
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-2020

Continuous Integration/Continuous Delivery Pipeline for Air Force Continuous Integration/Continuous Delivery Pipeline for Air Force

Distributed Common Ground System (AF DCGS) Distributed Common Ground System (AF DCGS)

Carolyn W. Fuller

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Systems Engineering Commons

Recommended Citation Recommended Citation
Fuller, Carolyn W., "Continuous Integration/Continuous Delivery Pipeline for Air Force Distributed Common
Ground System (AF DCGS)" (2020). Theses and Dissertations. 4540.
https://scholar.afit.edu/etd/4540

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholar.afit.edu%2Fetd%2F4540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4540?utm_source=scholar.afit.edu%2Fetd%2F4540&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CONTINUOUS INTEGRATION/CONTINUOUS DELIVERY PIPELINE FOR
AIR FORCE DISTRIBUTED COMMON GROUND SYSTEM (AF DCGS)

THESIS

Carolyn W Fuller, NH-04, DAF

AFIT-ENV-MS-20-D-042

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENV-MS-20-D-042

CONTINUOUS INTEGRATION/CONTINUOUS DELIVERY PIPELINE FOR AIR
FORCE DISTRIBUTED COMMON GROUND SYSTEM (AF DCGS)

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Carolyn W Fuller, BS

NH-04, DAF

Dec 2020

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-20-D-042

CONTINUOUS INTEGRATION/CONTINUOUS DELIVERY PIPELINE FOR AIR
FORCE DISTRIBUTED COMMON GROUND SYSTEM (AF DCGS)

Carolyn W. Fuller, BS

NH-04, DAF

Committee Membership:

Dr. Brent Langhals
Chair

Dr. David Long
Member

Dr. Tom Ford
Member

iv

AFIT-ENV-MS-20-D-042

Abstract

 AF DCGS has a recognized need to improve speed of delivery for modification

and sustainment of the weapon system. New advances in software development practices

have focused on automated continuous integration and testing. Given that the program

office implemented a Continuous Integration/Continuous Delivery (CI/CD) process for

the sole purpose of delivering capability to the field faster, there is a need to measure and

report the pipeline throughput. This research conducts an independent evaluation of this

newly implemented pipeline within AF DCGS’s existing integration and test laboratories.

A comparison between the two concurrent integration and test processes actively in use

by the program is conducted to determine if the CI/CD pipeline has improved the speed

of delivery. The study provides further insight into the processes of the CI/CD pipeline

by examining performance as the pipeline matured and the impact different attributes

have on delivery timelines. Actual project data from the agile development work

environments is studied and hypothesis tests are conducted to substantiate that the CI/CD

pipeline improved the speed of delivery. The research definitively shows that the CI/CD

pipeline improves speed of delivery for AF DCGS from a range of 22% to 119%

depending on the type of work product. Lastly, from observation and detailed study of

the processes and data, recommendations are made for standardization and automated

metrics collection, with suggestions for additional research to further characterize the

pipeline with the intent to create a predictive model for more accurate estimation of

delivery timelines.

v

Acknowledgments

I would like to thank AFIT for the opportunity to perform this research. To my husband

and family: Thank you for all your support and encouragement on this long journey I

undertook. I would like to express my sincere appreciation to my faculty advisor, Dr.

Brent Langhals, for his guidance and support throughout the course of this thesis effort.

The insight and guidance were certainly appreciated. I am also grateful to Mr. James

Bechtel and LtCol Gutierrez for allowing me access to AF DCGS integration labs and the

DI2E development platform to conduct this research. I would also like to thank my

sponsors, Col Maddox and Mr. Scott Mangrum, from the Air Force Life Cycle

Management Command for the support provided to me in this endeavor.

 Carolyn W Fuller

vi

Table of Contents

Page

Abstract .. iv

Table of Contents ... vi

List of Figures .. ix

List of Tables .. xii

I. Introduction ..1

Background...1

Problem Statement..3

Research Objectives and Questions..5

Methodology...6

Assumptions and Limitations ...7

Thesis Preview..8

II. Literature Review ..9

Chapter Overview ...9

Joint and National Intelligence ...9

Air Force Intelligence ...18

AF DCGS ...19

RFC Delivery Process ..34

RFC Management ...45

CI/CD Delivery Process ...53

Research Hypothesis ..61

Summary...63

III. Methodology ..65

Chapter Overview ...65

vii

Observational Study ...65

Description of Data Set and Sources ..66

Data Types ..69

Data Standardization ..72

Data Cleaning ...75

Measures ...77

Assumptions ...77

Statistical Methods ...78

Summary...78

IV. Analysis and Results ..79

Chapter Overview ...79

Method 1: Between-Subjects Study ...79

Feature ..80

Story ...85

Task ..89

Bug ...94

Spike ...98

Results of Between-Subjects Study ..101

Method 2: Within-Subjects Study ..102

Feature ..103

Story ...105

Task ..108

Bug ...111

viii

Spike ...112

Results of Within-Subjects Study ...114

Summary...117

V. Conclusions and Recommendations ...119

Chapter Overview ...119

Conclusions of Research ..119

Automated metrics..123

Process constraints..124

Study Limitations ...124

Recommendations for Action ...125

Recommendations for Future Research..127

Summary...127

Appendix A. Definitions ..129

Bibliography ..131

ix

List of Figures

Page

Figure 1. The Intelligence Process .. 11

Figure 2. Planning and Direction .. 12

Figure 3. Intelligence Request Flow ... 13

Figure 4. Collection Management... 14

Figure 5. ISR Visualization.. 15

Figure 6. Processing and Exploitation .. 16

Figure 7. Virtual Knowledge Base.. 17

Figure 8. AF DCGS Ops Floor ... 19

Figure 9. AF DCGS Global ISR Support ... 20

Figure 10. Supported AF DCGS Capabilities ... 22

Figure 11. Joint Capability Areas ... 23

Figure 12. AF DCGS Legacy OV-1 ... 25

Figure 13. AF DCGS Modernization OV-1 .. 27

Figure 14. AF DCGS Future Operating Environment OV-1 ... 28

Figure 15. AF DCGS Logical View ... 30

Figure 16. AF DCGS Architectural View... 33

Figure 17. Agile Process Transition Plan ... 34

Figure 18. DCGS Change Control Process .. 37

Figure 19. Standard Jira Workflow ... 42

Figure 20. RFC Dashboard ... 47

Figure 21. Sample RFC Status View .. 48

x

Figure 22. Sample RFC Detail View .. 49

Figure 23. Sample RFC Issue List ... 50

Figure 24. AF DCGS Program Portfolio .. 51

Figure 25. Agile Development Kanban Board ... 52

Figure 26. AF DCGS CIE High-level Workflow ... 56

Figure 27. Building the CI/CD pipeline .. 58

Figure 28. Humble and Farley CI/CD Pipeline Structure ... 59

Figure 29. CI/CD pipeline – Development .. 60

Figure 30. CI/CD pipeline – Integration and Test .. 60

Figure 31. 1067 Decomposition .. 69

Figure 32. Epic Decomposition .. 71

Figure 33. CIE Feature Histogram .. 81

Figure 34. RFC Feature Histogram ... 82

Figure 35. CIE Feature Delivery Speed by Qtr ... 84

Figure 36. CIE Stories Histogram ... 85

Figure 37. RFC Stories Histogram.. 86

Figure 38. CIE Story Delivery Speed by Qtr .. 87

Figure 39. CIE Task Histogram .. 89

Figure 40. RFC Task Histogram ... 90

Figure 41. CIE Task Delivery Speed by Qtr ... 92

Figure 42. CIE Bug Histogram ... 94

Figure 43. RFC Bug Histogram .. 95

Figure 44. CIE Bug Delivery Speed by Qtr .. 97

xi

Figure 45. CIE Spike Histogram ... 98

Figure 46. RFC Spike Histogram.. 99

Figure 47. RFC Spike Histogram.. 99

Figure 48. CIE Spike Delivery Speed by Qtr ... 100

xii

List of Tables

Page

Table 1. Categories of Intelligence ... 21

Table 2. AF DCGS Mission Application Services ... 31

Table 3. AF DCGS Infrastructure Services .. 32

Table 4. RFC Priority Matrix ... 38

Table 5. RFC Expected Timelines ... 41

Table 6. RFC Path Matrix ... 45

Table 7. Research Hypotheses .. 62

Table 8. Sample data for CI/CD Story .. 67

Table 9. Sample data for CI/CD Bug .. 68

Table 10. Sample data for Feature not using CI/CD ... 68

Table 11. Data Type Grouping ... 73

Table 12. Data Cleaning Sample 1 ... 75

Table 13. Data Cleaning Sample 2 ... 76

Table 14. Data Cleaning Sample 3 ... 76

Table 15. Data Cleaning Sample 3 ... 77

Table 16. Between-Subjects Study Hypothesis .. 79

Table 17. Two-sample t-Test Feature Workdays .. 83

Table 18. Two-sample t-Test Story Workdays ... 87

Table 19. Two-sample t-Test Task Workdays .. 91

Table 20. CIE Task Throughput ... 93

Table 21. Two-Sample t-Test Bug Workdays .. 96

xiii

Table 22. Two-Sample t-Test Spike Workdays .. 99

Table 23. Results of Between-Subjects Study .. 101

Table 24. Within-Subjects study hypotheses .. 103

Table 25. Anova of Feature Workdays by Priority ... 104

Table 26. Two-sample t-Test Feature Value Stream .. 105

Table 27. Anova of Story Workdays by Priority .. 106

Table 28. Two-Sample t-Test Story Value Stream ... 107

Table 29. Anova of Story Workdays by Story point .. 108

Table 30. Anova of Task Workdays by Priority ... 109

Table 31. Two-Sample t-Test Task Value Stream .. 110

Table 32. Anova of Task Workdays by Story point ... 111

Table 33. Anova of Bug Workdays by Priority .. 112

Table 34. Anova of Spike Workdays by Priority .. 113

Table 35. Two-Sample t-Test Spike Value Stream .. 114

Table 36. Results of Within-Subjects Study ... 115

Table 37. Detailed delivery speed results ... 120

Table 38. CI/CD Pipeline Time-phased Results ... 121

Table 39. CI/CD Delivery times for Priority .. 122

Table 40. CI/CD Delivery times for Value Stream ... 122

Table 41. CI/CD Delivery times for Story Points ... 123

 1

CONTINUOUS INTEGRATION/CONTINUOUS DELIVERY PIPELINE FOR

AIR FORCE DISTRIBUTED COMMON GROUND SYSTEM (AF DCGS)

I. Introduction

Background

The near-real time delivery of actionable intelligence data to the warfighter--

which enables information superiority--is a long-standing principal goal of the

Intelligence Community. The operational measure of success focuses on how to

interconnect sensors, decision makers, and shooters with this collected data to achieve

shared awareness, increased speed of command, higher tempo of operations, greater

lethality, increased survivability, and a degree of self-synchronization (Alberts, Garstka,

& Stein, 1999). The Air Force Distributed Common Ground System (AF DCGS), or

AN/GSQ-272 SENTINEL, is a multi-intelligence system of systems that provides this

actionable intelligence to the warfighter through processing, exploitation, and

dissemination of collected sensor data from multiple ISR platforms across the globe, 24

hours per day, 7 days per week through distributed (reach-back and deployed) and

collaborative operations (U.S. Air Force, 2015). AF DCGS accomplishes this

interconnect through a library of software applications, a communication and data relay

network, and an infrastructure of enterprise services, operating systems, virtualization

layer and hardware that military intelligence analysts use to produce intelligence

products. The Original Equipment Manufacturers (OEMs) delivered proprietary software

applications on individual proprietary infrastructures resulting in hardware, firmware,

enterprise services and software applications completely owned by the OEMs.

 2

Because of this closed architecture and vendor lock with each OEM maintaining

control and proprietary rights to their portion of the weapon system, upgrades became so

slow and costly that new capabilities were virtually obsolete the day they became

operational. To address this shortcoming a redesign of the system started in 2014 with

the assistance of Air Combat Command and the Air Force Research Lab (AFRL) in

Rome, NY. The AFRL solution was a government owned single open architecture to

replace multiple OEM owned single-mission capabilities. The existing design forced all

software/hardware application upgrades and enhancements to go through the OEM

system integrators, taking up to 84 months from time of contract award to delivery. The

new Open Architecture DCGS (OA DCGS) was rebuilt with an open architecture and

Commercial off the Shelf (COTS) hardware and software for the infrastructure and

enterprise layers with an OEM virtualized software application layer (Haga, 2017).

During the development of OA DCGS, the legacy AF DCGS was on the oversight

list of the Director of Operational Test and Evaluation (DOTE). In the FY16 DOTE

annual report, it was noted “The Air Force is in the process of transitioning AF DCGS to

an open architecture system via an agile acquisition strategy. This transition is expected

to take several years” (Gilmore, 2016). The FY16 annual report highlighted the slow

progress of establishing a rigorous software problem tracking and reporting mechanism

which was first recommended in the FY15 annual report. Specifically, the FY15

recommendation was to develop a software change process to track software metrics for

problems open and closed by severity and time (Gilmore, 2016). The AF DCGS program

office started development of a Request for Change (RFC) process in 2017 to address this

 3

finding in the FY15/16 reports. The implementation of this process provides the needed

metrics to analyze the efficiencies of the software development process. OA DCGS

began deployment to the operational sites starting in FY17 creating the foundation for

building a Continuous Integration Environment (CIE) capable of testing all functionality

and cybersecurity elements of AF DCGS in an automated manner.

The AF DCGS CIE is a set of tools on a controlled test environment that is part of

the larger CI/CD process for the weapon system (Wellspring, 2020). Continuous

Integration (CI) is the process of taking features (requirements) from the program

backlog and developing, testing, integrating and validating them in a staging environment

where they are ready for deployment and release (Wellspring, 2020). Continuous

Delivery (CD) is the process that takes the work of the CI process and readies the

delivery for deployment. CD is a software strategy that enables organizations to deliver

new features to users as fast and efficiently as possible (Wellspring, 2020). When these

two processes are combined with automated tools in a continuous integration

environment, it is referred to as a CI/CD pipeline. To summarize, the CIE is a set of tools

in a lab environment that enables automation for the CI/CD processes.

Problem Statement

Air Combat Command has concerns the AF DCGS software delivery timelines are

too slow and number of deficiencies discovered in fielded software is too high. The

literature asserts that using a properly implemented continuous integration and delivery

pipeline will increase the speed of delivery and quality of software products through

automation and feedback loops (Zaydi & Nassereddine, 2019). According to the Phoenix

 4

Project, deployment frequency to the release environment for different companies

drastically increased through continuous integration as follows: Amazon at 23,000 per

day, Google at 5,500 per day, Facebook one per day, Twitter 3 per week. This is game

changing when compared to a standard deployment for a typical enterprise that does not

use continuous integration or continuous delivery and is cited at one deployment every 9

months (Kim, Behr, & Spafford, 2014). Furthermore, Myrbakken states CI and CD

enable the speed required for DevOps practices through automation of build, deployment,

and testing and is important to achieve rapid development and deployment of software

(Myrbakken & Colomo-Palacios, 2017). AF DCGS had already laid the groundwork for

a CI/CD pipeline with an open architecture delivered with OA DCGS, tailoring the entire

program office around Scaled Agile Framework (SAFe), and implementing agile

practices for software development using Atlassian Jira.

AF DCGS implemented a continuous integration environment but metrics have not

been gathered or analyzed on the current projects to determine if increased speed and

quality are directly attributed to the CI/CD pipeline. Industry claims that a CI/CD

pipeline improves deployment speed as stated in the previous paragraph but there is

minimal research to validate this claim. One group of Oregon State researchers

conducted a study on CI improvements and reported that Flickr increased deployment to

production more than 10 times per day and a product group at Hewlett Packard reduced

development costs by 78% (Hilton, Tunnell, Huang, Marinov, & Dig, 2016).

Additionally the research found that projects that use CI average 0.54 releases per

month, while projects that do not use CI average 0.24 releases per month and projects

 5

that eventually added CI used to release at a rate of 0.34 releases per month, below the

average 0.54 rate they now release using CI (Hilton, Tunnell, Huang, Marinov, & Dig,

2016). Interestingly, Hilton noted that despite the increasing attention to CI and touted

successes there is very little attention from the research community. The program office

effort to build a continuous integration environment will be of benefit even if the research

does not demonstrate definitive improvements. The current structure of the AF DCGS

lab environments, processes, tools, and architecture are not cohesive, have redundancy,

competing objectives, and anything but seamless integration. The current processes,

policies and culture within the AF DCGS Program Office, ACC, and the 480th ISR Wing

increase the difficulty for rapid deployment of software updates to the fielded weapon

system, regardless of integration and test methodology. The intent of this research is to

provide data that demonstrates the improvements to speed of delivery for the CI/CD

pipeline and recommend future research and actions to assist with a successful CI/CD

pipeline. Of special note is that any acronyms not spelled out are due to classification

concerns and only the acronym is used throughout this thesis.

Research Objectives and Questions

The objective of this research is to investigate whether the implementation of a

CI/CD process can improve AF DCGS software delivery timelines and software quality.

Using a CI/CD process combined with the automated tools would normally increase

software delivery throughput and quality, but with outside constraints and program

culture to overcome, the efficiencies may not be realized. This research will compare the

AF DCGS software delivery process that uses a CI/CD pipeline to the AF DCGS Request

 6

for Change (RFC) software delivery process that uses an integrated test cycle.

Answering the following research questions could provide possible improvements to the

AF DCGS software delivery process.

1. Has the implementation of the CI/CD pipeline reduced the software delivery

timelines?

a. For agile software work types what is the difference in workdays between

using the CI/CD process and the RFC process?

b. What differences can be observed with respect to time? Are the changes

completing faster or slower as the CI/CD pipeline matures? If they are

completing slower, can one or more causes be identified?

2. What differences in speed of delivery exist per agile software work type?

a. Are there differences in speed of delivery based on priority? Are the high

priority agile software work types resolved faster than the medium and

low?

b. Are there differences in speed of delivery based on value streams?

c. Are there differences in speed of delivery based on story points? Do the

higher story points take longer to complete?

Methodology

 This research will consist of studying the implementation of the environments,

processes, and tools used by the AF DCGS program office to build a CI/CD pipeline and

then performing analysis on the RFC integration and test process compared to the CI/CD

pipeline. The interfaces between the RFC process and the CI/CD process will be studied

 7

and analyzed. Additionally, performance measures will be compared from work

executed using the CI/CD process versus the RFC process. Finally, the standard agile

performance measures will be examined for the CI/CD pipeline. The metrics focus on

the AF DCGS software development process and the continuous integration/continuous

delivery capability currently in development.

The data for the existing process and the CI/CD process will be retrieved from the

DI2E DevTools collaborative area and the AF DCGS CM libraries on Intelink. The

DI2E area contains a wealth of qualitative data from the entire team with information and

notes on status, issues, problems and rework. Quantitative data for software integration

and test activity timelines will be collected on all completed work from Jul 2018 to Oct

2020 to evaluate the effects of the continuous integration and continuous deployment

pipeline. Metrics will be collected and analyzed to compare software implemented

through the CI/CD pipeline and software implemented through the RFC process.

Between-subjects and within-subjects studies on pipeline data will analyze five different

types of changes and three different attributes to further explore the effectiveness of the

pipeline.

