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Abstract

Optimal control theory and differential game theory is applied to the study of the

defense of high value airborne assets, particularly in the case of a single threat such

as an adversarial aircraft or missile. Rather than utilizing onboard defenses of the

high value airborne asset, defense is proposed using a teamed unmanned combat air

vehicle.

The common scenario throughout this dissertation involves the defense of a high

value airborne asset (evader) teamed with an unmanned combat vehicle (defender)

against a single threat (pursuer). The unmanned combat air vehicle (defender), pro-

vides defense in one of two ways: kinetic or directed energy. When defense is kinetic

in nature, the defender launches a missile which strives to reach the threat before the

threat reaches the high value airborne asset – damage to the pursuer is dealt through

capture. When defense is provided through directed energy, the defender strives to

keep the incoming threat inside his weapon engagement zone for as long as possible

– damage to the pursuer is dealt over time.

Leveraging differential game theory and optimal control theory, a series of sce-

narios are proposed and solved which illustrate different optimal strategies for the

successful defense of a high value airborne asset against the incoming threat. In the

event that defense is kinetic in nature, the defender-evader team strives to be as far

(in range) from the captured pursuer at final time while the pursuer strives to mini-

mize said range. When defense is provided by means of directed energy, the pursuer

strives to capture the evader in minimum time while the defender strives to maximally

expose the pursuer prior to the evader’s capture.

In addition to considering the optimal strategies for the successful defense of a high

iv



value airborne asset against an incoming threat, an investigation of various numerical

methods is conducted. The investigation compares and contrasts four different direct

methods. The comparisons between the different numerical methods are used to

suggest a single method that may be applicable for future hardware implementation.
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OPTIMAL DEFENSE OF HIGH VALUE AIRBORNE ASSETS

I. Introduction

“What we call the beginning is often the end.
And to make an end is to make a beginning.
The end is where we start from.”

— T. S. Eliot, Little Gidding

1.1 Motivation

The defense of a High Value Airborne Asset (HVAA) in theater is one of the many

priorities considered in offensive and defensive aerial operations [1]. Typical means

of providing defense to HVAAs include fighter escort and passive mission planning

around offensive systems. In the event that missiles are engaged on the HVAA,

various options are considered including, but not limited to: Defensive Counter Air

(DCA), evasive maneuvers, chaff, flares, decoys, and electronic countermeasures [2].

As adversary air and missile threats continue to grow in quantity and capability [1],

the need for effective airborne defensive strategies and solutions also grows.

Identified as an area with potential advantages for meeting the challenges of

a newly forming adversarial environment, autonomous systems provide a consider-

able opportunity to enhance future Air Force operations [3]. Described as “game-

changing” [4], autonomous systems are of interest to the Air Force toward ensuring

air superiority. In a recent report, unmanned systems were determined to be a “pre-

ferred alternative for dangerous missions” [5]. Currently, Remotely Piloted Aircraft

(RPA) are employed to assist a broad range of Air Force missions [6]. Programs such
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as Loyal Wingman have been proposed to assist missions such as Intelligence, Surveil-

lance, and Reconnaissance (ISR), air interdiction, counter Integrated Air Defense Sys-

tem (IADS), offensive counter air, Command and Control (C2), and weapons hosting

[7]. Rather than viewing autonomy as an intrinsic property of an unmanned vehicle

in isolation, the design and operation of autonomous systems needs to be considered

in terms of human-system collaboration [8]. The consideration of manned-unmanned

teams is a way to address autonomous systems in future engagements, and in this

case, for HVAA defense.

1.2 Problem Statement

This work focuses on the defense of a HVAA from an inbound threat such as a

missile or adversarial aircraft. Defense is provided using an autonomous platform

which contains either missiles or directed energy weapons. The problem statement

which motivates this work is the following: How may a HVAA be defended against

an incoming threat when it is teamed with a defender?

1.3 Research Questions, Tasks, and Scope

In this work, the HVAA is defined as the “evader,” the attacking threat or ad-

versary is referred to as the “pursuer,” and a friendly asset is referred to as the

“defender.” The defender and the evader make up a team which conflicts with the

objective of the pursuer. Specifically, the pursuer’s goal is to capture the evader

while the cooperative team made up of the defender and evader aim to protect the

evader from the pursuer. Two means of providing DCA are considered herein: kinetic

defense and directed energy defense.
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Research Questions.

Hypothesis: The successful defense of a High Value Airborne Asset may be solved

utilizing differential game theory as well as optimal control theory. From the hypoth-

esis, the following are a list of research questions which arise:

1. How may meaningful mathematical models be generated for HVAA defense

scenarios? The models used in this work, accompanied with a discussion of

their various assumptions and limitations, are presented in Section 3.2.

2. How may HVAA defense scenarios be posed and solved as either optimal control

problems or differential games? A series of HVAA defense scenarios are con-

sidered as either optimal control problems or differential games in Chapter IV

and Chapter V. When solving a scenario where only one agent aims to optimize

its behavior, optimal control theory is leveraged. However, when two agents,

at odds with one another, strive to perform optimally, a differential game is

considered. Both optimal control theory and differential games are discussed,

in brief, in Section 3.3.

3. How may HVAA defense differential games be transformed into optimal control

problems which may be solved either analytically or numerically? In Chap-

ter III, Apollonius Circle and how it relates to solving two-agent pursuit-evasion

scenarios is described. The use of Apollonius Circle for transforming a differ-

ential game into an optimal control problem is demonstrated in Sections 4.1

and 4.2. In Section 4.1, the solution to the differential game is found analyti-

cally. In Section 4.2, the solution to the differential game is found numerically.

4. In the event that a HVAA can’t maneuver, what are the optimal strategies of

both the defender and the pursuer in the three-agent problem? In Sections 4.1

and 4.2, the saddle-point strategies of the defender and pursuer for the kinetic
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defense of a non-maneuvering HVAA are presented. In Section 5.2, the optimal

defender strategy for the directed energy defense of a non-maneuvering HVAA

is presented.

5. How should the HVAA aid in its own defense if it is able to maneuver? The

defense of a HVAA which is able to maneuver is considered in Sections 4.3

and 4.4. Using a 2-D kinematic model as described in Section 3.2, the turn rates

of the HVAA are bounded and the HVAA is allowed to maneuver. Using direct

methods of optimal control theory, the optimal strategy for a maneuverable

HVAA is found when both the pursuer and defender are assumed to be missiles

guided by proportional navigation.

6. What unique aspects occur when the defender is a missile or directed energy

weapon, and what are the critical parameters for the defender to be successful?

Various kinetic and directed energy defense scenarios are considered in Chap-

ter IV and Chapter V. In each of the scenarios, a discussion of the optimal agent

strategies is presented along with examples. For each scenario, the parameters

which influence the optimal strategies are described.

7. What numeric methods are suitable for aerospace hardware systems which re-

quire fixed time steps and minimal computational effort? Considering four

direct methods of optimal control, the kinetic defense of a maneuvering HVAA

is posed and solved in Section 4.4. Assuming a fixed mesh of time, a com-

parative study is conducted between different direct methods of solving optimal

control problems. For each of the four methods the following is emphasized: the

computational time, the number of algorithmic iterations, the number of cost-

functional evaluations, the ultimate functional evaluation, and the feasibility of

the solution.
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Research Tasks.

The following research tasks aim to address the research questions posed above.

1. Develop meaningful mathematical models to pose and solve HVAA defense sce-

narios.

2. Describe HVAA Defense as either a differential game or an optimal control

problem; pose and solve them using either analytic or numeric methods.

3. Using geometric methods, describe how HVAA defense differential games may

be transformed into optimal control problems, which can be solved either ana-

lytically or numerically.

4. Pose and solve 2-D and 3-D HVAA defense differential games where the defender

is either a kinetic weapon or directed energy weapon. Consider both the kinetic

and directed energy defense of a non-maneuvering evader. Determine optimal

strategies taken by the defender to protect the evader.

5. Investigate the optimal maneuvers made by a slower moving HVAA if engaged

by a faster, more maneuverable, pursuer in the event that a defender with

similar capabilities as the pursuer is in the local airspace. Consider agents to

be restricted to a plane.

6. Formulate both kinetic and directed energy defense scenarios and identify crit-

ical parameters of interest which influence the outcome of HVAA defense sce-

narios.

7. Investigate efficient direct methods for computing optimal solutions which could

potentially be implemented on hardware.

A scenario matrix which describes the various engagements considered in the

scope of this research is shown in Table 1. Scenarios 1-3 consider kinetic defense,
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while Scenarios 4-6 consider directed energy defense. In Scenario 1, the pursuer and

defender implement the Proportional Navigation (PN) guidance law while the evader’s

strategy is solved as an Optimal Control Problem (OCP) in the two-dimensional (2-D)

Cartesian plane. In Scenario 2 and 3, a Differential Game (DG) is considered between

the pursuer and the defender. In this DG the evader has constant bearing and the

defender strives to intercept the pursuer before the pursuer can intercept the evader.

In Scenario 3, the engagement from Scenario 2 is extended to three-dimensional (3-D)

Cartesian space. In Scenario 4 and 5, an OCP is considered where the defender makes

use of a directed energy weapon and aims at maximizing the time that the pursuer

is inside the Weapon Engagement Zone (WEZ). In Scenario 4, special attention is

given to the pursuer and the defender. The optimal defender strategy for keeping

the pursuer in its WEZ for the maximum amount of time is found when the pursuer

is constant speed and non-maneuvering. In Scenario 5, the results of Scenario 4

are extended to include the evader. In this scenario, the evader is assumed to be

non-maneuvering, the pursuer aims to capture the evader in minimum time, and the

defender aims to keep the pursuer in its WEZ for the maximum amount of time. In

Scenario 6, the results of Scenario 4 are extended from the 2-D Cartesian plane to

3-D Cartesian space.

Table 1. Research Scenario Matrix

Scenario Pursuer Evader Defender 2-D/3-D Defense
1 PN OCP PN 2-D Kinetic
2 DG Const. DG 2-D Kinetic
3 DG Const. DG 3-D Kinetic
4 Const. N/A OCP 2-D Directed Energy
5 OCP Const. OCP 2-D Directed Energy
6 Const. N/A OCP 3-D Directed Energy
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Research Scope and Assumptions.

The scenario which is considered in this research is that of the defense of a single

HVAA teamed with a cooperative defender against a single threat. This generalized

engagement involves a total number of three agents. At the onset of the scenario,

aircraft are considered to be in motion at their respective altitude and velocity.

The consideration of an effective HVAA defense requires development of mean-

ingful models. A common assumption for long range scenarios where agents are

considered Beyond Visual Range (BVR) is to consider the engagement in 2-D rather

than 3-D. By reducing the solution space to 2-D the assumption is made that the

relative altitude difference between agents is small compared to their range. This

assumption is commonly made to reduce the computational complexity of the added

third-dimension and allow for planar geometry to be utilized. Additionally, one may

model agents using simple motion. This model allows agents to turn instantaneously

and is a common assumption in differential games [9]. Simple motion is often used

when turn radii of agents is small relative to the spacing between agents. Simple mo-

tion models are more common in literature because analytic expressions for optimal

strategies are less common under turn rate constraint. In general, the use of turn rate

constraints requires solutions to be obtained numerically rather than analytically. In

this work, Chapter III describes the mathematical methods and models used to pose

and solve the HVAA defense scenarios of interest.

Differential game theory distinguishes between games of kind and games of degree

[9]. A game of kind is one where the objective is to find the domain of strategies or

initial conditions where a specific player wins or loses the game. A couple of examples

of this are: Was the evader captured by the pursuer, or was the evader able to escape?

and Where should a player begin in order to guarantee that he wins or loses? Games

of kind are concerned with the outcome of an engagement, whereas games of degree
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are concerned with how well an objective has been achieved. Some examples of a

game of degree include: Assuming one of the players wins the game, how fast can

that player win? or Assuming that a player loses the game, how can that player

minimize their loss? The scope of this work is restricted to solving games of degree.

Identifying the space of initial conditions of all agents which ensure successful defense

is considered as future work.

Obtaining insight into the defense of a HVAA using mathematical models requires

the abstraction of physical systems into tractable models. This abstraction of phys-

ical systems commonly involves assumptions of those physical systems. Common

assumptions include factors such as modeling fidelity, sensor measurement models,

communication integrity between agents, and governing guidance strategies. Con-

siderable effort is required to develop numerical models which address each of these

factors. Because the focus of this work is to gather intelligent conclusions about

the actions taken by the pursuer, evader, and defender, the development of accurate

high-fidelity systems is outside the scope of this work. Rather, simplified 2-D and

3-D models are used to analyze the optimal strategies of multi-agent problems. It is

assumed that optimal solutions are representative of their high-fidelity counterparts.

In order to simplify the models, it is assumed that all sensors produce perfect

measurements, hence sensor noise is neglected. While this is not realistic, because

real systems make measurements which involve uncertainty, it is not the goal of

this work to model or accurately represent measurement or process uncertainty in

this work. Further, the idea of limited communication between agents is also not

addressed; messages between agents are assumed to arrive frequently and reliably.

Scenarios involving restricted communication, although interesting, fall outside the

scope of work.

It is the focus of this work to consider differential games, where the strategies
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of agents are not predetermined. However, in some cases, the guidance strategies of

players may be assumed to solve problems using optimal control theory. The single

agent optimal control problem may be used to gather insight into the optimal behavior

of a single agent and is, in general, more tractable than solving differential games.

Considering a kinematic level of modeling, the mass of individual agents is not

considered, only their orientation and position in space are considered. The states

and equations of motion for all agents are described in each control problem, whether

2-D or 3-D.

For the directed energy scenarios, circular and spherical regions are used. This

model assumes that the directed energy weapons are assumed to be effective in all

directions, independent of vehicle orientation. The spherical and circular models also

assume that the directed energy weapons are effective inside a specified range and

ineffective, otherwise.

1.4 Research Methodology

There exist multiple approaches for solving optimal control problems. These ap-

proaches are typically classified as either direct or indirect methods. The indirect

method aims at solving optimal control problems by finding the states and co-states

which in-turn define the optimal control. The general approach for posing and solving

indirect optimal control problems involves utilizing the Hamiltonian, forming co-state

equations, and leveraging Pontryagin’s Minimum Principle (PMP) for scenarios in-

volving constraints [10, 11, 12]. The direct method solves optimal control problems

by utilizing nonlinear programs to iteratively search for the optimal control and state

trajectories directly [13, 14, 15, 16, 17, 18].

In order to solve differential games, the utilization of analytic methods described in

[9] provide a means of posing and solving differential games. While there exist meth-
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ods of posing and solving optimal control problems directly using nonlinear programs,

less common are methods of computing differential games directly. Differential games

strive at locating a saddle-point strategy corresponding to optimal performance from

multiple players. Using the methods described by Isaacs [9] and direct transcription

methods [18, 19], various HVAA defense scenarios are posed and solved in this work.

1.5 Expected Contributions

The expected contributions for this research effort are as follows:

1. Solutions to HVAA defense optimal control problems and differential games

2. Optimal strategies for providing successful defense of a HVAA using either a

kinetic or directed energy weapon

3. A comparative study of direct methods for finding optimal strategies for HVAA

defense focusing on methods suitable for hardware implementation

4. Provide tools for mission analysis concerning HVAA defense, remote sensing,

and pursuit-evasion

Combined, these contributions provide the necessary analytical foundation for the

autonomous defender whose mission is the defense of the HVAA.

1.6 Document Outline

This dissertation contains six chapters. In Chapter I, the motivation of solving

optimal HVAA defense problems is provided including the research questions, tasks,

scope, and methodology. Chapter II provides a literature review for multi-agent dif-

ferential games highlighting relevant work to HVAA defense. Also in Chapter II is

a section which describes the research gaps and how this work addresses the gaps in
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literature. Chapter III describes the methodology and techniques used for the pro-

posed research, followed by the solution approach for each research task. Chapter IV

presents the optimal strategy for defending a HVAA when doing so with a kinetic

weapon.Chapter V presents the optimal strategy for defending a HVAA when doing

so with a directed energy weapon. Finally, in Chapter VI, a summary of remarks,

the contributions made, and identified future work are provided.
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II. Literature Review

The only thing greater than the power of the
mind is the courage of the heart

— John Forbes Nash Jr.

2.1 Introduction

This chapter includes an in-depth literature review of multi-agent pursuit-evasion

as it relates to optimal HVAA defense. First, this section begins with outlining seminal

work in the area of differential games highlighting important contributions and poten-

tial applications. Following this, a taxonomy of pursuit-evasion differential games is

discussed: one-on-one (1v1), N-pursuers-1-evader (Nv1), 1-pursuer-M-evaders (1vM),

N-pursuers-M-evaders (NvM), the active target defense differential games (ATDDG)

with at least three players, and ISR in an optimal sense as it relates to directed energy

defense. A more descriptive difference between differential game theory and optimal

control theory is presented in Chapter III.

2.2 Seminal Work

The development of differential games started with the works of Isaacs [20, 21,

22, 23, 24, 9]. In these publications, Isaacs outlined the idea of posing problems

governed by differential equations in a dynamic game-theoretic framework; he called

this paradigm “Differential Games”. In his seminal treatise [9], Isaacs employed the

principles of game theory, calculus of variations, and control theory, albeit unknown to

him, to solve problems involving a dynamic conflict between multiple agents/players

[9]. Isaacs used the method of differential dynamic programming and introduced

critical mathematical constructs such as dispersal, universal, and equivocal surfaces
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used to describe the optimal flow field in games and derive optimal saddle point

strategies.

It is important to recognize some of the founders of static/dynamic games and

optimal control including RAND scientists such as Richard E. Bellman, Leonard D.

Berkovitz, David H. Blackwell, Melvin Dresher, Wendell H. Flemming, and John

F. Nash. Early contributions on dynamic games in the former Soviet Union were

published by N. Krasovskii, A. Melikyan, L. S. Pontryagin, and A. I. Subbotin [25].

Furthermore, the first conference dedicated exclusively to dynamic games: “First

International Conference on the Theory and Applications of Differential Games” in

Amherst, MA, September 29-October 1, 1969, was organized by Ho and Leitmann.

Isaacs, Berkovitz, Bernhardt, Blaquiere, Breakwell, Case, Friedman, Merz, Pontrya-

gin, and Shubik were among the invited speakers at the conference. Although Pon-

traygin was not able to attend the meeting, these mathematicians and scientists

planted the seeds of the theory of optimal control and differential games.

Of the large number of mathematicians and scientists that were involved in the

development of differential games, Rufus Isaacs, Richard Bellman, John Breakwell,

and Lev Pontryagin can be seen as principal contributors to the development of the

theory of differential games; Isaacs being the father of differential games. His seminal

work and his book, with motivating examples, highlight the possible use of differential

games [20, 9]. Bellman, known for the method of dynamic programming, provided a

tool whereby state feedback optimal strategies could be directly obtained as opposed

to methods based on necessary conditions as in the calculus of variations [26, 27].

Pontryagin, a Soviet mathematician, is recognized as developing his Maximum Prin-

ciple, more commonly referred to as, “Pontryagin’s Minimum Principle” (PMP). The

use of PMP was developed to assist with satisfying the necessary conditions for op-

timal control in the presence of hard constraints on control. Using methods derived

13



by these four mathematicians, differential games were formulated and solved in many

works to be described throughout this survey.

2.3 Pursuit-Evasion

At the center of differential games lies the fundamental conflict of two parties

known as “Pursuit-Evasion”. Pursuit-evasion involves at least two agents or groups,

labeled pursuers and evaders. The goal of a pursuer is to capture evading agents,

while the converse is the goal of an evader, to avoid being captured by a pursuer.

This is a zero-sum game where the cost/payoff is the time-to-capture. Basic questions

arise, What path should an evader or pursuer take to achieve their goal of avoiding

or ensuring capture; and, under optimal play, by either pursuer or evader, is capture

at all possible? In this chapter, this conflict is briefly discussed and the current

literature available describing strategies, methods, and applications as they relate to

optimal HVAA defense is presented. For a more complete review of differential games,

great historical documentation and literature surveys of Isaacs’ work is documented

in [25, 28].

The idea of pursuit-evasion differential games is not limited to physical entities

chasing after one another; Isaacs defined kinematic equations that described the sur-

faces upon which states were constrained. Using these differential equations, one can

propose problems in a multitude of research areas including but not limited to eco-

nomics, sports, robotics, and air-combat. This survey focuses on differential games

involving pursuit-evasion. It is important to note that the applications of these math-

ematical tools are not limited to simple toy problems, rather they serve as a syllogism

for more complex scenarios that may not be suitable for the public domain.
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2.4 One Pursuer, One Evader Differential Games (1v1)

The premise of a differential game starts with the conflict between two players

who share a common performance functional; the goal of the pursuer and evader are

counter to one another, where one tries to maximize the performance functional/pay-

off and the other tries to minimize the cost or payoff. These are minimax problems,

that is, zero-sum-games, since an optimal solution is one in which one player’s strat-

egy strives to minimize the performance functional while the other aims to maximize

the same performance functional. Constraints on the player’s come in the form of

dynamics. These constraints can be linear or nonlinear. The classical problem of

pursuit-evasion can be seen in an early work by Ho, Bryson, and Baron [29]. In their

work, a two-player differential game was formulated in a Linear-Quadratic form to

capture the basic pursuit-evasion conflict. Later, in the NASA technical report of [30],

differential models were employed in order to gauge the differences in performance

between a manually piloted vehicle and an optimally controlled one as provided in

the earlier work [29]. The experiment showed that the use of differential games in-

deed provided useful information to pilots, but a cautionary statement at the end

of the technical report stated that, “...differential game problems will, in general, be

more complicated theoretically than their optimal control counterparts.” The NASA

report concluded that the idea of solving differential games was thought to be useful

as information provided to a pilot, but not yet accepted to be a means of automatic

control, a popular research topic today.

In a dissertation by Satimov [31], the application of differential games was envi-

sioned for use in various fields such as economics and military operations. Satimov

also stated that in the case of a single-player, differential games amount to optimal

control problems, and that different modifications of Isaacs’ method give the neces-

sary and sufficient conditions for optimality. The relationship between optimal control
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and differential games is through the use of variational techniques [9, 12]. If all but

one of the player’s control laws are given, the differential game reverts to a one-sided

optimal control problem.

Homicidal Chauffeur Differential Game.

In his seminal text, Isaacs proposed the famous “Homicidal Chauffeur” toy prob-

lem [9]. In this game, a hypothetical slow but highly maneuverable holonomic pedes-

trian is pitted against a driver of a motor vehicle that is faster but less maneuverable

(a.k.a. a Dubins Car). In this somewhat macabre scenario, the driver attempts to run

over the pedestrian. The question to be solved is: Under what circumstances, and

with what strategy, can the driver of the car guarantee that he can always catch the

pedestrian or conversely, the pedestrian guarantee that he can indefinitely elude the

car. And, if the pedestrian’s demise is guaranteed, what is the chauffeur’s optimal

strategy that will minimize the time-to-capture of the pedestrian, and what is the

latter’s strategy to maximize his time? Surveys have documented the history and

notable work related to the “Homicidal Chauffeur Differential Game” [32, 25, 33, 34],

going into detail and expanding about the various aspects of this problem. Figure 1

shows the geometry of the Homicidal Chauffeur game where the pursuer, P , has a

minimum turn radius specified by R and the evader, E, can maneuver freely. Fig-

ure 1 also includes a plot of the performance functional which is the solution of the

differential game. Constant-value lines are shown on the x-y plane.

A definitive work on the Homicidal Chauffeur differential game is Merz’s Ph.D.

thesis [35]. Merz investigated the Homicidal Chauffeur differential game in great

detail describing two new singular lines known as: “switch envelope” and “focal line.”

These new lines further expand on Isaacs’ “barrier”, “universal”, and “equivocal”

singular lines. His work gives great detail and insight into the problem. Breakwell
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Figure 1. A coordinate frame and performance functional describing the Homicidal
Chauffeur problem [34]. The Pursuer, P, had minimum turn radius specified by R.

and Merz helped motivate the complete solution of the Homicidal Chauffeur game

at a conference in 1969 [36]. Marchal also studied the Homicidal Chauffeur game in

great detail describing how using Pontryagin’s Minimum Principle could assist the

interpretation of complex solutions [32].

The Differential Game of Two Cars.

A variation of the Homicidal Chauffeur differential game is the differential game

of two cars, where two players, each controlling a car with minimum turning radius,

are engaged in a pursuit-evasion game. In early work, Meier investigated the game

of two cars, where both players had the same minimum turn radius, the pursuer was
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slower than the evader, and capture was defined by coming inside the range, l, of

the evader [37]. Another analysis of the game of two cars was performed by Getz

and Pachter [38, 39]. In their papers, regions of capture, escape, and barrier surfaces

between those regions were presented. Figure 2 describes the geometry of the game

of two cars. Radius R1 and R2 describe the minimum turning radii of each player, u1

and u2 describe the curves associated with a max rate turn, and w1 and w2 describe

each player’s velocity.

Figure 2. The coordinate frames and turning radii used to describe the game of two
cars [38] is shown. The minimum turning radii of each player is labeled R1 and R2, the
curves associated with a max rate turn are labeled u1 and u2, and the players velocities
are labeled w1 and w2. © 1981 Springer Nature

In [38] both agents have sector based regions of capture, typical of an aerial

dogfight; but, in [39], the regions of capture were different, describing a heterogeneous

model of on-board weapon systems. Similarly, in [40], Greenfield looked into the

game of two cars, endowing the pursuer with a surveillance capability of range, l.

The objective, to escape the surveillance region in minimum time. In an earlier

work, Lewin investigated a similar differential game called the “Surveillance-Evasion

Differential Game” [41]. In the game, the evader strives to escape as soon as possible

from the pursuer’s detection circle, while the pursuer’s desire is the opposite. Rather

than consider point capture, Greenfeld and Lewin were interested in surveillance

range.
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A complete analysis performed by Bera, Makkapati, and Kothari goes into detail

of both games of kind and degree with studies on differing agents’ speeds, capture

radius, and maneuverability constraints [42]. In their work, they develop the three-

dimensional plots of the state space, highlighting the barrier and switching surfaces

for the different scenarios.

Pursuit-Evasion in Constrained Environments.

In an effort to consider differential games in a more realistic way, the introduc-

tion of boundaries and constraints on states allows for finite spaces and regions to

be included in the game formulation. By imposing limitations on physical states,

the pursuit-evasion differential game can be restricted to a bounded area or obstacles

may be applied. In a paper by Fisac and Sastry [43], a two-player differential pursuit-

evasion game is proposed where an obstacle is added to delay the pursuer’s capture or

avoid it entirely. Similarly, Oyler, Kabamba, and Girard considered pursuit-evasion

games in the presence of obstacles that inhibit the motion of the players [44]. In their

work, the use of polygons, line-segments, and asymmetric obstacles (an obstacle that

affects one player differently than another) are developed. Fuchs and Khargonekar

motivated the use of escort regions through manipulation of the performance func-

tional [45]. Kalyanam, Casbeer, Sundaram, and Pachter constrained their pursuer

and evader to road networks [46]. In another work, a one-sided constraint is imposed

where the pursuer is not restricted to a road network, while the evader is [47].

Pursuit-Evasion with Insufficient Information.

In cases where one or more agents do not have complete information about the

state of the game, these are problems called differential games of “Insufficient In-

formation.” In his seminal work, Isaacs stated that the ability to pose problems
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which restricted information to the individual players “...appears to be the most vital

area for future research” [9]. Roxin and Tsokos, introduced stochastics as a means

of modeling partial information that one agent might have relative to another [48].

Chernousko and Melikyan described a differential game where incomplete informa-

tion is provided to one of the agents [49]. This idea was proposed in order to account

for information delay or gaps of information during game play. Yavin proposed an

incomplete information pursuit-evasion differential game by restricting the pursuer’s

information on bearing and allowed the evader to have perfect information in the

engagement [50]. Giovannangeli, Heymann and Rivlin tackled the problem of pursuit

while avoiding convex obstacles by using Apollonius Circles to provide paths in which

the pursuer’s visibility of the evader is guaranteed throughout the engagement [51].

In [52], Hexner considered the problem where a parameter is unavailable to only one

player at the beginning of the game, and the other has only a probability density func-

tion that describes the parameter. Pachter and Yavin investigated the effects of noise

on the Homicidal Chauffeur problem by introducing stochasics to the pursuit-evasion

differential game dynamics [53]. Battistini and Shima also employed a stochastic vari-

able to overcome the limitations imposed by bearing-only measurements made by a

pursuer [54]. Using a Kalman filter a performance functional is used which maximizes

observability of the evader. Their Monte-Carlo simulations show that the maximum

observability functional outperforms a minimum range objective cost functional in

the successful pursuit of an evader under uncertainty.

Basimanebotlhe and Xue also employed stochastics to study the optimal con-

trol in a differential game with nonlinear stochastic equations where two players are

subjected to noisy measurements [55]. Lin, Qu, and Simaan presented an N-pursuer-

1-evader differential game where the evader can observe all the pursuers but the

pursuers have limited observations of each other and the evader [56]. Kalyanam, Cas-
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beer, Sundaram, and Pachter investigated a pursuit-evasion game where a pursuer

engaged an evader through using Unattended Ground Sensors (UGSs) that detect the

evader’s passage in a road network; when the pursuer arrives at an instrumented node,

the UGSs inform the pursuer if and when the evader visited the node [47, 57, 46].

Pursuit Evasion in Aerial Engagements.

Applications of pursuit-evasion differential games relating to tactical air-to-air

applications have been investigated. Shinar and Gutman developed a closed-form

solution to a 3-Dimensional missile-aircraft pursuit-evasion game [58]. Shinar also

investigated a realistic pursuit-evasion engagement involving a missile engaged on

an aircraft and air-to-air scenarios using variational methods [59]. Shinar concluded

that, although the work was done in the plane, the move to 3-D should not present

much difficulty. Hillberg and Chalmers investigated a pursuit-evasion game between

two realistic aircraft in a dogfight. They took into account constraints such as struc-

tural limits and aerodynamic stall, and used the air-vehicle’s separation distance as

a metric for optimization. Considering naval applications, Pachter and Milch framed

their two-player engagement as a Homicidal Chauffeur differential game where the

dynamics of the ships are taken into account [60]. Greenwood developed a realistic

differential game in 3-dimensions by modeling fighter aircraft [61]. Greenwood used

the dynamics of two fighter aircraft in space and even considered firing envelopes as

part of his analysis. Ehtamo and Raivio considered a numerical approach to solving

a pursuit-evasion differential game involving a missile-aircraft encounter [62]. Imado

and Kuroda proposed a differential game involving a pursuit-evasion engagement in-

volving a missile and an aircraft. In the game formulation, the miss-distance was

used as a payoff/cost functional [63]. Shinar, Glizer, and Turetsky, investigated a

pursuit-evasion game where the dynamics of the pursuer can be changed during the
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pursuit a finite number of times [64]. In [65], the evader has the ability to change

its dynamics during the engagement a finite number of times. Merz investigated the

problem of pursuit or evasion selection if both agents were endowed with capture sets

and the prior assignment had not been implemented [66]. Related to dog-fights and

aerial combat, Merz’s concern was with role assignment in pursuit-evasion differential

games and of course the outcome. In more recent work, Garcia, et al. have investi-

gated target area defense differential games described in more detail in Section 2.8.

Other 1V1 Works.

The Homicidal Chauffeur problem is an example of a pursuit-evasion game with

turn constraints imposed on the pursuer. Games where both players have simple

motion kinematics (holonomic) are also of interest. One such scenario involves the

interception of one ship by another. Given two ships of constant speed the question

becomes: What heading should the pursuer take to close in on his target fastest. The

solution can be found using basic geometry [67]. Figure 3 shows the application of

Apollonius Circles to a three-body engagement [68].

Another example of posing the pursuit-evasion problems using simple motion kine-

matics in a differential game is in a work by Leitmann [69]. In his paper, a simple

differential game between a pursuer and evader was proposed, and variational tech-

niques were applied to determine outcomes of the game where terminal miss distance

was used as the payoff/cost functional.

In [70], Calise and Yu use simple motion kinematics as well as expanded control

energy to formulate a game involving the pursuit-evasion of two aircraft at medium

to long range. Using a reduced-order model based on control energy, Calise and Yu

are able to find trajectories similar to minimum time intercept using only four states

to model the encounter.
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Figure 3. The use of an Apollonius Circle to pursuit-evasion differential games de-
scribed in [68]. In this example, the attacker, A, defender, D, and target T have
constant velocity motion with fixed headings. © 2015 IEEE

The “Lion and the Man” differential game discussed by Quincampoix is a pursuit-

evasion differential game where the lion pursues a man [71]. The lion and the man are

free to change their velocity direction instantaneously but are limited to the intensity

with which they do so. Since the lion is faster than the man, the regions of escape

and capture are of interest and were numerically determined.

2.5 N Pursuers, 1 Evader (Nv1)

The two-pursuer-1-evader problem had been well documented [72, 73, 74, 75,

76, 77, 78]. Hagedorn and Breakwell investigated two pursuers engaging one evader

which was required to pass between the two pursuers [72]. Pashkov, Terekhov, and

Levchenkov considered the game of degree by employing as a payoff/cost functional:

the distance between the object being pursued and the pursuer closest to it, when

a fixed-time engagement terminates [73, 74]. Others such as Ganebny, Kumkov,

Le Menec, Patsko studied the three-player game in detail by briefly discussing the
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surfaces of the differential game when pursuers were both stronger, both weaker,

and one stronger-one-weaker than the evader [75]. In their paper, Garcia, Fuchs,

and Milutinovic study the case where faster pursuers cooperate to capture a slower

evader in minimum time [77]. The evader, knowing that it is being pursued by

two cooperative pursuers, tries to maximize the capture time, while the pursuers

aim to minimize capture time. A solution of this differential game is determined

based on the geometric properties of the game. Unlike previous work, Kalyanam,

Darbha, Khargonekar, Pachter, and Chandler set up a problem of two pursuers and

one evader in a restricted environment (grid road network); moreover, the pursuers

do not have direct knowledge of the location of the evader [76]. The two pursuers,

instead are notified, when they reach a node if the evader had passed through that

node or not. Hayoun and Shima restrict the pursuer’s controls to be bounded and

their intercept times equal [78]. Using two “strong” pursuers, closed-form optimal

controls are derived, and it is shown that the addition of a second pursuer introduces

a new singular zone to the game space in which the pursuers can guarantee equal

misses, regardless of the evader’s actions.

In the more general case, where there are N-pursuers and 1-evader, challenges

with task allocation and strategy become more apparent. To aid the task allocation

between the N-pursuers, Huang and Bakolas employ the Voronoi diagram construct.

It is often used when capture of an evader within a bounded domain is considered

[79, 80]. In their work, Borowko and Rzymowski present sufficient conditions for the

existence of an evasion strategy where simple motion kinematics for the players is con-

sidered [81]. Chodun investigated a more general of N-pursuers engaged against one

evader in his work [82]. Huang et al. employed a decentralized control scheme based

on the Voronoi partition of the game domain, where the pursuers jointly shrink/min-

imize the area of the evader’s Voronoi cell [79]. Figure 4 is a visualization of the
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individual pursuer cells from [80].

Figure 4. A Voronoi Diagram [80] describing the task allocation in an N-pursuer-1-
evader problem. Each color describes a cell from which a pursuer would capture an
evader if starting in that cell. © 2010 IEEE

Ibragimov, Salimi, and Amini investigated the N-pursuer-1-evader problem in

their work by focusing on guaranteed escape of the evader [83]. Alias, Noorsuria,

Ramli, Ibragimov, and Narzullaev imposed controls constraints on the players and

allow for the speed of the players to vary up to a maximum speed of 1 [84]. In their pa-

per, they focus on the game of degree by briefly discussing the estimation of the time to

capture. Kothari, Manathara, and Postlethwaite considered identical non-holonomic

players [85]. In their work, they find that “solving such a problem is computationally

intractable,” and instead propose a computationally efficient algorithm to obtain ap-

proximate solutions. Next, Awheda and Schwartz and separately Al-Talabi developed

solutions to the multi-pursuer single-superior-evader pursuit-evasion differential game

using fuzzy logic methods [86, 87]. In Aweheda [86], the formation control mechanism

guaranteed that the pursuers were distributed around the superior evader in order

to avoid collision between pursuers and guaranteed that the capture regions of each

pair of adjacent pursuers were such that the capture of the fast evader was guar-
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anteed. VonMoll et al. also have considered multiple pursuers engaged on a single

evader [88, 89, 90]. By utilizing the Apollonius Circles, they exploit the benefits of

cooperation amongst the pursuers in order to reduce the capture time of the evader.

2.6 1 Pursuer, M Evaders (1vM)

The single pursuer against M-evaders differential game is a game where a pursuer

tries to capture M-evaders in finite time. One challenge is to select the order in which

the pursuer accomplishes his task in minimum time. In, these problems the pursuer

is faster, more maneuverable, or has other advantages over the evaders.

The case which involves two evaders and one pursuer has received much attention

[91, 92, 93, 94, 95]. Fuchs, Khargonekar, and Evers investigated the case where a

single pursuer engages two evaders [91]. The goal of their work was to investigate a

differential game where the pursuer tries to capture either of the evaders, minimizing

its cost, and the evaders strive to escape the pursuer for as long as possible, increasing

the payoff/functional of the pursuer. Fuchs and Khargonekar also investigated the

manipulation of payoff/cost functionals to achieve attacker retreat through defender

cooperation [92]. With one pursuer and two evaders they show that under certain

conditions, the defenders should cooperate with the attacker so that retreat becomes

the most attractive option; thereby, fulfilling the defensive goal of protecting the high-

value target. Scott and Leonard investigated a scenario where two evaders employ

coordinated strategies to evade a single pursuer, but also to keep them close to each

other [93]. In [94], Breakwell and Hagedorn investigated the capture of two evaders in

succession by one pursuer in minimum time. Pachter and Yavin proposed a differential

game of pursuit-evasion with one pursuer and two evaders, the motion of the players

being affected by noise [95]. In their work, a stochastic game of degree is considered,

where the pursuer strives to maximize the probability of his winning the game, i.e.,
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of capturing at least one of the evaders. A 3-Dimensional pursuit-evasion differential

game consisting of a pursuer engaged against a team consisting of two evaders was

proposed by Abramyants, Maslov, and Yakhno [96]. The team of evaders consisted of

a true evader and false decoy evaders; the evaders coordinate their actions to ensure

the true evader escapes without capture.

Figure 5. Example of 1-pursuer-2-evader engagement and 1-pursuer-5-evader engage-
ment found in [97]. Since the pursuer is much more capable than the evaders, capture
of all agents is guaranteed. © 2013 IEEE

In a more general case of one pursuer engaged against many evaders, the pursuer

aims at capturing all evaders, while the evaders coordinate their escape. Liu and

Zhou investigated a game involving a single-pursuer-multiple-evader pursuit-evasion

game where a superior pursuer attempts to minimize the total capture time of all the

evaders [97]. In Figure 5 the capture of M-evaders in succession is shown [97]. Scott

and Leonard motivated a model of pursuit, herding, and evasion for three agents [93].

In their work, a single pursuer, e.g. a bear, chooses a target point along the line

connecting two evaders, and the two evaders, e.g. a mother caribou and her calf,

each choosing a strategy that trades-off evasion and herding. In [84] the study of

capture time for many pursuers against one or more evaders is investigated. Wang
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and Peng formulate and solve a pursuit-evasion game in which a single faster player

chases several homogeneous evaders [98]. In their work, they apply a task allocation

method to simulate the optimal engagements for “fixed sequence capture” and “free

sequence capture” of the pursuer.

2.7 N Pursuers, M Evaders (NvM)

The most general case of N-pursuers and M-evaders allows for more complex en-

gagements to be analyzed. Katz et al. investigated a zero-sum differential game

formulation for the control of military air operations using the method of characteris-

tics [99]. Although their examples were shown for 1-pursuer 1-evader, their work has

extensions to N-pursuer M-evader problems. Rusnak proposed a dynamic game called

“The Lady and the Body-Guards versus the Bandits” [100]. The Bandits team’s ob-

jective is to capture the Lady while the Lady and her Body-Guards objective is to

prevent it. The Body-Guards are trying to intercept the Bandits prior to their arrival

to the proximity of the Lady. In [100], the formulation and solution of the game is

presented. As described in Section 2.8, this problem is a similar problem, but with

more players involved. A creative approach to handling the task allocation of many

agents was proposed by Bakolas and Tsiotras by employing the Voronoi diagram con-

struct [80]. Using the Voronoi diagram, such that a pursuer residing inside a given

set of partitions can intercept a moving target faster than any other pursuer out-

side the set. Another means of task allocation was proposed in [101] where Awheda

and Schwartz proposed a fuzzy logic based decentralized control scheme using the

Apollonius Circles construct.

