
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-1-2002 

Investigation of Cooperative Behavior in Autonomous Wide Investigation of Cooperative Behavior in Autonomous Wide 

Search Munitions Search Munitions 

Robert E. Dunkel III 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons, and the Multi-Vehicle Systems and Air Traffic 

Control Commons 

Recommended Citation Recommended Citation 
Dunkel, Robert E. III, "Investigation of Cooperative Behavior in Autonomous Wide Search Munitions" 
(2002). Theses and Dissertations. 4376. 
https://scholar.afit.edu/etd/4376 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F4376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=scholar.afit.edu%2Fetd%2F4376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=scholar.afit.edu%2Fetd%2F4376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4376?utm_source=scholar.afit.edu%2Fetd%2F4376&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
INVESTIGATION OF COOPERATIVE BEHAVIOR IN AUTONOMOUS 

WIDE AREA SEARCH MUNITIONS 
 

THESIS 
 

Robert E. Dunkel III, Captain, USAF 

AFIT/GAE/ENY/02-4 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 



Report Documentation Page

Report Date 
26 Mar 2002

Report Type 
Final

Dates Covered (from... to) 
Sep 2000 - Mar 2002

Title and Subtitle 
Investigation of Cooperative Behavior in Autonomous
Wide Search Munitions

Contract Number 

Grant Number 

Program Element Number 

Author(s) 
Capt Robert E. Dunkel, III, USAF

Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Air Force Institute of Technology Graduate School of
Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 WPAFB, OH 45433-7765 

Performing Organization Report Number 
AFIT/GA/ENY/02-4

Sponsoring/Monitoring Agency Name(s) and 
Address(es) 
Mr. Rob Murphey AFRL/MNGN 101 W. Eglin Blvd.,
Ste 330 Eglin AFB, FL 32542-6810

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
The original document contains color images.



Abstract 
The purpose of this research is to investigate the effectiveness of wide-area search munitions in various
scenarios using different cooperative behavior algorithms. The general scenario involves multiple
autonomous munitions searching for an unknown number of targets of different priority in unknown
locations. Three cooperative behavior algorithms are used in each scenario: no cooperation, cooperative
attack only, and cooperative classification and attack. In the cooperative cases, the munitions allocate
tasks on-line as a group, using linear programming techniques to determine the optimum allocation. Each
munition provides inputs to the task allocation routine in the form of probabilities of successfully being
able to complete the various tasks. These probabilities of success are based on statistical Poisson field
theory. Weighting parameters are applied to the probabilities of success so that optimum settings can be
determined via Response Surface Methodology. Results are compared within and across the various
scenarios. Initial results did not reflect expected behavior (due to poor choice of responses to optimize).
Experiments were modified and more desirable results obtained. In general, cooperative engagement alone
attacks and kills fewer targets than no cooperation. Cooperative classification however, kills fewer targets
at low false target attack rates (< 0.005/sq km), but outperforms the other algorithms as the false target
attack rate increases. This is due primarily to the fact that cooperative classification significantly reduces
and stabilizes the effective false target attack rate. 

Subject Terms 
Cooperative Engagement, Cooperative Behavior, Autonomous Munitions, Wide Area Search Munitions

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
103



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government. 
 
 
 
 
 
 
 
 
 
 
 



AFIT/GAE/ENY/02-4 

 

 
 
 
 
 

INVESTIGATION OF COOPERATIVE BEHAVIOR IN AUTONOMOUS WIDE 
AREA SEARCH MUNITIONS 

 
 

THESIS 
 
 
 
 

Presented to the Faculty  
 

Department of Aeronautical and Astronautical Engineering 
 

 Graduate School of Engineering and Management  
 

Air Force Institute of Technology 
 

Air University 
            

 Air Education and Training Command 
 

 In Partial Fulfillment of the Requirements for the   
 

Degree of Master of Science in Aeronautical Engineering 
 
 
 
 

Robert E. Dunkel III, BS 
 

Captain, USAF 
 
 

March 2002 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 



AFIT/GAE/ENY/02-4 

 

 
 
 
 
 
 

INVESTIGATION OF COOPERATIVE BEHAVIOR IN AUTONOMOUS WIDE 
AREA SEARCH MUNITIONS 

 
 
 
 

Robert E. Dunkel III, BS 

Captain, USAF 

 
 
 
 
 
 
 
 

 
     
 
 
 

Approved: 

7 

Lt Col DavicrJ^queSyPh.D. (Chairman) 

Lt Col Price Smith, Ph.D. (Member) 

Lt ColKay Hill, Ph.D. (Member) 

/J_AU£_oZ 
Date 

Date 

Date 



 

iv 

Acknowledgements 

 

(This page intentionally left blank) 

 

 



 

v 

Table of Contents 

Page 
 

Acknowledgements ............................................................................................................iv 

Table of Contents ................................................................................................................v 

