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Abstract 

 

This research sought to describe an alternative way for calculating expected back 

order (EBO) for reparable inventory systems.  The high costs associated with reparable 

items management, together with its importance for system’s availability, make the 

assessment of back orders of great importance in supporting decisions of “what-to-buy” 

and “where-to- locate” those items. 

Starting at the point that existing models (METRIC, MOD-METRIC, and 

VARIMETRIC) rely on some assumptions that often cannot be met in real life, the 

proposed method (called P-METRIC), which is a mix of simulation and mathematical 

analytical model, relaxes assumptions about Demand, Time to Repair (TTR), and 

Ordering & Ship Time (OST) distributions looking for potential differences that may 

cause on the EBO calculation.  

The study consists of 10 conceptual examples where the parameters of Demand, 

TTR, and OST vary according to probability distributions recognized by the related 

literature.  It also presents a case study of 20 reparable items of the T-27 Tucano, an 

advanced-training, light-attack deployed by the Brazilian Air Force.  EBO numbers of the 

existing and proposed models are compared with results gathered from simulation 

(conceptual examples) and a field research (T-27 Tucano) in order to allow conclusions 

about the accuracy and suitability of the proposed method. 
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THE EFFECTS OF VARIABILITY IN DEMAND AND TIME 

PARAMETERS FOR MULTI-ITEM, MULTI-ECHELON, MULTI-

INDENTURE REPARABLE INVENTORY SYSTEMS 

 
 
 

I.  Introduction 

 

Chapter Overview 

The main purpose of this chapter is to describe the problem that will be analyzed 

throughout the research.  The research and investigative questions related to the topic will 

also be presented.  The scope of the research, its limitations, needs and other main issues 

will be addressed as well. 

The research is focused on introducing a new approach for reparable items 

management, which seeks to take into account the effects of variability in Demand, 

Time-to-Repair (TTR) and Ordering & Ship Time (OST) for expected backorder (EBO) 

calculations.  By analyzing the weakness of some assumptions of the existing models, the 

present research seeks to propose a new mathematical model (to be called P-METRIC) 

for EBO calculation, which is based on relaxed assumptions about demand, TTR and 

OST. 

Background 

Reparable Inventory System (RIS) will be the generic name used to describe the 

activities related to the management of reparable items.  Reparable items, as opposed to 
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consumable items, are going to be repaired instead of disposed of and replaced by a new 

item.  The high costs usually associated with these kinds of items place them in the upper 

end of the spectrum of importance when the matter is material management.  

The complexity involving the administration of reparable items begins with the 

stochastic characteristics of its demand but it is not limited to it.  Dealing with multiple 

items, locations, maintenance levels, and item-hierarchies increases the number of 

variables that a manager has to analyze when managing a RIS. 

Several models have been developed over the last 40 years to cope with these 

problems.  The Multi-Echelon Technique for Recoverable Item Control (METRIC), 

developed by the RAND Corporation for the United States Air Force (USAF) in 1968, 

forms the basis of many other models.  The METRIC model considers two echelons of 

repair and supply, bases and depot, and takes care of first- indenture items.  METRIC’s 

objective function seeks to optimize a system by reducing EBOs at the bases, subjected to 

constraints usually expressed in terms of cost.  The optimization process is guaranteed by 

a marginal analysis technique, which calculates the Benefit Cost Analysis (BCA) for each 

additional spare item to be increased in the system.  The fundamental basis of METRIC is 

Palm’s Theorem, which states: 

If demand for an item is a Poisson process with annual mean m and if the 
repair time for each failed unit is independently and identically distributed 
according to any distribution with mean T years, then the steady-state 
probability distribution for the number of units in repair has a Poisson 
distribution with mean m*T.  (Sherbrooke, 1992:21) 
 

METRIC’s scientific basis, together with its simplicity, makes it a useful model, still used 

today. 
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In December of 1973, John A. Muckstadt wrote an article describing the 

relationship between an assembly and its subassemblies with respect to a RIS.  “The 

model, called MOD-METRIC, an extension of METRIC, permits the explicit 

consideration of a hierarchical parts structure” (Muckstadt, 1973:472).  MOD-METRIC’s 

objective function, like METRIC, seeks to minimize the EBO for Line Replaceable Units 

(LRUs) at the bases, subject to cost constraints.  The optimization process is also 

guaranteed by the marginal analysis technique.  MOD-METRIC, however, takes in 

account the effects of having Shop Replaceable Units (SRUs) on the LRU’s repair 

process.  MOD-METRIC’s goal is to calculate the best mix of LRUs and SRUs. 

In March of 1985, Sherbrooke described a new model, called VARI-METRIC, 

which is claimed to be an improvement to EBO calculations.  It is called a second-order 

model because it incorporates two parameters, mean and variance for the number of items 

in the pipeline, for EBO calculations (Sherbrooke, 1985:318).  Based on results gathered 

from simulation, VARI-METRIC assumes that the number of units from a base that are 

in re-supply or repair at any point of time can be approximated by a negative binomial 

distribution, with variance that is never less than the mean (Sherbrooke, 1985:313).  As a 

result of these assumptions, VARI-METRIC “produces an estimate for backorders that 

exceeds that of METRIC in all cases except when stock levels are zero (when the two 

models agree)” (Sherbrooke, 1985:318).  

Preliminary research using a simulation model described in Chapter III will show 

that if Demand has distributions different from Poisson, Palm’s theorem cannot be 

evoked.  Additionally, TTR and OST may have considerable variance, affecting the 

calculation of the expected number of items in backorder situation.   Those assumptions 
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of METRIC may result in inaccurate EBO calculations, potentially leading decision 

makers to take wrong decisions about what to buy as well as where to locate the items 

under analysis. 

This research proposes a new approach that takes into account the stochastic 

characteristics of Demand, TTR and OST.  It will model item demand according to actual 

or theoretical time-between demand distribution (approximated using statistical tools), 

which may be different from exponential distribution that results in Poisson demand as 

assumed by the existing models.  TTR and TTR will also be modeled according to a best-

fit distribution approximated using statistical tools. 

Problem Statement and Contribution of Research 

There is concern about the effects of variability in Demand, TTR and OST on 

EBO calculation for RISs that do not meet the assumptions of Poisson demand.  For those 

systems, variability on the parameters could significantly affect the EBO calculation, as it 

will be demonstrated later in the Chapter 4.  Current models disregard variability 

assuming Demand as Poisson distributed in order to evoke Palm’s theorem (Sherbrooke, 

1992:46).  This approach assumes a risk of overestimating aircraft availability by 

underestimating backorders at the system (Sherbrooke, 1985:311, 312).  

The proposed method seeks to improve EBO calculation by using a more realistic 

distribution for Demand, TTR and OST, and accounting for possible effects that may 

have on EBO prediction.  
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Research Question 

Variability in Demand, TTR, and OST can possibly affect the accuracy of EBO 

predictions for systems where Demand does not follow Poisson distribution. Existing 

EBO models are based on assumptions that cannot always be met in the real world.  This 

may adversely affect the suitability of EBO predictions. How could a mathematical 

analytical model account for variability in Demand, TTR, and OST with respect to EBO 

calculations in a more accurate way? 

Investigative Questions  

To help answer the research question, this research must answer the following 

investigative questions: 

1. What is the best form for a mathematical model for EBO calculation 
that accounts for the stochastic aspects of the demand, time-to-repair 
and ordering-ship-time that may exist in reparable inventory systems? 
 

2. Do the stochastic aspects of the demand and time parameters affect the 
EBO calculation in the proposed method? 
 

3. Does the proposed method return different EBO numbers compared to 
the existing models?  How significant is the difference? 
 

4. Which model would provide the most accurate (close to the real 
world) back order numbers, the proposed method or the existing 
models? 
 

5. Is the new model time/resource efficient compared to the existing 
models? 

 
 

Methodology and Expected Results 

This study intends to be a quantitative research aiming to test the suitability of 

Simulation working together with already existing METRIC theory for accounting EBO 

for Reparable Inventory Systems. 
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To answer the first investigative question, the research will demonstrate the 

mathematical rationality of the proposed method, describing its fundamentals, and logics.  

There will be described the simulation portion of the method, as well as the analytical 

portion with its formulas. In describing the proposed method, it is also intended to discuss 

the fifth investigative question, the possible problems that one may find when 

implementing the proposed approach such as software needs, time consuming and so 

forth. 

Looking for answering the second and third investigative questions, an 

experimental design consisted of ten conceptual examples will explore different 

distributions for Demand and time parameters (TTR and OST) in order to verifying the 

effects of those variability on the EBO calculation.  To assert about the significance of 

possible differences, this research will test the results of the existing and proposed 

methods against samples collected from simulation, checking which model, if any, would 

be inside of a 95 % half-width confidence interval (CI) of the “true” mean value gathered 

from simulation.  Additionally, for each stock level tested, there will be informed which 

model (exiting or proposed) is closer to the mean simulation value. Finally, the 

summation of the squared difference between exiting models and simulation, and 

proposed method and simulation will summarize the range of stock levels tested for each 

experiment in order to verify which of the models (existing or proposed) deviates more 

from the mean simulation values. 

The fourth investigative question must be answered considering a given system.  

Therefore, the research will gather information about demand, time parameters, back 

orders and stock level policy for 20 reparable items from the T-27 Tucano program, at 
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Lagoa Santa Depot (PAMALS), Brazil.  The PAMALS serves the two most important T-

27 Tucano’s operators, Academia da Força Aérea (AFA) and Comando Aéreo de 

Treinamento (CATRE) that together maintain approximately 90 % of the T-27 Tucano’s 

fleet.  For the sake of simplicity during the early model development, the research will 

consider only these two operators, being the system composed of the depot – PAMALS, 

and the bases – AFA and CATRE.  That information will be used for calculating EBO of 

both existing and proposed models, allowing assert about deviation from the reality. 

Scope and Limitations  

The main purpose of this study is to demonstrate the effects of the variance in 

Demand, TTR, and OST on the system’s calculated EBO.  That will be pursued by 

working with theoretical examples, and a real world data sampled from a set of 20 

reparable items of the T-27 Tucano program, an advanced-training, light-attack aircraft 

deployed by the Brazilian Air Force and supported by the PAMALS.  The conceptual 

examples will be confined to the study of some hypothetical reparable items, which have 

Demand approximated by distributions different from the Poisson distribution, used by 

the existing models.  TTR and OST will be assumed as having their own probability 

distributions. Comparisons will be made for a range of stock-level at base, given a stock 

level at depot.  The set of 20 reparable items of the T-27 Tucano program will be chosen 

by the Subdivision of Planning (TPLJ), at PAMALS.  TPLJ’s personnel will gather 

information about equipment failures over an elected period of 100 days of aircraft 

operation in the last year (2001).  There will be no differentiation from corrective or 

preventive maintenance.  The comparison between the methods for the set of 20 reparable 
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items of the T-27 Tucano will be made only for the stock- level informed by TPLJ.  

Additionally, it is relevant to say that this study is going to be the first effort toward the 

utilization of a mathematical model for reparable item management at PAMALS.  

Therefore, it is out of the scope of this study either to extend calculations across 

all reparable items of the T-27 Tucano program or to explore all-possible different 

theoretical examples. 

The following is a list of limitations and risk factors that can represent potential 

misinterpretations of the results of this research: 

1. Appropriateness of the Mathematical Models.  Since METRIC models 
were developed specifically for application to aircraft RIS, any 
application outside of this area would be suspect.  Failures may exhibit 
different behavior for electronic and/or mechanic equipments outside 
of aircraft.  All models in this study are applied to an aircraft RIS. 

 
2. Sample of Items.  It is assumed that a sample of approximately 20 of 

the most important reparable items of the T-27 Tucano program that 
have historical data about backorders will provide the research with 
the information necessary to draw conclusions about the effects of 
variability on the system.  This number needs to be extended if one 
wants to run the model for a real world situation. 

 
3. Steady-State Behavior.  The exis ting and proposed models assume 

steady-state behavior for all parameters.  Consequently, it is assumed 
stationary processes for all parameters in the system.  Sometimes, this 
assumption is not true.  For example, many items exhibit different 
Mean Time Between Failures (MTBF) as they pass through a repair 
process over a long period of time. 

 
4. Time Between Demands.  Samples of the time between demands are 

going to be analyzed through the Arena Input Analyzer in order to 
verify the best theoretical distribution that fits with the sample values.  
The selection of the distribution will be done based on the least square 
error gathered from the Arena Input Analyzer.  However, theoretical 
distributions are still an approximation of the reality, and the “real 
world” demand behaviors will be simulated using the best-fit 
theoretical distribution. 
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5. Back Order Data.  Back order reports not always represent the real 
situation of a system.  Since that information is used as a metric of the 
efficiency, it is expected that sometimes people simply withhold 
information in order to show the situation better than it really is. 

 
As a result of the scope and limitations, the generalizability of the findings may 

both decrease and/or be subject to other interpretations.  These limitations will be 

addressed again in Chapter V, when the results will be discussed. 

Summary 

In Chapter 1, the main purpose of this study was described.  The background 

section discussed the nature of the EBO estimation.  The problem statement, the research 

and investigative questions, the methodology, and scope and limitations were also 

explained and briefly discussed. 

In the next chapter, the literature review will cover the main topics related to this 

research.  In following chapters, the methodology to be used will be described, and then, 

in the last two chapters, the results obtained from the study and the suggested 

recommendations will be presented and discussed. 
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II.  Literature Review 

Chapter Overview 

The first chapter discussed introductory issues.  General aspects and background 

of the problem, the problem statement, research and investigative questions, the 

methodology, and scope and limitations were described. 

This chapter will review relevant literature related to the subject of this research 

in order to present fundamentals necessary for the research hypothesis.  From the 

management science field, the reasons for having inventories, its risks and benefits, 

dealing with critical items, and forecasting independent demand for reparable items will 

be discussed.  A review of the nature of random failures and the wear-out process will be 

presented, extending the discussion to issues related to maintenance policy and activities.  

The Base Stockage, MEDTIC, and MOD-METRIC models are going to be presented and 

described in more details. Finally the relationship of the EBO theory with system 

availability will be discussed. 

Inventory Management 

Inventory management plays an important role in almost all types of business. 

Since inventory usually requires a lot of investment, such as materiel, buildings, 

equipment, and personnel, the ability to manage inventory correctly may represent the 

ability to be profitable or running a loss.  Regardless of this importance, “it is evident that 

most firms do not fully understand the complexities of inventory management” (Silver, 

1998:5).  Referring to his experience with consulting project for inventory management 

issues with local firms, Silver says: “Over the years, we have seen that in more than 90 
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percent of the cases, improved inventory or production management would lead to cost 

savings of at least 20 percent, without sacrificing customer service” (Silver, 1998:5).  

For public services, inventory management is also of great importance.  “Imagine 

a hospital stocking out of blood, or the air force stocking out of a mission-critical part 

when the enemy is attacking” (Silver, 1998:3).  For the Brazilian Air Force, which runs 

with short budgets for aircraft spare-part purchases, the importance is even greater.  With 

scarce resources, managers do not have much room for mistakes and each dollar spent 

impacts directly on metrics like aircraft availability. 

Setting the proper level of inventory is a decision that managers usually have to 

face in business.  Stocking out of items may represent risk, such as lost sales and lost 

customers, but having excess inventory drains profit and ties up capital, making it hard to 

survive in the competitive marketplace.  Managers should balance pros and cons when 

deciding about the level of items in inventory.  According to Silver, several factors can 

influence the decision to stock or not stock an item, including: 

1. The system cost (file maintenance, forecasting, etc.) per unit of 
stocking an item. 

 
2. The unit variable cost of the item both when it is bought for stock and 

when it is purchased to meet each demand transaction (A more 
favorable price may be achieved by the regular larger buys associated 
with stocking. In addition, a premium per unit may be necessary if the 
non-stocking purchases are made from a competitor). 

 
3. The cost of a temporary backorder associated with each demand when 

the item is not stocked. 
 
4. The fixed setup cost associated with replenishment in each context (An 

account should be taken of possible coordination with other items, 
because setup costs may be reduced). 

 



12  
 

5. The carrying charge (including the effects of obsolescence), which, 
together with the unit variable cost, determines the cost of carrying 
each unit of inventory per unit time. 

 
6. The frequency and magnitude of demand transactions. 
 
7. The replenishment lead-time. (Silver, 1998:372,373) 
 

Critical Items 

Managing inventories may involve dealing with large amount of information.  To 

run the three aircraft programs under its responsibility, for example, the PAMALS have 

about 30,000 different part numbers in stock, with approximately 5,000 with regular 

consumption, being used at least once a month.  Consequently, a first distinction one may 

need to do when managing such kind of activity refers to the degree of importance of 

each item in the system or, in other words, the amount of attention managers should pay 

for the item administration.  

To identify critical items, those that will receive higher priority in the allocation 

of management time and financial resources, managers usually use the ABC analysis.  