28



2.8 Active Target Defense Differential Games (ATDDG)

Target Defense Differential Games (TDDG) are recently introduced pursuit-evasion

differential games with three agents. A target (T) is pursued by an agent called the

Attacker (A). A third player, the defender (D) pursues A in order to defend T. T

and D cooperate while playing against A. The outcome of the three-player game is

simple: If D captures A before A captures T, then the target is successfully defended;

however, if A captures T before D can capture A, then the defense is unsuccessful

and A is the winner. When the target is able to maneuver in the three-player game

and this scenario is known as the Active Target Defense Differential Game (ATDDG).

Figure 6 describes the geometry used to describe ATDDGs [102, 103].
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Figure 6. Defender-Attacker-Target Geometry describing the Active Target Defense
Differential Games where the defender pursues the attacker who pursues the actively
maneuvering target [102, 103].

There exist a number of popular performance metrics that are used when posing

the ATDDG. In games of kind, the interest lies with the outcome of the defense: does

the target succeed in evading the attacker or is it captured? In games of degree, when

the target escapes, the range from the attacker to the target at the instant when the
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attacker is intercepted by the defender is used. When the target is captured by the

attacker, the distance between the defender and the attacker at the instant of capture

of the target by the attacker is used. These range metrics are popular because they

help to quantify the outcome of the engagement and are readily computed. Other

metrics, such as time to capture, are also of interest.

The two-players one target game of [104] is an early version of target defense. In

the paper, a two-player differential game is played wherein one of the players wants

the state of the system to reach a target, while the other player wants the state of

the system to avoid this target. Introduced by Boyell, the defense of a ship from

an incoming torpedo using a counter-weapon was described [105, 106]. Yamasaki

and Balakrishnan proposed the defense of an active target by launching a defensive

missile [107, 108]. In their work, they proposed a closed-loop feedback control law

to defend a target aircraft. Using simple motion kinematics, Pachter, Garcia, and

Casbeer consider a zero-sum three-agent pursuit-evasion differential game [67]. The

two-agent team consisted of the target and defender.

Rubinsky and Gutman presented an analysis of the end-game ATDDG scenario

based on the attacker-target miss distance for a non-cooperative target-defender. The

authors develop linearization-based attacker maneuvers in order to evade the defender

and continue pursuing the target using the LQ paradigm [109, 110]. Rusnack, Weiss,

and Hexner had also analyzed the ATDDG. In their work, the limiting values of the

three participants optimal strategies are studied as the quadratic weight on the de-

fending missiles acceleration command were reduced to zero [111]. They show that in

the limit, the intercepting missiles and the target’s optimal strategies are identical in

form to that obtained in the game without the defending missile. Ratnoo and Shima’s

work includes a game theoretic analysis of the ATDDG problem using conventional

guidance laws for both attacker and defender [112, 113]. The cooperative strategies
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proposed by [114] allowed for a maneuverability disadvantage of the defender with

respect to the attacker and the results show that the optimal target maneuver is

either constant or arbitrary depending upon the missile-defender zero-effort-miss dis-

tance state variable. Shafermen and Shima implemented a Multiple Model Adaptive

Estimator (MMAE) to identify the guidance law and parameters of incoming mis-

siles and optimize defender strategies to minimize the control effort [115]. Earl and

D’Andrea present a scenario where multiple agents defend a common target from a

group of pursuers [116]. Earl and D’Andrea commented that the task assignment of

defending agents was “...most difficult to solve when the capabilities of the adversaries

are comparable.” Sun, Chen, Qi, and Lin investigated the three-agent game using

zero-effort-miss (ZEM) [117].

The team involving Casbeer, Fuchs, Garcia, Pachter, Pham, Von-Moll, and Wein-

traub have investigated the ATDDG in great detail [67, 68, 118, 119, 120, 102, 103,

121, 122, 123]. Pachter, Garcia, and Casbeer analyzed the ATDDG using simple mo-

tion kinematics [67, 68]. In their work, they consider a three-player differential game

which involves the defender engaged in the pursuit of the attacker, and the attacker

engaged in the pursuit of the target, which is trying to evade the attacker. To find

the optimal strategy for the defender to intercept the attacker, the geometric concept

of the Apollonius Circle is used. In their analysis, they are able to look at the critical

target/attacker speed ratio to ensure the target’s survival. Figure 3 shows how these

circles are used in the simple motion kinematics case [68].

Garcia, Casbeer, Pham, and Pachter continued their investigation for optimal

maneuvers when the defender and attacker use Pure Pursuit and Proportional Nav-

igation [118]. In [119, 120] Casbeer, Garcia, and Pachter considered the use of two

defenders to better engage the attacker. Garcia, Casbeer, Fuchs, and Pachter inves-

tigated when the defender had a non-zero capture radius, and its effect on the simple
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motion kinematics example in [122]. While in previous work, information between all

players was shared, Weintraub, Garcia, Casbeer, and Pachter investigated the opti-

mal evasion of the Target assuming the defender’s and attacker’s control laws were

proportional navigation [102, 121]. Information was restricted to the attacker and

defender, and heading rate constraints were imposed on the target. Later, in [103],

an Extended Kalman Filter was used to investigate the same engagement with sensor

models.

2.9 Directed Energy Defense

The Directed Energy Defense (DED) scenario considers the defense mechanism to

be energy-based rather than kinematic. This differs from the ATDDG which aimed

at solving the kinematic interception of an attacking agent in order to defend a target

vehicle. The DED scenario considers three agents: the target, attacker, and defender.

The goal of the defender is to keep the attacker inside its Weapon Engagement Zone

(WEZ) of the defender for as long as possible before it reaches the target. If the

attacker is in the WEZ for some predetermined amount of time, the attacker may be

considered neutralized.

Similar to the DED scenario is the ISR mission of maximum observation. In the

maximum observation problem, an ISR platform solves for the strategy which keeps

a target within a connection range for the maximum amount of time. By utilizing the

mathematical models for maximum contact time in an ISR problem, the maximum

time exposure of a directed energy weapon can be posed and solved. Although energy-

based defense is a means of removing enemy threats, few publications are available

which address DED as a multi-agent control problem, motivating the inclusion of an

ISR mission review.

ISR missions have been of great interest to the aerospace community [124, 125,
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126, 127]. One goal of an ISR platform is the observation of a target, whether it

be moving or stationary. The mathematics of maximum-time surveillance to DED

assumes that the target in the surveillance problem is an attacking threat in the DED

problem. The threat in the DED problem is mobile, and the goal is to keep the threat

inside an envelope of a defender’s WEZ for as long as possible. For an ISR mission

persistent surveillance corresponds to observing the target for as long as possible; in

the DED scenario, this amounts to keeping the target inside the WEZ for as long as

possible.

The task of observation of slower ground targets by an aerial platform were consid-

ered in [128, 129, 130]. In [128], a quad-rotor utilizing a downward-pointing camera

tracks a ground vehicle restricted to a road network. In [129], an ISR platform

equipped with a gimbaled camera was considered, thus allowing the ISR platform

to observe a ground target at various aspect angles. Similarly, Skydio, a startup

company aimed at personal unmanned air platforms, has considered a quad-rotor

aircraft for persistent surveillance of a mobile ground target [130]. The quad-rotor

platform performs persistent surveillance and obstacle avoidance in order to record a

designated mobile target.

Some examples of works that consider multiple ISR platforms that act in coordi-

nation, tasked with identifying a single mobile target are [131, 132]. In [131], sensor

coverage effectiveness for a single mobile target and a group of mobile sensors was

investigated. In their work, the authors showed the connection between the numbers

of searchers, the amount of searcher motion, and how that trade-off was dependent on

the amount of motion for the searcher relative to the target. In [132], the coverage of

a mobile sensor network resulting from continuous movement of sensors was studied.

In their work, the authors took a game theoretic approach and obtained the optimal

mobility strategy for sensors and intruders.
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Investigation of differential games concerning the surveillance of an evading agent

were considered in [133, 134, 41, 135, 136, 137]. In these differential games a pursuer

with a detection region was pitted against an evader whose goal was to escape as

soon as possible. The differential game studied by Dobbie and Taylor considered a

fast pursuer with turn restrictions and circular surveillance region against a slower

maneuverable evader capable of instantaneous changes in heading [133, 134]. Different

to Taylor’s work, Lewin imposed a turning rate constraint on the pursuer and allowed

the pursuer’s speed to vary from full stop to a bounded maximum [41, 135]. Another

differential game investigated by Fuchs involved a fast pursuer with a specific radar

cross section pitted against a slower and less maneuverable evader [136]. In the game,

the pursuer strives to accumulate enough information about the target to achieve a

defined probability of identification while the evader tries to evade the pursuer to

remain undetected.

In similar work, a numerical approach to solving the maximal information sharing

between UAVs was presented in a work by Garnett and Flenner [138]. In their work, a

model for maximal information sharing between UAVs was posed and solved utilizing

optimal control. They assumed the ISR platform was faster than the targets being

tracked and a polar function was utilized to model sensor effectiveness. Because of

model complexity, they required the use of a nonlinear program solver to numerically

find the optimal control that maximized the sensing problem.

While the previous works have described optimal means of conducting ISR mis-

sions when the ISR platform is faster than the target (evader), less common is the

consideration of conducting ISR on targets that are faster. In an early work by

Breakwell, a pursuit-evasion game was posed wherein a slower pursuer was employed

against a faster evader [139]. Breakwell, also considered a nonzero capture radius for

the slower pursuer. The approach taken by Breakwell solved for the acquisition of a
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faster evader by a slower pursuer, but the DED scenario requires keeping the evader

within the surveillance range, akin to a WEZ, of the pursuer for as long as possible

in addition to acquiring it as soon as possible. To successfully protect the evader, the

defender must neutralize the threatening attacker before it reaches the evader.

2.10 Research Gaps

This work addresses the defense of an evader from an attacking pursuer by teaming

the evader with a defender. Two defense mechanisms are considered: Kinetic capture

of the pursuer by the defender and maximal exposure of the pursuer by the defender’s

directed energy weapon.

Formulating differential games around aircraft were considered in Isaacs’ seminal

text [9]. To achieve the objectives of this work, meaningful mathematical models

must be developed. Using kinematic models, aircraft are modeled in both 2-D and

3-D Cartesian space. Simple motion is often used when the turn radii of agents is

small relative to the spacing between agents. In this scenario (small turn circle rel-

ative to vehicle range) it has been shown in [140] that optimal strategies assuming

simple models provide a very similar performance when implemented in turning rate

constrained vehicles. Simple motion models are more common in literature because

analytic expressions for optimal strategies are less common under turn rate constraint.

In general, the use of turn rate constraints requires solutions to be obtained numeri-

cally rather than analytically. In this work, Chapter III describes the mathematical

methods and models used to pose and solve the HVAA defense scenarios of interest.

In their work, Garcia, Casbeer, and Pachter investigated an evader engaged by a

faster pursuer using pure pursuit and defended by a similarly capable defender also

using pure pursuit [121]. In their analysis, the evader’s motion was not restricted to

a maximum turn rate. Moreover, simple motion was considered in order to obtain
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analytic and numeric solutions in [67, 68, 118, 119, 120]. To address this gap, one aim

of this work is to include turn rate constraints for the evader in planar engagements.

A bulk of the research performed on the active target defense scenario assumes that

the evader is free to travel in any direction to aid in its defense [67, 118, 141, 68, 142].

One aim of this work is to investigate HVAA defense with a non-maneuvering evader.

Previous work on the ATDDG considered defense to be through kinematic capture

of the pursuer by the defender restricted to a plane, similar to long-range missile

defense scenarios [105, 106, 67, 68, 118, 119, 120, 121, 122, 142, 143, 144, 111]. An

investigation of optimal defense strategies for the active target defense scenario in

3-D Cartesian space is not found in literature. To address this gap, one aim of this

work is to consider kinematic defense in 2-D and 3-D Cartesian space.

Many works have considered pursuit strategies for achieving maximum observ-

ability of an evader [41, 133, 134, 135, 136, 139]. By leveraging the work in this

area, differential game theory, and optimal control theory, one aim of this work is to

solve the active target defense scenario when the defender is endowed with a directed

energy weapon.

Various indirect methods have been used for investigating the active target defense

scenario in [105, 106, 67, 68, 142, 143, 144, 111]. A study of various direct optimal

control methods to the active target defense scenario is not found in literature. To

address this gap, one aim of this work is to compare various direct methods to the

active target defense scenario emphasizing hardware implementation. The means of

directly computing the optimal control for a specified system has been a popular

research topic for the scientific community. In his survey paper, Betts [145] describes

in great detail various methods of computing optimal control directly. Betts, goes

into detail, describing various advantages and disadvantages of direct and indirect

methods. Rao described four different direct methods in his survey including more
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modern approaches of solving optimal control problems [19]. In Section 4.4, each

of the direct methods described in Rao’s survey are considered. The four direct

methods include: Single Shooting Method [146, 11], Multiple Shootings Method [13,

14], Collocation Method [18], and Pseudospectral Method [147, 148, 149, 150].

2.11 Concluding Remarks

In summary, the research in pursuit-evasion differential games has been significant

since the inception of Isaacs’ work. By posing tactical scenarios, which involve mul-

tiple players as differential games, the optimal strategies for all players in the game

may be achieved. This literature review has outlined a significant body of work in

the area of multi-agent pursuit-evasion and has highlighted specific work in the active

target defense scenario and work related to the directed energy defense scenario. Even

though numerous works have investigated these tactical problems, these three-agent

problems still remain open.
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III. Methodology

Nothing takes place in the world whose
meaning is not that of some maximum or
minimum.

— Leonhard Euler

This chapter presents the methodology used to evaluate the problems presented

in Chapter I. First, the various models used to mathematically describe aircraft are

presented. Next, the methods of solving optimal control problems and differential

games are described. After that, the Apollonius Circle is presented, emphasizing

how the geometry may be leveraged to solve pursuit-evasion engagements. Then,

a proposal of how geometric methods may be leveraged to transform the defense

differential game into an optimal control problem. Next, the generalized kinetic

defense and directed energy defense objectives are presented. Finally, a solution

approach for solving each of the research questions is presented.

3.1 Overview

Investigating the optimal strategies for the successful defense of a HVAA, one must

utilize mathematical models for the aircraft involved. The abstraction of real aircraft

systems into a set of governing differential equations will be referred to as the model.

Utilizing these models, several scenarios are posed which correspond to the kinetic

and directed energy defense of a HVAA. This work aims to leverage geometric tools,

such as the Apollonius Circle, to either solve or aid in the optimal solutions to the

various engagements. When analytic solutions are intractable, the use of a Nonlinear

Program (NLP) may be used to directly compute optimal strategies or control. The

objective of this research is to develop optimal strategies for the aerial defense of a

HVAA which are either kinetic or directed energy in nature.
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3.2 Models

In this work, mathematical models are used to represent aircraft in space. In the

case where aircraft are far from one another and are at relatively similar altitudes, a

2-D model with simple motion may be sufficient. While a high-fidelity model which

considers every nuance of an aircraft in flight would be accurate and realistic, tractable

closed-form solutions to optimal control problems which use high-fidelity models are

unlikely. By considering kinematic models, the following benefits are seen:

1. The number of required states is dramatically reduced.

2. Visualization of the state space becomes easier.

3. Closed form solutions may become tractable.

4. Solutions to the optimal control problems may be computed very quickly.

5. Computed optimal solutions serve as great initial seeds to more complex optimal

control problems which may be otherwise intractable analytically.

Vehicle Motion in Two-Dimensions.

When the range between aircraft and missiles are relatively large compared to

their respective altitudes, the use of a 2-D model may be sufficient when analyz-

ing aircraft guidance strategies. As previously mentioned, one advantage of posing

pursuit-evasion scenarios in 2-D is that the number of states used to model the en-

gagement is reduced. As a result of the reduced state space, the likelihood of finding

optimal strategies in closed-form increases rather than those involving many states;

and, numerical simulations operate faster when analytic solutions are intractable.

When considering a planar aircraft model, the equations of motion for the individual
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aircraft/missiles are of the form:

ẋi(t) = vi cosψi(t)

ẏi(t) = vi sinψi(t)

ψ̇i(t) = u(t).

(3.1)

Define for each agent i, the North (yi), East (xi), speed (vi), and heading angle (ψi).

In eq. (3.1), the heading rate is utilized for controlling the aircraft location in the 2-D

Cartesian plane.

Since Isaacs, the term simple motion has been used to describe a vehicle whose

control input is its heading, not its heading rate. When the range between aircraft

are relatively large compared to their respective altitudes and the turning radius is

small compared to the range between vehicles, a simple motion 2-D model may be

sufficient when analyzing aircraft guidance strategies. When considering a simple

motion model in 2-D, the equations of motion for the individual aircraft/missiles are

of the form:

ẋi(t) = vi cosψi(t)

ẏi(t) = vi sinψi(t)

ψi(t) = u(t).

(3.2)

This model differs from eq. (3.1), as the heading is utilized for controlling the aircraft’s

motion in the 2-D Cartesian plane. By controlling the heading directly, instantaneous

turns are considered. The dynamics described in eq. (3.2) are less realistic than those

in eq. (3.1); however, analytic solutions to pursuit-evasion scenarios are more tractable

as a result of commanding the heading directly.
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Vehicle Motion in Three-Dimensions.

When agents are far in range and differ greatly in altitude, the aircraft may be

modeled in 3-D using a turn rate and heading rate limited model. This model is an

extension of the 2-D vehicle motion in eq. (3.1) and is as follows:

ẋi = vi cos γi(t) cosψi(t)

ẏi = vi cos γi(t) cosψi(t)

żi = vi sin γi(t)

ψ̇i = u1(t)

γ̇i = u2(t).

(3.3)

Define for each agent i, the North (yi), East (xi), altitude (zi), speed (vi), heading

angle (ψi), and flight path angle (γi). The heading rate and flight path angle rate are

used for controlling the aircraft position in the Cartesian space. These equations of

motion are purely kinematic in nature and therefore neglect mass, inertia, and any

form of acceleration. In the event where turn and climb-rates constraints are imposed,

the control magnitude may be bounded to model the physical limitations of aircraft.

If vehicles are very far from one another and differ greatly in altitude a simple

motion model in 3-D implies that a vehicle climbs/dives and turns relatively quickly

compared to the distance it traverses in Cartesian space. This model is a simplification
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of the 3-D vehicle dynamics in eq. (3.3) and is as follows:

ẋi = vi cos γi(t) cosψi(t)

ẏi = vi cos γi(t) cosψi(t)

żi = vi sin γi(t)

ψi = u1(t)

γi = u2(t).

(3.4)

Different from eq. (3.3), the 3-D simple motion model in eq. (3.4) allows for the

heading and flight path angle to be instantaneously changed. While vehicles require

time to change their flight path angle or heading rate, this model suggests that the

time it takes for maneuvers to be made is small compared to the overall distance

traversed. Further, it assumes that the vehicle is capable of making such maneuvers,

no matter how aggressive.

3.3 Solution Methodology

One may use optimal control theory as well as differential game theory to under-

stand optimal defense tactics. In this section, the general optimal control problem

and differential game problem are described. Two popular approaches to solving op-

timization problems include the indirect and direct methods; both are presented in

brief.

In optimal control theory, the metric by which the performance is measured and

subsequently leveraged to find an optimal control is called the objective cost. In

differential game theory the performance measure is called the value function of the

game. When HVAA defense is posed as an optimal control problem or differential

game the corresponding term is used to describe the performance measure.
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Optimal Control.

In optimal control theory, the goal is to find the controls which cause a system

to satisfy a set of constraints while at the same time minimize some performance

criterion [146]. One aim of this work is to determine the trajectory of a defending

asset whose aim is to eliminate a threat farthest from the HVAA. Using optimal

control theory, in a general sense, the goal is to find the control input u∗(t) in the

set of admissible controls U, that causes the system dynamics, ẋ = f(x(t),u(t), t)

given some initial condition at t0 to follow an optimal trajectory, x∗(t), in the set

of admissible trajectories X, that minimizes the objective cost, J , and satisfies the

boundary and path constraints.

Define the objective cost as follows:

J = Φ(x(tf ),u(tf ), tf ) +

∫ tf

t0

g(x(t),u(t), t) dt. (3.5)

The objective cost is a functional – it is a mapping of the state space trajectories,

x(t); control input signals, u(t); and time, t to a scalar value, J . The objective

cost is constructed of a terminal penalty, Φ(·) and running cost, g(·). This form of

the objective cost is called the Bolza problem [146]. When the integrand g(·) = 0,

the objective cost depends solely upon the terminal penalty, Φ(·); in this case, the

objective cost is called the Mayer problem. When the terminal penalty Φ(·) = 0, the

objective cost depends solely upon the running cost, g(·); in this case, the objective

cost is called the Lagrange problem.

In scenarios where only one agent’s strategy is optimized, the goal is to find that

agent’s optimal control, u(t), which minimizes the objective cost, J . When finding

the control which minimizes, J , one must ensure that the dynamics are upheld. The
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dynamics, also referred to as the equations of motion, are as follows:

ẋ = f(x(t),u(t), t), t ∈ [t0, tf ]. (3.6)

Moreover, the boundary conditions on states, control, or time, are described as follows:

h(x(t0),u(t0), t0,x(tf ),u(tf ), tf ) = 0, t ∈ [t0, tf ]. (3.7)

Finally, through an inequality constraint, the path constraints are described as follows:

c(x(t),u(t), t) ≤ 0, t ∈ [t0, tf ]. (3.8)

Optimal Control - Indirect Method.

Indirect methods of optimal control [10] utilize the calculus of variations [12] and

Pontryagin’s Minimum Principle [151] to develop the necessary optimality conditions

which relate the optimal states, x∗(t), and control, u∗(t), to the optimal costates,

p∗(t); the superscript, ∗, represents optimality. To compute the costates, the calculus

of variations describes the Hamiltonian as the inner product of the costates and the

state dynamics summed with the integrand of the objective cost (running cost),

H (x(t),u(t),p(t), t) = g(x(t),u(t), t) + pT (t) [f(x(t),u(t), t)] . (3.9)
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If the control, u(t), is unbounded, taking the following partials derivatives of the

Hamiltonian provides the necessary conditions for optimality:

ẋ∗(t) =
∂H

∂p
(x∗(t),u∗(t),p∗(t), t) (3.10)

ṗ∗(t) = −∂H
∂x

(x∗(t),u∗(t),p∗(t), t) (3.11)

0 =
∂H

∂u
(x∗(t),u∗(t),p∗(t), t). (3.12)

Equations (3.10) to (3.12) are used only when the control is unbounded. If there are

limits on the control, the use of Pontryagin’s Minimum Principle (PMP) is required,

H (x∗(t),u∗(t),p∗(t), t) ≤H (x∗(t),u(t),p∗(t), t). (3.13)

Simply stated in eq. (3.13), for all admissible controls, u, the Hamiltonian is a mini-

mum under optimal control. Boundary conditions are also developed depending upon

where the states or time is fixed or free. Utilizing the transversality conditions,

[
∂Φ

∂x
(x∗(tf ), tf )− p∗(tf )

]T
δxf +

[
H (x∗(tf ),u

∗(tf ),p
∗(tf ), tf ) +

∂Φ

∂t
(x∗(tf ), tf )

]
δtf = 0,

(3.14)

the Two Point Boundary Value Problem (TPBVP) is formed.

While the indirect approach provides the optimal states, costates, and control

for a given objective, analytic solutions quickly become intractable when nonlinear

equations of motion, and/or the number of states grows. The challenge of interpreting

the costates, and computing the necessary conditions can present difficulties with

solving optimal control problems indirectly.
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Optimal Control - Direct Method.

Rather than solving the optimal control using the calculus of variations, direct

methods serve as a means of finding optimal state and control trajectories using a

numerical search algorithm [17]. Four popular direct methods for solving optimal con-

trol problems include the Single Shooting Method (SSM), Multiple Shootings Method

(MSM), Even Collocation Method (ECM), and Pseudospectral Method (PSM). These

methods have various similarities and differences which are of interest to this work. A

brief description of each method along with the various advantages and disadvantages

between each of the four methods is presented.

Single Shooting Method (SSM).

SSM, outlined in Figure 7, is a numerical technique for finding the optimal control

to a dynamic system which achieves a given objective subject to boundary conditions

and path constraints. The procedure begins with some initial state, x0, and a guess

for the control for the entire time series, {uk|k = 1, . . . , N}. Using the guess for the

control and the initial state, an NLP solver, such as Matlab’s FMINCON(), computes

the optimal control through iterative search. The NLP performs the search for the

optimal control by first shooting the dynamics forward through time using an Or-

dinary Differential Equation (ODE) solver such as the Runge-Kutta Method [152].

Next, the NLP computes the objective cost using the propagated state trajectories.

After the cost is computed, the NLP evaluates if a local minimum has been found.

If the cost is a minimum, by some convergence criteria, the guess is considered the

optimal control. However, if the objective cost is not considered a minimum, then an

update to the guess for the control is made, and the process starts again. One such

method for updating the guess is the method of finite differences. As is the case in

FMINCON(), the searching gradient is computed using finite differences.
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ẋ = f(x(t), u(t), t)
<latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit><latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit><latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit><latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit>

h(x(t), u(t), t) = 0
<latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg="></latexit><latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg="></latexit><latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg=">AAADH3icbVJbb9MwFHbDbYTLOnjkJaJD6qSoSjYJ2APSEAjxgjREu01qospxTxKrjh3ZTkex8lsQPwbxVnjdv8FJi6AdR7L16Tvn87k5KRlVOgiuOs6Nm7du39m56967/+Dhbnfv0ZkSlSQwIoIJeZFgBYxyGGmqGVyUEnCRMDhPZm8a//kcpKKCD/WihLjAGacpJVhbatI9jhLIKDcEuAZZu/t5PyqwzpPUfK77+sCvmksfeK+8YN+NgE//hE66vWAQtOZdB+Ea9NDaTid7nWU0FaQqrJ4wrNQ4DEodGyw1JQxqN6oUlJjMcAZjCzkuQMWm7bH2nllm6qVC2sO117L/KgwulFoUiY1s6lfbvob8n29c6fRlbCgvKw2crBKlFfO08JqBeVMqgWi2sAATSW2tHsmxxMQOYfOl4ZE/DGPT1Ne85EZvwfYp4ZMtS7B3ljaalrg2w6PakELWpqgN/xv3wdb2mjTjNRHl80TCHGrTrgOzMrfClTx8Xrsb7Wk6+7IaX4MYTSSWC0MwIz5tdqVsA3bbyte5FFWW+4kVZhbyqfKxlOJS+YrjGagNj22TcrWVi1BJKtpmtD8g3N73dXB2OAiDQfjxsHfSX/+FHfQEPUV9FKIX6AS9R6dohAj6ir6jJfrpfHN+OEvn1yrU6aw1j9GGOVe/AZi4Bjg=</latexit><latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg="></latexit>

g(x(t), u(t), t)  0
<latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit><latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit><latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit><latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit>

Optimal Solution

u⇤
k, k = 1 . . . N

x⇤
k, k = 1 . . . N

<latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY="></latexit><latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY="></latexit><latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY="></latexit><latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY="></latexit>

Figure 7. Shooting Method Flow Diagram

There exist multiple numerical techniques to update the guess for the control, one

popular technique is the method of Sequential Quadratic Programming (SQP) [16].

The SQP algorithm, in short, is a gradient-based technique for finding the optimal

control which minimizes the objective cost subject to equality and inequality con-

straints. It strives to satisfy the first-order necessary conditions for optimality, called

Karush-Kuhn-Tucker (KKT) conditions, by updating guesses until the objective cost

is at a minimum and all constraints are satisfied to some tolerance. To determine how

to update the guess for the control, the algorithm perturbs the control throughout
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its trajectory. By observing the change in the objective cost, as a function of the

perturbations, updates are chosen to improve the guess for optimal control. In the

event the KKT conditions are satisfied, the optimal guess for the control sequence,

{u∗k|k = 1, . . . , N}, and optimal states, {x∗k|k = 1, . . . , N}, is produced.

The requirements to begin the shooting method is a guess for the control sequence

uk. Assuming that time is discretized evenly from t0 to tf into N points, the initial

guess is described as

uk, k = 1 . . . N. (3.15)

The overall size to compute the optimal control using the shooting method is quite

large. Assuming that time is evenly discretized into N points, the dynamics would

need to be propagated every time the objective cost is computed (N -times). Further,

let R be the number of iterations required to obtain an optimal control. Since pertur-

bations are made at every time step, the number of times the dynamics are forward

propagated would be approximately R(N + 1). (The 1 represents the evaluation of

the current guess, while the N represents the evaluation for each perturbation made

of the guess.)

Since the dynamics are guaranteed by the accuracy of the ODE solver, the feasi-

bility of the solution is ideal. Although the computational time associated with using

an ODE solver may be large, it ensures that the dynamics are upheld. In the ATDS

the initial state (x0) is provided, the final state is free, and no equality constraints

are applied.

Multiple Shooting Method (MSM).

MSM differs from single shooting in that it aims at reducing the computational

time by parallelizing the shooting operation. Breaking the shooting operation into

smaller segments, MSM makes use of multiple processors to shoot each segment in
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parallel. In exchange for parallelizing the shooting operations, discontinuities occur

in-between each connecting interval. A series of equality constraints, one at each

transition from one interval to the next are formed as continuity constraints. Figure 8

describes the process of searching for the optimal control and optimal state trajectories

using MSM.

Nonlinear Program (NLP)                                                     FMINCON()
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Figure 8. Multiple Shooting Method Flow Diagram

The procedure begins with a guess for the control for the entire time series, {uk|k =

1, . . . , N}, and a value for the states at the beginning of each segment. Assuming

there are M segments, n states, and the initial state is known to be x0, the size of
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the initial guess for the states at each segment is n(M − 1). In total, the size of the

guess is N + n(M − 1) when the initial states are known.

Using the SQP algorithm, the optimal states and control are iteratively searched

for until the KKT conditions are satisfied. If the step size of the guess is below

some threshold, the change in the objective cost is also below some threshold, and if

the feasibility (defined as the equality constraints from the continuity conditions) is

within some tolerance, then the NLP returns the optimal control as well as the values

of the states at the beginning of each of the segments.

Although the overall size of MSM is less than the shooting method, it still requires

the use of an ODE solver such as the Runge-Kutta Method. Since the shootings

are conducted in parallel, the size of the algorithm is reduced. If the number of

computational threads is equal to the number of segments, the effective computational

time for shooting the dynamics is reduced by a factor of M . However, the introduction

of the continuity constraints requires the addition of n(M−1) unknowns to be solved

in addition to the control.

Even Collocation Method (ECM).

ECM takes advantage of computational efficiency by transcribing a dynamic opti-

mization problem, which requires numerical methods for solving differential equations,

into a static optimization problem. The method begins with considering the dynam-

ics and control at evenly spaced points in time from t0 to tf . Consider N points, the

guess for the states and control are as follows:

xk, k = 1, . . . , N (3.16)

uk, k = 1, . . . , N. (3.17)
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Using the guess for the state and control trajectories, ECM imposes the dynamics as a

set of equality constraints rather than using an ODE solver such as the Runge-Kutta

Method. The equality constraints are formed by a simple subtraction,

ẋ− f(x(t), u(t), t) = 0 t ∈ [t0, tf ]. (3.18)

Assuming that there are n states, the number of equality constraints formed from

imposing the dynamics are nN given by the first-order Euler approximation:

hk(xk, uk, k) = xk+1 − xk − f(xk, uk, k)∆t k = 1, 2, ..., N. (3.19)

Using the definition of the equality constraints in eq. (3.19) to satisfy the dynam-

ics of the problem, an ODE solver is no longer required to propagate the dynamics.

Rather, the dynamics are satisfied through an equality constraint which the NLP

considers feasibility criteria. The flow diagram which describes ECM can be seen

in Figure 9. The procedure begins by providing a guess for the state and control

trajectories. As described, the dynamics are transcribed into an equality constraint,

and a FOR() loop is used to compute each equality constraint at every time step.

Additionally, the objective cost is computed as a function of the states and control.

Since the collocation points are evenly spaced, any terms inside the integral of the

objective cost are approximated using a quadrature method such as trapezoidal or

rectangular integration. Using the SQP search described earlier, the objective cost

and equality constraints are minimized through iterative search until the KKT con-

ditions are satisfied. Upon completion, the solution provides the optimal control and

corresponding state trajectories at each collocation point.

In this analysis, there are N evenly spaced collocation points. However, a finer

or coarser mesh can be implemented to increase or reduce the number of collocation
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Figure 9. Even Collocation Direct Method Flow Diagram

points. By reducing the number of points, the number of function evaluations may

be reduced. By increasing the number of points, the accuracy of the quadrature is

increased at the cost of computational effort. Using the First-Euler approximation

of the dynamics as an equality constraint it is important to consider if the meshing

becomes too coarse; if this is the case then the small time step assumption made

earlier may no longer hold. Methods of changing the spacing between nodes are

described as adaptive meshing techniques. The general concept of adaptive meshing

is to decrease the spacing between nodes where more accurate computations of the
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states are required and allow the spacing of other areas to be larger to reduce the

total number of points. For this comparative study, the use of adaptive meshing is

not considered. Since the ODE solvers employed in the shooting method are fixed

time-step solvers, fixed meshing is used for the collocated methods to make a fair

comparison.

The overall size of ECM is much smaller than SSM and MSM. By allowing the dy-

namics to be accurate to a prescribed threshold, the use of ODE solvers is eliminated.

In the example, the derivative is computed using a first-order Euler’s Method which

isn’t the most accurate, but for small time steps is sufficient. Furthermore, using a

low-order quadrature method such as rectangular integration, the objective cost is

computed. Since there are no uses of ODE solvers, the size of ECM is to find the

optimal solution to the state and control trajectories, a size of N(n + 1). Assuming

there are R iterations, the number of function evaluations will be around the order

of RN(n+ 1).

Pseudospectral Method (PSM).

PSM refers to a series of techniques which are employed to solve optimal control

problems by taking advantage of efficient computational methods. Figure 10 describes

the process of conducting a search for the optimal control and optimal state trajecto-

ries using PSM. PSM enforces dynamics at a set of collocation points (just as before)

by means of equality constraints and the objective cost is computed through Gaus-

sian quadrature. The state, x, can be approximated using Lagrange interpolating

polynomials,

x̂(t) ≈
n+1∑

i=1

xiLi(t). (3.20)
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In eq. (3.20), x̂ is the polynomial approximation of the state, x, and the Lagrange

polynomial basis is efficiently computed as

Li(t) =
n+1∏

j=1
j 6=i

t− tj
ti − tj

i = 1, ..., n+ 1. (3.21)

By using Lagrange interpolating polynomials, there is zero error of the interpolating

polynomial at each collocation point,

xi = x̂(ti), (3.22)

and since the interpolated function is a polynomial, any number of derivatives are

guaranteed to exist. In-between the collocation points, the error can be found by the

subtraction,

x(t)− x̂(t) =
x(n+1)(ξ(t))

(n+ 1)!

n∏

i=0

(t− ti). (3.23)

The point ξ is the value of t where the (n + 1)st derivative of the state x is equal to

zero. It would be ideal if ξ were a constant; but, most likely ξ will depend upon t.

However, the error can be bounded by choosing ξ to bound that derivative. Upon

the first investigation, the error can be reduced by adding more points, but the

Runge Phenomenon, where high-order derivatives cause the error to increase near

the endpoints can be problematic. To overcome this phenomenon, the collocation

points are spaced by the roots of an N th-order Legendre polynomial on the interval

[−1, 1). This not only reduces the Runge Phenomenon but also leads to exponential

convergence in quadrature. Using an affine transformation, the time series, [t0, tf ],

must be mapped to the [−1, 1] domain where the collocation points are determined

by the roots of the Legendre Polynomial. The mapping to the affine transformation
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is as follows:

τ =
2t− (tf − t0)

tf − t0
. (3.24)

Derivatives may also be computed by means of a matrix multiplication which is more

efficient than first-order Euler approximations, and faster since operations can be

computed by means of matrix multiplication rather than for-loops. Using standard

techniques, a differentiation matrix eq. (3.25) may be computed [153]. Using the

differentiation matrix, equality constraints eq. (3.26) are used to ensure the dynamics

are upheld, namely,

ẋ ≈ Dx, (3.25)

h(x, u) = Dx− ∆t

2
f(x, u) = 0. (3.26)

Quadrature weights, wk, are associated with the collocation scheme and approximate

the integration of the running cost, as follows:

∫ tf

t0

g(x, u, t)dt ≈ tf − t0
2

N∑

k=1

wkg(x(τk), u(τk), τk). (3.27)

Similar to ECM, constraints (inequality or equality) may be enforced at any colloca-

tion point; equality constraints are used to enforce boundary conditions and inequality

constraints are used to implement path constraints.

The use of adaptive meshing for PSM aids in computational efficiency. By in-

creasing the polynomial order for the number of points in a mesh, it is feasible to

map the entire time sequence to one mesh of points and one polynomial. How-

ever, with higher order polynomials, Runge phenomenon, can be a source of error.

This Runge phenomenon is reduced by selecting the collocation points defined by

Legandre-Gauss-Radau (LGR) spaced collocation points [148, 154]. To reduce the

error from this phenomenon, HP-adaptive meshing [155] turns the mesh into a series
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of segments which are of no higher order than a prescribed maximum number. This

means that mesh refinement occurs where necessary, and in the event nonlinearities

in the dynamics require more precise computation of the states, the mesh is able to

adapt.

As far as computational size, PSM tends to be the most efficient means of com-

puting the optimal control and state trajectories [18, 19, 145]. Leveraging sparse

matrices and using matrix multiplications, the computational size is on the order of

N for enforcing the dynamics and the order of N for computing objective cost. Ex-

ponential convergence is also seen as a result of using PSM. Since adaptive meshing is

employed, the number of collocation points are reduced, and the size of the problem

is less than the even collocation problem. Further, the use of Gaussian quadrature

methods ensures that integrations are exact for the approximated polynomial. Also,

the integral can be computed by a weighted summation of the polynomial evaluated at

the collocation points. The number of function evaluations, assuming with N points,

n states, and R iterations, will be of the order of RN(n+1). The size of PSM is equal

to that of ECM, but the efficient methods which are employed by PSM produce a

more accurate approximation of the objective cost and more accurate implementation

of the dynamics.
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ẋ = f(x(t), u(t), t)
<latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit><latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit><latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit><latexit sha1_base64="EkKa0RE1nhL7ea0aFfkVpKopKzE="></latexit>

h(x(t), u(t), t) = 0
<latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg="></latexit><latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg="></latexit><latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg=">AAADH3icbVJbb9MwFHbDbYTLOnjkJaJD6qSoSjYJ2APSEAjxgjREu01qospxTxKrjh3ZTkex8lsQPwbxVnjdv8FJi6AdR7L16Tvn87k5KRlVOgiuOs6Nm7du39m56967/+Dhbnfv0ZkSlSQwIoIJeZFgBYxyGGmqGVyUEnCRMDhPZm8a//kcpKKCD/WihLjAGacpJVhbatI9jhLIKDcEuAZZu/t5PyqwzpPUfK77+sCvmksfeK+8YN+NgE//hE66vWAQtOZdB+Ea9NDaTid7nWU0FaQqrJ4wrNQ4DEodGyw1JQxqN6oUlJjMcAZjCzkuQMWm7bH2nllm6qVC2sO117L/KgwulFoUiY1s6lfbvob8n29c6fRlbCgvKw2crBKlFfO08JqBeVMqgWi2sAATSW2tHsmxxMQOYfOl4ZE/DGPT1Ne85EZvwfYp4ZMtS7B3ljaalrg2w6PakELWpqgN/xv3wdb2mjTjNRHl80TCHGrTrgOzMrfClTx8Xrsb7Wk6+7IaX4MYTSSWC0MwIz5tdqVsA3bbyte5FFWW+4kVZhbyqfKxlOJS+YrjGagNj22TcrWVi1BJKtpmtD8g3N73dXB2OAiDQfjxsHfSX/+FHfQEPUV9FKIX6AS9R6dohAj6ir6jJfrpfHN+OEvn1yrU6aw1j9GGOVe/AZi4Bjg=</latexit><latexit sha1_base64="e8RjB4k6A3HVuhtcQLIRGo1jlxg="></latexit>

g(x(t), u(t), t)  0
<latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit><latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit><latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit><latexit sha1_base64="XcTeR0vkTsLXcTTYCrMIzHoC2VQ="></latexit>

Optimal Solution

u⇤
k, k = 1 . . . N

x⇤
k, k = 1 . . . N

<latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY="></latexit><latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY="></latexit><latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY="></latexit><latexit sha1_base64="65X0QCc8jn2qJQGZfZ+AnhwIsNY=">AAADNnicbVJNixNBEO2MX+v4ldWjl8ZEWGQIM7ugXoQVRbwoEZPdhUwMPZ1K0kxPz9DdE43N/C3xV3gXxNvq1Z9gTRLRJBY0PKrqVdWr6qSQwtgw/NrwLly8dPnK3lX/2vUbN28192+fmLzUHPo8l7k+S5gBKRT0rbASzgoNLEsknCbpszp+OgdtRK56dlHAMGNTJSaCM4uuUbMbJzAVynFQFnTlt8tR+u5BkNInNIrHuTX0dTuO/XacMTtLJu5DtRv3Y1DjPxVGzVbYCZdGd0G0Bi2ytu5ov/EFC/EyQz6XzJhBFBZ26Ji2gkuo/Lg0UDCesikMECqWgRm6pfSK3kfPmE5yjU9ZuvT+y3AsM2aRJZhZKzDbsdr5v9igtJPHQydUUVpQfNVoUkpqc1rvkY6FBm7lAgHjWuCslM+YZhyXsFmpdxT0oqGr56sr+fFzQJ0a3uJYuXyBbmdFwSrXO6ocz3Tlssqpv3mvcLanvF6vi4WaJxrmULnlQZgsZkhc0aOHlb8hz4r042p9NZIi0UwvHGeSB6K+lUEB+AlMYGc6L6ezIEHiFKEam4Bpnb83gVEsBbMRQZlCma1eXGheimVH/AHR9r13wclhJwo70ZvD1vHB+i/skbvkHjkgEXlEjslL0iV9wskn8o2ckx/eZ++7d+79XKV6jTXnDtkw79dv3IgOog==</latexit>
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Figure 10. Pseudospectral Methods Flow Diagram
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Comparison.

