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Abstract

The Air Force Combat Climatology Center (AFCCC) is continually tasked to
provide temperature and other long-range seasonal forecasts for locations at which
Department of Defense (DoD) personnel are performing long-range exercises and real-
world mission planning support. DoD needs long-range forecasts to estimate how much
fuel is necessary to keep energy production, purchases and operations at the proper levels
to accommodate all the energy needs on their installations and within their worldwide
theaters of operation. Currently, the best long-range temperature forecasts the weather
community has for worldwide locations use either climatological standard normals or
simple frequency distributions of occurrences. This study creates a stepping-stone
toward the solution of long-range temperature forecasting by finding a process to predict
more accurate temperatures than those forecasts obtained using climatological standard
normals or simple frequency distributions of occurrences. This same solution is also
highly sought after by many non-DoD users as well.

Northern Hemispheric teleconnection indices, created by rotated principle
component analysis (RPCA), and the standardized Southern Oscillation index are
statistically compared to Heating Degree Days (HDDs) and Cooling Degree Days
(CDDs) at 14 U.S. locations. HDDs and CDDs were summed over three-month periods
to compute seasonal summations. Teleconnection indices found to be leading modes,
using RPCA, in a particular month are compared to the HDD/CDD summations of the

following three months in order to create predictive models.

xi



First, linear regression is accomplished on the data. The results show numerous
valid modes, however, the percent of HDD and CDD variance resolved by the modes is
rarely over 30%. The HDDs and CDDs are then categorized and analyzed with a
classification tree data-mining program, however, the results did not show any predictive
quantitative information.

A regression tree data mining analysis is then performed on the uncategorized
HDDs/CDDs, which shows excellent conditional predictive outcomes. At each
conditional outcome, a range of HDDs/CDDs is produced using the predicted standard
deviations about the mean. When teleconnection indices were used as predictors in the
conditional model, 90% of the time the resulting HDDs/CDDs fell into the calculated
range. Expected forecast range reductions over climatology are then calculated, and an
overall average expected forecast range reduction of 35.7% over climatology was

achieved.
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EXPLORATION OF TELECONNECTION INDICES FORLONG-RANGE

SEASONAL TEMPERATURE FORECASTS

I. Introduction

Background

The Air Force Combat Climatology Center (AFCCC) is continually tasked to
provide temperature forecasts for locations at which Department of Defense (DoD)
personnel are performing long-range exercises and real-world mission planning support.
The importance of these forecasts comes down to the cost of moving equipment and
supplies, aircraft fuel loads, humanitarian assistance packages, and other operational
needs. Commanders require accurate temperature forecasts in order to plan equipment
resources necessary to keep troops safe from the environmental elements.

Any necessary equipment or clothing can drastically change the logistical
requirements of any mission, which is measured in costs and expediency. For example, a
mission anywhere where the temperature falls below freezing requires extra clothing,
heating equipment, heated facilities, additional aircraft maintenance equipment, deicing
equipment, etc. A large mission with these requirements can add millions of dollars to
the cost of the deployment. The Gulf War, for example, cost 61 billion dollars (Horan,
1997). Troops were required to take both hot and cold weather clothing items for the
variety of weather conditions experienced in the region (USAF, 1991). If it were possible

to give commanders better long-range temperature forecasts, they might have been able



to alleviate taking all or part of the cold-weather clothing, saving millions of dollars and
vitally needed airlift requirements in the process. Accurate forecasts can also help smaller
scale military teams as well. For example, special operation forces deployed in a country
such as Afghanistan cannot afford to carry unnecessary equipment. Both cold mountain
areas and hot desert areas dominate the Afghanistan terrain. Accurate long-range
forecasts are vital to their mission success as well as the success of the massive airlift
operations required to support the war effort.

Long-range temperature forecasting is not only important in mission planning, but
also for planning fuel costs for energy consumption. The DoD, just like the general
population, needs to forecast how much fuel is necessary to keep energy production and
purchases at the proper levels to accommodate all the energy needs on their installations
and in their worldwide theaters of operation. This can become very difficult, especially if
there are significant temperature anomalies, such as periods of extreme hot or cold
conditions. When there are significant temperature anomalies, there is usually not
enough fuel to maintain the amount of energy being consumed. The better the long-range
temperature forecasts are, the better the initial estimates of needed fuel reserves for
energy use. In addition, it is hoped the improvement of long-range temperature forecasts
may lead to improved long-range forecasts of other climatic elements.

Long-range weather forecasting

Lorenz saw his initial weather patterns grow farther and farther apart in model
simulations until all resemblance to each other had disappeared. He decided that long-
range weather forecasting must be doomed (Gleick, 1987). Today, it is thought that

numerical models are not valid after the 15-day point (Anthes, 1986). Clearly the



immediate future of long-range weather forecasting does not lie with the use of short-
range numerical weather prediction models.

Baur (1951) suggested long-range weather forecasting could be possible using
large-scale spatial circulation patterns, which he termed Grosswetterlagen. Since then,
countless studies compared large-scale weather patterns with weather parameters around
the world. Most, however, do not try to use the patterns as forecast tools. This research
attempts to look at forecasting long-range temperatures by using techniques similar to the
Grosswetterlagen method, using global teleconnection patterns (Wallace and Gutzler,
1981). This research attempts to take the concept Baur had and use today’s technology to
make forecasts once thought impossible.

Currently, the best long-range temperature forecasts the weather community has for
worldwide locations are the climatological standard normals, which are averages of
climatological data calculated for the following consecutive 30-year periods, established
by international agreement: 1 January 1901 to 31 December 1930; 1 January 1931 to 31
December 1960; 1 January 1961 to 31 December 1990; etc. (Glickman, 2001). The U.S
Climate Prediction Center (CPC) calculates standard normals for U.S. stations at the end
of each decade (CPC, 2001). However, temperature anomalies, which are the most
important features in long-range mission and energy planning, are smoothed out or
unseen over such 30-year averages.

This research focuses on finding a process to predict more accurate temperatures
than those obtained by using climatological standard normals or simple frequency
distributions of occurrences. This study investigates the relationships between

temperature and known global teleconnection patterns. Finding a significant relationship



that affects DoD missions and energy consumption might possibly save DoD billions of
dollars per year.
Scope of Research

Any forecasting tool needs to be reproducible and readily available for users in
the field, without a great deal of trouble gaining necessary data. For this reason, the
National Center for Environmental Prediction’s (NCEP) CPC’s Standardized Northern
Hemisphere Teleconnection Indices and the Southern Oscillation Index are used in this
research. CPC’s indices are produced monthly and are available to users on their web

site: http://www.cpc.ncep.noaa.gov. This research investigates statistical methods of

using these monthly indices to predict U.S. seasonal temperatures from one to three
months in advance.