List of Figures ..................................................................................................................viii 

List of Tables......................................................................................................................ix 

List of Abbreviations and Symbols.....................................................................................x 

Abstract .............................................................................................................................xii 

I. Introduction ..............................................................................................................1-1 

1.1 General .............................................................................................................1-1 
1.2 Background ......................................................................................................1-2 

1.2.1 Communication. ...........................................................................................1-3 
1.2.2 Self-Organization. ........................................................................................1-4 
1.2.3 Decision Making and Task Allocation.........................................................1-5 
1.2.4 Sensitivities in Cooperative Weapons..........................................................1-7 

1.3 Objectives.........................................................................................................1-8 
1.4 Approach and Scope.........................................................................................1-9 
1.5 Relevance .......................................................................................................1-10 

II. Wide Area Search Munitions ...............................................................................2-1 

2.1 The Single Munition, Single Target Case ........................................................2-1 
2.1.1 General. ........................................................................................................2-1 
2.1.2 Probability of Target Encounter...................................................................2-2 
2.1.3 Probability of Target Report. .......................................................................2-3 
2.1.4 Outcome Trees. ............................................................................................2-4 

2.2 The Single Munition, Multi-Target Case .........................................................2-6 
2.2.1 Probability of Target Encounter...................................................................2-6 
2.2.2 Probability of Target Report. .......................................................................2-7 
2.2.3 Outcome Trees. ............................................................................................2-8 

2.3 The Multi-Munition, Multi-Target Case ........................................................2-10 

III. The Computer Simulation ....................................................................................3-1 

3.1 Original Simulation ..........................................................................................3-1 
3.1.1 General. ........................................................................................................3-1 



 

vi 

Page 
 

3.1.2 Task Allocation. ...........................................................................................3-2 
3.1.3 Target Classification and Confidence. .........................................................3-3 
3.1.4 Lethality. ......................................................................................................3-5 
3.1.5 Battle Damage Assessment. .........................................................................3-5 
3.1.6 Communications...........................................................................................3-5 

3.2 Simulation Modifications.................................................................................3-6 
3.2.1 Maximum Number of Targets......................................................................3-6 
3.2.2 Truth Information vs. Sensed Information. ..................................................3-7 
3.2.3 Autonomous Target Recognition. ................................................................3-8 
3.2.4 Non-Lethal Attacks. .....................................................................................3-9 
3.2.5 Battle Damage Assessment. .........................................................................3-9 
3.2.6 Task Allocation. ...........................................................................................3-9 
3.2.7 Benefit Calculations. ..................................................................................3-10 
3.2.8 Additional Modifications. ..........................................................................3-13 

IV. Response Surface Methodology...........................................................................4-1 

4.1 Introduction ......................................................................................................4-1 
4.2 Application .......................................................................................................4-3 

4.2.1 Independent Variables..................................................................................4-3 
4.2.2 Responses. ....................................................................................................4-3 
4.2.3 Phase 0 Screening Experiments. ..................................................................4-4 
4.2.4 Phases 1 and 2. .............................................................................................4-5 

V. Results and Analysis ............................................................................................5-1 

5.1 Response Surface Methodology.......................................................................5-1 
5.1.1 Weighting Parameters. .................................................................................5-1 

5.2 Number of Targets Killed ................................................................................5-2 
5.3 Hit Formula. .....................................................................................................5-5 
5.4 False Target Attack Rate ..................................................................................5-6 
5.5 Exploratory Excursions ....................................................................................5-8 

5.5.1 Benefit Calculations. ....................................................................................5-9 
5.5.2 Response Surface Methodology.................................................................5-10 
5.5.3 Results. .......................................................................................................5-11 

VI. Conclusions and Recommendations.....................................................................6-1 

Appendix A:  Test Matrices ............................................................................................A-1 

Appendix B:  Sample Designs ........................................................................................B-1 

B.1 Sample Design – β is insignificant:.................................................................B-1 
B.2 Sample Final Model – β is insignificant: ........................................................B-5 



 

vii 

Page 
 

B.3 Sample Screening Design:  ξ and β are significant:........................................B-9 
B.4 Sample Central Composite Design:  ξ and β are significant: .......................B-13 
B.5 Sample Final Design:  ξ and β are significant: .............................................B-18 

Bibliography................................................................................................................BIB-1 

 

 



 

viii 

List of Figures 

Figure Page 
 
Figure 2.1  Search Setup ..................................................................................................2-1 

Figure 2.2  Search Outcome Tree for Single Munition, Single Target Scenario .............2-4 

Figure 2.3  Engagement Outcome Tree for Single Munition, Single Target Scenario ....2-5 

Figure 2.4  Search Outcome Tree for Single Munition, Multi-Target Scenario ..............2-9 

Figure 2.5  Engagement Outcome Tree for Multiple Munition, Multiple Target Scenario

................................................................................................................................2-11 