Each of the four methods described has various advantages and disadvantages;

Table 2 summarizes the various properties of the four methods. To begin with, SSM

is simple to construct, and initial guesses only require the control sequence. However,

SSM inefficiently computes the cost by shooting the dynamics for each evaluation.

Moreover, shooting methods are very sensitive to the initial guess due to the gradient

search methods employed by the SQP. Rather than adjusting the state trajectories,

SSM only modifies the control with each successive guess for the optimal control.

Similar to ECM, MSM imposes dynamics as a series of inequality constraints; but,

rather than using a first-order Euler approximation to the dynamics, an ODE solver

is used to forward propagate the dynamics. Also, the introduction of states to the

guess reduces sensitivity to the initial guess and allows for state and control to be

provided at the end of the iterative search.

As compared to SSM and MSM, the accuracy of the solution that ECM produces

is poorer. While SSM and MSM provide accurate integration using ODE solvers,

ECM uses a first-order Euler approximation. Furthermore, the use of rectangular

integration by ECM produces a coarse approximation of analytic integration. While

ECM aims at outperforming the speed of solution provided by SSM and MSM, it

does so at the cost of accuracy. However, by setting the dynamics as a constraint

rather than imposing the dynamics through shooting, ECM is less sensitive to initial

guess than SSM and MSM.

PSM is for all intents and purposes, an accurate and efficient version of ECM.

Since it uses LGR collocation points and computes integration using Gaussian quadra-

ture, integration is exact for the approximating polynomial and is found by a simple

weighted sum. PSM also makes use of a differentiation matrix to enforce the dynam-

ics through equality constraints. This is much more efficient than ECM’s for-loop.
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The main disadvantage of PSM is the complexity and level of understanding required

to implement the algorithm. It should be noted that tools do exist which may aid the

novice control-theorist with setting up an optimization method using PSM discussed

in [19, 18, 156].

Table 2. Method Property Comparison

Metric SSM MSM ECM PSM
Easy to formulate • •
Guess includes control • • • •
Guess includes state • • •
Solves for control traj. • • • •
Solves for state traj. • • • •
Sensitive to init. guess • •
Employs ODE solvers • •
Eq. constr. satisfy dynamics • • •
Low convergence times • • •

Table 3 presents a summary of the size of the guess and equality constraints to

set up each of the four methods. While at first glance, the shooting method appears

to be the smallest size, it is the most computationally inefficient means of searching

for the optimal control. Due to the number of ODE solver calls, shooting takes much

more time to compute than the other three direct methods. Multiple shooting aimed

at reducing the computational time by shooting segments in parallel but introduced

continuity constraints. Although the computational size of the problem is reduced by

parallelizing the ODE solver calls, the method requires special hardware and software

to perform this operation. ECM removed the requirement to shoot the dynamics; in-

stead, the dynamics were implemented through a series of equality constraints. Since

ECM does not require shooting the dynamics, a fine grid of points is required for

the first-order Euler approximation for the dynamics to be sufficient. Additionally,

ECM is much less sensitive to initial guesses due to gradient-based search techniques.

Finally, PSM aims at reducing the error of rectangular integration and low-order dy-

namics by using Gaussian quadrature and spacing the points accordingly. In spacing
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the LGR points, the number of collocation points is reduced to achieve the same ac-

curacy as the other direct methods, and as a result, solutions to the optimal control

problem are found much faster. Table 9 shows a comparison of the size required to

run each of the four direct methods.

Table 3. Method Size

Method Initial Guess No. Ukn. Eq. Const. NLP Output

SSM u[k], k = 1..N N 0 u∗k, k = 1 . . . N

MSM
u[k], k = 1..N

x[j], j = 2..M
N + n(M − 1) n(M − 1)

u∗k, k = 1 . . . N

x∗
j , j = 2 . . .M

ECM
u[k], k = 1..N

x[k], k = 2..N
N + n(N − 1) n(N − 1)

u∗k, k = 1 . . . N

x∗
k, k = 2 . . . N

PSM
u[k], k = 1..N

x[k], k = 2..N
N + n(N − 1) n(N − 1)

u∗k, k = 1 . . . N

x∗
k, k = 2 . . . N

Differential Games.

In pursuit-evasion, two or more agents select a control which aims at either min-

imizing or maximizing a common performance metric called the value function [9].

More specifically, the value function arises after the successful minimization/max-

imization of the objective cost/payoff function by the players. Here and in other

instances below, it may be more accurate to say min-max the objective cost. In

general, the pursuer aims at minimizing the value function, while the evader aims at

maximizing it. What makes the game differential, is that the dynamics of each of the

agents is defined by a set of governing equations of motion,

ẋ = f(x(t),u(t),v(t), t). (3.28)

The dynamics of a game, eq. (3.28), differs from that of the optimal control problem,

eq. (3.6), in the fact that two controls, u and v, are explicit. This is to emphasize that
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the dynamics are influenced by both players. For the formulation, at a given time

t ∈ [t0, tf ], the pursuer’s admissible control is u(t) ∈ U and the evader’s admissible

control is v(t) ∈ V. Similar to the boundary condition described in optimal control

theory, eq. (3.7), a terminal constraint can be imposed as follows:

h(x(tf ),u(tf ),v(tf ), tf ) = 0, t ∈ [t0, tf ]. (3.29)

Further, the value function of the differential game is

J = Φ(x(tf ),u(tf ),v(t), tf ) +

∫ tf

t0

g(x(t),u(t),v(t), t) dt. (3.30)

It is the goal of the differential game to find the admissible optimal strategies u∗(t) ∈

U and v∗(t) ∈ V for all t ∈ [t0, tf ] such that the value function is a minimax:

J(u∗(t),v(t)) ≤ J(u∗(t),v∗(t)) ≤ J(u(t),v∗(t)). (3.31)

The search for the optimal control for the pursuer and evader such that the value func-

tion as a minimax is conducted. The necessary conditions for the minimax problem

relates to the Hamiltonian in eq. (3.9) just as before,

H (x(t),u(t),v(t),p(t), t) = g(x(t),u(t),v(t), t) + pT (t) [f(x(t),u(t),v(t), t)] .

(3.32)
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Utilizing the Hamiltonian, eq. (3.32), which is explicit in each player’s control, the

necessary conditions for optimality is as follows [157]:

ẋ∗(t) =
∂H

∂p
(x∗(t),u∗(t),v∗(t),p∗(t), t) (3.33)

ṗ∗(t) = −∂H
∂x

(x∗(t),u∗(t),v∗(t),p∗(t), t) (3.34)

0 =
∂H

∂u
(x∗(t),u∗(t),v∗(t),p∗(t), t) (3.35)

0 =
∂H

∂v
(x∗(t),u∗(t),v∗(t),p∗(t), t) (3.36)

or

. (3.37)

The optimal control for the pursuer and the evader are those that drive the Hamilto-

nian to a saddle point where the pursuer minimizes the Hamiltonian and the evader

maximizes it [9]. This optimal solution is commonly referred to as a saddle point strat-

egy. The saddle point strategy explicitly states that the performance of an agent’s

opponent only improves when that agent performs any control which is not optimal.

While the necessary conditions for optimality serve as a means of determining the

optimal state trajectories and strategies of both players, it is common to have difficul-

ties solving the system of equations described in eqs. (3.33) to (3.37). Consequently,

numerical approaches for finding the optimal state and control trajectories are pur-

sued. Uncommon to differential games are solutions found directly using numerical

techniques. Although numeric techniques exist for locating saddle points [158, 16],

the topology of the Hamiltonian and objective cost in the state space is critical for

locating the saddle points. Only by locating the saddle point of the Hamiltonian does

one locate the optimal strategies of the differential game. One alternative to locat-

ing saddle points directly is obtained by transforming the problem of minimax into

that of only minimization (transforming a differential game into an optimal control
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problem). Once the differential game can be reduced to that of an optimal control

problem, an analytic solution may become tractable, or direct methods may be used

to solve them.

Geometric Methods for Solving Differential Games.

One popular method of transforming a differential game into an optimal control

problem is by utilizing geometric tools such as Apollonius Circle [159, 68, 122, 44,

9, 67, 120, 160, 101]. When considering simple motion, Apollonius Circle solves for

the optimal headings which result in a min-time interception of the slower evader

by a faster pursuer. Apollonius Circle describes the locus of points for all possible

interceptions depending upon the heading of the slower evader. Because the optimal

trajectory of the faster pursuer is a direct mapping through the Apollonius Circle,

from the heading of the slower evader, the optimization of two variables (pursuer and

evader headings) into an optimization of only one (evader heading) can be conducted

using the geometry of Apollonius. The Apollonius Circle for a fast pursuer and slow

evader can be seen below in Figure 11.

O E P

I

vE vP

x̂

ψE

ψP

Figure 11. The min-time interception of an evader (E) by a faster pursuer(P) illustrated
by the Apollonius Circle interception geometry.

In order to construct an Apollonius Circle, define the speed ratio, µ = vE/vP .
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Then, the offset of the Origin, O, from the evader, E is the following:

OE =
µ2EP

1− µ2
(3.38)

Moreover, the radius of the Apollonius Circle is:

R = OI =
µEP

1− µ2
(3.39)

Called Foci, the initial conditions of the evader, E, and the pursuer, P , along

with their relative velocities, µ, can fully define the Apollonius Circle as described in

eqs. (3.38) and (3.39).

3.4 HVAA Defense Scenarios

This section contains a description of both kinetic and energy-based defense of a

HVAA against an incoming threat. In Table 1, six different engagements are described

which are considered in this work. The research scenarios detailed in this section

outline how the kinetic and directed energy defense scenarios may be posed as either

optimal control problems or differential games. Special attention is given to defining

the engagements and how to pose and solve these problems as differential games or

optimal control problems.

Notation.

Throughout this work, the states and control are vector valued functions explicit

in time and denoted x(t) and u(t) respectively. For the sake of compactness, the

real-valued n-dimensional state and m-dimensional control at a single instant of time

are denoted as x ∈ Rn and u ∈ Rm, respectively. The same notation is used for

a single state; for example, xi represents the x-location for an agent i for a single
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instant of time.

Kinetic Defense of a Maneuvering HVAA in 2-D.

The kinetic defense of a maneuvering HVAA in 2-D is outlined in Scenario 1 of

Table 1. In this scenario, the pursuer and defender are assumed to be guided by the

proportional navigation guidance law, and the evader maneuvers to escape its capture

by the pursuer while assisting the defender in capturing the pursuer.

The dynamics of the evader follow the 2-D vehicle motion model as described in

eq. (3.1). The complete state of the optimization problem at an instant in time in the

2-D Cartesian plane is defined as xT = [xD, yD, ψD, xP , yP , ψP , xE, yE, ψE] ∈ R9. The

pursuer’s heading rate and the defender’s heading rate is selected to be proportional

to the line of sight rate to the evader and the pursuer, respectively. The evader’s

control is it’s heading rate, uE = {ψ̇E}. The nonlinear equations of motion in the

2-D Cartesian plane, ẋ = f(x,uE), are defined by a system of nonlinear differential

equations,

ẋP = vP cosψP , ẋE = vE cosψE, ẋD = vD cosψD

ẏP = vP sinψP , ẏE = vE sinψE, ẏD = vD sinψD

ψ̇P = NP λ̇PE, ψ̇E = u(t), ψ̇D = NDλ̇DP ,

(3.40)

where the proportional navigation constants for the pursuer and defender are NP and

ND respectively. Additionally, the line of sight angles from the pursuer to the evader

is λPE and the line of sight angle from the defender to the pursuer is λDP . Moreover,

the control of the evader is bounded and therefore the admissible control of the evader

is bounded by a turning rate constraint ωmax, namely,

u(t) ∈ [−ωmax, ωmax] ∀ t ∈ [t0, tf ]. (3.41)
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The initial state of the engagement scenario is defined as

xT (t0) = xT0 = [xD0 , yD0 , ψD0 , xP0 , yP0 , ψP0 , xE0 , yE0 , ψE0 ]. (3.42)

It is also assumed that the engagement scenarios being solved belong to the escape

set, x ∈ Re ⊂ R9. The escape set is defined as the state trajectories wherein the

defender captures the pursuer and the evader escapes capture by the pursuer; this

occurs at the terminal time, tf , and is defined as follows:

Re = {x|(xP − xD)2 + (yP − yD)2 = 0, (xP − xE)2 + (yP − yE)2 > 0, t = tf}. (3.43)

The objective is for the evader to maneuver so as to minimize the defender-pursuer

range as well as maximize the pursuer-evader range at final time: the instant in time

when the defender captures the pursuer. The pursuer-evader range and the defender-

pursuer range are denoted by RPE and RDP , respectively. Formulating the objective

in terms of closure rates,

min
u

J =

∫ tf

t0

(
−ṘPE + ṘDP

)
dt

= RPE(t0)−RPE(tf ) +RDP (tf )−RDP (t0)

(3.44)

Because the initial conditions are independent of the input, u, a cost function is

desired which equivalently minimizes RDP (tf ) and maximizes RPE(tf ), namely,

min
u

J = −RPE(tf ) +RDP (tf ). (3.45)
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Kinetic Defense of a Non-Maneuvering HVAA in 2-D.

The kinetic defense of a non-maneuvering HVAA in 2-D is outlined in Scenario 2

of Table 1. In this scenario, a pursuer and defender play a differential game. In the

game, the pursuer strives to minimize his distance from the evader at the instant in

time that the pursuer is captured by the defender while the defender aims to maximize

the very same distance.

The dynamics of each agent follows the simple motion model in 2-D from eq. (3.2).

The complete state of the game at an instant in time is defined by xT = [xE, yE, xP ,

yP , xD, yD] ∈ R6. The pursuer’s control variable is its instantaneous heading angle,

uP = {ψP}. The defender’s control variable is also its instantaneous heading angle,

uD = {ψD}. The nonlinear dynamics of the game, ẋ = f(x,uP ,uD), are defined by a

system of nonlinear ordinary differential equations,

ẋP = vP cosψP , ẋE = vE cosψE, ẋD = vD cosψD

ẏP = vP sinψP , ẏE = vE sinψE, ẏD = vD sinψD.

(3.46)

The admissible controls of the pursuer and the defender, are given by ψP ∈

[−π, π] ∀ t ∈ [t0, tf ] and ψD ∈ [−π, π] ∀ t ∈ [t0, tf ], respectively. It is assumed

that the evader is non-maneuverable, and therefore the evader’s heading, ψE, is con-

stant. The evader’s heading is also assumed to be known by both the defender (D)

and pursuer (P ).

The initial state of the game is defined as

xT (t0) = xT0 = [xP0 , yP0 , xE0 , yE0 , xD0 , yD0 ]. (3.47)

In this scenario, point capture is considered. This means that the P−D separation

has to become zero at some time tf for the defender to intercept the pursuer. It is
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also assumed that the state of the system belongs to the escape set, denoted by

x ∈ Re ⊂ R6 and defined in eq. (3.43). In other words, given the speed ratios, the

evader heading, and initial conditions (x0), there exists a strategy for D to intercept

P before the latter captures E. The game of capture, that is, the game when the

state belongs to the complement of Re is not addressed in this dissertation.

The termination set, C , which represents interception of the pursuer by the de-

fender (and the evader escapes) is defined as

C =
{
x |
√

(xP − xD)2 + (yP − yD)2 = 0, t = tf
}
. (3.48)

The terminal time, tf , is defined as the first time instant when the state of the system

satisfies eq. (3.48), at which time the terminal state is

xT (tf ) = xTf = [xPf
, yPf

, xEf
, yEf

, xDf
, yDf

]. (3.49)

The objective cost is the separation distance between the pursuer and the evader at

the instant in time that the defender captures the pursuer, tf , and is described as

follows:

J(uP (t),uD(t); x0) = Φ(xf ) =
√

(xPf
− xEf

)2 + (yPf
− yEf

)2. (3.50)

The value function is subject to eqs. (3.46) to (3.48) and depends only on the terminal

state and is therefore of the Mayer form. Its value is given by

V (x0) = min
uP (·)

max
uD(·)

J(uP (·),uD(·); x0). (3.51)
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Kinetic Defense of a Non-Maneuvering HVAA in 3-D.

The kinetic defense of a non-maneuvering HVAA in 3-D is outlined in Scenario 3

of Table 1. In this scenario, a pursuer and defender play the same differential game as

described by Scenario 2, except that the agents move in 3-D Cartesian space rather

than the 2-D Cartesian plane.

The dynamics of each agent follows the simple motion model in 3-D from eq. (3.4).

The complete state of the game is defined by xT = [xP , yP , zP , xE, yE, zE, xD, yD, zD] ∈

R9. The pursuer’s control is is composed of its instantaneous heading angle and

flight path angle, uP = {ψP , γP}. The defender’s control is also its instantaneous

heading and flight path angle, uD = {ψD, γD}. The nonlinear dynamics of the game,

ẋ = f(x,uP ,uD), are defined by a system of nonlinear ordinary differential equations,

ẋP = vP cos γP cosψP , ẋE = vE cos γE cosψE, ẋD = vD cos γD cosψD

ẏP = vP cos γP sinψP , ẏE = vE cos γE sinψE, ẏD = vD cos γD sinψD

żP = vP sin γP , żE = vE sin γE, żD = vD sin γD.

(3.52)

The admissible controls of the pursuer and the defender for each instance of time

are given by ψP , ψD ∈ [−π, π] and γP , γD ∈ [−π, π], for all time, t ∈ [t0, tf ]. It is

assumed that the evader is non-maneuverable, and therefore the evader’s heading,

ψE, and flight path angle, γE, remain constant. The evader’s heading is also assumed

to be known by both the defender (D) and pursuer (P ).

The initial state of the game is defined as:

xT (t0) = xT0 = [xP0 , yP0 , zP0 , xE0 , yE0 , zE0 , xD0 , yD0 , zD0 ]. (3.53)

Just as in the 2-D case, point-capture is considered; this means that the P − D

range goes to zero in order for the defender to intercept the pursuer. It is also assumed
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that the state of the system belongs to the escape set, denoted by x ∈ Re ⊂ R9. The

termination set, C , which represents the interception of the pursuer by the defender

(and the evader escapes the pursuer) is defined as

C =
{
x
∣∣(xP − xD)2 + (yP − yD)2 + (zP − zD)2 = 0, t = tf

}
. (3.54)

The terminal time, tf is the instant in time where the state reaches the terminal, C ,

specified in eq. (3.54). The terminal state is

xT (tf ) = xTf = [xPf
, yPf

, zPf
, xEf

, yEf
, zEf

, xDf
, yDf

, zDf
]. (3.55)

The objective cost is

J(uP ,uD,x0) = Φ(xf ) = (xPf
− xEf

)2 + (yPf
− yEf

)2 + (zPf
− zEf

)2. (3.56)

The objective cost depends only upon the terminal state of the Active Target Defense

Differential Game (ATDDG); its value function is

V (x0) = min
uP (·)

max
uD(·)

J(uP ,uD,x0). (3.57)

Maximum Exposure of a Non-Maneuvering Pursuer in 2-D.

The directed energy defense of a non-maneuvering HVAA in 2-D is outlined in

Scenario 4 of Table 1. In the scenario, the defender aims to maximally expose the

pursuer which, in-turn, strives to capture the evader in minimum time. Consider

first, the optimal control problem for the defender to maximally expose a faster, non-

maneuvering pursuer, vP > vD. The constant velocities of the defender (D) and

the pursuer (P ) are defined as vD and vP respectively. The complete state of the
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two-agent scenario is xT = [xD, yD, xP , yP ] ∈ R4, where (xD, yD) and (xP , yP ) are the

positions of D and P respectively, for any time t ∈ [t0, tf ]. The defender’s control

variable is the instantaneous heading angle uD = {ψD}. The equations of motion for

the two-agent scenario follow the simple motion model in eq. (3.2) and are as follows:

ẋD = vD cosψD, ẋP = vP cosψP ,

ẏD = vD sinψD, ẏP = vP sinψP .

(3.58)

The course of the non-maneuvering pursuer, ψP , is assumed to be constant and known

by the defender. The control of the defender is its heading: ψD ∈ [0, 2π). At the onset,

the pursuer is considered to be a distance RD (the WEZ range) from the defender;

at time zero (t0), the initial state x(t0) ≡ x0 ∈ I , where

I = {x|(xP − xD)2 + (yP − yD)2 −R2
D = 0, t = t0}. (3.59)

Also, the defender is at an aspect angle θP from the pursuer, pictorially shown in

Figure 12. The complementary angle to the aspect angle is the line-of-sight angle,

λPD, also shown in Figure 12. This circular WEZ model assumes that exposure is

independent of the defender’s heading and is range-limited. The WEZ is assumed to

have a fixed radius, RD. In this section, the time-optimal strategy of the defender is

found which maximizes the time the fast pursuer is exposed.
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Figure 12. The initial engagement geometry consists of a defender with a circular WEZ
in contact with a faster non-maneuvering pursuer.

Since the pursuer is faster than the defender, escape from the circular WEZ is

guaranteed. Moreover, the termination set which represents the escape of the pursuer

from the WEZ is defined as follows:

C = {x|(xD − xP )2 + (yD − yP )2 −R2
D > 0, t = tf}. (3.60)

Exposure of the pursuer by the defender is made so long as the range between the

pursuer and defender is less than or equal to the WEZ radius, RD. The terminal

time, tf , is defined as the instant in time where the state satisfies eq. (3.60); at

which time, the terminal state is: xT (tf ) = [xDf
, yDf

, xPf
, yPf

]. Since the objective

is to maximize the time by which the pursuer remains within the circular WEZ, the

max-time objective cost is

min
ψD

J =

∫ tf

t0

−1 dt . (3.61)

The optimal exposure time is t∗f = min J subject to the termination set in eq. (3.60).

The goal is to find the optimal defender’s heading time history which minimizes the

objective cost in eq. (3.61), namely, ψ∗D(t) = argminψD
J .
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Directed Energy Defense of a Non-Maneuvering HVAA in 2-D.

The directed energy defense of a non-maneuvering HVAA is described in Scenario

5 of Table 1. In this HVAA defense scenario, the pursuer aims to capture the evader in

minimum time while the defender aims to maximally continuously expose the pursuer.

The HVAA (evader) is non-maneuvering and as a result, the optimal strategies for

the defender and the pursuer are of interest.

They dynamics of each of the three agents: pursuer, evader, and defender, follow

the 2-D simple motion model as described in eq. (3.2). The pursuer, defender, and

defender have constant velocity vP , vE, and vD respectively. The complete state of

the engagement is xT = [xP , yP , xE, yE, xD, yD] ∈ R6, where (xP , yP ), (xE, yE), and

(xD, yD) are the positions of P , E, and D respectively. Also define ψP , ψE, and ψD as

the instantaneous headings of P , E, and D respectively. Consequently, the equations

of motion for the three-agent scenario are:

ẋP = vP cosψP , ẋE = vE cosψE, ẋD = vD cosψD,

ẏP = vP sinψP , ẏE = vE sinψE, ẏD = vD sinψD.

(3.62)

The non-maneuvering evader is on a fixed course and its position and heading

are known by the pursuer. The pursuer, knowing the state of the evader, wishes to

select a heading which intercepts E in minimum time. Capture is achieved when

P and E are coincident (i.e., point-capture). During this pursuit, the defender has

a circular WEZ with radius RD, and it desires to keep the pursuer inside its WEZ

for the maximum possible continuous time; that is, that P remains inside the WEZ

without interruption.

The initial conditions for the scenario are that P and E are located in arbitrary

locations in the 2-D Cartesian plane; while D is located a distance RD from P . At
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time zero (t0), the initial state x(t0) ≡ x0 ∈ I , where

I = {x|(xP − xD)2 + (yP − yD)2 −R2
D = 0, t = t0}. (3.63)

The termination set which represents the point-capture of the evader by the pur-

suer is defined as

CA = {x|(xP − xE)2 + (yP − yE)2 = 0, t = tgo}. (3.64)

The instant in time where the state satisfies eq. (3.64) is defined as tgo; also called

the time-to-go. The termination set which represents the escape of the pursuer from

the defender (the P-D range is larger than the WEZ range) is

CB = {x|(xP − xD)2 + (yP − yD)2 −R2
D > 0, t = texp}. (3.65)

The instant in time where the state satisfies eq. (3.65) is defined as texp; also

called the exposure time. Because of the initial conditions as defined by eq. (3.63),

the exposure time is the amount of time that passes until the pursuer escapes the

defender’s WEZ. The termination set of the entire scenario is CA, that is, the pursuer

captures the evader regardless if the pursuer has escaped the WEZ of the defender

prior to capturing the evader or if the pursuer has captured the evader before escaping

the defender’s WEZ. One objective of this section is to analyze the optimal strategy of

the defender when texp is either less than, greater than, or equal to tgo. Also provided

are the conditions when texp = 0, that is, that the defender can not expose the pursuer

at all no matter the strategy of the defender.

The objective of the pursuer is to capture the evader in minimum time – to make
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tgo a minimum. The objective cost of the pursuer is

JA(x0;ψP (·)) =

∫ tgo

t0

1 dt = tgo. (3.66)

The optimal time-to-go is t∗go = min JA subject to the termination set in eq. (3.64)

– the pursuer and evader are collocated at final time. The goal for the pursuer is to

find the optimal heading which minimizes the objective cost in eq. (3.66), namely,

ψ∗P (t) = argmin
ψP

JA. (3.67)

The objective of the defender is to keep the pursuer inside the WEZ for as long

as possible. Since the pursuer is faster than the defender, the pursuer’s escape is

guaranteed for a finite WEZ range, RD. The objective cost of the defender is the

same as eq. (3.61) in Section 5.1 and is as follows:

JB (x0;ψD(·)) =

∫ tf

t0

−1 dt = −tf . (3.68)

The final time, tf = min(texp, tgo). This optimization problem ends when the states

of the scenario reaches C = CA ∪ CB. The optimal exposure time is t∗exp = min JB

subject to the termination set in eq. (3.65) – the pursuer is no longer contained inside

the WEZ of the defender. The goal is to find the optimal defender’s heading which

minimizes the objective cost in eq. (3.68), namely,

ψ∗D(t) = argmin
ψD

JB. (3.69)
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Maximum Exposure of a Non-Maneuvering Pursuer in 3-D.

The directed energy defense of a non-maneuvering HVAA in 3-D is outlined in

Scenario 6 of Table 1. In this scenario, a defender aims to maximally expose a non-

maneuvering pursuer in the 3-D Cartesian space. This scenario is a direct extension

of Scenario 4 to the 3-D Cartesian space. Define the constant speed of the defender

(D) and the pursuer (P ), as vD and vP respectively. The state space is composed of

the position of the defender and the pursuer whose locations in 3-D Cartesian space

are (xD, yD, zD)T and (xP , yP , zP )T respectively. The complete state of the exposure

scenario, x, is defined as follows:

xT = [xD, yD, zD, xP , yP , zP ] ∈ R6. (3.70)

The defender’s control is composed of the instantaneous heading angle, ψD, and flight

path angle, γD. The control vector, u, is defined as follows:

uT = [ψD, γD] ∈ R2. (3.71)

In the model, it is assumed that the position and course of the pursuer is constant

and known by the defender. The dynamics for the pursuer and defender are

ẋP = vP cos γP cosψP , ẋD = vD cos γD cosψD

ẏP = vP cos γP sinψP , ẏD = vD cos γD sinψD

żP = vP sin γP , żD = vD sin γD.

(3.72)

As described in eq. (3.72), the course of the pursuer is defined by the pursuer’s

heading, ψP , and flight path angle, γP . The control of the defender is the heading,

ψD ∈ [0, 2π) ∀ t ∈ [t0, tf ], and flight path angle, γD ∈ [−π, π] ∀ t ∈ [t0, tf ]. At the
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onset, the pursuer is a distance RD from the defender, DP = RD|t = t0. Aat initial

time (t0), the initial state x(t0) ≡ x0 ∈ I , where

I = {x|(xP − xD)2 + (yP − yD)2 + (zP − zD)2 −R2
D = 0, t = t0}. (3.73)

Also, the defender is located at an azimuth, φ, and angle relative to the z-axis, θ,

with respect to the pursuer’s position at the instant in time the scenario begins. The

coordinates, angles, and initial conditions are shown in Figure 13. This spherical

model assumes that exposure is guaranteed so long as the pursuer is within a fixed

range of the defender.

P

D

vP

vD

ẑ

ŷ

x̂

ŷ

x̂

φ

θ
ψD

γD

RD

Figure 13. The initial geometry of the directed engery defense scenario occurs when
the defender, with spherical WEZ, makes contact with the faster pursuer.

Since the pursuer is faster than the defender, escape from the spherical WEZ is

guaranteed. Moreover, the termination set which represents the escape of the pursuer

from the defender’s WEZ is defined as follows:

C = {x|(xD − xP )2 + (yD − yP )2 + (zD − zP )2 −R2
D > 0 = tf}. (3.74)
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The terminal time, tf , is defined as the instant in time where the state and time

satisfies eq. (3.74); at which time, the terminal state is:

xT (tf ) = [xDf
, yDf

, zDf
, xPf

, yPf
, zPf

].

Since the objective is to maximize the time by which the pursuer remains within the

circular WEZ, the max-time objective cost is as follows:

J =

∫ tf

0

−1 dt = −tf . (3.75)

The optimal exposure time is t∗f = −min J subject to the termination set in

eq. (3.74). The goal is to find the optimal defender’s heading and flight path angle

time histories which minimize the objective cost in eq. (3.75), namely, u∗ = argminu J .

3.5 Summary

In order to investigate the optimal strategies for the defense of a HVAA, the equa-

tions of motion in 2-D and 3-D have been described to represent aircraft engaged in

pursuit, evasion, and defense. These simple motion models can be used to evaluate

aircraft motion through navigational commands. Using these models, both optimal

control problems and differential games can be formulated. A brief overview of the

indirect method and direct method of computing optimal control was presented fol-

lowed by a brief overview of differential games. Using these methods, this work aims

at proposing and solving various aerial engagements to investigate optimal defensive

strategies that protect a HVAA from a single threat. After the discussion on differ-

ential games and optimal control, Apollonius Circle was presented as a method for

solving a pursuit-evasion differential game. Next, the generic HVAA defense differ-

ential games were described. In the kinetic defense differential game, the defender
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aims at capturing the pursuer before it can capture the evader. In the directed en-

ergy defense differential game, the defender aims at exposing the pursuer for as long

as possible before the pursuer captures the evader. Finally, the solution approach

for solving each research task is presented in brief. The results of this work begin

with Chapter IV where the kinetic defense is investigated. Also, in Chapter IV, four

different direct optimal control methods are compared and contrasted for solving the

optimal strategies for the kinetic defense of a HVAA against an incoming threat when

the evader can maneuver. Next, in Chapter V directed energy defense is provided by

maximizing the time that a pursuer is within a specified range of the defender. These

chapters address the desired research tasks for this dissertation.
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IV. Kinetic Defense of a HVAA

Reflections should be bestowed until the
instances relevant to practice are delineated.
With a judicial amount of reason and trial and
error, an answer should be attainable

— Rufus Isaacs, Rand Report RM-1391-PR

An engagement scenario involving the kinetic defense of a HVAA is investigated in

this chapter. In this defense scenario, an attacking missile or adversary (pursuer) aims

to capture the HVAA (evader) which is teamed with a cooperative missile (defender).

A successful kinetic defense occurs when the defender captures the pursuer before

the pursuer captures the evader. In this work, only scenarios where the defender

provides a successful defense of the evader are considered. This chapter is divided

into four parts: kinetic defense of a non-maneuvering HVAA in 2-D, kinetic defense

of a non-maneuvering HVAA in 3-D, kinetic defense of a maneuvering HVAA in 2-D,

and a direct methods comparison for HVAA defense.

4.1 Kinetic Defense of a Non-Maneuvering HVAA in 2-D

An engagement scenario involving the defense of a non-maneuverable HVAA in

the 2-D Cartesian plane is investigated in this section. In this scenario, an incoming

threat (pursuer) pursues the non-maneuverable HVAA (evader) which is teamed with

a cooperative missile (defender). Because the evader is non-maneuvering, the pursuer

and defender play a simple game: The pursuer aims at minimizing the terminal

distance with respect to the evader while the defender aims to maximize the same

terminal distance. Termination of the game is defined as the time when the defender

intercepts the pursuer, i.e. the pursuer and defender are collocated at final time.

The saddle point state feedback strategies for the pursuer and defender are presented
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in this section and the optimal saddle point strategies are compared to a heuristic

approach found in literature [161]. An example shows that better performance is

obtained by implementing the saddle point strategies derived herein compared to the

heuristic approach.

In the defense differential game of a non-maneuvering HVAA, the speeds of the

pursuer (P ), evader (E), and defender (D) are constant and denoted by vP , vE, and

vD, respectively. The agents are modeled having simple 2-D motion as commonly

found in games of Isaacs [9].

Differential Game.

Described in Section 3.4, a differential game is developed between the pursuer

and the defender concerning the defense of a non-maneuvering HVAA. From the

problem definition, the motion of the three agents are defined as a set of ordinary

differential equations as shown in eq. (3.46). Also, the objective cost is defined in

eq. (3.50) and the value function of the differential game is defined in eq. (3.51).

Define the speed ratio problem parameter µ = vE/vP . In general, the pursuer is

faster than the evader, so 0 < µ < 1. Also, define the speed ratio α = vD/vP . When

the defender is faster than the pursuer, α > 1. The speed ratios µ and α and the

evader’s constant heading ψE are the problem parameters. Using the aforementioned

equations of motion in eq. (3.46) as well as the speed ratios α and µ, the dynamics

may be non-dimensionalized with respect to time and are as follows:

ẋP = cosψP , ẋE = µ cosψE, ẋD = α cosψD,

ẏP = sinψP , ẏE = µ sinψE, ẏD = α sinψD.

(4.1)

Note, that making such a transformation to non-dimensional variables reduces the

number of parameters used in derivation and generalizes solutions through speed
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ratios rather than requiring the use of speeds explicitly. This is an approach that is

leveraged throughout this dissertation. It amounts to having one of the agent’s (in

this case the pursuer) have speed of unity.

There exists one costate for each state, therefore the the costate vector is pT =

[pxP , pyP , pxE , pyE , pxD , pyD ] ∈ R6, and the Hamiltonian of the differential game, in this

case, is the inner product of the nonlinear dynamics from eq. (3.46) and the costates,

p. The Hamiltonian is

H = pxP cosψP + pyP sinψP + αpxD cosψD

+ αpyD sinψD + µpxE cosψE + µpyE sinψE.

(4.2)

where the speeds have been normalized using the pursuer’s speed, vP , as a reference.

Theorem 1. Consider the defense differential game of non-maneuverable aircraft

described by eqs. (3.46) to (3.51). The headings of the pursuer and the defender are

constant under optimal play and their trajectories are straight lines.

Proof. By differentiating the Hamiltonian in eq. (4.2) with respect to ψP and setting

the derivative equal to 0, the optimal heading, ψ∗P is

∂H

∂ψP
= −pxP sinψP + pyP cosψP = 0. (4.3)

Using the trigonometric identity cos2 ψP + sin2 ψP = 1, eq. (4.3) can be written as

follows:

cos2 ψP =
p2
xP

p2
xP

+ p2
yP

, sin2 ψP =
p2
yP

p2
xP

+ p2
yP

. (4.4)

The second partial derivative ∂2H
∂ψ2

P
is computed in order to determine wether the

positive or the negative roots of eq. (4.4) are indeed the optimal pursuer headings.
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Doing so, the following is obtained:

∂2H

∂ψ2
P

= −pxP cosψP − pyP sinψP . (4.5)

Substituting the obtained heading

cosψ∗P = − pxP√
p2
xP

+ p2
yP

, sinψ∗P = − pyP√
p2
xP

+ p2
yP

. (4.6)

into eq. (4.5), the second partial, ∂
2H
∂ψ2

P
> 0. Therefore, the optimal heading in eq. (4.6)

minimizes H and, therefore, it minimizes the terminal distance between P and E.

Similarly, by computing ∂H
∂ψD

= 0 the defender’s optimal heading which maximizes

the terminal distance between P and E is obtained and is as follows:

cosψ∗D=
pxD√

p2
xD

+p2
yD

, sinψ∗D =
pyD√

p2
xD

+p2
yD

. (4.7)

Additionally, the costate dynamics are obtained by evaluating−∂H /∂x and therefore

ṗxP = ṗyP = ṗxD = ṗyD = ṗxE = ṗyE = 0; hence, all costates are constant and

therefore ψ∗P and ψ∗D are constant. Consequently, the optimal trajectories are straight

lines. �

Given from Theorem 1, the optimal trajectories are straight lines. In such an

instance, the Apollonius Circle is a relevant tool to determine the optimal headings

of the agents P and D [9]. In general, a circle can be defined as the locus of points,

I, with a constant ratio of distances to two given points which are called foci. In this

scenario, the foci are P and D, i.e. β = PI
DI

is constant. When the circle is defined

using the constant ratio of distances just described, it is commonly referred to as

an Apollonius Circle and it represents an important tool to analyze pursuit-evasion

problems. Consider agents P and D traveling in straight lines and at constant speeds
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vP and vD, respectively. The constant parameter β = vP
vD

= 1
α

is the speed ratio

parameter. In this scenario, D strives to intercept P . D intercepts P at a point

I = (xI , yI) on the Apollonius Circle and at that point, the distance traveled by P is

equal to β multiplied by the distance traveled by D. Hence, an Apollonius Circle can

be constructed based on the distance between P and D and also based on the speed

ratio parameter β. The center of the circle is denoted by O where the points P , D,

and O are collinear as illustrated in Figure 14.

Figure 14. The Apollonius Circle (P,D) with the interception point (in red) located in
the global frame.

Without loss of generality, consider the relative coordinate frame illustrated in

Figure 15; where the points P and D denote the positions of the pursuer and the

defender, respectively. The x′-axis of this frame goes from P to D which results in

yP = yD = 0. The origin of the coordinate frame is the center of the PD-Apollonius

Circle. This circle is characterized as follows:
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Figure 15. The Apollonius Circlex (P,D) with the interception point (in red) located
in the local frame aligned with P and D.

Let λPD = tan−1
(
yD−yP
xD−xP

)
be the line-of-sight (LOS) angle from P to D. The

headings of the players in the relative frame are given by θP = ψP − λPD and θD =

π + λPD − ψD. The constant heading of the evader is θE = ψE − λPD. Further,

let r1 denote the distance between P , the pursuer position, and O, the center of the

Apollonius Circle. The distance r1 is given by

r1 =
β2d

1− β2
, (4.8)

where d =
√

(xP − xD)2 + (yP − yD)2 is the distance between agents P and D. Also,

let r2 be the radius of the Apollonius Circle. Then, r2 is given by

r2 =
βd

1− β2
. (4.9)

The pursuer strives to minimize the terminal distance between itself and the evader

which is traveling both at constant speed, vE, and at constant heading, ψE. The points

E and E ′ represent the initial and terminal positions of the evader, respectively. The

point I is the final position of the pursuer and also the final position of the defender

since point capture is considered.

Using the Apollonius Circle between P and D, the optimization of two variables
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can be transformed into an optimization problem of only one. The pursuer aims at

a point on the Apollonius Circle, where it will be intercepted by the defender, which

minimizes the terminal PE distance. The optimal interception point is calculated as

follows.

