
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-8-2002

Suitability of Unidata Metapps for Incorporation in Platform-Suitability of Unidata Metapps for Incorporation in Platform-

Independent User-Customized Aviation Weather Products Independent User-Customized Aviation Weather Products

Generation Software Generation Software

Harmen P. Visser

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Meteorology Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Visser, Harmen P., "Suitability of Unidata Metapps for Incorporation in Platform-Independent User-
Customized Aviation Weather Products Generation Software" (2002). Theses and Dissertations. 4500.
https://scholar.afit.edu/etd/4500

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/190?utm_source=scholar.afit.edu%2Fetd%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4500?utm_source=scholar.afit.edu%2Fetd%2F4500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

SUITABILITY OF UNIDATA METAPPS FOR

INCORPORATION IN PLATFORM-INDEPENDENT
USER-CUSTOMIZED AVIATION WEATHER

PRODUCTS GENERATION SOFTWARE

THESIS

Harmen P. Visser, Captain, USAF

AFIT/GM/ENP/02M-09

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Report Documentation Page

Report Date
8 Mar 02

Report Type
Final

Dates Covered (from... to)
Jun 2001 - Mar 2002

Title and Subtitle
Suitability of Unidata Metapps for Incorporation in
Platform-Independent User-Customized Aviation
Weather Products Generation Software

Contract Number

Grant Number

Program Element Number

Author(s)
Capt Harmen P. Visser, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and
Address(es)
Air Force Institute of Technology Graduate School
of Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 WPAFB OH 45433-7765

Performing Organization Report Number
AFIT/GM/ENP/02M-09

Sponsoring/Monitoring Agency Name(s) and
Address(es)
AFWA/DNXT ATTN: Mr. Bruce Telfeyan 106
Peacekeeper Drive Offutt AFB NE 68113-4039

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract
Due to multiple factors, including an increase in military operations tempo and the improved resolution of
meteorological models, demand for access to customized aviation weather products has increased
exponentially. This has given rise to a need for a multi-purpose interactive aviation weather product
generation software solution. This software solution must be platform-independent, multiple data source
access configurable, robust, extensible or upgradeable, user-friendly, and an improvement over current
visualization applications used in the operational military aviation weather community. This thesis
determines whether Unidata MetApps meets these criteria. A software reuse and component-based
engineering approach was taken in this thesis. Two experimental applications were constructed using a
software design approach resembling the Facade software design pattern. The first application used
existing MetApps stand-alone prototype applications, while the second exploited capabilities of the
MetApps component library. Both experimental applications were measured against the above set of
criteria to determine their suitability for incorporation in platform-independent user-customized aviation
weather products generation software. The results prove that a Facade software design approach can be
effectively used to build applications. It was determined however that, even though MetApps shows
promise, it may not be suitable for incorporation into an operational application.

Subject Terms
Meteorology, Meteorological Applications (MetApps), Interactive Graphics, Java, Unidata.

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
103

The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U. S. Government.

AFIT/GM/ENP/02M-09

SUITABILITY OF UNIDATA METAPPS FOR INCORPORATION IN PLATFORM-

INDEPENDENT USER-CUSTOMIZED AVIATION WEATHER PRODUCTS
GENERATION SOFTWARE

THESIS

Presented to the Faculty

Department of Engineering Physics

 Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

 Air Education and Training Command

 In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Meteorology

Harmen P. Visser, BS

Captain, USAF

March 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GM/ENP/02M-09

SUITABILITY OF UNIDATA METAPPS FOR INCORPORATION IN PLATFORM-

INDEPENDENT USER-CUSTOMIZED AVIATION WEATHER PRODUCTS
GENERATION SOFTWARE

Harmen P. Visser, BS
Captain, USAF

 Approved:

Acknowledgements

I would like to express my sincere appreciation to my thesis advisor, Lt Col

Timothy Jacobs, for his guidance and support throughout the course of this thesis effort.

The insight and experience he provided was greatly appreciated. My gratitude also goes

out to Lt Col Walters, for his dry wit, and Major Huffines, for helping me keep things

that are truly important in perspective. I would, also, like to thank my organizational

sponsor, the Technology Exploitation Branch at the Air Force Weather Agency, for both

the technical support and latitude provided to me in this endeavor. I also wish to

acknowledge the help from my fellow thesis students from both the Engineering Physics

and Electrical and Computer Engineering Departments. Their comments, suggestions,

quips, snipes, good-natured haranguing, and occasional much needed “correction-of-

attitude” helped keep me from always losing my temper.

I am, also, indebted to the late author Theodore S. Geisel. At the age of ten, I was

presented by my parents with a copy of Geisel’s “The Sneetches and Other Stories,” and

introduced to the English language (some say that this goes a long way to explaining why

I write and speak English the way that I do).

 Finally, and certainly not least, I wish to thank the Lord and my family. Without

their patience, understanding, and unconditional love, I would certainly have had a lot

tougher time getting through the creation of this thesis than I did.

Harmen P. Visser

iv

Table of Contents

Page

Acknowledgements.. iv

List of Figures ... vii

List of Tables ... viii

Abstract .. ix

1. Introduction.. 1

1.1 Background.. 1

1.2 Statement of the Problem... 5

1.3 Scope.. 6

1.4 Overview of Approach... 6

1.5 Organizational Overview... 8

2. Related Work ... 10

2.1 Overview.. 10

2.2 McIDAS... 10

2.3 GrADS ... 13

2.4 Vis5D ... 15

2.5 VisAD .. 17

2.6 MetApps... 21

2.7 4DWX.. 23

2.8 Summation ... 25

3. Methodology.. 27

3.1 Overview.. 27

v

3.2 Goals .. 27

3.3 Requirements for Success .. 28

3.4 Design of Experimental Applications.. 29

3.4.1 Overview ... 29

3.4.2 Application Design Approach 1 .. 31

3.4.3 Application Design Approach 2 .. 34

3.5 Experimental Programming Environment Setup ... 37

3.6 Data Requirements and Handling .. 40

4. Results.. 44

4.1 Overview.. 44

4.2 Application Design Approach 1... 44

4.3 Application Design Approach 2... 49

4.4 Summary of Results... 52

5. Conclusions and Recommendations .. 54

Appendix A: Abbreviations ..58

Appendix B: Unidata MetApps Detailed Analysis...60

Appendix C: Application Source Code...72

Bibliography ..89

Vita...92

vi

List of Figures

Figure Page

 1. McIDAS Product ... 11

 2. GrADS Meteorogram... 14

 3. Vis5D Screenshot... 16

 4. VisAD Screenshot.. 18

 5. MetApps Screenshot ... 22

 6. 4DWX VMET Screenshot ... 25

 7. Standard, simplified view of the Facade software design pattern 31

 8. Application 1 Diagram... 33

 9. Application 2 Diagram... 36

10. Experimental Application Screenshot.. 45

11. Interactive Sounding Screenshot.. 63

12. GDV Screenshot .. 65

13. Image Viewer Screenshot .. 67

14. Image Viewer Class Diagram .. 68

15. MetApps Library Package Diagram. ... 70

vii

List of Tables

Table Page

1. Experimental Software Environment... 38

2. Experimental Hardware Environment ... 40

3. Additional Libraries Required for Design Approach 2.. 35

4. Summary of Experimental Results .. 53

viii

AFIT/GM/ENP/02M-09

Abstract

 Due to multiple factors, including an increase in military operations tempo and

the improved resolution of meteorological models, demand for access to customized

aviation weather products has increased exponentially. This has given rise to a need for a

multi-purpose interactive aviation weather product generation software solution. This

software solution must be platform-independent, configurable for multiple data source

access, robust, extensible or upgradeable, user-friendly, and an improvement over current

visualization applications used in the operational military aviation weather community.

The purpose of this thesis is to determine whether Unidata MetApps meets these criteria.

A software reuse and component-based engineering approach was taken in this

thesis. Two experimental applications were constructed using a software design

approach resembling the Facade software design pattern. The first application used

existing Unidata MetApps stand-alone prototype applications, while the second exploited

capabilities of the MetApps component library. Both experimental applications were

measured against the above set of criteria to determine their suitability for incorporation

in platform-independent user-customized aviation weather products generation software.

The results prove that a Facade software design approach can be effectively used to build

meteorological applications. It was determined however that, even though MetApps

shows promise, it may not be suitable for incorporation into an operational

meteorological software solution.

ix

SUITABILITY OF UNIDATA METAPPS FOR INCORPORATION IN PLATFORM-

INDEPENDENT USER-CUSTOMIZED AVIATION WEATHER PRODUCTS

GENERATION SOFTWARE

1. Introduction

1.1 Background

 In 1995, the Air Force Weather Information Network (AFWIN) came online.

Under the direction of the Air Force Global Weather Central Product Improvement

Branch (the precursor of today's Air Force Weather Agency Technology Exploitation

Branch) AFWIN provided access to Relocatable Window Model (RWM) products

produced by automated Mesoscale Gridded Window Display System (MGWDS)

sessions. The RWM was superseded in 1998 by the National Center for Atmospheric

Research/Pennsylvania State University Mesoscale Model 5 (MM5), which is still

running today. MM5 products were thenceforth produced directly for distribution to

customers via AFWIN. The Air Force Weather Agency Technology Exploitation Branch

produced displays for hundreds of standard and derived meteorological parameters for

weather forecaster use worldwide. By 1999, as the MM5 began to include more theaters,

the number of pre-staged automated weather products had expanded to over 350,000 per

day (Telfeyan, 2001). This consisted of a huge archive of Graphics Interchange Format

(GIF) images, which were completely recycled every 24 hours. A large percentage of the

350,000 images were never viewed by anyone. Producing 350,000 archived images per

1

day was an inefficient use of computing resources and it became imperative that the large

number of pre-staged automated weather products be reduced.

The concept was introduced of providing interactive interfaces on AFWIN that

would allow an Internet user to specify what they needed and have the Air Force Weather

Agency computing resources produce the required charts upon demand. An interface

was developed called Interactive Meteorogram and Skew T (IMaST). A meteorogram is

a chart in which one or more meteorological variables are plotted against time while a

skew T (an abbreviation of skew T - log p) is a standard plot used by meteorologists to

analyze data from a sounding. IMaST allowed a user to produce a meteorogram or skew

T diagram for any location within the geographical domains of various meteorological

forecast models including the MM5. The user was prompted to enter either latitude and

longitude coordinates, an ICAO (International Civil Aviation Organization) four-letter

identifier, or point and click a location on a number of theater maps using a mouse.

Air Force weather went through reorganization in the late 1990’s. As part of this

reorganization, the production of many theater-specific aviation weather products was

decentralized and transferred to the newly created Air Force regional weather hubs

(Sembach, Shaw, etc.). However, responsibility for the generation of user-customized

meteorological products using meteorological model data was left with the Air Force

Weather Agency Technology Exploitation Branch. The reason for this was the

requirement for large computing resources to generate the required meteorological

forecast model data files and the configuration complexities involved in running the

necessary Grid Analysis and Display System (GrADS) software with an associated

JavaScript interface. Thus there remained the problem of a single point of failure. The

2

regional Air Force weather hubs have a wide variety of different computing hardware at

their disposal, consisting mostly of Microsoft Windows based personal computers (PC’s)

and some UNIX workstations. Compared to the Air Force Weather Agency Technology

Exploitation Branch, the weather hubs’ computing resources are more limited.

 In 2001, the Interactive Gridded Analysis and Display System (IGrADS) was

developed to eventually replace IMaST. IGrADS expanded the capabilities of IMaST to

include vertical cross-sections, alphanumeric model output, two-dimensional weather

charts with user-selected parameters, severe weather meteorograms, etc. IGrADS

replaced the IMaST JavaScript interface with one based on JavaTM classes. This IGrADS

feature takes advantage of the built-in capabilities of modern JavaTM-enabled Internet

content browsers such as Netscape and Internet Explorer 5.0 to run JavaTM applications

over the Internet. Nonetheless, GrADS was still the behind-the-scenes engine that

produced all the user-requested meteorological products distributed via IGrADS.

The Air Force Weather Agency Technology Exploitation Branch currently

depends on IGrADS to provide user-customized meteorological products to its customers

through its Joint Air Force and Army Weather Information Network (JAAWIN) Internet

site. Due to multiple factors, including an increase in operations tempo and the improved

resolution of meteorological models, the demand for access to customized aviation

weather products has increased exponentially over the last few years. This, combined

with the need for increased network security precautions to prevent unauthorized access

to US Air Force weather data, has slowed the delivery of products. In its current

configuration, JAAWIN provides its user-customized aviation weather products from a

single Internet web site that has become a sort of "bottleneck" and a single point of

3

failure in the delivery system for this specific type of meteorological product. Up to this

point, GrADS had served the Air Force meteorological community well in its role as the

JAAWIN product generator for user-customized aviation weather products. The demise

of GrADS use at the Air Force Weather Agency Technology Exploitation Branch is in

sight however. The Air Force is restricted in what it can do to the GrADS software due

to license issues. The Technology Exploitation Branch eventually wants to greatly

reduce its dependence on GrADS and commercial-off-the-shelf (COTS) software

applications (Telfeyan, 2001). As IGrADS was being readied to go operational on the

Joint Air Force and Army Weather Information Network (or JAAWIN), the search had

already begun for a stand-alone platform-independent solution that would eventually

eliminate the Air Force's dependence on COTS software and GrADS.

In a 1997 proposal to the National Science Foundation, after 12 years of

successfully supporting universities in the exploitation of information technologies in

atmospheric research, the University Corporation for Atmospheric Research (UCAR)

Unidata Program Center proposed a shift in its software emphasis to the JavaTM

programming language. UCAR stated that the reason for the change of emphasis was to

enable the Unidata academic research community to fully exploit the power of

networking and distributed computing available through JavaTM. This shift in emphasis

did not merely represent a change in programming language but rather a shift towards a

new model of architecture-neutral, object-oriented, distributed, secure, multithreaded, and

reusable software. Unidata emphasized that the advances achieved by JavaTM were "…

so important that the greatest risk would be not to pursue them…" (UCAR, 1997) Born

out of the proposal was a suite of applications known as MetApps (Meteorological

4

Applications). Over the past four years the UCAR Unidata Program Center has

coordinated the further development of MetApps. MetApps is now a platform-

independent meteorological software suite consisting of a set of object-oriented JavaTM

classes and abstract data types (Caron, 1999). The question at hand is whether the

Unidata MetApps classes and prototype applications are suitable for incorporation in an

operational platform-independent interactive aviation weather products generation

software package.

