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AFIT/GM/ENP/02M-01 
Abstract 

 
 
 This research compares biases of the Reisner Mixed-Phase Explicit Moisture 

Microphysics graupel (Option 7) and non-graupel schemes (Option 5) to determine if 

including graupel and riming processes within the Fifth Generation Mesoscale Model 

(MM5) will lead to improved forecasts of winter precipitation over Korea and Japan.  

The main purpose of this research was to make a recommendation to Air Force Weather 

Agency (AFWA) as to whether a more computationally expensive scheme is better suited 

for the East Asian theater.  The ultimate goal is to find a way to reduce the negative 

impact winter precipitation places on military operations and public safety. 

 To explore the biases of these two Reisner schemes, MM5 forecasts were 

generated every 12 hours for a 20-day case period within January 1998.  Gridded 

meteorological fields were interpolated to the station coordinates of four verification sites 

within the East Asian domain and radiosonde observations were used to compare the 

differences between the average temperature and water vapor errors of the two cloud 

microphysics schemes.  Various scores were used to compare the success of the two 

Reisner schemes to categorically forecast precipitation type at the surface.  Analysis of 

the results shows significant differences between the schemes in the magnitude of 

humidity errors within the lower atmosphere of the model and provides evidence that the 

more complicated Option 7 microphysics will not increase the skill of the MM5 to 

forecast winter precipitation for Japan and Korea.  The underlying conclusion of this 

research is that AFWA should not alter the cloud microphysics scheme currently 

employed to determine winter precipitation type for its East Asian forecast window.
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VERIFICATION OF MM5 CLOUD MICROPHYSICS SCHEMES FOR 
EAST ASIA 

 
 
 

I. Introduction 

1.1. Background of the Problem 

The Chinese philosopher general Sun Tzu wrote the following words some 2,500 

years ago:   “If you know the enemy and know yourself, your victory will not stand in 

doubt; if you know Heaven and know Earth, you make your victory complete.” By the 

word “Heaven”, Sun Tzu meant the weather and its impact on warfare.  This ancient truth 

is still very applicable today.  Winter precipitation with its associated hazards impacts all 

aspects of military operations in any theater of warfare.  Winter precipitation in the form 

of snow or ice storms can have disastrous consequences in terms of loss of life and 

destruction of property.  In addition, both snow and freezing rain can have a significant 

impact on aircraft operations and the weapon systems employed by the United States Air 

Force (USAF). 

Snowfall itself can create hazardous visibility conditions during the launch and 

recovery phases of aircraft operations.  Freezing rain also has an extremely adverse 

impact on the performance of aircraft.  USAF basing locations hit with a major snow or 

ice storm can expect at least a temporary loss of operational capability due to the need for 

snow or ice removal on runways, aircraft, roads, and equipment.  Winter precipitation 

also has an adverse impact on offensive air operations.  Freshly fallen snow has an 

average albedo of 0.8-0.9 (Barry and Chorley, 1968), which can affect the accuracy of 
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modern precision-guided munitions (PGMs).  A ground-based target in a background of 

snowfall or ice cover will have a degraded infrared signature making it extremely 

difficult to image.  With the air superiority enjoyed by the U.S. military in conflicts since 

World War II, our nation’s enemies have used poor winter weather conditions to their 

advantage; for example, the 1950 winter offensive by Chinese forces during the Korean 

War.  Proficient winter weather forecasting can minimize any advantage such as this to 

the enemy. 

 Yet, for USAF weather forecasters, forecasting winter precipitation is a very 

challenging endeavor.  Since subtle environmental changes can result in different 

precipitation types, understanding and predicting winter precipitation in an operational 

environment proves both difficult and tasking; especially when considering the daily time 

constraints most operational forecasters are faced with.  Therefore, USAF weather 

forecasters are placing ever-increasing reliance on numerical weather prediction (NWP) 

models for the forecasting of winter precipitation types.  This research compares biases of 

two cloud and precipitation microphysics schemes of the USAF’s primary operational 

NWP tool, the Fifth Generation Mesoscale Model (MM5), in forecasting winter 

precipitation types over Korea and Japan.  

1.2. Statement of the Problem 

Winter precipitation poses a negative impact to military operations, target 

acquisition, and public safety in general; therefore, reliance on the MM5 to accurately 

forecast winter precipitation will have adverse effects if biases within the model are not 

fully identified and understood by forecasters.  Although MM5 is a fine grid-scale 
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numerical model, it requires a parameterization scheme to represent precipitation 

processes that occur on the sub-grid scale within the model.  The MM5 used by the 

USAF utilizes the Reisner Mixed-Phase Explicit Moisture Microphysics option to handle 

these precipitation physics (MetEd, 2002).  Biases within the Reisner mixed-phase 

scheme can be with the timing of the model, the MM5’s thermal or moisture fields, or the 

vertical and horizontal resolution of these fields.  An additional limitation of the Reisner 

mixed-phase scheme currently used is that it doesn’t allow for riming and graupel 

processes within the atmosphere.  Therefore, it’s possible the model may misrepresent 

phenomena where these processes are important.  However, the latest version of the 

Reisner scheme does account for riming and graupel processes. 

The USAF utilizes several model windows for MM5 coverage of areas vital to the 

national interests of the United States.  New windows are created as needed to focus on 

specific areas of interest (Operation Enduring Freedom for example).  A worldwide 

verification study would be a difficult undertaking, therefore, it is necessary to focus on 

one theater of operations for feasibility reasons even though it is hoped the results will 

apply worldwide.  Since the continental United States has been the main focus of most 

MM5 verification studies, East Asia is the focus of this particular research.  Large 

numbers of U.S. military are stationed within this region, which experiences harsh winter 

weather conditions.  This research particularly focuses on four locations:  Osan Air Base 

(AB), South Korea; Kwang-Ju AB, South Korea; Misawa AB, Japan; and Wajima, Japan.  

The first three of the previously named locations are vital to the national security interests 

of the United States and are of great importance to U.S. Air Force operations in the 

region.  Wajima was chosen to bring spatial balance to the sample data of the experiment 
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since research has shown the city lies within a region where graupel processes are known 

to be important mechanisms in the formation of winter precipitation (Hariyama and Sato, 

1991).  All four locations have widely different meteorological regimes that might cause 

the occurrence of winter precipitation types.  Importantly, these locations all have 24-

hour surface observing sites co-located with upper-atmospheric sounding sites and all 

have complete meteorological records spanning back many decades. 

 

 

Figure 1.  MM5 inner nest window used in the study.  The map depicts locations used for 
forecast verification. 

 

This research compares biases of two cloud microphysics schemes within the 

MM5 numerical weather prediction model used to forecast winter precipitation for these 
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sites in Korea and Japan.   Comparing the Reisner mixed-phase no-graupel scheme with 

the latest Reisner graupel scheme shows if these riming and graupel processes 

significantly increase the MM5’s skill to forecast winter precipitation for East Asia.  

Understanding any biases in MM5 winter precipitation schemes for the East Asian model 

window will improve prediction, increase weather warning lead times, and lessen the 

impact of winter precipitation on military operations in this highly critical theater.  The 

results may also apply to MM5 windows worldwide in areas with similar winter weather 

regimes. 

1.3. Research Objectives 

 The primary goal of this research is to examine biases in the MM5 numerical 

weather prediction model used in forecasting winter precipitation for the Korea and Japan 

by comparing two cloud microphysics schemes.  The specific tasks necessary to achieve 

this goal are to: 

1. Select a suitable case period to represent the winter weather regimes of Korea and 

Japan.  Collect all observational weather data relevant to this study including 

temperature, humidity, and wind profiles from the surface throughout the upper 

troposphere.  Perform a climatological data collection for Osan AB, Kwang-Ju 

AB, Misawa AB, and Wajima to provide a comprehensive database of winter 

precipitation events necessary for MM5 research. 

2. Ingest observational data into and compile the MM5 model.  This includes 

successfully setting up the East Asian domain window of the model to duplicate 

that used in forecasting by the USAF Weather Agency (AFWA) to include 
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duplicating all physical parameterizations used in AFWA’s operational MM5 

model. 

3. Run the MM5 model twice over the East Asian domain for every 12 hours of the 

selected case period using the Air Force Institute of Technology’s (AFIT) state-

of-the-art meteorology lab.  One run utilizes the Reisner non-graupel scheme, 

while the other uses the latest Reisner graupel scheme. 

4. Statistically compare the MM5 output representing forecasts of vertical 

atmospheric profiles over the subject areas to archived observational upper-air 

soundings.  In particular, dry-bulb temperature and mixing ratio profiles are 

compared in detail to determine average model bias.  Liquid mixing ratios from 0 

to -15ºC give an indication of the supercooled liquid water (SLW) content of the 

atmosphere.  In addition, the depth of any cold/warm layers is critical to the 

formation of winter precipitation. A thorough statistical analysis is evaluated to 

determine the performance of each scheme and prove if there are any significant 

differences in winter precipitation forecasts between the two schemes. 

5. Present the results of this study in the form of a formal thesis recommendation 

addressed to AFWA and other DoD archives as to which cloud microphysics 

scheme is better suited to forecast winter precipitation over East Asia.  If the more 

computationally expensive graupel scheme is desirable, recommend if the 

additional computing time required is worth the benefit of a more accurate MM5 

forecast. 
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II. Background and Literature Review 

2.1. Winter Precipitation Physical Mechanisms and Processes 

In order to understand the different microphysics schemes the MM5 uses to 

predict moisture variables that are used to derive precipitation type, knowledge of the 

physical mechanisms and processes of precipitation is important.  It is widely known that 

precipitation occurs through either the processes of collision and coalescence or ice 

crystal growth in the atmosphere. 

2.1.1. Warm Cloud Processes.  Collision and coalescence are the primary 

precipitation formation mechanisms of warm clouds.  A warm cloud is defined as a cloud 

that lays entirely below the level of the 0°C isotherm (Wallace and Hobbs, 1977) that is 

comprised of a high liquid content favorable for collision and coalescence (Rogers and 

Yau, 1989).  Collision and coalescence are not important in snow development, but they 

are known formation mechanisms for other types of winter precipitation (Bernstein, 

2000).  The process occurs in both cumuliform and stratiform type clouds although with 

generally different length and time scales (Rogers and Yau, 1989). 

In warm clouds, cloud droplets grow by condensation in a supersaturated 

environment.  However, condensation by itself is not adequate enough to form drops that 

will precipitate.  Growth to drop size is accomplished by collision and coalescence.  In a 

typical distribution of cloud droplets, some drops will be larger and have higher terminal 

fall speeds than others and these drops will fall and impact with smaller drops.  Although 

not a totally efficient process, enough smaller drops are usually captured and coalesced 

by the larger drops.  If the drops grow large enough and are able to survive the updrafts 
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and downdrafts of the cloud without breaking up, they fall out of the base of the cloud in 

the form of rain or drizzle (Wallace and Hobbs, 1977). 

2.1.2. Cold Cloud Processes.  A cold cloud is defined as a cloud that extends 

above the level of the 0°C isotherm (Wallace and Hobbs, 1977).  There are two subtypes 

of cold clouds.  A mixed cold cloud has both supercooled water droplets and ice crystals, 

and its formation mechanisms include collision and coalescence and ice crystal growth, 

while a glaciated cloud only contains ice (Wallace and Hobbs, 1977). 

