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Abstract 

This thesis research offers two contributions: (1) a new user-friendly 

graphical user interface that can be used in a feature screening process, (2) a new 

algorithm for feature screening in a situation where there is a high ratio of 

feature to exemplars. The first objective is achieved by creating a MATLAB 

based graphical user interface, which is named as STNGER. STNGER is 

evaluated on both abstract and the real life problems and provides promising 

results. For the second objective a new algorithm is suggested. This new 

algorithm is based on the SNR screening method. By means of this new 

algorithm, the SNR screening method can determine the salient features in a 

situation where there is a high ratio of features to exemplars. The performance 

of the new algorithm suggests that one can apply the SNR screening method to 

randomly chosen subsets of the data and retain the best features from each 

subset for subsequent analysis. In this fashion, noisy features are removed while 

creating new subsets with salient features. The new algorithm is demonstrated 

on both real-life and the well-defined abstract problems. 



SELECTING SALIENT FEATURES IN 

HIGH FEATURE TO EXEMPLAR RATIO CONDITIONS 

I. Introduction 

In classification, there might be large number of features that can be 

computed. But it is not necessary or advisable to use all of the features in 

classification process. If there are too many features and too small a training set, 

we could obtain a meaningless perfect classification. Some researchers have 

found that performance actually peaked and subsequently deteriorated as the 

number of features was increased [1]. Feature selection is one of the basic 

problems in classification process in pattern recognition. There are many reasons 

for using feature selection techniques to reduce the number of features. Reasons 

for using feature selection techniques include: 

• Satisfying the general goals of maximizing the accuracy of the 
prediction function while minimizing the associated measurement 
costs 

• Improving prediction accuracy by reducing irrelevant and possible 
redundant features 

• Reducing the complexity and the associated computational cost of a 
prediction function 

1-1 



• Reduce the amount of data needed for accurate prediction (i.e. reduce 
the 'curse of dimensionality') 

• Reducing associated data collection and data processing cost 

• Improving the chances that a solution will be both understandable and 
practical 

• Improving the possibility of graphical representation of the data [2]. 

In recent years, there have been numerous efforts to find a process of 

feature selection. We can divide these studies into two groups: wrappers that 

use the learning algorithm itself to evaluate usefulness of the features and filters 

that evaluate features according to heuristic based on general characteristics of 

the data [3]. Search strategies such as Hill-Climbing and Best-first Search can be 

mentioned as examples of wrappers; and, one popular filter is to use Pearson 

correlation coefficient [4]. For practical applications it has been proven that 

filters are more practical due to being faster [3]. 

All these methods aim to find an optimal feature set. The inputs included 

in the optimal set can be named as salient inputs. The process of selecting these 

is known as saliency screening. The well-known saliency metrics are Ruck's 

Saliency [5,6], Tarr's Saliency [7], and Signal-to-Noise Ratio Saliency (Bauer) 

metrics [8]. Each of these metrics can be used by three different methods: Belue- 

Bauer [9,10], Steppe-Bauer [2,11,12], and SNR methods. Although first two 

methods need multiple training runs (30 and 10 runs, respectively) [8], the SNR 

screening method potentially requires only a single replicate. 
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In this research, first, we will create some graphical user-friendly 

MATLAB based programs; second, we will investigate a situation where there is 

a high ratio of feature to exemplars. 

1-3 



II. Literature Review 

Overview 

In this chapter we will discuss two classification methods. The first 

section is a review of the Discriminant Analysis Feature Selection techniques. 

The second section covers some definitions used when discussing Neural 

Networks, a summary of multilayer perceptrons, a review of SNR methods, and 

a brief discussion of generalization and regularization process. 

Discriminant Analysis 

Discriminant Analysis is statistical technique for classifying individuals or 

objects into mutually exclusive and collectively exhaustive groups on a basis of a 

set of independent variables (features). Discriminant Analysis involves deriving 

linear combinations of the independent variables that will discriminate between 

the a priori defined groups in such a way that the misclassification error rates are 

minimized [13]. This is accomplished by maximizing the between group 

variance relative to the within group variance. 

A Non-probabilistic Selection Metric 

A common attribute of all selection procedures is an evaluation function 

used to measure the saliency of features. A large number of metrics have been 

suggested in the pattern recognition literature each having particular advantages 

and disadvantages. In this section we will discuss some intraclass distance 
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measures, which allow for both computational and analytical simplicity. The 

non-probabilistic feature evaluation metrics are based on rationale that classes 

should be maximally separated. Generally these types of metrics attempt to 

maximize the between class distances while minimizing the within class 

distances. [14] An estimated metric of between class distances, Sb, defined as 

K 

Sb = YjP(Ck)■ {mk -m)■ (mk -mf 

where mk is a M-dimensional mean vector of the kth class of the M-dimensional 

training vectors, m is a M-dimensional mean vector of all the training vectors, M 

is the number of features in a training vector, P(Ck) is the estimated prior 

probability of class k, denoted as Ck. An estimated matrix of the within class 

distances, Sw, is defined as 

<i=i^(Q)-^ -Z (xki-m)-(xki-m)T 

k=\ 1=1 

where xkj is the ith training vector from the kth class and Nk is the number of 

training vectors in class k. Two possible metrics D(x) which are maximized to 

find the salient features are 

trSh A (X): 'b 

trS„ 

o 
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where S is equal to Sb + Sw,x is the feature vector. Also, | . | denotes calculation 

of determinant. The main criticism of these types of metrics they are not closely 

related to error probability. 

These two metrics can be used to determine the salient features by 

evaluating for each individual feature set and putting in a descending order with 

respect to D(x). 

A general nonlinear metric D(x), which reflects the local probability 

structure of the data, can be maximized to find a good subset of features. 

^ k=\ t=\ ™k™I  i=l 7=1 

where d(xki,xkj) is the nonlinear distance metrics between the ith vector in class k 

and the jth vector in class 1. This nonlinear distance equal to a constant H, if its 

Euclidean distance is above a threshold T, otherwise it is equal to zero. The 

threshold T represents a safe or effective distance for correctly classifying the two 

points into separate classes. This nonlinear metric represents a compromise 

between probabilistic and non- probabilistic feature evaluation metrics. 

Selection Methodologies 

There are number of optimal and suboptimal search algorithms which are 

designed to circumvent an exhaustive search procedure. Most search algorithms 

look for the best features by adding and/or removing features from the current 

feature set. A forward procedure starts with no features and add a feature at a 
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time by evaluating the metric at each step. A Backward selection procedure 

starts with all the candidate features and drops one at a time. There are some 

alternative algorithms like Genetic Algorithms or Branch and bound algorithms, 

but these will not be discussed here. 

Forward Sequential Selection 

Steppe [2] summarized the algorithms step by step that are described in 

detail by Devijver and Kittler [14]. 

1. p = 0 

2. Set the total number of features to select equal k 

3. Select a feature evaluation metric, say D(x) 

4. Compute D(x) for all feature subsets of size p+1 which include all 
previously selected features 

5. Select the feature set of size p+1 which maximizes (minimizes) D(x) 

6. Set p = p+1 

7. If p < k go to step 2; otherwise go to step 6 

8. Stop, k features have now been selected. 

Backward Sequential Selection 

1. p = 0 

2. Set the total number of features to select equal k 

3. Select a feature evaluation metric, say D(x) 
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4. Compute D(x) for all feature subsets of size p-1 which do not include 
all previously selected features 

5. Select the feature set of size p-1 which maximizes (minimizes) D(x) 

6. Set p = p+1 

7. If p < k go to step 2; otherwise go to step 6 

8. Stop, k features have now been selected. 

These algorithms allow just one feature added or selected at a time, but do 

not allow you to add or remove a feature after a feature is already evaluated. 

On the other hand generalized sequential forward or backward algorithms, 

which are called stepwise selection algorithms, allow more than one feature 

added or removed at a time. This characteristic provides to evaluate the 

statistical relations between variables. 

SAS Feature Selection Algorithms 

SAS can be used to apply Discriminant analysis. SAS uses either of the 

algorithms described above. It uses another metric to enter or remove any 

feature. This metric is based on the two criteria: 

The significance level of an F-test from an analysis covariance, where the 

variables already chosen act as covariates and the variable under consideration is 

the dependent variable. 
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The squared partial correlation for predicting the variable under 

consideration from the class variable, controlling for the effects of the variables 

already selected for the model (SAS Help). 