Assumptions and Limitations

The CI/CD process and the RFC process both employ agile software development

principles and use Confluence and Jira for project tracking. The CI/CD pipeline started

development in July 2018 with formal sprints starting January 2019 and 41 sprints

currently completed (Lambert, Arnold, Sylvester, Koyle, & Dent, 2020). The RFC

process started using agile practices in 2015 with a gradual roll-in of each of the

 8

projects/value streams completed by 2017. Based on the CI/CD pipeline development

timeline this research will only study data from July 2018 to Oct 2020.

The analysis between the CI/CD pipeline and the RFC process will include all

data from July 2018 to October 2020. The CI/CD within-subjects study will only include

three value streams due to lack of enough data from the other value streams. The RFC

process will include only OA DCGS value streams and will not include any legacy work.

The differences between the OA and legacy architecture and processes are significant

enough that comparisons in the data would not be conclusive evidence of any

improvements due to the CI/CD pipeline.

Thesis Preview

Chapter II focuses on exploring the literature, architecture, and design for the AF

DCGS CI/CD pipeline and the CIE. The review will include background on the AF

DCGS weapon system, the intelligence process to understand the DCGS mission,

defining the concepts of a CI/CD pipeline, providing insight into the tools and platforms

used to manage the software change process and investigating the current implementation

of the AF DCGS CI/CD pipeline. The details of the methodology used to analyze the

CI/CD pipeline, the selection criteria of metrics, data cleaning methods, and explanation

of evaluation criteria used for side-by-side comparisons are found in Chapter III. Chapter

IV provides the results of the performance analysis of the CI/CD pipeline and compares it

to the RFC software development performance. Conclusions are summarized and

presented in Chapter V along with significant findings within the data, lessons learned,

and recommendations for future research.

 9

II. Literature Review

Chapter Overview

The purpose of this chapter is to provide context on the importance of a fully

functioning CI/CD pipeline for AF DCGS. First, the Joint Chiefs of Staff Joint Doctrine

for Intelligence Operations is explained to establish the purpose for the AF DCGS

mission, followed by a breakdown of AF DCGS from operational, logical, and

architectural views and then the AF DCGS change control process is discussed to frame

how the CI/CD pipeline fits into the sustainment/modification process. Next, the Defense

Intelligence Information Enterprise (DI2E) Devtools environment used by the AF DCGS

team for change control management and business intelligence is explained. Then the

RFC software delivery process is described explaining how the Jira workflow relates to

the change control process. The components of a CI/CD pipeline are described with an

examination of the AF DCGS implementation and how the automated tools in the CIE

streamlines the software delivery process. This chapter concludes with the research

hypothesis and a summary of the literature review.

Joint and National Intelligence

 The objective of joint intelligence operations is to provide accurate and timely

intelligence to commanders that promotes information superiority throughout the

operational environment (Scott, Weaver, Brown, & Browder, 2017). Joint intelligence

doctrine describes the roles and relationships of intelligence organizations from the

national level down to the subordinate joint force levels. The doctrine emphasizes, “The

 10

goal is to maximize intelligence support to military operations by increasing the

efficiency of the intelligence process and the effectiveness of the intelligence

organizations that support the Joint Force Commander” and “Agile intelligence processes

and procedures must be understood and utilized across the intelligence enterprise” (Scott,

Weaver, Brown, & Browder, 2017). AF DCGS is attempting to meet the goal to be a

more effective intelligence organization through developing the CI/CD pipeline to reduce

the time spent in the integration and test cycle and removing unnecessary wait times in

the existing processes. As the Air Force’s primary intelligence, surveillance and

reconnaissance (ISR) planning and direction, collection, processing and exploitation,

analysis and dissemination (PCPAD) weapon system, the DCGS program office is

actively employing new technologies in the systems engineering acquisition lifecycle

(U.S. Air Force, 2015).

 11

 The PCPAD process--Planning and direction, Collection, Processing and

exploitation, Analysis and production, and Dissemination and integration—referenced in

Figure 1 describes how the various types of intelligence are integrated to meet the

commander’s intelligence needs (Joint Chiefs of Staff, 2013). This process is not a rigid

workflow requiring one-step to be accomplished before the next can begin or for all steps

to be accomplished. For example, while electronic intelligence data is being processed

and disseminated, there can be simultaneous cross-cueing of additional platforms for

further intelligence collection. Likewise, information can be disseminated from the

sensor on an unmanned aerial vehicle directly to the user without going through the

analysis and production step (Scott, Weaver, Brown, & Browder, 2017).

Planning and Direction

 Intelligence planning focuses on the optimal employment of assets, sensors, and

PED systems across the full spectrum of joint operations in order to provide the

Figure 1. The Intelligence Process

 12

commander with the data to achieve operational objectives. Defining intelligence

requirements, developing the intelligence architecture and a collection plan, and

preparing and then issuing the request for information to the information collection

agencies are the major activities for intelligence planning and direction as shown in

Figure 2 and Figure 3 (Scott, Weaver, Brown, & Browder, 2017).

Figure 2. Planning and Direction

 13

Collection

Collection is the activity of acquiring data to satisfy the requirements specified in

the collection strategy as shown in Figure 4 (Scott, Weaver, Brown, & Browder, 2017).

Collection managers who select the most appropriate, available asset and then task the

selected asset to conduct collection missions manage this activity. Collection managers

may also direct dynamic cross-cueing of sensors to obtain higher confidence data. ISR

visualization supports the collection activity by providing an easily comprehended

Figure 3. Intelligence Request Flow

 14

graphic display that depicts the current and future locations of collection assets, their

capabilities, their field of regard, and their tasked targets. ISR visualization requires

continuous feedback regarding the current and projected locations of all collection assets

relative to their planned ground tracks as shown in Figure 5 (Scott, Weaver, Brown, &

Browder, 2017). The ISR visualization display correlates in real time the collection

status and location of all planned collection targets and the specific collection asset

tasked to collect on each target. ISR visualization displays also depict the effects of the

operating environment on the collection capabilities of individual airborne collection

platforms as they progress along preplanned or ad hoc flight paths (e.g., the impact of

terrain masking on sensor fields of regard at various altitudes). AF DCGS is the Air

Figure 4. Collection Management

 15

Force’s primary system that provides this integrated common operational picture (Scott,

Weaver, Brown, & Browder, 2017).

Processing and Exploitation

Collected data is correlated and converted during the processing and exploitation

activity into formats that can be analyzed and then turned into intelligence products as

Figure 5. ISR Visualization

 16

shown in Figure 6 (Scott, Weaver, Brown, & Browder, 2017). The AF DCGS systems

engineering plan states processing and exploitation can be performed in a forward

operating location or in a reachback capacity through the use of software applications

referred to as mission apps for AF DCGS. Data is processed at the forward location

when the environment is disconnected, interrupted or has low-bandwidth. Reachback

processing is typically performed at a centralized or federated location, such as the AF

DCGS sites (Priddy, AF DCGS Systems Engineering Plan, 2019). The type of

processing and exploitation applied to the collected information depends on the mission

and purpose for the collection and results in a particular category of intelligence product.

Analysis and Production

Data received from sensors or other methods are in various forms depending on

the collection asset used to gather the data. The raw input could be digitized data,

unintelligible voice transmissions, large files of imagery, or spools of unprocessed wet

film. Trained intelligence specialists convert the raw data into usable information and the

Figure 6. Processing and Exploitation

 17

resulting products are stored in intelligence databases. Virtual knowledge bases are

integrated repositories of multiple databases, reference documents, and open-source

material for extremely large and complex data. Analysts can easily access and update the

information across the intelligence community with the data organized as shown in

Figure 7 (Scott, Weaver, Brown, & Browder, 2017). AF DCGS is responsible for the

processing, exploitation, storage, cataloguing, and retrieval for all Air Force processed

intelligence data or knowledge packet as part of the wider DoD and National intelligence

agencies according to the taxonomy shown above.

Figure 7. Virtual Knowledge Base

 18

Dissemination and Integration

 Timely dissemination of the finished intelligence products is critical to

information dominance. Digital dissemination is the most predominant method that has

improved the ability to search, retrieve, and store products across the many intelligence

systems and multiple security levels (Scott, Weaver, Brown, & Browder, 2017). AF

DCGS analysts post documents to servers such as Intelink, Intelink-S, or NIPRNET to

deliver intelligence whenever and wherever required.

Air Force Intelligence

The Deputy Chief of Staff of the Air Force for Intelligence, Surveillance, and

Reconnaissance (AF/A2) is responsible for policy formulation, planning, evaluation,

oversight, and leadership of AF global integrated ISR capabilities and is directly

responsible to the undersecretary of defense for intelligence (Joint Chiefs of Staff, 2013).

The 25th AF is a subordinate to Air Combat Command (ACC) with responsibility for

executing AF/A2’s global integrated ISR. As such, they provide multisource ISR

products, applications, capabilities and resources, to include cyberspace and geospatial

forces and expertise. There are many 25th AF organizations, but the relevant ones for this

research are the 480th and 70th ISR Wings that provide global distributed and reachback

ISR. The 70th ISR Wing works closely with the NSA/CSS, leveraging the net-centric

capabilities of a worldwide cryptologic enterprise and the 480th ISR Wing

responsibilities include national cryptologic, IT, cyberspace ISR, tactical analysis,

commander support for the joint force air component, and SIGINT integration (Scott,

Weaver, Brown, & Browder, 2017). The 480th Wing executes these responsibilities

 19

through operational command of the Air Force Distributed Common Ground System

weapon system.

AF DCGS

The Air Force Distributed Common Ground System is an intelligence enterprise

system that is comprised of 27 geographically separated, networked sites including five

core sites across the globe and is a component of the larger Department of Defense

(DoD) DCGS Net-Centric Enterprise (U.S. Air Force, 2015). The weapon system has

evolved from the first Deployable Ground Station-1 (DGS-1) supporting U-2 operations

in July 1994 to a true distributed ISR operations network that interconnects platforms,

sensors, and airman to provide critical intelligence to warfighters at the tactical level

Figure 8. AF DCGS Ops Floor

 20

(Dasovich, 2017). Intelligence analysts produce actionable, multi-discipline intelligence

derived from multiple ISR platforms as shown in Figure 8 (U.S. Air Force, 2015).

AF DCGS performs this mission by supporting Combatant Commanders

(COCOMs) and forces – primarily at the Joint Task Force (JTF) level and below – with

actionable, decision-quality information. It operates with the full flexibility of the

established intelligence process, as detailed in Joint Publication (JP) 2-01, Joint and

National Intelligence Support to Military Operations, to make usable information

immediately and simultaneously available to both engaged forces and intelligence

analysts (Gutierrez, 2020). AF DCGS takes advantage of AF, sister services, national,

and coalition sensors in the air, on land, in space, and at sea spanning Multiple

Intelligence (Multi-INT) sources and provides tailored, correlated information as

described in Figure 9 (Gutierrez, 2020).

AF DCGS operations crew consists of Signals Intelligence (SIGINT) (to include

Communications Intelligence (COMINT) and Electronic Intelligence (ELINT)),

Figure 9. AF DCGS Global ISR Support

 21

Geospatial Intelligence (GEOINT), Imagery Intelligence (IMINT), Measurement and

Signatures Intelligence (MASINT), and mission management operators. The data

collection and analysis results in a particular category of intelligence product. The Office

of the Director of National Intelligence defines intelligence into the categories listed in

Table 1 (ODNI, 2020) and the DCGS capabilities that support the intelligence process is

shown in Figure 10 (Gutierrez, 2020).

Table 1. Categories of Intelligence

GEOINT Geospatial
Intelligence

Geospatial Intelligence is the analysis and visual representation of
security related activities on the earth. It is produced through an
integration of imagery, imagery intelligence, and geospatial information.

SIGINT Signals Intelligence Signals intelligence is derived from signal intercepts comprising --
however transmitted -- either individually or in combination: all
communications intelligence (COMINT), electronic intelligence
(ELINT) and foreign instrumentation signals intelligence (FISINT). The
National Security Agency is responsible for collecting, processing, and
reporting SIGINT. The National SIGINT Committee within NSA advises
the Director, NSA, and the DNI on SIGINT policy issues and manages
the SIGINT requirements system

MASINT Measurement and
Signature
Intelligence

Measurement and Signature Intelligence is technically derived
intelligence data other than imagery and SIGINT. The data results in
intelligence that locates, identifies, or describes distinctive characteristics
of targets. It employs a broad group of disciplines including nuclear,
optical, radio frequency, acoustics, seismic, and materials sciences.
Examples of this might be the distinctive radar signatures of specific
aircraft systems or the chemical composition of air and water samples.
The Directorate for MASINT and Technical Collection (DT), a
component of the Defense Intelligence Agency, is the focus for all
national and Department of Defense MASINT matters.

HUMINT Human Intelligence Human intelligence is derived from human sources. To the public,
HUMINT remains synonymous with espionage and clandestine
activities; however, most of HUMINT collection is performed by overt
collectors such as strategic debriefers and military attaches. It is the
oldest method for collecting information, and until the technical
revolution of the mid- to late 20th century, it was the primary source of
intelligence.

IMINT Imagery
Intelligence

Imagery Intelligence includes representations of objects reproduced
electronically or by optical means on film, electronic display devices, or
other media. Imagery can be derived from visual photography, radar
sensors, and electro-optics. NGA is the manager for all imagery
intelligence activities, both classified and unclassified, within the
government, including requirements, collection, processing, exploitation,
dissemination, archiving, and retrieval.

 22

OSINT Open-Source
Intelligence

Open-Source Intelligence is publicly available information appearing in
print or electronic form including radio, television, newspapers, journals,
the Internet, commercial databases, and videos, graphics, and drawings.
While open-source collection responsibilities are broadly distributed
through the IC, the major collectors are the DNI's Open Source Center
(OSC) and the National Air and Space Intelligence Center (NASIC).

The AF DCGS system is connected through the AF DCGS Campus Area

Network/Wide Area Network (CAN/WAN) and employs a global communications

architecture that connects multiple intelligence platforms and sensors. The mission and

role AF DCGS performs to accomplish the related Joint Capability Areas is shown in

Figure 11 (Gutierrez, 2020). AF DCGS has become a complex system over its history of

Figure 10. Supported AF DCGS Capabilities

 23

constant evolution, integration of quick reaction capabilities to meet operational needs in

Iraq and Afghanistan and being a constant focal point for new technologies and

capabilities within the Defense Intelligence Enterprise (DIE), the Intelligence Community

(IC) and the Air Force ISR Enterprise. Addressing these emerging threats led to new

sensor data streams and the associated software tools and hardware that were not fully

integrated, documented, or tested. The result was a weapon system that became

extremely difficult to sustain because of rapid acquisition practices and lack of strong

systems engineering processes to ensure a cohesive system design and architecture. To

resolve the increasing costs of sustainment and slow delivery of capabilities the AF

DCGS program developed an aggressive transition plan and began the migration to an

open architecture (Dasovich, 2017).

Figure 11. Joint Capability Areas

 24

The OA DCGS migration plan was scheduled to be complete and fully installed at

all the operational sites with the legacy system retired by 2020 (Bush, 2019). The OA

DCGS hardware stacks and software applications are currently operational with some

minor slips to the original timeline for retiring the legacy system (Jarnagin, 2020).

Because of these schedule slips both OA and legacy DCGS systems are sustained in the

field that becomes a forcing function for the teams to use multiple processes and

environments. This is not as simple as maintaining two baselines for the same system.

OA and legacy DCGS are entirely different environments, labs, test facilities, and

processes that becomes a challenge for the program office with respect to the CI/CD

pipeline innovation efforts (Sylvester C. , 2018).

The next sections first discuss AF DCGS from the operational perspectives for the

As-Is (Legacy), Modernization (OA), and To-Be (Future Operating Environment) to give

the reader an understanding of the AF DCGS mission. Next, the hierarchical services are

explained to describe the system’s capabilities as seen by the users (or analysts). Finally,

the architectural design of OA DCGS is described for an understanding of how “as-a-

service” is implemented to allow the rapid development and delivery of software. These

sections highlight the ever-increasing system complexity driving the need for a CI/CD

pipeline with the ability to rapidly deploy software, hardware, and firmware updates

through automation, integrated cyber security, and feedback loops.

 25

Legacy AF DCGS Operational View

An AF DCGS core site executes multi-intelligence PED activities to support time

dominant intelligence needs for the warfighter working within Air Tasking Order (ATO)

cycle timelines. The high-level legacy operational view in Figure 12 identifies the

inability to exploit all sensor collection due to the data not flowing through the remote

ground stations/hubs, lack of metadata conditioning and standard formats, and lack of

data flows out of the DGS to a common data repository (Dasovich, 2017). The raw data

flows into the DGS sites and the Air National Guard DMS sites with no distribution to

other organizations. Only the intel products that are generated by the DCGS analysts are

sent to the AOC, COCOM, Intelligence Community and Coalition partners. This

shortcoming is in part attributable to the AF DCGS system evolving from a series of

Figure 12. AF DCGS Legacy OV-1

 26

disparate quick reaction capabilities bolted together to meet critical needs during

operations in Iraq and Afghanistan.

Unlike traditional acquisitions for major weapon systems, the AF DCGS system

did not go through the normal systems engineering requirements and design that result in

a cohesive system. Additionally, the typical strategy of having one lead system integrator

to seamlessly integrate all the subsystems into one system was not executed due to the

urgent need from real-world activity. Contracts were awarded to multiple OEMs for a

particular capability and they maintained control and proprietary rights to their portion of

the weapon system. This resulted in multiple operating systems, different hardware

server stacks, and duplication of enterprise services such as identity and asset

management, domain name services, and network time. In addition, the system had

aging equipment for cyber protection and timelines of 150 to 200 days to integrate, test,

and install software patches and updates at the sites (Cazares, Request for Change, 2019).

The result was a complex system of systems with a hardware and enterprise services

architecture preventing the rapid delivery of software upgrades to the operational sites.

OA DCGS Operational View

 The migration to an open architecture has removed the barriers that were

preventing AF DCGS from rapidly integrating new and non-traditional ISR sensor data

from 5th generation platforms (Dasovich, 2017). Locally stored data at DCGS sites,

non-standard data formats, and proprietary interfaces are being replaced with centrally

pooled operational sensor data that is virtually hosted on enterprise servers and cloud

computing technologies. Figure 13 (Dasovich, 2017) illustrates the introduction of hub-

 27

based storage, ability to process all sensors through meta-data conditioning at the hubs,

and shared applications and data in an Intelligence Community (IC) integrated

environment. The raw sensor data is now shared across the community, not just the

finished intel products produced by the DCGS analysts.

Updating the DCGS weapon system hardware and infrastructure provided the

runway to enable rapid integration of new capabilities. The DCGS integration and test

labs, systems engineering processes and waterfall software development processes also

required modernization to support rapid delivery of software (Durante & Haga, 2015).

The first iteration of process improvement consisted of an environment based on Scaled

Agile Framework (SAFe) principles that enabled an agile software development process,

program increments, and integrated test cycles (Priddy, AF DCGS Agile Execution

Figure 13. AF DCGS Modernization OV-1

 28

Guide, 2018). While it was expected these agile processes would field capabilities via an

established 30-day release cadence, no analysis was performed to validate the assumption

(Durante & Haga, 2015). The 30-day release cadence was never established and the CIE

Tiger Team recommendation re-vectored efforts to establish a CI/CD pipeline using a set

of tools on the Controlled Test Environment. The CI/CD pipeline and associated

continuous integration environments will be discussed in detail in Chapter III.