1.2 Statement of the Problem

There has arisen within the military meteorological community a need for multi-

purpose interactive aviation weather products generation software solution. This

software solution must satisfy six main requirements. First, the solution in question

should be platform-independent. Due to the unpredictable nature of worldwide military

operations, identical software platforms at diverse geographically separated locations

cannot and should not be expected. Second, the software solution must not be restricted

to obtaining data from a single source, as has been the case in the past. A single data

source for meteorological data creates an opportunity for one’s adversaries to undermine

the capability of commanders to obtain the most current aviation weather information.

Third, the solution must be robust. “Normal”-sized model data files should be able to be

run on a component-based application without putting undue strain on a mid-level

Windows PC or an average UNIX workstation. Fourth, the solution must be extensible

or upgradeable. An application built using reusable components should be relatively easy

to adapt to changes in its components (this requirement is somewhat subjective). Fifth,

5

the software solution should be user-friendly. Although this requirement/criteria is

somewhat subjective, it must be kept in mind that users naturally will avoid software that

is difficult to use. Sixth, the selected software solution must be an improvement over

current visualization applications used in the operational aviation weather environment.

1.3 Scope

 The Air Force Weather Agency Technology Exploitation Branch would like to

know if Unidata Meteorological Applications (MetApps) stand-alone prototype

applications or libraries are suitable for incorporation into next-generation platform

independent interactive user-customized aviation weather products generation software.

This project focuses specifically on the suitability of the MetApps prototype applications

themselves and the component library. The scope of this work concentrates on exploiting

the MetApps stand-alone prototype applications and library to their fullest extent through

the construction of two experimental applications. In order to do this in the most efficient

manner, data issues (such as format) had to be addressed first. It was only then that the

remainder of this thesis could concentrate on the development of two platform-

independent multi-use applications that fully exploit the capabilities of Unidata MetApps.

1.4 Overview of Approach

The overall approach taken in this thesis was one of software reuse and

component-based engineering. Component-based software engineering (or CBSE) is a

process that places emphasis on the design and construction of computing systems using

reusable software components (Pressman, 2000). The CBSE approach can be illustrated

6

by thinking of it in terms of assembling a home stereo system from stereo components.

Assembly of a system is easy because the user is not expected to build the system from a

sundry mix of transistors, capacitors, and resistors. The stereo user may purchase his

receiver, turntable, and cassette deck from different manufacturers and assemble them at

home and be reasonably confident that the parts will work together. Component-base

software engineering attempts to accomplish this same result with software. In this

thesis, the “components” in question are the MetApps stand-alone prototypes and the

classes contained in the MetApps library. The impetus behind a component-based and

re-use approach is of course monetary. Just as it is cheaper to purchase stereo

components rather than to design and build them, it is cheaper to reuse software

components than to actually write the components oneself.

The analysis and design phase of this thesis started with research into the

background of software systems that are currently used to deliver user-customized

aviation weather products to customers worldwide. Research was also conducted into

what already has been done in the area of component-based software development in the

field of meteorology, specifically the use of the JavaTM programming language. The

question of how the meteorological forecast model data should be handled, what data-

format should be the standard, and where the data should be produced was addressed

through analysis of several options. Among these was the feasibility of raw-data

conversion by the user and the Abstract Data Distribution Environment (ADDE) client-

server type architecture to obtain data. Next, copies of IMAST and IGrADS software

were obtained from AFWA and analyzed with particular attention paid as to how

IGrADS is designed. Following this step, analysis of how Unidata MetApps is structured

7

was conducted after a preliminary review of JavaTM syntax. The analysis phase was

completed by constructing a tentative class diagram and system design of viable thesis

prototype interactive software suite using TogetherSoft software. The second stage was

the experimental or coding stage. During this stage two experimental approaches were

implemented through the construction of two separate applications. The first of these

applications was implemented using the Facade software design pattern. It used existing

MetApps stand-alone prototype applications. The second application followed a hybrid

Facade/adapter software design pattern, exploiting the capabilities of the MetApps

component library. The final stage of this research consisted of testing the experimental

applications using available netCDF format meteorological model data files available

locally and from the Internet using both UNIX workstations and Windows PC’s. The

experiments provided valuable information regarding the suitability of MetApps for

incorporation in operational aviation weather products generation software.

1.5 Organizational Overview

Chapter two consists of an overview and discussion of related work in the area of

weather data visualization tools. The tools discussed are not just those used by the

military, but also those used in the academic community. The discussion begins with one

of the older visualization tools, McIDAS, and ends with what could be described as one

of the most cutting-edge tools, JavaTM-based 4DWX. Chapter three describes the

experimental methodology used in the preparation of this thesis. This includes details on

the design of the experimental programming environment and of the applications

developed using the MetApps stand-alone prototypes and component library. Chapter

8

four discusses exclusively the results of this thesis research. Finally, Chapter five

provides some conclusions and makes recommendations for future research. Included at

the end of this document, as Appendix A, is a list of common acronyms used in this

thesis.

9

2. Related Work

2.1 Overview

 There has been widespread use of various meteorological data visualization tools

throughout the worldwide meteorological community. Among these tools the most well

known is McIDAS, the Man-computer Interactive Data Access System, which is

supported by Unidata. Other tools used to construct customized meteorological products

include the primary geophysical dataset visualization tools currently employed by the US

Air Force. These are GrADS (Grid Analysis and Display System) and Vis5D, a system

for interactive visualization of large five-dimensional (5D) gridded data sets. On the

cutting edge of the development of geophysical data visualization tools are projects such

as VisAD (Visualization for Algorithm Development) JavaTM component library and

MetApps, which employs the VisAD library heavily. Lastly, building on the work done

with VisAD is the US Army’s 4DWX (Four-dimensional Weather) system, which is

currently under development.

2.2 McIDAS

Developed in the 1970's, to fill a then void in visualization tools, the Man-

computer Interactive Data Access System (McIDAS) was revolutionary in that it

provided the capability of overlaying data from diverse sources. For example, surface

temperatures could relatively easily be overlaid on a satellite image. An example of such

a product is shown in Figure 1 below. McIDAS was also the first tool to allow the user to

actually display meteorological information using colors and animation. McIDAS has

10

Figure 1. McIDAS Product. In this 13 March 1993 (Blizzard of ’93) image,
McIDAS was used to overlay temperature contours and weather data plots on top of

enhanced satellite imagery (Image courtesy of SSEC, 1997).

been in use, and under continual development by the Space Science and Engineering

Center (SSEC) of the University of Wisconsin-Madison since 1972. The McIDAS of

today is a large, research quality, suite of applications used for decoding, analyzing, and

displaying meteorological data for research and education. The software can be used

with conventional observational, satellite, and grid-point data.

Unidata’s distribution of McIDAS (a superset of SSEC McIDAS) has been under

development since 1985 and in distribution since 1988. Unidata distributes a version of

McIDAS known as McIDAS-X (the “X” implying a requirement for X-Windows), which

11

runs on a variety of UNIX platforms (UCAR, 2001). Many, if not all, later

meteorological visualization tools, such as GrADS and Vis5D, owe much to the

groundbreaking work done with McIDAS. McIDAS was the first so-called truly “user-

friendly” visual meteorological application.

 One of the benefits of McIDAS is that it has a long history. McIDAS has been

around in some incarnation since 1972 and there is ample documentation for virtually

everything that can possibly be done with the McIDAS software suite. It is by all

standards a true classic in the field of meteorological visualization. There are however

many drawbacks to McIDAS. First, it is not small. McIDAS consists of over one and

one-half million lines of code contained in nearly four thousand modules (SSEC, 1997).

It can occupy as much as one gigabyte of hard drive space not including any

meteorological data files (which could add an additional gigabyte or two to the hard drive

space occupied). Second, McIDAS only runs on specific UNIX systems running X-

Windows and is thus not platform-independent. Third, McIDAS is not self-contained.

As a prerequisite for using McIDAS, a variety of sundry software applications and

libraries must be pre-installed in order for the McIDAS software suite to operate

correctly. Last, even though McIDAS has been around since 1972, it is not bug-free.

One of the more annoying of these bugs is the fact that the remote serving of

meteorological sounding data does not work reliably under newer versions of the Linux

operating system.

12

2.3 GrADS

 The Grid Analysis and Display System (GrADS), developed by Mr. Brian Doty in

conjunction with the Center for Ocean-Land-Atmosphere (COLA) Studies, is an

interactive desktop visualization tool that is used for easy access, manipulation, and

visualization of geophysical data. The GrADS visualization tool has been implemented

worldwide on a variety of commonly used operating systems and is freely distributed

over the Internet. The standard way of using GrADS is by executing operations

interactively by entering FORTRAN-like expressions on a command line. GrADS does,

however, have a programmable interface in the form of a scripting language, which

allows for analysis and display applications. (COLA, 2001) GrADS scripts may display

widgets as well as graphics. One of the common ways of exploiting this GrADS feature

is by using Athena widgets to build a GrADS GUI (Graphical User Interface). Examples

of how to use GrADS in this manner can be found on the NASA Goddard Space Flight

Center, Data Assimilation Office Web pages (DAO, 2001). The GrADS scripting

language can also be used to automate complex multi-step calculations or displays

(COLA, 2001). In the case of the Air Force Weather Agency’s Joint Air Force and Army

Weather Information Network (JAAWIN), GrADS has been used to produce

visualizations. These visualizations were then piped via the Interactive Meteorogram and

Skew-T (IMaST) system back to the user who requested the product. IMaST is actually

an ingenious JavaScript interactive interface developed by the Air Force Weather Agency

Technology Exploitation Branch for GrADS. It allows a user to produce a meteorogram,

such as the one shown in Figure 2 below, or skew-T diagram (both specialized

visualizations) for any location within the domain of a user-determined meteorological

13

Figure 2. GrADS Meteorogram. Depicted here is a meteorogram produced using
GrADS and the IMAST interactive user interface. These products can be custom

built using a customer’s meteorological model and location specifications
(Meteorogram courtesy of Air Force Weather Agency).

forecast model. The user can enter either map coordinates, a 4-letter ICAO (International

Civil Aviation Organization) identifier, or pick a location on a number of theater maps.

On the positive side, GrADS is much smaller than McIDAS and a Win32 port of

GrADS has been developed that can be run on a Windows PC. The drawback of this

Win32 port is that one must have an X-server running in order to display graphics. There

is also a Mac version of GrADS in existence but neither COLA nor any other entity

supports it. GrADS is also more portable than the McIDAS application suite requiring a

14

user to download only three files (besides data files). It also has the powerful capability

of reading GRIB formatted data (one of the more popular meteorological data formats)

directly. Finally, GrADS is well documented and widely used among meteorologists.

On the down side, GrADS is copyrighted software, and although the source code is

available, it is subject to restrictions. In addition, GrADS, although a robust application,

is not platform independent. GrADS requires an X-windows server to function correctly.

2.4 Vis5D

Vis5D, used widely by the Air Force Combat Climatology Center, is a software

system that can be used to visualize both gridded data and irregularly located data.

Sources for this data can come from numerical weather models, surface observations and

other similar sources. Vis5D is designed to work with data in the form of a five-

dimensional (5D) rectangle. In other words, the data consists of real numbers at each

point on a "grid" which spans three space dimensions, one time dimension, and a

dimension for enumerating multiple physical variables. Vis5D does not actually

“require” the use of a 5D rectangle. This software will work on data sets with only one

variable, one time step (i.e. no time dynamics) or one vertical level. Vis5D can also work

with irregularly spaced data, which are stored as "records". Each record contains a

geographic location, a time, and a set of variables, which can contain either character or

numerical data.

A major feature of Vis5D is support for comparing multiple data sets. This extra

data can be incorporated at run-time as a list of “v5d” files or imported at anytime after

Vis5D is running. Data can be overlaid in the same 3-D display and/or viewed side-by-

15

side spreadsheet style. In the spreadsheet style, multiple displays can be linked. Once

linked, the time steps from all data sets are merged and the controls of the linked displays

are synchronized. An example of such a spreadsheet display is shown in Figure 3 below.

The Vis5D system includes the vis5d visualization program, several programs for

managing and analyzing five-dimensional data grids, and instructions and sample source

code for converting data into the native Vis5D file format (SSEC, 2000). Vis5D

visualizations have the distinction of appearing almost identical to VisAD visualizations,

VisAD being one of the required sub-components for MetApps.

Figure 3. Vis5D Screenshot. This screenshot shows Vis5D generating a spreadsheet
display of four members of an ECMWF ensemble forecast (Image courtesy of

SSEC, 1998).

16

Another important feature of Vis5D is the Vis5D API (Application Programmer's

Interface). This API is an interface between the Vis5D user interface and the Vis5D core

software. This API allows developers to include Vis5D as a visualization subsystem of

other systems, where the other system invokes the Vis5D core through the API. Thus

one can incorporate the functionality of Vis5D into the user interface of a primary system

without abandoning the user-interface style of that primary system.

Among the drawbacks of Vis5D is the fact that, like GrADS, it is protected by

copyrights. It is also not platform-independent, the code having been written in the C

(like GrADS) and the FORTRAN programming languages. Finally, Vis5D development

has ceased at the Space Science and Engineering Center (SSEC) even though the latest

version of the software is available on the SourceForge Vis5d+ Internet site

(SourceForge, 2001). SSEC has chosen instead to concentrate its resources on the further

development of VisAD, the JavaTM incarnation of Vis5D.

2.5 VisAD

 The word “VisAD” is an acronym for "Visualization for Algorithm

Development". VisAD is a JavaTM component library (consisting of a package of JavaTM

classes) providing support for interactive and collaborative visualization and analysis of

numerical scientific (especially geophysical) data. The library was created and is actively

being developed by the Space Science and Engineering Center (SSEC) at the University

of Wisconsin. VisAD provides the building blocks (or components) for application

developers to more easily create scientific applications using the JavaTM programming

language. The VisAD library, however, is not and was never intended to be a stand-alone

17

application. Nevertheless, included with VisAD are a number of experimental

applications that exploit the features of its component library. Among these is the VisAD

SpreadSheet application (a screenshot of which is shown in Figure 4).

Figure 4. VisAD Screenshot. This screenshot shows a visualization spreadsheet
application built using the VisAD library. Of note are the similarities in appearance

to Vis5D imagery and color schema (Image courtesy of SSEC, 2001).

VisAD has become the backbone of the MetApps and 4DWX visualization

systems (both discussed later in this chapter). The question is why. Why would the

18

developers of MetApps and the Army’s 4DWX systems select the VisAD component

library to visualize their meteorological model data? There are actually four important

factors (or reasons) that lead to the natural selection of VisAD as part of a visualization

solution.

The first factor is the VisAD library’s platform independence and open source

licensing. The VisAD system uses pure JavaTM for platform independence and to support

data sharing and real-time collaboration among geographically distributed users. This fits

in well with the goals of many current and future JavaTM software development projects

and makes way for interactivity via the Web. By necessity, JavaTM code is object-

oriented thus promoting extensibility and code reuse, which drives down the cost of

development. In addition, the VisAD code is open source Lesser GNU Public License

(LGPL). Anyone can use the code or contribute to it. As a result there is a very

supportive community that correct problems and add features to the library regularly.