One way to represent temperature forecasts over a period of time is taken from the
civil engineering community. Their primary need is a means to relate temperatures to the
demand for fuel consumption over a specific period of time, and they utilize Heating
Degree-Days (HDDs) or Cooling Degree-Days (CDDs) in this effort.

This research uses various statistical software packages to explore any relationships
between teleconnection indices and HDDs/CDDs for 14 locations that have current
temperature data available. To ensure the utmost quality of the temperature data used,
only U.S. first-order stations are used in this analysis. All of the cities have different
periods of record for their temperature data, and the teleconnection data is only from

1950 to present.


http://www.cpc.ncep.noaa.gov/

Research Objectives
The goal of this research is to use known significant teleconnection indices to
create a predictive tool for forecasting long-range temperature patterns over the U.S. The
specific objectives necessary to achieve this goal are:
1. to gather temperature data from 14 locations across the U.S. in order to
represent most climatic regimes across the country;
2. to calculate and compile monthly HDDs and CDDs values from this data;
3. to gather teleconnection indices from the 14 most significantly known
Northern Hemisphere teleconnections and the Southern Oscillation Index in
the Southern Hemisphere;
4. to remove ten years of the data for later verification of any relationship
identified;
5. to analyze data with a thorough regression analysis to find any significant
relationships between monthly teleconnection indices and the summation of
HDDs/CDDs for the following three months;
6. to use, if necessary, data mining techniques to find any predictive
relationships if standard statistical methods fail;
7. to create predictive tools using monthly teleconnection indices as the
predictor and summed HDDs and CDDs seasons as the predictand for any
relationships found;
8. to verify any predictive models developed by using ten years of
independent data not included in creating the predictive models and,

9. to investigate the spatial homogeneity of the created prediction trees.



II. Literature Review

Rotated Principle Component Analysis (RPCA)

The method used for defining the low-frequency teleconnection patterns in this
study is that of Rotated Principal Component Analysis (RPCA). RPCA is considered to
be superior to using distinct centers of geopotential height anomalies at select locations,
in that the teleconnection patterns identified are based on the entire flow field, and not
just from height anomalies at the selected locations (Rodionov and Assel, 2000).

RPCA uses the eigenvectors of the cross-correlation (or cross-covariance) matrix
from the time variations of the grid-point values of the 700-mb height anomalies, and
ranks the eigenvectors according to the amount of total variance they explain (creating a
PCA). The PCA is then orthogonally rotated to get the variances as close to zero as
possible (Barnston and Livezey, 1987). Barnston and Livezey (1987) used the RPCA
technique to calculate the 10 most prominent teleconnection patterns in each month. This
procedure isolates the primary teleconnection patterns for all months and allows for a
time series of the amplitudes of the patterns to be constructed.

CPC uses the Barnston and Livezey method by applying the RPCA technique to
monthly mean 700-mb height anomalies between January 1964 and July 1994. In CPC’s
analysis, ten patterns are determined for each calendar month by using all of the height
anomaly fields for the three-month period centered on that month. For example, the July
patterns are calculated based on the June through August anomaly fields (CPC, 2001).
Using RPCA instead of PCA creates solutions that have a physical meteorological

interpretability. The RPCA solutions also involve much smaller areas of the hemisphere



(Barnston and Livezey, 1987). A more comprehensive discussion of rotated principal
component solutions is found in Horel (1981) and Barnston and Livezey (1987).
Northern Hemispheric Teleconnection patterns

Teleconnection patterns are macro-f scale patterns resembling standing waves
with geographically fixed centers (Horel, 1981). They are also referred to as preferred
modes of low-frequency variability (CPC, 2001), and several teleconnection patterns in
planetary circulation have been documented by Barnston and Livezey (1987). A
comprehensive re-analysis of Northern Hemispheric variability patterns has been
undertaken by CPC using newly available 700hPa height data (Washington et al., 2000)
to achieve a better understanding in the synoptic weather patterns related to the
teleconnection patterns.

The 13 prominent Northern Hemispheric teleconnection patterns used in this
study are separated into three regions; patterns over the North Atlantic, patterns over
Eurasia, and patterns over North Pacific/ North America. The prominent patterns over
the North Atlantic are: the North Atlantic Oscillation (NAO), the East Atlantic Pattern
(EA), and the East Atlantic Jet Pattern (EA-JET). The prominent patterns over Eurasia
are: the East Atlantic/West Russia Pattern (EA/WR), the Scandinavian Pattern (SCAD),
the Polar/Eurasia Pattern (POL) and the Asian Summer Pattern (ASU). The prominent
patterns over the North Pacific/North America are: West Pacific Pattern (WP), the East
Pacific Pattern (EP), the North Pacific Pattern (NP), the Pacific/North American Pattern
(PNA), the Tropical/Northern Hemisphere Pattern (TNH), and the Pacific Transition

Pattern (PT).



The North Atlantic Oscillation (NAO), shown in Figure 1, is one of the dominant
modes of Northern Hemispheric climate variability (Walker and Bliss, 1932; Van Loon
and Rogers, 1978; Wallace and Gutzler, 1981; Washington et al., 2000) and is a leading
mode in all months (Barnston and Livezey, 1987; Washington et al., 2000). The NAO
exhibits little variation in its climatological mean structure from month-to-month, and
consists of a north-south dipole of anomalies, with one center over the Greenland/Iceland
region and the other center, of opposite sign, spanning the central latitudes of the North
Atlantic around the Azores between 35°N and 40°N. The positive phase of the NAO
reflects below-normal heights and pressure across the high latitudes of the North Atlantic
and above-normal heights and pressure over the central North Atlantic, the eastern United
States and Western Europe. The negative phase reflects an opposite dipole pattern of
height and pressure anomalies over these regions (Washington et al., 2000; CPC, 2001).
Strong positive phases of the NAO tend to be associated with above-normal temperatures
in the eastern United States and across northern Europe and with below-normal
temperatures in Greenland and oftentimes across southern Europe and the Middle East
(CPC, 2001).