Theorem 2. Assume that x ∈ Re, then, the optimal interception point in the relative

coordinate frame is given by I∗ = (r2 cos η∗, r2 sin η∗) where η∗ is such that ν∗ = eiη
∗

=

cos η∗ + i sin η∗ and ν∗ is the solution of the polynomial equation

(
3r1r2

2p

)2

ν8 + b7ν
7 + b6ν

6 + b5ν
5 + b4ν

4 + b3ν
3 + b2ν

2 + b1ν +
(

3
2
r1r2p

)2
= 0 (4.10)

which minimizes the function:

J(ν) =r2
2 + r2

7 + µ2(r2
1 + r2

2)

− r2(µ2r1 + r7m
−1)ν − r2(µ2r1 + r7m)ν−1

+ µ[r7Q− r2(p−1ν + pν−1)]r3(ν), (4.11)

where

r3(ν) =
√
r2

1 + r2
2 − r1r2(ν + ν−1) (4.12)
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and ν = eiη. The polynomial coefficients are

b7 = r1r2[(µr1 + r7
µm

)2 − 3
p
( r1r7Q

2
+

r21+r22
p

)]

b6 = ( r1r7Q
2

+
r21+r22
p

)2 − 3
2
r2

1r
2
2(1− 1

p2
)

−(r2
1 + r2

2)(µr1 + r7
µm

)2

b5 = r1r2[(r2
1 + r2

2)(4− 1
p2

) + r1r7Q(1
p

+ 1
2
p)− µ2r2

1

−2r1r7m+
r27
µ2

( 1
m2 − 2)]

b4 =
r21r

2
2

4
(p2+ 1

p2
−20)

+2(r2
1 +r2

2)(µ2r2
1 +r1r7(m+ 1

m
)+

r27
µ2

)

−2( r1r7Q
2

+
r21+r22
p

)( r1r7Q
2

+p(r2
1 +r2

2))

b3 = r1r2[(r2
1 + r2

2)(4− p2) + r1r7Q(p+ 1
2p

)− µ2r2
1

− 2
m
r1r7 +

r27
µ2

(m2 − 2)]

b2 = ( r1r7Q
2

+ p(r2
1 + r2

2))2 + 3
2
r2

1r
2
2(p2 − 1)

−(r2
1 + r2

2)(µr1 + r7m
µ

)2

b1 = r1r2[(µr1 + r7m
µ

)2 − 3p( r1r7Q
2

+ p(r2
1 + r2

2))]

(4.13)

where the parameters p = eiθ5, m = eiθ7, and Q = pm−1 + p−1m.

Proof. Considering the geometry in Figure 15, one may be able to derive a kinematic

linkage which represents the engagement scenario. The Apollonius Circle can be

represented by a crank slider mechanism as seen in Figure 16. This geometry can be

described as a linkage of fixed length r2 = OA′ that rotates about the origin O. As

this linkage rotates about the origin, the linkage length r3 = AA′ can vary; however,

the linkage is anchored and free to rotate about point P which is co-linear with the

x′-axis, i.e. OA lies on the x′-axis. In this initial problem statement, the lengths

r1 and r2 are fixed. r3 is free to change in length and to rotate about P . One can

visualize this motion quite easily, and the following kinematic synthesis shows the

relation between the rational angle η, the length of the slider, r3, and its angle with
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the x′-axis, θP .

Figure 16. Apollonius Circle as Linkage Geometry

The first step in solving the relation between the free variable of the linkage is to

start with the closure equation,

~r2 = ~r1 + ~r3. (4.14)

By expanding eq. (4.14) to include the Cartesian unit vectors: î and ĵ, the following

is obtained:

|~r2| cos(η)̂i+ |~r2| sin(η)ĵ = |~r1 |̂i+ |~r3| cos(θP )̂i+ |~r3| sin(θP )ĵ. (4.15)

Using the following shorthand notation,

|~ri| = ri ∀ i = {1, 2, · · · , n},

cos(η) = cη, sin(η) = sη,

cos(θP ) = cθP , sin(θP ) = sθP ,

cos(θE) = cθE , sin(θE) = sθE ,

(4.16)

the linkage synthesis carried out becomes more compact. The expanded closure equa-

88



tion in eq. (4.15) can be re-written as follows:

r2cη î+ r2sη ĵ = r1î+ r3cθP î+ r3sθP ĵ. (4.17)

Breaking eq. (4.17) into the x and y components and by isolating the slider, r3, to

the left hand side, squaring both sides, then summing both equations, the unknown

angle θP can be eliminated from the equation. The slider length as a function of η is

as follows:

r2
3 = r2

2 + r2
1 − 2r1r2cη. (4.18)

Now that the slider lengths are in terms of known variables, the relation of the angles

θP and η as a function of eq. (4.17): sθP = r2sη/r3 can be obtained.

Next, consider the entire kinematic rejoin geometry as seen in Figure 17. The

Figure 17. The geometry which represents the kinetic defense of a non-maneuvering
evader in 2-D can be represented as a multi-linkage system composed of fixed linkages,
sliders, and pin-joints as shown.

previous analysis is repeated beginning with the loop closure equation:

~r2 + ~r4 = ~r7 + ~r5. (4.19)
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Expanding eq. (4.19) into x and y Cartesian unit vectors and separating them into

component equations, the following is obtained:

r2cη + r4c4 = r7c7 + r5cθE , (4.20)

r2sη + r4s4 = r7s7 + r5sθE . (4.21)

The objective is to obtain the angle η which minimizes the distance r4. This is ac-

complished by first eliminating the unknown angle θ4 from the component equations.

Much like before, r4 is isolated on the left hand side of the equals sign, and therefore

r4c4 = r7c7 + r5cθE − r2cη, (4.22)

r4s4 = r7s7 + r5sθE − r2sη. (4.23)

Squaring both sides and summing the two resulting equations,

r2
4 =r2

7 + r2
5 + r2

2 − 2r2r5(cηcθE + sηsθE)

− 2r2r7(cηc7 + sηs7) + 2r5r7(cθEc7 + sθEs7).

(4.24)

Next, substitute the relationship between the linkage lengths r5 and r3. For this

problem, recall r5 and r3 have a linear relationship by a positive definite constant µ,

such that r5 = µr3. Using this relation in eq. (4.24) yields

r2
4 = r2

2 + µ2r2
3 + r2

7 − 2µr2r3(cηcθE + sηsθE)

− 2r2r7(cηc7 + sηs7) + 2µr3r7(cθEc7 + sθEs7).

(4.25)

Since it is the goal to minimize the linkage length r4 one recognizes that the mini-

mization of r4 is the same as a minimization of r2
4. To perform the minimization, the
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cost/payoff can be written as follows:

J = r2
2 + r2

7 + µ2r2
3 − 2µr2 cos(η − θ5)r3

− 2r2r7 cos(η − θ7) + 2µr7 cos(θ5 − θ7)r3,
(4.26)

where r2, r7, θ5, θ7 are constant and only r3 is a function of the angle η. Taking the

square root of eq. (4.18),

r3 =
√
r2

1 + r2
2 − 2r1r2 cos η. (4.27)

From eq. (4.27) and the identity cos η = 1
2
(eiη + e−iη), r3 can be written in terms of

ν = eiη = cos η+ i sin η as it is shown in eq. (4.12). Further, eq. (4.26) can be written

as a function of ν in the following form:

J =r2
2 + r2

7 + µ2(r2
1 + r2

2)

− r2(µ2r1 + r7m
−1)ν − r2(µ2r1 + r7m)ν−1

+ µ[r7Q− r2(p−1ν + pν−1)]
√
r2

1 + r2
2 − r1r2(ν + ν−1).

(4.28)

Taking the partial derivative of J from Equation (4.28) with respect to ν yields:

dJ
dν

= −r2(µ2r1 + r7m
−1) + r2(µ2r1 + r7m)ν−2

+ µ[r7Q− r2(p−1ν + pν−1)] r1r2(ν−2−1)

2
√
r21+r22−r1r2(ν+ν−1)

+ µr2

√
r2

1 + r2
2 − r1r2(ν + ν−1)(−p−1 + pν−2).

(4.29)
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Setting eq. (4.29) equal to zero and multiplying by r3,

[(µ2r1 + r7m)ν−2 − (µ2r1 + r7m
−1)]

×
√
r2

1 + r2
2 − r1r2(ν + ν−1)

+µ
2
r1(ν−2 − 1)[r7Q− r2(p−1ν + pν−1)]

+µ(pν−2 − p−1)[r2
1 + r2

2 − r1r2(ν + ν−1)] = 0.

(4.30)

Dividing eq. (4.30) by µ, moving the terms containing r3 to the right hand side, and

multiplying both sides by ν3, the negative exponents of ν are eliminated and the

following is obtained:

r1
2

(1− ν2)[r7Qν − r2(p−1ν2 + p)]

+(p− p−1ν2)[(r2
1 + r2

2)ν − r1r2(ν2 + 1)] =

−µ2r1+r7m−(µ2r1+r7m−1)ν2

µ

√
(r2

1 + r2
2)ν2 − r1r2(ν3 + ν).

(4.31)

Taking the square of both sides of eq. (4.31) the common terms are arranged to obtain

eq. (4.10). �

Remark. The solution provided in Theorem 2 only requires the rooting of a

polynomial and determining the optimal solution, ν∗ = cos η∗ + i sin η∗, by com-

puting the associated cost of each root. The angle η∗, is uniquely determined from

η∗ = cos−1Re(ν∗) and η∗ = sin−1 Im(ν∗), where Re(ν∗) and Im(ν∗) represent the

real and the imaginary part of ν∗. This solution, although not explicit, can be eas-

ily implemented in state feedback form which is useful to provide robustness against

unknown guidance laws by the pursuer or different interception strategies by the de-

fender. In other words, given the state feedback solution, either of the players will

see their performance level increased if their opponent does not follow the optimal

strategy obtained in Theorem 2.

The optimal intersection point as defined by Theorem 2 provides the optimal
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headings for the defender and the pursuer as follows:

ψ∗D = tan−1

(
r2 sin η∗ − yD
r2 cos η∗ − xD

)
+ λPD, (4.32)

ψ∗P = tan−1

(
r2 sin η∗ − yP
r2 cos η∗ − xP

)
+ λPD, (4.33)

where r2 is defined in eq. (4.9), (xD, yD) and (xP , yP ) are the locations of the pursuer

and defender in the cartesian fixed frame, respectively, λPD is the LOS angle form

the pursuer to the defender, and η∗ is defined by Theorem 2.

Particular Case.

In the case where P and D have the same speed, β = vP
vD

= 1, the optimal

interception point can be obtained by rooting a quartic equation. Consider in this

case, the relative frame is shown in Figure 18 where the reachable regions of P and D

are separated by the orthogonal bisector of the segment PD instead of the Apollonius

Circle previously described. Therefore, the optimal interception point, in this case,

has coordinates I∗ = (0, y∗) where y∗ is obtained as follows.
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Figure 18. Apollonius Circle for the particular case: β = 1

Corollary 1. Consider the case β = 1 and assume that x ∈ Re, then, the optimal

interception point in the relative coordinate frame is given by I∗ = (0, y∗) where y∗

the solution of the polynomial equation

(1 + µ2)2y4 − 2(1 + µ2)yEy
3

+[y2
E + (1 + µ2)x2

D − µ2(yE sinϕ− xE cosϕ)2]y2

−2x2
D[(1 + µ2 cos2 ϕ)yE − µ2xE sinϕ cosϕ]y

+x2
D(y2

E − x2
D sin2 ϕ) = 0

(4.34)

which minimizes the function

J(y) = (xE − µ
√
x2
D + y2 cosϕ)2 + (yE − y + µ

√
x2
D + y2 sinϕ)2. (4.35)

Examples.

In order to highlight the optimal strategies for the defender and pursuer, consider

the same example as in [161], Section III.B. The initial positions are D0 = (0, 0),
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P0 = (0, 10), E0 = (5, 5). The speeds of the missiles are vD = 2, vP = 1. Also,

the same evader’s speed as in [161], vE = 1, is used. The evader fixed heading is

ψE = 60 deg.

Example 1: Optimal Defender and Optimal Pursuer.

Figure 19 shows the optimal trajectories of the encounter, where each one of

the players, P and D, implement the saddle point strategies which were previously

obtained. The value of the game is V (x;ψ∗P , ψ
∗
D) = 1.9864.

Note that the optimal strategies are continuously updated. This means that at

every time instant, the current positions are used to update the state of the system

and compute the optimal interception point which is used to obtain the headings of

P and D. The solution of the defense differential game of non-maneuverable aircraft

possess the invariance property, that is, the interception point and the headings of

the players are constant under optimal play. The interception point in the fixed

frame remains the same when both players apply the optimal strategy derived in this

section. The previous statement does not hold if at least one of the players does not

follow its prescribed optimal strategy. An illustrative comparison with respect to the

heuristic approach in [161] is shown in the next two examples. It is also shown that

the player which implements the heuristic approach loses performance with respect

to the objective of the game.
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D) = 1.9864

Figure 19. The trajectories of the pursuer (red), evader (blue), and defender (black)
in the fixed frame, where the pursuer and defender implement optimal strategies as
dictated by the differential game

Example 2: Optimal Defender and Heuristic Pursuer.

Now consider the case where the pursuer does not follow its optimal strategy

derived in this section. Instead, it follows the heuristic approach in [161]. The

defender implements the optimal strategy obtained in this section. The trajectories

of the engagement under this selection of headings are shown in Figure 20. The

defender is not only able to intercept the pursuer but it does at a distance further

apart from the evader. The terminal PE separation is V (x;ψP , ψ
∗
D) = 2.6613, that

is, the pursuer is doing poorly by following a heuristic approach compared to the

optimal saddle point strategy in Example 1.
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V (x;ψP , ψ
∗
D) = 2.6613

Figure 20. The trajectories of the pursuer (red), evader (blue), and defender (black)
in the fixed frame, where the pursuer implements the heuristic strategy and defender
implements the optimal strategy from the differential game

Example 3: Heuristic Defender and Optimal Pursuer.

Finally, consider the opposite case, that is, the pursuer follows the optimal strategy

derived in this section while the defender implements the heuristic approach in [161].

The resulting trajectories are shown in Figure 21. The terminal PE separation is

V (x;ψ∗P , ψD) = 1.9795. In this case, the terminal distance is less than the value

obtained from the saddle point solution in Example 1, and the defender’s performance

is deteriorated by following the heuristic approach. From this simulated analysis,

V (x;ψ∗P , ψD) ≤ V (x;ψ∗P , ψ
∗
D) ≤ V (x;ψP , ψ

∗
D), that is, the saddle point property

holds.
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Figure 21. The trajectories of the pursuer (red), evader (blue), and defender (black)
in the fixed frame, where the pursuer implements the optimal strategy from the differ-
ential game and defender implements the heuristic strategy

4.2 Kinetic Defense of a Non-Maneuvering HVAA in 3-D

In this section, the kinetic defense of a non-maneuverable HVAA in 3-D is consid-

ered. The pursuer engages the evader while the defender, which aims at intercepting

the pursuer in order to protect the evader, is considered. Posing a scenario of a

non-maneuvering evader, a differential game develops between two players: pursuer

and defender. Preventing the evader from maneuvering, a differential game is posed

where it is the goal of the defender to capture the pursuer as far from the evader

as possible. A non-maneuvering evader would be representative of aircraft which are

very slow to maneuver or are set on a fixed course and heading which is dictated by

its mission or objective.

One common issue with posing differential games in 3-D when compared to those

in 2-D is the tractability of analytic solutions. The added spatial dimension begs

the use of spherical coordinates as well as additional controls. In the 2-D problem,
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one control for each agent is considered (agent headings). However, in 3-D, each

agent has two controls, one for heading and one for flight path angle. In total, the

dynamics become more nonlinear, more controls are required to pose and solve 3-

D differential games, and as a result, analytic solutions are often challenging and

potentially intractable.

Differential Game.

Described in Section 3.4, a differential game is developed between the pursuer and

the defender concerning the defense of a non-maneuvering HVAA. From the problem

definition, the motion of the three agents is defined as a set of ordinary differential

equations as shown in eq. (3.52). Also, the objective cost is defined in eq. (3.56) and

the value function of the differential game is defined in eq. (3.57). Moreover, the

terminal time is not fixed and is determined by the interception of the pursuer by the

defender.

Define the speed ratio problem parameter µ = vE/vP . In general, the pursuer is

faster than the evader, so 0 < µ < 1. Also, define the speed ratio β = vP/vD. It is as-

sumed that the pursuer is slower than the defender; thus, the velocities of the engage-

ment are vD > vP > vE. Using the aforementioned equations of motion in eq. (3.52)

as well as the speed ratios β and µ, the dynamics may be non-dimensionalized with

respect to the defender’s speed and are as follows:

ẋP = β cos γP cosψP , ẋE = µβ cos γE cosψE, ẋD = cos γD cosψD

ẏP = β cos γP sinψP , ẏE = µβ cos γE sinψE, ẏD = cos γD sinψD

żP = β sin γP , żE = µβ sin γE, żD = sin γD.

(4.36)

The optimization is conducted subject to the dynamics in eq. (4.36) and trajecto-

ries with terminal state in eq. (3.55), where uP and uD are the players’ state feedback
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strategies. Define the costates as

pT = [pxP , pyP , pzP , pxE , pyE , pzE , pxD , pyD , pzD ] ∈ R9. (4.37)

In this case, where the objective cost is Mayer; the Hamiltonian of the differential

game is simply the inner product of the dynamics with the costates,

H = 〈pT , f(x,uP ,uD)〉. (4.38)

Using the speed ratios µ and β, the velocities of the agents are normalized with

respect to the defender to obtain the Hamiltonian,

H = pxPβ cos γP cosψP + pyP γ cos γP sinψP

+ pzP γ sin γP + pxEµβ cos γE cosψE

+ pyEµβ cos γE sinψE + pzEµβ sin γE

+ pxD cos γD cosψD + pyD cos γD sinψD

+ pzD sin γD.

(4.39)

Theorem 3. Consider the defense of a non-maneuverable agent differential game in

3-D as described by eqs. (3.52) to (3.57). The chosen heading and flight path angles

of the pursuer and defender under optimal play are constant and their optimal trajec-

tories are straight lines. This is an extension of Theorem 1 from the 2-D Cartesian

plane to the 3-D Cartesian space.

Proof. The costate dynamics from the Hamiltonian in eq. (4.39) are obtained using

the necessary conditions for optimality from eqs. (3.33) to (3.36) which are repeated
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here more compactly as:

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, 0 =

∂H

∂uP
, 0 =

∂H

∂uD
. (4.40)

Taking the Hamiltonian with respect to the states, the optimal costates are found to

be constant because

ṗ = 0. (4.41)

Taking the partial of the Hamiltonian with respect to agent controls the following

equations are obtained:

pzP cos γP − pxP cosψP sin γP − pyP sinψP sin γP = 0, (4.42)

pyP cosψP cos γP − pxP cos γP sinψP = 0, (4.43)

pzD cos γD − pxD cosψD sin γD − pyD sinψD sin γD = 0, (4.44)

pyD cosψD cos γD − pxD cos γD sinψD = 0. (4.45)

From the necessary optimality conditions described in eqs. (4.42) to (4.45), the op-

timal headings are found to depend solely upon the costates. Through algebraic

manipulation, the optimal states as a function of the costates are

ψD = cos−1

(
pxD√

p2
xD

+ p2
yD

)
, (4.46)

γD = cos−1

( √
p2
xD

+ p2
yD√

p2
xD

+ p2
yD

+ p2
zD

)
, (4.47)

ψP = cos−1

(
pxP√

p2
xP

+ p2
yP

)
, (4.48)

γP = cos−1

( √
p2
xP

+ p2
yP√

p2
xP

+ p2
yP

+ p2
zP

)
(4.49)

The costates are constant as described by eq. (4.41), and from eqs. (4.46) to (4.49)
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the optimal control is solely dependent upon the costates. Therefore, the optimal

headings of the pursuer and defender are constant and their optimal trajectories are

straight lines. �

From Theorem 3, the optimal trajectories are straight lines. Using the Cartesian

coordinate frame to describe the 3-D pursuit-evasion differential game, the optimal

strategies for the three-agent scenario are investigated. The governing equations are

simplified by setting the origin of the Cartesian space as shown in Figure 22. By

locating each agent on an orthogonal plane and orienting the y-axis parallel to the

evader, some state variables may be eliminated and the analysis simplified.

ŷ
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Figure 22. Interception of pursuer by defender at terminal time as characterized by a
sphere constructed using the geometry of Apollonius

Using this coordinate frame, the state space is reduced by three variables, and the

intersection sphere of the defender, D, and pursuer, P is described. The two-norm
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distance between the pursuer and the defender is as follows:

d =
√

(xP − xD)2 + y2
D + z2

P (4.50)

By setting the origin of the space as described in Figure 22, the variables xE =

yP = zD = 0. To fully define the intersection sphere, the sphere’s origin and radius

are first specified. From the geometry of Apollonius, the origin is located collinear

with the points: P , and D, the position of the pursuer and defender. Define the ray

passing through P and D as x̂′, then the origin’s location can be easily obtained.

Designate the unit vector for the ray
−−→
PD as

x̂′ =
1

d

(
(xD − xP )̂i+ (yD)ĵ + (−zP )k̂

)
. (4.51)

The origin, O is collinear with x̂′ and it lies in the opposite direction at a distance,

OP =
β2d

1− β2
. (4.52)

Simply reversing the unit vector, x̂′ and multiplying by the magnitude of OP , the

location of the origin is found to to be

O = −OPx̂′ + P. (4.53)

More explicitly, the origin of the sphere is located at the point O defined as

O =
1

1− β2




xP − xDβ2

−yDβ2

zP



. (4.54)
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The radius,

r =
βd

1− β2
, (4.55)

of the sphere is defined to be that of the radius of the Apollonius Circle whose P and

D foci are at a distance, d, and the speed ratio is β.

Agent Headings.

By Theorem 3, the optimal headings of the players are constant. To obtain the

optimal strategies of the pursuer and the defender the intersection point, I, determines

the appropriate agents’ headings and flight path angles. This is because the sphere is

the locus of all possible interceptions of the pursuer by the defender. The intersection

point, I, as defined by the spherical coordinates, (r, γO, ψO), radius, elevation angle,

and azimuth relative to the sphere’s origin is

xI = r cos γO cosψO + xO,

yI = r cos γO sinψO + yO,

zI = r sin γO + zO.

(4.56)

From eq. (4.56), the pursuer’s and defender’s control which steers toward the inter-

section point is solved.

Pursuer Heading.

The pursuer strategy is specified by the heading, ψP , and flight path angle, γP ,

which leads the pursuer to reach a given intersection point on the intersection sphere.

The pursuer strategy is

uP = {(γP , ψP )|γP ∈ [−π, π], ψP ∈ [0, π]}. (4.57)
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The intersection point, I, using Cartesian coordinates, as a function of the pursuer’s

heading and flight path angle is

xI = PI cos γP cosψP + xP ,

yI = PI cos γP sinψP ,

zI = PI sin γP + zP .

(4.58)

The distance PI is

PI =
√

(xP − xI)2 + y2
I + (zP − zI)2. (4.59)

Therefore the pursuer’s strategy uP is obtained as a function of pursuer coordinates

and intersection point coordinates: xP , zP , xI , yI , zI . Explicitly, the pursuer’s flight

path angle and the heading are

γP = sin−1
(
(zI − zP )

/
PI
)
, (4.60)

ψP = sin−1

(
yI√

PI
2 − (zI − zP )2

)
. (4.61)

Defender Heading.

Knowing the intersection point, I, one also obtains the corresponding strategy uD

of the defender. The intersection point of the pursuer by the defender in spherical

coordinates is

uD = {(γD, ψD)|γD ∈ [−π, π], ψD ∈ [0, π]} (4.62)

The intersection point, I, can be described in Cartesian coordinate frame as

xI = DI cos γP cosψP + xD,

yI = DI cos γP sinψP + yD,

zI = DI sin γP .

(4.63)
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The distance, DI, is

DI =
√

(xD − xI)2 + (yD − yI)2 + z2
I . (4.64)

Therefore the defender’s strategy, uD as a function of the defender coordinates

and intersection point coordinates, xD, yD, xI , yI , zI are

γD = sin−1
(
zI
/
DI
)
, (4.65)

ψD = sin−1

(
yI − yD√
DI

2 − z2
I

)
. (4.66)

Optimal Intersection Point.

The agent headings as defined in eqs. (4.60), (4.61), (4.65) and (4.66) are functions

of a chosen intersection point, I, located on the intersection sphere. An optimization

is performed to minimize the desired objective cost in eq. (3.56) by adjusting the

intersection point location as follows:

(γ∗O, ψ
∗
O) = argmin

γO, ψO

Φ(xf ) (4.67)

where the final time is computed as follows:

tf =
PI

vP
=
|EE ′|
vE

=
|DI|
vD

. (4.68)

The location of the evader at the time of interception, tf is found utilizing the speed

ratio µ as

|EE ′| = vE
vP
|PI| = µ|PI|. (4.69)

A gradient-based method can be to obtain the optimal solution and is utilized to find

the optimal strategies for the pursuer and defender.
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Examples.

Consider an example engagement where the agent positions are: P0 = (5, 0, 10),

E0 = (0, 10, 5), D0 = (10, 5, 0), outlined in Table 4: Simulation Initial Conditions.

Also, consider the agent velocities to be: vP = 0.9, vE = 0.8, and vD = 1.0, while the

evader has fixed heading and climb angle: ψE = π/2 and γE = 0.

Table 4. Simulation Initial Conditions

Agent X-location, DU Y-Location, DU Z-Location, DU

Pursuer 5.00 0.00 10.0

Evader 0.00 10.0 5.00

Defender 10.0 5.00 0.00

Example 1: Optimal Defender and Optimal Pursuer.

Figure 23 shows the optimal trajectories for the scenario where each of the players,

P and D, implement the saddle point strategies outlined from the solution to the

differential game. The value of the game is V (u∗P ,u
∗
D,x0) = 9.9764; summarized in

Table 5: Simulation Results.

Note that the optimal saddle point strategies are computed at every time step and

implemented for both the defender and pursuer. Utilizing the positions of all agents,

the differential game is solved wherein the positions of all agents are used to obtain

the appropriate instantaneous headings of the pursuer and defender. The solution of

the defense of the non-maneuverable agent possesses the invariance property, where

the interception point and headings of all players are constant under the saddle point

solution to the differential game. If, however, any of the agents maneuver in a way

not prescribed by the optimal strategies of the differential game, then the optimal

headings computed will not be constant. The remaining examples in the paper im-

plement heuristic Pure Pursuit strategies for the defender and pursuer showing that
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the performance of the agents only degrades with variation from the saddle point

strategies.

Figure 23. The kinetic defense of a non-manuvering HVAA is simulated assuming the
pursuer and defender implement the optimal saddle point strategies.

Example 2: Optimal Defender and Heuristic Pursuer.

Consider the case where the pursuer does not follow the optimal saddle point

strategy outlined in this work; rather, it implements the Pure Pursuit strategy, where

it’s heading and climb angle are chosen to point toward the evader at each time step.

The equations utilized for computing the control for the suboptimal pursuer are

γP = tan−1

(
zE − zP√

(xE − xP )2 + (yE − yP )2

)
, (4.70)

ψP = tan−1

(
yE − yP
xE − xP

)
. (4.71)

The pursuer implements the Pure Pursuit guidance strategy defined by eqs. (4.70)

and (4.71) and the defender implements the optimal solution to the differential game

as defined by eqs. (4.65) and (4.66). The resulting simulation can be seen in Figure 24.
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As a result of the sub-optimal strategy performed by the pursuer, the defender is

able to capture the pursuer sooner and as a result the terminal distance is larger:

V (uP ,u
∗
D,x0) = 10.1936. Table 5 compares the performance of the suboptimal pur-

suer strategy against that of an optimal one.

Figure 24. The kinetic defense of a non-manuvering HVAA is simulated assuming
the defender implements the optimal strategy and the pursuer implements the Pure
Pursuit strategy.

Example 3: Heuristic Defender and Optimal Pursuer.

Finally, consider the opposite case, wherein the pursuer follows the optimal strat-

egy derived in this section while the defender implements the sub-optimal Pure Pur-

suit strategy. The Pure Pursuit headings are obtained by pointing the defender

toward the pursuer, as seen in the following equations

γD = tan−1

(
zP − zD√

(xP − xD)2 + (yP − yD)2

)
, (4.72)

ψD = tan−1

(
yP − yD
xP − xD

)
. (4.73)

The pursuer, implements the optimal strategy from eqs. (4.60) and (4.61); the
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resulting trajectories are shown in Figure 25. The terminal separation at final time

is, as a result of the suboptimal defender strategy is less than when the saddle point

strategy is implemented. The value function, describing this terminal separation is:

V (u∗P ,uD,x0) = 9.2166, showing that deviation from the solution to the differential

game results in poorer performance for the defender.

Highlighted in Table 5, a comparison of the three simulations is shown, demon-

strating the characteristic of the solution to a differential game. First, both the

pursuer and the defender implement the optimal saddle point strategies and observe

the terminal pursuer-evader range is 9.9764. When the defender implements the Pure

Pursuit strategy and the pursuer implements the optimal saddle point strategy, the

value function is lower and the pursuer gets closer to the evader at final time. The

resulting range is 9.2166. When the pursuer implements the Pure Pursuit strategy

and the defender implements the optimal saddle point strategy, the terminal range

between the pursuer and evader is 10.1936. Upon implementing the heuristic sub-

optimal policy of the Pure Pursuit strategy, performance is reduced for that agent.

This demonstrates that deviating from the optimal saddle point strategy only reduces

performance for that agent, a characteristic of differential games [9].
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Figure 25. The kinetic defense of a non-manuvering HVAA is simulated assuming
the defender implements the Pure Pursuit strategy and the pursuer implements the
optimal strategy.

Table 5. Simulation Results

Defender Strategy Pursuer Strategy Value Function

Optimal Optimal 9.9764

Pure Pursuit Optimal 9.2166

Optimal Pure Pursuit 10.1936

Search Performance.

Utilizing the Matlab function FMINUNC(), the optimal headings are computed

directly. A plot of the entire space is presented in Figure 26.
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Figure 26. The objective cost evaluated over the domain of possible interception points
on the interception sphere at the tenth frame

In Figure 26 one observes that the space in the example is locally convex. By

seeding the optimization search with a guess for the optimal heading angles, one

can converge fairly quickly with fewer functional evaluations than brute-force search-

ing the entire domain for the minimum. Using the Matlab function, FMINUNC(), a

gradient-based search for the optimal headings as described in eq. (4.67) is imple-

mented. The Quasi-Newton gradient-based search algorithm is used to perform a

search for the optimal interception point described by ψ∗O and γ∗O. The initial guess

for the optimal headings is selected as the angles, ψO and γO, which describe the

vector from the origin of the interception sphere to the initial location of the evader.

This initial guess is relatively close to the converged global minimum, and optimal

solutions are computed generally within 20-30 functional evaluations. If the initial

guess were to start very far away from the optimal solution, then a gradient-based

solver would not converge on the global solution. As illustrated in Figure 26, ini-

112



tial guesses are not far from the global minimum, and in-general, convergence to the

global minimum is achieved.

Using Matlab, the gradient-based search is conducted. The initial guess for the

optimal ψO and γO is shown in light-blue in Figure 26. Upon finding the optimal

interception point, the headings of the pursuer and defender are then implemented

using eqs. (4.60), (4.61), (4.65) and (4.66). Conducting the gradient-based search

outperforms that of a brute force search. Rather than computing the terminal cost

for every point on the sphere, described by the color gradient in Figure 26, the use of

gradient-based techniques require fewer functional evaluations and is more efficient

than the brute force evaluation of all azimuths and elevations of the objective cost.

4.3 Kinetic Defense of a Maneuvering HVAA in 2-D

In this section, a scenario consisting of a defending missile, a pursuer missile,

and evading HVAA which cooperates with the defender is considered. Using optimal

control theory the optimal HVAA strategy which maximizes the distance of the pur-

suer when captured by the defender is posed and solved. Proportional Navigation

guidance laws are selected for the pursuer and defender; while constraints are held

on the evader to prevent instantaneous changes in velocity. A numerical approach is

presented along as an example.

Optimal Control Problem.

Described in Section 3.4, an optimal control problem is formed wherein the evader

aims to outmaneuver its pursuer while a teamed defender uses proportional navigation

to intercept the pursuer. It is assumed that the pursuer is faster than the evader, so

that vP > vE. Also, the defender is assumed to be the same speed as the pursuer,

vD = vP , meaning that the defender can not capture the pursuer vehicle unless the
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evader maneuvers in such a way as to aid in the closure between the defender and

pursuer.

The complete geometry of the HVAA defense scenario is shown in Figure 27; this

is the very same geometry as described in the active target defense scenario, presented

in Figure 6. The only change is that the attacker and target from Figure 6 are called

the pursuer and evader, respectively.

D

P

E

λDP

λPE

ψD

ψP

ψE

σD

σP

φP

φE

RDP

RPE

VD

VP

VE

Figure 27. The active target defense scenario considers a defender (D) which aims at
capturing a pursuer (P) who in-turn aims at capturing an evader (E).

Although the optimal control problem may be tractable using these equations of

motion, it is possible to reduce the order of the dynamics. To formulate the problem

in this reduced form, the dynamics from eq. (3.40) are transformed into polar form.

By calculating and solving the optimal control problem in relative polar coordinates,

calculation time is reduced since the number of nonlinear dynamic equations of motion

is reduced. Once an optimal solution is found in the relative polar space, the optimal

control may be translated into Cartesian space for visualization and evaluation. The
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polar representation can be formed by taking the velocities along the line-of-sights and

analyzing their closure based upon the line-of-sight angles. The equations of motion

from eq. (3.40) are reduced using the nomenclature as illustrated in Figure 27. The

line-of-sight angles derived from the locations of the defender, pursuer, and evader in

the 2-D Cartesian fixed frame are

λDP = tan−1

(
yP − yD
xP − xD

)
, λPE = tan−1

(
yE − yP
xE − xP

)
. (4.74)

The angle between the velocity of an agent and its line-of-sight to its target, σ, can

be found by subtracting the line-of-sight to the next target from the known heading

as follows:

σP = ψP − λPE, σD = ψD − λDP . (4.75)

Moreover, the angle between an agent’s velocity and the pursuer’s line-of-sight can be

calculated by subtracting the line-of-sight from the pursuer from the agent’s heading

as follows:

φP = ψP − λDP , φE = ψE − λPE. (4.76)

The defender-pursuer range and pursuer-evader range are obtained using the eu-

clidean distance and are as follows:

RDP =

√
(yP − yD)2 + (xP − xD)2, RPE =

√
(yE − yP )2 + (xE − xP )2. (4.77)

The line-of-sight rates between agents are as follows:

λ̇DP =
vP sinφP − vD sinσD

RDP

, λ̇PE =
vE sinφE − vP sinσP

RPE

. (4.78)
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The angular heading rates for the defender and pursuer are as follows:

ψ̇D = NDλ̇DP , ψ̇P = NP λ̇PE, (4.79)

where ND and NP are the proportional navigation constants. Using the geometry as

illustrated in Figure 27, the range rates between the defernder and the pursuer as

well as the pursuer and the evader are as follows:

ṘDP = −vD cosσD + vP cosφP , ṘPE = −vP cosσP + vE cosφE. (4.80)

Continuing the transformation of the dynamics from Cartesian to relative polar space:

the headings with respect to the line-of-sight σP and σD can be found by differentiating

eqs. (4.75) and (4.76) with respect to time. To complete the polar form of the dynamic

equations the angular rates of each of the agents in the engagement are also needed.

The rate of change between the pursuer’s heading and its line-of-sight to the evader

may be found to be the difference between the heading rate of the pursuer and the

line-of-sight rate between the pursuer and evader, namely:

σ̇P = ψ̇P − λ̇PE = (NP − 1)λ̇PE =
(NP − 1)(vE sinφE − vP sinσP )

RPE

. (4.81)

Similarly, the rate of change between the defender’s heading and its line-of-sight to the

pursuer may be found to be the difference between the heading rate of the defender

and the line-of-sight rate between the defender and pursuer:

σ̇D = ψ̇D − λ̇DP = (ND − 1)λ̇DP =
(ND − 1)(vP sinφP − vD sinσD)

RDP

. (4.82)

Next, by differentiating eq. (4.76), the angular rate of change the pursuer’s heading
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and defender’s line-of-sight is found to be:

φ̇P = ψ̇P − λ̇DP

= NP λ̇PE − λ̇DP

=
NP (vE sinφE − vP sinσP )

RPE

− vP sin(φP )− vD sin(σD)

RDP

.

(4.83)

Similarly for the target, the angular rate of change of the target’s heading to the

pursuer’s line-of-sight is calculated. Recall that the input, u, is the rate of the target’s

heading. This will appear in the target’s angular rate of change relative to the line-

of-sight rate:

φ̇E = ψ̇E − λ̇PE = u− vE sin(φE)− vP sin(σP )

RPE

. (4.84)

The final reduced-order form in relative polar space is:




ṘDP

ṘPE

σ̇D

σ̇P

φ̇P

φ̇E




=




vP cosφP − vD cosσD

vE cosφE − vP cosσP

(ND − 1)λ̇DP

(NP − 1)λ̇PE

NP λ̇PE − λ̇DP
u− λ̇PE




. (4.85)

117



In this problem, the Hamiltonian is,

H = (vP cosφP − vD cosσD)pRDP

+ (vE cosφE − vP cosσP )pRPE

+

(
(ND − 1) (vP sinφP − vD sinσD)

RDP

)
pσD

+

(
(NP − 1) (vE sinφE − vP sinσP )

RPE

)
pσP

+

(
NP (vE sinφE − vP sinσP )

RPE

− vP sinφP − vD sinσD
RDP

)
pψP

+

(
u− vE sinφE − vP sinσP

RPE

)
pψE

.

(4.86)

Further, the costate dynamics are given by:

ṗRDP
= − ∂H

∂RDP

, ṗRPE
= − ∂H

∂RPE

, ṗσD = −∂H
∂σD

,

ṗσP = −∂H
∂σP

, ṗφP = −∂H
∂φP

, ṗφE = −∂H
∂φE

.

(4.87)

Evaluating from the Hamiltonian, the costate dynamics are:

ṗ = Mp. (4.88)

where the time varying matrix, M, is defined as

M =




0 0 (ND − 1)ξ1 0 −ξ1 0

0 0 0 (NP − 1)ξ2 NP ξ2 −ξ2

−vD sinσD 0 (ND − 1)ξ3 0 −ξ3 0

0 −vP sinσP 0 (NP − 1)ξ4 NP ξ4 −ξ4

vP sinφP 0 −(ND − 1)ξ5 0 ξ5 0

0 vE sinφE 0 −(NP − 1)ξ6 −NP ξ6 ξ6




. (4.89)
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The time-varying coefficients inside the matrix, M are defined as a function of state

variables and known constants as follows:

ξ1 =
vP sinφP − vD sinσD

R2
DP

=
λ̇DP
RDP

, ξ2 =
vE sinφE − vP sinσP

R2
PE

=
λ̇PE
RPE

,

ξ3 =
vD cosσD
RDP

, ξ4 =
vP cosσP
RPE

, ξ5 =
vP cosφP
RDP

, ξ6 =
vD cosφE
RPE

.

(4.90)

Now that the state dynamics and the costates have been defined as a function of

time, the next step is to determine necessary conditions for optimal input by means

of Pontryagin’s Minimum Principle since the heading rate is bounded as follows:

|u(t)| ≤ ωPmax ∀ t ∈ [t0, tf ]. (4.91)

Using eq. (4.91) and the Hamiltonian defined in eq. (4.86) the optimal control must

satisfy Pontryagin’s Minimum Principle [146]:

H (x∗(t),u∗(t),p∗(t), t) ≤H (x∗(t),u(t),p∗(t), t). (4.92)

The states (x) and costates (p) are

xT = [RDP , RPE, σD, σP , φP , φE],

pT = [pRDP
, pRPE

, pσD , pσP , pφP , pφE ].

(4.93)

Calculated, the admissible u(t) for all t ∈ [t0, tf ] is

u∗(t) =




−ωPmax , for p∗φE(t) > 0

ωPmax , for p∗φE(t) < 0.
(4.94)

In the case when p∗φE(t) = 0, switching occurs on the input and no information about

the optimal input u∗(t) can be provided. This would result in a singular problem.
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According to the objective, the scenario of interest has free final time and a fixed

constraint of RDP (tf ) = εmiss . Considering the boundary conditions, the boundary

conditions of the states and costates are given as:




RDP (t0)

RPE(t0)

σD(t0)

σP (t0)

φP (t0)

φE(t0)




=




Rda0

Rat0

σD0

σP0

φP0

φE0




,




RDP (tf )

RPE(tf )

σD(tf )

σP (tf )

φP (tf )

φE(tf )




=




εmiss

free

free

free

free

free




,




pRDP
(tf )

pRPE
(tf )

pσD(tf )

pσP (tf )

pφP (tf )

pφE(tf )




=




free

free

0

0

0

0




(4.95)

The 2n+ 1 (where n is the state dimension) relationship given by

H (x∗(tf ),u
∗(tf ),p

∗(tf ), tf ) = 0. (4.96)

Solving the necessary conditions eqs. (4.85), (4.88) and (4.94), provides the general

solution to the optimal control problem. Applying the boundary conditions given by

eqs. (4.95) and (4.96) provides the solution to the 2-point boundary value problem,

and consequently the optimal control problem.

Example.