The second factor has to do with the VisAD data model. VisAD incorporates a

general mathematical data model that can be adapted to virtually any set of numerical

data, which supports data sharing among different users, different data sources, and

different scientific disciplines. This provides access to data that is independent of

storage-format and location. The VisAD mathematical data model has been adapted to

many file formats one of which is netCDF (network Common Data Form), which is the

primary data format used by MetApps. Another aspect of the data model is internal

representation of data. One particular data set might have a one-kilometer resolution

while another has a four-kilometer resolution. One domain might be defined by equal

spacing from a given location while another has an irregular longitude-latitude grid. One

19

sensor might provide temperature in Celsius while another reports in Fahrenheit. One

model might provide upper air data on pressure levels while another provides height

above ground. Designing and implementing a software data structure to deal with these

disparities is a monumental task. VisAD provides a solution to the problem of designing

and implementing a software data structure to deal with data differences. It provides a

sophisticated data model that allows an application developer to represent many different

types of data in a consistent manner. (Lindholm, 2001)

The third factor is the VisAD display system. VisAD utilizes a general display

model that supports three-dimensional (3D) interactivity, data fusion, multiple data

views, direct manipulation, collaboration, and virtual reality. VisAD offers the

application developer a simple interface for displaying data while hiding the complexities

of creating graphics. Data can be displayed as lines, points, images, contours, or

customized shapes. The software developer also has control of display properties such as

data ranges, color, and line width. Animation support is also included. A 3D view can

be obtained by mapping a field (such as altitude) to the Z-Axis. The user can rotate,

zoom, and pan the scene. VisAD also provides a direct manipulation mechanism. A user

can "grab" the data on the display with the mouse and move or redraw it. As a result, the

underlying data object's data values will be changed. (Lindholm, 2001)

The fourth factor is that support for two distinct communities is built-in:

developers who create domain-specific systems based on VisAD, and users of those

domain-specific systems. Because of the way VisAD is designed, it supports a wide

variety of user interfaces, ranging from simple data browser applets to complex

20

applications that allow groups of scientists to collaboratively develop data analysis

algorithms. VisAD provides for developer extensibility in as many ways as possible.

All these factors lead one to the unmistakable conclusion that VisAD provides an

abundance of data visualization and analysis functionality greatly enhancing an

application developer's ability to create powerful scientific applications while affording

the flexibility for customization.

2.6 MetApps

In academia, as previously mentioned, the University Corporation for

Atmospheric Research (UCAR) Unidata Program Center has over the past four years

coordinated the development of Meteorological Applications (MetApps), a platform-

independent meteorological software suite and visualization tool consisting of a set of

object-oriented JavaTM classes and abstract data types (Caron, 1999). The goal of the

MetApps project is for MetApps to operate both as a stand-alone application (or set of

applications) and as part of larger distributed client server architectures that enable

growth in both functionality and the number of user workstations (UCAR, 2000).

MetApps software is freely available and is protected under the Lesser GNU Public

License (LGPL), which means that MetApps can be tailored to meet individual

programmers’ needs. The MetApps prototype applications that have been developed up

to this point are designed to run on any platforms that fully support JavaTM 2 and Java

3DTM. Currently, the MetApps prototypes are being tested mainly on the Windows,

Solaris, and Linux platforms. Shown in Figure 5 is a screenshot of the MetApps Gridded

Data Viewer (GDV), the most recently developed prototype application. Amply evident

21

is the use of VisAD library display components to generate an interactive meteorological

product. The VisAD JavaTM library is required for most of the MetApps components.

Figure 5. MetApps Screenshot. This screenshot shows the MetApps 3D Gridded
Data Viewer (GDV) showing -25°C temperature isosurface. The use of VisAD

library components should be apparent in the creation of the image portion of the
display (refer to Figure 4).

 MetApps is a work in progress and part of the ongoing research sponsored by

Unidata. This means that the classes contained in the MetApps library are in a state of

flux. Changes and/or “improvements” to the library should be expected. While some

parts of it have stabilized for now (such as netCDF for JavaTM) others remain volatile

22

(such as VisAD, which is undergoing continual development). A more extensive analysis

of the design and capabilities of the MetApps prototype applications and library are

provided in Appendix B of this thesis. The development of MetApps has not gone

unnoticed. Because of the lower costs involved in reusing software components to

develop applications, much interest has been shown in MetApps by developers outside of

the academic research community. In this thesis, efforts concentrate on determining the

feasibility of MetApps for incorporation into a system for providing user-customized

aviation weather products in an operational rather than in a research environment.

2.7 4DWX

 Back in the military community, completely independent from current Air Force

Weather Agency efforts, research has been conducted into a JavaTM implementation of

meteorological visualization tools under the acronym 4DWX. The concept for the Four-

Dimensional Weather (4DWX) System originated in the recommendations of a study

commissioned in 1995 by the Atmospheric Sciences Division (now Atmospheric

Sciences Branch) at Headquarters, U.S. Army Test and Evaluation Command (ATEC).

At the time, the Atmospheric Sciences Branch recognized that the U. S. Army Test and

Evaluation Command meteorological support function had to change its way of doing

business if it was to help meet the challenge of testing new and more complex materiel,

such as smart munitions, at a time of declining resources for test and evaluation. The

National Center for Atmospheric Research (NCAR) found that the Army Test and

Evaluation Command was not making full use of its meteorological information because

of problems in four areas: data base management, data assimilation, modeling, and user

23

displays (Bowers, 2000). NCAR also recommended a set of solutions to the identified

meteorological support problems. Promoting the concept of software reuse, wherever

possible, the recommended solutions were based on existing software, including the

NCAR/Penn State non-hydrostatic Mesoscale Model Version 5 (MM5), the Zebra data

archival and display system (developed by the NCAR Research Data Program), and the

thunderstorm AutoNowcaster algorithm. The Atmospheric Sciences Branch decided to

proceed in Fiscal Year 1997 with the development of a prototype 4DWX system to

implement NCAR's recommendations. (ATEC, 2001)

As part of 4DWX, the Visual Meteorology Tool (VMET) was developed as the

versatile display component of the 4DWX system. It was designed to enhance the

forecast and research meteorologist's ability to visualize, explore, manipulate, and

analyze meteorological model data sets in two, three, and four dimensions. VMET can

also serve as a virtual environment in which to run virtual experiments in real weather.

In addition, VMET is written entirely in JavaTM and built upon the VisAD libraries.

Lastly, VMET can integrate a variety of data sets into a single interactive two or three-

dimensional display (NCAR, 2001). A screenshot of VMET is shown in Figure 6. It is

apparent from the screenshot that like the MetApps Gridded Data Viewer, VMET owes a

lot of its visualization functionality to the VisAD library.

The 4DWX program, however, was not without its problems. The program

included a groundbreaking attempt at using a database to manage most of the primary

data in a major operational system. At the start of the program, the plan was to apply the

latest database technologies to all of the data sets, including the large 3D output volumes

generated by the MM5 meteorological forecast models. After a period of extensive

24

Figure 6. 4DWX VMET Screenshot. This screenshot shows an example of an
application composed of multiple 4DWX VMET components combined with JavaTM

Swing components. This application bears many similarities to the MetApps
Gridded Data Viewer prototype application shown in Figure 5, a direct result of the

wide use of the VisAD component library (Image courtesy of UCAR, 2001).

testing, it was determined that performance issues and implementation complexity called

for a scaled-down plan for the database, restricting it to the collection of measured

observation data sets needed in the 4DWX system (NCAR, 2000).

2.8 Summation

In the end, the very existence of MetApps and 4DWX is important to this thesis

research. The development of projects such as MetApps in the civilian and 4DWX in the

25

military community shows that the cutting edge developments in meteorological

visualization almost exclusively rely on component-based solutions and the JavaTM

programming language. Today more applications than ever must interface with the

Internet, and JavaTM is the natural solution. Apart from being the preeminent language

of the Internet, JavaTM is important for other reasons not the least of which is that it has

altered the way in which we program computers. JavaTM has come a long way from its

early days as a platform-independent language that could be used to create software for

embedding in consumer products such as microwave ovens. The Internet, with its

dynamic environment and wide variety of different computing platforms, helped catapult

JavaTM to the forefront of programming today making it in many cases the language of

choice. Compared to the other mainstream computer languages of today, such as C, C++,

and FORTRAN, it is only in speed and performance where JavaTM lags behind. But even

here, JavaTM is catching up rapidly (Schatzman, 2001).

26

3. Methodology

3.1 Overview

 This chapter provides a detailed description of the approaches used in

accomplishing this thesis. A description of the high and low-level goals and the criteria

for success are provided. Next is a description of the experimental software and

hardware environments for the experiments performed in this thesis. These environment

descriptions are followed by an explanation of two separate experimental approaches.

The first approach depends on the stand-alone MetApps applications while the second

utilizes the MetApps library. Rounding off this chapter is a section dealing with the

important issue of data requirements and handling. This last section is important since a

measure of success of this project can be measured by how well Unidata MetApps deals

with the meteorological data issues.

3.2 Goals

 The guiding goal for this thesis is to find a multi-purpose interactive military

aviation weather product generation software solution. This software solution must be

platform-independent, multiple data source access configurable, robust, extensible or

upgradeable, user-friendly, and an improvement over current visualization applications

used in the operational military aviation weather community. Another goal is to

determine if a software reuse and component library-based approach can be used in such

a solution. A sub goal of this is to determine whether the JavaTM-based Unidata MetApps

components are suitable for fulfilling this software component library role. A final sub

27

goal is to provide a realistic assessment that can be used to determine if Department of

Defense (DoD) funds should be diverted into the development of meteorological

visualization software based on Unidata MetApps rather than in-house DoD projects.

3.3 Requirements for Success

 The requirements for success of the software solution are six-fold and largely

objective. The first of these requirements is that the software solution developed using

the existing components be platform-independent. Due to the unpredictable nature of

worldwide military operations, identical software platforms at diverse geographically

separated locations cannot and should not be expected. In a deployed situation, military

weather personnel cannot be guaranteed a particular “standard” computing environment.

The results achieved using the selected software solution on a Sun Solaris workstation

should be virtually identical to those achieved on a Windows PC. Second, the software

solution must not be restricted to obtaining data from a single source, as has been the case

in the past. A single data source for meteorological data creates an opportunity for one’s

adversaries to undermine the capability of commanders to obtain the most current

aviation weather information. Multiple configuration options on a selected software

solution should effectively mitigate or eliminate this problem. Third, the solution must

be robust. 35 megabyte (MB) Nested Grid Model (NGM) Grid in Binary (GRIB) files, 6

MB McIDAS AREA files, and 2 MB upper air files should be considered “normal”-sized

data files. “Normal” data files should be able to be run on a component-based application

without putting undue strain on a mid-level Windows PC or an average UNIX

workstation. Most meteorological personnel have limited experience in dealing with

28

software problems. Under operational conditions they should not be required to

constantly “fix” bugs in their software systems. Fourth, the solution must be extensible

or upgradeable. The reason for this is cost. It is usually cheaper to make upgrades or

adaptations rather than to replace an entire system. An application built using reusable

components should be easier to upgrade and adapt since components can be selectively

replaced. Fifth, the software solution should be user-friendly. Although this

requirement/criteria is somewhat subjective, it must be kept in mind that users naturally

will avoid software that is difficult to use. Military users should be capable of

interactively generating their own user-customized aviation weather products upon

demand. Sixth, the selected software solution must be an improvement over current

visualization applications used in the operational aviation weather environment. This last

requirement may prove difficult to measure or fulfill. The simplest way to make this

determination is to make a subjective comparison between any new solution and the

GrADS solution currently used by Air Force weather. Considerable operational

experience has been built up over the years with applications such as GrADS. The

GrADS software application has the capability to display time series and, through scripts,

meteorograms. Most component libraries have yet to incorporate such functionality.

3.4 Design of Experimental Applications

3.4.1 Overview

 The experimental approach taken in this thesis involves the construction of two

experimental applications. These applications demonstrate and test the functionality of

29

the software components in question and determined their actual level of functionality.

The premise of this thesis is that Unidata MetApps is suitable for fulfilling the role of the

component library used in developing the operational application that fulfils the

requirements set forth in the previous section. A two-pronged approach is taken based on

the premise that there are actually two types of MetApps. The first MetApps is literally,

as the acronym implies, composed of meteorological applications. The second MetApps

is a JavaTM class library. Thus, the two experimental applications constructed in this

research are based on the duality of the MetApps project. Both experiments use a

component-based approach to the construction of the experimental applications. In

traditional object-oriented programming the software reuse is primarily achieved through

inheritance of classes, while in a component-based approach reuse is achieved through

interfaces with independently developed software. Therefore, the use of a component-

based approach does not preclude one from applying object-oriented principles. The

component-based approach is similar to construction of computer system hardware from

its constituent parts (a CPU from Intel, a soundcard from Creative, memory modules

from Samsung, etc.) or to putting together a stereo system, as previously mentioned.

A component-based approach is chosen because whether VisAD, MetApps, or

some other library is used, one is still essentially dealing with the assembly of

components to build applications or systems. By concentrating on component

architecture one can separate a system or application into independent subsystems.

Particular subsystems can then be manipulated, changed, or adapted at the discretion of a

developer with minimal impact on the system as a whole. Lastly, using a component-

based approach on both of the experiments provides comparison and contrast. This gives

30

a method to determine whether the prototype applications or the library are better suited

to the goals of this thesis.

3.4.2 Application Design Approach 1

 The design approach chosen for the first experimental application resembles

closely the Facade software design pattern. Figure 7 shows a much-simplified view of

the Facade software design pattern. The purpose of the Facade pattern is to shield a

software developer from the possibly large amount of recoding involved in an application

due to interface changes in a subcomponent. An object’s interface describes the complete

set of requests that can be sent to that object. The Facade provides a unified interface to a

Figure 7. Standard, simplified view of the Facade software design pattern. Adapted
from an original diagram by Shalloway and Trott (Shalloway and Trott, 2002).

31

set of interfaces. The motivation behind using this design pattern is that it helps reduce

complexity and minimizes the task of tracking down every call to an interface. Using a

Facade pattern promotes weak coupling (Gamma, 1995). Weak coupling makes it easier

to replace or change subcomponents without disabling the complete system. The biggest

drawback to using a Facade-type pattern is that it results in a system that is slower and

harder to understand (Vlissides, 1996). The reason for this is that the Facade adds

additional call levels to a software system.