Droplets in a mixed cloud freeze into ice particles by homogeneous nucleation (no 

foreign particles) or by heterogeneous nucleation (Wallace and Hobbs, 1977).  

Heterogeneous nucleation is around a small particle known as a freezing nucleus.  The 

odds of heterogeneous nucleation occurring increases as the size of the supercooled drop 

increases.  In a cold cloud, ice crystals can form directly from the vapor phase if particles 

known as deposition nuclei are present (Wallace and Hobbs, 1977).  Table 1 depicts how 

the concentration of supercooled water droplets and ice particles depends on the location 

of cloud layers in relation to the 0°C isotherm. 

 In warmer layers of mixed clouds (0 to -15ºC), the concentration of ice particles is 

lower than that observed at colder temperatures, which allows for a higher storage of 

supercooled water.  At temperatures below -15ºC, the concentration of ice crystals in 

combination with lower vertical velocities (typically 0.01 to 0.1 m s-1) often associated 

with winter storms lowers the supercooled water concentration (Reisner et al., 1997).  

The formation of precipitation in cold clouds first begins with growth by 

deposition in supersaturated and supercooled environments.  However, the growth of ice 

particles by deposition is not enough to produce precipitation.  Riming and aggregation
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Table 1.  Concentration of supercooled water and ice particles within cold clouds.  
(adapted from COMET (1998)). 

0° to -4°C Entirely supercooled droplets 
-4° to -10°C Approximately 50% ice particles 

-10° to -20°C >95% ice particles 
 

are the processes that accomplish growth to precipitation size.  Riming occurs in mixed 

clouds when supercooled droplets collide with ice particles and freeze upon impact, thus 

increasing the mass of the ice.  Riming is a process that depletes supercooled liquid cloud 

water (Reisner et al., 1997).  When riming increases the size of the ice crystal such that 

the original shape is no longer discernable, the ice crystal is referred to as graupel.  The 

extreme case of graupel formation is hailstones found in thunderstorms.  Aggregation 

occurs when ice particles with differing terminal fall speeds collide with each other 

(Wallace and Hobbs, 1977).  As the size of an ice crystal increases due to riming and 

aggregation, the chances of further growth increases.  If the terminal fall speed of the 

enlarged ice crystal is large enough to overcome the updraft velocity of the cloud and the 

environment, the particle will precipitate (Wallace and Hobbs, 1977).   

Most winter precipitation is produced by nimbostratus.  The precipitation forms 

through the ice crystal process as outlined in Table 2.  In the ice crystal process, layers of 

the nimbostratus cloud colder than -20°C produce the ice crystals that precipitate to 

warmer layers where snow and graupel form by depositional growth, riming, and 

aggregation.  If nimbostratus persists over long enough periods with cloud tops 

temperatures around -15°C, winter precipitation is quite possible (Rogers and Yau, 

1989). 

 9



Table 2.  Temperature roles in precipitation development within nimbostratus clouds. 
(adapted from COMET (1998)). 

T < -20°C Primary supplier of ice crystals for 
precipitation development 

-10° > T > -20°C Layer of rapid diffusional/depositional 
growth 

0° > T > -10°C Riming/aggregation proceed more rapidly-
precipitation falls 

2.2. Types and Characteristics of Winter Precipitation 

An accurate forecast of winter precipitation type is very sensitive to the vertical 

profiles of temperature and moisture.  Small-scale differences of temperature and 

humidity can lead to drastic differences in precipitation type experienced.  Therefore, 

MM5 temperature and humidity biases are factors in the model’s ability to accurately 

resolve these temperature and moisture differences between layers. 

2.2.1. Precipitation Type RAOB Predictors.  There are several predictors 

established through statistical methods to determine precipitation types and 

characteristics from rawindsonde observations (RAOB) or upper-air soundings.   The first 

predictor is the mean temperature of the layer from the surface to 1000 meters above 

ground level (AGL).  Temperature in this layer is important for discriminating between 

liquid and frozen precipitation.  The mean temperature of the 500-2500 meter AGL layer 

can help in identifying the chance for freezing precipitation to occur (Bocchieri, 1980). 

Another predictor of winter precipitation is the depth of the warm layer, if one exists.  A 

warm layer is defined by a temperature profile on a thermodynamic diagram that is 

completely greater than the 0°C isotherm (Bocchieri, 1980).  The larger the area of the 

warm layer, the greater the chance that frozen precipitation melts as it transverses through 

the layer. 
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 Wet-bulb temperature is a very important predictor of precipitation type.  Wet-

bulb temperature is used to account for the evaporational cooling that happens when 

precipitation falls through unsaturated air (Bocchieri, 1980).    If moisture is added to the 

environment by evaporation to the point of saturation, the resulting temperature is the 

wet-bulb temperature.  The less humid a layer of the atmosphere is, the greater the effect 

of evaporation.  Cooling associated with evaporation can reduce the degree spread 

between the actual temperature and wet-bulb temperature up until the point of saturation 

(Bocchieri, 1980).  Evaporating cloud droplets and precipitation are always at the wet-

bulb temperature.  Riming of snowflakes will deplete cloud water content and increase 

evaporational cooling and the wet-bulb temperature within the subsaturated layer beneath 

the precipitating cloud.  In slight contrast to the wet-bulb temperature is the dew point 

temperature, which is defined as the “temperature to which a parcel of air is cooled at 

constant pressure until the water is saturated with respect to a plane surface of liquid 

water” (Wallace and Hobbs, 1977). 

 Two other precipitation type predictors are also related to wet-bulb temperatures.  

The first is the depth of the cold layer at the surface, if such a layer exists, with respect to 

the wet-bulb temperature profile.  The second related predictor is the area on a 

thermodynamic diagram the wet-bulb temperature profile makes with the 0°C isotherm 

(Bocchieri, 1980).  In addition, the number and spacing of vertical levels of an NWP 

model will determine whether the model can adequately resolve features of the cold and 

warm layer depths (Reisner et al., 1997). 

 Two additional moisture variables important in forecasting winter precipitation 

types are vapor pressure and the mixing ratio.  The liquid water saturation vapor pressure 
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(esw) is an equilibrium state over a plane surface of water.  The equilibrium state is 

reached when the rate of evaporation of molecules from the water surface to the air is the 

same as the rate of condensation from the air to the water surface (Wallace and Hobbs, 

1977).  Similarly, ice saturation vapor pressure (esi) is the pressure equilibrium of 

saturated air to a plane surface of ice.  Variables esw and esi are given by: 

esw 6.112 exp 17.67
T T0−

T 29.65−















1( )
 

esi 6.11 exp 22.514
6150

T
−





2( )
 

 
where T0 is the freezing point in Kelvin (Reisner et al., 1997).  Equivalently, the vapor 

pressure of a subsaturated air parcel (ew and ei) can be determined by substituting dew 

point in place of temperature in equations 1 and 2.  Since the mixing ratio is the ratio of 

the hydrometer mass (this includes cloud water, rain, snow, and graupel) to 1 kg of dry 

air, a parcel of air at saturation pressure is also at its saturation mixing ratio for water 

vapor (qsv) and ice (qsi) and these four variables are related by: 

qsv
0.622 esw

p esw−
3( ) qsi

0.622 esi

p esi−
4( )

 
 

Similarly, unsaturated mixing ratios for vapor and ice (qv and qi) are computed by 

substituting ew and ei for esw and esi in equations 3 and 4.  The mixing ratio is usually 

expressed in units of grams per kilogram (g/kg). 

2.2.2. Characteristics of Precipitation Types.  Although not in the category of 

winter precipitation, it is necessary to discuss the characteristics of rain and drizzle in 

order to distinguish these types from other forms of precipitation.  A general way to 
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distinguish between rain and drizzle is that rain is comprised of drops greater than 200 

µm in diameter (Stewart, 1985).  Rain occurs at the surface whenever the surface warm 

layer is deep enough to melt all the snow (or occasionally ice pellets) before they reach 

the ground (Stewart, 1985).  Because latent heat is released as snowflakes melt, there is 

usually an isothermal layer around 0°C when precipitation is happening (Stewart, 1985).  

Studies of sounding profiles and radar “bright bands” indicate the melting layer can be 

several hundred meters thick (Rogers and Yau, 1989). 

The typical vertical temperature profile for snow is colder than 0°C throughout 

the lower troposphere.  The probability of snow is not dependent on the slope of the lapse 

rate, but only on temperatures being less than freezing within the snow producing cloud.  

Snowflake size is also temperature dependent, with larger snowflakes more typical at 

temperatures near 0°C.  This is due to the increased aggregation of snowflakes, which is 

at its highest efficiency near freezing (Stewart, 1985).  Although produced at 

temperatures less than freezing, falling snow can exist at temperatures above freezing 

because the precipitation does not immediately totally evaporate or melt into rain. 

Mixed precipitation usually involves the presence of both rain and snow at the 

surface.  The 0°C isothermal layer is closer to the surface than what would be 

experienced in a strictly rain event.  This isothermal layer is usually on the order of 1 km 

deep.  Snowflakes that fall in a mixed precipitation event are usually large since 

aggregation conditions are ideal.  A mixed precipitation event can rapidly turn into a 

strictly snow event if evaporation of falling precipitation within the subsaturated layer 

beneath the precipitating cloud extends the freezing level down to the surface. 
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Freezing rain occurs when snow or ice pellets melt completely into supercooled 

droplets while falling through an inversion layer aloft before falling into a sub-zero layer 

near the ground level (Zerr, 1997).  There is insufficient time for the raindrops to refreeze 

before impacting the surface.  Freezing rain and freezing drizzle are considered more 

destructive than snow because the freezing precipitation coats exposed surfaces, 

including aircraft, in a glaze of ice. The warm layer aloft is on the order of 1 km deep, 

while the thickness of the surface subfreezing layer is also around 1 km.  Studies have 

shown that if a near surface layer is close to saturation and the ground is freezing, a 1000-

850 mb thickness value less than approximately 1314 meters and a 850-700 mb thickness 

value greater than approximately 1539 meters may indicate a possible freezing rain event 

(Stewart, 1985).  Studies have shown that cold air advection at the surface and warm air 

advection aloft (known as overrunning) is typically responsible for a typical freezing rain 

scenario (Zerr, 1997). 

The actual temperature profile between freezing rain and freezing drizzle events 

can be quite different.  Temperatures at the surface are usually colder in a freezing drizzle 

event and the saturated layer is usually shallower.  Studies have also shown that sizable 

minorities of freezing drizzle events don’t even have any warm layer above sub-freezing 

layer.  When this occurs, collision and coalescence of supercooled droplets is thought to 

be the main mechanism for freezing drizzle formation (Bocchieri, 1980). 

Similar to freezing rain, ice pellets occur when snow melts completely while 

falling through an inversion aloft before falling into a sub-zero layer near the ground 

level (Stewart, 1985).  However, as opposed to freezing rain, there is sufficient time for 

the raindrops to refreeze before impacting the surface.  Ice pellets are sometimes referred 
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to as sleet in North America and are described as small balls of smoothly glazed ice.  

Most ice pellets have a frozen center, although some have been observed having liquid 

centers.  This suggests that refreezing of the drop occurs from the surface inwards 

(Wallace and Hobbs, 1977).  Compared to freezing rain, ice pellet events occur with 

lower values of surface temperatures and thicker refreezing layer depths (Zerr, 1997).  