Analysis Of Covariance 

In this section, we will take a brief look at the analysis of covariance 

(ANCOVA). To gain a better understanding of ANCOVA, Huitema [15] presents 

psychomotor test example. In this example, an experimenter is interested in 

comparing the effects of two drugs on a complex psychomotor test. Obtaining 

the data after experiment, the experimenter performs an ANOVA and concludes 

a non-significant F value. The experimenter then point out that there is a great 

deal of age variability within the two groups and that age is highly related to the 

scores on the psychomotor test. Analysis of covariance is then computed using 

age as the so-called covariate. In the present example age is partitioned from the 

relationship between drug type and psychomotor test scores. The ANCOVA F 

test reveals a statistically significant drug effect. 

Computation and Rationale: 

The starting point for ANCOVA is exactly the same as for ANOVA; the 

total sum of squares is computed. The analysis of covariance procedure may be 

summarized in six steps. [15] 
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Stepl. Computation of total sum of squares: 

TotalSS = J>,2 = IX - 
N 

X : Independent variable (in our cases features) 

Y : Dependent variables (in our cases classes) 

N : Number of data points 

x : Deviation score on the covariate 

y : Deviation score on the dependent variable 

nt: Number of subject in t different groups 

Step 2. Computation of total residuals: 

TotalresidualSS = ^ y] 2        (ZX^)2 

5X 5X Etf 
N 

I>r £*,)■£*;)" 
N 

Z^2 E*J 
N 

Step 3. Computation of within group sum-of-squares: 

Within-group SS= 

Z^+Z^+Zx^ 2X £tf + m Etf + I? <Z.rf 

II-7 



The within group deviation cross products and sum of squares on X: 

X^i+X^+X^^ I** (&)• (£*.)' + z^2 
fe)-(IX)" + X^ &)•(£*,)" 

And within group sum of squares of X: 

Zxi +Tx2+Tx> = IX- s>j + 2>>- 
(IX)! 

+ X*,!- (X*J 

Sfep 4. Computation of within group residual SS (error SS): By subtracting 

SS due to predictable differences among subjects within groups (sometimes 

called within-group regression SS) from SS within groups we obtain residuals 

sum of squares within, which is used as the error SS in ANCOVA. 

Step 5. Computation of adjusted treatment affects (AT). By subtracting 

the SS residual within (step 4) from the total residual (step 2), the adjusted 

treatment SS is obtained. 

Step 6. Computation of F ratio. Step 5 involves the partitioning of the 

total residuals into the sum of squares residuals within, and the adjusted 

treatment SS. The latter two correspond directly to within- and between group 

SS in a simple analysis of variance. Thus F ratio can be obtained by dividing 

mean square adjusted treatment by mean square error. Degrees of freedom are 

computed in essentially the same way as in ANOVA except that an additional 

freedom is lost from the error MS for each covariate employed in the analysis. 
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Feature Selection And Analysis of Covariance 

After explaining the basic rationale of the ANCOVA, we can discuss the 

significance level of an F-test from an ANCOVA as a Feature Selection metric. 

The main idea underlying this metric is that every previously chosen feature acts 

as a covariate and   every variable under consideration is a dependent variable. 

The significance level of each feature will be the metric that helps us to determine 

the saliency of a feature. The first step is determining the best feature with the 

most significant F-test, then use this feature as covariate and recalculate the F 

values again. The stopping criteria might be the number of features, or the 

significance level of F-test. 

Artificial Neural Networks 

There is a brief introduction to Artificial Neural Networks (ANN) in the 

MATLAB Help files [16]. Neural networks are composed of simple elements 

operating in parallel. These elements are inspired by biological nervous systems. 

As in nature, the network function is determined largely by the connections 

between elements. We can train a neural network to perform a particular 

function by adjusting the values of the connections (weights) between elements. 

Typically neural networks are adjusted, or trained, so that a particular 

input leads to a specific target output. Such a situation is shown below. There, 

the network is adjusted, based on a comparison of the output and the target, 

until the network output matches the target. In practice, many such input/ target 

II-9 



pairs are used, referred to as "supervised learning", to train a network [16]. This 

is displayed in Figure II.1. 

input 
Neural Networks 
including 
connections 
(called weights) 
between neurons 

Adjust 
weights 

Figure II.l. Supervised Training 

Definitions 

Before going further, we will present some definitions related to ANN 

[17]. 

Artificial Neural Networks (ANN): An information processing system 

(algorithm) that operates on inputs to extract information and produces outputs 

corresponding to the extracted information. 

Architecture: The topological arrangements of neurons, layers and 

connections which defines the set of modeling equations available to the ANN. 

Backpropagation: A learning algorithm for updating weights in a feed- 

forward MLP ANN that minimizes the mean squared mapping error. 
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Epoch: A complete presentation of the data set being used to train the 

MLP, or equivalently called a training cycle. 

Feature: In neural networks, features refer to the input vectors of 

information which are presumed to have some relation that might be helpful in 

distinguishing the various output classes. The vector of features is often called 

an Exemplar. 

Feed-forward: Multilayer ANNs whose connections exclusively feed 

inputs from lower to higher level. In contrast to feedback or recurrent ANN, a 

feed-forward ANN operates only until all the inputs propagate to the output 

layer. An example of a feed-forward ANN is the MLP (multilayer perceptron). 

Hidden Units: The processing element in MLP ANN that are not included 

in the input or output layers. This is the part of the neural network located 

between the input and output layers. 

Learning Algorithm: The equations used to modify weights of processing 

elements in the response to input and output values. 

Neuron: The fundamental building block of an ANN. Normally, each 

neuron takes a weighted sum of its inputs to determine its net input. The net is 

then processed through its transfer function to produce a single valued output 

that is broadcast to 'downstream' neurons. 
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Single Layer Perceptron: A type of ANN algorithm used in pattern 

classification that is trained using "supervision". Connection weights and 

thresholds can be fixed or adapted using a number of different algorithms. 

Supervised Training: A method of training adaptive ANNs that requires a 

labeled training data set and external teacher. The teacher knows what the 

desired response is and thus can provide responses for correct or incorrect 

classification by the network. 

Weight: A processing element (or neuron or unit) need not treat all inputs 

uniformly. Processing elements receive inputs by means of interconnects (also 

called 'connections' or 'links'); each of these connections has an associated 

weight which signifies its strength. The weights are combined to calculate the 

activations. 

Multilayer Perceptrons 

To gain a better understanding of Multilayer Perceptrons, it would be 

better to study the structure of a single perceptron first; then a layer of 

perceptrons and finally multilayer perceptrons. 

Figure II.2 shows the structure of a single perceptron. In this structure, 

the generalized mathematical notation is: 

M is the number of input features 

x" is the ith input feature of the nth input vector 
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x"0 is the fth input bias term is set to equal one 

w"j is the weight from input node i to hidden node j at nth layer 

/ (.) is the activation function 

N is the number of exemplars 

B=w* 

Output X1
2=/[SxiTO1y) 

Input     x1 Xj 

Figure II.2. A Single Perceptron Structure 

In a single perceptron structure, as shown in Figure II.2, we have only one 

layer and one perceptron [17]. The input vector x = (xi,.. ..,XM) is linearly 

combined with the weights [18] and bias term. This sum is fed into a squashing 

function/(.), or named transfer function, in order to get squashed the sum into 

the intervals [0,1] or [-1,1] depending upon the characteristic of the transfer 

function. 

A single perceptron structure can partition the feature vector space into 

two half spaces. In some cases, we need to separate the feature space more than 

two spaces. Adding one more perceptrons will increase number of the half- 
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Spaces. According to Looney [18], the maximum number of convex regions that 

could possibly occur is 2J, where J is the number of perceptrons, while the 

minimum number of convex regions is J+l. 

The network structures discussed previously have a number of limitations 

in terms of the functions that they could represent. To allow for more general 

mappings we might consider successive transformations corresponding to 

networks having several layers of adaptive weights [19]. Bishop presents a 

graphical example to understand the efficiency of multilayer networks. 

(a) (b) 

Figure II.3. Illustration of some possible decision boundaries (Bishop, 1995) 

One layer of perceptrons can generate decision boundaries which 

surround a single convex region of the feature vector space, as illustrated in 

Figure 11.3(a). More than one layer networks can generate arbitrary decision 
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boundaries, which maybe non-convex and disjoint, as illustrated in Figure 11.3(b). 