This analysis involves ranking items into three priority ratings: A (most important), B 

(intermediate in importance), and C (least important) (Silver, 1998:34).  As a result of the 

ABC analysis, one may find that few items (approximately 20 percent) account for the 

major part (usually 80 percent) of the dollars tied up.  These items are called class A 

items.  Class B items usually account for approximately 30 percent of the items, but 

representing 15 percent of dollar amount.  Class C items would account for the rest of the 

items, approximately 50 percent, but representing just five percent of the dollars tied up.   
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Silver also says “An ABC classification need not to be done on the basis of the 

Distribution by Value curve alone.  Managers may shift some SKUs (Stock-Keeping 

Unit) among categories for a number of reasons” (Silver, 1998:35).  Items that are crucial 

to the aircraft operation, for example, those that are stocking-out and resulting in an 

Aircraft-On-Ground (AOG) situation, would be ranked in the class A, regardless of the 

amount of dollars they tie up.   

In the Brazilian Air Force, reparable items require close management because of 

several reasons; two reasons of importance are that they are usually expensive items and 

often critical for aircraft operability.  The procurement process also requires more time, 

since most of those items are imported from other countries.  Additionally, their repair 

processes involve the integration of other fields of logistics, such as transportation and 

production planning and scheduling, requiring closer management.  Finally, the 

application of ABC analysis usually ends up in a curve, like the Pareto chart represented 

on the Figure 1 below (Silver, 1998:33). 
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Figure 1.  Distribution by Value of SKUs 
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Demand Forecasting 

For reparable inventory system, the terms demand and failure are used most of the 

time interchangeably (Sherbrooke, 1992:1).  In fact, a demand for an item can occur 

when it either fails or goes to a preventive revision.  A primary concern for inventory 

planning involves demand prediction.  Inventory models require a prediction of demand 

for the forecasted period.  Even the best inventory model will not work if the information 

about the demand is inaccurate (Sherbrooke, 1992:58).  This accurate demand 

information is relevant for both reparable and consumable items.  

The complexity of a RIS requires the use of techniques for demand prediction that 

go beyond just expert opinion.  Opinion can provide good insight, but it isn’t enough.  

When it comes to making decisions about the next item to buy and where to locate it, in 

an environment full of randomness, an analytical approach is indispensable (Sherbrooke, 

1992:57). 

The primary distinction that must be made about demand refers to the type of 

demand, that is, whether demand is dependent or independent.  By definition, a supply 

item has dependent demand whenever its requirement is directly related to a need of a 

higher- level item (Colin, 1973:6).  In opposition, an item shows independent demand 

pattern when it is not possible to directly correlate its demand to a next higher assembly 

component (Orlicky, 1975:22).  Dependent demand exhibits a pattern very different from 

that of independent demand and must be managed with different techniques (Silver, 

1998:594-595).  Dependent demand is easier to cope with.  Methods like Material 

Requirement Planning (MRP) and its derivative models can be efficiently used to answer 
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the two basic questions related to “what do we need, and when” in order to fulfill the 

future needs (Silver, 1998:597).   

Planning a RIS requires the use of independent demand techniques.  First 

indenture items (end-items or LRUs) are usually considered independent demand items.  

Their demands are influenced by market conditions (for the case of an aircraft fleet, the 

number of flight hours, the number of take-offs and landings, etc).  The demands are not 

directly related to inventory decisions for any other item held in stock, depending on the 

condition of the item itself in most of the cases (Orlicky, 1975:22).  The big difficulty in 

managing independent of demand is that it is influenced by unpredictable external 

factors.  

Another important characteristic of independent demand is the Time Between 

Demand (TBD).  When modeled as exponentially distributed, for example, that attribute 

defines the demand distribution as Poisson.  Existing EBO models assume TBD as 

exponential distributed (Sherbrooke, 1992:48,106).  That fundamental assumption 

provides support for further assumptions, like the simple Poisson Process (METRIC and 

MOD-METRIC) or Poisson Process with a changing mean (VARI-METRIC), for the 

estimation of the number of items in the pipeline. Those models are based on the already 

referred to Palm’s Theorem (Sherbrooke, 1992:100). 

Failure Rate and Wear-Out Processes  

It is now instructive to analyze sources and causes of supply demand.  Demand 

for an item starts when, as a result of maintenance procedures, a spare part is withdrawn 

from the system in order to effect a repair.  Such maintenance procedures can be the 
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consequence of corrective and/or preventive actions.  A good understanding of the failure 

process may provide managers with helpful information to build up better inventory 

planning.  

Some items, like engine parts, tires, batteries, and landing gear parts are more 

likely to have demand rates that increase with the item service life.  The demand for those 

items is ruled by an underlying wear-out process, and cannot be modeled randomly 

(Sherbrooke, 1992:83).  Sherbrooke suggests that for those items the time between 

demands does not decrease uniformly like the exponential distribution. Instead, they have 

a peak value to the right of the origin as in theoretical distributions like gamma, Weibull, 

or log normal (Sherbrooke, 1992:83).  Such different behavior in the failure creation may 

generate different pattern for demand, potentially affecting the number of items in the 

pipeline.  

Maintenance Policy, Repair Time and Maintenance Activities 

Starting with the assumption that all equipment is subjected to failure, a primary 

concern when planning a RIS should be the maintenance policy.  The maintenance policy 

involves defining who and where (which organization) will perform maintenance 

activities, and also where to locate equipment and spare parts to support maintenance 

activities.  The decisions about maintenance are important since they directly impact the 

system performance. 

According to Blanchard, in defining maintenance policy, three levels of 

maintenance are usually considered: organizational, intermediate and depot/producer 

levels (Blanchard, 1990:42).  Organizational maintenance is performed by consumers at 
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the operational site.  It may include visual inspection, operational checkout, minor 

servicing, external adjustment and removal and replacement of some components.   

Intermediate maintenance is performed by organizations usually located close to the 

operational sites.  It can also be provided by mobile or semi-mobile installations.  Its 

activities may include major servicing, major equipment repair and modifications, 

complicated adjustments, and limited calibration.  Depot/producer maintenance 

represents the highest type of maintenance-performed tasks that go above and beyond the 

capability of the organizational and intermediate level.  Sometimes, it is provided by the 

manufacturer or its representative. (Blanchard, 1990:42-43).   

The Brazilian Air Force has instituted two levels of maintenance for the aircraft 

program supported by the PAMALS.  Under this concept, the intermediate level would 

perform both organizational and intermediate level maintenance.  However, analyzing the 

maintenance practices and routines for PAMALS and aircraft operators, it is clear that the 

local maintenance squadrons (Esquadrão de Suprimento e Manutenção, ESM), which are 

supposed to perform organizational and intermediate levels, actually perform only the 

conceptual organizational maintenance level routines plus part of the intermediate level, 

such as substitution of defective items and a few minor-repairs.  In fact, almost all end-

items are repaired at the PAMALS. 

Repair time is the period piece of equipment takes to undergo the maintenance 

activities.  Together with the failure rate (demand), repair time forms the basic 

parameters of all maintainability prediction (Green, 1991:78).  

Maintenance activity comprises the actions taken to keep system in its state of 

functioning.  According to Blanchard, it consists of acts of diagnosing, repairing, or 
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preventing the system of failures (Blanchard, 1990:393).  It can be classified into two 

major categories: corrective maintenance and preventive maintenance.  Corrective 

maintenance refers to the unscheduled actions taken to restore a defective item to a 

specified level of performance.  Preventive maintenance are the scheduled actions taken 

to keep a system working at specified level of performance.  It comprises activities 

related to systematic inspection, detection, and prevention of impeding failures 

(Blanchard, 1990:393). 

Back Orders and Expected Back Orders  

At this point, much has been said about EBO, but without detailed explanation.  

To understand EBO, it is first necessary to explain what a backorder is.  Sherbrooke 

provides a simple explanation of a backorder, saying “when a malfunction is diagnosed 

on an aircraft, the malfunctioning item is removed from the aircraft to the base supply.  If 

a spare is available, it is issued and installed on the aircraft.  Otherwise, a backorder is 

established” (Sherbrooke, 1992:6).  Therefore, a backorder results from a combination of 

demand (failures) and supply availability.  It could also be defined as the number of items 

in shortage for a specific site over a specified period of time.  EBO, however, is not an 

actual backorder but it is related to it.  EBO is an expected value for the number of 

backorders.  Because the actual backorder number is unknown ahead of time, it can be 

modeled as a random variable, and could be described by using statistical techniques.  

EBO can be defined as a prediction of backorder using its probability distribution.  

Another way of looking at EBO can be provided by the following example: 

suppose one wants to calculate EBO for an item over a ten days period.  After research at 



19  
 

the field, the following data for past backorders is determined (Fulk, 1999:1, numbers 

intentionally changed) 

 
Table 1.  Back Orders  

 

 

 

 

 

The chart above represents the occurrence of backorders over a ten day period.  

For each event (backorder), the initial and final date was marked with the letter x.  Note 

that in this conceptual example, four backorders have occurred.  In the first and eighth 

days there are no backorders and, because of the different time- length of each backorder, 

some days one may find up to three backorders (fourth day).  Using this example, there 

are different ways of representing the EBOs.  One way to calculate EBO for the period is 

to take the weighted average of the number of backorder over the ten-day period.  The 

expected backorder for this period can be calculated as shown in the following formula: 

EBO

1

10

d

x
n∑

=                                            (2.1) 

Where:     d = the specific day, ranging from day one to day ten. 
     x = the variable number of backorder for each day. 
     n = constant of the total of days, which is equal to ten. 

Solving the formula above means solving the following equation (Fulk, 1999:34): 

Day Backorder 
Events 1 2 3 4 5 6 7 8 9 10 

1º back order  x x x x x     
2º back order  x x x       
3º back order    x x x x    
4º back order         x x 
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The expected backorder for the period is 1.4.  Thus, computing EBO takes into 

account not only the number of backorders, but their durations as well.  The EBO 

represents the number of backorders for the discrete distribution of the daily backorders. 

Since EBO is not the same thing as a backorder, why would one want to reduce 

EBO, instead of reducing actual backorders? While the number of backorders measures 

one dimension of supply insufficiency, EBO accounts for both the number and duration 

of the unmet need for an item.  Trying to reduce backorder directly, by improving aspects 

of supply, such as service level and or average fill rate, may lead to resource 

misallocation.  Results gathered from simulation and also a real world field test done by 

RAND Corporation for the USAF, at George AFB from 1965 to 1966, shows that the use 

of a EBO as a metric, compared to service level, can both reduce cost and increase 

aircraft availability at the same time (Sherbrooke, 1992:10).   

Thus, reducing EBO one may find that not only backorders, but also the 

backorder’s time- length will be reduced.  Consequently, as will be shown shortly, the 

aircraft availability can also be expected to increase. 

Marginal Analysis   

While the concept of marginal analysis, also called greedy heuristic, has been 

used for many years, the earliest published reference about that came from O. Gross, in a 

paper called A class of Discrete-Type Minimization Problems, RAND Corporation, in 

1956.  The application of this technique for reparable inventory management aims to 

produce an optimal curve for EBO, which considers not only the EBO reduction 
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produced by the addition of one item in the system, but also the benefit-cost-rate (BCR) 

analysis related with that increment (Sherbrooke, 1992:29).  Marginal analysis would 

allow optimizing EBO reduction considering different items, with different EBO curves, 

and with different prices, increasing the system effectiveness per dollar obtained when an 

additional item is selected for stockage (Sherbrooke, 1992:29).  This way, marginal 

analysis plays an important role when it comes to systems subjected to constrained 

budget. 

The formulation of the marginal analysis as it refers to reparable inventory system 

is presented by Sherbrooke as the following formula (Sherbrooke, 1992:30): 

[EBO(s-1) – EBO(s)]/c                              (2.2) 

Where:     EBO = expected backorder as a function of s. 
      s = stock level being analyzed. 
      s-1 = stock level immediately before s. 
      c = cost of the item. 

Item Approach vs. System Approach 

Traditional inventory models seek to balance factors like holding inventory, 

ordering, and stockout cost when deciding about the stockage of a reparable item.  Those 

models use the item approach and the decisions on the number of spare units of stock to 

buy of an item are made without considering other items in the system (Sherbrooke, 

1992:3).  Given an aircraft backorder is usually considered a hole in the aircraft that 

potentially affects aircraft availability, minimizing backorders of some items without 

considering the total system may lead to inappropriate resource investment (Sherbrooke, 

1992:3).  Besides, the management may be also interested on the system performance. At 

a certain point, for example, the increment on the availability of an item may bring no 
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benefit to the system availability as a whole, representing only cost.  The system 

approach takes care of those issues.  In deciding about augmenting an additional item in a 

system, the system approach looks for an optimal point in the availability curve that 

represents the best utilization of the resources available.  The points on the curve 

represent both the maximum availability that can be achieved and the minimum required 

cost to achieve that availability (Sherbrooke, 1992:39).  Points above the availability 

curve would be unfeasible solution, given the actual paradigms.  Points below the 

availability curve would represent non-optimal situations. 

Reparable Inventory Models 

Since the 1960’s years, several mathematical inventory models were developed to 

facilitate the management of reparable inventory systems.  Basically, those models seeks 

for calculating expected backorders in order to support better decisions of what-to-buy 

and where-to- locate those items.  Three of them are going to be discussed in this section: 

the Base Stockage Model, the Multi-Echelon Technique for Recoverable Item Control 

(METRIC), and the Multi-Item, Multi-Echelon, Multi-Indenture System Model (MOD-

METRIC).  Due to scope issues, this research does not compare the proposed method 

results with those of VARI-METRIC and MOD-METRIC.  However, a simulation model 

that allows the computation of backorders for assembly and subassemblies of a Multi-

Indenture, Single-Site situation is provided in the Appendix B. 

Base Stockage Model 

In 1965, RAND Corporation developed a model that introduced the optimizing 

techniques described on the topics above, the marginal analysis and the system approach.  
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The Base Stockage model scenario consists of:  when a item failure, a demand for a 

serviceable item goes to the warehouse and, if stock level is greater than or equal to one, 

the demand is fulfilled. Otherwise, a backorder is issued and the warehouse waits for the 

next available that comes from the base repair shop.  The model can be pictured as 

following (LOGM 628 – 3-32 - Reparable Inventory Class): 

 

  

 

 

 

 

 

Figure 2.  Base Stockage Model Scenario 
 

The expected back order as a function of the stock level is stated as the following 

function (Sherbrooke, 1992:25): 

EBO s( )

s 1+

∞

x

x s−( ) Prob X x( )⋅∑
=           (2.3) 

Where:     EBO(s) = expected backorder as a function of s. 
     s = stock level. 
     x = random variable pipeline. 
     Prob(X=x) = probability of a random variable x to assume a value X. 
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The formula asserts that expected backorder is the probability-weighted sum 

(expected value) of the occurrences when the number of items in the pipeline (demands) 

exceeds the stock level (supply).   

The model assumes infinite repair channels and the demands for items coming 

from an infinite population.  Additionally, the demands for items are assumed 

independent of the items’ repair time, and vice-versa. This way, the expected number of 

items in the repair channel (pipeline) would be a corollary of a fundamental law from 

queueing theory, called Little’s law, as shown in the subsequent formula (Sherbrooke, 

1992:28) 

Pipeline = m * T                                              (2.4) 

Where:      m = mean number of items demanded for a period of time. 
     T = mean time to repair (same unit of time of Demand). 

Since demand is assumed Poisson distributed, the number of item in the pipeline 

should also follow the same distribution (consequence of Palm’s theorem, already 

discussed).  Thus, the pipeline is defined as shown in the next formula (Sherbrooke, 

1992:20): 

Prob x( )
m T⋅( )x e m− T⋅

x!                  (2.5) 

Where:     Prob(x) defines the probability function of the pipeline values. 
     x = random variable for the pipeline, assumed Poisson distributed. 
     m = mean number of items demanded for a period of time. 
     T = mean time to repair, for any distribution. 
     e = natural  logarithm base, which is approximated to 2.71828. 

The objective of this model, called the Base Stockage model, is to minimize the 

expected number of backorders (EBO) for a give location, constrained by a dollar amount 
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budget.  The Base Stockage model dealt with multiple items, but single echelon, single 

location and single indenture.  The mathematical statement of the model is described as 

following (Sherbrooke, 1992:34): 

min(s1,s2) EBO1(s1) + EBO2(s2)                     (2.6) 

Where:     min = minimizing objective function. 
      EBO1(s1) = item 1expected number of backorders as a function of s1. 
      s1 = item 1 stock level. 
      EBO2(s2) = item 2 expected number of backorders as a function of s2. 

     s2 = item 2 stock level. 

Only two items compose the system above, item 1 and 2.  The statement can be 

extended for systems with more items.  Observe that the objective function looks for a 

minimization of the total expected backorder, and not for individual items.  Additionally, 

the objective function is constrained by following mathematical statement (Sherbrooke, 

1992:34): 

c1s1 + c2s2 <= C                   (2.7) 

Where:     c1  = cost of item 1. 
     s1  = stock level of item 1.    

       c2  = cost of item 2. 
     s2  = stock level of item 2. 
     C = total cost represented by a given budget. 