Similar to freezing rain, cold air advection at the surface and warm air advection aloft are 

present during an ice pellet event (Zerr, 1997). 

 As discussed previously, accurate forecasts of winter precipitation types are very 

sensitive to vertical profiles of temperature and moisture.  Small-scale differences in 

these model derived variables can mean drastic differences in the precipitation type 

predicted.  MM5 temperature and humidity biases are factors in the model’s ability to 

accurately resolve these temperature and moisture differences between layers.  

Inaccurately predicted temperature and humidity variables will contribute to incorrect 

forecasts of surface precipitation type in the MM5 post-process. 

2.3. General Description of the MM5 

 The MM5 is a mesoscale finite difference (centered in time and space) model that 

works on a nonhydrostatic assumption due to the fact that the atmospheric motions the 

model represents are too small for the hydrostatic assumption to be valid (Grell et al., 

1994).  The model allows for 4-dimensional data assimilation from radiosonde 

observations (RAOBs), surface observations, ship and buoy reports, and data from other 

numerical weather prediction models such as the Aviation (AVN) and Eta. 
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2.3.1. MM5 Horizontal Grid.  The MM5 can handle multi-nested windows each 

having a staggered grid.  In particular, the model utilizes the Arakawa B-grid (Grell et al., 

1994).  A depiction of the Arakawa B-grid is shown in Figure 2.  The model represents 

the horizontal wind field at the grid locations where the dots are.  Scalar quantities such 

as the 3-D temperature, mixing ratios (water vapor, cloud water, cloud ice, etc.) and 

vertical velocities are represented at the cross points (Grell et al., 1994).  

X X X X X X

X X X X X X

x x x x x x

X X x X x x X x X X
x x x x x x

x x x x x x

X X x X x x X x X X
x x x x x x

X X X X X X

X X X X X X

Figure 2.  Horizontal Arakawa B-grid used in the MM5 (adapted from Dudhia (2001)). 
 

 
2.3.2.  Sigma Levels.  The vertical coordinates for the MM5 are known as sigma 

levels.  Sigma levels redefine the vertical height coordinates to a variable that simplifies 

the model’s equations (Grell et al., 1994).  The MM5’s sigma levels are based on 

pressure at the surface and top layer of the model: 

 
σ = (p – pt)/(ps – pt)      (5) 
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where p is pressure, ps is pressure at the surface, and pt is pressure at the top layer of the 

model.  Sigma levels have the advantage that they follow the terrain of the model (Grell 

et al., 1994).  In the MM5, the only variable defined at each sigma level is vertical 

velocity.  Cross point scalar variables such as temperature and mixing ratio are defined at 

half-sigma levels.  A much more detailed description of the MM5 is provided in Grell et 

al. (1994). 

2.4. Parameterization Schemes 

The processes of NWP models occur on two scales, the grid scale and sub-grid 

scale.  Grid scale dynamics include momentum, advection, vorticity, and divergence.  

Although the MM5 is considered a “fine scale” model, it cannot resolve sub-grid 

atmospheric processes (with typical 45 or 15 km2 grids) with the finite difference method 

(COMET, 1998).  Examples of these processes are heat and moisture fluxes, planetary 

boundary layer (PBL) processes, cumuliform cloud formation, and the subject of this 

research -- precipitation physics.  Therefore, the model uses parameterization schemes to 

represent these physical phenomena.   Parameterization schemes interact with grid scale 

processes and with each other (COMET, 1998). 

2.4.1. Cloud/Precipitation Parameterization.  Both Reisner schemes are explicit in 

that they account for resolved precipitation physics (Grell et al., 1994).  Both schemes are 

activated whenever grid-scale saturation is reached.  The cross points represent the 

average conditions of the grid boxes; and the only moisture variable present at the time of 

model initialization is water vapor.  All other moisture variables receive a “cold start” in 

that they are not generated until the grid box reaches a critical value below complete 
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saturation when both schemes start to create cloud water and ice.  Whenever water vapor 

condenses into liquid or sublimates into ice, latent heat is released thus warming the 

environment.  As precipitation falls within the cloud, however, cloud temperatures drop 

and humidity increases as a result of evaporational cooling.  As precipitation falls from

 

1.  Reduction of rain by evaporation 11. Generation of rain by melting snow
2.  Generation of cloud water by condensation 12. Generation of graupel by collection or freezing of 
3.  Generation of graupel by deposition 13. Generation of snow by accretion
4.  Generation of ice by deposition or nucleation 14. Generation of graupel by accretion or collection 
5.  Generation of snow by deposition 15. Generation of rain by conversion or collection
6.  Generation of cloud water by melting 16. Generation of ice by freezing or collection
7.  Generation of snow by conversion or collection 17. Generation of snow by accretion of rain
8.  Generation of graupel by collection or collision of 18. Sublimation of snow
9.  Generation of graupel by collection or collision of 19. Evaporation of cloud
10. Generation of rain by melting graupel 20. Sublimation of ice
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Figure 3.  Reisner mixed phase parameterization schemes (adapted from Grell et al. 
(1994) and Reisner et al. (1997)).

 
 

the cloud, the subsaturated layer cools and moistens (COMET, 1998).  The Reisner 

schemes track precipitation as it falls (Reisner et al., 1997), resulting in a more realistic 

evaporational cooling rate compared to schemes that have precipitation falling 

immediately to the ground.
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2.4.2. Reisner Mixed-Phase, Non-Graupel Scheme.  The Reisner Mixed-Phase 

Scheme (Option 5 on the list of MM5 explicit moisture schemes) currently employed by 

AFWA has an advantage over implicit cloud/precipitation microphysics schemes in that 

it allows for the presence of supercooled water and ice crystals within the same vertical 

layer.  Supercooled liquid water is generated in response to the MM5’s vertical motion 

fields (Reisner et al., 1997).  Another advantage is that snow can exist at temperatures 

above freezing.  Option 5 carries variables for mixing ratios of water vapor (qv), cloud 

water (qc), cloud ice (qi), snow (qs), and rain (qr).   The interaction of these mixing ratios 

is depicted in Figure 3.  In Option 5, ice crystal concentrations are not directly predicted, 

but are prescribed by use of curves first specified by Fletcher (1962): 

 
ni = n0 exp [β(T0 –T)]      (6) 

 
In the “Fletcher Curve” ni is the ice nucleus concentration, T is temperature (K), n0 is a 

constant (10-2 m-3), β is a constant (0.6 K-1), and T0 is the freezing level temperature 

(Rutledge and Hobbs, 1984).  However, the number concentrations for rain and snow are 

directly predicted in Option 5 (Grell et al., 1994).  

It is important to note that the MM5 does not directly forecast surface 

precipitation types; rather, these are derived from the model predicted mixing ratios 

shown in Figure 3.   Rain, snow, and graupel that are generated at a model sigma level 

will fall to the next sigma level.  Falling between sigma levels, the precipitation will 

undergo evaporation, which will change the mixing ratio of the hydrometer.  It is this 

change in mixing ratio between sigma levels that is used to predict precipitation type 

(MetEd, 2002).  The first step of the post model run diagnosis of snowfall using the 
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Option 5 predicted qs fields is to calculate the slope intercept of the snow concentration, 

which is given by: 

 

N0s 1.718
6 ρw

ρd as Γ 4 bs+( )
π ρs

ρ qs









bs
4













0.94











4
4 0.94 bs−

7( )

 

 

In the above equation, as and bs are snowfall speed constants, ρd is the dry air density, ρs 

is the density constant for snow (100 kg m-3), ρw is the density constant for water (1000 

kg m-3), and Γ is the gamma function.  As the snow mixing ratio approaches zero, N0 

approaches infinity.  Therefore, the scheme sets an upper limit for N0 of 2 x 107 m-4 

(Reisner et al., 1997).  The next step in snowfall determination is calculation of the slope 

parameter for the snow distribution given by Rutledge and Hobbs (1984): 

λ s
π N0s ρs

ρd qs









0.25

8( )

 

 

From this, it is possible to determine the mass-weighted snowfall speed, which is given 

by Reisner et al. (1997) as: 

  
Vsf as

Γ 4 bs+( )
6

λ s
bs−

9( )
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Due to the effects of evaporation, precipitation of snow will change the snow mixing 

ratio according to: 

Precip snow( )
σ

Vsf ρd g qs
∂
∂

− 10( )
 

 
where g is the gravitational acceleration (Reisner et al., 1997).  If the fall rate for the 

snow mixing ratio at the surface is at least 2 x 10-7 g/kg per sigma level, snowfall is 

diagnosed at the surface (MetEd, 2002). 

2.4.3.  Reisner Mixed-Phase Graupel Scheme.  The Reisner Mixed-Phase Graupel 

Scheme (Option 7 on the list of MM5 explicit moisture schemes) is based on Option 5.  

However, the major difference between the two schemes is the inclusion of a mixing ratio 

variable for graupel (qg).  The scheme produces snow by accretion of cloud water, 

conversion of ice into snow, collection of ice by snow, and generation by depositional 

growth.  Option 7 introduces riming as processes in the growth of cloud ice, which 

directly influences snow production.  Riming depletes cloud water faster, causing 

evaporational cooling of the environment and an increase in wet-bulb temperature, which 

are conditions that will prevent snow from otherwise melting  (Reisner et al., 1997). 

 Option 7 also uses the Fletcher Curve for ice crystal initiation.  However, in order 

to limit the ice particle concentration at cold temperatures, a minimum limit of -27ºC is 

set (Resiner et al., 1997).  There is also a number concentration bound such that the 

scheme will not generate large numbers of ice particles at small values of qv.  The 

determination of snowfall is the same as that used with the Option 5 qs fields.  Although, 

the methods of snowfall determination are the same, snow mixing ratios will differ 

between the two schemes due to the presence of graupel since the two hydrometers 
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compete for the same supercooled liquid water.  Analysis of the Fortran code of Option 7 

reveals that the slope intercept of graupel concentration is given by: 

N0g 2.38
π ρg

ρd qg









0.92

11( )

 

where ρg is the density constant for graupel (400 kg m-3).  The slope parameter 

distribution can then be given by: 

λ g
π N0g ρg

ρd qg









0.25

12( )

 

which, in turn, is used to calculate the fall speed of the graupel: 

    

Vgf ag
Γ 4 bg+( )

6
λ g

bg−
13( )

 
In the above equation, ag and bg are constants in the fall speed relationship for graupel 

which have values of 19.3 and 0.37 respectively (Reisner et al., 1997).  Similar to snow, 

the precipitation of graupel will change the graupel mixing ratio according to: 

Precip gr( )
σ

Vgf ρd g qg
∂
∂

− 14( )
 

  
There are two ways Option 7 qs fields will lead to diagnosis of snow at ground 

level.  The first, similar to that described for Option 5 qs fields, occurs when the fall rate 

for the snow mixing ratio at the surface is at least 2 x 10-7 g/kg per sigma level.  The 

second prediction of snow occurs if the fall rate for the graupel mixing ratio at ground 
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level is greater than 1 x 10-6 g/kg per sigma level, the surface ambient temperature is 

between 0 and 2ºC, and the maximum rain mixing ratio at any level in the subsaturated 

air column is less than 0.05 g/kg or the graupel fall rate at the surface level is less than 

that for snow (Carbin, 1999). 

