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Abstract 

Past research (Oshiba, 1997) has shown that there is a rising public concern with 

environmental issues in the Republic of Korea (ROK). As Korean government and public 

interest in the environment grow, there is likely to be increased pressure to remediate 

environmental contamination at United States Department of Defense (DoD) installations 

in Korea. Impacting DoD's ability to remediate contaminated sites overseas is the fact 

that limited environmental funds must compete with high priority mission requirements. 

Thus, particularly at overseas bases, there is an urgent need for inexpensive and effective 

groundwater remediation technologies. 

This study focused on the containment of groundwater contaminated with 

chlorinated solvents in the fractured rock aquifers that are commonly encountered at DoD 

installations in the ROK. Horizontal Flow Treatment wells (HFTWs) were analyzed as a 

potentially cheaper, safer, and more effective technology for the containment of 

chlorinated solvent contaminated groundwater. Both hydrogeologic and design 

parameters were varied to determine their effects on the technology performance. 

From this study, it was determined that an HFTW numerical model developed for 

porous media is appropriate for application in the fractured systems encountered in the 

ROK, and that HFTWs have the potential to be a cost effective alternative for 

contaminant management in fractured media when compared to conventional 

technologies. Model analysis indicated HFTWs might be appropriate for containing 

contaminant plumes in the ROK, though bypassing of system may be problematic. 

XI 



AN ANALYSIS OF HORIZONTAL FLOW TREATMENT WELL APPLICABILITY 

FOR THE REMEDIATION OF CHLORINATED SOLVENT CONTAMINATED 

GROUNDWATER AT UNITED STATES FORCES KOREA INSTALLATIONS 

1     Introduction 

1.1    Motivation 

Past research has shown that there is rising public concern with environmental 

issues in the Republic of Korea (ROK) and that as Korean government and public interest 

in the environment grow, there is likely to be increased pressure to remediate 

environmental contamination at United States Forces Korea (USFK) installations 

(Oshiba, 1997). A failure by the US to be viewed as a good steward of the environment 

by the Korean government and public could eventually threaten US access to the land, 

air, and sea resources in the ROK that are critical to the success of US defense policy. In 

fact, one point that has repeatedly been made by Korean groups protesting the US 

military in Korea has been the degradation of the environment that has resulted from the 

US presence (Kang, 2001; Lee, 2001a; b; Shin, 2001b; Son, 2001). While the current 

mutual defense treaty and Status of Forces Agreement (SOFA) between the US and ROK 

governments do not require remediation of environmental contamination at USFK 

installations, changes in US remediation policy were seen in recent negotiations, which 

amended the SOFA, in part to address environmental pollution around USFK bases (US 

Embassy Tokyo, 2000; DoD, 2001; Lea, 2001). 

The newly agreed to SOFA required the US and ROK to sign a memorandum of 

special understanding to include cooperative measures for environmental protection (US 



Embassy Tokyo, 2000; Lea, 2001).   Under the new memorandum, the United States is 

required, among other things, to review and update Environmental Governing Standards 

biennially for the purpose of accommodating more protective rules and standards, consult 

with the ROK on any risks posed by environmental contamination on USFK facilities or 

in communities adjacent to such facilities, and promptly undertake actions to remedy 

contamination caused by United States Armed Forced in Korea that poses a known, 

imminent and substantial endangerment to human health (DoD, 2001). 

The SOFA and memorandum of special understanding negotiations came after 

precedents were set at other US military installations overseas where the US funded 

remediation efforts or paid substantial penalties for returning contaminated installations 

to the host nations (Oshiba, 1997). The latest precedent came on 17 May 2001, when the 

House of Representatives passed an amendment to the Foreign Relations Authorization 

Act for Fiscal Years 2002 and 2003 that supports an assessment to examine 

environmental problems resulting from former US military facilities in the Philippines 

(Brooks, 2001; Gault, 2001). These precedents seem to indicate that it may just be a 

matter of time before the US DoD becomes responsible for remediation of environmental 

contamination at its ROK installations. 

Outlining actions necessary for the turnover of US facilities to a foreign 

government, AF1 32-7006 states, "Depending on the terms of the governing international 

agreement, environmental cleanup costs for US caused environmental contamination may 

be included in the host nation's overall damage claim." (AF, 1994) The amended SOFA 

does not include the requirement for cleanup or compensation in situations other than 

those that pose an imminent threat to human health, but the memorandum includes 



provisions to change this. Such a change in remediation requirements could pose 

substantial budgetary impacts to USFK installations. 

Past research has found evidence of chlorinated solvent spills penetrating aquifers 

and contaminating groundwater at USFK installations (Hartman, 1999). Contaminants 

dissolved in groundwater can be transported to both environmental and human receptors. 

Chlorinated solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE), and 

their degradation products, are characterized as possible carcinogens by the 

Environmental Protection Agency (EPA, 1995b). These solvents have maximum 

contaminant levels (MCLs) established by the EPA under the Safe Drinking Water Act. 

These MCLs specify the maximum concentration levels of the contaminants that are 

acceptable in drinking water. At Osan AB in the ROK, TCE has been detected in 

groundwater wells at concentrations of 83 (Xg/L, 17 times its MCL, and vinyl chloride at 

concentrations of 20 (Xg/L, ten times its MCL (Osan AB CE, 2001). In the event of 

contingency operations and a massive build-up of manpower at USFK bases, these wells 

may be utilized to provide drinking water to US troops. Additionally, groundwater could 

transport these contaminants off USFK installations, polluting civilian water sources. 

There is therefore a need to control the spread of contamination in the ROK, ensuring the 

drinking water provided by wells does not pose a threat to human health and mission 

capability. 

The Department of Defense's (DoD) ability to remediate contaminated sites 

overseas is hindered by the availability of money. While continental US (CONUS) based 

remediation efforts are financed by Congress through the Defense Environmental 

Restoration Program (DERP), the use of DERP funds is prohibited at overseas bases 



(Griffm, 1998).   The remediation of contaminated sites overseas must be paid for using 

the operation and maintenance (O&M) funds for that base or command and must 

compete with other mission requirements and installation priorities. Thus, particularly at 

overseas bases, there is an urgent need for inexpensive and effective groundwater 

remediation technologies. 

1.2    Background 

There are two basic strategies for managing contaminated groundwater: removing 

the contaminant source or containing the plume generated by the source (Mackay and 

Cherry, 1989). A chlorinated solvent, when spilled, moves as a separate phase liquid. 

Since these solvents are heavier than water, they are known as dense non-aqueous phase 

liquids or DNAPLs. DNAPLs often sink to the bottom of aquifers, leaving residual 

contaminant "blobs" as they travel through the aquifer, and pooling atop low 

permeability formations. A DNAPL contamination plume source area is very difficult to 

cleanup (or even locate, for that matter). Since there is such difficulty in removing the 

source, remediation typically depends upon containment of the groundwater "plume" of 

dissolved contaminant (Mackay and Cherry, 1989). Containment involves intercepting 

the plume and treating the water in a treatment system to levels that do not pose a human 

or environmental hazard. 

There are three commonly used methods for containing groundwater plumes of 

chlorinated solvents: pump-and-treat, permeable reactive barriers (PRBs), and natural 

attenuation. Pump-and-treat systems pump water from contaminated aquifers to 

aboveground treatment facilities for remediation. The treated effluent can then be used, 

discharged to surface water, or returned to the aquifer (Stoppel, 2001). An advantage of 



the system is its ability to actively capture a contaminated groundwater plume that may 

be located at a considerable depth below the ground surface. However, disadvantages are 

the costs and risks of bringing contaminated water to the surface. 

PRBs are often configured as a "gate" in a funnel-and-gate configuration. The 

PRB gate is filled with a reactive media (typically consisting of zero-valent iron and sand 

or gravel). Contaminated groundwater is directed towards the gate through strategically 

located piles (the "funnel"). As the groundwater contaminated with a chlorinated solvent 

passes through the gate, the contaminant is chemically or biologically destroyed. An 

advantage of the funnel-and-gate system is that the remediation is conducted in situ (that 

is, in place in the subsurface), avoiding collection and disposal problems. However, 

clogging can occur in the PRB due to precipitation or biological growth, and since the 

technology is passive (there is no active pumping) the possibility exists for the 

contaminant plume to bypass the PRB (Stoppel, 2001). In addition, the depth to which 

the PRB can be installed is typically limited to a depth not exceeding 10 meters (Vidic 

and Pohland, 1996), so the technology is not applicable for deep groundwater plumes. 

Natural attenuation relies upon physical, chemical, and biological processes 

occurring in the subsurface to destroy the contaminant. The EPA defines monitored 

natural attenuation as: 

.. .the reliance on natural attenuation processes (within the context of a 
carefully controlled and monitored clean-up approach) to achieve site- 
specific remedial objectives within a time frame that is 
reasonable... [They] include a variety of physical, chemical, or biological 
processes that.. .act without human intervention to reduce mass, toxicity, 
mobility, volume, or concentration of contaminants in soil and 
groundwater. (EPA, 1997) 



While natural attenuation may be effective if the appropriate subsurface conditions exist, 

the process may take too long to be protective of human health and the environment 

(Young, 2001). In addition, the hydrologic and geochemical conditions favoring 

significant biodegradation of chlorinated solvents sufficient to achieve remediation 

objectives within reasonable time frames are only anticipated to occur in limited 

circumstances (EPA, 1997). Additionally, some geologic formations such as fractured 

bedrock aquifers or limestone areas are not likely candidates for natural attenuation due 

to unpredictable ground water flow and difficulty in predicting the movement of 

contaminants (EPA, 1996). Other disadvantages include costly site characterization and 

negative public views, since relying on natural attenuation is often seen as a do-nothing 

approach (EPA, 1998a). 

Horizontal flow treatment wells (HFTWs) are an innovative technology that is 

being considered for use in containing groundwater contamination. HFTWs rely upon 

pairs of dual-screened treatment wells, with one well pumping in an up flow mode and 

the other in a down flow mode. Since they are dual-screened wells, the water will 

circulate between the wells (Figure 1.1). With each pass of water through a well, the 

contaminated groundwater is treated to a certain extent, determined by the in-well 

treatment technology. Due to the recirculation between wells, contaminated groundwater 

is treated multiple times, so overall contaminant treatment (comparing contaminant 

concentrations upgradient and downgradient of the HFTW system) is greater than 

treatment achieved by a single pass of contaminated water through a single treatment 

well. 
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An HFTW system achieves active containment with in situ treatment, thereby 

combining the best characteristics of both the pump-and-treat and funnel-and-gate 

systems. Additional advantages of the HFTW system are: 

.. .(1) the costs and risks of pumping contaminated groundwater to the 
surface are avoided, (2) no aboveground treatment system is required, (3) 
the contaminant is destroyed and not simply concentrated in another 
medium for disposal, (4) disposal of treated groundwater is not an issue, 
and (5) uncontaminated groundwater is not wasted by being brought into 
the contaminated zone as generally occurs in pump-and-treat systems. 
(McCarty, 1998) 

HFTWs that incorporate either in-well catalysts or bioreactive zones have been 

proposed to contain chlorinated ethene contaminated groundwater (Christ, 1997; Stoppel, 

2001; Christ et ai, 1999; McCarty et ai, 1998). HFTWs have already shown the 

potential, in CONUS evaluations, to be a cheaper, safer, and more effective technology 

for the remediation of chlorinated solvent contaminated groundwater, with removal 

efficiencies of 97 - 98% (McCarty et ai, 1998; Christ, 1997). Since the remediation is 

performed in situ, HFTWs have small aboveground footprints making them attractive for 

use in the ROK due to limited land availability. Thus, this study will focus on the 



remediation of groundwater contaminated with chlorinated solvents at DoD installations 

in the ROK utilizing HFTWs as a cheaper, safer, less obtrusive, and more effective 

technology. 

1.3 Research Objective 

Remediation in the ROK must meet space and funding constraints while being 

safe and effective. The goal of this research will be to examine conditions at USFK 

installations in Korea to see if HFTWs might be an appropriate remediation technology to 

deploy there. In order to accomplish this, the research will focus on the following 

questions: 

1. Under what site conditions does HFTW technology out-perform other technologies 

(considering operating and installation costs, efficiency, and safety)? 

2. What are the characteristic site conditions at USFK installations in Korea? 

3. Assuming HFTWs are appropriate, how can HFTW technology be applied at USFK 

installations in Korea? 

1.4 Scope and Limitations 

The research is limited to the evaluation of HFTW applicability in the ROK for 

the treatment of chlorinated solvent contaminated groundwater. The data produced by 

this study will provide remediation program managers with information on HFTW 

performance under hydrogeologic conditions encountered in the ROK. 

Specific limitations are as follows: 

1.   Analysis of HFTW performance is based on a single field study of HFTWs that was 

conducted at Edwards Air Force Base in California (McCarty et ah, 1998). 



2.   Contaminant and hydrogeologic data from US installations in the ROK are somewhat 

sparse, for the reasons discussed in Section 1.1. Data that are available, from either 

US or ROK sources, will be used to make generalizations regarding contaminant 

hydrogeology at USFK installations. 



2     Literature Review 

2.1 Introduction 

In this chapter, we review literature related to the remediation of chlorinated 

solvent contaminated groundwater in the Republic of Korea (ROK). In the first section, 

we review conditions in the ROK relevant to remediation of subsurface contamination at 

US installations. In the second section, we examine technologies appropriate for the 

containment and treatment of chlorinated solvent contaminated groundwater, with an 

emphasis on how the technologies might be applied under the conditions found in the 

ROK. In the third section, we present case studies where technologies were used to treat 

chlorinated solvent contaminated groundwater under hydrogeologic conditions similar to 

those encountered in the ROK and present modeling techniques that may be used to 

simulate contaminant fate and transport under those same hydrogeologic conditions. 