The general engagement scenario has many degrees of freedom including initial

conditions of the pursuer, evader, and defender. It can be easily observed that by

varying the location, heading, and speed of each agent involved in the scenario that

target capture or escape could occur. A general engagement is proposed which will

provide an interesting case, like in Figure 28, and a numerical solution to the optimal

control problem can be found.
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Figure 28. The initial three-agent geometry involves a defender and pursuer which are
equidistant to the evader which is located in front of both agents.

Due to the complexity and nonlinearity of the dynamic optimization problem

discussed earlier, a numerical tool such as Matlab can be used to solve the two point

boundary value (TPBV) problem generated by the dynamic equations of motion

from eq. (4.85), the costate equations from eq. (4.88), the boundary conditions from

eqs. (4.95) and (4.96), and subject to constraint in eq. (4.91). There are many issues

with starting with poor initial conditions, and sensitivity to the initial conditions

can play a major role in finding a candidate solution to the TPVB problem. Using

Matlab, one approach is to discretize the equations of motion and costates, and

turn the dynamic optimization problem into a static optimization problem. The

discretized form of the dynamics is advantageous since time vectors and state vectors

are generated at even intervals and computational power is controllable through the

number of intervals during the simulation. To discretize the dynamic equations of
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motion, one can use an Euler method in eq. (4.97) as follows:

x[k + 1] = x[k] + f(x[k], u[k], k)∆t. (4.97)

Once discretized, the cost function becomes eq. (4.98).

J(u) =
N∑

k=1

(vP cosψP [k]− vD cosσD[k]− vE cosψE[k] + vP cosσP [k]). (4.98)

In addition, the dynamic equations of motion written as constraint equations are in

eq. (4.99), as follows:

hRDP
[k + 1] = RDP [k + 1]−RDP [k]− (vP cosφP [k]− vD cosσD[k])∆t

hRPE
[k + 1] = RPE[k + 1]−RPE[k]− (vE cosφE[k]− vP cosσP [k])∆t

hσD [k + 1] = σD[k + 1]− σD[k]− ((ND − 1)λ̇DP )∆t

hσP [k + 1] = σP [k + 1]− σP [k]− ((NP − 1)λ̇PE[k])∆t

hφP [k + 1] = φP [k + 1]− φP [k]− (NP λ̇PE[k]− λ̇DP )∆t

hφE [k + 1] = φE[k + 1]− φE[k]− (u[k]− λ̇PE[k])∆t

λ̇DP [k] =
vP sinψP [k]− vD sinσD[k]

RDP [k]

λ̇PE[k] =
vE sinψE[k]− vP sinσP [k]

RPE[k]
.

(4.99)

Using these equations, the entire time history of the scenario is fed to a nonlinear

program solver, such as an SQP solver, to iteratively-solve for the optimal control.

Using the equations of motion as constraints at every time step, the solution that is

found by perturbing the control input is ensured to be a valid scenario.

By looking at the sign of the costate equation, u[k] is known to either be a min-

imum or maximum. For example, if pφE [k] < 0 then u[k] = ωPmax , and if pφE [k] > 0
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then u[k] = −ωPmax ; but, if pφE [k] = 0 then |u[k]| < ωPmax . Although no information

about the optimal control may be gained from a zero costate; also u∗[k] is bounded

by the maximum angular rate ωPmax .

Using the initial conditions an example solution to the optimal control problem is

presented. The boundary conditions to this example are shown in eq. (4.100). The

constants are defined in eq. (4.101).




RDP

RPE

σD

σP

φP

φE



t0

=




10.0000

11.1803

1.5708

−0.6435

1.5708

−0.6435




,




RDP

RPE

σD

σP

φP

φE



tf

=




0.01

free

free

free

free

free




,




pRDP

pRPE

pσD

pσP

pφP

pφE



tf

=




free

free

0

0

0

0




(4.100)

NP = ND = 3 , vP = vD = 1 , vE = 0.5 < vP , ωPmax = 0.2 (4.101)

The optimal control input u[k] is solved using constants and boundary conditions.
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Figure 29. Scenario 1: Optimal Engagement

From Figure 29 it is observed that the evader turns toward the path of the de-

fender, away from the pursuer in an attempt to maximize the distance from the

pursuer while providing strategic assistance to the defender. From the plotted solu-

tion, the evader executes a max turn rate, staying away from the pursuer as much as

possible. This was predicted by eq. (4.94), where the evader is modeled to be turn

rate limited.

In Figure 30 the line-of-sight distances and optimal control are observed during

the engagement. From Figure 30a it may be observed that the evader is unable to

outrun the pursuer since the curve representing the pursuer-evader range, RPE, is

monotonically decreasing. However, the evader is able to maneuver in such a way,

as to aid in the closure of the defender to the pursuer as described by the curved

closure of the defender-pursuer range, RDP . Effectively every engagement, no matter

the initial conditions, may be described as a race of one of these curves to zero; if

RDP goes to zero first, the evader escapes the pursuer; however, if RPE goes to zero
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before RDP can, then the evader is captured.
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Figure 30. Line-of-sight and Optimal Control During Engagement Scenario

The heading rate of the evader as seen in Figure 30b shows that the maximum

turn rate was executed for the first half of the engagement and then was not limited

in the final half of the scenario. This curve describes that the costate pφE = 0 for the

second half of the scenario, while pφE < 0 for the first half.

4.4 Direct Method Comparisons for HVAA Defense

In this section, each of the four direct methods described in section 3.3 are com-

pared for the sake of computing the optimal control of the kinetic defense of a maneu-

vering HVAA in 2-D as presented in section 4.3. The HVAA defense scenario in 2-D is

illustrated in Figure 27. In the engagement scenario, it is assumed that the velocities

of the defender, pursuer, and evader (vD, vP , and vE) are constant. Using the 2-D

Cartesian fixed-frame, the dynamics of the three agents are described in eq. (3.40).

The input to the system being is heading rate of the evader aircraft, u(t) = ψ̇E(t).

As described in section 4.3, it is assumed that the pursuer is faster than the

evader, so that vP > vE. Similarly, the defender is assumed to be the same speed as
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the pursuer, vD = vP .

Direct Optimization Problem Definition.

The objective is to find the optimal control: u∗(t) which produces a minimum,

min
u

J = −RPE(tf ) +RDP (tf ),

subject to the dynamics,




ṘDP

ṘPE

σ̇D

σ̇P

φ̇P

φ̇E




=




vP cosφP − vD cosσD

vE cosφE − vP cosσP

(ND − 1)λ̇DP

(NP − 1)λ̇PE

NP λ̇PE − λ̇DP
u− λ̇PE




,

with

λ̇DP =
vP sinφP − vD sinσD

RDP

,

λ̇PE =
vE sinφE − vP sinσP

RPE

.

The constraints on the input are:

|u(t)| ≤ ωmax ∀ t ∈ [t0, tf ].
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The boundary conditions on the states are:




RDP (t0)

RPE(t0)

σD(t0)

σP (t0)

φP (t0)

φE(t0)




=




RDP0

RPE0

σD0

σP0

φP0

φE0




&




RDP (tf )

RPE(tf )

σD(tf )

σP (tf )

φP (tf )

φE(tf )




=




free

free

free

free

free

free




.

The final time, tf , is judiciously chosen prior to capture.

Numerical Considerations.

For all four methods, each uses the SQP search implemented within Matlab using

the function FMINCON(). Furthermore, the initial conditions and final time are the

same for each simulation. To ensure that the same problem is being posed for each

direct method, the parameters outlined in Table 6 provide a summary of the constants

within the equations of motion. These values are implemented for each direct method.

Table 6. Simulation Parameters

Parameter Variable Value

Pursuer speed, DU/TU vP 1.00

Defender speed, DU/TU vD 1.00

Evader speed, DU/TU vE 0.50

Pursuer PN gain NP 3.00

Defender PN gain ND 3.00

Final time, TU tf 11.0

Max turn rate, rad/TU ωmax 0.20

Number of points N 50.0
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The initial agent locations and headings are identical for all four simulations.

Figure 28 describes the initial agent locations and headings used for each simulation.

Numerically, the values in Cartesian space are summarized in Table 7. Converting

the Cartesian frame to the relative polar coordinate frame the initial agent locations

are as defined in Table 8.

Table 7. Initial Conditions (Cartesian Frame)

Agent X-Location, DU Y-Location, DU Heading, rad

Defender -5.00 0.00 π/2

Pursuer 5.00 0.00 π/2

Evader 0.00 10.0 π/2

Table 8. Initial Agent States (Relative Polar)

State Variable Value

Defender-pursuer range, DU RDP (t0) 10.0000

Pursuer-evader range, DU RPE(t0) 11.1803

Defender closing heading angle, rad σD(t0) 1.5708

Pursuer closing heading angle, rad σP (t0) -0.4636

Pursuer escaping heading angle, rad φP (t0) 1.5708

Evader escaping heading angle, rad φE(t0) -0.4636

Direct Method Setup.

To make a fair comparison between each of the direct methods, the dynamics and

number of discrete time points are held constant between methods. Moreover, the

convergence criteria, used to determine if a minimum has been found, is also held

constant. Aside from the actual algorithmic implementation of each direct method,

the guess size and corresponding discretization are varied to meet each method’s
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requirements.

Concerning the initial guess used for the four direct methods, each method is

provided their required states and or control to begin the gradient based search for

the minimum. Prior to running the optimization, a single shoot of a max turn rate

towards the defender is computed. This single shoot is used as an initial guess for

each of the methods. This provides a feasible initial guess for all methods and the

information from this initial shooting of the dynamics is discretized and provided to

each algorithm just as Table 10 describes.

In the case of the SSM, the discretization of time and control is defined to be

evenly spaced into 50 points. By implementing the Runge-Kutta Method for forward

propagation of the equations of motion, the fixed-time step solver provides trajectories

of the states at every point. The initial guess for the optimal control is a max positive

heading rate command. The total size of the initial guess is 50.

For the MSM, time is discretized evenly from t0 to tf with a total of N points,

just as defined for the SSM. Similar to the SSM, the Runge-Kutta Method propagates

states forward through time. The number of segments used for the MSM is 5; resulting

in 24 equality constraints (See Table 10). At each of the continuity constraints, the

initial guess for the states is the value of the state at the initial condition. The guess

for the optimal control, just like the SSM, is a max positive heading rate command.

The total size of the guess is 74.

The ECM implements the dynamics as an equality constraint, and as a result,

requires a much larger guess than the SSM and MSM. Time is discretized evenly

from t0 to tf with a total of 50 points. Since the initial state is provided as presented

in Table 8, the size of the guess for the states is 294. Adding the size for the control

makes the total guess size 344. The dynamics are upheld using a lower order method:

first-order Euler approximation. To make the initial guess a fair comparison, the state

129



trajectories are guessed to be the initial conditions at every point and the optimal

control is guessed to be a max positive heading rate command at every point.

For the case of the PSM, time is broken into multiple fixed segments, and for each

segment, the LGR points set the discretization of time so that differentiation matrices

may be implemented. Just as implemented for the ECM, the number of points for

the state trajectories and control are the same. Using the multiple segments, the size

of the Differentiation Matrices are selected to be of relatively low order. The use of

differentiation matrixes is more accurate than the first-order Euler methods used by

the ECM, but the accuracy of the dynamics is greater. The total size of the guess, for

the PSM is the same as the ECM: 344. To make the initial guess a fair comparison

to the other methods, the state trajectories are guessed to be the initial conditions

at every point and the optimal control is guessed to be a max positive heading rate

command at every point. To conclude the setup of each of the four direct methods,

Table 10 describes the objective cost, initial guess, and type of discretization.

Table 9. Method Size

Method Initial Guess No. Ukn. Eq. Const. NLP Output

SSM u[k], k = 1..50 50 0 u∗k, k = 1 . . . 50

MSM
u[k], k = 1..50

x[j], j = 2..5
50 + 6(5− 1) = 74 6(5− 1) = 24

u∗k, k = 1 . . . N

x∗j , j = 2 . . .M

ECM
u[k], k = 1..50

x[k], k = 2..50
50 + 6(50− 1) = 344 6(50− 1) = 294

u∗k, k = 1 . . . 50

x∗k, k = 2 . . . 50

PSM
u[k], k = 1..50

x[k], k = 2..50
50 + 6(50− 1) = 344 6(50− 1) = 294

u∗k, k = 1 . . . 50

x∗k, k = 2 . . . 50
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Table 10. Direct Method Setup

Method Objective Cost Initial Guess Guess Size Discretization

SSM RDP (tf )−RPE(tf ) uk = ωmax, k = 1 . . . 50 50
Evenly Spaced

1 Shooting

MSM RDP (tf )−RPE(tf )
uk = ωmax, k = 1 . . . 50

xj = x0, j = 2 . . . 5
74

Evenly Spaced

5 Shootings

ECM RDP (tf )−RPE(tf )
uk = ωmax, k = 1 . . . 50

xk = x0, k = 2 . . . 50
344

Evenly Spaced

Collocation Points

PSM RDP (tf )−RPE(tf )
uk = ωmax, k = 1 . . . 50

xk = x0, k = 2 . . . 50
344

LGR Collocation

5 Segments

Simulation Results.

A summary of the four direct-method simulations can be seen in Table 11. Pre-

sented in the table are metrics for each of the direct methods. The metrics are

computation time, number of iterations, number of functional evaluations, function

evaluation, and feasibility of the solution. The computation time represents the total

time it takes from feeding the NLP the initial guess to the time the optimal control

and state trajectories are produced. The number of iterations is the number of times

the NLP updates the guess being optimized. Function evaluations are the number

of times the objective cost is calculated until the convergence criteria of the NLP

occurred. The ‘Fval’ column represents the value of the objective cost. The feasi-

bility represents two-norm of the vector containing all the equality constraints upon

convergence. In the MSM the feasibility represents the total error in the continuity

constraints for each shooting interval. In the case of the ECM and PSM, the feasi-

bility represents the accuracy by which the model of the dynamics is upheld. For the

sake of comparison, the PSM uses LGR collocation points and a differentiation matrix

which is much more accurate than using first-order Euler approximation. Although

the feasibility of the ECM is better than the PSM, the method of implementing the

dynamics performed by the PSM is more accurate than the ECM.
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The total computation time for each direct method is presented in the third col-

umn of Table 11. From this column, the fastest direct method is observed to be the

ECM, while the slowest is the SSM. The relatively slow convergence times produced

by the shooting methods are a reminder that forward propagation of the dynamics

obtained using an ODE solver is not computationally efficient. Moreover, the MSM

efficiently computes the shootings in parallel, and the addition of the continuity con-

straints does not out-weigh the cost of breaking the problem into multiple segments.

The collocation methods employed by the ECM and PSM are an efficient means of

transcribing the dynamic problem into a static one. Although the PSM is slower

than the ECM, this is attributed to the number of collocation points which are held

constant across all methods. Since the LGR selected points give rise to the efficient

computational methods previously described, the number of points required by the

PSM to obtain a solution with the same accuracy as the other methods is less. In the

effort to make a fare computational comparison, the number of collocation points is

kept constant. Further, the implementation of fixed meshing makes it challenging to

have enough points where necessary. Since the segmentation was fixed, the PSM is

forced to have smooth state trajectories, where the other methods were free to have

sharp changes. This is observed around 8 TU in Figure 31b, where the evader heading

for the PSM is smoother than the other methods. As a result, the PSM would have

faster convergence if fewer points and adaptive meshing were implemented.

The number of iterations and function evaluations conducted by the even collo-

cation method were much larger than the other direct methods. Since the method

converted the dynamics into nonlinear constraints, a large number of iterations and

evaluations were required to satisfy the feasibility requirement. Even though more

function evaluations were required, the effort to compute the equality constraints was

far less expensive than using an ODE solver.
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The final objective costs produced by all four methods are very similar. From

Table 11 the range of the pursuer to the evader upon the capture of the pursuer by

the defender is approximately 2.7 DU. The lower performance of the ECM and PSM

are attributed to the lack of adaptive meshing for both the ECM and PSM.

Table 11. Direct Method Performance

Method NLP Comp. Time Iter F. Evals Fval Feasibility
SSM FMINCON() 14.1 sec 32 1632 -2.76 0
MSM FMINCON() 5.4 sec 27 2214 -2.76 1.788E− 9
ECM FMINCON() 1.2 sec 31 10881 -2.75 1.019E− 9
PSM FMINCON() 8.2 sec 21 6930 -2.71 3.590E− 8

In Figure 31a the engagement computed by each of the direct methods is shown.

From this figure, it is observed that each of the four methods computes a similar so-

lution for the optimal evasion engagement. Moreover, the states of the optimization

are visualized in Figure 31. In Figure 31b the heading angles for each of the agents

are presented. From the figure, it can be observed that around 7.5-8.5 seconds, the

evader’s heading rate makes a drastic change, while the pursuer and defender have

smooth curves described by the PN equations. The line-of-sight ranges shown in

Figure 31c show that a race to zero between the two line-of-sight rates occurs. If

the line-of-sight range RPE reaches zero prior to RDP then the evader is captured;

but, if instead RDP goes to zero faster than RPE then the evader successfully escapes

the pursuer. In the engagement, the evader successfully escapes the pursuer by ma-

neuvering, in such a way, as to aid the defender. In Figure 31d the optimal control

determined by each of the direct methods is presented. Due to the nature of the

control limits the optimal control shows the classical bang-bang behavior. In all four

cases, the transition from a positive max turn rate to a negative max turn rate occurs

around 8 seconds.
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(a) Engagement Comparison (b) Agent Heading Comparison

(c) Line-of-sight Comparison (d) Optimal Control Comparison

Figure 31. The simulation results of the HVAA defense scenario when solved with each
of the four direct methods of optimal control

4.5 Concluding Remarks

In this chapter, the kinetic defense of a HVAA was presented. Using differen-

tial game theory the optimal strategies for a defender and pursuer were first solved

when the evader was non-maneuvering; first in 2-D in Section 4.1, next in 3-D in

Section 4.2. Next, in Section 4.3 the evader was allowed to maneuver and aid in

his own defense by leveraging the defender’s motion, thus maximizing his separation

from the pursuer/defender at final time. Finally, in Section 4.4 a comparison was

conducted between different ways of finding the optimal control for the maneuvering
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evader directly; four methods were considered: Single Shooting Method, Multiple

Shootings Method, Even Collocation Method, and Pseudospectral Method.

In Sections 4.1 and 4.2, the use of Apollonius Circle allowed for the differential

game to be transformed from a problem of minimax to one of pure minimization.

Using optimal control theory the minimization problems were solved, providing the

optimal defender and pursuer strategies. The examples in Section 4.1 Section 4.2

demonstrated that, for any agent, any variation from the differential game solution

yielded poorer performance for that player.

In Sections 4.3 and 4.4 the kinetic defense of a maneuvering evader was considered.

In the HVAA defense scenario, both the pursuer and defender are assumed to use a

Proportional Navigation guidance law and the evader’s control strategy is solved

using optimal control theory. The resulting maneuver made by the evader was to

head toward his defender in an effort to assist the defender’s capture of the pursuer.

In Section 4.4, attention was given to the direct method used to solve the optimal

control problem. The four methods implemented were the Single Shooting Method,

Multiple Shootings Method, Even Collocation Method, and Pseudospectral Method.

Considering the three-player engagement, the four methods found similar solutions

for the optimal control and the corresponding state trajectories; but, the size of

each method varied. Using a fixed mesh, the four methods were implemented in

Matlab. The results highlight the importance of adaptive meshing techniques and

the advantages of using direct transcription rather than ODE solvers.
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V. Directed Energy Defense of a HVAA

Problems worthy of attack prove their worth
by fighting back.

— Paul Erdös

In defensive counter air (DCA) operations, aircraft defense can be provided by two

means, kinetic or directed energy. Kinetic defense aims at providing defense through

physical capture or damage by proximity. Directed energy defense provides damage

by bombarding a target with electrons over time – this is achieved by leveraging

the electromagnetic spectrum. Directed energy defense is unique in that defense is

provided over a prolonged period of time rather than at a specific time instant, as

shown previously with kinetic defense.

This chapter considers the defender to be an aircraft equipped with a directed

energy weapon. Using this weapon, the defender aims to “expose the pursuer” for

as long as possible. The exposure time which neutralizes an asset depends upon

many factors outside the scope of this dissertation. Rather than focus on the physical

aspects which dictate the amount of exposure time required to neutralize an asset,

time guarantees for exposure time are presented. In this dissertation, as will be shown

in this chapter, one can compute the maximum possible exposure time based upon

the initial vehicle locations, speeds, and headings. The calculated exposure time can

be used to provide insight into requirements for the physical systems involved and

provide insight into the flight paths for a successful defense of a HVAA from a single

incoming threat.

136



5.1 Maximum Exposure of a Non-Maneuvering Pursuer in 2-D

This section considers a two-agent scenario containing a defender and a non-

maneuvering pursuer. The defender is maneuverable and is slower than the course-

holding pursuer. In this scenario, the defender is endowed with a specified circular

WEZ within which the defender strives to contain the pursuer for as long as possible.

The heading of the defender which maximizes the exposure time, i.e. the pursuer

remains inside the radius of the circular WEZ of the defender is solved using the

calculus of variations. The exposure time is computed based upon the angle by which

the pursuer is initially within the WEZ of the defender as well as the relative speed

ratio of the defender with respect to the pursuer. Presented, along with an example,

are the zero-time of exposure heading, maximum time of exposure heading, and proof

that exposure is persistent under optimal control.

Optimal Control Problem.

Described in Section 3.4, an optimal control problem is developed between the

pursuer and the defender concerning the defense of a non-maneuvering HVAA. From

the problem definition, the motion of the agents are defined as a set of ordinary

differential equations as shown in eq. (3.58). Also, the objective cost is defined in

eq. (3.61). This is equivalent to maximizing exposure time where tf is now exposure

time. Define the speed ratio between the defender and the pursuer as: α = vD/vP . In

the scenario, the pursuer is faster than the defender and therefore: 0 < α < 1. Using

the speed ratio parameter, the non-dimensional dynamics in eq. (3.58) are re-written

as

ẋD = α cosψD, ẋP = cosψP ,

ẏD = α sinψD, ẏP = sinψP .

(5.1)

Since the objective cost is Mayer, the Hamiltonian is the inner product of the
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dynamics in eq. (5.1) with the costates and is

H = pxDα cosψD + pyDα sinψD + pxP cosψP + pyP sinψP , (5.2)

where the costates are pT = [pxD , pyD , pxP , pyP ].

Necessary Conditions for Optimality:.

Using the Hamiltonian in eq. (5.2), the necessary conditions for optimality are

obtained by taking the partial derivatives as described in eqs. (3.10) to (3.12). Using

the first-order necessary conditions for optimality one may be able to formulate and

draw conclusions about the optimal control. Since the objective cost is Mayer, the

optimal Hamiltonian at final time is zero, H ∗(tf ) = 0. Where the superscript, ∗,

represents optimally. Evaluating the necessary condition described in eq. (3.12) the

following is obtained:

0 =
∂

∂ψD
(p∗xP cosψP + p∗yP sinψP + p∗xDα cosψD + p∗yDα sinψD)

=− αp∗xD(t) sinψ∗D(t) + αp∗yD(t) cosψ∗D(t)

=− p∗xD(t) sinψ∗D(t) + p∗yD(t) cosψ∗D(t).

(5.3)

Bringing the two terms in eq. (5.3) to either side of the equation, squaring, and using

the trigonometric identity cos2 ψ∗D = 1− sin2 ψ∗D, one may obtain the following:

p∗2xD(t) sin2 ψ∗D(t) = p∗2yD(t)(1− sin2 ψ∗D). (5.4)

Through algebraic manipulation of eq. (5.4) the following is obtained:

sin2 ψ∗D(t) =
p∗2yD(t)

p∗2xD(t) + p∗2yD(t)
. (5.5)
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Evaluating the necessary condition in eq. (3.11), four equations, one for each costate,

are

ṗ∗xD = ṗ∗xP = ṗ∗yD = ṗ∗yP = 0 (5.6)

From the necessary conditions in eq. (5.6) it may be inferred that the optimal costate

trajectories are constant, i.e.: p∗(t) = p∗ because the defender is holonomic. More-

over, since the costates are constant, the optimal heading of the defender is constant

under optimal play. This result may be derived from eq. (5.5). Therefore, the result-

ing optimal trajectory of the defender is a straight-line trajectory at an angle:

ψ∗D(t) = ψ∗D = sin−1

(
p∗yD√

p∗2xD + p∗2yD

)
. (5.7)

Transversality Conditions.

Next, consider the transversality conditions which are used to formulate the re-

lationship between the states and costates at final time. In eq. (5.7), the optimal

defender heading depends solely upon the costates, which are constant. Leveraging

the transversality conditions as described by eq. (3.14), the optimal defender head-

ing can be obtained as a function of the final states and problem parameters. From

eq. (3.61), the terminal penalty in the objective cost is constant, ∂Φ
∂x

= 0. The terminal

manifold is defined in eq. (3.60) and therefore the terminal manifold is

m(x∗(tf ), tf ) = (x∗D(tf )− x∗P (tf ))
2 + (y∗D(tf )− y∗P (tf ))

2 −R2
D. (5.8)

Substitution of eq. (5.8) into the transversality conditions from eq. (3.14), the follow-

ing is obtained:

− p∗(tf )
T = δ

[
∂m
∂xP

∂m
∂yP

∂m
∂xD

∂m
∂yD

]
. (5.9)
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Recall, that the slack variable from the transversality conditions is represented here

by δ. Expanding eq. (5.9), the costates are:

p∗xP =
∂m

∂xP
= 2δ(xD − xP ), p∗yP =

∂m

∂yP
= 2δ(yD − yP ),

p∗xD =
∂m

∂xD
= 2δ(xP − xD), p∗yD =

∂m

∂yD
= 2δ(yP − yD).

(5.10)

Taking the square root of eq. (5.5) and substituting the costates from eq. (5.10) the

following is obtained:

sinψ∗D(tf ) =
±2δ(yPf

− yDf
)√

4d2(xPf
− xDf

)2 + 4d2(yPf
− yDf

)2
. (5.11)

Simplifying eq. (5.11), a relationship between the states of the defender and pursuer

at the final time, tf , is

sinψ∗D(tf ) =
±(yPf

− yDf
)

RD

. (5.12)

From eq. (5.12), the angle from the defender to the pursuer at final time is found to

be the same as the optimal heading. An illustration of the optimal engagement is

shown in Figure 32. As a result of eq. (5.12), the line segment QS is collinear with

DQ.
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Figure 32. Optimal Two-Agent Engagement Geometry

Solution to the Optimal Control Problem.

Knowing the course of the pursuer, the optimal heading of the defender which

maximizes the exposure time may be analytically obtained. Without loss of generality,

the defender-pursuer scenario is rotated about the pursuer such that the pursuer

velocity is aligned with the vertical axis as shown in Figure 32.

The necessary conditions of optimality in eqs. (3.10) to (3.12) have shown that

optimal heading in eq. (5.7) is constant. The transversality conditions in eq. (3.14)

have shown that the angle from the defender to the pursuer at final time is the same

as the optimal heading eq. (5.12). Using the law of cosines, the optimal heading of
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the defender may be obtained.

Theorem 4. The optimal heading of the defender which maximizes exposure time is:

ψ∗D = cos−1
(

(α2−1) sinλPD

α2+2α cosλPD+1

)
; where α ∈ (0, 1) is the speed ratio of the defender to the

pursuer and λPD ∈ [−π, π] is the bearing from the pursuer to the defender.

Proof. Using the law of cosines for the triangle, 4DSP :

DS
2

= PS
2

+R2
D − 2RDPS cosλPD. (5.13)

Using the speed ratio, the distance traversed by the pursuer is the same as α multiplied

by the distance traversed by the defender,

DS = αPS +RD. (5.14)

Substituting eq. (5.14) into eq. (5.13),

(αPS +RD)2 = PS
2

+R2
D − 2RDPS cosλPD. (5.15)

Expanding eq. (5.15),

α2PS
2

+R2
D + 2αRDPS = PS

2
+R2

D − 2RDPS cosλPD. (5.16)

Canceling R2
D terms on either side of the equals sign in eq. (5.16),

α2PS
2

+ 2αRDPS = PS
2 − 2RDPS cosλPD. (5.17)

Dividing both sides of eq. (5.17) by PS (this assumes that PS 6= 0; but if PS = 0
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then capture would have occurred),

α2PS + 2αRD = PS − 2RD cosλPD. (5.18)

Solving eq. (5.18) for PS a formulation for the time of exposure is obtained as a

function of the exposure radius, RD ≥ 0, speed ratio α ∈ (0, 1) and initial pursuer-

defender angle, λPD ∈ [−π, π],

PS =
2RD(α + cosλPD)

1− α2
. (5.19)

Since the cosine of an angle is the adjacent distance over the hypotenuse, the following

is obtained:

cos(π − ψD) =
RD sinλPD

αPS +RD

. (5.20)

Substitution of eq. (5.19) into eq. (5.20),

− cosψD =
RD sinλPD

α 2RD(α+cosλPD)
1−α2 +RD

. (5.21)

Through algebraic manipulation of eq. (5.21) the optimal defender heading is

ψ∗D = cos−1

(
(α2 − 1) sinλPD

α2 + 2α cosλPD + 1

)
. (5.22)

�

Special Case: λPD = 0.

When the line-of-sight angle, λPD, is zero the speed ratio does not come into play

and the optimal heading of the defender is ψD = π/2 as expected. This result can be

obtained from setting λPD = 0 in eq. (5.22).
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Invariance of Exposure.

Suppose the defender is within a range, RD, of the pursuer at a time t0. Un-

der optimal play, the pursuer remains within the WEZ until the termination set is

reached. Figure 32 described the geometry for the optimal two-agent scenario. The

instantaneous range between P and D, ρ, is less than RD in the open interval, (t0, tf )

as proved in Theorem 5. Recall, t0 is the instant in time when the pursuer is inside the

defender’s WEZ and tf is the instant in time when the pursuer leaves the defender’s

WEZ.

Theorem 5. ρ < RD ∀ t ∈ (t0, tf ), where ρ is the defender-pursuer range at any

time from the open interval starting at t0 and ending at tf .

Proof. Utilizing the Law of Cosines to analyze 4DSP ,

DP
2

= PS
2

+ (DQ+QS)2 − 2PS(DQ+QS) cosω. (5.23)

Recognize that DP = RD, QS = RD, and PS = αDQ. Substitution into eq. (5.23),

R2
D = PS

2
+ (αPS +RD)2 − 2PS(αPS +RD) cosω. (5.24)

Expanding and solving eq. (5.24) for cosω,

cosω =
PS(1 + α2) + 2αRD

2(αPS +RD)
. (5.25)

Now consider a future time, t ∈ (t0, tf ). Using the Law of Cosines for 4FHS,

ρ2 = FS
2

+HS
2 − 2FS HScosω. (5.26)
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Recognize that HQ = αFS and HS = HQ+RD. Substituting these into eq. (5.26),

ρ2 = FS
2

+ (αFS +RD)2 − 2FS(αFS +RD)cosω. (5.27)

Substituting eq. (5.25) into eq. (5.27):

ρ2 =FS
2

+ (αFS +RD)2

− 2FS(αFS +RD)
PS(1 + α2) + 2αRD

2(αPS +RD)
.

(5.28)

Algebraically manipulating eq. (5.28) the following is obtained:

ρ2 =R2
D +

FSRD

(αPS +RD)

(
FS − PS

) (
1− α2

)
. (5.29)

Notice in eq. (5.29),

ρ2 =R2
D +

FSRD

(αPS +RD)︸ ︷︷ ︸
Positive

(
FS − PS

)
︸ ︷︷ ︸

Negative

(
1− α2

)
︸ ︷︷ ︸

Positive

;
(5.30)

therefore, for values of t ∈ (t0, tf ), ρ < RD.

�

Exposure Limaçon.

The function which describes the pursuer distance while being exposed is provided

by eq. (5.19). The pursuer distance while being exposed is a function of the bearing

from the pursuer to the defender (λPD), the radius of exposure (RD), and speed ratio

between the defender and the pursuer (α). Using the range PS, the polar equation
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for exposure time is

tf =
2RD(α + cosλPD)

vP (1− α2)
=

2RD(vD + vP cosλPD)

v2
P − v2

D

. (5.31)

Plotting the time of exposure as a function of the angle from the pursuer to the

defender (λPD) produces a limaçon whose cusp is located at the pursuer location.

By setting tf = 0, the angle λPD which result in Zero Exposure Time (ZET). From

eq. (5.31), values of λPD which result in non-positive values of tf represent angles for

which exposure of the pursuer by the defender is not possible. Thus, setting tf ≤ 0

in eq. (5.31), the following is obtained:

2RD

vP (1− α2)
(α + cosλ0

PD) ≤ 0. (5.32)

where λ0
PD represents angles where exposure of the pursuer by the defender are not

possible. From eq. (5.32), the regions where the defender is unable to expose the

pursuer occurs when the angle λPD lies in the following range:

λ0
PD ∈ [cos−1 (−α) , π] ∪ [−π,− cos−1 (−α)]. (5.33)

Assuming the defender implements the optimal heading which maximizes exposure

time of the faster pursuer, eq. (5.31) can be algebraically manipulated to provide the

defender-pursuer headings which guarantee a desired exposure time as follows:

λPD(t) = cos−1

(
(v2
P − v2

D)t− 2RDvD
2RDvP

)
. (5.34)

It should be noted that the guarantees for exposure time are bounded by the following

closed interval:

t ∈
[
0,

2RD

vP − vD

]
. (5.35)
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Example.

Consider the scenario with radius of exposure, RD = 1.0; speed ratio, α = 0.8;

pursuer’s constant heading, ψP = π/2 rad; and pursuer-defender line-of-sight angle,

λPD = 7/18π rad. Also, consider the velocity of the pursuer to have speed vP = 1

DU/TU. Using eq. (5.22), the optimal defender heading, ψ∗D is computed and is ψ∗D ≈

1.726 rad. Using the calculated optimal defender heading, the max-time exposure of

the faster non-maneuvering pursuer can be seen in Figure 33. In the figure, the

defender is represented by the black line, the WEZ is represented by the dashed line,

and the faster pursuer is represented by the red line. Not pictured is the evader –

it is assumed that the course taken by the pursuer is a straight-line intercept of the

HVAA (evader).

P D

S

Q

Figure 33. The max-time exposure of a faster non-maneuvering pursuer by a slower
defender endowed with a circular WEZ

For the scenario described in Figure 33, consider the defender-pursuer range
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throughout the engagement. In Theorem 5 the defender-pursuer range remains less

than the range of the WEZ under optimal play until the pursuer escapes. In Fig-

ure 34, the defender range is represented by the dashed black line and, the instanta-

neous defender-pursuer range is represented by the solid black line. As expected, the

defender-pursuer range remains less than the defender range for the entire engage-

ment, as required.

Figure 34. The instantaneous agent range is less than the exposure range for the entire
engagement which lasts 6.345 time-units.

Next, consider arbitrary defender-pursuer aspect angles: λPD ∈ [−π, π]. In the

event that the defender selects the optimal heading described by eq. (5.22), the expo-

sure time can be computed using eq. (5.31). In Figure 35 the maximum exposure time

is found for arbitrary aspect angles, λPD. From the figure, the blue line represents

all cases where the defender is able to expose the pursuer for a non-zero amount of

time. The green line represents the computed exposure time from eq. (5.31). While

the negative values signify that the defender is unable to defender the pursuer for any
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amount of time. The green dot designates the angle λ0
PD for which there is zero ex-

posure time. Finally, the black dot is the computed maximum exposure time, which

occurs when λPD = 0.

λPD = 0

Figure 35. Time of exposure of the non-maneuvering pursuer by the defender as a
function of the line-of-sight angle λPD when α = 0.8 and RD = 1.0

A plot which describes the exposure time for arbitrary defender-pursuer headings

was shown in Figure 35. However, how this relates to an actual engagement scenario

may be unclear. Plotting the exposure time in a polar sense for each aspect angle,

λPD, the limaçon which describes the exposure time for each aspect angle, λPD, can

be seen in Figure 36. In the figure, the gray shaded region represents the region

where exposure of the pursuer by the defender for all possible defender-pursuer line-

of-sight angles (λPD). The green region represents the pursuer headings for which

the defender is unable to expose the faster pursuer. Considering, the scenario in

this example, the red line represents the course taken by the pursuer, the black line

represents the defender under optimal play, and the dashed black circles represent

the defender’s WEZ at the beginning and end of the engagement.
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P

DNo Exposure

Figure 36. The exposure limaçon describes the range by which exposure is guaranteed
as a function of the line-of-sight angle, λPD, for a given defender-pursuer speed ratio,
α, and exposure radius, RD.

5.2 Directed Energy Defense of a Non-Maneuvering HVAA in 2-D

In this section, directed energy is considered as a means of defending a slow

non-maneuverable HVAA (evader) against an incoming threat (pursuer). In the en-

gagement, the faster pursuer aims at intercepting the non-maneuvering evader in

minimum time. To aid the evader, a teamed defender equipped with a directed en-

ergy weapon is considered. Rather than focus on the technology or the more critical

aspects of the directed energy device, it is assumed that the efficacy of the defensive

device is increased by maximizing the cumulative exposure time that the pursuer is

in a WEZ of fixed range about the defender; and by this assumption, the objective of

the defender is to maximally expose the pursuer prior to the capture of the evader.

150



Optimal Control Problem.

Consider a three-agent engagement scenario comprised of a fast pursuer (P ) which

is engaged on a slow non-maneuvering evader (E). To aid in the defense of the evader,

a defender (D) is considered which aims at keeping the pursuer in its WEZ for as long

as possible. A circular WEZ with radius RD is considered. This section considers the

question: How should the defender act so as to keep the pursuer in the circular WEZ

for as long as possible? It is assumed that the pursuer’s strategy is one of min-time

capture of the evader and as a result, its strategy is unaffected by the presence of the

defender.

Described in Section 3.4, two optimal control problems are developed: one for

the pursuer and one for the defender. The pursuer aims to capture the evader in

minimum time and the defender aims to maximize the cumulative time that the

pursuer remains inside its WEZ. The three-agent scenario equations of motion are

described in eq. (3.62). The objective cost of the pursuer is defined in eq. (3.66) and

the objective cost of the defender is defined in eq. (3.68). The speed ratio between

the pursuer and evader is defined as µ = vE/vP . Similarly, the speed ratio between

the pursuer and the defender is defined as α = vD/vP . Since the pursuer is faster

than both the defender and the evader the domain of the speed ratios is µ, α ∈ (0, 1).

Without loss of generality, consider the non-dimensionalization of time so that the

pursuer’s speed is unity. Utilizing the speed ratio parameters, the equations of motion

in eq. (3.62) may be simplified as

ẋP = cosψP , ẋE = µ cosψE, ẋD = α cosψD,

ẏP = sinψP , ẏE = µ sinψE, ẏD = α sinψD.

(5.36)

Two optimization problems are formulated and solved, and their interaction is

investigated in this section. The costate vectors pTA = [pxP ,A pyP ,A pxE ,A pyE ,A] and
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pTB = [pxP ,B pyP ,B pxD,B pyD,B] are introduced in order to formulate the Hamiltonians

for solving the two optimization problems (A and B) as defined by the minimization

of the objective costs in eqs. (3.66) and (3.68). Using the calculus of variations, the

Hamiltonian for the minimization described in eqs. (3.64) and (3.66) is the following:

HA = pxP cosψP + pyP sinψP + pxEµ cosψE + pyEµ sinψE. (5.37)

The Hamiltonian for the minimization described in eqs. (3.65) and (3.68) is

HB = pxP cosψP + pyP sinψP + pxDα cosψD + pyDα sinψD. (5.38)

The procedure for solving the optimal strategies of the pursuer and the defender is

to first formulate and solve for the min-time capture of the evader by the pursuer – to

solve the optimization problem as described in eqs. (3.64), (3.66), (3.67) and (5.37).

Then, using the solution to the optimization problem A, the optimal strategy for the

defender is then posed and solved as described by eqs. (3.65), (3.68), (3.69) and (5.38).

Using the first-order optimality conditions, conclusions about the optimal behavior

of the defender and the pursuer can be drawn. Using the Hamiltonians in eqs. (5.37)

and (5.38), the necessary conditions for optimality are found using the partial deriva-

tives in eqs. (3.10) to (3.12). Moreover, at final time for each of the optimization

problems, the optimal Hamiltonian is zero, HA(tgo) = HB(texp) = 0. Recall, the

superscript, ∗, represents optimality. Also, the control, u(t), for the pursuer or de-

fender (depending upon the problem being solved) are defined as u(t) = {ψP (t)} for

problem A and u(t) = {ψD(t)} for problem B.
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Optimal Control Problem, A - Pursuer Strategy.

Lemma 1. The optimal strategy for the pursuer is a straight-line constant-heading

strategy.