AF DCGS Future Operating Environment Operational View

The Air Force continues to move aggressively towards true seamless operations in

multiple information and security domains with an exponential growth in the ability to

share data. The future of DCGS is to provide a platform that creates an environment for

all data to be discoverable and accessible. Achieving the operational goal in Figure 14

will require a system that can integrate changes in days, not months. While the ability to

Figure 14. AF DCGS Future Operating Environment OV-1

 29

deploy mission applications in days is an operational goal, a system that will be

extensively connected across a huge network will need the ability to deploy security

patches and infrastructure updates in hours as a functional goal. The assumption is the

CI/CD pipeline will enable this rapid integration and delivery as will be tested through

the analysis described in Chapter III.

AF DCGS Logical View

 The logical view is an architectural model that depicts a system’s capabilities as

seen by the users (Howard, 2014). AF DCGS provides three core software service layers

that represent how analysts and operators interface with the system. The first layer is the

user interface services that run on the common workstations and includes the analyst

widgets, tools, and visualization services. The second layer contains the mission

applications and core services that are designed to automate processing and workflow

tasks. The third layer is the infrastructure services layer that contain common services

 30

required for managing and sustaining a large IT networked infrastructure. The logical

view is shown in Figure 15 (Howard, 2014).

Figure 15. AF DCGS Logical View

 31

The user interface layer contains four groups of services. The common

widget/portal framework service contains basic visualization applications and the core

visualization framework such as portal and widget libraries. This layer is designed to

provide a common look and feel for every workstation and analyst across all the different

intelligence areas. The exploitation utilities service contain intelligence sensor

exploitation for all sensor types. The geospatial service provides a common map

infrastructure and map query services. The collaboration service provides the ability to

share information and chat with internal and external partners.

The mission and core services layer contains eight groups of services. These

services are decomposed into the five PCPAD workflows and three core services required

to execute the PCPAD mission. Table 2 describes at a high level the AF DCGS activity

for each of these services (Howard, 2014).

Service Description

Planning and Direction
Services used for resource allocation, planning a mission, sensor
planning, sensor tasking prior to mission, mission
apportionment, and similar activities

Collection
Includes sensor monitoring, corrections, and tasking during
mission, as well as ingest of sensor collections

Processing and Exploitation
Involves image processing, corrections, and correlation of
collected data

Analysis and Production
Includes manual tasks, such as imagery annotation, manual
change detection, etc. required to produce products required to
answer EEIs

Dissemination
Includes distribution of exploited data and products to team
members and stakeholders

Mission Data Management

Includes services required for managing data required for
mission success, whether actual mission data storage (e.g.
GMTI Store), mission reference data (e.g. modern modulations
or MASINT Signatures DB), or reporting archives

Data Delivery and Notification
Includes capabilities to deliver data to users; enables users to
search through stored data; and notifies users of changes to
data of interest

Data Interoperability
Includes services required to format data to satisfy IC or mission
partner data standards.

Co
re

 L
ay

er
M

is
si

on
 L

ay
er

Table 2. AF DCGS Mission Application Services

 32

The Infrastructure services layer supports the execution and management of the

other services. The infrastructure services shown in Table 3 includes the hardware,

virtualization, operating systems and software for the mission services layer to run on

(Howard, 2014).

Service Description

Enterprise Management
Includes services required to operate the DCGS infrastructure
needed to conduct missions

Asset Management
Includes services for monitoring and/or managing sites,
platforms, sensors, and other assets

Information Assurance
Includes services required to ensure information is available to
DCGS operators and mission partners

Service Management
Includes services required to manage and monitor the various
services defined in this document

Communication Services
Includes services required to enable communications across
DCGS and with mission partners

In
fr

as
tu

ct
ur

e
La

ye
r

Table 3. AF DCGS Infrastructure Services

 33

AF DCGS Architectural View

 AF DCGS has migrated to an open architecture where the hardware, virtualization

and enterprise services are abstracted away from the mission application layer. The

government owned hardware, virtualization layer, common operating system, and

enterprise services are the items colored gray in Figure 16 (D'hara, 2020). The mission

applications are in the green, blue, and purple areas and are OEM owned and controlled.

Developing a common infrastructure that integrates all segments of AF DCGS and gains

government ownership for the sustainment of the software paved the way to implement a

Figure 16. AF DCGS Architectural View

 34

CI/CD pipeline starting in Sep 2018. The CI/CD pipeline is running concurrently with

the previous process using the RFC process. In addition to this new hardware and

software architecture, new processes were developed as part of the integration

environment to increase effectiveness in delivering capability to the warfighter.

RFC Delivery Process

AF DCGS Change Control Process

The OA DCGS AFRL team developed a change management process using a Jira

ticketing system based on the information technology infrastructure library best practices

for managing IT systems (Spinelli & Newton, 2016). The program office adopted this

process and began implementing agile practices in 2016 using the transition plan shown

in Figure 17. They created agile release trains for development teams, moved to program

increments for decomposition of requirements into epics, features and user stories, and an

integrated test cycle to develop cadence driven test (Durante & Haga, 2015). However,

Figure 17. Agile Process Transition Plan

 35

the existing program office change management process continued to use forms

completed by hand centered around traditional aircraft configuration control boards with

gates and approvals at senior leader levels and did not use the automated Jira work in

progress features (Williams & Clark, DCGS RFC Form Rev 8 Instruction Guide, 2019).

The configuration management team could not quickly implement process improvements

and metrics collection and analysis was essentially non-existent.

The configuration management team recognized the configuration management

processes needed to improve from the current method of email, face-to-face, and shared

files on Intelink. The result was a change control process declared operable in September

2019 using the same Jira ticketing system on the DI2E digital collaborative environment

that the agile software development teams had been using since 2016 (Cazares &

Hamilton, RFC Transition Plan, 2020). The program office fully adopted Confluence

and Jira for change management and mandated the Request for Change process on 21 Jan

2020 (Cazares & Hamilton, RFC Transition Plan, 2020). The teams use Confluence and

Jira for accurately tracking every request for change to both the legacy and OA versions

of the weapon system through the life cycle from initiation to completion.

Request for Change Types

There are four change types: Emergency, Normal, Standard, and Pre-approved

(Hamilton, Request for Change Form Instructions, 2020). Emergency changes have a

critical impact to mission failure and must be implemented in under 48 hours. Standard

changes are low risk, occur frequently, do not change the executable software and are not

required to go through any formal approvals (Priddy, AF DCGS Standard Change

 36

Approval Memo for Record, 2019). Pre-approved changes are requests to install a

previously approved RFC at an additional site exactly as the original. Normal changes

are any change to the baseline that does not fit one of the previously mentioned types and

follows the normal process.

In addition, simple bug fixes, security patches, configuration file updates, scripts,

and small software changes do not go through the full twenty-eight steps and only require

approval at the change advisory board and not the additional configuration control board

(Hamilton, Request for Change Form Instructions, 2020). These type of changes are

primarily for applications in the infrastructure and user interface services layer. The

majority of the mission application changes from the mission services layer are still

required to go through the full process due to the broad scope of operational impact and

direct effects in the kill-chain. Reference Figure 15 for the details of these layers.

 37

Change Control Process

To understand how the change control process and Jira ticketing workflow

process work together, first we examine the change control process shown in Figure 18

(Williams, Hamilton, Cazares, & Noreen, 2020).

Step 1: Request the change. The process begins with the initiation of a request for

change by completing the RFC form and submitting it to configuration management.

These change requests are for end items (mission app custom software, enterprise

services, core shared services, hardware, middleware, or other) that have already been

developed by the provider in their factory environment. The initial request contains

information such as the source of change, system, system segment, detailed change

description with requirement and funding type, need date, and configuration items

Figure 18. DCGS Change Control Process

 38

affected (Williams, Hamilton, Cazares, & Noreen, 2020). The product owner opens a

Jira ticket in the RFC tracking system hosted on the DI2E DevTools workspace, which is

explained in the RFC Management section.

Step 2: C/DM record the proposed change. C/DM team assigns RFC number.

Step 3: Analyze the proposed change. The entire team determines impacts to

operational safety, suitability, and effectiveness, the mission impact and level of urgency

based on the priority matrix in Table 4 (Williams, Hamilton, Cazares, & Noreen, 2020),

the overall initial risk assessment based on the standard 5 x 5 risk matrix, items impacted,

network and port services required, interdependencies, and documentation impacts. The

change type is determined and systems engineering reviews all applicable documentation

for completeness (Williams, Hamilton, Cazares, & Noreen, 2020).

Step 4: Install, configure and run checkout test. The lab team members prepare the

environment to test the change in the integration environment. The test team integrates

Table 4. RFC Priority Matrix

 39

and tests the changes in the managed test environment and/or the controlled test

environment and generates an evaluation report documenting the results and

recommendations (Williams, Hamilton, Cazares, & Noreen, 2020).

Step 5: Approve the proposed change for formal test. The product owner submits all

applicable documentation to C/DM and requests a Change Advisory Board (CAB). At

this point the change has 2 possible paths it can go--approved for release or approved for

formal test. If the CAB is authorized to approve the RFC for fielding based on the

change type, then this step verifies the package is complete and the CAB approves for

fielding. If the CAB is not authorized to approve for fielding, the RFC moves into formal

test in the controlled test environment once approved by the CAB (Williams, Hamilton,

Cazares, & Noreen, 2020).

Step 6: Test the proposed change. The RFC enters the integrated test cycle and the lab,

systems, and test teams execute an integration acceptance test and developmental test to

ensure the RFC works in the operationally representative environment and that the

functionality meets the user requirements (Williams, Hamilton, Cazares, & Noreen,

2020).

Step 7: Approve the proposed for release/fielding. The integrated team formally

presents and briefs the RFC to the CCB using a standard template that ensures all

requirements and activity have been accomplished (Williams, Hamilton, Cazares, &

Noreen, 2020).

Step 8: Implement the approved change. For changes to OA the OA management

center coordinates with the 480th ISR Wing and remotely installs and deploys the change

 40

to all approved sites after coordination with each affected site. For legacy changes the

program manager coordinates with the 480th ISR Wing for scheduling installation and

deployment. The sites have up to 270 days to install the changes (Williams, Hamilton,

Cazares, & Noreen, 2020).

Step 9: Verify the change was implemented as approved. C/DM audits the system

baseline at all affected labs and sites and verifies the change was implemented as

approved (Williams, Hamilton, Cazares, & Noreen, 2020).

Step 10: Close the change. C/DM updates the RFC status to indicate done, withdrawn

or not approved (Williams, Hamilton, Cazares, & Noreen, 2020).

Jira Workflow

A standard workflow was established using the Jira work management tool for

agile teams to provide and track the activities required to accomplish the change control

process that automated the workflow and incorporated security and operations in the

existing AF DCGS labs and configuration management processes. The Jira workflow

established the standard statuses and definitions that are essential to track progress of the

changes through the process. The team defined twenty-eight steps to track the progress

of a RFC and provide metrics to determine bottlenecks or issues with a particular activity.

A group of subject matter experts from the AF DCGS program office, the OA

management center, contractor experts, and AFRL determined expected timelines for

each step in the process as shown in Table 5 (Cazares & Hamilton, RFC Transition Plan,

2020). No evidence could be found that these expected timelines are used to manage the

projects. A thorough search of the DCGS Confluence pages did not reveal any reporting

 41

to these timelines with analysis or corrective action if not met. They are simply displayed

on the RFC Leadership Board. These twenty-eight activity steps were divided into swim

lanes by area of responsibility for each team. The four teams are the program office

team, lab team, test team, and deployment team as shown in Figure 19 that depicts the

entire workflow from receipt of a change to fielding (Williams, Hamilton, Cazares, &

Noreen, 2020).

 The program office begins the process by receiving a request for change, putting

the RFC under configuration control, performing systems engineering and cyber reviews,

Table 5. RFC Expected Timelines

Status Workdays in
Phase

Status Workdays in
Phase

Submitted 1 TRR, TRR Complete 1

Systems Engineering Review 3 Ready for IAT (C-IAT) / Ready for ITC 1

CM in Progress 2 Integration (Systems Integration) 10

Cyber in Review 3 Integration Test (IAT) 10

Integration Ready 2 Dev Test (DT) 10

Ready for MTE and MTE in Progress 5 Needs Review/Decision 1

Staging Review 3 Prep for CCB 6

Ready for CTE and CTE in Progress 5 CCB Ready 3

Prep for CAB 4 CCB Review (Change CCB) / Fielding CCB 1

Ready for CAB 1 Awaiting Signatures 1

CAB for ITC / CAB for Field 1 Ready for Release 1

Awaiting Signature and Signed 1 Pending 480th 10

Ready for Deployment 4

Deployment in Progress 10-90

OUE (when required) 15

Implemented 1

SPO AOR

Lab AOR

SPO AOR

Test AOR

SPO AOR

Deployment
AOR

 42

and then passing the RFC to the lab team. The lab team takes responsibility and then

reviews the change to determine if it is ready for integration and meets the entry criteria.

Once the entry criteria is satisfied, the lab team tests the change in the managed and

controlled test environments. Once the tests pass and test results documented,

responsibility transfers back to the program office. The program office prepares for the

CAB, performs a quality check, and then holds either a CAB for fielding or a CAB for

the integrated test cycle. Once the CAB approves the change, responsibility goes to the

test team for additional testing or to the deployment team for fielding.

If the change went to the test team for the integrated test cycle a Test Readiness

Review (TRR) is conducted and once all test entry criteria is met, the change is queued

Figure 19. Standard Jira Workflow

 43

up to wait on the next test cycle. Depending on the timing, the delivery timeline is

extended anywhere from 1 day to 6 weeks. Once the integrated test cycle starts, the

change goes through Integration Acceptance Test (IAT) and then Development Test

(DT). Once the test team successfully completes both IAT and DT, responsibility goes

back to the program office team. The program office prepares the boarding package for

the change to go through a formal Configuration Control Board (CCB). The team builds

the CCB slide deck, performs quality checks, and conducts a formal briefing at the CCB

to senior leadership. Once the CCB approves the change, responsibility transitions to the

deployment team. This RFC process has remnants of a waterfall software development

process with activities like a TRR, CCB, IATs, formal briefings and approvals merged

with the new agile development process introduced by the AFRL OA team. This is

completely counter to agile development methodology and represents a second layer of

testing and additional gates and approvals. The result is much lengthier timelines and

many more steps and approval gates than a true agile development process.

Confluence

 Confluence is a tool hosted on the DI2E DevTools site used for team workspace

to share and collaborate on projects with built in functions to accelerate the startup time

for building the workspace. Confluence provides wiki, documentation, templates,

structures, designs, reports, policies and procedures for teams to create, share and discuss

files, ideas, minutes, specs, mockups, diagrams, and projects (DI2E, 2020).

 44

Business Rules

 With any system and process that is going to be used by more than one person or

team business rules need to be established to ensure a common understanding of roles,

responsibilities, permissions, standardization requirements and policies. The program

office started creating business rules in Sep 2019 initially focused on the change control

process, rules using Jira and Confluence, expected timelines, and required documentation

(Sawyer & Smith, 2019). These business rules have had minimal updates since they were

established and no visible expansion to include standardization of status, priority, and

issue type or focus on identifying attributes that will provide insight into the speed of

delivery.

RFC Path Matrix

 The RFCs have multiple workflow paths and multiple methods for approval based

on the type of change, complicating the process flow even further. For instance, a major

version change requires a formal test CAB and formal fielding CCB while a firmware

change is the only type that is allowed to be approved through a virtual fielding CCB.

Changes such as security patches, scripts or software configuration changes that are

lower risk and improve the cyber resiliency of the system have an accelerated workflow

and are approved at a virtual fielding CAB. A formal CCB or CAB requires an in-person

briefing of the complete CCB package. Configuration management routes the completed

package electronically for a virtual CCB or CAB to the core board members for

input/recommendation and then to the CCB Chair for approval. Entrance requirements

 45

are the same for virtual or formal CCB or CAB. The mapping of change type to approval

authority in Table 6 and the tailoring by specific change type is clearly evident (Williams,

Hamilton, Cazares, & Noreen, 2020).

RFC Management

RFC Management Tool

The RFC management tool (RMT) was developed to meet the need to improve the

existing RFC process through automation. Prior to the creation of the RMT each team

Table 6. RFC Path Matrix

 46

had created their own tool to track RFCs for changes to the subsystems they have

responsibility for sustaining. The implementations had so much variation that it caused

confusion and inconsistencies and prevented a holistic and uniform approach to change

management. The project data was not connected making it challenging to understand or

visualize the status of RFCs flowing through the process at the enterprise level. With that

in mind, the RMT capability was developed to provide visibility of all RFCs as they

progress through the activities from initiation to deployment. The RMT development

team identified three key features that would be essential to delivering this capability: 1)

Jira and Confluence Entry Forms, 2) Jira Workflow, and 3) Leadership Dashboards.

Using these collaboration tools ensures standardization, gives visibility across the teams,

automates metric generation, and provides business intelligence for leadership (Cazares

& Hamilton, RFC Transition Plan, 2020).

After five development sprints to build these three features the RMT was deployed

with a deadline for all teams to transition by 21 Jan 2020. Business rules were

established to ensure standardization across the multiple teams, Kanban boards built to

facilitate visibility of work in progress across the IPTs, and RFC Management

dashboards to provide insight into RFC status/schedule/metrics with views based on roles

and teams (Cazares & Hamilton, RFC Transition Plan, 2020).

RFC Leadership Board

The RFC Leadership Board provides overview metrics and status for the AF

DCGS leadership team to gain quick insight into the health and progress across the entire

portfolio. Figure 20 uses pie charts to show the active RFCs to quickly identify the

 47

weighting of a particular type, segment or priority (Hamilton, RFC Leadership

Dashboard, 2020). This view gives leadership visibility of the total number of open

changes currently in work by the team broken out by the change type and highlights any

emergency changes. It also identifies the workload balance between the segments and

Figure 20. RFC Dashboard

 48

shows the distribution by priority. The next view shown in Figure 21 displays the

Fi
gu

re
 2

1.
 S

am
pl

e
R

FC
 S

ta
tu

s V
ie

w

 49

number of RFCs from the perspective of the workflow steps (Hamilton, RFC Leadership

Dashboard, 2020). This view provides insight into the steps that currently have the most

RFCs indicating possible bottlenecks if the assigned work is greater than the capacity of

the teams. For instance, in Figure 21 we observe the steps “deployment in progress”,

“staging review” and “systems engineering review” have the most work in progress while

“awaiting signatures” has one RFC and “cyber” has no work in progress. Investigation

into the systems engineering, staging, and deployment activities would probably be a

good idea because there is obviously a backlog of work for certain workflow steps.

Figure 22 is a detailed view of the current RFCs from the perspective of the amount of

work being performed on each of the weapon system components. For this example

Enterprise Services has 23 RFCs currently in the “staging review” step and they account

Figure 22. Sample RFC Detail View

 50

for 79% of all work in this step. Considering there are 16 other components, this may

indicate possible issues (Hamilton, RFC Leadership Dashboard, 2020). Finally, Figure

23 is from the perspective of viewing the details of each of the RFCs for a particular

component and activity step. This example for OA Infrastructure lists all the active RFCs

for that segment that is in the “ready for CTE” step (Hamilton, RFC Leadership

Dashboard, 2020). Further details can be viewed on the Confluence page if any of the

RFCs warrant more investigation.