Figure 3.1  Network Flow Model for Task Allocation ....................................................3-3 

Figure 4.1  Two Factor, Full Factorial Screening Design................................................4-4 

Figure 4.2  Two Factor, Central Composite Design ........................................................4-6 

Figure 4.3  Sample Response Plots ..................................................................................4-9 

Figure 4.4  Sample Plot of Non-Dimensional Composite Response .............................4-10 

Figure 5.1  Number of Killed Targets From Initial Research ..........................................5-3 

Figure 5.2  Number of Targets Attacked From Initial Research......................................5-4 

Figure 5.3  Number of Attacks on Targets From Initial Research...................................5-4 

Figure 5.4  Hit Formula Results From Initial Research ...................................................5-6 

Figure 5.5  Number of False Target Attacks From Initial Research ................................5-8 

Figure 5.6  Number of Targets Killed with Revised Experiments.................................5-12 

Figure 5.7  Number of Targets Attacked with Revised Experiments ............................5-13 

Figure 5.8  Number of False Target Attacks with Revised Experiments.......................5-14 

 

 



 

ix 

List of Tables 

Table Page 
 
Table 2.1  Binary Confusion Matrix ................................................................................2-3 

Table 2.2  Multiple Target Type Confusion Matrix.........................................................2-7 

 
 
 
 



 

x 

List of Abbreviations and Symbols 

 
α False Target Attack Rate 
 
β Weighting parameter for the value of low priority targets relative to high 

priority targets 
 
ξ Weighting parameter for continued search versus attack 
 
ηt Target Density 

ηtotal_tgts Sum of the individual target type densities 

ηFT False Target Density 

A Area already searched by a munition 

As Search Area 

AFB Air Force Base 

AFIT Air Force Insitute of Technology 

AFRL Air Force Research Laboratory 

ATR Autonomous Target Recognition 

BDA Battle Damage Assessment 

CCD Central Composite Design 

dA Differential increase in the area searched by a munition (A) 

ETA Estimated Time of Arrival—time required for a munition to reach a target 

Ntgts Number of targets 

PE Probability of Encountering a true target 

FA
P  Probability of not False Alarming 

PFTA|E Probability of a false target attack given a false target encounter 



 

xi 

Pk Probability of Kill 

RT
P  Probability of not recognizing a target 

PRT|TR Probability of a real target given that a target report is made 

Psa Probability of a successful attack 

Pss Probability of a successful search 

PTR Probability of target report 

RSM Response Surface Methodology 

tETA Time required for a munition to attempt an attack, abort, and return to 
searching 

 
tr Time remaining 

V Munition velocity 

VACA Vehicles directorate of the Air Force Research Laboratory (AFRL/VACA) 

W Width of a munition’s sensor footprint 

 

 



AFIT/GAE/ENY/02-4 

xii 

Abstract 

The purpose of this research is to investigate the effectiveness of wide-area search 

munitions in various scenarios using different cooperative behavior algorithms.  The 

general scenario involves multiple autonomous munitions searching for an unknown 

number of targets of different priority in unknown locations.  Three cooperative behavior 

algorithms are used in each scenario:  no cooperation, cooperative attack only, and 

cooperative classification and attack.  In the cooperative cases, the munitions allocate 

tasks on-line as a group, using linear programming techniques to determine the optimum 

allocation.  Each munition provides inputs to the task allocation routine in the form of 

probabilities of successfully being able to complete the various tasks.  These probabilities 

of success are based on statistical Poisson field theory.  Weighting parameters are applied 

to the probabilities of success so that optimum settings can be determined via Response 

Surface Methodology. 

Results are compared within and across the various scenarios.  Initial results did 

not reflect expected behavior (due to poor choice of responses to optimize).  Experiments 

were modified and more desirable results obtained.  In general, cooperative engagement 

alone attacks and kills fewer targets than no cooperation.  Cooperative classification 

however, kills fewer targets at low false target attack rates (< 0.005/km2), but 

outperforms the other algorithms as the false target attack rate increases.  This is due 

primarily to the fact that cooperative classification significantly reduces and stabilizes the 

effective false target attack rate. 
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INVESTIGATION OF COOPERATIVE BEHAVIOR IN AUTONOMOUS WIDE 

AREA SEARCH MUNITIONS 

 
I. Introduction 

1.1 General 

The purpose of this research is to investigate the effectiveness of wide-area search 

munitions in various scenarios using different cooperative behavior algorithms.  The 

general scenario involves multiple autonomous munitions searching for an unknown 

number of targets of different priority in unknown locations.  When one munition finds 

and identifies a target, the information is communicated to the other munitions which 

otherwise would not have any knowledge of the target location or identification.  

Together (i.e. cooperatively) the munitions make a decision as to whether the target 

should be attacked and if so, which munition should attack it.  An attack on a target does 

not guarantee a kill however, so each munition keeps a log of identified targets and 

continuously has to decide whether to attack a known target or to continue searching.  