Even being considered a step-forward in reparable item modeling at that time, the 

Base Stockage model was never adopted by the Air Force.  Its concepts, however, were 

used as a foundation of other models (Sherbrooke, 1992:45). 

METRIC 

The Multi-Echelon Technique for Recoverable Item Control (METRIC) model is 

considered an improvement of the Base Stockage model. METRIC follows the same 

logic as the Base Stockage model but expand it to allow modeling the depot portion of 
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the pipeline. METRIC’s optimization process is global, that is, it takes into account the 

entire supply system. The model can both compute requirements and redistribute stock 

more appropriately when compared with the Base Stockage model (Kutzke and Turner, 

1982:26).  

The METRIC’s scenario consists of:  when items failure at base level, a 

requisition for a serviceable item goes to the base warehouse and, if the stock level for 

the item is greater than or equal to one, the demand is fulfilled.  Otherwise, a base 

backorder is issued.  At the same time, an unserviceable item goes to the base repair shop 

and there is a constant probability (r) of that item being repaired locally, and (1-r) 

probability of the item goes to the next echelon (depot) to be repaired.  If the item is 

repaired locally, the base warehouse waits for its repair (or for any other that is already 

being repaired).  Otherwise, the unserviceable item goes to the depot pipeline.  In this 

case, the base supply service issues a requisition of one serviceable item to the depot.  In 

the depot’s portion of the pipeline, the requisition for a serviceable item goes to the 

warehouse and, if the stock level for the item is greater than or equal to one, the demand 

is fulfilled.  Otherwise, a depot backorder is issued and waits for the next serviceable 

available from the depot repair shop in order to attend in a first- in-first-out (FIFO) rule 

the demand from the bases.  In the cases a base orders an item from the depot, it will take 

a time for the base to receive the item.  This is the ordering & ship time (OST) and it is 

another factor that affects the item pipeline. 

The following figure pictures the METRIC model (LOGM628 6-4 – Reparable 

Inventory Class) 
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Figure 3.  METRIC Model Scenario 
 

The dashed arrow in the figure above represents a base requisition for a 

serviceable item from the base to the depot.   The parallel arrow (bold) represents items 

being attended from the depot.   

The objective of METRIC is similar to the Base Stockage model: METRIC seeks 

to minimize expected backorders over the specified items subject to the investment 

constraint.  Depot backorders are a factor only as they affect base backorders (Muckstadt, 

1973:473) 

METRIC Assumptions   

These are the main assumptions of METRIC (Sherbrooke, 1992:46):  
 
• The decision as to whether a base repairs an item does not depend on stock 

level or workload.  A fraction of repairs is going to be repaired at base, at a 
constant probability (r), and (1-r) probability is going to be repaired at depot.  
The time to repair includes any waiting time, such as supply waiting time or 
queue-times in the repair process.  Additionally, the repair process follows 
the one-by-one rule, no batching for repair. 
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• METRIC assumes stationary process for demand, and time parameters.  
Additionally, demands are described by a logarithmic Poisson process, a 
member of the compound Poisson family.  

 
• The basic METRIC assumes no lateral supply from other bases; the depot is 

the only organization allowed to re-supply the base. 
 

• The (S-1,S) inventory policy is appropriate for every item at every echelon. 
 

• No condemnation. 
  

• Serviceable and unserviceable items are equally important for the system. 
 

• The length of time required to repair an item is independent of the number of    
demands.     

 
The assumptions above have been made for analytic modeling convenience and 

may not be realistic in most of time.  As a result, the accuracy of the model can be 

harmed.  For example, the assumption about Poisson process for demands sometimes is 

not true.  Sherbrooke suggests that some items presents time between demands that do 

not decrease uniformly like the exponential distribution. Instead, they have a peak value 

to the right of the origin as in theoretical distributions like Gamma, Weibull, or 

Lognormal (Sherbrooke, 1992:83).  Different distributions for time between demands 

may lead to different EBO results, calling for a model that could take that into account.  

MOD-METRIC 

 The Multi-Item, Multi-Echelon, Multi-Indenture Model (MOD-METRIC) was 

introduced by Muckstadt in early 1970’s.  He observed that METRIC focus on reparable 

items as a whole tended to concentrate more heavily on inexpensive sub-components 

because it was able to decrease the backorder level more in buying these items (Kutzke, 

1982:28).  As Muckstadt points out, “in METRIC a backorder of a module and a 

backorder for an engine are assumed to be equally undesirable; however, these 
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backorders affect the system in different ways” (Muckstadt, 1973:475).  MOD-METRIC, 

in turn, could describe the logistics relationship between an assembly and its 

subassemblies, and to compute the spare stock levels for both assembly and 

subassemblies.  MOD-METRIC extends the METRIC’s concept to include hierarchical 

and indenture parts structure, allowing two levels of parts to be considered, an assembly 

and its subassemblies. 

Using the engine problem described in the Muckstadt’s paper, the mathematical 

statement of the problem is (Muckstadt, 1973:477): 

min

1

M

i si 1+

∞

xi

si xi−( ) p xi given⋅ λij⋅ Tij⋅( )⋅∑
=

∑
=          (2.8)       

Where:     min = minimization objective function. 
      i = any base in the system. 
      M = number of bases. 
      si = stock level of spare engines at base i. 
      xi = number of engines in backorder at a base i. 
      λij = the average number of removals of module j at base i. 
      Tij = the average re-supply time for module j at base i. 

 Important to highlight that MOD-METRIC objective is to minimize backorders 

for assembly items.  By doing so, MOD-METRIC considers the expected backorders of 

subassembly items at the extent that they affect the average re-supply time (Tij ) of the 

assembly item. 

 Besides, the objective function above is subject to (Muckstadt, 1973:477): 
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Where:     cE = unit cost of an engine. 
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     j = any module (subassembly). 
      cj = unit cost of module j. 
      sij = stock level of module j at base i. 
      N = number of modules. 
      s0j = stock level of module j at the depot. 
      s0 = stock level of spare engine at depot. 
      C = dollar budget limit. 

 The assumptions of MOD-METRIC are the same of METRIC, except for 

indenture issues and the fundamental difference in the objective function already 

discussed.   

EBO and System Availability 

Weapon systems, including military aircraft, should preferably be in a ready 

condition when an operational demand occurs.  Thus, the availability of a system must be 

a concern for logisticians.  The concept of availability, however, can be viewed from 

several aspects.  Generally, availability can be measured by the ratio of system uptime by 

the system uptime plus downtime, like in the following formula (Green, 1991:71): 

Availability
uptime

uptime downtime+                           (2.10) 

Other ways of looking at availability are also described by Green.  Inherent 

Availability (Ai) represents the probability that a system will perform as intended over a 

given period of time, under an ideal support environment.  The support would include all 

the necessary resources, such as spare and repair parts, test equipment, trained personnel, 

and etc (Green, 1991:71).  Additionally, Inherent Availability does not consider 

preventive maintenance actions, logistics supply time, and administrative downtime.  

Inherent Availability is calculated as following (Green, 1991:72): 
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A i
MTBF

MTBF Mct+                                        (2.11) 

Where:     MTBF = mean time between failure (see 2.7 ahead).  
     Mct = represents the statistical mean for all corrective maintenance actions. 

 The Mct is also referred to as Mean Time To Repair (MTTR), or simply Time To 

Repair (TTR), as it is used in this thesis. 

Additionally, MTBF can be represented by (Green, 1991:72):  

MTBF
1

λ                                    (2.12) 

Where:      ? = mean demand over a period of time. 

Achieved Availability (Aa) represents the probability that a system will perform 

as intended, under specified conditions, at a given point of time (Green, 1991:72); 

excluding both logistics supply time and administrative downtime, Aa differs from Ai in 

that preventive maintenance time is included.  It is defined as (Green, 1991:72): 

A a
MTBM

MTBM M+                       (2.13) 

Where:     MTBM = mean time between maintenance. 
     M = Mean Maintenance Time. 

Important to say that both MTBM and M account for scheduled and unscheduled 

maintenance. 

Additionally, MTBM can be defined by (Green, 1991:72) 

MTBM
1

MTBMs( ) 1− MTBMu( ) 1−+                (2.14) 

Where:     MTBMs = mean time between scheduled maintenance. 
     MTBMu = mean time between unscheduled maintenance.  
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Operational Availability (Ao) represents the probability that a system will 

perform as intended under stated conditions in the operating environment (Green, 

1991:73).  Operational Availability accounts for both logistics supply time and 

administrative downtime, as shown in the following formula (Green, 1991:73): 

A o
MTBM ready_time+

MTBM ready_time+( ) MDT+                   (2.15) 

Where:     MTBM = mean time between maintenance. 
     Ready Time = time when the system is ready for use but not being utilized. 
     MDT = time the system is not in condition to perform its intended function. 

MDT includes not only the repair time, but also administrative downtime, 

waiting-time in queue, and logistics supply time. 

Additionally, in defining system availability, Sherbrooke suggests to splitting it 

into two categories: Maintenance Availability (Aa), the same concept and formulation of 

Achieved Availability already discussed; and Supply Availability (As), which he defines 

as shown in the next formula (Sherbrooke, 1992:36): 

A s
MTBM

MTBM MSD+                                 (2.16) 

Where:     MSD = mean supply delay. 

MSD refers to the Mean Supply Delay, calculated considering delays originated 

from both administrative and shortage supply time.  As a result, system availability 

would be the product of Maintenance Availability and Supply Availability (Sherbrooke, 

1992:37).  It is assumed that Supply Availability is independent of the maintenance 

policy. 
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Looking at all formulas above, it is easy to understand that system availability is 

influenced by events that cause the downtime (backorder) and also by the duration of the 

event (backorder length).  Thus, a better way to account for the system availability should 

consider both backorder and backorder length.  The EBO formulation, which considers 

the pipeline of the items in demand for its calculation, would better link system 

availability to item’s shortage.   

Sherbrooke noted that it would be possible to extend the EBO results of METRIC 

in order to obtain measures of aircraft availability (Sherbrooke, 1992:38).  He defined 

aircraft availability for a fleet of aircraft as the probability a weapon system is not 

missing a single reparable, which is shown in the following formula (Sherbrooke, 

1992:38): 

A 100

1

I

i

1
EBO i s i( )

N Z i⋅
−









Z i

∏
=

⋅

                    (2.17) 

Where:     A = Aircraft availability. 
     i = each individual item in the system. 
     I = total number of different items in the system. 
     N = number of aircrafts in the system.  
     Z = quantity per aircraft. 
     si = stock level of a specific item. 
     EBOi(si) = expected backorders for any individual item as a function of stock 
level. 
 
Additionally, EBO for any individual item is constrained by N*Zi for every item 

in the system. 

The logic of this formulation asserts that there exist N*Z locations for a specific 

item in the system, and the probability of a hole in any of those locations is the ratio 
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EBO(s)/N*Z for each item.  It follows that an aircraft is going to be available only if 

there is no hole for any of the Z occurrences of each specific item, or for any other.  

The Availability is expressed as a fleet percentage, explaining the multiple 100.  It 

assumes independence of failures, equal importance for all items to the availability of the 

system, serial systems, and no cannibalization.  Therefore, as Sherbrooke concludes, the 

minimization of total backorders could achieve maximization of a weapon system’s 

availability in a fleet (Sherbrooke, 1992:39). 

Summary 

Chapter II reviewed previous findings that apply to this research effort. First, 

important issues related to inventory management were discussed, highlighting critical 

item management, and details about reparable items in the FAB. A discussion about 

demand forecasting, failure rate and wear-out process was presented along with topics 

associated with maintenance policy, repair time, and maintenance activities.  

Additionally, a description of the fundamentals of the existing models (Based Stockage 

model, METRIC model, and MOD-METRIC) was presented and discussed.  Finally, the 

relationship between expected backorder and system availability was discussed 

highlighting the importance of studying backorders for the operational field.  

In the next chapter, the methodology to be used in assessing the efficacy of an 

improved METRIC model will be presented and described. 
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III.  Methodology 

Chapter Overview 

The first two chapters described the problem that motivated this research and the 

issues related to planning and managing RIS. Chapter III will describe the methodology 

used in this research. The experimental design will be presented, describing the ten 

conceptual experiments as well as the T-27 case study.  A simulation model in Arena will 

be introduced as the basis of the proposed method.  Then, the mathematical analytical 

portion of the proposed method will be described and discussed.  Finally, considerations 

about the data collected from the PAMALS will be presented. 

The Investigative Questions. 

In describing the experiments to be performed in the next sections, this research 

intends to get information for answering the investigative questions stated earlier in 

Chapter I.  Therefore, it is opportune to remind those questions at this time: 

Investigative Question 1.  What is the best form for a mathematical model for 

EBO calculation that accounts for the stochastic aspects of the demand, time-to-repair 

and ordering-ship-time that may exist in reparable inventory systems? 

Investigative Question 2.  Do the stochastic aspects of the demand and time 

parameters affect the EBO calculation in the proposed method? 

Investigative Question 3.  Does the proposed method return different EBO 

numbers compared to the existing models?  How significant is the difference? 

Investigative Question 4.  Which model would provide the most accurate (close 

to the real world) back orders numbers, the proposed method or the existing models? 
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Investigative Question 5.  Is the new model time/resource efficient compared to 

the existing models? 

Describing the Experiments 

The experiments consist of two main parts: conceptual theoretical experiments, 

and the T-27 Tucano case study.  The conceptual experiments aim to verify whether 

different distributions for demand and time parameters influence the EBO calculation, the 

significance of the difference (if any), and the sensitivity of the proposed method to those 

differences.  Doing so, it is intended to answer both second and third investigative 

questions.  The T-27 Tucano case study aims to verify the suitability of the proposed 

method for real world situations.  This way, it is intended to answer the fourth 

investigative questions.  Additionally, in describing the proposed method it is intended to 

answer the first and fifth investigative questions.  

Conceptual Theoretical Experiment Design 

The conceptual examples consist of giving ten different treatments to the Demand 

and time parameters in order to verify their effects on the EBO results.  The first six 

treatments test different factors and levels for Demand with all other parameters (TTR 

and OST) kept the same.  The last four treatments test different factors and levels for time 

parameters with Demand kept the same.  In the experiments, different factors mean 

different probability distributions for Demand and time parameters; and different levels 

refer to the degrees of variance of the factors, which are defined as low variance (LV), or 

high variance (HV) for all ten treatments.  Additionally, since TTR and OST are assumed 
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delays in the pipeline channel, they are tested together, as they were only one parameter.  

A list of all factors and levels being tested is presented in Appendix E. 

The ten treatments consist of the following steps:  

1. Selecting Factors and Levels for Demand and Time Parameters.  
Candidate distributions for Demand (in fact, time between demands), 
TTR and OST should be recognized by the related literature as a 
suitable one.  That means this research does not want to test just for 
testing purpose.  It is intended to test possible candidates for “real 
world” situations.  However, the intention is not to test the full range 
of possible distributions.  Appendix E provides a list of all factors and 
levels being tested. 

 
2. Setting the Simulation in Arena.   Factors and levels are set up in an 

Arena simulation model (ahead described) developed for this research 
and presented in the appendixes A, B, and C.  For each treatment, a 
depot stock level is previously defined as well as a range of base stock 
levels to be tested.  That information is also presented in the Appendix 
E.  Finally, the Arena simulation is set up to return a sample of 30 
independent identically distribute replications, each one consisting of 
5,000 weeks of running with 1,000 weeks of warm-up time. 

 
3. Gathering Data from the Arena Reports.  Data about EBO and the 95 

% half-width confidence interval (CI) is collected from each running.  
The EBO from simulation is then considered the “true” EBO value 
from simulation. 

 
4. Stating the EBO Simulation Values. The EBO from simulation is 

stated as a step-function, for future comparisons with both existing and 
proposed model (ahead defined). 

 
After collecting the data from Arena reports, a comparison between EBO from 

existing models and simulation, as well as proposed model and simulation is performed 

for assessing which model (if any) is inside of the 95 % half-width CI of the “true” mean 

value from simulation for each base stock level tested.  Additionally, the models (existing 

and proposed) are tested against the simulation values in order to verify which model 

generates the best approximation for each stock level tested.  The best approximation 
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consists of the algebraic difference (absolute value) between existing methods and 

simulation, and proposed method and simulation.  Aiming to summarize the results of 

each one of the 10 experiments, the summation of the squared differences for both 

existing and proposed models are provided allowing assessing the closeness of each 

model as a whole. 

Finally, all ten treatments refer to a theoretical first-indenture, multi-echelon 

model, with no condemnation, no lateral re-supply, and no cannibalization 

Chapter IV presents a table for each treatment.  Additionally, a resume of the first 

six treatments (testing demand parameter) and last four treatments (testing time 

parameters) are also presented. 