Although one layer perceptron can create very complex decision boundaries, 

Gibson and Cowan [20] provided some examples that cannot be generated by 

one layer perceptrons, as shown in Figure II.4. Therefore, using multilayer 

perceptron, Figure II.5, provides some advantages in classification process. 

Figure II.4. An example of decision boundaries which can not be produced by a network 
having two layers of threshold units (Gibson and Cowan, 1990) 
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Output Z| |          z,    \ 
( 7'K   ) 

layer *$—->    w"'i,k 

Hidden ( Bias   ]        f 
vi  ) y2  \ T yj) 

layer 
^yf^^X^ ̂ ~^^T 

I 
'   IJ 

Input ( Bias   ]         [ "i   ) (      x2     ) '~~-\        ^M    \ 

layer 

Figure II.5. Multilayer Perceptron 

So far we have discussed the single perceptron structure, a layer of 

perceptrons, the decision boundaries we can create by using multilayer and 

single layer networks. Now we can take a look at the structure of MLPs, see 

Figure II.5. 

kth neural network output 

where, 

Jis the number of hidden nodes, 

f{a) = \l(\ + e-a), 

x\ is the hidden layer bias term and is set to equal to one, 

x) = f^Zjw\j' x<") ^s ^e 0UtPut of the hidden node j and is summed from, 

i=\ to M. 
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In the backpropagation algorithm learning occurs by changing the 

weights in a direction that minimizes the sum of the squared errors. The error is 

basically the squared difference between the network output and the target 

value. The weights are updated by taking the derivative of the error term with 

respect to each weight. To be able to do this derivation we prefer activation 

functions such as sigmoid function, which are easily differentiable. 

Signal to Noise Ratio Saliency Method 

The rationale behind the Signal to Noise Ratio (SNR) metric is that the 

salient features should produce larger weights relative to non-salient features. 

This implies that their sum of squared weights will also be larger. If we inject a 

noise feature and look at the ratio of each feature's sum of squared weights to 

noise feature's sum of squared weights, we can rank the features. To place the 

ratio on a decibel scale we can take the logarithm of this ratio and multiply by 

ten. The mathematical expression is 

i>i-)2 

SNR, = 10-log^i^ ) [8] 

7=1 

where SNRi is the value of the SNR saliency measure for feature i, J is the number 

of hidden nodes,  w]. is the first layer weight from node i to node j, w]
NJ is the 

first layer weight from the injected noise node N to node /. The noise feature is 

created such that its distribution fallows that of a Uniform (0,1) variable. 
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SNR saliency measure should be significantly larger than 0.0 for salient 

features and close to or less than 0.0 for non-salient features. The SNR saliency 

measure can be used to rank order the saliency of the features where higher 

saliency measure values correspond to higher feature saliency [8]. 

Improving Generalization 

One of the problems we may encounter while training a network is 

overfitting. While the error on training set getting smaller, the error on test set 

may be getting larger. If this occurs, this generally means that the network is 

memorizing the provided training set and losing the power of generalizing the 

introduced new points. 

There are several ways of improving generalization. One of them is 

selecting a network structure that avoids overfitting. But it is not an easy task to 

determine the network structure before any training. The number features 

maybe a good heuristic for number of hidden nodes. But in our case, we may 

have more features than the exemplars. So this heuristic will not be useful for us. 

In fact, we will divide the data into the smaller sets and train each data set 

separately. The details will be discussed in chapter 3. 

There is two other methods can be used to improve generalization: "The 

Bayesian Regularization" and "Early Stopping". In our study we will use the 

early stopping rule method. According this method, the training set is used to 

train the net and update the weights. Normally, the error on both sets will 
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decrease while training continues. If the net starts to memorize data the error on 

the test set starts to increase. When the test error increases for a specified 

number of iterations, the training is stopped, and the weights and biases at the 

minimum of the validation error are returned [16]. 
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III. Methodology 

Overview 

The following chapter introduces the SRSS algorithm which is an 

application of the Signal to Noise Ratio Saliency Screening Method to randomly 

selected subsets. Next we present a new user-friendly tool, STNGER (Signal to 

Noise Graphical Evaluation Routine), which can be used in feature selection 

process. In the past several MATLAB functions or other tools have been 

constructed to do this task. Because feature selection is iterative in nature, it was 

painful and time consuming to use them; this was especially true if one wanted 

results with statistical significance. This tool is designed to provide the user an 

easy way of doing feature selection and producing some useful plots.   The first 

section of this chapter covers the basic algorithms underlying the STNGER, and 

the second section is a tutorial. 

Applying Signal to Noise Ratio to Randomly Selected Subsets (SRSS) 

We propose a new method in order to get better results in the feature 

selection process. According to the new methodology, we separate data into 

subsets, and apply the SNR method to each subset. In this way we effect the 

ranking within each group. By recombining the features from each subset we 

create another data set. We continue this fashion to find a good subset. 
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The generalized mathematical notation for our method is: 

F is the number of features 

N is the number of exemplars 

F 
R = — is the ratio of the number features to the number of exemplars 

s is the number of subsets and i = l...s 

Si is the ith subset 

Fi is the number of features in the ith subset 

k is the number of features retained from each subset via the SNR method 

F. 
r = —— is the user defined ratio to create subsets 

N 

Figure ULI depicts our method in three basic steps. The detailed 

explanations of these steps are: 

1. Create subsets from original data randomly according to a user 

specified ratio r. For example, if there is a data set with F = 30 features 

and iV = 10 exemplars, a user specified ratio r = 0.5 would divide our 

data set into the s = 6 subsets each having Ft'. = 5 features. 

2. If any of the subsets have less or equal number of features than k, add 

the features Fs to Fs-i. 

3. Execute SNR method to each subset and keep the best k of them. 

4. Create another subset from these selected features. The number of 

features in this set will be s x k . 
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5. If r is smaller than R, go to step 1. 

6. Execute SNR method on the last subset. 

: :•::;:■ : : : : 

• I "" i-   f f > " '• !■ * i 
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Step 1: Randomly Select Subsets 
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Step 2,3,4 : Apply Signal to Noise Ratio Method to Each Subset and Select 

the top k of them and create a new dataset 

Step 5,6 : Apply Signal to Noise Ratio Method to The New Dataset and 

select the salient features according to the performance plots and decision criteria 

Figure III.l. SRSS Methodology 
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Signal to Noise Ratio Method 

Based on the methodology introduced by Bauer et al [8], Lt. Col. Alsing 

created the MATLAB function that executes the SNR method [21]. The steps of 

the algorithm are: 

1. Create a uniformly distributed noise feature with parameters 0 and 1, 

and add this to the data as a new feature. 

2. Randomly separate data into training set and test set. 

3. Standardize the noise-injected data set to zero mean and unit variance. 

4. Create a network object that uses a modified version of MATLAB's 

adaptive learning algorithm (TRAINGDX). The purpose of the 

modification is to save time by suppressing the built in performance 

plot. The initial learning rate of the net is set to 0.01. If the last 

iteration gives a better error rate than the previous one the learning 

rate will be increased by 1.05. If the last iteration gives a worse error 

rate than the previous one the learning rate will be decreased by 0.7. 

All activation functions are sigmoidal. The other user-defined 

specifications of the net like the maximum number of epochs and the 

number of the hidden nodes are described in the next section. 

5. Create initial weights randomly (uniform) between -0.001 and 0.001. 

6. Train network until the SNR stabilizes. 
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7. Remove the feature with the smallest SNR, calculate classification 

accuracy with the remaining features, and adjust the network object. 

8. If there are features remaining other than noise the feature go to step 6, 

otherwise go to step 9. 

9. To understand the performance of the noise feature, train the net until 

the SSE stabilizes. This performance is equal to the prior probabilities 

of the classes. 

Sources of Randomness 

Randomization is used at four different places in this method. 

1. We select each subset from the data randomly. 

2. We add random noise to each SNR method iteration. 

3. At each of the SNR method iteration a different random weight set is 

used as an initial weight set. 

4. At each of the SNR method iteration, we randomly separate each 

subset into the training and the test sets. 

The randomization provides us the means to attach statistical significance 

to the analysis. 

Tutorial of STNGER 

In this section, a user manual for STNGER will be presented in a step-by- 

step fashion. 
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Installation and Requirements 

The STNGER is designed in MATLAB. MATLAB Release 12 must be 

loaded on the computer with the Neural Network Toolbox Version 4.0 and the 

Statistics Toolbox Version 3.0 available. In order to run STNGER more 

conveniently, it would be better to add the STNGER folder to the MATLAB 

search path. 

