned for microscopy. Figure 148 shows the stress-strain curves for the single shear
shank-only countersunk progressive failure samples. Figure 149 shows micrographs of
the sectioned samples corresponding to the curves in Figure 148.

The sectioned sampled in Figure 149A (red dotted trace in Figure 148) targeted
the behavior just after yield (Feature 1). As noted in the other countersunk samples, the
damage at yield exists near the shank of the bolt where the stress is more concentrated.
Fiber kinking is again present in the 0° plies and early delamination has begun in the
lower composite plies.

The sectioned sampled in Figure 149B targeted the load drop just after ultimate
stress (Feature 2). Fiber kinking is widespread and is coupled with localized buckling in
the foils. The load drop is due to the through thickness buckling in the lower, hybridized
layers. This corresponds to the through thickness cracking near the same strain noted in
the control (Figure 145C).

The damage pictured in Figure 149C demonstrates that the final large load drop
(Feature 3 in Figure 148) is due to complete buckling in the foil layers and crushing in
the upper, non-hybrid layers. Here the foils have effectively delayed the load drop seen in

the control (Feature 3 in Figure 143).
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Figure 148: 18-Ply Single Shear Countersunk Shank-only Progressive Failure

A) 9.49% Strain (Feature 1) B) 13.8% Strain (Feature 2)
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Figure 149: 18-Ply Single Shear Countersunk Shank-only Micrographs
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7.3 Statistical Analysis of Quasi-Static Results

In order to verify that the results of the quasi-static analysis were conclusive,
linear effects test statistical models were constructed using JMP software [108]. This step
is critical because it provides indication of which variables, controlled or uncontrolled,
significantly influence the results. In some cases, the influence of a nuisance variable
may render the results inconclusive. As a simple example, if one were experimenting
with two different heat treatments of steel, if all of the samples with treatment A were
tested on a hot day with no climate control and all with treatment B were tested on a cold
day with no heat, the near 100°F (56°C) temperature swing could drastically affect the
results. For this research, ideally only the controlled variables of configuration, ply count,
and hybridization would be statistically significant. Table 42 shows the results of linear
effects models which included all controlled and nuisance variables. The RSquare
Adjusted values measure how much of the variation in the system is explained by the
model considered. In all cases, these models are conclusive. As expected, configuration,
ply count and hybridization are all statistically significant when yield load and ultimate
load were considered as responses. When transitioning to stress based data (yield stress
and ultimate stress as response variables), ply count becomes insignificant since bearing
stress is essentially normalizing load by thickness. In all cases, the nuisance variables
proved to be statistically insignificant. Thus, the manufacturing method was stable
enough that the panel position, cure cycle, and hole diameter did not introduce
measurably significant variance into the coupons. As expected, the relatively stable test

temperature did not affect the sample strength. Because only the controlled variables are
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statistically significant, any comparative assessment made between samples can be

conclusively attributed to configuration, ply count, and hybridization of the samples.

Table 42: Quasi-Static Statistical Significance

Response: Yield Load Ultimate Load Yield Stress Ultimate Stress

Effects P-Value | Stat Sig | P-Value | Stat Sig | P-Value | Stat Sig | P-Value | Stat Sig
Configuration | <.0001 Yes <.0001 Yes <.0001 Yes <.0001 Yes
Ply Count | <.0001 Yes <.0001 Yes 0.1540 No 0.2189 No
Hybrid <.0001 Yes <.0001 Yes 0.0020 Yes 0.0020 Yes
Panel Position | 0.7406 No 0.7739 No 0.7802 No 0.6514 No
Cure Cycle | 0.9439 No 0.9625 No 0.8934 No 0.6245 No
Temperature | 0.1707 No 0.5358 No 0.5979 No 0.3783 No
Hole Diameter | 0.2867 No 0.7662 No 4553 No 0.7401 No

RSquare Adj
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VIII. Cyclic Fatigue Results

This chapter presents the results of the cyclic fatigue experimentation which was
considered in double shear and in the single shear protruding head configuration with 18-
ply control and hybrid samples. This chapter begins with a discussion on how the fatigue
study developed as initial results were collected. Then, results obtained using the
accelerated step test method are presented. Microscopy of sectioned fatigue samples is
presented and compared with the failure mechanisms of the quasi-static testing. The
fatigue results are presented using load and displacement with respect to cycle count.

Summary fatigue data are presented in tabular form and statistical analysis is presented.

8.1 Fatigue Development

The original intent for the fatigue study was to run samples to fairly low cycle
counts of 10, 100, and 500 cycles at a peak load equal to 85% of the maximum quasi-
static load. However, as tests were observed in real time, little permanent deformation
was noted based on the data from the extension gauge. The displacement at the peak and
minimum loads are plotted with respect to cycle count for three control samples and three
hybrid samples loaded in double shear in Figure 150. Since these displacements were
small and the goal was to section fatigue samples to compare internal failure mechanisms
to those presented in the quasi-static experimentation, more permanent deformation was

desired.
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Figure 150: Low Cycle Count Fatigue Displacement

In order to obtain more deformation, the load and cycle count could be
manipulated. The most conservative step was to first increase the cycle count to
determine the number of cycles required to produce at least 4% hole elongation, which is
commonly used to define hole failure in operational applications [18]. Using the same
85% load, a sample was run to 250K cycles but still very little permanent deformation
was noted as depicted in Figure 115. After all the testing was completed and the samples
were able to be sectioned, despite no obvious features in the displacement curve, the
sample shown in Figure 152 displayed fiber kinking in the 0° plies, as was consistent
with early damage in the quasi-static testing. This method was undesirable since, due to

the high cycle count, the test ran over four days and laboratory availability was limited.
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Figure 151: Control Sample at 250K cycles at 85% of Quasi-Static Maximum Load

0.156in (3.96mm)

Figure 152: Damage after 250K cycles at 85% of Quasi-Static Maximum Load

Next, the decision was made to increase the load to 90% of the average maximum
quasi-static load in an effort to shorten test run times. Again, in real-time, permanent
deformation (Figure 153) was not seen to be developing in the sample and the test was
halted near 22K cycles. After all testing was complete and the samples were sectioned,
despite the small deformation, this sample displays fiber kinking and through thickness

cracking as shown in Figure 154. While faster, this test still took over 6 hours to run.
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Figure 153: Control Sample at 22K cycles at 90% of Quasi-Static Maximum Load
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Figure 154: Damage after 22K cycles at 90% of Quasi-Static Maximum Load

Due to limited test time, a test method was desired that produced a more
predictable test run time with more measurable permanent deformation. The accelerated
fatigue step test method documented by Nicholas was adopted [85], [86]. This method
produced consistent results and each test ran in about 3.5 hours, allowing two tests to be
conducted each day. In the following sections, results from 18-ply control and hybrid

samples are presented in both double shear and single shear protruding head
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configurations. Micrographs of sectioned samples are presented. After both control and
hybrid are presented, a comparison of the two is discussed. Finally, a statistical analysis

is discussed on all the fatigue step method data.

8.2 Double Shear Cyclic Fatigue Results

The load-displacement data for the control double shear fatigue step test samples
are plotted in Figure 155. Critical values are presented in terms of stress and strain later
in this section. Figure 155A (top subplot) displays the bearing load at each step in the
procedure. The stress began at 85% of the average peak load from the quasi-static
samples in the same configuration and then increased by 2.5%. The low end of the load
was maintained at 1001bf (445N) throughout. The resultant fatigue limit load for each
sample is represented by a horizontal line in Figure 155A (top subplot). The stop criterion
was standardized for the control and hybrid based on the results of the quasi-static testing
at a displacement of 0.0250in (0.635mm) which equates to 8.03% strain. The results are
consistent with the samples having an average fatigue limit load of 4.87kips (21.7kN)
with a standard deviation of 165 Ibf (734N). Figure 155 (bottom subplot) depicts the
resultant hole elongation throughout the test. A dotted line denotes the hole elongation

stop criterion.
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65 Double Shear Fatigue Control Load-Displacement
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Figure 155: Control Double Shear Fatigue Step Test Results

Figure 156 shows microscopy of the sectioned control double shear fatigue
samples. Since the fatigue stop criterion was 8% strain, these samples are compared to a
quasi-static sample strained to 7.63%. All the samples display through thickness cracking
composed of coupled fiber kinking and matrix cracking. This behavior matches that seen
in the quasi-static sample. However, the fatigue samples have progressed further into this
behavior. The two samples in Figure 15A and B, which exceeded 10K cycles both
display delamination near the center of the layup. While similar delamination exists near
the center plies in the quasi-static sample, it is more evolved in the two fatigue samples.
The third fatigue sample which ran to just past 8000 cycles did not demonstrate this

delamination behavior.

263



A) Sample C-05-2

D) Quasi-Static Comparison 7.63% Strain
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Figure 156: Control Double Shear Fatigue Step Test Sectioned Samples

Figure 157 plots the double shear fatigue step data for three hybrid samples. For
comparison to the control samples, the same 0.0250in (0.635mm) stop criteria was used.
These results are extremely consistent with a standard deviation in fatigue limit load of
less than 931bf (414N). The one feature here that is most undesirable is that one of the
samples (H-06-5) failed catastrophically as it approached the stop criterion as denoted by
the dotted line in Figure 157B (lower subplot). While no obvious defects in this sample
were noted, this combined with later samples in single shear show that samples loaded

cyclically are much more sensitive to machining defects.
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6.5 Double Shear Fatigue Hybrid Load-Displacement
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Figure 157: Hybrid Double Shear Fatigue Step Test Results

Fig. 14 shows micrographs of the double shear fatigue hybrid step test samples as
compared to a quasi-static sample loaded to 7.21% bearing strain. In Fig. 14A and B, the
failure is dominated by fiber kinking in the 0° plies and foil buckling, which is damping
the through thickness cracking. The behavior of these samples is quite similar to that of
the quasi-static behavior. However, the delamination detected and matrix cracking
(“MC”) in the quasi-static sample has not set into the fatigue samples.

