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Abstract 
The United States Air Force relies heavily on computer networks for every-day operations. The medium
access control (MAC) protocol currently used by most local area (LAN) permits a single station to access
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The retransmission time is determined with a binary exponential back-off-algorithm. Code Division
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occupy the same bandwidth simultaneously. Each signal is "spread" through multiplication with a unique
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different code families. The model introduces cross-correlation coefficients to calculate the
signal-to-interference ratio and determine channel bit error performance. Transmission media attenuation
and the near-far effects are accounted for in the model design. The model utility is demonstrated by
determining the loss characteristics of a coaxial spread spectrum network. Due to the modular design,
other transmission media characteristic can be easily incorporated. A bus network topology is simulated
using 10Base2 coaxial cable. The model is compared and validated against a spread spectrum local area
network hardware test bed. 
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Abstract

The United States Air Force relies heavily on computer networks for every-

day operations. The medium access control (MAC) protocol currently used by most

local area networks (LAN) permits a single station to access the network at a time

(e.g. CSMA/CD or Ethernet). This limits network throughput to, at most, the

maximum transmission rate of a single node with overhead neglected. Significant

delays are observed when a LAN is overloaded by multiple users attempting to access

the common medium. In CSMA/CD, collisions are detected and the data sent by

the nodes involved are delayed and retransmitted at a later time. The retransmission

time is determined with a binary exponential back-off algorithm.

Code Division Multiple Access (CDMA) is a technique that increases channel

capacity by allowing multiple signals to occupy the same bandwidth simultaneously.

Each signal is “spread” through multiplication with a unique pseudo-random code

that distinguishes it from all other signals. Upon reception, the signal of interest

is “despread” and separated from other incoming signals by multiplying it with the

same exact code. With this technique, it is possible for multiple stations to transmit

simultaneously with minimal ill effects.

A simulation model is developed for a direct sequence spread spectrum CDMA

(DS/CDMA) channel that incorporates the effects of multiple access interferers

(MAI) having spreading codes from the same or different code families. The model

introduces cross-correlation coefficients to calculate the signal-to-interference ratio

and determine channel bit error performance. Transmission media attenuation and

the near-far effects are accounted for in the model design. The model utility is

demonstrated by determining the loss characteristics of a coaxial spread spectrum

network. Due to the modular design, other transmission media characteristic can

be easily incorporated. A bus network topology is simulated using 10Base2 coaxial
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cable. The model is compared and validated against a spread spectrum local area

network hardware test bed.
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A Direct Sequence Code-Division

Multiple-Access Local Area Network Model

I. Introduction

This chapter provides an introduction to the concepts of Carrier Sense Multiple

Access with Collision Detection (CSMA/CD) and the spread spectrum technique of

Code Division Multiple Access (CDMA). It presents an overview of the problem at

hand, as well as the importance of this problem. Furthermore, it describes each

chapter of this thesis.

1.1 Background

The medium access control (MAC) protocol used by most local area networks

(LAN) permits a single station to access the network at a time (e.g. CSMA/CD

or Ethernet). This limits throughput of the network to, at most, the maximum

transmission rate of a single node with overhead neglected. If two or more nodes

transmit in the same slot a collision occurs and overall throughput decreases. A LAN

is overloaded when multiple users are attempting to access the common medium at

once and throughput drops below a certain threshold. In CSMA/CD, collisions are

detected and the data sent by the nodes involved are delayed and retransmitted at a

later time. The retransmission time is determined with a binary exponential back-off

algorithm.

CDMA is a technique that increases channel capacity by allowing multiple

signals to simultaneously occupy the same bandwidth. Each signal is “spread” by

multiplying it with a pseudo-random noise code that distinguishes it from all other

signals. At reception, the signal of interest is “despread” and separated from incom-

ing signals on the channel by multiplying it with the same exact code. With this
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technique it is possible for multiple stations to transmit simultaneously without ill

effects.

1.2 Problem and Significance

If CSMA/CD could be replaced by CDMA in existing wired LANs, collisions

could be virtually eliminated. Each user could fully utilize the maximum bandwidth

that the transmission medium supports. Much attention is being focused on incor-

porating wireless and fibre-optic LANs, but little has been paid to using CDMA in

existing infrastructures of coaxial cabling. This research demonstrates that there is

much to be gained by doing this.

CDMA allows contentionless access to the network bus. Contentionless access

eliminates the need for binary exponential back-off substantially reducing end-to-end

delay of packet transmission. Contentionless access also improves network through-

put by allowing each user full user-specific bandwidth with immediate and constant

access to network. One hundred users transmitting simultaneously at 1 Megabits per

second equates to a network throughput of 100 Mbps [SSS87]. Compared to Eth-

ernet, incorporating CDMA into a LAN reduces network end-to-end delay by 850%

in overloaded network levels [Bon01]. At the same time, network levels throughput

was increased by 250%. These are significant improvements in two very important

network performance metrics.

This research investigates the possibility of drastically improving LAN perfor-

mance Air Force wide by simply installing a spread spectrum network card into each

computer. Air Force internal communication systems would be improved tremen-

dously for minimal cost since it would not be necessary to change communication

infrastructure in any way. Information could be transferred quicker and more effi-

ciently.
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1.3 Research Goals

The goal of this research is to build on the foundation of previous studies

towards the ultimate implementation of a Direct Sequence Spread Spectrum CDMA

wired LAN over existing Ethernet LAN infrastructures. This is accomplished by

validating a simulated CDMA 10Base2 LAN against measurements of a constructed

CDMA LAN hardware test bed. Bit-error-rate performance is compared as well as

attenuation properties of 10Base2 coaxial cable.

1.4 Thesis Organization

This chapter gives a brief overview of the subject area and the basic goals

and direction of the research. Chapter 2 reviews current literature and research on

Direct Sequence Spread Spectrum, CDMA, CSMA/CD, coaxial cable properties and

previous research in the subject area. It highlights recent advances in each of these

areas. Chapter 3 presents the methodology used to accomplish this research including

the system definition, evaluation techniques and experimental design. Chapter 4

presents the results and analysis of the experiments and this research. Chapter 5

summarizes and presents conclusions of this research effort.
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II. Literature Review

This chapter presents background information about direct sequenced spread spec-

trum (DSSS) and applying that to an existing Ethernet local area network (LAN)

using RG-58 (thinnet) coaxial cable. It presents a basic discussion of network lay-

ers, specifically the data link/medium access control (MAC) layer and the physical

layer. It provides background on the specific MACs: carrier sense multiple access

with collision detection (CSMA/CD) and code division multiple access using direct

sequence spread spectrum (DS/CDMA) or (CDMA). CDMA can be further divided

into two transmission types synchronous (S/CDMA) and asynchronous (A/CDMA).

This chapter also presents previous research supporting the application of CDMA

to LANs. Finally, it discusses current application and performance analysis of these

topics.

2.1 Communication Networks

Communication networks are a valuable commodity in today’s United States

Air Force. The USAF LAN infrastructure is dominated by the Ethernet protocol over

RG-58 10BASE-2 (“thinnet”) cable due to its inexpensiveness and ability to utilize

BNC connectors that form T-junctions [Hel98]. With the advent of Fast Ethernet

(100 Megabits per second (Mbps) throughput) and Gigabit Ethernet (1 Gigabits per

second (Gbps) throughput), the 10Mbps throughput that thinnet supports is fast

becoming obsolete. However, in order to upgrade to the faster throughputs cabling

must be replaced. There is substantial cost in replacing infrastructure cabling in a

finished building. This research concentrates on improving LAN performance in way

that does not require cable replacement.

2.1.1 Open Systems Interconnection Reference Model. The International

Standards Organization provides a framework for a network. This framework is
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called the Open Systems Interconnection (OSI) reference model and describes seven

layers that define the communication process in a network (c.f., Figure 2.1).

Figure 2.1 The OSI Reference Model

Of the seven OSI layers, this research concentrates on the lower two, the data

link and physical layers. The seven layers are described below [Tan96]:

1. The physical layer consists of the electrical and physical connection between

devices. This layer specifies the cable connections and the electrical rules

necessary to transfer data between devices. It specifies characteristics like

the length of the coaxial cable, attenuation of the cable and how many and

what kind of connections are used to tap into the cable.

2. The datalink layer determines how a device gains access to the medium spec-

ified in the physical layer, e.g., coaxial cable. It also defines data formats,

including the framing of data within transmitted messages or packets, error

control procedures, and other link control activities. This layer is responsible

for the reliable delivery of information and the correcting or masking of er-

rors. It also contains the medium access control sublayer, which controls how

multiple nodes transmit over a common medium.

3. The network layer is concerned with routing data packets from source to des-

tination.
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4. The transport layer accepts data from the session layer and packages it, usually

in smaller pieces, in preparation for delivery to the network layer.

5. The session layer allows different machines to establish session between each

other. The session facilitates two-way communication. The layer is also re-

sponsible for keeping synchronization needed for long file transfers.

6. The presentation layer converts the network data to data that is compatible

with the receiving machine, i.e., converting Unicode to ASCII characters, 1’s

complement to 2’s complement integers, and so on.

7. The application layer is the layer where the data is viewed and used, such as

electronic mail, web browsers, etcetera.

2.1.2 Wired and Wireless Networks. Wireless networks are rapidly growing

in computer industry [Tan96]. The wired network, however, is still dominant in

many corporate infrastructures. Bandwidth allocations for the wireless medium

differ greatly due to the Federal Communication Commissions frequency allocations.

A given radio transmitter is allocated specific bandwidth since it shares the same

medium (air) with other transmitters. Wired networks (e.g. coaxial cable), on the

other hand, do not share their medium so the total capacity is available. Spread

spectrum CDMA is a common multiple access technique in today’s digital cellular

systems. Time and frequency division multiple access (TDMA)(FDMA) are widely

used. Spread spectrum CDMA is the predominant method for transmission and

multiple access in 3rd-generation cellular systems. Wireless LAN’s are integrating

Spread Spectrum into their physical medium but continue to operate with TDMA

MAC [IEE97].

Ethernet (or IEEE 802.3) is a very common network using the CSMA/CD

method for MAC protocol. The topologies required and segment lengths are deter-

mined by the particular medium chosen. The Ethernet protocol’s versatility allows

for its implementation on a number of network designs [IEE85].
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2.2 CSMA/CD

The CSMA/CD access protocol is derived from the slotted ALOHA system

built by the University of Hawaii [Tan96]. Ethernet is based on their efforts. The

CSMA/CD protocol is a MAC that allows every node to transmit on the medium

one at a time, essentially a time-division multiple access (TDMA) system. Each

node has dedicated time slots to access a common bus. The bus control is given

to a node that successfully transmits without any collisions. Each network node

listens to the bus for ongoing transmission. If a node has a packet to transmit, it

waits until the bus is at high impedance (no transmission) and then transmits. It is

possible for two nodes to transmit at the same time, resulting in a collision. When

this occurs, both nodes backlog their packet and attempt to retransmit at another

randomly determined time.

For Ethernet to operate at the full 10 Mbps, it is necessary for each node to

burst data onto the network at the full 10 Mbps rate, even though its own require-

ments for data transmission may amount to much less. Thus, each node must be

capable of transmitting at 10 Mbps [SpS87].

2.2.1 Broadband vs. Narrowband. Two signaling methods used by conven-

tional LANs such as Ethernet are broadband and narrowband. In broadband signal-

ing, transmission bandwidth is subdivided into smaller frequency channels creating

subchannels that allow concurrent and independent transmission of data. Narrow-

band LANs use only one channel to transmit data, so there is only one signal on

the line at time [Hel98]. Narrowband transmission occurs in a frequency range ex-

tending from 0 Hz to some maximum frequency equaling the data rate; this is called

baseband signaling, with no carrier used for up-conversion.

While broadband systems modulate the data to transmit an analog signal,

baseband can keep the signal in its original digital format. The data are sent in

the form of 1’s and 0’s in a number of different representations including return
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to zero, non-return to zero, unipolar, and bipolar. However, to eliminate the need

for a separate clock channel, the signal is further encoded using methods such as

Manchester or Differential Manchester [Tan96].

2.2.2 10Base-2. As seen in Table 2.1, the 10Base-2 cable standard has a

limitation of 185-meter segment length before a repeater must be inserted to regener-

ate the signal. On this segment there can be a maximum of 30 nodes (workstations).

The standard uses RG-58 A/U or RG-58 C/U coaxial cable. Thus, nodes can be at-

tached directly to the cable or bus using BNC barrel connectors or, more commonly,

T-connectors. The cable is routed to each workstation through a T-connector that is

attached to a BNC connector on each node’s network interface card (NIC) [Hel98].

2.2.3 Ethernet. Table 2.1 shows comparisons between different wired 802.3

network media [Hel98]. The table shows the design decisions the network designer

must make when choosing a medium for a building’s networking infrastructure. The

design factors of topology, ease of cable installation, cost, and performance are in-

cluded in this decision.

Table 2.1 Ethernet and IEEE 802.3 1-Mbps and 10-Mbps Network Characteristics
 
 

Operational 
Characteristics Ethernet 10BASE-5 10BASE-2 1BASE-5 10BASE-T 10BROAD-36 
Operating rate 
(Mbps) 

10 10 10 1 10 10 

Access protocol CSMA/CD CSMA/CD CSMA/CD CSMA/CD CSMA/CD CSMA/CD 

Type of 
signaling 

Baseband Baseband Baseband Baseband Baseband Broadband 

Data encoding Manchester Manchester Manchester Manchester Manchester Manchester 

Maximum 
segment length 
(meters) 

500 500 185 250 100 1,800 

Stations/segment 100 100 30 12/hub 12/hub 100 

Medium 50-ohm 
coaxial 
(thick) 

50-ohm 
coaxial 
(thick) 

50-ohm 
coaxial 
(thin) 

Unshielded 
twisted 
pair 

Unshielded 
twisted 
pair 

75-ohm 
coaxial 

Topology Bus Bus Bus Star Star Bus 
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2.3 Direct Sequenced Spread Spectrum CDMA

A spread spectrum system is defined as a system fulfilling the following re-

quirements [Skl88]:

1. The signal occupies a bandwidth much in excess of the minimum bandwidth

necessary to send the information.

2. Spreading is accomplished by means of a spreading signal, often called a code

signal, which is independent of the data.

3. At the receiver, “despreading” (recovering the original data) is accomplished

correlating the received signal with a synchronized replica of the spreading

signal used to spread the signal at transmission.

Specific benefits of spread spectrum systems include [Skl88]:

1. Interference suppression,

2. Energy density reduction,

3. Fine time resolution,

4. Multiple access (derived from interference suppression),

5. and Privacy.

Of these benefits, this research focuses on interference suppression and multiple ac-

cess. There are two common types of spread spectrum, direct sequence and frequency

hopping. This research focuses on DSSS. Binary Phase Shift Keying (BPSK) is the

modulation of choice for DSSS systems for reasons described in [Dix76].

The DSSS signal is composed of a data signal that is mixed with a pseudo-noise

(PN) code (also called pseudo-random sequence or code). The code is commonly

generated with a multi-stage linear feedback shift register. The feedback “taps” on

the shift register dictate the sequence and length of the sequence before it repeats. A

tap, or the output, from stage 4 in the shift register shown in Figure 2.2 is modulo-2
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added with the output of the second to last stage. Subsequent taps are modulo-2

added to the output of the previous adder on the feedback path [Skl88].
 
 
 
 

Figure 2.2 Example of a linear feedback shift register [Skl88].

The code is clocked at a faster rate that the data signal. This rate is commonly

called the chipping rate; for each bit in the code is called a chip. The faster chipping

rate spreads the frequency spectrum of the narrowband data signal after which the

spread signal is transmitted. At the receiver, the signal is despread, demodulated

then decoded [Skl88].