Figure 23. Sample RFC Issue List

 51

Value Streams

 The AF DCGS program portfolio is organized based on Scaled Agile Framework

(SAFe) principles for agile software development. The value streams are mapped to the

areas of intelligence that DCGS processes, exploits, and disseminates. The four value

streams shown in Figure 24 are GEOINT, ST (SIGINT), MULTIINT, and Infrastructure

as a Service (IAAS) (Russell & Hamilton, 2020). Under each value stream Agile Release

Trains (ARTs) are established based on requirements received from ACC. The Value

Streams are a permanent part of the portfolio, while the ARTs have a defined beginning

Figure 24. AF DCGS Program Portfolio

 52

and end that may last from 6 months to 3+ years depending on the scope of the associated

requirements. The DCGS Agile Execution Guide documents the program office

implementation of a tailored SAFe model to fit the needs of the program (Billings, 2019).

RFC Kanban Board

 A Kanban board is an agile project management tool used to visualize work, track

the work-in-progress, and maximize the flow of work. Flow and bottlenecks are usually

the main issues addressed in daily meetings and identify improvement opportunities that

otherwise may not be identified (dos Santos, Beltrao, de Souza, & Travassos, 2018). The

research performed by dos Santos validated that work visibility, control of project

activities and tasks, workflow, communication and motivation were positive effects while

internal quality, and team cohesion were negative effects (dos Santos, Beltrao, de Souza,

& Travassos, 2018). Kanban boards exist for each of the value streams, agile release

trains, and functional area to view assigned RFCs and the associated work in progress. A

sample board for the entire portfolio is shown in Figure 25. The columns are organized

Figure 25. Agile Development Kanban Board

 53

by workflow steps from left to right, with the far left typically reserved for “Backlog” and

the far right for “Done”. Each task is displayed on a card with key information and as

work is accomplished the card progresses from left to right until it is done. This board is

a powerful tool for tracking work in progress with the flexibility to display any of the

data in whatever format the user chooses.

DI2E DevTools

The DI2E Developer Tools provide an open development environment for the

defense and intelligence community providing a suite of popular, widely used

development tools. The tools align with the Office of Acquisition, Technology, and

Logistics (A&TL) open systems architecture guidance supporting development,

integration and test needs (DI2E, 2020). In addition to using DI2E for the Confluence

and Jira tools, the program office uses DI2E for the development portion of the CI/CD

pipeline. To ensure compliance a software delivery policy was issued to instruct all

software for testing and/or deployment be delivered via the Nexus repository on DI2E

(Williams & Anderson, Software Delivery Guide, 2020). The C/DM team then stores all

software for formal testing (i.e. Integrated Test Cycle) and release in the Nexus

repository at the appropriate classification level in the Controlled Test Environment

(CTE) aggregated across three facilities at Robins AFB, Langley AFB, and Rome AFRL

(Williams & Anderson, Software Delivery Guide, 2020).

CI/CD Delivery Process

As discussed in the RFC Delivery Process section, AF DCGS adopted an agile

approach, based on commercial best practices and an adaptation of the Scaled Agile

 54

Framework to a Government acquisition program. Developers work in agile

development teams on Agile Release Trains (ARTs) and Value Streams (VSs), with

short, time-boxed cadences for their development cycles. The delivery pipeline started to

suffer from bottlenecks and unnecessary delays, as the ARTs began to deliver capabilities

to integration and test environments in weeks or even days compared to the previous

timeline of months and sometimes years. As an example, the formal testing cycle at the

program level originally had a four week Integrated Test Cycle (ITC) resulting in a delay

of one day to four weeks while the changes waited in the queue for the next test cycle.

This delay in integration and test had a ripple effect of delaying feedback to the

development teams. Three ITCs in a row failed to successfully demonstrate a completed

capability ready for fielding (Sylvester C. , 2018). Due to these failures the ITC was

extended to six weeks, resulting in even longer feedback loops to the developers, and

more importantly, users now have a longer wait for upgraded products to be available.

The processes, teams, and tools for the RFC process are not optimized to provide

capabilities to the OA DCGS operators on the desired, short time scales necessary of a

modern IT-based system. The AF DCGS Chief Engineer directed the OA DCGS

Continuous Integration Environment (CIE) team in March 2018 to establish a true

Continuous Integration/Continuous Delivery (CI/CD) process within a Continuous

Integration Environment (CIE). The goal was to streamline the delivery process and

build a CI/CD pipeline that would "once and for all" address the convoluted existing RFC

process (Sylvester C. , 2018).

 55

Continuous Integration Environment

The basic definition of a Continuous Integration Environment (CIE) is an

Information Technology environment where:

1) Developers upload each potential change to the baseline (feature, patch, new

capability, enhanced service, etc.), as soon as the change is committed;

2) The uploaded change is a module (or “ingredient”: “wrapped” executable

code, including installation script, configuration file, changes to

documentation, etc.) deposited to a common repository under configuration

control;

3) A master integration script (“recipe”) automatically integrates modules into a

new candidate baseline on a frequent (i.e., “continuous”) basis (using, for

example, the latest version of each module);

4) The master integration script then initiates automated testing of the new

candidate baseline;

5) Metrics and test results are automatically compiled and posted/delivered to the

responsible development community; and

6) The candidate baseline can be identically and automatically recreated from the

repository at will for formal testing (DT/OT), experimentation,

troubleshooting, or any other purpose (Sylvester, Tschuor, & Dent, 2018).

The problem is to create this environment with the following axioms as

overarching goals:

 56

1) Feedback must get back to the source as early as possible (issues from test,

integration, and operations) in less than 6 hours from failure or test success to

source.

2) The CIE must allow for the timeline from software commit to operational

deployment to be less than 24 hours.

3) Automate, automate, automate with greater than 50% of each team’s CIE

actions automated (Sylvester, Tschuor, & Dent, 2018).

The environment includes a hardware infrastructure, network connections and

protocols, and the software tools for creating a representative production environment,

automated tools for installation and test, and monitoring and measuring products to

monitor the health and status (Sylvester, Tschuor, & Dent, 2018). The AF DCGS CIE is

a set of tools that reside on the DCGS controlled test environment that is part of the test

and integration labs (Stocum, 2019). The software changes for each RFC use the tools

Figure 26. AF DCGS CIE High-level Workflow

 57

and processes in the CIE to rapidly integrate, test, and prepare for deployment to

operations as shown in Figure 26 (Stocum, 2019).

Continuous Integration/Continuous Delivery Pipeline

 An element of the DevOps philosophy, continuous integration and delivery is

focused on getting code into production as quickly as possible, in contrast with earlier

approaches to developing software, including waterfall, which produce larger chunks of

code over longer periods, making testing more time consuming and less reliable

according to Vladysalv Gram (Clark, 2019). CI/CD is also known as a pipeline because

once a new software or configuration enters the pipeline it either completes successfully

or terminates in failure. There is no modifying of the configuration or software once it

has entered the pipeline (Sylvester C. , 2018). Continuous integration is a software

engineering practice that strives to integrate code at least daily and at best hourly (Steven,

2018). Continuous delivery is a software strategy that enables organizations to deliver

new features to users as fast and efficiently as possible (Phillips, 2014). Phillips states

the core idea of CD is to create a repeatable, reliable and incrementally improving

process for taking software from concept to customer.

 The three concepts of DevOps, CI/CD and Agile work together to create a CI/CD

pipeline as shown in Figure 27 (Steven, 2018). Bridgwater agrees with Steven and states,

“CI/CD is a build, test, and release automated process that complements an agile

development process” (Bridgwater, 2019). Agile focuses on the processes, CI/CD

focuses on software-defined lifecycles, and DevOps focuses on culture. The program

 58

office has integrated all three of these concepts into their foundational acquisition

practices creating a transformational culture.

The program office built a CIE to facilitate DCGS applications being fully tested

and fully integrated as they rapidly move from development into production (Wellspring,

2020). Wellspring stated “The key values were to have a 1) government owned,

controlled and managed integration environment, 2) built using the open architecture

hardware, 3) code checked in and integrated several times a day, 4) repeatable code base

across any OA stack, 5) fully automated test and integration, and 6) quick feedback to

developers on test success/failures” (Wellspring, 2020). The CI/CD pipeline structure

developed by Jez Humble and David Farley in Figure 28 was the basis for the design of

the AF DCGS CI/CD pipeline (Babbitt, 2019). Humble articulates the different potential

stages in the CI/CD pipeline in five simplistic statements: 1) The CIE is triggered by a

new drop of software into version control, 2) The software is built, configured and tested,

3) After successful testing, the software may be released, which is part of the Release and

Figure 27. Building the CI/CD pipeline

 59

Deployment process, 4) The CI/CD process could fail at any step in the delivery,

providing feedback to the team, and 5) This process is iterated until success is achieved

(Sylvester, Tschuor, & Dent, 2018).

The AF DCGS CI/CD pipeline consists of a development portion hosted on DI2E

and an integration and test portion hosted on the Controlled Test Environment (CTE) as

shown in Figure 29 and Figure 30 (Wellspring, 2020). The development portion

provides the environment for code to be pulled from the backlog, run a static code

analysis, perform unit test, execute the build, run functional tests, and release for

integration. The integration and test portion provides the environment for a build

Figure 28. Humble and Farley CI/CD Pipeline Structure

 60

infrastructure, install/configure of the application, integration, end-to-end testing,

generation of final reports and release for CCB/Fielding (Wellspring, 2020).

Figure 30. CI/CD pipeline – Integration and Test

Figure 29. CI/CD pipeline – Development

 61

The DI2E development environment provides automated tools such as Bitbucket

for source code control, Fortify and SonarCube for static code analysis, ACAS to perform

scan/load/scan of compiled applications, Clair to perform docker container vulnerability

analysis, and Nexus for the artifact repository (Castellon & Hurst, 2019). The CTE

integration and test environment provides the Jenkins application that is a continuous

integration and build server, essentially the orchestrator of the CD/DevOps ecosystem. A

Jenkins job pulls source from the configuration library, builds infrastructure as code,

configures the application, quality checks the code, compiles the source code, executes

unit tests, creates the release package, and posts to the artifact repository. To accomplish

this Jenkins interfaces with other applications such as IBM Rational, Nexus, puppet,

sonar, Serena, and uDeploy to perform each step of integration and test. These tools are

the heart of the CI/CD pipeline and provide the ability to streamline the delivery process.

The research hypothesis in the following section outlines the studies that will be

conducted to examine how well the CI/CD pipeline streamlined the delivery process.

Research Hypothesis

This research will examine the effectiveness of the CI/CD pipeline by conducting

an observational study on the project data for the CI/CD process and the RFC process as

described earlier. The two specific types of studies that will be performed are a between-

subjects study and a within-subjects study. A between-subjects study will be conducted

to examine the deployment timelines between using the CI/CD pipeline and the RFC

delivery process. A within-subjects study will be conducted on the CI/CD pipeline to

 62

characterize the process based on selected attributes. The hypotheses that will be tested

are summarized in Table 7.

Table 7. Research Hypotheses

Between-Subjects Study: CI/CD, RFC
Data Type Attribute Null Hypothesis Alternate Hypothesis
Feature Workdays H0 = There is no difference in the

delivery time for features between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for features

Story Workdays H0 = There is no difference in the
delivery time for stories between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for stories

Task Workdays H0 = There is no difference in the
delivery time for tasks between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for tasks

Bug Workdays H0 = There is no difference in the
delivery time for bugs between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for bugs

Spike Workdays H0 = There is no difference in the
delivery time for spikes between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for spikes

Within-Subjects Study: Value Stream, Priority, Story Points
Feature Value Stream H0 = There is no difference in the

delivery time for features between
value streams

Ha = The features have different
delivery times based on value
streams

 Priority H0 = There is no difference in the
delivery time for features based on
priority

Ha = The features have decreasing
delivery times as the priority
increases

Story Value Stream H0 = There is no difference in the
delivery time for stories between
value streams

Ha = The stories have different
delivery times based on value
streams

 Priority H0 = There is no difference in the
delivery time for stories based on
priority

Ha = The stories have decreasing
delivery times as the priority
increases

 Story Points H0 = There is no difference in the
delivery time for stories based on
story points

Ha = The stories have increasing
delivery times as the story points
increase

Task Value Stream H0 = There is no difference in the
delivery time for tasks between
value streams

Ha = The tasks have different
delivery times based on value
streams

 63

 Priority H0 = There is no difference in the
delivery time for tasks based on
priority

Ha = The tasks have decreasing
delivery times as the priority
increases

 Story Points H0 = There is no difference in the
delivery time for tasks based on
story points

Ha = The tasks have increasing
delivery times as the story points
increase

Bug Value Stream H0 = There is no difference in the
delivery time for bugs between
value streams

Ha = The bugs have different
delivery times based on value
streams

 Priority H0 = There is no difference in the
delivery time for bugs based on
priority

Ha = The bugs have decreasing
delivery times as the priority
increases

Spike Value Stream H0 = There is no difference in the
delivery time for spikes between
value streams

Ha = The spikes have different
delivery times based on value
streams

 Priority H0 = There is no difference in the
delivery time for spikes based on
priority

Ha = The spikes have decreasing
delivery times as the priority
increases

Summary

While the program office has developed kanban boards to give situational

awareness into progress of the teams, none of the available boards or views provide data

to determine if the CI/CD pipeline is actually improving the overall timeline of the RFC

process. There are no details on timelines by priority, value stream, story points or issue

type for either the RFC process or the CI/CD process. The pie charts simply display the

current number of RFCs by segment (value steam), priority, and RFC type (not the same

attribute as issue type). The bar charts also display the number of RFCs in each step of

the workflow but have no associated delivery timeline. This may be interesting data but

does not give an indication of the speed through the workflow. Given that the program

office moved to a CI/CD process for the weapon system for the sole purpose of

delivering capability to the field faster, it is evident the current RFC management boards

do not have the automated reporting to continuously measure and report the throughput.

 64

The program office has not analyzed the data to determine how much, if any, the CIE and

CI/CD pipeline improved the delivery timeline. This research will perform the analysis

and provide the results to the AF DCGS program office, with recommendations for

further action and research. The details of the methodology for the study are discussed in

detail in Chapter III.

 65

III. Methodology

Chapter Overview

This chapter explains the methods used to examine the performance measures of

the AF DCGS CI/CD delivery process and the RFC delivery process. This chapter

begins with a description of the study, data sets and sources, and data types. Next, data

standardization and data cleaning is covered, followed by measures and assumptions.

This chapter concludes with statistical methods and a summary.

Observational Study

This research was an observational study due to the constraints that prevented

conducting an experimental study. An observational study is one that records

information concerning the subject under study without any interference with the process

that is generating the data (Ott & Longnecker, 2018). The information analyzed was

selected from data already generated and stored in the Jira databases for software projects

that have completed the integration and test phase. A between-subjects and within-

subjects observational study were conducted to determine the effectiveness of the CI/CD

pipeline with respect to speed of delivery.

The first study was a between-subjects study to examine the effectiveness of the

AF DCGS integration and test process for the two current delivery methods, CI/CD

process and RFC process, by comparing workflow days. The first delivery method is the

established process of using the existing integration labs with zero automation, multiple

testing events with numerous gates, and disconnected labs and environments. The second

 66

delivery method is the newer process of using automated tools, streamlined testing, and

fully integrated labs using a continuous integration environment. The second study was a

within-subjects study to characterize the CI/CD process for five different data types and

three different attributes. This is an observational study with the data sampled from a

population that the factors are already present and we are comparing samples with respect

to the factors of interest.

Description of Data Set and Sources

Data Platform

Data was collected from the DI2E DevTools AF DCGS collaboration area that

has RFC and CI/CD process data for software integration, test and delivery. All

personnel from the program office, OEMs, test organizations, and ACC use the

Confluence work area to manage and track progress on all changes to the configuration

baseline. Detailed activity and statuses are updated daily by the team through the use of

Kanban boards and a standard Jira workflow.

Data Collection

Data was collected from the DI2E cloud based environment that can be accessed

with a government laptop and Common Access Card (CAC). The data was not centrally

located in one project and required access to the AFDCGS, AFDCGSCICD, CIEService,

and DCGSCIE projects and boards. Collection was a very time consuming, manual

effort that required many hours simply to figure out what data was available for analysis

and where it was stored. Additionally, sorting the data between the CI/CD process and

the RFC process was very challenging because the data is stored by project, not by which

 67

process it used. Discussions with the CIE team revealed that no progress had been made

on setting up automated metrics reporting. Data was very limited in some cases and the

analysis constrained by the available data.

The data fields that were selected for the analysis included Issue Type, Key,

Summary, Priority, Status, Resolution, Created, Resolved, Story Point, Release Train and

Value Stream. The data was downloaded to Excel from each of the projects and the

eazyBI tool was also used to collect detailed data on transitions and associated transition

times for each issue from Jun 2018 to Sep 2020. Sample cleaned data from the CI/CD

process for agile stories is shown in Table 8. The data was extracted from the AFDCGS

Kanban board for stories filtered for the CI/CD pipeline. Next, Table 9 is an example of

data extracted from the DCGSCIE Kanban board for bugs that were executed through the

CI/CD pipeline. This board included all the changes to the OA DCGS infrastructure,

enterprise services, hardware stacks, workstations, continuous integration environment

Issue Type Key Summary Priority Resolution Created Resolved Story Points Release Train(s) Value Stream(s)
Story

AFDCGS-17410
Improvement - Add Clair container
vulnerability scanning to CI/CD pipeline

High Done 1/24/2020 14:06 6/17/2020 10:56 5 High Altitude GEOINT

Story
AFDCGS-17408

Improvement - Add SonarQube execution
to CI/CD pipeline

High Done 1/24/2020 14:01 5/18/2020 8:08 3 High Altitude GEOINT

Story
AFDCGS-17409

Improvement - Add OWASP dependency
check to CI/CD pipeline

High Done 1/24/2020 14:03 4/28/2020 10:26 3 High Altitude GEOINT

Story
AFDCGS-20328

Resolve findings from CI/CD Clair container
vulnerability scanning

High Done 6/17/2020 10:51 7/2/2020 16:27 3 High Altitude GEOINT

Story
AFDCGS-19708

Implement user-controlled parameters can
be determined for the REnDER install

High Done 4/30/2020 12:04 6/1/2020 12:05 8 High Altitude GEOINT

Story

AFDCGS-16567

In order to go to CIE, we need to pass a
fortify scan, and have ability to run it
automatically

High Done 11/18/2019 15:29 4/21/2020 9:23 8 High Altitude GEOINT

Story
AFDCGS-13155

Complete continuous delivery automation
for HmC

High Done 4/29/2019 8:49 5/17/2019 13:26 3 High Altitude GEOINT

Table 8. Sample data for CI/CD Story

 68

updates and security patches. The final example is Table 10 extracted from the AFDCGS

Issue Type Key Summary Priority Status Resolution Created Resolved
IT Help

AFDCGSCIE-26

Disk Utilization scans indicate CE23
Var/log is at 100% and CE 07 CPU is at
100%

Medium Closed Closed 11/8/2019 14:35 11/21/2019 10:23

IT Help
AFDCGSCIE-51

Jenkins fortify scan failing due to
permission error

Blocker Resolved Known Error 3/4/2020 10:53 3/4/2020 13:57

IT Help

AFDCGSCIE-69

Windows Vagrant box images have the
AWS transit proxy hardcoded. This needs
to be removed in future builds. This bug
denies access to the internet on the
image. Discovered by Jason Weitzel (ESS)