1. Select File / Set Path... From command window menus 

2. Add With Subfolders and point the application folder 

3. Save and Close 

Preparing Data 

Before running the STNGER, the data file must be ready. There are 

basically three data requirements: 

1. The data file must be written in a tab delimited text (* . txt) format 

and there should be feature titles (tab delimited as well) for each 

column of data. 

2. The data must reside under the 'data' folder which is in the stnger 

folder 

3. The target vector must be the first column of the data file, and the 

classes can be indicated as 1,2 or 1,0 or -1,1. 
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Running STNGER 

After preparing the data for analysis, we can run the STNGER by typing 

stnger on the command window. This command will bring up the main menu 

(Figure III.2). 

OFEI-J ['ATA 

START TRAINING 

CHANGE DEFAULT PARAMETERS 

About Me DEMO 

_=1  x 

Figure III.2. STNGER Main Menu 

The Open Data button will be used in order to browse and select the data 

file that we have already prepared. When you hit this button the next window 

will be as reflected in Figure III.3. After selecting the data file, which is already 

placed under the Data folder, a window as shown in Figure III.4 will appear. 

This window is mainly divided into two parts: (1) Input and Output Selection 

and (2) Data Fractioning for Training. The upper part is used for choosing the 
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features we wish to investigate for the saliency. The lower part allows user to 

determine r and k. 

? y.\ 

Figure III.3. Open File Menu 
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Figure III.4. Input Output Selection 

There are two exclusive options in the lower part of the "Data Selection" 

window. If we select Use Entire Set option, SNR method will be applied to 

entire data set without doing any subset creation. This option might be used if 

there is small number of features with respect to number of exemplars. 

The second option is used to apply our method. The ratio of the number 

of features to the number of exemplars, r, is the parameter used to determine 

the size of each subset. For example, if there are N exemplars and the ratio is r, 
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then each subset will have Nxr features. The general formula regarding to 

number of features for all subsets except the last one will be 

F;=Nxr 

The general formula for the last subset will be 

If the last subset has less or equal number of features than k, Fs<k, the 

last subset will be added to the previous subset, 

So, the minimum number of features in any subset will be k+1. This is the 

case where the last subset Ss has k +1 number of features. The maximum 

number of features in any subset will be (N x r) + k . This is the case where the 

last subset Ss has equal number of features to the k. The user can calculate the 

number of subsets by hitting the Number of Subsets button. 

After selecting the inputs/outputs and after the fractioning is determined, 

we return to the main window. The data file name will be shown in the Figure 

III.2.   Start Training will start the SNR method with the default parameters. We 

can see and change the default values of parameters, Figure III.5 by hitting the 

Change Default Parameters button. The explanations of the parameters are 

presented below. 
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Fraction For Training: The training fraction of the data. The remaining 

part is the test set and Classification Accuracy is calculated on the test set. 

Number of Hidden Nodes: The number of the hidden nodes at the first 

layer of the network. The user can determine the number of hidden nodes or 

number of features is used as the number of hidden nodes by default.   For each 

data set the number of hidden nodes are held constant. In other words, for each 

data set, after removing a feature we don't remove one of the nodes. The injected 

noise counts as a feature. 

Min Epochs to Feature Removal: Minimum number of epochs before any 

feature is removed. 

Number of Epochs to Check SNR: Number of epoch to check for SNR 

stabilization. For example, the default is to check the SNR at every of the 50 

iterations. 

Epoch to Check SSE: After removing all features, check SSE after this 

number of epochs for stabilization. This is done for each SNR method. 

Criteria For SNR Change: Train network until the maximum change in 

the SNR is less than or equal to the determined criteria. The formula of this is 

abs 
rSNRMJ-SNR^ 

SNRKj        J 

where SNRi is the SNR value for feature j at ith epoch. 
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Figure III.5. Changing Default Parameters 

Criteria For SSE Change: Train network until the change in the SSE is 

less than or equal to the determined criteria. The SSE change can be written as 

abs 
SSE;„ 

where SSEi is the performance of the net with the noise feature n at ith epoch. 

Number of Iterations of the SNR Method: The number of iterations we 

want to run SNR method. 

Number of Features to Display: How many of the of the frequency plots 

that will be shown at the end of the iterations is determined by the user. The 
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performance and the sorted rank plots will also display this number of features 

ranks and performances. This will help to present a more understandable plot. 

Create Frequency Plots: Creates the rank frequency plot for every 

feature. 

Create Performance Plots: Creates a sorted rank plot, a rank plot with 

standard deviation, and a mean performance plot. These plots will be explained 

in detail in the Outputs section. 

The Definitions of the Parameters button will bring up a window that 

shows a brief definition of the parameters. 

Outputs 

When we hit the Set Parameters button we will be ready for training. 

The Start Training button at the main window will be used to start training. 

While the data is prepared for training; procedures such as standardization, 

adding noise feature etc., a small window will appear with a "Please wait..." 

message. The message will change when the training is started. If we apply 

fractioning, the current subset number will be shown in the window, see Figure 

111.6(a). By closing this window we can stop training and lose all information 

gathered until this point. But if we do not apply fractioning we will not see any 

indication of the subset number, Figure 111.6(b). We can stop training at this 

point and the outputs will be created according to the data gathered until closing 

the wait window, or we can use Ctrl+Pause keys to end the process. 
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(a) 
Figure III.6. Wait Windows 

(b) 

When the training ended, there will be seven types of outputs. 

1. Rank Frequency Plots: These plots show the frequency of a feature's 

rank during the SNR method. For example, Figure III.7 shows that the 

intelligence feature is ranked 1 time as the forth feature, and 4 times as the sixth 

feature. 

- X 

Figure III.7. Rank-Frequency Plot 
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Figure III.8. Expected Ranks of the Features 

2. The Sorted Expected Ranks of Features: The plot shown in Figure III.8 

visualizes the ranking within the features. The top feature is ranked as the best 

according to the expected ranks. 

3. Expected Ranks of the Features with Standard Deviations: The plot 

shown in Figure III.9 helps to gain a better understanding of the ranking. Each 

point represents the corresponding features expected rank, and the lines shows 

the feature's standard deviation. The best feature is shown at the left most part 

of the plot. The features are listed in a descending order with respect to their 

expected ranks. 
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Figure III.9. Expected Ranks of the Features with Standard Deviations 

4. The Mean Performance Plot: 

THE MEAN PERFORMANCE 

•1 

II                   \                    \                                                               Subset2 

7 

1                  Number of Features 
CTE TEXT FILE                                                                                                   CREATE ROC CURVE 

Figure 111.10. The Mean Performance Plot 
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The mean performance plot, Figure III.10, shows the mean classification 

accuracy with respect to number of features. If the SNR Method applied based 

on different subsets, the mean performance plot will also show the performance 

on these subsets. One can determine the k, by looking at the subsets 

performances. For example, most of the features in subset 3 are hurting the 

mean classification accuracy. One can choose select k as 3 for subset 3. In a 

future version of the STNGER, different k values can be chosen for different 

subsets by looking at the performances of the subsets before creating and 

training the new dataset. 

There are two buttons on this plot. One of them, Create Text File, is used 

to create a new data text file that has the features in a ranked order. The 

Number of Features to Display will be used to determine the number of 

features in this text file. 

The other button, Create ROC Curve, is used to create a ROC curve with 

the new feature subsets, see Figure III.11. The parameters of the net used to 

create the ROC curve are: 

Max number of epochs: 500 

Number of Hidden Nodes: Number of features 

Validation Set: The fraction for test/training is used to create validation 

set out from training set. 
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Maximum number of failures on validation set: To improve 

generalization, a validation set is used. The maximum number of failures on the 

validation set during the training will not be more than 5% of the number of 

exemplars in training set. In other words, if the error increases for a certain 

number of epochs, which is defined as the maximum number of failure in 

MATLAB, on the validation set the training will be stopped. The weights at the 

minimum error will be returned. The details of the generalization are discussed 

in Chapter 2 under the topic of "Improving Generalization". 

ROC Curve 
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  Test Set 
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FigureIII.il. ROC Curve 

The modified version of TRAINGDX is used as the training function with 

a learning rate of 0.01, and the other parameters are the same as the parameters 

used during the SNR method. 
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IV. Results 

Overview 

In the following chapter, the results of three empirical studies will be 

presented. The first one is a well-defined abstract problem with known salient 

features. The second one is the corrupted version of the Fisher's famous iris 

classification problem. The third application is from a drug database with 222 

features and 891 exemplars. These applications will provide sufficient evidence 

of the merit of STNGER. In chapter 3, we discussed the new methodology used 

by STNGER. Recall that the basic idea of this method is applying SNR Method 

to Randomly Selected Subsets (SRSS). 