 The first experimental application in this research uses the existing stand-alone

prototype applications contained in the component library, in this case MetApps. An

interface is required that links the library’s existing prototype applications together in a

single application. This interface accesses the necessary compiled classes in the

application libraries to achieve what appears as a seamless integration of the parts. In

addition, a number of other library files are required for the applications to function

properly. A complete listing of these required libraries is provided in the detailed

description of MetApps contained in Appendix B. It should be pointed out that some

prototype applications do not have any additional library requirements. The MetApps

Interactive Sounding Application in this design approach as depicted in Figure 8, is

completely self-contained and has no special requirements except a JavaTM runtime

environment (JRE). The Interactive Sounding Application does not require the use of

additional libraries because the classes it requires from those libraries are packaged

together with the sounding classes. Each tabbed rectangular box in Figure 8 represents a

library or package. The dashed arrows show how some libraries, or packages, depend on

other libraries. For example, the Image Viewer Application depends on the JavaHelpTM,

32

VisAD, MetApps, and Data Files packages/libraries to function properly. The bold

dashed enclosure shows what is required for the GDV while the bold dotted enclosure

shows the Image Viewer requirements. It should be apparent from Figure 8 that the

MetApps prototype applications are dependent on a core set of shared classes contained

in a set of libraries.

Figure 8. Application 1 Diagram. This figure shows a package diagram depicting
the dependencies between the MetApps stand-alone applications and the required

JavaTM libraries and ancillary data files.

In the case of MetApps, the Facade-based approach has a number of advantages,

but also some disadvantages. One advantage is that with the exception of the graphical

user interface, it is expected that pre-compiled JavaTM bytecode can be used without

33

significant problems. The interface would have to be crafted using some type of

interactive development environment or IDE. Among the advantages is that there is less

deprecation in stand-alone applications. Deprecation is what happens to functions when

they are retired. When a function is deprecated, it means that the method was once valid,

but has now been replaced by a newer method. Deprecation is a problem with MetApps

because required external libraries, such as VisAD, are updated frequently. This problem

is not unique to MetApps. It is a problem with most software projects that depend on

components that have been developed independently from said project. The problem can

be eliminated by copying the offending library into the actual application, thereby

shielding the application from unforeseen changes in the component library. Another

possible advantage of this particular design approach is the modularity of this design. In

theory, when new stand-alone applications are created they can be added with minimal

rewriting of existing application code. One of the drawbacks to this experimental

application design is that it is difficult to make even small changes to the inner workings

of the individual MetApps stand-alone applications unless the source code has been made

available. These parts of the application are by definition “self-contained.”

3.4.3 Application Design Approach 2

 The second experimental design approach is similar to the first. This approach

somewhat resembles the Facade software design pattern described previously above.

However, the design pattern more closely resembles a hybrid of both the Facade and

Adapter software design patterns. The purpose of an Adapter pattern is to convert the

34

interface of a class into another interface. In other words, a new interface is constructed

for an object that works correctly but has the “wrong” interface. In this approach the

actual component class library is used rather than precompiled prototype applications. In

this design an application is constructed using the base classes contained within the

component library. Instead of an application interface, this design depends on an

application class that depends on the component classes. Unidata has indicated that in

order to use the MetApps library in this manner the additional libraries of JavaHelpTM,

VisAD, and the Data Files must be included in any JavaTM project. A decision was made

to not include the netCDF-2 JavaTM library and instead allow for dependence of the

MetApps classes on the internal version of netCDF-2. This was a logical step since the

internal version of netCDF-2 is virtually identical to the current official netCDF-2 JavaTM

library. Preliminary analysis of the MetApps library in the course of this research

indicates that there are a number of other libraries that are required for construction of

MetApps-based applications. Table 3 below lists these additional libraries.

Table 1. Additional Libraries Required for Design Approach 2

Library Filename

JNLP jnlp.jar

HTTP Client HTTPClient.jar

Data data.jar

Units units.jar

35

The jnlp.jar file provides support for JavaTM Network Launch Protocol (JNLP).

JNLP allows a user to run a JavaTM application or applet directly from the Internet. JNLP

provides direct access to JavaTM software using the latest JavaTM virtual machine (or

JVM) without the constraints and problems of JavaTM applets within web browsers. The

HTTPClient.jar package provides a complete HTTP (Hypertext Transfer Protocol) client

library. The data.jar file contains some additional ancillary files. Lastly, units.jar is

actually a sub-package of the MetApps library. It is included in this experimental design

to help determine if separating the sub-components of MetApps results in a more robust

application. Figure 9 shows how the MetApps component library depends on all the

different libraries described above. What is not shown in Figure 9 is that there are

dependencies between these individual libraries as well (too numerous to depict).

Figure 9. Application 2 Diagram. This figure depicts a mixed class/package
diagram showing the relationships between the experimental application and

libraries in building applications using Approach 2.

36

The end result of the second design approach should mimic the results achieved

by the first design approach although it is suspected that this approach has greater

stability. The reason for this increased stability is that in this approach we build an

application using all source code rather than a combination of source and compiled

bytecode. An additional benefit of this design is that a developer has greater control of

how his or her application behaves. Minor changes to the code can easily be made

without resorting to de-compilation of the original Unidata MetApps JavaTM bytecode.

One foreseeable drawback to this approach is the inevitable deprecation of some of the

older component classes that depend so heavily on VisAD. Problems are foreseen with

compilation of an Interactive Sounding Application since it depends so heavily on the

VisAD library. The VisAD library has undergone considerable change since the original

Interactive Sounding Application was released with an early version of VisAD. This

problem with deprecation could possibly negate any increase in application stability

achieved through the use of source code compilation.

3.5 Experimental Programming Environment Setup

Table 2 shows the setup of the experimental software environment for this thesis.

MetApps, which is theorized to fulfill the criteria described in section 3 above, is

designed to run on any platforms that fully support JavaTM 2 and Java 3DTM. JavaTM 2

Platform, Standard Edition (J2SE) provides the foundation for the construction of the

JavaTM applications in this thesis. The J2SE is implemented by the JavaTM 2 Software

Development Kit (SDK), Standard Edition, and the JavaTM 2 Runtime Environment

37

(JRE), Standard Edition. The J2SE is needed to run the MetApps applications. This

thesis used the latest version of JavaTM 2 from Sun Microsystems (version 1.3.1).

Table 2. Experimental Software Environment

Software

JavaTM 2 Platform, Standard Edition (J2SE)
 - Software Development Kit (SDK) 1.3.1

Java 3DTM Software
- Java 3DTM API version 1.2.1 (either OpenGL or DirectX version).

Various Sundry Packages

- JavaHelpTM: A full-featured, platform-independent, extensible help system that
enables developers and authors to incorporate online help in applets, components,
applications, operating systems, and devices. It is being used as the interface to the on-
line documentation for the MetApps prototypes.

- VisAD: A JavaTM class library for interactive and collaborative visualization and

analysis of numerical data. Its data model and display capabilities are being used in
several of the MetApps components and prototypes.

- MetApps: A standard library of classes developed by Unidata (in bytecode).

- Ancillary Data Files: Ancillary data files (icons, enhancements, map files) used by
the MetApps components and prototype applications.

JavaTM Development Environment

 - Borland JBuilder 5 Professional: Visual JavaTM 2 development environment.

Unidata recommends that Solaris users install a number of system patches for

JavaTM 2 to work correctly (UCAR, 2000). Preliminary experimentation with the

MetApps prototypes, by the author of this thesis, indicates that these software patches are

necessary for the stability of the MetApps applications and UNIX operating system.

38

In the same directory as JavaTM 2, Java 3DTM must be installed on the system

being used. The Java 3DTM API is a set of classes for writing 3D graphics applications

and applets. All of the MetApps prototype stand-alone applications use version 1.1.x or

1.2.1 of Java 3DTM. For Windows and Solaris (SPARC) one can download a 1.2.1

version from Sun Microsystems. Java 3DTM on Solaris requires OpenGL while on

Microsoft Windows systems Java 3DTM requires OpenGL or DirectX. OpenGL is a

software interface to graphics hardware (Woo et al., 1999:2) used by many different

operating systems while DirectX provides a standard graphics development platform for

Microsoft Windows-based computers (Microsoft, 2001). OpenGL is standard on most

computer systems, but if not, can be obtained through the OpenGL Internet site (SGI,

2001). DirectX software for Windows systems is available through Microsoft.

Unidata has tested the MetApps stand-alone prototypes mainly on the Microsoft

Windows, Sun Solaris, and Linux platforms. As part of the background research for this

thesis, a number of the MetApps stand-alone applications were run using Solaris version

2.8 (sometimes referred to as Solaris 8) and Microsoft Windows versions Millennium,

2000, and XP. Unidata, as far as hardware, recommends that in addition to an operating

system that supports JavaTM and Java 3DTM, the system have a minimum of 128 MB of

random access memory (RAM) available. Table 3 shows a summary of the experimental

hardware environment.

Preliminary experimentation with MetApps and VisAD (which forms a critical

part of MetApps) indicates that this recommendation is unrealistic. Some of the

meteorological model datasets involved with this research can be quite large and will

quickly overwhelm most Windows systems. Unidata also states that a video card that

39

Table 3. Experimental Hardware Environment
Hardware Environment

 Windows PC UNIX Workstation

Operating System Microsoft Windows XP,
Home Edition (Build 2600)

Sun Microsystems, Solaris 2.8

Processor Pentium III-mobile, 1 GHz Sparc Ultra 10, 440 MHz

Memory 512 MB 1 GB

Video Hardware Supports DirectX hardware
acceleration

Supports OpenGL hardware
acceleration

supports hardware acceleration under OpenGL is recommended but not necessary for 3D

applications. Preliminary research for this thesis would indicate that indeed this

recommendation is also not realistic. Running the MetApps Gridded Data Viewer

application on a hardware platform with a non-OpenGL video card made the 3D features

unusable. Lastly, Unidata recommends processor speeds of 200Mhz on either a Sun

Sparc or Intel platform as a minimum. (UCAR, 2000)

3.6 Data Requirements and Handling

 In order to test the two experimental approaches to building an application

described above, real meteorological model data is required. The initial approach in this

research was to use MM5 model data provided by the Air Force Weather Agency. This

dataset is virtually identical to the one used by the Air Force Weather Agency

Technology Exploitation Branch to produce the model products available through

IGrADS. The format of this data is Grid in Binary (GRIB) and can be read by GrADS

40

using a ctl file. GRIB is the gridded data standard used by the World Meteorological

Organization. NCEP (the National Centers for Environmental Prediction) uses GRIB for

all the files produced by their analyses. MetApps was not designed, however, to read

GRIB data. Instead, netCDF is the favored data format. Thus, several attempts were

made during the early course of this thesis to convert the available MM5 meteorological

model data from GRIB to netCDF. These attempts proved less than satisfactory. In

order to convert GRIB data to netCDF format, a UNIX-based system was used. The

reason for this is that data conversion software that will run on Microsoft Windows-based

personal computers is extremely limited, but available. Most standard meteorological

data conversion software was designed to run exclusively on UNIX platforms. In

addition, the software configuration proved quite large and complex. This approach to

handling the model data was later abandoned for several reasons. The fact that a UNIX

platform was going to be used to convert data made this endeavor not platform-

independent and therefore did not fit in with the goals of this thesis. Second, most end-

users do not have the facilities at their disposal to perform the data conversions required

to view a particular model data format. Most end-users use Windows PCs and thus data

conversion operations are not practical due to the time and system requirements. It was

therefore determined that the most practical way to provide the necessary meteorological

model data files to end-users is to convert the GRIB data into the proper format on a

centrally located workstation and then serve the properly formatted data to users via an

Abstract Data Distribution Environment (ADDE) server. This “proper” format is

network Common Data Form (netCDF).

41

What exactly is netCDF? Unidata’s netCDF is an interface for array-oriented data

access and a library that provides an implementation of the interface. The netCDF library

also defines a machine-independent format for representing scientific data. Together, the

interface, library, and format support the creation, access, and sharing of scientific data.

The freely available software implements the data model in several computer-

programming languages (Rew et al., 1997). NetCDF is used in thirty countries and

several groups have adopted netCDF as a standard way to represent some forms of

scientific data. The netCDF-2 JavaTM Library is a JavaTM interface to netCDF data files

and is built on the MultiArray package. Also included in this library is a netCDF

interface to files that are accessed through a Distributed Oceanographic Data System

(DODS) server. The library is composed of three packages, ucar.nc2, ucar.nc2.dods, and

ucar.ma2. The implementation uses some of the code from the earlier NetCDF JavaTM

library, but the API is distinct and logically unconnected to the original. The netCDF

library is completely incorporated into the MetApps library (metapps.jar).

The two experimental applications developed for this thesis were tested on

netCDF data files obtained from Unidata and data files stored locally at the Air Force

Institute of Technology. These included GRIB (in netCDF format), surface, and upper-

air data. The GRIB files consisted of model output grids of various commonly used

meteorological models, but not MM5.

There is no conversion of MM5 model output to netCDF format involved in the

research for this thesis. The logistical and software configuration questions involved in

conversion of the Air Force Weather Agency’s MM5 model output into netCDF format

falls outside the scope of this thesis. Also, no attempt was made to deal with database

42

requirements. Database issues will need to be addressed at a later time should there be a

desire to adopt the use of MetApps in the operational military aviation weather

community. Work has, however, been done elsewhere to address the database issues

involved with the development of pure Java component-based meteorological

applications. The 4DWX project has attempted to tackle the JavaTM database challenge.

This effort met with some success (NCAR, 2000).

43

4. Results

4.1 Overview

The results obtained from construction of the two experimental applications

described in Chapter 3 are discussed in this chapter. The two experimental applications

are compared against the criteria listed in Chapter 3 and summarized here: The first of

these criteria is that the software solution developed using the existing components be

platform-independent. Second, the software solution must not be restricted to obtaining

data from a single source, as has been the case in the past. Third, the solution must be

robust. “Normal”-sized model data files should be able to be run on a component-based

application without putting undue strain on a mid-level system. Fifth, the software

solution should be user-friendly. Last, the selected software solution must be an

improvement over current visualization applications used in the operational aviation

weather environment. The results ended up being both positive and negative. The type

of component-based approach used separates the description of the results below. Some

of the results inevitably overlapped but some, such as those related to deprecation issues

are applicable only to the second experimental approach that used the MetApps

component library.

4.2 Application Design Approach 1

 In this first experimental application design, an application was constructed using

the Borland JBuilder 5 development environment. This application was designed to act

as a launch pad for the three MetApps prototype stand-alone applications currently

44

included as part of MetApps. In other words, the compiled bytecode in the GDV.jar,

ImageViewer.jar, and InteractiveSounding.jar took precedence over the classes contained

in the MetApps component library at the time of application compilation. Figure 10

shows is a screenshot of the experimental application constructed using the first

experimental approach.