The despreading process begins with the synchronization of a local receiver

code with the signal. The receiver sends the signal and its spreading code to an

auto-correlator that finds a peak auto-correlation power between the two waveforms.

When the despreading code is synchronized with the signal, the original data and

data rate can be extracted when the two are mixed. Figure 2.3 shows an example

of a signal being spread, transmitted, and then despread. The information signal

x(t) is pulsed at 3 time cycles per bit and is 1001 in binary. For this example, the

code signal, g(t), is pulsed at three times this rate or one time cycle per bit. It is

represented as 111100010011 in binary. When the two signals are modulo-2 added

(mixing implementations vary) the result is x(t)g(t); this is the transmitted signal’s

bit pattern. On reception the transmitted signal is auto-correlated, synchronized

with the receiver’s code, g′(t), and the two are modulo-2 added to reproduce the

original transmitted information signal, x(t) [Skl88]. Although the signal is repre-

sented here as a bit stream, the signal is commonly transmitted as a BPSK signal.

Demodulation transforms the BPSK waveform into data bits that are then decoded.

2-7



 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

             

x(t)  1   0   0   1  

             

g(t) 1 1 1 1 0 0 0 1 0 0 1 1 

             

x(t)g(t) 0 0 0 1 0 0 0 1 0 1 0 0 

             

             

g'(t) 1 1 1 1 0 0 0 1 0 0 1 1 

             

x(t)  1   0   0   1  

Figure 2.3 Example of signal, x(t), being spread by code waveform, g(t), and then
despread.

Multiple access is achieved by choosing distinct spreading codes that have low

cross-correlation. That is, if any two codes in the same code family are convolved,

the resulting value of the convolution is very low. A code family is a set of code

sequences that are produced from the same implementation (e.g., maximal length

sequences and Gold codes). When multiple signals are simultaneously transmitted

with different codes of a code family, their transmitted power is superimposed on

the medium. A receiver wishing to receive a specific code takes the composite signal

and correlates it with the desired code. When it has synchronized by detecting a

correlation peak, the receiver applies the spreading code and recovers the information

signal. Other signals present on the medium will be, in effect, spread even more

by this process and their interfering power reduced. This describes the interference

suppression attribute of spread spectrum systems. The code sequences should possess

the following [SSS87]:

1. Low sidelobe autocorrelation functions (ACF) to permit error free signal ac-

quisition.

2. Low cross-correlation coefficients to maximize the number of simultaneous

users by minimizing the cross code interference.
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3. Linear spreading function to achieve good spectral spreading.

4. Membership of a large family to provide a large number of orthogonal (or near

orthogonal) codes.

Figure 2.4 shows multiple users being added to a channel by mixing their signal

with their specific code. Note that noise is also introduced to the integrated signal. 
 
 
 

 
 
 
 
 
Matched 

Filter 
Bank 

User1, x1(t) 

User2, x2(t) 

User3, x3(t) 

UserK, xK(t) 

Noise 

User1, x1(t) 

User2, x2(t) 

User3, x3(t) 

UserK, xK(t) 

g1(t) 

g2(t) 

gK(t) 

g3(t) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Figure 2.4 Diagram of multiple users signal summation with noise.

2.4 Previous Research

The most recent research involved a DS/CDMA MAC over a bus connected

LAN is [Bon01]. Bonner conducted a performance analysis between a CSMA/CD

LAN and a DS/CDMA LAN and found that in a heavily loaded system overall

throughput was much greater in the DS/CDMA LAN. Details of his research are

discussed below. Earlier research in this area began in 1983 by Smythe and Spracklen.

They built an entire DS/CDMA LAN system for the British Royal Navy [Smy85]

[SSS87]. The recent literature will be discussed first.

2.4.1 Performance Analysis of DS/CDMA vs. CSMA/CD LANs. Bonner

demonstrated that a DS/CDMA LAN impressively outperformed a conventional

CSMA/CD LAN [Bon01]. Figure 2.5 shows comparative results in terms of (a)mean

throughput, (b)mean delay and (c)mean network power. Power is defined as the

ratio of throughput to response time [Jai91].
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Figure 2.5 Comparison graphs between CSMA/CD and DS/CDMA.

The graphs of Figure 2.5 show that, for a network loading level of 400%, mean

throughput and end-to-end (ETE) delay improve by 250% and 850%, respectively.

Figure 2.6 shows a capacity analysis in terms of the bit error rate (BER) vs. number

of users (stations) transmitting at the same time. These data were found using

analytical methods and simulation for a code length of 31 bits. Assuming perfect

power control and a code of length 512, up to 98 users could simultaneously transmit

on a bus before the signal-to-noise ratio drops to inadequate reception levels, defined

as 10−4 bit error rates.

Figure 2.6 show the simulation data compared with Gaussian and improved

Gaussian approximations for multiple access probability of bit error or bit error rate,

Pe. The Gaussian approximation for Pe is [LeP87]

Pe = Q

(
k − 1

3N
+

N0

2Eb

)− 1
2

(2.1)

where k is the number of simultaneous transmitters, N is the code length, N0 is the

noise power spectral density, and Eb is the energy per bit.
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Figure 2.6 Capacity analysis of DS/CDMA in regards to BER and with code se-
quence length equal to 31. [Bon01]

The improved Gaussian approximation for multiple access Pe assuming perfect

power control is [Hol92]

Pe =




2
3

[
Q

(
k−1
3N

+ N0

2Eb

)− 1
2

]

+1
6
Q

[(
(k−1)(N

3 )+
√

3σ

N2 + N0

2Eb

)− 1
2

]

+1
6
Q

[(
(k−1)(N

3 )−
√

3σ

N2 + N0

2Eb

)− 1
2

]




(2.2)

where

σ2 = (k − 1)

[
23N2

360
+

(
1

20
+

k − 2

36

)
(N − 1)

]
(2.3)

Other research analyzes a bipolar synchronous CDMA system’s performance

using a more generic term, processing gain, often denoted as M or Gp, as the inde-
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pendent variable rather than code lengths. where performance is based on the code

family. Pe for this system is [KVM93]

Pe = Q




√
M

K − 1


 (2.4)

where, K, is the number of simultaneous users and Q(x) is the complementary error

function and defined as [KVM93]

Q(x) =
1√
2π

∫ ∞

x
exp

(
−u2

2

)
du (2.5)

The processing gain, M , is defined as [Skl88]

M =
Rc

Rd

=
Td

Tc

(2.6)

where Rc is the chip rate, Rd the data rate, Tc, chip duration, Td the bit duration.

[KVM93] demonstrates that for a Pe of 10−5 a processing gain of 200 is required

for the network to accommodate 12 concurrent users. Adding white Gaussian noise

to (2.4) will produce the performance in Figure 2.7. These results are much more

pessimistic than [Bon01] results in Figure 2.6.
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Figure 2.7 Capacity analysis of S/CDMA system [KVM93]
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2.5 “Spreadnet”

In the early 1980’s, a CDMA wired LAN was built for the United Kingdom

Royal Navy named Spreadnet. Among the researchers involved were Spracklen and

Smythe who wrote a number of papers ranging from 1983 to 1990 recording their

progress and documenting lessons learned from this effort. This section presents the

system they built and give an overview of their findings [Smy85] [SSS87] [SpS87]

[MSS89] [MSS90].

Figure 2.8 shows a block diagram of the NIC used to implement a node’s inter-

face to Spreadnet. A workstation contains three components, the Spreadnet Interface
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Figure 2.8 Spreadnet Network Interface Block Diagram

Logic (SIL), the Spread Spectrum Node Controller (SSNC) and the Spread Spec-

trum Asynchronous Receiver and Transmitter (SSART). The last two component

form the Spreadnet Node Logic (SNL) [SSS87].

The SIL interfaces the network interface to specific devices enabling them to

transmit on the LAN. The SNL module was designed in two sections so that the

node could process incoming traffic in parallel while maintaining a flexible inter-

face. The SSNC is responsible for control of the individual nodes and the overall

network management, including the distribution of the codes, reconfiguration of the

LAN and the logical to physical mapping of user requests to SSART availability.

The SSART performs the physical transmission and reception including error de-
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tection and correction and correlation and despreading. The arrangement shown in

Figure 2.8 allows single or multiple devices, operating in parallel, to communicate

with other workstations with unrestricted access to the channel [SSS87].

The DSSS signal is transmitted at baseband and is a digital signal generated

from the modulo-2 addition of the PN code and a single data bit. The network has

the following properties:

1. Contention-Free Access Mechanism.

2. Transparent Node Addition — Nodes can be added without affecting overall

network performance.

3. Decentralization — there is no single point of failure.

4. High Throughput — if one hundred nodes transmit at 1 Mbps then the total

throughput is 100 Mbps.

5. Network Resilience — due to the interference suppression attribute of spread

spectrum, the network is resilient to many conventionally damaging events

(i.e., failure of a single node, burst errors, or noise addition.

The Spreadnet system employs dynamic code allocation, which compensates

for the fluctuation of the number active nodes on the network. Assuming a constant

chipping rate, if more nodes are transmitting, the system will switch to longer PN

codes to allow more users to access system, thereby slowing the data rate. When

fewer nodes are transmitting, there is less interference and a shorter PN code can be

used, thereby increasing the data rate. The system has implicit and explicit security

built into it. The implicit security comes from the secure nature of spread spectrum

discussed earlier. One must know the individual spreading code to tamper with the

transmitted information. The explicit security is the dynamic allocation of spreading

codes. When two nodes wish to communicate, the initiator uses the Rivest-Shamir-

Adleman (RSA) public key cryptographic algorithm [RSA78] to communicate the

PN sequence to be used for the transmissions. Authentication is accomplished using
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this method also. A Data Encryption Standard (DES) key is transmitted with

RSA and the rest of the communications are encrypted with DES [DES]. These

management functions are accomplished on a separate channel to avoid interfering

with data traffic.

No detailed performance analysis of the Spreadnet system was found. Spracklen

and Smythe went on to develop fibre-optic topologies that would allow DS/CDMA

operations [MSS89] [MSS90].

2.6 Physical Layer Performance

This section discusses the performance aspects of the physical layer as de-

scribed in the OSI reference model. It presents statistics on the RG-58 coaxial cable

(thinnet), reviews an experiment comparing synchronous and asynchronous CDMA

and addresses CDMA applications in data over cable service interface specifications

(DOCSIS).

2.6.1 RG-58 Coaxial Cable. The physical characteristics of coaxial cable,

specifically its attenuation properties, can impact the BER performance of a network.

Attenuation is signal power loss along the length of a cable. As the signal travels

through the cable, a portion of the signal power is converted to heat and a portion

leaks through the outer conductor of the cable. Less attenuation is experienced as

the size of the cable is increased. Another source of signal loss is signal reflection

caused by unmatched impedance along the transmission line [Tim01].

Table 2.2 contains characteristics for the RG-58 coaxial cable currently used

in 10Base-2 networks [Tim01].

A coaxial cable power loss equation is [Tim01]

A =
0.4343

Zo ·D
[

D

d · ks

+ Fbd
]
·
√

FMHz +
2.78 · df · FMHz

Vp

. (2.7)
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Table 2.2 RG-58 A/U or C/U characteristics.
 
 
 

RG-58 Data 
Impedance 50 Ohms 
Attenuation – dB/100 ft  

10 MHz 1.416dB 
100 MHz 4.566 dB 
400 MHz 9.384 dB 
1000 MHz 15.3 dB 

Frequency Range 0 – 4 GHz nominally 
Velocity ratio  .67 (2/3 speed of light) 
Impedance 50 Ohms 
Resistive loss constant 0.444 
Dielectric loss constant 0.00126 

Table 2.3 describes the variables in (2.7). The equation can be simplified so the

Table 2.3 Coaxial cable loss equation legend
A Attenuation in dB/100 feet
Zo Impedance (ohms)
D Dielectric diameter (inches)
ks 1.0 for solid center conductor

0.939 for 7 strand center conductor
0.97 for 19 strand center conductor

Fbd Braid factor
df Dissipation factor
Vp Velocity of propagation (%)

FMHz Frequency (MHz)

coefficients of frequency are reduced to constants, k1, the resistive loss constant, and

k2, the dielectric loss constant, specific for individual types of cable. This is shown

in (2.8). Although the equation plots a near linear response to frequency, the actual

attenuation in a cable for a given frequency varies with random and periodic cable

impedance variations [Tim01].

A = k1

√
FMHz + k2 · FMHz (2.8)

2.6.2 Near-Far Effect. Attenuation introduces the topic of the near-far

effect. If Node A in a network is transmitting to a receiver, Node C, at a far distance,

the path-loss reduces the received power. If Node B in the network is much closer

to the Node C and transmitting with adequate power on the same channel, Node
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B could cause enough interference to dominate the channel and drown the signal

from Node A. In a spread spectrum system, the signal of interest’s (SOI) power is

multiplied by the processing gain of the system while the interference is reduced by

the cross correlation value. This helps reduce the effect of path loss, but when the

SOI is much further away than an interfering node, the interfering node appears

as a wideband jammer and the far out SOI is never received. The near-far effect

is overcome in digital cellular applications by stringent power control algorithms.

However, in the digital cellular application there is a single point of reception, the

cell tower [PZB95]. This is not so in a LAN. In a LAN there are multiple points of

reception and transmission. Figure 2.9 illustrates this example.

 
Node A 

 
Node C 

 
Node B 

Message A
���

 

Message B
�

X 

Network Medium 

Figure 2.9 Near-Far effect illustration.

One could apply the above example directly to a RG-58 bus network with

characteristics of Table 2.2. Suppose Node A was 200 feet away from Node C in

Figure 2.9, while Node B was only 100 feet from Node C and both were transmitting

at 1 GHz with 40 dB power. Node A’s signal reaches Node C with 9.4 dB power,

while Node B’s reaches Node C with 24.7 dB power. Depending on the CDMA

characteristics of the system, Node B’s power could prevent acceptable reception of

Node A’s message.

2.6.3 Synchronous vs. Asynchronous CDMA. Most literature addresses

CDMA over fiber-optic local area networks as opposed to a coaxial cable LAN. Opti-

cal detection systems can only accommodate unipolar signaling as opposed to bipolar

signaling in electrical detectors. In [KPP91], an analysis is provided comparing syn-

chronous CDMA (S/CDMA) and asynchronous CDMA (A/CDMA) for a fibre-optic
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LAN using a pseudo-orthogonal code sequence that would accommodate optical re-

ceivers. Code sequences were generated using prime-length sequences of length P ,

with sequence length N = P 2. One can increase the number of users with S/CDMA

by using time-shifted versions of these CDMA code sequences. For A/CDMA the

codes must be chosen so that different code phases have a low cross correlation.

With S/CDMA one can use this to create more codes with low cross-correlation in a

synchronized system. With this code sequence, [KPP91] shows that using S/CDMA

the maximum number of subscribers to a system can reach P 2 and the maximum

number of simultaneous users, K, can exceed the number of codes, P , and maintain

an adequate BER. A subscriber is a node that is connected to the LAN, while a user

is a node that is transmitting. In fact, as N increases, it is possible to obtain more

users, K > P and keep a constant BER.