The T-27 Tucano Case Study 

 The T-27 Tucano case study aims to check the suitability of the proposed method 

with EBO information collected from the field.  Twenty reparable items of the T-27 

Tucano program are previously selected by the Subdivision of Planning (TPLJ) at the 

PAMALS.  For scope issues, the system is considered as composed by one depot 

(PAMALS) and two bases (AFA and CATRE).  The experiment consists of the following 

steps: 

1. Setting a Time Frame for Data Collection. The data necessary for EBO 
calculation is collected from a continuous period of one hundred days 
of normal operation, from August 13th to November 20th of 2001.  

  
2. Getting the Data for METRIC EBO Calculation.  The data includes 

information about Demand at base level; time to repair (TTR) at base 
and depot levels, ordering and ship time (OST) at system level, and 
stock level at bases and depot for all items listed in Appendix D.   
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3. Additional Information for the Proposed Method EBO Calculation.  A 
sample of time between demands is also collected, since it is a 
requirement for Arena simulation. 

 
4. Getting Information About EBO Numbers.  In order to allow 

comparing the EBO numbers of both proposed and existing methods 
with those from the real world, information about backorder 
occurrence and backorder duration are collected for each one of the 20 
reparable items, during the same period of one hundred days. 

 
The data collected from the field is then used for calculating METRIC EBO.  

Additionally, TBD and TTR samples are worked in the Arena Input Analyzer in order to 

check the best distribution for them.  The goodness-of- fit (GOF) test is discussed ahead. 

That is accomplished for each one of the 20 reparable items, and each location in the 

system.   

Considering the stock level (both depot and bases) gathered from the PAMALS, 

the proposed method calculates the EBO value according to a methodology to be 

described in the next sections.  Then, for each of the two bases (AFA and CATRE), and 

each item, a comparison between both existing and proposed models against the EBO 

information gathered from the PAMALS is performed.  That comparison consists of 

measuring the algebraic difference between existing model’s EBO number and the EBO 

information from the field, as well as proposed method’s EBO number and the EBO 

information from the field.  Finally, the summation of the squared difference between the 

existing models and the EBO information from the field, and the proposed method and 

EBO information from the field, for each item, summarizes the performance of the 

models (existing and proposed) for each base. 
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A Simulation Model in Arena 

 Assuming a simulation model can better capture the complexities existent in a 

RIS in regarding to EBO calculation, this research first proposes setting up a model in 

Arena to accomplish that calculation.  The model should be able to calculate the expected 

backorder (EBO) for each level (base and depot), for first and second indenture items, 

given a stock level (s).  Besides, in order to allow comparing the significance between 

both existing and proposed method, the model in Arena should return information about 

the 95 % half-width CI after each replication.   

 Only the model used in the experimental design (first indenture, multi echelon 

model) is going to be described here.  The simulation models for single base (FISS) and 

for multi indenture single site (MISS) are pictured in the Appendixes. A and B. 

First Indenture Multi Echelon Model Description 

Since the first indenture multi echelon model in Arena was made to represent the 

basic METRIC model scenario described in the literature review, the following 

description follows a similar rationality. As a result of maintenance actions (corrective or 

preventive), demands for reparable items are created at the operational level, with batch 

size equals to one, according to a specified distribution expressed in terms of time 

between demands (TBD). For each demand created, two actions are taken: a requisition 

for a serviceable item goes to the base warehouse and the unserviceable item goes to the 

base repair shop.  At the base warehouse, if the stock level for the item is greater than or 

equal to one, the demand is fulfilled, and the variable stock level at base are assigned, 

reducing it in minus 1.  Otherwise, a base backorder is issued.  At the base repair shop, 

the unserviceable item has a constant probability (r) of being repaired locally, and (1-r) 
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probability of the item goes to the next echelon (depot) to be repaired.  If the item is 

repaired locally, the base warehouse waits for its repair (or for any other that is already 

being repaired).  Otherwise, the unserviceable item goes to the depot pipeline.  In this 

case, the base supply service issues a requisition of one serviceable item to the depot.  In 

the depot’s portion of the pipeline, the requisition for a serviceable item goes to the 

warehouse and, if the stock level for the item is greater than or equal to one, the demand 

is fulfilled.  Otherwise, a depot backorder is issued and waits for the next serviceable 

available from the depot repair shop in order to attend in a first- in-first-out (FIFO) rule 

the demand from the bases.  In the cases a base orders an item from the depot, it will take 

a time for the base to receive the item.  This is the ordering & ship time (OST) and it is 

another factor that affects the item pipeline.  Note that there are only two types of entities 

passing through the model: demand for items, and demand for service.  Additionally, 

global variables (variables that belong to all the system) were created to represent 

backorders and inventory level throughout the systems.  The variables inventory level 

should be given “a priori” of a replication.  The variables backorder are measured after 

each replication of the model. Statistical functions were inserted to collect and analyze 

the results of each replication.  This is the FIME model pictured in Appendix C. 

Assumptions of the Simulation Model 

The following is a list of assumptions that apply to the simulation models (FISS, 

MISS, and FIME) above described: 

a.  Independent Demand.  All models assume infinite source of population. That 

means demand generation is not related or linked to other factors, such as number of 
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aircraft eventually available, number of items already in repair process, or fly hours.  This 

assumption might not be true for “real world” circumstances; however, modeling such 

relationship would require tremendous field research and programming effort.  One of the 

consequences of such assumption might be, if more items were not repaired (or have their 

repair time delayed for any reason) the actual demand would tend to decrease, ceteris 

paribus. 

b.  Repair Process.  The decision as to whether a defective item is repaired on 

base or depot is based on a constant probability value, expressed as a percentage.  That 

means whenever a base has a capability to repair an item, the repair process will be 

performed at base level, regardless of external factors such as maintenance workload, 

spare part availability and etc.  This is usually true to repairable systems, at least in the 

Brazilian Air Force. 

c.  Repair Time.  A corollary of the Repair Process assumption links it to the time 

to repair (TTR).  Since workload is not an issue on the described models (observe that the 

repair times are described as simple delays), capacity is assumed infinite, and 

consequently one should not expect delays in the repair process caused by waiting- in-

queue time.  Since capacity throughout systems may not be infinite, as a result, the “real” 

time to repair would be greater than the one previously assumed.  This issue will be 

addressed later on Chapter V, where this research will recommend ways of fixing (or 

minimizing) the effects of that assumption. 

d.  Inventory Policy.  Once established the initial stock level values (s), the 

replenishment point will be s – 1.  That means for each item demanded in the system, a 
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replenishment action (which may include repair process with or without spare part 

application) is going to be taken.  In other words, this is the inventory policy (s – 1, s). 

e.  Condemnations.  It is assumed no condemnation as a result of the repair 

process. In other words, whenever a defective item passes through a repair process the 

result will be a “ready-for-use” item.  Sometimes this is not true.  Chances exist that the 

repair process becomes anti-economic due to several reasons, such as repair cost, 

unfeasibility of repairing, and etc.  Thus, this research will address later on Chapter V 

ways of dealing with condemnations in the proposed method. 

f.  Lateral Re-supply.  No lateral re-supply is assumed in the proposed method. 

This assumption may work negatively on the system’s metric. That means, if lateral re-

supply takes place the predicted expected backorder would be greater than it really is.  

Since lateral re-supply is most of the time avoided by the Brazilian Air Force (due to cost 

of transportation issues), potential lateral re-supply will not be in the scope of this 

research. 

g.  Cannibalization.  It is assumed no cannibalization in the described models. 

Cannibalization may result in labor hour misallocations. It should be avoided, but it does 

happen in the “real world”.  Ignoring cannibalization, however, may result in similar 

situation as in the lateral re-supply assumption. Besides, rules for cannibalization are 

usually hard to be defined. Thus, it will not be in the scope of this research. 

Those assumptions are the same of the basic METRIC assumptions (Sherbrooke, 

1992:46).  This was intentionally done in order to measure only the effects of the 

variability of demand and time parameters for the expected backorder calculation.  
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Following METRIC’s assumptions allowed also the verification process that is going to 

be discussed in the next topic. 

Arena Simulation Model Verification 

Model’s verification process was performed in two stages: attempting to run the 

model for finding out and correcting errors; and checking if the models were performing 

as designed.  

The first stage, also called “debugging”, was performed right after model’s 

development.  At this stage, problems like module’s data entrance, and module’s 

misunderstanding were solved consulting an Arena textbook (Simulation In Arena) and 

getting advice from AFIT’s students more skilled on Arena (Captain Todd Bertullis). 

The second stage verification process referred to verifying if the model would 

behave as it was supposed to do.  That task was performed basically by running the 

models for beforehand known examples got from Sherbrooke’s textbook (Optimal 

Inventory Modeling Planning), as well as solved- in-class exercises got from handouts of 

the course Reparable Inventory Management (LOGM 628).  In all cases the model 

provided with EBO answers deviated less than 0.01 from the beforehand known answers.  

Additionally, changes were made in the EBO parameters of those examples found in the 

textbook, such as “increasing and decreasing repair time”, and “increasing and decreasing 

demand rate”.  Then, “what- if” analysis was carried out in order to check model’s 

reaction to the changes.  No major problem was found, except for some cases where 

demand rate was increased to a level not supported by the student version of Arena 3.0, 

which has a limit of 150 entities in the model at the same time. 
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Arena Simulation Model Validation 

The validation process, which is the task of ensuring that the model behaves the 

same as the real system (Sadowski, 1998:444), was performed basically by interviewing 

people of the Subdivision of Planning (TPLJ), Captain Vladimir and Lieutenant Marcio, 

about the correctness of the assumptions, logic of the paths, and the closeness to the 

reality of the models.  An electronic copy of each model pasted in Word® format 

document was sent to the TPLJ personnel via electronic-mail, together with a detailed 

description of the function of each module used in the models.  Additionally, a brief 

explanation about “how it works” of each model was also provided.  

According to their opinion, the models could fairly represent reparable inventory 

systems managed by the PAMALS.  However, they pointed out the following problems 

that could threaten the models’ validity: 

1. Cannibalization Issues.  Captain Vladimir has pointed out 
cannibalization practice takes place throughout the system but it 
couldn’t be accessed since in most of the times the process happens 
informally.  He said: “frequently, people in charge of aircraft 
maintenance, trying to expedite maintenance actions, simply exchange 
spare parts between aircrafts without an accurate control”.  
Additionally, “many of the reparable items managed by the PAMALS 
have no serial number recorded on it. They are controlled as a total, 
not individually.  That makes it difficult to control.” However, since 
cannibalization usually benefits the system in terms of reducing 
backorders, such practice is not prohibited.  Bottom line, Captain 
Vladimir said it was not possible to define clearly rules for 
cannibalization modeling.  Thus, cannibalization practices were 
considered out of the models’ scope. 

 
2. Inventory Policy.  The inventory policy for reparable items at the 

PAMALS follows the standard (s – 1, s) for the majority of the items.  
However, Captain Vladimir stressed out that sometimes operators ask 
and the TPLJ authorizes additional leveling.  He couldn’t provide 
major details of how that happens.  
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3. Back Order Control.  Currently, the PAMALS operates a software 
called M2421, which is supposed to manage inventory information for 
both reparable and consumable items, linking the PAMALS and 
operators.  That software was initiated there in the first semester of 
2000.  However, due to budgetary issues, problems such as follow-up 
consulting, and the personnel training program has not been a priority.  
Consequently, Lieutenant Marcio said, “even after working out the 
basic data collected to this research, he couldn’t guarantee more than 
90 % of accuracy for back order information, since the reports of the 
M2421 does not provide automatically information about backorder 
length ”. 

 
Possible effects coming from problems above listed will be addressed later on 

Chapter V. 

Defining the Proposed Method for EBO Calculation 

The proposed method, called P-METRIC, is a mix of simulation and 

mathematical analytical model for EBO calculation.  Its simulation portion refers to a 

model developed in Arena environment, which is designed to calculated, among other 

information, expected backorder numbers for multi echelon, multi indenture, and multi 

location reparable item systems.  Due to didactic reasons, the simulation portion was split 

into three different models, first indenture single site (FISS) model, multi indenture single 

site (MISS) model, and first indenture multi echelon (FIME) model, which are presented 

in the Appendix A to C.  The mathematical analytical portion uses the same formulation 

of METRIC, described in the Chapter II, however, instead of use Poisson distribution, the 

P-METRIC proposes the use of Gamma distribution to express the number of items in 

pipeline.  Reasons for that are also provided in the coming topics.  
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Describing the Critical Point (CP) 

From the observation of several replications of the simulation models previously 

discussed, it was noted that the EBO curve of the simulation model has a common 

behavior when compared with its related mathematical model.  Explaining:  take for 

example the first indenture single site model (FISS), Appendix A, which is a 

representation of the Base Stockage model.  Running the model for stock level values 

ranging from zero to S, one may find that for stock level equal to zero, both existing and 

simulation models agree on the EBO results (or the difference is not significant, since 

simulation return a mean and a confidence interval).  As long as stock level (S) increases, 

the difference also increases.  Because the EBO numbers of both METRIC and 

simulation model tend to zero, there will be a point where the difference is maximal.  

After this point, the difference tends to decrease and for big values of S the models tend 

to agree in EBO equal to (or approximately) zero.  The point of maximal difference 

hereafter is called critical point (CP). 

Similar behavior is observed for multi-echelon situation with just one difference:  

in the multi-echelon situation, when stock level (Si) at base equals to zero, EBO from 

simulation will agree with EBO from METRIC only if the stock level at depot (S0) also 

equals to zero.  Otherwise, they will disagree and, as it will be demonstrated, the 

difference can be significant.  How to calculate the CP as well as its importance to the 

proposed method is going to be discussed shortly. 

The Importance of the Critical Point for the Proposed Method 

The behavior above described indicates that, if the EBO formula described in the 

Chapter II could be worked mathematically, it would be possible to shift the EBO curve, 
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in order to force it to pass through two points: the initial point, for S = 0, and the critical 

point, which S is still unknown.  The EBO curve resultant of this change should tend 

toward zero for large values of S, like the EBO of METRIC and simulation do.  This 

way, a modified EBO curve would potentially approximate to the “true” values of 

simulation.  Note that, in the single site situation, for S = 0, EBO value equals to the 

pipeline mean, which is a corollary of the Little’s law (refer to the Base Stockage model 

described in the Chapter II).  The problem would be to find out the CP, that is, the stock 

level (S) and its respective EBO value in the point of maximal difference.  Additionally, 

for multi-echelon situation, if the stock level at depot (S0) is greater than or equal to 1, 

two replications of the simulation model are necessary: the first replication finds out the 

EBO for Si = 0 (given a value for S0); the second replication finds out the EBO for Si = 

CP (given the same value for S0).  However, there is still a question: what is the S value 

of the critical point? The next topic discusses this issue. 

How to Calculate s Value and EBO at the Critical Point  

This research proposes two alternative ways of calculating the S value and its 

respective EBO number. Considering the single site situation, in the first way, one should 

start running the simulation model for S = 0, then increasing by one S-value, run the 

model again and again until to reach the point where the difference start to shrink.  The 

CP would be the point immediately before the difference start decreasing.  Note that S is 

a discrete variable; therefore no fractional values should be assigned to it when 

simulating.  Depending on the characteristics of the simulation model, this could be 

tremendously time consuming.  Another way of looking for the CP was a “non-expected” 

finding that came up after running the simulation model and comparing the EBO results 
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with those of METRIC model, for several different systems.  The rule is quite simple: the 

critical point is defined as the point where S equals to the initial value of the pipeline 

mean, or better approximates to it, since pipeline mean is not necessarily an integer value.  

In other words, the S-value of the critical point is equal (or approximated) to the value of 

the pipeline for S = 0.  With that information, instead of running the simulation model 

several times to find out the point of maximal difference, one may run the model only for 

that value of S, and then get the EBO value from the replication.  Comparing it with EBO 

from METRIC, one may find this is the point of maximal difference between METRIC 

and the simulation model.  Extending the concept to multi-echelon situation, if the stock 

level at depot (S0) equal to zero, the rule is the same of the single-site situation.  

Otherwise, there is a need of running the simulation model for stock level at base equals 

to zero (Si = 0), and stock level at depot equals to N (S0 = N) being N an integer number 

greater than or equal to 1 that represents the given stock at depot.  The EBO from this 

replication will be used to approximate to the Si value of the critical point.  Then, a 

second running is used to find out the EBO at the critical point. 

Unfortunately, this research cannot provide with a mathematical proof of that, however, 

pre-experimental replications of the simulation models has corroborated with that.   

