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1.2 Scope of Project

The Rigidized Inflatable GAS Experiment (RIGEX) project is a NASA Get-

Away-Special (GAS) experiment. The GAS experiments are self-contained experi-

ments that are mounted in the Space Shuttle cargo bay. The RIGEX project will

provide on-orbit data on the inflation, rigidization, and excitation of several beams.

The experiment will return to Earth where further testing and analysis will be per-

formed to verify that the ground-based testing and predictions are accurate and what

improvements, if any, need to be made to the existing models. Figure 1.6.

Figure 1.6 The proposed RIGEX Space Shuttle Experiment

This research is a continuation of the RIGEX project started by Captain John

DiSebastion[13] at AFIT in 2000. Captain DiSebastion completed the preliminary

design of RIGEX using systems engineering. The ultimate objective of RIGEX is

to enable the application of large, inflated, rigidized space structures for operational
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ISR systems. This research is limited to the vibration analysis of the ground test-

ing portion of the experiment. The ground testing will form the basis from which

predictions and verifications will be made as to how the beams will perform on-orbit.

1.3 RIGEX Background

The first work on RIGEX was the preliminary design, accomplished in 2001.[13]

The RIGEX project will provide on-orbit data on the controlled inflation, rigidiza-

tion, and structural analysis of several identical beam structures. Once the data

is collected on the Space Shuttle, the entire experiment will return to Earth where

further testing and flight analysis will be performed. Appendix A has the detailed

drawings of the flight experiment, including the subsystems. The following mission

statement was developed by AFIT for the RIGEX project[13]:

To verify and validate ground testing of inflation and rigidization methods

for inflatable space structures against a zero-gravity space environment.

The primary objective of the preliminary design was the development of an exper-

iment to collect data on rigidized space structures[13]. The secondary objective of

implementing systems engineering principles into the experiment’s design was also

accomplished. If the vibration testing and modal analysis cannot be accomplished

on the ground, the RIGEX project will have to be re-designed. Therefore, this initial

experimental vibration testing is critical to the future success of the project.

1.4 Research Objectives

Given the mission statement for the RIGEX project, the following primary and

secondary objectives were developed for the experimental vibration testing on the

ground:
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Primary Objective:

– To perform vibration analysis on ground testing of the rigidized inflat-
able beams by identifying the natural frequencies, damping ratios, and the
bending modes.

Secondary Objectives:

– To examine the analytic beam to determine its validity for the rigidized
inflatable beams.

– To determine what parameters are important to the vibration charac-
teristics of the rigidized inflatable beams.

The research involves the ground testing portion of several inflatable struts and

to determine how accurately a simple cantilever beam analytic model matches the

test data. It is hoped that the properties of the beams will be accurately captured

and the data will be used with the future flight test data to create an accurate

analytic model to predict performance in space. For the purpose of this study, the

“beam” refers to the tube with the two end-flanges as shown in Figure 1.7.

Figure 1.7 Inflatable Beam
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1.5 Assumptions/Constraints

NASA regulations and limitations for the Get-Away-Special experiment have

placed several constraints on RIGEX. The only constraints that are pertinent to

ground testing is that the overall height of the canister is 28.25 inches; therefore, the

beam was limited to a length of 20 inches.

The ground testing will be limited to the beams that were purchased from the

L’Garde Corporation. Although the beams were manufactured from the same batch,

there are many inconsistencies in the beams. For the experiments, it will be assumed

that the beams are identical in material properties and physical description and that

their are no physical imperfections. This study will be limited to just looking at

bending modes. Preliminary tests on the beams showed that they behaved non-

linearly above the first couple of low frequency bending modes; consequently, only

the linear first bending modes will be considered. The temperature and internal

pressure will also be assumed to be constant throughout the testing. The feedback

and noise from the test equipment was minimal, except as where stated later.

The beams are fairly rigid and stiff, and the bending from the excitation will

be small. Therefore, it will be assumed that no wrinkles will form in the beams and

that the effects due to wrinkling of the material can be neglected. The beams will

be folded for the flight test experiment; however, the beams that will be used for

this study will not be folded and the effects due to the folding process and inflation

are not considered here in.

1.6 Methodology

There are many factors with can influence the vibrational properties of a space

structure. The number of components, mass, structural stiffness, coupling locations,

space environment factors changing all of the above, to name a few. For the lim-

ited focus of this research, the only factors to be considered are changing pressure

(internal and external), temperature, orientation, and excitation level.
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The goal of the experiments is to be able to model the inflatable beams on

the ground and be able to predict how they will perform in the zero-g, vacuum of

space. In order to do this, the ground testing attempted to capture as many of

the vibrational properties of the rigidized beams as possible. The ground testing

utilized a shaker for the initial testing. Tests were conducted in ambient conditions

on a damped vibrational testing table. Various forcing levels were used, as well as

varying pressures in the beams. Piezoelectric Transducers were mounted on one of

the short beams and used for excitation. The signals from an accelerometer (placed

in the tip flange of the beam) and a reference signal (which changed depending on

the test configuration) were used to generate a transfer function. A laser vibrometer

was also utilized to collect the mobility transfer function. Additional testing was

accomplished in a vacuum chamber using the PZTs for excitation. Additional tests

were conducted by placing the beams inside of a heater canister in the vacuum

chamber and were heated to approximately 95◦C. This experimental work was

accomplished in the AFIT Vibrations Laboratory.