Low Resolved Fixed 4/28/2020 14:48 5/18/2020 8:13

Service Request
AFDCGSCIE-36

ce23 on CTE-L is nearing capacity --
/var/log

Medium Resolved Fixed 1/17/2020 12:22 1/22/2020 14:09

Service Request AFDCGSCIE-37 ce07 is throwing errors due to high CPU Medium Resolved Fixed 1/17/2020 12:22 1/22/2020 13:59
Service Request

AFDCGSCIE-40
I am not able to delete artifacts from the
Nexus Repository

Medium Resolved Fixed 1/27/2020 15:57 2/5/2020 7:52

Service Request

AFDCGSCIE-46

Watchman 4 Defense requests the
updates made on ce25 get pushed into
GitLab on CTE-H

Medium Resolved Fixed 2/27/2020 9:40 2/27/2020 10:07

Issue Type Key Summary Priority Resolution Created Release Train(s) Value Stream(s)
New Feature AFDCGS-10585 Resolve or turn off MEPI capability Medium Done 11/19/2018 14:46 CETS SRM SR

New Feature AFDCGS-10595
Remove CETS fuse or choose geolocation

logic
Medium Done 11/19/2018 15:05 CETS SRM SR

New Feature AFDCGS-10681 Automate FR 3.2 POD Medium Done 11/27/2018 14:09 CETS SRM SR

New Feature AFDCGS-10773
CDA NETWORK ANALYSIS CURRENT -
Integrate with Unicorn data source

High Done 11/30/2018 7:40 Multi-Int MULTIINT

New Feature AFDCGS-10791
CyAN Feature SolarWinds Log Event
Management Syslog data to Cyber

Dashboard tool
High Done 12/3/2018 8:19 CyAN Infrastructure

New Feature AFDCGS-10792
CyAN Feature SolarWinds NPM Network

Data to Cyber Dashboard tool
High Done 12/3/2018 8:28 CyAN Infrastructure

New Feature AFDCGS-10798
CyAN Feature Display SolarWinds

Security Information Event Management
widgets

High Done 12/3/2018 10:06 Infrastructure

New Feature AFDCGS-10949 CyAN Feature Visualize Data Geospatially High Done 12/10/2018 14:46 CyAN Infrastructure

New Feature AFDCGS-11159
(BCR) Map updates when country code is

changed
Medium Done 1/2/2019 7:04 High Altitude GEOINT

New Feature AFDCGS-11163 (BCR) FIVE EYES-Change Name Medium Done 1/2/2019 7:16 High Altitude GEOINT

New Feature AFDCGS-11164
(BCR) REnDER Multi-Select Capability for

approved/prohibited lists
Medium Done 1/2/2019 7:17 High Altitude GEOINT

New Feature AFDCGS-11168
(BCR) Need method for adding

tetragraphs
Medium Done 1/2/2019 7:24 High Altitude GEOINT

New Feature AFDCGS-11817
Unicorn plugin to configure (Internal

GDMS - 640)
High Done 2/13/2019 11:26 FMV GEOINT

New Feature AFDCGS-11992
Artificial Intelligence (AI) Harness to send
1st AI Model metadata to a visualization

tool
High Done 2/21/2019 10:47 Multi-Int MULTIINT

New Feature AFDCGS-12175 Audio Playback of conversations Medium Done 3/7/2019 11:28 ASET SRM SR

Table 10. Sample data for Feature not using CI/CD

Table 9. Sample data for CI/CD Bug

 69

Agile Kanban board for features that went through the RFC process. This data was the

easiest to sort and parse out the relevant data entries.

Data Types

AF DCGS 1067 Decomposition

 ACC submits new operational requirements to the DCGS program office using

the AF Form 1067 as part of the requirements management process. The process flow

from a 1067 to features, stories and tasks is shown in Figure 31 (Priddy, AF DCGS Agile

Execution Guide, 2018). Mission experts from the 480th Wing and ACC/A5/2D are the

epic owners and shepherd the requirement from the 1067 through the value stream

planning phase. The team analyzes each 1067 requirement and the candidate solution

approach documented in an epic value statement. The epics are assigned to one of four

Figure 31. 1067 Decomposition

 70

value streams (Infrastructure, GEOINT, MULTIINT, or SIGINT) organized around the

intelligence categories mentioned in Table 1.

Value Streams

The infrastructure value stream entails the services, infrastructure, enterprise

services, workstations and architecture to create and field DCGS systems at on-site

locations. The MULTIINT value stream consists of capabilities that support data fusion

from multiple intelligence domains and the tools that support analysis and reporting. The

GEOINT value stream consists on capabilities that support full motion video, imagery,

Global Hawk Block 30/40 exploitation, and other high-altitude platforms. The SIGINT

value stream supports various capabilities (Priddy, AF DCGS Agile Execution Guide,

2018).

Epics

The epics are decomposed into capabilities and features by the value stream teams

and the development team writes the user stories and tasks that are required to create the

features and capabilities. Figure 32. Epic Decomposition shows the linkage between

these different issue types (Oligmueller & Smith, 2020). The epics are too broad and

complex to perform meaningful research on the CI/CD pipeline effectiveness. An epic

could take up to two or three years to be fully implemented and represent thousands of

hours of work. Under agile principles delivery is not accomplished at the epic level,

instead it is at the smallest level possible to push updates and changes out to the user on

the most frequent tempo possible. Therefore, to gain an understanding on the CI/CD

pipeline performance, this research focuses on the features, improvements, stories, tasks,

 71

deficiencies, bugs and spikes that are the smallest increments of work packages deployed

to the production environment.

Feature

AF DCGS defines features as a service that fulfills a stakeholder need and is sized

to be delivered by a single agile release train in a single program increment. An

improvement is a fundamental component of software development that enhances

existing functionality for the operator, with mission value (Oligmueller & Smith, 2020).

Figure 32. Epic Decomposition

 72

Story

A story is a software development effort that represents the code changes

necessary to meeting the minimum viable product of the linked feature or improvement

(Oligmueller & Smith, 2020).

Task

A task is a non-software development related effort such as documentation,

certificate to field, drawings, tech orders, and other required activity to complete the

delivery package (Oligmueller & Smith, 2020).

Bug

A bug is a problem with code identified outside of formal integration test and

does not have to be linked to a feature. A bug is part of a release as a fix and the assigned

priority is important (Oligmueller & Smith, 2020).

Spike

A spike is used for research and is the first step in a new design of a feature.

Stories, tasks and spikes must always be linked to a feature or improvement (Oligmueller

& Smith, 2020).

Data Standardization

Analysis of the CI/CD pipeline data set identified several categories with very few

data points probably due to the fact it is a relatively new environment and not all the

work is flowing through the pipeline yet. The RFC dataset had a satisfactory number of

data points for all categories due to the volume of work flowing through the RFC process.

Work products were grouped to have enough data points to adequately study all five data

 73

types. Standard agile definitions were used to ensure similar work products were

grouped for both the CI/CD process and the RFC process as shown in Table 11.

Table 11. Data Type Grouping

Data Type Jira Symbol Includes Issue Types…

Feature New Feature

 Improvement

Story Story

 User Story (no longer used)

Task Task

Bug Bug

 DR

 TPR

Spike Spike

 Non-Functional Requirement/Technical Debt

Improvement and feature were grouped together as feature, Deficiency Report

(DR) and Test Performance Report (TPR) were added to bug, non-functional requirement

was added to spike, user story was added to story, and task was not combined with any

other data type. Improvements and features are both implementations for a new

capability and there was no evidence of differences between them or standards for

selecting one over the other. They appeared to be interchangeable terms and dependent

 74

on the person creating the issue type. DR and TPR are bug types discovered during

testing or fielding activities and there was no observable differences between these data

types and the bug data type. The non-functional requirement identifies work that the

team performs that is necessary for the design of a capability but is not a direct

requirement from the customer. For example, the MULTIINT value steam had a non-

functional requirement for data storage that included defining the storage capacity

necessary for the data lifecycle as well as the amount of time for data retrieval. Technical

debt is work that is identified by the team during implementation of a capability that does

not meet internal requirements for items such as scalability and reliability. A spike was

work that also investigated and identified items such as the bare minimum to have

running for the SOA ESB testing to test horizontal scalability. All three of these are

similar in that they are derived requirements for a capability.

Studying the structure within Jira showed that none of these five data types were

subordinate to each other. The only mapping of these data types was back to the epic or

new capability they supported. Therefore, we concluded that the time spent on each of

these data types was self-contained and we would not have any issues with our analysis

by the possibility of cross contamination with regards to work days between data types.

Standards were not the same across the projects for priority. Some projects used

blocker or critical where a blocker prevented completion of other work and a critical was

an issue that needed immediate correction. No differences between these two statuses

was evident. Since we limited our issues to ones that were completely done, the statuses

 75

of blocker or critical were not relevant so they were replaced with a priority of high. Low

and medium priorities required no changes.

Data Cleaning

The data for the existing process was from 2016 through Sep 2020 while the CIE

was from 2018 through Sep 2020. The data prior to 2018 was removed so that the

analysis would be based on the same time period. Since we only examined issues that

had completed the CI/CD pipeline, only entries that had a resolution status of “Done”

were kept. The Jira issue types and statuses that documented the current state for a

particular software change were not consistent between the two processes. For instance,

in Table 12, Key ID: AFDCGSCIE-51 had a resolution of known error and status was

resolved. The work history stored in Confluence for this bug was studied and we

observed it was worked and resolved within 3 hours and delivered to the CIE production

environment. Therefore, it was kept as a valid data point.

Table 12. Data Cleaning Sample 1

Another example was Key ID: AFDCGSCIE-94 shown in Table 13 that had a resolution

of fixed and status of done. The work history for this bug revealed it was completed and

delivered to the CIE production environment. Therefore, it was kept as a valid data point.

Issue Type Key Summary Priority Status Resolution Created Resolved Workdays

IT Help AFDCGSCIE-51
Jenkins fortify scan failing due to
permission error

Blocker Resolved Known Error 3/4/2020 10:53 3/4/2020 13:57 0.128

 76

Table 13. Data Cleaning Sample 2

Another data cleaning example that was more difficult was how to handle missing

data. Most of theses cases required subject matter expert knowledge of the software

projects and AF DCGS to provide the missing values. Table 14 is an example of missing

value streams that knowledge of the ARTs and system segments was required to

determine the value stream. SSDI T2 and CICS SRM are both SIGINT release trains

while Full Motion Video (FMV) is a GEOINT value stream.

The final example shown in Table 15 for Key ID: AFDCGSCIE-3 shows a data

point that did not actually go through the CIE. Further investigation on the Confluence

page revealed this was a trial test case early in the initial CIE standup that was not run

through the CI/CD process. This type of data point was not kept as a valid data point.

Issue Type Key Summary Priority Status Resolution Created Resolved Workdays
Task AFDCGSCIE-94 Put Fortify on render

VM
Low Done Fixed 7/8/2020 11:45 9/11/2020 8:19 64.857

Issue Type Key Summary Priority Status Resolution Created Resolved Release Train(s) Value Stream(s)
Spike AFDCGS-18591 Prepare for ONEROOF

Enterprise Usage
High Done Done 4/1/2020 13:03 7/8/2020 10:06 SSDI T2

Spike AFDCGS-20293 AGS Spike Report: Audio
Compatibility with
ONEROOF

High Ready for ITC Done 6/12/2020 10:01 9/15/2020 13:27 CICS SRM

Spike AFDCGS-21644 Research how SOA ESB
fits into the cloud

High Done Done 9/4/2020 8:31 9/25/2020 7:43 FMV

Spike AFDCGS-18775 Processing other Hdet
radio types, Serena:
100092133

High Done Done 4/6/2020 13:47 7/20/2020 13:19 CICS SRM

Spike AFDCGS-19569 Limited Number of LOBs
sent to CEGS, Serena:
100097095

High Ready to
close

Done 4/27/2020 18:46 6/22/2020 10:41 CICS SRM

Table 14. Data Cleaning Sample 3

 77

Table 15. Data Cleaning Sample 3

Measures

Measures were collected for all of the issue types to gain an understanding of the

projects and the process, and to identify what was available for the speed of delivery

analysis. The initial data set included feature, story, spike, bug, task, backlog, tech debt,

improvement, new capability, enabler, DR, TPR, user story, and non-functional

requirement for the issue types. The attributes collected were key, title, resolution, issue

initiation date, issue resolved date, issue status, issue type, priority, value stream story

points, agile release train, transition to status, transition from status, days in transition

status. After studying the data, the issue types selected for analysis were feature, story,

spike, task, and bug. The attributes selected for analysis were priority, story points, value

stream, and calculated workdays.

Assumptions

 The data collected was from actual work that was conducted in the AF DCGS

program office over the past several years. The data was not from controlled experiments

and was assumed to contain human error due to manual inputs. Data cleaning and

standardization was required to generate appropriate datasets for statistical analysis. The

Confluence environment contained completed and on-going projects so proper filtering to

Issue Type Key Summary Priority Status Resolution Created Resolved
Task AFDCGSCIE-3 CIE = awesome Medium Done Closed 8/16/2019 13:19 8/16/2019 14:18

DI2E Framework Jira

 78

only extract projects that were completely done was necessary. A review of the history

logs revealed issues such as duplicate entries and incomplete status updates. Datasets

with less than 30 data points were removed from the analysis. The datasets did not have

the same number of data points and ones that were extreme such as 15 points compared

to 375 points were not analyzed.

Statistical Methods

Statistical hypothesis tests were executed to examine the mean and standard

deviation for each dataset. Histograms were generated using Sturge’s Rule to calculate

the bin size and then examined to determine if the data set was normal with a standard

distribution. T-tests were conducted between the CI/CD process and RFC process

datasets using the Two-Sample assuming unequal variances. Analysis of variance was

performed on both datasets for each issue type and set of attributes.

Summary

This chapter reviewed the methodology used to extract the data and develop the

performance values needed to compare the CI/CD and RFC process. It covered the

methodology that was used to perform the observational study for both the between-

subjects study and within-subjects study. It also provided justification on values used in

the performance evaluation, data cleaning methods, and data grouping. The following

chapter will discuss the results of the statistical analysis.

 79

IV. Analysis and Results

Chapter Overview

This chapter will show the results from the between-subjects study and the within-

subjects study. The between-subjects study was performed to see if the CIE automated

tools within the CI/CD pipeline resulted in significantly shorter deployment timelines for

each data type. The within-subjects study was performed to see what affect each selected

attribute had on each data type. The data types selected were feature, story, task, bug,

and spike. The attributes selected were workdays, priority, value stream and story point.

See Appendix A for definitions of these data types and attributes. Each section will

discuss the metric and give explanations on the observations. It will also discuss how

useful the data types and attributes were in determining if the CIE automated tools

improved deployment timelines.

Method 1: Between-Subjects Study

For this study, we were interested in knowing if the CI/CD pipeline improved the

delivery timeline for different issue types. The next sections detail the results from the

analysis of each issue type for the hypothesis in

Table 16.

Table 16. Between-Subjects Study Hypothesis

Between-Subjects Study: (CI/CD, RFC)
Issue Type Attribute Null Hypothesis Alternative Hypothesis
Feature Workdays H0 = There is no difference in the

delivery time for features between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for features than not
using the CI/CD pipeline

 80

Story Workdays H0 = There is no difference in the
delivery time for stories between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for stories than not using
the CI/CD pipeline

Task Workdays H0 = There is no difference in the
delivery time for tasks between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for tasks than not using
the CI/CD pipeline

Bug Workdays H0 = There is no difference in the
delivery time for bugs between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for bugs than not using
the CI/CD pipeline

Spike Workdays H0 = There is no difference in the
delivery time for spikes between
using the CI/CD pipeline and not
using the CI/CD pipeline

Ha = The CI/CD pipeline will result
in significantly shorter deployment
timelines for spikes than not using
the CI/CD pipeline

Feature

Examining Figure 33, we observed that 90% of the features using the CI/CD pipeline are

less than 300 workdays and 75% are less than 175 workdays. The data points greater

than 450 workdays represent 2% of the sample. These were examined as possible

outliers and it was concluded they were valid data points. Next we examined the RFC

features using the histogram in Figure 34. We observe that 90% of the data points are

less than 450 workdays and 75% are less than 275 workdays. The data points greater

 81

than 600 workdays represent 2% of the sample. The data was examined for possible

outliers and it was concluded they were all valid data points. Comparing these two

histograms we observed the delivery time for features was reduced by 150 workdays for

90% of the data points. Additionally we observed the maximum workdays for features

Figure 33. CIE Feature Histogram

 82

that did not use the CI/CD pipeline is significantly higher at 800 workdays compared to

525 workdays for features that did use the CI/CD pipeline.

The t-Test for the CI/CD pipeline and RFC feature workdays was significantly

different at (t = -3.174, p < 0.001) and we rejected the null hypothesis that there is no

difference in the delivery time for features between using the CI/CD pipeline and not

using the CI/CD pipeline. There is evidence that the CI/CD pipeline improved the

delivery time for features with an average of 135 workdays compared to an average of

177 workdays not using the CI/CD pipeline. The results of the t-Test are in Table 17.

Figure 34. RFC Feature Histogram

 83

Finally, we wanted to know if the delivery time shortened for features over time

as the CI/CD process matured. We expected delivery times to shorten as the teams

became more proficient with the new process and the automation improved. The average

delivery time decreased from 1Q19 to 3Q20 from 99 workdays to 65 workdays. There

was an initial spike up to 250 workdays for 2Q19 with an overall downward trend as

shown in Figure 35. Examining the details of the data, we discovered 20 SIGINT

features that entered the CI/CD pipeline as part of SIGINT Program Increment (PI)-7.

These were the first features SIGINT ran through the pipeline for the OA - Airborne

Sensor Emulator and Trainer that was a large and complex new development effort.

They documented many issues such as working in docker containers for the first time

(related to the CIE), but most were not due to the CIE such as getting security

documentation ready for certificate to field and ASET failing functional and specification

tests. These features were started through the pipeline over the next three to four quarters

t-Test: Two-Sample Assuming Unequal Variances

CIE Feature Workdays RFC Feature Workdays
Mean 135.818 176.836
Variance 12824.787 31726.081
Observations 156.000 374.000
Hypothesized Mean Difference 0.000
df 444.000
t Stat -3.174
P(T<=t) one-tail 0.001
t Critical one-tail 1.648

Table 17. Two-sample t-Test Feature Workdays

 84

and the delivery speeds continued to improve. Features for several ARTs and value

streams have been regularly flowing through the pipeline over the past three quarters.

The evidence supports that the CI/CD speed of delivery is improving over time for

features

Figure 35. CIE Feature Delivery Speed by Qtr

 85

Story

Examining Figure 36 we observed that 90% of the data points for stories using the CI/CD

pipeline are less than 120 workdays and 70% are less than 50 workdays. The data points

greater than 200 workdays represent 2% of the sample. The data was studied for possible

outliers and it was concluded they were all valid data points. Next, we examined the

RFC Stories using the histogram in Figure 37. We observed that 90% of the data points

are less than 225 workdays and 70% are less than 75 workdays. The data points greater

than 525 workdays represent 2% of the sample. The data was examined for possible

outliers and it was concluded they were all valid data points. Comparing these two

histograms we observed the delivery time for stories was reduced by 105 workdays for

90% of the data points. Additionally we observed the maximum workdays for stories

Figure 36. CIE Stories Histogram

 86

that did not use the CI/CD pipeline is significantly higher at 775 workdays compared to

360 workdays for stories that did use the CI/CD pipeline.