2.2 Conditions in Korea relevant to remediation of subsurface contamination at 
US installations 

In this section, we review both the "social" (e.g. political, regulatory) and 

physical conditions that affect management and remediation of subsurface contamination 

at United States Forces Korea (USFK) bases located in the ROK. 

2.2.1    Regulatory/Policy 

Current policies regarding contaminant remediation at US facilities in the ROK 

are primarily the result of Article IV of the Mutual Defense Treaty between the Republic 

of Korea and the United States of America, regarding Facilities and the Status of the 

United States Armed Forces in the Republic of Korea (henceforth referred to as the 

Status of Forces Agreement or SOFA). Article IV of the SOFA states: 

10 



The government of the United States is not obliged, when it returns 
facilities and areas to the Government of the Republic of Korea on the 
expiration of this Agreement or at an earlier date, to restore the facilities 
and areas to the condition in which they were at the time they became 
available to the United States armed forces, or to compensate the 
Government of the Republic of Korea in lieu of such restoration. (USAF, 
1981) 

It is important to note that the current SOFA explicitly states that the US will not 

be monetarily liable for remediation costs. Further guidance can be found in Department 

of Defense Instruction 4715.5, Management of Environmental Compliance at Overseas 

Installations. This instruction states that funds for environmental remediation will be 

allocated only if leaving spill sites unremediated will pose "(a)n imminent and substantial 

threat to human health." (DoD, 1996) Air Force Instruction (AF1) 32-7006, 

Environmental Program in Foreign Countries, discusses the four environmental pillars: 

cleanup, compliance, conservation and pollution prevention. It states that the Air Force 

is responsible for executing cleanup projects to the point that contamination no longer 

poses an imminent and substantial danger to human health and safety and as needed to 

sustain current operations unless the Air Force is bound by international agreement to do 

more (USAF, 1994). 

While the current mutual defense treaty and Status of Forces Agreement (SOFA) 

between the US and ROK governments do not require remediation of environmental 

contamination at USFK installations, increasing pressure to change US remediation 

policy was seen in recent negotiations which amended the SOFA in part to address 

environmental pollution around USFK bases. The newly agreed to SOFA required that 

the US and ROK sign a memorandum of special understanding to include cooperative 
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measures for environmental protection (Lea, 2001). Under the new memorandum, the 

United States is required to: (1) review and update Environmental Governing Standards 

biennially for the purpose of accommodating more protective rules and standards; (2) 

work together and exchange information that could effect the health and environment of 

the Republic of Korea and USFK members; (3) consult with the ROK on any risks posed 

by environmental contamination on USFK facilities and areas, or in communities 

adjacent to such facilities and areas by conducting periodic environmental performance 

assessments that examine, identify and evaluate USFK operations in order to minimize 

adverse environmental effects; (4) plan, program, and budget for these environmental 

requirements accordingly; and (5) promptly undertake actions to remedy contamination 

caused by United States Armed Forced in Korea that poses a known, imminent and 

substantial endangerment to human health (DoD, 2001). Robert T. Mounts, the US 

SOFA secretary in Seoul, stated: 

We now have an agreed minute that says both the United States and South Korean 
governments recognize the importance of environmental protection, that we 
commit to implement the SOFA consistent with protection of the environment 
and health and we will conform our policy to respect South Korean environmental 
laws (Lea, 2001). 

The SOFA and memorandum of special understanding negotiations came after 

precedents were set at US military installations in Germany, Canada, and Panama, where 

the US either funded remediation efforts or paid substantial penalties for turning 

contaminated installations back to the host nations (Oshiba, 1997; Shin, 2001). Even 

more recently, on 17 May 2001, the House of Representatives passed an amendment to 

the Foreign Relations Authorization Act for Fiscal Years 2002 and 2003. The 

amendment supports an assessment to examine environmental contamination and health 
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effects emanating from former US military facilities in the Philippines (Brooks, 2001; 

Gault, 2001). While not directly related to US activities in Korea, the amendment, taken 

in conjunction with the precedents set in Germany, Canada, and Panama, indicates that 

there is the possibility that the US will accept responsibility for remediation of 

contamination at DoD installations in Korea sometime in the future. A more in depth 

review of US Department of Defense environmental remediation policies in the ROK can 

be found in Oshiba's (1997) thesis. 

2.2.2    Political 

The Korean public has become increasingly aware of environmental conditions at 

USFK installations. In fact, one result of this increasing awareness was the revised SOFA 

discussed above. Two recent incidents served to demonstrate the sensitivity of the 

Korean public toward environmental contamination at USFK installations. The first 

incident involved the dumping of formaldehyde into the Han River in Seoul via the storm 

sewer (Kim, 2001; Shin, 2001; Son, 2001). After the source of the formaldehyde was 

discovered to be the US 8th Army Mortuary, civic groups protested and delivered a letter 

to the Korean government requesting a case be opened against the deputy chief of the 

mortuary (Lee, 2001; Son, 2001). The Korean government opened a case, and is pushing 

for jurisdiction to try the deputy chief of the mortuary under an indictment by a summary 

court. Korean Trade Ministry officials state that Article 22 of the Agreed Minutes of the 

ROK-US SOFA, which covers criminal acts by civilians, grants Korean courts 

jurisdiction (Son, 2001). United States Forces Korea (USFK) responded to the charges 

with an official apology from the commander of the 8th US Army, and an explanation 

that the chemical posed no hazard to the environment if diluted in water. The second 

13 



incident involved a fuel spill that polluted over 6,000 square meters of farmland at Camp 

Long (Lee, 2001). As in the Han River case discussed above, civic leaders again filed a 

complaint with the government asking that negligent USFK personnel be indicted (Lee, 

2001). 

In addition to the increased public awareness, as illustrated above, some 

environmental groups are taking action, like conducting fact-finding surveys to determine 

the extent of pollution surrounding USFK bases. In the Kyonggi province, the provincial 

government recently teamed with an environmental group to survey pollution at 14 US 

bases in the province (Kang, 2001). The survey will look at all types of pollution, 

including oil, noise, and the dumping of wastewater and solids. Provincial leaders are 

hopeful that this survey will result in movement toward a stricter environmental policy 

than what is currently in the SOFA, which they claim lacks concrete steps for (1) 

punishing USFK members responsible for polluting the environment and (2) collecting 

compensation for environmental damage (Kang, 2001). 

2.2.3    Contaminant hydrogeology 

Site data obtained by Hartman (1999) and Lee (1999) indicate relatively uniform 

hydrogeologic patterns in the ROK. Site geology can be characterized as (sequentially 

from the surface) alluvium and/or reclaimed soil, 5-30' thick, and bedrock consisting of 

biotite schist, gneiss, or granite (Lee, 1999; Hartman, 1999). Groundwater depths 

typically range from 2-15' below ground surface. Corings and well drilling logs at Camp 

Long and Osan AB show that the groundwater flows through fractured media that can be 

water bearing up to 900 feet below the overburden. A representative well drilling log is 

presented in Figure 2.1 from a contaminated well at Osan AB. Additional drilling logs 
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from Osan AB that were used to characterize the hydrogeology of the site can be found in 

Appendix 1. 
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Figure 2.1: Soil data from well at Osan AB, ROK 

Fractured media systems behave differently than porous media, in that the water 

flow is generally attributed to discrete fractures. Fractures in rock aquifers can be caused 

by: 1) response to faulting or folding, 2) deep erosion of overburden that can cause 

differential stress, or 3) rock volume shrinkage or expansion due to temperature 

differentials and water loss or gain (Domenico and Schwartz, 1998). Weathering can 

increase bedrock fracture density three to four orders of magnitude over unweathered tills 

(Domenico and Schwartz, 1998). The well boring logs at Osan AB (see Appendix 1) 

support that the bedrock is weathered to differing depths. 
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Information gathered by Hartman (1999) and information provided by the Army 

Corps of Engineers Far East District identify some of the contaminants located at USFK 

installations. While the site characterization of all USFK bases for contaminant type, 

amount, and plume extent is incomplete, the available information is believed to be 

representative of the contaminant types at various USFK installations. The predominant 

contaminant present was fuel hydrocarbons, though chlorinated solvent contamination 

appeared as well, particularly at the two Air Force main operating bases, Osan and 

Kunsan. At Osan, there is evidence of chlorinated solvents penetrating deep within the 

fractured media, making source removal impracticable (NRC, 1994; Osan AB CE, 2001). 

Nine locations were characterized as being chlorinated solvent sources at the two bases 

combined, indicating a potentially widespread problem at all USFK bases (Hartman, 

1999; Osan AB CE, 2001). 

Characteristic well depths at Osan AB range from 200' to 400' (Figure 2.2). The 

upper portions of the wells that run through the overburden (50'-60' in depth) are 

typically cased. The lower portions drilled into the fractured bedrock are not screened, 

but rather left open to the bedrock. Samples taken from these wells contain TCE at 

concentrations of 83 (xg/L and vinyl chloride at concentrations of 20 (xg/L (Osan AB CE, 

2001). Note, however, that these sample concentrations are essentially vertically 

averaged over the uncased depths of the wells. When the wells are pumping, dynamic 

water levels that are 100' to 200' below ground surface have been measured. Thus, the 

detection of contaminants in water samples from the wells indicates that contamination is 

relatively deep (below the dynamic water level). Due to mixing in the well bore, it is 

also likely that contamination levels at certain depths are much higher than the 
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concentrations measured in the samples, which, as noted above, have been vertically 

averaged. These high concentrations are probably found in permeable zones (where the 

fractures are numerous and connected), where water flow and contaminant transport is 

relatively rapid (Figure 2.2). 
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Figure 2.2: Well construction detail showing: (a) low permeability zone and (b) high 
permeability zone (numerous fractures with high connectivity) 

When an organic contaminant such as TCE is spilled, pure phase chemical 

(known as non-aqueous phase liquid or NAPL) is transported through the vadose zone to 

the water table. In a typical spill, most of the contaminant is in the NAPL phase and 

chemical in the dissolved phase represents only a small fraction of the total contaminant 

present. Thus, one of the primary challenges of groundwater remediation is the removal 
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of the separate phase NAPL that serves as a subsurface source, which allows plumes of 

dissolved contaminant to grow and persist. When the source cannot be removed 

effectively, containment of the dissolved plume becomes the goal. Particularly for dense 

NAPLs (DNAPLs) like TCE and other chlorinated solvents, which due to the fact that 

they have a specific gravity greater than unity sink below the water table, there has been 

little success locating or removing the sources. Thus, remediation for aquifers 

contaminated by DNAPLs often relies upon containing the dissolved plume, rather than 

removing the source (Mackay and Cherry, 1989). 

When NAPL enters fractured systems, it flows mainly through interconnected 

fractures and settles out in dead-end segments of the fracture system. NAPL can move 

deep and far into the rock, entering dead-end fractures and eventually becoming 

immobile. The prognosis for cleanup of fractured rock aquifers, particularly those 

containing NAPLs, is worse than for sand and gravel aquifers because of the contaminant 

immobility, leaving containment of the plume as the only viable management option 

(Mackay and Cherry, 1989). 

2.3    Chlorinated solvent contaminant plume remediation technologies 

The goal of groundwater remediation is to reduce contamination in an aquifer to 

levels that are protective of human health and the environment at the lowest cost and in 

an expeditious manner (Bumb, 1997). In order to accomplish this goal, remediation 

practices should focus on removing the contaminant mass that serves as a subsurface 

source, which causes plumes to grow and persist, rather than simply removing the mass 

of dissolved contaminants that defines the plume (Mackay and Cherry, 1989). However, 

as noted above, data collected from bases in the ROK show that spilled chlorinated 



solvents have penetrated through the overburden and are present deep within the 

fractured media, making source removal difficult if not impossible. Therefore, this thesis 

will concentrate on containment of the plume versus source removal. A plume 

containment system should: (1) capture and treat the contaminated ground water plume, 

(2) not increase the areal extent of soil contamination by inducing flow of contaminants 

through uncontaminated aquifer media, and (3) minimize the aboveground "footprint" of 

the system (Bumb, 1997). 

This section reviews the most common strategies and technologies that are 

employed to contain plumes of groundwater contamination. In addition to explaining the 

principles of operation, this section will review the application of these technologies and 

strategies in fractured media systems. 

2.3.1    Pump-and-treat 

Pump-and-treat systems are based on a relatively simple process. Wells are 

placed into an aquifer and contaminated water is pumped to the surface where it is 

subsequently treated. After treatment, the water can be discharged into surface water 

bodies, re-injected into the aquifer, or percolated back into the aquifer using recharge 

trenches (Mackay and Cherry, 1989; NRC, 1994). As a result of pumping contaminated 

water, clean water is drawn into the site, often reducing the contaminant concentrations. 

A leveling of concentration, and a gradual decline that can take decades, follows the 

initial contaminant reduction (Mackay and Cherry, 1989; Cartwright, 1991). Pump-and- 

treat systems can be used to either control contaminant migration, or to remove the 

contaminant source. Since source removal in the fractured aquifer systems found in the 

ROK is infeasible, containment is the goal. Thus, a pump-and-treat system should be 
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designed and installed to minimize pumping while controlling the spreading of the plume 

(NRC, 1994). 

2.3.1.1 Advantages 

Pump-and-treat technology has been in widespread use since 1985 (NRC, 1994) 

and dominates the field of contaminated aquifer remediation (Cartwright, 1991). As 

such, it is the most thoroughly researched and documented technology, widely accepted 

by regulators and the groundwater remediation community (Shanley, 1996; Roote et ah, 

1997). It has been applied with limited success in fractured media aquifers in the past as 

a means of containment (Gaule et ah, 1993; Mackay and Cherry, 1989; NRC, 1994). 

Case studies for containment in fractured systems using pump-and-treat are presented in 

section 2.4. 

The principal advantage of pump-and-treat is that it is an active system. 

