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Abstract 

 Denied and limited model input data degrade the accuracy of numerical weather 

prediction (NWP) model forecasts.  Inaccurate forecasts can negatively impact all military 

operations and public safety in general.   

Using the 3-Dimensional Variational Analysis data assimilation scheme and the 

Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) 

Mesoscale Model 5 (MM5) as configured and run operationally by the Air Force Weather 

Agency (AFWA) in the European theater, input observations were denied in three different 

categories: total, upper air, and surface observation denial.  Two control groups were run 

using all available data as received by AFWA.  The main control group used a 6-hour old 

first guess as a baseline.  The data denied test cases and the secondary control group used a 

30-hour old first guess because it was not possible to deny data from the first guess.  The 

secondary control group was used to estimate errors resulting from the use of different first 

guess forecasts between the main control group and the test cases for all forecast times.   

The analyses show statistically significant differences between the main control group 

and test cases in almost every instance.  However, the surface comparisons provide little 

evidence of significant meteorological differences due to the relatively small magnitude of 

the differences in root mean square error and bias.  In the upper air analyses, the largest 

differences emerged at the model initialization time.  The magnitude of the differences 

rapidly diminishes as the solution of the test cases converge toward that of the main control 

group throughout the forecast period.  Errors associated with the use of different initial and 

boundary conditions account for most of the resulting differences.   
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QUANTIFICATION OF THE EFFECTS OF DATA DENIAL AND 

LIMITATION IN MM5 INITIALIZATION ON FORECAST ACCURACY 

I. Introduction 

1.1. Motivation 

Numerical weather prediction (NWP) models are complex systems of mathematical 

equations written to simulate atmospheric motions taking place at and above the earth’s 

surface.  The ability to develop and run more complex models has exploded along with the 

development of faster and more powerful computer processors allowing more accurate 

calculations of air flows and more complete representations of factors that affect 

meteorological changes on a smaller scale (NOAA, 2001).  These advances in computer 

technology have made the use of limited area, or mesoscale numerical models increasingly 

more attractive to the government, commercial, and educational institutions for both research 

and operational applications (Stenger, 2000). 

Numerical models are only as good as the information that initializes them.  All 

models use some sort of data assimilation scheme, which allows information about current 

and future states of the atmosphere to be ingested.  In general, current observational data are 

compiled from land and sea surface measurements, radiosondes, pilot reports, aircraft, and 

satellites.  Data relative to future states of the atmosphere are ingested from earlier model 

runs from the same model or from a different model entirely.  In mesoscale models, such as 
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the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) 

Mesoscale Model 5 (MM5), data assimilation is accomplished through the comparison of 

observed data and forecasts from larger, global scale models such as the Aviation Global 

Model (AVN) or the Navy Operational Global Atmospheric Prediction System (NOGAPS) 

model.  The data assimilation process is explained in greater detail in Chapter II. 

The Air Force Weather Agency (AFWA) at Offutt AFB, NE has proposed this topic 

to enhance their understanding of the limitations of meteorological models due to denied or 

limited input data.  AFWA runs the MM5 operationally with windows set up over specific 

regions, or Theaters of Operation (Ritz et al., 2001).  AFWA currently uses the Mesoscale 

Data Assimilation System/Multivariate Optimal Interpolation (MDAS/MVOI) data 

assimilation scheme.  However, they are in the testing phase of converting from the 

MDAS/MVOI to the Three-Dimensional Variational (3DVAR) data analysis assimilation 

scheme.  They plan to have the transition complete by mid-to-late 2002 (Wegiel, 2001).  This 

thesis will seek to quantify the effects of denied and limited data on the forecast accuracy of 

the MM5 as run by AFWA using the 3DVAR scheme. 

 In general, the more usable observations that are ingested at the time of model 

initialization, the more accurate the model’s forecast will ultimately be.  However, there are 

three principal limitations associated with observational inputs.  First, there is an inherent 

inhomogeneous distribution of data.  This erratic distribution leads to clusters of observations 

in some regions with few or no observations in other regions.  Another limitation is that the 

data are not always located in sensitive areas.  Finally, all observations have errors, some of 

which are associated with the inherent limitations of the equipment, while others occur due to 

equipment malfunction.  These limitations and errors become inflated as the model gets 
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further away from the initialization time.  The 3DVAR data assimilation scheme is designed 

to alleviate some of this error by using previous forecasts to fill in gaps where observations 

are limited, however, there is still a need for more and improved observations. 

 Occasionally, some or all of the observation data do not reach AFWA in time to be 

assimilated into the newest forecast.  In this situation, the MM5 is run with the most current 

information available.  In the event of limited data, one would expect the output of NWP 

models to be degraded.  However, limitation or denial of observed weather data could be the 

result of a number of factors.  These include, but are not limited to, observation equipment 

failure or malfunction, communication problems, computer errors, or simply denial of data 

by an adversary.  Over an extended period of time, this degradation could render the model’s 

forecast virtually useless in certain regions to weather forecasters around the world.  The 

effects of data denial could be anywhere from minimal, if the affected area is relatively 

small, to extreme in the case of total data denial over a large area.   

Numerical models used operationally must run in a timely manner or their usefulness 

to forecasters is very limited.  AFWA must run the MM5 within a limited amount of time 

after the initialization time in order for all of the computations to be completed.  The output 

must then be made available to the operational meteorologists so it can be used as a 

forecasting tool.  Due to these time sensitivities of the data and model run, it is not feasible 

for AFWA, or any other agency, to wait for all observations to be available for the start of the 

model initialization.   
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1.2. Problem Statement 

Numerical weather prediction model forecasts are degraded when observations are 

unavailable at the initialization time.  The degradation of the forecast can have severe 

adverse impacts on mission success and pose risks on personnel and resources.  The 

magnitude of the degradation related to input data denial and limitation is unknown at this 

time with respect to 3DVAR used in conjunction with the MM5 model at AFWA. 

1.3. Research Objectives 

The goal of this thesis is to quantify the effects of data denial and limitation on the 

accuracy of MM5 model forecasts as run by AFWA using the 3DVAR data assimilation 

scheme over the European theater of operation.  The European theater was chosen since it is 

the location for which the 3DVAR code was initially set up at AFWA.  The following are 

specific objectives used in this study to arrive at a sound assessment of these effects: 

1. Collect adequate observational and AVN model output data for the European theater 

in order to provide a statistically significant sample.  These observational data include 

all of the previously mentioned observations from surface measurements, 

radiosondes, pilot reports, aircraft, and satellite sources.  Surface observations are 

collected from 90 weather stations, and radiosonde observation (RAOB) data are 

collected from 68 stations releasing weather balloons at least twice daily.  

2. Obtain necessary computing resources in addition to pre- and post-processing code in 

order to duplicate, to the greatest extent possible, the MM5 output being produced by 

AFWA.  Exceptions to this are made so that the data assimilation will occur through 
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the use of the most recent version of 3DVAR available to AFWA, which is currently 

in the developmental phase. 

3. Run the MM5 model four times at each initialization time: once using all available 

observations (control run) and three times using different data denial configurations 

(test cases).  Each set of four model outputs will cover a period of 24 hours with 

output generated at the initialization time and every three hours after that out to the 

24-hour forecast.  The first run will use all available observation inputs using a 6-hour 

old AVN forecast to provide the first guess for the initial and boundaries conditions.  

All subsequent runs will be conducted with various limited observational inputs and, 

as a minimum, 30-hour old AVN forecasts as the first guess.  Use of the 30-hour old 

first guess forecasts is necessary since it is beyond the scope of this research to also 

deny the observation inputs to the AVN model initialization process in order to 

duplicate a real world data denial situation.  The method of model initialization will 

be discussed in detail in Chapter III. 

4. Compute residuals of the difference between the output of the MM5 model initialized 

with all available input data and output from the runs initialized with limited input 

data.  The root mean square error (RMSE) and bias of both model forecast outputs is 

then compared.  The specific surface variables to be examined are sea level pressure, 

temperature, and winds.  In the vertical, geopotential heights and vertical temperature 

profiles are compared.  A thorough statistical analysis is used to quantify the effects 

the data denial and limitation had on the model output. 

5. An additional control run will be made using the 30-hour old first guess forecast and 

all available observations.  The new control run will be compared to the first one in 
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an effort to account for differences in the initial and boundary conditions between the 

primary control group and the data denied test cases.  Comparisons between the two 

control runs will be made in the same manner as described previously. 

Each of these tasks is approached with the idea of duplicating the AFWA production 

MM5 as much as possible.  The primary exception to this duplication was in the use of the 

3DVAR data assimilation scheme versus the MDAS/MVOI used by AFWA.  For this reason, 

there cannot be a direct comparison between the current MM5 production output generated 

by AFWA and that generated by this research.  Nevertheless, it was important to duplicate 

AFWA’s production MM5 as much as possible since they plan to implement the use of the 

3DVAR scheme in the future.  A detailed comparison of the differences between the 3DVAR 

and MDAS/MVOI data assimilation schemes is found in Chapter II. 

1.4. Research Importance 

 As the speed, accuracy, and resolution of NWP models increases, so does the 

dependence on their output as an aid to weather forecasting.  In the Air Force, other factors 

such as reduced manning, high operations tempo, and forecaster inexperience also lead to an 

increasing dependence on model output as an aid in forecasting.  Inaccurate forecasts of any 

kind present potential negative impacts on all military operations and public safety in 

general.  Advance knowledge of favorable or adverse weather conditions is also critically 

important to military planners and strategists.  Accurate weather forecasts give planners the 

information to make the most effective and efficient use of the assets at their disposal. 
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1.5. Thesis Organization 

 This chapter provided the motivation for this research followed by an overview of 

the problem, the goal/objectives of the research and its importance to military operations.  

Chapter II provides a detailed background on the MM5 and 3DVAR scheme.  Chapter III 

discusses the methodology used to ensure valid and statistically sound comparisons were 

made.  Chapter IV summarizes the results of the data collection and analysis process, and 

Chapter V presents conclusions and recommendations for future research based on the data 

and results found. 
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II. Background and Literature Review 

2.1. Overview 

This chapter presents the subject background necessary to understand the significance 

data denial or limitation has on the output of numerical weather prediction (NWP) models, 

specifically, the MM5 using the 3DVAR data assimilation scheme.  First, a brief history of 

the MM5 at AFWA is provided.  Then, Section 2.3 provides a synopsis of the MM5 and how 

it works with current data assimilation schemes.  Finally, Section 2.4 provides a discussion of 

data assimilation in general and a more detailed discussion of the 3DVAR scheme.  

2.2. History of the MM5 at AFWA 

The Air Force Weather Agency (AFWA) runs the MM5 operationally and provides 

fine-scale, limited-area forecasts for military and civilian forecasters worldwide (Ritz et al., 

2001).  AFWA has run this particular model continually since 1997.  From that time until 

January 2001, initialization of the model was accomplished by using the analysis portion of 

the Local Analysis and Prediction System (LAPS) from the Forecast Systems Laboratory.  

The version of LAPS used by AFWA was a successive correction scheme using a limited 

number of available observation types.  In January 2001, LAPS was replaced by the 

Mesoscale Data Assimilation System/Multivariate Optimal Interpolation (MDAS/MVOI). 

 Since the MDAS/MVOI system had been used previously by AFWA in running the 

Relocatable Window Model, a major advantage of using it with the MM5 model was its ease 

of relocation to any portion of the globe.  Another advantage was the system’s ability to 

produce analyses using observational data varying greatly in quantity and quality from one 
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location to another.  The MDAS/MVOI system currently used provides rapid, accurate 

initialization fields for the MM5 model.  Speed and accuracy are critical to the support of 

worldwide operations (Ritz et al., 2001).   

 In June 2001, AFWA started the transition to the Three-Dimensional Variational 

(3DVAR) data assimilation scheme.  Currently 3DVAR has been successfully integrated 

with the MM5 model in the European Theater (Wegiel, 2001).  Its operation is being verified 

by running both the 3DVAR and MDAS/MVOI data assimilation schemes simultaneously.  