 The prediction of freezing rain at the surface is the same as that for rain except the 

surface temperature is below freezing and the fall rate for the rain mixing ratio at ground 

level is greater than 10 g/kg per sigma level.  The prediction of ice pellets is related to the 

graupel processes of Option 7.  A diagnosis of ice pellets at ground level happens when 

the qg fall rate at that level is greater than 1 x 10-6 g/kg per sigma level, the surface 

ambient temperature is less than freezing, the maximum rain qr at any level in the 

subsaturated air column is less than 0.05 g/kg, and the qg fall rate is greater than the qs 

fall rate (Carbin, 1999). 

2.5. Previous MM5 Winter Precipitation Verification Studies 

A literature review has found several previous verification studies that sought to 

expose biases in the MM5’s ability to forecast winter precipitation.  All of these studies 

focused on the continental United States and used varying cloud and precipitation 

microphysics schemes of increasing complexity.  The results of two studies that dealt 

with mixed-phase microphysics are briefly discussed here. 

Manning and Davis (1997) performed a statistical verification study of MM5 using 

satellite and RAOB data collected during the Winter Icing and Storms Project of 1994 

(WISP94).  WISP was an on-going project “designed to further our understanding of the 

dynamical and microphysical processes leading to the production and depletion of 
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supercooled liquid water in winter storms and to improve forecasts of aircraft icing” 

(Rasmussen et al., 1992).  WISP94 focused on the initiation of ice crystals and the scope 

of the project covered the entire Western U.S. (Manning and Davis, 1997). 

Manning and Davis (1997) ran a non-hydrostatic MM5 with 27 sigma levels.  There 

were three domains at 60, 20 and 6.7 km resolutions, and these grids were two-way 

nested.  Forecasts were run out to 24 hours and utilized Option 5 for the cloud 

microphysics scheme. 

In Manning and Davis verification study, radiosonde observations were compared 

to forecast MM5 soundings.  Data from RAOBs were interpolated at 40-meter intervals 

to match the vertical output from the MM5 (Manning and Davis, 1997).  Statistical 

comparisons between soundings and 12-hour and 24-hour MM5 forecasts were 

performed.  Analysis revealed that at the 12-hour point, the MM5 had a warm bias 

(>2°C) in the upper levels of the atmosphere near the tropopause and a cold bias (≈ 

0.75°C) in the lower levels.  At the 24-hour point, the MM5 showed a cold bias of 0.5-

1.0°C in the low levels (Manning and Davis, 1997).  

This study also showed moisture biases.  At 12 hours, the MM5 tended to over 

forecast mixing ratios from the surface to 800 mb and also between 600 and 300 mb.  The 

moist bias at these levels increased to a maximum of 35% over prediction by 24 hours.  

The upper-level bias tended to occur where the model determined the level of maximum 

ice cloud.  The bias statistics were found to be similar between the 60 and 20-km 

horizontal grids used in the project (Manning and Davis, 1997). 

 One hypothesis Manning and Davis put forth regarding the temperature and 

humidity biases found in the WISP94 MM5 verification study is that the MM5 is prone to 
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overforecast high cloud cover (Manning and Davis, 1997).  As previously stated, Option 

5 uses the Fletcher Curve to calculate ice particle concentration as a function of 

temperature.  This tends to over predict cloud ice near the 400 to 300 mb levels.  Option 5 

will only deplete cloud ice by melting, sublimation, accretion, or conversion to snow.  

However, the 400 to 300 mb level is too cold for melting and since little snow is formed 

at these levels, the model maintains the ice in extensive cloud cover over the Western 

U.S. (Manning and Davis, 1997). 

 By causing reduced short-wave radiation, Manning and Davis (1997) believe this 

extensive cloud cover aloft contributes to the low-level cloud biases.  The authors also 

hypothesize that this lack of short-wave radiation contributes to the MM5’s inability to 

accurately model both daytime and nighttime boundary layers and nocturnal inversions.  

Another possible source of this low-level bias is the MM5’s process of parameterizing 

available surface moisture data.  The MM5 categorizes the moisture availability of terrain 

on a scale from 0.0 (completely dry) to 1.0 (over water).  The model uses the moisture 

availability to calculate humidity on the surface and latent heat fluxes as well.  The 

WISP94 verification study found the MM5 produced too cool and too moist boundary 

layers (Manning and Davis, 1997).  This cold low-level bias could be a factor in non-

representative forecasts of winter precipitation types, especially that of freezing rain and 

ice pellets. 

 Perhaps Reisner, Rasmussen, and Bruintjes (1997) performed the most thorough 

mixed-phase microphysics study for the MM5 in 1996.   This study focused on the 

verification of the MM5’s ability to forecast supercooled liquid water in winter storms 

compared to observations collected during the Winter Icing and Storms Project of 1990 
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(WISP90).  The MM5 used in this previous research had 27 sigma levels and 60, 20, 6.7, 

and 2.2 km horizontal grids situated over the western United States.  These grids were 

two-way nested for the 60 and 20 km domains, but the 6.7 and 2.2 domains were one-

way nested. 

 The Reisner et al. study used three mixed-phase cloud and precipitation 

microphysics schemes of increasing complexity.  The first option directly predicted the 

mixing ratios for cloud, rain, snow and ice.  Snow and ice concentrations were 

prescribed.  The second option added mixing ratio for graupel to the list of mixing ratios 

explicitly predicted in the first option and it also explicitly predicted the number 

concentration of ice particles.  The third option was even more complex by including 

explicit prediction of snow and graupel number concentrations (Reisner et al., 1997).  

The third option used in the Reisner et al. study is the same as Option 7 of the AFWA 

MM5, but a scheme equivalent to Option 5 was not used. 

 The authors concluded the third scheme had the best performance in forecasting 

supercooled liquid water when compared to observed fields.  However, the second option 

also performed well if the number concentration of snow was allowed to vary in 

accordance with snow mixing ratios.  The authors also confirmed the importance of 

riming of snow and/or graupel in the depletion process of supercooled liquid water 

(Reisner et al., 1997). 
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 III. Data Collection and Methods of Analysis 

3.1. Data Sources 

 The Air Force Combat Climatology Center (AFCCC), located in Asheville, NC, 

provided archived observational data for use in this study.  These data were provided in 

Microsoft Excel format for the purpose of data sorting.  MM5 meteorological input files 

were provided by the National Center for Atmospheric Research (NCAR) from the 

National Center for Environmental Prediction (NCEP) Global Data Assimilation System 

(GDAS) database in GRIB (Gridded Binary) format.  These data sets are available from 

NCAR on a 12-hourly basis spanning back decades and are archived on a 2.5° by 2.5° 

latitude/longitude grid.  The terrain data used as input into the MM5 were obtained from 

the U.S. Geological Survey (USGS). 

3.2. Control Data 

The control data for this experiment included archived RAOBs from all four 

locations.  These archived weather balloon reports provide a detailed vertical profile of 

temperature and dew point with relation to height in the atmosphere.  From these directly 

observed data, pressure and winds are inferred (pressure as a result of the hydrostatic 

approximation).  As a minimum, each RAOB reports at what are termed as mandatory 

levels.  These are the temperature, dew point, and winds at the surface, 1000, 925, 850, 

700, 500, 400, 300, 200, 150, and 100 mb levels.  In addition to these mandatory levels, 

significant levels are also reported.  A level is deemed significant if the observed 
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temperature lapse rate deviates from average lapse rate for dry and moist air respectively 

or there are abrupt changes in moisture at that level.  Since the accuracy of humidity 

measurements at higher altitudes are highly suspect (Manning and Davis, 1997), mixing 

ratio observations above the 500 mb level were discarded.  In addition, balloon drift and 

its associated spatial errors were ignored. 

For the purpose of this research, RAOBs spanning a continuous 20-day period 

within January 1998 were used.  The reporting time for these observations were 0000 and 

1200 Greenwich Mean Time (Z) which corresponds to 0900 and 2100 Local Standard 

Time (L) in Korea and Japan.  A database of surface observations was used to determine 

occurrences of winter precipitation during the 20-day period of study.  Additional data 

provided by AFCCC gave information on daily snowfall amounts.  A detailed 

background of the geography of the verification sites along with the synoptic regimes that 

produced winter precipitation during the period of study is provided in Appendix A. 

3.3. Method of Analysis 

To explore biases in the two Reisner options in forecasting winter precipitation for 

East Asia, two MM5 forecast model runs were required every 12 hours for the entire 20-

day study period.  In particular, the process of data collection entailed: 

1) Acquiring GDAS datasets, RAOBs, and surface observations for the period of 

study. 

2) Running the MM5 initialized at 00Z and 12Z for each day of the case period 

simultaneously using Option 5 and Option 7 microphysics. 
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3) Converting the MM5 binary output to an alphanumeric format and employing 

a weighted-average scheme to interpolate gridded meteorological fields to the 

actual station locations of Osan, Kwang-Ju, Misawa, and Wajima. 

4) Exporting the above output to the software packages Excel, Mathsoft 

MATHCAD, and SAS Institute JMP for statistical analysis.

 

 

 

Figure 4.  MM5 outer nest with overlay of inner nest. 
 

 
3.3.1. MM5 Process.  Two MM5 forecast windows situated over East Asia were 

used in this experiment.  The first window, the outer nest, has a horizontal resolution of 

45 km on a 200 by 150 grid and 41 vertical sigma levels.  The inner nest has a horizontal 
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resolution of 15 km on a 154 by 121 grid with 41 sigma levels.  These nests are 

duplicates of the T6A and T6B windows used by AFWA.  Since running the inner nest 

simultaneously with the outer nest in a two-way nesting scheme proved too time 

consuming given the available computer resources at AFIT, the NESTDOWN procedure 

was used instead.  NESTDOWN horizontally interpolated sigma coordinate data from the 

outer nest to the inner nest, providing the boundary conditions for the inner nest run.  The 

use of NESTDOWN is further justified since AFWA currently uses the same technique.  

All files in the MM5 suite of programs are written in Fortran code. 

 Utilizing the program module TERRAIN was the first step of each MM5 

numerical weather forecast.  TERRAIN was used to horizontally interpolate 

latitude/longitude terrain elevation and vegetation and soil characteristics onto both outer 

and inner nest grids.  TERRAIN output this information in files used in later MM5 

modules.  The resolution of the terrain elevations used in this study is 10 minutes (18.5 

km) for the outer nest and 5 minutes (9.25 km) for the inner nest.  Figure 5 shows the 

terrain map of the inner nest. 

The next step of the MM5 model run was utilizing the program REGRID.  The 

first portion of REGRID ingested archived gridded analyses on horizontal surface and 

upper pressure levels.  The second portion interpolated these observations from the 

original grid and map projection to the outer nest grid and map projection defined by 

TERRAIN.  The observational analyses used in this study were from the NCEP GDAS 

database.  For its REGRID input, AFWA utilizes the NCEP Aviation (AVN) model. 

The use of AVN means that AFWA doesn’t use observations to initialize its 

MM5.  Rather, AFWA uses a 6-hour AVN forecast that is assumed to be a good 
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representation of the initial conditions of the model run.  AVN is a global spectral model 

that is only available in real time.  For this reason, the use of AVN was not feasible for 

the purpose of this research.  However, since previous MM5 verification studies 

generally have used GDAS for input, a premise of this research is that any statistical 

results using GDAS will also be applicable to a MM5 model utilizing AVN. 