1.7 Summary of Thesis

In the following chapters, vibration analysis of the ground testing for RIGEX

is presented. In Chapter 2, recent research material and a simple dynamic modal

analysis model are summarized. Recent advances in inflatable structures and relevant

experimental tests are briefly discussed. The experimental setup and procedure is

discussed in Chapter 3. The test procedure for the ambient and vacuum tests are

outlined.

Chapter 4 presents the experimental results and analysis. The first tests in

ambient conditions are shown, followed by the vacuum tests. A discussion of the

results is made in Chapter 5. A summary and recommendations for further research

are provided in Chapter 6.

1-12



A-3



Appendix B. Photos of Beam Irregularities

B.1 Beam S02

Figure B.1 Beam Surface S02

Figure B.2 Beam Surface S02
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B.2 Beam S03

Figure B.3 Beam Surface S03

Figure B.4 Beam Surface S03
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B.3 Beam S04

Figure B.5 Beam Surface S04

Figure B.6 Beam Surface S04
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B.4 Beam S05

Figure B.7 Beam Surface S05

Figure B.8 Beam Surface S05
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Figure B.9 Beam Surface S05
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B.5 Beam S06

Figure B.10 Beam Surface S06

Figure B.11 Beam Surface S06
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Appendix C. Modal Testing Data

The following sections show the data that was collected for each beam. Close-up

pictures of the individual beams are shown, as well as the FRF for each axis of

the tri-axial accelerometer and the vibrometer. The coherence for the Z axis is also

shown. The modal data that was extracted from ERA and the frequencies from PSV

are listed in tables at the end of each section. Note that not all of the data collected

is shown; a representative result for each parameter or test is presented. The entire

set of data was presented on CD to the Thesis Advisor.

C.1 FRF Excitation Comparisons for S02

Figure C.1 Sample of Results used for Trial Comparison
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Figure C.2 Sample of Results used for Trial Comparison

Figure C.3 Sample of Results used for Trial Comparison

C-2



C.2 FRF Pressure Comparisons for S02

Figure C.4 Sample of Results used for Trial Comparison
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Figure C.5 Sample of Results used for Trial Comparison

Figure C.6 Sample of Results used for Trial Comparison
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Figure C.7 Sample of Results used for Trial Comparison
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The following two figures are for S05 and S06 for additional comparison. They

perform as expected.

Figure C.8 Pressure Comparisons for S05-1
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Figure C.9 Pressure Comparisons for S06-1
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C.3 FRF Orientation Comparisons for S02

Figure C.10 Sample of Results used for Trial Comparison

C.4 S03 with PZT Test Data
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Figure C.11 Sample of Results used for Trial Comparison

Figure C.12 Sample of Results used for Trial Comparison
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Table C.1 S03 with PZT on with Shaker exciting at 0, 2, and 4 psi
0 psi 2 psi 4 psi

Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%)
1 1.47 100 1 1.93 100 1 1.64 100
. . . . . . . . .
2 11.89 2.03 2 11.88 2.13 2 11.9 1.91
3 29.49 9.26 3 29.56 9.49 3 29.83 9.49
4 33.03 5.01 4 33.06 4.67 4 33.13 4.85
5 45.28 39.11 5 50.43 4.76 . . .
6 62.34 1.79 6 62.4 1.64 5 62.41 1.66
. . . . . . 6 75.51 100
7 231.33 1.1 7 231.38 1.06 7 231.43 1.08
. . . 8 343.1 100 . . .
8 381.62 3.73 9 386.42 3.4 8 386.46 3.55
9 412.55 1.26 10 412.7 1.43 9 412.7 1.37
10 428.25 100 . . . . . .
11 493.53 15.29 . . . . . .
12 525.67 5.81 11 534.36 4.02 10 531.6 4.82
13 648.33 2.96 12 671.27 20.9 11 672.57 18.49
. . . 13 769.65 1.37 12 748.37 2.88

14 817.16 0.73 14 817.66 0.79 13 801.43 0.87
. . . . . . 14 826.24 0.77

15 839.22 0.81 15 838.7 0.8 15 839.09 0.7
. . . . . . . . .

