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AFIT/GA/ENY/02-1 

Abstract 

 

  Precise position determination and control is necessary to accomplish proposed 

satellite formation flying missions of ground movement target indication and synthetic 

aperture radar.  This thesis combines the estimation and control techniques of past AFIT 

theses with various time-varying and time-invariant LQG control methods.  Linear time-

invariant control is ideal for on-board satellite estimation and control applications, 

freeing-up the satellite’s limited computational capacity.  Using a dynamics frame 

transformation from the nodal frame to an orbital frame, a higher fidelity, time-periodic 

model produced nearly identical results for either time-varying or time-invariant control 

for many scenarios.  Scenarios included initial perturbations in the radial, in-track, and 

cross-track directions as well as increased magnitude perturbations; step size increase 

from 0.2 seconds to 2 seconds; and increased and reduced measurement noise level 

scenarios versus the standard absolute GPS receiver noise level.  Results obtained 

indicate the ability to control within the error range of the measurements (centimeter-

level and better) using realistic noise and dynamics perturbations.  
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PERIODIC METHODS FOR CONTROLLING A SATELLITE IN FORMATION 
 
 
 

I.  Introduction 
 
 

1.1  Background 
 

           In tackling this subject, two questions come to the forefront.  Why focus on time 

periodic methods and why satellite formations?   

Periodic characteristics are observed both naturally and artificially in many 

mechanisms, most notably in satellite orbits and orbit perturbations.  Since orbital control 

usage is a big driver in the lifetime of all satellites, only using control when necessary 

should be the goal of the control system.  If perturbations are periodic and small enough 

that they can be ignored, there is no reason to spend fuel to control them.  The periodic 

nature of the perturbation will correct itself.  The detail of how small the perturbation can 

be before it warrants correction must be defined and justified via simulations before it 

can be used for actual flight tests. 

The importance of modeling the periodic characteristics is multiplied as future 

space missions will use several small satellites flying in formation to serve many of the 

same purposes as a single large satellite.  
 

 

Figure 1.  Paradigm Shift [1] 

* 

Paradigm Shift 

Large, specialized satellites Virtual satellite- 
Clusters of cooperating satellites 
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This paradigm shift will produce many rewards:  lower overall mission cost, 

increased system reliability, improved science return, extended mission life, and 

expandability.  Satellite formation has been a widely studied area for nearly a decade, 

with a patent for the concept granted in 1983 [24].  Many space agencies currently have 

actual or proposed satellite formations on their drawing boards or operating in space.   

The European Space Agency’s Cluster II project, launched in 2000, uses four 

satellites in tetrahedral formation to study electrical and magnetic phenomena inside the 

magnetosphere and in the solar wind upstream of the Earth.  
 

ESA’s Cluster II Satellites [10] NASA’s StarLight Satellites [20] 

  
Figure 2.  ESA’s Cluster II and NASA’s StarLight Satellites 

 

 NASA’s StarLight mission, consisting of two satellites in formation to be 

launched in 2005, will be the first spaceborne stellar interferometer.  By flying in 

formation, Starlight’s two small telescopes will achieve the angular resolution (in one 

direction) of a regular telescope mirror 125 meters in diameter.   

The United States Air Force (USAF) has focused its efforts on the Technology 

Satellite of the 21st Century (TechSat 21).  The Air Force Research Laboratory (AFRL) 

leads the project.   
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Figure 3.  AFRL’s TechSat 21 Satellite [1] 
 

As AFRL’s website explains, the initial focus of TechSat 21 is a space-based 

radar mission for Ground Moving Target Indication (GMTI) employing a formation of 

eight micro-satellites [1].  This program hopes to achieve three times the capability of 

current assets at one-third their cost.   
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Table 1.  AFRL’s TechSat 21 Cost Savings [1] 
 Conventional Evolutionary Revolutionary 
 

Rigid Panel Deployable Integrated Antenna 
Distributed 
Spacecraft 

 

  
Satellite Mass 

12,000 kg 4,400 kg 
Eight 100 kg 

satellites per cluster 
Age of Technology 1996 Technology 2003 Technology 2005 Technology 
Number of Satellites 
Required 

40 satellites 40 satellites 40 satellite clusters 

Launch Vehicle Titan IV Atlas II Taurus/Athena II 
Launch Cost $300M $90M $25M 
Total System Cost 
(10 year life cycle, 
normalized) 

1.0 0.6 0.3 

 

The reduced life cycle cost will be achieved by reduced launch costs and overall 

manufacturing cost through mass-produced identical micro-satellites.  The TechSat 21 

program manager even speculates the possibility that TechSat 21 satellites could be 

launched from operational military jets such as the F-15 [23].   

The GMTI mission of detecting ground targets in a military theater for the USAF 

is currently being accomplished by Joint Surveillance and Targeting Attack Radar 

System (JSTARS) aircraft.  The proposed Techsat 21 system could move this GMTI 

mission from an airborne platform to space.  Better performance will come from 

extremely large effective aperture sizes and multi-mission capability.  For radars, large 

apertures improve performance with better slow target detection and better resolution.  In 

fact if the range to the target, R, and the radar’s wavelength, λ , are assumed constant, the 

resolution of an object on the ground, r, is inversely proportional to S, the synthetic 

aperture size [16].  
 

                                               
S2

Rr
⋅
λ⋅=       (1) 
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 The key to the concept is the close formation of microsatellites, each with a 

receiver that detects both the return from its own transmitter and the bistatic responses 

from the orthogonal transmit signals of the other satellites in its cluster.  Pulses are 

separated, and range, angle of arrival, and Doppler processing is computed.  The 

collaborating small apertures of TechSat 21 can act as one large array which can be 

reconfigured to satisfy and optimize requirements for a variety of missions.   

 

 

Figure 4.  AFRL’s TechSat 21 Missions [1] 

 

Possible autonomous capability would allow the satellite cluster, working in 

conjunction with the Global Positioning System, to automatically reshape its formation to 

optimize its geometry based on the mission assigned to the cluster by the ground 

commander.  For example, a “geo-location” mission such as finding a downed pilot 

would require that one satellite in the cluster move out from the group to a distance of 

Cluster Augmentation 
"on-demand" 

Passive Radiometry Mission 
t   (High accuracy geolocation) 

Radar Mission 
(AMTI/GMTI/SAR) 

Comm Mission 
(Narrow beam/wide area coverage) 
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approximately eight kilometers.  Or for spotting moving ground targets, closer intervals 

on the order of several hundred meters would be required [23]. 

Improved reliability will be achieved with graceful degradation of capability and 

reconfigurability to minimize the effects of a single failure.  The satellite clusters also 

allow an inherent adaptability easing performance upgrades by allowing an upgraded 

satellite to join a cluster vice replacing another satellite.  Much like a network of desktop 

computers linked together, they can be expanded as needed without throwing out the 

entire system.   

 “The availability of such low cost, highly capable microsatellites will lead to new 

ways of doing business in space, and this ‘personal satellite’ paradigm can revolutionize 

the space industry in much the same way as the personal computer has done to the 

computer industry,” said Dr. Alok Das, chief technologist for AFRL’s Space Vehicles 

Directorate [12]. 
 

 
1.2  Past Research - Standing on the Shoulders of Giants 
 

1.2.1  Satellite Cluster Research at AFIT from 1988 - 1991.  A number of 

AFIT theses in the past have utilized Kalman filter techniques to study relative position 

errors within a satellite cluster [19, 24].  The dynamics were based on Clohessy-Wiltshire 

equations with near circular orbits.  Ward used a point mass orbit in his truth model, but 

Middendorf included a more realistic truth model.  He included perturbations in the J2 

term of the Earth’s geopotential.  For relative positioning they both used a U-D 

covariance factorization version of the Kalman filter comparing range data between 

satellites synchronized with clock pulses.  They achieved a relative position error of 3 

cm.  This relative centimeter-level accuracy was achieved without the use of Global 

Positioning System (GPS) satellite positioning data. 
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1.2.2  Satellite Cluster Research at AFIT from 2000 - 2001.  More recent AFIT 

theses incorporated GPS positioning data into a Bayes filter.  Davis attempted to extend 

from relative position determination of the past to include absolute position 

determination, but he encountered numerical difficulties due to the extreme accuracy 

requirements of his filter [9].  The double precision computational capability was not able 

to accurately generate covariance inversions for his filter.  Bordner revisited the previous 

theses and focused mainly on relative positioning [4].  Following a new approach by 

Wiesel [28], Bordner updated the dynamics model by solving the time periodic, 

linearized system using Floquet Theory.  More accurate than the Clohessy-Wiltshire 

solutions used in previous theses, this dynamics model included all zonal harmonics of 

the Earth to include sectoral, tesseral, and air drag perturbations.  Bordner’s dynamics 

truth model was also used in this current thesis as discussed in Chapter III.  Bordner 

additionally expanded on the method of relative data collection from previous theses.  He 

compared results using the relative range information from satellite timing signals, as 

was the basis for the AFIT theses from a decade ago, with both absolute GPS data and 

Carrier Phase Differential GPS data.  Using Differential GPS data, Bordner achieved a 

relative position error of 2 cm. 

Another AFIT thesis authored by Irvin studied several linear and nonlinear 

feedback control methods for satellite formation reconfigurations [9].  One of his more 

successful methods, the state dependent Riccati equation, was used as a starting point for 

the regulator in the second phase of this thesis.  This current thesis diverged from Irvin’s 

work by using the assumed superior dynamics model as used by Bordner in place of 

Irvin’s Clohessy-Wiltshire method.  The combined filter and regulator for this thesis 

should provide a good combination building on Bordner’s estimation work and Irvin’s 

control method. 
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1.3  Objectives 

In order for the TechSat 21 project to work and be cost effective, AFRL lists a 

number of fundamental questions that must be answered [1].  The focus of this thesis is to 

answer “what orbits or orbital control techniques are possible to maintain the desired 

configuration?”   

This thesis will look at two different periodic frames of reference for the 

dynamics of the system, the nodal frame and the orbital frame.  In each of these frames, 

time-varying and time-invariant control techniques will be compared.  Variations on the 

system model will include scenarios with:  initial deflections in each direction, increased 

magnitude of initial deflection, reduced step size, decreased measurement noise, and 

increased measurement noise.  Some of these scenarios may improve performance of the 

system, but taken as a whole, all scenarios will test the fidelity of each model for many 

environments. 

The ideal result of this thesis would be to create a robust output feedback 

compensator that handles a wide variety of realistic perturbation scenarios minimizing 

both fuel usage and Root Mean Squared (RMS) error.  The stringent space-based radar 

application would require position accuracy to one tenth of the radar’s wavelength [8], 

thus requiring millimeter-level accuracy.  While past theses have shown that positions 

can be estimated to the centimeter level, we would also like to be able to control our 

satellite to the centimeter level or better.  This may not be an easy task given the 

preliminary assumed conditions of estimation using absolute GPS position data 

constrained with over one meter uncertainty. 



9 

 
II.  Dynamics Theory and Methodology 

 
 
 

2.1  Satellite Relative Motion 
 

As mentioned in the previous chapter, this current thesis used the same method as 

Bordner for calculating the dynamics for the truth model [4].  Relative satellite motion 

has often been studied and applied using satellite rendezvous dynamics models based on 

Clohessy-Wiltshire (CW) equations with near circular orbits.  Clohessy and Wiltshire 

followed on from the work of Hill from the 1800’s.  They reduced the dynamics of 

satellite relative motion into a two-body problem.  They assumed a circular orbit, 

linearized the system of equations, and produced a solution.  Although this solution was 

originally intended to describe the relative motion of a closing satellite docking with a 

target satellite or space station, CW equations are usually chosen as the place to start for 

satellite formation analysis. 
 

2.1.1  Clohessy-Wiltshire.  While the CW method was not used for this thesis, it 

was useful to look at its setup and compare it with the method employed by Bordner in 

his thesis [4].   The CW equations in their simplest form did not model any perturbations 

in their solution to the linearized circular orbit.  For our earth-orbiting satellites, the CW 

equations are expressed in differential form 

0xn3yn2x 2 =⋅⋅−⋅⋅−  
 

 

0xn2y =⋅⋅+  
 

(2) 

0znz 2 =⋅+  
 

 

where n is the mean motion 
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3
sat

e

R
n

µ
=  

 

(3) 

where µe=3.986E14 m3/s2 is the earth gravitation parameter and Rsat is the radius 

from the center of the earth to the satellite in orbit.  The standard Clohessy-Wiltshire 

reference frame employs x, y, and z corresponding to radial, in track, and orbit normal.  

For the “free motion” CW model, Equations 2 were all set equal to zero.  More advanced 

CW models would include perturbations added on the right hand sides of these equations. 