 

 
Figure 5. Terrain map of the MM5 inner nest used in this study.  Elevations are contoured 

every 50 meters.
 

 

 The output from REGRID was used in the module RAWINS.  The purpose of 

RAWINS was to improve the coarse grid output of REGRID by ingesting RAOBS and 

surface observations that matched the outer nest domain and forecast time.  According to 

the strength and curvature of the pressure level winds, RAWINS used the modified
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Figure 6. The MM5 forecast process.
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Cressman Ellipse and Banana Schemes for its objective analysis (Grell et al., 1994).  In 

this research, RAWINS was substituted for the Multivariate Optimum Interpolation 

(MVOI) scheme used by AFWA to assimilate observations into the coarse grid analysis.  

MVOI is used to make corrections to the 6-hour AVN forecast used by AFWA to 

initialize the MM5.   

 The next step of each MM5 run utilized the module INTERPF.  The purpose of 

INTERPF was to provide the initial conditions for the lateral and lower boundaries of the  

outer nest window.  In order to provide these initial conditions, INTERPF vertically 

interpolated from pressure coordinates to the MM5’s sigma levels and then computed 

initial meteorological values such temperature and humidity.  

 With the necessary input files from TERRAIN and INTERPF accomplished, the 

actual numerical weather prediction part of the MM5 outer nest was run on multiple Unix 

processors out to 24 hours using a 100 second time step.  In addition to the Option 5 and 

7 cloud microphysics schemes, the MM5 model used in this research utilized the Grell 

Cumulus Parameterization Scheme for cumulus convection, the Medium Range Forecast 

(MRF) PBL Scheme to account for surface radiation, and the Cloud Radiation Scheme to 

depict solar and terrestrial radiation interaction with clouds and clear-air.   To account for 

ground temperature, a five-layer soil model was used.  Aside from the Option 7 

microphysics, all parameterization schemes used in this research were the same as used 

currently by AFWA. 

As mention previously, when the outer nest forecast was complete, its domain 

output was used by NESTDOWN to create input files for the higher resolution inner nest 

that was used in conjunction with the fine grid inner nest TERRAIN output.  This method 
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is known as one-way nesting since there is no feedback from the inner nest to the outer 

nest that would occur with two-way nesting (Grell et al., 1994).  With the modified 

initial, boundary, and lateral conditions, the second NWP portion of the MM5 ran the 

inner nest out to 24 hours at a 45 second time step. 

3.3.2. MM5 Post-Processing.  In order to view the final MM5 forecasts, a 

graphics program entitled RIP (which stands for Read/Interpolate/Plot) was utilized.  RIP 

is designed to invoke NCAR graphics routines for the purpose of viewing MM5 output 

graphically (Stoelinga, 2000).  In order to view forecast vertical soundings for Wajima, 

Misawa, Osan, and Kwang-Ju, the RIP station list was modified to account for these sites 

by including their World Meteorological Organization (WMO) number, 

latitude/longitude coordinates, and station elevations.  With this information, RIP 

provided the horizontal dot point coordinates of the four locations.  RIP stores MM5 

three and two-dimensional variables in binary files sorted by forecast hour.  As it is with 

MM5 output, horizontal wind components are stored in arrays representing dot points and 

all other meteorological variables are stored in cross point arrays. 

With this knowledge, a MM5 post processing program written in Fortran was 

used to pull vertical profiles of MM5 output for each of the four station locations and 

store the results in text format for input into Microsoft Excel.  The variables pulled from 

the binary were: pressure, geopotential, temperature, horizontal wind components, and 

the mixing ratios for water vapor, cloud water, cloud ice, rain, snow, and graupel (in the 

case of Option 7).  To account for MM5 reporting these variables at half sigma levels 

vertically and at cross points horizontally, the post processing program interpolated these 
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to full sigma levels and utilized an inverse weighted average scheme to interpolate from 

cross point or, if necessary, dot point coordinates to station location. 

 In order to compare MM5 output to archived upper air observations, a logarithmic 

interpolation feature of MATHCAD was employed.  This method involved using existing 

mandatory and significant levels of RAOBs to predict temperature and humidity values at 

pressure levels corresponding to the MM5’s sigma levels.  With these data, residual plots 

of temperature and water vapor mixing ratio were computed for both cloud microphysics 

options at +12 hours and +24 hours of each forecast run.  Residual plots representing zero 

hour analysis of the MM5 were also constructed, although it should be noted there is no 

difference in the initialization of MM5 utilizing either Reisner option since initialization 

is determined before the model employs these schemes. 

 Mention should be made of how the MM5 determines the height of the lowest 

terrain-following sigma level.  In the model, the lowest sigma level is placed 20 meters 

above ground level.  As Table 3 shows, there were differences between what the MM5 

horizontally interpolated data points represented as ground level and the actual ground 

level of the verification sites.  So, the lowest level of the residual plots calculated in this 

experiment correspond to the lowest sigma level of the model with temperature and 

 

 
Table 3. Comparison of model and actual station elevations.  Heights are given in meters 

above mean sea level. 
Lowest MM5 MM5 Station Actual Station

Verification Site Sigma Level Elevation Elevation
Osan 74.91 54.91 12
Kwang-Ju 125.15 105.15 13
Wajima 123.94 103.94 7
Misawa 33.91 13.91 36
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humidity values of the RAOB logarithmically interpolated to these levels.  Diagnosis of 

winter precipitation based on model output uses this lowest sigma level as ground level. 

MM5 forecasts of surface precipitation type were calculated in Excel with the 

output provided by RIP.  Figure 7 presents a graphical representation of the method used 

in this study to determine precipitation type at the surface.  Number concentrations, slope 

parameters, and fall speeds for all pertinent hydrometers were calculated in accordance 

with sections 2.4.2 and 2.4.3.  To determine precipitation type at the surface, the 

 

 Change in Mixing Ratio (kg/kg)/σ 
 

Figure 7. Example of the method used to determine precipitation type at the surface.  
Both options have a snowfall maximum between 900 and 850 mb and Option 7 graupel 
production is greater than that for snow beneath this layer.  From approximately 950 to 

850 mb, there is a mixed layer in which the frozen hydrometers completely melt into rain 
before reaching the surface.

 
 

hydrometric change in mixing ratio was calculated at sigma level 41.  A fall rate greater 

than 2 x 10-10 kg/kg σ-1 indicated existence of snowfall at the ground level.  If the graupel 
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fall rate was greater than 1 x 10-9 kg/kg σ -1, in addition to being greater than the snow 

rate, ice pellets were predicted.  Rainfall at ground level was predicted if the fall rate for 

the rain mixing ratio was greater than 0.01 kg/kg σ -1 (if the soil temperature was less than 

0˚ C, freezing rain was the result).  In this method, mixed rain and snow are allowed at 

ground level.  Forecasts of precipitation type were verified against station surface 

observations at + 6, 12, 18 and 24 hours. 

3.4. Test Design Principles 

It is important to briefly discuss concerns involved in performing an experiment 

to statistically compare two MM5 cloud-microphysical schemes.  The issues involved in 

test design include the pairing of sample forecast data and the temporal and spatial 

correlation of sample forecast errors.  The methods used to categorically verify the 

forecast results of these two schemes are also detailed. 

3.4.1. Pairing of Sample Data.  Since winter precipitation forecasts of both 

Reisner schemes are based on the same model initialization, the hypothesis testing of this 

study treated Option 5 and Option 7 forecasts as paired sample data.  The simultaneous 

forecasts of the two schemes were not considered independent groups but were treated as 

matched pairs that were correlated.  Therefore, the use of the paired t-test was appropriate 

to compare differences of the group means (Hamill, 1998).  Normal quantile plots of 

temperature and qv residuals were interpreted to support the assumption of normality, a 

prerequisite necessary for using the t-test. 

3.4.2. Temporal Correlation of Sample Forecast Errors.  Research by Hamill, 

(1998) computed precipitation bias scores over a continuous 31-day period.  This study 
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showed there was no evidence to indicate that precipitation forecasts 24 hours apart 

exhibit temporal correlation.  This allows for the assumption of independence between 

forecasts 24 hours apart (00Z vs. 00Z or 12Z vs. 12Z).   The Hamill study made no 

conclusion about forecasts separated by 12 hours.  However, since it is possible that 

diurnal effects could corrupt meaningful verification results, particularly within the 

planetary boundary layer of the model, biases of 00Z and 12Z forecasts were computed 

separately. 

3.4.3. Spatial Correlation of Sample Forecast Errors.  An important issue that 

arises when verifying NWP forecast results for specific locations within a forecast 

domain is the degree of correlation between grid points (Hamill, 1998).  For example, if 

the MM5 missed a snow event for Dayton, OH, it is also assumed to misrepresent the 

event for Columbus, OH because of the close proximity and similar topography of the 

two cities.  Therefore, a sample of snow forecast verification results from both cities 

would show correlation and dependence.  However, for this particular study, spatial 

correlation was not considered when evaluating results because the verification sites were 

not being compared to each other.  Also, the appropriate techniques of multivariate 

analysis necessary to determine the degree of correlation between grid points would be 

intensive and would not particularly contribute to the goal of a physical assessment of 

model performance at each site. 

3.4.4. Categorical Verification of Forecast Results.  For each precipitation type, 

forecasts were partitioned into contingency tables of four mutually exclusive and 

collectively exhaustive events categorized by verification site, forecast option, forecast 

initialization, and forecast hour.  Since the sample sizes of the experiment were relatively 
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small, the Fisher-Irwin Exact Test (FI) was used in place of the Chi-Square Test to 

determine if the MM5 forecasts were related in a meaningful way to the observed 

occurrences of precipitation.  The measures used in this experiment for categorical 

verification can be illustrated using Table 4.

 
 

Table 4. Contingency table of possible events. 

Yes No
Yes A B C

Observations No D E F
G H I

Forecasts

 

The skill of a model or any other forecast process is a measure of its ability to 

accurately predict above what would be expected by chance or climatology (Panofsky 

and Brier, 1968).  To test the skill of the MM5 to categorically forecast precipitation 

types at the surface, the Heidke Skill Score (HSS) was used.  HSS accounts for 

categorical verification due to chance (Stanski et al., 1989).  A “hit” due to chance is 

given as the event frequency multiplied by the number of forecasts.  The equation for 

HSS given by Panofsky and Brier (1968) is: 

 
HSS = (A + E - Z)/(I – Z)        (15) 

 
where Z is the hits due to chance, which is calculated using the marginal probabilities: 

 
Z = (CG + FH)/ I           (16) 
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Thus, a HSS greater than zero indicates the model is performing better than chance alone 

and shows forecast skill.  A HSS of zero or less indicates the model performed the same 

or worse than what was expected by chance alone, thus, showing no skill. 

 In addition to forecast skill, bias scores were used to measure the correspondence 

between the MM5’s forecasts and the observed occurrences of precipitation.  This 

method is defined by (Colle et al., 1998): 

 
Bias = (A + B) / (A + D)        (17) 

 
A bias greater than 1 indicates over prediction, while a bias less than 1 indicates under 

prediction. 

 40



IV. Results and Analysis 

4.1. Initialization of Temperature and Moisture Fields 

The observational analyses used by the MM5 in this experiment were horizontally 

interpolated to each of the four verification sites.  Figure 8 shows the results of model 

initialization at Kwang-Ju during the study period that was typical at all verification sites.  