16 1002 1.34 16 999.27 1.49 16 998.81 1.43

Table C.2 S03 with PZT with Shaker exciting at 6 psi
6 psi Omega (Hz) Zeta (%)

Mode # Freq (Hz) Zeta (%) Mean STDEV Mean STDEV
1 1.51 100 . . . .
2 6.52 100 . . . .
3 11.9 1.96 11.89 0.01 2.01 0.10
4 29.9 9.14 29.70 0.20 9.35 0.17
5 33.16 4.45 33.10 0.06 4.75 0.24
. . . . . . 18.27
6 62.43 1.62 62.40 0.04 1.68 0.08
. . . 231.38 0.04 1.07 0.03
7 231.39 1.04 . . . .
. . . 385.11 2.34 3.50 0.18
8 385.95 3.33 412.68 0.09 1.36 0.07
9 412.77 1.39 412.68 0.09 1.36 .
. . . . . . .
. . . . . . .

10 532.03 3.39 660.35 13.38 14.73 8.04
11 649.22 16.57 768.77 19.98 1.59 1.20
12 788.3 0.52 811.76 7.56 0.80 0.06
13 810.77 0.8 . . . .
. . . 839.37 0.77 0.84 0.15

14 840.47 1.05 . . . .
15 850 0.57 999.69 1.56 1.44 0.07
16 998.67 1.48 . . . .
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Appendix D. Vacuum Tests Data
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Table D.1 Vacuum Tests 0psi, 25◦C to 95◦C
25◦C, 300 Hz 25◦C, 1000 Hz 35◦C

Coherence RMS = 0.9807 Coherence RMS = 0.9808 Coherence RMS = 0.9905
Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%)

1 0.23 100 1 51.18 0.74 1 51.1 0.73
2 47.19 1.63 2 64.25 1.18 2 63.78 1.09
3 51.09 0.95 3 113.22 0.51 3 112.81 0.46
4 51.7 1.02 4 122.55 1.59 4 123.32 1.27
5 64.17 1.09 5 179.46 0.92 5 179.21 0.66
6 96.54 12.46 6 231.58 1.83 6 231.42 0.77
7 113 0.53 7 333.01 0.67 7 330.36 2.2
8 122.34 0.76 8 337.81 2.17 8 333.04 0.6
9 156.39 1.77 9 376.27 0.79 9 364.1 30.55
10 179.25 0.87 10 420.44 78.3 10 376.02 0.75
11 198.9 1.37 11 653.36 0.77 11 648.75 0.89
12 223.75 1.17 12 673.29 0.53 12 670.57 0.7
13 231.29 0.83 13 732.76 1.69 13 734.02 1.19
14 257.65 10.12 14 978.7 16.43 14 1000.55 0.6
15 309.29 5.07 15 999.33 0.94 15 1037.27 12.61
16 380.84 100 . . . . . .

Mean 1.42 Mean 1.10 Mean 0.92
STDEV 1.20 STDEV 0.54 STDEV 0.45

45◦C, 300 Hz 55◦C, 1000 Hz 65◦C
Coherence RMS = 0.9899 Coherence RMS = 0.9861 Coherence RMS = 0.9889
. . . 1 0.05 100 1 0 100
. . . 2 47.84 100 2 47.06 1.82
1 50.81 0.81 3 50.08 1.24 3 49.13 1.69
2 63.43 1.06 4 62.82 1.4 4 62.61 1.06
3 112.65 0.11 5 111.82 0.33 5 111.68 0.5
4 124.91 7.56 . . . 6 121.28 0.95
. . . . . . 7 151.07 2.08
5 179.64 1.1 6 178.83 0.79 8 178.38 0.93
6 235.05 4.06 7 227.89 3.24 9 229.14 1.53
7 298.32 100 . . . 10 332.71 2.01
8 333.93 0.39 8 332.68 0.84 11 333.29 0.7
9 334.31 1.39 9 346.12 100 12 371.35 0.6
10 375.74 0.75 10 374.98 0.76 13 373.86 0.92
11 635.9 1.33 . . . 14 569.6 100
12 662.15 1.01 11 642.53 2.18 15 610.23 2.84
. . . 12 1001.37 1.66 16 1000.14 0.52