 
 

Figure 5.  Clohessy-Wiltshire Reference Frame 

 

Following a free motion CW model, satellites would be constrained to an ellipse 

of 2 to 1 dimensionality along the trajectory of the orbit of the satellite and in the vertical 

plane of motion [21].  The actual dynamics of the system would be periodic, and even 

though the relative distances between satellites would remain variable, the overall size of 

the cluster would be bounded.  Sedwick further described the destruction of the free 

motion CW model due to the overwhelming nature of the real world secular and periodic 

y- in track 

x - radial 
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perturbations.  The goal for satellite formation modeling would be to include all forces 

that cause the orbital position to diverge.  Benign perturbing forces driving satellites to 

move periodically or in unison could remain un-modeled.   

But even adding significant perturbation estimates to the CW equations would not 

be expected to supply the best estimates for satellite formation navigation [4].  Hill’s 

equations were based on a time-invariant system, which limits the credibility of the 

dynamics for its application for periodic systems such as satellite formations.  The CW 

equations were designed for satellite rendezvous, not satellite formations.  A new relative 

satellite dynamics model was needed to adequately cover the nature of the satellite 

formations. 
 

2.1.2  Wiesel.  As mentioned above, this current thesis used the same method as 

Bordner for calculating the dynamics for the truth model [4].  This method was a result of 

work accomplished by Dr. William Wiesel in the area of relative satellite motion 

developed to meet the severe relative positioning accuracy requirements inherent in 

space-based radar applications [27, 28].  His method, similar to the classic Clohessy-

Wiltshire solution for relative satellite motion, took a new approach by linearizing about 

a nearly circular periodic orbit as a reference solution.  The reason for integrating a 

periodic orbit versus some other particular orbit was that the orbital behavior was better 

understood as time drove towards infinity [26].  This was because in the inertial frame 

the orbit behavior, given the same initial conditions and perturbations, would repeat 

every period plus an orbital regression along the equator.  To work with an orbit that 

closed on itself exactly, the nodal frame was introduced. This allowed a resulting linear, 

time periodic system instead of a linear, time invariant system.  

Wiesel’s process followed a Hamiltonian method [4, 28].  A Hamiltonian function 

was used to describe the orbital motion of a small body traveling around the earth.  With 
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dimensionless units, setting the radius of earth Re = 1, gravitational constant G = 1, and 

the mass of earth Me = 1, the inertial frame Hamiltonian function became 

( ) +






 ⋅−⋅⋅
⋅

+







−⋅⋅

⋅
+−++⋅=

r
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r
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r2
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r
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r2
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2
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22

z
2
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2
x  

 

(4) 

The inertial state vector was defined as IT = (X,Y,Z,Px,Py,Pz), and the radius r was 

defined as 222 ZYXr ++= .  The Pi momenta states were defined as inertial velocity 

components because the Hamiltonian is in terms of mass per unit satellite.  An advantage 

of using the Hamiltonian method was the convenience of adding perturbations.  

Additional conservative perturbations could be modeled by including the potential 

function of the perturbing force.  Non-potential forces such as air drag were expanded 

about the periodic orbit, and then added to the Hamiltonian equations of motion for the 

momenta states. 

In the inertial frame, the actual orbit would regress along the equator and not 

return to the same position after one period [28].  Because of this regression, the system 

was transformed to a nodal frame where the orbit would actually close on itself thus 

becoming periodic.  The resulting Hamiltonian became 

( ) ( ) ( )r,ZVXPYPPPP
2
1H '''

y
''

x
2'

z
2'

y
2'

x
' +⋅−⋅⋅Ω+++⋅=  

 

(5) 

where the prime superscript symbol `denoted the state vector components 

transformed into the nodal frame, N.  The component ( )r,ZV '  included the conservative 

zonal harmonics terms transformed into the nodal frame.  The nodal frame state vector 
was defined NT = ( 'X , 'Y , 'Z , '

z
'
y

'
x P,P,P ).  The beauty of this approach was that the nodal 

frame was not the only frame in which the system was periodic.  The nodal system could 

be moved back to the classic CW frame (Figure 5) and still keep its periodic quality.  To 

accomplish this, the periodic orbit was initially transformed to the origin of the current 
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coordinates.  The periodic orbit was subtracted off from the nodal state vector, giving 

new coordinates 

oXXx ′−′=  

 

 

oYYy ′−′=  

 

 

oZZz ′−′=  

)t(Pp xox ′=  

 

(6) 
 

)t(Pp yoy ′=  
 

 

)t(Pp zoz ′=  

 

 

where the subscript “o” denoted the periodic orbit.  This transformation produced 

the Hamiltonian with its second order and above terms evaluated on the periodic orbit.  

Using the new coordinate vector LT = (x,y,z,px,py,pz) defined by Equation 6, the 

Hamiltonian now became 

( ) ( )+⋅⋅⋅′′⋅+⋅⋅′′⋅=′′ γβααβγβααβ LLLH
!3

1LLH
!2

1H  (7) 

The αβ′′H  and αβγ′′H  components were fully symmetric partial derivative tensors 

computed for the periodic orbit defined as 

o

2

NN
HH

βα
αβ ∂∂

′∂=′′  

o

3

NNN
HH

γβα
αβγ ∂∂∂

′∂=′′  

(8) 

where repeated Greek indices were a summation from one to six. 
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A final transformation rotated the solution into the classic CW frame (radial, in-

track, and cross-track).  To generate a linear system, the Hamiltonian K was truncated to 

include only terms following the second order 

( ) ( ) qRRpRRH
2
1K T)2()2(

2 ⋅⋅⋅+⋅⋅′′⋅= βγαβαβ  
 

(9) 

where αβ′′H  was defined above in Equation 8, )2(R αβ and )2(R βγ  were 6 by 6 

dimensioned block diagonal matrices with two copies of the nodal to orbital frame 

rotation matrix R on the diagonal, the Z components were the canonical state vectors in 

the orbital frame, and the p and q components were 3 by 1 vectors holding the momenta 

and coordinates from the local frame state vector L [28].  The canonical equations of 

motion would then be calculated by using Hamilton’s Equations 

i

2
i p

Kq
∂
∂

=  

i

2
i q

Kp
∂
∂

=  

 
 

(10) 

 

to evaluate the Hamiltonian function in Equation 4. 

 
 

2.1.3 Floquet Theory.  The equations of motion calculated in the previous 

section can be integrated for one period to obtain the desired periodic orbit [4, 28].  

Linearized equations are created by expanding about this periodic orbit.  The periodic 

nature of these equations made the approach to solve them a bit more complicated than 

the simple CW solution.  The solution was based on Floquet theory that linearizing about 

a periodic orbit resulted in a periodic coefficient linear system.  The time periodic linear 

differential equations were of the form 

x)t(Ax ∂⋅=∂  
 

(11) 

Floquet found that the solution to Equation 11 was the state transition matrix 
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)0(Fe)t(F)0,t( 1Jt −⋅⋅=Φ  
 

(12) 

where F(t) is a periodic matrix, and J is a matrix of system frequencies in the 

Jordon normal form.  The J matrix is typically diagonal with Poincaré exponents as 

elements of the diagonal.  This Floquet state transition matrix from Equation 12 is similar 

to the constant coefficient form, but it is unique in its periodic nature.   To find the 

solution for )0,t(Φ , both J and the periodic matrix F(t) needed to be calculated.  Equation 

11 was integrated for one period to calculate the mondromy matrix.  For a periodic F(t), 

F(t + τ ) = F(t).  So plugging in t = τ , Equation 12 became 

)0(Fe)(F)0,( 1J −τ ⋅⋅τ=τΦ  
 

(13) 

after rearranging terms, F(0) was recognized as the eigenvector matrix for )0,(τΦ  
τ− =⋅τΦ⋅ J1 e)0(F)0,()0(F  

 

(14) 

The eigenvalues of )0,(τΦ , were calculated at F(0) using the relation 

τ⋅=λ ωiei  
 

(15) 

where iω  were the Poincare exponents of the J matrix.  Rearranging this equation 

to solve for iω  would eventually lead to the solution for J. 

ii ln1 λ
τ

=ω  
 

(16) 

Substituting Equation 12 into Equation 11 

J)t(F)t(F)t(AF ⋅−⋅=  
 

(17) 

Integration of Equation 17 for one period provided a solution for )0,t(Φ .  The end 

result was an inertial position vector for the satellite 

( ))t(Z)t(Fe)t(F)R()t(NR)t(I oo
1JtT)2(

o
)2(

Z ⋅⋅⋅⋅+⋅= −  
 

(18) 

and the satellite’s position relative to the periodic orbit in the orbital frame was 

)t(Z)t(Fe)t(F)t(Z oo
1Jt ⋅⋅⋅= −  

 

(19) 
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2.1.4  Wiesel vs. Clohessy-Wiltshire.  Wiesel’s dynamics model approach 

attempted to better predict satellite behavior and minimize the fuel required to control the 

satellite by modeling all major perturbations.  As Bordner showed in his thesis, this 

method improved on the Clohessy-Wiltshire approach in three areas [4].  First, Wiesel’s 

method inherently retained more satellite behavior information over time, thus it 

introduced less error into the dynamics model.  Second, two secular modes (rather than 

the usual one secular mode) were modeled by the dynamics.  These secular modes would 

be better compensated for without using extraneous fuel to try to negate them.  Third, 

Wiesel included a better representation of the earth’s zonal harmonics (zonal effects were 

modeled to the 14th order in this thesis), air drag, and gravitational harmonics.  Better 

modeling of perturbations produced a more realistic model to build upon.  This solution 

improved on the Clohessy-Wiltshire solution by three orders of magnitude [28].   
 

 
2.2 Actual Thesis Dynamics Setup 
 

The first step in setting up the estimator/controller was to define where you are.  

As mentioned earlier in this chapter, the standard Clohessy-Wiltshire reference frame 

was used with x, y, and z corresponding to radial, in track, and orbit normal as is shown 

in Figure 5.  This earth-centered inertial reference frame was defined in terms of distance 

units (DU), with one DU approximately equal to the equatorial radius of the earth, 

6378.145 km, and time units (TU), with one TU approximately equal to 13.447 minutes 

[2].  Based roughly on Techsat 21 planned characteristics, the orbit height was set at 0.1 

DU (637.8 km) with a 7.244 TU (97 minute) period for a near circular orbit.  An existing 

program was used to generate the initial velocities corresponding to the chosen orbit.  

The initial state was defined as a vector of positions and velocities: 
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(20) 

 

 
2.2.1 Orbit Propagation.  Following the method Bordner used for his thesis, the 

state was propagated from initial conditions through one orbit using a program written in 

the fortran computer language.  The source code is primarily written by Dr Weisel with 

some additions to meet the specific requirements of this thesis.  The main program, 

Po.f90, uses two main subroutines, haming and rhs.  Subroutine haming is an ordinary 

differential equations integrator using a fourth order predictor-corrector algorithm.  

Haming collects the last four values for the state vector and extrapolates them to predict 

the next value.  It then corrects the extrapolated prediction to find a new value for the 

state vector.  Subroutine rhs calculates the equations of motion calling on the EGM96 

earth gravity model and geopoten subroutines to add to the system a more accurate model 

for the zonal harmonics as well as air drag and gravitational harmonics.  

It is worth noting that an intrinsic part of this thesis is the periodic nature of the 

orbit.  Once the state vector is propagated over one orbit, the state vector (and its 

associated A matrix) will repeat exactly over following orbits.  The word “exactly” is 

used in a perfect-world sense.  The perturbing effects that cause the dynamics not to 

repeat “exactly” will be modeled as either dynamics noise (w) or measurement noise (v) 

to the system.  For this thesis, the orbit closed on itself (initial state equals final state) 
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with errors on the order of 1E-11 DU and DU/TU.  This error was comparable to about 

1E-5 meters and 1E-8 meters/second. 

 

 
2.3  Frame Variations for the A matrix   

 

Along with the state vector propagated over the orbit, the fortran program also 

propagated the A matrix associated with the state vector.  This A matrix was derived as 

the time periodic solution to the uncontrolled dynamics problem 

)t(X  = A(t) ·X(t) (21) 

The original method of computing the A matrix was in the nodal frame as 

described in a previous section.  Within an orbital period, elements of this A matrix 

would vary up to an order of magnitude 1E1.  Using a transformation supplied by Dr. 

Wiesle, the A matrix was rotated from the nodal frame (nearly an inertial frame) into the 

orbital frame (similar to the CW frame).  The benefit of this transformation was that 

many of the elements of the A matrix were reduced in magnitude resulting in a maximum 

order of magnitude variation of 1E-3 over the period.  This smaller variation arose 

speculation that the time varying A matrix could be treated as a constant A matrix.   