Fig. 14C shows the sample (H-06-5) that failed catastrophically. This failure is
similar to that seen in the quasi-static samples past 0.040in (1.0mm) hole elongation in
Brewer et al [90]. Since a low cycle count of n = 1000 was selected for this fatigue
study with a load rate that is relatively fast when compared to quasi-static, the fatigue

limit stress here is critically high. Thus, the probability of a sample failing
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catastrophically is increased. If a larger cycle count were selected, the failure would come
about more gradually, and a lower load would be required which would reduce the
probability of a catastrophic failure. In this case, the fatigue limit stress is just over the
average maximum stress found in the quasi-static study. In reality, engineers would not
design a cyclically loaded part to operate near the maximum quasi-static stress. Rather, a
design would be based on a factor of safety from the quasi-static yield and a number of

fatigue lifetimes.
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Fig. 158: Control Double Shear Fatigue Step Test Sectioned Samples

Table 43 compares the outcomes of the control and hybrid samples in the double

shear step test cyclic fatigue load scenario. From a load perspective, the fatigue limit load
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for 1000 cycles is 26% higher in the hybrid material. As noted in the quasi-static samples,
in a stress calculation, the gains made by hybridization are masked by the thickness

increase and the difference in the two means becomes statistically insignificant.

Table 43: Double Shear Fatigue Step Test Method Data

Control Hybrid
fompame |stdey|N| A0CTASC | sedev N Difr | e [
Faﬁ(gl:’i;SL)"ad war sl [01648(3 (5'9%9_;3373) 0.09264(3 [ 1.273 | 26.13 |Yes
Fatigue Stress (ksi)| 651.2-71‘659.9) 0.9466 3 (15;2_51‘7739) 3268 [3|-1.782|-1.064 | No

8.3 Single Shear Cyclic Fatigue Results

The results of the control single shear fatigue step tests are plotted in Figure 159.
As shown in Figure 159A (upper subplot), the steps were applied in 2.5% load steps
beginning at 85% of the average maximum load of the quasi-static singe shear control
samples. The resultant fatigue limit load for each sample is represented by a horizontal
line in Figure 159A (top subplot). As noted in the quasi-static experimentation, the single
shear condition allows for bending in the sample, fixture, and fastener which results in a
lower fatigue limit stress as compared to the double shear samples. Since this load
condition is more flexible, a stop criterion of 0.04001in (1.02mm) which equates to 12.8%
strain was selected based on results of the quasi-static tests. Figure 159B (lower subplot)
depicts the hole elongation with respect to the cycle count for each of the three samples.
It is important that all three samples cross the failure criterion as they failed
catastrophically as depicted in Figure 160. In contrast, under quasi-static loading the

samples were consistently able to be strained to 30% hole elongation without catastrophic
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failure. This early failure is attributed to the combination of a high cyclic (1hz) rate
compared to quasi-static and a low cycle count which drove the fatigue stresses critically
high. Due to the catastrophic failure, the bearing region of the samples was completely

crushed, rendering the sample unusable for microscopy.
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Figure 159: Control Single Shear Fatigue Step Test Results

Figure 160: Control Single Shear Protruding Fatigue Samples
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Figure 161 depicts the experimental results for the hybrid single shear fatigue step
test samples. Figure 161A (top subplot) displays the load beginning at 85% of the
average maximum quasi-static load with each step increasing by 2.5%. The bottom
subplot displays the hole elongation over the cycle count.

One feature that stands out in the data are the three samples (in green traces) with
cycle counts and fatigue limit stresses far lower than other samples. These three samples
all had defects produced during the hole drilling process and were run to understand the
effects. Samples H-04-5 and H-05-3, shown in Figure 162A and B, both suffered from
delamination of the lower plies during drilling causing them to fail extremely early. H-
04-5 (Figure 162A) also suffered from internal tearing. This sample was damaged to such
an extent that it did not complete and entire block and does not meet Nicholas’ criteria for
calculation of a fatigue limit. Sample H-06-7 displayed a different machining
phenomenon commonly known as “chatter.” Here, when the chamfering bit was
employed, vibration was introduced. This caused the bit to skip around the edge of the
hole cutting out scalloped sections of material instead of cutting evenly around the
diameter. This scalloped appearance on a macroscopic scale is shown in Figure 162D and
the resulting damage is visible in Figure 162E. These three samples show that careful
machining is critical to the strength and fatigue life of this hybrid material, and that
specific nondestructive inspection methods of the holes must be developed and employed
before parts enter service life. Since these samples had known defects, they were not
included in the statistical analysis.

The remaining samples which were considered in the statistical analysis produced

consistent results with all reaching the stop criterion on the same step and achieving a
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standard deviation in load of 25Ibf (110N). In contrast to the control samples, each single
shear hybrid, including the damaged samples reached the hole elongation stop criteria

without catastrophic failure.

Single Shear Fatigue Hybrid Load-Displacement
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Figure 161: Hybrid Single Shear Fatigue Step Test Results
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B) H-04-5
Delamination

A) H-04-5 Hole Defects

D) H-06-7 Hole Chatter Macro

Figure 162: Machining Damage in Hybrid Singe Shear Protruding Fatigue Samples

Figure 163 shows microscopy of sectioned hybrid single shear protruding head
fatigue samples that were pristine prior to testing. Figure 163A shows a unique failure
pattern that was not displayed in the quasi-static samples. Here the damage is closer to
the bearing surface and actually displays a fracture in the uppermost foil. This
corresponds to a curve that shows a sharp change (in Figure 126) as it approaches the
stop criterion. The other two samples in Figure 163B and C behaved similarly to the
quasi-static condition that was loaded to 13.0% strain which is close to the 12.8% strain
used as the stop criterion here. They show developed wedge buckling through the
thickness of the coupons with delamination occurring near the surface plies and midplane

plies.
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A) Sample H-07-4 ‘_ BLSample H-05—_6___.

0.15in (3.96mm

0.156in (3.96mm)

D) Quasi-Static Corhparison
13.0% Strain -

0.15in (3.96mm

Figure 163: Representative Hybrid Singe Shear Protruding Fatigue Samples

The critical data for the single shear protruding head samples are compared in
Table 44. The hybrid displays a fatigue limit load that is 32% greater than that of the
control. Furthermore, the hybrid displays standard deviations that are far less than those
of the control samples. When stress is calculated, the hybrid appears to be significantly
greater, but the standard deviation in the control samples is large enough that the 95%

confidence intervals overlap, and difference is not statistically discernable.
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Table 44: Single Shear Fatigue Step Test Method Data

Control Hybrid

Average Average . % | Stat
95%C) Stdev | N (95%C) Stdev [N | Diff Diff | Sig

Fatigue Load 4.128 5.457

(kips) (3.869.4.388) 0.1045| 3 (5.395.5.519) 0.02501 3 (1.329] 32.19 | Yes
Fatigue Stress 143.6 151.0

(ksi) (129.0.158.2) 5.8790| 3 (149.4-152.7) 0.6589 | 3 17.436| 5.178 | No

8.4  Fatigue Statistical Effects Analysis

In order to verify that the results of the fatigue analysis were conclusive, JMP
statistical analysis software was used to construct linear effects tests models on the
fatigue step test data [108]. Ideally, only the controlled variables of configuration (single
shear or double shear) and hybridization (control or hybrid) would significantly affect the
bolted joint. Nuisance variables were test ambient temperature, hole diameter, cure cycle
and panel position. The limited number of samples caused aliasing between the variables
which prevented the inclusion of all of the nuisance variables into the final models.
Temperature and hole diameter were not significant in the quasi-static statistical analysis
and were not significant in preliminary models. Specifically, in linear effects models
considering temperature and hole diameter as effects, neither was significant and the
RSquare Adjusted value was negative, meaning these nuisance variables explained
virtually none of the variation. Thus, the final models presented here include the variables
related to layup which was of greatest concern.

First, the fatigue limit load was considered as the response. Here, configuration
and hybridization were both statistically significant while panel position and cure cycle
were not significant. With an RSquare Adjusted value of .9825, variation from

configuration (single shear v. double shear) and hybridization explain 98% of the
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variation in the model. When the response was changed to fatigue limit stress,
configuration remained significant, but hybridization was no longer significant. This is
due to the thickening caused by the adhesive. Overall, this statistical analysis proves that
the largest sources of variation in the data are the configuration and hybridization, which
was desired and expected. Additionally, this supports the conclusion that the panel
position and cure cycle are not significant. This means that the manufacturing process is
sufficiently consistent across the area of each panel and between cure cycles. Because
only the controlled variables are statistically significant, any comparative assessment
made between samples can be conclusively attributed to configuration and hybridization

of the samples.

Table 45: Fatigue Step Statistical Analysis

Fatigue Limit Fatigue Limit

KGRI Load Stress

Effects P-Value | Stat Sig [ P-Value | Stat Sig
Configuration | <.0001 Yes 0.0018 Yes
Hybrid <.0001 Yes .3558 No
Panel Position | 0.8816 No 0.8855 No
Cure Cycle .1450 No 0.2803 No

RSquare Adj 0.9825 0.7992
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IX. Contributions, Conclusions, Recommendations, and Summary

This research focused on characterizing the loading and failure of a novel hybrid
material composed of a unidirectional carbon fiber co-cured with stainless steel foils in
place of composite plies at a bolted joint as compared to a control material. A parallel
objective was to trace the failure computationally by producing representative finite
element models to predict the behavior of this hybrid material in a bolted joint. Quasi-
static bolted bearing experimentation was performed per ASTM D5961 on hybrid and
control samples in 9-ply and 18-ply layups in double shear. 18-ply single shear samples
were considered with protruding head and countersunk head bolts. Double shear and
single shear protruding head samples were compared in cyclic fatigue using the step test
method as described by Nicholas [86]. Finally, finite element models of 9-ply and 18-ply,
control and hybrid models were developed using Abaqus finite element software and

compared to experimental data.

9.1 Contributions

This work added many novel contributions to the research area. This was the first
effort to explore this layup employing the AF191U film adhesive in bearing samples.
This was the first effort to consider a hybrid composed of IM7/977-3 carbon fiber and
stainless steel across multiple configurations, which allowed enough testing to produce
statistical evaluation.