Abstract Problem 

In this section we will run the STNGER with a well-defined abstract 

problem in order to examine whether the STNGER is able to identify salient 

features by using SNR Method. 

In a real word data, three kinds of features can be seen. The first group is 

the salient features. The salient features will improve a classifiers ability to 

determine the classes effectively. The second group, redundant features, in some 

way convey the same kinds of information as salient features do. The last group 

is the noisy features. Noisy features will lessen the efficiency of the classifiers. 

IV-1 



To examine the merits of STNGER, we used a data set known as the 

Block-C data set. The Block-C data can be defined as: 

r True   if   (*,. > 2-(b-a)l3) and {{b-a)l3< x2i < 2-(b-a)l3) 

Target = < 

False   Otherwise 

where xx and x2 uniformly distributed between a and b, i = l...N,Nnumber of 

exemplars. 

We defined a = 0,b = land N = 60, the classes are evenly distributed. 

Figure IV.1 is a graphical representation of the data defined above. 

x X 

Figure IV.l. Block-C Data 
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We generated 5 uniformly distributed (0,1) noisy features. We added one 

redundant feature by using the formula below 

f     \ 

r = 

\S*J 

0.5 + iV(0,l) 

where Sx is the standard deviation of xx, iV(0,l) is the random noise, 0.5 is chosen 

as the correlation between Redundant feature and x,, but we ended up with a 

correlation of .43 because of random noise. Subsequently, we had a dataset with 

60 exemplars, 30 of them belong to Class 1 and 30 of them belong to Class 2. We 

had 8 features; 2 of them are significant features (xi, xi), 5 of them are noise 

features (ny ni, «3, «4, «s), and one of them is the redundant feature, r. 

Figure IV.2 shows the ranking plot produced by STNGER with the default 

parameters. 

Figure IV.2. Expected Ranks of Features of Block-C Problem 
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These results indicate that STNGER successfully applies SNR Method to a 

feature selection problem. 

Noise Corrupted Version of Fisher's Iris Classification Problem 

In order to investigate the consistency of the SRSS method, we applied the 

SRSS method on a noise-corrupted version of Fisher's Iris classification problem. 

We also demonstrate the SRSS algorithm using this experiment. 

There are three classes in Fisher's Iris classification problem: iris setosa, 

iris versicolor, and iris virginica. There are four input features: sepal length, 

sepal width, petal length, and petal width.   There are 150 exemplars. The classes 

are evenly distributed. To increase the ratio of features to exemplar, we 

generated 12 noisy features and 4 redundant features. Each three of the noisy 

features are uniformly distributed between the minimum and the maximum 

values of one of the known features. Each redundant feature has a correlation of 

0.6 with one of the known features. All generated features are discrete. Table 

IV.1 present a brief definition of each feature. 
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Table IV.l. The Descriptions of the features of a noise corrupted version of Fisher's Iris 
classification problem 

Feature 
Feature 

Representative 
Description 

Sepal length Fl A known feature 
Sepal width F2 A known feature 
Petal length F3 A known feature 
Petal width F4 A known feature 

Noise 1 Nil Discrete Uniform (min(Fl), max(Fl)) 
Noise 2 N12 Discrete Uniform (min(Fl), max(Fl)) 
Noise 3 N13 Discrete Uniform (min(Fl), max(Fl)) 
Noise 4 N21 Discrete Uniform (min(F2), max(F2)) 
Noise 5 N22 Discrete Uniform (min(F2), max(F2)) 
Noise 6 N23 Discrete Uniform (min(F2), max(F2)) 
Noise 7 N31 Discrete Uniform (min(F3), max(F3)) 
Noise 8 N32 Discrete Uniform (min(F3), max(F3)) 
Noise 9 N33 Discrete Uniform (min(F3), max(F3)) 
Noise 10 N41 Discrete Uniform (min(F4), max(F4)) 
Noise 11 N42 Discrete Uniform (min(F4), max(F4)) 
Noise 12 N43 Discrete Uniform (min(F4), max(F4)) 

Redundant 1 Rl It has a correlation of 0.6 with Fl 
Redundant 2 R2 It has a correlation of 0.6 with F2 
Redundant 3 R3 It has a correlation of 0.6 with F3 
Redundant 4 R4 It has a correlation of 0.6 with F4 

We used MATLAB's Neural Network Toolbox to create a single hidden 

layer network with the following parameters. The number of hidden nodes is 

equal to number of features. 60% of the dataset was used for training. All 

activation functions were sigmoidal. 

Train Function 
of MATLAB) 

Learning Rate 
Performance goal (sse) 
Learning Decrease 
Learning Increase 

: Traingdx.m (An adoptive learning algorithm 

0.01 
0.0010 
0.7000 
1.0500 
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Maximum performance increase: 1.04 
Momentum Constant : 0.9000 
Minimum Gradient : 1.0000e-006 

The SRSS parameters were chosen to create 5 random subsets out of the 

original dataset. So the ratio of features to exemplar was set to 0.03 (r =0.03). We 

applied SNR method to each subset 3 times. The best 2 (k = 2) features from 

each of the subset were retained to create a new dataset. 

Table IV.2. The subset with member features and their expected values within subsets 

Subset 1 

Ranks 
N31 
2.6 

N32        Nil 
2            2.3 

N22 
3 

Subset 2 

Ranks 
N41 
3.6 

Rl            Fl 
3.3           1 

R3 
2 

Subset 3 

Ranks 
N13 
2.6 

N21         R4 
4            2.3 

F4 
1 

Subset 4 

Ranks 
N42 
3.3 

N12          R2 
2            1.6 

N23 
3 

Subset 5 

Ranks 
F3 
1 

N33        N43 
3.3          3.3 

F2 
2.3 

Table IV.2 shows the randomly created subsets and the expected values of 

the features after 3 SNR iterations. By retaining the best 2 features from each 

subset a 10-feature subset was created. The ratio of this new dataset was still 
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larger than 0.03. So we created 2 subsets one of which having 4 features and the 

other one having 6 features. The expected ranks of these features are presented 

in Table IV.3.   We combined the best two features from these subsets and trained 

again. After 3 SNR method iterations, we determined the rankings given in 

Figure IV.3. 

Table IV.3. Second level subsets 

Subset 1 

Ranks 
F3 
1 

R2            Nil 
3.3            3.3 

R4 
2.3 

Subset 2 

Ranks 
F4 
1 

F2             Fl 
2.3            3.3 

R3 
3.6 

N12 
4.6 

N32 
6 

Figure IV.3. Expected ranks of the salient features 
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SRSS algorithm determined the salient features easily although there were 

12 noisy and 4 redundant features. For all 3 SNR method iterations the same 

ranking was produced, see Table IV.1.   In this experimental study, since we 

knew the salient features, we didn't measure the performance of the selected 

salient feature subset.   We only compare the salient features determined by the 

SRSS with the known salient features. 

It may be concluded that how many noisy feature are in the original 

dataset does not that important as far as we properly determine the ratio of 

features to exemplar, r, and the number of features to retain from each subset, k. 

Table IV.4. Salient features with expected ranks and associated standard deviations 

Features                               F3 F4 F2 R4 

Expected Ranks                   1 2 3 4 

Standard deviations of the 
expected values 

0 0 0 

Drug Data Set 

As mentioned before, this data set is from a drug database. The drug 

producers are interested in predicting a potent or not potent compound by 

examining various chemical properties. Their main objective was to minimize 

the percentage of the incorrectly predicted non-potents and to maximize the 

correctly predicted potents by employing the minimum number of features. 
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Table IV.5 shows the interest areas of the confusion matrix in this application 

[17]. 

Table IV.5. Confusion Matrix 

Actual Target Actual Clutter 

Predict Target (Potent) True Positive (TP) False Positive (FP) 

Predict Clutter (Non-Potent) False Negative 
(FN) 

True Negative (TN) 

In other words, we wanted to generate a classifier with a minimal feature 

that gives the maximum rate of True Positives (TP) for a certain value of False 

Positives (FP). Their specific objective is getting as many TPs as possible when 

the FPs are held to 2%. The drug company was already getting 43% TP with 4% 

FP on the test by using 70% of the data. 