Proof. Evaluating eq. (3.11) using the Hamiltonian, HA from eq. (5.37) the costate

dynamics are as follows:

ṗ∗xP ,A = ṗ∗yP ,A = ṗ∗xE ,A = ṗ∗yE ,A = 0. (5.39)

where the “A” subscript notation identifies the corresponding Hamiltonian. Further,

evaluating the partial of HA with respect to the pursuer’s control ψP in eq. (3.12),

0 = −p∗xP ,A sinψ∗P + p∗yP ,A cosψ∗P . (5.40)

rearranging and squaring each side of eq. (5.40), the following is obtained:

p∗2xP ,A sin2 ψ∗P = p∗2yP ,A cos2 ψ∗P = p∗2yP ,A(1− sin2 ψ∗P ). (5.41)

solving for ψ∗P ,

ψ∗P = sin−1

(
p∗yP ,A√

p∗2xP ,A + p∗2yP ,A

)
. (5.42)

Since the costates are constant, the pursuer’s heading is constant under optimal

play. �

By Lemma 1, the pursuer’s heading is constant under optimal play; thus, the use

of Apollonius Circle is a useful tool for solving for the min-time interception of the

evader by the pursuer as was demonstrated in Section 4.1.

Lemma 2. The optimal heading for the pursuer which captures the non-maneuvering

evader in minimum time is ψ∗P = sin−1(µ sin(ψE − θE)) + θE where µ is the speed
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ratio between the evader and the pursuer, ψE is the heading of the evader, and θE is

the angle from the pursuer to the evader relative to the x-axis in the Cartesian fixed

frame.

Proof. From necessary conditions for optimality, the optimal strategy for the pursuer

is a straight-line trajectory. Moreover, the evader is non-maneuvering, and therefore,

the geometry of Apollonius provides the optimal strategy for the pursuer to capture

the slower non-maneuvering evader in minimum time [9].

In Figure 37, the Apollonius Circle is shown in magenta, where the origin is located

at O. The distance d = PE, the speed ratio µ = vE
vP

, the position of P and E are used

to construct the Apollonius Circle which defines the locus of min-time interceptions

possible by the pursuer because the evader is non-maneuvering. Along the vector ~PE

the geometry defined by Apollonius: OE = µ2d
1−µ2 and Rapol = OI = µd

1−µ2 .

Evaluating the distance normal to PO which locates point I from E and P , the

following can be obtained:

EI sin(ψE − θE) = PI sin(ψ∗P − θE). (5.43)

Recall, the speed ratio µ defines the relationship between EI and PI to be: EI =

µPI. Substitution into eq. (5.43), the following is obtained:

µPI sin(ψE − θE) = PI sin(ψ∗P − θE). (5.44)

Solving for ψ∗P ,

ψ∗P = sin−1(µ sin(ψE − θE)) + θE. (5.45)

�
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Lemma 3. Using the geometry provided by Apollonius Circle, the time-to-go is

tgo =
d

vP

(
σ1 +

√
σ2

1 + σ2

)
, (5.46)

where σ1 = µ cos(ψE − θE)/(1 − µ2), σ2 = 1/(1 − µ2), and d is the distance between

P and E.

Proof. Because the velocity of the pursuer has been normalized to 1, the time-to-go

in seconds is the same as the length PI. This means, the length PI provides the

time-to-go, tgo. Consider 4IEO in Figure 37; by the law of cosines,

OI
2

= EO
2

+ EI
2 − 2EO EI cos(ψE − θE). (5.47)

Define the distance between the pursuer and evader as d and the evader-pursuer

ratio is vE/vP = µ, where µ < 1. From the Apollonius Circle, EO = µ2d/(1 − µ2),

OI = µd/(1 − µ2), and EI = µPI. Substitution into eq. (5.47), the following is

obtained:

(
µd

1− µ2

)2

=

(
µ2d

1− µ2

)2

+
(
µPI

)2 − 2

(
µ2d

1− µ2

)(
µPI

)
cos(ψE − θE). (5.48)

Bringing all the terms to the right hand side and simplifying eq. (5.48),

0 = PI
2 − 2µd

1− µ2
cos(ψE − θE)PI − d2

1− µ2
. (5.49)

Using the quadratic equation, PI may be solved in terms of the evader-pursuer speed
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ratio and the pursuer-evader distance using eq. (5.49). Letting

a = 1

b = −2µd cos(ψE − θE)

1− µ2

c = − d2

1− µ2
,

the solution for PI is obtained to be PI = −b±
√
b2−4ac

2a
. Substitution of a, b, and c,

into the quadratic formula the distance PI can be solved. The positive case is where

the pursuer moves forward and captures the evader, while the negative case is where

the pursuer moves backward and intersects the Apollonius Circle at a point of no

interest. The quadratic equation for the solution of PI is the following:

PI =
µd cos(ψE − θE)

(1− µ2)
+ d

√(
µ cos(ψE − θE)

(1− µ2)

)2

+
1

1− µ2
. (5.50)

Dividing eq. (5.50) by the pursuer’s speed, vP , the time-to-go is obtained.

tgo =
d

vP

(
σ1 +

√
σ2

1 + σ2

)
,

where σ1 = µ cos(ψE − θE)/(1− µ2), σ2 = 1/(1− µ2), and d is the distance between

P and E. �

Optimal Control Problem, B - Defender Strategy.

Lemma 4. The optimal strategy for the defender is a straight-line constant-heading

strategy.

Proof. Evaluating eq. (3.11) using the Hamiltonian, HB from eq. (5.38) the costate
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dynamics are as follows:

ṗ∗xP ,B = ṗ∗yP ,B = ṗ∗xD,B = ṗ∗yD,B = 0 (5.51)

where the “B” subscript notation identifies the corresponding Hamiltonian. Thus,

from eqs. (5.39) and (5.51) the costates for each individual optimization problem are

constant under optimal play.

Taking the partial in eq. (3.12) using the Hamiltonian in eq. (5.38) with respect

to the control of the defender ψD, the following is obtained:

0 = −p∗xD,Bα sinψ∗D + p∗yD,Bα cosψ∗D. (5.52)

Therefore, as derived in Lemma 1, the optimal heading of the defender as a function

of the costates from HB is in agreement with eq. (5.7) in Section 5.1 and is

ψ∗D = sin−1

(
p∗yD,B√

p∗2xD,B + p∗2yD,B

)
. (5.53)

Since the optimal costates are constant, the heading of the pursuer is constant under

optimal play. �

Evaluating eq. (3.12) using the Hamiltonian, HA from eq. (5.37) the optimal con-

trol is found to depend solely upon the costates and the parameter µ. Similarly,

evaluating eq. (3.12) using the Hamiltonian, HB from eq. (5.38) the optimal control

is found to depend solely upon the costates and the parameter α. Since the optimal

costates are constant, it may be inferred that the optimal control for the defender

and the pursuer is also constant; hence, all optimal strategies are straight-line trajec-

tories. Because all optimal strategies for the pursuer and defender are straight-line

trajectories, the optimal heading for the pursuer is described using the geometry of
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Apollonius, and the optimal strategy for the defender is that of the maximum-time

exposure from Section 5.1.

Three scenarios of interest are examined: When tgo ≥ texp, when tgo < texp, and

when texp = 0.

Time-to-go greater than or equal to exposure time.

The engagement when the time-to-go (tgo) is greater than or equal to the maximum

possible exposure time (texp) is shown in Figure 37.

P

E

D

O

S

Q

x̂

ŷ

I

λPD

θE

ψP

ψE

ψ∗
D

vP

vE

vD

Figure 37. The directed energy defense scenario wherein the maximum possible expo-
sure time is less than the time-to-go.

From Figure 37, the interception point made by the pursuer and evader occurs

after the pursuer escapes the WEZ of the defender; this means that the heading taken

by the defender is one which maximizes the time that the pursuer is inside the WEZ.

Lemma 5. Suppose that scenario terminates in P exiting the WEZ prior to capturing
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E, then the optimal heading of the defender is

ψ∗D = cos−1

(
(α2 − 1) sinλPD

α2 + 2α cosλPD + 1

)
, (5.54)

where α is the speed ratio between the defender and the pursuer and λPD is the line-

of-sight angle (positive counter clockwise) from the pursuer to the defender.

Proof. See Theorem 4 from Section 5.1. �

Exposure time greater than time-to-go.

Consider the case when the time-to-go is less than the maximum possible exposure

time; this case is illustrated in Figure 38. Since the defender’s optimal strategy

provides the maximum possible exposure of the pursuer, the question which needs to

be answered is, “What heading bounds provide an exposure time of at least time-to-

go?” Specifically, what headings ψD1 and ψD2 provide exactly tgo exposure time?

P

E

D

O

Q1

Q2

x̂

ŷ

I

λPD

θE

ψP

ψE

ψD1

ψD2
vP

vE

vDvD

Figure 38. The directed energy defense scenario wherein the maximum possible ex-
posure time is greater than the time-to-go. In this case, suboptimal headings may be
used to provide an exposure time equal to the time-to-go.
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In order to solve for the defender headings which provide exactly tgo exposure time,

when the maximum possible exposure provided by the optimal heading from eq. (5.54)

is implemented, one begins with locating the interception point with respect to the

defender’s initial location. Where necessary, the subscript [D] is used to represent a

point measured from the defender’s initial position, D. For example, the point I with

respect to D is I[D] = (xI[D], yI[D]); more explicitly,

xI[D] = xI − xD, yI[D] = yI − yD. (5.55)

The location of the defender at time-to-go with respect to D is Q[D] = (xQ[D], yQ[D]).

Furthermore, the range between the defender and the pursuer at the time-to-go is

RD, and therefore,

R2
D =

(
xI[D] − xQ[D]

)2
+
(
yI[D] − yQ[D]

)2
. (5.56)

Recognizing that the speed ratio between the defender and the pursuer is α, the

distance traversed by the pursuer is PI and the distance traversed by the defender is

αPI. Therefore the location of the defender at the time-to-go is

Q[D] = αPI cosψDx̂+ αPI sinψDŷ. (5.57)

In the pursuer Cartesian fixed frame located at P , the location of the defender at the

time-to-go is

Q = αPI cosψDx̂+ αPI sinψDŷ + xDx̂+ yDŷ. (5.58)

Substitution of eq. (5.57) into eq. (5.56), the following is obtained:

R2
D =

(
xI[D] − αPI cosψD

)2
+
(
yI[D] − αPI sinψD

)2
. (5.59)
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Expanding eq. (5.59), collecting terms in ψD, and moving all terms to the right hand

side the following is obtained:

0 =−R2
D + x2

I[D] + y2
I[D] + α2PI

2 − 2αPIxI[D] cosψD − 2αPIyI[D] sinψD. (5.60)

Notice that eq. (5.60) has the form A cosψD +B sinψD + C = 0, where

A = −2αPIxI[D], B = −2αPIyI[D], C = −RD + x2
I[D] + y2

I[D] + α2PI
2
. (5.61)

Using the trigonometric half-angle formula, sinψD and cosψD may be re-written as

a function of tanψD. The identity is repeated here for the reader’s convenience.

cosψD =
1− tan2(ψD/2)

1 + tan2(ψD/2)
, sinψD =

2 tan(ψD/2)

1 + tan2(ψD/2)

Let τ = tan(ψD/2), then eq. (5.60) may be re-written in terms of τ .

0 = A
1− τ 2

1 + τ 2
+B

2τ

1 + τ 2
+ C

= A(1− τ 2) + 2Bτ + C(1 + τ 2)

= (C − A)τ 2 + 2Bτ + (A+ C).

(5.62)

Leveraging the quadratic formula, the value of τ is

τ =
−2B ±

√
4B2 − 4(C − A)(A+ C)

2(C − A)

=
−B ±

√
B2 − C2 + A2

C − A .

(5.63)
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Therefore, because of the quadratic expression, two solutions for ψD exist.

ψD1 = 2 tan−1

(−B +
√
B2 − C2 + A2

C − A

)
,

ψD2 = 2 tan−1

(−B −
√
B2 − C2 + A2

C − A

)
.

(5.64)

Axiom 1. When the exposure time is greater than the time-to-go, all headings in the

closed interval,

ψD ∈ [ψD1 , ψD2 ], (5.65)

provide a final time of time-to-go.

Axiom 2. The maximum exposure time (texp) as a function of the line-of-sight angle,

λPD, the speed of the pursuer, vP , the speed of the defender, vD,and radius of the

WEZ, RD is

texp =
2RD(vD + vP cosλPD)

v2
P − v2

D

. (5.66)

Axiom 3. The line-of-sight angle, λPD, takes on angles from [−π, π]. The exposure

time (texp) is as described in eq. (5.66). For all possible values of λPD, the maximum

possible exposure time occurs when λPD = 0;

texp = max
λPD

2RD(vD + vP cosλPD)

v2
P − v2

D

=
2RD

vP − vD
. (5.67)

Axiom 4. Setting eq. (5.66) equal to zero, the line-of-sight angles by which exposure

is not possible are in the interval

λPD ∈ [−π,− cos−1(−α)] ∪ [cos−1(−α), π]. (5.68)

Axiom 5. The final time is limited when the evader is captured by the pursuer before

the pursuer escapes the defender’s WEZ; this occurs when texp > tgo. In the event
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that 2RD/(vP − vD) > tgo the line-of-sight angle where tgo = texp occurs at the angle

λPD,go and is as follows:

λPD,go(t) = cos−1

(
(v2
P − v2

D)tgo − 2RDvD
2RDvP

)
(5.69)

Notice, λPD,go in eq. (5.69) is found by substituting tgo for the exposure time, texp

in eq. (5.66) and then solving for λPD,go.

Solution to the Optimal Control Problem.

From the defender’s perspective, the optimal control problem ends when either the

pursuer captures the evader or when the pursuer escapes the WEZ of the defender,

C = CA ∪CB. In cases where the line-of-sight angle λPD is as described in eq. (5.68),

the defender terminates immediately, as it is unable to keep the pursuer in the WEZ

for any amount of time. From the pursuer’s perspective, the optimal control problem

ends when it captures the evader, CB.

Exposure Time.

Theorem 6. Given the optimal control problem specified by eqs. (3.65), (3.68) and (5.36)

and the line-of-sight angle, λPD ∈ [−π, π], the optimal final time, t∗f , is

t∗f =





tgo from eq. (5.46) λPD ∈ Λgo

texp from eq. (5.66) λPD ∈ Λ∗

0 λPD ∈ Λ0

(5.70)
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where

Λ0 =

{
λPD

∣∣∣∣∣ −π ≤ λPD ≤ − cos−1(−α) or cos−1(−α) ≤ λPD ≤ π

}

Λgo =

{
λPD

∣∣∣∣∣ λPD ≤
∣∣∣∣ cos−1

(
(v2
P − v2

D)tgo − 2RDvD
2RDvP

) ∣∣∣∣

}

Λ∗ =

{
λPD

∣∣∣∣∣λPD ∈ Λ′0 ∩ Λ′go

}
.

Proof. Three scenarios are possible:

1. P captures E before escaping D’s WEZ.

In the first case, λPD ∈ Λgo implies that P captures E before escaping D’s

WEZ. Therefore, from Lemma 3 tgo < texp. Therefore, t∗f = tgo by Axiom 5.

2. P captures E after escaping D’s WEZ.

In the second case, λPD ∈ Λ∗ implies that P captures E after escaping or lies

on the border of D’s WEZ. Therefore, from Axiom 2, t∗f = texp from eq. (5.66).

3. D is incapable of exposing P for any amount of time. λPD ∈ Λ0 implies that D

is unable to expose P for any amount of time and therefore t∗f = 0 by Axiom 4.

�

Corollary 2. In the event that texp < tgo, Λgo is empty.

Proof. texp is the maximum possible time that the pursuer is contained in the WEZ

of the defender by Axiom 3. If λPD ∈ Λgo then by Axiom 2,

texp =
2RD(vD + vP cosλPD)

v2
P − v2

D

,
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and by the definition of Λgo,

texp ≥
2RD

v2
P − v2

D

(
vD + vP

(
(v2
P − v2

D)tgo − 2RDvD
2RDvP

))
. (5.71)

Expanding eq. (5.71),

texp ≥
2RDvD
v2
P − v2

D

+
2RDvP
v2
P − v2

D

(v2
P − v2

D)tgo

2RDvP
− 2RDvPvD

(v2
P − v2

D)vP
. (5.72)

Therefore, texp ≥ tgo. By contradiction, in order for λPD to be an element of Λgo, texp

must be greater than tgo; but, by the assertion, texp < tgo. �

Defender Strategy.

Theorem 7. The defender’s strategy depends upon the initial locations of the agents

as well the problem parameters: α, µ, λPD, and ψE. In the event that the defender

in unable to expose the pursuer for any amount of time, e.g. texp = 0 no matter the

heading that ψD should take, the defender’s strategy is of no consequence. However,

for exposure times greater than zero, the defender’s choice of heading is

ψ∗D =





{ψD|ψD ∈ [ψD1 , ψD2 ]} λPD ∈ Λgo

cos−1

(
(α2 − 1) sinλPD

α2 + 2α cosλPD + 1

)
λPD ∈ Λ∗

undefined λPD ∈ Λ0.

(5.73)

Proof. Three scenarios are possible

1. P captures E before escaping D’s WEZ

In the first case, λPD ∈ Λgo implies that P captures E before escaping D’s

WEZ. Therefore by Axiom 1, ψ∗D = {ψD|ψD ∈ [ψD1 , ψD2 ]}.

2. P captures E after escaping D’s WEZ
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In the second case, λPD ∈ Λ∗ implies that P captures E after escaping D’s

WEZ. Therefore from Lemma 5, ψ∗D = cos−1
(

(α2−1) sinλPD

α2+2α cosλPD+1

)
.

3. D is incapable of exposing P for any amount of time.

ψDP ∈ Λ0 implies that D is unable to expose P for any amount of time by

Axiom 4.

�

Examples.

Consider the directed energy defense scenario with the WEZ radius of 2 distance

units (DU), the speed ratio between the evader and the pursuer is µ = 0.5, the speed

ratio between the defender and the pursuer is α = 0.6, and the speed of the pursuer

is vP = 1 DU/TU. The evader takes a heading of 110 deg. To highlight the defender

strategy in eq. (5.73), two cases are considered: λPD = −70deg and λPD = −40deg.

Common to the examples, the pursuer is located at the origin, P = (0, 0), and the

evader is located at E = (6, 2).

The first step in both examples is to construct the Apollonius Circle and determine

the heading of the pursuer as well as the time-to-go. Using eq. (5.45), the optimal

pursuer strategy which intercepts the evader in minimum time is found to be 48.4 deg.

from East. Using eq. (5.46) the time-to-go is found to be 7.189 TU. The maximum

possible exposure time, independent of the bearing of the defender from the pursuer

is found using eq. (5.67); texp = 10.000 TU. Also, the sets Λ0,Λexp,Λgo, and Λ∗ are

found to be:

Λ0 = [−180,−126.870]deg ∪ [126.870, 180]deg,

Λgo = [−56.620, 56.6120]deg,

Λ∗ = (−126.870,−56.620]deg ∪ [56.620, 126.870)deg.
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Example 1: λPD = -70 deg.

The first example highlights the case where the exposure time is less than the

time-to-go. For this example, consider the defender to be 70 deg starboard from the

pursuer’s heading and 2 DU from the pursuer – at the onset, the pursuer is inside the

defender’s WEZ. This example is shown in Figure 39.

Figure 39. The directed energy defense scenario where the bearing from the pursuer
to the defender is 70 deg starboard. The speed ratio between the evader to the pursuer
is µ = 0.50 and the speed ratio between the defender and the pursuer is α = 0.60.

In Figure 39, the solid red line represents the pursuer’s course, the solid black

line represents the defender’s course, and the solid blue line represents the evader’s

course. The points P , E, and D represent the initial location of the pursuer, evader,

and defender respectively. The points S represent the location of the pursuer when it

escapes the defender’s WEZ, who is located at the point Q. The point I represents

the capture location of the evader by the pursuer which is dictated by the Apollonius

Circle centered at the point O.
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In this example, the angle λPD = −70 deg ∈ Λ∗ and the exposure time and

optimal heading are found using eqs. (5.70) and (5.73) respectively. texp = 5.888 TU

and ψ∗D = 68.281 deg from East.

From this scenario, the defender heads toward the pursuer in order to maximize

the time that the pursuer stays inside the WEZ. If the defender were to deviate from

this optimal heading (ψ∗D), the time that the pursuer is exposed would be less than

the calculated 5.888 TU. Since the pursuer does not capture the evader before the

defender loses contact with the pursuer, the defender has a unique optimal heading

that maximizes the time that the pursuer is inside the WEZ.

Example 2: λPD = -40 deg.

The second example highlights the case where the exposure time is less than the

time-to-go. For this example, consider the defender to be 40 deg starboard from the

pursuer’s heading and 2 DU from the pursuer. This example is shown in Figure 40.
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Figure 40. The directed energy defense scenario where the bearing from the pursuer
to the defender is 40 deg starboard. The speed ratio between the evader to the pursuer
is µ = 0.50 and the speed ratio between the defender and the pursuer is α = 0.60.

In Figure 40, the solid red line represents the pursuer’s course, the solid black

line represents the defender’s course, and the solid blue line represents the evader’s

course. The points P , E, and D represent the initial location of the pursuer, evader,

and defender respectively. The point I represents the capture location of the evader

by the pursuer which is dictated by the Apollonius Circle centered at the point O.

Since the pursuer is inside the defender’s WEZ for the entire engagement, there exists

an interval of headings which the defender can take which ensure that the pursuer is

contained in the WEZ for the entirety of the engagement until the pursuer captures

the evader. The limiting headings are shown by the arc between Q2 and Q1.

In this example, the angle λPD = −40 deg ∈ Λgo and the exposure time and

optimal heading are found using eqs. (5.70) and (5.73) respectively. texp = tgo = 7.189

TU and using eq. (5.64) the limiting headings ψD1 = 45.869 deg and ψD2 = 76.584 deg
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from East. This means, that if the defender takes any heading between 45.869 and

76.584 deg, the pursuer will stay inside the WEZ for the entirety of the engagement.

Next, consider every possible line-of-sight angle from the pursuer to the defender,

λPD ∈ [−180, 180] deg. Assuming that the defender implements the strategy de-

scribed in eq. (5.73) and the pursuer captures the evader in minimum time using the

optimal heading in eq. (5.45), the exposure time as a function of the line-of-sight

angle λPD is shown in Figure 41.

Figure 41. The exposure time as a function of the line-of-sight angle λPD is depicted
in this polar plot when E = (6, 2), α = 0.6, and µ = 0.50. This polar plot is a graphical
representation of eq. (5.70)

In Figure 41 the blue limaco̧n describes the time that the pursuer could remain

inside the WEZ of the defender if the evader were not captured by the pursuer. The

yellow circle represents the time-to-go – the evader is captured by the pursuer. The

red lines describe the line-of-sight headings by which the pursuer is unable to be

contained inside the WEZ of the defender regardless of the defender’s strategy. The

black circles represent the angle and time at which the pursuer is inside the defender’s
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WEZ for exactly the same time as the time-to-go.

In Figure 42 the strategy of the defender as a function of the line-of-sight angle

λPD is presented.

Figure 42. The defender’s heading (ψD) as a function of the line-of-sight angle λPD as
described in eq. (5.73). The case presented is that of the examples where E = (6, 2),
α = 0.6, and µ = 0.50.

The red regions in Figure 42 represent line-of-sight angles where the defender

is unable to contain the pursuer for any amount of time. The blue line represents

the optimal strategy of the defender. The shaded blue region represents the cases

where the time-to-go limits the amount of time that the pursuer is contained in the

defender’s WEZ.

One interesting observation about the shaded blue region in Figure 42 is that the

shaded region is widest at λPD = 0. This is because the maximum possible exposure

time texp occurs at λPD = 0 and because the pursuer captures the evader before it

can escape the WEZ of the defender. Also, due to the fact that the amount of time
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that the defender can keep the pursuer inside the WEZ decreases as it deviates from

the optimal heading ψ∗D, the amount of deviation when λPD = 0 is a maximum; thus,

the blue shaded region is the widest when λPD = 0.

As expected, the shaded region collapses to a unique heading at the angle λPD,go

= ±56.620 deg as described in eq. (5.69). This means that for headings λPD ∈ Λ∗

the defender’s strategy is unique and is ψ∗D as described in eq. (5.54).

5.3 Maximum Exposure of a Non-Maneuvering Pursuer in 3-D

In Section 5.1 the max-time exposure of a non-maneuvering pursuer was posed

and solved. Next, in Section 5.2, the evader was introduced; as a result, special

consideration was given to scenarios where the evader was captured before or after

escaping the defender’s WEZ. In this section, the results of Section 5.1 are extended

to 3-D Cartesian space.

It is now well understood that when the pursuer and defender are holonomic

(have simple motion) and the evader does not maneuver that the optimal trajectories

for the pursuer and defender are straight-line trajectories. For this reason, one may

omit the evader when considering the HVAA defense scenario if the pursuer’s optimal

strategy is a straight-line trajectory. This greatly reduces the number of free variables

and directs attention to the defender’s optimal strategy which maximally exposes a

non-maneuvering, but faster, pursuer.

Optimal Control Problem in 3-D.

A governing assumption in this scenario is that the pursuer is faster than the de-

fender, vD < vP . Without loss of generality, the speed ratio between the defender and

the pursuer is defined as: α = vD/vP , resulting in 0 < α < 1. Using normalization,

the nonlinear dynamics, ẋ(t) = f(x(t),u(t), t), can be represented as function of the
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speed ratio, α, rather than their individual speeds as follows:

ẋD = α cos γD cosψD, ẋP = cos γP cosψP ,

ẏD = α cos γD sinψD, ẏP = cos γP sinψP ,

żD = α sin γD, żP = sin γP .

(5.74)

In this scenario, the Hamiltonian is defined as the inner product of the costates and

the dynamics, H = 〈p, f(x,u, t)〉. The Hamiltonian can be written more explicitly

as follows:

H =pxDα cos γD cosψD + pyDα cos γD sinψD + pzDα sin γD

+ pxP cos γP cosψP + pyP cos γP sinψP + pzP sin γP ,

(5.75)

where the costates are pT = [pxD , pyD , pzD , pxP , pyP , pzP ].

Necessary Conditions for Optimality:.

Utilizing the Hamiltonian in eq. (5.75), the necessary conditions for optimality

are formulated by taking the partial derivatives in eqs. (3.10) to (3.12). Recall, the

superscript, ∗, represents optimally. Evaluating the necessary condition described in

eq. (3.12), the following is obtained:




0

0


 =




−p∗xDα cos γ∗D sinψ∗D + p∗yDα cos γ∗D cosψ∗D

−p∗xDα sin γ∗D cosψ∗D − p∗yDα sin γ∗D sinψ∗D + p∗zDα cos γ∗D


 . (5.76)

Algebraic manipulation of the first term in eq. (5.76) provides a relationship between

the optimal heading of the defender and the costates for the defender:

0 = −p∗xDα cos γ∗D sinψ∗D + p∗yDα cos γ∗D cosψ∗D. (5.77)
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Through algebraic manipulation eq. (5.77) can be simplified to be the following:

cos2 ψ∗D =
p∗2xD

p∗2xD + p∗2yD
. (5.78)

Using the trigonometric identity sin2(x) + cos2(x) = 1 ∀x ∈ R, eq. (5.78) can be

written as follows:

sin2 ψ∗D =
p∗2yD

p∗2xD + p∗2yD
. (5.79)

The derivation for reaching eqs. (5.78) and (5.79) from eq. (5.77) can be found in

Appendix A.1. The following equation:

0 = −p∗xDα cos γ∗D sinψ∗D + p∗yDα cos γ∗D cosψ∗D

= cos γ∗D
(
−p∗xD sinψ∗D + p∗yD cosψ∗D

)
,

implies that either cos γ∗D = 0, or, more generally
(
−p∗xD sinψ∗D + p∗yD cosψ∗D

)
= 0.

The general case can be written as

0 =



p∗yD

−p∗xD


 ·




sinψ∗D

cosψ∗D


 ,

which implies that the two vectors are perpendicular. Therefore, the optimal defender

heading angle obeys the following:

cosψ∗D = ± pxD√
p2
xD

+ p2
yD

, sinψ∗D = ± pyD√
p2
xD

+ p2
yD

, (5.80)

wherein the signs of the two expressions are coupled. vSimilarly, through algebraic

manipulation of the second term from eq. (5.76), the optimal flight path angle of the

defender is found as a function of the optimal costates of the defender. The second

174



term from eq. (5.76) is repeated here for convenience.

0 = −p∗xDα sin γ∗D cosψ∗D − p∗yDα sin γ∗D sinψ∗D + p∗zDα cos γ∗D (5.81)

Equation (5.81) can be algebraically manipulated to obtain the following:

cos2 γ∗D =
(p∗xD cosψ∗D + p∗yD sinψ∗D)2

p∗2zD + (p∗xD cosψ∗D + p∗yD sinψ∗D)2
. (5.82)

Further expansion and substitution of eqs. (5.78) and (5.79) into eq. (5.82), the opti-

mal flight path angle as a function of the optimal costates is obtained as follows:

cos2 γ∗D =
p∗2xD + p∗2yD

p∗2xD + p∗2yD + p∗2zD
. (5.83)

The algebraic derivation which starts with eq. (5.81) and results in eq. (5.83) can be

found in Appendix A.2. Further evaluation of the necessary conditions for optimality

shows that the optimal heading and flight path angle by the defender is constant for

the entire engagement. Evaluating the necessary condition in eq. (3.11) one finds the

dynamics of the costates by evaluating the following partials:

ṗ∗xD = ṗ∗yD = ṗ∗zD = ṗ∗xP = ṗ∗yY = ṗ∗zP = 0 (5.84)

Since the states are not explicit in the Hamiltonian in eq. (5.75), the optimal

costates are constant, i.e. p∗(t) = p∗ because the defender is holonomic. Since the

optimal costates are constant, the optimal control is constant. Therefore the resulting

optimal trajectory of the defender is a straight-line trajectory. The optimal heading
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and flight path angle of the defender as a function of the costates are as follows:

ψ∗D(t) = ψ∗D = cos−1

(√
p∗2xD

p∗2xD + p∗2yD

)
, (5.85)

γ∗D(t) = γ∗D = cos−1

(√
p∗2xD + p∗2yD

p∗2xD + p∗2yD + p∗2zD

)
. (5.86)

Transversality Conditions.

Next, consider the transversality conditions from eq. (3.14) which are used to

formulate the relationship between the states and costates at final time. Recalling

eq. (3.14) from Section 5.1 the terminal manifold is different in the 3-D case. The

terminal manifold as defined in eq. (3.74) states that the range of the pursuer and

the defender is larger than the defender’s WEZ at final time. Therefore the terminal

manifold m is

m(x∗(tf ), tf ) =(x∗D(tf )− x∗P (tf ))
2 + (y∗D(tf )− y∗P (tf ))

2

+ (z∗D(tf )− z∗P (tf ))
2 −R2

D.

(5.87)

Substitution of eq. (5.87) into the transversality condition eq. (3.14) and intro-

ducing the slack variable δ, the following is obtained:

− p∗(tf ) = δ

[
∂m
∂xD

∂m
∂yD

∂m
∂zD

∂m
∂xP

∂m
∂yP

∂m
∂zP

.

]T
(5.88)

Taking the partial derivatives, the costates at final time are

p∗xD = ∂m
∂xD

= 2δ(xPf
− xDf

), p∗xP = ∂m
∂xP

= 2δ(xDf
− xPf

),

p∗yD = ∂m
∂yD

= 2δ(yPf
− yDf

), p∗yP = ∂m
∂yP

= 2δ(yDf
− yPf

),

p∗zD = ∂m
∂zD

= 2δ(zPf
− zDf

), p∗zP = ∂m
∂zP

= 2δ(zDf
− zPf

).

(5.89)
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Substitution of the costates from eq. (5.89) into the optimal control from eqs. (5.85)

and (5.86), the optimal heading and flight path angle of the defender can be formu-

lated as a function of the final defender and pursuer state as follows:

cosψ∗D = ±
√

(2δ(xPf
−xDf

))
2

(2δ(xPf
−xDf

))
2
+(2δ(yPf

−yDf
))

2 , (5.90)

sinψ∗D = ±
√

(2δ(yPf
−yDf ))

2

(2δ(xPf
−xDf ))

2
+(2δ(yPf

−yDf ))
2 , (5.91)

cos γ∗D = ±
√

(2δ(xPf
−xDf

))
2
+(2δ(yPf

−yDf
))

2

(2δ(xPf
−xDf

))
2
+(2δ(yPf

−yDf
))

2
+(2δ(zPf

−zDf
))

2 . (5.92)

Simplifying eqs. (5.90) to (5.92), one is able to eliminate the slack variable and find

the resulting optimal heading and flight path angle at final time as a function of the

final defender and pursuer states:

cosψ∗D = ± (xPf
− xDf

)√
(xPf

− xDf
)2 + (yPf

− yDf
)2
, (5.93)

sinψ∗D = ± (yPf
− yDf

)√
(xPf

− xDf
)2 + (yPf

− yDf
)2
, (5.94)

cos γ∗D = ±

√
(xPf

− xDf
)2 + (yPf

− yDf
)2

RD

. (5.95)

From eqs. (5.93) to (5.95) the angle from the defender to the pursuer at final

time is either the same as the optimal heading or anti-parallel. The latter case is

clearly suboptimal since the defender would be aimed directly away from the pursuer

at final time. Thus, the sign ambiguity in eqs. (5.93) to (5.95) may be eliminated.

An illustration of the optimal engagement is shown in Figure 43.
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Figure 43. The max-time exposure of a faster pursuer by a slower defender in 3-D
Cartesian space.

Solution to the Optimal Control Problem.

The optimal heading and flight path angle of the defender which maximizes the

exposure time of a non-maneuverable pursuer may be analytically obtained, provided

the pursuer’s heading, flight path angle, and speed are given. Without loss of general-
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ity, the defender-pursuer scenario is rotated about the pursuer such that the pursuer

velocity is aligned with the vertical axis as shown in Figure 43.

Optimal Defender Heading.

Because the headings of both agents are constant, the plane formed by the points

P , D, and S is invariant – it remains perpendicular to the (x, y)-plane. From eq. (5.93),

the optimal defender heading is aimed directly towards the (x, y) projection of the

pursuer. Thus the optimal heading of the defender which maximizes exposure time

is:

ψ∗D = φ+ π, (5.96)

where φ is the (constant) azimuth of the defender with respect to the pursuer.

Optimal Defender Flight Path Angle.

A drawing of the two-agent max-time exposure scenario is shown in Figure 43.

Consider 4DSP ; using the law of cosines the following equation describes the rela-

tionship between the range between the defender to pursuer at final time (DS), the

path by which the pursuer is exposed (PS), the WEZ (RD), and the pursuer-defender

angle (θ) when contact is first made,

DS
2

= PS
2

+R2
D − 2RDPS cos(θ). (5.97)

Using the speed ratio between the defender and the pursuer the distance traversed

by the defender over the engagement is proportional to the distance traversed by the

pursuer: DQ = αPS, and therefore:

DS = αPS +RD. (5.98)
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Substitution of eq. (5.98) into eq. (5.97), the following is obtained:

(
αPS +RD

)2
= PS

2
+R2

D − 2RDPS cos θ. (5.99)

Through algebraic manipulation, eq. (5.99) may be solved for PS. The derivation is

shown in Appendix A.3. The resulting solution for PS is

PS =
2RD(α + cos θ)

1− α2
. (5.100)

Next, the optimal path angle is solved using triangle 4DWS. Recognizing that the

Cosine of an angle in a right triangle is equal to the adjacent leg over the hypotenuse:

cos γ∗D =
RD sin θ

DS
. (5.101)

Substitution of eqs. (5.98) and (5.100) into eq. (5.101), the optimal flight path is

derived and shown in Appendix A.4. The resulting optimal flight path angle is as

follows:

γ∗D = cos−1

(
(1− α2) sin θ

α2 + 2α cos θ + 1

)
. (5.102)

Special Case: θ ≡ 0.

When the angle from the pursuer to the defender, θ ≡ 0, the defender is directly

in front of the path of travel of the pursuer. Substitution of θ ≡ 0 in eq. (5.102), the

optimal flight path angle,γ∗D = π/2, as expected.

Exposure Invariance.

It is important to show that once the pursuer is inside the defender’s WEZ of

radius RD) that the pursuer remains within the WEZ until the termination set is
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reached. Figure 43 shows the geometry for the optimal two-agent scenario. To prove

that the pursuer stays within the defender’s WEZ, define the two-norm range between

the defender and pursuer:

ρ(t) =
√

(xD(t)− xP (t))2 + (yD(t)− yP (t))2 + (zD(t)− zP (t))2 ∀ t ∈ (t0, tf ).

Utilizing the Law of Cosines to analyze4DSP , the following relationship is obtained:

DP
2

= PS
2

+ (DQ+QS)2 − 2PS(DQ+QS) cosω. (5.103)

Notice that eq. (5.103) is identical to eq. (5.23). Therefore, by Theorem 5, it follows

that exposure is invariant in 3-D.

Exposure Manifold.

The function which describes the pursuer distance while being exposed is found

in eq. (5.100). The pursuer distance while being exposed is a function of the pursuer-

defender angle, θ, the radius of exposure, RD, and the speed ratio, α. Using PS in

eq. (5.100), the exposure time is found by dividing PS by the pursuer’s speed. The

polar equation for exposure time is therefore,

tf =
2RD(α + cos θ)

vP (1− α2)
=

2RD(vD + vP cos θ)

v2
P − v2

D

. (5.104)

Plotting the time of exposure as a function of the pursuer-defender angle, θ,

produces a limaçon whose cusp is located at the pursuer location. Note that the

boundary for zero-time of exposure solutions exist when tf = 0. From eq. (5.104),

values of θ which result in non-positive values of tf represent angles for which the

exposure time is zero. Thus, setting the length tf ≤ 0 in eq. (5.104), one obtains the
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conditions for zero time of exposure:

2RD(vD + vP cos θ)

v2
P − v2

D

≤ 0. (5.105)

From eq. (5.105), the regions wherein the defender is unable to expose the pursuer

occur when the angle θ lies in the following range:

θZET ∈
[
−π, − cos−1(−α)

]
∪
[
cos−1(−α), π

]
. (5.106)

Assuming the defender implements the optimal heading which maximizes exposure

time of the faster pursuer, eq. (5.100) can be algebraically manipulated to provide

the defender-pursuer angles which guarantee a desired exposure time. The following

is the equation which describes the pursuer-defender angle, θ, which guarantees the

desired exposure time, texp:

θ(texp) = cos−1

(
(v2
P − v2

D)texp − 2RDvD
2RDvP

)
. (5.107)

It should be noted that the guarantees for exposure time are bounded by

texp ∈
[
0,

2RD

vP − vD

]
. (5.108)

Example.

An illustration of the maximum exposure of a slower pursuer in 3-D is presented

in this section. In this example, the defender is endowed with an WEZ of RD = 2.

The defender is half as fast as the pursuer and as a result, the speed ratio is α = 0.5.

Consider the pursuer vehicle to be moving with a flight path angle of π/2 rad, a

heading of 0 rad, and a speed of 1 DU/TU. Define the azimuth to be π/3 rad and the
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pursuer-defender angle, θ, to be π/6 rad. From eq. (5.102), the optimal flight path

angle is calculated to be ≈ 1.393 rad. The heading is selected to point toward the

pursuer, and therefore is 4π/3 rad. Using the optimal flight path angle and heading,

Figure 44 shows the maximum exposure time scenario in 3-D.

P

D

S

Q

Figure 44. The maximum-time exposure of a faster pursuer by a slower defender in
3-D Cartesian Space

In Figure 44, the defender’s path is represented by the blue line, the WEZ is

represented by the shaded blue sphere, and the faster pursuer’s path is represented

by the red line. The initial locations are the filled-in circles and the final time locations

of both agents are represented by crosses.

In order to ensure exposure of the pursuer by the defender, the instantaneous

range between the two-agents would need to be less than or equal to the WEZ, RD.

In Figure 45 the instantaneous range between the defender and the pursuer is found

to be contained in the defender’s WEZ for the entire engagement.
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Figure 45. The instantaneous range is inside the exposure region for the entirety of
the scenario.

For various angles, θ, the possible exposure time, when the defender implements

the optimal strategy, is presented in Figure 46. The figure is shown in both polar

and Cartesian form for the sake of presenting the angular and time information eas-

ier. Note that exposure time is independent of azimuth since φ does not appear in

eq. (5.104) and therefore only plots for various elevation angles are presented.
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Figure 46. The relationship of the exposure time as a function of the relative elevation
angle, θ, shown in both Cartesian and Polar plots

In Figure 46, the red lines represent zero-time of exposure while blue lines represent

positive non-zero time of exposure. By plotting the exposure time for all possible

angles, θ, the maximum exposure occurs when the pursuer and defender move co-

linear with one another (θ = 0) as expected. From Figure 46, one may observe the

zero-exposure time angles as well as the exposure time limaçon. For the example, the

zero-exposure time angle is found by computing eq. (5.106). In the example, the zero
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time of exposure occurs between θZET ∈ [−π,−2π/3] ∪ [2π/3, π] rad.