Compared to A/CDMA, S/CDMA provides the following advantages: the sys-

tem can handle P 2 subscribers as opposed to A/CDMA P subscribers; S/CDMA can

accommodate P − 1 simultaneous users without error, while A/CDMA accommo-

dates less than P −1 with higher probability for errors (In this code family example,

P = 31, results K = 23 with a BER of 10−9); and S/CDMA has better performance

than A/CDMA as P increases. A Gaussian approximation for the probability of a

bit error, Pe|G, using S/CDMA is [KPP91]:

Pe|G = Φ

( −P√
K − 1

)
. (2.9)

For A/CDMA the approximation is

Pe|G = Φ


 −P√

1.16(K − 1)


 (2.10)

where, Φ, is the unit normal cumulative distribution function [KPP91].
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2.6.4 DOCSIS Cable Modems. Spread spectrum techniques described

above have been implemented in DOCSIS cable modems in recent years. Terayon

Communication Systems has applied this advanced physical layer scheme to up-

stream transmissions of cable users. They have chosen to use a synchronous varia-

tion of CDMA, S/CDMA. They claim that using a synchronized system eliminates

interference between codes so more users can be supported by the system. Cer-

tain code sequences exist that are completely orthogonal when synchronized. As

a result of this orthogonal code set, the cross-correlation between codes is reduced

to zero which eliminates interference between codes. Terayon has implemented a

backwards-compatible system that allows for CDMA as well as time-division multi-

ple access (TDMA) operation [GRP00].

S/CDMA attempts to eliminate cross-correlation noise that results when using

asynchronous CDMA. Multiple waveforms of asynchronously transmitted codes are

not aligned or in any desired phase. When each signal is added to the medium,

the interference level is raised and capacity is reduced. Codes for asynchronous

transmission are chosen to have correlation parameters that are low for any given

phase of the code. In S/CDMA, the chips are aligned and the desired phase is

captured so that the best possible cross-correlation is achieved. Codes that have a

low correlation parameter for a specific phase of the code are chosen for synchronous

transmission [MSS90]. This technology allows S/CDMA cable modems to operate

below 20 MHz, a region that is off-limits to conventional cable modems due to high

noise. It also provides 14 Mbps two-way communication [Rak97].

2.7 Summary

This chapter discusses the present state of communication networks and the

OSI layers of networking. A brief review of spread spectrum communications was

presented and the concept of using DS/CDMA in the medium access control layer

of a local area network was introduced. Prior research in this area was identified.
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It presented an understanding of important concepts necessary to consider when

implementing a DS/CDMA LAN over a wired network such as the near-far effect

and the ability to use S/CDMA transmission in order to lower cross-correlation

coefficients and increase capacity in a multi-transmitter environment.
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III. Methodology

3.1 Introduction

This chapter presents the methodology of the experiments for this research. It

presents the problem, states the research goals, defines the system under test and the

significant parameters of the system. It defines a simulated local area network and

a hardware test bed implementation used to validate the LAN. It also presents the

experiments that are conducted and the factors that are varied for each experiment.

3.2 Problem Definition

A characteristic inherent in spread spectrum (SS) systems is the bandwidth

used for SS transmission is much greater than the minimum required for data trans-

mission [Skl88]. The multiple access properties of DSSS, when used in a high traffic

volume LAN environment, allow DS/CDMA to perform spectacularly since high

overall throughput can be obtained as well as low ETE delay [Bon01]. In order

to attain comparable data rates, even in a high volume traffic environment, much

higher frequencies must be used to sustain long PN codes and high chipping rates

with equivalent data rates and achieve low cross-correlation coefficients and high

processing gain, respectively. Therefore, in order to accurately model a DS/CDMA

LAN, one must consider the undesirable effects of transmitting these higher frequen-

cies over coaxial cable. As shown in the previous chapter, the signal propagation

properties of the RG-58 coaxial cable quickly degrade at higher frequencies. The

degradation of signal power over variable distances causes a number of problems

when implementing such a system as a wired DS/CDMA LAN over a lossy medium.

These include the near-far effect and higher bit error rates.

Prior research did not validate the bit error performance of the DS/CDMA

model with analytic or real system data due to the absence of a wired LAN im-

plementation of DS/CDMA [Bon01]. In order for further research to conduct valid
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capacity analysis on this model, the multiple access interference equations in the

model must be incorporated and validated.

3.3 Research Goals

The goals of this research are as follows:

1. To implement a complete model of a DS/CDMA LAN using bus transceiver

pipeline from a network simulation tool for future bus architecture analysis.

2. To include 10Base-2 coaxial cable attenuation properties in the model and

validate them with hardware measurements.

3. To validate the multiple access interference calculations of the model with BER

measurements of a test bed implementation of a DS/CDMA LAN.

3.4 Approach

An American Microsystems Incorporated (AMI) Waveplex spread spectrum

transmitter and receiver development board [Wav98] is used to test and measure the

parameters, factors and metrics listed herein. The board is included in a CDMA

LAN test bed configuration. The measurements obtained are used to validate the

outputs of a system modeled with the OPNET V8.0.B network modeling software

package [MIL97]. The OPNET model models a variably sized DS/CDMA LAN over

10Base-2 coaxial cable.

3.5 System Boundaries

The focus of this research is on the MAC sublayer and the physical layer

of the OSI network model. The system includes multiple stations simultaneously

transmitting and receiving over a common 10base-2 coaxial cable bus as shown in

Figure 3.1. However, the represented system is simplified by a system including a

single receiver and two transmitters shown in Figure 3.2. One transmitter is the
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10Base-2 Bus 

Data Data Data 

�
 

�
 

�
 

Represented DS/CDM A LAN System 

Figure 3.1 Represented system under test.

signal of interest while the other simulates multiple access interference. The receiver

acquires data from the signal of interest.

10Base-2 Bus 

Data 
(Signal of Interest) 

Multiple Access 
Interference 

Data 

Simplified DS/CDM A LAN System 

Figure 3.2 Simplified system under test.

The DS/CDMA modeled system includes the following characteristics:

• Each station taps a single bus channel,

• The only interference noise on the network is due to other transmissions,

• Pass band transmission,

• Imperfect power control and

• Perfect synchronization

The system does not include the computer node characteristics, such as pro-

cessor speed, memory, and disk space. It does not include any functional unit above

the MAC sublayer.
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3.6 System Services and Possible Outcomes

The described system provides communication between multiple stations con-

nected to a common bus topology. The system allows any node to simultaneously and

immediately access the bus in order to transmit data. Once the data is transmitted,

there are three possible outcomes:

1. The bits arrive correctly,

2. The bits arrive with errors,

3. The bits do not arrive at all.

3.7 Performance Metrics

The metrics used to compare the simulation model to the test bed measure-

ments are the bit error rate (BER) and cable attenuation. The metrics and the

method of obtaining them are presented separately for the simulation model and the

test bed.

3.7.1 Simulation Metrics. This section describes the BER metric and its

calculation in the simulation model. The BER is defined in BPSK systems as [Skl88]

Pb = Q(
√

2Eb/No) (3.1)

where Q(x) is the complementary error function. The complementary function is

Q(x) =
1√
2π

∫ ∞

x
exp

(
−u2

2

)
du (3.2)

where u is the variable of integration. It can be approximated as [BoS79]

Q(x) ∼= 1√
2π

· 1√
1 + x2

exp

(
−x2

2

)
for x ≥ 0. (3.3)
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The BER metric takes into account the received bit energy to noise level,

Eb/N0. The metric describes the quality of signal received in a manner describing

the rate at which bits are received in error.

The OPNET model accounts for band pass signaling. The BER can be derived

by the calculated signal-to-noise ratio (SNR), or S
N

, at the receiver by first finding

the equivalent Eb/N0 and substituting into (3.3). Eb/N0 is defined in terms of SNR

as [Skl88]

Eb

No

=
S

N

(
W

R

)
(3.4)

where W is the receiver’s filter bandwidth, and R is the data rate. A 3dB half-power

filter is assumed for the test bed receiver. Calculating the 3dB area under the unit

sinc2(x) function results in a W
R

ratio of 0.88 This research approximates this ratio

by one. This calculation is shown in Appendix D. Thus, for this research, Eb/N0

approximately equals SNR. This relationship is verified in Chapter IV by comparing

the BER curve created by varied transmission power in OPNET and the known BER

curve for BPSK coherent signaling given by (3.1).

Another metric used in the experiments is the power attenuation, A, from

transmitter to receiver in any given pair of nodes. Attenuation is calculated in the

simulation model with the coaxial loss equation given in Chapter II.

3.7.2 Test Bed Metrics. This section presents the metrics described above

an the method of obtaining them from the test bed. The measured BER is

BER =
Total Number of Bit Errors

Total Number of Bits Transmitted
(3.5)

where bit errors are determined by comparing bits sent and bits received.
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Attenuation is measured in terms of transmitted power, Pt, and received power,

Pr, as

A = Pt − Pr (dB). (3.6)

3.8 System Parameters

3.8.1 System Parameters. The system parameters of interest are:

• Cable length

• Multiple Access Interference (MAI) power

• Cable attenuation (dB/100 ft)

• Cable type: RG-58 A/U (10base-2, “thinnet”) coaxial cable

• Signal of Interest (SOI) Transmit power

• Transmitted null-to-null bandwidth (BWN−N)

• Modulation: Binary Phase Shift Keying (BPSK)

• Chipping rate, Rc: 3.05, 5.81, 21.3 MHz

• Data rate, Rd: 250 Kbps, measured from board.

• Code length: 31 bits

• Code family: maximal length sequences

The transmitted power over the 3dB bandwidth is recorded from the two trans-

mitters for input into the OPNET model simulation. The transmitted power of the

interference to the system is a factor. Its levels are listed below in section 3.9. The

Waveplex SS board transmits 15.71 milliwatts in the 3dB bandwidth.

Test Bed specific parameters are:

• ASCII file size, 2049 characters. This value was limited by the performance of

the Waveplex SS board as described in Appendix B.
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• Shift register taps for PN generation: Taps 5,4,2,1 are selected for the PN

generator for the interference source, while the spread spectrum board uses

taps 5,2.

3.9 Factors

This section describes the factors that are to be varied to compare performance

between the test bed measurements and the simulation model. The test bed factors

and the simulation model are presented separately for clarity of discussion.

3.9.1 Test Bed Factors.

• Interference. Spread spectrum interference is introduced by a BPSK PN se-

quence generator mixed with a 4.99 MHz signal at a constant power. The

power is then attenuated with a decibel step attenuator to produce the power

levels listed in Table 3.1. The levels are described as the amount of attenuation

in dB of the mixed interference signal from the raw mixed interference signal

(no attenuation).

Table 3.1 Transmitted power levels of multiple access inteference (assuming no
loss)

Factor 3dB Bandwidth Power Level (W)
Raw Mixed Interference Signal 0.08354

-4dB 0.03013
-5dB 0.02357
-6dB 0.01836

The power values were calculated in Watts using Parseval’s theorem for a real-

valued periodic signal, [Hay83]:

Px =
1

T0

∫ T0/2

−T0/2
x2(t)dt =

∞∑

−∞
|cn|2 (3.7)

where the cn terms are the complex Fourier series coefficients, or the voltage of

each frequency in the spectrum. The power levels were calculated by summing
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the square of each voltage in the signal spectrum found with the HP8568B

spectrum analyzer. The power levels represent the transmitted power within

the signal’s 3dB bandwidth. The 3dB bandwidth is chosen to represent the

signal strength since it contains most of the signal energy [AMI43].

The -6dB Interference power level, 18.36 mW, when compared to the trans-

mitted power of the Waveplex board, 15.71 mW, provides slightly more power

than needed to simulate one additional user on the bus. Likewise, the -4dB

interference power level, 30.13 mW, permits the approximation of two multiple

access interferers. These factors were chosen to allow a range of BERs to com-

pare with the OPNET model simulation. Any increase in interference power

from the -4dB attenuation level caused immediate loss of synchronization.

• Cable length. Three lengths of cable are chosen to test attenuation with a DSSS

signal - 50, 100, 194 feet. Smaller lengths of cable are used for connections

between mixer and step attenuator. These cables are between two and three

feet and are ignored in analysis.

• The chipping rate, Rc, was chosen as 3.05 MHz and 5.81 MHz (c.f., Appendix D

for 21.3 MHz chip rate). We used chipping rates the Waveplex SS board

supported.

Since (3.8) describes BWN−N dependency on the chipping rate (Rc), the BWN−N is

also varied accordingly.

BWN−N = 2 ·Rc (3.8)

A summary list of factors and their levels for each experiment is shown in

Table 3.2.

3.9.2 Simulation Model Factors. This section restates the factors men-

tioned above as inputted into the OPNET model.

• MAI power. The MAI power levels are given in Watts in Table 3.1.
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Table 3.2 Summary of experiments and related factors.
Interference Power Cable Length Chipping Rate

50ft 3.05 MHz
Experiment 1 0 100ft 5.81 MHz

194ft 21.3 MHz
4dB

Experiment 2 5dB 0ft 5.81 MHz
6dB

• Peak power response. It was found that the chipping rates given above pro-

duced primary lobe and secondary lobe peak power responses at varied fre-

quencies. These frequencies were used for attenuation comparison. They are

3.99 MHz, 5.1 MHz, 9.391 MHz, 13.69 MHz

• Cable length. The cable lengths used in the model were 50 feet, 100 feet and

194 feet.

3.10 Evaluation Technique

We used measurement and simulation. The system is the simulation model,

test bed and cable measurements were used to validate the system.

3.11 Workload

The experiments require a very basic workload. Since the system boundaries

concentrate on the physical layer, the frequency and sustainment of the workload

submitted to the system is insignificant. As long as the transmitters are transmitting

data constantly and simultaneously on the common bus, the appropriate metrics can

be collected.

3.11.1 Simulation Model Workload. In the OPNET model, simple sources

were modeled that provided each transmitter with constant data flow.
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3.11.2 Test Bed Workload. The Waveplex spread spectrum board test

bed workload is submitted through a terminal emulator interface to the on-board

micro-controller chip, which, in turn, submits the data to the on-board transmitter

for transmission. The terminal settings used are listed in Table 3.3. An ASCII

file was created and repeatedly sent through the terminal to simulate constant data

transmission. Non-printable characters are displayed in their hexadecimal form.

Table 3.3 Hyperaccess Terminal Settings
Bits per second 57600
Data bits 8
Parity None
Stop bits 1
Flow control None

3.12 Experimental Design

3.12.1 Simulation Model design. The initial OPNET model for a DS/CDMA

LAN existed from prior research [Bon01]. This research added coaxial attenuation

properties and removed perfect power control assumptions from the system in or-

der to validate it against the test bed. This research also modified the model to

incorporate a bus architecture rather than a simulated bus with wireless (radio)

transmission. Several properties of the OPNET radio model were needed in the bus

model, including multiple channels and interference calculations that are not in the

default bus model. Thus, the 14 stage OPNET radio model was condensed into

the six stage bus model. An in-depth explanation of the OPNET pipeline stages is

presented in Appendix C. Highlights of the modifications are presented here.

3.12.1.1 Attenuation. Stage 2 of the DS/CDMA bus pipeline model

calculates the propagation delay as well as the power presented to the receiver prior

to any interference. Perfect power control is negated by including the coaxial loss

(2.8) into this stage. The cable attenuation is a function of the frequency of the

transmitted signal. The center frequency is chosen to approximate the received
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spectrum’s attenuation since most of the signal power is transmitted on either side

of the center frequency.

3.12.1.2 SNR, BER, and Error Allocation. Unlike the radio pipeline,

which has three repeating stages that tracks collisions and multiple access interferers,

the bus pipeline only has one repeating stage for this. Thus, sections of SNR, BER

and error allocation code were replicated and placed in various pipeline stages to

emulate OPNET’s radio model calculations of the same name. Details of OPNET’s

transceiver bus and radio pipeline stages are presented in Appendix C.

Figure 3.3 shows the process for SNR, BER and error allocation for the bus

transceiver pipeline.
 