Data Preparation For Analysis 

The drug company didn't want to share its experimental result with the 

public. Hence, the first change in the dataset was to rename the features as 

Featurel, Feature2, etc. During the preprocessing of the data we kept track of the 

features so we could identify the salient features' names at the end of the 

analysis. 
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I will use an example dataset (Table IV.6) to justify the changes. All 

features and values are fictitious in this dummy set. There were 5 types of 

situations we had to deal with: 

Table IV.6. Dummy Dataset 

Class Featurel Feature2 Feature3 Feature4 Feature5 Featureö 
1 1 ID1 0 10 0.67 -0.300 
2 1 ID 2 0 10.1 0 -1.278 
3 1 ID 3 0 0 0 
4 1 ID 4 0 0 0 1.276 
5 1 ID 5 0 0 0 1.198 
6 1 ID 6 0 0 0.45 1.733 
7 2 ID 7 0 0 0 -2.184 
8 2 ID 8 0 10.3 0.56 -0.234 
9 2 ID 9 0 0 0 1.095 

10 2 ID 10 0 0 0 
11 2 ID 11 0 0 0.69 -0.690 
12 2 ID 12 0 9.4 0 -1.690 

1. Some features were identification numbers for each exemplar. 

Therefore these features are not really features. Featurel in the 

dummy problem represents these features. 

2. Some features were blank like Feature2 in our example. 

3. Some features had only zero values. Feature3 is an example of such a 

feature. 
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4.   Some features had many zeros with respect to nonzero exemplars for a 

certain feature. During the training we divide data into training and 

test sets randomly.   If there is constant value for a feature in the 

training set (like Feature3 in dummy dataset), we cannot calculate SNR 

values for each feature. This is because we cannot standardize such 

data. Also a constant feature does not provide useful information as a 

network input. For example if we select the exemplars 3,4,5,6,7,9,10,11 

or 2,3,4,5,7,9,10,12 from the dummy set as a training set, we will end 

up with a zero valued feature. 

Keeping this in mind and looking at Figure IV.4, we decided to eliminate 

features that had less than 100 values different from zero. 

Table IV.7 shows the excluded features with respect to the categories 

represented above. 

Figure IV.4. Number of values different from zero by features 
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Table TV.7. Excluded Features 

The Reason of Excluding Dummy dataset 
examples 

Excluded Features 

1 Featurel 1,3,4 
2 Feature2 10,11,33 
3 Feature3 94, 96, 98,137,138,145,146, 

147,151,158,162,166,167, 
168,172,173,176,177,178, 
181,186,187,188,189,190, 
and 191. 

4 Feature4 and Feature5 12,13,107,120,171, 7, 84, 
88, 91, 93, 95, 97, 99,102, 
104,105,106,114,115,116, 
117,119,121,122,123,126, 
127,128,131,136,139,140, 
142,144,150,152,157,159, 
160,161,163,164,165,170, 
174,175,179,180,184,185, 
206, 212, and 218. 

5 Exemplar 4,11 Exemplar 326,346,356 

5.   Some features had several missing values for some exemplars. We 

deleted these exemplars. In the dummy example exemplars 4 and 11 

have no values for Featureö. So these exemplars will be removed. 

By removing all these features and missing values we end up with 137 

features and 888 exemplars. 

Parameter Settings 

This was the first time we used STNGER on a real data set. Before 

running the STNGER to the end, we made several "warm up" runs. The main 
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purpose of these runs was to get some idea about the responses of the STNGER 

to the dataset and to determine which parameters should be included in the 

experiment and at what level. 

The trial runs showed that the criterion for SNR change has a huge impact 

on the run time. Another factor that suggested we take the criterion for SNR as a 

design parameter is the question of whether setting this parameter to a smaller 

value - like 0.01 - may hinder generalization or not. A larger value may help net 

to improve generalization. 

Basically, we were wondering what the effect would be of applying the 

SNR method to randomly selected subsets. The drug company determines the 

fractioning of the training set, therefore, this was held constant. The number of 

hidden nodes was selected as the number of features. 

The other parameters are shown in Table IV.8. 

Table IV.8. Parameter Settings 

Parameters 
Fraction for training 0.7 

Number of hidden nodes Number of Features 

Min Epochs to Feature Removal 100 

Number of epochs to check SNR 50 

Epoch to check SSE 100 

Criteria for SSE change 0.01 

Number of iterations for SNR method 30 

Number of features to display 30 

Number of features from each subset to retain 10 
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The designed experiment had two factors, "Criterion for SNR Change" 

and "Using the entire dataset. These were set at two levels 0.01 or 0.1 for 

"Criteria for SNR Change", and TRUE or FALSE for "Using the entire dataset". 

The combinations of those factors and levels resulted in four experimental four 

experimental runs given in Table IV.9 

Table IV.9. Experimental Parameter Settings 

Parameters 
Run l 2 3 4 

Fraction for training 0.7 0.7 0.7 0.7 

Number of hidden nodes Same as the number of features 

Min epochs to feature removal 100 100 100 100 

Number of epochs to check SNR 50 50 50 50 

Epoch to check SSE 100 100 100 100 

Criteria for SSE change 0.01 0.01 0.01 0.01 

Number of iterations for SNR method 30 30 30 30 

Number of features to display 30 30 30 30 

Number of features from each subset to retain 10 - 10 

Criteria for SNR change 0.01 0.01 0.1 0.1 

Use entire dataset TRUE FALSE TRUE FALSE 

Use subsets FALSE TRUE FALSE TRUE 

Those runs represent four areas of interest to this research. 

During the results section, these experimental runs will be identified as 

Runl, Run2, Run3, and Run4. 

Results 

In this section, we will talk about the performances of the different runs, 

Runl through Run4. The details of the selected features and the relations 
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between these feature subsets are not explained due to the sensitivity of the 

results. The ranking plots are presented at Appendix A. 

Looking at Figure IV.5, Run 1, an immediate observation is the 

performance increase as the number of features increases. Actually this is a 

typical characteristic of such performance plots. If we divide the plot into three 

different regions, we see that, in region 1 the performance is increasing very fast. 

In the second region we realize an increase but not as much as in the first region. 

In the third region, the performance is almost at the same level. By looking at 

this plot one can reach a conclusion that keeping 40 features will give us almost 

the best performance, approximately 74% classification accuracy. 
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Figure IV.5. Entire dataset with SNR change 0.01 
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Figure IV.6. Three subsets with SNR change 0.01 

Figure IV.6, Run2 shows the performance of the 3 subsets and the dataset 

created by taking the top 10 features of these 3 subsets. In the mathematical 

notation of chapter 3 

s = 3 number of subsets 

F1=F2= 44 number of features in subset 1 and subset 2 

F3=49 

A: = 10 

number of features in subset 3 

number of features to retain from each subset 

In region 1 all three subsets' performances are increasing very fast. In 

region 2 this increase is smaller, and in region 3 the performances are almost at 

the same level. By looking at these performances we can decide the number of 

features to be retained from each dataset. The overall dataset represents the 

dataset created by taking top 10 features from each subset. It seems that the new 
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data set, which is created by retaining top 10 features from each subset, has a 

better performance than all other subsets. The performance with these 30 

features is almost at the same level with the performance of the 40 features found 

in setting 1. 

Figure IV.7. Entire dataset with SNR change 0.1 

By contrasting the performance plots of Runl, Figure IV.5, and Run3, 

Figure IV.7, we can say that there is no significant difference between the results 

of Runl and Run3. The only difference between these two runs settings is the 

SNR change criteria. The same results can be deduced by looking at the results 

of Run2 and Run4 (Figure IV.6, Run2, and Figure IV.8, Run4). For this dataset, it 

can be concluded that the SNR change criteria does not impact the classification 
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accuracy. In other words, setting SNR change criteria to a larger value -like 0.1- 

does not help to improve the generalization, or, setting SNR change criteria to a 

smaller value -like 0.01- does not help to get a better subset of salient features. 

In the conclusions section this will be discussed in more detail. 

On the other hand, as we experienced during the warm up runs the SNR 

change criteria had a huge impact on the different runs. Using SNR change 

criteria as 0.01 increased the run time. For this particular problem, Run3 took 

only 40% of the run time of Runl. This is also true for Run4 and Run2. Run time 

of Run4 was about 30% of the run time of Run2. 
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Figure IV.8. Three subsets with SNR change 0.1 

According to the results provided until this point, one can conclude that 

applying SNR Method to Randomly Selected Subsets provided a better feature 
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subset in terms of mean classification accuracy. In other words, reducing the 

ratio of number of features to number of exemplars of a dataset, on which the 

SNR method is applied, will help the SNR method to determine the salient 

features. By dividing the data set into subsets we reduce the number of noise 

features in a data set. Having less - in an absolute sense - number of noise 

features in a data set will increase the SNR method's performance. 