The t-Test for the CI/CD pipeline and RFC story workdays was significantly

different at (t = -7.137, p < 0.000) and we rejected the null hypothesis that there is no

difference in the delivery time for stories between using the CI/CD pipeline and not using

the CI/CD pipeline. The evidence supports that the CI/CD pipeline improved the

delivery time for stories with an average of 45 workdays compared to an average of 84

workdays not using the CI/CD pipeline. The results of the t-Test are in Table 18.

Figure 37. RFC Stories Histogram

 87

Finally, we wanted to know if the delivery time shortened for stories over time as

the CI/CD process matured. We expected delivery times to shorten as the teams became

more proficient with the new process and the automation improved. The average

delivery time increased from 31 workdays 3Q18 to 44 workdays 3Q20 as shown in

Table 18. Two-sample t-Test Story Workdays

Figure 38. CIE Story Delivery Speed by Qtr

t-Test: Two-Sample Assuming Unequal Variances

CIE Story Workdays RFC Story Workdays
Mean 45.146 83.740
Variance 2759.095 13324.710
Observations 565.000 547.000
Hypothesized Mean Difference 0.000
df 757.000
t Stat -7.137
P(T<=t) one-tail 0.000
t Critical one-tail 1.647

 88

Figure 38. There was not a constant improvement trend observed and at the end of FY19

delivery times increased higher until 2Q20 when it started to decrease again. The data

does not support a steady increasing or decreasing trend. Examining the details of the

data, we discovered 26 GEOINT stories that entered the CI/CD 3Q18 for the MS-177

sensor integration 5+ year development effort. These were the first stories GEOINT ran

through the pipeline for the High Altitude (HA) ART that was a large and complex new

air/ground integration effort. The increase for delivery times starting in 4Q19 was due to

additional MS-177 stories, SIGINT stories associated with the ASET features, and

improvements made to the CIE automated tools and environment. Stories for automated

virtual machines, Amazon Web Services (AWS) refactor, Kubernetes integration and

Watchman improvements equally accounted for the rise in delivery times. There is not

conclusive evidence to support faster delivery times using the CI/CD pipeline over time

because the stories that slowed down the delivery time were typical work that is expected

to flow through the pipeline. We concluded the more complex stories entering the

pipeline as the ARTs spin up on the CI/CD process is causing the slower delivery speed.

 89

Task

Examining Figure 39 we observed that 90% of the data points for tasks using the CI/CD

pipeline are less than 125 workdays and 70% are less than 50 workdays. We also

observed that 50% of the data is less than 25 workdays. The data points greater than 375

workdays represent 2% of the sample. The data was examined for possible outliers and it

was concluded they were all valid data points. Next, we examined the RFC Tasks using

the histogram in Figure 40. We observed that 90% of the data points are less than 175

workdays and 70% are less than 62 workdays. The data points greater than 375

Figure 39. CIE Task Histogram

 90

workdays represent 2% of the sample. The data was examined for possible outliers and it

was concluded they were all valid data points. Comparing these two histograms we

observed the delivery time for tasks was reduced by 50 workdays for 90% of the data

points. Additionally we observed the maximum workdays for tasks that did use the

CI/CD pipeline is slightly higher at 750 workdays compared to 600 workdays for tasks

that did not use the CI/CD pipeline. There were six CI/CD pipeline tasks more than 500

Figure 40. RFC Task Histogram

 91

workdays and 18 RFC tasks more than 500 days. We also observed only three CI/CD

pipeline tasks were greater than the highest RFC task of 600 days.

 The t-Test was run on the CI/CD pipeline and RFC task workdays and it was

significantly different at (t = -2.948, p < 0.002). Therefore, we rejected the null

hypothesis there is no difference in the delivery time for tasks between using the CI/CD

pipeline and not using the CI/CD pipeline. The evidence supports the CI/CD pipeline

improved the delivery time for tasks with an average of 49 workdays compared to an

average of 62 workdays not using the CI/CD pipeline. The results of the t-Test are in

Table 19.

Finally, we wanted to know if the delivery time shortened for tasks over time as

the CI/CD process matured. We expected delivery times to shorten as the teams became

more proficient with the new process and the automation improved. The average

delivery time decreased from 267 workdays 1Q19 to 48 workdays 3Q20. The delivery

t-Test: Two-Sample Assuming Equal Variances

CIE Task Workdays RFC Task Workdays
Mean 49.325 61.565
Variance 7776.702 7167.775
Observations 547.000 2368.000
Pooled Variance 7281.910
Hypothesized Mean Difference 0.000
df 2913.000
t Stat -3.024
P(T<=t) one-tail 0.001
t Critical one-tail 1.645

Table 19. Two-sample t-Test Task Workdays

 92

times dropped to 32 workdays in 4Q18 and increased slightly holding stable through

3Q20 around 50 workdays. Examining the details of the data, we discovered 17 CI/CD

pipeline tasks that entered the CI/CD 3Q18. These were some of the first tasks for the

CIE to integrate enterprise services, infrastructure upgrades, and increase automation of

the CI/CD pipeline. After the initial spin up in the first quarter, the remainder of the tasks

were of similar scope and complexity accounting for the steady delivery time with

fluctuations between 30 and 50 days as shown in Figure 41. There is not conclusive

evidence to support faster delivery times for tasks using the CI/CD pipeline over time

because the tasks for the initial standup give an artificially drastic improvement in the

CI/CD delivery speed. A more accurate comparison is from 4Q18 at 32 workdays to

3Q20 at 48 workdays showing evidence that task delivery speed is slightly increasing

over time.

Figure 41. CIE Task Delivery Speed by Qtr

 93

Examining throughput as a possible factor for the increase was not conclusive.

The data in Table 20 shows higher throughput for some of the faster quarters. For

example, 3Q19 had one of the faster delivery speeds of 32.400 days with 67 tasks

completed, while 4Q19 has delivery speed of 36.918 days and only 39 tasks completed.

Additionally 2Q20 and 3Q20 had speeds of 48.620 and 48.485 days yet throughput was

56 and 96 tasks respectively. There is no evidence that the pipeline slows down due to

more tasks flowing through.

Table 20. CIE Task Throughput

Workdays #Points
3Q18 267.641 19
4Q18 32.262 65
1Q19 44.035 100
2Q19 40.891 63
3Q19 32.400 67
4Q19 36.918 39
1Q20 54.432 31
2Q20 48.620 56
3Q20 48.485 96

Quarter
Task

 94

Bug

Examining Figure 42 we observed that 90% of the bugs using the CI/CD pipeline are less

than 40 workdays and 70% are less than 20 workdays. The data points greater than 110

workdays represent 2% of the sample. The data was examined for possible outliers and it

was concluded they were all valid data points. Next, we examined the RFC bugs using

the histogram in Figure 43. We observed that 90% of the data points are less than 175

workdays and 70% are less than 50 workdays. The data points greater than 475

workdays represent 2% of the sample. The data was examined for possible outliers and it

was concluded they were all valid data points. Comparing these two histograms we

observed the delivery time for bugs was reduced by 135 workdays for 90% of the data

points. Additionally we observed the maximum workdays for bugs that did not use the

Figure 42. CIE Bug Histogram

 95

CI/CD pipeline is significantly higher at 575 workdays compared to 360 workdays for

stories that did use the CI/CD pipeline.

The t-Test was run on the CI/CD pipeline and RFC bug workdays and it was

significantly different at (t = -6.125, p < 0.000). We observed that the CI/CD pipeline

improved the delivery time for bugs with an average of 16.013 workdays compared to an

average of 63.14 workdays not using the CI/CD pipeline. Therefore, we rejected the null

hypothesis that there is no difference in the delivery time for bugs between using the

CI/CD pipeline and not using the CI/CD pipeline and concluded that the CI/CD pipeline

improved the delivery time for bugs. The results of the t-Test are in Table 21.

Figure 43. RFC Bug Histogram

 96

t-Test: Two-Sample Assuming Unequal Variances

CIE Bug Workdays RFC Bug Workdays
Mean 16.013 63.140
Variance 1355.618 11184.013
Observations 121.000 233.000
Hypothesized Mean Difference 0.000
df 319.000
t Stat -6.125
P(T<=t) one-tail 0.000
t Critical one-tail 1.650

Table 21. Two-Sample t-Test Bug Workdays

 97

Finally, we wanted to know if the delivery time shortened for bugs over time as

the CI/CD process matured. We expected delivery times to shorten as the teams became

more proficient with the new process and the automation improved. The average

delivery time decreased from 32 workdays 3Q18 to 21 workdays 3Q20 as shown in

Figure 44. The delivery times had a large spike 3Q19 at 120 workdays, dropped to 1.5

workdays while gradually increasing up to 21 workdays. Examining the details of the

data, we discovered one CI/CD pipeline task that entered the CI/CD pipeline 3Q19 for

enterprise services. This bug was to make corrections to the Service Oriented

Architecture Enterprise Service Bus that was having many issues with integration so it sat

for months with no action. Examining throughput we note the earlier quarters delivered 2

to 3 bugs and the later quarters ranged from 20 to 37. There is not conclusive evidence to

support faster delivery times for bugs over time.

Figure 44. CIE Bug Delivery Speed by Qtr

 98

Spike

Examining Figure 45 we observed that 90% of the spikes using the CI/CD pipeline are

less than 100 workdays and 70% are less than 30 workdays. The data points greater than

220 workdays represent 2% of the sample. The data was examined for possible outliers

and it was concluded they were all valid data points. Next, we examined the RFC Spikes

using the histogram in Figure 47. We observed that 90% of the data points are less than

125 workdays and 70% are less than 62 workdays. The data points greater than 375

workdays represent 2% of the sample. The data was examined for possible outliers and it

was concluded they were all valid data points. Comparing these two histograms we

observed the delivery time for spikes was reduced by 25 workdays for 90% of the data

points. Additionally we observed the maximum workdays for spikes that did not use the

CI/CD pipeline is slightly higher at 575 workdays compared to 530 workdays for spikes

that did use the CI/CD pipeline.

Figure 45. CIE Spike Histogram

 99

The t-Test was run on the CI/CD pipeline and RFC spike workdays and it was

significantly different at (t = -2.361, p < 0.010). Therefore, we rejected the null

hypothesis there is no difference in the delivery time for spikes between using the CI/CD

pipeline and not using the CI/CD pipeline. The results provide support for our hypothesis

that the CI/CD pipeline improved the delivery time for spikes with an average of 41

Figure 47. RFC Spike Histogram

Table 22. Two-Sample t-Test Spike Workdays

t-Test: Two-Sample Assuming Unequal Variances

CIE Spike Workdays RFC Spike Workdays
Mean 40.680 58.354
Variance 5207.587 6713.440
Observations 127.000 446.000
Hypothesized Mean Difference 0.000
df 227.000
t Stat -2.361
P(T<=t) one-tail 0.010
t Critical one-tail 1.652

Figure 46. RFC Spike Histogram

 100

workdays compared to an average of 58 workdays not using the CI/CD pipeline. The

results of the t-Test are in Table 22.

Finally, we wanted to know if the delivery time shortened for spikes over time as

the CI/CD process matured. We expected delivery times to shorten as the teams became

more proficient with the new process and the automation improved. The average

delivery time decreased from 1Q19 to 3Q20 from 80 workdays to 31 workdays. There

was one increase of 97 workdays for 3Q19 but an overall downward trend as shown in

Figure 48. Examining the details of the data, we discovered a few spikes for the CI/CD

pipeline Infrastructure that attributed to the slower delivery speed for 3Q19 but the

associated work was typical and not associated with the initial standup of the CIE

automated tools. Examining the rest of the data points did not identify any spikes that

Figure 48. CIE Spike Delivery Speed by Qtr

 101

were unusual. Therefore the evidence supports that the CI/CD speed of delivery is

improving over time for spikes.

Results of Between-Subjects Study

Our analysis found that all issue types had shorter deployment times as

summarized in Table 23. We observed that the CI/CD pipeline has made an

improvement in speed of delivery for all issue types we examined and conclude that the

pipeline is an improvement to the overall process and is of benefit to the AF DCGS

program office.

Table 23. Results of Between-Subjects Study

Between-Subjects Study: Deployment timeline Results
Issue
Type

Attribute Null Hypothesis Alternative Hypothesis Result

Feature Workdays H0 = There is no
difference in the delivery
time for features between
using the CI/CD pipeline
and not using the CI/CD
pipeline

Ha = The CI/CD pipeline will
result in significantly
shorter deployment
timelines for features than
not using the CI/CD
pipeline

Rejected the null.

The CI/CD pipeline
resulted in shorter
deployment times.

Story Workdays H0 = There is no
difference in the delivery
time for stories between
using the CI/CD pipeline
and not using the CI/CD
pipeline

Ha = The CI/CD pipeline will
result in significantly
shorter deployment
timelines for stories than
not using the CI/CD
pipeline

Rejected the null.

The CI/CD pipeline
resulted in shorter
deployment times.

Task Workdays H0 = There is no
difference in the delivery
time for tasks between
using the CI/CD pipeline
and not using the CI/CD
pipeline

Ha = The CI/CD pipeline will
result in significantly
shorter deployment
timelines for tasks than not
using the CI/CD pipeline

Rejected the null.

The CI/CD pipeline
resulted in shorter
deployment times.

Legend:

Mixed results Not enough data
CI/CD improved delivery timeline CI/CD did not improve delivery timeline

 102

Between-Subjects Study: Deployment timeline Results
Issue
Type

Attribute Null Hypothesis Alternative Hypothesis Result

Bug Workdays H0 = There is no
difference in the delivery
time for bugs between
using the CI/CD pipeline
and not using the CI/CD
pipeline

Ha = The CI/CD pipeline will
result in significantly
shorter deployment
timelines for bugs than not
using the CI/CD pipeline

Rejected the null.

The CI/CD pipeline
resulted in shorter
deployment times.

Spike Workdays H0 = There is no
difference in the delivery
time for spikes between
using the CI/CD pipeline
and not using the CI/CD
pipeline

Ha = The CI/CD pipeline will
result in significantly
shorter deployment
timelines for spikes than
not using the CI/CD
pipeline

Rejected the null.

The CI/CD pipeline
resulted in shorter
deployment times.

Method 2: Within-Subjects Study

For this study, we examined data on specific attributes for each type of issue to

determine if they have a significant effect on the delivery time. We examined each issue

to see if the attributes of priority, value stream and story points have an effect on the

delivery time. We expected higher priority issues to deliver faster regardless of

complexity and appropriate resources applied to ensure quick delivery. We expected

issues with higher story point value to deliver slower due to the work requiring more

effort. A story point is a measure of effort. We have no basis to expect a particular value

stream to be faster or slower than another so want to know if there are any trends based

on the value streams. See Appendix A for definitions. The next sections detail the results

for the studies in Table 24.

Legend:

Mixed results Not enough data
CI/CD improved delivery timeline CI/CD did not improve delivery timeline

 103

Feature

Priority

We ran a one-way analysis of variance for the feature workdays by the three

priorities (Low, Medium and High). Examining Table 25 we observed there are only 2

data points for low priority and determine the tests comparing low to medium and high

priority are inconclusive. We observed that there is a significant difference at (t = 1.976,

Issue Type Attribute Null Hypothesis Alternative Hypothesis

Feature Value Stream H 0 = There is no difference in the delivery
time for features between value streams

H a = The features have different delivery
times based on value streams

Priority H 0 = There is no difference in the delivery
time for features based on priority

H a = The features have decreasing
delivery times as the priority increases

Story Value Stream H 0 = There is no difference in the delivery
time for stories between value streams

H a = The stories have different delivery
times based on value streams

Priority H 0 = There is no difference in the delivery
time for stories based on priority

H a = The stories have decreasing delivery
times as the priority increases

Story Points H 0 = There is no difference in the delivery
time for stories based on story points

H a = The stories have increasing delivery
times as the story points increase

Task Value Stream H 0 = There is no difference in the delivery
time for tasks between value streams

H a = The tasks have different delivery
times based on value streams

Priority H 0 = There is no difference in the delivery
time for tasks based on priority

H a = The tasks have decreasing delivery
times as the priority increases

Story Points H 0 = There is no difference in the delivery
time for tasks based on story points

H a = The tasks have increasing delivery
times as the story points increase

Bug Value Stream H 0 = There is no difference in the delivery
time for bugs between value streams

H a = The bugs have different delivery
times based on value streams

Priority H 0 = There is no difference in the delivery
time for bugs based on priority

H a = The bugs have decreasing delivery
times as the priority increases

Spike Value Stream H 0 = There is no difference in the delivery
time for spikes between value streams

H a = The spikes have different delivery
times based on value streams

Priority H 0 = There is no difference in the delivery
time for spikes based on priority

H a = The spikes have decreasing delivery
times as the priority increases

Descriptive Study: Characterization by attributes

Table 24. Within-Subjects study hypotheses

 104

p < 0.042) between medium and high priority and rejected the null hypothesis. Our

results provide support for decreased delivery times for high priority features as

compared to medium priority features.

Value Stream

 Three t-Tests assuming unequal variances were conducted for features between

GEOINT and SIGINT, GEOINT and Infrastructure, and SIGINT and Infrastructure.

We observed that there is a significant difference at (t = -2.489, p < 0.008) between the

GEOINT and SIGINT value stream, at (t = 2.675, p < 0.004) between GEOINT and

Infrastructure, and at (t = -4.746, p < 0.000) between SIGINT and Infrastructure. Our

results provide support for our hypothesis that delivery times are different based on value

Table 25. Anova of Feature Workdays by Priority

 105

streams and rejected the null hypothesis. Additionally there is support that Infrastructure

has the fastest delivery times, then GEOINT, with SIGINT having the longest delivery

times. The results of the t-Test are shown in Table 26.

Story

Priority

We ran a one-way analysis of variance for the story workdays by the three

priorities (Low, Medium and High). Examining Table 27 we observed that there is a

significant difference at (t = 1.964, p < 0.009) between high and low priority and at (t =

1.964, p < 0.001) between high and medium priority and reject the null hypothesis. Our

results provide support for decreased delivery times for high priority features as

compared to medium and low priority features. We failed to reject the null hypothesis at

(t = 1.964, p < 0.749) between medium and low priority and concluded there is no

significant difference for story workdays.

Table 26. Two-sample t-Test Feature Value Stream

t-Test: Two-Sample Assuming Unequal Variances

Issue Type: Feature GEOINT SIGINT GEOINT Infrastructure Infrastructure SIGINT

Mean 135.227 191.625 135.227 86.054 86.054 191.625
Variance 14800.426 11393.660 14800.426 5746.427 5746.427 11393.660
Observations 83.000 34.000 83.000 36.000 36.000 34.000
df 70.000 102.000 59.000
t Stat -2.489 2.675 -4.746
P(T<=t) one-tail 0.008 0.004 0.000
t Critical one-tail 1.667 1.660 1.671

 106

Value Stream

A t-Test assuming unequal variances was conducted for stories between GEOINT

and Infrastructure value streams. We observed that there is a significant difference at (t =

-4.736, p < 0.000). Our results provide support for our hypothesis that delivery times are

different based on value streams and reject the null hypothesis. The SIGINT and

MULTIINT value streams did not have enough data to analyze. The results of the t-Test

are shown in Table 28.