How to Use the CP Information in the Proposed Method   

Assuming that the pipeline value can be Gamma distributed (this is a proposition 

of the P-METRIC model and it is going to be justified shortly). The following formula 

represents the probability distribution of a variable Gamma distributed (Devore, 

1999:172):  
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f x( )
1

β
α

Γ α( )⋅
xα 1−⋅ e

x−

β⋅ x 0≥if

0 otherwise                 (3.1) 

Where:     x = Gamma variable. 
     f(x) = pdf  of the Gamma variable. 
     α and β  = parameters of location. 

      e = natural logarithm base. 
      Γ = multiplication signal. 

 The α and β , according to Prof Daniel Reynolds’ statistics classes, are parameters 

of location that ultimately define the mean and variance of the Gamma variable. 

Recalling the EBO formula of METRIC discussed in the Chapter II, now this research 

proposes the use of Gamma distribution instead of Poisson distribution for describing the 

pipeline values.  The choice for Gamma distribution is due to the ability of that 

distribution of assuming different shapes (Devore, 1999:173).  Adjusting the two 

parameters of Gamma (α and β) would allow, for example, changing the shape of the 

curve according to inputs gathered from the critical point.  That would not be possible for 

Poisson distribution, given that Poisson has just one parameter.  Re-writing the EBO 

formula presented in the Chapter II, the proposed EBO is expressed as: 

EBO s( )

s 1+

∞

x

x s−( )f x( )∑
=

:=

                            (3.2)  

Where:     s = stock level. 
     x = pipeline variable. 

      f(x) = pdf of the pipeline variable, assumed Gamma distributed. 
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Note that the proposed method formula is the same of the METRIC formulation 

presented in the Chapter II except that the pipeline function is now assumed Gamma 

distributed, instead of Poisson.   

A system of equations is set in order to solve the system of equations below for 

α and β . The example used refers to a single site situation. 

 

EBO S 0( )

0 1+

∞

x

x 0−( )
1

β
α

Γ α( )⋅
⋅ xα 1−⋅ e

x−

β⋅∑
=       (3.3) 

 

EBO S CP( )

CP 1+

∞

x

x CP−( )
1

β
α

Γ α( )⋅
⋅ xα 1−⋅ e

x−

β⋅∑
=  (3.4) 

  

Where:     S = stock level. 
      EBO (S=0) = mean pipeline value. 
      x = pipeline variable. 
      CP = integer approximation of the pipeline mean value. 
      α, β, Γ incognita already explained. 

Although the system of equations above may seem to be very complex of solving, 

one may find this is not true when mathematical software, like MathCad (used in this 

research), are available. Note that there are two incognita variables (x is an index 

variable), α and β  (parameters of Gamma distribution), and two known EBO values.  The 

first one, EBO (S=0), is a corollary of Little’s law.  The second one, EBO (S = CP) is got 

from the simulation running.  Next step is to plug the α and β  values in the EBO formula 
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and the proposed method EBO function is ready to generate EBO values, given a stock 

level S. 

A comparison of the results of the proposed method, METRIC and simulation 

model for EBO calculation will be carried out later on Chapter IV.   

Considerations About Data Collection and Analysis 

The data used in the array of conceptual examples was chosen intending to 

explore didactic issues.  In selecting the data, this research had two main objectives: first, 

to show that different distributions for demand and time parameters in RISs may lead to 

different EBO values when compared to existing models; second, to demonstrate it is 

possible (at this point, a level of hypothesis) to model complex RIS with assumptions 

about demand and time parameters different from those of METRIC models.  Therefore, 

the data used in those examples are fictitious, didactic data.  The methodology of 

selecting the fictitious data can be said as part of the verification process of the proposed 

(P-METRIC) method. 

T-27 Data Collection 

The data used in the T-27 Tucano case study was sampled from a set of initially 

25 first indenture reparable items of the T-27 Tucano aircraft program.  Preliminary 

analysis reduced that number to 20 items due to one or more problems related to the 

profiles described below.  A list of the 20 elected items is provided in Appendix D.  

Together with the PAMALS, the two major T-27 Tucano’s operator, AFA and 

CATRE, were chosen to participate of this research.  The data was collected from a 

continuous period of one hundred days of normal operation, from August 13th to 
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November 20th of 2001.  No differentiation between corrective and preventive 

maintenance was done.  The information collected referred to parameters of interest for 

EBO calculation.  It also included a sample of time between demands (TBD) at base 

level, time to repair (TTR) at base and depot levels, ordering and ship time (OST) at 

system level, and stock level at bases and depot for all items listed in Appendix D.  

Additionally, in order to allow comparing the EBO numbers of both proposed and 

existing methods with those from the real world, information about backorder occurrence 

and backorder duration was collected for each one of the 20 reparable items, during the 

same period of one hundred days. 

The items were selected based on the following initial profiles:  

1. Demand Information. The selected items should have good 
information about demand in the bases and depot levels.  The 
“goodness” of the information refers to aspects both qualitative and 
quantitative.  Items with too few demands in the research period were 
avoided (quantitative aspect), as well as items whose demands were 
not reliable for a variety of reasons (qualitative aspect). 

 
2. Time Parameters.  Items with chronic repair problems, such as 

abnormal delay in repair due to equipment breakdowns, were ruled out 
of the list. 

 
Data Analysis   

The data collected was treated statistically in order to fit in both proposed and 

existing methods.  In analyzing the data, the Arena Input Analyzer was used in order to 

select the best theoretical distribution to the parameters used in the proposed and existing 

methods.  

In preparing the data to get into the METRIC model, the following steps were 

taken: 
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1. The mean demand was calculated for each base (AFA and CATRE) 
according to information gathered from the PAMALS. 

   
2. The same procedure was taken for the Depot TTR.  Important to 

highlight that, according to information from Capt Vladimir, TPLJ at 
the PAMALS, none of the selected item can be repaired at base.  In 
fact, as he said, the base repair capability could be ignored due two 
reasons: first, the chance of repairing at base are very small; second, 
the flight line maintenance only request an serviceable item from the 
local supply service if the unserviceable item should go to the depot.  
This situation will be commented later in Chapter V. 

 
3. Since no information about ordering and ship time was provided from 

the PAMALS, OST is assumed, with the agreement of the PAMALS, 
as being four days for AFA, and six days for CATRE.  This will be 
also commented in Chapter V. 

 
In preparing the data to get into the proposed method (P-METRIC), the 

procedures were similar to the METRIC above, except that the same data was submitted 

to a goodness-of-fit (GOF) test in order to select the best theoretical distribution.  The 

treatment also included a request for measures of variability (standard deviation) of the 

data. 

The Arena Input Analyzer’s Goodness of Fit (GOF) Test.  The Arena Input 

Analyzer provided with a “built- in” Kolmogorov-Smirnov GOF test.  It automatically 

selects the theoretical distribution for the data.  It also provides with mean, standard 

deviation of the data and the p-value of the test. The P-value (observed significance level) 

refers to the smallest level of significance at which the null hypothesis (to be defined 

ahead) would be rejected (Devore, 1999:341). The two-sided Kolmogorov-Smirnov GOF 

tests were performed as following (Conover, 1980:346): 

1. Data: The data consist of a random sample of values, of size n, 
associated with a still unknown distribution function, denoted by F(x). 
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2. Hypothesis:  Let G(x) be a completely specified hypothesized 
distribution function. Thus, the hypothesis are: 

 
Ho:  F(x) = G(x)                                 Null hypothesis 

Ha:  F(x) # G(x)                                 Alternative hypothesis 

3. Decision Rule:  The Arena Input Analyzer automatically returns to the 
“best- fitted” theoretical distribution.  However, to ensure that the 
theoretical really represents the real data, this research followed a rule 
suggested by Sadowski.  He says:  

 
If the p-values for one or more distributions are fairly high (e.g. 0.10 
or greater), then you can use a theoretical distribution and have a fair 
degree of confidence that you’re getting a good representation of the 
data (unless your sample size is quite small, in which case the 
discriminatory power of goodness-of- fit tests is quite weak).  If the p-
values are low, you may want to use an empirical distribution to better 
capture the characteristics of the data. (Sadowski, 1998:137)  
 

Summary 

In this chapter, the methodology used to model the proposed method was 

presented and discussed.  The ten conceptual experimenting designs as well as the T-27 

Tucano case study was described as the tool for verification and validation of the 

proposed method.  Then, the simulation portion of the proposed method was introduced, 

followed by the mathematical analytical approach. Finally, considerations about data 

collection for the T-27 Tucano case study were presented and discussed. 

Chapter IV will compare the results of both experimental design and the T-27 

Tucano case study, in order to answering the investigative questions described earlier. 
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IV.  Results 

Chapter Overview 

Chapter IV presents the results of each one of the 10 conceptual experiments 

summarized in the Appendix E.  The results of the T-27 Tucano case study is also 

presented.  Then, those results are interpreted and used to help answering the 

investigative questions. 

Results of the Conceptual Experiments 

The results of the ten conceptual experiments are presented in the next tables.  In 

the experiments one to six, different treatments for demand variability and demand 

distribution were applied, but keeping the same mean. All other parameters (Base TTR, 

Depot TTR, and OST) were kept the same for all six experiments.  In the experiments 

seven to ten, the time parameters were tested all together.  All of them refer to first 

indenture multi echelon (FIME) model.  EBO values are calculated for a range of stock 

levels (s) at base from zero to a minimum of eight, given a depot stock level, using 

METRIC, P-METRIC and Simulation.  For each base stock level, the absolute algebraic 

differences between METRIC and Simulation (M-S), and P-METRIC (P-S) are 

presented. The difference between METRIC and P-METRIC is also calculated.  A 95% 

half-width confidence interval (CI) gathered from the replications of the Simulation in 

Arena is provided followed by the information of which model (METRIC and/or P-

METRIC), if any, is inside of the confidence interval.  The last column states for each 

stock level which model (METRIC or P-METRIC) is closer to the simulation values.  

More details are provided before each table. 
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Parameters used for METRIC EBO computation: 

 
Demand rate at base = 2.1 items per week. 
Probability of repair at base = 0.6. 
Probability of repair at depot = 1 – 0.6 = 0.4. 
Base repair time = 1.2 weeks. 
Depot repair time = 3.5 weeks. 
Ordering and ship time = 1.2 weeks. 
Depot stock level = 3. 
Base stock level ranging from zero to eight. 
 
Additionally, the following information is used in the P-METRIC EBO 

calculation: 

 
Mean time between demands (TBD) = 0.476 (1/2.1) week, normally distributed. 
TBD standard deviation = 0.05. 
Mean base time to repair (BTTR) = 1.2 week, lognormal distributed. 
BTTR standard deviation = 1.2. 
Mean depot time to repair (DTTR) = 3.5 weeks, lognormal distributed. 
DTTR standard deviation = 3. 
Mean ordering & ship time (OST) = 1.2 weeks gamma distributed, α = 1.2 and  
β  = 1. 
The following table shows the result of the Experiment 01.   

Table 2.  Results of the Experiment 01 
EBO ABS DIFFERENCE INTERVAL TEST S 

METRIC P-METRIC SIM M-S P-S 
M - P 95% CI 

METRIC P-METRIC 
CLOSE 

0 3.1579 3.0589 3.0591 0.09882 0.0002 0.0990 0.01718 OUTSIDE INSIDE P-METRIC 

1 2.2004 2.0568 2.0699 0.13054 0.0131 0.1436 0.01695 OUTSIDE INSIDE P-METRIC 

2 1.3772 1.1527 1.1798 0.19741 0.0271 0.2245 0.01503 OUTSIDE OUTSIDE P-METRIC 

3 0.7660 0.5438 0.54389 0.22207 0.0001 0.2222 0.01049 OUTSIDE INSIDE P-METRIC 

4 0.3779 0.2241 0.20284 0.17502 0.0212 0.1538 0.00566 OUTSIDE OUTSIDE P-METRIC 

5 0.1659 0.0833 0.06257 0.10336 0.0207 0.0826 0.00245 OUTSIDE OUTSIDE P-METRIC 

6 0.0653 0.0286 0.01616 0.0491 0.0125 0.0367 9.47E-04 OUTSIDE OUTSIDE P-METRIC 

7 0.0232 0.0092 0.00344 0.01971 0.0058 0.0140 3.73E-04 OUTSIDE OUTSIDE P-METRIC 

8 0.0075 0.0028 0.00068 0.00678 0.0022 0.0047 1.84E-04 OUTSIDE OUTSIDE P-METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of the Experiment 01. The absolute difference between the models followed by the 
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95 % half-width CI is presented.  It also shows whether or not the models (METRIC and 

P-METRIC) are inside of the 95 % half-width CI, and which of them is closer to the 

simulation mean value.  The summation of the squared difference between METRIC and 

simulation for the range of s values tested is 0.10017. The summation of the squared 

difference between P-METRIC and simulation is 0.0020.  The anchor points where P-

METRIC EBO curve is adjusted were kept out of this analysis. 

The following graphs picture the EBO curves for METRIC, P-METRIC and 

Simulation model.  It refers to the Experiment 01. 
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Figure 4.  EBO Curves for Experiment 01 

 
The graph above, Figure 04, represents the EBO curve at base level considering 

METRIC, P-METRIC, and the simulation models (step function created in MathCad in 

order to compare the models).  The x-coordinate (abscissa) axis represents stock level at 

base, while y-coordinate (ordinate) axis represents EBO values.  The following 

terminology applies to the graph interpretation: 
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Stock level at base = Range of values used for comparing the models. 

Trace 1 = EBO values of simulation expressed as a function of stock level  

at base. 

Trace 2 = EBO values of METRIC expressed as a function of stock level at base. 

Trace 3 = EBO values of P-METRIC expressed as a function of stock level at 

base.  A plot of the absolute difference (M-S, and P-S) for the Experiment 01 is provided 

in the following graph.  The x-coordinate (abscissa) axis represents stock levels, while y-

coordinate (ordinate) axis represents the absolute difference between EBO values of 

Simulation and METRIC (M-S), and between EBO values of Simulation and P-METRIC 

(P-S). 
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Figure 5.  Absolute Dif. Between METRIC/P-METRIC and Simulation for Exp. 01 

 
 

The graph on figure 05 refers to the absolute difference between both models 

(METRIC and P-METRIC) and the simulation model, where: 

Trace 1 = Difference between EBO values of Simulation and P-METRIC (P-S). 

Trace 2 = Difference between EBO values of Simulation and METRIC (M-S). 
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The following table refers to the Experiment 02.  The parameters for METRIC 

EBO calculation are the same of the Experiment 01.  Additionally, the parameters for P-

METRIC EBO calculation are the same of the Experiment 01 except for: 

TBD standard deviation = 0.135. 
 
Base stock level ranging from zero to eight. 

 
Table 3.  Results of Experiment 02 

EBO ABS DIFFERENCE INTERVAL TEST S
METRIC P-METRIC SIM M-S P-S 

M - P 95% CI 
METRIC P-METRIC 

CLOSE 

0 3.1579 3.0712 3.0711 0.08682 0.0000 0.0867 0.01576 OUTSIDE INSIDE P-METRIC 

1 2.2004 2.0687 2.084 0.11644 0.0154 0.1317 0.01563 OUTSIDE INSIDE P-METRIC 

2 1.3772 1.1745 1.2022 0.17501 0.0277 0.2027 0.01423 OUTSIDE OUTSIDE P-METRIC 

3 0.766 0.5708 0.57077 0.19519 0.0000 0.1952 0.01106 OUTSIDE INSIDE P-METRIC 

4 0.3779 0.2458 0.22369 0.15417 0.0221 0.1321 0.00675 OUTSIDE OUTSIDE P-METRIC 

5 0.1659 0.0966 0.07363 0.0923 0.0230 0.0693 0.00339 OUTSIDE OUTSIDE P-METRIC 

6 0.0653 0.0354 0.02061 0.04465 0.0148 0.0299 1.57E-03 OUTSIDE OUTSIDE P-METRIC 

7 0.0231 0.0123 0.0049 0.01825 0.0074 0.0108 6.88E-04 OUTSIDE OUTSIDE P-METRIC 

8 0.0075 0.0041 0.00102 0.00644 0.0030 0.0034 2.73E-04 OUTSIDE OUTSIDE P-METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 02. The absolute difference between the models followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % half-width CI, and which of them are closer to the 

simulation mean value.  The summation of the squared difference between METRIC and 

simulation for the range of values tested is 0.0788426. The summation of the squared 

difference between P-METRIC and simulation is 0.0023.  The anchor points where P-

METRIC EBO curve is adjusted were kept out of this analysis. 
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The following table refers to Experiment 03.  The parameters for METRIC EBO 

calculation are the same of the previous experiments. Additionally, the following 

information is used in the P-METRIC EBO calculation: 

Mean time between demands (TBD)= 0.476 week, gamma distributed, parameters 
α = 0.476 and β  = 1. 
Mean base time to repair (BTTR) = 1.2 week, lognormal distributed. 
BTTR standard deviation = 1.2. 
Mean depot time to repair (DTTR) = 3.5 weeks, lognormal distributed. 
DTTR standard deviation = 3. 
Mean ordering & ship time (OST) = 1.2 weeks gamma distributed, parameters α 
= 1.2    and β  = 1. 
Base stock level ranging from zero to eight. 