How the munitions make this decision is the thrust of this research. 

The Munitions Directorate of the Air Force Research Laboratory at Eglin Air 

Force Base (AFB) sponsored this research.  All research was conducted at the Air Force 

Institute of Technology (AFIT), Wright-Patterson AFB, Ohio. 
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1.2 Background 

In order to remain the world’s premier air power, the United States Air Force 

continually searches for ways to improve its warfighting capabilities.  Recent attention 

has focused on improving not only mission success but also mission efficiency, the 

question being “How many targets can be killed in a sortie?” rather than “How many 

sorties are required to kill a target?”.  The paradigm shift, while perhaps subtle, is 

significant.  It implies that each sortie employs multiple weapons, and that the weapons 

themselves are highly effective in killing targets.  Thus, emphasis has been placed on 

small weapons (so that many can be carried in a single sortie) with high lethality.   

High lethality can be achieved in a number of ways.  Typically, high lethality is 

realized with large warheads, but this competes with the objective of making small 

weapons.  An alternative is to create small weapons with small warheads and highly 

sophisticated guidance packages, thereby allowing the weapon to precisely hit a 

vulnerable point on a target.  This however, requires a level of sophistication that may be 

beyond current technology or cost effectiveness.  Yet another alternative (or perhaps an 

augmentation to weapons with sophisticated guidance packages) may be to use small 

weapons that behave cooperatively.  Small, low cost, lightweight, autonomous weapons 

that can recognize targets are already in development by the Air Force and its defense 

contractors.  Individually, these weapons are not as lethal as larger, more expensive 

weapons, but if the weapons can make use of cooperative behavior, perhaps their 

decreased individual capabilities can be overcome. 

The term cooperative behavior is itself a broad description of a host of subject 

areas including, but not limited to, communication, self-organization, and task allocation.  
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Each of these areas is discussed in more detail below.  The study of cooperative behavior 

spans several disciplines, but research in the areas of ethology (the study of animal 

behavior) and robotics appears to provide material that is the most pertinent to the current 

research.  Many of the examples in the following discussion will be from these 

disciplines. 

1.2.1 Communication.  In all examples of cooperative behavior, there is 

some form of communication.  The nature of the communication however, is widely 

varied.  In his study considering the behavior of flocks, herds, and schools, Reynolds 

postulates that each agent responds only to the actions of nearby agents (11).  Thus 

communications are local, but they are not actively broadcast.  Individual agents react to 

information they perceive and those reactions force other agents to react.  A slightly more 

complex system is employed by ant colonies (1).  When an individual ant locates a food 

source, it returns to the colony, laying down a pheromone trail of decreasing intensity in 

the process.  Other ants in the colony simply follow the increasing pheromone gradient to 

the food source and at the same time deposit their own pheromone trail.  As more ants 

travel between colony and food source, the pheromone trail is reinforced.  In this case, 

communications are still local (only ants close to the pheromone trail will know about it), 

but involve active transmission (depositing pheromones), resulting in an autocatalytic 

process.  Stone and Veloso take an interesting approach to communication between 

cooperative robots (13).  Their team of robots experiences periods of both local and 

global communications.  In general, the individual agents are able to actively 

communicate with other agents near them.  However, the agents periodically 

communicate on a more global scale to re-synchronize their efforts. 
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1.2.2 Self-Organization.  A key part of cooperative behavior involves how 

individual agents organize themselves within the group.  As already alluded to, Reynolds’ 

research employs agents who simply react to changes in their surroundings.  Kube’s box-

pushing robots use similar logic (8).  Individual robots are programmed to avoid 

obstacles (such as other robots) while attempting to accomplish a common task (moving 

a box).  This is perhaps the most primitive method of self-organization within a group, 

since each agent acts independently without considering the impact on the group as a 

whole.  Other methods involve more complex planning schemes.  In Stone and Veloso’s 

research, individual agents can re-organize themselves into different formations and 

assign tasks to the various agents during the periods of global communication.  Such 

logic provides a more flexible organizational structure, allowing the group to adjust to 

changes in the environment or goal. 

Organizational decisions can also be made by considering factors such as possible 

(or expected) future task assignments or individual agent capabilities (in the case of 

dissimilar agents).  While some of these considerations tie in more appropriately with the 

subject of task allocation, it is important to mention them here.  The organization and re-

organization of autonomous search weapons may have significant impact on mission 

success.  For example, if an individual search weapon disappears (either from some sort 

of failure, being attacked by an enemy, or flying itself into a target), how should the other 

agents organize themselves?  Should the remaining agents close the gap created by the 

missing agent, or should they simply continue to fly their present routes?  The answer to 

this question is outside the scope of this research, but it is certainly pertinent to the 

discussion of cooperative behavior. 
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1.2.3 Decision Making and Task Allocation.  Decision-making and task 

allocation are the primary areas of concern for this research.  The discussion up until now 

presented various forms of communication and self-organization within a group, but what 

is the purpose of these actions, and more importantly, how do individual agents know 

what tasks to perform in order to achieve that purpose?  Using simple common sense and 

observation, we can say that individual agents within a group appear to behave according 

to some set of rules.  For ants, the rules seem simple:  follow the steepest pheromone 

gradient.  In his research on flocks, herds, and schools, Reynolds surmised that individual 

agents behave according to two basic principles:  the desire to stay close to the flock and 

the desire to avoid collisions with other agents (11).  Thus, he constructed an analytic 

model using attractive and repulsive forces to govern individual agent behavior.   