The EA pattern, shown in Figure 2, is a prominent mode of low-frequency
variability over the North Atlantic. It is a prominent mode in all months except May-
August. It consists of a north-south dipole of anomaly centers, which span the entire
North Atlantic Ocean from east to west with the zero line always positioned over England
or France. The EA pattern is structurally similar to the NAO pattern; however, the

anomaly centers are displaced southeastward to the approximate nodal lines of the NAO



pattern. The lower-latitude center contains a strong subtropical link, reflecting large-

scale modulation in the strength and location of the subtropical ridge (CPC, 2001).

NORTH ATLANTIC OSCILLATION {NAO)

January

o

—75h -50 —-25 25 50 75

Figure 1. Phases of the NAO pattern. From positive phase in January to negative phase
in July. Values are scaled to be correlations between the average 700-mb height
anomalies at a given grid point and the principal component amplitude (modified from
CPC, 2001).



FAST ATLANTIC PATTERN (EA)
January April

S

Figure 2. Phases of the EA pattern (modified from CPC, 2001).

The EA-JET pattern, shown in Figure 3, is a prominent mode of North Atlantic
variability, appearing between April and August. This pattern also consists of a north-
south dipole of anomaly centers, with one main center located over the high latitudes of
the eastern North Atlantic and Scandinavia, and the other center located over Northern
Africa and the Mediterranean Sea. A positive phase of the EA-Jet pattern reflects an

intensification of the westerlies over the central latitudes of the eastern North Atlantic

10



and over much of Europe, while a negative phase reflects a strong split-flow
configuration over these regions, sometimes, in association with long-lived blocking

anticyclones in the vicinity of Greenland and Great Britain (CPC, 2001).

EAST ATLANTIC JET (EA-JET)
April

Figure 3. Phases of the EA-JET pattern (modified from CPC, 2001).

The EA/WR pattern, shown in Figure 4, is one of two prominent modes that
affect Eurasia during most of the year. This pattern is prominent in all months except

June-August. In winter, two main anomaly centers, located over the Caspian Sea and

11



Western Europe, comprise the East Atlantic/West Russian pattern. A three-celled
pattern is then evident in the spring and fall seasons, with two main anomaly centers
of opposite sign located over western/northwestern Russia and over northwestern
Europe. The third center, having the same sign as the Russia center, is located off the
Portuguese coast in spring, but exhibits a northern movement toward Newfoundland

in the fall (CPC, 2001).

EAST ATLANTIC/ WEST RUSSIA (EATL/WRUS)
January April

]

Figure 4. Phases of the EA/WR pattern (modified from CPC, 2001).

12



The SCAND pattern, shown in Figure 5, consists of a primary circulation
center, which spans Scandinavia and large portions of the Arctic Ocean north of
Siberia. Two additional weaker centers with opposite sign to the Scandinavia center
are located over Western Europe and over the Mongolia and the western China sector.
The positive phase of this pattern is associated with positive height anomalies,
sometimes reflecting major blocking anticyclones over Scandinavia and western
Russia, while the negative phase of the pattern is associated with negative height

anomalies over these same regions (CPC, 2001).

SCANDINAVIA (SCAND)
January April

1

Figure 5. Phases of SCAND pattern (modified from CPC, 2001).
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The POL pattern, shown in Figure 6, appears only in the winter, and is the most
prominent mode of low-frequency variability during December and February. The
pattern consists of one main anomaly center over the polar region, and separate centers of
opposite sign to the polar anomaly over Europe and northeastern China. Thus, the pattern
reflects major changes in the strength of the circumpolar circulation, and reveals the
accompanying systematic changes that occur in the midlatitude circulation over large

portions of Europe and Asia (CPC, 2001).

POLAR/ EURASIAN PATTERN

January

[ — | | | | —
—73 —30 -25 25 30 7a

Figure 6. The POL pattern (modified from CPC, 2001).

The ASU pattern, shown in Figure 7, is a broad, east-west center in central Asia
(Barnston and Livezey, 1987). The Asian Summer pattern is only a leading mode during
the summer months of June-August. The pattern is monopole in nature with anomalies of

the same sign observed throughout southern Asia and northeastern Africa. A positive
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phase of the pattern is indicated by above-normal heights throughout southern Asia and
northeastern Africa (CPC, 2001). The above normal heights are thought to be due to the
intense heating over the Tibetan Plateau. It is theorized that in years with higher amounts
of insolation over the plateau, the entire ITCZ over Africa and Asia is pulled further north

thus affecting the circulation over the entire Asian continent (Lowther, 1998).

ASIAN SUMMER

¥3

Figure 7. Positive phase of ASU pattern (modified from CPC, 2001).

The WP pattern, shown in Figure 8, is a primary mode of low-frequency
variability over the North Pacific throughout all months (Washington et al., 2000;
Barnston and Livezey, 1987; Wallace and Gutzler, 1981). During winter and spring, the
pattern consists of a north-south dipole of anomalies, with one center located over the
Kamchatka Peninsula and another broad center of opposite sign covering portions of
southeastern Asia and the lower latitudes of the extreme western North Pacific. Strong

positive or negative phases of this pattern reflect pronounced zonal and meridional
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variations in the location and intensity of the entrance region of the Pacific (or East

Asian) jet stream (CPC, 2001).

WEST PACIFIC PATTERN (WP)
January April

Figure 8. Phases of the WP pattern (modified from CPC, 2001).

The EP pattern, shown in Figure 9, is evident in all months except August and
September and reflects a north-south dipole of height anomalies over the eastern North
Pacific. The northern center is located in the vicinity of Alaska and the west coast of

Canada, while the southern center is of an opposite sign and is found near, or east of,
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Hawaii. During strong positive phases of the EP pattern, a deeper than normal trough is
located in the vicinity of the Gulf of Alaska or western North America, and positive
height anomalies are observed further south. A strong negative phase of the EP pattern is

associated with a pronounced split-flow configuration over the eastern North Pacific,

with reduced westerlies over the region (CPC, 2001).