 
 
 
 
 
 
 

“Previous” Valid Packet 

 

SNR 

BER 

ERR 

Packet Segment 

BER 

ERR 

BER 

ERR 

BER 

ERR 

SNR SNR SNR 

Propagation 
Delay and 

Power Stage 

Interference 
Stage 

Scheduled 
End of 

Interference 
Event 

Interference 
Stage 

BER/Error 
Stage 

“Arriving” Noise Packets 

Figure 3.3 Segmentation of Packets for SNR, BER, and Error Allocation Book-
keeping

The Propagation Delay and Power Stage is the last stage called by OPNET’s

kernel before transmission begins. In this stage, the initial SNR (i.e., ambient noise)

for a valid packet is calculated. The Interference Stage is called at the beginning of

reception for each new packet present on the bus. It calculates the BER, allocates

errors (ERR) for the preceding valid packet segment, increments the accumulated

noise variable for the valid packet and calculates the SNR for the next valid packet
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segment. The Scheduled End of Interference Event is only scheduled when there is

a noise packet that has an end of reception time less than the valid packet’s end of

reception time. It performs the same bookkeeping functions as the Interference Stage

except that the accumulated noise variable is decremented because the interfering

packet has completed reception. The Interference Stage and the Scheduled End of

Interference Event are called repetitively for as many interfering transmissions that

meet the criteria at the beginning and end of the interfering packet, respectively.

3.12.1.3 Multiple Access Interference. The accumulated noise calcu-

lations are a combination of ambient noise, jamming and multiple access interference.

The SNR effectively determines the bit error rate for the system where the signal

is attenuated by different noise or interfering sources. The following derivation for

the final SNR calculation used in the model accommodates each interference source

[Bon01]. In a DSSS BPSK spread spectrum system, the SNR of a signal having

average power, S, in an additive white Gaussian noise channel and average noise

power, N , is

SNRDespread =
S ′

N ′ = GP · (SNR) = GP ·
(

S

N

)
, (3.9)

where the primes indicate the spread signal power transmitted and GP is the pro-

cessing gain. The next type of interference is multiple access interference (MAI) from

another DSSS transmission spreading its data with a code from the same family as

the SOI. The cross-correlation coefficient, zij, is [Skl88]

zij =
number of digit agreements − number of digit disagreements

total number of digits
(3.10)

where the numerator is called the cross-correlation number and i and j are different

phases of the code.
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The code family used in this research is maximal length sequences. The 31 bit

m-sequences used have a maximum cross-correlation number of 9 [AMI43]. Thus,

this code family has a maximum cross-correlation coefficient of zmax = 0.29. The

SNR due to MAI or SNRM can be calculated as

SNRM =
S ′

M ′ = α ·GP · S

M
. (3.11)

where, α, is a scaling value with some relation to the cross-correlation coefficient of

the M-sequences used and represents an expected value of all code phases. All other

types of interference are “jamming” sources, J(t). The signal-to-jamming ratio is

SNRJ =
S ′

J ′
= GPJ · S

J
. (3.12)

Combining the three types of SNR together yields a signal that is attenuated

by the sum of each interference called a signal-to-interference ratio (SIR):

SIR =
S ′

M ′ + J ′ + N ′ . (3.13)

Substituting (3.9), (3.11) with the α value, and (3.12) into (3.13) yields:

SIR =
(GP )S

N +
(

GP
GPJ

)
J + (α(GP ))M

. (3.14)

The GP
GPJ

term or spreading gain is assumed to be approximately equal to one

for wideband interference [PZB95]. The experiments that follow do not include any

“jamming” sources, but the calculations are included in the model for completeness.

Using the previous assumption, rearranging and generalizing (3.14) gives

SIR =
Si

1
GP

(
N +

r∑
p=1

Jp

)
+

t∑
q=1

αqMq

(3.15)
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where Si is the transmitted power of the SOI, r is the number of jammers and t is

the number of MAIs. It is clear that GP is the key factor in reducing interference

caused by ambient noise and jammer interference, while the cross-correlation value,

α, is key in reducing the effect of MAI on the SNR of the signal of interest. The

second experiment described below validates the use of the cross-correlation value

in the multiple access portion of this equation.

3.12.1.4 Model Setup for Experiment. The configuration for the

modeled system is shown in Figure 3.4. The MAI is set up as three separate stations.

The 6 dB station is turned on first since it is the lowest power setting. At this point,

the total MAI equals the 6 dB level in Table 3.1. The MAI power is increased to the

5 dB level by “turning on” the 5 dB transmitter. The transmitter’s power is set so

that the addition of the transmission results in the 5 dB MAI level. Finally, the 4

dB station is “turned on” for the last MAI power setting. This was done to further

verify that the model properly accounted for multiple transmitters.

3.12.2 CDMA LAN Test Bed. This section describes the test bed system

characteristics and the setup of the test bed.

3.12.2.1 Test Bed Characteristics. The DS/CDMA development

board test bed configuration includes the following characteristics:

• The transmitters and receiver tap a single bus channel,

• Noise on the channel includes all sources,

• Pass band transmission,

• Imperfect power control and

• Imperfect synchronization.
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Figure 3.4 OPNET model configuration for experiment 2.

The method of analyzing data from the test bed alleviates non-uniformity of

transmission sizes caused by imperfect synchronization. The method is discussed

below in experiments.

3.12.2.2 Test Bed Setup. The Waveplex board is setup in loop back

mode so it receives the data it transmits. The Waveplex SS board transmission is

the SOI. The only other transmitting source in the setup is the interference source.

It transmits its null data onto the bus with a spreading code that is in the same

code family, but is not the PN sequence which the receiver is using to despread

data. Both sources use 31-bit maximal length sequences. The SOI is spread with a
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sequence created by shift register taps 5 and 2 while the interference uses taps 5,4,2,

and 1. Figure 3.5 shows the DS/CDMA test bed hardware setup. 
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Figure 3.5 Hardware setup of DS/CDMA LAN test bed for experiment 2.

The interference source is created with the four components enclosed in the

dashed box. The 31-bit maximal length sequence with taps 5,4,2,1 is constructed

by the PN generator set to BPSK modulation. The generator’s chipping rate is

externally clocked by a square generator clocked at 6.4 MHz. The baseband SS

signal is up-converted to 4.99 MHz via a Hewlett Packard function generator clocked

at 4.99 MHz and a mixer. The HP 8645A agile function generator’s power was

set to -11.0 dB. The AMI SS board is setup to transmit a 4.99 MHz intermediate

frequency (IF). The sine wave generator is capable of varying its signal power which

could vary the resultant mixed signal. However, since a mixer is a non-linear device,

this would create inaccurate output power levels. Thus, a step attenuator, which

is a linear device, is used. The attenuated interference source is combined with

the SOI from the Waveplex SS board via a voltage divider/combiner (also called

a power splitter). The combiner is used in lieu of a coaxial T-junction because it

provides better impedance matching. The combiner acts as the network bus in this

setup. The combined signal is input into the Waveplex SS receiving unit. The parts

mentioned above are described in detail in Appendix B.
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3.12.3 Experiments. Two experiments are conducted to validate the OP-

NET DS/CDMA LAN model. The first experiment validates the link properties

simulated in OPNET for the 10base-2 cable. The second experiment validates the

MAI by comparing BER performance of the model and test bed.

3.12.3.1 Experiment 1. Experiment 1 consisted of first validating

the coaxial loss model on the various lengths of coaxial cable with a cable analyzer

and comparing the attenuation values to those observed in a simulation run of the

modeled DS/CDMA LAN. Frequencies ranging from 2 to 45 MHz were tested on

a cable analyzer at the three cable lengths. The attenuation was recorded for each

setting. The recorded samples are compared to the coaxial loss model with a paired

sample comparison test. Next, the test bed was configured to compare measured

spread spectrum attenuations with the coaxial loss equation. The distance between

the transmitter and receiver and the length of the cable are varied with values of ap-

proximately 50, 100 and 194 feet. The chipping rates, and therefore the transmitted

bandwidth, are varied with values, 3.05 MHz, 5.81 MHz, 21.3 MHz.

A full factorial experiment is run with these two factors and their three levels.

Two points of each setting are measured and analyzed. The peak voltage near

center and the 2nd lobe peak voltage. The peak voltage “near” center is chosen

since the center frequency actually has a null value. The peak voltage near center

approximates the peak voltage of the signal. Attenuation measurements from the

measured and simulated results are compared. The results of this experiment are

presented in the next chapter.

3.12.3.2 Experiment 2. The second experiment validates the multi-

ple access characteristics of the OPNET model. BER variations from the test bed

implementation are measured on a single receiver when multiple transmitters are

transmitting concurrently on the same bus. The multiple transmitters are simu-

lated by varying power levels of a single DSSS interference source. These results are
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compared with the variations of the identical metrics on a duplicate scenario in the

OPNET model.

The factor used for this experiment is the amount of transmitted power from

the DSSS interference source. The power is varied from the single source via a step

attenuator that attenuates the power by 4, 5 and 6 dB.

Data is sent to the Waveplex SS board via a serial link to a PC, transmitted,

received by the board, and then sent back to the PC via the same serial link for

display on the terminal emulator. The data sent is compared to the received data

in order to calculate the BER of the test bed. The BER is collected for each power

level then a single factor analysis of variance (ANOVA) is performed. The ANOVA

confirms whether the variation in measured BER is due to the levels of interference

power.

The BER for the 4 dB attenuation level is used to empirically determine a

cross-correlation value, α, that produces an identical BER in the OPNET model.

With the determined α, BERs are simulated for the 5 and 6 dB attenuation levels.

The simulated BERs are compared to the measured BER using a paired sample

comparison.

3.12.4 Experimental Error and Normalcy. Variation due to experimental

error was measured for experiment two with ANOVA. A residual quantile-quantile

plot was made to verify that the errors are normally distributed. The residuals versus

responses were plotted to verify a independence of errors from the levels.

3.12.5 Verification and Validation. Measurement validation is performed

for the AMI SS board measurements by comparing measured values to published

values. Simulation validation is performed by comparing calculated BER with the

resulting bit errors per valid packet in the simulation. These results are presented
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in Chapter IV. Model verification is accomplished by analyzing packet traces and is

presented in Appendix C.

3.13 Summary

This chapter presented the goals of this research as well as the methodology

in which this research follows in order to achieve the goals. It presented the relevant

parameters of the systems under test and the factors that are varied to analyze the

system behaviors and validate the DS/CDMA LAN OPNET model. It presented the

experimental designs this research implements and analyzes. A detailed description

of the DS/CDMA LAN test bed was also provided. Chapter IV shall present the

results and analysis of the experiments described in this chapter.
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IV. Results and Analysis

This chapter presents the results from this research. Validation of the measurement

methods is discussed. Modified DS/CDMA bus simulation model validation is con-

ducted and analyzed. Model verification is presented in Appendix C. The results

from the two experiments described in the previous chapter are also presented and

analyzed. Hardware used to gather data is described in Appendix B.

4.1 Validation of Measurements

To validate the spectrum analyzer measurements of the transceiver output,

measurements are compared to the outputs specified in the board operating manual.

There are three transceiver settings used in this research. Each setting has parame-

ters that produce output center intermediate frequencies (IF) and bandwidth.

4.1.1 Waveplex Board Operation. Each setting has parameters affecting

various clocks within the system that ultimately affect the resultant center frequency

and bandwidth. These clocks are calculated by register settings of the system de-

modulator and spread spectrum processor integrated chip (IC). Each setting’s de-

modulator IF center frequency, FIF , and bandwidth settings are dependent on each

of the parameters in Table 4.1.

Table 4.1 Spread spectrum transceiver register settings and clock frequencies.
 
 

 chip_rate FRef 
(MHz) 

Div_ 
25_50 

Div_ 
1_16 

FVCO 

(MHz) 
Fclk 

(MHz) 
Foffset 

Setting 0 20 2 25 4 50 25 26214 
Setting 1 10 2 25 2 50 50 13107 
Setting 6 2 2 25 4 50 25 26214 

This table shows the settings and their values that need to be programmed

into the transceiver’s register and the demodulator. The chip_rate used to calculate

the transmitted chipping rate, Rc, where,
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Rc =
64MHz

chip rate + 1
. (4.1)

The reference frequency, Fref , is constant for each setting and is defined by the

demodulator reference crystal. Div_1_16 and Div_25_50 are register values that

are used to calculate both FV CO, voltage controlled oscillation frequency, and FClk,

the demodulator internal clock frequency. FV CO is

FV CO = FREF ·Div 25 50. (4.2)

FClk also helps determine the data rate, which is not considered here. FClk is

based on FV CO

FClk = FV CO/Div 1 16. (4.3)

The Waveplex development board contains a 10 MHz crystal that always results

in a 5 MHz center IF frequency, FIF . The Foffset register value must be set such

that

FIF = 5 MHz = Foffset · Fclk
/
217. (4.4)

This allows proper operation for other aspects of the system such as demodulation

[AMI61].

The IF null-to-null bandwidth, (BWIF )N−N , is the positive frequency compo-

nents of the transmitted spectrum that exist between the first null on either side of

the FIF [Skl88]. It is calculated as

(BWIF )N−N =





2 ·Rc, Rc ≤ FIF

FIF + Rc, Rc > FIF

(4.5)

4-2



Each setting’s chip rate, IF center frequency and null-to-null bandwidth from

the equations above are shown below in Table 4.2.

Table 4.2 Settings’ theoretical BW, FIF and chip rate. 

 chip rate (MHz) Fcenter (MHz) Bandwidth (MHz) 
Setting 0 3.05 4.999 6.1 
Setting 1 5.82 4.999 10.819 
Setting 6 21.3 4.999 26.299 

4.1.2 Measured operational characteristics. The power spectral density

(PSD) of each setting are shown in Figures 4.1, 4.2, and 4.3.

Figure 4.1 Setting 0 Power Spectral Density.

Figure 4.1 displays the Waveplex board default setting 0 logarithmic PSD.

Decibels with reference to 1 milliwatt (dBm) versus Hertz is displayed. The display

is centered on 5 MHz. Each horizontal division represents approximately 1.5 MHz.

Each vertical division represents 10 dB difference with the top or reference level

equaling -10dB. As Figure 4.1 shows, the FIF is set at 5 MHz, which is evident by a

drop of about 4.92 dBm at the center frequency. Using (4.5) and the approximate

nulls at 2 and 8 MHz, the chipping rate was found to be 3 MHz.

Figure 4.2 shows the Waveplex board default setting 1 logarithmic PSD. The

display parameters are listed in Table 4.3. The characteristic drop in voltage occurs
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Figure 4.2 Setting 1 Power Spectral Density.

at approximately 5 MHz while the positive null exists at approximately 10.54 MHz

yielding an actual chip rate of approximately 5.54 MHz.

Table 4.3 Display Settings for Figure 4.2
Center Frequency 5 MHz
Frequency Span 15 MHz
Hz/division 1.5 MHz
Reference level (Top) 30 dBm
dB/division 10 dBm

Figure 4.3 shows the Waveplex board default setting 6 logarithmic PSD. The

display parameters are summarized in Table 4.4. Figure 4.3 only displays 15 MHz of

setting 6 bandwidth to present the null at the center frequency 5 MHz. Figure 4.4

shows setting 6 in the linear scale, Volts per Hertz, and displays the entire bandwidth.

Table 4.5 summarizes the display settings.

Table 4.4 Display settings for Figure 4.3.
Center Frequency 5 MHz
Frequency Span 15 MHz
Hz/division 1.5 MHz
Reference level (Top) -10 dBm
dB/division 10 dBm
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Figure 4.3 Setting 6 Power Spectral Density (zoomed to center).

Figure 4.4 Setting 6 frequency spectrum (full bandwidth).

Table 4.5 Display settings for Figure 4.4.
Center Frequency 5 MHz
Frequency Span 50 MHz
Hz/division 5 MHz
Reference level (Bottom) 0 Volts
V/division 7.07 mV

Setting 6 in Figure 4.4 shows a signal with a first null at approximately 25 MHz.