5.4 Concluding Remarks

In this section, a defender endowed with a circular WEZ aims at maximally ex-

posing a faster non-maneuvering pursuer. Using the calculus of variations/optimal

control theory, the heading for the defender which keeps the pursuer inside the de-

fender’s WEZ for as long as possible is posed and solved. It is found that for a

non-maneuvering pursuer, the optimal heading for the defender is constant under

optimal play. Further, the optimal heading is only dependent upon the line-of-sight

angle from the pursuer to the defender at initial time, the radius of the WEZ, and

the speed ratio of the defender to the pursuer. Also proven, in this section, is the

fact that exposure is invariant under optimal play, e.g. the defender-pursuer range

is less than the radius of the WEZ for the entire engagement. Finally, the exposure

time as a function of he initial line-of-sight angle from the pursuer to the defender is

investigated. An example illustrates the exposure time as a function of the defender-

pursuer line-of-sight angle; the limaçon describing the exposure time of the pursuer

is shown.

In conclusion, the directed energy defense of a non-maneuvering evader against

an incoming threat has been presented. Making use of the calculus of variations two

optimization problems are posed and solved in tandem; first, the min-time capture

of a non-maneuverable evader and then the max-time exposure of the pursuer by a

defender with a circular engagement zone. From the costates, the optimal trajectories

of the pursuer and the defender were shown to be straight-line trajectories. Leveraging

the optimal defender strategy from Section 5.1 the optimal defender strategy and

exposure time is found in closed-form.

In order to demonstrate the various intricacies surrounding the target defense
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scenario, two examples are presented. The first example demonstrates the defender’s

optimal strategy when the pursuer captures the evader after escaping the defender’s

WEZ and the second demonstrates the defender’s optimal strategy when the pursuer

captures the evader before it can escape the defender’s WEZ. Also presented are

conditions for which the line-of-sight angle limits the time of exposure – the exposure

time is zero, independent of the defender’s chosen strategy or limited by the time-to-

go.

In conclusion, using a spherical WEZ centered at the defender and commanding

the instantaneous heading and flight path angle of the defender, the time by which

the pursuer remains inside the WEZ has been maximized. Using the calculus of vari-

ations and optimal control theory the optimal instantaneous heading and flight path

angle of the defender required to maximize the exposure of a faster non-maneuvering

pursuer has been posed and solved. First, the optimal heading and flight path angle

of the defender is shown to be constant. Next, the exposure time is shown to be

independent of initial azimuth angle and dependent upon the relative elevation angle,

WEZ, and speed ratio. Using the relations for exposure time, the regions where expo-

sure is not possible are described. Finally, an example that highlights the maximum

exposure of a non-maneuvering faster pursuer by a slower defender is presented. The

figures presented in the example illustrate the optimal defender strategies which keep

a pursuer inside a spherical WEZ as it relates to the HVAA defense problem of a

non-maneuvering evader in 3-D.
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VI. Conclusions

When pursuing a PhD, routinely ask
yourself,“Is this necessary [to graduate]?” If
not, then ignore it; if so, then get to work.

— David B. Doman

6.1 Summary of Remarks

In this dissertation, an investigation into the optimal means of defending a high

value airborne asset was undertaken. First, in Chapter I, the HVAA defense sce-

nario was motivated and described. In Chapter II a general survey of pursuit-evasion

differential games involving multiple pursuers and evaders was conducted. As part

of the survey, an in-depth survey of pursuit-evasion differential games as they relate

to HVAA defense was performed. Special attention to work related to the kinetic

and directed energy defense was highlighted along with the research gaps that this

dissertation addressed. Chapter III provides a cursory overview of both differential

game theory and optimal control theory. Also described in Chapter III are the vari-

ous mathematical models and techniques which are leveraged to pose and solve the

vagarious HVAA defense scenarios. Additionally, various kinetic and directed energy

defense scenarios in the scope of the research were defined – the equations of motion

as well as the metrics for optimization are presented for each scenario discussed in

this dissertation.

The research contributions of Chapter IV focus on the kinetic defense of a HVAA

against an incoming threat. Concerning kinetic defense, three different scenarios were

posed and solved. Two scenarios involved the optimal pursuer-defender strategies

when the HVAA was non-maneuvering: one in 2-D and another in 3-D. Leveraging

Apollonius Circle geometry, the differential game between the pursuer and defender
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was reformulated into a single-agent minimization problem. The results of the solved

differential games showed that any deviation from the derived optimal strategies re-

sulted in better performance for the adversary. The third scenario investigated a

maneuvering HVAA in the 2-D Cartesian plane and assumed the PN control law

for the defender and the pursuer. The tactical conclusion, in brief, was that a ma-

neuvering HVAA should generally turn toward the defender in order to aid in the

HVAA’s own defense. Lastly, a comparative study for finding the optimal control for

a turn-rate limited HVAA was conducted. The following four direct methods were

investigated: Single Shooting Method, Multiple Shootings Method, Even Colloca-

tion Method, and Pseudospectral Method. In the investigation, special attention was

given to the computational time, number of algorithmic iterations, number of cost-

functional evaluations, ultimate functional evaluation, and the feasibility of solutions.

The Even Collocation Method outperformed the convergence times of the other direct

methods. One reason the Even Collocation Method outperformed the other meth-

ods was that an ODE solver was not used; rather, the dynamics were upheld using

equality constraints. Although the Pseudospectral Method also makes use of the

equality constraints to uphold the dynamics, it requires adaptive meshing in order

to handle bang-bang phenomenon; as a result, the Even Collocation Method out-

performed the Pseudospectral Method. Although the dynamics from the first-order

Euler approximation used in the Even Collocation Method were not as accurate as the

Gaussian quadrature methods used in the Pseudospectral Method, the solution was

of acceptable fidelity and was provided much faster. The Even Collocation Method

is, therefore, more appropriate for real-world applications.

Next, in Chapter V the HVAA defense scenario was posed and solved for a defender

which uses directed energy as a defense mechanism. Because energy weapons deal

damage over time rather than at a single time instant, the objective for the defender
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was to keep the pursuer inside its WEZ for as long as possible. This amounted to

solving for the maximum-time exposure defense. Using the calculus of variations,

the flight vector for the defender which maximally exposes the superior pursuer was

posed and solved in both 2-D and 3-D Cartesian space. Using the optimal flight

vector for the defender, guarantees for exposure time were presented as well as the

initial conditions for which the defender is unable to expose the pursuer for any

amount of time. The exposure invariance was also proven, showing that the optimal

defender strategy provided continuous exposure for the entire engagement. Numerical

simulations were presented which confirm the analysis throughout the chapter. Also

presented was the directed energy defense of a HVAA wherein a pursuer captures the

HVAA in minimum time while the defender aims to maximally expose the pursuer.

In the analysis of the three-agent scenario, two cases were shown to exist: the HVAA

being captured before the defender loses contact with the pursuer and the HVAA

begin captured after the defender loses contact with the pursuer. In the former, there

exists a region of headings that the defender could take which provide an exposure

time equal to that of the time-to-go (time until the HVAA is captured). Finally,

the strategies of the defender, based upon the initial engagement geometry, were

illustrated with examples.

6.2 Research Questions Answered

In section 1.3, the research tasks and scope of work were defined. The Hypothesis

of this work was that The successful defense of a High Value Airborne Asset may be

solved utilizing differential game theory as well as optimal control theory. Below are

the original research questions and answers for each of them.

Research Question 1: How may meaningful mathematical models be generated

for HVAA defense scenarios?
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Using the kinematic models described in eqs. (3.1) to (3.4), aircraft models which

neglect aircraft mass, wind disturbances, a spherical earth, and many other physical

phenomenon are formed. Each of the models and their governing assumptions are

discussed in section 3.2. Using these low-fidelity kinematic models, attention is driven

as to the navigation and tactics of aircraft. As a result of using these low-fidelity

models, the state spaces are thus reduced. The models allow for aerial engagements

to be posed and solved analytically; as a result, conclusions about the actions taken

by the pursuer, evader, and defender may be drawn for the purpose of HVAA defense.

Research Question 2: How may HVAA defense scenarios be posed and solved

as either optimization problems or differential games?

In order for one to pose HVAA defense scenarios as either an optimal control prob-

lem or a differential game, one begins with the objective of each of the players/agents.

Using the vehicle states, their control inputs, and time, the goals/aims of each of the

agents is represented as either a function or functional. Using an objective cost or

value function, as described in eqs. (3.5) and (3.30), subject to equations of motion,

as described in eqs. (3.6) and (3.28), and boundary conditions or path constraints, as

described in eq. (3.8) eq. (3.7) respectively, an optimization problem is formed.

Once the optimal control problem or differential game is posed. The question

becomes, How does one solve an optimal control problem or differential game? Two

approaches for solving optimal control problems include the indirect method and the

direct method as described in Section 3.3. However, for solving differential games,

the indirect approach is most common. In this research, differential games, where

the solution is a minimax, are transformed into optimal control problems, where the

solution is found from pure minimization or maximization. This transformation is

made possible by leveraging the geometry of Apollonius.

The optimal control problem or differential game which develops as a result of
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the individual HVAA defense scenarios are setup in Section 3.4. For each scenario,

the objective cost or value function is defined (depending upon if the scenario is an

optimal control problem or differential game). The solutions for these scenarios are

contained within Chapters IV and V. In Sections 4.1 and 4.2, the differential games are

transformed into optimal control problems – the defender’s optimal strategy is formed

from the geometry of Apollonius and the pursuer’s strategy is obtained through min-

imization of the terminal pursuer-evader range at final time. In Sections 4.3 and 4.4

the optimal control for the HVAA to out-maneuver its pursuer and aid its defender is

solved using the direct method. In Sections 5.1 to 5.3 the indirect method is leveraged

to solve for the optimal strategies of the pursuer and defender.

Research Question 3: How may HVAA defense differential games be trans-

formed into optimal control problems which may be solved either analytically or nu-

merically?

Using Apollonius Circle, the optimal strategy for a faster pursuer to capture a

slower non-maneuvering evader is found. In Section 3.3, the construction of Apollo-

nius Circle is described. In Sections 4.1 and 4.2 the differential game which develops

between the pursuer and the defender is transformed from a differential game to an

optimal control problem. This transformation is performed as follows: The optimal

strategies for the pursuer and defender are shown to be straight-line trajectories by

evaluating the necessary conditions for optimality as described by eqs. (3.33) to (3.36).

In general, for agents with simple motion, as described by eqs. (3.2) and (3.4), the

partial of the Hamiltonian with respect to the costates is zero. This means, that the

costates for each of the agents are constant throughout the trajectory. Also, using

the partial of the Hamiltonian with respect to the control for each of the agents,

the optimal control for both each player is found to depend solely upon the costates

(which are known to be constant). This means that optimal trajectories for each of
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the players are straight-line trajectories. Under this assumption, (optimal trajecto-

ries are straight-line trajectories trajectories) Apollonius Circle geometry describes

the locus of possible interceptions of a faster agent against a slower one. This means,

that if the pursuer’s strategy is known by the defender and the defender is faster than

the pursuer, then its course is known and dictated by Apollonius Circle geometry and

the interception point is dictated based upon the course of the pursuer. All that is

left is to find the course of the pursuer which minimizes the range of the intercep-

tion point to the evader at the time that that interception is made. This range is

determined to be the objective cost to be minimized subject to the pursuer’s chosen

course. The result is a transformation of a differential game involving two players to

a minimization of one player’s strategy – the solution of which determines the saddle

point strategy and the solution to the differential game.

Research Question 4: In the event that a HVAA can’t maneuver, what are the

optimal strategies of both the defender and the pursuer in the three-agent problem?

In the event that a HAVAA can’t maneuver, the optimal strategies for the pursuer

are dictated upon the mechanism by which the defender uses. In Chapter IV the

defense mechanism is kinetic – the defender aims to capture the pursuer. In Chapter V

the defense mechanism is energy-based – the defender aims to expose the pursuer

continuously for as long as possible.

In the event that the defense mechanism is kinetic, the optimal strategy for the

pursuer and defender are coupled. In 2-D, the saddle point strategy for the defender

and the pursuer is found in defined by the location of the intersection point in Theo-

rem 2. Consequently, the optimal headings for the defender and pursuer are described

in eqs. (4.32) and (4.33), respectively. In 3-D, the intersection point for the defender

and pursuer is found through the minimization described by eq. (4.67), the result-

ing intersection point is defined by eq. (4.56). Once the intersection point is known,
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amount of distance the pursuer traverses is given by eq. (4.59). As a result, the op-

timal strategy for the pursuer is described by eqs. (4.60) and (4.61) and the optimal

strategy for the defender is described by eqs. (4.65) and (4.66).

In the event that the defense mechanism is energy-based, the optimal strategy

for the pursuer is assumed to be of min-time capture of the evader as dictated by

Apollonius Circle; this choice of heading is found in eq. (5.45). The optimal strategy

of the defender is one of maximum exposure of the faster pursuer; the optimal strategy

is found in eq. (5.22) when considering 2-D engagements and in eqs. (5.96) and (5.102)

when considering 3-D engagements.

Research Question 5: How should the HVAA aid in its own defense if it is able

to maneuver?

In the event that a fast pursuer engages a slower maneuverable HVAA which is

teamed with a defender which is similar (in capability) to the pursuer, the HVAA

should maneuver so as to minimize the defender-pursuer separation rate and maxi-

mize the pursuer-evader separation rate as defined in eq. (3.45). Using optimal control

theory, the optimal evader strategy is found to depend upon the costate which cor-

responds to the evader’s heading. The optimal control is presented in eq. (4.94). At

first, this optimal control problem appears to be tractable in closed form; however,

when the costates which correspond to the evader’s heading are zero, the problem be-

comes singular and therefore direct methods are necessary to find the optimal control

which maximizes the objective cost in eq. (3.45). Using an NLP, the optimal strategy

for the evader is to turn toward its defender in order to “drag” the pursuer toward

the defender. To separate itself from the pursuer (when captured by the defender),

the evader turns away from the defender and the pursuer at a time dictated by the

NLP. An example of this behavior is shown in Figure 29.

Research Question 6: What unique aspects occur when the defender is a missile
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or directed energy weapon, and what are the critical parameters for the defender to be

successful?

The unique aspects which occur when the defender is a missile are investigated

in Chapter IV. When the defender is modeled as a missile, the defense mechanism is

kinetic in nature – damage to the pursuer is dealt through capture. It is the aim of

the defender-evader team to have the defender capture the pursuer as far from the

evader at the time of capture. In this work, cases where the defender is successful

are only considered; therefore, the pursuer strives to be intercepted as close to the

evader as possible. These problems are solved using Apollonius Circle geometry when

the evader is non-maneuvering (Sections 4.1 and 4.2) and an NLP when the evader

is turn-rate limited (Sections 4.3 and 4.4).

The critical parameters for the defender to be successful include the vehicle speeds,

initial state, and the control limits (if applicable) of each agent. The vehicle speeds

dictate the speed ratios which are used to simplify the equations of motion for each

of the posed scenarios. The initial conditions must be in the escape set – defense is

successful. The control limits for the turn-rate of the evader dictate how the evader

can maneuver to escape the pursuer and aid the defender in its own defense.

The unique aspects which occur when the defender is a directed energy weapon are

investigated in Chapter V. When the defender is modeled as a directed energy weapon,

the defender strives to keep the incoming threat inside its weapon engagement zone

for as long as possible – damage to the pursuer is dealt over time. It is the aim of

the pursuer to capture the evader in minimum time and for the defender to contain

the pursuer inside its WEZ for as long as possible. The optimal strategies for the

defender are solved using the indirect method of optimal control theory (Sections 5.1

to 5.3).

The critical parameters for the defender to be successful include the relative vehicle
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speeds, initial state of the agents, and WEZ radius of the defender. The relative

vehicle speeds dictate the amount of time that the pursuer is contained inside the

WEZ of the defender as well as the optimal defender heading. The initial state of

the agents are used to determine if exposure of the pursuer is even possible and if so,

for how long the pursuer could be exposed. The WEZ radius is critical, as it appears

in the equation for the optimal heading that the defender should take to keep the

pursuer inside its WEZ for as long as possible.

Research Question 7: What numeric methods are suitable for aerospace hard-

ware systems which require fixed time steps and minimal computational effort?

In general, it is important to reduce the computational effort to compute a solu-

tion. For this reason, closed form solutions are desired in the aerospace community.

Closed form solutions may be computed quickly and efficiently when compared to

running a nonlinear program solver. When closed form solutions aren’t possible, nu-

meric solutions which require few evaluations are desired, this could be a table look

up, or a selection between multiple candidate solutions. Less desired are solutions

which require the use of an NLP solver. Modern techniques for solving NLPs in con-

junction with more capable hardware have made it possible to solve NLPs in real time

onboard aerospace platforms. Least desired of all possible approaches are algorithms

which require brute force search over an entire state space. These generally require

large amounts of memory and the computational effort, in some cases, can cause a

problem to be unsolvable.

In Section 4.1, eight candidate solutions for the optimal defense are found in closed

form when solving the roots of the polynomial in eq. (4.10). These candidates are

then evaluated, one at a time, to find the optimal interception point and consequently,

the optimal saddle-point strategies for the defender and the pursuer.

In Section 4.2, a Quasi-Newton gradient search is performed to solve the optimiza-
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tion problem defined in eq. (4.67). This search provides an approximate location of

the interception point and consequently, approximate optimal saddle-point strategies

for the defender and the pursuer.

In Sections 4.3 and 4.4 NLPs are used to pose the kinetic defense of a maneuvering

HVAA in 2-D where the pursuer and defender are assumed to be guided by the

proportional navigation guidance law and the HVAA maneuvers to escape capture

of the pursuer while assisting the defender in capturing the pursuer. In Section 4.4,

four direct methods for solving the optimal control problem are compared. The four

methods compared were the Single Shooting Method, Multiple Shootings Method,

Even Collocation Method, and Pseudospectral Method. Assuming a fixed mesh,

the Even Collocation Method outperformed the convergence time of the other direct

methods. Since the dynamics are approximated using low-order methods, and the

use of ODE solvers is no longer required, the solution converges very fast. However,

the use of ODE solvers to forward propagate the dynamics makes shooting methods

more accurate. In a real-world scenario, where the evader is a piloted aircraft, fast

solutions of low fidelity are more valuable than late solutions of high-fidelity. For this

reason, the Even Collocation Method outperforms the other direct methods and is

more appropriate for real-time applications.

In Chapter V the optimal strategies for the defender are obtained in closed-form

using the indirect method of optimal control theory. The optimal defender strategies

are straight-line trajectories and therefore implementation in aerospace systems is

feasible.

6.3 Publications and Presentations

Papers and presentation which have been produced as a result of this body of

work are listed in Appendix C.
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6.4 Contributions

This research improves beyond visual range analysis for the defense of HVAAs

through mathematical analysis and simulation. Specifically, the contributions address

the expectations in Section 1.5 and are the following:

1. Numeric and analytic solutions to HVAA defense optimal control problems and

differential games

2. Optimal strategies for providing successful defense of a HVAA using either a

kinetic or directed energy defense weapon

3. A comparative study of direct methods for finding optimal strategies for HVAA

defense, focusing on methods suitable for hardware implementation

4. Provide tools for mission analysis concerning HVAA defense, remote sensing,

and pursuit-evasion.

A summary of the optimal HVAA defense scenarios, as defined in Table 1, are

provided in Table 12 below. The optimal strategies are found either numerically

or analytically. Where analytic solutions are available, the referenced equation or

theorem is provided. The definitions for each of the optimal defense scenarios is

found in Section 3.4.
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Table 12. HVAA Defense Strategies

Scenario Optimal Strategy Summary
1 Using ECM, as described in Section 3.3, the HVAA should steer

toward its defender in order to assist the closure of the defender-
pursuer range; Figure 29 illustrates this behavior.

2 The optimal headings for the defender and pursuer are provided by
eqs. (4.32) and (4.33), respectively.

3 The optimal strategy for the pursuer is provided by eqs. (4.60)
and (4.61) and the optimal strategy for the defender is provided by
eqs. (4.65) and (4.66). The optimal interception point which defines
these strategies is found using gradient based search.

4 The optimal defender heading which maximally exposes a non-
maneuvering pursuer is provided by eq. (5.22). Using this strategy,
the time of exposure is provided by eq. (5.31).

5 The optimal pursuer heading which captures a non-maneuvering
evader in minimum time is provided by eq. (5.45). The optimal
defender heading which maximally exposes the pursuer is provided
by eq. (5.54). If the time-to-go is less than the maximum possible
exposure time, the headings which the defender should take are in
the interval provided by eq. (5.65).

6 The optimal defender’s heading and flight path angle which maxi-
mally exposes a non-maneuvering pursuer are provided by eqs. (5.96)
and (5.102), respectively.

6.5 Future Research

There are a myriad of avenues one can take which extend the work of this disser-

tation. The following are a list of some of the more obvious extensions or research

which is out of the scope of this dissertation and can be considered as future work.

The investigations performed in this work were restricted to games of degree –

it was always assumed that the defender was able to provide successful defense for

the evader. Future extensions to this work include considerations of game of kind,

especially in 3-D.

Another extension is the consideration of a HVAA which is restricted to “race-

tracks”, “circles”, or a series of “linear flight paths”. How may the defender or pursuer

be influenced if the evader is maneuvering from a prescribed flight-path?
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Obvious extensions for the directed energy defense scenario are to consider sce-

narios where the defender does not make initial contact with the pursuer. Questions

arise as to the multi-phase optimal control problem for the acquisition of the pursuer

and maximum exposure prior to the pursuer’s capture of the evader. The defense

of a maneuvering HVAA was considered for kinetic defense in Chapter IV, future

work should consider the cooperation of a maneuvering HVAA which is teamed with

a defender, equipped with a directed energy weapon.

The directed energy defense scenarios which were posed and solved in this dis-

sertation assumed a circular or spherical WEZ. The directed energy weapon was

considered to be effective, independent of angle, and have a fixed effective range.

This makes solving the optimal control problems convenient to solve, but is not real-

istic. Rather than considering a circle or spherical WEZ, a pie-shaped or cone-shaped

WEZ would allow for angular limits on the WEZ. More generally, a numeric model

for WEZ range and effectiveness would be desired; but, such models would require

the use of numeric techniques for analysis of optimal strategies for the HVAA, the

defender, and the pursuer.

One interesting idea is to consider flight-testing the proposed algorithms on real

hardware to investigate the efficacy of the analytic solutions in the “real world”. As is

common in engineering, the models used in this dissertation have a set of assumptions

which abstract them from the real world. This abstraction allows engineers to draw

conclusions; but, the accuracy of the underlying models is reduced. One idea is to try

and “fly” the proposed algorithms to ascertain if the analytic solutions (based upon

an abstracted reality) actually work in the real world on hardware.

Other future research includes other Air Force operations which relate to defensive

counter air missions. Some examples include mutual support, fighter combat air

patrol, and intelligence, surveillance, and reconnaissance. It may be possible to use the
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mathematical tools from this dissertation to pose and solve other kinds of engagements

which may be of use for mission analysis (sea, land, air, and space).

6.6 Summary

This dissertation has shown the optimal strategies for a defender to protect a high

value airborne asset by either kinetic or directed energy means. Using the calculus

of variations, optimal control theory, and the geometry of Apollonius, the optimal

strategies were found either analytically or numerically. The impacts of this work

have made a significant contribution to the war-gaming analysis within Air Force

Research Laboratory, Aerospace Systems Directorate. Using the optimal strategies

for the defender, more complex and realistic air combat analysis can be performed

as it relates to the mission of the Untied States Air Force. Moreover, this research

provides some foundation for 3-D engagements as they relate to space applications in

support of the United States Space Force.
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Appendix A. Select Derivations

In this appendix, select derivations which are too wordy to be included in the

body of the dissertation are provided herein.

A.1 Optimal Heading as a Function of Optimal Costates

This derivation starts with eq. (5.77) and derives eqs. (5.78) and (5.79) through

algebraic manipulation.

0 = −p∗xDα cos γ∗D sinψ∗D + p∗yDα cos γ∗D cosψ∗D

0 = −p∗xD sinψ∗D + p∗yD cosψ∗D

p∗xD sinψ∗D = p∗yD cosψ∗D

p∗2xD sin2 ψ∗D = p∗2yD cos2 ψ∗D

p∗2xD(1− cos2 ψ∗D) = +p∗2yD cos2 ψ∗D

p∗2xD − p∗2xD cos2 ψ∗D = p∗2yD cos2 ψ∗D

p∗2xD = (p∗2xD + p∗2yD) cos2 ψ∗D

cos2 ψ∗D =
p∗2xD

p∗2xD + p∗2yD

1− sin2 ψ∗D =
p∗2xD

p∗2xD + p∗2yD
⇒ sin2 ψ∗D =

p∗2yD
p∗2xD + p∗2yD
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A.2 Optimal Flight Path Angle as a Function of Optimal Costates

This derivation starts with eq. (5.81) and derives eq. (5.83) through algebraic

manipulation.

0 = −p∗xDα sin γ∗D cosψ∗D − p∗yDα sin γ∗D sinψ∗D + p∗zDα cos γ∗D

0 = −p∗xD sin γ∗D cosψ∗D + p∗yD sin γ∗D sinψ∗D + p∗zD cos γ∗D

0 = − sin γ∗D(p∗xD cosψ∗D + p∗yD sinψ∗D) + p∗zD cos γ∗D

sin γ∗D(p∗xD cosψ∗D + p∗yD sinψ∗D) = p∗zD cos γ∗D

sin2 γ∗D(p∗xD cosψ∗D + p∗yD sinψ∗D)2 = p∗2zD cos2 γ∗D

(1− cos2 γ∗D)(p∗xD cosψ∗D + p∗yD sinψ∗D)2 = p∗2zD cos2 γ∗D

(p∗xD cosψ∗D + p∗yD sinψ∗D)2 − cos2 γ∗D(p∗xD cosψ∗D + p∗yD sinψ∗D)2 = p∗2zD cos2 γ∗D

(p∗xD cosψ∗D + p∗yD sinψ∗D)2 = cos2 γ∗D(p∗xD cosψ∗D + p∗yD sinψ∗D)2 + p∗2zD cos2 γ∗D

(p∗xD cosψ∗D + p∗yD sinψ∗D)2 = cos2 γ∗D((p∗xD cosψ∗D + p∗yD sinψ∗D)2 + p∗2zD)

Therefore:

cos2 γ∗D =
(p∗xD cosψ∗D + p∗yD sinψ∗D)2

p∗2zD + (p∗xD cosψ∗D + p∗yD sinψ∗D)2

Expanding further and substitution of eqs. (5.78) and (5.79) for cos2 ψ∗D and

sin2 ψ∗D:
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cos2 γ∗D =
(p∗xD cosψ∗D + p∗yD sinψ∗D)2

p∗2zD + (p∗xD cosψ∗D + p∗yD sinψ∗D)2

=
p∗2xD cos2 ψ∗D + p∗2yD sin2 ψ∗D + 2p∗xDp

∗
yD

cosψ∗D sinψ∗D
p∗2zD + p∗2xD cos2 ψ∗D + p∗2yD sin2 ψ∗D + 2p∗xDp

∗
yD

cosψ∗D sinψ∗D

=
p∗2xD

(
p∗2xD

p∗2xD+p∗2yD

)
+ p∗2yD

(
p∗2yD

p∗2xD+p∗2yD

)
+ 2p∗xDp

∗
yD

(
p∗2xD

p∗2xD+p∗2yD

)1/2 ( p∗2yD
p∗2xD+p∗2yD

)1/2

p∗2zD + p∗2xD

(
p∗2xD

p∗2xD+p∗2yD

)
+ p∗2yD

(
p∗2yD

p∗2xD+p∗2yD

)
+ 2p∗xDp

∗
yD

(
p∗2xD

p∗2xD+p∗2yD

)1/2 ( p∗2yD
p∗2xD+p∗2yD

)1/2

As an aside:

2p∗xDp
∗
yD

(
p∗2xD

p∗2xD + p∗2yD

)1/2(
p∗2yD

p∗2xD + p∗2yD

)1/2

= 2
p∗2xDp

∗2
yD

p∗2xD + p∗2xD

Therefore cos2 γD may be written as:

cos2 γ∗D =
p∗2xD

(
p∗2xD

p∗2xD+p∗2yD

)
+ p∗2yD

(
p∗2yD

p∗2xD+p∗2yD

)
+ 2

p∗2xDp
∗2
yD

p∗2xD+p∗2xD

p∗2zD + p∗2xD

(
p∗2xD

p∗2xD+p∗2yD

)
+ p∗2yD

(
p∗2yD

p∗2xD+p∗2yD

)
+ 2

p∗2xDp
∗2
yD

p∗2xD+p∗2xD

=
p∗2xDp

∗2
xD

+ p∗2yDp
∗2
yD

+ 2p∗2xDp
∗2
yD

p∗2zD + p∗2xDp
∗2
xD

+ p∗2yDp
∗2
yD

+ 2p∗2xDp
∗2
yD

Also as an aside:

(p∗2xD + p∗2yD)(p∗2xD + p∗2yD)

p∗2xD + p∗2yD
=
p∗2xDp

∗2
xD

+ p∗2yDp
∗2
yD

+ 2λ∗2xDp
∗2
yD

p∗2xD + p∗2yD

(p∗2xD + p∗2yD)(p∗2xD + p∗2yD)

p∗2xD + p∗2yD
− 2p∗2xDp

∗2
yD

p∗2xD + p∗2yD
=
p∗2xDp

∗2
xD

+ p∗2yDp
∗2
yD

p∗2xD + p∗2yD
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Therefore cos2 γD may be written as:

cos2 γ∗D =

(p∗2xD+p∗2yD )(p∗2xD+p∗2yD )

p∗2xD+p∗2yD

p∗2zD +
(p∗2xD+p∗2yD )(p∗2xD+p∗2yD )

p∗2xD+p∗2yD

=

(p∗2xD+p∗2yD )(p∗2xD+p∗2yD )

p∗2xD+p∗2yD

p∗2zD
p∗2xD+p∗2yD
p∗2xD+p∗2yD

+
(p∗2xD+p∗2yD )(p∗2xD+p∗2yD )

p∗2xD+p∗2yD

=
(p∗2xD + p∗2yD)(p∗2xD + p∗2yD)

p∗2zD(p∗2xD + p∗2yD) + (p∗2xD + p∗2yD)(p∗2xD + p∗2yD)

=
p∗2xD + p∗2yD

p∗2xD + p∗2yD + p∗2zD

Therefore:

cos2 γ∗D =
p∗2xD + p∗2yD

p∗2xD + p∗2yD + p∗2zD
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A.3 Optimal Path of Target Exposure, PS

The derivation of the target exposure length starts with eq. (5.99) and derives

eq. (5.100) through algebraic manipulation.

(
αPS +RD

)2
= PS

2
+R2

D − 2RDPS cos θ

Expanding all terms in the equation the following is obtained:

α2PS
2

+R2
D + 2RDαPS = PS

2
+R2

D − 2RDPS cos θ

Removing R2
D from both sides:

α2PS
2

+ 2RDαPS = PS
2 − 2RDPS cos θ

Divide both sides of the equation by PS:

α2PS + 2RDα = PS − 2RD cos θ

α2PS = PS − 2RD cos θ − 2RDα

α2PS − PS = −2RD cos θ − 2RDα

(α2 − 1)PS = −2RD(cos θ + α)

(1− α2)PS = 2RD(α + cos θ)

Therefore:

PS =
2RD(α + cos θ)

1− α2
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A.4 Optimal Flight Path Angle

Substitution of eqs. (5.98) and (5.100) into eq. (5.101) the optimal flight path

angle in eq. (5.102) is derived. Starting with eq. (5.101):

cos γ∗D =
RD sin θ

DS

Substitution of eq. (5.98) for DS the following is obtained

cos γ∗D =
RD sin θ

αPS +RD

Further, substitution of eq. (5.100) for PS, the following is obtained:

cos γ∗D =
RD sin θ

α(2RD(α+cos θ)
1−α2 ) +RD

=
RD sin θ

2RDα(α+cos θ)
1−α2 +RD

=
RD sin θ

2RDα(α+cos θ)
1−α2 +RD

1−α2

1−α2

=
(1− α2)RD sin θ

2RDα(α + cos θ) +RD(1− α2)

=
(1− α2) sin θ

2α(α + cos θ) + (1− α2)

=
(1− α2) sin θ

2α2 + 2α cos θ + 1− α2

=
(1− α2) sin θ

α2 + 2α cos θ + 1

Therefore

γ∗D = cos−1

(
(1− α2) sin θ

α2 + 2α cos θ + 1

)
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Appendix B. On Pontryagin’s Optimal Control Canonical
Example

Appendix B contains an in-depth analysis of Pontryagin’s optimal control canon-

ical example when the target set is not a simpleton – circular and rectangular target

sets are considered. This work contains the same analysis that was important in

describing how a popular optimal control problem may be approached using differen-

tial game theory. The result of the work is worth inclusion in this dissertation, but

publication was not made possible until after the dissertation.
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1

On Pontryagin’s Optimal Control Canonical
Example

Isaac E. Weintraub and Meir Pachter

Abstract

In this paper, Pontryagin’s canonical optimal control example, which entails a double integrator plant, is
revisited. However, rather than controlling the state to the origin, we require the end state to reach a terminal set
that contains the origin in its interior. Indeed, in industry, it is required to control to a prescribed tolerance rather than
reach a desired end state; achieving tight tolerances is expensive, and from a theoretical point of view, constraining
the end state to a terminal manifold of co-dimension n-1 renders the optimal control problem well-posed. Thus, the
correct solution of the optimal control problem is obtained. Two target sets are considered: a smooth circular target
and a square target with corners. Closed-loop state-feedback control laws are developed which drive the double
integrator plant from an arbitrary initial state to the target set in minimum time. This is accomplished using Isaacs’
method for the solution of differential games, which entails Dynamic Programming (DP), working backward from
the Usable Part of the target set, as opposed to obtaining the optimal trajectories using the necessary conditions
provided by Pontryagin’s Maximum Principle (PMP). Special attention is given to the critical Usable Part of the
target set in the process of obtaining the global solution of the optimal control problem at hand. In this paper,
Isaacs’ method for the solution of differential games is applied to the solution of optimal control problems and the
juxtaposition of the PMP and DP is undertaken.

I. INTRODUCTION

In this paper, the Pontryagin Maximum Principle (PMP) and Dynamic Programming (DP) methods for
the solution of optimal control problems are juxtaposed. Isaacs’ method for the solution of differential
games is applied to the solution of optimal control problems and the canonical example from [1, pp.
23-27] concerning the application of the PMP to the synthesis of optimal controls is revisited. The
objective in [1] is to show that the necessary conditions for optimality embodied in the PMP yield a
closed set of conditions such that the optimal control time-history can be obtained. The application of the
PMP assumes the existence of an optimal control time-history and requires a Two-Point Boundary-Value
Problem (TBVP) be solved, but with the provision that hard control constraints are allowed – it is a
necessary condition for optimality akin to the situation in the calculus of variations. The objective of this
work is to use the canonical example from reference [1] to demonstrate the application of differential
game theory / Isaacs’ method [2] to optimal control problems and obtain their global solution. Isaacs’
method is based on the constructive method of DP which provides sufficient conditions for optimality. It
entails solving the Hamilton-Jacobi-Bellman-Isaacs (HJBI) Partial Differential Equation (PDE) using the
method of characteristics. The hyperbolic HJBI PDE is solved using the method of characteristics with
the boundary conditions exclusively specified on the Usable Part (UP) of the terminal manifold / target set
which is of co-dimension 1 and where the pursuer / controller can enforce termination. The optimal state
feedback control law is synthesized as opposed to obtaining an optimal control time history. The global
solution is thus obtained and, in addition, the part of the state space where optimal trajectories exist is
characterized. In this paper, rather than using the PMP, Isaacs’ method for the solution of Differential
Games is adapted to the solution of (much simpler) optimal control problems. The importance of the UP
of the terminal manifold, where the boundary conditions are specified, is emphasized. Furthermore, we
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derive time-optimal state feedback control laws which extend Pontryagin’s canonical example concerning
the regulation to a terminal state to that of a target manifold of co-dimension 1. This is very much in-
line with engineering practice where tolerances are specified - “zero tolerance” is expensive. And from a
mathematical point of view, this renders the optimal control problem well-posed.

In this paper Isaacs’ method [2] is employed rather than using PMP to synthesize time-optimal controls
for reaching a desired terminal manifold. Emphasizing the advantages of using Isaacs’ method rather
than PMP, we focus on the iconic example from [1] which entails the dynamics of a double integrator.
Time-optimal state feedback control laws are derived which globally cover the whole state space rather
than constructing an optimal trajectory which leads from a specified state to a terminal state / the origin.
Furthermore, instead of a specific terminal state / point target, in this paper, a terminal manifold is
considered. This is in tune with the engineering practice of using a finite tolerance and also renders the
optimal control problem well-posed. We submit, that this is the mathematically correct way to deal with
controlling to a point target in optimal control and differential games.

We consider the problem of reaching a specified target manifold, C , of co-dimension 1 rather than
a terminal state from an arbitrary initial state in the state space in minimum time. Physical systems
commonly cope with some allowable tolerance such as position or velocity error. Thus, it is the objective
of this paper to investigate time-optimal control which drive a double-integrator plant which models a
point mass traveling on a straight line and needs to be brought to rest at the origin in minimum time,
allowing for a small error in terminal position and velocity.

Indeed, when using Isaacs’ method, it becomes clear that the proper termination of optimal control
problems (and differential games) in Rn calls for the specification of terminal manifolds whose dimension
is n− 1. And in the context of pursuit-evasion differential games, the proper treatment of “point capture”
requires the consideration of a terminal manifold which is a sphere of radius 0 < ε << 1 centered at the
origin and point capture means letting ε → 0. This is required from a mathematical point of view and
makes sense from and engineering point of view.

The paper is organized as follows. In Section II, the physical control problem is posed using non-
dimensional variables. In Section III, a circular terminal manifold centered at the origin with radius l
is considered. The control to a non smooth target manifold with corners, a square, is investigated in
Section IV. Lastly, in Section V we draw conclusions.

II. CONTROL PROBLEM

Consider a point-mass with mass, m, which is controlled on a straight line using a bounded force, F .
The maximum applicable force is Fmax. According to Newton’s Second Law,

F (t) = ma(t), −Fmax ≤ F (t) ≤ Fmax.

Hence, the dynamics are

ẋ(t) = v(t), x(0) = x0

v̇(t) =
1

m
F (t), v(0) = v0, 0 ≤ t ≤ tf ,

where x is the position on the line of the point mass, and v is its velocity. The initial position of the
point-mass is x0 and its initial velocity is v0. The goal is to drive in minimum time, tf , the position and
the velocity to a bounded region described as

−L ≤ x(tf ) ≤ L, −V ≤ v(tf ) ≤ V.

It is convenient to use non-dimensional variables. The non-dimensionalization is performed as follows:

x→ x/L, x0 → x0/L, v → v/V, v0 → v0/V,

t→ t
V

L
, tf → tf

V

L
, u , F

Fmax
;
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where L is a characteristic length and V is a characteristic velocity. As is best practice in physics, also
the time variable is rendered dimensionless. The dynamics in non-dimensional form are

dx

dt
= v(t), x(0) = x0

dv

dt
= αu(t), v(0) = v0, 0 ≤ t ≤ tf

−1 ≤ u(t) ≤ 1,

where the non-dimensional parameter

α , LFmax
mV 2

.

III. CIRCULAR TARGET SET

The physical state variables: x1(t) , x(t), x2(t) , v(t) ans the non-dimensional dynamics are

dx1
dt

= x2(t), x1(0) = x10

dx2
dt

= αu(t), x2(0) = x20

0 ≤ t ≤ tf , −1 ≤ u(t) ≤ 1.

(1)

Consider the terminal manifold l2 = x2(tf ) + β2v2(tf ). The parameter l is non-dimensional – it is the
tolerance parameter and β is a non-dimensional weight parameter which trades off the importance of the
terminal position error and the terminal velocity error. The optimal control problem is parameterized by
α > 0, l > 0, and β > 0. For the sake of demonstration, the weight parameter β is assumed to have the
value β = 1 so we confine our attention to the terminal manifold / target set, C , described by a circle
with radius l about the origin of the state space (x1, x2) and the physical parameter α = 1.

The terminal manifold of co-dimension 1 (as required) is the circle:

l2 = x21(tf ) + x22(tf ).

The terminal manifold of co-dimension 1 is parameterized by 0 ≤ θ ≤ 2π and therefore

x1(tf ) = l cos θ

x2(tf ) = l sin θ, 0 ≤ θ ≤ 2π.
(2)

The terminal manifold is parameterized by 0 ≤ θ ≤ 2π: C = {(x1, x2)|x1 = l cos θ, x2 = l sin θ}. The
outward pointing unit normal to the terminal manifold at (l cos θ, l sin θ) is ~n = ( cos θ

sin θ ). The circular target
set and the associated normals are shown in Figure 1.

A. Isaacs’ Method
The Usable Part (UP) of the terminal manifold is where its penetration can be enforced by the controller.