 
Table 4.  Results of Experiment 03 

EBO ABS DIFFERENCE INTERVAL TEST 
S 

METRIC P-METRIC SIM M-S P-S 
M - P 95% CI 

METRIC P-METRIC 
CLOSE 

0 3.15792 3.2329 3.2329 0.07498 0.0000 -0.0750 0.01754 OUTSIDE INSIDE P-METRIC 

1 2.20044 2.28583 2.3358 0.13536 0.0500 -0.0854 0.01667 OUTSIDE OUTSIDE P-METRIC 

2 1.37721 1.55722 1.5975 0.22029 0.0403 -0.1800 0.01491 OUTSIDE OUTSIDE P-METRIC 

3 0.76596 1.0366 1.0366 0.27064 0.0000 -0.2706 0.01217 OUTSIDE INSIDE P-METRIC 

4 0.37786 0.67906 0.63998 0.26212 0.0391 -0.3012 0.00949 OUTSIDE OUTSIDE P-METRIC 

5 0.16593 0.4396 0.37713 0.2112 0.0625 -0.2737 0.00718 OUTSIDE OUTSIDE P-METRIC 

6 0.06526 0.28199 0.21171 0.14645 0.0703 -0.2167 5.32E-03 OUTSIDE OUTSIDE P-METRIC 

7 0.02315 0.17958 0.11392 0.09077 0.0657 -0.1564 4.06E-03 OUTSIDE OUTSIDE P-METRIC 

8 0.00746 0.11368 0.0589 0.05144 0.0548 -0.1062 3.14E-03 OUTSIDE OUTSIDE METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 03. The absolute difference between the models followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % half-width CI, and which of them are closer to the 

simulation mean value.  The summation of the squared difference between METRIC and 

simulation for the range of values tested is 0.212495. The summation of the squared 
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difference between P-METRIC and simulation is 0.0218.   The anchor points where P-

METRIC EBO curve is adjusted were kept out of this analysis. 

The following table refers to Experiment 04.  The parameters for METRIC EBO 

calculation are the same of the previous experiments. Parameters for P-METRIC EBO 

calculation are the same of the Experiment 03 except for: 

Mean TBD = 0.476 week (same of the previous experiment) gamma distributed, 
parameters α = 0.0476 and β  = 10. 
Base stock level ranging from zero to 10. 

 
Table 5.  Results of Experiment 04 

EBO ABS DIFFERENCE INTERVAL TEST 
S 

METRIC P-METRIC SIM M-S P-S 
M -P 95% CI 

METRIC P-METRIC 
CLOSE 

0 3.15792 3.72407 3.7241 0.56618 0.0000 -0.5662 0.10362 OUTSIDE INSIDE P-METRIC 

1 2.20044 3.0291 3.1058 0.90536 0.0767 -0.8287 0.09109 OUTSIDE INSIDE P-METRIC 

2 1.37721 2.51169 2.589 1.21179 0.0773 -1.1345 0.07941 OUTSIDE INSIDE P-METRIC 

3 0.76596 2.10331 2.1487 1.38274 0.0454 -1.3374 0.06869 OUTSIDE INSIDE P-METRIC 

4 0.37786 1.77268 1.7727 1.39484 0.0000 -1.3948 0.05891 OUTSIDE INSIDE P-METRIC 

5 0.16593 1.50099 1.4541 1.28817 0.0469 -1.3351 0.05038 OUTSIDE INSIDE P-METRIC 

6 0.06526 1.2755 1.1848 1.11954 0.0907 -1.2102 4.26E-02 OUTSIDE OUTSIDE P-METRIC 

7 0.02315 1.08701 0.959 0.93588 0.1280 -1.0639 3.57E-02 OUTSIDE OUTSIDE P-METRIC 

8 0.00746 0.92857 0.7709 0.76344 0.1577 -0.9211 2.98E-02 OUTSIDE OUTSIDE P-METRIC 

9 0.0022 0.79481 0.6159 0.61373 0.17888 -0.7926 0.02482 OUTSIDE OUTSIDE P-METRIC 

10 0.0006 0.68148 0.4889 0.48827 0.19261 -0.6809 0.0206 OUTSIDE OUTSIDE P-METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 04. The absolute difference between the models, followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % half-width CI, and which of them are closer to the 

simulation mean value.  The summation of the squared difference between METRIC and 

simulation for the range of values tested is 9.186618. The summation of the squared 
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difference between P-METRIC and simulation is 0.13468. The anchor points where P-

METRIC EBO curve is adjusted were kept out of this analysis. 

The following table refers to Experiment 05.  The parameters for METRIC EBO 

calculation are the same of the previous experiments. Additionally, the following 

information is used in the P-METRIC EBO calculation: 

Mean time between demands (TBD)= 0.476 week lognormal distributed. 
TBD standard deviation = 0.5. 
Mean base time to repair (BTTR) = 1.2 week, lognormal distributed. 
BTTR standard deviation = 1.2. 
Mean depot time to repair (DTTR) = 3.5 weeks, lognormal distributed. 
DTTR standard deviation = 3. 
Mean ordering & ship time (OST) = 1.2 weeks gamma distributed, parameters α 
= 1.2    and β  = 1. 
Base stock level ranging from zero to eight. 

 
Table 6.  Results of Experiment 05 

EBO ABS DIFFERENCE INTERVAL TEST S 
METRIC P-METRIC SIM M-S P-S 

M - P 95% CI 
METRIC P-METRIC 

CLOSE 

0 3.15792 3.1573 3.1573 0.00062 0.0000 0.0006 0.02421 INSIDE INSIDE P-METRIC 

1 2.20044 2.17103 2.2193 0.01886 0.0483 0.0294 0.02348 INSIDE OUTSIDE METRIC 

2 1.37721 1.37653 1.4215 0.04429 0.0450 0.0007 0.02135 OUTSIDE OUTSIDE METRIC 

3 0.76596 0.82483 0.82483 0.05887 0.0000 -0.0589 0.01742 OUTSIDE INSIDE P-METRIC 

4 0.37786 0.47458 0.43382 0.05596 0.0408 -0.0967 0.01221 OUTSIDE OUTSIDE P-METRIC 

5 0.16593 0.26491 0.20783 0.0419 0.0571 -0.0990 0.00772 OUTSIDE OUTSIDE METRIC 

6 0.06526 0.14445 0.0911 0.02584 0.0534 -0.0792 4.65E-03 OUTSIDE OUTSIDE METRIC 

7 0.02315 0.07732 0.03679 0.01364 0.0405 -0.0542 2.78E-03 OUTSIDE OUTSIDE METRIC 

8 0.00746 0.04077 0.01382 0.00636 0.0270 -0.0333 1.65E-03 OUTSIDE OUTSIDE METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 05. The absolute difference between the models followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % half-width CI, and which of them are closer to the 

simulation mean value.  The summation of the squared difference between METRIC and 
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simulation for the range of values tested is 0.008099. The summation of the squared 

difference between P-METRIC and simulation is 0.01497.  The anchor points where P-

METRIC EBO curve is adjusted were kept out of this analysis. 

The following table refers to Experiment 06.  The parameters for METRIC EBO 

calculation are the same of the previous experiments. Parameters for P-METRIC EBO 

calculation are the same of the Experiment 05 except for: 

TBD standard deviation = 2.5. 
Base stock level ranging from zero to eight. 

 
Table 7.  Results of Experiment 06 

EBO ABS DIFFERENCE INTERVAL TEST S 
METRIC P-METRIC SIM M-S P-S 

M - P 95% CI 
METRIC P-METRIC 

CLOSE 

0 3.15792 3.5934 3.5934 0.43548 0.0000 -0.4355 0.07044 OUTSIDE INSIDE P-METRIC 

1 2.20044 2.79652 2.897 0.69656 0.1005 -0.5961 0.06019 OUTSIDE OUTSIDE P-METRIC 

2 1.37721 2.20213 2.3055 0.92829 0.1034 -0.8249 0.05159 OUTSIDE OUTSIDE P-METRIC 

3 0.76596 1.74509 1.8051 1.03914 0.0600 -0.9791 0.04381 OUTSIDE OUTSIDE P-METRIC 

4 0.37786 1.3887 1.3887 1.01084 0.0000 -1.0108 0.03689 OUTSIDE INSIDE P-METRIC 

5 0.16593 1.10847 1.0498 0.88387 0.0587 -0.9425 0.03066 OUTSIDE OUTSIDE P-METRIC 

6 0.06526 0.88687 0.7797 0.71444 0.1072 -0.8216 0.02517 OUTSIDE OUTSIDE P-METRIC 

7 0.02315 0.71091 0.56813 0.54498 0.1428 -0.6878 0.02039 OUTSIDE OUTSIDE P-METRIC 

8 0.00746 0.57075 0.40631 0.39885 0.1644 -0.5633 0.01633 OUTSIDE OUTSIDE P-METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 06. The absolute difference between the models, followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % half-width CI, and which of them are closer to the 

simulation mean.  The summation of the squared difference between METRIC and 

simulation for the range of values tested is 4.174465. The summation of the squared 

difference between P-METRIC and simulation is 0.0867.  The anchor points where P-

METRIC EBO curve is adjusted were kept out of this analysis. 
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The following table summarizes the results of the experiments 1 to 6.  The 

objective is to verify the effects of different treatments on Demand distribution and 

variance for EBO calculation.  Three types of time between demands distributions are 

tested.  Two levels of variance are assigned.  The percentage of the times each model is 

inside of the 95 % half-width CI is calculated dividing the number of times it appears 

inside of the confidence interval for each treatment.  The sum of the squared difference 

between METRIC/P-METRIC and the simulation model is also presented. 

 
Table 8.  Effects of Variability in Demand 

FACTOR TESTED % INSIDE INTERVAL TEST SUM SQUARED DIF 
TREATMENT 

DEM. DIST 

LEVEL OF 
VARIANCE METRIC P-METRIC METRIC P-METRIC 

1 NORMAL LV 0 14.28 0.10017 0.002 

2 NORMAL HV 0 14.28 0.07884 0.0023 

3 GAMMA LV 0 0 0.212495 0.0218 

4 GAMMA HV 0 44.44 9.1866 0.13468 

5 LOGNORMAL LV 0 0 0.008099 0.01497 

6 LOGNORMAL HV 0 0 4.174465 0.0867 

TOTAL PERCENTAGE/SUM SQ DIF 0 13.63 13.7605 0.26245 

 
 

Table 10 shows that, for the six treatments of Demand, METRIC is inside the 95 

% half-width CI in 0 % of the times.  P-METRIC is inside the 95 % half-width CI in 

13.63 % of the times, already excluded the two anchor points of P-METRIC 

approximation.  Additionally, the total sum of the squared difference between simulation 

and METRIC is 13.7605.  The total sum of the difference between simulation and P-

METRIC is 0.26245.  The anchor points where P-METRIC EBO curve is adjusted were 

kept out of this analysis. 

The next four tables (7 to 10) refer to different treatments applied to TTR and 

OST.  Since these parameters are designed as delays in the simulation model, it is 
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assumed that the variability may affect the EBO calculation similarly, so the treatments 

are applied on both together.  More details are provided before each table. 

The following table refers to Experiment 07.   

Parameters used for METRIC EBO computation: 

Demand rate at base = 4 items per week.  
Probability of repair at base = 0.6. 
Probability of repair at depot = 1 – 0.6 = 0.4. 
Base repair time = 1.2 weeks. 
Depot repair time = 3.5 weeks. 
Ordering and ship time = 1.2 weeks. 
Depot stock level = 6. 
Base stock level ranging from zero to 13. 

Additionally, the following information is used in the P-METRIC EBO 

calculation: 

Mean time between demands (TBD)= 0.25 week lognormal distributed. 
TBD standard deviation = 1.5. 
Mean base time to repair (BTTR) = 1.2 week, lognormal distributed. 
BTTR standard deviation = 1.2. 
Mean depot time to repair (DTTR) = 3.5 weeks, lognormal distributed. 
DTTR standard deviation = 3. 
Mean ordering & ship time (OST) = 1.2 weeks gamma distributed, parameters  
α = 1.2 and β  = 1. 

Base stock level ranging from zero to 13. 
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Table 9.  Results of Experiment 07 
EBO ABS DIFFERENCE INTERVAL TEST S 

METRIC P-METRIC SIM M-S P-S 
M - P 95% CI 

METRIC P-METRIC 
CLOSE 

0 5.5551 5.5748 5.5748 0.0197 0.0000 -0.0197 0.09606 INSIDE INSIDE P-METRIC 

1 4.559 4.7128 4.8393 0.2803 0.1265 -0.1538 0.08596 OUTSIDE OUTSIDE P-METRIC 

2 3.5843 4.0084 4.1856 0.6013 0.1772 -0.4241 0.07644 OUTSIDE OUTSIDE P-METRIC 

3 2.6694 3.4212 3.5938 0.9244 0.1726 -0.7518 0.0676 OUTSIDE OUTSIDE P-METRIC 

4 1.8649 2.927 3.0589 1.194 0.1319 -1.0621 0.05943 OUTSIDE OUTSIDE P-METRIC 

5 1.2139 2.5088 2.5792 1.3653 0.0704 -1.2949 0.05176 OUTSIDE OUTSIDE P-METRIC 

6 0.7334 2.1533 2.1533 1.4199 0.0000 -1.4199 4.48E-02 OUTSIDE INSIDE P-METRIC 

7 0.4107 1.8504 1.7799 1.3692 0.0705 -1.4397 3.86E-02 OUTSIDE OUTSIDE P-METRIC 

8 0.2134 1.5916 1.4565 1.2431 0.1351 -1.3782 3.32E-02 OUTSIDE OUTSIDE P-METRIC 

9 0.103 1.3702 1.1796 1.0766 0.1906 -1.2672 2.84E-02 OUTSIDE OUTSIDE P-METRIC 

10 0.0463 1.1804 0.94562 0.8993 0.2348 -1.1341 0.02422 OUTSIDE OUTSIDE P-METRIC 

11 0.0194 1.0175 0.75026 0.7308 0.2673 -0.9981 0.02054 OUTSIDE OUTSIDE P-METRIC 

12 7.70E-03 0.8776 0.58905 0.5814 0.2886 -0.8699 0.01727 OUTSIDE OUTSIDE P-METRIC 

13 2.80E-03 0.7573 0.45818 0.4554 0.2992 -0.7545 0.01436 OUTSIDE OUTSIDE P-METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 07. The absolute difference between the models, followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % CI, and which of them are closer to the simulation 

mean.  The summation of the squared difference between METRIC and simulation for 

the range of values tested is 11.0516. The summation of the squared difference between 

P-METRIC and simulation is 0.45849.  The anchor points where P-METRIC EBO curve 

is adjusted were kept out of this analysis. 

The following table refers to the Experiment 08.  The parameters for METRIC 

EBO calculation are the same of the previous experiments. Parameters for P-METRIC 

EBO calculation are the same as Experiment 07 except for: 

Base TTR standard deviation = 5.1. 
Depot TTR standard deviation = 12. 
Mean ordering & ship time (OST) = 1.2 weeks gamma distributed, parameters  
α = 0.12 and β  = 10. 
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Base stock level ranging from zero to eight. 

 
Table 10.  Results of Experiment 08 

EBO ABS DIFFERENCE INTERVAL TEST S 
METRIC P-METRIC SIM M-S P-S 

M - P 95% CI 
METRIC P-METRIC 

CLOSE 

0 5.5551 5.9126 5.9127 0.3576 0.0001 -0.3575 0.11314 OUTSIDE INSIDE P-METRIC 

1 4.559 4.9436 5.0063 0.4473 0.0627 -0.3846 0.10644 OUTSIDE INSIDE P-METRIC 

2 3.5843 4.0886 4.1887 0.6044 0.1001 -0.5043 0.09695 OUTSIDE OUTSIDE P-METRIC 

3 2.6694 3.3564 3.4559 0.7865 0.0995 -0.6870 0.08702 OUTSIDE OUTSIDE P-METRIC 

4 1.8649 2.7402 2.8179 0.953 0.0777 -0.8753 0.0779 OUTSIDE INSIDE P-METRIC 

5 1.2139 2.2273 2.2688 1.0549 0.0415 -1.0134 0.06922 OUTSIDE INSIDE P-METRIC 

6 0.7334 1.8041 1.8042 1.0708 0.0001 -1.0707 6.04E-02 OUTSIDE INSIDE P-METRIC 

7 0.4107 1.457 1.4167 1.006 0.0403 -1.0463 5.19E-02 OUTSIDE INSIDE P-METRIC 

8 0.2134 1.1738 1.0987 0.8853 0.0751 -0.9604 4.38E-02 OUTSIDE OUTSIDE P-METRIC 

9 0.103 0.9436 0.84131 0.7383 0.1023 -0.8406 0.03655 OUTSIDE OUTSIDE P-METRIC 

10 0.0463 0.7572 0.63569 0.5894 0.1215 -0.7109 0.03018 OUTSIDE OUTSIDE P-METRIC 

11 0.0194 0.6066 0.47333 0.4539 0.1333 -0.5872 0.02475 OUTSIDE OUTSIDE P-METRIC 

 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 08. The absolute difference between the models, followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % CI, and which of them are closer to the simulation 

mean.  The summation of the squared difference between METRIC and simulation for 

the range of values tested is 6.0992. The summation of the squared difference between P-

METRIC and simulation is 0.08187.  The anchor points where P-METRIC EBO curve is 

adjusted were kept out of this analysis. 