Full global integration of the 3DVAR data assimilation is expected to be complete by mid-to-

late 2002.   

The primary purpose for upgrading to the 3DVAR data assimilation is to improve 

model forecasts relative to those integrated from analyses produced from currently used 

assimilation schemes (NCAR, 2001).  In addition, the upgrade should enable a more 

computationally efficient system and provide ease of integration into open architectures.   

2.3. Overview of the MM5 

This section provides a general description of the MM5 modeling system as run in 

production by AFWA.  For a more detailed description of the MM5, the reader is referred to 

Dudhia et al., 2001. 

2.3.1. Background.  The MM5 is a mesoscale model initially developed in 1971 at

PSU in cooperation with NCAR.  Both NCAR and PSU have worked extensively to improve 

the model and it has evolved to a fifth-generation.  The AFWA implementation of the MM5 

consists of four preprocessors (TERRAIN, REGRID, MDAS/MVOI and INTERP), the main 

model code (MM5 (V3.4)), and a post-processing routine.  Figure 1 is a schematic diagram 
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representing the flow of data from the preprocessing modules through the post-processor.  

For the current research, 3DVAR was substituted for MDAS/MVOI and the 

Read/Interpolate/Plot (RIP) software was used for post-processing. 

   

TERRAIN

 REGRID

 MDAS/MVOI

INTERPF

MM5

GRAPH/RIP

Input Programs

USGS Terrain, Vegetation and  Soil
Data

AVN or NOGAPS Forecasts

Observations

 
Figure 1.  MM5 flow chart.  Schematic diagram depicting the flow of data throughout the MM5 modeling 

system (adapted from Dudhia et al., 2001). 
 

TERRAIN is the first program used in the MM5 modeling system.  TERRAIN 

performs two primary tasks.  First, it horizontally interpolates the regular latitude-longitude 

terrain elevation and vegetation data onto the chosen mesoscale domains.  TERRAIN’s 

second task is to produce the terrestrial data files for all of the mesoscale domains used later 

by REGRID.  In addition, TERRAIN calculates the constant fields of latitude and longitude, 
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map scale factors, and the Coriolis parameter which are required by the modeling system 

(Dudhia et al., 2001). 

 The second preprocessing program within the MM5 modeling system is REGRID.  

The purpose of this program is to read archived meteorological data on given pressure levels 

and interpolate them to the grid and map projection defined by TERRAIN.  REGRID only 

performs two-dimensional interpolation for pressure levels and surface analyses (Dudhia et 

al., 2001).  As seen in Figure 1, REGRID creates output for MDAS/MVOI or INTERPF 

depending on the input data.  These output files are used as the first guess for an objective 

analysis if used by MVOI or as analyses to be directly interpolated into initial and boundary 

conditions by INTERPF.  The data ingest process is somewhat different when using 3DVAR 

and will be explained in a later section. 

 The next preprocessor is the MDAS/MVOI data assimilation scheme, which is 

followed by INTERPF.  INTERPF performs the data transformation necessary to go from the 

analysis programs to the model.  These transformations include vertical interpolation, 

diagnostic computation and data reformatting.  This program outputs three files used by 

MM5: model initial conditions, lateral boundary conditions, and the lower boundary 

conditions (Dudhia et al., 2001).  After the MM5 has been run, the output data must be post-

processed into a user-readable format.  This is the function of the GRAPH or RIP programs.  

2.3.2. Model Characteristics.  As run by AFWA, the MM5 produces forecasts valid 

at 3-hour intervals out to 72 hours four times per day with initial analyses valid at 00, 06, 12 

and 18Z.  The MM5 allows for a four-dimensional data-assimilation (FDDA) and uses 

numerous physical parameterization schemes.  The FDDA process permits data to be 

assimilated over time as well as in the three dimensions of space.  When available, AFWA 
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uses the Aviation (AVN) model for initial and boundary conditions, which is explained in 

section 2.4.  Otherwise, the Navy Operational Global Analysis and Prediction System 

(NOGAPS) data are used.  The AVN is the preferred global scale model because its output 

resolution is 1° X 1° versus that of NOGAPS, which is 2.5° X 2.5°.  In addition, the AVN is 

run four times per day compared to the two daily runs of NOGAPS. 

2.3.3. Vertical Coordinate System.   The MM5 model uses sigma levels to define its 

vertical coordinate system. Sigma (σ) is a dimensionless quantity that varies from zero to one 

and is given by the following relationship: 

    ( ) ( tst pppp −−= / )σ ,             (1) 

where p is a reference pressure at a given level, pt is a specified constant top pressure and ps 

is the constant surface pressure.  The reference pressure is a function of the constant surface 

pressure, which only varies in two-dimensional space, not time (Dudhia et al., 2001).  Figure 

2 shows an example of a vertical cross section with 16 sigma levels (K).  The lowest level is 

represented where σ = 1.0 and is terrain-following.  This is the bottom boundary for the 

model.  Sigma levels have the distinct advantage of being terrain following (Grell et al. 

1994).  Physical processes along the bottom boundary can be prescribed using physical 

process parameterizations, as described later.  The highest level, where σ = 0.0, is quasi-

horizontal and represents the top boundary for the model.  The top layer acts as a physical 

boundary limiting the flux of atmospheric properties across it and can also be parameterized 

within the model physics (Pielke, 1984).  As run by AFWA, the MM5 produces forecasts on 

42 different full-sigma levels and 41 half-sigma levels (Ritz, 2001).  Vertical velocity (w) is  
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Figure 2.  Sigma coordinates.  Schematic representation of the vertical structure of the model.  This example is 
for 15 vertical layers (or half-sigma levels).  Dashed lines denote half-sigma levels, solid lines denote full-sigma 

levels (adapted from Dudhia et al., 2001). 
 

the only parameter computed at full-sigma levels.  The remaining parameters are all 

calculated on the half-sigma levels (Dudhia et al., 2001). 
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Each sigma level is laid out in a grid consisting of cross (X) and dot (• ) points.  The 

MM5 uses an Arakawa-Lamb B Grid as seen in Figure 3.    Both the eastward velocity 

component (u) and the northward component (v) of the wind are collocated at the corners, or 

dot points.  Similarly, all remaining forecast variables are defined at the center of the grid 

squares, which are denoted by the cross points. 

 

Figure 3.  Arakawa B-Grid.  Schematic diagram representing the horizontal Arakawa B-Grid staggering of the 
dot (●) and cross (X) points.  The smaller inner box is a representative mesh staggering for a 3:1 coarse-grid 

distance to fine-grid distance ratio (adapted from Dudhia et al., 2001). 
 

2.3.4. Finite Differencing.   The MM5 uses second-order centered finite differences to 

represent all of the spatial gradients except for the precipitation fall term, which uses a first-

order upstream scheme.  Horizontal averaging is required to determine the gradient of the 

computed parameters on each sigma level.  Vertical interpolations are performed to account 

for the variable vertical grid size (Dudhia et al., 2001). 
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 Time differencing is accomplished using a second-order leapfrog scheme.  However, 

because there are fast moving components (e.g. sound waves) that must be calculated on a 

shorter time step for stability, a time-splitting scheme is used.  In the leapfrog scheme, 

detailed in Figure 4, the tendencies at time n are used to step the variables from time n-1 to 

n+1.  The leapfrog scheme is used for the larger-scale forcing terms such as advection and 

Coriolis.  A forward step is used for diffusion and microphysics where the tendencies are 

computed at time n-1.  The forward step is used to step the variables from n-1 to n+1.  The 

longer time step is too long for stability for fast moving waves such as sound waves, so the 

shorter time step depicted in the bottom portion of Figure 4 must be used instead.  The short 

time step allows the variables to be updated more frequently (Dudhia et al., 2001). 

Long (Leapfrog) step used for T, qv, qc, advection, physics, 
boundary, coriolis, and diffusion terms

Short (Forward) step used for u, v, w and p’ advanced 
(pressure gradients and divergence)

Long (Leapfrog) step used for T, qv, qc, advection, physics, 
boundary, coriolis, and diffusion terms

Short (Forward) step used for u, v, w and p’ advanced 
(pressure gradients and divergence)

 
Figure 4.  Leapfrog and time-splitting schemes.  Schematic diagram of the leapfrog and time splitting scheme 

used for temporal finite differencing in the MM5 (adapted from Dudhia et al., 2001). 
 

2.3.5. Parameterization Schemes.  Atmospheric phenomena such as momentum, 

advection, vorticity, and divergence occur on a scale larger than that of the model grid 

resolution and are resolvable by the model.  However, parameters such as moisture and heat 
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fluxes, planetary boundary layer processes, cumuliform cloud formation, and precipitation 

physics occur on a smaller scale than that of the grid and are not readily resolved by the 

model.  Therefore, it is necessary to incorporate different parameterization schemes to 

represent these phenomena.  Parameterization schemes provide the necessary interaction 

between grid scale processes and each other in order to compute parameters occurring on 

sub-grid scales. 

2.4. Data Assimilation 

Data assimilation is the process in which observations are ingested in order to provide 

corrections to the first guess forecast to describe the initial conditions for the next model run 

(COMET, 2001).  This section describes the 3DVAR data assimilation process in more 

detail.  Finally, there is a discussion of the advantages of 3DVAR over MDAS/MVOI. 

2.4.1. Background. Observations are not specifically used to make a model analysis.  

They are, however, used to make small corrections to a short-range forecast used for 

initialization.  This short-range forecast is assumed to be representative of actual conditions 

(COMET, 2001).  An example of this is AFWA’s use of the 6-hour AVN forecast from the 

18Z run to initialize 00Z MM5 run.  In a similar manner, the AVN forecast uses a previous 

AVN run with observations near the initialization time for its analysis.  In this way, short-

range forecasts retain information from older observations and provide background 

information into future analyses.  It is important to note that the production MM5 as run by 

AFWA is never initialized with a previous MM5 model run.   

 The key to the initialization process is the assumption that the short-range forecast 

used is representative of actual conditions.  This assumption allows the observations to be 
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used to make a series of small corrections that could improve an already good forecast rather 

than analyzing the observations directly and starting over each time.  This assumption also 

provides a means of quality control; large discrepancies between the observations and the 

forecast are used to determine if the data are suspect or erroneous.  Conversely, if the 

assumption is wrong and the forecast is bad, the subsequent forecast could also be bad.  This 

cycle will continue until enough data are available to force changes in the model output 

bringing it back to values representing the actual atmospheric conditions (COMET, 2001). 
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Figure 5.  Data assimilation corrections.  Observations are assimilated to correct each short-range forecast that 
serves as the basis for the next analysis (adapted from COMET, 2001).  

 
  

2.4.2.  The Data Assimilation Process.   The data assimilation process results in a 

series of small corrections to the model forecast as shown in Figure 5.  Ideally, the model 

forecast would be corrected to the "true” state of the atmosphere within the physical limits of 
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the model at each time.  Since the “true” state of the atmosphere is never actually known, 

each analysis can only be as accurate as the observations and their physical limitations allow 

(COMET, 2001). 

 The data assimilation process involves ingesting data, decoding the observations, 

performing quality control to eliminate bad data, comparing the data to the model’s first 

guess, and interpolating the data onto the grid as defined by TERRAIN.  The process blends 

information from the short-range forecast with information from the new observations.  This 

blending is the primary challenge in data assimilation.  Observations must be transferred 

from numerous locations and times to the model grid, while at the same time preserving the 

physical, dynamical, and numerical consistency in the short-range forecast.  The steps in the 

data assimilation process are as follows: 

• Observations are ingested from outside the cycle. 

• The observations are then checked for gross errors. 

• Next, they’re merged with a previous short-range forecast.  This forecast is 

referred to as the “first guess” because it serves as the background for the next 

analysis.  This merge is accomplished by computing observation increments, 

which are the differences between the observations and the first guess at the 

observation location. 

• Quality control of the observation increments is then performed. 

• An objective analysis procedure is used to interpolate the observation increments 

back to a model grid to produce a grid of model corrections. 

• The corrections are then added back to the first guess to produce the new analysis. 
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• The new analysis provides initial conditions for the next operational forecast and 

a new short-term forecast to be used as a first guess to blend with the next set of 

observations. 