To aid the experimentation, updated fixtures were designed and machined that are
more consistent than those commonly purchased. Engineers who had worked on bearing

samples previously, cited issues with other fixtures and extension measurement
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techniques. Specifically, the integral knife edges and bonded knife edge tabs were 100%
effective. Slipping of the extension measurement apparatus was never noted. Because of
its effectiveness, this design was incorporated into a 0.250in (6.35mm) hole diameter
fixture for AFRL/RQ to replace the fixtures sourced from a prominent manufacturer.
These updated fixtures have already been used by engineers and technicians from
AFRL/RQ and San Diego State University. Drawings have been distributed to contractors
of AFRL and the fixture system has been recommended for use in their work.

This was the first cyclic fatigue testing performed on this hybrid material and the
first accelerated step method performed on composite bearing samples.

From a modeling perspective, this was the first modeling effort to focus on
producing accurate and efficient models in different layups while working inside the
native Abaqus environment. This was also the first effort to employ parallel
computational failure criteria to explain failure in this novel hybrid across multiple
configurations.

From a manufacturing perspective, this research proved that the hybrid material
can be manufactured consistently at the coupon level. The completed coupons were as
dimensionally stable as the controls and the standard deviations of the strength of the

coupons were similar to those of the controls.

9.2  Conclusions
The quasi-static testing proved that hybridization increased the load capacity of
the layup in every tested configuration. In double shear, hybridization increased the yield

load by 25.4% in the 9-ply case and by 12.4% in the 18-ply case. In single shear,
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hybridization increased the yield load by 31.3% with a protruding head, and by 15.5%
with a countersunk head. While the adhesive did thicken the layup by about 27%, the
magnitude of this thickening is only 0.025in (0.64mm) in the 18-ply. In many design
cases this thickness may be a reasonable trade for the benefits of hybridization. Future
efforts should investigate thinner adhesive solutions and the removal of adhesive
altogether. The quasi-static data also demonstrated that the addition of the ductile
stainless steel damped sharp reloading behavior bringing about a smoother stress-strain
curve.

This research demonstrated that in both the control and hybrid in double shear, the
9-ply layup was a good predictor of the 18-ply behavior up to about 10% strain. In the
control, doubling the 9-ply load capacity predicted the load capacity of the 18-ply so
closely that the values are not statistically discernible. In the hybrid, doubling the 9-ply
loads overestimated yield by about 10% making it a usefully conservative estimate.
Since foil preparation was one of the most time-consuming aspects of the manufacturing
for this work, employment of 9-ply samples for early development and investigation
would be resource and time efficient.

One of the most remarkable results of this work is the reloading effect noted in
the single shear hybrid protruding head case. The unique buckling condition caused by
the foils near 12% strain allows the material to reach a second peak load near the
magnitude of the first peak load. This phenomenon could help reshape the way engineers
design composite structures for survivability.

While the scope of the fatigue effort was limited, it proved that for a low cycle

count, the hybrid supported a higher fatigue load than the control in both double and
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single shear. While adhesive thickening was still a factor, the improvements would be
worth the slight thickening in applications where the design space allows for local
thickening. The fatigue data suggests that the hybrid has less probability of failing
catastrophically due to cyclic fatigue loading.

The goals of providing accurate and efficient finite element models while working
inside the native Abaqus environment were met. Across all four modeled configurations
(9-ply and 18-ply, control and hybrid), the models predicted the yield load within 6.5%
and the offset load within 4.5%. This demonstrates that the modeling methods scaled well
from 9-plies to 18-plies and simulated the complexities of the hybrid and bearing
condition well. Not only did the models function well on a macroscopic scale for load
prediction, they also functioned well at the ply level. The models corroborated the
experimental evidence that bearing failure is dominated by fiber compression and
predicted the location and onset strain of the failure modes in a representative fashion.
Even with adding the complexities of hybridization, Hashin failure criteria performed
well in predicting the location and modes of failure in the composite layers.

In addition to performing accurately, the models were also efficient. Even the
most complex, the 18-ply hybrid, ran in 12.5 hours using 20 cores (parallel processors).
This is efficient enough that an engineer could develop a coupon level model in one day
and return to a representative solution output the following day. This also means that as
the models are scaled to include multiple holes or included in subcomponent simulations,

they should not become overly computationally burdensome.
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9.3 Recommendations for Future Work

Future work should examine optimization of the adhesive to control thickening.
Then, an optimization effort could be explored to optimize the size and shape of the foils
near stress concentrations. Based on hole diameter measurements and observed hole
defects, an optimization effort should be pursued to discern the best tooling and
parameters for hole drilling in the hybrid composite. A detailed study should be pursued
exploring the time dependence of this hybrid material. This should explore how the
thermally induced stresses may relax in the material and investigate creep effects during
extended periods of loading. Since preload relaxation is a known phenomenon in
composite materials, the time dependent preload relaxation response of the hybrid
material should be characterized [70], [104]. A detailed fatigue study should be explored
to characterize fatigue limits of the hybrid as stress and cyclic rate are varied. As the
system is understood better, an environmental study should be conducted to characterize
how the material will behave in operational conditions with exposure to moisture and
thermal cycles. Hybridization should then be tested at the subcomponent and component

level before inclusion in flight test articles and eventual operational structures.

94  Summary

In summary, if an engineer needs to increase the load capacity, strain energy
capacity, and fatigue load of a composite joint, he/she should investigate local
hybridization with stainless steel foil as a solution. If local thickening of the layup is not
viable in the design space, this work should be used as a baseline for the further

investigation of other adhesive methods such as spray adhesives as a replacement for the

279



AF-191U employed here. A solution without adhesive should also be studied. The finite
element models developed in the research should aid in the development of coupon and

subcomponent level test article to feed a design.
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Appendix A Materials Requirements

In order to prepare materials or layup, an organized list of required materials was
assembled. Table 46 lists the materials to make a single panel per each configuration.

Table 47 shows the materials required for the sum of each panel type. The total
column in Table 47 is effectively a material cut list. Lastly, Table 48shows the area
required for each type of material. It is important to note that the width of the foils here is
different than the final target transition lengths of 2.00in and 3.00in (5.08cm and
7.62cm). This excess material is included in the “trim” material and allowed the

machinists to ensure that the transitions occurred at the correct location in the coupons.

Table 46: Materials Required Per Panel

1x 9-Ply 1x 9-Ply 1x 18-Ply 1x 18-Ply 1x 18-Ply
Control Hybrid Control Hybrid Shank-
Panel Panel Panel Panel Only Panel

Fiber Length1 Length2 Number Number Number Number Number

Material Direction (in) [mm] (in) [mm] Required Required Required Required Required

M7 0 8.00 [203] | 12.0 [305] 4 4 8 8 8
M7 45 |8.00[203] [12.0[305] 4 2 8 4 6
M7 45 | 4.75[121] | 12.0 [305] 0 2 0 4 2
M7 90 |8.00[203]|12.0[305] 1 0 2 0 1
M7 90 [3.75[95.3]| 12.0 [305] 0 1 0 2 1
SS - 3.25[82.6] | 12.0 [305] 0 2 0 4 2
SS = 4.25[108] | 12.0 [305] 0 1 0 2 1
AF 191 - 8.00 [203] | 12.0 [305] 0 6 0 12 6
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Table 47: Materials Required For all Panels

1x 9-Ply 1x9-Ply 5x 18-Ply 5x 18-Ply 1x 18-Ply
Control Hybrid Control Hybrid Shank-  Total
Panel Panel Panel Panel Only Panel

Fiber Length1 Length2 Number Number Number Number Number
Direction  (in) (in) [mm] Required Required Required Required Required

Material Number

IM7 0 8.00 [203] |12.0 [305] 4 4 40 40 8 96
M7 45 |8.00[203]]12.0 [305]] 4 2 40 20 6 7
M7 45 | 475[1211]12.0 305]] o 2 0 20 2 24
M7 90 |8.00[203][12.0[305]] 1 0 10 0 1 12
M7 90 |3.75[95.3][12.0 [305]] o 1 0 10 1 12
SS - [325[82.6][12.0305]] o 2 0 20 2 24
SS ~ 42501081120 305]] o 1 0 10 1 12
AF 191 - 8.00 [203]|12.0 [305] 0 6 0 60 6 72

Table 48: Total Raw Materials Required

Total (ft*)[m?]
133.3 [12.38]

10.75 [0.9987]
48.00 [4.459]
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Appendix B Vacuum Bagging and Cure

Vacuum Bagging

After enough layups were complete and ready to cure, the panels were vacuum
bagged as diagramed in Figure 164. During this work, engineers developed an autoclave
cure checklist on which each step was initialed to ensure that all steps were completed
properly (checklist included in Appendix C). Vacuum bagging began by coating steel
platen (base plate) and aluminum caul plate (top plate) with Frekote mold release agent.
The protective backing was removed from the uncured panel and the panel was debulked
for three minutes between two sheets of non-porous Armalon. Because, the prepreg is
manufactured with a precise resin ratio from the factory, the manufacturer recommends
fully encasing the composite layup to prevent resin from escaping from the part into other
portions of the bag. In this case, the composite panel is encased in non-porous Armalon
and surrounded on all sides with rubber dam material. A5000 release film was applied
and then an aluminum caul plate was placed over each panel to keep the two faces of the
panel parallel. Breather cloth distributed the vacuum evenly throughout the part. Two K-
type thermocouples were installed for redundancy to track the part temperature through
the cure cycle. The system was sealed using nylon bagging film and vacuum tape. After
two vacuum ports were attached, vacuum was drawn on the system to perform a leak test.
The leak test was passed of the system lost less than 2.00in-hg (inches of mercury)
(6.77kPa) in 10 minutes. Figure 165 shows a complete vacuum bag setup containing six

panels.
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Aluminum Caul Plate
(Released with Frekote)

Vacuum Port Valve Nylon Bagging Film
(Screws into Base)

Non-Porous Armalon

Dbl. Sided Tape (Debulked with Panel)
(High-Temp) A5000 Release Film
(Seals in Resin)
’ /
N10 Breather
— 14 — (Creates Vacuum Manifold)
|
—

\Vacuum Tape

(Seals Bag)

Non-Porous Armalon
(Debulked with Panel)

Edge Dam Non-Porous Armalon
(Silicone Rubber) (Protects Platen)

Vacuum Port Base

Figure 164: Vacuum Bag Diagram
(Courtesy of Jason Miller, AFRL/RQVS)