Pumping controls plume migration, minimizing the chance of the contaminant bypassing 

the system due to changing hydrogeologic conditions (Stoppel, 2001). In addition, 

standard hydrogeologic and engineering practices make the systems relatively easy to 

design (Roote et ah, 1997). 

2.3.1.2 Disadvantages 

The ubiquity of pump-and-treat remediation systems has encouraged numerous 

reviews of their performance. Pump-and-treat wells, through active pumping, can lower 

the concentration of contaminants due to mixing of contaminated water with 

uncontaminated water. This contamination of previously uncontaminated water is a 

disadvantage of pump-and-treat (McCarty et ah, 1998). An additional disadvantage of 

pump-and-treat systems is the requirement to pump contaminants to the surface for 
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collection or destruction (Christ, 1999; Ferland, 2000;). The long-term operation of a 

pump-and-treat system is often expensive due to the energy used to pump and treat large 

volumes of water and effluent disposal costs (Mackay and Cherry, 1989; Roote et ah, 

1997). 

Pump-and-treat, although it has been applied in the past, has not been entirely 

successful in the containment of chlorinated solvents in fractured media aquifers and may 

not be an appropriate strategy (Gaule et ah, 1993; Mackay and Cherry, 1989; NRC, 

1994). Case studies presented in section 2.4 indicate contaminant transport occurs slowly 

due to limited solubility, and large volumes of water must be treated in order to achieve 

containment for the duration. 

2.3.2    Natural attenuation 

Natural attenuation relies on naturally occurring physical, chemical, and 

biological processes to reduce the risk posed by groundwater contamination to acceptable 

levels (EPA, 1996). Natural attenuation can destroy contaminant mass through 

biodegradation and chemical transformations, or non-destructively remove contaminants 

through dilution, dispersion, and adsorption (EPA, 1996). In studies involving 

chlorinated solvents, microbially mediated dehalogenation occurred without intervention, 

potentially protecting human health and the environment (Stoppel, 2001). 

Implementation of natural attenuation as a remedy at a site, according to Murray et ah 

(1999), should be accompanied by assurances that the process will protect human health 

and the environment and achieve remediation goals within a reasonable time frame. 
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2.3.2.1 Advantages 

The EPA (1996) cites several reasons why natural attenuation may be 

advantageous. The primary reason is that it can be effective and inexpensive. Although 

sometimes labeled as a "do nothing approach," natural attenuation is in reality a proactive 

process of confirming and monitoring the natural elimination of contaminants. Under 

proper site conditions, in situ remediation occurs, allowing the use of land above the 

contaminant plume. Additionally, because the contaminant is being treated non- 

invasively, no construction or mechanical system costs are incurred, and no energy 

source is required for pumping water (EPA, 1996). 

2.3.2.2 Disadvantages 

In addition to sometimes being seen as a "do nothing approach" by the public, 

natural attenuation has several limitations and disadvantages that are a result of 

contaminant hydrogeology. The principal disadvantage is the long amount of time it may 

take natural processes to rid an aquifer of a contaminant (Ferland, 2000; Stoppel, 2001; 

Murray et ah, 1999). The Office of Solid Waste and Emergency Response (OSWER) 

states that "the hydrogeologic and geochemical conditions favoring significant 

biodegradation of chlorinated solvents sufficient to achieve remediation objectives within 

a reasonable timeframe are anticipated to occur only in limited circumstances" (OSWER 

Directive 9200.4-17P, 1999). Also, in the case of chlorinated solvent contamination, 

natural attenuation can sometimes create daughter products that are more harmful than 

the primary contaminant (Wiedemeir et ah, 1998). 

Determining if natural attenuation is appropriate for a site and monitoring the 

contamination to assure natural attenuation is operating can incur significant costs, and 
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the results of such investigations may yield inconclusive results (EPA, 1997; Wiedemeir 

etal, 1998). 

Based on the above, it appears that natural attenuation is not an appropriate 

strategy to apply to chlorinated solvent contamination in fractured bedrock aquifers. 

Even under the best conditions, natural attenuation of chlorinated solvents is problematic. 

In a fractured aquifer, with unpredictable groundwater flow and difficult and expensive 

monitoring conditions, using natural attenuation as a chlorinated solvent remediation 

strategy would most likely be infeasible. 

2.3.3    Permeable reactive barriers 

One method for containing a contaminant plume is through the use of a permeable 

reactive barrier (PRB). A PRB is a permanent, semi-permanent, or replaceable unit 

placed across the flow path of a contaminant plume. Passive in situ treatment occurs 

when reactive material degrades or immobilizes contaminants as groundwater flows 

through it. Natural gradients transport the contaminants through strategically placed 

treatment media (EPA, 1999). PRBs can be installed so as to intercept the entire width of 

the plume, or the amount of reactive media can be minimized through utilizing a system 

known as a funnel-and-gate. With a funnel-and-gate, impermeable slurry walls or sheet 

piles are installed to funnel the contaminated groundwater flow into a PRB (the gate). A 

hanging gate that does not penetrate all the way to a lower confining layer can be used 

for shallow plume containment (for example, for containing a plume from an LNAPL 

source), while a fully penetrating gate may be needed for containment of a deep plume, 

as is shown in Figure 2.3. 
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Figure 2.3: Fully penetrating and hanging gate PRB configurations 

The type of PRB determines how containment is achieved. Contaminant 

containment or destruction in the PRB can occur through: volatilization, microbial 

degradation, adsorption, chemical oxidation, metal-enhanced dechlorination, and metal 

precipitation. The type of contaminants in the groundwater will determine the amount 

and types of PRBs necessary (Starr and Cherry, 1994; Grindstaff, 1998; Blowes, 2000; 

Sedivy, 1999). Blowes et ah, (2000) reported that the costs associated with the design, 

installation, site rehabilitation, and monitoring of a funnel-and-gate or PRB should 

provide treatment at costs comparable to other treatment methods. 

2.3.3.1   Advantages 

PRB technologies have many of the same advantages of natural attenuation since 

in situ remediation is occurring with little or no impact on the surface, minimal operating 

and maintenance costs during operation, and no energy costs due to pumping. PRBs are 

advantageous over natural attenuation since the water is attenuated while flowing through 

the barrier, greatly reducing treatment time. The funnel-and-gate technology enables 
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rapid construction, and a reduced volume of reactive media required as compared to a 

PRB that intercepts the entire plume width (Roote et ah, 1997; Sedivy et ah, 1999). 

2.3.3.2   Disadvantages 

While the PRB system has many advantages, it unfortunately is useful for only a 

narrow range of hydrologic conditions. The installation depth is limited due to cost and 

construction constraints, and typically does not exceed 10 meters (Vidic and Pohland, 

1996; Stoppel, 2001). Variations in groundwater flow over time can also allow the 

contaminant to bypass the treatment system (McMahon et ah, 1999; Ferland, 2000; 

Stoppel, 2001). There are several conditions which may arise within the PRB that could 

impact the efficiency of the system: (1) microbial and precipitate clogging that could 

decrease porosity (Grindstaff, 1998; Blowes et ah, 2000), (2) preferential channeling of 

water through the PRB could deplete reactants in those zones more rapidly, and (3) the 

method by which the contaminant is removed may require eventual removal of 

contaminants from the PRB media or replacement of the PRB (Blowes et ah, 2000). A 

further disadvantage is the fact that once a PRB is emplaced, the technology can only be 

modified with great difficulty and expense.    If the contaminant concentration or the flow 

of groundwater into the barrier exceeds design parameters, the only remedy is to modify 

the barrier, unlike a pump-and-treat system, where the pumping rate could be adjusted. 

Starr and Cherry (1994), however, point out that installing multiple or sequential 

treatment barriers could remedy this. 

Due to depth limits of PRB technology, it seems unlikely that it would be 

practical for conditions in Korea, where contaminant has been found at considerable 

depth. 
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2.3.4    HFTWs 

Unlike the technologies previously discussed, which are in common use, HFTWs 

are an innovative technology that has only been tested at Edwards AFB in California. 

HFTWs consist of two or more dual screened wells alternately pumping in up flow or 

downflow modes. In a two-well system, one well will operate in the upflow mode lifting 

water from the lower portion of an aquifer into the upper portion, while the other well 

will pump in a downflow mode, injecting water from the upper portion of the aquifer into 

the lower portion, as is shown in Figure 2.4. Aquifer anisotropy is critical for an HFTW 

system to properly work, as there should be minimal vertical flow of groundwater 

between the injection and extraction screens of a single treatment well (Stoppel, 2001). 

This is typically found to be the case, since most aquifers exhibit horizontal hydraulic 

conductivities an order of magnitude greater than vertical hydraulic conductivities 

(Domenico and Schwartz, 1998). Fractured rock typically has an anisotropy up to two 

orders of magnitude (Domenico and Schwartz, 1998; Charbeneau, 2000). 

Two techniques for employing HFTWs are depicted in Figures 2.4 and 2.5. In 

Figure 2.4, in-well reactors treat contaminated groundwater (Ferland, 2000). In Figure 

2.5, nutrients are added in-well to promote biodegradation by bacteria in bioactive zones 

outside the injection screens of the treatment wells (McCarty et ah, 1998). 
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Figure 2.4: Schematic of HFTW system with in-well Pd-catalyst reactor 

Contaminant concentrations downgradient of an HFTW system (as compared to 

upgradient concentrations) depend upon two factors, contaminant destruction during a 

single-pass of contaminated water through the treatment well (defined as the single-pass 

treatment efficiency) and the fraction of treated water that is recycled through the 

treatment wells (Christ et ah, 1999). The single-pass treatment efficiency depends upon 

the treatment method and the residence time of the contaminant in the reactor or 

bioactive zone. The fraction of water recycled through the system depends upon the 

hydrogeologic conditions at the treatment site, the flow rate in the wells, the distance 

between wells, etc. To apply this technology, a line of treatment wells, as shown in 

Figure 2.6, may be located downgradient of a contaminant plume, actively containing the 

plume (Ferland, 2000). 

2.3.4.1   Advantages 

HFTWs possess advantages intrinsic to both pump-and-treat and PRB 

remediation strategies. HFTWs actively control plume migration like pump-and-treat, 

reducing the chance of the contaminant bypassing the remediation system as might occur 
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with PRBs. Like PRBs, the treatment is in situ, thereby reducing the costs and health 

risks associated with pumping contaminated water to the surface (Christ et ah, 1999; 

Stoppel, 2001). Additional advantages of subsurface contaminant destruction are relief 

from regulatory burdens, as there is no requirement to permit aboveground treatment 

facilities or for disposal of treated water, and the footprint of the treatment facility is 

limited as the reactor can be installed beneath the ground surface (McCarty et ah, 1998; 

Christ et ah, 1999; Lowry and Reinhard, 2000;). As no water is extracted, 

uncontaminated groundwater is not wasted by being brought into the contaminated zone, 

as occurs in pump-and-treat systems. For this reason, HFTWs are especially 

advantageous in areas that experience water shortages (McCarty et ah, 1998). The active 

nature of the HFTW system also provides greater flexibility and hydraulic control than 

PRBs, allowing contaminant capture at significant depths under fluctuating flow 

conditions (Ferland, 2000). 
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Figure 2.5: Schematic of HFTW system with bioactive zones 
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Figure 2.6: Plan view for in situ treatment by HFTWs (depicting the lower portion 
of the aquifer, where the downflow well is an injection well and the upflow well an 

extraction well) 

2.3.4.2   Disadvantages 

Regardless of the type of HFTW (chemical or biological), the technology is new 

and relatively untested. With the exception of the data from the Edwards AFB 

demonstration (McCarty et ah, 1998), it is unknown how they will perform in differing 

site conditions. As discussed earlier, the aquifers in the ROK are predominantly 

fractured bedrock, and the capabilities of HFTWs to effect chlorinated solvent 

containment in a fractured system are unknown. Recurring or emergency maintenance 

could also be a problem, since the treatment equipment associated with HFTWs is 

located within the well-bore, and is not easily accessible. 

One of the main obstacles to the application of in situ HFTW biological 

remediation is the transport of nutrients and substrate to microbes. Therefore, as with 

most treatment systems, a detailed site characterization including hydrogeologic 

conditions, microbial activity, and aquifer conditions must be accomplished to ensure 
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that the treatment system can clean up the contaminated site (EPA, 1998b; Grindstaff, 

1998). 

Utilizing biological remediation techniques can lead to the clogging of well 

screens and generally depends upon the aquifer characteristics (Grindstaff, 1998; 

McCarty et ah, 1998). However, McCarty et ah (1998) discovered that hydrogen 

peroxide (used to deliver oxygen) lowered biomass buildup near the screens due to its 

bactericidal properties, but did not significantly impact the remediation process. The 

major operational costs associated with a biological HFTW treatment system are 

associated with prevention of clogging and include the cost for chemicals such as 

hydrogen peroxide, and well redevelopment after clogging occurs (McCarty et ah, 1998). 

HFTWs are an attractive alternative when compared to the other technologies 

discussed above, since their design incorporates some of the advantages, while at the 

same time eliminating shortfalls. As such, this thesis will explore their use for the 

containment of chlorinated solvent contaminated groundwater in the deep fractured rock 

aquifers that exist in the ROK. 