This cycle repeats itself and is the basis of the data assimilation process.  For a more in-depth 

look at data assimilation, the reader is referred to the web based COMET training module 

(COMET, 2001). 

2.4.3. 3DVAR within the MM5 Modeling System.  As previously mentioned, 3DVAR 

poses some changes in the way the data are preprocessed within the modeling system.  Figure 

6 is a schematic representing the flow of data from the MM5 preprocessing modules through 

the post-processor including 3DVAR.  In Figure 6, all of the ovals represent either input or 

TERRAIN

 REGRID

INTERPF

MM5

GRAPH/RIP

Boundary file

Background file

Low boundary file

Background error
statistics file

3DVAR System

Post-processor

Obs-preprocessor

Obs data

Increment

Obs file

 

Figure 6.  MM5 3DVAR system.  Schematic diagram representing the flow of data through the MM5 modeling 
system using 3DVAR (adapted from NCAR, 2001). 
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output files used within the system.  This configuration is one in which the output from 

REGRID is input directly into INTERPF vice going into an assimilation program.  

Additionally, the background file is input into 3DVAR where it is blended with the 

observation file.  The background file also goes into the post-processor, which is used to 

update the boundary file.  The increment file becomes the new background, or initial 

condition, file used by MM5.  All other processes are the same as described previously for 

the MM5. 

2.4.4. 3DVAR versus MVOI.   3DVAR offers many advantages over MDAS/MVOI

as currently run in production by AFWA.  The MVOI data assimilation scheme is relatively 

inexpensive computationally and has been in use on and off at AFWA for the past 11 years.  

As such, it is becoming antiquated as newer and better assimilation schemes are developed. 

 The primary disadvantage of the MVOI system at AFWA is that the correlation 

functions were designed for analysis on a coarse grid.  Therefore, the MVOI cannot be used 

to perform the analysis on fine scale grids (less than 45 km) directly.  In order to perform 

analysis on fine scale grids, the first guess from the MM5 non-hydrostatic sigma layers must 

be interpolated to a hydrostatic sigma system.  The analysis is performed on the hydrostatic 

sigma surfaces, then it is interpolated back to the original non-hydrostatic coordinates.  Each 

step results in a small error that may grow throughout the forecast period (Ritz, 2001). 

 Another disadvantage of the MVOI system is that it only provides height-based 

analyses.  This means that the temperatures are calculated based on height observations 

rather than temperature observations and the wind field is geostrophically adjusted to match 

the height field.  This type of analysis can lead to significant errors in the upper air wind and 

temperature fields.  Also, with the MVOI, AFWA can only use the retrievals, not radiances, 
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from satellite soundings.  This is not the best use of satellite data and the error associated 

with retrievals can be relatively large (Ritz, 2001). 

Unlike 3DVAR, the MVOI system cannot directly assimilate satellite radiances, 

which have smaller errors associated with them than satellite retrievals.  Satellite data are an 

invaluable resource and provide critical coverage, especially in the oceanic regions.  Also, 

since the MVOI in use by AFWA is somewhat outdated, it is unable to make use of fields 

such as precipitable water.  MVOI is also unable to take advantage of continuous data 

assimilation as described in Section 2.4.2.  The 3DVAR system will be able to continuously 

assimilate data once it becomes operational at AFWA (Ritz, 2001). 

 The 3DVAR system is computationally expensive.  Each 3DVAR analysis can take 

up to five times as much computing power as a one-day forecast for the same area (COMET, 

2001).  Although computational intense, 3DVAR provides a finer analysis of the 

meteorological conditions.  It is able to use non-traditional observation types such as satellite 

radiances and precipitable water.  AFWA is incorporating some of the advantages of MVOI 

in 3DVAR, such as the gross checking of observations (Ritz, 2001). 
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III. Methodology 

3.1. Overview 

 The main focus of this research is to quantify the accuracy of the MM5 model 

forecast output using the 3DVAR data assimilation scheme with denied or limited input 

observations to the system.  This investigation uses near real-time data due to the method of 

data collection, which will be described later in this chapter.  Data collection commenced on 

18 October, 2001 and ended on 14 December, 2001.  The current production MM5 model run 

by AFWA and a developmental version of 3DVAR determined the design of this experiment.  

The MM5 model, as run for this experiment, was configured as similarly as possible to 

AFWA’s operational MM5. 

 This chapter outlines the methodology and processes used in the data collection and 

the verification process of this study.  First, there is a discussion of the computing 

requirements and resources used.  The next section provides a description of the data 

collection process.  Section 3.4 details the model configuration as used in this research, and 

section 3.5 is a description of the verification process. 

3.2. Computing Resources. 

The computing platform used in the production MM5 at AFWA is the IBM SPII 

supercomputer.  Great effort was made throughout this research to duplicate AFWA’s 

production MM5 as much as possible, including the computing platform.  Therefore, all 

3DVAR processes and MM5 model simulations were performed on an IBM SP P3 

supercomputer located at the Aeronautical Systems Center Major Shared Resource Center 
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(MSRC) at Wright-Patterson AFB.  All preprocessing (through INTERPF) and post-

processing (after MM5) was accomplished on Sun Ultra 10/80 computers located at AFIT 

except as noted in section 3.3.   

In an effort to maximize the use of the initial 1000 hours of processor time allotted for 

this project, a comparison was made and the most cost-effective number of processors to use 

for the MM5 runs was determined to be eight.  Table 1 shows the comparison of processor 

expense.  Ultimately, the initial 1000 hours requested to complete this project was a gross 

underestimate and approximately 2600 processor hours were used in all.   

Table 1.  Comparison of processor expense. 
# of Processors Time per Step (s)

8 2.79
16 1.51
24 1.03  

3.3. Research Data 

3.3.1. Input Data.   The specific input data required were principally dictated by the

 goal of this thesis.  3DVAR and MM5 input requirements were also taken into 

consideration.  AFWA provided all necessary input data files.  Rather than providing the 

entire hemispheric AVN model forecasts, they provided the REGRID output starting at the 

MM5 model initialization time twice daily (00 and 12Z) for a 48-hour period.  These 

REGRID output files provided all initial and boundary conditions for the full 48-hour period.  

AFWA also provided the observation files for each initialization time required by 3DVAR 

for the assimilation process as described in Chapter 2.  Four observation files were available 

for each initialization time: surface observations, upper air observations, aircraft 

observations, and satellite observations.  
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3.3.2. Data Assimilation.   Collecting data presented some interesting concerns due to

the nature of this research.  When considering the effects of denied or limited input data on 

model accuracy, a significant problem arises because AFWA initializes the MM5 using a 

short-range AVN model forecast.  It was necessary to devise a scheme to work around the 

issue of the first guess forecast using all available observations in its assimilation since it is 

beyond the scope of this research to also deny the input observations to the AVN.  The 

phrase “all available observations” refers to the observations made available to AFWA at the 

time of initialization in the context of this research.  This project was run in near real-time 

and was designed to duplicate AFWA’s production MM5 to the greatest extent possible, 

therefore the same input data were used that goes into the production MM5.   

The scheme devised to work around the issue of the observations being allowed into 

the AVN model takes full advantage of the 48-hour REGRID output files provided by 

AFWA.  The premise behind the entire data collection process was that each model run, 

whether it contained all available observations or had denied or limited input data, was for a 

24-hour period.  The first 24-hour period of data in these files was used to provide the initial 

and boundary conditions for model runs in which all available observations were to be 

assimilated.  The last 24-hour period of the REGRID file from the previous day supplied the 

initial and boundary conditions for runs in which any or all of the observations were to be 

denied.  Figure 7 is a timeline detailing the process of data input to the system.   

The method of data assimilation used in no way eliminates the observations from 

being allowed into the earlier AVN model runs.  It does, however, provide a means of 

allowing the observations to grow older and have less impact on the assimilation process and 

ultimately on the output.  Conversely, it allows the first guess field used by 3DVAR to be as 
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Figure 7.  Use of AVN forecast for model initialization.  Timeline depicting how AVN model forecasts are used 
to provide initial and boundary conditions.  Line (a) represents the REGRID data file from which the initial and 
boundary conditions come for the case with all observations and line (b) represents the REGRID file used for 
the data denied cases.  The shaded portion of the timeline at the bottom is the forecast period.  The –06 hour 

mark on lines (a) and (b) indicates the AVN initialization time used to create the REGRID files. 
 

current as possible for the case where all available observations are used.  It is important to 

note that AFWA uses various times of AVN and NOGAPS model runs to initialize the MM5.  

To ensure consistency throughout this project, only 6-hour old AVN forecasts were used as a 

first guess for the cases where all available observations were used.  This means that for each 

data denied case, the first guess field was at least 30 hours old.  This architecture allowed the 

older observations to have less impact on the overall outcome of the model forecast. 

The use of different first guess fields and boundary values from the various REGRID 

files for model initialization presented a significant concern in that different initial and 

boundary conditions were used in the control runs than in the data denial experiments.  The 

errors associated with these different conditions must be accounted for when comparing the 
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data denied cases with the control group.  An additional set of control runs was performed for 

this purpose as described in the following section. 

3.3.3. Test Configuration.   Several different 3DVAR configurations were used to

acquire the various required MM5 model output files.  Each model run in which all available 

observations were assimilated served as a control group, or baseline, to which all other cases 

for the same initialization time were compared.  Five runs were performed for each 

initialization time: all available observations used with the 6-hour old AVN forecast (C1), all 

available observations used with the 30-hour old AVN forecast (C2), total observation denial 

(TOT), upper air observations denial (UPP), and surface observations denial (SFC).  Table 2 

provides a list of the different experimental runs and describes the configuration of the first 

guess field and the input observations used for the various cases.  The naming convention 

given in the table is used throughout the analysis portion of this study.   

Table 2.  List of experiments.  The main control run, designated C1, uses all available observations and the 6-
hour old AVN forecast for the first guess field while C2 is the secondary control run used to estimate errors 

resulting from the use of different initial and boundary conditions. 
Experiment name First guess Denied observations # of runs per exp
C1 6-hour old AVN None 00Z - 37

12Z - 26
C2 30-hour old AVN None 00Z - 9

12Z - 10
TOT 30-hour old AVN All 00Z - 37

12Z - 26
UPP 30-hour old AVN RAOB only 00Z - 37

12Z - 26
SFC 30-hour old AVN Surface only 00Z - 37

12Z - 26  

The observation files containing the satellite and aircraft data were not individually 

denied.  The satellite data were not denied because the only information currently available 

for the European theater is cloud-derived winds (Ritz, 2001).   

The second control run (C2) was used to estimate the errors associated with the use of 

different initial and boundary conditions between the main control run (C1) and the data 
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denied test cases (TOT, UPP, and SFC).  In a real-world data denial situation, the 

observations would not be available for assimilation by either the MM5 or AVN models.  

This being the case, initial comparisons of C1 to the various test cases were made in an effort 

to quantify the overall effects of data denial and limitation on the MM5 model output.  A 

second set of analyses was made by comparing C2 to the various data denied test cases, 

which indicates the errors of only the data denial since C2 and all the data denied cases use 

the same initial and boundary conditions.  The new analyses created were then subtracted 

from the initial comparisons made using the C1 control group to estimate the errors created 

by changes in the first guess field from the primary control run.  Without the secondary 

control group and subsequent analyses, two variables (observation inputs and first guess 

field) would have been changed and the source of errors could not be definitively linked to 

the data denial.  

As shown in Table 2, a different sample size was used for the C2 control run.  The 

primary reasons for the different sample size were the computational expense of performing 

this experiment and the fact that it is only used to estimate the differences created by the use 

of different initial and boundary conditions between the C1 control group and data denied 

test cases.  It is important to note that during all analyses with C2, only the data created from 

the same initialization dates and times were used to make comparisons. 

3.4. Model 

The focus of this research was to quantify the effects of denied/limited input data on 

the MM5 model forecast accuracy using 3DVAR for data assimilation, thus dictating the 
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overall design and setup of the experiment.  This section outlines the various model 

configurations used throughout the course of the current research project. 