The following table refers to the Experiment 09.  Parameters used fo r METRIC 

EBO computation: 

Demand rate at base = 4 items per week.  
Probability of repair at base = 0.6. 
Probability of repair at depot = 1 – 0.6 = 0.4. 
Base repair time = 1.2 weeks. 
Depot repair time = 2.3 weeks. 
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Ordering and ship time = 1.2 weeks. 
Depot stock level = 6. 
Base stock level ranging from zero to 15. 
 
Additionally, the following information is used in the P-METRIC EBO 

calculation: 

Mean time between demands (TBD) = 0.25 (1/4) week, lognormal distributed. 
TBD standard deviation = 1.5. 
Mean base time to repair (BTTR) = 1.2 week, normally distributed. 
BTTR standard deviation = 0.12. 
Mean depot time to repair (DTTR) = 2.3 weeks, normally distributed. 
DTTR standard deviation = 0.2. 
Mean ordering & ship time (OST) = 1.2 weeks lognormal distributed. 
OST standard deviation = 1.2. 

Table 11.  Results of Experiment 09 
EBO ABS DIFFERENCE INTERVAL TEST 

S 

METRIC P-METRIC SIM M-S P-S 

M - P 95% CI 

METRIC P-METRIC 

CLOSE 

0 4.9344 5.5748 5.5748 0.6404 0.0000 -0.6404 0.09606 OUTSIDE INSIDE P-METRIC 

1 3.9416 4.7128 4.8393 0.8977 0.1265 -0.7712 0.08596 OUTSIDE OUTSIDE P-METRIC 

2 2.9843 4.0084 4.1856 1.2013 0.1772 -1.0241 0.07644 OUTSIDE OUTSIDE P-METRIC 

3 2.1146 3.4212 3.5938 1.4792 0.1726 -1.3066 0.0676 OUTSIDE OUTSIDE P-METRIC 

4 1.389 2.927 3.0589 1.6699 0.1319 -1.5380 0.05943 OUTSIDE OUTSIDE P-METRIC 

5 0.841 2.5088 2.5792 1.7382 0.0704 -1.6678 0.05176 OUTSIDE OUTSIDE P-METRIC 

6 0.4685 2.1533 2.1533 1.6848 0.0000 -1.6848 0.04476 OUTSIDE INSIDE P-METRIC 

7 0.2402 1.8504 1.7799 1.5397 0.0705 -1.6102 0.0386 OUTSIDE OUTSIDE P-METRIC 

8 0.1136 1.5916 1.4565 1.3429 0.1351 -1.4780 0.0332 OUTSIDE OUTSIDE P-METRIC 

9 0.0497 1.3702 1.1796 1.1299 0.1906 -1.3205 0.0284 OUTSIDE OUTSIDE P-METRIC 

10 0.0202 1.1804 0.94562 0.9254 0.2348 -1.1602 0.02422 OUTSIDE OUTSIDE P-METRIC 

11 0.0076 1.0175 0.75026 0.7426 0.2673 -1.0099 0.02054 OUTSIDE OUTSIDE P-METRIC 

12 0.0027 0.8776 0.58905 0.5864 0.2886 -0.8749 0.01727 OUTSIDE OUTSIDE P-METRIC 

13 0.0009 0.7573 0.45814 0.4572 0.2992 -0.7564 0.01436 OUTSIDE OUT SIDE P-METRIC 

14 0.0003 0.6538 0.35289 0.3526 0.3009 -0.6535 0.01169 OUTSIDE OUTSIDE P-METRIC 

15 8.23E-05 0.5647 0.26899 0.2689 0.2957 -0.5646 0.0094 OUTSIDE OUTSIDE METRIC 
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The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 09. The absolute difference between the models, followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % CI, and which of them are closer to the simulation 

mean.  The summation of the squared difference between METRIC and simulation for 

the range of values tested is 17.85501. The summation of the squared difference between 

P-METRIC and simulation is 0.63647. The anchor points where P-METRIC EBO curve 

is adjusted were kept out of this analysis. 

The following table refers to the Experiment 10.  The parameters for METRIC 

EBO calculation are the same of the Experiment 09. Parameters for P-METRIC EBO 

calculation are the same of the Experiment 09 except for: 

Base TTR standard deviation = 0.35. 
Depot TTR standard deviation = 0.7. 
OST standard deviation = 4. 
Base stock level ranging from zero to 15. 

Table 12.  Results of the Experiment 10 
EBO ABS DIFFERENCE INTERVAL TEST 

S 
METRIC P-METRIC SIM M-S P-S 

M - P 95% CI 
METRIC P-METRIC 

CLOSE 

0 4.9344 5.5887 5.5889 0.6545 0.0002 -0.6543 0.0905 OUTSIDE INSIDE P-METRIC 

1 3.9416 4.6747 4.7305 0.7889 0.0558 -0.7331 0.08314 OUTSIDE INSIDE P-METRIC 

2 2.9843 3.9099 4.0019 1.0176 0.0920 -0.9256 0.0748 OUTSIDE OUTSIDE P-METRIC 

3 2.1146 3.27 3.3697 1.2551 0.0997 -1.1554 0.06651 OUTSIDE OUTSIDE P-METRIC 

4 1.389 2.7348 2.8161 1.4271 0.0813 -1.3458 0.05857 OUTSIDE OUTSIDE P-METRIC 

5 0.841 2.2871 2.3323 1.4913 0.0452 -1.4461 0.05134 OUTSIDE INSIDE P-METRIC 

6 0.4685 1.9127 1.9128 1.4443 0.0001 -1.4442 0.04466 OUTSIDE INSIDE P-METRIC 

7 0.2402 1.5995 1.5533 1.3131 0.0462 -1.3593 0.03872 OUTSIDE OUTSIDE P-METRIC 

8 0.1136 1.3376 1.2492 1.1356 0.0884 -1.2240 0.03333 OUTSIDE OUTSIDE P-METRIC 

9 0.0497 1.1185 0.99512 0.9454 0.1234 -1.0688 0.02849 OUTSIDE OUTSIDE P-METRIC 

10 0.0202 0.9354 0.78531 0.7651 0.1501 -0.9152 0.02433 OUTSIDE OUTSIDE P-METRIC 

11 0.0076 0.7822 0.6138 0.6062 0.1684 -0.7746 0.02066 OUTSIDE OUTSIDE P-METRIC 

12 0.0027 0.6541 0.47514 0.4724 0.1789 -0.6514 0.01746 OUTSIDE OUTSIDE P-METRIC 

13 0.0009 0.5469 0.36409 0.3632 0.1829 -0.5460 0.01468 OUTSIDE OUTSIDE P-METRIC 

14 0.0003 0.4574 0.27593 0.2757 0.1814 -0.4571 0.01233 OUTSIDE OUTSIDE P-METRIC 

15 8.23E-05 0.3824 0.20699 0.2069 0.1755 -0.3823 0.01034 OUTSIDE OUTSIDE P-METRIC 



71  
 

The table above shows the EBO values for METRIC, P-METRIC, and simulation 

model of Experiment 10. The absolute difference between the models, followed by the 95 

% half-width CI is presented.  It also shows whether or not the models (METRIC and P-

METRIC) are inside of the 95 % CI, and which of them are closer to the simulation 

mean.  The summation of the squared difference between METRIC and simulation for 

the range of values tested is 12.82809. The summation of the squared difference between 

P-METRIC and simulation is 0.2354.  The anchor points where P-METRIC EBO curve is 

adjusted were kept out of this analysis. 

The following table summarizes the results of experiments 7 to 10.  The objective 

is to verify the effects of different treatments on time parameters distribution and 

variance for EBO calculation.  The considerations about the 95 % half-width CI, as well 

as the summation of the squared different are similar to the experiments one to six. 

 
Table 13.  Effects of Variability in Time Parameters  

% INSIDE INTERVAL TEST SUM SQUARED DIF 
TREATMENT 

FACTOR TESTED 
TTR/OST 

LEVEL OF 
VARIANCE METRIC P-METRIC METRIC P-METRIC 

7 LOGN/GAMMA LV 0 0 11.0516 0.45849 

8 LOGN/GAMMA HV 0 40.00 6.0992 0.08187 

9 NORMAL/LOGN LV 0 0 17.85501 0.63647 

10 NORMAL/LOGN HV 0 14.28 12.82809 0.2354 

TOTAL PERCENTAGE/SUM SQ DIF 0 13.04 47.8339 1.41223 

 

Table 13 shows that, for the four treatments on time parameters above, METRIC 

is inside the 95 % half-width CI in 0 % of the times.  P-METRIC is inside the 95 % half-

width CI in 13.04 % of the times.  Additionally, the total sum of the squared difference 

between simulation and METRIC is 47.8339. The total sum of the difference between 
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simulation and P-METRIC is 1.41223.  The anchor points where P-METRIC EBO curve 

is adjusted were kept out of this analysis. 

Analysis of the Results of the Conceptual Experiments 

 The results of the conceptual experiments has demonstrated that the proposed 

approach can do a better job in calculating EBO for systems that do not match the 

assumptions of METRIC models.  That does not mean that METRIC approach is not 

accurate.  In fact, when the assumptions about demand (Poisson) are valid, METRIC has 

demonstrated to be a strong, accurate model.  However, this study aimed to test the cases 

when the assumptions were not valid.  Thus, considering the situations when the 

METRIC assumptions are not valid, the proposed method seems to be more accurate than 

METRIC.  

By analyzing the results of the 10 conceptual experiments, this research intends to 

answer the investigative questions number 1, 2, 3, and 5.  Investigative question number 

4 will be answered based on the analysis of the T-27 Tucano case study.  

 Investigative Question 1.  What is the best form for a mathematical model for 

EBO calculation that accounts for the stochastic aspects of the demand, time-to-repair 

and ordering-ship-time that may exist in reparable inventory systems? The use of 

simulation combined with mathematical model can result in more accurate number for 

EBO calculation if compared to customary mathematical approaches.  The EBO results 

from the proposed method, even being most of the times outside of the 95 % half-width 

CI, have demonstrated to be closer to the mean of simulation, compared with existing 

models.  On the other hand, the combined approach is more complex, requiring dealing 
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with simulation and more professional mathematical software since this approach is both 

driven by simulation and works with non-tabled distribution.  Thus, a trade-off between 

analysis considering needs for accuracy versus the cost in implement such approach 

should be evaluated. 

 Investigative Question 2.  Do the stochastic aspects of demand and time 

parameters affect EBO calculation in the proposed method?  Answer.  In general 

variability in Demand, TTR, and OST do have an effect.  The conceptual experiments 01 

to 06 were designed to test the stochastic aspects of demand.  The experiments 07 to 10 

were designed to test the stochastic aspect of time parameters, TTR and OST as a whole.  

Factors being tested as well as the levels (low/high variability) are presented in Appendix 

E.  The intention was to test some (not all) possibilities of Demand and TTR/OST, which 

have been recognized by the related literature.   

Stochastic Aspects of Demand.  Experiments 01 to 06 allow verifying the effects 

of two different aspects of demand: firstly, the effects of having the same distribution but 

with different variance; secondly, the effects of having different demand distributions.  

Time parameters were kept the same for all first-six experiments.  It means same mean 

(expected value), same variance, and same distribution.  To test the effects of having 

different variances with same demand distribution, it is necessary to compare each pair of 

experiment (01 and 02; 03 and 04; and 05 and 06).  To test the effect of having different 

demand distribution, it is necessary to compare results throughout the first six 

experiments. 

 Effects of Having Different Variances (LV, and HV) for the Same 

Distribution.  Comparing the results of the experiment 01 (time between demands 
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normally distributed with LV) with experiment 02 (time between demands normally 

distributed with HV) this research concludes there is no significant difference between 

EBO values of Experiment 01 and Experiment 02.  EBO values in the Experiment 02 

(HV) are in average 0.02 bigger than Experiment 01 (LV).  A possible explanation for 

this is that it might happen due to the fact that the only one factor being tested was the 

demand, which was normally distributed. Given the normal distribution is a symmetric 

distribution (Devore, 1999:154), one can expected that the effects of the variance are 

balanced.  Comparing Experiment 03 (time between demands Gamma distributed with 

LV) with Experiment 04 (time between demands Gamma distributed with HV) the 

differences on the EBO values are considerable.  For some stock levels (2, 3, and 4), the 

difference reaches more than 1.1, representing 100% more in favor of the distribution 

with high variance (Experiment 04).  No explanation was found for that; it is proposed 

that the negative effect of variance acknowledged by several statistic books could be at 

work (Benson, 1994:702).  Similar behavior was observed when comparing experiments 

05 (time between demands lognormal distributed with LV) and 06 (time between 

demands lognormal distributed with HV).  However, the differences were smaller than on 

the previous experiment (comparing 03 to 04).   

Effects of Having Different Demand Distributions .  Looking at the EBO results 

from experiments 01 to 06, one may conclude that different demand distributions can 

lead to different EBO values.  Additionally, such difference can be positive or negative 

when compared to the existing models.  In Experiment 01 and 02, where time between 

demands is normally distributed, EBO values are smaller than METRIC.  In the other 

cases, EBO values are bigger than METRIC. 
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Stochastic Aspects of Time Parameters (TTR and OST).   Since TTR and OST 

were modeled as delays in the system, it is expected that the effects of the variability on 

both would similar effects.  Similar experiments were conducted to test the effect of 

having different variances for the same distribution. That was accomplished in the 

experiments 07, 08, 09, and 10 (see Appendix E for more details).  Comparing 

experiments 07 and 08, the EBO values got bigger when the variance in time parameters 

got bigger.  However, this behavior was not confirmed on the experiments 09 and 10, 

where the differences can be considered insignificant (around 0.01 in favor of bigger 

variance, comparing the results of EBO from simulation).  There was, again, the normal 

distribution presented for time to repair in both depot and base.  It is out of the scope of 

this research to explain the reasons of that.  Different distributions for demand and time 

parameters, as well as different variances, potentially lead to different EBO values.   

Investigative Question 3.  Does the proposed method return different EBO 

numbers compared to the existing models?  How significant is the difference?  In general, 

the proposed model yields different EBO predictions.  Unlike the METRIC models, the 

proposed approach has demonstrated to be sensitive to different demand and time 

parameter distributions, and also to the variability on those parameters.   When 

comparing both models with the 95 % half-width CI of the EBO from simulation, the 

results are in favor of the proposed method: around 13 % inside the CI, against 0 % 

METRIC.  Again, this research tested only situations where the assumptions of METRIC 

were not verified. 

Investigative Question 5.  Is the new model time/resource efficient compared to 

the existing models?  No doubt that the proposed method requires more time and resource 
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to be implemented if compared to the existing models.  However, assuming P-METRIC 

can do a better job in calculating backorders, by relaxing several assumptions that 

existing models cannot deal with, a corollary of that may be better decisions about 

resource allocation for reparable items.  The following is a list of issues to consider in 

order to evaluate an implementation of the proposed P-METRIC: 

1. Simulation Software.  Simulation is the base of the proposed method.  
P-METRIC requires the use of a dynamic simulation package that 
works with discrete models.  This research used a student version of 
Arena®, Arena 3.0, that comes with the book Simulation with Arena 
(Sadowski) that costs less than a hundred dollar.  However, a 
professional version can cost more than U$ 20,000. Thus, it is really 
important to decide whether or not to get into an investment like that. 

 
2. Mathematic Software.  The proposed method requires the use of 

mathematic software tools capable of solving more complex system of 
equations.  Besides, the distribution used to model the pipeline in the 
proposed method (Gamma distribution) is not completely tabled like 
Poisson is. Thus, software like MathCad (used in this research), Mat 
lab, or similar are highly recommended and a professional version may 
cost no more than U$ 800. 

 
3. Human Resources.  Having simulation software does not mean having 

models. Modeling system is a task that requires human resources.  
This research does not have information about cost of labor hours for 
professional of system modeling and it may vary from place to place. 

 
4. Time Consuming.  The proposed method requires more time to work 

the input data (GOF tests) and also to running the model in the 
previously discussed points in order to build up the EBO curve.  
However, given the state-of-the-art of several software for statistics, 
the time to prepare data to get into the proposed method can be 
assumed almost the same of the existing models.  Furthermore, the 
goal of the proposed method is to use the information from simulation 
in order to build a backorder without needing of running the model for 
each level of decision.  This way, once the model had been developed, 
templates can be used to save time of programming.   
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Therefore, considering that reparable items are very expensive items, investing on 

the minimal requirements for implementing the proposed method can be thought as a 

good cost-benefit trade-off analysis.   