2.4    Contaminant remediation by pumping in fractured systems 

As discussed earlier, the ROK hydrogeology consists largely of fractured media 

aquifer systems. Of the technologies discussed, pump-and-treat has been employed 

almost exclusively in these systems, and has shown some ability to contain contaminant 

plumes. To illustrate the application of pump-and-treat in fractured media, we present 

case studies and cost data in this section. We also discuss modeling techniques that may 

be used to simulate contaminant transport in fractured systems. These techniques will be 

important in order to help design and operate HFTW systems in fractured media systems. 
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2.4.1    Field applications 

Of the treatment strategies described above, the most widely used strategy for the 

treatment of contaminants in fractured systems is pump-and-treat (Gaule et ah, 1993; 

EPA, 2001b). The EPA reports that out of 53 fractured systems requiring remediation, 

51 were treated with pump-and-treat or a combination of pump-and-treat with another 

technology (EPA, 2001b). In their case study on the remediation of petroleum 

hydrocarbon in a fractured system, Gaule et al. (1993) present information regarding 

remediation of a fractured system using pump-and-treat. During the site characterization, 

the authors discovered large spatial variation in contaminant thickness, hydraulic head, 

and transmissivity. They concluded that the spatial variation in contaminant thickness 

was due to angled fractures and/or bedding planes controlling the migration of 

contaminant. The source of differences in head was uncertain, but transmissivity 

differences appeared due to the existence of fractures with widely varying permeabilities. 

During well pump tests, if a high permeability fracture was intercepted by the well, a 

high transmissivity value would result (Gaule et ah, 1993). This variability had 

substantial implications with regard to design of the remediation system, since the 

selected remedial option, pump-and-treat, depended upon the volume of water passing 

through the system. The need for adequate and reliable hydrologic data to design a 

remediation system for fractured bedrock is necessary, and several phases of the 

investigation were unable to obtain needed data (Gaule et ah, 1993). From their study, 

Gaule et al. (1993) concluded that due to the complexity of the fractured aquifer, long- 

term pump tests would be required to predict performance of a remediation system. 
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When attempts are made to remediate fractured systems by pumping water, 

reductions in contaminant concentrations to very low levels are rare because little or no 

water flushes through dead-end fracture segments or through the porous but relatively 

impervious rock matrix, both of which are likely to retain the bulk of the contaminated 

mass. Thus, a means to contain the contaminant plume must be employed. This 

difficulty is illustrated at a cleanup of an organic liquids disposal site in Ville Mercier 

Quebec, where the application of pump-and-treat technology to a large plume has been 

severely hampered by the penetration of NAPLs into the fractured bedrock (Mackay and 

Cherry, 1989). 

At Ville Mercier, three pump-and-treat wells have been in operation since 1984. 

The site survey indicated that DNAPL pools had penetrated through the overburden and 

were resting on top of a low-permeability basal till directly above the fractured bedrock. 

In some areas, the DNAPL had penetrated into the fractures of the bedrock as a result of 

erratic cover by the till. The till allowed the DNAPL to continue moving downslope, but 

the DNAPL left behind ganglia in fractures and pores. It was determined that since the 

DNAPL source cannot be removed, the plume would exist for decades to centuries, and 

that groundwater contamination would not be eliminated from the site. Site investigators 

concluded that containment rather than restoration would be the goal using pump-and- 

treat technology (NRC, 1994). After four years and the removal of over 6 billion gallons 

of water, the contaminant concentrations extracted from the wells were reduced, although 

this reduction in concentration appeared to be due to dilution, as uncontaminated water 

mixed with contaminated water flowing to the wells. 
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Similar site conditions and results were found in King of Prussia, Pennsylvania, at 

a fractured bedrock aquifer contaminated with DNAPLs. Initial site investigations 

confirmed the presence of chlorinated compounds spilled from 1969 to 1973. The 

primary transport of contaminant was as a DN APL moving along the bedding plane 

fractures, while dissolution created a large dissolved plume. Due to the depth and extent 

of the DNAPL, it was determined that the DNAPL could not be effectively recovered and 

that the DNAPL would continue to act as a source for dissolved contaminants in the 

groundwater. As a result of this site investigation, pump-and-treat technology was 

determined infeasible for the removal of the source of the plume, but could operate as a 

technique for containment of the plume (NRC, 1994). 

2.4.2    Capital and Operating Costs 

In this section, we review cost data for plume containment in fractured media. 

Cost data are provided for pump-and-treat systems, since, as indicated above, that is the 

only technology currently applied to contain plumes in fractured media. In addition, 

since an HFTW system is basically a modified pump-and-treat system, it may be possible 

to use the costs of pump-and-treat to estimate HFTW costs. We will also present cost 

data for the Edwards AFB HFTW system. Although this system was demonstrated in a 

porous and not a fractured medium, the data available from the Edwards demonstration 

are the only data available from a full-scale application of HFTWs. We therefore present 

the data, assuming that they may also be applicable with appropriate modifications, to a 

fractured media containment scenario. 
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2.4.2.1   Pump-and-Treat 

As previously mentioned, pump-and-treat technology has been the technology of 

choice for plume containment. While the total cost of a pump-and-treat project is 

strongly dependent upon the type of aboveground treatment (vapor stripping, activated 

carbon, etc.), the abundance of available cost data allows quantification of a general 

range of project costs. Table 2.1 summarizes EPA (2001a) cost data for 18 pump-and- 

treat systems implemented in both fractured and porous media systems for treating 

chlorinated solvent contaminated groundwater. The annual operating costs were 

estimated based on the average volume of water treated at the 18 sites (EPA, 2001a). 

Included in the capital costs reported in Table 2.1 are the costs for installing the wells and 

the treatment system. Variations in treatment are primarily due to the type and amount of 

contaminant, water impurities (minerals, organics, etc.), and quantity of water being 

treated. 

Table 2.1: Cost data for pump-and-treat systems used for treating chlorinated 
solvent contaminated groundwater (From EPA, 2001a) 

25th percentile 

$1.2 

CAPITAL COSTS ($millions) 

Median 

$1.9 

75th percentile 

$4.4 

Average Cost 

$3.6 
ANNUAL OPERATING COSTS (per 1000 gallons treated) 

$3 I $12 I $40 I $2(3 

While Table 2.1 summarizes general costs for pump-and-treat systems, the EPA 

also provides cost data for a pump-and-treat system that was constructed at a 

contaminated fractured media site comparable to contaminated sites in the ROK. Cost 

figures for containing the plume at this site (King of Prussia site) are in Table 2.2. The 

system treated 57 million gallons of water annually (EPA, 2001a). 
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Table 2.2: Capital and operating costs for pump-and-treat project at King of 
Prussia Superfund site (From EPA, 1998c) 

CAPITAL COSTS 
Equipment $927,127 
Permits $31,637 
Construction Management $234,548 
SOP/S&M Manual $63,681 
Electrical System Construction $130,424 
Other Subsystems $194,003 
Plant Construction $131,924 
Cultural Resources $30,219 
Well Construction $116,166 
Recovery System Construction $171,707 
Total Capital Costs $2,031,436 

ANNUAL OPERATING COSTS 
Labor $108,587 
Travel $4,775 
Disposal $811 
Chemicals $16,409 
Lab Supplies $339 
Health and Safety Supplies $1,314 
Administrative Expenses $15,650 
Maintenance $53,181 
Utilities $60,500 
Total Annual Operating Costs $261,565 

Note that the capital costs of the King of Prussia fractured rock system are quite 

close to median costs for pump-and-treat systems in porous media. The operating costs 

for the King of Prussia site are somewhat lower than the median costs of the other pump- 

and-treat systems (though still within the 25th to 75th percentile range of costs). These 

comparisons seem to indicate that the cost of pump-and-treat systems in porous media 

may be used to approximate costs for systems in fractured media. 

2.4.2.2   Edwards AFB HFTW System 

As HFTW technology has only been employed at one field location, limited cost 

data are available (Table 2.3). The system was employed in porous media, but, as noted 

above, it is expected that the installation cost of the wells in fractured media would be 

similar. The largest cost component lies in the installation of the HFTWs, while annual 
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operating costs are minimal in comparison. Two wells capable of pumping 10 gal/min 

each were constructed for the Edwards AFB HFTW system (McCarty et ah, 1998). 

Table 2.3: Capital and operating costs for aerobic cometabolic in situ 
bioremediation at site 19, Edwards AFB, California (2 Wells) (From AFRL, 1998) 

CAPITAL COSTS 
Treatment Wells (80 feet, 8-inch Schedule 80 PVC $30,000 
Flow Sensors and Controllers $2,790 
Static Mixers $1,076 
Packer Assembly $9,338 
Deionized Water System $6,847 
Pumps and Ancillary Equipment $10,000 
Tubing & Connectors $1,789 
Valves and Fittings $867 
Total Capital Costs $62,707 

ANNUAL OPERATING COSTS 
Well Redevelopment $8,000 
Hydrogen Peroxide, 30% $4,633 
Toluene $47 
Oxygen $1,674 
Total Annual Operating Costs $14,354 

A comparison of the pump-and-treat and HFTW systems' 20-year life cycle 

capital and annual costs per 1000 gallons treated adjusted for 1995 values and assuming 

inflation of 4% (DoD, 2000) reveals that the HFTW system is significantly cheaper 

(Figure 2.7). The lower annual operating costs of the HFTW system may be attributed to 

the in situ destruction of the contaminant, as well as the savings of not having to pump 

contaminated water to the surface for treatment. 
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Figure 2.7: Life cycle costs (adjusted for 1995 values) per 1000 gallons treated for 
the HFTW system at Edwards AFB and the King of Prussia site 

2.4.3    Modeling 

In this section, we review the literature pertinent to modeling how the HFTW 

technology will perform as a contaminant containment system in a fractured media 

aquifer. Two key areas are discussed: HFTW modeling and modeling fractured systems. 

We begin with a discussion of how HFTW operation in porous media has been 

numerically and analytically simulated. We then investigate fractured media modeling, 

to determine under what conditions porous media models, such as those that have been 

applied to simulate HFTW operations, may be used to model HFTW operations in 

fractured systems. 

2.4.3.1   HFTW Modeling 

Modeling the efficiency of HFTWs to treat and contain contaminant plumes in 

porous media has been conducted in the past using both analytical and numerical models. 

Analytical models incorporate many simplifying assumptions. These models may be 

applied as a screening tool to determine if the technology is applicable at a particular 

contaminated site. Christ (1997) developed an analytical HFTW model for use in 

managing chlorinated solvent contaminated groundwater in a simple porous media. The 

Christ (1997) analytical model was later applied by Mandalas et al. (1998), Ferland et al. 
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(2000), and Stoppel (2001). Numerical models do not include many of the simplifying 

assumptions made by analytical models, so these models can be used to more realistically 

describe actual scenarios. Of course, numerical models require extensive site 

characterization to obtain the necessary input data. Huang and Goltz (1998) and Gandhi 

et al. (2002) have developed numerical models for application with HFTW systems. 

Garrett et al. (1999) and Fernandez (2001) used these models in conjunction with genetic 

algorithms to optimize HFTW application at a chlorinated solvent contaminated site. 

2.4.3.1.1   Analytical Models 

Christ's (1997) model made the following simplifying assumptions: (1) regional 

groundwater flow is steady, horizontal, and uniform in a homogenous confined aquifer of 

constant thickness; (2) there are an even number of pumping wells in the HFTW system, 

alternately injecting or extracting water at a constant rate; (3) well locations are co-linear; 

and (4) water flow induced by the HFTW wells is horizontal, so that the flow system into 

and out of the upper screens of the HFTWs can be treated independently from the flow 

system into and out of the lower screens. An example of a typical HFTW configuration 

is shown in Figure 2.8, which illustrates the flow field induced by a four-well HFTW 

system in the upper part of an aquifer. Note that wells 2 and 4 are upflow wells, which 

inject water into the upper part of the aquifer, while wells 1 and 3 are downflow wells, 

extracting water from the upper aquifer. 
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Figure 2.8: Flow field induced in the upper aquifer by four-well HFTW system 
(From Mandalas et al., 1998) 

When designing an HFTW system, the two key design variables are capture zone 

width (CZW) and overall treatment efficiency (r|overaii)- Capture zone width is a measure 

of the extent to which the contaminated groundwater plume will be captured for 

treatment. Overall treatment efficiency measures the extent of contaminant destruction 

by comparing contaminant concentrations upgradient (Cjn) and downgradient (Cd0Wn) of 

the HFTW treatment system: 

n       =1- I overall 

C 
c. 

Figure 2.8. illustrates these important parameters for a four-well HFTW system. 

Capture zone width and overall treatment efficiency can be determined by 

knowing the interflow between the treatment wells in the HFTW system and the single- 

pass treatment efficiency of the technology being applied in the treatment wells. 

Interflow between two wells is defined as the fraction of the groundwater pumped 

through the extraction well that originated from the injection well. Christ (1997) and 
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Christ et al. (1999) present methods using complex potential theory for determining 

interflow based on aquifer (hydraulic gradient, hydraulic conductivity, aquifer thickness) 

and pumping well (pumping rate, distance between wells) characteristics. For details of 

these methods, the reader is referred to Christ (1997) and Christ et al. (1999). 

The single pass treatment efficiency is defined as the fraction of contaminant 

destroyed following a single pass of contaminated groundwater through the treatment 

zone (Stoppel, 2001). Single-pass treatment efficiency is a function of the technology 

that is applied in the treatment wells. For an analytical model of HFTW operation, 

contaminant destruction is typically described as a first-order process, dependent on the 

residence time of the contaminant in the treatment reactor (Ferland, 2000; Stoppel, 2001). 

Thus, for given aquifer and well characteristics, and knowing the first-order rate constant 

for contaminant destruction by the technology applied in the treatment wells, a designer 

can analytically determine the capture zone width and overall contaminant destruction 

effected by an HFTW system. 

Mandalas et al. (1998) utilized the Christ (1997) analytical model in order to 

develop a screening tool to help remedial project managers decide whether the HFTW 

technology was appropriate for application at a particular contaminated site. Ferland et 

al. (2000) and Stoppel (2001) coupled the Christ (1997) analytical flow model with 

simple models of single-pass treatment efficiency to estimate the overall contaminant 

removal efficiencies that could be obtained using an HFTW system incorporating in-well 

catalytic reactors under given site and operational conditions. Ferland et al. (2000) 

assumed simple first-order kinetics to estimate single-pass destruction of chlorinated 
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ethenes in the in-well catalytic reactor. Stoppel 's (2001) research incorporated catalyst 

deactivation and regeneration into the first-order reaction model. 