 
 
2.3.1  Nodal Frame A Matrix.  The original dynamics method in the nodal frame 

produced an A matrix with element variations on the order of 1E1 within an orbital 

period.  Explicit element variations can be seen in Figure 6 below. 
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Figure 6.  Variations of Each A Matrix Element Over One Orbit 
 

Most notable from Figure 6 is that, while a majority of the elements are explicitly 

equal to zero, many of the non-zero elements vary periodically with different amplitudes 

and frequency of oscillation.  For the most extreme case, the maximum amplitude 

difference exceeded one.  While it is obvious that this A matrix would not be a good 

candidate for a linear time invariant (LTI) system, this assumption was used for the nodal 

frame, time-invariant (AnTI) model.  The time-invariant A matrix used for this model 

was taken as a snap shot early on in the orbit before many of the varying elements had 

the opportunity to change 
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2.3.2  Orbital Frame A Matrix.  In an effort to achieve linear time invariance, 

the original dynamics method was transformed to the orbital frame.  This transformation 

provided by Dr. Wiesel produced an A matrix with element variations on the order of 1E-

3 within an orbital period.  Explicit element variations can be seen in Figure 7 below. 

 

 

Figure 7.  Variations of Each A Matrix Element Over One Orbit 
 

In comparison with Figure 6, it is clear that this method, while still producing 

some periodically-varying non-zero elements with different amplitudes and frequency of 

oscillation, the amplitudes are much, much smaller than for the nodal frame.  For the 

most extreme case, the maximum amplitude difference exceeded 1E-3 (see Figure 9 

below).  This A matrix appears be a good candidate for a LTI system, so this assumption 

was used for the orbital frame A matrix time-invariant (AoTI) model.  The time-invariant 
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A matrix used for this model was also taken as a snap shot early on in the orbit before the 

varying elements had the opportunity to change  
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As will be shown in the results chapters, the assumption of LTI for this model 

worked very well over many scenarios. 
 

 
2.3.3  Nodal and Orbital Frame Comparisons.  It is also useful to look at 

comparisons of different elements of each A matrix.   

 

Figure 8.  A Matrix Element (4,1) Comparisons, Max Nodal Variation 
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Figure 9.  A Matrix Element (3,2) Comparisons, Max Orbital Variation 

 

 

Figure 10.  A Matrix Element (1,1) Comparisons, Typical “Zero” Element 
 

Many of the zeros for the orbital frame actually varied periodically but were tiny. 
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III.  Estimation and Control Methodology 

 
 
 

The overriding tasks in estimation and control are obtaining a good estimate for 

the dynamic states and balancing the desire for state error cancellation (based on the state 

estimates) with the desire to keep fuel expenditure very low.  We will use optimal control 

methods, specifically Kalman filter and linear quadratic regulator theory, to strike this 

balance.  In order to complete this optimization task, we must first set up the conditions 

for our estimator and controller.  These assumptions and rules will govern the building 

blocks of how our system will be implemented. 

 

3.1  Finite Time, Non-linear Time-varying Problem 
  

 Following controller design theory from Bryson [7], we start with the more 

general problem where the state, X is described by 

)t),t(U),t(X(fX =  (24) 

This handles a general class of non-linear, time-varying systems.  A well known 

cost function for these problems is the quadratic performance index 

               ∫ ⋅⋅+⋅⋅⋅+⋅⋅⋅= f

o

t

t

TT
ff

T
f dt)URUXQX(

2
1XQX

2
1J  (25) 

The states for this problem are typically formulated as error states that we would 

like to regulate as close to zero as possible for a given amount of control usage.  The 

general form of the problem results in a two-point boundary value problem which cannot 

readily be solved online.  To make our lives easier, we would like to make some 
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assumptions to give us a solution that could be evaluated online.  The ideal would be a 

solution that could be evaluated on-board a satellite’s navigation computer.  

 

3.2  Finite Time, Linear Time-invariant Problem 
 

 The assumption of a linear time-invariant system allows the state to be described 

by the state-space equation: 

UBXAX ⋅+⋅=  (26) 

where A and B are constant matrices.  Using a quadratic performance mentioned 

in the previous section, the optimal control solution of this problem is given by 

XKU ⋅−=  (27) 

where the controller gain K is given by 

)t(PBRK T1 ⋅⋅= −  (28) 

where P(t) is the solution of a Riccati differential equation 

Q)t(PBRB)t(PA)t(P)t(PAP T1T +⋅⋅⋅⋅−⋅+⋅=− −  (29) 

While this Riccati differential equation is solvable, the process would not be 

described as easy or useful for near real-time on-board calculations.  Note that the LTI 

system has an optimal control law with time-varying gains [13].   

 

3.3  Infinite Horizon, Linear Time-invariant Problem 
 

If we allow our final time to approach infinity, we can assume for a stable system 

that the regulated system will approach steady state.  As tf approaches infinity, the 
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performance index is dominated by the steady state nature, so P(t) approaches Pss.  As 

P(t) approaches a constant value, P approaches zero.  Under these conditions, the Riccati 

differential equation from the previous section becomes an algebraic Riccati equation 

QPBRBPAPPA0 ss
T1

ssssss
T +⋅⋅⋅⋅−⋅+⋅= −  (30) 

This algebraic Riccati equation is readily solvable, and this relation will be utilized 

in Section 3.5.  However,we have made many assumptions to make it to this point, and, 

while time-invariance would be nice to have, the states for our orbiting satellites are not 

time-invariant.  Due to the repetitive nature of orbiting satellites and their perturbations, a 

time-varying time periodic description would hold more true (see Section 2.1.2).  This 

time periodic assumption will be used in the next section. 

 

3.4 Linear Time Periodic Method (LTP) 
 

The importance of the Riccati equation for controls, signals, and systems has 

sparked much research on the time-varying periodic Riccati equation.  Following a 

method proposed by Bittanti, et al [3], the following state-space equations were used to 

describe our orbital system: 

)t(X  = A(t) ·X(t) + B ·U(t) + w(t) 

Y(t) = C ·X(t) + v(t) 
(31) 

Where U(t) was the control input, X(t) was the state, and Y(t) was the output.  

A(t) was a periodic matrix of period T such that: 

               A(t + T) = A(t) (32) 

With the understanding that there is no such thing as a completely deterministic 

process, dynamics noise w and measurement noise v were used to describe model 
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uncertainties, non-linearities, perturbations, or any other constraint on the actual system 

that was not easily described mathematically.  As will be tested and shown later, the 

measurement noise was one of the big drivers constraining the performance of the 

systems.  Variables w and v were defined as uncorrelated zero-mean white Gaussian 

noises with covariance 

E{w·wT} = V1 and E{v·vT} = V2 
 

(33) 

For this thesis, only the A matrix was variable.  Both the B and C matrices were 

set as constant matrices. 
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(34) 

 
The physical meaning of this B matrix was that for all time, the control system 

had perfect firing of its thrusters in each direction exclusively.  This would mean that 

when the thruster was fired in the y-direction, all the thrust was concentrated solely in the 

y-direction.  Further, each thruster was identical in performance capability.  This was an 

ideal situation, and any deviations from this perfection were modeled as a portion of the 

dynamics noise w in the system.  The standard deviation for truth model dynamics noise 

used was consistent with findings from a paper by Bordner and Wiesel that a comparable 

uncontrolled satellite would drift approximately 2 m/day in each direction [5]. 
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(35) 
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The physical meaning of this C matrix was that, in the absence of measurement 

noise v, the control system would receive perfect absolute GPS position readings in the x, 

y, and z directions.  Again, this was an ideal situation, and deviations from this perfection 

were modeled as the measurement noise v in the system.  Since the absolute GPS 

position error doubles in the vertical direction, the standard deviations for measurement 

noise v were modeled as 4 m in the radial x direction and 2 m in both the in track y 

direction and cross track z directions [4].   

The periodic Riccati equation which solves the state-space system of equations is 
 

T-1TT B(t)V1B(t)  P(t)C(t)V2C(t)P(t) - A(t)P(t)  P(t)A(t))t(P ⋅⋅+⋅⋅⋅⋅⋅+⋅=−
 

 

(36) 

The Hamiltonian matrix corresponding to the periodic Riccati equation is 
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(37) 

This Hamiltonian matrix has symplectic characteristics, following the relationship 

                                           H(t) T ·J + J·H(t) = 0 (38) 

where J is the symplectic matrix consisting of zeros and identity matrices 
 





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


−

=
0I
I0

J  
 
(39) 

The Hamiltonian transition matrix ΦH(t,to) also has symplectic characteristics 

following the relationship, 

                                       ФH(t,to)T ·J· Ф H (t,to) = J (40)  

The Hamiltonian transition matrix can be partitioned into four n x n blocks, 
 

ΦH (t,to) = 
Φ11 t to,( )

Φ21 t to,( )

Φ12 t to,( )

Φ22 t to,( )








 

 
(41) 

The solution to the periodic Riccati equation with initial condition Po at time to is 

                P(t) = (Φ21 (t,to) + Φ22(t,to) ·Po) · ( Φ11 (t,to) + Φ12 (t,to) ·Po)-1 (42) 
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Once this solution was computed over one orbit, it could be used to compute the 

optimal control gain and would be repeated exactly for all the following orbits.  Similar 

to the use of the term “exactly” in earlier sections, deviations to this mode were modeled 

as dynamics noise w and measurement noise v.  In order to verify that this solution was 

accurate, checks of the symplectic characteristics of each of the building blocks were 

made.  For details on these checks, their anomalous results, and the many attempts to 

modify the system to get positive results, see Appendix A.  

It is important to note that between this section and the next, there is an important 

shift in both the underlying method and the tool used.  As this section attempted to solve 

the periodic Riccati equation using code written in the fortran computer language, the 

next section will instead solve the algebraic Riccati equation using the standardized 

controls routines of Matlab.  A comparison of fortran code’s solution of the algebraic 

Riccati equation to Matlab’s solution of the corresponding algebraic Riccati equation 

yielded errors on the order of 1E-29, so either tool could handle this simpler problem.  

Similar to Irvin’s State Dependent Riccati Equation (SDRE) method, the solution to the 

algebraic Riccati equation was assumed valid for this application because, in effect, we 

made a linear solution fit a curve by re-linearizing for each of the 25,000 time steps over 

the orbit [11]. 
 

 

3.5  Periodic Riccati Equation - Linear Quadratic Gaussian (LQG) Method 
 

Optimal control theory provided a tunable solution to our periodic problem with 

the linear quadratic Gaussian (LQG) method combining a linear quadratic regulator with 

a Kalman filter.  Following Maciejowski, the state-space form of our problem was the 

same as in the previous section [17]. 
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)t(X  = A(t) ·X(t) + B(t) ·U(t) + w(t) 

Y(t) = C(t) ·X(t) + v(t) 
(43) 

The separation principle was used to solve this LQG problem for the optimal 

solution.  Basically, the linear quadratic regulator operates on X̂ , the optimal estimate of 

state X from the Kalman filter much as it would if the full state were available as a 

measurement for feedback.  By combining the regulator and filter, LQG theory 

guarantees at least stability for a nominal system, but not necessarily robustness. 
 

3.5.1  Kalman Filter.  Kalman filter theory provided the means for estimating the 

state X.  The Kalman filter, as seen below in Figure 11, would take inputs of the plant 

input U and plant output Y.  The Kalman filter would produce an output of the state 

estimate vector X̂ . 

 

Figure 11.  The Kalman Filter [17] 
 

The object of the Kalman filter problem is to minimize the cost 

                   })]t(X̂)t(X[()t(W)]t(X̂)t(X{[(EJ T−⋅⋅−=  (44) 

The Kalman filter gain matrix Kf was calculated as 

Kf = Pf·CT·N2-1 
 

(45) 

where Pf was the solution to the algebraic Riccatti equation 
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Pf·AT + A·Pf - Pf·CTN2-1·C·Pf + N1 = 0 
 

(46) 

The filter dynamics noise N1 and measurement noise N2 tuning parameters would 

be varied to optimize the Kalman filter’s estimate of the state X̂ .  The starting point was 

to set the N1 value to the expected standard deviation squared for the truth model’s 

dynamics noise V1 (standard deviation of 2 meters per day), and the N2 value was varied 

as orders of magnitude of the expected standard deviation squared for the truth model’s 

measurement noise V2 (standard deviation 4 meters in the radial direction and 2 meters 

in the in-track and cross-track directions) [4, 5].  Now that the Kalman filter is set to the 

“truth” noises, we tune the filter gain by varying the magnitude of N2 to get the response 

we want.  When you increase the magnitude of N2, you are telling the filter not to believe 

the measurements as much.  When you decrease the magnitude of N2, you are telling the 

filter that the measurements it receives are really accurate, and it should believe them 

more.  Usually, it is better to tune the filter first for one noise (N2), and then the other 

(N1).  Measurement noise N2 was chosen as the first tuner because, as mentioned earlier 

in this chapter, measurement noise has a much bigger effect on system performance for 

our system.  As noted later in the thesis, the effects of changing N1 are very slight.   
 