There was also secondary lobe power in higher frequencies such as 42 MHz not shown

in figure. Since the signal is spread over 30 MHz with the same available power as

settings 0 and 1, exact measurement of the null-to-null bandwidth is problematic.
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The peak voltage of setting 6 was also difficult to measure since the DC component

of the measuring equipment was so relatively close to the center of the spread signal.

The peak voltage actually occurred very close to 0 Hz. Each setting displayed similar

measurements to their theoretical values. In settings 0 and 1 it was apparent that

the bandwidth and chip rate were slightly smaller than theoretical. The chip rates

were smaller by 50 kHz and 320 kHz, respectively. A peculiar characteristic of the

board that can be seen in each PSD is that the power seemed to be slightly higher

to the left of the center frequency. Nevertheless, the similarity of measurements is

sufficiently close to theoretical values.

4.1.3 3dB Bandwidth Reduction. The 3dB bandwidth for setting 6 reduced

as the cable lengths were increased. The 3dB power bandwidth, also called the half-

power bandwidth, is defined as the range of frequencies over which the signal power

does not drop below 3dB the peak response at center frequency [Skl88]. As Figure 4.5

shows, the 3dB bandwidth dropped as cable length increased. Further analysis of

this effect showed that the spectrum analyzer could not accurately measure this

setting.
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Figure 4.5 3dB Bandwidth measurements for Waveplex Board settings.

Detailed analysis is presented in Appendix D. It shows that the measurements

for setting 6 were not valid. Therefore, the setting is omitted from further analysis.
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4.2 DS/CDMA OPNET Model Validation

Validation of the DS/CDMA bus model was performed on a test configuration

of the DS/CDMA system. A single transmitter and single receiver were connected

in a bus configuration to show that the calculations within the pipeline stages truly

reflected known behavior of such systems. Validation ensured the calculated bit error

rate curve was consistent with the BPSK coherent signaling bit error rate [Skl88].

Furthermore, it ensured that the allocated BER to received packets is statistically

equal to the calculated bit error rate.

Figure 4.6(a) shows the calculated BER of the model as the SNR is increased.

Figure 4.6(b) shows the theoretical BPSK coherent signalling BER curve.

(b) Known BER Curves (a) Approximated BER Equation vs.
 Q Function BER
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Matlab Calculation of
Coherent detection
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Figure 4.6 BER curve comparison (a)OPNET calculated BER from SNR and BER
curve from actual Q function (b)BER curves with BPSK coherent sig-
nalling highlighted [Skl88].

The purpose of this comparison is to validate the conversion of SNR to Eb/N0

within the OPNET pipeline stage for BER calculation. The OPNET calculated

errors were plotted against the theoretical BER given by (3.1) calculated by Matlab.

Figure 4.6 shows that the OPNET BER calculations closely follow the theoretical

BER. The results of the comparison showed that the OPNET BER overestimated
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the theoretical by at most 0.08%. Its prediction monotonically improved for higher

SNRs — the difference dropped to less than 0.02%.

To validate that the model is assigning the correct number of bit errors to

the received packets, the allocated BER per packet statistic is compared against the

calculated BER for the appropriate SNR level. Figure 4.7 shows the results of the

allocated BER per packet when the SNR is increased from -8 dB to 12 dB. It also

shows the calculated BER curve.
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Figure 4.7 OPNET packet BER curve with calculated BER curve

It is important to note there are no simulated BER values equal to or less than

the order of 10−3 because the simulated packet sizes are 40,000 bits (5000 bytes)

long and the model allocates zero bit errors to that packet. The model sets the

allocated BER on a packet per packet basis. As the calculated BER approaches

negative infinity, the chance of bit errors in a 40,000 bit packet becomes less and

less, therefore, the allocated BER is approximately zero for SNRs greater than 11

dB. As Figure 4.7 shows, the allocated BER and the calculated BER were shown

to be statistically equal using a paired sample test with 90% confidence. The mean

difference was 2.59E-05 and the standard deviation was 2.2E-03. The validation of
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model behavior shows that the receiver module behaves as a BPSK coherent signal

receiver as described in [Skl88].

The results of validation conclude that DS/CDMA bus model behaves similar

to the DS/CDMA model described in [Bon01]. They also show that the bus model

accounts for the physical characteristics of the RG-58 coaxial cable.

4.3 Attenuation Experiment

This section presents the results from experiment 1. It presents the valida-

tion of the analytic attenuation model with cable analyzer measurements and then

compares the model to actual SS attenuation.

4.3.1 Validation of Analytic Attenuation Model. The analytic attenuation

model introduced in Chapter 2 and restated below in equation 4.6 is validated by

a series of measurements using a MFJ cable/antenna analyzer [MFJ99]. The cable

analyzer is capable of measuring the attenuation of signals at various frequencies.

Cable loss measurements were taken from 2 - 45 MHz for each length of cable. The

cable analyzer was not able to measure attenuations less than 0.28 dB at the 1.7 - 4

MHz level. Figures 4.8, 4.9, and 4.10 show the attenuations of 50, 100 and 194-foot

cables, respectively at various frequencies.
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Figure 4.8 50 foot cable analyzer attenuation measurements and theoretical values.
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Figure 4.9 100 foot cable analyzer attenuation measurements and theoretical val-
ues.
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Figure 4.10 194 foot cable attenuation measurements and theoretical values.

The figures show that the analyzer cable attenuation readings are bounded

from above by theoretical values. Figure 4.10 shows two measured data points that

passed the theoretical upper bound. The random and periodic measured attenuation

responses are caused by random and periodic impedance variations in the coaxial

cable [Tim01].

A paired sample test was conducted. The average difference between the mea-

sured and theoretical values was calculated for each cable length. Their 90% confi-

dence intervals are presented in Table 4.6.

4-10



Table 4.6 C.I.s of difference between MFJ measured and theoretical attenuations.
Theoretic and Measured Difference (in dB)

Cable Length (feet) Lower 90% C.I. bound Upper 90% C.I. bound
50 0.15 0.19
100 0.25 0.32
194 0.27 0.39

All measurements 0.24 0.27

These data suggest that the analytic model for RG-58 coaxial cable [Tim01],

ARG58 = 0.444 ·
√

FMHz + 0.00126 · FMHz, (4.6)

overestimates the attenuation, ARG58, for the set of cables used in this experiment.

Equation 4.6 overestimates the actual measurements by an average of 0.28 dB when

all measurements are considered. This bias and can be attributed to manufacturing

of this particular cable. The measured responses follow the theoretic curve, so the

coaxial loss model is a reasonable approximation for cable attenuation. The data,

summarized in Table 4.6, shows that the variance of the measurements increases

with cable length. Figures 4.8, 4.9, and 4.10 display an increase in response variance

with frequency. This is attributed to normal impedance variations.

4.3.2 Spread Spectrum Attenuation. The second goal of the first experi-

ment described in Chapter 3 is to observe the attenuation of a spread spectrum signal

over varied lengths of RG-58 coaxial cable. Two settings of the AMI Waveplex de-

velopmental spread spectrum transceiver are used to observe attenuation over the

cable. The settings are described in the beginning of this chapter (c.f., Table 4.2).

The signals were measured using a Hewlett Packard 8568B spectrum analyzer. At-

tenuation measurements discussed below reflect the difference in peak power levels

(in dBm) from a reference configuration consisting of a transmitter and spectrum an-

alyzer connected by a two foot RG-58 coaxial cable to approximate zero attenuation.

Measurements from both Waveplex board settings including center lobe and second
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lobe peaks are combined and analyzed. The attenuation measurements in dB over

each cable are displayed and analyzed below. Attenuation measurements from the

cable analyzer and theoretical attenuation values are also displayed for comparison.

Figure 4.11 shows attenuation measurements for the 50-foot cable.
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Figure 4.11 Comparison of primary and secondary peak frequency 50-foot atten-
uations.

The cable analyzer and SS measurements were measured in 5 independent

trials for each frequency. The theoretical value is repeated for comparison. At

50 feet, the SS peak attenuation came within 0.08 dB of the theoretical value. It

statistically equaled the measured attenuation from the cable analyzer. The average

differences were 0.16 and 0.02 dB, respectively. Figure 4.11 shows the three types

of measurement, analytic, cable analyzer and SS peak and second lobe peak power

responses for comparison. Figure 4.12 shows the attenuations at 100 feet.

Measurements on the 100-foot cable display a divergence of the SS peak re-

sponse measurements from both the theoretical and the cable analyzer measure-

ments. Paired sample tests show that for the 100-foot cable the average difference

4-12



 
 100 feet Cable Attenuation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

3.99MHz 5.1MHz 9.391MHz 13.69MHz

Trials per Frequency

A
tt

en
u

at
io

n
 (d

B
)

Theoretical

Cable Analyzer
Attenuation
SS Peak Attenuation

Primary Lobe Secondary Lobe

100 feet Cable Attenuation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

3.99MHz 5.1MHz 9.391MHz 13.69MHz

Trials per Frequency

A
tt

en
u

at
io

n
 (d

B
)

Theoretical

Cable Analyzer
Attenuation
SS Peak Attenuation

Primary Lobe Secondary Lobe

Figure 4.12 Comparison of primary and secondary peak frequency 100-foot atten-
uations.

between the SS and theoretical attenuation is 0.44 dB and the difference between the

SS and cable analyzer measurements is 0.18 dB. Figure 4.13 displays the attenuation

responses for the 194-foot cable.

As Figure 4.13 shows, the coaxial loss (4.6) overestimates the SS attenuation.

The average difference between the predicted and SS attenuation is increased to

0.64 dB. The average difference between the cable analyzer measurements and the

SS spectrum analyzer measurements increased to 0.345 dB. The results were unex-

pected. The cable analyzer and SS attenuations were expected to be equal through-

out. They were statistically equal for the 50-foot measurements, but their difference

grew with cable length. The differences are a fraction of a dB and could be caused

by losses in the connectors used for the hardware measurements. The cable analyzer

needed two separate connection converters to measure the cable loss, while the SS

measurements did not. The connectors are described in Appendix B.2. Figure 4.14
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Figure 4.13 Comparison of primary and secondary peak frequency 194-foot atten-
uations.

summarizes the 90% confidence intervals of each paired sample difference described

above. Table 4.7 displays the data used in Figure 4.14.
 

Difference between Attenuation Measurements with 90% 
Confidence Intervals

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 194 All Lengths

Cable Length (feet)

M
ea

su
re

m
en

t 
D

if
fe

re
n

ce
 (

d
B

)

Theoretical - SS
Cable Analyzer - SS

Figure 4.14 Summary of experiment 1 analysis.
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Table 4.7 Summary of data for Figure 4.14 
 Difference between Theoretical and SS Attenuation 
Cable Length Lower 90 %C.I. 

Bound Mean Difference 
Upper 90% 
C.I.Bound 

50 ft .083 .162 .240 
100 ft .385 .438 .492 
194 ft .587 .638 .689 
Total .358 .413 .467 
 Difference between Cable Analyzer and SS Attenuation 
Cable Length Lower 90 %C.I. 

Bound Mean Difference 
Upper 90% 
C.I.Bound 

50 ft -0.078 .02 .118 
100 ft 0.111 0.18 0.249 
194 ft 0.290 0.345 0.400 
Total 0.131 0.182 0.233 

Each curve displayed in Figures 4.11, 4.12 and 4.13 follows the same trend.

Table 4.7 and Figure 4.14 also present the total difference for all cable lengths be-

tween the theoretical and SS attenuations and the cable analyzer and SS measured

attenuations. The differences are a small percentage of the total attenuation, so

the model does describe the actual attenuation curve, and offers an upper bound

worst case for attenuation modeling of a 10Base2 coaxial cable. As described in

section 4.3.1 and shown in section A.1.2, a small bias could be applied to the coax

loss (4.6) that would help better describe the measurements.

4.4 Bit Error Rate Comparison

The second experiment compares measured BER rates of the spread spectrum

board with varied levels of interference and the DS/CDMA bus model with similar

interference. Results and analysis of this experiment are discussed below. First, the

BER measurements of the test bed are discussed in detail. Then, the test bed and

the OPNET model BER are compared.

4.4.1 Measured Bit Error Rates. This section presents the results from the

test bed BER measurements.
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4.4.1.1 Test Bed Setup. The hardware portion of this experiment

uses the test bed setup as described in Chapter 3. Implementation of the setup is

further described here. A spread spectrum interference source was simulated as a

MAI source by matching its code length, chipping rate, consequently the BWN−N ,

and FIF , with that of the Waveplex transmission. The matching was accomplished

empirically by measuring the produced MAI signal and adjusting accordingly. The

final non-attenuated output is displayed in Figure 4.15.

Figure 4.15 Summary of experiment 1 analysis.

The display parameters are summarized in Table 4.8. The produced MAI

Table 4.8 Display settings for Figure 4.15
Center Frequency 5 MHz
Frequency Span 15 MHz

Hz/division 1.5 MHz
Reference level (Bottom) 0 mV

V/division 7.07 mV

signal displayed a center frequency of 4.99 MHz and a BWN−N of approximately

10.54 MHz. Theoretically, a 5.54 MHz sine wave should have been used to clock

the SS word generator, however that setting produced a final BWN−N that was

less than the needed 10.54 MHz. The Tektronix sine-wave generator’s frequency was

incremented until the BWN−N of the resulting signal and Waveplex SS board output
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matched. This allowed enough reception stability at the 4dB attenuation to transmit

and receive the entire transmitted file. Although the measurements were equal, the

exact nulls could not be determined and there was inevitable non-synchronization

in the PN clocks of the two systems. The non-synchronization caused a drift in the

M-sequences so the correlation function of the sequences constantly changed.

4.4.1.2 Challenges. A transmitted file size was determined that

would not overwhelm the Waveplex SS board first-in first-out transmit buffer and

cause bits to be lost. The file size was 16,392 bits not including stop bits. The

received file sizes were combined into larger blocks of bits that were between 100,737

and 118,737 bits long. These larger blocks are called trials in the analysis below.

This was done to for two reasons. First, since each file transmission occurred with

varying cross correlation functions it was assumed that larger blocks of received data

would represent reception with an expected value of all the possible cross correlation

functions. Second, due to numerous instances of lost synchronization in the middle

of a file transmission, there were many different sizes of received files. Grouping the

files into approximately equal sized blocks would allow the percentage of bit errors

per block to have a more consistent meaning than bit errors per file when variance

is analyzed.

BER measurement was somewhat subjective. The 4dB MAI attenuation level

resulted in low SIR levels at the Waveplex SS receiver. Thus, the receiver lost

synchronization quite frequently. Occasionally this occurred in the middle of a file

transmission producing these outcomes:

1. The reception would end cleanly and just stop transmitting bits as if the trans-

mitter was shut off;

2. A very high BER, on the order of 10−2 was observed just before end of recep-

tion;

3. Erroneous data was received — unrelated bytes were deciphered by the receiver.
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Other occurrences included added bytes and blocks of lost bytes. Different criteria

were used in measuring bit error rates and yielded different results. One criterion

was chosen for detailed analysis. The results found using other criteria are listed

in Appendix A. This criterion was believed to be the most sound: a bit error was

counted only if, in stable operation, an ASCII character was transformed to another

printable or non-printable character. If a discrepancy was present when comparing

the sent file to the received file, the byte was translated to its ASCII 8 bit equivalent,

then compared bit by bit.

4.4.2 ANOVA. Using the criterion above, the BER was measured for

each trial and a single factor ANOVA with unequal sample sizes was performed.

Figure 4.16 shows the measured BER for each trial.
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Figure 4.16 Measured BER of test bed per trial.