2.4.3.1.2  Numerical Models 

The model developed by Huang and Goltz (1998) is a three-dimensional model 

that combines steady-state flow, advective/dispersive transport of dissolved species, 

equilibrium or rate-limited sorption, and biodegradation. Huang and Goltz (1998) wrote 

FORTRAN code that uses a finite difference approach to numerically solve the three- 

dimensional partial differential equations describing fate and transport. The program 

MODFLOW (Harbaugh and McDonald, 1996) is used to calculate steady-state conditions 

of flow in the aquifer, and these flow velocities are then used in a transport model (Huang 

and Goltz, 1998). A finite difference grid like the one shown in Figure 2.9 is created 

using MODFLOW. Its dimensions and specific cell composition can be varied based on 

the system being modeled. 

Figure 2.9: Finite difference grid used in MODFLOW (Garrett, 1999) 

Well locations and associated pumping rates, initial conditions, aquifer properties 

(hydraulic conductivity and porosity), initial contaminant concentrations, and boundary 

conditions are specified within the grid. MODFLOW uses these data to calculate the 

steady state hydraulic head and velocity fields. The transport package of the computer 
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program then uses the velocity data as well as concentration initial and boundary 

conditions to calculate concentrations over space and time. The concentrations of the 

dissolved species can be monitored over time at any location on the grid, which allows 

the user to assess simulated system performance. 

Gandhi et al. (2002) developed a three dimensional, numerical model that was 

used to simulate the Edwards AFB Site 19 HFTW system. Though similar to the Huang 

and Goltz (1998) model, the Gandhi et al. (2002) model was based on finite elements. 

This allowed for smaller grid dimensions near wells, where high spatial resolution was 

needed (Gandhi et al., 2002). Gandhi et al. (2002a) developed a flow model that 

described conditions at the Edwards site. For further details regarding the mathematical 

formulation of the site model, the reader is referred to Gandhi et al. (2002). 

Garrett et al. (1999) applied the Huang and Goltz (1998) model to optimize 

HFTW operating parameters with the goal of minimizing cost and meeting downgradient 

regulatory standards. To accomplish this, Garrett et al. (1999) used genetic algorithms 

(GAs). Inspired by the processes of natural selection and evolution, GAs maintain and 

"evolve" in order to minimize an objective function. 

2.4.3.2   Modeling Fractured Media 

As was shown in Section 2.4.1, the prognosis for cleanup of NAPL contaminants 

in fractured systems is extremely poor, so containment of the contaminant plume 

becomes the remedial goal (Mackay and Cherry, 1989). Since pump-and-treat is the 

remediation technology of choice for plume containment, we want to be able to simulate 

the effect of pumping systems on groundwater flow in a fractured aquifer system. 
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Fractured aquifers generally contain cracks (fractures) of various lengths, widths, 

and apertures. The aquifers are permeable primarily because of the effective porosity 

provided by these fractures rather than that of the relatively impervious rock matrix, as is 

shown in Figure 2.10. Additionally, large fractures or fissures can behave like channels. 

The effective fracture porosity of fractured-rock aquifers is generally between .001-10%, 

much smaller than the porosities of typical porous media aquifers (20-40%). 

Figure 2.10: Porosity differences in fractured media, (a) Unconnected fractures 
with minimal flow, (b) connected clusters that would support fractured flow, and (c) 
large fractures dominating the matrix inducing channel flow (From Domenico and 

Schwartz, 1998) 

When determining the permeability of fractured media in the ROK, the fracture 

density is important in relation to the fracture connectivity. Percolation theory deals with 

how fracture connectivity and density promote flow. A fractured media can have a high 

fracture density, but if the fractures are not connected, flow is prevented. Conversely, a 

high degree of connectivity between fractures promotes flow. When the fracture density 

becomes sufficiently high, isolated fractures become rare, and the percolation threshold 

for flow is reached. It is at this stage that the aquifer behaves as a porous media 

(Domenico and Schwartz, 1998; NRC, 1990). 

Equivalent porous medium (EPM) models (Long et ah, 1982; Pankow et ah, 

1986; Schmelling and Ross, 1989) assume that at the scale of interest the fractured 
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aquifer behaves identically to an unconsolidated medium. In order to determine the scale 

of interest, a representative elemental volume (REV) is sought for various parameters 

(NRC, 1990; Lee et ah, 2001). If considering the parameter hydraulic conductivity (K) 

for example, the REV is found when a small change in the averaging volume does not 

result in a notable change in K. The concept of selecting an REV is illustrated in Figure 

2.11. In a small sample where the porous area is small, very small changes in the 

averaging volume can cause appreciable changes in the K. However, when the sample 

becomes very large, the K will no longer be sensitive to the averaging volume. 

1 
j         REV 

1 

o ^ w 
Averaging Volume 

Figure 2.11: Variation in hydraulic conductivity (K) as a function of the averaging 
volume. The dashed lines point to volume where the assumption of an REV is valid 

(From NRC, 1990) 

EPM has been used with success in the past and for most cases it models the 

response of fractured systems adequately for design purposes (NRC, 1990; EPA, 2001b). 

Note though, that the EPM is applicable only when the volume sampled is sufficiently 

large (Gernand and Heidtman, 1997; Lee and Lee, 1998). For instance, assume we want 

to use an EPM approach to model drawdown in a pumping test. At small sampled 

volumes, flow through individual fractures may substantially affect overall flow, 
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resulting in non-symmetric drawdown around the well. However, as the sampling 

volume is expanded, the drawdown will be symmetric about the well, as it would in a 

homogenous porous medium (Figure 2.12). If a fractured aquifer can be characterized as 

an EPM, then pumping test data may be interpreted by methods such as Theis curve 

matching, which were developed for porous systems. 

Lee and Lee (1998) applied the EPM to characterize flow in a fractured media 

weathered gneiss system in Wonju, ROK. The authors cite three conditions that should 

be satisfied in order to use an EPM model to analyze an aquifer: (1) small fracture 

spacing (high fracture density), (2) high fracture connectivity, and (3) random fracture 

orientation. To test whether these criteria were met, rock cores were obtained from 

numerous wells. No dominant fractures were found in the cores, and a borehole imaging 

processing system revealed high fracture densities and equal distribution of fractures. 

Pumping test data closely matched Theis drawdown curves, and there were no indications 

of single fracture flow or double porosity behavior (discussed later in this section). Lee 

and Lee (1998) concluded that the choice of an EPM model was valid for the Wonju 

system. They also noted problems with applying single fracture or double porosity 

models to real field situations, due to an inability to reliably measure parameters required 

for the models, making application of such models impractical. 
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Figure 2.12: Drawdown curves differ for porous media versus fractured media, but 
begin to converge as measurements are taken farther from the pumping well: (a) 

drawdown expected from homogenous porous media, (b) drawdown due to fractal 
flow at small radial distance, (c) and (d) as the radial distance from the pumping 

well increases, the drawdown begins to resemble that of porous media. 

Single fracture models and discrete fracture approaches (Gringarten and 

Witherspoon, 1972; Gringarten, 1982; Karaski, 1986; NRC, 1990) assume pumping wells 

are intersected by a single fracture that is significantly more transmissive than the rest of 

the aquifer (Figure 2.10c). These models characterize the transmissive fractures from 

drawdown data at a production well. These data typically plot as straight lines on log-log 

scales at early time, and merge with a Theis curve if the test is sufficiently long (Gernand 

and Heidtman, 1997). In order to obtain accurate fracture orientations from rock cores, it 

must be assumed that there are no faults or folds present (Gernand and Heidtman, 1997). 

Marquis et al. (1994) and Gernand and Heidtman (1997) reported that radial flow can be 

simulated with single fracture models via interconnected fractures from pumping wells, 
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although the distance for it to develop depends on the type of fractured media. At one 

test site where low-porosity crystalline bedrock was present, Gernand and Heidtman 

(1997) analyzed rock cores, and identified five fracture sets of various orientations, with 

no fracture set comprising more than 28 percent of fractures. This led to the assumption 

that radial flow might develop via the interconnected fractures. After pumping tests were 

accomplished, it was discovered that radial flow could be observed at observation wells 

300 feet from the pumping-well (Figure 2.12d), but that the observation wells within 50 

feet (Figure 2.12b) of the pumping-well exhibited characteristics of non-symmetrical 

drawdown due to flow in a single large fracture (Gernand and Heidtman, 1997). 

The channel network model is a variation of the single fracture model that takes 

into account field observations that fracture surfaces are uneven and mineralized. This 

heterogeneity causes the flow and contaminants to be distributed non-uniformly across 

the fracture plane in preferential paths, or channels (Selroos et ah, 2001). Mixing of 

flowing water that occurs within the three-dimensional rock matrix (see Figure 2.13) is 

accounted for by a computer code (CHAN3D), which solves for the flow in each channel 

in the system using the finite-difference method (Selroos et ah, 2001). 
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Figure 2.13: Channel network conceptual model (Selroos et ah, 2001) 

The dual-porosity model has also been used to characterize flow in fractured 

media. The dual-porosity model assumes the simultaneous existence of two distinct 

porous systems with different values for porosity and permeability. The more permeable 

system, the fractures, transmits groundwater to the well, while the less permeable media, 

the rock matrix, has a high storage coefficient and acts as a source (Hamm and Bidaux, 

1996; Lee et ah, 2001). Unlike the single fracture model, no account is taken of the 

arrangement of fractures and their relation to one another; instead it is assumed that there 

is a mixing of fluids in interacting continua (NRC, 1990). When developing this model, 

flow equations are written for both the rock matrix and the fracture system. The systems 

are interconnected, so that the loss of fluid in one porous system represents a gain in the 

other (see Figure 2.14). 
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Figure 2.14: As the fractures lose water, capillary forces in the rock matrix are 
overcome.   The water stored in the rock matrix is then released to the fractures. 

Another technique for determining aquifer properties is the stochastic approach. 

An aquifer is considered homogeneous when properties such as conductivity do not vary 

from point to point. However, homogeneity is an ideal approximation that does not exist 

in nature (Domenico and Schwartz, 1998). This is due, for example, to stratification 

within the aquifer (Figure 2.15). When dealing with porous media, in order to determine 

the aquifer's conductivity on a larger scale, a sampling pattern is established to measure a 

number of data points for conductivity. These data may be displayed as a histogram 

(Figure 2.16a). It has been found that when the logarithms of the conductivity data are 

plotted, the distribution normalizes (Figure 2.16b). Thus, this normal distribution of log 

conductivity data for an aquifer can be described by specifying a mean and variance. 

With these statistics specified, a stochastic model of the aquifer can be constructed and 

used to simulate probabilistic distributions of contaminant. 
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Figure 2.15: Notional hydraulic conductivity (K) distribution (numbers represent 
the negative log K) for a section of aquifer (From Domenico and Schwartz, 1998) 
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Figure 2.16: (a) Frequency distribution of hydraulic conductivity (K), (b) histogram 
of the log-transformed hydraulic conductivity data (From Domenico and Schwartz, 

1998) 

To apply the above-described stochastic approach to a fractured system, it is 

necessary to assume that the fractured media can be described as an equivalent porous 

media. Once that assumption is made, the steps involved in determining the descriptive 

statistics of the fractured medium, and then developing a stochastic model, are identical 

to those described above for a porous medium. Selroos et al. (2001) used this approach 

to simulate groundwater flow and radionuclide transport in fractured rock. They then 

compared the stochastic modeling approach with modeling flow in discrete fractures and 

modeling flow in a channel network, and found that the three approaches gave similar 

results. 
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3     Methodology 

3.1 Introduction 

In Chapter 2, it was shown that fractured media systems are typical in the ROK 

and that frequently chlorinated solvents contaminate these systems. We also showed that 

based on cost, safety, and efficiency, HFTWs are a good technology to use to deal with 

chlorinated solvent contamination, especially when the water table is relatively deep (as 

is many times the case in the ROK). The question now arises, can these HFTWs be 

effectively applied under the hydrogeological conditions typically encountered in the 

ROK. To answer this question, a model of HFTW operation in fractured media is useful. 

In this chapter, we formulate such a model. First we present our model 

assumptions and justify the use of existing HFTW models, which have been used to 

simulate HFTW operations in porous media, to describe HFTW operations in fractured 

media. In the second section of the chapter, we develop a contaminated site scenario 

based on contamination and hydrogeology at Osan AB. In the third section of the 

chapter, we describe the sensitivity analyses that will be conducted, with results 

presented in Chapter 4, to answer the research question: how can HFTW technology be 

applied at USFK installations in Korea? 

3.2 Modeling HFTW Operation in Fractured Media 

In the first part of this section, we justify use of an equivalent porous media 

model to simulate HFTW operation at a contaminated fractured media system in the 

ROK. We then select from between the two HFTW models discussed in Chapter 2, 

analytical and numerical, for further application. 
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3.2.1    Assumptions 

1) EPM: Our first assumption is that an EPM model is appropriate for use in simulating 

an HFTW system to remediate contaminated fractured media at Osan AB. The specific 

fracture density, orientation, and aperture at Osan AB are unknown, and in general, 

difficult to measure without considerable expenditure of site characterization funds— 

funds which would typically be unavailable at DoD installations overseas. Since we have 

seen that these data would be required to apply dual-porosity, single fracture, or 

stochastic groundwater flow models, we may conclude that application of such models 

would be impractical at Osan AB in particular, and overseas installations in general. We 

have also seen that in the absence of detailed fracture characterization, EPM models have 

been successfully used (Lee and Lee, 1999). Lee and Lee (1999) justified their use of the 

EPM approach in a weathered gneiss aquifer in Wonju, ROK, when modeling a system 

with relatively high fracture density. The United States Army Corps of engineers 

assumed an EPM when conducting a site survey at Wonju and determining hydraulic 

conductivity (USACE, 2001). 