Figure 10. Experimental Application Screenshot. This screenshot shows the
experimental control panel (iMetApps1) with the three MetApps stand-alone

prototype applications it is intended to launch.

 The results achieved by taking the first experimental approach to building an

application using the MetApps components were mixed. A positive result of the

45

experimental approach is that the application created is completely platform-independent,

as expected since pure JavaTM was used. On the whole, the behavior of the application

running on the Windows PC is virtually identical to the application running on a UNIX

workstation. Thus, the requirement of platform independence appears to be completely

met using MetApps. A second requirement, which initially appears to be met, is that the

software solution not be restricted to obtaining data from a single source. The Gridded

Data Viewer (GDV) and the Interactive Sounding Application behave reliably. Both

were able to successfully load local and remote Abstract Data Distribution Environment

(ADDE) server data sets and allowed unrestricted interaction with the data. On the other

hand there were significant problems with the Image Viewer. According to Unidata the

Image Viewer can be used to read both remote and local imagery. During the

experimentation phase of this thesis research, the image viewer was used to depict both

United States GOES and European Meteosat satellite imagery. When loading remote

imagery via an ADDE server, no problems were encountered. However, when loading

local imagery, invariably problems were encountered. Within seconds of attempting to

load a McIDAS AREA satellite image file the Image Viewer application would generate

a JavaTM out-of-memory exception. Using a memory monitor it was determined that the

application would effectively use over 300 MB of memory upon each attempt to load a

local AREA file. Identical results were achieved with the Image Viewer when it was not

part of the experimental indication. This, of course, effectively renders the Image Viewer

useless as a tool for viewing imagery locally. However, the viewer still meets the

multiple data source requirement.

46

 The third requirement was that the solution must be robust and that normal-sized

model data files should be able to be run on a component-based application without

putting undue strain on a mid-level Windows PC or an average UNIX workstation. This

requirement was not met. Running any of the separate MetApps prototype stand-alone

applications by themselves already pushed the hardware limits of the experimental

environment. When two or more applications ran simultaneously, resources became

extremely strained and caused memory errors even on systems with 512 and 1024 MB of

RAM. Another problem with the stand-alone prototypes is that they have a tendency to

throw uncaught VisAD and JavaTM remote method invocation exceptions. A JavaTM

exception is an abnormal condition that arises in a code sequence at runtime. The

exceptions that are thrown appear to be part of the normal functioning of the MetApps

prototypes, but they can prove awkward when developing an application and should be

dealt with appropriately. The exceptions were dealt with by some exception handling

code in the experimental applications that were constructed for this thesis. The presence

of these undocumented exceptions brings attention to how experimental MetApps still is.

The fourth requirement was that the solution must be extensible or upgradeable.

An application built on the MetApps library should be relatively easy to adapt. Through

experimentation this requirement was met. An awkward side effect initially with the first

experimental application was that every time a subcomponent was closed the entire

application would terminate. This appeared to be a result of the way the MetApps

prototype stand-alone prototypes were coded. To demonstrate how simple it was to adapt

the code to deal with this problem, a relatively crude form of component engineering was

applied to the problem. An updated component (or actually a JavaTM class) was

47

constructed to replace the component causing the problem. The interSounding.java class

replaced the SoundingApplication.java class in the Interactive Sounding Application,

which was causing the undesirable behavior. This successful alteration of the code shows

how extensible and upgradeable MetApps actually can be. Hence, the upgradeability

requirement is met, but some recoding may be required if changes are made to the

application.

The fifth requirement, dealing with user-friendliness, was met by the construction

of a graphical user interface (GUI) using the Borland JBuilder environment. This task

was rather straightforward and took advantage of the swing widgets that come standard

with the JavaTM 2 SDK. The end result was a utilitarian interface that is simple,

functional, and eliminated the need for a command line.

The final requirement was that the MetApps solution must be an improvement

over current visualization applications used in the operational aviation weather

environment. Regrettably this requirement could not be met. Although the experimental

MetApps-based application offers some improved functionality as far as interaction with

data sets it cannot reproduce the products that are currently being generated using

GrADS. One of the most popular aviation weather products is the meteorogram. There

are plans to incorporate functionality in MetApps that will support meteorogram

generation and time-series in general; however, the current version of MetApps does not

support these capabilities. Hence, MetApps does not meet this requirement. In addition,

the experimental applications constructed for this thesis were very large. Construction of

JavaTM application archives resulted in a 28.1 MB JavaTM archive (JAR) file for the first

approach and 16.6 MB size for the second experimental approach. These JARs only

48

included the so-called required classes. If there were an attempt to turn these applications

into web-applications or applets, the result would be a monstrosity that would take up an

inordinate amount of bandwidth. This largeness is not a configuration problem but rather

the result of the large number of libraries that MetApps requires to function properly. To

currently obtain products via JAAWIN all one needs is a JavaTM-enabled browser and a

modem.

A particularly disturbing result of attempting the incorporation of the MetApps

prototypes in an experimental application was related to the Gridded Data Viewer

(GDV). There appear to be a number of conflicts between the GDV and the Swing

widgets used to construct the experimental application user interfaces. These conflicts

persisted throughout six months of successive iterations of the experimental applications.

Finally, a decision was made to run the GDV in a completely separate process, bypassing

the conflict entirely. Hence, the GDV was no longer part of a single application.

4.3 Application Design Approach 2

 The second application design approach yielded similar results to those found

with the first. In this approach however the experimental MetApps application was built

from source code rather than the prototype applications. This added some additional

interesting angles to the results.

 The results achieved by taking the second experimental approach to building an

application using the MetApps library were mixed. As with the first approach, the

application created is completely platform-independent. Behavior of the application

running on the Windows PC is identical to the one running on a UNIX workstation. The

49

requirement of platform independence appears to be completely met. The second

requirement is that the software solution not be restricted to obtaining data from a single

source. The Interactive Sounding Application behaved reliably as with the first approach.

On the other hand there were significant problems with the Image Viewer. Two of the

four classes required to construct the Image Viewer Application were completely omitted

from the MetApps source code libraries. Hence, the capabilities of the Image Viewer

could not be replicated without inclusion of the Image Viewer prototype stand-alone

application JAR files. This however would have made the second experimental approach

identical to the first, making any attempt at a second, different, approach irrelevant. It

can be concluded therefore that the image viewer can actually not be generated from the

MetApps source code. Curiously, there exists no documentation as to why these classes

were omitted from the source code. Such an omission can be attributed to poor

documentation or software engineering practices (configuration management in

particular).

 The third requirement was that the solution be robust and that normal-sized model

data files should be able to be run on a component-based application without putting

undue strain on a mid-level system. This requirement was not met and results were

almost identical to those experienced with the first approach. As with the first

experimental approach the components throw uncaught VisAD and JavaTM remote

method invocation exceptions. The exceptions were dealt with in the same way as with

the first approach, by exception handling code. The presence of undocumented

exceptions in the source code is further indication of the experimental nature of MetApps.

50

The fourth and fifth requirements dealing with extensibility/upgradeability and

user-friendliness appear to be mostly met. The ability to customize an application using

this approach is much greater than with the first. A developer is not restricted here by

what is contained in the JAR of a particular MetApps application. The developer can

pick and choose the classes from the component library necessary to meet a particular

requirement. The application constructed using this second approach in this thesis is very

similar in its capabilities to the application constructed using the first. The sixth

requirement is not satisfied since the application constructed did not appear to be a

significant improvement over current applications. Due to time constraints and the poor

state of the MetApps documentation, extensive customization of an application was not

attempted as part of this research. Whether or not an application can be built that is an

improvement over current visualization applications is dependent on a number of factors;

among these are the skill and patience of the individual software developer.

 The most troubling result of taking this second approach to building an

experimental MetApps application is related to deprecation. Deprecated methods all

produce warnings that let a developer know that he or she is advised to use the newer

method. Deprecation allows an industry to gradually remove parts of software that are

intended to be phased-out but which cannot be phased-out immediately because too many

programs depend on the retired parts. The deprecation problem stems from the fact that

the prototype applications and components in MetApps were developed sequentially over

a period of several years. As one part of MetApps was completed it was added to the

MetApps library and development was begun on the next application or component.

Deprecation is particularly bad with the VisAD packages upon which MetApps heavily

51

depends. The VisAD project and library has been under continuous development

completely apart and separate from MetApps and is still undergoing changes. The result

of this parallel development has been that some classes upon which MetApps depends no

longer exist in the most recent version of the VisAD library. For instance, the Interactive

Sounding Application was completed around July of 2000. If one were to compile and

run this application and then attempt to load an upper-air sounding, one would not be able

to render a 3D hodograph. The reason for this is that the required classes to perform this

action have been removed from VisAD. In fact, a total of five classes, two interfaces,

two exceptions, twenty-six constructors, and well over fifty methods have been

deprecated in VisAD since the project’s inception. This deprecation problem does not

manifest itself in the first experimental approach of this thesis. The reason for this is that

the version of VisAD that was current at the time the Interactive Sounding Application

was completed, is wholly included in the application JAR.

 On a more positive note, the size of the experimental application resulting from

building from source code is smaller than that in the first approach used. However, at

16.6 MB even this improvement in the size of the application does not make it very

Internet-friendly.

4.4 Summary of Results

 A summary of the experimental results is provided in Table 3. The question of

whether or not the requirements were met is answered with YES, NO, or MAYBE.

The JavaTM source code for the experimental applications constructed as part of

this thesis is included in Appendix C.

52

Table 4. Summary of Experimental Results

Requirement Design Approach 1 Design Approach 2

1. Platform Independent YES

YES

2. Multiple Data Sources YES YES

3. Normal Behavior NO NO

4. Upgradeable YES

YES

5. User-Friendly

YES YES

6. Improvement over Current
 Capabilities

NO MAYBE

53

5. Conclusions and Recommendations

 Work centers today that provide meteorological imagery products to military

users depend on state-of-the-art computing systems. These state-of-the-art systems are

actually large monolithic, platform-dependent applications. McIDAS, GrADS, and

Vis5D fall into this category even though there are ways to port them to other platforms.

Some progress has been made in factoring out common code in these systems into

common libraries or APIs (Application Programmer's Interfaces) such asVis5D. With

each successive software release, a little more of the code is factored-out into the shared

libraries. However, because of other issues such as backward compatibility and legacy

systems support, these attempts at modularization have been mostly thwarted. The end

result of this process is some very large (one gigabyte sized) systems such as McIDAS.

Scientists using Fortran did the pioneering work in these meteorological systems. Their

goal was to implement mathematical algorithms as efficiently as possible. The lack of

proper software-engineering practices in the development of these systems is evident.

This limits the flexibility and reusability of these systems.

Since the mid 90’s there has been a proliferation of stand-alone workstations and

Microsoft Windows PCs, which in many cases have better graphics capabilities than

large dedicated meteorological visualization systems. A few “hero” meteorologist-

programmers took on the challenge of porting parts of the large meteorological systems

to the new stand-alone hardware and Internet community. These “heroes” in many cases

have a much better grasp of good software development practices than the original

creators of the systems they are tackling. An example of such an adaptation can be seen

54

at the Air Force Weather Agency Technology Exploitation Branch. They have achieved

the successful combination of GrADS with a JavaTM interface to provide user-customized

aviation weather products to customers on-demand. Even these valiant efforts, though,

will not prevent the eventual demise of systems such as GrADS. Eventually, dependence

on third parties, legal issues with the same, and the complexity and size of the systems

makes maintenance and the addition of new features extremely difficult.

Into this world of monolithic platform-dependent systems entered the concept of

component-based software engineering (CBSE). Unidata extended the netCDF model to

JavaTM and projects such as VisAD implemented the concepts found in CBSE. These

were followed-up by projects such as MetApps and 4DWX VMET that have exploited

the components found in these libraries and in turn built more complex components.

Although brave and innovative, these forays into the cutting edge of geophysical

visualization application development are still largely experimental.

There are important factors that must be considered before adopting the use of

software components and a component-based software solution. Although the quality

improvement of products built using CBSE is well documented (Pressman, 2001) there

are drawbacks to the approach. The development of component-based software is harder

than traditional software development. In addition, there are the up-front costs involved

in retraining personnel in the new software development approach. Of course, in the case

of the Air Force Weather Agency Technology Exploitation Branch, development of new

components would be minimal. Instead, emphasis would be placed on re-use of existing

components in an effort to minimize costs related to software development. The problem

that would be encountered here is that in order to use software components effectively, a

55

developer must have extensive knowledge of the component library in question. This

problem was encountered over the course of this thesis research. Much time was spent

simply analyzing the class structure of the MetApps and associated libraries rather than

constructing the actual experimental applications. Component-based development using

poorly designed or documented software components, such as those in MetApps, is

therefore filled with pitfalls. With the current state of component-based development

technologies and the limitations of components, component-based development by

personnel with limited computing expertise should only be attempted with great caution.

The prototype applications built with MetApps show that the experimental

designs used in this research will work. From the progress that has been made thus far, it

can be seen that some day JavaTM applications built from components such as those found

in the MetApps library may be part of the ideal operational weather system. That day,

regrettably, is not today. Although prototype applications based on a component library,

in this case MetApps, were successfully constructed over the course of this thesis

research, they are by no means of operational caliber. As can be seen from the results

discussed in Chapter 4, Unidata MetApps is still too experimental to be used in an

operational environment. It is yet too unpredictable and unstable, and lacks the

robustness required of an operational system. Systems such as GrADS, even though not

ideal, have the stability and predictability that are required of operational systems. The

current iteration of MetApps is best suited for the academic research environment. One

could, however, reasonably conclude that at the pace at which progress is being made

with the development of MetApps, a more stable and non-experimental version should

become available within the next two years. Although it is recommended that close

56

attention should be paid as to further developments in MetApps, MetApps should not be

included in any operational aviation weather products generation software system at this

time.

Over the course of this research, JavaTM component libraries other than MetApps

were encountered. One that shows great promise is the Visualization for Algorithm

Development (VisAD) library. The research community has successfully used VisAD.

Future research might include the development and testing of customized military

aviation product generation software solutions built entirely from VisAD JavaTM

components. In addition, future research should look more closely into possible ways of

dealing with the numerous database issues involved in using JavaTM to manipulate and

display large meteorological model data sets.