Overall, the analysis of initial temperatures showed a significant +0.5ºC average warm 

bias throughout most of the troposphere.  In the upper troposphere, above the 300 mb 

level, this warm initialization bias increased to between 1 and 2ºC.  The only site where 

the MM5 tended to initialize too cold in the middle troposphere was at Wajima, which 

experienced a significant average –0.25ºC bias from 800 to 400 mb at both 00Z and 12Z.  

Statistical analysis of the average of the surface temperature initializations at most of the 

verification sites failed to detect a significant temperature bias at the lowest sigma level 

since the residuals were too widely scattered about the means.  However, the model 

usually initialized surface temperatures within ±1 ºC of the RAOB. 

 As the example in Figure 8 shows, t-test results performed on the initialization of 

the moisture fields showed less firm evidence of bias in the analysis of water vapor. 

This lack of evidence is probably related to inherent difficulties of RAOBs to accurately 

measure humidity (COMET, 1998).  The humidity profile of the atmosphere can show 

very abrupt changes in the vertical and horizontal compared to the temperature field.  

Humidity sensors are prone to high measurement errors particularly within the upper 

troposphere and these errors vary according to the model of the radiosonde used.  In 

model verification, these humidity errors can be compounded by the vertical resolution of 
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the model.  Although the number of sigma levels used in this experiment was relatively 

large compared to previous research by other authors, the model might have lacked the 

layers to adequately determine fine differences in the humidity field.
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Figure 8. MM5 initialization at Kwang-Ju AB during the experiment (00Z analyses are 
represented in black and 12Z analyses are in gray).  The filled bars indicate those levels 
where the average interpolated 00Z and 12Z MM5 analyses were significantly different 
from each station RAOB at 90% confidence according to Student’s t-test for paired data.

 

4.2. Observations of Cloud Ice and Cloud Water Production. 

The study demonstrated that Option 5 generates far more cloud ice in the upper 

levels of the atmosphere compared to Option 7.  As stated previously, Option 5 prescribes 

ice production by using a form of the Fletcher curve that doesn’t place a lower 
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temperature bound, while Option 7 places a lower limit of -27 ºC.  The Option 5 model 

runs generated maximum ice by the 6-hour forecast point, and this ice remained in the 

upper troposphere from 400 to 300 mb throughout the model run.  This over production 

of ice cloud was consistent with previous studies over the U.S (Manning and Davis, 

1997).  As the example in Figure 9 shows, this cloud ice generally covered much of the 

model domain.  In contrast, the Option 7 averages in maximum qi were far less and the 

scheme did not generate extensive ice cloud. 

It first appeared that the ice concentrations of both schemes contributed to the 

warm bias that increased in the upper troposphere toward the 24-hour point of both the 

00Z and 12Z runs.  However, there does not appear to be evidence that the warm bias 

was the result of the cloud ice trapping shortwave radiation in the upper troposphere, 

since the Option 7 temperature errors aren’t significantly less than the Option 5 errors at 

these heights.  As hypothesized by Manning and Davis (1997), the warm bias might be 

related to the resolution of the sigma levels.  Although the East Asian window used in 

this experiment had 41 sigma levels, there were only about 8 of these to cover the vertical 

distance from 400 to 200 mb.  It’s possible the model was often unable to resolve the 

drastic change in temperature lapse rate that typifies the tropopause. 

Although too cold to directly produce snow or graupel, the cloud ice maximum in 

the upper levels of wintertime nimbostratus is a significant source region for ice crystals 

that are converted to frozen precipitation in the lower levels.  Conversion to snow and 

graupel by collection or riming of ice typically occur at altitudes where temperatures are 

between –4º and -10º C and where large concentrations of ice particles coexist with 

supercooled cloud water.  The study showed these levels averaged secondary maxima in
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Figure 9.  Illustration of the difference in Option 5 (top) and 7 (bottom) cloud ice 
production.  The above charts are 12-hour forecasts valid 17 Jan 98 at 00Z and depict qi 

at the 400 mb level.  The contour interval is every 0.0016 g/kg.  The dashed line 
enclosing the areas of qi represents the 70% relative humidity level with respect to ice.
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ice particle concentration; however, the Option 5 number concentration was still several 

orders of magnitude greater than Option 7 at Misawa, Osan, and Kwang-Ju.  Because 

Option 7 places an upper bound on ice concentrations proportional to qv, the scheme 

prevented significant ice generation, except at Wajima, which had higher average qv 

values in the lower troposphere.  Appendix B provides model averages in cloud ice for 

each verification site during the period of study. 

It was hypothesized by Manning and Davis (1997) that overproduction of cloud 

ice contributed to average cold biases within the PBL over the western U.S. by 

preventing shortwave radiation from reaching the surface.  However, the disparate Option 

5 and 7 ice production simultaneous with similar vertical temperature biases suggest 

surface soil processes and land-sea interactions play a far more prominent role in the 

cause of daytime low level temperature biases within the East Asian domain. 

Option 7 tended to generate higher amounts of water vapor and more cloud water 

(a consequence of having more vapor available for condensation).  Option 5 as currently 

employed by AFWA is known to over predict clouds at the 850 mb level particularly 

over ocean areas (MetEd, 2002).  Therefore, although no direct verification of qc was 

performed, it is suggested that Option 7 has operationally less desirable results in terms 

of liquid cloud production during the period of study. 

4.3. Verification Results for Osan AB. 

4.3.1. Comparison of Forecast Skill at Osan AB.  Measurable amounts of snowfall 

fell at Osan on seven days during the period of study.  There were 5 consecutive days of 

snow during the first half of the study period.  The most significant snowfall occurred on 
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08 Jan 98 when a total of 13.2 inches of snow fell at the base.  No occurrences of rain or 

ice pellets were observed at Osan during the 20-day record of surface observations.
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Figure 10.  Categorical verification measures for Osan AB. 

 
 

As shown in Figure 10, Option 5 provided significantly more meaningful 

forecasts of snow at Osan for forecasts initialized at 00Z.  Results for the 12Z model runs 

were equal and generally less accurate.  Overall, the MM5 had the best performance at 

+06 and +18 hours.  Both Reisner schemes displayed the worst performance during 

forecast hours that were valid at 09L (+24 hours for 00Z initializations and +12 hours for 

12Z initializations).  These hours of poor skill coincided with a +200% bias in the 

prediction of snow. 

4.3.2. Hypotheses Regarding Forecast Errors at Osan AB.  The MM5 forecasts 

for Osan tended to be marked by a deep cold bias in the lower troposphere and a warm 

bias above 900 mb.  The low-level temperature bias was of lesser extent during the 

morning hours, yet still exhibited the diurnal characteristics shown by Manning and 

Davis (1997) who hypothesized that these boundary layer errors are related to the MM5’s 
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PBL scheme.  Both options generated maximum cloud water (Option 7 producing the 

greater amount) during the afternoon and early evening hours. 

When model results for Osan were interpolated to the morning soundings of the 

case period, both cloud microphysics schemes performed the same: displaying a cold and 

dry bias in the lower levels and a warm/moist bias in the middle troposphere.  The moist 

bias appeared during the minimum of cloud water highlighting the inverse relationship of 

qv and qc through the processes of evaporation and condensation.  The MM5’s mid-

tropospheric warm bias, apparent during the morning and evening, is probably the result 

of the model’s cloud and free atmosphere radiation processes or wind biases that affect 

temperature through the process of advection (Manning and Davis, 1997). 

When model results were interpolated to the nighttime soundings of the case 

period, the MM5 forecasted atmosphere was too dry throughout almost the entire column.  

The 12Z RAOBs coincided with the maximum cloud water of the afternoon and early 

evening hours.  Opposite of what was observed during the day, the nighttime results 

showed a significant difference in low-level qv bias between the two cloud microphysics 

schemes and this difference appeared to be linked to the production of cloud water and 

frozen precipitation.  As shown in Figure 11, the nighttime forecast hours (particularly 

12Z + 24 hours) showed an abrupt decrease in qs and qg beneath the maximum in cloud 

water indicating rapid evaporation.  The less humid a layer of atmosphere is beneath a 

saturated layer of cloud and precipitation, the greater the effect of evaporative cooling.  

The significant difference between the two schemes (Option 7 being more moist) appears 

to be the consequence of Option 7 averaging more cloud water except at the level of
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Figure 11. Average 12Z interpolation results for Osan AB.  The filled bars next to the 
temperature (T) and qv plots indicate the levels where Option 5 (black) and Option 7 

(gray) are significantly different at 90% or greater confidence (qg is depicted as a dashed 
line).
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maximum frozen precipitation production.   The rapid drop off of Option 7 qc suggests 

that riming processes are contributing to a higher rate of cloud water depletion, increasing 

the rate of evaporative cooling in the subsaturated layer, thus increasing the moist bias. 

The production of snow at Osan during the experiment appeared to be directly 

influenced by cloud water availability.  The overproduction of snow during morning 

hours due to rapid depletion of cloud water contributed to the low forecast skill of both 

cloud microphysics schemes during forecast hours valid at 00Z (09L) with Option 5 

having only slightly better performance.  However, a minimum in snow and graupel 

production was observed at forecast hours coinciding with 06Z (15L).  This minimum 

coincides with the daytime spin up of the qc field where it appears the snow and graupel 

fields have not had enough time to generate through depletion of cloud water.  Therefore, 

there was less snow over prediction bias, resulting in a more realistic simulation of the 

actual snow fields at Osan AB during the afternoon hours. 

4.4. Verification Results for Kwang-Ju AB 

 4.4.1. Comparison of Forecast Skill at Kwang-Ju AB.  Snow fell at Kwang-Ju on 

six days during the period of study, the majority of which fell late in the period.  There 

were also significant occurrences of rainfall, which happened on five days.  No 

occurrences of ice pellets or freezing rain were observed.

As the results in Figure 12 show, there was not an appreciable difference in the 

ability of two cloud microphysics schemes to determine precipitation type at Kwang-Ju 

during the period of study.  Both microphysics options overall produced too much snow 
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at Kwang-Ju and generally there was no difference in snow bias between the schemes 

except at +18 and +24 hours of the 12Z forecast runs where Option 7 showed no bias. 
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Figure 12. Categorical verification measures for Kwang-Ju AB. 

 
 

The MM5 had better performance handling rainfall with both schemes acting equally.  

The low skill at 12Z+12 hours is the result of over prediction of snow and mixed 

precipitation combined.  Both options created too much mixed precipitation at the surface 

at Kwang-Ju at all forecast hours.  During the study period, the model predicted mixed 

precipitation on a total of 11 occasions of which none verified (the actual result was rain 
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in most cases).  One 12Z +12 hour Option 7 forecast resulted in ice pellets, which also 

did not verify. 

4.4.2. Hypotheses Regarding Forecast Errors at Kwang-Ju AB.  Opposite of what 

was observed at Osan, Figure 13 shows that MM5 forecasts for Kwang-Ju typically had a 

warm bias in the lower levels above the PBL and a cold bias in the middle levels of the 

troposphere.  This pattern was characteristic of all forecast hours although the errors had 

a greater magnitude during the evening.  When compared to evening soundings, which 

are representative of conditions 2½ to 3 hours after sunset at Kwang-Ju (presumably 

before the full impact of radiational cooling at the surface), the MM5 PBL tended to be 

too cold.  The morning soundings representative of conditions 1 to 1½ hours after sunrise 

(before the full effect of daytime heating) showed a better resolution of PBL temperatures 

with Option 7 giving slightly better results.  