The varied number of samples is due to the level of difficulty in retaining

synchronization during the file transmissions with higher MAI. The amount of data

was believed to be sufficient in the higher powered MAI cases since the occurrence

of bit errors was more frequent. Therefore, adequate proportions could be found for

each trial size. The rank order of each BER was as expected. There were a few

occurrences where the 6 dB setting shows higher BER than the 5 dB setting, but

this is acceptable since the trials are a tool only for analyzing variance not overall
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BER, which is presented below. Expanding the analysis window to remedy this

would make it difficult to analyze the variance of the 4 dB BER results. The graph

shows the 4 dB MAI power level to have the highest BER as was expected. Table 4.9

displays the ANOVA results for the responses in Figure 4.16.

Table 4.9 Analyis of variance of measured bit error rates 

Source of 
Variation 

Sum of 
Squares 

Percentage  of 
variation 

Degrees of 
Freedom 

Mean 
Square 

F- 
Computed P-value F crit 

MAI power levels 1.72E-08 0.84 2 8.58E-09 89.18 4.93E-14 2.47 

Error 3.18E-09 0.16 33 9.62E-11     
         
Total 2.03E-08   35         

The results of the ANOVA test show that 84% of the variation is explained

by the varied interference levels, while the rest is attributed to experimental error.

A large part of the error can be explained by the subjectivity of measurements and

the drift of the non-synchronous PN clocks. The F value for the ANOVA, shown in

Table 4.9 is much larger than the critical F-value. Therefore, the variation of the

interference level is significant with 90% confidence.

4.4.2.1 Overall BER. The overall BER of the system for each MAI

level is calculated by taking the weighted mean of the BERs for each received file.

In other words, for each power level, divide the total number of bit errors by the

total number of transmitted bits over all the transmitted files. This also describes

the proportion of bits with errors to the total bits sent. Thus, a confidence interval

for proportions statistic can be used to summarize the results. Since the confidence

interval for proportions uses the normal approximation for the binomial distribution

the condition, np ≥ 5, where n is the total number of trials and p is the proportion

of errors, should be satisfied for each level [MiA95]. Table 4.10 displays the total

results from the BER measurements, and the value np for each level. The sample

proportion, p, is the overall BER for each level. The 90% confidence interval of each

level’s proportion is displayed in Table 4.11.
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Table 4.10 Summary of Overall BERs for each MAI level.
Level Bit Errors Total Bits Sent, n Sample Proportion, p n · p
4 dB 37 542,961 6.81E-05 36.98
5 dB 13 1,210,734 1.07E-05 13
6 dB 7 2,233,152 3.35E-06 7

Table 4.11 BER proportion 90% C.I.s
Level Bounds
4 dB (4.97E-05, 8.66E-05)
5 dB (5.84E-06, 1.56E-05)
6 dB (1.19E-06, 5.08E-06)

4.5 OPNET and Test Bed BER comparison

The overall BER from each level, presented above, were compared with OP-

NET BER. First the cross correlation value, α, was found empirically by comparing

the OPNET model set up with a 4 dB MAI into the receiving terminal, until the

BERs matched. The α value found was 0.07112, which is between 1
31

(0.032) and 9
31

(0.29), the absolute values of the limits for the cross correlation function of a 31 bit

maximum length sequence [PZB95]. It also lies between the squares of these values

which may be a more appropriate bound since α scales a interference power while the

cross correlation coefficient may scale a voltage since it can take on negative values.

The squares of the values are 0.001 and 0.0841. Next, the OPNET and test bed

BERs for the 4, 5 and 6 dB MAI levels were compared. Using a paired sample test,

the mean difference confidence interval was (-4.47E-06, 8.36E-07) with 90% confi-

dence. Since the confidence interval includes zero, the two systems are considered

statistically equal. Table 4.12 shows the paired data samples of this experiment.

Table 4.12 Paired data samples for measured and simulated BER comparison.
MAI attenuation Measured BER Simulated BER

4dB 6.81E-05 6.81E-05
5dB 1.07E-05 7.93E-06
6dB 3.13E-06 4.93E-07

4-20



4.6 Summary

This chapter presented the validation of the DS/CDMA bus model and the

validation of measurement technique and the attenuation analytical model. It also

presents results of two experiments comparing a DS/CDMA test bed to a DS/CDMA

OPNET model. The conclusions as a result of these experiments are presented in

Chapter 5.
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V. Conclusions and Recommendations

This chapter summarizes this research. The goal is restated and evaluated against

the efforts of this research. The results are summarized and conclusions are made.

Recommendations for further work in this area are presented.

5.1 Research Goals

The goal of this research was to simulate a bus implementation of a direct

sequence code division multiple access local area network and validate its simulated

measurements with a hardware DS/CDMA LAN test bed. The validation was based

on bit-error-rate and attenuation measurements.

5.2 Results

The DS/CDMA test bed validated the signal-to-interference and BER calcu-

lations of the simulated system. The results showed that the two systems were

statistically equal in BER measurements. Also, a proposed model for approximat-

ing cable attenuation was presented and validated against the test bed. The results

in this analysis showed that the analytic model overestimated the measured power

attenuation by approximately 0.3 dB.

5.3 Conclusions

This research presents a validated bus implementation of a DS/CDMA LAN.

The validation effort concentrated on the attenuation in the bus medium and the

calculation of the signal-to-noise ratio that is used to figure the bit-error-rate. The

overestimation of measured attenuation by the analytic attenuation model presents

a worst case for future analysis of effects of power dissipation. However, it remains

close enough to the actual value to be a good approximation. The model could easily

be biased to better describe the measured frequencies.
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The bit-error-rate comparison showed that the SIR calculation within the sim-

ulated DS/CDMA LAN is sound. The experiments used a varying cross-correlation

number between the multiple-access interference and the signal-of-interest caused by

the inability to synchronize the PN generators of the two transmitters. Since the

results showed equal BER measurements (simulated and actual) it is concluded that

a single value of a cross-correlation coefficient, α, can be used to estimate the SIR in

a multi-user environment as shown in (3.15). The coefficient will most likely describe

the expected value of the code family’s range of cross-correlation numbers.

The validated coaxial cable loss equation used describes undesirable attenua-

tions at higher frequencies, i.e., 9.384 dB per 100 feet at 400 MHz. As more users

are added to the network, the PN sequences must be longer and the chipping rate

and bandwidth increased, possibly surpassing 400 MHz. If an adequate power con-

trol mechanism is not devised, the near-far effect could prove to be the downfall of

this technique. A power-control algorithm that handles multiple receivers and trans-

mitters would be very complex. On the other hand, carefully chosen pseudo-noise

codes, such as Gold codes, could provide a low enough cross-correlation coefficient

to effectively negate the near-far problem.

By validating the DS/CDMA model, the results of this research reaffirm the

results found in [Bon01]. They confirm the dramatic improvement in network de-

lay and throughput a DS/CDMA LAN displayed over Ethernet. Therefore, the

DS/CDMA medium access control technique could be the technique of choice.

5.4 Implications and Impact

This model provides a vehicle for simulating CDMA LANs for any type of

medium. It provides a fundamental foundation for accurately modelling the seven

layers of the OSI network model when considering a fully functional, independent

network node. This ground breaking research substantiates the grandiose claims

of previous work — the declaration of a viable network medium access protocol
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that offers enormous gains in network performance. This technology will transform

communications as we know it.

The model may incorporate the attenuation properties of any medium due

to its nature of modularity. The 10Base-2 cabling characteristics modelled in this

research offer an important impediment that might cripple the CDMA technique

over this medium. The cable attenuation could prove to create a huge mess in power

control within the LAN. Station after station could starve from lack of SNR creating

bit-error-rates too high to sustain functional communications.

If the near-far effect proves not to be a problem, the impact of this technol-

ogy on the Air Force and entire Department of Defense alike will be far reaching.

By simply switching a network interface card, communications within organizations

will be significantly enhanced. Shared applications within organizations such as en-

tire databases could be accessed without the frustrating wait time. Productivity of

organizations relying on network shared data would greatly increase. Telecommuni-

cations would also be revolutionized. The increase in throughput and approximate

elimination of delay would enable voice and video over the internet to be standard;

the Air Force could do away with costly video conferencing rooms. All of these

benefits could be attainable with minimal cost since no cabling infrastructure needs

replacing.

5.5 Recommendations for Further Work

The DS/CDMA - Carrier Sense Multiple Access with collision detection per-

formance analysis conducted by [Bon01] assumed perfect power control and thus,

ignored attenuation. With the bus implementation of DS/CDMA offered by this

research, a new performance analysis could be conducted including cable attenua-

tion and excluding power control. The new runs could again be compared with an

Ethernet LAN as before to measure the effects of the near-far problem. If base-
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band signalling is used, a representative frequency for the band would need to be

determined in order to approximate power loss over the cable.

Another venue of research is to revisit capacity analysis for such a network.

Tables of code lengths versus supported capacity could be constructed. Tables scaled

by desired bit-error-rate performance would allow network designers to look-up an

adequate capacity-performance combination to use for a given network.

This research mentions comparisons of asynchronous CDMA with Synchronous

CDMA for a fibre optic CDMA LAN. In that case, S/CDMA allows higher capacities

of simultaneous users. Further research could be accomplished in this area and a

comparison made for a 10Base-2 CDMA LAN to improve user capacity or perhaps

guarantee the lowest cross-correlation between codes to decrease effects of the near-

far problem.

There remains a large amount of room for expansion of this DS/CDMA model.

The model assumes that a receiver is receiving valid data from only one transmitter

at all times. Expansion of the model towards a system similar to Spreadnet would

allow more comprehensive performance analysis on a DS/CDMA LAN. Expansion

could include implementing stations with multiple receivers that are able to receive

from more than one transmitter at different times or at once. A new protocol should

be developed to handle multiple incoming streams of data. It could dynamically

assign PN codes to stations and length of codes to the network.

5.6 Summary

The research goals have been met. The simulation adheres to the real-world

standard confirming validity of the model and the auspicious results that ensue. The

attenuation investigation hints that the near-far effect will be a bump in the road,

but further research could alleviate the problem in one way or another.
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Appendix A. Data Analysis

This section complements the results and analysis presented in Chapter IV. It

presents the measurements taken for each experiment in tabular or graphical form

as well as extraneous analysis. It also includes normality tests for the ANOVA

performed for experiment 2 in Section 4.4.2.

A.1 Experiment 1

This section presents the details of the waveplex board transmission measure-

ments used in determining the attenuation of the SOI over varied cable length. Since

setting 6 measurements were considered inaccurate, as discussed in Section 4.1.3 and

appendix D, its data are not presented.

A.1.1 Measurements. The Waveplex SS board signal measurements for

settings 0 and 1 are presented below in Table A.1 and Table A.2, respectively. The

signal was separately measured for each cable length. All levels are given in dBm,

while all frequencies are given in MHz.

Tables A.1 and A.2 show the average and standard deviation of various mea-

surements from the SS signals. Average attenuations for each cable length are given

for the peak frequency and the second lobe peak frequency. Attenuations were calcu-

lated against the average respective peak value on the two-foot cable. The confidence

interval of the attenuation measurements is also given.

A.1.2 Adjusted Coax Loss Equation. It was mentioned in Chapter IV that

a small bias applied to the coax loss equation would better predict attenuation for

this set of cables. A pilot study was run to empirically find a new resistive loss

constant that allowed a better prediction. The point of this study was to show

that the curve produced by the given coaxial loss equation followed the trend of

attenuation measurements. Figure A.1 shows the cable analyzer measurements for
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Table A.1 Signal measurements with varied cable lengths for setting 0.

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -20.48 3.614 -17.48 5 -20.48 6.364 8.11 -31.94 9.376 2.75
Standard Deviation 0.204939 0.045607 0.204939 0 0.204939 0.0577062 0.0547723 0.1341641 0.0350714

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -20.86 3.652 -17.86 5.084 -20.86 6.184 8.074 -32.66 9.432 2.532
Standard Deviation 0.1516575 0.0178885 0.1516575 0.0089443 0.1516575 0.0517687 0.1066771 0.2880972 0.0414729

0.2354111 0.5245889 0.4453308 0.9946692

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -21.18 3.676 -18.18 5.14 -21.18 6.272 8.132 -32.86 9.3 2.596
Standard Deviation 0.1095445 0.0477493 0.1095445 0 0.1095445 0.0396232 0.0657267 0.1140175 0.2412468

0.5955613 0.8044387 0.8112967 1.0287033

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -21.78 3.61 -18.78 5.076 -21.78 6.158 8.124 -33.94 9.456 2.548
Standard Deviation 0.1095445 0.0595819 0.1095445 0.0357771 0.1095445 0.0471169 0.0554977 0.181659 0.0482701

1.1955613 1.4044387 1.826808 2.173192

Waveplex Spread Spectrum Board Default Setting 0

90% C.I.

90% C.I.

90% C.I.

90% C.I.
0.92

90% C.I.

3dB BW (MHz)

3dB BW (MHz)

~50 foot cable

2nd lobe peak-3dBPeak

2nd lobe peak

0.72

-3dB
~2 foot cable

90% C.I.

-3dB 2nd lobe peak

3dB BW (MHz)

-3dB Peak -3dB 2nd lobe peak

-3dB Peak -3dB

3dB BW (MHz)

1.30 2.00

-3dB Peak

0.38

0.70

~100 foot cable

~194 foot cable

Average Attenuation 
and Confidence 
Intervals

Average Attenuation 
and Confidence 
Intervals

Average Attenuation 
and Confidence 
Intervals

Table A.2 Signal measurements with varied cable lengths for setting 1.

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -19.98 2.32 -16.98 4.51 -19.98 6.88 10.558 -31.22 13.97 4.56
Standard Deviation 0.0447214 0.1387444 0.0447214 0.0273861 0.0447214 0.1172604 0.0672309 0.083666 0.2043282

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -20.16 2.44 -17.16 3.81 -20.16 6.84 10.558 -31.76 13.5 4.4
Standard Deviation 0.0547723 0.041833 0.0547723 0.0961769 0.0547723 0.1710263 0.0672309 0.0547723 0.3201562

0.1277806 0.2322194 0.4877806 0.5922194

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -20.44 2.12 -17.44 3.8 -20.44 6.69 10.536 -32.32 13.72 4.57
Standard Deviation 0.0894427 0.0447214 0.0894427 0 0.0894427 0.065192 0.0680441 0.130384 0.2659887

0.3747261 0.5452739 0.9756931 1.2243069

Null
Level Frequency Level Frequency Level Frequency Frequency Level Frequency

Average -21.2 2.12 -18.2 3.84 -21.2 6.68 10.556 -33.72 13.57 4.56
Standard Deviation 0.0707107 0.0447214 0.0707107 0.0223607 0.0707107 0.0273861 0.0427785 0.0447214 0.5155095

1.1525851 1.2874149 2.4573631 2.5426369

Waveplex Spread Spectrum Board Default Setting 1

90% C.I. 90% C.I.

3dB BW (MHz)

3dB BW (MHz)

3dB BW (MHz)

90% C.I.

90% C.I.

90% C.I.

90% C.I.

-3dB Peak -3dB 2nd lobe peak 3dB BW (MHz)

2nd lobe peak

-3dB Peak -3dB 2nd lobe peak
~50 foot cable

-3dB Peak -3dB

-3dB Peak -3dB

Average Attenuation 
and Confidence 
Intervals

Average Attenuation 
and Confidence 
Intervals

Average Attenuation 
and Confidence 
Intervals

1.22 2.5

0.540.18

~100 foot cable

~194 foot cable

0.46 1.10

2nd lobe peak

~2 foot cable
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the 194 foot cable, as presented in Section 4.3.1, along with the new curve produced

by reducing the resistive loss constant, k1, to 0.39. 
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Figure A.1 Adjusted coax loss equation curve compared with 194-foot cable at-
tenuations measured with cable analyzer.