 3.5.2  Full State Feedback Regulator.  The object of the regulator problem was 

to come up with the control signal to minimize the cost 
 

dt)URUX) - (XdesQX) - (Xdes(J T
T

0

T ⋅⋅+⋅⋅= ∫  
 
(47) 

from the initial state-space description in Equation 43.  The solution was to keep 

control signal U as a linear function of the state, or in this case of the state error (Xdes - X) 

U = - Kc· (Xdes - X) 
 

(48) 

The optimal state-feedback matrix Kc was calculated as 
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Kc = R-1·BT·Pc 
 

(49) 

where Pc was the solution to the algebraic Riccati equation 

AT·Pc + Pc·A - Pc·B·R-1·BT·Pc + Q = 0 
 

(50) 
 

 

Figure 12.  Optimal Full State Feedback Regulator 

 

Attached to the truth model, the optimal full state feedback regulator would try to 

drive the state error (Xdes - X) to zero.  The Q and R values were tuned to produce the 

optimal response via gain Kc.  Following a method proposed by Irvin, the Q value was 

initially set to identity, and then the R values were varied by orders of magnitude [9].  

Once the acceptable R value, in terms of control usage and RMS error, was found, Q 

values were tweaked to see if improvements could be made.  The process is explained 

more in the following chapters, but eventually controller tuning values of R = 1E-4 and Q 

= 1E0 were found to be the best compromise for comparisons of the different models. 

The truth model was used to output not only the measurements of the true state as 

calculated by the fortran routines from Section 2.2.1, but it also added the perturbing 

noises w and v (of variance V1 and V2) to account for un-modeled disturbances.  Note 

that the truth model was not changed during the tuning.  In essence, we cannot change 

truth, but by changing the gain of the regulator, we controlled how the regulator 

interpreted what it saw (Xdes - X), and, thus, how it reacted (U). 
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 3.5.3  Output Feedback Compensator.  The Kalman filter and controller were 

married together in series to form a new optimal output feedback compensator as seen in 

Figure 13. Similar to the regulator tuning, variations on Q and R were used to optimize 

the controller gain Kc.  To provide even better results, the filter N1 and N2 tuning values 

were tweaked as in Section 3.5.1 to optimize the Kalman filter gain Kf.  Additional 

details on the actual tuning appears in Appendix B. 

Once the model was tuned, additional scenarios involving the different A matrices 

from Section 2.2.2 were executed to compare the degradation when switching from time 

varying control to time invariant control.  Note that when we switch from time-varying to 

time-invariant control, the truth model must remain the same. 
 

 

Figure 13.  Output Feedback Compensator [17] 
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IV.  Full State Feedback Regulator Results 

 
 

           In order for the regulator and compensator to be tuned and checked for validity, 

Monte Carlo data runs were executed.  For response to initial conditions, only one Monte 

Carlo run was accomplished; multiple runs would be needed for statistical measurements.  

For both the regulator and compensator, the scenarios were originally run with an initial 

perturbation of 10 meters in the radial direction.  Some later runs used initial 

perturbations of greater magnitudes or in other directions, but for comparative purposes, 

the 10 meter initial radial perturbation was used as the standard.  This perturbation would 

be consistent with the perturbation caused by increased solar activity such as the 

increased air drag due to a small solar flare.  This chapter will present the results with 

figures and tables focused on the control and RMS error.  The RMS error was calculated 

as steady state RMS error by averaging the RMS error over one orbit with no initial 

perturbation.  Settling times were figured using a 5% of steady state threshold. 

 
 
4.1  Full State Feedback Regulator, Initial Perturbation Dx = 10 meters 
 

The first step of the tuning process for the output feedback compensator was to 

set up and tune the full state feedback regulator.  As mentioned in the previous chapter, 

the full state feedback regulator is more of an idealized system where your controller can 

see all of the states without any measurement noise v distorting the measured feedback.  

As can be seen in Figure 14 below, although the system does not receive measurement 

noise v in the feedback, the dynamics noise w of the truth model does factor into the 

system.  But as noted in the last chapter, the magnitudes of the dynamics noise (standard 

deviation of 2 m/day) were small enough for the system to handle them without much 

problem.   
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Although ideal, the results of the regulator tuning process proved to be useful in 

the later tuning of the more realistic compensator.  Results of control versus settling time 

and control versus RMS error were compared to find the optimum values for the R tuning 

parameter.  Although data will be presented for all the tuning values, comments will 

focus on results for the tuning value R=1E-4. 

  
 

4.1.1  Time-invariant Anodal Model (AnTI).  The first model tested was the 

case of the time-invariant A matrix in the nodal frame.  The physical meaning of this 

model is that the controller receives full state information and controls the system based 

on a time-invariant model (single representative snapshot) of the dynamics of the system. 

 

 

Figure 14.  Full State Feedback Regulator, AnTI 

 

 Due to the variances in the components of the nodal frame A matrix as 

detailed in Section 2.3, this method is not expected to perform as well as the other 

methods.  Surprisingly, the idealistic nature of the regulator provides adequate control for 

this scenario. 
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Figure 15.  Full State Feedback Regulator Error for R=1E-4, AnTI 

 

 

Figure 16.  Full State Feedback Regulator Control for R=1E-4, AnTI 
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4.1.2  Time-varying Anodal Model (AnTV).  The time-varying A matrix in the 

nodal frame was the next regulator model tested.  For this model the controller receives 

the full state information and controls the system knowing the time periodic dynamics of 

the system at each step of the orbit. 

 

 

Figure 17.  Full State Feedback Regulator, AnTV 

 

 The representative plots for error and control over one orbit show acceptable 

response to the 10 meter initial perturbation for the selected tuning value R=1E-4. 

 In comparison of Figure 16 and Figure 19, the control responses for the time-

varying and time-invariant control are very similar.  This shows that for this ideal set-up 

where the controller was able to see the exact states without measurement noise, even the 

models that are not well described by LTI, can produce acceptable responses. 
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Figure 18.  Full State Feedback Regulator Error for R=1E-4, AnTV 

 

 

Figure 19.  Full State Feedback Regulator Control for R=1E-4, AnTV 
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4.1.3  Time-varying Aorbital Model (AoTV).  The third model tested was the 

case of the time-varying A matrix in the orbital frame. Similar to AnTV, the physical 

meaning of this model is that the controller receives the full state information and 

controls the system knowing the dynamics of the system at each step of the orbit.  This 

time the dynamics of the system are in the orbital frame.  Because of the new orbital 

frame of reference and the inherent adaptability of the time-varying model, this method is 

expected to provide the best performance. 

 

 

Figure 20.  Full State Feedback Regulator, AoTV 

  

The error plot in Figure 21 shows how, due to orbital dynamics, a perturbation in 

the radial direction will cause the satellite to slow down, and thus degrade the y in-track 

direction.  This type of cross-correlation would need further study, and adjustments to the 

controller gain would be an area for improvement for the future. 
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Figure 21.  Full State Feedback Regulator Error for R=1E-4, AoTV 
 

 

Figure 22.  Full State Feedback Regulator Control for R=1E-4, AoTV 
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4.1.4  Time-invariant Aorbital Model (AoTI).  The time-invariant A matrix in 

the orbital frame was the last regulator model tested.  For this model, the controller 

receives the full state information and controls the system knowing only a single time-

invariant snapshot of the dynamics of the system at each step of the orbit.  This time the 

dynamics of the system are in the orbital frame. 
 

 

Figure 23.  Full State Feedback Regulator, AoTI 

 

 

Figure 24.  Full State Feedback Regulator Error for R=1E-4, AoTI 
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Figure 25.  Full State Feedback Regulator Control for R=1E-4, AoTI 
 

4.1.5  Regulator Model Comparisons.  The results for the four models were 

compared for control, RMS error, and settling time over an order of magnitude range of 

controller tuning values from R=1E-6 to R=1E0.  Each data point on the figures below 

represents the value for one particular tuning value for R.  For completeness, R values 

above and below this range were tested to ensure the trends of the data did not change for 

the extremes. 
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Figure 26.  Full State Feedback Regulator Control, Tuning R’s 
 

 

Figure 27.  Full State Feedback Regulator Settling Times, Tuning R’s 
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For three out of four models, the results of the control versus settling time plot 

clearly favored a tuning value of R=1E-4.  The one undecided model, AnTI, was not sure 

if it liked R=1E-4 (which gave it lower control) or R=1E-3 or R=1E-2 (which gave it 

lower settling time).  Physically, the R=1E-4 value translates to telling the controller that 

the errors it should correct are reliable but not to be trusted fully.  The goal of the tuning 

process is to minimize both control and settling time, which corresponds to the lower left 

corner of Figure 28 below.  Note that the lower magnitudes of tuning value R correspond 

to the leftmost data points on the figure below. 
 

 

Figure 28.  Regulator Settling Time vs. Control, Tuning R’s 
 

An important result to note is the consistency of the time-varying and time-

invariant results for the orbital A matrix.  As can be seen in the figure above as well as 

Tables 2 - 4, control, RMS errors, and settling times were nearly identical for AoTI and 

AoTV for all values for R.  Referring back to Section 2.3.2, where the A matrix 
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components in the orbital frame are compared over one orbit, it becomes clear why AoTI 

and AoTV should produce very similar results.  That was the reason for this frame 

change:  to get an A matrix that looks very close to being constant over the whole orbit.  

The variability of the nodal frame components (see Section 2.3.1) could be a reason as to 

why the orbital frame models consistently required 14% less fuel.  The complexity of the 

model trying to manipulate all the widely varying periodic changes of the dynamics could 

cause the system to overwork itself, spending more fuel.  The nodal controller might 

overcompensate and under-compensate more compared to the orbital frame models, 

where the system knows pretty well what its baseline is.  Notice the big overshoots for 

the control plots for the nodal frame models versus the small overshoots for the orbital 

frame models.  Although the time-invariant Anodal scenario varied a little from the rest, 

for the target tuning values of 1E-6, 1E-5, and 1E-4, time-varying and time-invariant 

methods produced control, RMS errors, and settling times nearly the same for AnTV and 

AnTI. 
 

Table 2.  Regulator Total Control Over One Orbit, Dx = 10 m 

Control (m/sec) R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0

AnTI 0.0343 0.0331 0.0329 0.0335 0.0359 0.0459 0.0969 

AnTV 0.0343 0.0330 0.0329 0.0335 0.0356 0.0394 0.0449 

AoTI 0.0304 0.0291 0.0289 0.0293 0.0304 0.0315 0.0323 

AoTV 0.0304 0.0291 0.0289 0.0293 0.0304 0.0315 0.0323 
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Table 3.  Regulator Settling Times, Dx = 10 m 

(% 

orbit) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTI 41.31 41.22 40.94 40.04 37.48 50.31 >100 

AnTV 41.36 41.39 41.48 41.75 42.39 41.86 34.56 

AoTI 41.37 41.40 41.49 41.77 42.48 43.52 52.86 

AoTV 41.37 41.40 41.50 41.77 42.48 43.53 52.86 
 

Table 4.  Regulator Average RMS Error Over One Orbit, Dx = 0 m 

Error 

(meters) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTI 0.79E-4 0.54E-4 0.57E-4 0.78E-4 0.52E-4 0.65E-4 0.62E-4 

AnTV 0.49E-4 0.67E-4 0.75E-4 0.48E-4 0.86E-4 0.93E-4 0.61E-4 

AoTI 0.59E-4 0.60E-4 0.96E-4 0.51E-4 0.60E-4 0.77E-4 0.51E-4 

AoTV 0.77E-4 0.68E-4 0.70E-4 0.56E-4 0.45E-4 0.87E-4 0.87E-4 

 



46 

 
V.  Output Feedback Compensator Results 

 
            

After tuning the full state feedback regulator, the next step was to tune the output 

feedback compensator.  As mentioned in previous chapters, the output feedback 

compensator is a more realistic system where the compensator can only see the noisy 

measurement of the position states.  Comparing the compensator control plots to the 

corresponding regulator ones, it is easily seen how the noise degrades the system.  But 

the results of the more realistic compensator proved similar to those of the idealized 

regulator.  The AnTI model was the exception.  It diverged for all scenarios, and thus, it 

will be shown in Section 5.1, but will not be presented in the later comparison scenarios.  

As mentioned in the previous chapter, RMS error was taken as a steady state value.  RMS 

error tested each specific noise level or step size condition to the same truth model with 

no initial perturbations.  Results of control versus settling time and RMS error were 

compared to find the optimum values for the controller Q and R tuning parameters as 

well as the filter N1 and N2 tuning parameters.  

 
 
5.1  Output Feedback Compensator, Initial Perturbation Dx = 10 meters 
 

As mentioned in the previous section, this scenario, with an initial perturbation of 

10 meters in the radial direction, was the standard that will be used to compare to for all 

the scenarios in following sections.  

 
 

5.1.1  Time-invariant Anodal Model (AnTI).  The first model tested was the 

case of the time-invariant A matrix in the nodal frame.  This is similar to the AnTI 
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regulator model. But this time the controller receives the noisy output information and 

controls the system with only a time-invariant snapshot of the dynamics of the system. 