3.4.1. Model Configuration.   The MM5 is a versatile modeling system allowing

many different alternatives to modify the domain, parameterization schemes, and numerous 

other variables necessary for the model simulations.  Selection of the configuration for each 

parameter depends on the particular requirements of the user.  All parameters were set to 

those used by the AFWA production MM5 except the time step and forecast length as shown 

in Table 3.   

Table 3.  MM5 model configuration. 
Parameter AFWA Current

Moisture Reisner 1 Reisner 1
Cumulus Grell Grell
PBL MRF MRF
Radiation Cloud Cloud
Landuse Data USGS USGS
Time Step 99 s 120/90 s
Forecast Length 72 hr 24 hr  

The Mulitprocessor Instruction (MPI) version of the MM5 was used to perform all 

model runs after the data were assimilated in 3DVAR.  The MPI version allows user input of 

the number of processors between which the MM5 will distribute the domain.  The domain is 

split between the north-south and east-west directions.  For this research, two processors 

were used in the north-south direction and four processors in the east-west direction.  The 

MM5 output data were transferred from the MSRC back to the AFIT Meteorology Lab for 

post-processing on the Sun Ultra 10 after the model was run for the four different input 

configurations. 

The initial configuration was set up with a 120-second time step for this project in an 

effort to conserve the limited computing resources available.  However, this time step was 

 28



too large and violated the Courant-Freidrichs-Lewy (CFL) stability criterion for some 

experiments.  Equation 2 describes the CFL criterion where ∆t is the time step, ∆x horizontal 

grid spacing, and c is the wave speed.  

c
xt ∆≤∆        (2) 

The CFL criterion mandates that there is a minimum time step that can be used for 

stability in an explicit time differencing schemes, and it is a function of both the horizontal 

grid space and the wave speed of the solution (Grell et al., 1994).  Using a fixed value for the 

horizontal grid space, the time step becomes a function of the wave speed; the faster the 

wave speed, the smaller time step necessary for stability.  When this stability criterion is 

violated, the numerical scheme becomes unstable and the numerical output becomes 

unusable. 

Several model runs during the period of 31 October and 10 November 2001 violated 

CFL and had to be rerun using the smaller time step.  The new time step of 90 seconds was 

chosen to ensure CFL was not violated again in the future since the speed of the fastest wave 

cannot be determined ahead of time.  To ensure consistency with the previous data, a single 

model run was made using both the 120-second time step and the 90-second time step in 

order to make a comparison of the output.  The results of the surface data comparison are 

found in Table 4.  The differences in the output data of the two runs were determined to be 

insignificant.  Therefore, the time step was changed partway through the data collection 

process, and the runs that violated the CFL criterion were reaccomplished. 
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Table 4.  Comparison of surface data using 120-second versus 90-second time step. 
Temperature            Average RMSE BIAS

Forecast Hour 120s 90s Difference 120s 90s Difference
00 1.8244 1.8244 0.00 -0.073 -0.0731 0.00
03 2.0134 2.0111 0.0022 -0.147 -0.1399 -0.0071
06 2.1452 2.1674 -0.0222 -0.278 -0.2734 -0.0047
09 2.8375 2.8262 0.0114 -1.821 -1.807 -0.0137
12 3.0706 3.0525 0.0181 -1.978 -1.9549 -0.0228
15 2.5446 2.5103 0.0343 -1.585 -1.5582 -0.0267
18 2.3187 2.3113 0.0074 -0.356 -0.3205 -0.0355
21 2.232 2.257 -0.025 0.0854 0.0967 -0.0113
24 2.2754 2.3065 -0.0311 0.4679 0.4821 -0.0141

Pressure            Average RMSE BIAS
Forecast Hour 120s 90s Difference 120s 90s Difference

00 3.7118 3.7118 0.00 2.4097 2.4097 0.00
03 4.4445 4.4505 -0.006 1.9894 2.0167 -0.0274
06 4.2367 4.2416 -0.0049 1.6375 1.6487 -0.0111
09 3.9771 3.9785 -0.0015 1.2977 1.3104 -0.0127
12 4.2709 4.2802 -0.0094 1.8426 1.8621 -0.0195
15 4.3829 4.3886 -0.0057 2.0422 2.0551 -0.0129
18 4.3472 4.3572 -0.01 1.781 1.7966 -0.0156
21 4.4778 4.4849 -0.0071 2.1365 2.1542 -0.0177
24 3.9628 3.9779 -0.0151 2.3319 2.3651 -0.0332

Wind Speed          Average RMSVE
Forecast Hour 120s 90s Difference

00 3.6174 3.6174 0.00
03 3.9685 3.9699 -0.0014
06 3.9307 3.937 -0.0063
09 3.4958 3.5059 -0.0102
12 3.3973 3.4083 -0.011
15 3.6945 3.6917 0.0029
18 3.7857 3.8037 -0.018
21 3.8277 3.8172 0.0105
24 4.1408 4.1117 0.0291  

 

3.4.2. Model Domain.   The European theater was chosen as the domain due to the

fact it was in this theater that the 3DVAR was first in the testing phase at AFWA.  Figure 8 

illustrates the domain including the relative location of all surface and upper air observation 

sites used for verification purposes.  It is important to note that approximately one third of 

the surface area for this domain is water.  It is virtually impossible to verify the model output 

over the water because there are very few reporting stations available for surface 
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observations and no ground-based RAOB stations.  Satellite soundings could not be 

assimilated into the version of 3DVAR used for this study.   

 

Figure 8.  Model domain.  This diagram shows the boundaries on the surface of the entire European window 
and the relative location of all verification stations.  The stations indicated by (x) were those only providing 
surface observations while the ones indicated with (●) provided both surface and upper air observations for 

verification purposes. 

3.5. Verification Procedure 

3.5.1. Overview. Each 24-hour forecast generated an output file totaling

approximately 220 megabytes of data.  An extensive amount of post-processing was required 

to convert the MM5 output into a more useable form.  The program used to manipulate the 
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raw model output into useable data sets was RIP.  The RIP program converts the model 

generated output parameters into a FORTRAN readable binary format.  The RIP output was 

used to accomplish both the surface and vertical verifications throughout the course of this 

study. 

 Verification is the process of comparing the forecasted model output to surface 

observations or atmospheric sounding data.  AFWA uses on the order of 2000 surface 

stations for verification of the European window.  It is beyond the scope of this study to 

attempt a verification of that magnitude.  Ninety surface stations were chosen for the purpose 

of verification in this research.  Several criteria were used to select the surface stations for 

verification.  First, stations were required to be on the list of stations verified by AFWA.  The 

selected stations were also limited to those reporting both surface and upper air observations.  

Finally, the stations were chosen to provide a relatively uniform distribution of locations 

throughout the domain.  Only 68 of the 90 stations reported any RAOB data during the 

period of this study, thus limiting the number of upper air stations to 68 while still allowing 

90 surface verification stations.  See Figure 8 for a graphical representation of the relative 

locations of all verification stations.  Appendix A contains a list of all verification stations 

used throughout this study. 

A grid-to-station verification method was used to compare the model output to the 

station observations for both surface and upper air observations.  An inverse-linear 

interpolation and weighting technique was used to compute the model value at the exact 

station location on the model grid, shown in Figure 9.  The closest grid point to the station 

contributed the greatest influence while the other surrounding grid points had less impact.  
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The same horizontal interpolation and weighting procedure was used for both the surface and 

upper air verifications. 
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Figure 9.  Grid-to-station interpolation.  Inverse-linear interpolation was used to compute the model value at the 
verification station (e).  This method allows the most weight to be given to the model grid point (b) closest to 

the station while the others still have some influence. 
  

3.5.2. Vertical Verification Process. RIP was used to extract vertical parameters of

geopotential height, pressure, temperature, water vapor mixing ratio, cloud ice mixing ratio, 

cloud water mixing ratio, rain mixing ratio, snow mixing ratio, east-west wind component, 

and north-south wind component.  Each of the vertical parameters from the RIP output is 

interpolated horizontally for each of the 68 RAOB reporting stations on all 41 half-sigma 

levels.  The RAOB data contained all mandatory and significant levels, which varied for 

every station and every observation time.  These data were logarithmically interpolated from 

pressure surfaces to the model sigma levels vertically.  Interpolating logarithmically in 

pressure coordinates proved to be more accurate than linear interpolation due to the nonlinear 

vertical decrease of pressure in the atmosphere. 

Interpolation was conducted from RAOB pressure to sigma level for two reasons.  

The focus on low-level and surface interactions dictates a higher model resolution near the 
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surface.  The higher resolution required near the surface is evident in Figure 2 where the 

sigma levels are closer together in the lower atmosphere.  Conversely, there are fewer RAOB 

pressure levels of observations on average than sigma layers in the lower levels.  Second, the 

number of RAOB levels reported fluctuates based on balloon reporting.  This fluctuation 

leads to a varying number of levels being reported by the RAOB for each location and time. 

The horizontally interpolated model data are then subtracted from the vertically 

interpolated RAOB data to arrive at a residual on the same pressure level.  The residuals 

were calculated using equation 3. 

residual = model output – observation (3)

The convention used in equation 3 allows a positive residual to be interpreted as a 

model over-prediction.  The residuals for each station are averaged for all 00Z runs and all 

12Z runs individually.  Due to diurnal variations, the separation of 00 and 12Z runs was 

required to eliminate statistical errors inherent in data dependence.  The overlapping of 

forecast periods resulted in a violation of independence, especially for the small sample sizes 

of this study.  The sample sizes for the respective initialization times are 37 for 00Z and 26 

for 12Z.   

Following Wilkes (1998), the statistical parameters of root mean square error 

(RMSE) and bias were computed in order to make the necessary comparisons between the 

model outputs.  The residuals were averaged throughout the vertical profile to arrive at a 

mean residual, or average bias.  Equation 4 was used to calculate the RMSE, where residual 

was calculated in equation 3 and n is the number of valid observations.

          
n

residual
RMSE ∑=

2)(
     (4) 
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 A paired t-test of the residuals was conducted on the model output to determine 

vertical levels that were statistically different from the observations at a 95% significance 

level.  An assumption of normality had to be made in order to use the paired t-test.  P-values 

were calculated in order to determine if there was a statistically significant difference 

between the compared values.  The difference ( ) was used as the basis 

for all verifications.  Therefore, the null hypothesis H

deniedallobs −=∆

0=∆0: was used in every case.  The 

95% significance level corresponds to a type-I error (α) of 0.05.  The null will be rejected in 

favor of the alternative, , when the P-value is less than or equal to α.  Rejecting the null 

indicates there is a statistical difference between the two data sets.  When the P-value is 

greater than α, the null cannot be rejected (Devore, 2000).   

0≠∆

 

3.5.3. Surface Verification Process. The RIP data processing program is used to

extract the lowest sigma level parameters of temperature, pressure, east-west wind 

component, and north-south wind component.  The lowest sigma level is located at constant 

20 meters above ground level (AGL) throughout the domain.  All surface temperature 

observations are taken at a standardized 2 m AGL.  The surface temperature is calculated at 

the lowest half-sigma level, which is 20 m above the surface.  Therefore the model does not 

produce a surface temperature directly.  However, a ground temperature variable is 

computed.  The ground temperature, also known as skin temperature, is not the same as the 

surface temperature as measured at 2 m AGL in the observation process.  A simple random 

check against the ground temperature values proved that it was inappropriate to verify the 

model skin temperature against the observed surface temperature.  The ground temperatures 

were considerably higher than the observations.  The lowest sigma level values for 
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temperature were compared to the observations taken at 2 m AGL without any extrapolation 

or corrections in order to verify the surface temperature parameter.   

The inverse-linear interpolation and weighting process previously described was 

utilized to arrive at model output values for the specific station locations on the model grid. 

The verification procedure was performed at 3-hour intervals starting with the initialization 

time and running through the 24-hour forecast.  Residuals of the parameters were calculated 

following equation 3.   