Figure A.1 shows that the adjusted coax loss equation will predict attenuation

up to 45 MHz. The limit is only due to research bounds. Visual analysis shows

that the adjusted equation will probably predict the attenuation for even higher

frequencies. A paired sample test was performed that yielded the mean difference

90% confidence interval of (-0.0863, 0.0374). Since the confidence interval includes

zero, it can be said that the equation describes actual attenuation.

A.2 Experiment 2

This section presents data on the second experiment namely, BER measure-

ments from the Waveplex SS Board test bed setup. It presents different criteria

that could be considered when measuring the BER rate in this experiment. BER

measurements using these criteria are summarized. Finally, this section presents the

normality tests to verify the correctness of the BER ANOVA.

A.2.1 Measurements. Figure A.2 graphically displays the detailed bit

error measurements using the criteria discussed in Chapter IV. The three multiple

access interference power levels are displayed along with their bit-error performance.

A-3



Recall that the 4 dB refers to the attenuation of a reference power signal, so 4 dB

attenuation produces more interference than 6 dB.

 
 

0

10

20

30

40

50

1 6 11 16 21 26 31 36 41 46
Trial

0

10

20

30

40

50

8 106 119 Normal

Interesting Trials

0

10

20

30

40

50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Trial

Lines Transmitted Bit Errors

(b) Bit Error Results for 5dB MAI Attenuation 

(a) Bit Error Results for 4dB MAI Attenuation 
(c) Bit Error Results for 6dB 

MAI Attenuation 

Figure A.2 Bit error measurements for three multiple access interference levels. (a)
4dB MAI level bit error results, (b) 5dB MAI level bit error results,
(c) 6dB MAI bit error results.

The graphs in Figure A.2 display stacked statistics of the transmitted file size,

in lines (where one line is 50 Bytes) and the number of bit errors for that file. The

Y-axis interprets number of lines or number of bit errors. The 6 dB graph only

displays files that actually had bit errors. Results from a non-error, normal, file are

displayed for comparison; there were 122 files sent with 6dB level.

A.2.2 BER Results with Varied Criteria. As discussed in Section 4.4.1.2,

there were many ways to judge the received bit errors in efforts to get the most

accurate reading. Different criteria were created to observe actual bit errors. The

reasons for these criteria are discussed in the fore-mentioned section. Different sizes of
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the received data were recorded and different ways of tabulating errors were also used.

The three sizes of total data referenced were transmitted data with and without stop

bits and transmitted data with missing characters subtracted (without stop bits).

Recall from 4.4.1.2 that some bytes were missing between normally transmitted data

while at other times erroneous bytes were added. Also the frequency of bit errors

would dramatically increase if the file lost synchronization before all bytes of the file

were transmitted.

Table A.3 shows the BER results using different criteria to judge when a bit

error occurred. Each criterium is defined below.

Raw BER The raw bit error rate is the most sound criterion for bit errors. These

errors were tallied during normal operation of the transmission for ASCII bytes

that were changed to another byte with a flip of a bit or two or three.

1 Error From Last Line (1 Last) This criterion only counted one error from the

last line of transmission when one or more were present. Since the frequency

of errors increased due to loss of synchronization, a controlled bit error count

was desired.

All Errors from Last Line (All Last) All bit errors were counted in last lines up

to end of received data. Totally erroneous data that occasionally was observed

at lost synchronization was ignored.

One Error for Deleted Blocks and Added Bytes (1 from add and delete)

Each contiguous block of deleted bytes was counted as one error and each added

byte was counted as one bit error. It was assumed that a bit in the transmit-

ted frame overhead flipped causing these types of errors. Since the framing

bits were not calculated in the BER calculations used for the final results, this

criterion was not used.

A.2.3 Normality of BER Measurements. This section presents methods

that test how well the data from the BER measurements satisfy the conditions
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Table A.3 BER results using various criteria.

Criteria 4dB 5dB 6dB 4dB 5dB 6dB 4dB 5dB 6dB

Raw BER 7.6663E-05 1.2079E-05 3.5264E-06 6.8145E-05 1.0737E-05 3.1346E-06 7.6858E-05 1.2086E-05 2.5191E-06

Raw BER w/ 1 
error from last 
line 9.5311E-05 1.3938E-05 3.5264E-06 8.4721E-05 1.2389E-05 3.1346E-06 9.5553E-05 1.3946E-05 3.5267E-06

Raw BER w/ all 
errors from 
last line 0.00016369 1.4867E-05 3.5264E-06 0.0001455 1.3215E-05 3.1346E-06 0.0001641 1.4876E-05 3.5267E-06

One last and 1 
from Add and 
delete 0.00012225 2.2301E-05 4.534E-06 0.00010866 1.9823E-05 4.0302E-06 0.00012256 2.2313E-05 4.5343E-06

All last and 1 
from Add and 
delete 0.00019062 2.323E-05 4.534E-06 0.00016944 2.0649E-05 4.0302E-06 0.00019111 2.3243E-05 4.5343E-06

All Transmitted Bits                    (No 
Stop Bits) All Transmitted Bits with Stop Bits

Transmitted Bits with Deleted Bits 
Subtracted (No Stop Bits)

needed for accurate ANOVA. These assumptions were made in order to perform

ANOVA on the data.

1. The effects of various factors are additive.

2. Errors are additive.

3. Errors are independent of the factor levels.

4. Errors are normally distributed.

5. Errors have the same variance for all factor levels.

[Jai91] recommends preparing a residual versus predicted response plot to ver-

ify independence of errors and a normal quantile-quantile plot to verify that the

residuals are normally distributed.

A normal quantile-quantile plot is shown in Figure A.3(a) for the ANOVA on

the BER measurements presented in Chapter IV. The R2 value for the data is just

above 0.80, which is the minimum acceptable value to declare the residuals normally

distributed. Figure A.3(b) shows no real trend in the residuals versus predicted

response plot which indicates that the errors are independent of the factors.

The data would probably behave better if the trial sizes were larger, eliminating

the numerous zero values recorded. Similar plots were made for a subset of data to
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Figure A.3 (a) Quantile-Quantile Plot for ANOVA normality test, (b) Residual
versus Predicted Response for ANOVA independence of errors test.

test the assumptions on the non-zero responses. This test produced a much better

R2 value, 0.93, in the quantile-quantile plot supporting the assumption of normality.

Figure A.4 shows the quantile-quantile plot for this subset of data.
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Figure A.4 Non-zero Quantile-Quantile Plot for ANOVA normality test.

A.3 Summary

This appendix presented detailed and complementary data for the two exper-

iments discussed in Chapter IV. It also presented visual tests on the assumptions

made for the ANOVA on the BER measurements.
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Appendix B. Hardware

This appendix describes the hardware used for the test bed setup and the attenuation

measurements.

B.1 Waveplex Spread Spectrum Development Board

The Waveplex spread spectrum chip set contains a fully functional spread spec-

trum transceiver. The core of the chip set is the SX043 spread spectrum baseband

processor and the SX061 QPSK/BPSK demodulator. The SX043 will simultane-

ously transmit and receive spread spectrum signals. Different attributes for various

board operational modes are set in these two chips via a microcontroller. The micro-

controller is given commands via a serial connection to a personal computer terminal

program. The board also contains IF circuitry that allows loop-back operation used

in this research. The board is shown in Figure B.1 [Wav98].

A problem encountered with this board was that the maximum file transmission

size was limited by an internal FIFO buffer in the microcontroller. The FIFO controls

the incoming and outgoing datastream on the receive and the transmit side of the

system. This current version of the board would cause overflow if too large a file

was sent. An overflow would result in loss of data. The size of the buffer was not

attainable. It was found that a file of 2049 characters would pass without loss of

data due to overflow of this buffer [Wav98].

The global functionality of the board is shown in Figure B.2. The outgoing

data is spread by the SX043 which creates the TX-I and TX-Q signals that are

modulated on the IF carrier and passed to the IF-out connector. Reception of the

signal begins with despreading of the incoming signal. The data signal is passed

through a band pass filter and amplified by the auto gain control (AGC) amplifier.

The AGC signal is created by the AGC output of the SX061 demodulator then

amplified by an integrator. The SX061 demodulates the signal and passes the data
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Figure B.1 Waveplex Spread Spectrum Development Board

and a received signal strength indicator (RSSI) to the SX043. The RSSI signal

allows the SX043 to perform synchronization and code tracking for the incoming

signal [Wav98] [AMI61].

Figure B.2 Waveplex Development Board Functional Diagram

The SX043 provides the spread spectrum operation of the board including

PN sequence generation, data spreading and tracking of the incoming signal. The

SX043 operation is dictated through internal registers with inputs sent through the

microcontroller. The SX043 receives outgoing data into a first-in first-out (FIFO)

transmit buffer. In packet mode, it then packages the data into a frame consisting of

a adjustable length preamble, 2 byte preamble end code, 8 bit start flag, 16 bits of

receive addresses, all data in the FIFO buffer, a 16 or 32 bit cyclic redundancy code
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and an 8 bit end flag. In non-packet mode the preamble is immediately followed

by data and, when the transmit FIFO is empty, the end flag is sent [AMI43]. This

research used packet mode. Only the data is considered in BER calculations.

The bits are then spread by a configurable PN sequence with up to 64 MHz

chipping rate. The SX043 is capable of generating maximal length, Gold, and Barker

codes with code lengths of up to 2047 bits. Each code is configured by adjusting

the maximal length taps and in the case of Gold codes, an offset for the second

m-sequence generator to produce 2n − 1 Gold code sequences [AMI43].

The SX043 receives data using an acquisition and track methodology. Acqui-

sition is performed with two states, “sync” and “slip”. The “sync” state establishes

the RSSI voltage level used as the reference level for zero correlation between the

receiver’s PN code and the incoming PN code. The “slip” state begins once the RSSI

level is established [AMI43].

The “slip” state examines the RSSI for a specified time period. If a correlation

flash has not occurred the receiver’s PN clock is delayed by successive slips, until

correlation occurs. When a correlation flash occurs between the receiver’s PN code

and the incoming PN code, the receiver switches to track mode [AMI43].

In track mode a tau-dither tracking loop is used. The tracking loop generates

dither error signals by increasing and decreasing the phase of the PN clock by 20%.

This creates small variations in the correlation and causes the loop to continually

correct itself and approach perfect correlation [AMI43].

B.2 MFJ Cable Analyzer

The MFJ-269 HF/VHF/UHF Standing Wave Ratio (SWR) analyzer, shown

in Figure B.3, is a compact Radio Frequency impedance analyzer. It is referred to

as a cable analyzer for this thesis. It provides measurements of impedance including

resistance and reactance, standing wave ratio and cable loss for coaxial transmission

lines. In order to measure loss of a coaxial cable, the opposite end of the cable under
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test must be an open circuit (no termination). The unit supports frequencies of

1.8 - 170 MHz and 415-470 MHz. It displays the coax loss in dB at any frequency

it supports. The analyzer’s provided connector is a N female connector. A Male-

N to Female-UHF connector converter is also provided. Finally, a Male-UHF to

BNC connector converter was used to attach the 10Base2 cable [MFJ99]. Unreliable

Figure B.3 MFJ-269 Cable Analyzer

readings can occur from the following areas [MFJ99]:

1. Signal ingress from external voltage sources.

2. Diode detector and A/D converter errors.

3. The impedance of connectors, connections, and connecting leads.
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B.3 New Wave LRS-100 Spread Spectrum Generator

The LRS-100 was used to produce the PN sequence for the multiple access

interference of the DS/CDMA LAN test bed. The PN sequence generator is highly

customizable and allows BPSK, QPSK and staggered QPSK modulation of the se-

quence. The sequences are configurable by varying 2 to 16 stages of a high-speed

shift register with linear feedback. These stages coincide with the taps referred to in

Chapters 3 and 4. Each frequency can be externally clocked such as the data rate

and the PN sequence rate, or chipping rate. Figure B.4 shows the LRS-100 [New98].

Figure B.4 LRS-100 Spread Spectrum Generator

B.4 Hewlett Packard 8568B Spectrum Analyzer

The HP spectrum analyzer was used to measure attenuation from the 10Base-

2 cable. It was used to measure total average power of the MAI and the SOI. It

was also used in validation of measurements and in comparing chipping rates of the

interference source and Waveplex SS transmitter in experiment 2. The HP spectrum

analyzer is displayed in Figure B.5

The spectrum analyzer is capable of analyzing frequencies between 100Hz to

1.5GHz. It allows multiple display options such as linear display, millivolts per Hz,

or logarithmic display which displays decibels with reference to 1 milliwatt or dBm

per Hz. The analyzer allows for detailed measurements using zoom features and a

marker which identifies the observed frequency and power (or voltage) [HeP68].
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Figure B.5 HP 8568B Spectrum Analyzer

B.5 Hewlett Packard 8645A Agile Function Generator

The HP function generator provided the IF frequency and power level for the

MAI signal. It produced the 5 MHz that was mixed with the output of the PN

sequence generator for experiment 2. The HP function generator allowed variable

power levels of the 5 MHz signal. The variable amplitude of the signal enabled the

MAI signal to be increased to a level that, when attenuated with the step attenuator,

would provide adequate interference. It is shown in Figure B.6.

Figure B.6 HP 8645A Agile Function Generator

B.6 Auxiliary Hardware

Numerous supporting hardware were used for this research. Equipment used

to simulate the MAI signal also included the Tektronix FG502 11MHz Function

Generator, which produced the external chipping rate for the LRS-100 PN sequence
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generator. Figure B.7 shows a (a) Telonic, Incorporated step attenuator was used to

linearly vary the signal power from the mixed MAI signal created by the hardware

discussed above; a (b) Mini circuits ZAD-1-1 well balanced mixer and a (c) Mini

Ciruits ZFRSC-2050 power splitter. An SC504 80MHz Oscilloscope was also used

to make miscellaneous supporting measurements.
 
 
 
 

(b) 

(a) 

(c) 

Figure B.7 (a) Telonic step attenuator. (b) Mini-Circuits well balanced mixer and
(c) power splitter.
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Appendix C. OPNET

This appendix gives a brief overview of Optimum Performance NETwork Modeler

(OPNET). It presents the default pipeline stages OPNET provides to model com-

munications between bus and radio transmitters. After the default radio and bus

pipelines are described, the DS/CDMA bus pipeline stages used for this research are

summarized.

C.1 OPNET Overview

OPNET is a powerful network simulation development tool. It uses discrete

time event simulation to track numerous packets of simulated data through the de-

signed network. Design of network simulation is broken into three domains. These

three domains and the OPNET kernel, which provides a myriad of functional capa-

bilities, allow network designers freedom in describing and analyzing network func-

tionality [MIL97].

• The Network domain describes how multiple users or nodes are interconnected

in some defined universe. The network domain defines the topology of the

network.

• The Node domain describes a node and how it handles information it receives

and transmits. A node may describe network entities as user terminals or work-

stations, routers, satellites, bridges, mainframes, file servers, etc. Internal to

the node is the node model which defines the operation of the node and how it

communicates. The node model contains processor modules that process data,

queue modules that organize data and communication modules that transmit

and receive to and from other nodes in the network.

• The Process domain lies under the node domain. It contains the actual pro-

gramming code that manipulates the information contained in packets that the

node receives.

C-1



C.2 Default Pipeline Stages

There are three types of communication links represented in OPNET, the

point-to-point, bus, and wireless (radio) links. All three reside in the node do-

main. The communication properties of the links are implemented in OPNET by

the transceiver pipeline. The transceiver pipeline is a series of stages that perform

calculations on the packets being transmitted or received. Each transceiver pipeline

has a different number of stages that are required to model effects of different media

and various link properties. For instance, packets must be duplicated and stages

repeated broadcast media. The default radio and bus transceiver pipelines were

both adapted for this research. The radio pipeline is summarized below because the

DS/CDMA bus transceiver pipeline is comprised of a conglomeration of its various

stages.