Generally, the MM5 forecasts for Kwang-Ju were too moist below 800 mb during 

all hours.  There also appeared to be a diurnal pattern to the observed humidity errors 

within the PBL.  Interpolation of both Option 5 and 7 forecasts to the Kwang-Ju 00Z 

RAOBs showed that the average humidity bias decreased sharply toward the top of the 

PBL in conjunction with the decreasing cold bias.  Also different from what was 

observed for Osan, the MM5 at Kwang-Ju consistently forecast cloud water during all 

hours within Option 7 producing the greater amount.  

At Kwang-Ju, Option 5 produced more snow in the upper levels where there was 

little qc and most snow generation was the result of conversion and collection of cloud 

ice.  However, in the lower levels where mixed phase processes are more important, 

Option 7 produced more combined frozen mixing ratio (qs + qg) than Option 5 qs.  This is 
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Figure 13. Average 00Z interpolation results for Kwang-Ju AB.  The filled bars next to 
the temperature (T) and qv plots indicate the levels where Option 5 (black) and Option 7 
(gray) are significantly different at 90% or greater confidence (qg is depicted as a dashed 

line).
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a consequence of Option 7 producing more cloud water.  The Option 7 snowfall produced 

more evaporation in the subsaturated layer beneath the average cloud cover causing 

average qv for the scheme to be higher, particularly during the morning hours.  The cold 

bias at the surface during the evening hours combined with an approximate 100 meter 

difference in height between the lowest sigma level and Kwang-Ju’s station elevation 

likely did much to keep some snowfall from completely melting, contributing to both 

schemes disappointing skill in forecasting mixed precipitation at the site.  Overall, despite 

the differences in snow production, the fact that both schemes over produced snow meant 

that neither had an advantage over the other in accurately predicting precipitation type at 

Kwang-Ju during the time period of the study. 

4.5. Verification Results for Wajima 

4.5.1. Comparison of Forecast Skill at Wajima.  Due to its location, which situates 

the city in the path of rapidly moving extra-tropical cyclones and instabilities resulting 

from onshore effects from the Sea of Japan (details given in Appendix A), Wajima 

received precipitation during most days of the study.  This precipitation fell in wide 

variety of forms: rain, snow, mixed, and ice pellets were all observed.  Overall, the MM5 

showed poor ability in handling the rapidly changing conditions and precipitation types 

observed at Wajima and this weak performance was the result of both cloud microphysics 

schemes over predicting mixed precipitation.  As shown in Figure 14, some of the 

average forecasts of both options actually showed a negative skill in predicting 

precipitation type, meaning the scheme performed worse than if the forecasts were 
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determined entirely by chance alone.  At Wajima, similar numbers of mixed precipitation 

forecasts produced during the experiment resulted in either rain or snow, thus exposing 

the inability of both schemes to realistically simulate both the melting and evaporation of 

frozen precipitation at the site. 

4.5.2. Hypotheses Regarding Forecast Errors at Wajima.  As shown in Figure 15, 

the averages of the MM5 forecasts for Wajima during the period displayed similar 

features regardless of forecast hour.  There was typically a 1ºC warm bias in the surface 

layer, a slight cold bias in the immediate layer above the PBL, and a slight warm bias 

throughout the middle troposphere.  The consistent surface warm bias could be related to 

the modifying effects of the model’s analyses of the surrounding sea surface 

temperatures.  The low level warm bias by itself would produce higher rates of melting of 

frozen precipitation and is the likely contributor to the large number of mixed 

precipitation forecasts in which the actual result was rain. 

Wajima was unique among the verification sites used in the study for the massive 

amounts of all the cloud microphysics variables produced by the MM5.  The average 

forecast soundings for the site displayed larger and more equitable amounts of cloud ice 

in the middle levels of the troposphere where mixed phase processes are important.  Also, 

the average amounts of cloud water were several times larger than what was observed at 

the other verification sites.  This abundance of cloud ice and supercooled liquid water 

within the mixed phase layer of the model led to increased production of snow and 

graupel through the riming of cloud ice. 

Option 7 produced the largest amounts of qg at Wajima during the study providing 

evidence that the scheme is sensitive to locations within its domain where graupel 
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processes are important.  The average combined frozen mixing ratio of Option 7 was 

often greater than Option 5 qs, particularly close to the surface where Option 7 
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Figure 14. Categorical verification measures for Wajima. 

 
 
tended to produce more graupel than snow.  The warmer surface temperatures meant that 

most graupel was converted to snow instead of ice pellets, because the scheme only 

allows snow to exist in temperatures above freezing.  However, the two actual 

occurrences of ice pellets at Wajima during the 20-day period happened when surface 

temperatures were above freezing.  The MM5 forecast soundings for Wajima also  
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Figure 15. Average 00Z interpolation results for  Wajima.  The filled bars next to the 
temperature (T) and qv plots indicate the levels where Option 5 (black) and Option 7 

(gray) are significantly different at 90% or greater confidence (qr and qg are depicted as 
dashed lines).
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produced greater amounts of rain compared to the other verification sites.  The Option 7 

rain was always greater in the lower levels, particularly at the surface. 

The greater amounts of rain and frozen precipitation produced by Option 7 

account for that scheme’s significantly greater moist bias in the low levels at Wajima.  

However, for both options, the large moist bias created a decreased wet-bulb temperature 

profile than actually existed in the real atmosphere.  The result was less evaporation of 

snow, which is likely a major contributing factor to the high number of mixed 

precipitation forecasts resulting in snow observed at the site. 

 

4.6. Verification Results for Misawa AB 

 
 4.6.1. Comparison of Forecast Skill at Misawa AB.  During the 20-day period of 

study, Misawa received 12 days of recorded snowfall totaling a combined amount of 123 

inches.  Overall, both Option 5 and 7 provided meaningful forecasts of precipitation type 

at hours in which the model displayed no bias or a slight under prediction bias in snow 

production.  However, as shown in Figure 16, forecast hours valid at 06Z (15L) 

performed poorly.  For both options, the successful number of hits at 18Z was smaller 

than what would be expected by chance alone even though the number of snow forecasts 

matched the number (but not timing) of observed occurrences of snow.  

4.6.2. Hypotheses Regarding Forecast Errors at Misawa AB.  The averages of the 

MM5 forecasts for Misawa during the period displayed similar profiles when interpolated 

to the station’s 00Z and 12Z RAOBs.  In the morning and evening, the MM5 generally 

had a warm bias in the boundary layer.  However, the daytime MM5 boundary layer 

appeared too cold when forecasts of temperatures were compared to the 18Z Misawa 

 57



surface observation.  At all hours the MM5 tended to be too moist in the lower levels 

with a significant difference in the bias of the two cloud microphysics schemes (Option 7 

being more moist).  In conjunction with the cold bias at 18Z, this moist bias created a
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Figure 16. Categorical verification measures for Misawa AB. 

 

decreased wet-bulb profile at the surface.  On 11 forecasts corresponding to 18Z, both 

options forecasted snow while the actual result was no precipitation at all.  This indicates 

the combined cold and moist bias tended to prevent snow from evaporating and played a 

large part in the MM5’s low skill during the afternoon hours at Misawa. 

Compared to the other verification sites, Misawa averaged a large secondary 

maximum in Option 5 ice production in the layer between 800 and 600 mb.  

Consequently, the average region of mixed phase precipitation processes was deeper at 

the site.  As shown in Figure 17, there was a consistent layer of cloud water with Option 

7 generating approximately 50% more qc during all forecast hours.  The largest 
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Figure 17. Average 12Z interpolation results for Misawa AB.  The filled bars next to the 
temperature (T) and qv plots indicate the levels where Option 5 (black) and Option 7 

(gray) are significantly different at 90% or greater confidence (qi and qg are depicted as 
dashed lines).
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differences in moist bias between the two schemes occurred beneath the maximum of 

cloud water and coincided with the layers of maximum snow and graupel evaporation. 

The differences in cloud ice and cloud water between the two schemes meant that 

conversion and collection of ice played a more important role in Option 5 snow 

production, while accretion, collection, and riming associated with supercooled liquid 

water dominated the frozen precipitation production of Option 7.  Option 5 tended to 

generate more snow aloft with the difference of the two being Option 7 graupel 

production.  Option 7 predicted ice pellets on 11 occasions, yet no occurrences of this 

precipitation type were recorded.  Since snow bias of the schemes weren’t significantly 

different, the overproduction of graupel resulted in Option 7’s weaker performance at the 

site during the period of study.  These findings suggest Option 7 riming and graupel 

processes do not predict winter precipitation development at Misawa well.

 60



V. Conclusions and Recommendations 
 

 
5.1. Conclusions 
 
 

The main purpose of this study was to gain an understanding of the limitations of 

the MM5 cloud microphysics parameterization currently used by AFWA and make a 

recommendation as to whether a more computationally expensive scheme would be 

better suited for the East Asian theater.  The ultimate goal was to find a way to reduce the 

negative impact winter precipitation places on military operations and public safety.  The 

motivation behind testing the Reisner Mixed-Phase Graupel Scheme was to determine if 

graupel and riming processes would have positive outcomes in producing more realistic 

forecasts of winter precipitation for Japan and Korea. 

The research objectives listed in the introduction of this document as being 

necessary for the achievement of the main goal of this thesis were greatly met.  The case 

period from January 1998 was marked by the passage of several extra-tropical cyclones 

that provided an ample observational database for a MM5 verification study.  The East 

Asian MM5 domain window was successfully set up to run on the processors of AFIT’s 

meteorology lab and the monumental task of generating two one-way nested MM5 runs 

for every 12 hours of the 20-day case period was accomplished.  The weighted average 

and logarithmic interpolation methods employed to compare gridded MM5 fields to the 

radiosonde observations of the four verification sites proved more than adequate, thus 

enabling a thorough statistical comparison.  The t-test was a useful tool for detecting 

regions in the vertical column of the atmosphere where the two cloud microphysics 

schemes were significantly different.  Together, the Heidke Skill Score and the Bias 
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Score proved to be practical methods to categorically evaluate the MM5’s ability to 

predict surface precipitation type. 

 The main results of this research show both cloud microphysics schemes are 

correlated in that they exhibit the same trends in temperature and humidity errors.  This 

correlation is expected since both schemes have the same initial condition, are responding 

to the same grid-scale dynamical processes of the MM5 (such as advection), and are also 

responding to other below grid-scale parameterizations within the model (PBL, cloud 

radiation, etc.)  However, the schemes showed significant difference in the magnitudes of 

humidity errors within the lower atmosphere of the model.  The tendency of Option 7 to 

be more moist appears related to its significantly greater generation of cloud water.  This 

unequal generation of cloud water in addition to differences in cloud ice production 

meant that conversion and collection of ice dominated Option 5 winter precipitation 

processes while accretion, collection and riming associated with supercooled liquid water 

dominated those of Option 7. 