6 Panels In Vacuum Ports

Vacuum Bag

Figure 165: Complete Vacuum Bag
Curing
Before final cure, the bagging and cure checklist was reviewed to ensure the parts
were ready to be cured. The parts were cured using the ASC Econoclave EC2X4

autoclave [122]. Figure 166 depicts the autoclave system used for this study.
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~ Autoclave Control
Computer

&% ASC Econoclave
EC2X4 Autoclave

Figure 166: ASC Autoclave System

With the platen in the autoclave and vacuum lines and thermocouples connected to their
respective ports, the door was sealed. From there, the computer controlled a cure “recipe”
that ramped to 100psi (689kPa) and 350°F (177°C) and held those conditions for six

hours as specified by Hexcel Composites provided in Appendix D.
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Appendix C Pre-Cure Checklist
Wax backing paper has been removed
Orange poly has been removed
Release has been applied to platen/autoclave cart
Release has been applied to caul plates
J-Type thermal couples have been verified with meter
Minimum 2 J-Type thermocouples installed
All materials inclusive of vacuum bag are rated for run temperature
Minimum 2 vacuum ports installed
Vacuum ports have been checked for flow
Vacuum ports have been tightened with adjustable wrench
All paper has been removed from autoclave interior
Part vacuum leak check (Max leak rate 2 in-Hg/10 mins)

Date:

Part / Bagging certified by:

Part point of contact: Phone

Number:

Material in run:

Cure Temperature (°F) Dwell Time (mins)

Pressure (PSI)
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Appendix D Hexcel Recommended Cure Cycle

Temperature (°F)

410
Hold at 350° £10°F 6 hours +15/-0 min.
{Tenp based on lagging thermocoupie)
360 -
310 { §
w
n
260 {1 ©
i

210 4

160 -

110 - Below 140°F, release pressure and
remove part. (Temp based on lagging
thermocouple. )

60 -
Time ——
Apply 22 nches of Hg vacuwmminimum o vacuum bag
Appl B5 415 /-0 psi pressure Tor Bminate. Vent vacuum bag to atmosphere

when autoclave pressure reaches 20 psig

Figure 167: 977-3 Cure Cycle [93]

287




Appendix E Foil Preparation Procedure
Degreasing
All adherend surfaces of the adherends were wiped with clean, acetone-
moistened, lint-free wipes (Chicopee® Duralace® 9404). Wiping continued until the
surface of a new, clean wipe did not present discoloration from contamination.

Grit-Blast Process

The bonding surface of each adherend was grit-blasted with 50 pm diameter
(nominal) [240 grit #] aluminum oxide grit using a 0.22-inch blast nozzle and 70 psig of
clean, dry nitrogen propellant. The surface was grit-blasted using a 90 + 15-degree angle
of incidence, and a stand-off distance of 6 to 9 inches was maintained throughout the
process. Grit-blasting continued until a uniform finish was achieved on the treated
surface. Residual grit was removed from the treated surface using ~35 psig of clean, dry
nitrogen.

Sol-Gel Application

Sol-gel application was initiated within 60 minutes after completion of the grit-
blast process. AC-130-2 sol-gel was mixed per the manufacturer’s recommendations and
used within 8 hours after the initial mixing of the solution. The mixed solution was
applied to the bonding surface of each adherend using a clean acid brush, and the surface
remained wetted for 3-4 minutes before being oriented vertically to allow excess solution
to drain. The surface was dried at ambient conditions (75 + 5 °F and 40 + 5% relative

humidity (RH)) for 60 minutes in a clean laboratory environment.
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Primer Application

Cytec Solvay BR 6747-1 primer was sprayed on using a horizontal and vertical
box pattern to achieve a thickness of 0.0002in. The adhesive thickness was measured
using a “traveler panel” that was prepped and sprayed alongside the main panel. This

prevents contamination of the main panel from over handling.
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Appendix F  Panel Cut Layout

12.00in
(30.48mm)
N
i"\_ —~
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g B 0.3125in
o B =
& rm | (7.938mm) =
e = = Lm
o, gl =
8|8
Excess for
1.5in aaw kerf
(38.lmmm) and spacers
W
Figure 168: Panel Cut Layout
Notes:

e Control coupons should be centered in the panel such that defects in the

manufactured edge are avoided.

Hybrid coupons should be machined such that the outermost stainless steel foil
extends 2” into the finished coupon. The cut sheet assumes 0.75 inches of excess
foil and composite, to allow for the precision cutting step.

Coupons should be labeled with the coupon closest to the edge denoted with “1”

appended to the panel name. For example, the 3™ coupon in panel C-01 would be
inscribed with C-01-3.
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Appendix G Test Procedure
Testing Procedure
Bearing Testing — ASTM D5961 Standards
Bearing Test Equipment

e Bearing Test Fixture A and C (ASTM D5961)
e C(lip-on extension gauge

e Ultrasonic Scanner (C-scan)

e 6inCalipers (all other measurements)

e Pin Gauges

e Load Cell (Test Frame)

Pre-test Measurements

e w —specimen width (near hole)

e h—specimen thickness (near hole)
e D —hole diameter

e f— distance to closest specimen side
e g —distance to specimen end

e d - bolt diameter

Sample Installation

e Double Shear
o With fixture on bench, install coupon and bolt and finger tighten nut.
o Grip Fixture in upper grip. (Grip Pressure 2000psi)
o With controller in load control set to hold zero load, grip sample in lower
grip. (Grip Pressure 2000psi)
o Torque bolt to 60in-1bf
e Single Shear
o Grip Fixture in upper grip. (Grip Pressure 2000psi)
o With lower grips open, install coupon and bold and finger tighten nut.
o With controller in load control set to hold zero load, grip sample in lower
grip. (Grip Pressure 2000psi)
o Torque bolt to 60in-1bf
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Loading procedure

Load in displacement control at 0.050in/min
Data recording — 10Hz
o head displacement
o Bearing load
o Extensometer displacement
o Time
o Command (was not recorded for this work but it recommended)
Set stop criterion to 30% hole elongation or prescribed progressive failure point
Unload in load control at 5001bf/mil

Post-Processing

e Section samples though center of hole along 0° direction to enable microscopy
e Ensure that all sectioned parts are labeled with original specimen number
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Appendix H Materials Properties

Table 49: IM7/977-3 Properties [18]

£ [msifGPal | o | Pt D] | 0000 G_{E;F-):}m) 100}
E22 (E33) [msi] {GPa) {;ég} F11cu [Ksi] {igggg} G_FC (psi-in) fi:gg
nul2 (nul3) 0.32 F22tu [ksi] {;igg} GIC_MT (psi-in) {01.'26996}
nu23 0.461 | F22cu [ksi] {?3163% GIIC_MC (psi-in) {3222}
G12(G13) [msi] {GPa} {05.?6284} F33tu [ksi] {;igg}
G23 [msi] {GPa) {02'2382} F12su [ksi] {ﬁbl.(l)}
CT{EUE;l;r:{i?c;;F] {-?)jg} F23tu [ksi] {361.3}
é:i::rf;ﬂgz) 0.00515 | F13su [ksi] {11'01;}
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Table 50: 301 Stainless Steel Full Hard Properties

1 o o
1Density (Ib/in®) {g/cc} 0.289(8.03} | C'F (Ggii?nz/mF_)Og;m/ in-F) {2'77.2}
2Ultimate Tensile Strength Specific Heat Capacit 0.120
(ksi)}{MPa} ’ 200.2 {1380} (FI)STU/Ib-°F) {J/gF-)°C} ! {0.500}
%Yield Strength (ksi) 167.8 {1157} (B;TS_?;%"’;'_&?_TS)“{?\',‘/’:‘_’K} 113 {16.3}
!Modulus of Elasticity (msi){GPa} 30.7 {211.7}
Poissons Ratio 0.29 Carbon-C 0.110
2Elongation at break (strain) 0.21 Chromium-Cr 17.270
Thickness (in){mm} 0.004 {0.1016} Copper-Cu .290
Thickness Tolerance (in){mm} | +0.0002 {5.08E-3} Manganese-Mn 1.170
“Hardness (Rockwell C) 43 Molybdenum-Mo 0.180
Nickel-Ni 6.700
Nitrogen-N 0.054
Phosphorus-P 0.033
Silicon-Si 0.520
Sulfur-S 0.001
Iron balance

'Reference [123]; 2Reference [94]

Table 51: AF-191U Properties

LCTE (pin/in-°F)

1 .. . 0.415 | {um/m- 45.0
Modulus of Elasticity (msi) {GPa} (2.86 | *Q[124][124][122][122][122][122] {8;.0
[122][122]

1poissons Ratio
[124][124][122][122][122][122][ | 0.414

122][122]
0.002
Thickness (in){mm} {0523
5}

Reference [124]; 2Reference [101]
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http://www.matweb.com/tools/unitconverter.aspx?fromID=65&fromValue=0.500
http://www.matweb.com/tools/unitconverter.aspx?fromID=136&fromValue=16.3

Table 52: Hi-Lok Alloy Steel Properties (AISI 4340)

Yijeld Stress (ksi) {MPa} 103 {710}
2Ultimate Tensile Strength(ksi) {MPa} | 160 {1100}
!Elastic Modulus (msi) {GPa} 29.7 {205}
Elongation at Break 13.2%
Poisson’s Ratio 0.29
Density (Ibf/in3) {g/cc} 0.284

'Reference [112]; *Reference [94]
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Appendix I Computational Properties

Model Units
- Pounds
- Inches
- °F

Prepreg-Composite (Using Hashin Failure Criteria)

- E11=18,910,000psi

- E22=1,260,000psi

- VI2=0.32

- G12=760,000psi

- G13=760,000psi

- (23 =460,000psi

- Density = 0.06431b/in’

- Damage Initiation
Longitudinal Tensile stress = 421,00psi
Longitudinal compressive stress = 304,740psi1
Transverse Tensile Stress = 13,900psi
Transverse Compressive Stress = 34,400psi
Longitudinal Shear Stress = 16,500psi
Transverse Shear Stress = 16,500 psi
- Damage Evolution