57

Appendix A: Abbreviations

2D Two-dimensional

3D Three-dimensional

4DWX Four-dimensional Weather System

5D Five-dimensional

ADDE Abstract Data Distribution Environment

AFWA Air Force Weather Agency

AFWIN Air Force Weather Information Network

API Application Programming Interface

ATEC Army Test and Evaluation Command

CBSE Component-Based Software Engineering

COLA Center for Ocean-Land-Atmosphere Studies

COTS Commercial Off-the-shelf Software

DAO Data Assimilation Office

DNXT AFWA Technology Exploitation Branch

DODS Distributed Oceanographic Data System

GB Gigabyte

GDV Gridded Data Viewer

GHz Gigahertz

GOES Geosynchronous Operational Environmental Satellite

GrADS Grid Analysis and Display System

GRIB GRid in Binary

58

ICAO International Civil Aviation Organization

IMaST Interactive Meteorogram and Skew-T

JAAWIN Joint Air Force and Army Weather Information Network

JAR JavaTM Archive

km kilometer

MB Megabyte

MHz Megahertz

MetApps Meteorological Applications

MGWDS Mesoscale Gridded Window Display System

MM5 Mesoscale Model 5

NCAR National Center for Atmospheric Research

netCDF network Common Data Form

PC Personal Computer

RWM Relocatable Window Model

SGI Silicon Graphics Incorporated

SSEC Space Science and Engineering Center

UCAR University Corporation for Atmospheric Research

UMADA Unidata MetApps Discussion Area

VisAD Visualization for Algorithm Development

VMET Visual Meteorology Tool

59

Appendix B: Unidata MetApps Detailed Analysis

B.1 Overview

 Provided here is an in-depth analysis of MetApps, which forms the basis for the

experiments that are performed as part of this thesis. MetApps (Meteorological

Applications) is available both as a JavaTM library and as a number of stand-alone

applications. Without fully elaborating on what these two separate (but related) versions

of MetApps are composed of, it would not be possible to fully explain the design

approach taken in this thesis. Each of the MetApps “versions,” both the library and

applications, has its merits and drawbacks when used in building a meteorological

application and these will be discussed further in sections of this document dealing with

experiment design. What follows in the next two sections is a breakdown of the

MetApps library and the available MetApps stand-alone applications.

B.2 Design of MetApps Prototype Stand-alone Applications

 An application is a piece of software that is intended to be used in a stand-alone

manner. Since the inception of the Unidata MetApps project the number, type, and even

the names of stand-alone MetApps applications has remained fluid. Among the earlier

stand-alone applications (during 1999) was the Surface Observation Viewer (SOV)

Application. Although most of the JavaTM classes associated with the SOV are still

present some classes critical to the proper operation of this application have been

deprecated. In addition, there are applications currently being developed through Unidata

such as the Radar Data Viewer, which will not be complete upon completion of this

60

thesis. Upon the writing of this thesis, Unidata has available three MetApps stand-alone

applications: Interactive Sounding, Image Viewer, and Gridded Data Viewer.

The following libraries are being used in the MetApps stand-alone prototype

applications: JavaHelpTM, VisAD, MetApps, and Ancillary Data Files. The JavaHelpTM

software library is a full-featured, platform-independent, extensible help system that

enables developers and authors to incorporate online help in applets, components,

applications, operating systems, and devices. It is being used as the interface to the on-

line documentation for the prototypes. VisAD is a JavaTM class library for interactive and

collaborative visualization and analysis of numerical data. It's data model and display

capabilities are being used in several of the prototypes. The MetApps prototypes also use

a standard library of classes developed by Unidata called the MetApps library. In

addition to the libraries above, some ancillary data files (icons, enhancements, map files)

are used by the applications and are packed together in the Ancillary Data Files library.

The libraries are available from Unidata as four JAR (JavaTM Archive) files named jh.jar,

visad.jar, metapps.jar, and auxdata.jar. All the libraries contain primarily JavaTM

bytecode except for auxdata.jar, which contains a variety of other formats. It should be

pointed out that in addition to these libraries, each specific MetApps stand-alone

application, available as a download from Unidata, may require its own additional

libraries (or JARs).

B.2.1 Interactive Sounding Application

A MetApps stand-alone application that shows much promise for incorporation in

an aviation meteorological software suite is the MetApps Interactive Sounding

61

Application. The Interactive Sounding Application displays RAOB (radiosonde

observation)-like sounding data in aerodynamic diagrams (e.g. Skew T chart, wind

hodograph). Unidata specifies that this particular application is not intended to become a

finished, stand-alone application (though that is not precluded). Rather, its purpose was

to present several software components in a convenient framework for the purpose of

refining the components (rather than the application). A component is a piece of

software that is not intended to be used in a stand-alone manner, but, rather, is designed

to interact with other components. Several interacting components may form an

application and a component may be used in more than one stand-alone application.

(UMADA, 2001)

One of the Sounding Application components, the wind profile component,

comprises two sub-components: a 3D hodograph and a wind staff. In the hodograph, the

mean-wind is displayed as a point. In the wind staff, the mean-wind is displayed as a

white wind-arrow. The Mean-wind computation is only possible if there is no wind data

outside the domain of the thermodynamic data. A second component, the sounding

selector, is invoked by selecting the "Open sounding..." item from the file menu. The

button labeled Select netCDF Upper Air File is for selecting upper air data in a netCDF

file that is available on a local drive. Shown in Figure 11 below is a screenshot of the

MetApps Interactive Sounding Application showing the different subcomponents of this

prototype stand-alone application.

62

Figure 11. Interactive Sounding Screenshot. This screenshot of the MetApps
prototype stand-alone Interactive Sounding Application shows its different

subcomponents.

A more promising option for selecting a sounding is using the Select ADDE

Server button to obtain data from a McIDAS ADDE (Abstract Data Distribution

Environment) server. ADDE allows a workstation to act as a client, efficiently accessing

data from multiple McIDAS servers. There are several advantages to using ADDE to

access image data. First, there is no need to have the data reside on the local machine.

No dedicated connections are needed and access can be accomplished over a network

connection or modem. Data can be accessed from within a military base for example, or

from an ADDE server on the other side of the world. Second, ADDE servers can be used

63

to access data in formats other than McIDAS AREA file format. Currently, Unidata

supports servers for NIDS, NOWRad, and GINI format in addition to McIDAS AREA

format. Third, the user is provided data redundancy and possibly access to data sets that

are not available locally.

Finally, the Sounding Selection List component appears in the lower-left corner of

the main display of the Sounding Application. It lists the soundings that have been added

to the Interactive Sounding system via the Sounding Selector component and allows

selection of soundings for display, computation, or removal. The Interactive Sounding

Application is completely self-contained and requires no exterior component libraries

other than those already mentioned previously.

B.2.2 Gridded Data Viewer (GDV) Application

The second available MetApps stand-alone application is the Gridded Data

Viewer, or GDV. The GDV is a general tool for displaying geogrids. In a geogrid,

individual grid elements are called grid cells. A geogrid has a data value for each grid

cell, unless the data is missing. Missing data is mapped to the background color of the

display. Color mapping is a simple display method where data intervals are assigned to

colors. Color mapping allows the user to visualize geogrids in a way that directly reflects

the data values of the geogrid. The 2001 version of the GDV is specialized to display

model data output, and may or may not be extended to display satellite imagery.

Currently the GDV can read netCDF files using NUWG, CSM, COARDS, and GDV

netCDF conventions. (UMADA, 2001) Figure 12 shows a screenshot of the typical

product the GDV is capable of producing.

64

Figure 12. GDV Screenshot. This screenshot shows the gridded Eta meteorological
model 850mb 24-hour temperature forecast displayed on the MetApps Gridded

Data Viewer (GDV).

Current features of the GDV include the ability to display

- horizontal and vertical planes (or slices) of geogrids

- data on various projective geometries; projections are parameterized and extensible

- optional contours of the data

- data in a 3D viewer

- simple looping

65

The GDV has been tested on Windows, Linux, and Solaris SPARC systems and

can read most forms of netCDF data, although not all (UMADA, 2001). To actually be

able to use the GDV stand-alone application some additional library files are required

apart from the ones previously mentioned that are required for all MetApps applications.

These are the Distributed Oceanographic Data System (DODS), Frequently Asked

Questions Organizer (FAQO), JavaTM Document Object Model (JDOM), and Xerces

JavaTM libraries.

The DODS JavaTM library (available as dods.jar) provides support to the GDV for

accessing data on DODS servers. DODS simplifies aspects of scientific data networking

by making local data accessible to remote locations regardless of local storage format.

FAQO is a tool for online technical support groups, who exchange questions, answers,

and information through email, Netnews, or other computer-mediated forums. It makes it

easier for support group members to search archives for previously asked (and answered)

questions, and to collaboratively organize and manage those archives. FAQO uses

advanced information retrieval techniques to allow natural language searches for relevant

documents. The FAQO library (faqo.jar) needed by GDV only consists of a couple of

user interface classes. The JDOM JavaTM Library contains a relatively new JavaTM API

for reading, writing, and manipulating XML from within JavaTM code. JDOM brings

with it the capability of providing a full document view with random access but does not

require the entire document to be in memory. The JDOM API allows for future flyweight

implementations that load information only when needed (Hunter, 2001). Finally, the

Xerces JavaTM library (xerces.jar) brings to the GDV application an open-source XML

66

parser, which is available through the Apache XML Internet site (Apache Software

Foundation, 2001).

B.2.3 Image Viewer Application

 The Image Viewer prototype stand-alone application (shown in Figure 13 below)

allows users to display image data from local and remote datasets. Although the Image

Figure 13. Image Viewer Screenshot. This screenshot of the MetApps prototype
stand-alone Image Viewer Application shows the viewing window and the

remote/local image selection components.

Viewer application was initially developed as a satellite data viewer, the current viewer

can be used to display both radar and satellite imagery. As far as special requirements,

the Image Viewer application needs only the standard libraries used for the MetApps

applications installed correctly. At the present time, only McIDAS AREA files can be

67

opened through the local data access methods. Unidata plans to incorporate support for

other image data formats in future versions of the Image Viewer application (UMADA,

2001). Some of these other formats can be accessed through ADDE servers (discussed

above).

The Image Viewer stands out as a stand-alone application because of its

diminutive size. Shown in Figure 14 below, the entire application consists of a three

JavaTM classes and some enhancements, icons, and map files. Everything else in the

Image Viewer application is accomplished by importing classes from the VisAD and

MetApps JavaTM libraries. The end result is a display application consisting of a VisAD

Figure 14. Image Viewer Class Diagram. This class diagram of the Image Viewer
Application shows the simplicity of this particular MetApps prototype stand-alone

application.

68

display window, which can be either two or three-dimensional, and a couple of image-

selection components (or widgets). Size is a consideration when one plans to use an

application over the Internet with limited available bandwidth.

B.3 Design of MetApps Library

 The MetApps library consists of the base classes required to construct pure

JavaTM components that are combined into applications. The library is divided into a

number of major packages. These are unidata, units, util, visad, ma2, multiararray, nc2,

and netcdf. Figure 15 shows how the sub-packages with the MetApps library are linked

together. The dashed arrows show the dependencies between packages. For example,

unidata depends on util, while visad and unidata are interdependent. Although unidata is

presented within the MetApps library as a JavaTM package, it is not really a package at all

but rather the skeleton for organizing a series of important sub-packages each of which

forms a critical component of the MetApps library. It is these critical packages, like the

unidata.gridviewer (which is the core of the GDV application) that are combined to build

useful MetApps applications. The units package provides support for parsing and

formatting string unit specification, converting numerical values between compatible

units, and performing arithmetic on units (such as dividing one unit by another). util

simply consists of an interface and two classes used in logging server activity. The

reader should note that the visad package here is not the same as the VisAD library

mentioned in Chapter 2. A developer may be tempted to replace this package with the

VisAD library, but this temptation should be resisted. The visad package provides

69

support for hiding some of the complexity of the large VisAD package that is required to

build MetApps applications.

Figure 15. MetApps Library Package Diagram. This figure shows the principal
ucar packages of the MetApps library and their interdependencies. Note the large

number of sub-packages contained in unidata.

The last four of the packages listed above are actually the netCDF-2 library,

which has been wholly and permanently incorporated into the MetApps library. The ma2

package is actually the MultiArray package. The MultiArray package is a stand-alone

JavaTM package for multidimensional arrays of primitive types. ma2 is the abstraction for

multidimensional arrays of primitives with data stored in memory, on a remote or local

70

input/output device. The multiararray package provides an abstraction for

multidimensional array access, some concrete implementations, and ways to view a

MultiArray as if it had a different structure. The ucar.nc2 package is an experimental

API for netCDF files, and the netcdf package provides an abstraction for sampled

functions between multidimensional spaces.

71

Appendix C: Application Source Code

C.1 Application1.java Source Code

package application1;

import javax.swing.UIManager;

import java.awt.*;

/**

 * Title: iMetApps Experimental Application - Design 1

 * Description: This is an experimental application using design 1. This experimental

 * application uses Unidata MetApps prototype stand-alone applications

 * GDV.jar, SoundingApplication.jar, and ImageViewer.jar.