The surface parameters verified in this study were temperature, mean sea level 

pressure, and winds.  RMSE and bias were both computed for all stations and used in the 

temperature and mean sea level pressure verifications.  Root mean square vector error 

(RMSVE) was used in the verification of the surface winds.  RMSVE was chosen because it 

takes both wind speed and direction into account, thus eliminating the need for cumbersome 

direction comparisons.  RMSVE is calculated using equation 5,  

  
n

vvuu
RMSVE obsobs∑ −+−

=
])()[( 2

mod
2

mod ,               (5)

where u and v denote the east-west and north-south wind components respectively, the 

subscripts mod and obs are the model and observed parameters, and n is the number of valid 

surface observations for a specific forecast time.  The paired t-test as described in Section 

3.5.2 is used for the surface verification after the RMSE, RMSVE, and biases were 

computed. 

The model pressure at the lowest half-sigma level required a correction factor of 2.16 

mb in order to reduce it to the surface.  The correction factor was determined by applying a 

hydrostatic approximation to the height difference between the lowest half-sigma level      
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(20 m) and the observation height (2 m).  This value is constant because the height difference 

(18 m) remains constant throughout the domain. 

3.6. Terrain Analysis 

 Prior to verifying the surface parameters, it was necessary to conduct a terrain 

analysis.  The analysis is a necessary prerequisite because surface parameters are highly 

influenced by the topography.  The European theater contains many various types of 

topography ranging from the low, relatively flat ocean surfaces to high peaks of the Alps and 

other mountain ranges.  Because the grid resolution for this study was 45 km, this warranted 

a critical assessment of the accuracy of the terrain grid used in the simulations. 

 

A
D

B

C

 

Figure 10.  Calculation of terrain residual.  A two-dimensional representation of the method of computing 
terrain residual.  Points A and B represent model grid points.  Point C is the verification station.  Point D 

represents the elevation as computed by the model for the given station.  The difference in elevation between 
points C and D is the terrain residual. 

 

The same interpolation and weighting functions that were used to compute the 

horizontal verification results were applied to the model terrain grid.  Figure 10 shows a 
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crude two-dimensional example using only two grid points of how the model terrain values 

are computed for each station.   

 The residuals were consistently positive, indicating an overestimate of actual 

station elevations.  It was necessary to exclude certain stations exceeding a residual criterion.  

These findings are consistent with tests conducted by Manning and Davis (1997).  They also 

found the average model terrain to be too high from the smoothing of the grid resolution. 

The distribution of lowest sigma level temperatures was analyzed to determine a 

residual criterion in order to exclude certain surface verification stations.  The distribution of 

the lowest sigma level temperatures should ideally compare to a terrain residual distribution.  

It was found that approximately 99% of these temperature residuals were less than 3.5 K.  

This was defined as the acceptable range of error based on a dry adiabatic lapse rate.  

Assuming the dry adiabatic lapse rate of 10 K/1000 m, 3.5 K corresponds to a terrain residual 

criterion of 350 m.  Four stations with an absolute value of terrain residual greater than 350 

m were excluded from the surface verification process.  The excluded stations can be seen in 

Appendix A.   
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IV. Analysis and Results 

4.1. Overview 

This chapter presents the results of the statistical analyses performed in this study.  

There were three different data denied cases for each model run, thus there are three sets of 

charts for each initialization time and parameter analyzed.  The chapter starts by discussing 

the upper air verification results, followed by a discussion of the results of the surface 

verification.  A final comparison is then made of the results of the analyses using the primary 

control group (C1) and those of the analyses using the secondary control group (C2) 

accounting for differences in the initial and boundary conditions resulting from using 

different AVN forecasts for the primary control group and data denied test cases. 

All observations used for verification were provided by the Air Force Combat 

Climatology Center (AFCCC) and are assumed to be error-free.  However, a rough quality 

control routine was performed on all observations to remove data with unrealistic values.  

Unrealistic values are defined as temperatures greater than 50˚C, pressures above 1040 mb, 

and winds greater than 100 knots.  In addition, the accuracy of the observations is not known 

and is assumed to be within the limits of the equipment used to measure each parameter.  The 

specific observing equipment used in the European theater is assumed to be of comparable 

quality and accuracy as that used by the National Weather Service and the U.S. Air Force.  

Table 5 lists observation equipment accuracy as advertised in information published for the 

various instruments.  The surface sensor accuracies are based on the standard equipment 

found in Air Force weather stations worldwide, while the upper air data are based on the 

accuracy of the Vaisala RS80 family of radiosondes used in Europe (BADC, 2002). 
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Table 5.  Observation equipment accuracy (from Vaisala (2002) and Department of the Air Force (1995, 1997, 
and 1998)). 

Surface Observations
Parameter Sensor Accuracy
Temperature ± 1.0 K
Pressure ± 0.5 mb
Wind Speed ± 1.0 m/s
Wind Direction ± 5.0°

Upper Air Observations
Parameter Sensor Accuracy
Temperature ± 0.2 K
Pressure ± 0.5 mb  

All differences were computed using the convention that the difference (∆) equals the 

control group (C1 or C2) minus the data denied test case (TOT, UPP, or SFC) to ensure 

consistency.  This method of differencing allows positive differences to indicate the control 

group produced a higher value at that point for the particular parameter being analyzed.  

Likewise, a negative difference shows that the test case had a greater value.  Refer to Table 2 

for a description of the configuration of the various experimental runs used throughout this 

study. 

4.2. Upper Air Verification Results 

This section presents the findings of the upper air verification process.  The upper air 

verification statistics were calculated using the 68 RAOB stations listed in Appendix A.  The 

upper air parameters analyzed in this study were geopotential heights and temperature.   

Weather balloons are generally launched every 12 hours, thus dictating the 

verification times used.  Each 24-hour forecast covered three RAOB reporting times.  These 

times correspond to the model initialization time as well as the 12 and 24-hour forecasts.   
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Very few balloons made it above the 100 mb level, thus providing little data to be analyzed at 

the two highest sigma levels.  Therefore, no verification was performed at levels above     

100 mb. 

Paired t-tests, as described in Section 3.5.2, are used at each sigma level where the 

model output data are compared to the interpolated RAOB data.   The significance tests used 

determine the statistical relevance of the differences in RMSE and bias separately.  All upper 

air significance tests were performed using the null hypothesis H0:  and a 95% 

confidence interval.  Use of the paired t-test defined the differences as statistically significant 

at nearly every level.   

0=∆

The black bars in all of the following charts show the results of the paired t-test.  The 

presence of a black bar indicates that there are statistically significant differences between 

the compared model outputs at those points.  The absence of a bar suggests that the 

differences between the parameters were not large enough to be statistically significant.  A 

conclusion cannot be drawn, however, that the two model outputs are the same at that point.  

The only conclusion that can be made is that there is not enough evidence to prove they are 

different.  When using a paired t-test with a 95% confidence interval, there is an inherent 5% 

chance that the test is wrong.  

All RMSE charts presented in this section show only a single trace detailing the 

difference between the two model runs being compared.  All bias charts have both profiles 

plotted.  The difference in plotting between the RMSE and bias is primarily a function of the 

method of computing the errors.  The average RMSE differences only indicate how close the 

model forecast outputs are to each other with respect to the observations.  The RMSE 

differences are computed from the average RMSE values of the respective model output, and 
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are always a positive number.  The bias is the value showing the tendency of the model.  

Biases can be positive or negative depending on whether the model over or under forecasts 

the parameter.  Differencing the biases can act as a filter and remove valuable information 

because these values can be either positive or negative, which is important in analyzing the 

biases. 

4.2.1. Temperature Verification.   Figures 11 through 13 show the temperature RMSE

differences between C1, which used all available observations, and the data denied test cases 

(TOT, UPP, and SFC respectively) for both the 00 and 12Z initialization times on sigma 

levels.  Recall that negative values indicate areas where the data denied case generated 

greater errors than the case using all available observations.  The opposite is true for positive 

differences.   

In all cases, the lowest sigma levels show differences comparable to those of the 

surface analysis, shown in section 4.3.1.  Figure 11 is a diagram depicting the RMSE 

differences for the TOT test case.  As one would intuitively expect, the test case showed a 

greater error than the case where all available observations were used.  It is important to note 

that the horizontal scales differ between the model times.  The tendency was for the RMSE 

differences to decrease with time, while the actual RMSE values increase throughout the 

forecast period.  This result indicates that the observations used at the model initialization 

time are important, but as the model gets further from the initialization time, they have less 

impact on the forecast.  This trend is not indicative of the model forecast getting better.  It 

does, however, show that the errors converge as the model gets further away from its 

initialization time.
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Figure 11.  Average differences (C1-TOT) in upper air temperature RMSE.  Charts (a), (b), and (c) represent the 
0-hr, 12-hr, and 24-hr forecasts respectively for the 00Z initialization time.  Charts (d), (e), and (f) represent the 
0-hr, 12-hr, and 24-hr forecasts respectively for the 12Z initialization time.   The black bar denotes sigma levels 

with a statistically significant difference at the 95% significance level. 

Figure 12 shows the temperature RMSE difference for the UPP test case.  An 

important feature to note is the contrast between these charts and those in the previous figure.  

The RAOB data denied test case initialized only slightly better than the TOT case, suggesting 

that the aircraft, satellite, and surface observations assimilated have minimal influence on the 

model initialization.  Also of importance is that the RMSE differences converge as the model 

gets further from the initialization time, indicating that the boundary conditions are more 

important than the observations later in the forecast period.
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Average of Difference RMSE Differs Significantly
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Figure 12.  Average differences (C1-UPP) in upper air temperature RMSE.  Same as Figure 11. 
 

Figure 13 shows the vertical profile of the temperature RMSE difference for the SFC 

test case.  The difference in RMSE at the initialization time was markedly better than either 

of the other test cases in all instances.  This difference can be attributed to the fact that the 

lowest sigma level in the model is at 20 m AGL and the surface temperatures are measured at 

2 m AGL.  Although the surface observations are assimilated into the lower boundary 

conditions of the model, their influence is less important in the upper levels of the 

atmosphere.
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Figure 13.  Average differences (C1-SFC) in upper air temperature RMSE.  Same as Figure 11. 
 

 Figures 14 through 16 display the average temperature bias profiles in much the same 

manner as the RMSE differences were presented.  The main difference is that both profiles 

are shown together rather than simply showing the difference for the reasons previously 

mentioned.  In all cases, there is a marked difference between the 00Z and 12Z initialization 

times near the surface.  This difference is a direct result of diurnal variation and is very 

pronounced in all temperature bias analyses of this study.  This error is described in more 

detail in section 4.3.1. 
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The charts in Figures 14 and 15 show a comparison of the average temperature bias 

of the C1 control case versus that of the total and upper air data denied test cases 

respectively.  These diagrams present similar analyses and will be discussed together.  Near 

the surface, the biases are very similar, which is consistent with the findings of the surface 

verification shown later.  However, ascending in the atmosphere, this similarity becomes less 

pronounced, indicating the importance of the observations in the data assimilation process. 
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Figure 14.  Average upper air temperature bias comparison (C1 vs. TOT). Charts (a), (b), and (c) represent the 
0-hr, 12-hr, and 24-hr forecasts respectively for the 00Z initialization time.  Charts (d), (e), and (f) represent the 
0-hr, 12-hr, and 24-hr forecasts respectively for the 12Z initialization time.   The black bar denotes sigma levels 

with a statistically significant difference at the 95% significance level. 
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In addition, the 00Z analyses shows a cold bias at the lower levels while there is a warm bias 

higher in the atmosphere.

C1 Bias UPP Bias Biases Differ Significantly
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Figure 15.  Average upper air temperature bias comparison (C1 vs. UPP).  Same as Figure 14. 
 

 
The analysis presented in Figure 16 shows the comparison between the C1 control 

group and the surface data denied test case.  Unlike the total and upper air data denied test 

cases, denying surface observations has relatively little influence on the vertical temperature 

profile.  This trait is evidenced by the SFC bias being considerably closer to that of C1 than 

for either the TOT or UPP test case indicating the importance of the upper air observations in 
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the data assimilation process.  This finding is consistent with the analysis of the RMSE 

differences using the same data. 
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Figure 16.  Average upper air temperature bias comparison (C1 vs. UPP).  Same as Figure 14. 
  