Sources (Lee and Lee, 1999; Osan AB CE, 2001; USACE, 2001) have suggested 

that weathered gneiss is common throughout the ROK. In particular, the well-bore data 

from Osan AB (Appendix 1) indicate highly fractured weathered gneiss. Thus, the EPM 

approach taken by Lee and Lee (1999) at Wonju would also seem to be applicable at 

Osan AB, and presumably, many other sites in the ROK. The key to using an EPM 

model is that the scale of the fractures be small in comparison to the scale of the system 

being simulated (Lee and Lee, 1999; Long et ah, 1982; Pankow et ah, 1986; Schmelling 

and Ross, 1989). Wells at Osan AB have been drilled deep (100-300 meters) into 
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weathered gneiss that has a high fracture density (see section 2.2.3), and the contaminant 

plume at Osan AB has traveled hundreds of meters (see Figure 3.1 and Table 3.1). 

Fracture spacing, length, and aperture in weathered gneiss are often measured in 

millimeters or centimeters (Charbeneau, 2000; Domenico and Schwartz, 1999; EPA, 

2001; NRC, 1990). The Army Corps of Engineers assessment at Wonju reported 

fractures there were typically 10mm wide (USACE, 2001). Therefore, it is assumed that 

the scale of interest (tens or hundreds of meters) versus the scale of fracturing 

(centimeters) is large enough to support the use of an EPM. 
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Blowup Area 
(Figure 3.1b) 

Primary instrument runway 

Taxiwav A 

400.00   450.00   500.00   550.00   600.00   650.00   700.00 

Figure 3.1: Site map of Osan AB (scale and contours in feet) showing area of 
interest with well location and hydraulic head contours 
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Table 3.1: Contaminant levels and non-detects (ND) observed in Osan AB wells 
Well# 

2 10 11 12 20 21 
TCE (ug/L) 16.3 34.4 15.1 ND 30 ND 
DCE (ug/L) 26 72.2 ND 1.1 64.7 ND 
VC (ug/L) ND 19.6 ND 10.8 17.6 ND 

2) Horizontal Layers: A second assumption is that we can model the Osan AB aquifer as 

a horizontally layered system. Well borings taken from Osan AB show four distinct 

layers (Table 3.2) of differing soil composition. Comparisons of the borings show the 

layers are generally found at the same depth for the region being modeled (Appendix 1). 

Thus, we assume we can model hydraulic conductivity at Osan AB using a minimum of 

four layers. The layers may have different values of hydraulic conductivity and 

conductivity in the vertical and horizontal directions may exhibit anisotropy, though we 

will assume the conductivity and anisotropy within each layer is homogeneous. 

3) Steady-State Flow: As the modeling focuses on the long-term containment of a 

chlorinated solvent plume, a steady-state flow field for the region and HFTW system was 

assumed since the time-scale of transient fluctuations in flow is small compared to the 

time-scale of the contaminant transport. This steady-state flow assumption is typically 

made when modeling contaminant transport by groundwater (Bakker and Strack, 1996; 

Bumb et al. 1997; Charbeneau, 2000). 

4) Biodegradation and Sorption: As noted in Chapter 2, the natural attenuation of 

chlorinated solvents is not necessarily an important process.   As there is no clear 

evidence of significant biodegradation in the Osan AB plume, we will take a conservative 

approach and assume biodegradation is negligible. McCarty et al. (1998) reported in the 

Edwards test site that sorption was negligible as well, due to low fractions of organic 
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carbon present in the aquifer. It is likely that the deep fractured gneiss at Osan AB will 

have similarly low fractions of organic carbon, so we will also assume sorption is 

negligible. 

3.2.2   Model Selection 

In order to adequately simulate an aquifer as a system of anisotropic layers, unless 

we make some very severe simplifications, a numerical model is required. Of the two 

numerical models discussed in Chapter 2 that have been used to simulate HFTWs, the 

model by Huang and Goltz (1998) is readily accessible by the author, with technical 

support easily available. For these reasons, the numerical model by Huang and Goltz 

(1998) will be applied to the problem. 

3.3    Site and Technology Model 

In this section we will construct a simple model of the TCE contamination at 

Osan AB. In the first part of this section, model parameters and assumptions are 

explained. We then move on to model verification. In the following section, we will set 

up a sensitivity analysis in which we allow some model parameters to vary, in order that 

we may simulate how the technology performs under different conditions. 

3.3.1    Model Parameters and Detailed Assumptions 

The simplified site at Osan AB is modeled with dimensions 200 meters wide, 200 

meters long, and 120 meters deep. The MODFLOW finite difference grid is 100 cells 

wide by 100 cells long by 12 cells deep, so that each cell is 2 meters wide, 2 meters long, 

with varying depths, as listed in Table 3.2. Huang and Goltz (1998) suggest the finite 

difference grid design should have a cell ratio (length by width by depth) that does not 

exceed 1x1x8 in order to get accurate results. As such, the weathered gneiss was 
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separated into layers 10 meters thick, resulting in a 1x1x5 ratio. The parameters and 

associated assumptions used when creating the model are described below: 

1) Hydraulic Conductivity: Values (Table 3.2) for overburden conductivity and porosity 

were found in the literature (Envirobrowser, 1998; Charbeneau, 2000). The literature 

reports a wide range of conductivity values for weathered and biotite gneiss, as noted in 

the table (Envirobrowser, 1998). 

Table 3.2: MODFLOW layer design 
Layer Media Type (layer depth) K (cm/s) Porosity 

1 Brown Clayey Sand (7m) 2.55E-05 0.3 
2 Pale brownish gray weathered sericite gneiss (13m) 6.94E-04 0.39 
3 Gray to pale brownish gray weathered gneiss (10m) 10~a-10"b 0.1 
4 Gray to pale brownish gray weathered gneiss (10m) 10~a-10"b 0.1 
5 Gray to pale brownish gray weathered gneiss (10m) 10~a-10"b 0.1 
6 Gray to pale brownish gray weathered gneiss (10m) 10~a-10"b 0.1 
7 Dark brownish gray biotite gneiss (10m) 10"a-10"8 0.1 
8 Dark brownish gray biotite gneiss (10m) 10"a-10"8 0.1 
9 Dark brownish gray biotite gneiss (10m) 10"a-10"8 0.1 

10 Dark brownish gray biotite gneiss (10m) 10"a-10"8 0.1 
11 Dark brownish gray biotite gneiss (10m) 10"a-10"8 0.1 
12 Dark brownish gray biotite gneiss (10m) 10"-5 - 10° 0.1 

Drawdown data were available for two wells at Osan AB in the region of interest. 

These data were analyzed using the Theis curve fit method to determine conductivities 

appropriate for modeling the gneiss. A Theis curve fit for Well 2 (Figure 3.1) at Osan 

AB is shown in Figure 3.2. Well 2 is 380 feet deep (116m), has a well radius of 4 inches, 

and was pumped at 75 gallons per minute for 27.5 hours. The borehole for well 2 is 

cased and grouted to 65 feet (20m) below surface. Below the first 65 feet, the gneiss is 

used as a natural screen for the additional 315 feet (99m). Thus, in essence, the well is 

screened over layers 3 through 12. As the drawdown data do not support calculating the 

biotite and weathered gneiss conductivities separately, the conductivity found from the 
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Theis curve is an average. The curve fit yielded a hydraulic conductivity of 6.32x10" 

cm/sec. 

-Actual Drawdown —«—Theis Drawdown 

0.6 0.8 

Time (min) 

Figure 3.2: Theis curve fit of drawdown data at Osan AB, ROK 

Differences between early drawdown readings (less than 400 minutes) are 

attributed to well bore storage (Driscoll, 1986; Johnson, 1966; Lee and Lee, 1998). The 

Theis curve fit yields a hydraulic conductivity within the range of values for gneiss in 

Table 3.2, suggesting hydraulic conductivities for the model are on the order of 10"4 

cm/sec. 

2) Constant head boundaries: As discussed in section 3.2.1, the model assumes steady 

state flow conditions. As such, constant head boundaries were defined to induce flow 

across the region. Groundwater elevation readings taken from well development logs 

(Appendix 1) and hydraulic contour mapping were used to estimate a regional hydraulic 

gradient of .00125. This hydraulic gradient was imposed by specifying a constant head at 

the left boundary of 6.5 meters below ground surface, while the constant head at the right 

boundary (200 meters away) was specified at 6.75 meters below ground surface (Figure 

3.3). Groundwater flow induced by the natural gradient was unidirectional, from left to 

right. No flow conditions were imposed along the boundaries parallel to flow. 
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Figure 3.3: Constant head boundaries used to model Osan AB 

3) Anisotropy: Anisotropy describes the condition where vertical and horizontal 

hydraulic conductivity values differ so that groundwater flows with more ease in one 

direction than the other. Literature reports that anisotropy up to two orders of magnitude 

is generally found in fractured rock (Domenico and Schwartz, 1999; Charbeneau, 2000). 

There was no "typical" value for anisotropy in fractured media reported, but a factor of 

ten is commonly used for porous media (Charbeneau, 2000; McCarty et ah, 1998) 

Therefore, an anisotropy often was assumed for the model. 

4) Two-well HFTW system: The number of wells used for the application of HFTW 

technology is determined so that the entire plume can be captured and adequately treated 

by the system.   To simplify the modeling in this study, a plume was generated (as 

discussed below) so that it could be treated using a two-well HFTW system. Managing 

larger plumes would merely involve adding more wells. 

5) Treatment Efficiency: The model assumes that with each pass of contaminated water 

through a treatment well, 90% of the contaminant will be destroyed. This is consistent 

with previous applications of HFTW in the field (McCarty et ah, 1998). 

6) Pumping Rate: MODLFLOW was used to determine the maximum pumping rates that 

could be used in the model without dewatering the layers. MODFLOW displays 
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dewatered cells as "dry" cells when the pumping rate exceeds the maximum pumping 

rate. The maximum pumping rate for the model was determined to be 1 m /day per layer, 

and is the base pumping rate for the model. 

7) Plume generation: The plume was generated assuming the contaminant source had 

migrated through the overburden and into the weathered gneiss to the full well depth of 

120 meters. As the highest TCE concentration measured at the site was 83 ug/L, a value 

of 100 ug/L was used for the plume concentration at the left boundary of the site. 

To determine the plume width that could be handled by two HFTW treatment wells 

pumping at 1 m /day per layer, an analysis was conducted comparing the mass entering 

the system from the source cells with the mass removal capabilities of the HFTW system. 

The constants used in calculating the mass entering the system from the source cells are 

shown in Table 3.3, while Table 3.4 summarizes the rate of contaminant mass entering 

the system per 10 m deep layer (D = 10m) for various source widths, where source width 

is calculated as number of source cells in a layer (n) times cell width (W = 2m). 

Table 3.3: Aquifer Constants 
Hydraulic Conductivity (K) 6.32E-06 m/s 
Plume Source Concentration (C) 0.1 mg/L 
Hydraulic Gradient (I) 0.00125 

Table 3.4: Rate of contaminant mass entering the system per layer as a function of 
plume width 

Plume Width (n) 
Units 2 4 6 8 10 20 30 40 

Cross sectional area of source (A=WDn) 2 m 40 80 120 160 200 400 600 800 

Darcy Velocity (q=KI) m/s 7.90E-09 7.90E-09 7.90E-09 7.90E-09 7.90E-09 7.90E-09 7.90E-09 7.90E-09 

Flow (Q=qA) m7day 0.027 0.055 0.082 0.109 0.137 0.273 0.410 0.546 

Contaminant transported from source 
(C*0) 

mg/day 2.73024 5.46048 8.19072 10.921 13.6512 27.3024 40.9536 54.6048 
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The maximum destruction of contaminant per pass of water through an HFTW 

treatment well was set at 90%, and the amount that could be destroyed per layer was 

determined (Table 3.5). 

Table 3.5: HFTW mass destruction per ayer 
HFTW Water flow per layer per day 1.0 mA3/day 
Rate of contaminant mass treated per layer 
(@ max concentration of 0.1 mg/L) 

100 mg/day 

Rate of contaminant mass destroyed per 
layer (@ 90% efficiency) 

90 mg/day 

The greatest contaminant mass the HFTW system can destroy is 90 mg/day per 

layer. Even when the source width is 60 cells wide (54.6 mg/day), the treatment capacity 

of a two well system is not exceeded. Trial runs were conducted to determine an 

appropriate plume source width. These trials indicated that a plume source width of 60 

(120 meters) to 6 cells (12 meters) would not be captured by an HFTW system placed 39 

meters downgradient of the source (Figure 3.4a). Therefore, a plume source width of 4 

cells (8 meters) was chosen to ensure the plume could be captured by a two-well system 

(Figure 3.4b). 

120.00 

100.00 

80.00 

120.00 

100.00 

80.00 

20.00    40.00    60.00    80.0 20.00    40.00    60.00    80.I 
Figure 3.4: Contaminant plume at steady state for layer 5 with (a) plume source 

width of 12 meters and (b) plume source width of 8 meters 
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8) Screen interval: The HFTW treatment wells were screened over all the saturated layers 

(2-12) with the exception of layer 7 (Figure 3.5). 

A plan view of the model site used for the modeling effort is shown in Figure 

3.5a. Two monitoring wells (MW) spaced evenly about the plume centerline are placed 

40 meters downgradient of the HFTWs to monitor contaminant concentrations. The 

monitoring wells measured concentrations for all of the layers (Figure 3.5b). 

Contaminant concentration data within the HFTW cells were collected also. The HFTW 

treatment wells penetrated the full depth of the model, 120 meters (Figure 3.5.). 