ROC Curve Values as a Function of Number of Features 

In some cases, classification accuracy does not provide sufficient 

information as a measure of performance. As we mentioned while introducing 

the data set, the drug company is interested in TPs and FPs rather than the 

overall classification accuracy. This motivation forced us to create a plot that 

helps us to see TP and FP as a function of number of features. 

A mathematical notation, which can help us to understand how we 

gathered these informations, might be 

6        : Decision threshold 

PfaTrain: Probability of false alarm on training set 

PfaTesl  : Probability of false alarm on test set 

P^Train   '■ Probability of detection on training set 

PdTest   : Probability of detection on test set. 
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The goal is to maximize TPs for a certain value of FP. The algorithm 

below is used to evaluate different TP values for different numbers of features. 

1. Set number of features/to 30, set PfaTrain to 0.02. 

2. Set counter equal to 1. (We averaged across 30 ROC curves for each 

feature subset) 

3. Create a single hidden layer network object with the parameters: 

Train Function : Traingdx.m (An adoptive learning algorithm 
of MATLAB) 
Learning Rate : 0.01 (Default) 
Maximum number of epochs: 350 
Performance goal (mse) 
Learning decrease 
Learning increase 
Maximum number of fails on validation set: 25 
Maximum performance increase: 1.04 (Default) 

0.0010 
0.7000 (Default) 
1.0500 (Default) 

Momentum Constant 
Minimum Gradient 
Plot show 
Maximum time 

0.9000 (Default) 
1.0000e-006 (Default) 
25 (Default) 
Infinity (Default) 

4. Train network. 

5. Simulate network and create ROC curve for training set. 

6. Determine 6 and PdTrain for PfaTmjn = 0.02. 

7. Create ROC curve for test set by simulating the network. 

8. Determine PdTest and PfaTesl. 

9. Increase counter by 1 

10. If counter is smaller than 31 go to step 3. 

11. Calculate means of 6, PdTrain, PdTest, and PfaTest 
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12. If / > 1, remove fth feature, and go to step 2. 

Figure IV.9 visualizes the steps of the algorithm. At this point, we have to 

talk about the validation set. There are a number of built-in stopping criteria in 

MATLAB's traingdx.m function. One of them is we create a validation set and 

monitor the error on the validation set. If the error increases for a certain number 

of iterations on the validation set the training will be stopped and the weights 

and biases at the minimum of the validation error are returned [16]. To be able 

to apply the same criteria we selected 20% of the training set randomly and 

assigned it as a validation set. In this way, we would stop training if the error 

increases on the training set for a certain number of epochs. We determined the 

maximum number of epochs and maximum number fails from "warm up" runs. 

TRAINING SET TEST SET 

Pfa    = 0.02 Pfa 

i t 
Pd Pel 

^Si i                 i r—* 
threshold 

Figure IV.9. Collecting ROC Information 
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Based on these values, we created four plots representing the four runs 

outlined in Table IV.9. There are 6 different lines in these plots: 

  : Threshold 

: Probability of detection on train set 

: Probability of detection on test set 

: Probability of false alarm on train set 

: Representing the 2% and the 4% probability of false alarm rates 

»      »      » 
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Conclusions 

An immediate observation might be the threshold values are almost at the 

same level for all settings. 

Comparison of the Performances regarding to r ratios: To see the 

distinctions in more detail we depicted the same kind of information for different 

runs on the same plot. Three plots were created for each combination showing 

the probability of detection on training set (bottom), probability of false alarm on 

test set (middle), and probability of detection on test set (top). 

Figure IV.14. Comparison Plot of The Performances of Runl and Run2 

Figure IV.14 compares Runl and Run2. Recall that we used SNR Change 

Criteria as 0.01 at Runl and Run2. We used entire dataset at Runl and created 
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three subsets at Run2. It seems that applying SNR method gives better results 

when the r ratio is smaller. Especially when the number of features is more than 

15, subset creation is helping to determine the salient features. We notice that 

PdTest for Runl is less than PdTest for Run2, but unfortunately PfaTest grows as 

PdTest grows.   But this increase does not lessen the merit of SRSS. Table IV.10 

provides a couple of points from this plot. 

Table IV.10. A couple of performance examples from Runl and Run2 

Number of 
features e i Cltrain Pfatest Pdtest 

RUN1 
25 
29 

0.65 
0.60 

0.27 
0.48 

0.04 
0.09 

0.26 
0.38 

RUN 2 
(SRSS) 

19 
27 

0.66 
0.62 

0.39 
0.56 

0.04 
0.08 

0.35 
0.48 

It is obvious that SRSS is providing better performance with fewer 

features than applying SNR method to entire dataset in terms of Pfa and Pd. 

Figure IV.15 shows a comparison of Run3 and Run4, similar to Figure 

IV.14 for Runl and Run2. Remember that we used an SNR Change Criteria as 

0.1 at Run3 and Run4. We used entire dataset at Run3 and created three subsets 

at Run4. 
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Figure IV.15. Comparison Plot of The Performances of Run3 and Run4 

It seems that Run4 always gives better subsets than Run3. 

Table IV.ll. A couple of performance examples from Run3 and Run4 

Number of 
 features       9 Pdtmm Pfatest Pdtest 

RUN3 25        0.672 0.360 0.045 0.303 
 27 0.655 0.417 0.057 0.354 

RUN 4 22 0.654 0.404 0.045 0.366 
(SRSS) 23 0.644 0.449 0.057 0.375 

Among all runs, Run2 gives the best performance with the same number 

of features. The performance values and number of features that would be 

retained from these subsets are always subject to the decision maker's criteria. 

The visual comparison has provided that the amount of data or the ratio 

of the number of features to the number of exemplars, r, has an impact on 
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selecting salient features. At this point, we investigated if there is a statistical 

difference between applying SNR method to different datasets that have 

different r ratios. 

The paired t confidence interval is one of the statistical approaches that can 

be used in comparing two different systems. The only required assumption is 

the pairwise differences must be normally distributed [22]. The good thing with 

this approach is we don't have to assume that two systems are independent and 

have equal variances [22,23]. 

A (1-«)100% paired t confidence interval is given by 

d±tal2- 

where di = Xu-X2i, X,, is a random variable, j = 1,2, S2 = sx-^fc^ 
n-\ 

tall\s> such that    P{T >ta} = a for a t distribution with n-1 degrees of freedom. 

Our null hypothesis and the alternative hypothesis will be 

Null Hypothesis: H0: jUD = 0: There is no difference between 

performances at a = 0.05 level where jUD = //. - JUJ . 

Alternative Hypothesis: Ha : jUD # 0 : There is a difference between 

performances. 
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We will assume that if the confidence interval covers zero then the null 

hypothesis cannot be rejected. Otherwise we will reject the null hypothesis and 

conclude that there is difference between two systems. If the confidence interval 

leads to a positive interval we can say that systeml is better than system2. If the 

confidence interval leads to a negative interval we can say that system2 is better 

than systeml [23]. 

We summarized the results of hypothesis test results in the below table. 

Table IV.12 shows the number of times each run gives the better result. 

Table IV.12. SNR Criterion=0.01 

RUN 2     No statistical 
(SRSS)        difference 

i CLtrain 6 18 6 

Pfatest 1 4 25 

Pdtest 6 20 4 

One important result of the Table 4.8 is although there is not much 

difference between PfaTest for both methods, SRSS is giving better results for 

PdTest and PdTmin 

Table IV.13. SNR Criterion=0.01 

RUN 4     No statistical 
(SRSS)        difference 

1 Cltrain 1 23 6 

Pfatest 1 6 23 

Pdtest 1 25 4 

Again, Run4 is giving better results than Run3. 
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Comparison of Performances Regarding to SNR Change Criteria: 

Figure IV.16. Comparison Plot of The Performances of Runl and Run3 

Figure IV.16 compares Runl and Run3. Visually one might notice that for 

small number of features Runl gives better results than Run3. However, when 

the number of features is more than 18, Run3 provides a better performance than 

Runl. This is statistically true only 4 times for PdTest and PdTraln. The smaller 

SNR change criteria -0.01 - gives better results than the SNR change criteria - 

0.1 - when the SNR method applied to the entire dataset or the r ratio is large. 
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Table IV.14. SNR change criteria in parentheses 

RUN 1 (0.01) RUN 3 (0.1) N° statistical v      ' v    '    difference 
i Cltrain 14 4 12 

Pfatest 1 1 28 

Pdtest 14 4 12 

Table IV.15. Design Parameters in Parentheses 

RUN 2 (SRSS, 0.01) RUN 4 (SRSS, 0.1) ^j^1^1 

i Cltrain 1 5 24 

Pfatest 1 0 29 

Pdtest 1 7 22 

However, Figure IV.17 and confidence intervals shown in 

Table IV.15 indicate that SRSS is very robust to different SNR change 

criteria. 