13 1002.56 1.44 . . . 17 1019.27 11.46
Mean 1.75 Mean 1.38 Mean 1.30

STDEV 2.08 STDEV 0.89 STDEV 0.71

75◦C, 300 Hz 85◦C, 1000 Hz 95◦C
Coherence RMS = 0.9891 Coherence RMS = 0.9886 Coherence RMS = 0.9888
1 0.72 100 1 46.59 1.76 1 0.18 100
2 47.74 1.76 2 62.23 1.07 2 45.55 1.69
3 62.4 1.04 3 111.23 0.36 3 62.15 1.06
4 111.51 0.41 4 121.34 1.33 4 108.69 100
5 121.29 1.16 5 149.99 1.09 5 110.99 0.44
6 150.16 1.15 6 151.67 100 6 177.36 1.1
7 178.33 1.01 7 177.99 1 7 222.98 5.88
8 229.26 2.02 8 229.77 1.83 8 236.39 14.96
9 327.3 0.75 9 308.92 100 9 325.17 0.4
10 331.89 0.72 10 326.44 0.45 10 330.57 0.81
11 350.52 3.18 11 331.16 0.8 11 342.3 3.4
12 372.17 0.82 12 343.04 2.15 12 368.62 0.85
13 571.06 3.37 13 367.33 0.25 13 496.05 3.92
14 693.32 100 14 370.46 0.86 14 965.7 17.5
15 1000.43 0.64 15 535.48 3.95 15 976.84 2.97
16 1019.09 11.61 16 998.21 6.32 16 999.62 0.39

Mean 1.39 Mean 1.66 Mean 1.91
STDEV 0.95 STDEV 1.64 STDEV 1.75
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Table D.2 Vacuum Tests 4psi 25◦C and 35◦C
25◦C 35◦C

Coherence RMS = 0.9886 Coherence RMS = 0.9885
Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%)

1 0.07 100 1 0.1 100
2 50.98 0.77 2 50.92 0.75
3 64.09 1.28 3 63.56 1.4
4 112.38 0.85 4 112.29 0.88
5 331.91 0.94 5 182.59 5.51
6 375.46 100 6 332.14 0.89
7 376.11 0.83 7 376.06 0.78
8 665.5 0.63 8 436.84 100
9 1016.17 5.19 9 663.69 0.66
. . . 10 1000.81 2.38

Mean 1.50 Mean 1.66
STDEV 1.64 STDEV 1.66

Table D.3 Vacuum Tests 4psi, 45◦C to 95◦C
45◦C, 300 Hz 55◦C, 1000 Hz 65◦C

Coherence RMS = 0.9871 Coherence RMS = 0.9874 Coherence RMS = 0.9871
Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%)

1 12.81 100 1 0.73 100 1 1.81 100
2 50.73 0.87 2 50.23 1.08 2 49.33 1.49
3 63.02 1.11 3 62.72 1.04 3 62.57 1.02
4 112.08 0.93 4 111.65 0.85 4 111.44 0.73
5 120.63 3.87 5 120.65 2.42 5 120.67 2.14
6 184.12 1.22 6 183.77 1.14 6 149.34 2.08
7 229.53 2.22 7 202.3 100 7 183.55 1.1
8 267.78 100 8 228.48 1.56 8 227.94 1.84
9 331.93 1.83 9 325.68 2.12 9 326.64 0.75
10 332.13 0.49 10 331.97 0.67 10 331.53 0.73
11 375.8 0.78 11 367.75 8.27 11 354.72 4.1
12 658.4 0.91 12 375.1 0.8 12 374.23 0.83
13 681.7 0.89 13 647.47 1.52 13 391.2 100
14 733.29 1.29 14 688.99 5.22 14 621.44 2.16
15 999.37 0.7 15 1000.25 0.64 15 1000.23 0.59
16 1019.76 13.28 16 1018.94 11.13 16 1022.1 11.47

Mean 1.32 Mean 2.10 Mean 1.50
STDEV 0.90 STDEV 2.22 STDEV 0.98

75◦C, 300 Hz 85◦C, 1000 Hz 95◦C
Coherence RMS = 0.9846 Coherence RMS = 0.9872 Coherence RMS = 0.9876

Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%) Mode # Freq (Hz) Zeta (%)
1 0.69 100 1 0.95 100 1 0.05 100
2 48.05 1.67 2 46.78 1.71 2 45.77 1.56
3 62.24 0.76 3 62.19 0.61 3 62.05 0.57
4 111.14 0.6 4 110.99 0.41 4 103.04 100
5 120.5 2.1 5 121.72 4.28 5 110.45 0.5
6 148.72 2.11 6 149.41 3.4 6 130.28 1.44
7 183.05 1.02 7 182.87 1.06 7 182.33 0.8
8 226.81 2.2 8 196.02 100 8 227.79 2.18
9 325.81 0.46 9 228.26 2.9 9 272.72 100
10 331.01 0.79 10 325.07 0.59 10 325.62 0.6
11 351.39 4.77 11 330.42 0.78 11 329.48 0.79
12 372.76 0.84 12 354.42 5.24 12 354.48 3.38
13 409.36 100 13 371.12 0.86 13 369.51 0.88
14 586.47 2.85 14 546.25 3.5 14 512.69 3.7
15 1000.24 0.62 15 1000.8 0.89 15 975.47 4.39
16 1022.29 11.99 16 1045.13 13.56 16 999.95 0.4

Mean 1.60 Mean 2.02 Mean 1.63
STDEV 1.23 STDEV 1.64 STDEV 1.36
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