Legend 

^p Monitoring Well 

O HFTW Well 

Figure 3.5a i: Plan view of model grid 
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Figure 3.5b: Section A-A 
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3.3.2    Model Verification 

Following the construction of the model, it was necessary to verify that it was 

operating properly. Two model verification tests were applied:  1) a comparison of 

modeled and estimated contaminant breakthrough times at monitoring well 1 and 2) a 

comparison between analytical and numerical model predictions of the HFTW recycle 

ratio. These tests are described below. 

With the two treatment wells not operating, the estimated time for the 

contaminant to reach monitoring well 1 due to regional flow only was calculated using 

the average linear velocity of the groundwater (Darcy velocity divided by porosity of .1). 

The expected time for the contaminant to reach well 1 if the contamination source is 

activated at day 0 is 11,574 days. 

The percent water recycled between the HFTW treatment wells can be determined 

using the model by comparing contaminant concentration in the treatment well when 

both wells are operating at 100% contaminant destruction efficiency with the 

concentration in the treatment well when both wells are operating at 0% treatment 

efficiency. The analytical model developed by Christ (1997) may then be used to verify 

the recycle ratio predicted by the numerical model. Christ's model (1997) assumes 

infinite anisotropy (no vertical flow), and calculates the recycle rate for one layer only. 

To compare results between the numerical and analytical model, a representative layer 

was chosen (layer 6), an anisotropy of 10 was used, and the pumping rate was 1 m /day 

per layer. 

3.4    Model Analyses 

After verifying model performance, we will conduct an analysis of the technology 
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using the model in order to answer the research question of whether the HFTW 

technology is appropriate for application in the ROK. In the first subsection, we discuss 

how the treatment system's performance will be measured. In the second subsection, we 

discuss which engineered and environmental parameters we will vary in order to observe 

their effect on technology performance. 

3.4.1 Measures of Performance 

In order to measure how well the HFTW system is performing in containing the 

contaminant plume, we will compare concentration data from monitoring wells 

downgradient of the treatment system when the system is operating with downgradient 

concentrations when the system is not operating. 

3.4.2 Analysis 

In order to analyze how the HFTW system would be expected to perform in a 

fractured aquifer, aquifer and system parameters were varied and the impact on 

performance measured.   In the first part of the analysis, we vary aquifer parameters, 

particularly hydraulic conductivity and anisotropy of the aquifer layers. In the second 

part of the analysis, we vary technology parameters (pump rate and treatment well screen 

interval). As noted above, technology performance was assessed by comparing 

downgradient concentrations simulated with the HFTW system running and with the 

system turned off. 

3.4.2.1   Varying aquifer parameters 

The performance of the technology for various environmental conditions was 

assessed by changing the hydraulic conductivities and anisotropy of the layers. Table 3.6 

lists the base case aquifer parameter values. In addition to the base case, six scenarios 
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where aquifer parameters were varied were evaluated. These scenarios are described 

below. 

Table 3.6: Base model parameters 
Layer K (cm/sec) Anisotropy 

1 2.55E-05 10 
2 6.94E-04 10 
3 6.32E-04 10 
4 6.32E-04 10 
5 6.32E-04 10 
6 6.32E-04 10 

Layer K (cm/sec) Anisotropy 
7 6.32E-04 10 
8 6.32E-04 10 
9 6.32E-04 10 
10 6.32E-04 10 
11 6.32E-04 10 
12 6.32E-04 10 

3.4.2.1.1   Hydraulic Conductivity 

As previously noted, the hydraulic conductivity for weathered gneiss varies from 

about 10" cm/sec through 10" cm/sec, and biotite gneiss conductivity can vary over 

ranges of 10" cm/sec through 10" cm/sec. As the hydraulic conductivity being used in 

the model of the Osan aquifer is only an extremely rough approximation based on 

geologic characterization, it is of interest to see how the technology would be expected to 

perform for varying conductivity. To examine this effect, the hydraulic conductivity of 

layer 7 (not screened by the HFTW system) was changed. In scenario 1, layer 7 was 

assigned a hydraulic conductivity of 6.32x10" cm/sec, and in scenario 2, layer 7 was 

assigned a hydraulic conductivity of 6.32xl0"6 cm/sec (Table 3.7). 

Also of interest was the change in performance of the HFTW technology due to 

lower or higher gneiss conductivities in layers 3 through 12. To determine this, two 

additional scenarios were simulated. In scenario 3, layers 3 through 12 were assigned 

hydraulic conductivities of 6.32x10" cm/sec, and in scenario 4 layers 3 through 12 were 

assigned hydraulic conductivities of 6.32xl0"6 cm/sec (Table 3.7). 
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3.4.2.1.2  Anisotropy 

As mentioned earlier, the literature reports a range of anisotropy for fractured 

media (Domenico and Schwartz, 1999; Charbeneau, 2000). Therefore, we investigated 

two scenarios where hydraulic conductivity anisotropy was allowed to vary over two 

orders of magnitude. In scenario 5, we explore the effects on technology performance 

when each layer is assumed to be isotropic (anisotropy=l) and in scenario 6 we assign an 

anisotropy of 100 to each layer (Table 3.7). 

3.4.2.2   Varying Technology Parameters 

To understand how technology parameters could affect containment of the plume, 

the pumping rate for each layer was allowed to vary for scenarios 7 and 8. Pumping rate 

is important, as it establishes the capture zone width and recycle ratio of the HFTWs for 

given aquifer parameters. In scenario 7, the pumping rate was changed to .1 m /day per 

layer, and the pumping rate was set at .5 m /day per layer in scenario 8, with results 

compared to the base case scenario, where the pumping rate is 1 m /day per layer (Table 

3.7). 
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4     Results and Analysis 

4.1 Overview 

In this chapter, we analyze the data from the models described in Chapter 3 to 

answer the research question: are HFTWs an appropriate technology to remediate 

contamination under the hydrolgeologic conditions found in Korea. In the first section of 

this chapter, we verify that the model is working correctly. In the second section, we 

observe how the model predicts the technology will perform under varying 

hydrogeological conditions. Finally, in the third section, we examine how the model 

predicts the technology will perform as we vary engineering design parameters. 

4.2 Model Verification 

In Chapter 3, we discussed our approach for model verification by comparing: 1) 

estimated and modeled breakthrough times at a monitoring well and 2) recycle ratios 

predicted from numerical and analytical models. In Chapter 3, we calculated the 

estimated time for the plume to reach monitoring well 1, 79 meters from the plume 

source, with the HFTWs not pumping, based upon the regional hydraulic gradient and 

applying Darcy's Law. The estimate was 11,574 days. The modeled time versus 

concentration at this monitoring well for layer six is shown in Figure 4.1. 
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Figure 4.1: Breakthrough curve at layer 6 of monitoring well 1 for contaminant 
transport by regional gradient only (HFTWs not pumping). Transport time to the 
well is estimated as the time to attain 50% of the steady-state concentration at the 

well. 

Looking at Figure 4.1, we see the numerical model estimates transport time to 

well 1 is a little less than 10,000 days. The difference between the numerical model 

estimate and the estimate from applying Darcy's Law is due to the fact that the numerical 

model incorporates dispersion. Estimating transport time as the time when the 

concentration at a monitoring well is 50% of the steady-state concentration will be an 

underestimate for advective/dispersive transport (Domenico and Schwartz, 1998, pg. 

373). 

The second part of the model validation involved an examination of the recycle 

ratio between the wells, when the system was operating with base case parameters (Table 

3.7). To calculate this, contaminant concentrations in the treatment wells when both 

wells were operating at 100% contaminant destruction efficiency were compared with the 

contaminant concentrations in the wells when the system was operating at 0% efficiency. 

When both wells were operating at 100% efficiency (Table 4.1), there was a 73% 

reduction in contaminant concentrations entering HFTW 1 (extraction well) and a 100% 
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change in contaminant concentrations (clean water) being injected by HFTW 2 (injection 

well). These data lead to the conclusion that of the water flowing into HFTW 1, 73% 

comes from HFTW 2, and therefore, the recycle ratio is 73%. 

Table 4.1: Steady state concentrations and percent change of contaminant in level 6 of 
HFTWs 1 (extraction well) and 2 (injection well) 

HFTW1 HFTW 2 
Concentration when HFTW removal efficiency= 0%      (ug/L) 36 36 
Concentration when HFTW removal efficiency= 100%   (ug/L) 10 0 
Percent change of contaminant 73% 100% 

In order to use the analytical model developed by Christ (1999), the aquifer 

properties of layer six were used. The depth of the aquifer layer (b) was set at 10 m, the 

pumping rate (Q) at 1 m3/day, and the regional Darcy velocity at 6.82xl0"4 m/day. 

Christ's model predicted a recycle ratio of 77 %. The slight difference between the 

analytical and numerical results is likely due to the fact that the analytical model assumes 

no vertical flow (infinitely anisotropic medium) while the numerical model assumed an 

anisotropy of 10. Thus, it would be expected that the recycle ratio predicted by the 

analytical model would be slightly greater than the ratio predicted using the numerical 

model. 

4.3    Modeling sensitivity of treatment system performance to hydrogeologic 
parameters 

4.3.1    Hydraulic conductivity 

Two scenarios in which the hydraulic conductivity of layer seven was varied were 

tested. In scenario 1, the conductivity was raised two orders of magnitude to 6.32x10" 

cm/sec. In scenario 2, the conductivity was lowered two orders of magnitude to 6.32x10" 

6 cm/sec. Layer seven was not screened, as it was of interest to examine the impact on 
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technology operation of having high or low conductivity layers not directly captured by 

the treatment wells. The scenario conditions are summarized in Table 4.2 and 

breakthrough curves at the monitoring wells (see Figure 3.5 for location) are shown in 

figures 4.2 through 4.4. 

Table 4.2; Series legend for Figures 4.2 through 4.4 
Base Case 
Scenario 1 (High layer 7 conductivity) 
Scenario 2 (Low layer 7 conductivity) 

A Base case HFTW system off 
Scenario 1 HFTW system off 
Scenario 2 HFTW system off 
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Figure 4.2: Concentration breakthroughs in the 6th layer for varying 7th layer 
conductivity (a) monitoring well 1 and (b) monitoring well 2 
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Figure 4.3: Concentration breakthroughs in the 7th layer for varying 7th layer 
conductivity (a) monitoring well 1 and (b) monitoring well 2 
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Figure 4.4: Concentration breakthroughs in the 8th layer for varying 7th layer 
conductivity (a) monitoring well 1 and (b) monitoring well 2 

Changes in the hydraulic conductivity of layer 7 had little effect on the treatment 

achieved in layers 6 and 8. A comparison of the concentration of contaminant at the 

monitoring wells in layers 6 and 8 shows that they are approximately the same, 

regardless of the conductivity of layer 7. This is not unexpected, as the aquifer properties 

and pumping rates in layers 6 and 8 are the same for scenarios 1 and 2. Slight changes in 

the concentration breakthrough curves are observed in the two layers, presumably due to 

the effect of vertical water movement into and out of layer 7. However, due to the 

assumption of a horizontal to vertical conductivity anisotropy ratio of 10, this interaction 

between layers is relatively small. 

The effect of not screening a layer (layer 7) may be seen in Figure 4.3. In 

scenarios 1 and 2, and the base case, there is little observable change (less than 2%) in 

the treated (series A, C, and E) and untreated (series B, D, and F) contaminant 

concentrations in layer 7 once the system reaches steady state. This lack of treatment in a 

layer that is not screened by the treatment wells could have important implications. As 

Figure 4.3 suggests, contaminant concentrations in the unscreened layer are unaffected 

by the treatment system, and, in the case of an unscreened high conductivity layer, 

contaminants will quickly move downgradient past the system. In scenario 1, for 
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example, a downgradient water supply well intercepting all layers would pump 100 times 

more water from layer 7 than from any other layer, due to the higher conductivity of layer 

7. This increased flow from the untreated layer will result in a higher average 

contaminant concentration in the pumped water. Scenario 2 does not reach a steady state 

in the modeled 50,000 days (it would take approximately 140 years to do so), but as the 

contaminant transport within layer 7 is so slow, the effect of contaminant transport in the 

untreated layer on a downgradient receptor well would be minimal. 

Observable in Figures 4.2 and 4.4 is a slight difference in the contaminant 

concentrations seen in monitoring wells 1 and 2. This is due to the monitoring wells' 

locations relative to the HFTWs. In layer 6, monitoring well 1 is directly downgradient 

of HFTW 1 (extraction), and monitoring well 2 is downgradient of HFTW 2 (injection). 

Complete mixing has not occurred by the time the plume reaches the monitoring wells, 

resulting in a contaminant concentration at monitoring well 1 that is slightly higher than 

the concentration at well 2. In layer 8, which due to symmetry is the mirror image of 

layer 6, the contaminant concentrations observed at the monitoring wells exhibit the same 

pattern as in layer 6, but in reverse. 

Also of interest is to observe the impact on HFTW performance if the remediation 

is applied in a very low or high conductivity aquifer. In scenario 3, the conductivity of 

all the gneiss layers (3-12) was reduced two orders of magnitude to 6.32xl0"6 cm/sec; and 

in scenario 4, layers 3 through 12 were assigned hydraulic conductivities of 6.32x10" 

cm/sec. Breakthrough curves for the monitoring wells are shown in Figures 4.5 through 

4.7 (legend in Table 4.3). 
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Base Case 
Table 4.3; Series legend for Figures 4.5 through 4.7 

Scenario 3 (Low conductivity for gneiss) 
Scenario 4 (High conductivity for gneiss) 

A Base case HFTW system off 
Scenario 3 HFTW system off 
Scenario 4 HFTW system off 

D 
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rth Figure 4.5: Concentration breakthroughs in the 6   layer for varying gneiss 
conductivity (a) monitoring well 1 and (b) monitoring well 2 
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Figure 4.6: Concentration breakthroughs in the 7   layer for varying gneiss 
conductivity (a) monitoring well 1 and (b) monitoring well 2 
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th Figure 4.7: Concentration breakthroughs in the 8   layer for varying gneiss 
conductivity (a) monitoring well 1 and (b) monitoring well 2 

Scenario 3 is not shown on the graphs because the low conductivity 

specified in the scenario could not sustain the HFTW pumping rate of 1 m /d per layer. 
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Excessive water table drawdown resulted in dry cells and meaningless model output.   As 

for scenario 4, the treatment efficiency of the HFTWs for the high conductivity gneiss, 

based on contaminant concentrations in layers 6 and 8, is less than the treatment 

efficiency in the base case. This is explained by the fact that the high conductivity of the 

layers reduces both the recycle ratio and capture zone width, which in turn lowers the 

system efficiency in removing contaminant. This analysis points out the significant 

effect hydraulic conductivity has on technology performance, and the importance of 

basing the technology design on a good estimate of hydraulic conductivity.   If the actual 

conductivity is higher than the design conductivity, system treatment efficiency will be 

reduced. 