 * Created: December 2001

 * Company: AFIT/ENP

 * @author Captain Harmen P. Visser

 * @version 1.0

 */

public class Application1 {

 boolean packFrame = false;

 /**Construct the application*/

 public Application1() {

 Frame1 frame = new Frame1();

 //Validate frames that have preset sizes

 //Pack frames that have useful preferred size info, e.g. from their layout

 if (packFrame) {

 frame.pack();

72

 }

 else {

 frame.validate();

 }

 //Center the window

 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

 Dimension frameSize = frame.getSize();

 if (frameSize.height > screenSize.height) {

 frameSize.height = screenSize.height;

 }

 if (frameSize.width > screenSize.width) {

 frameSize.width = screenSize.width;

 }

 frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height -

frameSize.height) / 2);

 frame.setVisible(true);

 }

 /**Main method*/

 public static void main(String[] args) {

 try {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 new Application1();

 }

}

73

C.2 Frame1.java Source Code

package application1;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import com.borland.jbcl.layout.*;
import test.*;
import ucar.unidata.view.sounding.*;
import java.rmi.RemoteException;
import visad.VisADException;
import ucar.unidata.gridviewer.*;

/**
 * Title: iMetApps Experimental Application - Design 1
 * Description: This is an experimental application using design 1. This experimental
 * application uses Unidata MetApps prototype stand-alone apllications
 * GDV.jar, SoundingApplication.jar, and ImageViewer.jar.
 * Created: December 2001
 * Company: AFIT/ENP
 * @author Captain Harmen P. Visser
 * @version 1.0
 */

public class Frame1 extends JFrame {
 JPanel contentPane;
 JMenuBar jMenuBar1 = new JMenuBar();
 JMenu jMenuFile = new JMenu();
 JMenuItem jMenuFileExit = new JMenuItem();
 JMenu jMenuHelp = new JMenu();
 JMenuItem jMenuHelpAbout = new JMenuItem();
 JToolBar jToolBar = new JToolBar();
 ImageIcon image1;
 ImageIcon image2;
 ImageIcon image3;
 JLabel statusBar = new JLabel();
 BorderLayout borderLayout1 = new BorderLayout();
 JTabbedPane jTabbedPane1 = new JTabbedPane();
 Border border1;
 JTextField jTextField1 = new JTextField();
 JToggleButton jToggleButton1 = new JToggleButton();
 JPanel jPanel1 = new JPanel();

74

 JPanel jPanel2 = new JPanel();
 JPanel jPanel3 = new JPanel();
 JLabel jLabel2 = new JLabel();
 JLabel jLabel1 = new JLabel();
 JButton jButton2 = new JButton();
 PaneLayout paneLayout1 = new PaneLayout();
 TitledBorder titledBorder1;
 TitledBorder titledBorder2;
 JLabel jLabel3 = new JLabel();
 JLabel jLabel4 = new JLabel();
 JButton jButton3 = new JButton();
 JButton jButton4 = new JButton();
 JLabel jLabel5 = new JLabel();
 JLabel jLabel6 = new JLabel();
 PaneLayout paneLayout2 = new PaneLayout();
 PaneLayout paneLayout3 = new PaneLayout();

 /**Construct the frame*/
 public Frame1() {
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
 /**Component initialization*/
 private void jbInit() throws Exception {
 image1 = new ImageIcon(application1.Frame1.class.getResource("openFile.gif"));
 image2 = new ImageIcon(application1.Frame1.class.getResource("closeFile.gif"));
 image3 = new ImageIcon(application1.Frame1.class.getResource("help.gif"));

//setIconImage(Toolkit.getDefaultToolkit().createImage(Frame1.class.getResource("[Yo
ur Icon]")));
 contentPane = (JPanel) this.getContentPane();
 border1 = BorderFactory.createLineBorder(Color.gray,2);
 titledBorder1 = new TitledBorder("");
 titledBorder2 = new TitledBorder("");
 contentPane.setLayout(borderLayout1);
 this.setSize(new Dimension(460, 263));
 this.setTitle("iMetApps1 Control Panel");
 statusBar.setText(" ");
 jMenuFile.setText("File");
 jMenuFileExit.setText("Exit");

75

 jMenuFileExit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuFileExit_actionPerformed(e);
 }
 });
 jMenuHelp.setText("Help");
 jMenuHelpAbout.setText("About");
 jMenuHelpAbout.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jMenuHelpAbout_actionPerformed(e);
 }
 });
 jTabbedPane1.setBackground(SystemColor.inactiveCaptionText);
 jTabbedPane1.setFont(new java.awt.Font("Dialog", 1, 14));
 jTabbedPane1.setBorder(border1);
 jTabbedPane1.setMinimumSize(new Dimension(480, 150));
 jTabbedPane1.setPreferredSize(new Dimension(500, 240));
 jTabbedPane1.addFocusListener(new java.awt.event.FocusAdapter() {

 });
 jTextField1.setText("jTextField1");
 jToggleButton1.setText("jToggleButton1");
 jPanel1.setBackground(Color.lightGray);
 jPanel1.setMinimumSize(new Dimension(470, 155));
 jPanel1.setPreferredSize(new Dimension(470, 155));
 jPanel1.setLayout(paneLayout3);
 jPanel2.setBackground(Color.lightGray);
 jPanel2.setLayout(paneLayout2);
 contentPane.setPreferredSize(new Dimension(500, 240));
 jPanel3.setBackground(Color.lightGray);
 jPanel3.setLayout(paneLayout1);
 jLabel2.setFont(new java.awt.Font("Dialog", 0, 16));
 jLabel2.setHorizontalAlignment(SwingConstants.CENTER);
 jLabel2.setHorizontalTextPosition(SwingConstants.CENTER);
 jLabel2.setText("to display image data from local and remote datasets.");
 jLabel1.setFont(new java.awt.Font("Dialog", 0, 16));
 jLabel1.setAlignmentX((float) 0.5);
 jLabel1.setAlignmentY((float) 1.0);
 jLabel1.setMaximumSize(new Dimension(300, 60));
 jLabel1.setMinimumSize(new Dimension(300, 60));
 jLabel1.setPreferredSize(new Dimension(470, 30));
 jLabel1.setToolTipText("");
 jLabel1.setHorizontalAlignment(SwingConstants.CENTER);
 jLabel1.setHorizontalTextPosition(SwingConstants.CENTER);
 jLabel1.setText("The Image Viewer stand-alone application allows users");

76

 jButton2.setBackground(Color.gray);
 jButton2.setFont(new java.awt.Font("Dialog", 1, 16));
 jButton2.setBorder(BorderFactory.createRaisedBevelBorder());
 jButton2.setMaximumSize(new Dimension(419, 27));
 jButton2.setMinimumSize(new Dimension(419, 27));
 jButton2.setPreferredSize(new Dimension(419, 27));
 jButton2.setIcon(image1);
 jButton2.setText("Click here to launch Image Viewer Application");
 jButton2.addMouseListener(new java.awt.event.MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 jButton2_mouseClicked(e);
 }
 });
 jLabel3.setText("The Gridded Data Viewer stand-alone application allows users");
 jLabel3.setHorizontalTextPosition(SwingConstants.CENTER);
 jLabel3.setHorizontalAlignment(SwingConstants.CENTER);
 jLabel3.setToolTipText("");
 jLabel3.setPreferredSize(new Dimension(470, 30));
 jLabel3.setMinimumSize(new Dimension(300, 60));
 jLabel3.setMaximumSize(new Dimension(300, 60));
 jLabel3.setAlignmentY((float) 1.0);
 jLabel3.setAlignmentX((float) 0.5);
 jLabel3.setFont(new java.awt.Font("Dialog", 0, 16));
 jLabel4.setText("to display gridded data from local and remote datasets.");
 jLabel4.setHorizontalTextPosition(SwingConstants.CENTER);
 jLabel4.setHorizontalAlignment(SwingConstants.CENTER);
 jLabel4.setFont(new java.awt.Font("Dialog", 0, 16));
 jButton3.setText("Click here to launch Gridded Data Viewer Application");
 jButton3.addMouseListener(new java.awt.event.MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 jButton3_mouseClicked(e);
 }
 });
 jButton3.setBorder(BorderFactory.createRaisedBevelBorder());
 jButton3.setIcon(new ImageIcon(Frame1.class.getResource("openFile.gif")));
 jButton3.setFont(new java.awt.Font("Dialog", 1, 16));
 jButton3.setBackground(Color.gray);
 jButton4.setBackground(Color.gray);
 jButton4.setFont(new java.awt.Font("Dialog", 1, 16));
 jButton4.setBorder(BorderFactory.createRaisedBevelBorder());
 jButton4.setIcon(new ImageIcon(Frame1.class.getResource("openFile.gif")));
 jButton4.setText("Click here to launch Interactive Sounding Application");
 jButton4.addMouseListener(new java.awt.event.MouseAdapter() {
 public void mouseClicked(MouseEvent e)
 {

77

 jButton4_mouseClicked(e);
 }
 });
 jLabel5.setFont(new java.awt.Font("Dialog", 0, 16));
 jLabel5.setHorizontalAlignment(SwingConstants.CENTER);
 jLabel5.setHorizontalTextPosition(SwingConstants.CENTER);
 jLabel5.setText("to display gridded data from local and remote datasets.");
 jLabel6.setFont(new java.awt.Font("Dialog", 0, 16));
 jLabel6.setAlignmentX((float) 0.5);
 jLabel6.setAlignmentY((float) 1.0);
 jLabel6.setMaximumSize(new Dimension(300, 60));
 jLabel6.setMinimumSize(new Dimension(300, 60));
 jLabel6.setPreferredSize(new Dimension(470, 30));
 jLabel6.setToolTipText("");
 jLabel6.setHorizontalAlignment(SwingConstants.CENTER);
 jLabel6.setHorizontalTextPosition(SwingConstants.CENTER);
 jLabel6.setText("The Interactive Sounding stand-alone application allows users");
 jMenuFile.add(jMenuFileExit);
 jMenuHelp.add(jMenuHelpAbout);
 jMenuBar1.add(jMenuFile);
 jMenuBar1.add(jMenuHelp);
 this.setJMenuBar(jMenuBar1);
 contentPane.add(jToolBar, BorderLayout.WEST);
 contentPane.add(statusBar, BorderLayout.SOUTH);
 contentPane.add(jTabbedPane1, BorderLayout.CENTER);
 jPanel3.add(jButton2, new PaneConstraints("jButton2", "jButton2",
PaneConstraints.ROOT, 0.5f));
 jPanel3.add(jLabel2, new PaneConstraints("jLabel2", "jButton2",
PaneConstraints.TOP, 0.4407583f));
 jPanel3.add(jLabel1, new PaneConstraints("jLabel1", "jLabel2",
PaneConstraints.TOP, 0.47500002f));
 jTabbedPane1.add(jPanel1, "Gridded Data Viewer");
 jPanel2.add(jLabel6, new PaneConstraints("jLabel6", "jLabel6",
PaneConstraints.ROOT, 0.5f));
 jPanel2.add(jButton4, new PaneConstraints("jButton4", "jLabel6",
PaneConstraints.BOTTOM, 0.77669907f));
 jPanel2.add(jLabel5, new PaneConstraints("jLabel5", "jButton4",
PaneConstraints.TOP, 0.2863248f));
 jTabbedPane1.add(jPanel3, "Image Viewer");
 jTabbedPane1.add(jPanel2, "Interactive Sounding");
 jPanel1.add(jLabel3, new PaneConstraints("jLabel3", "jLabel3",
PaneConstraints.ROOT, 0.5f));
 jPanel1.add(jButton3, new PaneConstraints("jButton3", "jLabel3",
PaneConstraints.BOTTOM, 0.8341232f));

78

 jPanel1.add(jLabel4, new PaneConstraints("jLabel4", "jButton3",
PaneConstraints.TOP, 0.3579545f));
 }
 /**File | Exit action performed*/
 public void jMenuFileExit_actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 /**Help | About action performed*/
 public void jMenuHelpAbout_actionPerformed(ActionEvent e) {
 Frame1_AboutBox dlg = new Frame1_AboutBox(this);
 Dimension dlgSize = dlg.getPreferredSize();
 Dimension frmSize = getSize();
 Point loc = getLocation();
 dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x, (frmSize.height -
dlgSize.height) / 2 + loc.y);
 dlg.setModal(true);
 dlg.show();
 }
 /**Overridden so we can exit when window is closed*/
 protected void processWindowEvent(WindowEvent e) {
 super.processWindowEvent(e);
 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 jMenuFileExit_actionPerformed(null);
 }
 }

 /**Action to perform when GDV button is clicked*/
 void jButton3_mouseClicked(MouseEvent e)
 {
 try
 {
 jButton3.setBackground(Color.green);
 makeGDV();
 }
 catch (Exception ex)
 {
 System.out.println("Caught " + ex.toString());
 }
 }

 /**Construct a Gridded Data Viewer (GDV) Application*/
 void makeGDV()
 {
 try
 {

79

 makeGridViewer top_jf = new makeGridViewer();
 }
 catch (Exception ex)
 {
 System.out.println("Caught " + ex.toString());
 }
 }

 /**Action to perform when Image Viewer button is clicked*/
 void jButton2_mouseClicked(MouseEvent e)
 {
 try
 {
 jButton2.setBackground(Color.green);
 makeImageViewer();
 }
 catch (Exception ex)
 {
 System.out.println("Caught " + ex.toString());
 }
 }

 /**Construct an Image Viewer Applicatiom*/
 void makeImageViewer()
 {
 try
 {
 boolean do3d = !((System.getProperty("ImageViewer.mode",
"2D")).equalsIgnoreCase("2D"));

 ImageViewer iv = new ImageViewer("Satellite Image Viewer", do3d);
 iv.setVisible(true);
 }
 catch (Exception ex)
 {
 System.out.println("Caught " + ex.toString());
 }
 }

 /**Action to perform when Sounding button is clicked*/
 void jButton4_mouseClicked(MouseEvent e)
 {
 jButton4.setBackground(Color.green);
 makeSounding();
 }

80

 /**Construct a Sounding Application*/
 void makeSounding()
 {
 try
 {
 new InterSounding().show();
 }
 catch (VisADException visex)
 {
 System.out.println("Caught " + visex);
 }
 catch (RemoteException remex)
 {
 System.out.println("Caught " + remex);
 }
 }

}

81

C.2 Frame1_AboutBox.java Source Code

package application1;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

/**
 * Title: iMetApps Experimental Application - Design 1
 * Description: This is an experimental application using design 1. This experimental
 * application uses Unidata MetApps prototype stand-alone apllications
 * GDV.jar, SoundingApplication.jar, and ImageViewer.jar.
 * Created: December 2001
 * Company: AFIT/ENP
 * @author Captain Harmen P. Visser
 * @version 1.0
 */

public class Frame1_AboutBox extends JDialog implements ActionListener {

 JPanel panel1 = new JPanel();
 JPanel panel2 = new JPanel();
 JPanel insetsPanel1 = new JPanel();
 JPanel insetsPanel2 = new JPanel();
 JPanel insetsPanel3 = new JPanel();
 JButton button1 = new JButton();
 JLabel imageLabel = new JLabel();
 JLabel label1 = new JLabel();
 JLabel label2 = new JLabel();
 JLabel label3 = new JLabel();
 JLabel label4 = new JLabel();
 BorderLayout borderLayout1 = new BorderLayout();
 BorderLayout borderLayout2 = new BorderLayout();
 FlowLayout flowLayout1 = new FlowLayout();
 GridLayout gridLayout1 = new GridLayout();
 String product = "iMetApps Experimental Application - Design 1";
 String version = "1.0";
 String copyright = "Copyright (c) 2001";
 String comments = "This is an experimental application using design 1. This
experimental application uses Unidata MetApps prototype stand-alone apllications
GDV.jar, SoundingApplication.jar, and ImageViewer.jar.";
 public Frame1_AboutBox(Frame parent) {