EAST PACIFIC PATTERN (EP)

Figure 9. Phase of the EP pattern (modified from CPC, 2001).
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The NP pattern, shown in Figure 10, is prominent from March through July. This
pattern consists of a primary anomaly center, which spans the central latitudes of the
western and central North Pacific, and a weaker anomaly region of opposite sign, which
spans eastern Siberia, Alaska, and the western mountain regions of North America.
Overall, pronounced positive phases of the NP pattern are associated with a southward
shift and intensification of the Pacific jet stream from eastern Asia to the eastern North
Pacific, followed downstream by an enhanced anticyclonic circulation over western
North America, and by an enhanced cyclonic circulation over the southeastern United
States. Pronounced negative phases of the NP pattern are associated with circulation

anomalies of opposite sign in these same regions (CPC, 2001).

Figure 10. Phases of NP pattern (modified from CPC, 2001).
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The PNA pattern, shown in Figure 11, is perhaps the best-known mode of Pacific-
based variability. It appears in all months except June and July. The PNA pattern
reflects a quadripole pattern of geopotential anomalies, with anomalies of similar sign
located south of the Aleutian Islands and over the southeastern USA. Anomalies with
signs opposite to the Aleutian center are located near Hawaii and over central Canada
during the winter and autumn (CPC, 2001; Washington et al., 2000; Barnston and

Livezey, 1987).

PACIFIC/NORTH AMERICAN PATTERN (PNA)

January

}

Figure 11. Phases of PNA pattern (modified from CPC, 2001).
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The TNH pattern, shown in figure 12, appears as a prominent mode from
November-February. The pattern consists of one primary anomaly center over the Gulf
of Alaska and a separate anomaly center of opposite sign over Hudson Bay. A weaker
area of anomalies having the same sign to the Gulf of Alaska anomaly extends across
Mexico and the extreme southeastern United States. This pattern reflects large-scale
changes in both the location and eastward extent of the Pacific jet stream, and also in the
mean strength and position of the climatological Hudson Bay low. This pattern
significantly modulates the flow of marine air into North America, as well as the

southward transport of cold Canadian air into the north-central U. S. (CPC, 2001).

TROPICAL/ NORTHERN HEMISPHERE PATTERN

January

7a

Figure 12. Phases of TNH pattern (modified by CPC, 2001).

The PT pattern, shown in Figure 13, is prominent between May-August. The

mode consists of a pattern of height anomalies, which extends from the Gulf of Alaska
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eastward to the Labrador Sea and is aligned along the 40°N latitude circle. The
prominent centers of action have a similar sign and are located over the intermountain
region of the United States and over the Labrador Sea. Relatively weak anomaly centers
with signs opposite to the above are located over the Gulf of Alaska and over the eastern

United States (CPC, 2001).

PACIFIC TRANSITION PATTERN

Figure 13. Phases of PT pattern (modified by CPC, 2001).

Southern Hemispheric Teleconnection Pattern

“When the pressure is high in the Pacific Ocean, it tends to be low in the Indian
Ocean from Africa to Australia.” This is how Sir Gilbert Walker described the Southern
Oscillation (SO) in his papers in the 1920s and 1930s (Burroughs, 1992). There are
numerous ways of recording this slow see-saw of atmospheric pressure across the
equatorial pacific resulting in various Southern Oscillation Indexes (SOI). This research

uses the SOI index created by the pressure difference between Tahiti, French Polynesia in
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the mid-Pacific and Darwin in northern Australia. These two stations represent the
Southeast Pacific area of high pressure and the Indonesian low, respectively (Robinson
and Henderson-Sellers, 1999).
Other research

There are numerous articles that draw comparisons between a specific
teleconnection pattern and specific meteorological parameters, but there are fewer articles
that use all of the teleconnections together for a comparison toward single parameters.
Of those that use multiple teleconnections (Washington et al., (2000), Rodionov and
Assel, (2000), for example), none attempted to create predictive relationships between the
teleconnections and the parameters, thus resulting in a model to use as a tool in the

operational field.
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III. Data Collection and Review

Northern Hemisphere Teleconnection Pattern Indices

As mentioned in Chapter II, the 10 most prominent teleconnection patterns in
each month were calculated by RPCA (CPC, 2001). For each of the 10 patterns in a
month, CPC calculates a monthly index. This method of calculation is a form of factor
analysis that has not yet been published by CPC.
Southern Oscillation Index

The Southern Oscillation Index (SOI) is the only index used in this study that is
not calculated by the RPCA method. It is calculated by using the raw atmospheric
pressure data from Tahiti and Darwin, Australia. The anomalies used are departures from
the 1951-1980 base period, and the anomaly for each city is defined as:

X4 = (Actual(SLP)) - (mean(SLP)) (1)

where the XA is either TA for the Tahiti anomaly or DA for the Darwin anomaly,
depending on which cities anomaly is being calculated, and SLP is for the appropriate

location sea level pressure. The standard deviation for Tahiti or Darwin is:

Standard Deviation =

2. XA
¥ @)

where N is the number of months being summed. The data are then standardized as

follows:

(ST/SD) = —24 3)

2

N

where ST is standardized Tahiti and SD is standardized Darwin monthly data.
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The standardized SOI, is then:

o[~ . ST=5D @

\/ 3 (ST -SD)

N

where the denominator is the monthly standard deviation.
Heating Degree Days / Cooling Degree Days

To calculate the HDDs for a particular day, one would first find the day’s average
temperature. The day’s average temperature for the data used in this study is found by:

(Max_ temp + Min _ temp)
2

, where the Max_temp is the day’s maximum temperature and

Min_temp is the day’s minimum temperature. If the average temperature is less than
65°F, subtract the average temperature from 65°F and the result is the number of HDDs
for that particular day. The resulting number is accumulated over a month, season, or
whatever period is being examined. To calculate CDDs for a particular day, one would
again find the day’s average temperature. If the temperature is greater than 65°F, subtract
65°F from the average temperature and the result is the number of CDDs for that day.
The number is again accumulated over the period in question.
Locations

The HDDs and CDDs were calculated for 14 locations across the U.S., shown in
Figure 14. The locations have a good history of temperature data and make an excellent
database for this study. The locations are: Atlanta-Hartsfield International Airport,
Georgia; Chicago O’Hare International Airport, Illinois; Cincinnati-Northern Kentucky
Airport, Kentucky; Dallas-Fort Worth International Airport, Texas; Des Moines

International Airport, lowa; Las Vegas McCarran International Airport, Nevada;
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Memphis International Airport, Tennessee; Minneapolis-St. Paul International Airport,
Minnesota; New York Laguardia Airport, New York; Philadelphia International Airport,
Pennsylvania; Portland International Airport, Oregon; Sacramento Executive Airport,