Table 27. Anova of Story Workdays by Priority

 107

Story Points

We ran a one-way analysis of variance for the story workdays by four story points

(1,3,5,8). Examining Table 29 we observed that there is a significant difference at (t =

1.964, p < 0.000) between story point (8:1, 8:3, 5:1, 8:5) and at (t = 1.964, p < 0.010)

between story point (5:3) and reject the null hypothesis. We failed to reject the null

hypothesis at (t = 1.964, p < 0.100) between story point (3:1) and conclude there is no

significant difference for delivery times between story point 1 and 3.

Table 28. Two-Sample t-Test Story Value Stream

t-Test: Two-Sample Assuming Unequal Variances

Issue Type: Story Infrastructure GEOINT
Mean 35.809 57.824
Variance 2,258.216 2,443.082
Observations 393.000 154.000
df 270.000
t Stat -4.736
P(T<=t) one-tail 0.000

 108

Task

Priority

We ran a one-way analysis of variance for the task workdays by the three

priorities (Low, Medium and High). Examining Table 30 we observed that there is a

significant difference at (t = 1.964, p < 0.000) between medium and high priority and

rejected the null hypothesis. Our results provide support for decreased delivery times for

high priority features as compared to medium priority features. We failed to reject the

null hypothesis at (t = 1.964, p < 0.361, p < 0.409) between low and high priority and

Table 29. Anova of Story Workdays by Story point

 109

medium and low priority and conclude there is no significant difference for task

workdays. There were a small number of low priority tasks at 26 data points compared to

the medium and high at 200 and 321 respectively that could have been a factor for the

high p-value.

Value Stream

A t-Test assuming unequal variances was conducted for tasks between GEOINT

and Infrastructure value streams. We observed that there is a significant difference at (t =

2.355, p < 0.010) for α = 0.05. Our results provided support for our hypothesis that

delivery times are different based on value streams and reject the null hypothesis. The

SIGINT and MULTIINT value streams did not have enough data to analyze. The results

of the t-Test are shown in Table 31.

Table 30. Anova of Task Workdays by Priority

 110

Story Points

We ran a one-way analysis of variance for the task workdays by four story points

(1,3,5,8). Examining Table 32 we observed that there is a significant difference at (t =

1.964, p < 0.000) between story point (8:1, 8:3, 8:5, 5:1, 5:3) and rejected the null

hypothesis. We failed to reject the null hypothesis at (t = 1.964, p < 0.306) between

story point (3:1) and concluded there is no significant difference for delivery times

between story point 1 and 3. There was only one data point for story point 2 and it is

assumed erroneous data after looking at the project in Jira.

Table 31. Two-Sample t-Test Task Value Stream

t-Test: Two-Sample Assuming Unequal Variances

Issue type: Task GEOINT Infrastructure
Mean 60.909 43.238
Variance 3548.009 9123.878
Observations 108.000 389.000
df 276.000
t Stat 2.355
P(T<=t) one-tail 0.010
t Critical one-tail 1.650

 111

Bug

Priority

We ran a one-way analysis of variance for the bug workdays by the three

priorities (Low, Medium and High). We failed to reject the null hypothesis at (t = 1.982,

Table 32. Anova of Task Workdays by Story point

 112

p < 0.101, p < 0.236, p < 0.702) for all priorities and concluded there is no significant

difference for bug workdays.

Value Stream

The MULTIINT and GEOINT value streams did not have enough data points and

there were no data points for SIGINT. We were not able to determine if the attribute

value stream has any effect on delivery times for bugs.

Spike

Priority

We ran a one-way analysis of variance for spike workdays by the three priorities

(Low, Medium and High). Examining Table 34 we failed to reject the null hypothesis at

Table 33. Anova of Bug Workdays by Priority

 113

(t = 1.982, p < 0.403, p < 0.822, p < 0.843) and concluded there is no significant

difference in delivery times based on priority for spike workdays. We observed that the

low priority spikes are delivered faster than the medium priority spikes. There was not

enough data on the spikes to determine why low priority spikes are delivered faster.

Value Stream

A t-Test assuming unequal variances was conducted for spikes between GEOINT

and Infrastructure value streams. Examining Table 35 we failed to reject the null

hypothesis at (t = -0.235, p < 0.407) and concluded there is no significant difference in

delivery times based on value stream for spikes. The MULTIINT and SIGINT value

streams did not have enough data points to perform an analysis. The results of the t-Test

are shown in Table 35.

Table 34. Anova of Spike Workdays by Priority

 114

Results of Within-Subjects Study

 Our analysis did not provide very much insight into differences in the CI/CD

pipeline delivery speed based on the attributes that were selected. We did observe some

differences but the majority of the differences were not statistically significant or there

wasn’t enough data. Overall, feature, story, and task had the most significant differences

in delivery times based on the attribute. Except for one case, bug and spike were either

statistically not significant or not enough data to analyze. The results will be discussed in

detail in Chapter V. The results of the hypothesis tests are summarized in Table 36.

Table 35. Two-Sample t-Test Spike Value Stream

t-Test: Two-Sample Assuming Unequal Variances

Issue type: Spike GEOINT Infrastructure
Mean 30.693 32.793
Variance 1042.063 3961.383
Observations 30.000 88.000
df 98.000
t Stat -0.235
P(T<=t) one-tail 0.407
t Critical one-tail 1.661

 115

 Table 36. Results of Within-Subjects Study

Within-Subjects Study: Value Stream, Priority, Story Points
Issue
Type Attribute Null Hypothesis Alternative

Hypothesis Result

Feature Value
Stream

H0 = There is no
difference in the
delivery time for
features between
value streams

Ha = The features
have different
delivery times based
on value streams

Rejected the null

The CIE delivery times are
different for features based
on value streams.

 Priority

H0 = There is no
difference in the
delivery time for
features based on
priority

Ha = The features
have decreasing
delivery times as the
priority increases

Rejected the null

The CIE delivers high priority
features faster than medium
priority

Story Value
Stream

H0 = There is no
difference in the
delivery time for
stories between
value streams

Ha = The stories
have different
delivery times based
on value streams

Rejected the null

The CIE delivery times are
different for stories based on
value streams.

 Priority

H0 = There is no
difference in the
delivery time for
stories based on
priority

Ha = The stories
have decreasing
delivery times as the
priority increases

Rejected the null for high/low
priority
Rejected the null for
high/medium priority

The CIE delivers high priority
stories faster than medium
and low priority stories

Failed to reject the null for
medium/low priority

 Story Points

H0 = There is no
difference in the
delivery time for
stories based on
story points

Ha = The stories
have increasing
delivery times as the
story points increase

Rejected the null for
storypoint (8:1, 8:3, 8:5, 5:1,
5:3)

The CIE delivery times for
stories are different based on
story points

Legend:

Mixed results Not enough data
CI/CD improved delivery timeline CI/CD did not improve delivery timeline

 116

Within-Subjects Study: Value Stream, Priority, Story Points
Issue
Type Attribute Null Hypothesis Alternative

Hypothesis
 Result

Failed to reject the null for
(3:1)

Task Value
Stream

H0 = There is no
difference in the
delivery time for
tasks between value
streams

Ha = The tasks have
different delivery
times based on
value streams

Rejected the null

The CIE delivery times are
different for stories based on
value streams.

 Priority

H0 = There is no
difference in the
delivery time for
tasks based on
priority

Ha = The tasks have
decreasing delivery
times as the priority
increases

Rejected the null
high/medium priority

The CIE delivers high priority
stories faster than medium
priority tasks

Failed to reject the null for
low/high priority**
Failed to reject the null for
low/medium priority

 Story Points

H0 = There is no
difference in the
delivery time for
tasks based on story
points

Ha = The tasks have
increasing delivery
times as the story
points increase

Rejected the null for
storypoint (8:1, 8:3, 8:5, 5:1,
5:3)

The CIE delivery times for
tasks are different based on
story points

Failed to reject the null for
(3:1)

Legend:

Mixed results Not enough data
CI/CD improved delivery timeline CI/CD did not improve delivery timeline

 117

Within-Subjects Study: Value Stream, Priority, Story Points
Issue
Type Attribute Null Hypothesis Alternative

Hypothesis
 Result

Bug Value
Stream

H0 = There is no
difference in the
delivery time for
bugs between value
streams

Ha = The bugs have
different delivery
times based on
value streams

Inconclusive - Not enough
data

 Priority

H0 = There is no
difference in the
delivery time for
bugs based on
priority

Ha = The bugs have
decreasing delivery
times as the priority
increases

Failed to reject the null for all
prioirities

Spike Value
Stream

H0 = There is no
difference in the
delivery time for
spikes between
value streams

Ha = The spikes have
different delivery
times based on
value streams

Failed to reject the null for all
value streams

 Priority

H0 = There is no
difference in the
delivery time for
spikes based on
priority

Ha = The spikes have
decreasing delivery
times as the priority
increases

Failed to reject the null for all
prioirities

Summary

The AF DCGS CI/CD pipeline was analyzed for speed of delivery. The data set

consisted of observable projects from July 2018 to September 2020 with no controlled

experiment. The data set was created by extracting project data from Confluence and Jira

on the DI2E DevTools platform for both CI/CD and non CI/CD projects. The results of

the Between-Subjects study identified improvements in delivery times for the five issue

types analyzed. The CI/CD pipeline was identified as a faster delivery method for AF

DCGS request for changes. The within-subjects study was inconclusive due to

Legend:

Mixed results Not enough data
CI/CD improved delivery timeline CI/CD did not improve delivery timeline

 118

insufficient data for some of the attributes and the inability to clearly identify positive

improvements in the CI/CD delivery times due to a particular attribute. Improvements to

the integration and test phase, the RFC process, and the metrics collection and reporting

were recommended.

 119

V. Conclusions and Recommendations

Chapter Overview

This chapter begins with conclusions of the research based on the results found in

the analysis. The limitations of this study and recommendations for action are discussed

in the second section. This chapter concludes with recommendations for further research

and a summary of this research.

Conclusions of Research

This research identified several questions to investigate and answer on the

performance and effectiveness of the AF DCGS CI/CD pipeline. This research attempted

to draw conclusions using data from many teams performing work on the actual weapon

system and using the integration and test labs. The projects over the past two years have

varied widely from simple user interface changes to upgrades for new mission planning

and sensor control. Studying the effect attributes have on each issue type was

constrained to the available attributes that had enough data. In spite of these limitations,

some insight was gained on the questions that were proposed in Chapter I.

The CI/CD Pipeline is Faster

The AF DCGS CI/CD pipeline has a faster delivery speed than the RFC process

based on the research and analysis. Hypothesis tests were conducted on five different

types of agile work products (referred to as issues) that went through both processes. The

study was not a controlled experiment; rather, it was conducted on historical program

data that was stored over the past 2 years in the DI2E environment. We were not

 120

comparing the exact same changes going through both processes but the types of changes

that went through each process were similar enough to make our findings valid. We saw

improvement on speed of delivery for all issue types from the smallest improvement of

22% for tasks to the largest improvement of 119% for bugs. The results are detailed in

Table 37.

We observed that each issue type had different averages for delivery workdays

and we observed no similarities between issue types. We conclude that the issue type has

an effect on the speed of delivery.

CI/CD pipeline is improving over time

There was evidence that the CI/CD process has improved speed of delivery over

the past 2 years for all of the issue types except for task as shown in Table 38. The

detailed study highlighted a couple of atypical events that would not occur once the

pipeline was fully operational. As the pipeline was matured and the project teams rolled

into the CIE it typically created a large spike in workdays as the projects overcame the

Table 37. Detailed delivery speed results

Days reduced
CI/CD RFC

Feature 135.82 176.84 41.02 26%
Story 45.15 83.74 38.59 60%
Bug 16.01 63.14 47.13 119%
Spike 40.68 58.35 17.67 36%
Task 49.32 61.56 12.24 22%

% Improvement
Delivery workdays

Issue Type

 121

hurdles and issues associated with first-time integration. The projects were complex from

a technical perspective and it took a lot of work to integrate them into the environment.

They also were overcoming the learning curve of the new process, the automated tools,

and a completely new way of doing integration and test. These extremely high spikes in

workdays were more than 10 times longer than the majority of the other software changes

as could be seen on the Histograms.

Selected attributes had inconclusive impact on speed of delivery

The attributes that were studied (priority, value stream, and story point) had

minimal impact that could be quantified on the speed of delivery. We were able to

conclude very little about improvement or differences in delivery speeds based on the

selected attributes. We failed to reject the null hypothesis for many of the cases and for

several of the cases there was not enough data for some of the attributes to perform an

analysis. Table 39 shows that priority had limited significant differences with only four

cases being statistically significant. Also, the high priority changes were not always

Table 38. CI/CD Pipeline Time-phased Results

Workdays #Points Workdays #Points Workdays #Points Workdays #Points Workdays #Points
3Q18 31.059 19 267.641 19 31.810 2
4Q18 24.000 24 32.262 65 55.000 1
1Q19 99.151 7 106.000 106 44.035 100 23.747 3 79.541 17
2Q19 250.658 6 64.000 64 40.891 63 31.245 3 54.365 15
3Q19 180.462 25 69.000 69 32.400 67 120.208 3 96.667 6
4Q19 193.460 17 73.000 73 36.918 39 1.664 16 17.719 15
1Q20 163.336 29 59.000 59 54.432 31 3.962 19 31.789 15
2Q20 129.307 32 53.000 53 48.620 56 13.082 37 43.798 17
3Q20 65.402 34 82.000 82 48.485 96 20.899 27 30.769 28

Feature Story
Quarter

Task Bug Spike

 122

delivered faster than the medium and low. The method for assigning the priority and the

overall managing of the projects needs to be examined based on these results. Work that

is marked as high priority does not appear to be given the emphasis necessary to deliver

quickly. Table 40 shows that value streams gave us slightly more insight with six cases

being statistically significant. Overall the Infrastructure value stream delivers faster than

the other value streams. The faster delivery could be attributed to easier changes, but it

could also be because they are doing things better than the other value streams. Finally,

we determined story point was not a good candidate for an attribute that will affect the

Priority

High Medium
Reject
Null?

High Low
Reject
Null?

Medium Low
Reject
Null?

Feature 125.843 165.141 Y 125.843 194.525 N 165.141 194.525 N
Story 54.790 39.075 Y 54.790 36.936 Y 39.075 36.936 N
Task 37.121 68.385 Y 37.121 53.370 N 68.385 53.370 N
Bug 8.825 12.513 N 8.825 23.019 N 12.513 23.019 N
Spike 36.003 49.765 N 36.003 42.997 N 49.765 42.997 N

Issue Type
Delivery workdays

Table 39. CI/CD Delivery times for Priority

Value Stream

GEOINT Infrastructure
Reject
Null?

GEOINT SIGINT
Reject
Null?

SIGINT Infrastructure
Reject
Null?

Feature 135.227 86.054 Y 135.227 191.625 Y 191.625 86.054 Y
Story 57.824 35.809 Y 57.824 140.520 N/A 140.520 35.809 N/A
Task 60.909 43.238 Y 60.909 100.352 N/A 100.352 43.238 N/A
Bug 29.188 14.380 N/A N/A N/A N/A N/A N/A N/A
Spike 30.693 32.793 Y 30.693 168.247 N/A 168.247 32.793 N/A

Issue Type
Delivery workdays

Table 40. CI/CD Delivery times for Value Stream

 123

delivery speed as shown in Table 41. There was significant differences between all of the

story points for stories and tasks except for story point 1 and story point 3. However,

there was no story point data for features, bugs or spikes. Story points are not widely

used by all the projects and most projects did not assign story points. Two of the

attributes selected (story points and priority) are subjective rather than a factual attribute

that is calculated. This human factor could account for some of the inconsistencies with

the results. For instance, the lack of any standards for determining story points could

result in a wide variation between the individuals assigning the story points. The limited

data for many of the attributes may also have been a factor for the lack of any real

significant findings or impacts on speed of delivery. Between the lack of a full data set

and attributes that are not based upon any evident standards, the results from this portion

of the study are inconclusive.

Automated metrics

The CI/CD pipeline needs to add automated metrics for tracking delivery speed,

transition times for each Jira step and metrics to track quality. The data collection was a

Story Points

1 3 5 8
Feature N/A N/A N/A N/A
Story 23.026 33.221 48.058 72.454 not significant diff between sp 1 and 3
Task 17.973 25.971 64.995 164.658 not significant diff between sp 1 and 3
Bug N/A N/A N/A N/A
Spike N/A N/A N/A N/A

Issue Type
Delivery workdays

Table 41. CI/CD Delivery times for Story Points

 124

very arduous, time-consuming process to locate, interpret, and extract from Confluence,

Jira, and eazyBI. There was a lot of data but most of it not relevant to speed of delivery.

Metrics exist for the RFC process and the more waterfall-like steps and also for the agile

process, regardless of whether the project goes through the pipeline. This study had

originally intended to study improvement to the quality of deliveries, but the data was not

available for quality measures. Navigating both processes and attempting to relate the

disparate metrics was extremely difficult. The program office deliberately selecting

meaningful metrics and putting the mechanism in place to capture and then build reports

will be of great value as the CI/CD pipeline continues to mature.

Process constraints

The RFC and the CI/CD processes were awkwardly overlaid and the RFC process

is obviously a hybrid mix of agile and waterfall. The result is a very confusing process

flow with what appears to be a lot of time spent waiting in queues for signatures, reviews,

testing, and boards. This research was not able to study those attributes due to the

inability to distinguish between CI/CD projects and RFC projects in the eazyBI portion of

DI2E.

Study Limitations

This study was limited by the lack of data, the difficulty to locate and collect the data,

and suspected erroneous data. The data was from current projects generated from many

teams across various types of projects. As a result, while the data represented a large

variety of work it had uneven data sample sizes. In many cases there was less than 30

 125

data points so no analysis was able to be performed on those data types. There were also

data integrity issues. The data had to be cleaned and many data points were removed due

to missing data. The Jira statuses were not standardized across projects which required

interpretation. The issue types were also not standardized so a mapping had to be

determined to ensure like-kind data was being compared. This study required access to a

subject matter expert on the AF DCGS agile software development process and someone

familiar with the ARTs and the weapon system to draw conclusions from the results.

Recommendations for Action

1. Modify the RFC process

The current AF DCGS process is a mix of agile, waterfall, and Air Force

instructions - specifically formal readiness reviews, formal acceptance testing, formal

boards. These two processes are in conflict with each other. The teams are using agile

practices and documenting everything using Confluence and Jira. More importantly, they

are using agile practices and language to perform their daily tasks. At the same time they

are using a RFC process to track progress on software changes using a form on

Confluence. Not only does this create two process flows and increase the work to

document the same status in two locations, it generates two sets of metrics for the same

changes using a different set of statuses. Also is was noted that the RFC process uses

agile methods such as scrums, backlog, program increments, Kanban boards and other

processes intended to empower the team and push decision making at the lowest level but

then inserts gates and approvals. There was not an easy method to extract data to

determine how much wasted time is spent waiting on these approvals so that was not

 126

studied. It is recommended that AF DCGS remove the RFC process and use nothing but

Jira to track projects and fully adopt agile principles and remove the formal CCBs/CABs.

2. Establish quality metrics

Another recommendation is to capture quality metrics to determine if the CI/CD

pipeline is improving the quality of software deliveries over time. Measures could be

gathered for rework using the existing transition statuses, for failed tests, and a method to

track the number of deficiencies generated during the integration and test activities in the

CI/CD pipeline. It is not recommended to compare the quality of the CI/CD pipeline

with the RFC process due to lack of easily accessible data on the RFC process. Quality

data would have to be gleaned from reading through CCB results, test readiness reviews,

and documentation for the RFC process. The labor required to gather this data would be

better spent establishing methods to measure the quality of the CI/CD pipeline.