4.2.2. Geopotential Height Verification.   As shown in the previous section, the UPP 

and TOT test cases produce similar results with respect to the relationship between the 

different test cases.  Figures 17 through 19 present the geopotential height RMSE differences 

between the C1 control group and the TOT, UPP, and SFC test cases respectively. 

Similarities are evident between the temperature and geopotential height RMSE 

analyses.  Considering the total data denied case (Figure 17), the RMSE differences are 
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Figure 17.  Average differences (C1-TOT) in geopotential height RMSE. Charts (a), (b), and (c) represent the 0-
hr, 12-hr, and 24-hr forecasts respectively for the 00Z initialization time.  Charts (d), (e), and (f) represent the 0-

hr, 12-hr, and 24-hr forecasts respectively for the 12Z initialization time.   The black bar denotes sigma levels 
with a statistically significant difference at the 95% significance level. 

 

more significant at the initialization time than at the 12 or 24-hour forecast times.  Although 

the trend is for the difference to decrease later in the forecast period, this is not as well 

defined as it is in the temperature analysis (Figure 11).   

 The RAOB data denial (UPP) results shown in Figure 18 indicate a similar situation 

as the results from the total denied case (TOT) (Figure 17).  The largest differences are 

realized at the initialization time and these differences converge throughout the forecast 

period.
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Figure 18.  Average differences (C1-UPP) in geopotential height RMSE.  Same as Figure 17. 
 

Similarities are also realized in considering the RMSE differences of the vertical 

temperature profile and that of geopotential height for the surface data denied case (Figures 

13 and 19).  The findings of this study indicate that the geopotential height RMSE 

differences are relatively small at the model initialization time, which carries through for the 

entire forecast period, as with the temperature analysis.  Intuitively, this trend is due to the 

minimal impact the surface observations have on the upper air model output.
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Figure 19.  Average differences (C1-SFC) in geopotential height RMSE.  Same as Figure 17. 
 

The charts in Figures 20 and 21 show a comparison of the biases for the C1 control 

group and the UPP and SFC test cases respectively.  Figure 20 shows that the biases for both 

cases start out at relatively similar values for both initialization times.  By the 12-hour 

forecast, the bias values have become smaller or even negative near the surface, but have 

changed very little in the upper levels.  The biases then become more negative near the 

surface by the 24-hour forecast, yet change very little in the upper levels of the atmosphere 

for both the 00Z and 12Z initialization times.
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Figure 20.  Average geopotential height bias comparison (C1 vs. UPP). Charts (a), (b), and (c) represent the 0-
hr, 12-hr, and 24-hr forecasts respectively for the 00Z initialization time.  Charts (d), (e), and (f) represent the 0-

hr, 12-hr, and 24-hr forecasts respectively for the 12Z initialization time.  The black bar denotes sigma levels 
with a statistically significant difference at the 95% significance level. 

 

Analysis of the charts in Figure 21 indicates approximately the same outcome as that 

for the UPP case (Figure 20) with the exception that the SFC data are closer to C1 than those 

of UPP.  The relative difference between C1 and SFC in the biases is carried through from 

the model initialization time through the 24-hour forecast. 
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Figure 21.  Average geopotential height bias comparison (C1 vs. SFC).  Same as Figure 20. 

4.3. Surface Verification 

This section presents the findings of the surface verification process.  The surface 

verification statistics were calculated using the 86 surface observation stations listed in 

Appendix A.  The surface parameters analyzed in this study were temperature, mean sea 

level pressure, and winds with all analysis in this section presented in that order.  The surface 

verification is accomplished for the model initialization time and at every three-hour point 

thereafter up to the 24-hour forecast.  Separate analyses are presented for the three different 
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test cases, as they were for the upper air verification. The same paired t-tests, including null 

hypothesis and confidence interval used for the upper air verification are used for all surface 

verifications. 

As with the upper air verification, the black bars in the surface charts show the results 

of the paired t-test.  The presence of a black bar indicates that there is a statistically 

significant difference between the compared model outputs at that point.  The absence of a 

bar suggests that the differences between the parameters were not large enough to be 

statistically significant.

4.3.1. Temperature Verification.  Figures 22 and 23 present the results of the RMSE 

and bias analyses for TOT test case at the 00 and 12Z initialization time respectively, Figures 

24 and 25 show the same information for the UPP case, and Figures 26 and 27 depict both 

analyses for the SFC case.  The charts labeled (a) in each figure indicate the average RMSE 

over the entire domain for the specific test case, while the charts labeled (b) indicate the 

average biases. 

 The gradual increase in RMSE throughout the entire forecast period evident in all of 

the average RMSE charts is to be expected.  This trend is due to the fact that errors in the 

model output increase as the model gets further away from its initialization time.  Another 

feature of note is the diurnal variation in the temperature bias as indicated by the dip (or arch) 

in the trace.  This characteristic is normal in the MM5 output and is not indicative of an error 

created by the data denial processes of this study.  In the European theater, 00Z corresponds 

to midnight local and 12Z corresponds to noon local.  These are the times of minimum and 

maximum heating, thus leading to diurnal surface temperature variations.  The MM5 does  
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Figure 22.  00Z initialization surface temperature verification results (TOT).  The graphs of ∆ represent the 
average differences (C1-TOT) as previously defined.  Chart (a) depicts the average RMSE and chart (b) is the 

average bias. 
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Figure 23.  12Z initialization surface temperature verification results (TOT).  The graphs of ∆ represent the 
average differences (C1-TOT).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 

  

 

 

 56



(a)

-0.5

0.5
∆ 

(K
)

(b)

-0.5

0.5

∆ 
(K

)

0

1

2

3

4

00 03 06 09 12 15 18 21 24

Forecast Hour

R
M

SE
 (K

)

RMSE Differs Significantly Upper Air Denial RMSE All Obs RMSE

-3
-2
-1
0
1
2

00 03 06 09 12 15 18 21 24

Forecast Hour

B
ia

s (
K

)

Bias Differs Significantly Upper Air Denial Bias All Obs Bias
 

Figure 24.  00Z initialization surface temperature verification results (UPP).  The graphs of ∆ represent the 
average differences (C1-UPP).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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Figure 25.  12Z initialization surface temperature verification results (UPP).  The graphs of ∆ represent the 
average differences (C1-UPP).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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Figure 26.  00Z initialization surface temperature verification results (SFC).  The graphs of ∆ represent the 
average differences (C1-SFC).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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Figure 27.  12Z initialization surface temperature verification results (SFC).  The graphs of ∆ represent the 
average differences (C1-SFC).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 

 

not respond well to these temperature fluctuations, thus there is a negative bias in the model 

output at the peak of daytime heating and a positive bias around 00Z. 
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The diurnal variation is also evident in the RMSE, but is not as pronounced.  Although these 

features are noteworthy and merit discussion, neither is the principal focus of this study.  The 

primary focus here is to analyze the difference in the test cases as compared to the control 

group, as the control group is assumed to be representative of the model forecast as produced 

by the AFWA production MM5 using all available observations.   

 In all instances, the average RMSE charts indicate that the C1 control group 

initialized better than the data denied test case.  The different test configurations have 

varying levels of impact on the output of their respective runs.  The TOT test case produced 

the largest RMSE differences, which is to be expected since this setup allowed no current 

observations to be assimilated.  The analyses of the UPP and SFC test cases show similar 

results, however not as pronounced.  All of the differences remain relatively constant 

throughout the entire forecast period.  All cases indicate the difference to be less than 0.4 K 

for both RMSE and bias, with the majority of them being less than 0.2 K, which is well 

within the accuracy of the surface temperature measuring devices as listed in Table 6. 

 The bias charts reveal similar results for all of the data denied test cases.  For both 

initialization times and all test cases, the differences are small and remain relatively constant 

throughout the entire forecast period.  Although the data were determined to be statistically 

different, the differences are not meteorologically significant in most cases because the errors 

are less than the possible error associated with the equipment used to take the observations. 
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4.3.2. Mean Sea Level Pressure Verification.   The observed altimeter settings as 

reported by the surface verification stations were used as a basis of comparison for mean sea 

level pressure.  Since the model does not produce any actual surface output, the pressure 

calculated at the lowest sigma level was reduced to the surface as described in section 3.5.3.  

This extrapolated model value was then converted to sea level pressure in the same manner 

as the observed altimeter setting to ensure consistency.   

 The figures in this section are presented in the same manner as those for the 

temperature verification.  Figures 28 and 29 show the TOT case, Figures 30 and 31 show the 

UPP case, and Figures 32 and 33 depict the SFC case.  The trends in the analyses are similar 

to those of the temperature verification with one minor departure; there is no specific diurnal 

pattern to the bias traces.   

The error comparisons for pressure are similar to those found in the temperature 

verification.  The RMSE values for each of the data denied test cases were greater than those 

of the C1 control group with all differences being less than 0.8 mb and the vast majority less 

than 0.5 mb, which is the accuracy of the sensor.  The overall tendency for the average 

RMSE comparisons was that the difference remained relatively constant throughout the 

forecast period.   

 The significant finding in the bias analyses was that they had the same trend as 

RMSE, but the difference was not as consistent as that of the average RMSE comparisons.  

This result is a deviation from the findings of the temperature verification.  
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Figure 28.  00Z initialization mean sea level pressure verification results (TOT).  The graphs of ∆ represent the 
average differences (C1-TOT).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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Figure 29.  12Z initialization mean sea level pressure verification results (TOT).  The graphs of ∆ represent the 
average differences (C1-TOT).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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Figure 30.  00Z initialization mean sea level pressure verification results (UPP).  The graphs of ∆ represent the 
average differences (C1-UPP).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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Figure 31.  12Z initialization mean sea level pressure verification results (UPP).  The graphs of ∆ represent the 
average differences (C1-UPP).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 

 

 

 

 66



(a)

-1

0

1
∆ 

(m
b)

(b)

-1

0

1

∆ 
(m

b)

0
1
2
3
4
5
6

00 03 06 09 12 15 18 21 24

Forecast Hour

R
M

SE
 (m

b)

RMSE Differs Significantly Surface Denial RMSE All Obs RMSE

0

1

2

3

00 03 06 09 12 15 18 21 24

Forecast Hour

B
ia

s (
m

b)

Bias Differs Significantly Surface Denial Bias All Obs Bias
 

Figure 32.   00Z initialization mean sea level pressure verification results (SFC).  The graphs of ∆ represent the 
average differences (C1-SFC).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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Figure 33.  12Z initialization mean sea level pressure verification results (SFC).  The graphs of ∆ represent the 
average differences (C1-SFC).  Chart (a) depicts the average RMSE and chart (b) is the average bias. 
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4.3.3. Surface Wind Verification.  As described in section 3.5.2, equation 5, RMSVE 

is the statistical tool used for wind verification.  Large RMSVE values may be a direct result 

of erroneous wind direction predictions and may not be indicative of bad wind speed 

forecasts.   

Figures 34 through 36 depict the average RMSVE for all data denied test cases and 

initialization times for three-hourly forecasts compared to the C1 control group as with the 

previous surface verifications.  Analysis of the charts shows essentially the same trend for all 

test cases and both initialization times.  In all instances, the tendency is for an increase in 

error throughout the forecast period with the differences remaining relatively constant after 

the 3-hour forecast time.  The different test cases and initialization times produced varied 

results.  Results from the TOT case, shown in Figure 34, indicate the average RMSVE 

difference at both initialization times to be slightly less than 0.9 ms-1, which is greater than 

the accuracy of the wind measurement equipment.  By the 3-hour forecast, the difference is 

reduced to less than 0.3 ms-1 where it remains relatively constant for the remainder of the 

forecast period.  When analyzing the results of the UPP test case in Figure 37, it is evident 

that denial of the RAOB has a much smaller effect on the model output.  Figure 36 shows the 

results of the SFC test case, which are similar to the results of the TOT test case.  The largest 

difference is at the model initialization time with a sharp decrease by the 3-hour forecast 

time.   
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Figure 34.  Surface wind speed verification results (TOT).  (a) 00Z initialization.  (b) 12Z initialization. 
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Figure 35.  Surface wind speed verification results (UPP).  (a) 00Z initialization.  (b) 12Z initialization. 
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Figure 36.  Surface wind speed verification results (SFC).  (a) 00Z initialization.  (b) 12Z initialization. 
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4.4. Errors due to Initial and Boundary Conditions 

This section provides a comparison of the previously discussed analyses using the C1 

control group with similar analyses made using the secondary C2 control group as described 

in section 3.3.3.  The test method incorporated was designed in such a manner as to account 

for differences in the initial and boundary conditions created by using different first guess 

forecasts for the model initializations.   