California; Tucson International Airport, Arizona; and Wright-Patterson AFB, Ohio.

nited States

00 Hlle:

Figure 14. Fourteen U.S. locations from which HDDs and CDDs are calculated
(modified from Mapquest.com, 2001).
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IV. Linear Regression Analysis

Data Manipulation for Linear Regression Analysis

This study began with simple regression analysis between the HDDs and CDDs
for the 14 locations and all 13 teleconnection indices. The goal was to compare the 13
teleconnection indices with the HDDs and CDDs of the 14 locations for one, two and
three months in the future. All HDDs, CDDs, and teleconnections were put into data
vector columns, temporally from January 1950 to December 1999, for 13 of the 14
locations. Chicago’s data started in 1959, therefore Chicago data manipulations were
accomplished from this date forward. The vector format used was necessary for the
statistical program to properly accomplish regression analysis, but created missing data
problems. The monthly teleconnection indices are created only in months the
teleconnections are an RPCA leading mode (in the top ten). Except for the NAO and SOI
standardized (SOI_S), none of the teleconnections are in a leading mode every month of
the year, thus the statistical will not use the data if there is missing data in any row of the
combined columns.

To correct these problems 12 different matrices were created, one for each month
of the year, and only those teleconnection indices that were RPCA leading modes in the
specific month were added to the matrix. Needing to compare all twelve months of
teleconnections with each location’s HDDs and CDDs for one, two, and three months in
the future significantly, increased the needed analysis time. Therefore due to time

constraints, the data were combined to create seasonal values.
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The months were combined to create seasons and then the seasons were separated into

categories, shown in Table 1.

Table 1. Monthly periods used in summations of HDDs and CDDs to create seasons.

Winter (HDD’s) Summer (CDD’s)
October-December OND April-June AMJ
November-January NDJ May-July MJJ
December- DJF June-August JJIA

February

January-March JFM July-September JAS
February-April FMA August-October ASO
March-May MAM September-November SON

HDDs were summed into three-month seasons from October-May and CDDs were
summed into three-month seasons from April-November. This process decreased the
number of needed comparisons. The goal, at this point, was to compare the
teleconnection indices in RPCA leading modes in a particular month with the summation
of the next three month’s HDDs or CDDs, depending on the month being compared for
each location. Before these comparisons were completed, 10 years of data were
randomly selected and removed to create an independent verification database.
Linear Regression Analysis

Linear regression was accomplished on the data using leading mode

teleconnections from May and the summed CDDs from June-August. The first output
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statistic taken into consideration was the value in the significance column in the analysis
of variance (ANOVA) table, shown in Table 2. This is commonly known as the p-value
in statistical references and can be compared to the significance level of 0.01. If the p-
value is less than 0.01 then at least one of the predictors (teleconnection indices) creates a
statistically good model for the dependent variable (HDDs or CDDs) at the 0.01

significance level.

Table 2. ANOVA table output from linear regression. A p-value in the Sig column of
less than 0.01 indicates a good model.

ANOVA
Model Sum of df Mean Fi Sig.
Squares Square
Regression|679422.475 10]67942.247 3.825 .002
Residual[515055.500 29[17760.534
Totall 1194477.97| 39
5
a Predictors: (Constant), SOI_S, PNA, EAWR, PT, NAO, SCA, EA_JET, NP, EP, WP
b Dependent Variable: NUM_AT

The value in the significant column of the coefficients table, shown in Table 3, is used to
evaluate which predictors were statistically sound. Those with p-value greater than 0.05
were eliminated from the model and linear regression was rerun. This procedure was
repeated until the best model was gained. Ideally, an ANOVA p-value of less than or
equal to 0.01 with p-values of the predictors in the coefficients table of less than or equal
to 0.01 result in the best model; however, it was not always possible to reach this goal.
While running the linear regression, the Adjusted R-squared parameter in the model

summary table, shown in Table 4, was considered.
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Table 3. Coefficients table output from linear regression. A p-value of 0.01 in the Sig
column is desired for a significant model. The predictors with the greatest p-value were
eliminated and the analysis was run again.

Coefficients
Unstandardized Standardized [ Sig.
Coefficients| Coefficients|
Model B Std. Beta
Error
1| (Constant) 1187.300] 23.599 50.311 .000)
NAO| -12.627| 23.333 -.069] -.541 .593
EA JET] -.907| 25.697 -.005 -.035 .972)
WP 91.944| 25.580 .531] 3.594 .001
EP| 36.439[ 28.100 74 1.297 .205]
NP 56.544| 22.089 .367[ 2.560 .016]
PNA| -25.205] 23.185 -.138| -1.087 .286)
EAWR -67.043| 25.475 -.335 -2.632 .013
SCA| -22.762| 20.866 -.139 -1.091 .284
PT| -17.405( 25.303 -.098| -.688 .497|
SOl S 43.276] 30.210 221 1.432 .163
a Dependent Variable: NUM_AT

Table 4. Model summary table output from linear regression. An Adjusted R-squared
greater than 0.60 is desired.

Model Summary

Adjusted Std. Error of
Model R R Square [ R Square | the Estimate
1 .7542 .569 420 133.2687

a. Predictors: (Constant), SOI_S, PNA, EAWR, PT, NAO,
SCA, EA_JET, NP, EP, WP

The R-squared value can be interpreted as the proportion of the variation of the
predictand that is “described” or “accounted for” by the regression (Wilks, 1995). The R-
squared is adjusted when there are multiple predictands, creating the adjusted R-squared
coefficient. An adjusted R-squared of 0.60 (describing 60% of the predictand variance)

or greater is the goal if any predictive model were to be discovered. As one can see from
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Table 5, the greatest adjusted R-squared, for just one year, was 43%. The rest of the
results using May teleconnections versus June-August CDDs are listed in Table 5. The
results are not conducive to a predictive model, so data mining techniques were used for

further exploration.

Table 5. P-value and adjusted R-squared from the ANOVA table for the 14 locations.
Linear regression used May teleconnections and June-August CDD’s.