Other behavior governing rules have been investigated for applications in 

autonomous munitions.  Both Frelinger et al. (2) and Gillen (3) developed simulations 

wherein individual munitions cooperatively search for and engage targets.  Individual 

agents determine their appropriate tasks based on decision rules which consider 

parameters such as distance to target, fuel remaining, range rate, etc.  Typically a 

munition will search an area until the value of a particular decision rule exceeds a 

predetermined threshold.  At that point, the munition leaves the search pattern to 

accomplish the task associated with the particular decision rule.  Overall, the research by 

Frelinger et al. and Gillen was quite good and yielded significant insight into cooperative 

behavior (in fact, this research builds substantially off of Gillen’s research).  However, 

there are weaknesses.  One such weakness lies in the development of the decision rules.  

In both cases, the forms of the decision rules were arrived at heuristically, without 
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extensive theoretical development.  While the decision rules worked well in their 

respective simulations, a strong theoretical basis may have provided more insight into 

significant parameters to include in the decision rules and under what scenarios the 

decision rules would be applicable. 

In the above examples, individual agents do not consciously behave 

cooperatively.  Each individual agent acts independently, according to some set of 

behavior rules.  When an agent decides to perform a task, it is because it is most 

advantageous (or rule conforming) for that individual agent to perform the task.  The fact 

that the task allocation works well for the group is simply a byproduct of the behavior 

rule development.  If properly developed, the rules governing individual behavior will 

also maximize the entire group’s effectiveness.  For animals, one can assume that the 

behavior rules are either learned through experience or are ingrained at some instinctual 

level at birth.  In Gillen’s research, weighting parameters within the decision rule were 

optimized off-line based on the entire group’s performance.  Whatever the method behind 

the behavior rule development, the fact remains that the individual agents do not 

consciously allocate tasks based on what is best for the group.  In some ways, this is an 

attractive feature of cooperative behavior.  Without conscious thought or extensive 

communication, individual agents perform tasks that benefit the group at large.  Such 

schemes work well for tasks such as foraging or finding the shortest path, where it is 

acceptable or even desirable for individual agents to perform the same tasks.  However, 

there may be situations where such duplication of effort is wasteful.  In these situations, it 

may be more beneficial for the agents to allocate tasks as a group—still following a set of 

rules, but a set of rules that govern group behavior rather than individual agent behavior. 
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Schumacher et al. implemented just such a rule framework (12).  In their 

simulation (which is modified and used for this research), they allocated tasks using 

linear programming and optimization techniques.  With this method, which is discussed 

more in Chapter III, each agent computes the benefits (to the individual agent) of 

performing certain tasks.  Those benefits, in turn, are used to find an optimal solution to 

the capacitated transshipment problem (an optimization technique).  The final task 

allocations are those that provide the greatest benefit to the system as a whole, rather than 

to individual agents.  In some ways, this is an improvement over the cooperative 

behaviors previously discussed since tasks are allocated to maximize the performance of 

the entire group.  A possible disadvantage to the method is increased communication and 

computational requirements between individual agents. 

1.2.4 Sensitivities in Cooperative Weapons.  Previous research by Gillen 

provides insight into sensitivities and limitations of cooperative munitions (3).  Some of 

these limitations are addressed by this research and are introduced in this section. 

Gillen’s research shows that one important factor in the mission effectiveness of 

wide-area search munitions is the false target attack rate, α.  As α increases, overall 

mission effectiveness dramatically decreases.  A conceptual method of reducing α in 

cooperative weapons is to have multiple munitions attempt to classify an object as a 

target or non-target.  However, this may also have the undesirable effect of decreasing the 

identification rate of valid targets. 

Some of the parameters within Gillen’s decision rule carried much more weight 

than other parameters.  Specifically, time of flight seemed to dominate the decision rule.  

This begs the question as to the source of the sensitivity.  Is time of flight dominant 
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because it is the most important parameter for cooperative munitions, or is it dominant 

because the other parameters chosen for the decision rule were simply insignificant?  The 

answer to this question is not easily arrived at since the decision rule does not have the 

theoretical basis supporting its final form.   