All figures in this section show the RMSE and RMSVE differences of the primary C1 

control run made using the 6-hour old AVN data previously discussed compared to the 

corresponding difference of the secondary C2 control run made using the 30-hour old AVN 

data with all available observations.  Analyses are made for both the C1 and C2 control runs 

as described in section 3.5.  The C2 analyses are then subtracted from the previously shown 

C1 analyses to calculate new RMSE and RMSVE differences.  The new RMSE and RMSVE 

differences shown here can then be attributed primarily to the use of different first guess 

forecasts and provide an estimate of the amount of error associated with the different initial 

and boundary conditions. 

4.4.1. Upper Air Analyses.   Figures 37 through 39 display the temperature RMSE 

differences for the 00Z initialization of the TOT, UPP, and SFC test cases respectively, while 

figures 40 through 42 show the same data for 12Z initialization times.  Panels (a) through (c) 

in each figure depict the RMSE differences of the C1 control group and the various data 

denied test cases for the 0, 12, and 24-hour forecasts respectively.  Panels (d) through (f) 

show the RMSE differences of the C2 control group and the various data denied test cases for 

the 0, 12, and 24-hour forecasts respectively.  Finally, panels (g) through (i) are the 
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differences of the two previous sets of analyses and primarily show the RMSE differences 

associated with the different initial and boundary conditions. 
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Figure 37.  Average differences (C1-C2) in temperature RMSE for the TOT 00Z initialization case.  Charts (a), 
(b), and (c) show the RMSE differences of the C1-TOT test case for the 0, 12, and 24-hour forecasts 

respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-TOT test case for the 0, 12, and 24-
hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 

 

 74



( a )
100

400

700

1000
-1 0 1

Pr
es

su
re

 (m
b)

( b )

-1 0 1

( c )

-1 0 1

0.1

0.3

0.5

0.7

0.9

Si
gm

a

( d )
100

400

700

1000
-1 0 1

Pr
es

su
re

 (m
b)

( e )

-1 0 1

(f )

-1 0 1

0.1

0.3

0.5

0.7

0.9

Si
gm

a

( g )
100

400

700

1000
-1 0 1

Pr
es

su
re

 (m
b)

(h )

-1 0 1

( i )

-1 0 1

0.1

0.3

0.5

0.7

0.9
Si

gm
a

 

Figure 38.  Average differences (C1-C2) in temperature RMSE for the UPP 00Z initialization case.  Charts (a), 
(b), and (c) show the RMSE differences of the C1-UPP test case for the 0, 12, and 24-hour forecasts 

respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-UPP test case for the 0, 12, and 24-
hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 39.  Average differences (C1-C2) in temperature RMSE for the SFC 00Z initialization case.  Charts (a), 
(b), and (c) show the RMSE differences of the C1-SFC test case for the 0, 12, and 24-hour forecasts 

respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-SFC test case for the 0, 12, and 24-
hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 40.  Average differences (C1-C2) in temperature RMSE for the TOT 12Z initialization case.  Charts (a), 
(b), and (c) show the RMSE differences of the C1-TOT test case for the 0, 12, and 24-hour forecasts 

respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-TOT test case for the 0, 12, and 24-
hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 

 

 77



( a )
100

400

700

1000
-1 0 1

Pr
es

su
re

 (m
b)

( b )

-1 0 1

( c)

-1 0 1

0.1

0.3

0.5

0.7

0.9

Si
gm

a

( d )
100

400

700

1000
-1 0 1

Pr
es

su
re

 (m
b)

( e )

-1 0 1

( f)

-1 0 1

0.1

0.3

0.5

0.7

0.9

Si
gm

a

( g )
100

400

700

1000
-1 0 1

Pr
es

su
re

 (m
b)

( h )

-1 0 1

(i)

-1 0 1

0.1

0.3

0.5

0.7

0.9
Si

gm
a

 

Figure 41.  Average differences (C1-C2) in temperature RMSE for the UPP 12Z initialization case.  Charts (a), 
(b), and (c) show the RMSE differences of the C1-UPP test case for the 0, 12, and 24-hour forecasts 

respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-UPP test case for the 0, 12, and 24-
hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 42.  Average differences (C1-C2) in temperature RMSE for the SFC 12Z initialization case.  Charts (a), 
(b), and (c) show the RMSE differences of the C1-SFC test case for the 0, 12, and 24-hour forecasts 

respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-SFC test case for the 0, 12, and 24-
hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 

 

 Figures 43 through 48 show the RMSE differences for the geopotential heights in the 

exact same manner as the previous figures showed them for the upper air temperatures.  The 
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first three figures depict the three different test cases for the 00Z initialization time, while the 

final three figures are for the 12Z initialization. 
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Figure 43.  Average differences (C1-C2) in the geopotential height RMSE for the TOT 00Z initialization case.  
Charts (a), (b), and (c) show the RMSE differences of the C1-TOT test case for the 0, 12, and 24-hour forecasts 
respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-TOT test case for the 0, 12, and 24-

hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 44.  Average differences (C1-C2) in the geopotential height RMSE for the UPP 00Z initialization case.  
Charts (a), (b), and (c) show the RMSE differences of the C1-UPP test case for the 0, 12, and 24-hour forecasts 
respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-UPP test case for the 0, 12, and 24-

hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 45.  Average differences (C1-C2) in the geopotential height RMSE for the SFC 00Z initialization case.  
Charts (a), (b), and (c) show the RMSE differences of the C1-SFC test case for the 0, 12, and 24-hour forecasts 
respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-SFC test case for the 0, 12, and 24-

hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 46.  Average differences (C1-C2) in the geopotential height RMSE for the TOT 12Z initialization case.  
Charts (a), (b), and (c) show the RMSE differences of the C1-TOT test case for the 0, 12, and 24-hour forecasts 
respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-TOT test case for the 0, 12, and 24-

hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 47.  Average differences (C1-C2) in the geopotential height RMSE for the UPP 12Z initialization case.  
Charts (a), (b), and (c) show the RMSE differences of the C1-UPP test case for the 0, 12, and 24-hour forecasts 
respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-UPP test case for the 0, 12, and 24-

hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
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Figure 48.  Average differences (C1-C2) in the geopotential height RMSE for the SFC 12Z initialization case.  
Charts (a), (b), and (c) show the RMSE differences of the C1-SFC test case for the 0, 12, and 24-hour forecasts 
respectively.  Charts (d), (e), and (f) show the RMSE differences of the C2-SFC test case for the 0, 12, and 24-

hour forecasts.  Charts (g), (h), and (i) show the differences of (C1-C2) for the 0, 12, and 24-hour forecasts. 
 

 In the case of the upper air analyses, it is apparent that the different initial and 

boundary conditions account for the majority of the difference between the C1 control run 
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and data denied test cases.  The RMSE differences shown for all C1-C2 analyses are very 

similar to the C1-test case analyses reinforcing the importance of the first guess in the data 

assimilation process.  

4.4.2. Surface Analyses.  The surface analyses were conducted in a very similar 

manner to the upper air analyses with regard to accounting for the different initial and 

boundary conditions.   

Figures 49 through 51 show the average temperature RMSE differences of the TOT, 

UPP, and SFC test cases respectively, Figures 52 through 54 show the mean sea level 

pressure RMSE differences of the various data denied test cases, and Figures 55 through 57 

depict the average RMSVE differences for surface wind speed.  In each of the figures, panels 

(a) through (c) are the results of the 00Z initialization time where panel (a) is the C1-test case 

RMSE difference, panel (b) is the C2-test case RMSE difference, and panel (c) shows the 

difference of (a) and (b).  Panels (d) through (f) show the results of the 12Z initialization time 

where panel (d) is the C1-test case RMSE difference, panel (e) is the C2-test case RMSE 

difference, and panel (f) is the difference of (d) and (e).  The differences shown in panels (c) 

and (f) of each figure are C1-C2 and estimate the effects of the use of a different first guess 

forecast on the MM5 model forecast accuracy.   

 As previously shown in the surface analyses of section 4.3, when compared with C1 

the errors created by the data denial at the surface were within the accuracy of the 

measurement equipment.  No significant deviations from this finding were noted during the 

current analyses.  When the estimated errors associated with the different initial and 

boundary conditions are accounted for, the remaining RMSE differences become smaller and 

virtually insignificant. 
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Figure 49.  Average differences (C1-C2) in temperature RMSE for the TOT test case.  Charts (a), (b), and (c) 
are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) and (d) are 

the RMSE differences of C1-TOT, (b) and (e) are the RMSE differences of C2-TOT, and charts (c) and (f) 
show the differences of C1-C2. 
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Figure 50.  Average differences (C1-C2) in temperature RMSE for the UPP test case.  Charts (a), (b), and (c) 
are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) and (d) are 
the RMSE differences of C1-UPP, (b) and (e) are the RMSE differences of C2-UPP, and charts (c) and (f) show 

the differences of C1-C2. 
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Figure 51.  Average differences (C1-C2) in temperature RMSE for the SFC test case.  Charts (a), (b), and (c) are 
for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) and (d) are the 
RMSE differences of C1-SFC, (b) and (e) are the RMSE differences of C2-SFC, and charts (c) and (f) show the 

differences of C1-C2. 
 

 89



(a)

-1

0

1

00 03 06 09 12 15 18 21 24

RMSE Difference

∆ 
(m

b)

(b)

-1

0

1

0 3 6 9 12 15 18 21 24

RMSE Difference

∆ 
(m

b)

(c)

-1

0

1

00 03 06 09 12 15 18 21 24

RMSE Difference (C1-C2)

∆ 
(m

b)

(d)

-1

0

1

00 03 06 09 12 15 18 21 24

RMSE Difference

∆ 
(m

b)

(e)

-1

0

1

0 3 6 9 12 15 18 21 24

RMSE Difference

∆ 
(m

b)

(f)

-1

0

1

00 03 06 09 12 15 18 21 24

RMSE Difference (C1-C2)

∆ 
(m

b)

 

Figure 52.  Average differences (C1-C2) in mean sea level pressure RMSE for the TOT test case.  Charts (a), 
(b), and (c) are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) 
and (d) are the RMSE differences of C1-TOT, (b) and (e) are the RMSE differences of C2-TOT, and charts (c) 

and (f) show the differences of C1-C2. 
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Figure 53.  Average differences (C1-C2) in mean sea level pressure RMSE for the UPP test case.  Charts (a), 
(b), and (c) are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) 
and (d) are the RMSE differences of C1-UPP, (b) and (e) are the RMSE differences of C2-UPP, and charts (c) 

and (f) show the differences of C1-C2. 
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Figure 54.  Average differences (C1-C2) in mean sea level pressure RMSE for the SFC test case.  Charts (a), 
(b), and (c) are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) 
and (d) are the RMSE differences of C1-SFC, (b) and (e) are the RMSE differences of C2-SFC, and charts (c) 

and (f) show the differences of C1-C2. 
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Figure 55.  Average differences (C1-C2) in wind speed RMSVE for the TOT test case.  Charts (a), (b), and (c) 
are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) and (d) are 
the RMSVE differences of C1-TOT, (b) and (e) are the RMSVE differences of C2-TOT, and charts (c) and (f) 

show the differences of C1-C2. 
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Figure 56.  Average differences (C1-C2) in wind speed RMSVE for the UPP test case.  Charts (a), (b), and (c) 
are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) and (d) are 
the RMSVE differences of C1-UPP, (b) and (e) are the RMSVE differences of C2-UPP, and charts (c) and (f) 

show the differences of C1-C2. 
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Figure 57.  Average differences (C1-C2) in wind speed RMSVE for the SFC test case.  Charts (a), (b), and (c) 
are for the 00Z initialization case while (d), (e), and (f) are for the 12Z initialization case.  Charts (a) and (d) are 
the RMSVE differences of C1-SFC, (b) and (e) are the RMSVE differences of C2-SFC, and charts (c) and (f) 

show the differences of C1-C2. 
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V. Conclusions and Recommendations 

5.1. Conclusions 

The primary goal of this research was to quantify the effects of denied and limited 

data in MM5 model initialization on forecast accuracy.  The effects of data denial and 

limitation on model accuracy are of critical importance to the military due to increased 

reliance on computer-generated weather forecasts.  This study was conducted using the 

3DVAR data assimilation scheme and the MM5 modeling system as configured and run 

operationally by the Air Force Weather Agency (AFWA).  The European theater (T-03 

window) was used with a 45 km horizontal grid resolution.   