City | ATL CHI CIN DFW DM LV MEM

p-val <0.0001 | 0.085 | 0.005 | 0.001 | 0.110 | 0.002 | 0.002

Adj R? 0.426 | 0.119 | 0.131 | 0.240 | 0.329 | 0.097 | 0.310
City MIN NYL PHI POR | SAC | TUC | WPAFB

p-val 0.005 0.139 | 0.001 | 0.002 | 0.002 | 0.016 0.062

Adj R? 0.289 0.285 | 0.053 | 0.314 | 0.290 | 0.205 0.114
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V. Tree-Based Statistical Models

Overview

Tree-based statistical models are a recent development in statistics that have been
applied to prediction problems in widely diverse fields of endeavor, but are, as of yet, not
well known in the atmospheric sciences (Burrows and Assel, 1992). This study uses
classification and regression trees (CART) analysis to explore the data. CART is a tree-
based statistical procedure for application to classification and regression problems.
Breiman et al. (1984) found that error rates of CART solutions are nearly always as low
or lower than solutions by linear regression. Error rates are also significantly lower for
problems involving complex predictands and many predictors (Burrows and Assel,
1992).

From a database of predictand cases and accompanying predictors, CART
establishes decision trees that are a classification of categorical predictands or a
regression of continuous predictands. A decision tree consists of a tree-like structure of
binary decisions rules. At each decision point (node) a case will branch either to the left
or right based on a test against a specific predictor value, and will continue branching
until a final point (terminal node) is reached. CART uses input parameters of tree length,
parent node size, and child node size to determine the number of nodes. It uses the inputs
to search for the tree that provides the least error when used with independent data. In
this study, the independent data are represented by the ten years of data that was withheld
from the original dataset. After a tree is calculated, a process of eliminating terminal

nodes (pruning) is accomplished to make the tree a more effective model. Categorical
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predictors are used in classification tree analysis and continuous predictors are used in
regression tree analysis (Burrows and Assel, 1992).

The goal of this study at this point was to produce a predictive tool, using CART
analysis, for seasonal HDDs or CDDs that would be more accurate than using the
climatological normals or simple frequency distributions of occurrences.
Classification Tree Analysis

Classification trees were the first tree-based models attempted. To use this model
the data had to be categorized into a nominal data format. Data were categorized into
thirds, using categories of above normal, normal, and below normal. Each HDD and
CDD vector was sorted into ascending order, then the separation values between the
upper third, the middle, third and the lower third were calculated. All data between the
calculated figures in each vector were considered in the specific group of above normal,
normal, or below normal categories.

An example of such a tree is shown in Figure 16. A brief explanation of this
classification tree provides the reader a general idea of the tree’s structure. This tree was
computed using data from Minneapolis, Minnesota, using May teleconnections and
categorized June-August CDDs. Specific “parent” and “child” node inputs are user
provided. In this tree the parent node of any split must have at least n=6, n being the
number of data points (years) in the node, and the child node must be at least n=2. If
these conditions are not met, the node will stop splitting. For example, node 5 has n=6,
but the program calculated that if this node was split, one of the resulting splits would not
be at least n=2. The split was therefore stopped. However, in node 4, with n>6, a split

was accomplished because the child nodes were both at least n=2.
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To reach a specific node, a series of conditions must be true. For example: to get to node

10 the EP must be less than or equal to 0.45, the EAWR must be greater than or equal to -

0.2, and EA_JET must be greater than -0.35.
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Figure 15. Example of a classification tree. This example is a tree run with data from
Minneapolis using May teleconnections and June-August CDDs. Three categories are
present; 2 is above normal, 1 is normal, and 0 is below normal.
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Extracting any predictive information proved difficult in the classification trees. For
example: node 9 shows nine remaining data points from the original 13 in the below
normal category (69%), with nine of the 10 data points in that node (90%). This gives a
total probability of ending in node 9 of 62% below normal, which is not a bad result.
However, the best probabilities calculated from the trees were in the mid 60% range and
only in a few nodes. In addition, specific conditions needed to exist to arrive in the
nodes. In this example, node 9 only incorporates 25% of the total data. This result
created difficulty in creating a tool that would efficiently incorporate the whole dataset.
It didn’t appear there was any likelihood of creating any useful predictive tools from
classification trees, so a different form of CART analysis was accomplished.
Regression Tree Analysis

The regression tree differs from the classification tree in that it uses continuous
data instead of classified nominal data. Figure 17 is an example of such a regression tree.
A brief explanation of this example tree will give the reader a general idea of the tree’s
structure. This tree was computed with the same data from Minneapolis, Minnesota,
using May teleconnections and June-August CDDs. The user inputs three initial
constraints before a tree can be grown. The inputs are maximum number of levels,
minimum number of data points necessary in the parent node before a split can be
performed, and the minimum number of data points in the child node before a split can be
performed. In the example shown in Figure 17, the input values are 10 maximum levels
of the tree, 6 minimum data points in the parent node, and a minimum of 2 data points in
a child node. The regression tree starts with a beginning node, node 0. In this example,

node 0 represents the summed CDDs from June-August for Minneapolis. It displays the
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mean standard deviation, number of data points, and the percent of data that is in that
particular node. Each parent node is split into two child nodes until the splitting is

stopped by user specified inputs.
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Figure 16. Example of a regression tree. Shown is a tree run with data from Minneapolis
using May teleconnections and June-August CDDs.
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The fundamental idea to make a split is to select each split of a node so that the data in
each of the child nodes are “purer” than the data in the parent node (Breiman et al.,
1984). For continuous target variables, the least-squared deviation (LSD) impurity
measure is used. The LSD measure (R(?)) is the within-node variance for node ¢, and is

equal to the resubstitution estimate of risk for the node. It is defined as:

- - 5
R(r) = N()%(y, y(1))’ )

where N(7) is the number of cases in the node ¢, y, is the value of the target variable
(location HDDs or CDDs), and y, is the mean for node «. The LSD criterion function for
split s at node ¢ is defined as:

@(s,0) = R(t) = p, R(1,) = prR(1z) (6)
where p, is the proportion of cases in # sent to the left child node, p, is the proportion
sent to the right child node, and ¢, and ¢, are the nodes created by the split s.

The software runs all possible splits on the node and splits the node at the location of the
largest decrease in impurity. This value is shown on the tree as the “improvement”. The
process is then repeated at each node (SPSS, 2001).

Application of Regression Tree Analysis

The goal of this study was to come up with a predictive tool for HDDs/CDDs using
teleconnection indices. To test the process at 14 locations, May teleconnections and
June-August CDDs were used. First, a goodness of fit test for normality was
accomplished on the CDDs in each city using the Shapiro-Wilk test. The results are

shown in Table 6.
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Table 6. Shapiro-Wilk goodness of fit test for normality. A p-value > 0.05 shows a
normal distribution. DFW and TUC did not pass the test.