 The overall conclusion of this research is that AFWA should not alter the cloud 

microphysics scheme (Option 5) currently employed to determine winter precipitation 

type for its East Asian forecast window.  Of the four verification sites used in this study, 

Option 5 clearly had better performance at two of these locations, while at the others, 

neither scheme showed an advantage.  This research provides evidence that the inclusion 

of Option 7 graupel and riming processes will not increase the skill of the MM5 to 

determine winter precipitation type within this model domain and would actually have 

negative operational impacts if employed within the model. 
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5.2. Recommendations for Future Research 
 
 

The task of gathering a sample to cover a 20-day period required 160 MM5 runs 

with each run typically taking 6 hours to process using the computational capabilities of 

the AFIT meteorology lab.  Limitations in time and resources meant that a more 

comprehensive study of the MM5’s cloud-microphysics parameterization schemes could 

not be accomplished.  However, because of the USAF’s increasing reliance on NWP, the 

need for future verification studies outside the continental U.S. is very apparent.  To 

further expand on the research presented in this thesis, the following recommendations 

are offered: 

1. Statistical verification for this experiment was a challenging endeavor and relied 

on simple measures such as skill score and the t-test.  Although these techniques 

were very useful for interpreting results, future research should explore the use of 

more complex statistical measures suited for the multivariate and spatial nature of 

NWP models. 

2. Since changing the current Reisner mixed-phase scheme did not produce more 

accurate results, further investigation could focus on parameterizations that feed 

into cloud-microphysics such as PBL, soil moisture fluxes, and cloud and clear air 

radiation. 

3. The number of successful snow hits coincident with surface temperatures above 

freezing provide evidence that allowing snow to exist above freezing is an 

advantage of using mixed-phase microphysics.  However, both Option 5 and 7 

tended to prevent snow from adequately melting to rain when snow mixing ratios 
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were high.  Future investigations could focus on putting a high temperature 

“brake” on the existence of snow at ground level. 

4. This study used RAOBs for model verification.  Further research could make use 

of Doppler radar data from Korea (at the time of this research, mainland Japan did 

not have Department of Defense operated WSR-88D radar sites).  The MM5 can 

provide simulated radar reflectivity of its qr, qs, and qg fields.  In addition to use of 

radar, satellite data could also be used in future research because the MM5 can 

also simulate cloud top temperatures.  This would be particularly beneficial in the 

verification of cloud ice forecasts. 

5. The research could be extended to determine whether Option 7, with its higher 

production of supercooled liquid water, would produce more accurate forecasts of 

aircraft icing. 

6. Finally, since this verification study focused only on East Asia, future research 

should be extended to other regions of national interest such as Europe or Central 

Asian theaters. 
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Appendix A: Geographic and Synoptic Background of Study 

 

Since topography and oceanographic influences have direct impacts on weather and 

climate, they are critical inputs into the MM5.   Therefore, this appendix discusses 

topographical and oceanographic influences on the East Asian winter weather.  With the 

intended goal of comparing the performance of the two Reisner schemes in forecasting 

winter precipitation in East Asia, a 20-day case period in January 1998 was selected to 

represent typical winter regimes for the region.  January 1998 was marked by the passage 

of several extra-tropical systems that resulted in varying amounts of winter precipitation 

over Japan and Korea. 

 
 

A.1. Topographical Influences 
 
 

Osan and Kwang-Ju are located on the Korean Peninsula, the northern portion of 

which borders China.  However, most of Korea is surrounded by water, with the Sea of 

Japan bordering the east coast and the Yellow Sea bordering the west.  Both Osan and 

Kwang-Ju are located on the western side of the peninsula in an area that consists of 

coastal plains and low mountains.  Osan is situated about 60 km south of Seoul at 

37°05'N, 127°02'E.  The airfield’s elevation is 12 m above sea level (MSL).  The Yellow 

Sea is about 22 km due west, with one inlet to the southwest that comes within 11 km of 

the base (AFCCC, 2001).  Kwang-Ju is located approximately 200 km south of Osan at 

35°07'N, 126°49'E.  The airfield has an elevation of 13 m (MSL).  Kwang-Ju is situated 

within a region of plains and low mountains with tops below 1,500 m.   The base, on the 
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southwest corner of the peninsula, is approximately 35 km east of the Yellow Sea and 60 

km north of the waters of the Korean Straits.   

Wajima is a city along the west-central coast of Honshu, the largest of Japan’s 

four main islands.  The city is situated on the Noto Peninsula at 37°23'N, 136°54'E; 

almost entirely surrounded by the Sea of Japan.  Wajima’s station elevation is 13 m 

(MSL).  The prime reason Wajima was selected as a verification site for this research is 

the known importance of graupel and riming processes there.  Misawa AB is located on 

northeastern Honshu at 40°42'N, 141°22'E with a station elevation of 33 m (MSL).  The 

base is on the Pacific coast on a very narrow strip of low land between the ocean and the 

Ou Mountains that run south to north. 

 

A.2. Oceanographic Influences 
 
 

A major oceanographic influence on sea surface temperatures off East Asia in 

January is the Kuroshio Current (Thuman, 1991).  This warm water current branches off 

from the North Pacific Equatorial Current in the vicinity of 18° N, 100° E and flows 

northwestward past Taiwan, Okinawa, and southern Honshu.  Near 40°N, off the coast of 

northern Honshu, the Kuroshio Current converges with a cold-water current, known as 

the Oyashio Current, which transports cold water from the Bering Sea and the Sea of 

Okhotsk (Thuman, 1991).  This oceanographic convergence zone is responsible for the 

strong temperature gradient off the coast of northern Honshu (AFCCC, 1997). 

Minor currents affecting the Sea of Japan during January are offshoots of the 

Kuroshio Current and these result in an anti-cyclonic current flow that transports warmer 

water north along the Honshu coast (AFCCC, 1997).  The sea temperature gradient in the 
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Sea of Japan is strong in the winter varying from a January average of 12°C in the 

vicinity of the Tsushima Strait to below freezing near the Russian city of Vladivostok.  

The sea temperature gradient of the Sea of Japan directly accounts for the large amount 

of lake-effect type snowfall experienced along the west coast of Honshu, including 

Wajima (Harimaya and Sato, 1991).  Post frontal passage, anti-cyclonic flow transports 

cold and stable Siberian air across the Sea of Japan causing cloud streets over water and 

snow showers along the Honshu coast as the cold air picks up moisture from the ocean 

and deposits it inland due to differential surface heating and orographic lift. 

The sea temperature gradient is also intense in the Yellow Sea in winter.  This 

gradient is in a ridge pattern with the warm axis closer to the Korean Peninsula and is a 

consequence of the Kuroshio Counter-Current, which flows from the northern Yellow 

Sea along the Chinese coast (AFCCC, 1997).  To a lesser extent than experienced in the 

Sea of Japan, the Yellow Sea periodically creates lake effect snow showers inland of the 

west coast of Korea. 

 

A.3. Synoptic Situation 
 
 

The case period chosen was typical for the winter season since the Asiatic High is 

the most dominate surface pressure system over East Asia in winter.  The air masses 

associated with it are extremely cold, which results in a very shallow cold pool depth of 

below the 850 mb level (AFCCC, 1997).  The Asiatic High is usually centered over 

Mongolia and southern Siberia and has a mean central pressure of 1038 mb.  The high 

has several ridge extensions and the one that mostly influences the winter climate of 

Korea and Japan extends southeastward toward the Yellow Sea (AFCCC, 1997). 

 67



At the same time during the winter months when the Asiatic High is at its greatest 

extent, the Aleutian Low also reaches its maximum intensity (AFCCC, 1997).  The 

Aleutian Low is a maritime feature situated over the Aleutian Islands in the North 

Pacific.  The mean average central pressure of the low in January is 996 mb.  The 

Aleutian Low in conjunction with the Asiatic High acts to form an intense pressure 

gradient over East Asia in winter (AFCCC, 1997) and the migratory lows that affected 

Korea and Japan during the case period tracked northeastward along this storm-track 

gradient. 

The polar jet is most evident over East Asia during the winter months and 

conditions during this case period were no exception.  The position of the polar jet during 

this period varied between 35° and 45°N latitude.  Generally, the subtropical jet flowed 

northeastward across China merging with the polar jet in the vicinity of Shanghai.  The 

combined jets created a broad band of upper-level winds that often exceeded 200 knots 

during the study.  The trajectory of the migratory lows in this case study followed the 

polar jet closely. 

Yellow Sea, Shanghai, and Taiwan Lows are major winter precipitation producers 

for Korea and Japan and the case study provides examples of each.  Figure A1 depicts a 

pair of Yellow Sea Lows that influenced the region on 02-03 January 1998.  Yellow Sea 

Lows originally form over Mongolia and track around the southern ridge of the Asiatic 

High.  When the lows reach the relatively warmer temperatures of the Yellow Sea, they 

intensify bringing strong surface winds and snow showers to the Korean peninsula during 

late winter (AFCCC, 1997). 
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Figure A1. Surface analyses of the synoptic situation of 02-03 January 1998 (a)02/00Z, 
b) 02/12Z, c) 03/00Z, and d) 03/12Z).  These and the following charts were reproduced 

using archived surface analyses obtained from the National Climatic Data Center, 
Asheville, NC. 

 

 
Figure A2 depicts a Shanghai Low that affected the region during the second 

week of the case study.  Shanghai Lows generally form from weakened lows that track 

eastward off the Tibetan Plateau.  As these lows reach the coast of China, they regenerate 

in strength and move northeastward along the combined sub-tropical and polar jets.  

Shanghai Lows frequently undergo explosive cyclogenesis off the east coast of Honshu.  

Explosive cyclogenesis is defined as the deepening of the central sea-level pressure of a 

low by 12 mb or more during a 12-hour period (Carlson, 1991).  Explosive cyclogenesis 

is primarily a wintertime phenomena and is associated with conditions of extremely 

strong westerlies and intense sea surface temperature gradients.  The intense strength of 

the combined subtropical/polar jet over Japan in the winter along with the intense sea  
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Figure A2. Surface analyses of the synoptic situation of 07-09 January 1998 (a) 07/12Z, 
b) 08/00Z, c) 08/12Z, and d) 09/00Z). 

 

surface temperature gradient created by the Kuroshio Current provide an ideal 

environment for explosive cyclogenesis (Carlson, 1991).  For this reason, Shanghai Lows 

can bring massive amounts of snow to Misawa and this particular Shanghai Low resulted 

in over 30 inches of snowfall for the base. 

Figure A3 depicts the third extratropical cyclone type observed during the 20-day 

study: the Taiwan (or Yangtze) Low.  These lows occur during strong cold air outbreaks 

over China that happen when the center of the Asiatic High moves south of Mongolia.  

The Taiwan Low originates over the Yangtze River in southern China.  When these lows 

hit the very warm waters of the Taiwan Strait, they undergo rapid cyclogenesis.  Taiwan 

Lows are the most rapid moving of the wintertime East Asian cyclones with speeds 

averaging 24 knots (Nestor, 1977).
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Figure A3. Surface analyses of the synoptic situation of 17-19 January 1998 (a) 17/00Z, 
b) 18/00Z, c) 18/12Z, and d) 19/00Z). 
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Appendix B: Averages In Cloud Ice Production During Period of Study 
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Figure B1.  Average MM5 cloud ice for Osan and Kwang-Ju, Korea during period of 
study.  Option 5 is depicted in black and Option 7 is depicted in gray. 
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Figure B2. Average MM5 cloud ice for Wajima and Misawa, Japan during period of 
study.  Option 5 is depicted in black and Option 7 is depicted in gray.   
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