- Fiber Tension = 465 psi-in

- Fiber Compression = 600 psi-in

- Matrix Tension = 102 psi-in

- Matrix Compression = 204 psi-in

O O O O O O

Matrix — Defined using Cohesive Interaction Properties
- Normal Behavior: “Hard” Contact (Abaqus defaults to a penalty enforcement)
- Penalty Stiffness
o Knn = 145,038,000psi
o Kss=145,038,000ps1
o Ktt=145,038,000psi
- Nominal Stress (defines damage initiation)
o Note: Defined using 90% of matrix (2 direction) properties
o tn=12,510 psi
o ts=14,850 psi
o tt=14,850 psi
- Fracture Energy (Defines Damage Progression) Linear, Energy, B-K
o Normal = 102psi-in
o 1% Shear = 354psi-in
o 2" Shear =354psi-in
- BK exponent = 1.45
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Adhesive (Using 3M AF-191U adhesive)
- Thickness defined using continuum, 3D stress elements
o Thickness=0.0025in
o Density=0.0411b/in’
o E=415000psi
o Poisson’s Ratio=0.414

- Surface interaction defined using Cohesive Interaction Properties
o Normal Behavior: “Hard” Contact (Abaqus defaults to a penalty
enforcement)
o Penalty Stiffness
=  Knn = 1.45038E+008psi
= Kss=1.45038E+008psi
= Ktt=1.45038E+008psi
o Nominal Stress (defines damage initiation)
* From 3M AF-191 properties
= tn=1050psi
= ts=15000psi
= tt=5000psi
o Displacement at Failure (defines damage evolution): 0.0025in (equal to
material thickness). Linear displacement evolution

Contact Definitions
- Steel-Carbon Interaction
o Hard Contact
o Fric=0.12

- Steel-Steel Interaction
o Hard Contact
o Fric=0.5

- Isotropic Thermal Expansion 9.78e-6in/in-°F

- Elastic Modulus: 13328000psi

- Poissons Ratio: 0.29

- Density: 0.2891b/in’

- Ductile Damage: Fracture Strain 0.1875

- Damage Evolution: Linear Displacement at failure 0.008in
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- Plasticity

True Stress

Eng Sfress Eng Strain  (Yield Stress)  True Strain | True Plastic Strain
(psi) o
(psi)

0 0 0.000 0.00000 0.0000
133400 0.0100093 134735 0.00996 -0.0001
156109 0.0126491 158083 0.01257 0.0007
171922 0.015288 174550 0.01517 0.0021
180497 0.0179284 183733 0.01777 0.0040
185191 0.0205645 188999 0.020355901 0.0062
189742 0.0258438 194646 0.025515514 0.0109
192923 0.0363909 199944 0.035744372 0.0207
194365 0.0469386 203488 0.045870271 0.0306
195372 0.0574912 206604 0.055899296 0.0404
206842 0.2100 250279 0.19062036 0.1718

Hi-Lok Alloy
- Plastic Potential: all values set to 1. (to work with orthotropic expansion)

Specific heat 0.114
Thermal expansion: Orthotropic
o 11 Direction: 0
o 22 Direction: 0
o 33 Direction: 7.06e-6in/in-°F
- Elastic Modulus: 30.7e6psi
- Poisson’s Ratio: 0.29
- Density: 0.284 Ib/in’

- Plasticity
Eng Stress (psi) Eng Strain  True Stress (psi) True Strain  True Plastic Strain
103,000 0.003468 103,4 00 0.003462 0.0000
160,000 0.1320 181,1 00 0.1240 0.1179

17-4PH Stainless Steel (Fixtures)
- Elastic Modulus: 28.5e6psi
- Poisson’s Ratio: 0.272
- Density: 0.284 1b/in’

- Plasticity
True Stress (psi) True Plastic Strain
110000 0.0000
168000 .1073
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AppendixJ Shank-Only v. Full Hybrid Tables

Table 53: 18-Ply Single Shear Countersunk Load-Displacement Data:

Shank-Only v. Hybrid

Shank-Only Hybrid Hybrid

Average | Stdev |N| Average | Stdev |N| Diff | % Diff S’Stiagt
Yiczlkdi;.;())ad et 01325 | 6 [ 4 2005 1015331 6 |0.2001] 546 | Yes
Of?lf;plgfad woraa sy 00548115 [ SBT 10.08678| 5 |0.3458 8.41 | Yes
Ulﬁ‘?l;t:sf“ad rtras0s 0057815 [ 4 cols 101099 | 3 J0.4325) 10.2 | Yes
Stra(iir:l_lflr:)ergy (2032_52-275.7) 4041 |3 (2353_92‘?8'0) 7937 | 32333 | 108 |Yes

Table 54: 18-Ply Single Shear Countersunk Stress-Strain Data:
Shank-Only Hybrid v. Hybrid

Shank-Only Hybrid Hybrid
Average Stdev | N Average |(Stdev |N| Diff | % Diff Sstla;
Yield Stress (ksi) (10‘}.(5’?1&21.9) 352 | 6 (101121-068.0) 4168 | 6| -3.545 |-3.277 |No
Yield Strain (0.036-228%8434) 0.003658| 6 (0‘0%257_3%2008) 0.0040| 6 |-0.003635| -4.516 | No
Offset Stress (ksi) (123.%_1{263.2) 1275 | 5 (1152-252.7) 2574 | 5| -1.088 [-0.8951|No
Offset Strain (0.08-322_70.91%22) 0.003390| 5 (0‘083'289_(?%;925) 0.0033| 5 |-0.001668 | -1.702 | No
U'ﬁm(ak‘:i)s”e“ 2 L2002 5] 1362556 (3] 1082 {08641 |No
Modulus (ksi) (13371219) 3798 | 6 (132_91220) 27.00 | 6] 19.88 | 1.442 |No
Density (b | omearsony | 4639 3 | omrans | 7568|3]| 3203 | 1567 |No
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Appendix K NDI Ultrasonic Scans

Panels Not Used Due to Erroneous Cure Cycle (Not machined into specimens)

[ [Bo0Rei PP | BCon 12

Figure 169: Panel C-01 5dB

15 10_06_32 AM il |B0Re PuetPs, v | B Con: 1 2 [

Figure 170:Panel C-02 5dB

[@)] 78201911 23 oM [ [BrooRes Paeaps v BCon: 12 [

Figure 171: Panel C-03 SdB
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[@] 722mg120703PM (i) [Erd:Ret Plate:apa, v| BCon: 1 2 \\ [@)] 78.m312 48 10FM [led] [BreRet Fatewepas = |‘

Figure 172: Panel H-01 A) Control Region 15 dB B) Transition Region 35 dB

[@)] 7.8.20191_26_33Pm EE x| BCam: [1 2 “ (@] 7820192 1036 FM (] [ Bret Rt Plate:Pa, v| B Cor: [T 12 ‘l

Figure 173: Panel H-02 A) Control Region 15 dB B) Transition Region 35 dB

(@] 7_8_20193 43 45PM (] [BiomRet Piste:aPa > B.Cow: 1[5 “ (@] 7820194 25 08PM (i) (Bl et Plate: AP ~|B oo 1 |2 “

Figure 174: Panel H-03 A) Control Region 15 dB B) Transition Region 35 dB
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Not Used Due to Contaminating Polymer Backer

[@] 7_3120131_23_35PM i) [Bio0fet Pateaps, | B Com: 1%

Figure 175: Panel C-11 5dB

Control Panels

9,19 2019 1_51_52 P @ Brd(tRef Plate:aPa, ~|B.Com: 1 [

1101 220

[@) 7.31_2m31 58 52PM BT ~| B.Con: 1 2
f

4.402 704

Figure 176: Panel C-04 A) Panel 6 dB B) Coupons 7 dB

852019347 22PM @ Bl Ref Plate:Pe, v | B Com: 1 B 3.19.20192_42_43FM @ BroltFef Plate:APA. x|B.Com: [1 £

Figure 177: Panel C-05 A) Panel 8 dB B) Coupons 8 dB
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[@) &1 20192 29 18PM (i) [Brc0Reet PrateiaPa = 9.19_20193 05 40FM @ BrdlRef PlatAPA - BCom: 12

704

Figure 178: Panel C-06 A) Panel 6 dB B) Coupons 6 dB

[£1

8.6.20199 52 24 4M i [BrovRiet Pisars <) B Gons 1 |2 9192019335 10PM [ [Brd0RefPlatsars =] Bons 12

Lol 2.z

Figure 179: Panel C-07 A) Panel 7 dB B) Coupons 7 dB
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[@) 51520131263 50PM [ [BoRetPatetps v]BCon 1 [©) s13.20193.58_23PM Bidlfef FlaietPd  »| B.Con: 1 |+

-Lo.
T

Figure 180: Panel C-08 A) Panel 7 dB B) Coupons 7dB

&)

@ 8.6 201910_31_32AM @ Brd(:Ref Plate:APA > B.Con: 1 % 9192019 11_12_48 AM @ B.Cow: 1 [

.10l

Figure 181: Panel C-12 A) Panel 7 dB B) Coupons 7dB
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Hyvbrid Panels

(@] 852m31_s4 10PM ~| B.Con: 1

[l [Bro0: R Pl

[@] 8.1_2m33.51 27 M

id] [Brd0Ret PlatesPs  v| BoCon: 1 % ‘

(@) 9.19.2m34_3515PM

i [BrooReiPlatesPs | BEon: 11 ‘

[@] 3.19.2m135 01_28PM

[id] [BronPetPlatetps, | BoEon: 11 I

Figure 182: Panel H-04
A) Control Region 17 dB
B) Transition Region 40 dB
C) Bearing Region 50 dB

Figure 183: Panel H-04
A) Control Region 18 dB
B) Transition Region 40 dB
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[BrdDRef PlatetPs v | B.Cam: |1
7 0

[l [Brd0 Ref Flatesapa

<] BCan 1 \|

(] [Bre0ReiPtetps <] B Car: 1 [

Figure 184: Panel H-05
A) Control Region 18 dB
|B) Transition Region 40 dB
C) Bearing Region 50 dB

| @)| 920 201911_46_04 AM

() [BrovRctPlateaPs v B.Con: [T 2

(@) 3,20 20183 14 30 PM

[icd] [ere0RetPatzara  ~] B.Cam: 1 2

Figure 185: Panel H-05
A) Control Region 19 dB
B) Transition Region 37 dB
C) Bearing Region 50 dB
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)| 8120194 21 20PM

| 1_2019 519 43FM (i) [Bid0RetPateaPs  +| B Con: |1

[@)] 8.1_20195_43 48 PM [ (a0 Plte:tPs, <] B Con: [1

[@] 9202019125 02PM i) [Bd0fii PlateaPA, =] B.Can: 1 % o]