 

 

Figure 29.  Output Feedback Compensator, AnTI 
 

 

Figure 30.  Output Feedback Compensator Error for R=1E-4, AnTI 
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Figure 31.  Output Feedback Compensator Control for R=1E-4, AnTI 

 

The AnTI position errors for all tuning values for R would be classified as slowly 

diverging over the single orbit.  Continuing past the one first orbit (see Figure 32 below), 

the AnTI model continues to diverge with no hope of recovery for any tuning value for R.  

This trend held true for all of the compensator scenarios tested. 
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Figure 32.  Compensator Error Over Three Orbits, Dx=10m, AnTI 

 

5.1.2  Time-varying Anodal Model (AnTV).  The next compensator model 

tested was the case using the time-varying A matrix in the nodal frame.  The physical 

meaning of this model is that the controller receives the noisy output information and 

controls the system knowing the dynamics of the system at each step of the orbit. 

 
 

 

Figure 33.  Output Feedback Compensator, AnTV 
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Figure 34.  Output Feedback Compensator Error for R=1E-4, AnTV 

 

 

Figure 35.  Output Feedback Compensator Control for R=1E-4, AnTV 
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5.1.3  Time-varying Aorbital Model (AoTV).  The time-varying A matrix in the 

orbital frame was the third model tested.  For this model, the controller receives the noisy 

output information and controls the system knowing the dynamics of the system at each 

step of the orbit.  This time the dynamics of the system are in the orbital frame. 
 

 

Figure 36.  Output Feedback Compensator, AoTV 
 

 

Figure 37.  Output Feedback Compensator Error for R=1E-4, AoTV 
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Figure 38.  Output Feedback Compensator Control for R=1E-4, AoTV 
 

5.1.4  Time-invariant Aorbital Model (AoTI).  The final compensator model 

tested was the time-invariant orbital frame A matrix.  Similar to AnTI, the physical 

meaning of this model is that the filter and the controller both receive the noisy output 

information and control the system with only a single representative snapshot of the 

dynamics of the system.  This time the dynamics of the system are in the orbital frame. 
 

 

Figure 39.  Output Feedback Compensator, AoTI 
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Figure 40.  Output Feedback Compensator Error for R=1E-4, AoTI 
 

 

Figure 41.  Output Feedback Compensator Control for R=1E-4, AoTI 
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5.1.5  Compensator Model Comparisons.  The results for the three models were 

compared for control, RMS error, and settling time over an order of magnitude range of 

controller tuning values from R=1E-6 to R=1E0.  This range of magnitudes was validated 

through the full-state feedback regulator tuning.  To ensure completeness, tuning R 

values above and below this range were also tested, but not shown, to ensure the trends of 

the data did not change for the extremes of the output feedback compensator as well.  

Figures for the converging models AnTV, AoTI, and AoTV are presented first with 

comparative plots for the diverging model AnTI following after.   

Note that in the previous chapter for the regulator control plots, we saw the nodal 

frame models with bigger overshoots than the orbital frame models.  Now that 

measurement noise is added, we see the same basic control plots (a little noisier) for the 

compensator orbital frame models, but now for the compensator the nodal frame models 

really start to show how the noise corrupts their attempts to control the system.  Compare 

Figure 6 from Section 2.3.1 with Figure 35 from Section 5.1.2.  It becomes noticeable 

that, as the components of the A matrix begin to periodically propagate from their initial 

values, the noise drives the control to become more variable.  It is important to note here 

what the A components actually represent are changes to the dynamics state over each 

step.  This A matrix is not diagonal, so the component magnitudes represent correlations 

between positions and velocities that increase and decrease throughout the orbit.  From 

Equation 43, the total change in the states includes the dynamics state terms plus control 

plus dynamics noise.  Since the expected value of the noise at different points of the orbit 

stays the same, the noise will play a bigger role when the A matrix components are 

smaller such as at the initial time.  But as time approaches 20-40% of the orbit, control 

quiets down because the A matrix components periodically increase their magnitudes as 

they propagate through their orbits.  The A matrix dynamics start to dominate over the 

noise, thus you see less variation in the control plots.  But once again, as the A matrix 
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components start to decrease towards their initial values, the noise again starts to 

dominate and drives the control to be more variable.  Looking at the A matrix elements, 

most of them propagate to zero at the 1/2 orbit point of time.  It is not as noticeable in 

these plots, but due to its periodic nature, the orbital frame models should also follow this 

trend to a much lesser degree. 
 

 

Figure 42.  Compensator Control, Dx=10m, Tuning R’s 
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Figure 43.  Compensator RMS Error, Dx=10m, Tuning R’s 

 

 

Figure 44.  Compensator Settling Times, Dx=10m, Tuning R’s 
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Similar to the regulator results, the above RMS error data (Figure 43) is not very 

helpful for using trends to tune specific R values, but it does show a trend between the 

orbital frame models and the nodal frame model.  The nodal frame model consistently 

exceeds an order of magnitude over the orbital frame models.  This trend ties into the 

dynamics and noise correlation discussed earlier in this section. 

For settling times, Figure 44, the AnTV value drops dramatically for the R=1E0 

tuning value.  This trend is the same as was seen with the regulator in Figure 27.  Both of 

the nodal frame regulator models had a minimum settling time value one or two tuning R 

magnitudes below the tuning value for which they would diverge.  For the regulator, 

AnTI minimized settling time at R=1E-2, while AnTV was minimized at R=1E0 similar 

to the compensator.  For the AnTV compensator model, the next tuning R value of 

R=1E1 drove the model to diverge.  This was a feature of the nodal frame models, and 

not for the orbital frame models.  The orbital frame models were tested over many 

intermediate R values, but they produced no minimizing settling time dip before they 

reached the R value where the model diverged.  The reason behind the minimum settling 

time is tied to overshoot.  The AnTV model in Figure 34 is over-damped with no 

overshoot, so it takes it a while to reach the 5% steady state value that settling time 

requires.  The minimized settling times occur when the system is under-damped when the 

system quickly overshoots and then settles into the 5% steady state value threshold.  The 

next magnitude for tuning R usually provides a diverging system because the overshoot 

becomes too large for the system to recover from.  The orbital frame models did not 

produce similar trends because, for all presented R values, the error was slightly under-

damped.  For larger R values, the orbital frame models gracefully became more under-

damped.  In most cases, an R value of 1E1 drove most systems to divergence.  Since this 

feature only minimized settling time for nodal frame models and did not reduce RMS 

error or control, it was noted, but not investigated further. 
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Figure 45.  Compensator Settling Time vs. Control, Dx=10m 
 

As before with the regulator, the best balance between control and settling time 

for the compensator was R=1E-4.  For both orbital frame models, the tuning R value for 

best control was R=1E-4, but AnTV minimized control for R=1E-2.  While all the 

models reduced settling time for smaller R values, for comparative purposes a single 

value R=1E-4 provided an acceptable compromise between minimal control and minimal 

settling time.  Although the consistency of the time-varying and time-invariant results for 

the orbital frame A matrix are not the same as with the regulator, they are still pretty 

close.  It is also a pleasant surprise to see that the compensator’s control and settling time 

results for AoTI and AoTV deviated only slightly over the regulator results.  Comparing 

regulator to compensator results for both AoTI and AoTV (see Table 5 below), control 

degraded less than one percent.  Even with the handicap of noisy position data, the 

compensator, with its combined filter and controller, was able to control the system 

almost as well as an idealistic full state feedback regulator, but the RMS error suffered. 
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Table 5.  Compensator/Regulator Comparisons for Dx=10m, R=1E-4 

Total Control (1 orbit) Settling Time RMS error (Dx=0m)  

(m/sec) % over Reg (% orbit) % over Reg (meters) % over Reg 

AnTI 0.3431 * 90.4 % * > 100 * 59.1 % 0.1770 100.0 % 

AnTV 0.0471 30.3 % 48.1 -13.8 0.0175 99.6 % 

AoTI 0.0291 0.7 % 41.0 1.1 % 0.0012 91.9 % 

AoTV 0.0291 0.8 % 41.4 0.2 % 0.0015 95.3 % 
* Diverging System 

 

 

Figure 46.  Compensator Control, Dx=10m, Tuning R’s 

 

The AnTI model followed the same trend as the others over the range of R values, 

but even the best tuning for control, R=1E-4, yielded control results which were an order 

of magnitude greater than those for the other scenarios.  The order of magnitude 

difference is not surprising considering the diverging nature of the results.  The trend is 
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important, because it shows that the model is trying to control the system, but the time-

invariant model we gave it was inadequate.  Since this model diverged for all tuning R 

values and for all compensator scenarios, its results are not included in the later sections. 

 

Table 6.  Compensator Total Control Over One Orbit, Dx = 10 m, Tuning R’s 

Control (m/sec) R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTI 0.354 * 0.344 * 0.343 * 0.351 * 0.380 * 0.442 * 0.486 * 

AnTV 0.0907 0.0617 0.0471 0.0406 0.0388 0.0410 0.0461 

AoTI 0.0315 0.0296 0.0291 0.0294 0.0304 0.0315 0.0323 

AoTV 0.0314 0.0296 0.0291 0.0295 0.0304 0.0315 0.0323 
* Diverging system 
 

Table 7.  Regulator Settling Times, Dx = 10 m, Tuning R’s 

(% orbit) R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTI > 100 * > 100 * > 100 * > 100 * > 100 * > 100 * >100 *

AnTV 47.98 48.01 48.11 48.41 49.20 49.08 37.08 

AoTI 40.92 40.95 41.03 41.29 41.98 43.06 52.56 

AoTV 41.28 41.31 41.40 41.68 42.40 43.47 53.16 
* Diverging system 

 

Table 8.  Compensator Average RMS Error Over One Orbit, Dx = 0 m, Tuning R’s 

Error (meters) R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTI 0.179 0.179 0.177 0.171 0.148 0.071 0.098 

AnTV 0.0367 0.0120 0.0175 0.0445 0.0398 0.0218 0.0354 

AoTI 0.0012 0.0014 0.0012 0.0035 0.0014 0.0033 0.0024 

AoTV 0.0013 0.0016 0.0015 0.0016 0.0009 0.0017 0.0010 
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5.1.6  Filter Tuning N1 and N2.  With the controller properly tuned at R=1E-4, 

the next step was to tweak the filter tuning values N1 and N2.  Following a similar 

method as with the Q and R, the N1 value was set to the expected standard deviation 

squared for the truth model’s dynamics noise (standard deviation of 2 meters per day), 

and the N2 value was varied as orders of magnitude of the expected standard deviation 

squared for the truth model’s measurement noise (standard deviation of 4 meters in the 

radial direction and 2 meters in the in-track and cross-track directions).  Again, there was 

a trade-off between total control used and average steady state RMS error.  Tables and 

figures of comparative results for various filter N2 tuning values for the favored 

controller tuning value R=1E-4 are listed in Appendix B.  The most notable result of this 

tuning process was that either the control or RMS error could be improved over the 

nominal N2=1E0, but not both.  Steady state RMS error is reduced by increasing N2, in 

effect, telling the filter to believe its dynamics model better than the noisy measurements.  

Once you have a perturbation to deal with, the control and settling time favor the smaller 

N2 values, placing more emphasis on the noisy measurements over the dynamics model.  

Each model preferred a different magnitude of N2.  Although a slight amount of benefit 

could be gained by more rigorously tuning each filter, for comparative purposes, the filter 

tuning value was set to the truth model variances without increasing or decreasing the 

tuning value. 
 

 

5.2  Initial Perturbation Dy  = 10 meters 
 

The previous section’s initial perturbation of 10 meters was in the radial direction, 

which should be the worst direction for the models since the accuracy of GPS readings is 

typically halved in that direction.    If the initial perturbation was instead set in the y in-

track direction, the compensators would be expected to estimate and control them better.  
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Figure 47.  Compensator Control, Dy=10m, Tuning R’s 

 

 

Figure 48.  Compensator Settling Times, Dy=10m, Tuning R’s 
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Figure 49.  Compensator Settling Time vs. Control, Dy=10m, Tuning R’s 

 

The AoTI model used practically the same control as AoTV, but it allowed longer 

settling times for the scenario.  Both of the time-varying models decreased their settling 

times for this model.  Table 9 below compares the control results between an initial 

perturbation in the x radial direction versus the same initial perturbation in the y in-track 

direction.  The unexpected increase in control for this scenario is explained as a result of 

cross-correlations between the various states as mentioned in the previous chapter.  For 

realistic applications, these differences would be statistically studied and optimized in 

diagonal and off-diagonal weightings of filter and controller tuning matrices.   