The input data were systematically denied in three different categories: total denial of 

all observations, denial of upper air observations (RAOB only), and denial of all surface 

observations.  Two control groups for comparison were also run using all available 

observations as received by AFWA for the same dates and initialization times as the data 

denied test cases.  The main control group used a 6-hour old AVN forecast which is the 

primary first guess forecast used by AFWA.  The second control group was run using a 30-

hour old AVN forecast to provide the initial and boundary conditions, which were the same 

data used to provide the first guess field for all of the data denied test cases.  Two separate 

analyses were then made using the different control groups as a baseline for comparison. 

The forecasts from the data denied test cases were individually compared to the two 

different control groups.  The first set of analyses was a comparison of the main control 

group to the three different data denied test cases.  This test configuration was chosen in an 

effort to replicate a real world data denial or limitation scenario in which the observations 
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would not be available for assimilation into any NWP model, including the AVN, which is 

used to initialize the MM5 at AFWA.  The second test conducted used the secondary control 

group as a baseline compared to the data denied test cases.  The second test was designed to 

approximate the error associated with the use of a different first guess forecast in the model 

initialization between the primary control group and the data denied test cases.   

The upper air parameters analyzed for this research were geopotential heights and 

temperature, whereas the surface parameters were mean sea level pressure, temperature, and 

winds.  The analyses made throughout the course of this study indicate that there are 

statistically significant differences between the main control group (C1) and the data denied 

test cases in almost every instance.  The comparisons provide little evidence of 

meteorologically significant differences in the surface forecasts.  This finding is based on the 

fact that the differences of the errors are well within the accuracy limitations of the 

equipment used to make the observations.  In contrast, the upper air analyses show 

significant differences both statistically and meteorologically.  In the upper air analyses, the 

largest differences emerged at the model initialization time in the cases of total data denial 

and upper air data denial.  The magnitude of the differences rapidly diminishes as the 

solution of the test cases converge toward that of the control group throughout the forecast 

period.   

In the cases of both the upper air and surface analyses, it is apparent that the different 

initial and boundary conditions account for the majority of the error between the C1 control 

run and data denied test cases.  The RMSE differences shown for all C1-C2 analyses are very 

similar to the C1-test case analyses reinforcing the importance of the first guess in the data 

assimilation process.  It must be noted, however, that this is an important result indicating the 
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significance of the observations on the data assimilation process as well.  Observations that 

are unavailable for assimilation into the MM5 will not be available for assimilation into the 

AVN or other NWP models, thus forcing the use of older first guess forecasts for model 

initialization and leading to further model forecast degradation.   

The results of the analyses show how the errors would grow if AFWA is forced to use 

older AVN forecasts due to data denial or limitation.  The errors become much greater when 

the 30-hour old AVN forecast, which was made using all available observations for that 

particular initialization time, is used to initialize the model.   

5.2. Future Research Recommendations 

More in-depth model comparisons are required in order to quantify the effects of data 

denial.  Future research should include forecasts extending beyond the 24-hour forecast 

period used in this study and also incorporate all seasons in order to ensure a more 

representative sample.   

Based on the findings of this study, there are several recommendations for future 

research: 

• Derive a method to limit the same observations to the first guess field and the test 

case.  This will eliminate the effects on the model output of undesired observations 

being assimilated into the model initialization and eliminate the need for an additional 

control group to account for the errors associated with using different initial and 

boundary conditions. 

• Use smaller domains with finer grid resolutions.  This study used the outer domain of 

the European window, which includes a large amount of water along with numerous 
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different climatic regimes.  Smaller domains would allow for more focused 

concentration of observation sites without increasing the number of verification 

stations. 

• Perform analyses by climatic regime.  Analyses of this sort would serve to decrease 

the negative effects of averaging the forecast biases.  

• Compare different windows.  A comparison of this sort would allow AFWA to 

determine if the MM5 is more susceptible to errors caused by the effects of data 

denial and limitation in different regions of the world. 
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Appendix A.  Verification Stations 

Table 6.  Station Verification List.  All stations provided both surface and upper air observations unless 
otherwise noted. 

STATION ICAO BSN LAT LON Elev (m) SFC only Excluded
ANDOYA, Norway ENAN 10100 69.3 16.15 14 X
BONO, Norway ENBO 11520 67.27 14.37 13
ORLAND-III, Norway ENOL 12410 63.69 9.6 7
OSLO, Norway ENGM 13840 60.19 11.08 204 X
EKOFISK, Norway - 14000 56.53 3.21 46
STAVENGER, Norway ENZV 14150 58.88 5.62 9
SODANKYLA, Finland EFSO 28360 67.36 26.65 179
JYVASKYLA, Finland EFJY 29350 62.4 25.68 145
STORNOWAY, United Kingdom EGPO 30260 58.21 -6.31 13
KINLOSS-RAF, United Kingdom EGQK 30660 57.65 -3.56 7 X
BOULMER, United Kingdom EGQM 32400 55.42 -1.59 23
LEEMING-RAF, United Kingdom EGXE 32570 54.3 -1.53 40 X
WADDINGTON-RAF, United Kingdom EGXW 33770 53.17 -0.52 70 X
SHAWBURY-RAF, United Kingdom EGOS 34140 52.8 -2.66 76 X
ABERPORTH, United Kingdom EGUC 35020 52.13 -4.56 134
WATISHAM-RAF, United Kingdom EGUW 35900 52.11 0.96 87 X
BRIZE-NORTON-RAF, United Kingdom EGVN 36490 51.75 -1.57 88 X
HERSTOMONCEUX, United Kingdom - 38820 50.9 0.32 54
VANENTIA-OBSER, Ireland - 39530 51.92 -10.25 14
KEFLAVIK, Iceland BIKF 40180 63.96 -22.59 52
FAEROE-ISLANDS, Denmark - 60110 62.01 -6.76 39
COPENHAGEN, Denmark - 61810 55.76 12.52 40
DE-BILT, Netherlands EHDB 62600 52.09 5.18 4
KOKSIJDE, Belgium EBFN 64000 51.07 2.65 9
ST-HUBERT, Belgium EBSU 64760 50.03 5.39 557
ELSENBORN, Belgium EBLB 64960 50.46 6.18 570
PAYERNE, Switzerland LSMP 66100 46.82 6.94 491 X
BREST, France LFRB 71100 48.44 -4.42 103
NANCY, France LFSN 71800 48.67 6.22 217
LYON, France LFLL 74810 45.73 5.07 240
BORDEAUX, France LFBD 75100 44.82 -0.7 61
NIMES, France LFME 76450 43.86 4.39 62
NICE, France LFMN 76900 43.65 7.19 10 X X
AJACCIO, France LFKJ 77610 41.92 8.79 9
ZARAGOZA, Spain LEZG 81600 41.67 -1.01 258
MADRID, Spain LEMD 82210 40.44 -3.55 582  
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Table 6.  (continued). 
STATION ICAO BSN LAT LON Elev (m) SFC only Excluded
GIBRALTAR LXGB 84950 36.15 -5.35 5
EMDEN, Germany EDWE 102000 53.38 7.23 1
BERGEN, Germany ETGB 102380 52.82 9.92 69
BERLIN/TEMPLEHOF, Germany EDDI 103840 52.46 13.39 49 X
ESSEN, Germany EDZE 104100 51.4 6.97 161
IDAR-OBERSTEIN, Germany ETGI 106180 49.69 7.32 377
KUEMMERSBRUK, Germany ETGK 107710 49.42 11.89 418
LINZ, Austria LOWL 110100 48.23 14.2 313
INNSBRUK, Austria LOWI 111200 47.26 11.35 581 X
GRAZ, Austria LOWG 112400 47 15.42 347 X
PRAGUE, Czechoslovakia - 115200 50 14.45 304
LEBA, Poland - 121200 54.75 17.52 2
POZNAN, Poland EPPO 123300 52.42 16.82 92 X
SZEGED, Hungary LHUD 129820 46.25 20.09 83
LUUBLUANA, Slovakia - 140150 46.07 14.51 316
KRIZEVCI, Croatia - 142400 45.82 16.02 123
CLUJ-NAPOCA, Romania LRCL 151200 46.78 23.56 413
BUCHAREST, Romania LRBS 154200 44.5 26.13 91
SOFIA, Bulgaria LBSF 156140 42.65 23.38 595
MILAN, Italy LIML 160800 45.42 9.27 103
PRATICA-DI-MARE, Italy LIRE 162450 41.65 12.42 12
BRINDISI, Italy LIBR 163200 40.65 17.95 10
TRAPANI, Italy LICT 164290 37.92 12.5 7
CAGLIARI, Italy LIEE 165600 39.25 9.04 1
THESSAL-ONIKI, Greece LGTS 166220 40.51 22.97 4
ATHENS, Greece LGAT 167160 37.9 23.73 15
IRAKLION, Greece LGIR 167540 35.32 25.18 39
ESKISEHIR, Turkey LTBI 171240 39.78 30.56 785 X
AKROTIRI, Cypris LCRA 176010 34.57 32.98 23 X
NICOSIA, Cypris LCNC 176070 35.15 33.4 161
ARHANGELSK, Russia ULAA 225500 64.52 40.46 13
PETROZAVODSK, Russia - 228200 61.82 34.26 112 X
KARGOPOL, Russia - 228450 61.5 38.92 121
SYKTYVKAR, Russia UUYY 238040 61.71 50.82 119
TALLIN, Russia EETN 260380 59.34 24.79 44
RIGA, Russia UMRR 264220 56.96 24.04 7  

 103



Table 6.  (continued).
STATION ICAO BSN LAT LON Elev (m) SFC only Excluded
KAUNAS, Russia - 266290 54.88 23.88 75 X
KALININGRAD, Russia UMKK 267020 54.69 20.61 27 X
VOLOGDA, Russia ULWW 270370 59.23 39.86 131
PENZA, Russia UWPP 279620 53.13 45.01 174
GOMEL, Russia UMGG 330410 52.44 31 127 X
KISINEV, Russia UKII 338150 47.01 28.86 180 X
SARATOV, Russia UWSS 341720 51.57 46.03 156 X
ROSTOV-NA-DONU, Russia URRR 347310 47.25 39.82 77
DAMASCUS, Syria OSDI 400800 33.42 36.51 609 X
MAFRAQ, Jordan OJMF 402650 32.36 36.25 687
MEKNES, Morocco GMFM 601500 33.88 -5.52 549 X
DAR-EL-BEIDA, Algeria DAAG 603900 36.71 3.25 25
BECHAR, Algeria DAOR 605710 31.61 -2.22 773
TUNIS, Tunisia DTTA 607150 36.82 10.23 4
TOZEUR, Tunisia DTTZ 607600 33.92 8.1 93 X
BENINA, Libya HLLB 620530 32.07 20.26 132
MERSA-MATRUH, Egypt HEMM 623060 31.32 27.22 30
EL-ARISH, Egypt HEAR 623370 31.07 33.82 32  
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