Another limitation pointed out by Gillen, and perhaps related to the form of the 

decision rule, is a lack of robustness across various scenarios.  Gillen optimized his 

decision rule for several different scenarios.  He then investigated the robustness of the 

results by using optimized decision rules in scenarios other than that for which they were 

optimized.  The outcome showed a general lack of robustness in results.  This is a 

concern since actual battlefield parameters such as the number of targets, warhead 

lethality, etc. are not known with certainty.  Gillen suggests investigating different forms 

of the decision rule to perhaps achieve better results. 

1.3 Objectives 

The purpose of this study is to investigate the effectiveness of wide-area search 

munitions in various scenarios using various behavior rules.  More specific objectives 

are: 

1. Develop a simulation that incorporates advantages as well as possible 

disadvantages of cooperative behavior. 

2. Determine under what circumstances (munition and battlefield 

characteristics) it is beneficial to use cooperative behavior and under what 

circumstances it is detrimental to use cooperative behavior. 

3. Determine the degree of benefit (if any) gained from cooperative behavior 

over non-cooperative behavior. 
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1.4 Approach and Scope 

A computer simulation is used to model multiple unmanned wide area search 

munitions searching for and attacking randomly placed targets on a virtual battlefield.  

Three forms of cooperation are investigated for each scenario of battlefield 

characteristics.  The first case is a non-cooperative case in which the munitions do not 

communicate with each other at all—each munition can attack only those targets it has 

independently identified.  In the second case the munitions can cooperatively attack—

each munition can attack any target identified by any munition.  In the third case, the 

munitions cooperatively classify and attack targets—multiple passes (by one munition or 

multiple munitions) must be made over a target to better identify the target before 

allowing any munition to attack it.  Multiplicative factors are applied to the decision rules 

(called benefit calculations in this simulation), and the values of the factors are optimized 

for each case in every scenario using Response Surface Methodology (RSM).  The results 

from each case are compared within and across the various scenarios to determine 

general characteristics of cooperative behavior.  The benefit calculations themselves are 

developed from statistical theory (see Chapter II) and have fewer weighting parameters 

(only one for each rule) than Gillen used in his research. 

Eight munitions are employed in each scenario, and a variety of scenarios are 

explored.  The scenarios themselves are defined by the number of targets and false 

targets, the distribution of targets, the lethality of the munitions, and other parameters.  A 

complete test matrix listing all of the parameter combinations tested is included in 

Appendix A. 
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Inter-munition communications within this research are global and reliable 

(though not always accurate).  Although this is obviously not truly representative of the 

real world, other issues took precedence to the communications issue, as discussed in 

section 3.1.6.  Limited and unreliable communications are simply left as a 

recommendation for further research. 

All targets and non-targets in the simulation are stationary.  Moving targets 

complicate the simulation more than was desired for this research.  This issue is also left 

as a recommendation for further research. 

1.5 Relevance 

This research is conducted with a generic computer simulation that does not 

model any specific wide area search munition.  Consequently, all conclusions drawn may 

be applied to any scenario with similar vehicle and battlefield characteristics.  While the 

research is conducted under the context of weapons effectiveness, it is not limited to that 

application.  Much of the theory presented in Chapter II is developed independent of the 

current application and has relevance to cooperative search in general.  Likewise, the 

issues encountered in developing a realistic simulation and presented in Chapter III are 

pertinent to the development of any simulation of cooperative agents. 
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II. Wide Area Search Munitions 

2.1 The Single Munition, Single Target Case 

2.1.1 General.  The most basic scenario involving autonomous munitions is 

the single munition, single target case.  Suppose we want to evaluate the probability of 

successfully searching an area As.  Let the width of the area equal the width of the 

munition’s sensor footprint and the length of the area be much greater than the height of 

the sensor footprint.  Within this area, there is a single true target along with a Poisson 

field of non-targets that the munition may misidentify as valid targets.  As the munition 

searches area As, an already searched area, A, becomes apparent, as shown in Figure 2.1.  

For any discrete time interval, the area A will increase by dA, which is equal to the 

product of the time interval, vehicle velocity, and sensor footprint width.   

 

Figure 2.1  Search Setup 
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2.1.2 Probability of Target Encounter.  As the munition searches area As, 

the incremental probability that it will encounter the target in dA can be obtained from 

Poisson probability distributions (6).  In the case of a single true target and multiple false 

targets, the probability that the munition will encounter the target in area dA is the 

product of the probability that there are no false alarms (
FA

P ) in the already searched area 

A and the probability that the target is encountered ( EP ) in area dA.  The analytic forms 

of these two probabilities are shown in equations 2.1 and 2.2: 

A
FA

eP α−=                                                              (2.1) 

dAP tE ⋅= η                                                            (2.2) 

where ηt is the target density and α is the false target attack rate.  The false target attack 

rate is defined as the product of the average density of false targets ( FTη ) and the 

probability that the munition will attack a false target that it has encountered ( EFTAP | ): 