Note that RMS error were not included in this section because the steady state 

RMS error was defined earlier as a zero perturbation calculation.  So the steady state 

RMS error will be the same as what was presented in Figure 43 of Section 5.1.5.  The 

same will hold true for next two scenarios, Dz=10m and Dx=100m. 
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Table 9.  Dy = 10 Scenario Comparisons for R=1E-4 

Total Control Over One Orbit (R=1E-4) Settling Time (R=1E-4) 
 

Control (m/sec) % over Dx10 Scenario (% orbit) % over Dx10  

AnTV 0.0520 10.3 % 43.85 -8.8 % 

AoTI 0.0304 4.4 % 43.31 5.5 % 

AoTV 0.0304 4.3 % 41.21 -0.5 % 

 

 
5.3  Initial Perturbation Dz  = 10 meters 
 

For this scenario, the initial perturbation of 10 meters was set in the cross-track 

direction.  Again, the compensators would be expected to estimate and control them 

better than the original initial radial 10 meter perturbation. 

 

 

Figure 50.  Compensator Control, Dz=10m, Tuning R’s 
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Figure 51.  Compensator Settling Times, Dz=10m, Tuning R’s 
 

 

Figure 52.  Compensator Settling Time vs. Control, Dz=10m, Tuning R’s 
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Similar to the previous scenario but this time more obvious, the AoTI and AoTV 

had practically the same control and settling time.  The nodal frame time-varying model 

actually improved settling time over the standard Dx = 10 m scenario.  As mentioned for 

the previous scenario, cross-correlations between states are the culprits responsible for 

these results.  Statistical studies of these behaviors would need to be accomplished and 

diagonal and off-diagonal elements of the tuning matrices would be altered. 

 

Table 10.  Dz = 10 Scenario Comparisons for R=1E-4 

Total Control Over One Orbit (R=1E-4) Settling Time (R=1E-4) 
 

Control (m/sec) % over Dx10 Scenario % orbit % over Dx10  

AnTV 0.0504 6.9 % 44.22 -8.1 % 

AoTI 0.0333 14.4 % 41.41 0.9 % 

AoTV 0.0332 14.0 % 41.48 0.2 % 
 

 
5.4  Initial Perturbation Dx = 100 meters 
 

Although the initial radial perturbation of 10 meters would be a realistic scenario 

for perturbations that could occur in low earth orbit, the event of increased solar activity 

could produce even larger perturbations.  Increasing the initial radial perturbation by an 

order of magnitude to 100 meters would not produce results that should necessarily be 

designed to for stable orbit operations, but the goal for the compensators should be that 

such an increased perturbation does not cause them to diverge.  Orbital reconfigurations 

as mentioned in Chapter I would require the controller to handle perturbations of this 

magnitude.  We would expect for linear systems that a scaling of the initial perturbation 

should produce a comparable scaling for the control.  This scenario will test the 

robustness of the models. 
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Figure 53.  Compensator Control, Dx=100m, Tuning R’s 
 

 

Figure 54.  Compensator Settling Times, Dx=100m, Tuning R’s 
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Figure 55.  Compensator Settling Time vs. Control, Dx=100m, Tuning R’s 

 

While the magnitudes for control jumped an order of magnitude, the general 

trends seen in previous scenarios remained the same.  As mentioned at the beginning of 

this section, for linear systems, an order of magnitude increase of initial perturbation 

should produce a comparable order of magnitude increase in control.  Comparing this 

scenario’s results with the standard Dx10 scenario (see Table 11 below), the increase in 

control for the orbital frame models over the standard is pretty close to a one-for-one, 

linear increase.  A 10 times increase of initial perturbation yielded an 8.9 times increase 

in control.  But the nodal frame model was not really as close.  For AnTV a 10 times 

increase of initial perturbation yielded a 6 times increase in control.  While still not 

besting the orbital frame models in control usage, AnTV showed that the varying time-

periodic nature for its dynamics caused less deterioration than the orbital frame models 

for the bigger perturbation.   



69 

The Aorbital time-invariant model was the best for control, and it also provided 

the best settling time.  Since the AoTI and AoTV models used nearly the same control, 

the 1% better settling time for AoTI would make it a better option. 

 

Table 11.  Dx = 100 Comparisons for R=1E-4 

Total Control Over One Orbit (R=1E-4) Settling Time (R=1E-4) 

 
Control (m/sec) 

% over Dx10 

Scenario 

(% 

orbit) 

% over Dx10 

Scenario 

AnTV 0.3363 613.5 % 42.12 76.5 % 

AoTI 0.2890 892.1 % 41.15 969.8 % 

AoTV 0.2892 892.1 % 41.48 629.1 % 
 

 

5.5  Initial Perturbation Dx = 10 meters, Increased Step Size 
 

For the purposes of this thesis, the step size of 0.2338 seconds (same step size 

used in Bordner’s dynamics model [4]) has been ideal for ground testing applications, but 

actual space computational hardware may not allow or want this measurement frequency 

for control burns.  An order of magnitude increased step size to 2.338 seconds was tested.  

While sampling theory recommends a minimum sample time 2 to 3 times the frequency 

of data to avoid degradation of the model, this scenario tested an even larger increase.  

Again, this scenario was meant not to produce results that should be designed to, but 

more as a test to see if the higher fidelity models would diverge.   
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Figure 56.  Compensator Control, Dx=10m, Step 10, Tuning R’s 
 

 

Figure 57.  Compensator RMS Error, Dx=0m, Step 10 Tuning R’s 
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Figure 58.  Compensator Settling Time, Dx=10m, Step 10, Tuning R’s 

 

Since this scenario incapacitated the time-invariant model, it compounded 

evidence of the robustness of both the AnTV and AoTV models.  Even with its hands tied 

for 9/10 of the time, AoTV handled the scenario with only 6% more control than the 

standard resulting in only 4% better settling time.  The AnTV model showed marked 

control usage improvement over the standard step size, and it actually improved its RMS 

error by over 31% over the standard.  It was good to see the time-varying models handle 

this as well as they did, and the time-invariant model was not really expected to perform 

well in this type of environment because if its inherent inflexibility.  Future study is 

recommended to look at the step size limits for each of these models.  For AoTI it is 

recommended to evaluate step sizes between 5 times and 10 times the original step size.  

For both AnTV and AoTV, evaluations of increased step size above the 10 times increase 

are recommended. 
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The RMS error curves in Figure 57 show that for the steady state when there is no 

initial perturbation, both AoTV and AnTV struggle with the increased time step, but 

AnTV seems to handle it much better. 

 

Table 12.  Increased Step Size Scenario Comparisons, Dx=10m for R=1E-4 

Total Control (1 orbit) Settling Time RMS error (Dx=0m)  

(m/sec) % over Dx10 % orbit % over Dx10 (meters) % over Dx10 

AnTV 0.0387 -17.8 % 30.31 -37.0 % * 0.0231 -31.5 % 

AoTI 0.0381 * 30.8 % * > 100 * 88.5 % * 0.0057 385 % 

AoTV 0.0310 6.4 % 40.57 -3.6 % 0.0552 3430 % 
* Diverging system 

 

 
5.6  Initial Perturbation Dx = 10 meters, DGPS Noise 
 

Earlier scenarios assumed truth model measurement noise consistent with 

absolute GPS position readings.  Since the object of formation flying is to have more than 

one satellite flying in formation with a number of other cooperating satellites, the use of 

DGPS should be a viable option.  According to Bordner’s thesis, the DGPS signals 

produce accuracies on the order of centimeters [4].  For this scenario, the measurement 

noise in the truth model was changed from standard deviation of Rx = 4 meters to Rx = 

0.04 meters and the standard deviations for Ry and Rz were similarly reduced two orders 

of magnitude from 2 meters to 0.02 meters.  Now, the reader should be made aware that 

this is not a “true” DGPS scenario.  This scenario utilizes advertised capabilities of 

DGPS to create a lower noise environment.  To fully evaluate an actual DGPS scenario, 

Bordner’s thesis provides a good description of how to evaluate this more complex 

problem which requires multiple cooperating satellites [4]. 
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Figure 59.  Compensator Control, DGPS Noise, Tuning R’s 
 

 

Figure 60.  Compensator RMS Error, DGPS Noise, Tuning R’s 
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Figure 61.  Compensator Settling Time, DGPS Noise, Tuning R’s 

 

 

Figure 62.  Compensator Settling Time vs Control, DGPS Noise, Tuning R’s 
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This scenario produced results consistent with expectations.  Note that RMS error 

results (Figure 60) were later statistically validated over 100 Monte Carlo runs.  Reduced 

measurement noise for the system reduced both the control and RMS error for all models.  

But the nodal frame model showed the most improvement, 30% better control and 98% 

better RMS error as compared to our standard noise model.  Both orbital frame models 

both showed modest improvement with AoTV again having the best RMS error.  It is not 

surprising that AnTV, with its previously-shown strong correlation to noise, substantially 

reduced its RMS error.  As mentioned at the beginning of this section, all these results are 

for a simple reduced-noise scenario.  In order to plan for operational use of DGPS, a full-

up DGPS scenario using methods described in Bordner’s thesis would be needed [4]. 
 

Table 13.  DGPS Noise Scenario Comparisons, Dx=10m for R=1E-4 

Total Control (1 orbit) Settling Time RMS error (Dx=0m)  

(m/sec) % over Dx10 % orbit % over Dx10 (meters) % over Dx10 

AnTV 0.0329 -30.2 % 41.53 -13.7 % 3.6E-4 -97.9 % 

AoTI 0.0288 -1.2 % 41.26 0.6 % 2.9E-4 -75.3 % 

AoTV 0.0289 -0.8 % 41.50 0.2 % 1.7E-4 -88.2 % 
 

 

5.7  Initial Perturbation Dx = 10 meters, Increased Noise 
 

Earlier scenarios assumed truth model measurement noise consistent with 

absolute GPS position readings.  Given a scenario where GPS position data was not 

available, the position data would need to be estimated using other methods.  This 

scenario (not necessarily the worst case scenario) would increase the standard deviation 

for the measurement noise by two orders of magnitude.  Similar to other scenarios 

covered in previous sections, this scenario would hopefully never be needed for the 

actual satellite missions, but it was intended as a test of the fidelity of the models.  
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Figure 63.  Compensator Control, Dx=10m, 100xNoise, Tuning R’s 

 

 

Figure 64. Compensator RMS Error, Dx=10m, 100xNoise, Tuning R’s 
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Figure 65. Compensator Settling Time, Dx=10m, 100xNoise, Tuning R’s 

 

 

Figure 66. Compensator Settling Time vs. Control, Dx=10m, 100xNoise, Tuning R’s 
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Although this scenario killed the nodal model, both the time-varying and time-

invariant models in the orbital frame produced acceptable results with increased control 

and settling time as compared to the standard (see Table 14 below).  This is nice to see 

that AoTI, with its inherent inadaptability, was able to handle this worse case scenario.  

AoTI’s RMS error was not bad with only 4900% more error than the standard scenario, 

showing that, given an unperturbed system, the time-invariant model still worked well. 

This scenario was disappointing for the AnTV model, because it had performed 

fairly well over a wide range of scenarios, but it could not adapt to the increased noise, 

and even the zero perturbation run diverged.  These past two scenarios showed a strong 

correlation between measurement noise and nodal-frame model performance.  While a 

satellite system would not necessarily need to operate over such a wide range of 

measurement noise magnitudes, this performance of the nodal frame model definitely 

ruled it out for satellites with navigation systems that produce data much worse than 

absolute GPS position data.  On the other hand, this was good news for the AoTV 

because, throughout all scenarios tested, AoTV proved its fidelity and robustness in the 

face of many challenges.  This final test for AoTV produced a better settling time than 

the standard and the smallest increase in RMS error compared with the other two models 

due to the one hundred-fold increase of noise. 
 

Table 14.  Increased Noise Scenario Comparisons, Dx=10m for R=1E-4 

Total Control (1 orbit) Settling Time RMS error (Dx=0m)  

(m/sec) % over Dx10 % orbit % over Dx10 (meters) % over Dx10 

AnTV 2.2403 * 4653 % * 77.3 * 107.9 % * 3.4412* 19528 % * 

AoTI 0.0669 129.6 % 39.9 88.5 % 0.1650 4900 % 

AoTV 0.0455 56.2 % 44.6 -3.6 % 0.0324 2080 % 
* Diverging system 
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VI.  Conclusions and Recommendations 

 
 

           Several conclusions can be made from the data produced by this thesis.  The 

earliest lesson learned in this thesis was:  do not try to solve the periodic Riccati equation 

using units of the earth’s radius expecting to get centimeter-level accuracy.  Numeric 

difficulties arise from trying to invert matrices with such large (1E4) and small (1E-17) 

elements.  Integrations and matrix inversions become questionable as to their validity.  A 

possible unit conversion could possibly cure this ill.  The limits of numerical precision 

for computers ranges in 1E-16 order of magnitude, so a conversion to bigger units may 

avoid crossing the minimum numerical precision boundary.   