City | ATL | CHI | CIN | DFW | DM LV MEM
W-S test 0.9910.2910.26 | 0.01 |0.420.55 |0.31
City MIN | NYL | PHI | POR | SAC | TUC | WPAFB
W-S test 0.84 1 0.22 1 0.69 | 0.25 | 0.93 | 0.004 | 0.12

A p-value > 0.05 in the Shapiro-Wilk test indicates a normal distribution. Dallas, and
Tucson did not pass the normality test, however, only one data point for Tucson and two
for Dallas created a non-normal distribution, so the exploration for a predictive outcome
continued with normality assumed for all locations. With the goal of coming up with a
predictive tool that is better than the climatological normals or simple frequency
distributions in mind, it was decided to create a 95% prediction interval to create a range
of CDDs. The mean and standard deviation from each tree node was used to create a

95% prediction interval which is defined as:

X 15,1 13 1+l (7)
n

where X is the mean from the calculated node, ¢ is the critical value for a t-distribution, »
is the number of data points in the node, and s is the sample standard deviation.

The next step in tree-structured statistics is to prune the tree. Pruning consists of
eliminating the terminal nodes necessary to create the best effective tree. How to prune a

tree depends on the data being analyzed. The pruning criteria for the trees in this study
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were calculated during the verification of the process created. The independent data (ten
years) withheld from the original data were run through the trees. The teleconnections
for each year were run through the tree to calculate which node was the terminating node,
then the specific year’s CDDs were checked to see if they fell within the created
prediction interval from the same node. During the verification process the data were run
through multiple models with different criteria for pruning the terminal nodes. It was
found that a node with n<6 needed to be pruned. As shown in Figure 18, those nodes of
the tree with n<6 are terminated.

Results of model verification are shown in Table 7. Verification results for the

individual locations were between 80% and 100% with an overall 88% verification rate.

Table 7. Percentage of CDDs that were in the predicted range after verification data
were run through the trees. An overall verification rate of 88% was achieved.

City ATL | CHI | CIN | DFW | DM | LV MEM

% CDDs in final node | 80 | 87.5 |80 | 100 | 90 80 80

City MIN | NYL | PHI | POR | SAC | TUC | WPAFB

% CDDs in final node | 90 | 80 |90 | 100 | 100 |90 |90

Results vs. Frequency Distribution
The goal of this study was to create a predictive tool that was better than the

climatological standard normals or simple frequency distributions of CDDs/HDDs
occurrences. Table 8 shows comparisons of the simple frequency distributions of
occurrences of Minneapolis June-August CDDs and the created 95% prediction interval

for valid nodes of the tree shown in Figure 18. The new calculated forecast ranges are
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Figure 17. Example of a pruned regression tree. This example tree was run with data
from Minneapolis using May teleconnections and June-August CDDs. The pruned




shaded in gray. The reduction of the original CDD range is quantified by calculating a
ratio of the new forecast range, for the individual nodes, to the original CDD range and
subtracting this value from one. This reduction percentage is multiplied by the
climatological frequency distribution for each individual node to obtain an expected
forecast range reduction percentage. The individual node expected forecast range
reduction percentages are summed to obtain a total expected range reductions. This
reduction percentage can be viewed as the total expected forecast range reduction over
climatology.

As an example from Table 8: the total range of summed CDDs are broken into 14
ranges between 248 and 909, with the frequency distributions of occurrences for the CDD
ranges in the next column. The calculated percentage the range is reduced in node 11 is
the ratio of the new forecast range (626-390 = 236 CDDs) with the total range (661
CDDs). Therefore, in node 11 the range is reduced (1-(236/661)) or 64%.
Climatologically, over the 40-year period of record, the calculated CDDs are in node 11
12.5% of the time. The product of the reduced range (64%) and the observed
climatological frequency of occurrences per node (12.5%) shows an expected forecast
range reduction for node 11 of 8% over climatology. Summing all of the individual node
expected forecast range reduction percentages shows a total expected forecast range
reduction of 36.45% over climatology for Minneapolis. The expected forecast range
reduction for all 14 locations are shown in Table 9, with an overall expected forecast
range reduction of 35.7% over climatology. This value varies from 16.8% for Cincinnati

to 58.9% for Tucson.
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Table 8. Expected forecast range reduction. Prediction intervals computed in each node
are shown in gray. The percentage the range is reduced is multiplied by the
climatological frequency distribution to obtain an expected forecast range reduction. The
individual node expected forecast range reduction percentages are summed to obtain a
total expected forecast range reduction over climatology, 36.45% in this case.

Node
Frequency
MIN CDD |Distribution 0 1 2 4 5 8 9 11 14
>248<=295 | 0.0250 0 0 0 0 0 0 0 0 0
>2095<=342 | 0.0000 1 1 0 1 0 0 0 0 0
>342<=390 | 0.0500 1 1 0 1 0 0 0 0 0
>390<=437 | 0.0250 1 1 1 1 1 1 1 1 0
>437<=484 | 0.1500 1 1 1 1 1 1 1 1 1
>484<=531| 0.0750 1 1 1 1 1 1 1 1 1
>531<=579 | 0.2000 1 1 1 1 1 1 1 1 1
>579<=626 | 0.0750 1 1 1 1 1 1 1 1 1
>626<=673 | 0.1000 1 1 1 1 1 1 1 0 1
>673<=720 | 0.1000 1 1 1 1 1 1 0 0 0
>720<=767 | 0.0750 1 1 1 1 1 1 0 0 0
>767<=815| 0.0250 1 1 1 0 1 0 0 0 0
>815<=862 | 0.0500 1 1 1 0 1 0 0 0 0
>862<=909 | 0.0250 1 0 1 0 1 0 0 0 0
>909 0.0250 0 0 1 0 1 0 0 0 0

Percent reduction in

forecast range per 7 14 | 22 | 29 | 22 | 43 | 57 | 64 | 64

individual node (%)

Climatological frequency

distribution of occurrences

per node (40 years) 0.000]0.075| 0.075/0.1000.375|0.050/0.050/0.125/0.150

Total
Expected forecast range
reduction. (%) 0.00] 1.05] 1.65 2.90] 8.25 2.15 2.85 8.00 9.6036.45
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Table 9. The total expected forecast range reduction over climatology for the 14 forecast
locations. The overall average expected forecast range reduction for this example is
35.7% over climatology.