EFTAFT P |⋅= ηα                                                        (2.3) 

As previously mentioned, the incremental probability that the munition will encounter the 

target in dA is the product of equations 2.1 and 2.2: 

dAeAP t
A

E ⋅⋅=∆ − ηα)(                                                   (2.4) 

Equation 2.4 can be integrated over the entire area As to yield: 

)1()(
α

η
α sA

tsE
eAP

−−⋅=                                                   (2.5) 

Since for the single target case the target density is simply the inverse of the area As, 

equation 2.5 simplifies to: 

s

A

sE A
eAP

s

⋅
−=

−

α

α1)(                                                        (2.6) 
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If we define As as the product of the vehicle velocity, the width of the search area, and 

the remaining search time (tr), equation 2.6 can be written as: 

WtV
etP

r

WtV

rE

r

⋅⋅⋅
−=

⋅⋅⋅−

α

α1)(                                                        (2.7) 

The importance of equation 2.7 will become apparent in section 2.1.4. 

2.1.3 Probability of Target Report.  When the munition encounters the 

target, it may or may not recognize it as a target.  This a priori probability of target report 

(PTR) is a characteristic of the munition’s autonomous target recognition (ATR) capability 

and is one measure of the performance of the ATR algorithm.  For the single target case 

(or more appropriately, the single target type case), it can be expressed in terms of a 

matrix as shown in Table 2.1 (3) 

Table 2.1  Binary Confusion Matrix 

 Encountered Object 
 Target Non-Target 

Declared Object     
Target PTR PFTA|E 

Non-Target 1-PTR 1-PFTA|E 
 

Table 2.1 is typically called a confusion matrix since it includes not only the probabilities 

of correctly identifying objects (the diagonals), but also the probabilities of 

misidentifying objects (the off-diagonals).  Notice that there are only two parameters that 

define the matrix:  EFTAP |  and TRP .  For the single target case, these probabilities are 

drawn directly from the confusion matrix for use in calculations.  In later sections we will 

see that these probabilities are not so straightforward. 
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2.1.4 Outcome Trees.  The possible outcomes resulting from the munition’s 

search of area As and attack on any particular declared target in that area can be laid out 

in outcome trees and the likelihood of particular outcomes (both positive and negative) 

evaluated.  For the single munition, single target case, these likelihoods are somewhat 

moot.  Once the munition identifies a target, the best action for the munition to perform is 

attack—continued searching cannot yield any better results.  However, the outcome trees 

still provide insight into the behavior of the system and are mentioned here for 

pedagogical purposes. 

First, consider the possible outcomes of searching area As.  The outcome tree for a 

search is shown in Figure 2.2 (4).   

 

Figure 2.2  Search Outcome Tree for Single Munition, Single Target Scenario 

In Figure 2.2, the solid lines represent positive outcomes and the dashed lines indicate 

negative outcomes.  According to the outcome tree, a searching vehicle can either 

encounter the true target or not encounter the true target, the probabilities of which can be 
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calculated from equation 2.7.  If the munition does not encounter the true target, then it 

must have encountered a false target, declared it as a real target, and attacked it—an 

undesirable outcome.  On the other hand, if the munition encounters the true target, it 

may or may not report the target, according to the value of PTR in the confusion matrix.  

If it recognizes the target, the munition can execute an attack that may or may not be 

successful depending on the lethality of the warhead.  If the munition does not recognize 

the target, then it continues to search with no possibility of ever finding the target (there 

is only one target and the search of As is exhaustive but not duplicative).  The munition 

will either false alarm or simply run out of gas.  The likelihood of any particular outcome 

is simply the product of the probabilities along the path to that outcome.  For the single 

target case, the probability of a successful search (Pss) is represented solely by the left-

most branch.  The analytical formulation is (5): 

WtV
ePPPPPP

r

WtV

TRKETRKSS

r

⋅⋅⋅
−⋅⋅=⋅⋅=

⋅⋅⋅−

α

α1                                (2.8) 

where Pk  is the probability that an attack on a target will result in a kill. 

A similar outcome tree can be constructed for engaging a declared target, as 

shown in Figure 2.3: 

 

Figure 2.3  Engagement Outcome Tree for Single Munition, Single Target Scenario 
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This engagement tree is relatively simple—later cases become more complex.  When the 

munition attacks a declared target, there is a probability less than one that the declared 

target is indeed the real target ( TRRTP | ).  This probability can be estimated by a simple 

ratio of the true target attack rate to the total attack rate (for the true target and false 

targets) as shown in equation 2.9 (5):   

FTEFTATTR

TTR
TRRT PP

PP
ηη

η
⋅+⋅

⋅=
|

|                                                    (2.9) 

The probability of a successful attack is calculated in the same way as the probability of a 

successful search: 

KTRRTsa PPP ⋅= |                                                        (2.10) 

2.2 The Single Munition, Multi-Target Case 

2.2.1 Probability of Target Encounter.  The single munition, multi-target 

case is set up similar to the single target case, with minor modifications.  Refer to Figure 

2.1.  For the single target case, ∆PE(A) was only dependent on the probability of not false 

alarming in A and the probability of encountering the target in dA (see equation 2.4).  