From the more fruitful SDRE analysis, data shows how an idealized system like 

the full state feedback regulator may not always predict how a system will act in a more 

realistic noisy environment.  Even though it was not expected to perform well, the AnTI 

model looked perfectly adequate for the regulator.  It actually produced the best RMS 

error compared with the other models at R=1E-4.  However, once you took away its 

perfect state knowledge and only gave it noisy measurements, it provided inadequate 

control and diverged.  This model diverged for all output feedback compensator scenarios 

including the scenario with measurement noise reduced by two orders of magnitude.  

Even in a low noise environment, the AnTI model diverged.  These results confirm the 

limits of the separation principle as mentioned in Section 3.5.  The robustness of the 

linear quadratic regulator is not guaranteed when combined with the Kalman filter to 

form the output feedback compensator.  As mentioned in Chapters 4 and 5, this model 

was not expected to work well, but this is a lesson on how results from idealistic systems 

might lead you down the wrong path. 
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First noted for the full state feedback regulator, and later confirmed with most of 

the output feedback compensator scenarios, the AoTI and AoTV models produced very 

similar results for most of the scenarios.  Many scenarios produced differences in both 

control usage and settling time of less than one percent difference between the two.  This 

result could justify the use of linear time invariant (LTI) control whose validity was 

questioned in Section 3.3.  Although the time-varying control produced superior results, 

the similarity in results combined with the computational capability required for that 

method may drive designers to favor the less demanding LTI method.  But the failure 

scenarios must also be considered. The AoTI model diverged in the face of reduced step 

size.  This failure shows the inherent inflexibility of the LTI method in compensating for 

big changes over large intervals.  If mission requirements require control at a time step 

exceeding one second, this method would not be the model of choice. 

The nodal frame time-periodic model AnTV showed that it was also robust.  

AnTV only diverged in the last scenario, but it consistently produced inferior results as 

compared with AoTV.  The discrepancy was not always large, but AoTV consistently 

produced settling times and control 4-7% better for nominal scenarios.  Another factor to 

consider is the correlation between AnTV’s performance and the amount of measurement 

noise.  In the regulator scenario where there was no measurement noise, AnTV actually 

produced similar RMS error to AoTV.  For the DGPS scenario where noise was reduced 

by a factor of 100, AnTV was only 5% worse in RMS error than AoTV.  Once you added 

more realistic noise, AnTV suffered.  The one hundred-fold increase in noise totally 

incapacitated the AnTV model.   

The correlation between the periodic nature of the nodal frame A matrix 

components and the response of the models to measurement noise was speculated in 

Section 5.1.5.  Basically as the A matrix components propagated from their initial values, 

the measurement noise dominated the system causing the control to vary more (compare 
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Figure 6 from Section 2.3.1 with Figure 35 from Section 5.1.2).  As time approached 20-

40% of the orbit, where most of the A matrix elements periodically increased their 

values, the dynamics started to dominate and the system was controlled with less 

variability.  But nearing the 50% mark of the orbit, most of the non-zero A matrix 

components again approached zero.  These smaller dynamics components allowed the 

noise again to dominate giving us the noisy control.   

Correlation between noise and the periodic nature of the dynamics was also seen 

for the orbital frame time-varying model, but it was to a much lesser degree for most 

scenarios.  For the scenario where the measurement noise was increased by two orders of 

magnitude, a similar but more pronounced trend occurred for AoTV (see Figure 103 in 

Appendix B).  Again the noise dominates the system at the initial time, 50% orbit, and 

final time of the orbit.  Although many of the A matrix components are nearly constant, 

some components have the same periodic nature (just a much smaller magnitude) as we 

saw in the nodal frame.  As these components go to zero, the noise dominates.  Once they 

periodically increase enough (near 10% or 65% of the orbit), the dynamics overshadows 

the noise, and the variable control is noticeably reduced.  Comparing Figure 103 with 

Figure 105, you can really see the difference between time-varying and time-invariant 

control in this more noisy environment.  For AoTV the reduced noise areas of the orbit 

allowed the model to control in a more productive, less noisy way.  This improvement 

gave AoTV 50% less control over the orbit than its time-invariant counterpart AoTI. 

The AoTV model showed that time periodic control in the orbital frame produced 

not only the best results for most scenarios, but it was the only one never to diverge.  

AoTV produced sub-centimeter level accuracy for most scenarios using less than 3 

cm/sec of control over an orbit.  If the scenario was carried out longer than one orbit, to 

cover a whole day, the control results were still less than 3.5 cm/sec of control.  If this 

scenario would be typical for every day of the year, the annual control usage would be 
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12.77 m/sec.  This should translate to become an acceptable fuel budget for our 

microsats.  These results are more impressive when you note that the noise level of the 

system was 30-50 times worse than our results.  In other words, we gave the system noisy 

imperfect data, and it improved that data by 3000-5000%. 

AoTV’s higher fidelity would be a good selling point for the satellite formation 

flying mission, because the mission requires inherent flexibility.  Consistent results 

through various scenarios would make this model the primary contender for future study.  

Before this model could be considered flight-worthy, though, much more tuning and 

Monte Carlo simulation runs would need to be run to statistically validate its capabilities.  

Further tuning would need to look at the position state cross-correlations witnessed by 

comparing the results of Dx, Dy, and Dz deflections.  Diagonal and off-diagonal 

weightings for the filter and controller tuning matrices would have to be considered, 

tested, and validated.  Further tests should also try other orbits with different altitudes, 

eccentricities, and inclinations. 

This thesis focused on a single leader satellite and the control techniques in order 

to keep the satellite set in the desired periodic orbit.  For a more populous satellite 

cluster, the same techniques would be repeated with new initial conditions.  The initial 

position of the additional satellite would be chosen to provide the desired cluster 

configuration.  As the satellite propagates through its orbit, the additional satellite is 

controlled to follow its own prescribed orbit relative to the leader.  Cooperative 

techniques would need to be added to ensure the relative spacing and positioning 

between cluster members remains adequate for the desired mission at all times during 

propagation through the full orbit. 
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Appendix A.  Linear Time Periodic Method (LTP) Troubleshooting 

 
 

 

As mentioned in Section 3.4, the goal of the Linear Time Periodic (LTP) method 

was to solve the time periodic Riccati differential equation.  Bittanti proposed the method 

followed in this thesis with many checks allowing validation of the results [3]. 
 

A.1  Symplectic Checks 
 

Following the method detailed in Section 3.4, checks on the symplectic nature of 

certain steps were used to help validate or invalidate the results.  The periodic Riccati 

equation we were trying to solve is Equation 36.  The Hamiltonian for that Riccati 

equation is given by Equation 37 (for convenience to the reader, repeated here below) 
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
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⋅⋅−
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)t(H 1T

TT

 
 
(37) 

consisting of matrices relating to the state-space relations in Equation 31.  The 

first check was a symplectic check (Equation 38) of the Hamiltonian.  Following the 

periodic nature of its elements, the Hamiltonian was also time periodic, so the check was 

done for all Hamiltonians over the entire orbit.  All Hamiltonian checks were successful, 

producing zero residuals. 

The next symplectic check was not successful.  The Hamiltonian transition matrix 

ΦH(t,to) (Equation 41) should follow the symplectic relationship in Equation 40.  This is a 

critical step that leads directly to the periodic Riccati equation solution (Equation 42), so 

with its results invalidated, a new approach would have to be taken to solve our problem.  

But many possible trouble areas were tested first to see where our calculations broke 

down. 
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A.2  Integration Methods 
 

Since the Hamiltonian was validated, it made sense to look into the integration 

method used to calculate ΦH(t,to), which was the integration of 

)t,t(H)t,t( oHoH Φ⋅=Φ  
 
(51) 

As mentioned in Section 2.2.1, the system used the haming integration subroutine, 

an ordinary differential equations integrator using a fourth order predictor-corrector 

algorithm.  Haming collects the last four values for the state vector and extrapolates them 

to predict the next value.  It then corrects the extrapolated prediction to find a new value 

for the state vector.  Alternative double precision canned integration methods in fortran’s 

IMSL library include both a Runge-Kutta-Verner sixth-order integration routine and a 

Burlish-Stoer integration routine.  Both of these routines refused to handle the integration 

of the Hamiltonian matrix, claiming the system was “too stiff”.  Haming proved to be the 

only integrator robust enough to even take on the integration. 

Another method to compute ΦH(t,to), using Peano-Baker series expansion [6], was 

the last attempt 

                          +σσ⋅+σ+=Φ ∫ ∫∫
σt

t
1

t
2

t

t
1oH

o

1

oo

dHdHHdI)t,t(  (52) 

Again, even for the third order expansion, the computed ΦH(t,to) still failed the 

symplectic test in Equation 40. 

Of course, the big question is why did these methods not work?  The fortran 

routines provide a good hint by telling us the system is “too stiff”.  Trying to integrate a 

12 x 12 dimensioned matrix with elements on the order of 1E4 and 1E-17 is a difficult 

task especially considering the limits of numerical precision for computers ranges around 

1E-16 order of magnitude.  Some elements of the Hamiltonian are already pushing the 

lower limits of accuracy, so the inaccurate results we received should not be too big of a 

surprise. 
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Appendix B.  Selected Data Runs for Output Feedback Compensator 

 
 

B.1  Filter Tuning N1 and N2 
 

After tuning the R controller tuning values for the output feedback compensator, 

the next step was to tune the N2 filter tuning values.  Similar to the tuning process for the 

controller’s R tuning values, the object is to minimize both control and RMS error.  Also, 

as before, this is a process of trade-offs.  Control cost increased as settling time improved 

with lower orders of magnitude for N2.  Steady state RMS error prefers a higher N2 

value, but these higher N2’s drive the system divergent when a perturbation is added.  

Further tuning of the N1 values (similar to the Q tuning) was not as big a factor, due to 

the overbearing nature of measurement noise over dynamics noise for our system.  While 

N1 tuning values were also quickly looked at, results were similar to the N2 results, so 

the end result left us with our original tuning values N2=N1=1E0. 
 

 

Figure 67.  Compensator Control, Dx=10m, Tuning N2’s 
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Figure 68. Compensator Settling Times, Dx=10m, Tuning N2’s 

 

 

Figure 69. Compensator RMS Error, Dx=10m, Tuning N2’s 
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 Although the trends are not as easy to distinguish, each model has its own filter 

tuning value N2 which minimizes its control or settling time.  For each orbital frame 

model, there was a tuning value N2=1E-2 which improved settling time over the best for 

our initial tuning N2=1E0.  But this value was different for the nodal frame model with 

AnTV favoring N2=1E0.  For an example of AoTI at N2=1E-2, a 0.2% smaller settling 

time will cost 4% more control.  While control could possibly be improved with higher 

N2 values, there were barriers of higher N2’s where the system would diverge when the 

filter stopped believing noisy measurement data and only believed the dynamics model. 

The steady state RMS error was different than the other scenarios because it has 

no initial perturbation.  With no perturbation, it preferred a higher N2 value basically 

telling the filter to ignore the measurements and only believe the dynamics model.  This 

is a situation astrodynamicists warn about for Kalman filters [26].  For unperturbed 

orbital models where the dynamics are well known, Kalman filters have a tendancy to 

“go to sleep,” reducing the weighting on the measurements to zero.  This situation is 

acceptable in an unperturbed environment, but if the system encounters a perturbation 

such as the scenarios in this thesis, the system needs to use both dynamics model data 

and noisy measurement data.  Since the initial tuning value of N2=1E0 produced an 

acceptable compromise between RMS error and control, it was used as the standard for 

comparisons in the sections that follow.  The equation for calculating RMS error is given 

below: 
 

3
)zẑ()yŷ()xx̂(

RMSerror
2

desired
2

desired
2

desired −+−+−
=  (52) 
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Table 15.  Compensator Total Control Over One Orbit, Dx=10m, Tuning N2’s 

(m/s) N=1E-6 N =1E-5 N =1E-4 N =1E-3 N =1E-2 N =1E-1 N =1 N=1E1 

AnTV 0.0777   0.0530    0.0478 0.0472    0.0472    0.0471    0.0471  0.0471  

AoTI 0.0416   0.0348    0.0317    0.0314    0.0303    0.0295    0.0291  0.289*  

AoTV 0.0734   0.0419    0.0318 0.0315    0.0303    0.0295    0.0291  0.0290  
* Diverging system 

 

Table 16.  Compensator Settling Time Over One Orbit, Dx=10m, Tuning N2’s 

% orbit N=1E-6 N =1E-5 N =1E-4 N =1E-3 N =1E-2 N =1E-1 N =1 N=1E1

AnTV 46.09 45.34 46.17 47.27 47.86 48.05 41.47 48.13 

AoTI 41.50 41.53 41.62 41.06 40.94 40.98 41.03 >100* 

AoTV 43.06 42.55 41.79 41.33 41.27 41.34 41.40 41.47 
* Diverging system 

 

Table 17.  Compensator Average RMS Error Over One Orbit, Dx=0m, Tuning N2’s 

Error (m) N=1E-6 N =1E-4 N =1E-2 N =1E-1 N =1E0 N =1E1 N =1E2

AnTV 0.0446 0.0202 0.0170 0.0353 0.0175 0.0167 0.0108 

AoTI 0.0237 0.0123 0.0045 0.0038 0.0030 0.0016 0.0028 

AoTV 0.0393 0.0103 0.0044 0.0012 0.0015 0.0011 0.0011 

 
 

B.2  Initial Perturbation Dy = 10 m 
 

The first scenario was for a 10 meters perturbation in the y in-track direction. 
 