[@] 920 2m3119 32PM (i) [BnReiPlatetPh =] B.Conz 1 2 \

(@] 92020132 40 54PM (] [BrdnRef PlaieAPa. ~| B.Co: 1

El

Figure 186: Panel H-06
A) Control Region 15 dB
B) Transition Region 40 dB
C) Bearing Region 50 dB

Figure 187: Panel H-06 Coupons
A) Control Region 17 dB
B) Transition Region 38 dB
C) Bearing Region 50 dB
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[@)] 92020193 52_03FM [ [BicoRetPiateapa =] B.Com: |1

11707

(@] 862m33 05 0PM (il [Bran et Pateapa = “ [@] 82020194 33 48FM () [BrooReiplaieaps, v]BCon: 12 ‘

g
=

[@) 86201933031 Pu [ [Bid0Ref Plicapa

Figure 188: Panel H-07 Figure 189: Panel H-07 Coupons
A) Control Region 15 dB A) Control Region 17 dB
B) Transition Region 40 dB B) Transition Region 40 dB
C) Bearing Region 50 dB C) Bearing Region 50 dB
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|E\ 8_15_20191_49_17 PM

[ [Bd0Rei PlotetPs | B Lo |1

() [Bo0RciPltetPs <] B Cor: 1 m

|E| 923 201910_29_34 AM

@) 8_16_20310_41_50AM

[id] [protiRet Platebpt | B Cots 1

[@] 92320199 56 204M

[ [prooRetPatetps  v|BCon: 1= “

[@] 328 20191050 24 A

[ [Bro0et Pltestps,  ~| B Com: 13

Figure 190: Panel H-08
A) Control Region 16 dB
B) Transition Region 35 dB
C) Bearing Region 49 dB

Figure 191: Panel H-08 Coupons
A) Control Region 18 dB
B) Transition Region 39 dB
C) Bearing Region 50 dB
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id] [Brd0Rel Plaers =] B Con: |1

@\ 8.6 20194_14_23PM EHEIdDF(eY Plate:APA v|BCon: 1 “

(@) 862019252 29PM i) [BronfetFatetPs, =] B Bons 1 2 \‘ 9.19.201312 43 07 PM ] [Bre0Ret PisteaPs  ~| B.Com: 1 |‘

|@| 8.6 20195 13 03PM [id] [Brd0Rel PatetPs = B.Com: [1 2 \ (@] 319 201971 19.32PM (il [Bro e Plaziapa v|B Lo 15 \\

Figure 192: Panel H-11 Figure 193: Panel H-11 Coupons
A) Control Region 13 dB A) Control Region 13 dB

B) Transition Region 27 dB B) Transition Region 27 dB
C) Bearing Region 50 dB C) Bearing Region 43 dB
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[@)] 81520134 05 a7PM ‘EHBMDHEYP\E[EAF’A ~|B Con: 1 £

(@] 323 219711157 A i) [BrdRei Flaears,  ~] BCon: 1|2

(@] 81520134 45 40PM [i=d] [BraoRei PatetPs <] B Com: 1 2

Figure 194: Panel S-01
A) Control Region 13 dB
B) Transition Region 27 dB
C) Bearing Region 42 dB

[@) 9232019713111 8M

[id] [ERel PlsetPl v B.Con: [1 = [E

Figure 195: Panel S-01 Coupons
A) Control Region 13 dB
B) Transition Region 27 dB
C) Bearing Region 42 dB
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Appendix L. Dimensioned Drawings

Dimensioned drawings are included on the following pages.
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7.750+.030

- Chamfer accepts .030 radius under hi-lok hedd recsses

M. Durham 26 Jun 19

l |
.750+.030
k I +001
— Drill Thru .3125 R
1.500+.030
!
Lao&owo*
| « 5eT.030
P-625_ 000 -+ 050
010 —~—12.000 "
A _—— Radius 040 g -.030
i ﬁ | -
+.010/
150_"000 =~ 2007009 2007910
DETAIL A
SCALE2:1
Do Not Chamfer
__ < ~ _, Drawing Package: STRATUS Fixtures
\ ......... _ Approval Date Part Name: Fixture, Double Shear, Front
Chamfer .ouow%% Y Brewer 26 Jun19 Material:  17-4PH Stainless Steel
B.Smyers = 26 Jun 19 | Quantity Required: 2
Note: Enginesr -
- 3D CAD model will be provided J. Feie 26 Jun 19 Prepared By: Maj John Brewer

John.Brewer@afit.edu
850-272-7931



7.750£.030

Knife mo_@m[/

,wmow.owo

|

Drill Thru .3125

+.001
-0

1.500+.030

—~{750+.030

1507

A

+.030

| ly\' Radius 040 -

+.010

\ +.030

!

010
DETAIL A 200000
SCALE2: 1
(36.87° % — —
. L
Approval
200£.010 = Do Not Chamfer prawn
J. Brewer
Note: 3D CAD model will be provided B, Smyers
J. Feie

Released

M. Durham

Date

26 Jun 19

26 Jun 19
26 Jun 19

26 Jun 19

+.010

Drawing Package: STRATUS Fixtures
Part Name: Fixture, Double Shear, Rear
Material: 17-4PH Stainless Steel
Quantity Required: 2

Prepared By: Maj John Brewer
John.Brewer@afit.edu
850-272-7931
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SECTION C-C
SCALET:1
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va!

300£.015
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+.001

.600%.030 +

*
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! B 200£.015
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! ! Drawing Package: STRATUS Fixfures
Approval Date Part Name: Fixture, Single Shear, Mod 3
o.u;”;m_‘wém« 26 Jun 19 Material: 17-4PH Stainless Steel
B. Smyers 26 Jun 19 Quanfity Required: 2
Notfe: 3D solid model will be supplied u,__=.mﬂw_.m 26 Jun 19 Prepared By: Maj John Brewer

John.Brewer@afit.edu
850-272-7931

Released

M. Durham 26 Jun 19
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Bushing Modifications

- Begin with Mcmaster pn 8492A159

- Bushing OD and ID are correct from factory
- Dimension length as defined below

- See Single-Shear Fixture Assembly

~+.010
175000
A~ t.050
=~ 630_000 -
Drawing Package: STRATUS Fixtures
Approval Date Part Name: Bushing, Sing-Shear Fixture

Drawn

J. Brewer 26 Jun 19 | Material: Steel (as supplied)

Checked

26 Jun 19 Quantity Required: 4

B. Smyers
m,u_.zw@_m 26 Jun 19 Prepared By: Maj John Brewer
feimosed John.Brewer@afit.edu
850-272-7931

M. Durham 26 Jun 19
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Assembly Procedure

- Machine bushing per "Bushing, Single-Shear Fixture"
- Press modified bushing into fixture

- Grind busing flush with both sides of fixture

Approval

Drawn

J. Brewer
Checked

B. Smyers
Engineer

J. Feie
Released

M. Durham

Date
26 Jun 19

26 Jun 19
26 Jun 19

26 Jun 19

Drawing Package: STRATUS Fixtures
Part Name: Sing-Shear Fixture Asm
Material: Stainless Steel/ Steel
Quantity Required: Assemble 2
Prepared By: Maj John Brewer

John.Brewer@afit.edu
850-272-7931
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Left and right edge dimension
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Prep this surface w/ 80 grit
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and degrease for bonding

Approval
Drawn

J. Brewer
Checked

B. Smyers
Engineer

J. Feie

Released

M. Durham

Date
26 Jun 19
26 Jun 19
26 Jun 19
26 Jun 19

Drawing Package: STRATUS Fixtures
Part Name: Clip Gauge Tab
Material: Al 6061 (or similar)
Quantity Required: 78

Frepared By: Maj John Brewer

John.Brewer@afit.edu
850-272-7931
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Approval Date
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J. Brewer 26 Jun 19
Checked
B. Smyers 26 Jun 19

1. Feie 26 Jun 19

Released

M. Durham 26 Jun 19
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Drawing Package: STRATUS Fixtures
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Quantity Required: 2

Prepared By: Maj John Brewer
John.Brewer@afit.edu
850-272-7931
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- 324 required
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Approval Date

u%zmﬁmémﬂ 15 Jul 19

Checked
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Released
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Drawing Package: STRATUS Fixtures
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repared By: Maj John Brewer
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Drill Thru @ .3125 0

1.500£.030

Notes:
- 3D CAD models will be provided
- Thickness governed by composite layup
- This procedure applies to coupons from the
following panels: C-01, C-04, H-01,H-04
- 24 total coupons

Approval

Drawn

J. Brewer

Checked

B. Smyers

J. Feie

Released

M. Durham

Date

26 Jun 19
26 Jun 19

26 Jun 19

26 Jun 19

Drawing Package: STRATUS Coupons
Part Name: Coupon, Double-Shear
Material: Composite/Hybrid Composite
Quantity Required: 24 Coupons
Prepared By: Maj John Brewer

John.Brewer@afit.edu
850-272-7931
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Prepared By: Maj John Brewer
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Appendix M SI Equivalent Tables

Table 55: Coupon Thickness (Table 12 SI Units)

Average | Thickness
Layup Type Thickness Stdev
mm (mm) Control (mm)

Thickness

Thickness
Increase Over Increase Over

Control %

9-Ply Control 1.202 0.03825 --
9-Ply Hybrid 1.537 0.01391 0.3345 27.82
18-Ply Control 2.353 0.04912 -- --
18-Ply Hybrid 2.997 0.03205 0.6449 27.41
18-Ply Shank-Only 2.761 0.01312 0.4072 0

Table 56: Thickness Statistical Analysis (Table 13 SI Equivalent)