4.3.2    Anisotropy 

Two scenarios where the aquifer anisotropy was varied were considered. In 

scenario 5, the model layers were assumed to be isotropic (anisotropy= 1). In scenario 6, 

the anisotropy in the layers was increased to 100. Breakthrough curves for the 

monitoring wells are shown in figures 4.8 through 4.10 (legend in Table 4.4). 

Table 4.4: Series legend for Figures 4.8 through 4.10 
Base Case 
Scenario 5 (Anisotropy = 1) 
Scenario 6 (Anisotropy = 100) 

A Base case HFTW system off 
Scenario 5 HFTW system off 
Scenario 6 HFTW system off 

D 
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th Figure 4.10: Concentration breakthroughs in the 8   layer for changing system 
anisotropy (a) monitoring well 1 and (b) monitoring well 2 

Changes in the layer anisotropy had little effect on the treatment achieved. 

Whether hydraulic conductivity was isotropic or highly anisotropic, there was no impact 

on treatment efficiency. This may be due to our assumption that efficiency of the 

treatment wells is constant. Under some conditions, conductivity isotropy can lead to 

short-circuiting of water between the screens of a single treatment well, resulting in a loss 
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of treatment efficiency (due, perhaps, to shortening the residence time of contaminated 

water within in situ bioactive zones). As our model assumed constant treatment 

efficiency, this potential impact of isotropy on treatment efficiency was not observed. 

4.4    Modeling sensitivity of treatment system performance to design parameters 

The last scenarios executed involved changing the pumping rate of the HFTWs to 

observe the effects this would have on system performance. In scenario 7, the pumping 

rate was set at 0.1 m /day per layer; while in scenario 8, the pumping rate per layer was 

set at 0.5 m /day. Breakthrough curves for the monitoring wells are shown in figures 

4.11 through 4.13 (legend in Table 4.5). 

Table 4.5; Series legend for Figures 4.4 through 4.6 
Base Case (Pump Rate = 1 m /day) 
Scenario 7 (Pump Rate = .1 m /day) 

Base case HFTW system off 
3  

Scenario 8 (Pump Rate = .5 m /day) D 
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-th Figure 4.11: Concentration breakthroughs in the 6   layer for changing pump rates 
(a) monitoring well 1 and (b) monitoring well 2 
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Figures 4.11 through 4.13 show that technology performance is a strong function 

of the pumping rate. Downgradient concentrations in layers 6 and 8 are significantly 

impacted by changes in the treatment well pumping rates.    As the pumping rate 

increases, the CZW and recycle ratio increases, and the contaminant concentration is 

reduced. Alternatively, as the pumping rate is decreased, the lower CZW and recycle 

ratio lead to higher downgradient concentrations. Previously discussed (Section 3.3.1) 

was how the sustainable pumping rate in the system is limited by the hydraulic properties 

of the aquifers. This suggests that the CZW and recycle ratio between the wells for a 

given well spacing are limited as well. To increase the recycle ratio, the well spacing 

would need to be decreased. This reduces the CZW of the system but increases the 
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recycle ratio. To avoid contaminant bypassing the system as a result of the reduced 

system CZW, additional wells could be added. 

The above analyses show the importance of screening over all layers capable of 

contaminant transport, as well as appropriately sizing and configuring the HFTWs to 

meet design goals—that is, capturing the contaminant plume and achieving desired 

downgradient contaminant levels. 

4.5    Results Summary and Discussion 

In the base case and all of the scenarios modeled, the contaminant concentrations 

observed 79 meters downgradient of the HFTW system failed to meet MCL limits for 

trichloroethylene (5 (Xg/L) or vinyl chloride (2 (Xg/L). Steady (after 50,000 days) 

concentrations for the treated plume at the monitoring wells showed treatment 

approached only 50% removal in the screened layers and 2% removal in the layer not 

screened (layer 7). The steady state concentrations and percent decrease in contaminant 

concentration due to treatment observed at monitoring well 1, layers 6 and 7 (monitoring 

well 2 data were not significantly different) are summarized in Table 4.6. Data from 

layer 8 are omitted, as the observed concentrations in layers 6 and 8 were approximately 

the same. 

The concentrations above MCLs downgradient of the HFTWs in screened layers 

can partially be attributed to contaminant bypassing the capture zone of the HFTWs 

(Figure 4.14). To manage the problem, more HFTWs can be added to increase the 

system CZW. If necessary to further reduce downgradient concentrations, well spacing 

can be decreased, which would result in an increased recycle ratio and higher overall 

treatment efficiency. For the purpose of simplicity in this research, which was focused 
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on analyzing the impacts of aquifer and design parameters on technology performance, 

the system was limited to consisting of only two treatment wells. , However, for an 

actual design, where the goal would be to capture a plume and attain contaminant MCLs 

downgradient, it is likely that the well spacing would need to be reduced and the number 

of wells increased. Past research (Garrett, 1999) dealt with the optimization of HFTW 

design parameters to minimize cost and meet downgradient regulatory standards. 

Decreasing the well spacing and increasing the number of wells in the system increases 

the overall system cost, but would also reduce the contaminant downgradient of the 

system (at least in the screened layers). 

However, the problem of contaminant transport in unscreened layers on system 

performance can be observed in layer 7. The contaminant in this layer bypasses the 

system, with minimal decrease in concentration. To effectively contain a contaminant 

plume in a fractured system, all layers with conductivities high enough to promote flow 

would have to be screened. To accomplish this, multiple rows of HFTWs could be 

installed, and the screen depths of the HFTW rows staggered to ensure the complete 

depth of the aquifer is intercepted by the system. The additional rows of wells would 

increase the system cost, but reduce downgradient contaminant concentrations. 
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Table 4.6: Steady state (50,000 days) concentrations (ug/L) and percent decrease in 
concentration due to treatment observed in monitoring well 1 for all scenarios 

Treated Untreated 
% Decrease in 
concentration 

Base Case 
Layer 6 20 35 44% 
Layer 7 35 35 2% 

Scenario 1 (high layer 7 conductivity) 
Layer 6 20 35 44% 
Layer 7 35 35 2% 

Scenario 2 (low layer 7 conductivity) 
Layer 6 20 35 44% 
Layer 7 4 4 1% 

Scenario 3 (high conductivity for gneiss) 
Layer 6 26 36 27% 
Layer 7 35 36 3% 

Scenario 4 (low conductivity for gneiss) 
Layer 6 Invalid Invalid Invalid 
Layer 7 Invalid Invalid Invalid 

Scenario 5 (anisotropy=l) 
Layer 6 20 35 44% 
Layer 7 35 35 2% 

Scenario 6 (anisotropy=100) 
Layer 6 20 35 44% 
Layer 7 35 35 2% 

Scenario 7 (pump rate- .1 m /day) 
Layer 6 25 35 30% 
Layer 7 35 35 1% 

Scenario 8 (pump rate- .5 m /day) 
Layer 6 21 35 40% 
Layer 7 35 35 2% 
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Figure 4.14: Concentration contours (mg/m3) in layer 6 at 50,000 days. Note that 
the contaminant plume bypasses the capture zone of the HFTW system, and is 

transported downgradient 
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5     Conclusions 

5.1 Summary 

In this thesis, we analyzed the practicability of using an HFTW treatment system 

to remediate chlorinated solvent-contaminated groundwater under the hydrogeologic 

conditions found in the ROK. To perform the analysis, a hypothetical site was 

constructed based upon conditions at a contaminated site at Osan AB in the ROK, where 

a weathered gneiss fractured aquifer was found to underlie the base. A model that had 

been developed for simulation of HFTWs in a porous medium was applied to the 

fractured medium, after it was shown that it was appropriate to model the fractured 

system using an equivalent porous medium. Aquifer and technology parameters were 

then changed to observe the effects on technology performance in containing a 

contaminant plume. The simulations showed that the HFTW technology has the potential 

to contain the plume, although contaminant levels remained above MCLs. The 

concentrations above MCLs downgradient of the HFTWs in screened layers can partially 

be attributed to dispersion around the capture zone of the HFTWs. Additional HFTWs 

could be added to manage this problem. The potential for contaminant to bypass the 

treatment wells and travel to downgradient receptors, due to the existence of high 

conductivity zones that are not within the screened intervals of the wells, is a significant 

problem. 

5.2 Conclusions 

The HFTW model developed for porous media is appropriate for application 

in a fractured system. The literature review suggested that the assumption of an EPM 

when dealing with a fractured rock system is appropriate in the absence of detailed site 



data so long as the scale of the system being modeled was sufficiently larger than the 

scale of fracturing. 

Numerical modeling is required to simulate HFTW operation for the 

hydrogeologic conditions encountered in the ROK. The heterogeneity of ROK 

aquifers requires a numerical model to examine the effects of an HFTW installation on 

contaminant fate and transport. A numerical model allows use of multiple layers to 

represent varying hydraulic conductivities and anisotropy with depth, in order to simulate 

the effect of these conditions on contaminant transport and technology performance. 

The numerical model developed by Huang and Goltz (1998), using input data obtained 

from well logs at Osan AB, provided a general understanding of how an HFTW system 

could be applied in a fractured rock aquifer in the ROK. 

Model analysis indicates HFTW technology may be appropriate for 

containing contaminant plumes under hydrogeologic conditions encountered in the 

ROK, though bypassing of the treatment wells may be problematic. Contaminant 

concentrations modeled downgradient of the HFTW system were not below MCLs, 

though perhaps optimization of system variables (well spacing, number of wells, pump 

rates, and screen interval) could reduce downgradient contaminant concentrations to meet 

regulatory goals. 

A significant problem that must be addressed when designing an HFTW system 

for application in fractured media is the potential for the contaminant to bypass the 

treatment wells by transport through unscreened high conductivity layers (Figure 4.3) or 

around the capture zone of the system (Figure 4.14). This would result in high 

contaminant concentrations downgradient. Extensive site characterization and 
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engineering design measures (such as the use of multiple rows of treatment wells, 

screened over different depths) may serve to reduce this potential. 

HFTWs have the potential to be a cost effective containment technology. In 

the literature review it was shown that HFTWs have the potential to be an order of 

magnitude cheaper than other technologies currently in use (predominately pump-and- 

treat). Since the DoD's ability to remediate contaminated sites overseas is hindered by 

the availability of money, cheaper containment technologies have a smaller impact on 

operation and maintenance (O&M) funds that are used for other mission requirements 

and installation priorities. 

5.3    Recommendations 

Explore the use of groundwater transport models other than the EPM to 

simulate the fate and transport of contaminants in ROK aquifers. Laboratory and 

field analyses can be used to correlate hydraulic conductivity with parameters like 

fracture density, spacing, and connectivity. This information would enable alternate 

groundwater flow models discussed in Chapter 2 to be explored. Results from these 

analyses could be used to validate the assumption that an EPM is appropriate for the 

ROK, or that another model more accurately predicts contaminant transport. 

Investigate the processes of natural attenuation in ROK aquifers. The 

research showed that natural attenuation of chlorinated contaminants would be expected 

to be slow and not significant in scenarios typical of the ROK. However, the model 

simulations indicated that it would take the contaminant on the order of 10,000 days to 

travel 80 meters. Thus, even slow natural attenuation processes might turn out to be 
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important. Studies of natural attenuation processes that might be occurring in fractured 

systems similar to those encountered in the ROK might support application of monitored 

natural attenuation as a remediation strategy, especially if receptors are far from 

contaminant source zones. 

Optimize the HFTW system for application in a fractured rock aquifer. This 

study was a preliminary look at how an HFTW system might be applied in a fractured 

rock system, under conditions that might be encountered at Osan AB, Korea. No attempt 

was made to design an "optimal" system that would achieve specific performance goals 

at minimal cost. However, to ascertain the economic and technical feasibility of applying 

HFTWs under the hydrogeologic and contamination conditions found in the ROK, a 

more complete design analysis, perhaps using optimization techniques, will be required. 

Model analysis of an optimized design could be used to help determine the cost of the 

containment system, as well as to see whether downgradient contaminant levels below 

regulatory standards could be achieved at specific sites in the ROK. 

Conduct a pilot test of the HFTW system in the ROK. For model validation 

and to enhance understanding of how an HFTW system could be applied in fractured 

media, a pilot study would provide important data on technology performance. These 

data would be valuable in determining the applicability of the HFTW technology to the 

ROK, as well as to other fractured rock aquifers. 
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Appendix A: Well data from Osan AB 

Qound level eN316 ft  ] 
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Figure A.l: well 9 at Osan AB, ROK 

85 



I Qound level B=288 ft | 

m   r 

| 500ftBG$ 

Brown clayey sand       | 

Fale brownish gray 
weathered sericite 
gneiss  

Well#11,OsanAB 
Total Well Depth= 500 ft 

Oay to pale brownish 
gray weathered 
quartzofeldspathic 
gneiss  

Dark brownish gray 
biotite gneiss  

Figure A.2: well 10 at Osan AB, ROK 
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Figure A.3: well 11 at Osan AB, ROK 
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