Although there is break point on performances between 15 features and 20 

features, see Figure IV.10, Figure IV.11, Figure IV.12, and Figure IV.13, for other 

three runs, Runl has a steadily increasing rate of probability of detection and 

probability of false alarm. This change brings to mind a possible interaction 

between features ranked within first 15 and between 15-30. 
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Figure IV.17. Comparison Plot of The Performances of Run2 and Run4 

With 19 features, Run2 (Figure IV.ll) gives a 3.9% Pfa with a 35% Pd on 

test set. Recall that the drug company results were 4% Pfa, 43% Pd with 137 

features. Therefore, we see that the use of SRSS has resulted in a situation which 

nearly duplicates the performance of the drug company but with for greater 

efficiency. Further, if we accept a 10% Pfa, we can get a 50.7% Pd on test set with 

30 features. 

In some studies, decreasing the number of features might be very helpful 

to improve the chances that a solution will be both understandable and practical. 

The drug company may now focus on these features to improve the solution. 
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V. Summary and Recommendations 

Overview 

In this thesis study, we had two objectives. The first one was creating a 

graphical user interface that can be used in feature selection process. The second 

objective was to select salient features in a situation where there is a high ratio of 

feature to exemplars. To achieve both objectives, we used the Signal-to-Noise 

saliency method [8]. 

Selecting salient features in a situation, where there is a high ratio of 

feature to exemplars, was our second objective. In chapter three, we presented a 

new idea method for applying the SNR method. The new methodology 

suggested that, briefly, one could apply the SNR method to randomly selected 

subsets of a data set, and recombine the best k features from each subset. Then, 

apply the SNR method to newly created dataset. The new methodology, SRSS 

(SNR with Randomly Selected Subsets), was applied to real dataset from a drug 

study. The results of this experiment presented in chapter 4. SRSS produced a 

better feature subset than the current application with regards to classification 

accuracy, probability of detection and probability of false alarm. 

In chapter three we introduce STNGER (Signal to Noise Graphical 

Evaluation Routine) as a graphical interface for feature saliency screening. The 

basic algorithms and a user manual of STNGER are presented in chapter 3. 

Basically, we put SNR method into an easy to use format. The output plots are 
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designed to visualize screening results. STNGER was evaluated on a well- 

known abstract problem, the corrupted version of a well-known real world 

problem and a real world problem with unknown salient features. All results 

were promising. 

As an addition to STNGER, we put SRSS method as an option. The 

STNGER can operate on both an entire dataset and randomly created subsets. 

Overall, STNGER and SRSS seem very reliable in feature screening 

process. STNGER did very well on both the well-defined abstract problem and 

real dataset. The statistical analysis of the real world problem provides sufficient 

evidence to the merit of STNGER. 

Limitations and Recommendations 

The only limitation to the SRSS Method might arise from placing features, 

which have an interaction between them, into different groups. 

In mathematical notation, say, we have N exemplars and M features. 

According to a given ratio, r, we created s subsets. Let's assume that, the 

interaction of the features, say, xi and xi determines the classification rule. If we 

happen to put these two features into different groups, we would lose some 

information about the saliency of these features. 

To investigate this situation we defined a problem with a known 

classification rule. We created 8 features, each of which is a uniformly 
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distributed (-1,1) random variable, with 100 exemplars. The classification rule is 

determined as 

{True if (JC,,. • x2i > -0.1) and (x3. • x4I > -0.1) 

False otherwise 

where i = 1...N, N is the number of exemplars. The classes are evenly 

distributed. 

The purpose of the experiment was to answer the question: 

Can we use within group mean rankings as a global metric between the 

subsets? For example, if a feature's (say, xi) mean ranking determined as 1.4, and 

another feature's (say, xi) mean ranking determined as 1.7, both features from 

different subsets, could we say that xi is more salient than xi ? Actually, the main 

point is not so much ranking features according to their subgroup mean 

rankings. But rather, we want to catch the differences between rankings in 

different subgroups at different iterations (at each iteration the member features 

of subsets are changing). If a feature is ranked significantly higher in a specific 

relative to other subsets, it could indicate this feature has an interaction with at 

least one other feature. This suggests ways that we might rearrange our SRSS 

algorithm to avoid missing separated but interacting features. 

We designed an experiment with three settings. The first run included the 

entire dataset. For the second and third runs we divided the entire set into to 

subsets. First subset was created by choosing xi, X3, noisei, and noises. The 
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second subset was created by choosing X2, X4, noisei, and noise*. We investigated 

the different rankings for different subsets. 

We used single hidden layer network architecture with the following 

parameters: 

Train Function 
algorithm of MATLAB) 

Learning Rate 
Maximum number of epochs 
Performance goal (sse) 
Learning Decrease 
Learning Increase 
Maximum performance increase 
Momentum Constant 
Minimum Gradient 
Plot show 
Maximum time 
Number of hidden nodes 
SNR change criteria 
Number of SNR method 
Train/Test Fraction 

Traingdx.m (An adoptive learning 

0.01 (Default) 
inf 
0.00001 
0.7000 (Default) 
1.0500 (Default) 
1.04 (Default) 
0.9000 (Default) 
1.0000e-006 (Default) 
25 (Default) 
Infinity (Default) 
Number of features 
0.01 
30 
60/40 

Table V.l. The expected ranks of separate but interacting features 

Run 1 Run 2 Run 3 
Features xi, X2, X3, X4, ni, m, m, m xi, X3, ni, n3 X2, X4, n2, n4 

Ranking X4, X3, X2, xi, ni, m, m, m X3, xi, ri3, ni X4, n2, X2, n4 

Expected 
Ranks 

Xl x2 x3 x4 ni n2 n3 ru Xl x3 ni n3 X2 x4 n2 ri4 

4.16 3.23 3.03 2.86 5.36 5.46 5.56 6.3 2.33 2.26 2.96 2.43 2.6 2.3 2.33 2.76 

Table V.l summarizes the experiment and results. The last three columns 

correspond to the three runs. The first row shows the features that are included 

in a run. The second row shows the ranking for a specific run. For example, for 
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run 1, X4 is ranked as the first and X3 is the second and so on. The third row 

shows the expected rankings of each feature. For example, the expected rank of 

xi in run 2 is 2.33. Surprisingly, although the interaction features are not 

included, SNR method detected the salient features in run 2. But we did not see 

the same performance in run 3. 

If we take the expected ranks for run 2 and run 3 and sort in an ascending 

order, we create Table V.2. 

Table V.2. Combined expected ranks of features from different subsets 

Features X3 X4 Xl n2 m X2 n4 ni 

Expected 
Ranks 

2.26 2.3 2.33 2.33 2.43 2.6 2.76 2.96 

It is very interesting that, the SNR method found the 75% of the salient 

features although interaction terms are in different subsets. 

The results above might suggest some changes in the SRSS methodology. 

Further research might investigate the effectiveness of the suggestions given 

below. 

1.   Instead of creating subsets only one time and applying SNR method to 

each subset t time, one can create subsets t times and applies SNR 

method for each subset. If the assumption of global ranks are 

acceptable, some evidence of this is given in the above experiment, one 

can calculate the rankings based on rankings within each subset for 
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each of the iterations. One can create subsets randomly or with a given 

rule for all iterations. 

2. Allowing user to select different k values for different subsets by 

looking at the performances plots of these subsets, then creating and 

training the new dataset. This will avoid the setting k without any 

prior knowledge about performance of features, and choosing the 

same k for all subsets. 

3. The effect of random components, which are defined in chapter 3, on 

screening performance might provide some more insight on the 

screening experience. 
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Appendix A: Expected ranks of features 

Runl: 

Run 2: 

A-l 



Run 3: 

Run 4: 
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