The next section presents the results of the EBO calculation for the 20 reparable 

items of the T-27 Tucano.   

Results of the T-27 Tucano Case Study 

The T-27 Tucano case study was an attempt to validate the proposed model, 

checking its accuracy compared with data from the “real world.” The results of the T-27 

Tucano Case Study are presented in the following tables.  The data used for calculating 

EBO for both METRIC and proposed method are presented in the Appendix D. 

 
Table 14.  Results of the T-27 Tucano Case Study (AFA) 

EBO DIFFERENCE SQ DIFFERENCE 
ITEM DEPOT 

STOCK 
AFA 

STOCK METRIC P-METRIC FIELD M-S P-S METRIC P-METRIC 

1 0 7 0 0 0.418 -0.418 -0.418 0.174724 0.174724 

2 0 3 0.0077 0.01492 0.37 -0.3623 -0.35508 0.1312613 0.1260818 

3 0 4 1.62678 1.86268 2.05 -0.42322 -0.18732 0.1791152 0.0350888 

4 0 2 0.60132 0.44367 0.58 0.02132 -0.13633 0.0004545 0.0185859 

5 8 2 0.00008 9.35E-05 0.1 -0.09992 -0.09991 0.009984 0.0099813 

6 2 2 0.00026 1.87E-04 0.102 -0.10174 -0.10181 0.010351 0.0103659 

7 15 12 0 0 0 0 0 0 0 

8 0 2 1.72656 1.62048 0.846 0.88056 0.77448 0.7753859 0.5998193 

9 0 4 0.148388 0.13877 0.505 -0.35661 -0.36623 0.1271721 0.1341244 

10 3 2 0.0637 0.72257 0.48 -0.4163 0.24257 0.1733057 0.0588402 

11 0 2 0.02313 0.02888 0.18 -0.15687 -0.15112 0.0246082 0.0228373 

12 0 0 1.39986 1.40599 1.253 0.14686 0.15299 0.0215679 0.0234059 

13 30 22 0 1.15E-09 0.28 -0.28 -0.28 0.0784 0.0784 

14 0 1 0.04187 0.03713 0.332 -0.29013 -0.29487 0.0841754 0.0869483 

15 0 1 2.3415 2.32069 0.9 1.4415 1.42069 2.0779223 2.0183601 

16 2 9 0.01139 1.37E-03 0 0.01139 0.001375 0.0001297 1.89E-06 

17 0 1 5.01893 4.97294 3.77 1.24893 1.20294 1.5598261 1.4470646 

18 1 7 0 4.79E-06 0 0 4.79E-06 0 2.296E-11 

19 0 2 0.05091 0.03216 0.74 -0.68909 -0.70784 0.474845 0.5010375 

20 0 1 0.34511 0.37471 0.3501 -0.00499 0.02461 2.49E-05 0.0006057 
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The table above presents the EBO calculated by using METRIC and P-METRIC 

for the AFA.  The stock levels for each one of the items as well as the average backorder 

were informed by the PAMALS.  The EBO information got from the field referred just to 

the mean, thus no considerations have been made about confidence interval.  The 

differences between METRIC EBO and EBO from the field, as well as proposed method 

EBO and EBO from the field are presented, and the summation of the squared difference 

(considering all 20 items together) for METRIC is 5.9032.  For P-METRIC is 5.3462.  

Table 15.  Results of the T-27 Tucano Case Study (CATRE) 
 

DEPOT CATRE EBO DIFFERENCE SQ DIFFERENCE ITEM 
STOCK STOCK METRIC P-METRIC FIELD M-S P-S METRIC P-METRIC 

1 0 7 0 0.00005 0 0 0.00005 0 2.5E-09 
2 0 6 0.00595 0.01059 0.376 -0.37005 -0.36541 0.136937 0.1335245 
3 0 7 1.66658 2.09489 2.449 -0.78242 -0.35411 0.6121811 0.1253939 
4 0 3 1.38719 1.23738 1.35 0.03719 -0.11262 0.0013831 0.0126833 
5 8 11 0 1.90E-08 0 0 1.9E-08 0 3.622E-16 
6 2 2 0.00061 4.48E-04 0 0.00061 0.000448 3.721E-07 2.008E-07 
7 15 12 0 0 0 0 0 0 0 
8 0 5 0.45928 0.39673 0.463 -0.00372 -0.06627 1.384E-05 0.0043917 
9 0 10 0.00027 1.48E-07 0 0.00027 1.48E-07 7.29E-08 2.191E-14 
10 3 3 0.07609 0.29018 0.52 -0.44391 -0.22982 0.1970561 0.0528172 
11 0 5 0.00004 4.97E-04 0.17 -0.16996 -0.1695 0.0288864 0.0287311 
12 0 1 1.91702 1.87013 1.938 -0.02098 -0.06787 0.0004402 0.0046063 
13 30 54 0 0 0.204 -0.204 -0.204 0.041616 0.041616 
14 0 5 0.4596 0.73351 1.887 -1.4274 -1.15349 2.0374708 1.3305392 
15 0 2 2.17694 2.08179 2.96 -0.78306 -0.87821 0.613183 0.7712528 
16 2 10 0.03132 3.13E-03 0.561 -0.52968 -0.55787 0.2805609 0.3112203 
17 0 1 1.53812 1.4571 0.854 0.68412 0.6031 0.4680202 0.3637296 
18 1 3 0.20737 0.43893 0.87 -0.66263 -0.43107 0.4390785 0.1858213 
19 0 4 0.03409 0.05062 0.338 -0.30391 -0.28738 0.0923613 0.0825873 
20 0 2 1.09004 1.46656 1.266 -0.17596 0.20056 0.0309619 0.0402243 

 
 

The table above presents the EBO calculated by using METRIC and P-METRIC 

for the CATRE.  The stock levels for each one of the items as well as the average 

backorder were informed by the PAMALS.  The EBO information got from the field 
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referred just to the mean, thus no considerations have been made about confidence 

interval.  The differences between METRIC EBO and EBO from the field, as well as 

proposed method EBO and EBO from the field are presented, and the summation of the 

squared difference (considering all 20 items together) for METRIC is 4.9801.  For P-

METRIC is 3.4891. 

The following table summarizes the results of the experiments T-27 Tucano case 

study.  The objective is to verify which of the models (METRIC or P-METRIC) provides 

more accurate (close to real world) back order numbers.   

Table 16.  T-27 Tucano Case Study Summary 
SUM SQ DIFFERENCE % CLOSENESS LOCATION 

METRIC P-METRIC METRIC P-METRIC 
% NO DIFF 

AFA 5.9032 5.3462 40 45 15 

CATRE 4.9801 3.4891 35 55 10 

TOTAL 10.8833 8.8353 37.5 50 12.5 

 
  The table above shows the resume of the T-27 Tucano case study.  The 

summation of the squared difference of all 20 items is presented for each base, fro both 

METRIC and P-METRIC.  Additionally, the table shows the percentage of the closeness 

in which each of the models has been close to the EBO from field. 

Analysis of the Results of the T-27 Tucano case study 

 The analysis of the results of the T-27 Tucano case study is now used to help 

answer the fourth investigative question presented next. 

Investigative Question 4.  Which model would provide the most accurate (close to 

the real world) back order numbers, the proposed method or the existing models?  The 

results of the T-27 Tucano case study show that both models are not too far from the 

“real world” EBO numbers. Considering that both models sometimes underestimate and 
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sometimes overestimate backorders, the overall result on the back order estimation could 

be even lower.  The EBO estimation of METRIC and P-METRIC are close to the EBO 

from the field and close to each other.  The same can be said about the percentage of the 

times the models are close to the EBO from field.   

The analysis of both conceptual experiments and the T-27 Tucano case study is 

used to answer the research question. 

Research Question. How could a mathematical analytical model account for 

variability in Demand, TTR, and OST with respect to EBO calculations in a more 

accurate way?  After analyzing the data from both conceptual examples and the T-27 

Tucano case study this research concludes that the discussion belongs more to the 

theoretical field than to the “real world” situation.  The improvement in the EBO 

calculation in terms of the closeness to the EBO from simulation in the conceptual cases 

was diminished due to fact of both models being outside of the 95 % half-width CI in 

most of the time.  Moreover, the analysis of the T-27 Tucano case study has shown that 

both METRIC and P-METRIC are close to the EBO from the field, therefore, even in the 

conceptual experiments the proposed method has demonstrated being more accurate, the 

discussion really does not matter.  That may happen due to compensatory issues such as 

condemnation, cannibalization, lateral re-supply and other factors not tested in this 

research that, acting together, results in EBO numbers very close to the METRIC and 

also to the proposed P-METRIC. 

Therefore, the use of simulation combined with mathematical model can result in 

more accurate number for EBO calculation, but this may not be an important issue for the 

“real world” reparable inventory systems. 
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Summary 

 Chapter IV presented the results of the experimental design used to verify and 

validate the proposed method.  The results of the ten conceptual experiments were 

presented and analyzed, followed by the T-27 Tucano case study.  The analysis of both 

conceptual experiments and T-27 Tucano case study were used to answering the 

investigative question and the research question. 

 Chapter V will present the conclusions of this study and the researcher 

recommendations. 



82  
 

V. Conclusions and Recommendations  

Chapter Overview 

 This chapter presents the conclusions of this study and the recommendations of 

the researcher regarding to the matter of EBO prediction. 

Conclusions  

 The results of this study suggest that few improvements were achieved in 

attempting to model reparable inventory systems using the proposed method.  Analyzing 

the results from both conceptual examples and the T-27 Tucano case study, this research 

concludes that, except in the conceptual examples, where the proposed method showed a 

more accurate, even being outside of the 95 % half-width CI most of the time, the 

proposed method EBO results are very close to the existing METRIC models.  

Recommendations  

 Based on the results collected from the conceptual examples and the T-27 Tucano 

case study, this research suggests the following recommendations for mangers that work 

with reparable items: 

1. Be Simple.  Many issues in the “academic world” are very complex, 
however, in the real world, thanks God, compensatory forces may 
simplify them. Therefore, instead of spending effort in attempting to 
understand the individual complexity of the factors, just look at the 
overall results.  The application of this learning in the management of 
reparable items may result in the utilization of not only the existing 
models, with their restrictive assumptions, but also other methods, 
such as the heuristic approach, which is even more simple than the 
mathematical model, and it works.  
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2. Right Tool, Right Job. METRIC has demonstrated to be a good tool 
for predicting backorders for the regular reparable items.  However, in 
the cases where the complexity happen in scale affecting considerably 
the EBO prediction, and when that is a matter that should be 
considered due to amount of money involved or other critical issues, 
the use of the simulation can bring better results in terms of EBO 
prediction accuracy.  Besides the combined simulation-mathematical 
approach, this research offers three simulation models for Arena 
environmental for predicting EBO in Appendix A, B, and C. 

 
 

Further Studies 

 From the academic point of view, there are still some fields to be explored in the 

prediction of backorders.  This research recommends the following: 

1. Capacity Issues in the Reparable Items Supply Chain.  Existing models 
have ignored this issue in modeling reparable inventory systems.  
Capacity issues usually create waiting in queue time that potentially 
affects the pipeline of the item.  Simulation can identify this time and 
include it as a factor to be considered. 

 
2. Convolution of Different Distributions.  A fact observed for this 

research that could not be addressed due to scope issues was that it 
seems that the Gamma distribution used in the proposed method seems 
to work better for specific situations, which can be the resultant of 
specific distributions or simply the result of the variance of them.  
Besides, other distributions than Gamma can be tested for modeling 
the pipeline of reparable items. 

 
From the practical point of view, a good simulation model can take care of the 

EBO prediction problem, when the complexities regarding to demand, TTR and OST, as 

well as strategic issues require such control. 

Summary of the Research 

This research was an attempting of evaluating the effects of the variability in 

Demand and time parameters (TTR and OST) in EBO prediction for systems that do not 

match the assumptions of the existing mathematical models.  So far, two main 
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approaches had dealt with this issue: mathematical approach, represented by METRIC 

models that predict backorders based on restrictive assumptions about demand and time 

parameters, simplifying the problem; simulation approach, that can virtually relax all 

assumptions, but may become very complex.  The proposed method suggests the use of 

simulation combined with mathematical analytical model to better predict backorder for 

reparable inventory systems. The results from an experimental design showed some 

improvements on the EBO prediction for systems that do not match the METRIC 

assumptions, however, most of the times the proposed method EBO prediction was found 

outside of the 95 % half-width CI established as a parameter of comparison.  Moreover, 

the results of a field research that collect data from the T-27 Tucano, an advanced-

training, light-attack aircraft deployed by the BRAF have demonstrated few 

improvements in the EBO prediction when compared with the existing models.  From the 

point of view of the researcher, the major contribution of this research was the innovative 

approach given to the problem. 



 

  
 

 

Appendix A.  First Indenture Single Site (FISS) Model 
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Appendix B.  Multi Indenture Single Site (MISS) Model 
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Appendix C.  First Indenture Multi Echelon (FIME) Model 
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Appendix D.  List of Items of the T-27 Tucano Case Study 

 

STOCK LEVEL DEMAND DEPOT 
Nomenclature 

AFA CATRE PAMALS D-AFAD-CATRE TTR 

CYLINDER ASSEMBLER 7 7 0 0.03 0.04 10.38 

ATUADOR LINEAR 3 6 0 0.08 0.18 5.12 

BOMBA COMBUSTÍVEL 4 7 0 0.19 0.27 23.645 

LIGHT,RECOGNIT 2 3 0 0.09 0.16 19.32 

CONJUNTO FREIO 2 11 8 0.02 0.09 16.907 

BERÇO DO MOTOR 2 2 2 0.02 0.02 22.24 

COMPRESSOR FREON 12 12 15 0.02 0.03 25.018 

MOT JAN AR COND. 2 5 0 0.15 0.16 19.798 

POWER SUPPLY 4 10 0 0.15 0.16 12.024 

CONTACTOR MANÔM. 2 3 3 0.12 0.16 11.55 

PAINEL MULT ALARM. 2 5 0 0.02 0.02 24.38 

FONTE LUZ CALDA 0 1 0 0.07 0.13 15.998 

CILYNDER OXIG 22 54 30 0.22 0.17 24.693 

CONJ RODA TPP 1 5 0 0.02 0.24 11.202 

CUBO RODA NARI 1 2 0 0.17 0.19 15.44 

ELETRIC MOTOR 9 10 2 0.19 0.23 21.582 

PROPELLER 1 1 0 0.21 0.08 24.65 

CONJ GARRAFA 7 3 1 0.08 0.18 8.331 

METER,ELECTRIC 2 4 0 0.1 0.17 3.609 

VALVE,BLEEDER, 1 2 0 0.11 0.26 4.76 
 

Other Information: 
Demand Rate = unit per day 
Probability of Repair at Base = 0 % 
Probability of Repair at Depot = 100% 
OST AFA = 4 days 
OST CATRE = 6 days 

 



 

  
 

Appendix E.  Experimental Design 

Conceptual Experimenting Design 

s-base Factor  Demand/TBD Base TTR Depot TTR OST Exp s-dep 
0 to Tested 

Level 
Dist Mean StDev Dist Mean StDev Dist Mean StDev Dist Mean StDev 

1 3 8 Demand LV Normal 0.476 0.05 LogN 1.2 1.2 LogN 3.5 3 Gamma 1.2 1 

2 3 8 Demand HV Normal 0.476 0.135 LogN 1.2 1.2 LogN 3.5 3 Gamma 1.2 1 

3 3 8 Deamnd LV Gamma 0.476 1 LogN 1.2 1.2 LogN 3.5 3 Gamma 1.2 1 

4 3 10 Deamnd HV Gamma 0.0476 10 LogN 1.2 1.2 LogN 3.5 3 Gamma 1.2 1 

5 3 8 Deamnd LV LogN 0.476 0.5 LogN 1.2 1.2 LogN 3.5 3 Gamma 1.2 1 

6 3 8 Deamnd HV LogN 0.476 2.5 LogN 1.2 1.2 LogN 3.5 3 Gamma 1.2 1 

7 6 13 TTR/OST LV LogN 0.25 1.5 LogN 1.2 1.2 LogN 3.5 3 Gamma 1.2 1 

8 6 11 TTR/OST HV LogN 0.25 1.5 LogN 1.2 5.1 LogN 3.5 12 Gamma 0.12 10 

9 6 15 TTR/OST LV LogN 0.25 1.5 Normal 1.2 0.12 Normal 2.3 0.2 LogN 1.2 1.2 

10 6 15 TTR/OST HV LogN 0.25 1.5 Normal 1.2 0.35 Normal 2.3 0.7 LogN 1.2 4 
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