City | ATL | CHI | CIN | DFW | DM | LV MEM

Expected forecast 39.7133.316.8|32.2 |48.2|46.4|34.5

range reduction (%)
City MIN | NYL | PHI | POR | SAC | TUC | WPAFB

Expected forecast 36.5(39.4|36.1 249 |30.2|58.9|22.7
range reduction (%)

42



V1. Conclusions and Recommendations

Conclusions

This study has introduced a new technique to significantly increase the accuracy
of seasonal long-range temperature forecasts. It statistically explored teleconnection
indices and, using a tree-based statistical regression, created a predictive tool for future
CDDs and HDDs summed over three months.

Temperature data were gathered from 14 U.S. locations in order to represent most
of the climate regimes across the country (Objective 1). HDDs and CDDs were
calculated using the temperature data gathered to use as predictor variables (Objective 2).
Teleconnection indices from the 13 most significant Northern Hemispheric
teleconnections and the Southern Oscillation Index in the Southern Hemisphere were
gathered to use as predictand variables (Objective 3). Ten years of data were then
removed for independent verification of the technique created (Objective 4).

Linear regression analysis was accomplished on the data using teleconnections
from May and summed CDDs from June-August. Valid models were found during the
analysis, but the amount of variance of the predictand explained by the linear regression
was rarely greater than 35%, in which case, creating a predictive tool would be difficult
(Objective 5).

Tree-based analysis was accomplished on the data (Objective 6), first using
classification tree analysis; however, extracting any predictive information also proved

difficult with this type of approach. Regression tree analysis was then accomplished on
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the data. Trees were created and the predicted mean and standard deviations were used to
created a method for predicting seasonal CDDs and HDDs.

This new technique creates a range of HDDs/CDDs that is significantly more
accurate than simple frequency distributions of occurrences. The predicted mean and
standard deviations from the regression tree output were used to calculate 95% prediction
intervals for each of the nodes. Teleconnections were run through the trees to compute a
predicted node, and then the new interval for the predicted node was used as the
predictive range for the HDDs/CDDs for the particular forecast months (Objective 7).

This new model verified, using 10 years of independent data withheld from the
original data set (Objective 8), at an excellent 88% overall verification rate with 3 of the
12 cities verifying at 100%. Two other cities, which verified at the 90% significance
level, failed in the randomly selected year of 1988. This year is a well-known El Nino
year and record temperatures were experienced in some parts of the U.S. The summed
CDDs for Minneapolis and WPAFB in 1988 fell outside the range of the original data set.
Extrapolation of the model to fit the data outside the range of the original data set was not
accomplished because the new fitted relationship may not have been valid for such
outlier values. Had the numbers for 1988 been in the original data set, the results may
have been even better than they were with possibly two more cities verifying at 100%.

An expected range reduction percentage over climatology was created from the
calculated ranges. An average expected forecast range reduction percentage of 35.7%
was found in this study.

The question of spatial homogeneity arose during this study, but the scope of this

study could not focus on the aspect of spatial homogeneity. However, because WPAFB
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was included in the study, two cities, Cincinnati and WPAFB, were in close enough
spatial proximity of each other to investigate the spatial homogeneity of the created
prediction trees. Cincinnati verification data were run through the WPAFB trees and the
results were comparable to the WPAFB results. Additionally, WPAFB verification data
were run through the Cincinnati trees and the results were comparable to the Cincinnati
results. These results show spatial connections between the computed trees (Objective
9).

Overall this study attempted to improve upon the methods currently used to
produce long-range forecasts of temperature over the U.S. Excellent results were
achieved and predictive tree tools were created which are deemed ready for users to use
now for long-range temperature forecasts. It is the conclusion of this study that this
innovative method works. It is also concluded that this method may be used to predict
multiple atmospheric variables, well in advance, for most locations within the Northern
Hemisphere.

Recommendations

This study created a new technique in the way we can analyze atmospheric
parameters. The hope is that this study will be a stepping-stone to future research to fully
understand the magnitude of this type of analysis. Continuation of research on this study
should be according to the following:

1. Try to understand how the regression tree analysis relates to physical atmospheric
synoptic circulation patterns. Understanding further why the regression tree
analysis splits where it does and why it uses the teleconnections in the order that it

does.
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2. Try to extract the model from the software in order to fully automate the
technique. The teleconnections are currently run through the trees manually to
calculate the terminating node. The new prediction intervals are created after the
data calculated in the trees nodes are manually entered into a statistical
spreadsheet. The complete process needs to be automated.

The research opportunities using this process are limitless. Currently DoD is
looking for long-range seasonal forecasts for parameters over Afghanistan. This method
could be used anywhere in the Northern Hemisphere. This method could also be used to
predict any parameter, to include the vital ones necessary in a wartime scenario, such as
cloud cover, precipitation, and visibility. This information could revolutionize long-
range prediction efforts to help with humanitarian aid operations for the timing and

movement of supplies.
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Appendix: Regression Trees

The appendix contains the regression trees used in this study, which can be used as a
predictive tool. They were created using May teleconnection indices and summed CDDs
for June-August. Using the predicted mean and standard deviation, prediction intervals
are made for each valid node (n>5). Overall, this prediction interval is 90% likely to
contain the predicted HDDs/CDDs for the upcoming June-August with a 35.7% overall

decrease in expected range over climatology.
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Figure 18. Atlanta regression tree.
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Figure 20 (continued). Cincinnati regression tree.
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Figure 22 (continued). DeMoines regression tree continued.
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Figure 23. Las Vegas regression tree.
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Figure 23 (continued). Las Vegas regression.
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Figure 24. Memphis regression tree.
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Figure 25. Minneapolis regression tree.
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Figure 25 (continued). Minneapolis regression tree.
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Figure 26. New York, LaGuardia regression tree.
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Figure 27. Philadelphia regression tree.
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Figure 27 (continued). Philadelphia regression tree.
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Figure 29. Sacramento regression tree.
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Figure 29 (continued). Sacramento regression tree.
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Figure 30. Tucson regression tree.
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Figure 30 (continued). Tucson regression tree.
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Figure 31. WPAFB regression tree.
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Figure 31 (continued). WPAFB regression tree.
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