The Usable Part, Boundary of the Usable Part (BUP) and the Non-Usable Part (NUP) are

UP , {x|min
u
〈~n, f(x, u)〉 < 0}

BUP , {x|min
u
〈~n, f(x, u)〉 = 0}

NUP , {x|min
u
〈~n, f(x, u)〉 > 0}.

(3)
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Fig. 1: Circular target set with outward pointing normal

For the circular terminal manifold and double-integrator system the UP, NUP and BUP – see (3) – are
as follows

UP = {( l cos θl sin θ ) | min
−1≤u≤1

〈( cos θ
sin θ ) , ( x2αu )〉 < 0}

BUP = {( l cos θl sin θ ) | min
−1≤u≤1

〈( cos θ
sin θ ) , ( x2αu )〉 = 0}

NUP = {( l cos θl sin θ ) | min
−1≤u≤1

〈( cos θ
sin θ ) , ( x2αu )〉 > 0}

(4)

Having assumed, β = 1, the UP will depend on the problem parameters, α and l. The UP is therefore

UP = {( l cos θl sin θ ) | min
−1≤u≤1

(x2 cos θ + αu sin θ) < 0}
.

Therefore
UP = {( l cos θl sin θ ) | min

−1≤u≤1
((l cos θ + αu) sin θ) < 0}

.
Therefore θ = 0, θ = π are not in the UP.
1) Consider the θ range 0 < θ < π

UPa =

{
{( l cos θl sin θ ) | cos−1 α

l
< θ < π} if α

l
< 1

{( l cos θl sin θ ) |0 < θ < π} if α
l
≥ 1
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(a) The circular terminal manifold when 0 < l
α ≤ 1 (b) The circular terminal manifold when l

α > 1

Fig. 2: The UP, BUP, and NUP of the circular terminal manifold varies depending upon the problem
parameters l and α. The NUP presents itself when l

α
> 1

2) Consider the θ range π < θ < 2π

UPb =

{
{( l cos θl sin θ ) |π + cos−1 α

l
< θ < 2π} if α

l
< 1

{( l cos θl sin θ ) |π < θ < 2π} if α
l
≥ 1

The UP = UPa ∪ UPb. Hence

UP =

{
{( l cos θl sin θ ) |0 < θ < π, π < θ < 2π} if l

α
≤ 1

{( l cos θl sin θ ) | cos−1 α
l
< θ < π, π + cos−1 α

l
< θ < 2π} if l

α
> 1

(5)

When l
α
> 1, let θ , cos−1(α

l
). The UP, BUP, and NUP of the circular terminal manifold varies

depending upon the problem parameters l and α as described in (5). In Figure 2, the BUP, UP, and NUP
for the circular terminal manifold is shown.

For the rest of this paper, the problem parameter is assumed to be α = 1, so the terminal manifold
varies upon l.

The Hamiltonian,
H = 1 + λ1(t)x2(t) + λ2(t)αu(t). (6)

With the understanding that the co-states, λ1 and λ2, are the partial derivatives of the Value function
with respect to the states, DP yields the condition for optimality, minu H , such that u(t)∗ = −sign(λ2(t)).
Therefore the optimal Hamiltonian is

H ∗ = 1 + λ1(t)x2(t)− α|λ2(t)|
H ∗(t) ≡ 0, so

H ∗|t=tf = 0 (7)

The method of characteristics employed to solve the HJBI PDE yields the Euler-Lagrage equations

ẋ1(t) = x2(t), x1(t = 0) = x10

ẋ2(t) = −αsign(λ2(t)), x2(t = 0) = x20

λ̇1(t) = 0, λ1(t = tf ) = a cos θ

λ̇2(t) = −λ1(t), λ2(t = tf ) = a sin θ, a > 0
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The terminal costates are also established courtesy of DP. We consider trajectories which emanate from
the UP in (10), in retrograde time τ > 0, and therefore we have the retrograde dynamics,

x̊1(τ) = −x2(τ), x1(τ = 0) = l cos θ

x̊2(τ) = αsign(λ2(τ)), x2(τ = 0) = l sin θ

λ̊1(τ) = 0, λ1(τ = 0) = a cos θ

λ̊2(τ) = λ1(τ), λ2(τ = 0) = a sin θ, τ ≥ 0; θ ∈ UP

(8)

The optimal Hamiltonian is zero, also at final time, and when evaluated at retrograde time, τ = 0 where
the co-states are specified,

H ∗|τ=0 = 0

so evaluating (6) at final time, the coefficient a is found to be:

a =
1

α| sin θ| − l sin θ cos θ
, ∀ θ ∈ UP (9)

From the structure of the UP we deduce that a is positive, as required. Two cases need to be considered:
when 0 < l

α
≤ 1 and when l

α
> 1. As will be demonstrated later the UP, BUP, and NUP as defined in

(4) differs in both cases.
Assuming, 0 < l

α
≤ 1, the Usable Part (UP) and the Boundary of the Usable Part (BUP) are

UP = {( l cos θl sin θ ) | 0 < θ < π, π < θ < 2π}
BUP = {( l cos θl sin θ ) | θ = 0, θ = π}.

Recall, θ , cos−1(α
l
); assuming, l

α
> 1, the UP, BUP, and NUP are

UP = {( l cos θl sin θ ) | θ < θ < π, θ + π < θ < 2π}
BUP = {( l cos θl sin θ ) | θ = 0, θ = θ, θ = π, θ = π + θ}
NUP = {( l cos θl sin θ ) | 0 < θ < θ, π < θ < π + θ}.

Therefore the UP, BUP, and the NUP of the circular terminal manifold / target set are

UP =

{
{( l cos θl sin θ ) | 0 < θ < π, π < θ < 2π} if 0 < l

α
≤ 1

{( l cos θl sin θ ) | θ < θ < π, θ + π < θ < 2π} if l
α
> 1

(10)

BUP =

{
{( l cos θl sin θ ) | θ = 0, θ = π}. if 0 < l

α
≤ 1

{( l cos θl sin θ ) | θ = 0, θ = θ, θ = π, θ = π + θ} if l
α
> 1

(11)

NUP =

{
∅ if l

α
≤ 1

{( l cos θl sin θ ) | 0 < θ < θ, π < θ < π + θ}. if l
α
> 1

(12)

Using the evaluation of the coefficient a according to (9) the retrograde equations in (8) are:

x̊1(τ) = −x2(τ), x1|τ=0 = l cos θ

x̊2(τ) = αsign(λ2(τ)), x2|τ=0 = l sin θ

λ1 = cos θ
α| sin θ|−l sin θ cos θ

λ̊2(τ) = λ1(τ), λ2|τ=0 = sin θ
α| sin θ|−l sin θ cos θ

τ ≥ 0, θ ∈ (0, π) ∪ (π, 2π)

(13)

Therefore:
λ2(τ) = sin θ+τ cos θ

α| sin θ|−l sin θ cos θ , τ ≥ 0, θ ∈ (0, π) ∪ (π, 2π)
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We first consider the case where the problem parameters satisfy 0 < l
α
≤ 1. The following abbreviations

are used as necessary: cθ ≡ cos θ, sθ ≡ sin θ, tθ ≡ tan θ. The UP of the circular terminal manifold
{(x1, x2)|x21 + x22 = l2} is partitioned into four quadrants as follows:

1) Trajectories “emanating” in retrograde fashion from points on the UP of the terminal manifold which
correspond to the parameter 0 < θ < π/2. For this case, λ2(τ) > 0 ∀ τ ≥ 0, so the optimal control
u∗(t) = −1.

x̊2 = 1, τ ≥ 0

Therefore
x2(τ) = l sin θ + τ

x1(τ) = l cos θ − lτ sin θ − 1

2
τ 2, τ ≥ 0

Solving for the curve:
x1 =− 1

2
x22 + l cos θ + 1

2
l2 sin2 θ,

x2 > l sin θ, θ ∈ (0, π/2)

2) Trajectories “emanating” from points on the terminal manifold which correspond to π/2 ≤ θ < π.
In this case λ2(τ) changes sign from positive to negative at τ = − tan θ(> 0). For this case:

x̊2 =

{
1, if 0 ≤ τ < −tθ
−1, if − tθ < τ

Therefore

x2(τ) =

{
lsθ + τ, if 0 ≤ τ < −tθ
lsθ − 2tθ − τ, if − tθ < τ

Therefore

x1(τ) =

{
l(cθ − τsθ)− 1

2
τ 2, if 0 ≤ τ < −tθ

l(cθ − τsθ) + t2θ + 1
2
τ 2 + 2τtθ, if − tθ < τ

Therefore when θ ∈ (π, π
2
),

x1(x2) =

{
lcθ − 1

2
x22 + 1

2
l2s2θ, if lsθ ≤ x2 < lsθ − tθ

lcθ + 1
2
x22 + 2l

s2θ
cθ
− 1

2
l2s2θ − t2θ, if lsθ − tθ > x2

3) Trajectories “emanating” from points on the terminal manifold which correspond to π < θ < 3π/2.
In this case λ2(τ) is negative for all τ ≥ 0.

x̊2 = −1, τ ≥ 0

Therefore
x2(τ) = l sin θ − τ, τ ≥ 0

Therefore
x1(τ) = l cos θ − τ l sin θ + 1

2
τ 2, τ ≥ 0

Therefore
x1(x2) = 1

2
x22 + l cos θ − 1

2
l2 sin2 θ, θ ∈ (π, 3π

2
)

4) Trajectories “emanating” from points on the terminal manifold which correspond to 3π/2 ≤ θ < 2π.
For this case λ2(τ) changes sign from negative to positive at τ = − tan θ(> 0).

x̊2 =

{
−1, if 0 ≤ τ < −tθ
1, if − tθ < τ
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Therefore

x2(τ) =

{
lsθ − τ, if 0 ≤ τ < −tθ
lsθ + 2tθ + τ, if − tθ < τ

Therefore

x1(τ) =




l(cθ − τsθ) + 1

2
τ 2, if 0 ≤ τ < −tθ

lcθ − t2θ − 1
2
τ 2 − (lsθ + 2tθ)τ, if − tθ < τ

Therefore, when θ ∈ (3π
2
, 2π):

x1(x2) =




lcθ + 1

2
x22 − 1

2
l2s2θ, if lsθ ≥ x2 > lsθ + tθ

lcθ − 1
2
x22 + 2l

s2θ
cθ

+ t2θ + 1
2
l2s2θ, if lsθ + tθ > x2

The optimal trajectories are parabolae of the form x1(x2) = ±x22 + c.
When θ ∈ (0, π

2
) ∪ (π, 3π

2
) no switching occurs.

When θ ∈ (π
2
, π), τs = − tan θ. We calculate x1(τs) = l

cos θ
− 1

2
tan2 θ and x2(τs) = l sin θ − tan θ.

When θ ∈ (3π
2
, 2π), τs = − tan θ. We calculate x1(τs) = l

cos θ
+ 1

2
tan2 θ and x2(τs) = l sin θ + tan θ.

Two switching lines exist. In parametric form they are

x1(θ) =
l

cos θ
− 1

2
tan2 θ

x2(θ) = l sin θ − tan θ, θ ∈ (π
2
, π)

(14)

and
x1(θ) =

l

cos θ
+

1

2
tan2 θ

x2(θ) = l sin θ + tan θ, θ ∈ (3π
2
, 2π)

(15)

The switching line (14) is anchored to the circular terminal manifold on the BUP point (−l, 0) where
θ = π and the switching line (15) is attached to the circular terminal manifold at the BUP point (l, 0)
where θ = 0.

Consider the x1(θ) equation in (14). We obtain

cos θ =
l ±
√
l2 + 1− 2x1
2x1 − 1

Therefore:

sin θ =

√
4x21 − 2x1 − 2l2 ∓ 2l

√
l2 − 2x1 + 1

2x1 − 1

Similarly the x1 equation in (15) yields:

cos θ =
l ±
√
l2 + 2x1 − 1

2x1 − 1

Therefore:

sin θ =

√
4x21 − 6x1 + 2− 2l2 ∓ 2l

√
l2 + 2x1 − 1

2x1 − 1

Hence, the equation of the switching line from (14) is:

x2 =

(
l − 2x1 − 1

l ±
√
l2 − 2x1 + 1

) √4x21 − 2x1 − 2l2 ∓ 2l
√
l2 − 2x1 + 1

2x1 − 1
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and the equation for the switching line from (15) is:

x2 =

(
l +

2x1 − 1

l ±
√
l2 + 2x1 − 1

) √4x21 − 6x1 + 2− 2l2 ∓ 2l
√
l2 + 2x1 − 1

2x1 − 1

The overall picture of the optimal flow field when the tolerance parameter, 0 < l ≤ 1 is shown in
Figure 3 or when the tolerance parameter l > 1 is shown in Figure 4. The parts of the terminal manifold
which correspond to the UP, BUP, and NUP are clearly indicated.

Fig. 3: The circular terminal manifold and family of trajectories in the state space when the parameters
α = 1 and l = 1. The curves (a) and (b) are where the value function is not continuous. The switching
lines, curves (c) and (d), determine when the optimal control switches from −1 to 1 or from 1 to −1
respectively.

In Figures 3 and 4, curves (c) and (d) are switching lines (SL) which are momentarily crossed by
the optimal trajectories, incurring an infinitesimal loss of optimality. The SL terminate at the BUP and
therefore are not optimal trajectories themselves. Curves (a) and (b) are those where the value function
/ time-to-go is not continuous. The value function increases / jumps from above the curve (a) to below
curve (a). The value function decreases/ jumps from above curve (b) to below curve (b). It is, however,
continuously differentiable away from the curves (a) and (b). In Figure 5 the canonical optimal flow field
where the target set is the origin is shown. The action in Figures 3 and 4 is lost in the case of a point
target because the curves (a) and (c) coalesce into one curve and so do curves (b), (d) and the optimal
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Fig. 4: The circular terminal manifold and family of trajectories in the state space when the parameters
α = 1 and l = 2. The curves (a) and (b) are where the value function is not continuous. The switching
lines, curves (c) and (d), determine when the optimal control switches from −1 to 1 or from 1 to −1
respectively.

flow field in between. And these two consolidated curves, contrary to popular belief, are not optimal
trajectories. This demonstrates the need to eschew “point targets” and rephrase the control problem so
that it is mathematically well posed, and is engineering relevant. We see that Figure 5 is quite different
from the optimal flow fields shown in Figures 3 and 4.

It is also interesting to present the isocost surfaces. The isocost “surfaces” are curves in the (x1, x2)
state space / plane. The τ = 0 isocost surface / curve is the UP of the target set.

UP = {( l cos θl sin θ ) | 0 < θ < π, π < θ < 2π} (16)

A τ -isocost surface, Sτ , τ > 0, is parameterized by θ, 0 < θ < π, π < θ < 2π,

Sτ =
{(

x1(θ;τ)
x2(θ;τ)

) ∣∣∣ 0 < θ < π, π < θ < 2π
}

(17)
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Fig. 5: The “classical” rendition of the optimal flow field. Note that lines (a) and (b) here represent
optimal trajectories, but in-fact, line (a) is the consolidated curve (d) from Figures 3 and 4 and a part of
the optimal flow field trajectories from Figures 3 and 4. Similarly, line (b) here is the consolidated curve
(c) and part of the optimal flow field from Figures 3 and 4.

The parameter range {θ| 0 < θ < π, π < θ < 2π} is partitioned as follows:

{θ | 0 < θ < π, π < θ < 2π} =

{θ | 0 < θ ≤ π
2
}

∪ {π
2
< θ < π, tan θ < −τ}

∪ {θ|π
2
< θ < π, tan θ ≥ −τ}

∪ {θ|π < θ ≤ 3π
2
}

∪ {θ|3π
2
< θ < 2π, tan θ < −τ}

∪ {θ|3π
2
< 2π, tan θ ≥ −τ}

Let
φ , arctan(τ), τ > 0,
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then,

{θ|0 < θ < π, π < θ < 2π} =

{θ|0 < θ ≤ π
2
}

∪ {θ|π
2
< θ < π − φ}

∪ {θ|π − φ ≤ θ < π} ∪ {θ|π < θ ≤ 3π
2
}

∪ {θ|3π
2
< θ < 2π − φ}

∪ {θ|2π − φ ≤ θ < 2π}.
The Sτ isocost surface contained within the two switching lines, τ > 0, is:

x1(θ|τ) =





l(cos θ − τ sin θ)− 1
2
τ 2 0 < θ ≤ π

2

l(cos θ − τ sin θ)− 1
2
τ 2 π

2
< θ < π − φ

l(cos θ − τ sin θ) + 1
2
τ 2 + tan2 θ + 2τ tan θ π − φ ≤ θ < π

l(cos θ − τ sin θ) + 1
2
τ 2 π < θ ≤ 3π

2

l(cos θ − τ sin θ) + 1
2
τ 2 3π

2
< θ < 2π − φ

l(cos θ − τ sin θ)− 1
2
τ 2 − tan2 θ − 2τ tan θ 2π − φ ≤ θ < 2π

x2(θ|τ) =





l sin θ + τ 0 < θ ≤ π
2

l sin θ + τ π
2
< θ < π − φ

l sin θ − 2 tan θ − τ π − φ ≤ θ < π

l sin θ − τ π < θ ≤ 3π
2

l sin θ − τ 3π
2
< θ < 2π − φ

l sin θ + 2 tan θ + τ 2π − φ ≤ θ < 2π

(18)

The τ -isocost curves are continuous. A figure showing the isocost curves for τ = 1, 2, · · · , 8 are shown
in Figure 6. In order to obtain the isocost surfaces which lie outside the switching lines (yellow lines)
in Figure 6 the retrograde equations are propagated backward in time (τ > 0) from the switching lines
in the state space (x1, x2). The total sum of the propagation from the switching line and the retrograde
time corresponding to a point on the switching line is equal to the total retrograde time as pictured in
Figure 6.

IV. SQUARE TARGET SET

Recall, the tolerance specification from Section II repeated here for convenience.

−L ≤ x(tf ) ≤ L, −V ≤ v(tf ) ≤ V

and also let L be the characteristic length. Using the non-dimensional variables as defined in Section II,
the terminal manifold is the square

−1 ≤ x(tf ) ≤ 1, −1 ≤ v(tf ) ≤ 1.

The square, non-smooth, terminal manifold ABCD and the associated normals is shown in Figure 7.
A square target set is used to show how to solve optimal control problems using Isaacs’ method when

the terminal manifold has corners and is not smooth. This is not apparent when considering a point target
rather than a proper terminal manifold of co-dimension 1.
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Fig. 6: The Isocost surfaces for τ = {1, 2, . . . , 8} in the state space, (x1, x2)

TABLE I: Usable Part of the Square Terminal Manifold

Segment ~n 〈~n · f〉 Usable Part (UP)

AB (−1
0 ) −x2 {(x1, x2)|x1 = −1, x2 ∈ (0, 1]} ⊂ UP

BC
(

0
−1

)
−u u = 1⇒ BC ⊂ UP

CD ( 1
0 ) x2 {(x1, x2)|x1 = 1, x2 ∈ [−1, 0)} ⊂ UP

AD ( 0
1 ) u u = −1⇒ AB ⊂ UP

A. Usable Part
In the best tradition of dynamic programs, we again “start” from the end. We start with identifying

the UP of the terminal manifold by analyzing each of its four sides which make up the square ABCD,
AB, BC, CD, and AD. For each side, the inner-product used to determine the UP, the BUP, and the
nonusable part (NUP) are presented in Table I.

Note that the vertices {B,D} /∈ UP, so no optimal trajectories terminate at points B and D. Also, at
the square’s vertices / corners A and C, multiple optimal trajectories terminate because at A and C, the
normals to the terminal manifold are not unique, but form a cone whose vertex angle is π/2. And these
normals are the terminal costates, each of which will give rise to an optimal trajectory. Such a family
of optimal of optimal trajectories will contribute to forming the optimal flow field which must cover the
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Fig. 7: The square target set ABCD with outward pointing normals shown in the state space (x1, x2).

entire state space. The terminal state is

x1(tf ) =





−1 on AB

s1,−1 < s1 ≤ 1 on BC

1 on CD

s2,−1 ≤ s2 < 1 on AD

(19)

x2(tf ) =





s3, 0 < s1 ≤ 1 on AB

−1 on BC

s4,−1 ≤ s4 < 0 on CD

1 on AD

(20)

The terminal co-states are aligned with the outward pointing normals

λ1(tf ) =





−a1 on AB

0 on BC

a2 on CD

0 on AD

a5 cos θ1 at A, where π
2
< θ1 < π

a5 cos θ2 at C, where 3π
2
< θ2 < 2π

a1 > 0, a2 > 0, a5 > 0

(21)
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λ2(tf ) =





0 on AB

−a3 on BC

0, on CD

a4 on AD

a6 sin θ1 at A, where π
2
< θ1 < π

a6 sin θ2 at C, where 3π
2
< θ2 < 2π

a3 > 0, a4 > 0, a6 > 0

(22)

Therefore a family of optimal trajectories will terminate at points A and C.
Recall the Hamiltonian, H = 1 + λ1x2 + λ2u, and since u∗ = −sign(λ2), the optimal Hamiltonian,

H ∗ = 1+λ1x2−sign(λ2)λ2. The optimal Hamiltonian is zero, including at the final time, just as described
in Section III. The coefficient a is determined by evaluating the Hamiltonian at the final time, tf where
the co-states are known. This is accomplished by substitution of the values from (19) to (22) into (6).
The resulting values for a1 through a6 are

a1 =
1

s3
, 0 < s3 ≤ 1

a2 = − 1

s4
, −1 ≤ s4 < 0

a3 = 1

a4 = 1

a5 =
1

sin θ1 − cos θ1
, π

2
≤ θ1 ≤ π

a6 =
1

cos θ2 − sin θ2
, 3π

2
≤ θ2 ≤ 2π

(23)

Note that a5 > 0 and a6 > 0 over the domain of θ1 and θ2 as required. Moreover, substitution of the a
parameters from (23) into the co-state equations Eqs. (21) and (22) provides the final co-states.

λ1(tf ) =





− 1
s3
, 0 < s3 ≤ 1 on AB

0 on BC

− 1
s4
, −1 ≤ s4 < 0 on CD

0 on AD
cos θ1

sin θ1−cos θ1 ,
π
2
≤ θ1 ≤ π at A

cos θ2
cos θ2−sin θ2 ,

3π
2
≤ θ2 ≤ 2π at C

(24)

λ2(tf ) =





0 on AB

−1 on BC

0, on CD

1 on AD
sin θ1

sin θ1−cos θ1 ,
π
2
≤ θ1 ≤ π at A

sin θ2
cos θ2−sin θ2 ,

3π
2
≤ θ2 ≤ 2π at C

(25)

The Euler-Lagrage / characteristic equations are

ẋ1(t) = x2(t), x1(t = 0) = x10

ẋ2(t) = −sign(λ2(t)), x2(t = 0) = x20

λ̇1(t) = 0, λ1(t = tf ) = Eq. (24)

λ̇2(t) = −λ1(t), λ2(t = tf ) = Eq. (25)
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In retrograde time, τ , we consider trajectories which emanate from the UP, and therefore we have

x̊1(τ) = x2(τ), x1(τ = 0) = Eq. (19)
x̊2(τ) = −sign(λ2(τ)), x2(τ = 0) = Eq. (20)

λ̊1(τ) = 0, λ1(τ = 0) = Eq. (24)

λ̊2(τ) = −λ1(τ), λ2(τ = 0) = Eq. (25)
τ ≥ 0

(26)

Because the dynamics for λ1 are zero, λ1(τ) = λ1(τ = 0), τ ≥ 0. Using this information, we calculate,
in retrograde, λ2(τ), τ ≥ 0. Integrating λ̊2(τ)

λ2(τ) =





− 1
s3
τ, 0 < s3 ≤ 1 on AB

−1 on BC

− 1
s4
τ, −1 ≤ s4 < 0 on CD

1 on AD
τ cos θ1+sin θ1
sin θ1−cos θ1 ,

π
2
≤ θ1 ≤ π at A

τ cos θ2+sin θ2
cos θ2−sin θ2 ,

3π
2
≤ θ2 ≤ 2π at C

τ ≥ 0

Next, we calculate the optimal trajectories in retrograde fashion.

x2(τ) =





s3 − τ, 0 < s3 ≤ 1 on AB

−1− τ on BC

s4 + τ, −1 ≤ s4 < 0 on CD

1 + τ on AD

1 + τ, 0 ≤ τ ≤ − tan θ1 at A
1− 2 tan θ1 − τ, − tan θ1 ≤ τ at A
−1− τ, 0 ≤ τ ≤ − tan θ2 at C
−1 + 2 tan θ2 + τ, − tan θ2 ≤ τ at C

(27)

x1(τ) =





−1− s3τ + τ2

2
, 0 < s3 ≤ 1 on AB

s1 + τ + τ2

2
, −1 < s1 ≤ 1 on BC

1− s4τ − τ2

2
, −1 ≤ s4 < 0 on CD

s2 − τ − τ2

2
, −1 ≤ s2 < 1 on AD

−1− τ − τ2

2
, 0 ≤ τ ≤ − tan θ1 at A

−1− τ
+ 2τ tan θ1

+
τ 2

2
+ tan2 θ1

, − tan θ1 ≤ τ at A

1 + τ + τ2

2
, 0 ≤ τ ≤ − tan θ2 at C

1 + τ − 2τ tan θ2

−τ
2

2
− tan2 θ2

, − tan θ2 ≤ τ at C

π
2
≤ θ1 ≤ π, 3π

2
≤ θ2 ≤ 2π

(28)
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The optimal trajectories with x1 as a function of x2, are

x1(x2) =





x22−s23−2
2

, x2 ≤ s3,xf ∈ AB
x22−1+2s1

2
, x2 ≤ −1,xf ∈ BC

s24−x22+2

2
, x2 ≥ s4,xf ∈ CD

1−x22+2s2
2

, x2 ≥ 1,xf ∈ AD

−x22−1
2

,
1 ≤ x2 ≤ 1− tan θ1,
xf ∈ A

x22−3
2

+ 2 tan θ1
− tan2 θ1

,
x2 ≤ 1− tan θ1,
xf ∈ A

x22+1

2
,

tan θ2 − 1 ≤ x2 ≤ −1,
xf ∈ C

−x22+3

2
− 2 tan θ2
+ tan2 θ2

,
tan θ2 − 1 ≤ x2,
xf ∈ C

− 1 < s1 ≤ 1, −1 ≤ s2 < 1

0 < s3 ≤ 1, −1 ≤ s4 < 0
π
2
≤ θ1 ≤ π, 3π

2
≤ θ2 ≤ 2π

(29)

Notice that the sign of λ2 changes at the time instant τs = − tan θ1 for trajectories emanating from
point A, and τs = − tan θ2 for trajectories emanating from point C. The trajectories specified in (29)
provide the optimal trajectories for x1 and x2, provided a single parameter: s1, s2, s3, s4, θ1, or θ2. These
trajectories potentially fill the two-dimensional state space: (x1, x2).

Two switching curves exist:
1) The switching curve pertaining to the family of optimal trajectories which terminate at vertex, A of

the terminal manifold (an which are parameterized by π/2 ≤ θ1 ≤ π is:

x1 = −1

2
x22 −

1

2
, x2 ≥ 1 (30)

2) The switching curve pertaining to the family of optimal trajectories which terminate at the vertex
C of the terminal manifold (an which are parameterized by 3π/2 ≤ θ2 ≤ 2π) is:

x1 =
1

2
x22 +

1

2
, x2 ≤ −1 (31)

No switching occurs on the four families of optimal trajectories which terminate on the four sides of
the terminal manifold. The optimal flow field for reaching the square target manifold is shown in Figure 8.

In Figure 8 the blue lines with blue arrow heads represent switching lines. The switching line which
is anchored at point A is described by (30); while the switching line which is anchored at point C is
described by (31). The switching lines (a) and (b) are, themselves, optimal trajectories for reaching the
UP since they are anchored at point A and C respectively. The switching lines (a) and (b) are when the
optimal control used for reaching the UP of the terminal manifold switches from 1 to -1 and from -1 to
1, respectively.

The corners B and D are not in the UP and therefore trajectories which pass thought these points
continue and terminate at points A and C respectively. These are “touch-and-go” trajectories. The touch-
and-go trajectory which passes though point B has the equation: x1 = x22/2− 3/2 and the touch-and-go
trajectory which passes through point D has equation x1 = −x22/2 + 3/2. All of this is missed when the
target set is a point, as in Pontryagin’s canonical example.
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Fig. 8: The optimal flow-field and two switching curves, (a) and (b), for the square target manifold.

V. CONCLUSION

In this paper, the PMP and DP methods for solution of optimal control problems are juxtaposed. We
advocate solving optimal control problems by leveraging Isaacs’ constructive method for the solution of
differential games. Isaacs’ method is based on the method of DP as opposed to the PMP which is rooted in
the calculus of variations and provides necessary conditions for optimality, which however can afford the
construction of an optimal trajectory. We also emphasize the importance of formulating mathematically
well-posed optimal control problems, that is, the need to move away from “point capture” and instead
consider terminal manifolds of co-dimension 1; point capture is then the limiting case where the terminal
manifold is shrunk to a singleton and the terminal manifold is a point target. This is also aligned with
engineering practice where finite tolerances are specified.

Two examples are used to highlight the solution of min-time optimal control problem for reaching
both a smooth and non-smooth terminal manifold, rather than a point target. This not only renders the
mathematical optimal control problem well-posed, but from an engineering point of view, is more realistic,
in that it represents an acceptable terminal tolerance / error. The first case is a circular terminal manifold,
the second is a square terminal manifold with corners. The former highlights how to pose and solve optimal
control problems when the terminal manifold is smooth, while the latter highlights the solution process
when the terminal manifold has corners. While Isaacs’ method naturally requires the terminal manifold
being of co-dimension 1, it becomes apparent the classical PMP based approach hides critical aspects of
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the optimal control problem when a point target is considered; this is highlighted in this paper. While
PMP is a necessary condition of optimality, which however allows the construction of candidate optimal
trajectories, Isaacs’ method directly yields the optimal flow field and also the region of controllability.
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Russia: Birkhäuser Boston, 2009, pp. 3–43.

34. M. Falcone, “Numerical Methods for Differential Games Based on Partial Differ-
ential Equations,” International Game Theory Review, vol. 8, no. 2, pp. 231–272,
2006.

35. Anthony W. Merz, “The Homicidal Chauffeur - A Differential Game,” Guidance
and Control Laboratory, Wright-Patterson AFB, OH, Tech. Rep., 1971.

36. J. V. Breakwell and A. W. Merz, “Toward a Complete Solution of the Homicidal
Chauffeur Game,” in Proceedings of the first international conference on the
theory and applications of differential games, Amherst, MA, 1969, pp. III 1 – III
5.

37. L. I. Meier, “A New Technique for Solving Pursuit-Evasion Differential Games,”
IEEE Transactions on Automatic Control, vol. AC-14, no. 4, pp. 352–359, 1969.

38. W. M. Getz and M. Pachter, “Two-Target Pursuit-Evasion Differential Games
in the Plane,” Journal of Optimization Theory and Applications, vol. 34, no. 3,
pp. 383–403, 1981.

39. ——, “Capturability in a two-target game of two cars,” Journal of Guidance
and Control, vol. 4, no. 1, pp. 15–21, 1981.

40. I. Greenfeld, “A differential game of surveillance evasion of two identical cars,”
Journal of Optimization Theory and Applications, vol. 52, no. 1, pp. 53–79, 1987.

41. J. Lewin and J. V. Breakwell, “The Surveillance-Evasion Game of Degree,”
Journal of Optimization Theory and Applications, vol. 16, no. 3-4, pp. 339–353,
1975.

42. R. Bera, V. R. Makkapati, and M. Kothari, “A Comprehensive Differential Game
Theoretic Solution to a Game of Two Cars,” Journal of Optimization Theory
and Applications, vol. 174, no. 3, pp. 818–836, 2017.

233



43. J. F. Fisac and S. S. Sastry, “The Pursuit-Evasion-Defense Differential Game in
Dynamic Constrained Environments,” in Proceedings of the IEEE Conference
on Decision and Control. Osaka, Japan: IEEE, 2015, pp. 4549–4556.

44. D. W. Oyler, P. T. Kabamba, and A. R. Girard, “Pursuit–Evasion Games in
the Presence of Obstacles,” Automatica, vol. 65, pp. 1–11, 2016.

45. Z. E. Fuchs and P. P. Khargonekar, “Generalized engage or retreat differential
game with escort regions,” IEEE Transactions on Automatic Control, vol. 62,
no. 2, pp. 668–681, 2017.

46. S. Sundaram, K. Kalyanam, and D. W. Casbeer, “Pursuit on a graph under
partial information from sensors,” in Proceedings of the American Control Con-
ference, 2017, pp. 4279–4284.

47. K. Kalyanam, D. W. Casbeer, and M. Pachter, “Pursuit on a graph using partial
information,” Proceedings of the American Control Conference, vol. 2015-July,
pp. 4269–4275, 2015.

48. E. Roxin and C. P. Tsokos, “On the Definition of a Stochastic Differential
Game,” Mathematical Systems Theory, vol. 4, no. 1, pp. 60–64, 1969.

49. F. L. Chernousko and A. A. Melikyan, “Some Differential Games with In-
complete Information,” in Optimization Techniques IFIP Technical Conference,
vol. 27. Novosibirsk: Springer, Berlin, Heidelberg, 1974, pp. 445–450.

50. Y. Yavin, “A Pursuit-Evasion Differential Game with Noisy Measurements of
the Evader’s Bearing from the Pursuer,” Journal of Optimization Th, vol. 51,
no. 1, pp. 161–177, 1986.

51. C. Giovannangeli, M. Heymann, and E. Rivlin, “Pursuit-Evasion Games in Pres-
ence of Obstacles in Unknown Environments : Towards an Optimal Pursuit
Strategy,” in Cutting Edge Robotics. IntechOpen, 2010, ch. 4, pp. 47–81.

52. G. Hexner, “A Differential Game of Incomplete Information,” Journal of Opti-
mization Theory and Applications, vol. 28, no. 2, pp. 213–231, 1979.

53. M. Pachter and Y. Yavin, “A Stochasic Homicidal Chauffeur Pursuit-Evasion
Differential Game,” Journal of Optimization Theory and Applications, vol. 34,
no. 3, pp. 405–424, 1981.

54. S. Battistini and T. Shima, “Differential Games Missile Guidance with Bearings-
Only Measurements,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 50, no. 4, pp. 2906–2915, 2014.

55. O. Basimanebotlhe and X. Xue, “Stochastic Optimal Control to a Nonlinear
Differential Game,” Advances in Difference Equations, vol. 266, no. 1, 2014.

234



56. W. Lin, Z. Qu, and M. A. Simaan, “Nash strategies for pursuit-evasion differ-
ential games involving limited observations,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 51, no. 2, pp. 1347–1356, 2015.

57. K. Kalyanam, D. W. Casbeer, and M. Pachter, “Pursuit of a Moving Target
with Bounded Speed on a Directed Acyclic Graph Under Partial Information,”
IMA Journal of Mathematical Control and Information, pp. 1–16, 2016.

58. J. Shinar and S. Gutman, “Recent advances in optimal pursuit and evasion,” in
Conference on Decision and Control including the 17th Symposium on Adaptive
Processes, vol. 17. San Diego, CA: IEEE, 1978, pp. 960–965.

59. J. Shinar, “Solution Techniques for Realistic Pursuit Evasion Games,” Technion
- Isreal Institute of Technology, Haifa, Israel, Tech. Rep., 1980.

60. M. Pachter and T. Milch, “The ‘Homicidal Chauffeur’ Model in Naval
Pursuit-Evasion,” in Guidance, Navigation and Control Conference. AIAA,
1987.

61. N. Greenwood, “A Differential Game in Three Dimensions: The Aerial Dogfight
Scenario,” Dynamics and Control, vol. 2, no. 2, pp. 161–200, 1992.

62. H. Ehtamo and T. Raivio, “On Applied Nonlinear and Bilevel Programming for
Pursuit-Evasion Games,” Journal of Optimization Theory and Applications, vol.
108, no. 1, pp. 65–96, 2001.

63. F. Imado and T. Kuroda, “A Method to Solve Missile-Aircraft Pursuit -Evasion
Differential Games,” in 16th Triennial World Congress. Prague, Czech Repub-
lic: IFAC, 2005, pp. 176–181.

64. J. Shinar, V. Y. Glizer, and V. Turetsky, “A Pursuit-Evasion Game with Hybrid
Pursuer Dynamics,” in Proceedings of the European Control Conference. Kos,
Greece: IEEE, 2007, pp. 1306–1313.

65. ——, “A Pursuit-Evasion Game with Hybrid Evader Dynamics,” in Proceedings
of the European Control Conference. Budapest, Hungary: IEEE, 2009, pp.
121–126.

66. A. W. Merz, “To Pursue or to Evade - That is the Question,” Guidance, vol. 8,
no. 2, pp. 161–166, 1984.

67. M. Pachter, E. Garcia, and D. W. Casbeer, “Active Target Defense Differential
Game,” in Fifty-second Annual Allerton Conference, Allerton House, UIUC,
Illinois, USA, 2014, pp. 46–53.

68. E. Garcia, D. W. Casbeer, and M. Pachter, “Active Target Defense Differential
Game with a Fast Defender,” in American Control Conference, vol. Jul 1-3.
Chicago, IL: American Automatic Control Council, 2015, pp. 3752–3757.

235



69. G. Leitmann, “A simple differential game,” Journal of Optimization Theory and
Applications, vol. 2, no. 4, pp. 220–225, 1968.

70. A. J. Calise and X.-M. Yu, “An Analysis of a Four State Model for Pursuit-
Evasion Games,” in Conference on Decision and Control. Ft. Lauderdale, FL:
IEEE, 1985, pp. 1119–1121.

71. M. Quincampoix, “Differential Games,” in Computational Complexity: Theory,
Techniques, and Applications, R. A. Meyers, Ed. Springer New York, 2012,
vol. 69, pp. 854–861.

72. P. Hagedorn and J. V. Breakwell, “A Differential Game with Two Pursuers and
One Evader,” Journal of Optimization Theory and Applications, vol. 18, no. 1,
pp. 15–29, 1976.

73. A. G. Pashkov and S. D. Terekhov, “A differential game of approach with two
pursuers and one evader,” Journal of Optimization Theory and Applications,
vol. 55, no. 2, pp. 303–311, 1987.

74. A. Y. Levchenkov and A. G. Pashkov, “Differential game of optimal approach of
two inertial pursuers to a noninertial evader,” Journal of Optimization Theory
and Applications, vol. 65, no. 3, pp. 501–518, 1990.

75. S. A. Ganebny, S. S. Kumkov, S. Le Ménec, and V. S. Patsko, “Numerical
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Decentralized Pursuit-Evasion in the Plane with Multiple Pursuers,” in Proceed-
ings of the IEEE Conference on Decision and Control. Orlando, FL: IEEE,
2011, pp. 4835–4840.

80. E. Bakolas and P. Tsiotras, “Optimal Pursuit of Moving Targets Using Dynamic
Voronoi Diagrams,” in IEEE Conference on Decision and Control. Atlanta, GA:
IEEE, 2010, pp. 7431–7436.

236



81. P. Borowko and W. Rzymowski, “Avoidance of Many Pursuers in the Simple
Motion Case,” Journal of Mathematical Analysis and Applications, vol. 111,
no. 2, pp. 535–546, 1985.

82. W. Chodun and L. D. Berkovitz, “Differential Games of Evasion with Many
Pursuers,” Journal of Mathematical Analysis and Applications, vol. 142, no. 2,
pp. 370–389, 1989.

83. G. I. Ibragimov, M. Salimi, and M. Amini, “Evasion from Many Pursuers in
Simple Motion Differential Game with Integral Constraints,” European Journal
of Operational Research, vol. 218, no. 2, pp. 505–511, 2012.

84. I. A. Alias, R. Noorsuria, R. Ramli, G. Ibragimov, and A. Narzullaev, “Simple
Motion Pursuit Differential Game of Many Pursuers and One Evader on Convex
Compact Set,” International Journal of Pure and Applied Mathematics, vol. 102,
no. 4, pp. 733–745, 2015.

85. M. Kothari, J. G. Manathara, and I. Postlethwaite, “Cooperative Multiple Pur-
suers against a Single Evader,” Journal of Intelligent and Robotic Systems: The-
ory and Applications, vol. 86, no. 3-4, pp. 551–567, 2017.

86. M. D. Awheda and H. M. Schwartz, “Decentralized Learning in Pursuit-Evasion
Differential Games with Multi-Pursuer and Single-Superior Evader,” in Systems
Conference (SysCon), 2016 Annual IEEE. Orlando, FL: IEEE, 2016, p. 8.

87. A. A. Al-Talabi, “Multi-Player Pursuit-Evasion Differential Game with Equal
Speed,” in International Automatic Control Conference. Pingtung, Taiwan:
IEEE, 2017, pp. 1–6.

88. A. Von Moll, D. Casbeer, E. Garcia, D. Milutinović, and M. Pachter, “The
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