2x 9-Ply Thickness

18-Ply Thickness

s
Average| Stdev |N]|Average| Stdev |N| Diff Dﬁ‘f SSti:;t
Control Thickness (mm)| 2.405 |0.07648 | 6| 2.353 | 0.04912 33| -0.05156 | -2.145 | No
Hybrid Thickness (mm)| 3.073 | 0.02781 | 6| 2.997 [0.03205 [33| -0.07544 [-2.454] Yes
Table 57: 9-Ply Double Shear Load Based Data (Table 13 SI Units)
Control Hybrid
f;ge/”égl;‘ Stdev | N ggf/zacgl‘; Stdev | N | Diff |% Diff Sstl’;
Yield Load (kN) (7.732-92_;271) 0.4346| 6 (9.8152;5’876) 0.4295 | 6 | 2.090 | 25.44 | Yes
Offset Load (kN) | 2003 102037 | 6 [ 1233 104577 | 6| 3.168 | 34.95 | ves
Ulﬁ“;gg)l“"ad o p02723] 3 [ 1399 102931 | 3 | 4018 | 42.00 | Yes
Stmi"(f)“ergy s [09248) 3 [ 28T 05178 | 3 | 8.135 | 51.06 | Yes
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Table 58: 9-Ply Double Shear Stress Based Data (Table 15 SI Units)

Control Hybrid

Sverage | Sidey N| AYET3ZE | Stdey |N| Diff |% Diff Sstiagt

Yield Stress (MPa) (81??9'?4'5) 48.06 |6 (Sofﬂfl‘z) 4134 |6| -1622 |-1.877| No
Yield Strain (0.039'23(1)‘32432) 0.002437| 6 (040309;2;(1).%;"449) 0.002431| 6 [1.817E-4|0.4350| No
Offset Stress (MPa) (9232_39‘811'5) 27.11 |6 (9581.‘3)_01?)54) 4575 6| 53.19 |5.581 | Yes
Offset Strain [ o SO0T10.002150( 6 | (503 1) 0:007025] 6 0.005173( 9.714 | No
Ulﬁ‘?ﬁ;;“ess ey | 5409 3] (M 3307 151 9296 | 9.045 | No
Modulus (MPa) | oo PR | 8055 16 ] omumagn | 1027 | 6] 4339 |-1.995| No
Di‘::l't‘;](zﬁ?/lgnys) toeae | 1027 (3| (Z08 | 5624 (3] 3474 | 1608 | Yes

Table 59: 18-Ply Double Shear Load Based Data (Table 16 SI Units)

Control 18 Ply Hybrid 18 Ply

eere8e | stdev | N| YT | Sudev |N| Difr |% Dirf) 1

Yield Load (kN) [ 103 105011 7 | (320 05548 | 9|2.025 | 12.40 | Yes
Offset Load (kN) (17.16%‘1’337) 03241 6 (223‘%;;305) 03508 | 7 [4.702 | 26.08 | Yes
Ultimate Load (kN 15 oy 75| 06735| 3 | oooaesay | 0-2657 | 46339 | 3157 | Yes
S“ai“(f)“ergy 106050203935 3 | (o005, | 0:1328 (4 [5.055| 36.01 | Yes

325




Table 60: 18-Ply Double Shear Stress-Strain Data (Table 17 SI Units)

Control 18 Ply Hybrid 18 Ply
Average | Stdev burese | swev | N| it |% i 1
Yi‘?&gg"ss ws38 | 4205 sty | 2601 | 9] 1126 |-12.74|Yes
Yield Strain [ o SO 10.002956| 7 [ 293370 10.001775] 9 [-0.006481|-16.09 | Yes
Offfﬁlfgess oo | 2746 oy | 1680 | 7] -17.62 |-1810|Yes
Offset Strain | o SIS0, 10.001976| 6 | 0,950 orosorn|0-001512| 7 |-0.003169|-6.031 | No
U"“?:;;S“e“ am, | 8163 ok | 1746 [ 4] 9745 |0.8842| No
Modulus (MPa) | .8l T0 | 643.7 Goras | 6927 [10] 1080 | 4661 | Yes
Dsetxf;ltl;l(zl\l}.elr/rgn%) orseions | 219 eossimy | 1256 [ 4] 4147 | 4258 | No
Table 61: Control 9-Ply and 18-Ply Load Data (Table 18 SI Units)
2x Control 9 Ply Control 18 Ply
Do | sev |N| QYT | swev |N| it | %Difr |
Yie;ﬁ;)"ad w3, [08693f6]| (1633 01040 | 7| -0.1040 | 06331 | No
Offs(‘l’:NL)"ad i Josszsfe| (1803 10,0967 | 6 [ -0.09867 | -05443 | No
Ulﬁ“ziﬁ)'“"ad gy (0544613 (2008 00445 |3 09445 | 4936 | No

Table 62: Hybrid 9-Ply and 18-Ply Load Data (Table 19 SI Units)

2x Hybrid 9-Ply Hybrid 18 Ply
1(*9:"; *gf Stdev ‘égefzglf Stdev Diff | % Diff S;g
Yiezil\?)"ad oo 51y 0:8590| 6 [ 50 1 0.5548 |9 2.260 | -10.96 | Yes
Offs(itNL)"ad (23%540;;‘5?42) 0.9154 (zzif;3305) 03508 | 7] -1.733 | -7.083 | Yes
Ulﬁ“gﬁ)“’ad osoranen 05862 |3 | Geooset, | 02657 | 4] -0.752 | 2769 | No

326




Table 63: 9-Ply Control Computational v. Experimental Load Data
(Table 21 SI Units)

9-Ply Control Load-Based Data
. Experimental Avg . % Comp
Ermnue (95% CI) Diff | bt | Falls in
Yield Load (kN) 8.745 o 785~92_§271) -0.5305 |-6.458]  No
Yield Disp (mm) 0.3340 o 3(1)62.3003450 o | 3614E-03|-1.004]  Yes
9.063
Offset Load (kN) 9.506 (8.755.9.372) -0.44238 (-4.881 No
. 0.4262
Offset Disp (mm) 0.4249 (0.4084-0.4441) 1.296E-03 |0.3041 Yes
. 9.568
Ultimate Load (kN) 9911 (8.892.1024) -0.3425 |-3.580 Yes

Table 64: 9-Ply Control Computational v. Experimental Stress Data
(Table 22 SI Units)

9-Ply Control Stress-Based Data

. Experimental Avg . % Comp
Computational 95% CI) Diff piff | Falls in
. 948 0 864.0 4
Yield Stress (MPa) g (813.6-914.5) -84.00 [-9.722 No
. . 0.04176
Yield Strain 0.04221 (0.03920.0.04432) -4.517E-04|-1.082 Yes
Offset Stress (MPa) 1031 (922‘2_39-811. 5 7767 |-8.149]  No
. 0.05387
Offset Strain 0.05372 (0.05162.0.05613) 1.517E-04 [0.2815 Yes
Ultimate Stress 1028
(MPa) 1074 (9262-1129) -46.40 |-4.515 Yes
21750
Modulus (MPa) 23570 (20910-22600) -1821 |-8.370 No
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Table 65: 18-Ply Control Computational v. Experimental Load Data
(Table 25 SI Units)

18-Ply Control Load Based Data
. Experimental Avg . o, iep |Comp Falls
Computational (95% CIy Diff % Diff in 95% CI
. 16.33
Yield Load (kN) 17.02 (15.78.16.87) -0.6979 -4.275 No
0.3196
Yield Disp (mm) 0.3193 (0.2979-0.3413) 3.651E-04 | 0.1142 Yes
18.03
Offset Load (kN) 18.17 (17.69-18.37) -0.1383 | -0.7670 Yes
0.4157
Offset Disp (mm) 0.4028 (0.3993-0.4321) 0.01286 3.093 Yes
20.08
Ultimate Load (kN) 18.55 (18.41-21.75) 1.527 7.605 Yes

Table 66: 18-Ply Control Computational v. Experimental Stress Data
(Table 26 SI Units)

18-Ply Control Stress Based Data

Computationall EXPerimental AV | pir | of pifr Comp. o
Yield Stress (MPa) 922.5 s 836 . g0y | 4403|  Yes
Yield Strain 0.04036 (0.0307-2:{8%2300) o.0005.05| 02235|  Yes
Offset Stress (MPa)|  984.6 o 42?1-203) oo | 10O7| Yes
Offset Strain 0.05092 (0.026?3.20%5 © | ooore0 | 308 |  Yes
Ulti“(‘lf;lﬁstress 1006 P, ocre | 8725 Yes
Modulus (MPa) 24060 o B0 ) ase | 3800]  ves
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Table 67: 9-Ply Hybrid Computational v. Experimental Load Data
(Table 29 SI Units)

9-Ply Hybrid Load Based Data
. Experimental Avg . o, e | COmp Falls
Computational 95% CI) Diff % Diff in 95% CI
Yield Load (kN) 9.679 (9.8152:?(?. 76) 0.6256 6.071 Yes
. . 0.3318
12.23
Offset Load (kN) 12.24 (11.75-12.71) -0.005881 | -0.04808 Yes
4
Offset Disp (mm) 0.4440 (0.4293_60756260) 0.02365 5.058 Yes
. 13.59

Table 68: 9-Ply Hybrid Computational v. Experimental Stress Data
(Table 30 SI Units)

9-Ply Hybrid Stress Based Data
Computational E"Peg's‘:/‘j'ggl Avel  piff | % Diff ?lf‘;g{, /f aC"IS

Yield Stress (MPa) 836.3 (805.1_7&981.2) 1147 | 1353 Yes
Yield Strain 0.03849 (0.0309-2;4_(1)%;"4 1) | 0:003450 | 8.226 No
Offset Stress (MPa) 1057.0 o 5;.(3’2% o, 250.68 | -5.036 No
Offset Strain 0.05612 005100664 | 0002985 | 5050 | Yes
Ulﬁ‘?ﬁ;;‘“” 1140 o (1894 | -1.690 | Yes
Modulus (MPa) 22918 (2022410?222?100) 21600 | -7.503 No
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Table 69: 18-Ply Hybrid Computational v. Experimental Load Data
(Table 33 SI Units)

18-Ply Hybrid Load Based Data

(26.00-26.84)