82

 super(parent);
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 pack();
 }
 /**Component initialization*/
 private void jbInit() throws Exception {
 //imageLabel.setIcon(new ImageIcon(Frame1_AboutBox.class.getResource("[Your
Image]")));
 this.setTitle("About");
 setResizable(false);
 panel1.setLayout(borderLayout1);
 panel2.setLayout(borderLayout2);
 insetsPanel1.setLayout(flowLayout1);
 insetsPanel2.setLayout(flowLayout1);
 insetsPanel2.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));
 gridLayout1.setRows(4);
 gridLayout1.setColumns(1);
 label1.setText(product);
 label2.setText(version);
 label3.setText(copyright);
 label4.setText(comments);
 insetsPanel3.setLayout(gridLayout1);
 insetsPanel3.setBorder(BorderFactory.createEmptyBorder(10, 60, 10, 10));
 button1.setText("Ok");
 button1.addActionListener(this);
 insetsPanel2.add(imageLabel, null);
 panel2.add(insetsPanel2, BorderLayout.WEST);
 this.getContentPane().add(panel1, null);
 insetsPanel3.add(label1, null);
 insetsPanel3.add(label2, null);
 insetsPanel3.add(label3, null);
 insetsPanel3.add(label4, null);
 panel2.add(insetsPanel3, BorderLayout.CENTER);
 insetsPanel1.add(button1, null);
 panel1.add(insetsPanel1, BorderLayout.SOUTH);
 panel1.add(panel2, BorderLayout.NORTH);
 }
 /**Overridden so we can exit when window is closed*/
 protected void processWindowEvent(WindowEvent e) {

83

 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 cancel();
 }
 super.processWindowEvent(e);
 }
 /**Close the dialog*/
 void cancel() {
 dispose();
 }
 /**Close the dialog on a button event*/
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == button1) {
 cancel();
 }
 }
}

84

C.4 interSounding.java Source Code

package application1;

import java.awt.*;
import java.awt.event.*;
import java.rmi.RemoteException;
import javax.swing.*;
import visad.VisADException;
import ucar.unidata.view.sounding.*;

/**
 * Title: interSounding.java
 * Description: This class is used to build an Interactive Sounding window from within
 iMetApps
 * Experimental Application - Design 1. This class is necessary to handle
 exceptions
 * thrown by VisAD and the precompiled Sounding Application files.
 * Created: December 2001
 * Company: AFIT/ENP
 * @author Captain Harmen P. Visser
 * @version 1.0
 */

public class InterSounding extends JFrame
{
 public InterSounding() throws VisADException, RemoteException
 {
 super("Interactive Sounding Application");

 /**This listener allows sounding to be closed and iMetApps Control Panel to
remain open*/
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e){}
 });
 new SoundingApp(getRootPane(), true);
 pack();
 Dimension screenSize = getToolkit().getScreenSize();
 Dimension frameSize = getSize();
 setLocation((screenSize.width - frameSize.width)/2,(screenSize.height -
frameSize.height)/2);
 };
}

85

C.5 makeGridViewer.java Source Code

package application1;

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;
import javax.swing.JComponent.*;
import ucar.unidata.ui.*;
import ucar.unidata.util.*;
import ucar.unidata.gridviewer.*;

/**
 * Title: makeGridViewer.java
 * Description: The classes contained in this file are an adaptation of the Main.java,
 * v 1.22 2001/05/01 15:21:07, Copyright 1997-2000 Unidata Program
 * Center/University Corporation for Atmospheric Research, P.O. Box 3000,
 * Boulder, CO 80307, support@unidata.ucar.edu. It is part of the MetApps
 * library. This library is free software and can be redistributed and
 * modified under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of the
 * License, or (at your option) any later version.
 * This file (containing two classes) provides a way to create a Gridded
 * Data Viewer (GDV) Application via the iMetApps launchpad.
 * Created: December 2001
 * Company: AFIT/ENP
 * @author Captain Harmen P. Visser
 * @version 1.0
 */

public class makeGridViewer implements TopLevel
{
 JFrame top;
 Common common;

 makeGridViewer()
 {
 top = new JFrame("Gridded Data Viewer");

 top.addWindowListener(new WindowAdapter() {});

 common = new Common(top, this, false);

86

 top.pack();
 top.setVisible(true);
 }

 public RootPaneContainer getRootPaneContainer()
 {
 return top;
 }

 public boolean isApplet()
 {
 return false;
 }

 public void close()
 {
 save();
 System.exit(0);
 }

 public void save()
 {
 common.saveConfig();
 }

}

class Common
{
 SerializedObjectStore store = new SerializedObjectStore("metapps", "GridViewer",
"main");
 private Controller control;
 private UI ui;
 private Component mainC;

 Common(Component mainC, TopLevel topLevel, boolean isApplet)
 {
 this.mainC= mainC;
 ucar.unidata.util.Debug.fetchPersistentData(store);

 if (Debug.isSet("util.showProperties"))
 {
 try
 {
 Properties p = System.getProperties();

87

 Enumeration enum = p.keys();

 while (enum.hasMoreElements())
 {
 Object key = enum.nextElement();
 System.out.println(" "+key + " = " + p.get(key));
 }
 }
 catch (SecurityException e)
 {
 System.out.println("not allowed to get Properties");
 }

 ucar.unidata.ui.Help.setTopDir("/auxdata/javahelp/GDV");
 }

 control = new Controller(topLevel, store);
 ui = new UI(topLevel, store, control);
 control.setUI(ui);

 control.addMapBean(new ucar.unidata.gis.worldmap.WorldMapBean());
 control.addMapBean(new
ucar.unidata.gis.shapefile.ShapeFileBean("/auxdata/maps/Countries.zip"));
 control.addMapBean(new ucar.unidata.gis.shapefile.ShapeFileBean());
 }

 void saveConfig()
 {
 control.storePersistentData();
 ui.storePersistentData();
 store.put("MainWindowBounds", mainC.getBounds());
 ucar.unidata.util.Debug.storePersistentData(store);
 store.save();
 }

}

88

Bibliography

Army Test and Evaluation Command (ATEC), 2001: 4DWX Weather Forecasting
Technology. https://www.4dwx.org/

Apache Software Foundation, 2001: Apache XML Project. http://xml.apache.org/

Bowers, J., 2000: Development of Operational Meso-gamma-Scale Numerical Weather-

Prediction System for Army Test Ranges. Battlespace Atmospheric and Cloud
Impacts on Military Operations (BACIMO) Conference 2000. Fort Collins CO.

Caron, J., 1999: Component Based Software for Scientific Application Development.

Proceedings of the Fifteenth International Conference on Interactive Information
and Processing Systems for Meteorology, Oceanography, and Hydrology,
American Meteorological Society.

Center for Ocean-Land-Atmosphere Studies (COLA), 2001: GrADS Home Page.
http://grads.iges.org/grads/

Data Assimilation Office (DAO), National Aeronautics and Space Administration

(NASA), 2001: GrADS with Athena Widgets.
http://dao.gsfc.nasa.gov/software/grads/win32/latest/pc-
dist/doc/gagui/gagui_intro.html

Fowler, M. and K. Scott, 2000: UML Distilled (2nd Edition): A Brief Guide to the

Standard Object Modeling Language. Reading MA: Addison Wesley, 185 pp.

Gamma, E., and others, 1995: Design Patterns: Elements of Reusable Object-Oriented

Software. Reading, MA: Addison Wesley, 395 pp.

Hunter, J. and B. McLaughlin, 2001: JDOM Web Site. http://jdom.org

Lindholm, D., 2001: Why was VisAD chosen as the basis for the 4DWX next generation

display (VMET): An engineering perspective.
http://atec-server.rap.ucar.edu/vmet/why_visad.html

Microsoft, 2001: Microsoft DirectX Home Page. http://www.microsoft.com/directx/

National Center for Atmospheric Research (NCAR), 2000. Research Applications

Program: Information Technology -- Database Management.
 http://www.rap.ucar.edu/technology/it/

89

http://grads.iges.org/grads/
http://jdom.org/
http://atec-server.rap.ucar.edu/vmet/why_visad.html
http://www.microsoft.com/directx/

National Center for Atmospheric Research (NCAR), 2001. VMET: Visual Meteorology
Tool. https://atec-server.rap.ucar.edu/vmet/

Pressman, R.S., 2000: Software Engineering: A Practitioner's Approach, Fifth Edition.

Boston: McGraw-Hill Higher Education, 888 pp.

Rew, R.K., and others, 1997: NetCDF User’s Guide for C.

 http://www.unidata.ucar.edu/packages/netcdf/guidec/

Schatzman, J.C., 2001: Writing High Performance Java Code Which Runs as Fast as

Fortran, C or C++. Proceedings of SPIE, Vol. 4521: Java/Jini Technologies,
SPIE Press, pp. 106-114.

Schildt, H., 2000: JavaTM 2: The Complete Reference, Fourth Edition. Berkeley CA:

McGraw-Hill Professional Publishing, 1040 pp.

Shalloway, A., and J.R. Trott, 2002: Design Patterns Explained: A New Perspective on

Object-Oriented Design. Reading MA: Addison Wesley, 368 pp.

Silicon Graphics Incorporated (SGI), 2001: OpenGL: The 3D Standard.

http://www.opengl.org/users/about/index.html#where

SourceForge, 2001: Vis5d+ Home Page. http://vis5d.sourceforge.net/

Space Science and Engineering Center (SSEC), 1997: A Brief History of McIDAS.
 http://www.ssec.wisc.edu/software/mcidas_history.html

Space Science and Engineering Center (SSEC), 2000: Vis5D Version 5.2 README File
 ftp://www.ssec.wisc.edu/pub/vis5d-5.2/README

Space Science and Engineering Center (SSEC), 2001: VisAD Home Page.
 http://www.ssec.wisc.edu/~billh/visad.html

Telfeyan, B., 2001: Chief, Technology Exploitation Branch (DNXT), Air Force Weather

Agency (AFWA), Offutt AFB NE. Personal communication over the course of
thesis proposal preparation.

Unidata MetApps Discussion Area (UMADA), 2001: UMADA Home Page.

http://www.unidata.ucar.edu/projects/umada/index.html

University Corporation for Atmospheric Research (UCAR), 1997: Unidata: 2003. A
Proposal to the National Science Foundation.
http://www.unidata.ucar.edu/proposals/NSF2003/

90

https://atec-server.rap.ucar.edu/vmet/
http://www.unidata.ucar.edu/packages/netcdf/guidec/
http://www.ssec.wisc.edu/software/mcidas_history.html
ftp://www.ssec.wisc.edu/pub/vis5d-5.2/README

University Corporation for Atmospheric Research (UCAR), 2000: Unidata MetApps
Project. http://www.unidata.ucar.edu/projects/metapps/index.html

University Corporation for Atmospheric Research (UCAR), 2001: Unidata McIDAS

Home Page. http://www.unidata.ucar.edu/packages/mcidas/

Vlissides, J.M., and others, 1996: Pattern Languages of Program Design 2. Reading,

MA: Addison Wesley, 605 pp.

Woo, M. and others, 1999: OpenGL Programming Guide (3rd Edition): The Official

Guide to Learning OpenGL, Version 1.2. Reading MA: Addison Wesley,
800 pp.

91

http://www.unidata.ucar.edu/projects/metapps/index.html
http://www.unidata.ucar.edu/packages/mcidas/

Vita

 Captain Harmen P. Visser graduated from Piper High School in Sunrise, Florida,

in 1983. He entered undergraduate studies at Broward Community College, Florida

where he graduated with an Associate of Arts degree in Engineering in May 1986. In

1989 he enlisted in the US Air Force and served at Barksdale AFB, Louisiana, as a

Dental Laboratory Technician. In 1993 he was accepted into the Airman Education and

Commissioning Program and was sent to Florida State University where he graduated

with Bachelor of Science degree in Meteorology in 1996.

 His first meteorological assignment was to the 46th Weather Squadron at Eglin

AFB, Florida as a Wing Weather Officer. At Eglin, he served as the Northwest Florida

region radar coordinator. In 1998, he was assigned to the 65th Operations Support

Squadron, Lajes Field, Portugal, where he served as the Meteorological Satellite

Coordinator. While stationed at Lajes, he filled the role of Logistics Group

representative to the base Year 2000 Operations Center. In August 2000, he entered the

Graduate School of Engineering and Management, Air Force Institute of Technology.

Upon graduation, he will be assigned to the 88th Weather Squadron, Wright-Patterson

AFB, Ohio.

92

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

08-03-2002
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Jun 2001 – Mar 2002

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

SUITABILITY OF UNIDATA METAPPS FOR INCORPORATION IN
PLATFORM-INDEPENDENT USER-CUSTOMIZED AVIATION WEATHER
PRODUCTS GENERATION SOFTWARE

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Visser, Harmen P., Captain, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GM/ENP/02M-09

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFWA/DNXT
Attn: Mr. Bruce Telfeyan
106 Peacekeeper Drive DSN: 271-1690
Offutt AFB, NE 68113-4039 e-mail: bruce.telfeyan@afwa.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Due to multiple factors, including an increase in military operations tempo and the improved resolution of meteorological models,
demand for access to customized aviation weather products has increased exponentially. This has given rise to a need for a multi-
purpose interactive aviation weather product generation software solution. This software solution must be platform-independent,
multiple data source access configurable, robust, extensible or upgradeable, user-friendly, and an improvement over current
visualization applications used in the operational military aviation weather community. The purpose of this thesis is to determine
whether Unidata MetApps meets these criteria.
 A software reuse and component-based engineering approach was taken in this thesis. Two experimental applications were
constructed using a software design approach resembling the Facade software design pattern. The first application used existing
MetApps stand-alone prototype applications, while the second exploited capabilities of the MetApps component library. Both
experimental applications were measured against the above set of criteria to determine their suitability for incorporation in platform-
independent user-customized aviation weather products generation software. The results prove that a Facade software design
approach can be effectively used to build applications. It was determined however that, even though MetApps shows promise, it may
not be suitable for incorporation into an operational application.
15. SUBJECT TERMS
Meteorology, Interactive Graphics, Applications, Java, Unidata, MetApps

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Timothy M. Jacobs, Lt Col, USAF (ENG)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

103
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4279; e-mail: timothy.jacobs@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Suitability of Unidata Metapps for Incorporation in Platform-Independent User-Customized Aviation Weather Products Generation Software
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	1. Introduction
	1.1 Background
	1.2 Statement of the Problem
	1.3 Scope
	1.4 Overview of Approach
	1.5 Organizational Overview

	2. Related Work
	2.1 Overview
	2.2 McIDAS
	2.3 GrADS
	2.4 Vis5D
	2.5 VisAD
	2.6 MetApps
	2.7 4DWX
	2.8 Summation

	3. Methodology
	3.1 Overview
	3.2 Goals
	3.3 Requirements for Success
	3.4 Design of Experimental Applications
	3.4.1 Overview
	3.4.2 Application Design Approach 1
	3.4.3 Application Design Approach 2

	3.5 Experimental Programming Environment Setup
	3.6 Data Requirements and Handling

	4. Results
	4.1 Overview
	4.2 Application Design Approach 1
	4.3 Application Design Approach 2
	4.4 Summary of Results

	5. Conclusions and Recommendations

	Appendix A: Abbreviations
	Appendix B: Unidata MetApps Detailed Analysis
	Appendix C: Application Source Code
	Bibliography
	Vita