B.2.1  Time-invariant Anodal (AnTV).  
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Figure 70. Compensator Error for R=1E-4, Dy=10m, AnTV 

 

 

Figure 71. Compensator Control for R=1E-4, Dy=10m, AnTV 
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B.2.2  Time-varying Aorbital (AoTV).   
 

 

Figure 72. Compensator Error for R=1E-4, Dy=10m, AoTV 

 

 

Figure 73. Compensator Error for R=1E-4, Dy=10m, AoTV 
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B.2.3  Time-invariant Aorbital (AoTI).  
 

 

Figure 74. Compensator Error for R=1E-4, Dy=10m, AoTI 

 

 

Figure 75. Compensator Control for R=1E-4, Dy=10m, AoTI 
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B.2.4  Model Comparisons. 

 

Table 18.  Compensator Total Control Over One Orbit, Dy=10m, Tuning R’s 

control 

(m/sec) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0

AnTV 0.0976 0.0680 0.0520 0.0429 0.0357 0.0295 0.0255 

AoTI 0.0345 0.0322 0.0304 0.0279 0.0238 0.0184 0.0154 

AoTV 0.0344 0.0321 0.0304 0.0279 0.0238 0.0182 0.0153 

 

Table 19.  Compensator Settling Times, Dy=10m, Tuning R’s 

(% 

orbit) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 43.74 43.77 43.85 44.09 44.62 44.46 61.74 

AoTI 43.15 43.19 43.31 43.67 44.66 46.64 52.88 

AoTV 41.09 41.12 41.21 41.48 42.18 43.62 51.53 

 

 
B.3  Initial Perturbation Dz = 10 m 
 

The next scenario was for a 10 meter perturbation in the z cross-track direction. 

 
 

B.3.1  Time-varying Anodal (AnTV). 
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Figure 76. Compensator Error for R=1E-4, Dz=10m, AnTV 

 

 

Figure 77. Compensator Control for R=1E-4, Dz=10m, AnTV 
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B.3.2  Time-varying Anodal (AoTV) 
 

 

Figure 78. Compensator Error for R=1E-4, Dz=10m, AoTV 

 

 

Figure 79. Compensator Control for R=1E-4, Dz=10m, AoTV 
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B.3.3  Time-invariant Anodal (AoTI). 
 

 

Figure 80. Compensator Error for R=1E-4, Dz=10m, AoTI 

 

 

Figure 81. Compensator Control for R=1E-4, Dz=10m, AoTI 
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B.3.4  Model Comparisons. 

 

Table 20.  Compensator Total Control Over One Orbit, Dz=10m, Tuning R’s 

control 

(m/sec) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0

AnTV 0.0952 0.0658 0.0504 0.0416 0.0340 0.0274 0.0245 

AoTI 0.0385 0.0355 0.0333 0.0305 0.0259 0.0196 0.0145 

AoTV 0.0382 0.0353 0.0332 0.0304 0.0258 0.0195 0.0144 

 

Table 21.  Compensator Settling Times, Dz=10m, Tuning R’s 

(% 

orbit) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 43.74 43.77 43.85 44.09 44.62 44.46 61.74 

AoTI 41.29 41.39 41.48 41.73 42.18 40.55 63.28 

AoTV 41.36 41.39 41.48 41.73 42.18 40.55 63.28 

 

 
B.4  Initial Perturbation Dx = 100 m 
 

The next scenario was for a perturbation of 100 meters in the x radial direction. 

 
 

B.4.1  Time-varying Anodal (AnTV). 
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Figure 82. Compensator Error for R=1E-4, Dx=100m, AnTV 

 

 

Figure 83. Compensator Control for R=1E-4, Dx=100m, AnTV 
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B.4.2  Time-varying Anodal (AoTV). 

 

 

Figure 84. Compensator Error for R=1E-4, Dx=100m, AoTV 

 

 

Figure 85. Compensator Control for R=1E-4, Dx=100m, AoTV 
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B.4.3  Time-invariant Anodal (AoTI). 

 

 

Figure 86. Compensator Error for R=1E-4, Dx=100m, AoTI 

 

 

Figure 87. Compensator Control for R=1E-4, Dx=100m, AoTI 
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B.4.4  Model Comparisons. 
 

Table 22.  Compensator Total Control Over One Orbit, Dx=100m, Tuning R’s 

control 

(m/sec) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0

AnTV 0.3781 0.3473 0.3363 0.3375 0.3568 0.3944 0.4497 

AoTI 0.3033 0.2908 0.2890 0.2933 0.3035 0.3147 0.3230 

AoTV 0.3035 0.2910 0.2892 0.2935 0.3036 0.3148 0.3229 
  

Table 23.  Compensator Settling Times, Dx=100m, Tuning R’s 

(% 

orbit) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 42.00 42.03 42.12 42.39 43.04 42.46 34.76 

AoTI 41.04 41.06 41.15 41.41 42.08 43.15 52.32 

AoTV 41.36 41.39 41.48 41.76 42.47 43.52 52.88 
 

B.5  Initial Perturbation Dx = 10 m, Increased Step Size 
 

The next scenario tested was for an order of magnitude increase in step size with 

the original initial perturbation of 10 meters in the x radial direction.  The step size was 

increased from 0.2338 seconds to 2.338 seconds. 
 

 
B.5.1  Time-varying Anodal (AnTV). 
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Figure 88. Compensator Error for R=1E-4, Dx=10m, Step 10, AnTV 

 

 

Figure 89. Compensator Control for R=1E-4, Dx=10m, Step 10, AnTV 
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B.5.2  Time-varying Anodal (AoTV). 
 

 

Figure 90. Compensator Error for R=1E-4, Dx=10m, Step 10, AoTV 

 

 

Figure 91. Compensator Control for R=1E-4, Dx=10m, Step 10, AoTV 
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B.5.3  Time-invariant Anodal (AoTI). 
 

 

Figure 92. Compensator Error for R=1E-4, Dx=10m, Step 10, AoTI 

 

 

Figure 93. Compensator Control for R=1E-4, Dx=10m, Step 10, AoTI 
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B.5.4  Model Comparisons. 

 

Table 24.  Compensator Total Control Over One Orbit, Dx=10m, Step 10 

control 

(m/sec) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 0.0476 0.0405 0.0387 0.0421 0.0738 0.210 * 0.173 *

AoTI 0.040 * 0.039 * 0.038 * 0.037 * 0.033 * 0.028 * 0.020 *

AoTV 0.0326 0.0304 0.0310 0.0354 0.0612 0.135 * 0.075 *
* Diverging system 

 

Table 25.  Compensator Settling Times, Dx=10m, Step 10 

(% 

orbit) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 30.05 29.84 29.16 87.47 >100 >100 * >100 * 

AoTI >100 * >100 * >100 * >100 * >100 * >100 * >100 * 

AoTV 41.34 41.18 40.57 38.44 85.74 >100 * >100 * 
* Diverging system 

 

Table 26.  Compensator Average RMS Error, Dx=0m, Step 10 

(meters) R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 0.0263 

AoTI 0.0057 0.0054 0.0057 0.0058 0.0058 0.0060 0.0063 

AoTV 0.0975 0.0808 0.0552 0.1098 0.0014 0.00810 0.0008 
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B.6  Initial Perturbation Dx = 10 m, DGPS noise 
 

The next scenario tested was for the original initial perturbation of 10 meters in 

the x radial direction, but now the truth model measurement noise was decreased in 

standard deviation by two orders of magnitude.  This was meant to simulate the benefit of 

using DGPS position data instead of absolute GPS data. 

 
 

B.6.1  Time-varying Anodal (AnTV). 
 

 

Figure 94. Compensator Error for R=1E-4, Dx=10m, DGPS noise, AnTV 
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Figure 95. Compensator Control for R=1E-4, Dx=10m, DGPS noise, AnTV 

 
B.6.2  Time-varying Anodal (AoTV). 

 

 

Figure 96. Compensator Error for R=1E-4, Dx=10m, DGPS noise, AoTV 
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Figure 97. Compensator Control for R=1E-4, Dx=10m, DGPS noise, AoTV 

 
B.6.3  Time-invariant Anodal (AoTI). 

 

 

Figure 98. Compensator Error for R=1E-4, Dx=10m, DGPS noise, AoTI 
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Figure 99. Compensator Control for R=1E-4, Dx=10m, DGPS noise, AoTI 

 
B.6.4  Model Comparisons. 

 

Table 27.  Compensator Total Control Over One Orbit, Dx=10m, DGPS noise 

Control-m/sec R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 0.0344 0.0331 0.0329 0.0335 0.0356 0.0394 0.0449 

AoTI 0.0302 0.0290 0.0288 0.0292 0.0302 0.0315 0.0323 

AoTV 0.0304 0.0291 0.0289 0.0293 0.0304 0.0315 0.0323 

 

Table 28.  Compensator Settling Times, Dx=10m, DGPS noise 

% 

orbit 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0

AnTV 41.41 41.44 41.53 41.80 42.44 41.91 34.58 

AoTI 41.14 41.40 41.26 41.52 42.21 43.30 52.15 

AoTV 41.38 41.40 41.50 41.77 42.48 43.54 52.87 
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Table 29.  Compensator Average RMS Error, Dx=0m, DGPS noise 

(meters) R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0

AnTV 5.3E-4 2.4E-4 3.6E-4 8.3E-4 4.3E-4 3.9E-4 4.3E-4 

AoTI 3.3E-4 3.5E-4 2.9E-4 3.5E-4 4.4E-4 5.6E-4 4.6E-4 

AoTV 2.5E-4 8.9E-4 1.8E-4 6.5E-4 1.2E-4 2.2E-4 4.7E-4 

 

 
B.7  Initial Perturbation Dx = 10 m, 100 x noise 
 

The last scenario tested was for the original initial perturbation of 10 meters in the 

x radial direction, but now the truth model measurement noise was increased in standard 

deviation by two orders of magnitude.  This was meant to simulate the detriment of 

losing the ability to collect absolute GPS data. 

 
 

B.7.1  Time-varying Anodal (AnTV). 
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Figure 100. Compensator Error for R=1E-4, Dx=10m, 100 x noise, AnTV 

 

 

Figure 101. Compensator Control for R=1E-4, Dx=10m, 100 x noise, AnTV 
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B.7.2  Time-varying Anodal (AoTV). 
 

 

Figure 102. Compensator Error for R=1E-4, Dx=10m, 100 x noise, AoTV 

 

 

Figure 103. Compensator Control for R=1E-4, Dx=10m, 100 x noise, AoTV 
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B.7.3  Time-invariant Anodal (AoTI). 
 

 

Figure 104. Compensator Error for R=1E-4, Dx=10m, 100 x noise, AoTI 

 

 

Figure 105. Compensator Control for R=1E-4, Dx=10m, 100 x noise, AoTI 
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B.7.4  Model Comparisons. 
 

Table 30.  Compensator Total Control Over One Orbit, Dx=10m, 100 x Noise 

control 

(m/sec) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 6.983 * 3.936 * 2.240 * 1.306 * 0.793 * 0.530 * 0.426 *

AoTI 0.1728 0.1038 0.0669 0.0488 0.0399 0.0356 0.0334 

AoTV 0.0901 0.0607 0.0455 0.0379 0.0340 0.0331 0.0327 
* Diverging system 

 

Table 31.  Compensator Settling Times, Dx=10m, 100 x Noise 

(% 

orbit) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV >100 * >100 * >100 * >100 * >100 * >100 * >100 * 

AoTI 77.26 77.28 77.34 77.56 78.34 81.34 93.96 

AoTV 39.74 39.78 39.90 40.28 41.22 42.56 61.44 
* Diverging system 

 

Table 32.  Compensator Average RMS Error, Dx=0m, 100 x Noise 

(% 

orbit) 

R=1E-6 R=1E-5 R=1E-4 R=1E-3 R=1E-2 R=1E-1 R=1E0 

AnTV 1.5859 * 4.2933 * 3.4412 * 4.7513 * 2.5248 * 3.8470 * 2.1767 *

AoTI 0.0737 0.0864 0.1650 0.1162 0.1623 0.2044 0.2268 

AoTV 0.1088 0.1798 0.0324 0.1225 0.3212 0.1213 0.0870 
* Diverging system 
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