- Comp Fall
Computational E"Peg‘;}/‘:‘é‘gl AVEl  piff | %Diff| 5. gmw, oy
. 18.35
Yield Load (kN) 19.31 11878, -0.9596 | -5.230 No
Yield Disp (mm) 0.3021 o 2‘5)5‘3822790) -0.03388 | -12.63 No
oft 2.73
set Load (kN) 23.35 (22.41.23.05) -0.6234 | -2.742 No
Offset Disp (mm) 0.4183 o 00 5| 002771 | 7.003 No
Ultimate Load (kN) 25.84 26,42 0.5760 | 2.180 No

Table 70: 18-Ply Hybrid Computational v. Experimental Load Data
(Table 34 SI Units)

18-Ply Hybrid Stress Based Data

Computational E"Pegls‘:/fnctf)" AVE|  piff | % Diff (flf 020 /faC"Is
Yield Stress (MPa) 834.3 . 53.3_17-81.0) 6324 | -8203 No
Yield Strain 0.03818 00390 Dossis) | -0:004391 | -13.00 No
Offset Stress (MPa) 1009 o 422_69-731.8) 5244 | -5.484 No
Offset Strain 0.05374 00 bsorny | 0-004369 | -8.848 No
Ultimate Stress (MPa) 1116 a Oéillf ) 4413 | -0.3969 Yes
Modulus (MPa) 23060 24250 1197 4.937 No

(3446-3590)
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Table 71: 18-Ply Single Shear Protruding Load Displacement Data

(Table 36 SI Units)
Control Hybrid

Average Average . % |Stat

©svcr) | Stdev ©s%cn | Stdev N Diff | e Sig

Yield Load (kN) [ g 00480 10,5342 (3ot 1aam | 04128 |5 [ 3.277 | 31.27 | ves
12.97 16.24

Offset Load (kN) | (12.71:13.04) (02503 | 6 | 15.74.16.73)| 0-3980 | 5 | 3.264 | 25.16 | Yes
17. 23.82

Ultimate Load (kN) (15.93-?89.81) 0.5711 (22_1%)_55.53) 0.6903 | 3] 6.428 | 36.96 | Yes
Strain Energy 28.51 46.63

Table 72: 18-Ply Single Shear Protruding Stress-Strain Data (Table 37 SI Units)

Control Hybrid
fverage | Stdev Average | stdey [N| Difr |%Diff ;"
Yield Stress (MPa) (532.?_55'35.6) LD y 63%_26-(}4.2) 1779 |5 1679 |2.971 |No
Yield Strain  [(gosasr005430| 0-001024 0055720 035100 |O-STAE-04| 5 [0.003496| 10.46 |Yes
Offset Stress (MPa) | (o5t ammny | o cos0 | 1631 5] 1483 |-2.113|No
Offset Strain  |ig pasisos069|S-443E-04 (0.01955.0.03260)| 0-001098 | 510.002478] 5.083 |Yes
Ultimate Stress (MPa)| (o3 a0ors) | 1779 oasoorey | 2543 [3] 5976 | 6.308 |Yes
Modulus (MPa) | (mseorsean) | 6839 ooy | 4396 |5| -1325 |-7364|Yes
Strain fﬁﬁfnﬂ)‘)e“sny i | 10 ey | 5146 (3] 5274 | 2656 |Ves
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Table 73: 18-Ply Single Shear Countersunk Load-Displacement Data:
Control v. Shank-Only (Table 38 SI Units)

Control Shank-Only Hybrid
Average | Stdev |N Average Stdev Diff | % Diff SStiagt
Yiezﬁ l\lf)oad (14.114;:?58.63) 0.7194 (15.163:%291) 0.5895 | 6| 1.413 | 9.500 | Yes
Offs(ela(tNL)oad (tareap 03100 | 5[ (850 0243853200 212 |Yes
Ultinzz\c})Load (1550 e50p 01800 |4 AEES 102570 | 53182 ] 203 |Yes
Strain( ;“;nergy (e sy 08016 | 3| 257 104566 |3[4557 | 23.0 | Yes

Table 74: 18-Ply Single Shear Countersunk Load-Displacement Data:
Control v. Hybrid (Table 39 SI Units)

Control Hybrid
Average | Stdev |N| Average | Stdev Diff | % Diff SStiz;t
Yield Load 14.88 17.18
(kN) (14.12-15.63) 0.7194 | 6 (16.46.17.90) 0.6818 2.303 | 15.48 | Yes
Offset Load 15.09 19.83
(kN) (14.71-15.48) | 0-3100 | 5 (19.35.20.31) 0.3860 4.739 | 31.39 | Yes
Ultimate Load | 15.65 20.76
(kN) (15.37-15.94) | 0-1800 | 4 (19.54.21.97) 0.4888 5.106 | 32.62 | Yes
Strain Energy 19.81 27.00
&) (17.82-21.80 | 0-8016 | 3 (24.78.29.23) 0.8968 7.193 | 36.31 | Yes
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Table 75: 18-Ply Single Shear Countersunk Stress-Strain Data:
Control v. Shank-Only Hybrid (Table 40 SI Units)

Control Shank-Only Hybrid
Average Average . % | Stat
(95% CI) Stdev (95% CI) Stdev |N| Diff | .0 Sig
Yield Stress 797.4 745.9
(MPa) (759.4-835.5) 36.29 (7204.771.4) 2431 [6]| -51.57 |-6.467|Yes
. . 0.07609 0.08050
Yield Strain (0.07012-0.08206) 0.005687 (0.07666.0.08434) 0.003658 | 6| 0.004408 |5.794 | No
Offset Stress 807.7 838.3
(MPa) (792.0-823.5) 12.70 (827.3.849.2) 8.794 |51 30.52 |3.778]|Yes
. 0.08564 0.09798
Offset Strain | (¢ 08168-0.08961) |0-003195 (0.09377-0.1022) 0.003390 | 5| 0.01234 |14.41|Yes
Ultimate Stress 833.4 863.0
(MPa) (791.0-875.8) 26.66 (845.9.880.1) 13.80 [5] 29.58 |[3.549| No
10800 9507
Strain Energy 134.5 141.0
Density (MJ/m?) | (1226:1463) 4764 (133.0-148.9) 3.198 3| 6.520 |4.849| No
Table 76: 18-Ply Single Shear Countersunk Stress-Strain Data:
Control v. Hybrid (Table 41 SI Units)
Control Hybrid
Average Average . . ol Stat
(95% CI) Stdev 95% CI) Stdev |N Diff  |% Diff Sig
. 797.4 721.4 -76.01
Yield Stress (MPa) (759.4-835.5) 36.29 (691.3-751.6) 28.74 |6 -9.532|Yes
. . 0.07609 0.07686
Yield Strain (0.07012-0.08206) 0.005687 (0.07365-0.08008) 0.0040 | 67.733E-04| 1.016 | No
Offset Stress 807.7 830.8 23.01
(MP3) (19208235 | 1270 cos s | 1775 |3 2.849 [No
. 0.08564 0.09631
Offset Strain | 08168-0.08961)[0-003195 (0.09338.0.09925) 0.003347( 5| 0.01067 | 12.46 |Yes
Ultimate Stress 833.4 870.4
(MPa) (791.0.875.8) | 26.66 (816.4-924.5) 21.76 | 3| 37.04 |4.444 |No
10800 9644
Modulus (MPa) | (10190-11400) | 3795 oasgoxe) | 1862 6] 1152 |-10.67|Yes
Strain Energy 134.5 143.2
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Table 77: Double Shear Fatigue Step Test Method Data (Table 43 SI Units)

Control Hybrid
Average Average . % |Stat
95%C) Stdev [N 95%CT) Stdev (N| Diff Diff | Sig
. 21.66 27.33
Fatigue Load (kN) (19.84-23.49) 0.7332 |3 (26.30.28.35) 0.4121 |3]5.661 | 26.13 |Yes
Fatigue Stress 1155 1143
(kPa) (11391171 6.527 |3 (1087-1199) 22.54 [3(-12.29]-1.064 | No

Table 78: Single Shear Fatigue Step Test Method Data (Table 44 SI Units)

Control Hybrid
ey | e |N| iy | e [N iy |5
Faﬁ%‘:;f"ad (7o res [04646| 3 | L S0P 01112 |3 [5.912{ 32,19 | Yes
Fati%‘(';;“ess soaioon | 4053 |3 | (osotoss | 4543 | 3[51.27) 5178 | No

Table 79: 18-Ply Single Shear Countersunk Load-Displacement Data:
Shank-Only v. Hybrid (Table 54 SI Units)

Shank-Only Hybrid Hybrid
/?92?,/:2%‘3 Stdev |N %Vse/rg%e Stdev |N| Diff | % Diff Sstizt
Yiezﬁl\lf)oad aserreon 05895 |6 [ A8 106818 6 f0.8900| 5463 | Yes
Offs(itNL)oad dronisen| 02438 | 5 [ ohe, 103860 5| 1538 | 8.407 | Yes
Ultinzz\el)Load ssanans| 02570 |5 [ o070, 104888 3] 1924 | 1021 | Yes
Strain( JE)nergy ranatsoy| 04566 | 3 [ 5, 2000, 108968 | 3] 2.636 | 10.82 | Yes
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Table 80: 18-Ply Single Shear Countersunk Stress-Strain Data:
Shank-Only Hybrid v. Hybrid (Table 55 SI Units)

Shank-Only Hybrid Hybrid
‘ége/”églf Stdev ‘é;e/”églf Stdev [N| Diff | % Diff Sstlagt
Yield Stress MPa)| "0 | 2431 1agse | 2874 |6]-0.003635| -4.516 | No
Yield Strain (0'096-368_83243 5|0:003658 (0'0%257_2%?008) 0.0040 | 6| -24.44 | -3.277 |No
Off(sﬁsge“ (82%?839'2) 8.794 (803.3;98‘?2'8) 17.75 | 5]-0.001668| -1.702 | No
Offset Strain (0.0‘3-322_70'91%22) 0.003390 (0'0&289_2%;925) 0.003347| 5| -7.503 |-0.8951|No
U“i"(“;;f;stre“ w30 | 1380 o s | 2176 (3| 7457 |0.8641 | No
Modulus (MPa) (92225_2381) 261.9 (9423_‘;;‘39) 1862 (6] 137.1 | 1.442 |No
Dsetlf:‘l‘t';](zﬁﬁilgrﬁ) e | 3198 taomnsen | 5218 [3] 2209 | 1567 |No
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