C.2.1 Radio Link Transceiver Pipeline. The radio transceiver pipeline has

14 stages. They are illustrated in Figure C.1. Each stage is summarized below

[MIL97].

Receiver Group - Stage 0 The receiver group stage produces a list of potential

transmitter receiver pairs at the beginning of the simulation to dictate which

pairs can feasibly communicate.

Transmission Delay - Stage 1 The transmission delay for the packet is calcu-

lated at the time of transmission. It is used for end-to-end delay calculations.

This stage need only be calculated once no matter how many nodes are po-

tentially receiving the transmitted packet. After this stage the packet is du-

plicated for each receiver and the following pipeline stages are calculated for

each duplication.

Link Closure - Stage 2 This stage calculates which communication links satisfy

requirements deemed necessary for successful transmission. It is calculated at

time of transmission for each packet transmission.
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Figure C.1 Radio Link Transceiver Pipeline Execution Sequence for One Trans-
mission [MIL97]

Channel Match - Stage 3 The properties of the transmitter and receiver, such as

frequency bandwidth, data rate, modulation and spreading code, are compared

in this stage. Depending on the results of this calculation the stage sets the

packet match attribute to valid, noise or ignore.

RX Antenna Gain - Stage 4 This stage calculates the position of the receiver

antenna and computes antenna gain. Since antennas are not used, this stage

is not regarded in the DS/CDMA bus pipeline.

Propagation Delay - Stage 5 Stage 5 computes the distance between antennas

and then calculates the delay depending on the transmission medium.
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TX Antenna Gain - Stage 6 Similar to RX antenna gain, this stage computes

the location of the receiver relative to the center of the transmitter in order to

calculate how much power it receives. Again, this is not used in the DS/CDMA

bus since antennas are not used.

Received Power - Stage 7 The received power stage takes into account the an-

tenna gains and the propagation attenuation and then calculates the received

signal power.

Background Noise - Stage 8 This stage computes the white gaussian noise present

in the transmission medium and then sets the noise attribute of the packet.

This is the last stage to be calculated at time of packet transmission.

Interference Noise - Stage 9 This stage calculates noise created by interfering

packets during propagation. If the interfering packet’s channel match attribute

is set to valid or noise then its power will be added to the packet of interest.

The noise level for the interfering packet is also adjusted. Whichever packet is

out in the medium first is deemed the previous packet. The packet beginning

reception during reception of a previous packet is deemed the arriving packet.

One or both of the packets must be valid for this stage to occur. This stage can

be repeated zero or more times depending on the number of interfering packets.

It occurs at time of reception for the previous packet. When the interference

stage is called the packet is effectively broken into packet segments in which

different SNRs and BERs are calculated separately.

Signal-to-Noise Ratio - Stage 10 This stage calculates the SNR for each packet

segment and is repeated one or more times depending on the number of inter-

ferers. It is combined with the bit-error-rate stage and the error-allocation in

an iteration set. The iteration must complete before any stage repeats. The

SNR stage divides the received power by the noise calculated in the interfer-

ence noise stage. This stage occurs after all the interference stages have been
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completed and the packet is fully segmented. The OPNET kernel adjusts the

noise level for each segment and each repetition of the SNR stage.

Bit Error Rate - Stage 11 The BER is calculated here for the packet segment.

The segment length is defined by subtracting the current simulation time by

the last SNR calculation time and then multiplying by the data rate.

Error Allocation - Stage 12 This stage uses the BER calculated in stage 11 and

increments the packet’s bit error counter using probabilistic methods.

Error Correction - Stage 13 In the default radio pipeline this stage simply com-

pares the number of bit errors to a designated threshold and decides whether

the packet is accepted or rejected.

C.2.2 Bus Link Transceiver Pipeline. Unlike the radio pipeline, the bus

pipeline only contains six stages. There are many differences in how the link prop-

erties are managed between the bus and radio links. The default bus link does not

have antenna computations, channel matching or received power computations, nor

does it have SNR or BER calculations. The bus link BER is defined as a constant

performance rating in the network domain bus link attributes. The bus link can

support channels but the channels are modeled as separate wires with no interfer-

ence between them. Figure C.2 shows the bus link transceiver pipeline. Some stages

perform the same basic function such as transmission delay and propagation delay,

however they invoke slightly different methods to calculate their data. Since the bus

transceiver pipeline does not require as many calculations as the radio model, many

transmission data attributes (TDA), present in the radio packet, are omitted from

the bus packet. The TDAs describe certain parameters of the transmission proper-

ties and are attached to each packet. They are retrieved and operated on within the

pipeline [MIL97].

The chief difference between the pipelines, with regards to the goals of this

research, is in the collision stage. As shown in Figure C.2, the collision stage is the
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Figure C.2 Bus Link Transceiver Pipeline Execution Sequence for One Transmis-
sion [MIL97]

only repeating stage in the bus pipeline. Furthermore, the pipeline assumed that

any collision deemed the packet invalid and non-receivable. The rest of the stages

are comparable to their radio transceiver pipeline counterparts.

C.3 DS/CDMA bus pipeline

The DS/CDMA bus pipeline was created by condensing a spread spectrum

signalling version of the 14 stage radio pipeline (created by [Bon01] into a 6 stage

bus transceiver pipeline. The bus pipeline was used in order to utilize the bus mod-

elling characteristics in the OPNET Network domain design. The most significant

alterations are described in Section 3.12.1. The rest of the alterations that created a

DS/CDMA bus pipeline are summarized here. The C code for the DS/CDMA bus

transceiver pipeline is contained on the CDROM submitted with this thesis [Rap02].

Transmission Delay - Stage 0 The essence of this stage remains intact from the

default pipeline, however, additional TDAs for the transmitter are created

and assigned here for the more complex computations needed for a SS bus

implementation.

C-6



Closure and Channel Match - Stage 1 This stage combines the SS implemen-

tations of the same names. The closure stage portion remains intact — all

modelled receivers are eligible for reception. Similar to the closure stage of the

radio model described above, it is in this stage that the packets are duplicated

for the multiple receivers on the bus. Thus, it is possible to assign the neces-

sary transmission data attributes for the created receiver-specific packets. The

channel match stage of the SS implementation is added here in order to assign

match categories (valid, noise, ignore) to the duplicated packets. The channel

match portion sets up the ability to use multiple channels that interact on

the single bus. A packet is valid if its spreading code, modulation, frequency

bandwidth, data rate and code family matches the receivers.

Propagation Delay and Received Power - Stage 2 This stage computes the

propagation delay by calculating the distance between transmitter and receiver

over the bus and setting the appropriate TDA. Next, the power received by

the receiver is computed by attenuating the transmitted power by the cable

attenuation calculation. Background noise is also calculated here and set in

the packet’s TDA. Since the medium is a well shielded copper wire, a very

small ambient temperature is used. The first SNR calculation for the following

packet segment is calculated here so that a SNR calculation time is recorded

to determine packet segment size in the next stage.

Multiple Access Interference, SNR, BER and Error Allocation - Stage 3

Since this is the only stage that repeats, all of the repeating stages used in the

default radio and SS pipelines are incorporated. The BER and Error allo-

cation calculations occur before SNR for they operate on the previous packet

segment, while the SNR operates on the next packet segment. Since all packets

on the default bus pipeline are assumed to be valid, a conditional statement

was added to make sure at least one of the two packets involved in this stage

was valid so that the SNR, BER and Error allocation was only performed on
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the valid packet(s). The noise accumulation operations are similar to those

described above in the default radio pipeline. SS properties are applied and

interference calculations are added to the noise accumulation. Further details

of this stage’s operation were described in Section 3.12.1

Final BER and Error Allocation - Stage 4 This stage performs the final BER

calculations for the last (or only) packet segment and allocates the final errors.

Again, this stage is only performed on valid packets so a conditional statement

ensuring this is added.

Error Correction - Stage 5 Like the default radio and bus pipeline stage of the

same name there is no error correction algorithms currently present in this

stage. It does however, determine whether the packet is accepted by the re-

ceiver. The packet is only accepted if it is deemed valid by the channel match

stage, does not exceed set threshold of bit errors and the receiving node has

not failed.

Another pseudo-stage, Scheduled End of Interference Event, was added as de-

scribed in Section 3.12.1. It performs a BER calculation, allocates errors, and cal-

culates the next packet segment’s SNR if a noise packet ends transmission before

an concurrent valid packet. The interference caused by the noise packet exiting the

channel is decremented in this stage before calculating the new SNR. In the de-

fault radio pipeline, the noise accumulation was decremented automatically by the

OPNET kernel.

C.4 Packet Trace Verification

In order to verify that the DS/CDMA bus model functioned properly, the

stages involved in calculating BER, SNR and allocating errors were examined. A

packet trace was observed on two packets whose matches were valid and noise. The

noise packet was smaller than the valid packet so it began and ended transmission

while the valid packet was being received — a case similar to the example given in
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Figure 3.3. Figure C.3 displays a portion of a packet trace for the two packets. Only

the relevant trace information is shown, breaks from the original trace are shown

with ~’s. The packet trace only shows OPNET function calls involving packets,

so no computational code is displayed. Also, only the interference stage and the

scheduled end of interference event are shown. Verification was performed on the

rest of the stages in a similar manner. Validation efforts described in Chapter 4 also

support the correctness of the rest of the model. Below are the item numbers shown

 
* Time   :  5.0045 sec, [00d 00h 00m 05s . 004ms 500us 
000ns 000ps] 
* Event  :  execution ID (27), schedule ID (#34), type 
(remote intrpt) 
* Source :  execution ID (26), top.Office 
Network.node_2.dsssbus_transmitter 
 (bus transmitter) 
* Data   :  code (0) 
    > Module :  top.Office Network.DSSSBUS Receiver 
Terminal.dsssbus_Receiver (bus receiver) 
 
 * Kernel Action: Bus Receiver object 
   Beginning reception of packet 
                        channel          (0) 
                        packet ID        (3) 
 
* Kernel Action: Bus pipeline 
  Calling (collision) pipeline stage 
                        arriving pk id   (3) 
                        previous pk id   (0) 
~ 
~ 
~ 
 * op_td_get_int (pkptr, tda_index) 
                        packet ID        (0) 
                        TDA index        (33) 
                        TDA value        (2) 
 
* op_td_get_int (pkptr, tda_index) 
                        packet ID        (3) 
                        TDA index        (33) 
                        TDA value        (1) 
 
* op_td_get_dbl (pkptr, tda_index) 
                        packet ID        (0) 
                        TDA index        (34) 
                        TDA value        (0.0) 
 
* op_td_set_dbl (pkptr, tda_index, value) 
                        packet ID        (0) 
                        TDA index        (34) 
                        TDA value        (0.0771567610411) 

 
* op_td_get_dbl (pkptr, tda_index) 
                        packet ID        (3) 
                        TDA attribute    (OPC_TDA_BU_END_RX) 
                       TDA value        (5.005 sec.) 
 
* op_td_get_dbl (pkptr, tda_index) 
                        packet ID        (0) 
                        TDA attribute    (OPC_TDA_BU_END_RX) 
                      TDA value        (5.008 sec.) 
 
~ 
~ 
~ 
 
* Time   :  5.00499999999 sec, [00d 00h 00m 05s . 004ms 
999us 999ns 990ps] 
* Event  :  execution ID (28), schedule ID (#36), type 
(procedure call intrpt) 
* Source :  execution ID (27), top.Office 
Network.DSSSBUS Receiver Terminal. 
dsssbus_Receiver (bus receiver) 
 * Data   :  code (50), state_ptr (0x19DCF28) 
    > Module :  top.Office Network.DSSSBUS Receiver 
Terminal.dsssbus_Receiver (b 
us receiver) 
~ 
~ 
~ 
                * op_td_get_dbl (pkptr, tda_index) 
                        packet ID        (0) 
                        TDA index        (34) 
                        TDA value        (0.0771567610411) 
 
                * op_td_set_dbl (pkptr, tda_index, value) 
                        packet ID        (0) 
                        TDA index        (34) 
                        TDA value        (0.0) 
~ 
~ 
~ 

1 

2 

3 

4 

5 

6 

7 

Figure C.3 Packet Trace for Verification of DS/CDMA Bus Model

in Figure C.3:

1. The beginnings of two different discrete events within the simulation are de-

scribed here, including current time, what object called the event and the
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events’ identification numbers. The first event, shown to the left of the figure,

is the beginning of reception of a noise packet, with packet ID# 3.

2. Item 2 shows that the event called in Item 1 caused the collision pipeline stage

to be called. This item also shows that packet ID# 0 was previously being

received while packet ID# 3 is arriving.

3. The function call here retrieves the match status, TDA index 33, for packet

ID# 0. The value 2, a representative constant, means that packet 0 is a valid

packet.

4. This function call retrieves the match status for packet 3 as 1 or a noise packet.

5. Item 5 displays the incrementing of the noise accumulation, TDA index 34,

value for the valid packet 0. Recall that the noise accumulation is calculated

by the interfering power from the noise packet 3, 0.0772.

6. Item 6 shows function calls that retrieve the end of reception times for packet

3 and packet 0. The end reception times are compared and if the noise packet

3 ends reception before the valid packet, the noise accumulation set in item

5 must be decremented so that an accurate BER calculation can be accom-

plished on the non-interfered tail of the valid packet 0. In this case, packet

3 ends reception before packet 0 and an event is scheduled at packet 3’s end

of reception to decrement the noise and calculate the BER for the interfered

segment.

7. Item 7 occurs in the scheduled event mentioned above and shows a function

call to retrieve the noise accumulation for packet 0 and decrement it by the

noise value of packet 3 since it ended reception.

C.5 Summary

This appendix gave a brief overview of OPNET and its transceiver pipelines

for the radio and bus communication links. It described how these pipelines and
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the SS radio pipeline devised by [Bon01] were incorporated and modified for a bus

implementation of a DS/CDMA LAN. It also verified that the functionality of the

newly designed transceiver pipeline used in this research.
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Appendix D. Setting 6 Analysis

This section presents analysis on the 3dB bandwidth of setting 6. It shows that the

3dB measurements made on setting 6 were not reliable as described in Section 4.1.3.

A theoretical approximation of the 3dB bandwidth is found for the setting and

compared to the measured 3dB bandwidth.

The general shape of a single-sided power spectral density, Gx(f) for digital

data is

Gx(f) = Tsinc2(f − fc)T (D.1)

where f is all frequencies, fc is the carrier wave frequency and T is the pulse duration.

For setting 6, which is a spread spectrum signal, T is replaced by the chip

duration, Tc. To find the 3dB bandwidth, or the half-power bandwidth, (D.1) is set

equal to Tc

2
. After substituting x for the argument, as shown in (D.2) we can solve

for x by graphing the sinc2(x) function and finding the x value where the function

value equals 1
2
.

sinc2(x) =
1

2
(D.2)

Using matlab to plot the function, x was found to be 0.443. Replacing x by

the original argument we have

x = (f − f0) · Tc =
(f − f0)

Rc

=
(f − (5MHz))

Rc

= 0.443 (D.3)

where 5 MHz equals, f0, the carrier frequency. With Rc of setting 6 theoretically

equal to 21.3 MHz, f, solves to 14.4359 which is the frequency that represents the

half power point of the spread spectrum, or f3dB. The theoretical bandwidth is

BW3dB = 2 · (f3dB−fo). (D.4)

D-1



BW3dB equals 18.9 MHz. However, since part of the spectrum is in negative

frequencies, the positive BW3dB equals 14.9 which is considerably larger than the

measured values, 4-6.8 MHz shown in Section 4.1.3. Thus, the measured values are

considered inaccurate and setting 6 is dropped from further analysis.
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