3. Remove the Integrated Test Cycle

Another recommended improvement based on the findings of this research is to

remove the Integrated Test Cycle (ITC). AF DCGS has implemented an ITC that is a

cadence driven test on a rigid six-week cycle that clashes with a CI/CD pipeline. The

CIE Tiger team recognized the 6 week ITC needs to be phased out to stand up the CI/CD

pipeline but no action was taken to remove the ITC or evidence of a transition plan has

been observed.

4. Consolidate the labs

 127

The last recommendation is to consolidate the multiple lab environments. Each

lab has their own internal processes with numerous integrations and tests and workflow

steps occurring that do not align with the CI/CD philosophy. Preliminary integration and

testing occurs at Rome in their G7 lab for changes they are making, the managed lab

environment at Robins AFB for integration and testing for all changes, then through the

ITC for Integrated Acceptance Test and Development Test. There appears to be a lot of

duplicative tests that do not align with agile or the CI/CD philosophy that are adding

significant time to the workflow.

Recommendations for Future Research

 A study of the transition times within the 28 step Jira process would be very

beneficial to the AF DCGS program office. The RFC Leadership board has indications

that some areas may be resource constrained. Researching the workflow steps and the

time spent in each transition would give more insight into how each activity and team

affects the overall speed of delivery and may uncover additional process improvements.

Another study that would be very helpful to the program is identifying attributes that

affect the speed of delivery. The projects are not currently capturing data that will

provide information at a detailed enough level to understand how to improve the speed of

the pipeline.

Summary

 This chapter summarized the results from the between-subjects and within-

subjects studies that were performed using actual data for the past two years from the AF

 128

DCGS program. The speed of delivery for the CD/CD pipeline and associated CIE

automated tools was first compared to the RFC process that does not use the CI/CD

pipeline. The purpose was to demonstrate that the CI/CD pipeline delivers capability

faster than the RFC process. The second study focused on different attributes that were

available from historical project data and attempted to see if they had any effect on speed

of delivery. This section also discussed recommendations for action and recommendation

for future research and covered limitations of this study. We conclude that the CI/CD

pipeline has increased speed of delivery and the program needs to converge on one

process for sustainment and modernization of the weapon system. Based on these

findings, recommend a full transition to the CI/CD pipeline.

 129

Appendix A. Definitions

Bug - A bug is a problem with code identified outside of formal integration test and does
not have to be linked to a feature. A bug is part of a release as a fix and the assigned
priority is important (Jemilo, et al., 2019).

CI/CD Pipeline – The implementation of continuous integration and continuous delivery
that is an embodiment of a culture, a set of operating principles, and practices that enable
software development teams to deliver code changes more frequently and reliably. A key
component of the pipeline is continuous testing and feedback loops (Jemilo, et al., 2019).

Confluence – Software product developed by Atlassian that is a team workspace to help
structure, organize and share work so team members have visibility of and access to the
information needed to perform their work (©2020 Atlassian, 2020).

Continuous Delivery (CD) – An extension of continuous integration that automatically
deploys all code changes to a testing/production environment after the build stage. This
is different from continuous deployment that releases the changes to the customer
(Jemilo, et al., 2019).

Continuous Integration (CI) – A fundamental DevOps practice where a team of
developers integrate their code early and often to a centralized code repository. The goal
is to reduce risk during integration by not waiting until the end of a sprint to merge all
code together (Jemilo, et al., 2019).
Jira – Software product developed by Atlassian that was originally designed as a bug and
issue tracker but is now a work management tool for agile teams, project management
teams, software development teams and product management teams (©2020 Atlassian,
2020).

DevOps – A mindset, a culture and a set of technical practices that provides
communication, integration, automation, and close cooperation among all the people
needed to plan, develop, test, deploy, release, and maintain a solution (Jemilo, et al.,
2019).

Feature – A service that fulfills a stakeholder need. Each feature includes a benefit
hypothesis and acceptance criteria, and is sized or split as necessary to be delivered by a
single Agile Release Train (ART) in a Program Increment (PI) (Jemilo, et al., 2019)

Kanban Board – An agile project management tool designed as a visual method for
managing workflow, limiting work in progress, and maximizing efficiency (©2020
Atlassian, 2020).

 130

Spike – Activity to gain the knowledge required to reduce the risk of a technical
approach, better understand a requirement, or increase the reliability of a story estimate
(Jemilo, et al., 2019)

 Sprint – A short, time-boxed period that a scrum team works to complete a set amount of
work. Story points and the amount of team capacity for a given sprint determines the
amount of work (velocity) assigned to a sprint (©2020 Atlassian, 2020).
Story – A short requirement or request written from the perspective of the end user that
are intended to be something the team can commit to finish within a one to two-week
sprint. Also called a user story (©2020 Atlassian, 2020).

Story point – An agile estimation of the relative effort of work in a Fibonacci-like format:
0, 0.5, 1, 2, 3, 5, 8, 13, 20, 40, 100 that determines the velocity of teams. The estimation
is a team effort that focuses on the difficulty of the task rather than setting dates. The
work is broken into the smallest unit and story points should be under 20 points to
increase accuracy of the estimates (©2020 Atlassian, 2020).

Value Stream - Value streams represent the series of steps that an organization uses to
implement solutions that provide a continuous flow of value to a customer (Jemilo, et al.,
2019). AF DCGS organized the value streams around the categories of intelligence to
align with requirements flow from the user.

 131

Bibliography

©2020 Atlassian. (2020). Confluence Basics. Retrieved October 13, 2020, from
Atlassian: https://www.atlassian.com/software/confluence/guides/get-
started/confluence-overview

Alberts, D. S., Garstka, J. J., & Stein, F. P. (1999). Network Centric Warfare: Developing
and Leveraging Information Superiority, 2nd edition. C4ISR Cooperative
Research Program (CCRP).

Babbitt, D. (2019, June 20). Introduction to CI/CD. Retrieved August 26, 2020, from
https://confluence.di2e.net/pages/viewpage.action?pageId=375359786

Billings, T. (2019, October 23). Tailored SAFe for DCGS. Retrieved from AF DCGS
Confluence Page:
https://confluence.di2e.net/display/AFDCGS/Tailored+SAFe+for+DCGS

Bridgwater, A. (2019). Changes in the CI/CD pipeline. ComputerWeekly.

Bush, W. (2019, June 14). AF DCGS Open Architecture Schedule. Retrieved from AF
DCGS Schedules:
https://intelshare.intelink.gov/sites/isrdcgsaf/DCGS/scheduling/Scheds/OA%20I
MS/OA%20IMS%206_14_19%20PDF.pdf#search=OA%20OUE

Castellon, G., & Hurst, J. (2019, June 2019). CI/CD with Jenkins. Retrieved August 26,
2020, from https://confluence.di2e.net/pages/viewpage.action?pageId=375359816

Cazares, S. (2019, December 2). Request for Change. Retrieved from RFC Management
Tool Transition Plan:
https://confluence.di2e.net/display/AFDCGS/Request+for+Change+%28RFC%29
+Management+Tool+%28RMT%29+Transition+Plan

Cazares, S., & Hamilton, S. (2020, January 21). RFC Transition Plan. Retrieved from AF
DCGS Configuration Management:
https://confluence.di2e.net/display/AFDCGS/Request+for+Change+%28RFC%29
+Management+Tool+%28RMT%29+Transition+Plan

 132

Clark, L. (2019). Deliver quality software at speed with CI/CD. Computer Weekly.

Dasovich, M. G. (2017, May 8). AF DCGS High-Level Operational Concept Graphic
Operational View (OV)-1 Version 1.1. ACC/A5/2D.

D'hara, S. (2020, 05 28). AF DCGS Architectural Runway. Retrieved from AF DCGS
Architecture Standards:
https://confluence.di2e.net/display/AFDCGS/AF+DCGS+Architecture

DI2E. (2020). Retrieved April 10, 2020, from DI2E: https://www.di2e.net/

dos Santos, P. S., Beltrao, A. C., de Souza, B. P., & Travassos, G. H. (2018). On the
benefits and challenges of using kanban in software engineering: a structured
synthesis study. Journal of Software Engineering Research and Development.

Durante, R., & Haga, W. (2015, November 13). OA DCGS Transition Plan.

Gilmore, J. M. (2016). DOT&E FY2016 Annual Report. The Office of the Director,
Operational Test and Evaluation. Retrieved August 24, 2020, from
https://www.dote.osd.mil/Portals/97/pub/reports/FY2016/af/2016afdcgs.pdf?ver=
2019-08-22-105429-373

Gutierrez, M. (2020, August 4). DCGS Immersion Brief v6.

Haga, M. W. (2017, October 16). How the US Air Force Made Its ISR Network Cheaper
to Run and Easier to Upgrade. Defense One. Retrieved July 10, 2020, from
https://www.defenseone.com/ideas/2017/10/how-us-air-force-made-its-isr-
network-cheaper-run-and-easier-upgrade/141806/

Hamilton, S. (2020, July 30). Request for Change Form Instructions. Retrieved from AF
DCGS Confluence:
https://confluence.di2e.net/display/AFDCGS/Request+for+Change+%28RFC%29
+Form+Instructions

Hamilton, S. (2020, November 6). RFC Leadership Dashboard. Retrieved from
https://confluence.di2e.net/display/AFDCGS/RFC+Leadership+Dashboard

Hilton, M., Tunnell, T., Huang, K., Marinov, D., & Dig, D. (2016). Usage, Costs, and
Benefits of Continuous Integration in Open-Source Projects. 2016 31st

 133

IEEE/ACM International Conference on Automated Software Engineering (ASE),
(pp. 426-437). Singapore.

Howard, D. (2014, September 30). AF DCGS Draft Reference Architecture. Robins
AFB, GA: MITRE.

Jarnagin, A. (2020, January). OADCGS Infrastructure Board. Retrieved from
https://jira.di2e.net/secure/RapidBoard.jspa?rapidView=18241&projectKey=OA
DCGS&view=planning&issueLimit=100

Jemilo, D., Leffingwell, D., Oren, I., Hohmann, L., Knaster, R., Koehnemann, H., . . .
Willeke, E. (2019, January 20). DevOps. Retrieved September 30, 2020, from
Scaled Agile Framework: https://www.scaledagileframework.com

Joint Chiefs of Staff. (2013, October 22). JP 2-0, Joint Intelligence.

Kim, G., Behr, K., & Spafford, G. (2014). The Phoenix Project: A novel about IT,
DevOps, and Helping Your Business Win. Portland: IT Revolution Press.

Lambert, D., Arnold, L., Sylvester, C., Koyle, J., & Dent, C. (2020, Oct). CIE
Dashboard. Retrieved from
https://confluence.di2e.net/display/AFDCGS/CIE+Dashboard

Myrbakken, H., & Colomo-Palacios, R. (2017). DevSecOps: A Multivocal Literature
Review. (p. 14). Halden, Norway: Ostfold University College,.

ODNI. (2020). What is Intelligence. Retrieved July 17, 2020, from Office of the Director
of National Intelligence: https://www.dni.gov/index.php/what-we-do/what-is-
intelligence

Oligmueller, F., & Smith, B. (2020, Aug 14). AF DCGS Agile Development Model.
Retrieved from https://confluence.di2e.net/display/AFDCGS/AF-
DCGS+Agile+Development+Model

Ott, L., & Longnecker, M. (2018). An Introduction to Statistical Methods and Data
Analysis. Boston: Cengage Learning.

Phillips, A. (2014, July 29). The Continuous Delivery Pipeline — What it is and Why it’s
so Important in Developing Software. Retrieved July 22, 2020, from
https://devops.com/continuous-delivery-pipeline/

 134

Priddy, K. (2018, December 13). AF DCGS Agile Execution Guide.

Priddy, K. (2019, 06 11). AF DCGS Standard Change Approval Memo for Record.
Retrieved from OA DCGS SPO RFC Tracker:
https://confluence.di2e.net/display/AFDCGS/OA+DCGS+SPO+RFC+Tracker

Priddy, K. (2019). AF DCGS Systems Engineering Plan.

Russell, K., & Hamilton, S. (2020). AF DCGS Portfolio. Retrieved from AF DCGS
Home Page: https://confluence.di2e.net/display/AFDCGS/AF+DCGS+Home

Sawyer, W., & Smith, B. (2019). AF DCGS Agile Development JIRA Workflow
Standardization CoP. Retrieved from AF DCGS Communities of Practice:
https://confluence.di2e.net/display/AFDCGS/AFDCGS+JIRA+CoP+-
+Risk+Management+and+Communications+Plan

Scott, K. D., Weaver, G., Brown, M., & Browder, G. (2017, July 05). Retrieved
September 15, 2020, from Joint Chiefs of Staff:
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp2_01_20170705v2.pd
f

Spinelli, A., & Newton, C. (2016). AFRL_INF Team Kanban Board. Retrieved from OA
DCGS: https://confluence.di2e.net/display/AFDCGS/Infrastructure+-+Dashboard

Steven, J. (2018, March 19). What's the difference between agile, CI/CD, and DevOps.
Synopsys. Retrieved Aug 5, 2020, from
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-difference/

Stocum, D. (2019, June 20). Integration with Enterprise Services. Retrieved September
10, 2020, from
https://confluence.di2e.net/display/AFDCGS/5.+Integration+with+Enterprise+Ser
vices

Sylvester, C. (2018, April 8). AF DCGS CIE Tiger Team Report.

Sylvester, C., Tschuor, T., & Dent, C. (2018, March 11). CIE Guidebook. Retrieved June
22, 2020, from CIE:
https://confluence.di2e.net/display/AFDCGS/CIE+Guidebook

 135

U.S. Air Force. (2015, October). Retrieved August 15, 2020, from About-Us:
https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104525/air-force-
distributed-common-ground-system/

Wellspring, M. (2020, August). AF DCGS CI/CD (Briefing).

Williams, M., & Anderson, A. (2020, May 4). Software Delivery Guide. Retrieved from
https://confluence.di2e.net/display/AFDCGS/Software+Binary+Package+Deliver
y+Guide

Williams, M., & Clark, L. (2019, May 3). DCGS RFC Form Rev 8 Instruction Guide.
Retrieved May 22, 2020, from AF DCGS CM Homepage:
https://intelshare.intelink.gov/sites/isrdcgsaf/DCGS/dm/InstructionGuides/Reques
t%20for%20Change_RFC/DCGS-FRM-CDM-0008_REV-
8_RFC_Form.pdf?Web=1

Williams, M., Hamilton, S., Cazares, S., & Noreen, C. (2020). Request for Change.
Retrieved from Configuration and Data Management:
https://confluence.di2e.net/pages/viewpage.action?pageId=436666908

Zaydi, M., & Nassereddine, B. (2019). DevSecOps Practices for an Agile and Secure IT
Service Management. Journal of Management Information and Decision
Sciences, 14.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
 19-12-2020

2. REPORT TYPE
 Master’s Thesis

3. DATES COVERED (From - To)
 29-06-2020 – 19-12-2020

4. TITLE AND SUBTITLE
Continuous Integration/Continuous Delivery Pipeline for Air

5a. CONTRACT NUMBER

Force Distributed Common Ground System

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Fuller, Carolyn W

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Air Force Institute of Technology
Graduate School of Engineering and Management
(AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENV-MS-20-D-042

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AFLCMC/HBG C2ISR
AF DCGS Chief Engineer, Mr. James Bechtel
235 Byron Street, Suite 19A 11. SPONSOR/MONITOR’S REPORT
Robins AFB, GA 31098-1670 NUMBER(S)
james.bechtel@us.af.mil

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

14. ABSTRACT
AF DCGS has a recognized need to improve speed of delivery for modification and sustainment
of the weapon system. Given that the program office implemented a Continuous Integration
/Continuous Delivery (CI/CD) process for the sole purpose of delivering capability to the
field faster, there is a need to measure and report the pipeline throughput. This research
conducts an independent evaluation of the newly implemented pipeline within AF DCGS’s
existing integration and test laboratories. Actual project data from the agile development
work environments is studied and hypothesis tests are conducted to substantiate that the
CI/CD pipeline improved the speed of delivery. The research definitively shows that the
CI/CD pipeline improves speed of delivery for AF DCGS from a range of 22% to 119% depending
on the type of work product. Lastly, from observation and detailed study of the processes
and data, recommendations are made for standardization and automated metrics collection, with
suggestions for additional research to further characterize the pipeline with the intent to
create a predictive model for more accurate estimation of delivery timelines.
15. SUBJECT TERMS
Continuous delivery, continuous integration, continuous integration environment, AF DCGS,
agile software development

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Dr. Brent T. Langhals, AFIT/ENV

a. REPORT

 U

b. ABSTRACT

 U

c. THIS PAGE

 U

 UU

135

19b. TELEPHONE NUMBER (include area code)
(937)255-3636x7402
brent.langhals.1@us.af.mil

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	Continuous Integration/Continuous Delivery Pipeline for Air Force Distributed Common Ground System (AF DCGS)
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I. Introduction
	Background
	Problem Statement
	Research Objectives and Questions
	Methodology
	Assumptions and Limitations
	Thesis Preview

	II. Literature Review
	Chapter Overview
	Joint and National Intelligence
	Planning and Direction
	Collection
	Processing and Exploitation
	Analysis and Production
	Dissemination and Integration

	Air Force Intelligence
	AF DCGS
	Legacy AF DCGS Operational View
	OA DCGS Operational View
	AF DCGS Future Operating Environment Operational View
	AF DCGS Logical View
	AF DCGS Architectural View

	RFC Delivery Process
	AF DCGS Change Control Process
	Request for Change Types
	Change Control Process
	Jira Workflow
	Confluence
	Business Rules
	RFC Path Matrix

	RFC Management
	RFC Management Tool
	RFC Leadership Board
	Value Streams
	RFC Kanban Board
	DI2E DevTools

	CI/CD Delivery Process
	Continuous Integration Environment
	Continuous Integration/Continuous Delivery Pipeline

	Research Hypothesis
	Summary

	III. Methodology
	Chapter Overview
	Observational Study
	Description of Data Set and Sources
	Data Platform
	Data Collection

	Data Types
	AF DCGS 1067 Decomposition
	Value Streams
	Epics
	Feature
	Story
	Task
	Bug
	Spike

	Data Standardization
	Data Cleaning
	Measures
	Assumptions
	Statistical Methods
	Summary

	IV. Analysis and Results
	Chapter Overview
	Method 1: Between-Subjects Study
	Feature
	Story
	Task
	Bug
	Spike
	Results of Between-Subjects Study
	Method 2: Within-Subjects Study
	Feature
	Priority
	Value Stream

	Story
	Priority
	Value Stream
	Story Points

	Task
	Priority
	Value Stream
	Story Points

	Bug
	Priority
	Value Stream

	Spike
	Priority
	Value Stream

	Results of Within-Subjects Study
	Summary

	V. Conclusions and Recommendations
	Chapter Overview
	Conclusions of Research
	The CI/CD Pipeline is Faster
	CI/CD pipeline is improving over time
	Selected attributes had inconclusive impact on speed of delivery

	Automated metrics
	Process constraints
	Study Limitations
	Recommendations for Action
	Recommendations for Future Research
	Summary

	Appendix A. Definitions
	Bibliography