With a Poisson field of targets, ∆PE(A) is also dependent on the probability of not 

previously recognizing a target (
RT

P ) within A.  This can be obtained from a Poisson 

probability distribution: 

AP
RT

TRteP η−=                                                           (2.11) 

Thus, the incremental probability of encountering a target in dA becomes the product of 

equations 2.1, 2.2, and 2.11: 

dAeAP t
AP

E
TRt ⋅⋅=∆ +− ηαη )()(                                               (2.12) 
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This can be integrated over the entire search area to obtain: 

)1()( )( sTRt AP

TRt

t
SE e

P
AP αη

αη
η +−−⋅

+
=                                        (2.13) 

2.2.2 Probability of Target Report.  As with the single munition, single 

target case, TRP  is drawn from the confusion matrix.  However, the complexity of the 

confusion matrix may vary greatly depending on the variety of target types available to 

the ATR algorithm.  Suppose an ATR is capable of distinguishing four different target 

types.  The confusion matrix would look similar to Table 2.2 (3): 

Table 2.2  Multiple Target Type Confusion Matrix 

Encountered Object 
 Tgt Type 1 Tgt Type 2 Tgt Type 3 Tgt Type 4 Non-Target 

Declared Object      

Tgt Type 1 PTR 1|Type 1 PTR 1|Type 2 PTR 1|Type 3 PTR 1|Type 4 PFTA1|E 

Tgt Type 2 PTR 2|Type 1 PTR 2|Type 2 PTR 2|Type 3 PTR 2|Type 4 PFTA2|E 

Tgt Type 3 PTR 3|Type 1 PTR 3|Type 2 PTR 3|Type 3 PTR 3|Type 4 PFTA3|E 

Tgt Type 4 PTR 4|Type 1 PTR 4|Type 2 PTR4|Type 3 PTR 4|Type 4 PFTA4|E 

Non-Target 1-ΣPTRj | Type 1 1-ΣPTRj | Type 2 1-ΣPTRj | Type 3 1-ΣPTRj | Type 4 1-ΣPFTAj | E 

 

The matrix could be further expanded by considering that the munition could encounter a 

variety of non-target types, each with its own column in the confusion matrix.  Although 

this would add to the number of columns in the confusion matrix, it would not add to the 

number of rows, since the munition would not be type-specific in its declaration of a non-

target.   

Since TRP  is the probability that an encountered target will be classified as a target 

of any type, it cannot be taken directly from the confusion matrix as it was for the single 
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target type case.  For example, if a munition were to encounter a target of Type 1, the 

probability that it would classify the target as a target of any type is the sum of PTR 1|Type 1, 

PTR 2|Type 1, PTR 3|Type 1, and PTR 4|Type 1.  To further complicate matters, the evaluation of 

equation 2.13 requires a composite estimate of PTR for all target types that may be 

encountered.  This composite PTR can be obtained through a weighted average of PTR for 

each encountered target type.  Let the probability that an encountered target of type i will 

be declared as a target of any type be defined as: 

∑=
j

iTypeTRjTRi PP _|                                                  (2.14) 

where j ranges from one to the number of target types the ATR can recognize.  Also, 

define the probability that an encountered target is of type i as: 

tgtstotal

ti
EiP

_η
η=                                                        (2.15) 

A composite PTR weighted by the average densities of the various target types can then be 

defined as: 

∑ ⋅=
i

EiTRiTR PPP                                                    (2.16) 

2.2.3 Outcome Trees.  In the search outcome tree for the single munition, 

single target case, there was only one path to success:  find the one target and kill it.  In 

the case of multiple targets, there are multiple paths to success, as shown by the solid 

lines in Figure 2.4 (6).  If the munition encounters a target but does not recognize it, it 

simply continues to search and may still encounter another target.  In spite of the changed 

search outcome tree, the outcome tree for engaging a declared target remains the same as 

Figure 2.3 (this will change for the multiple munition case). 
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Figure 2.4  Search Outcome Tree for Single Munition, Multi-Target Scenario 

Calculating the likelihood of a successful search in the same manner as for the 

single munition, single target case becomes problematic for the single munition, multiple 

target case.  In the single target case, the probability of success was simply the product of 

the probabilities along the path to success.  Applying the same logic to the multi-target 

case leads to an infinite series, since there are an infinite number of paths in the search 

outcome tree that lead to successful outcomes.  Fortunately, this problem is alleviated by 

the method in which we developed PE(As).  The nested characteristic of Figure 2.4 is due 

to the continual re-evaluation of PE at progressive time intervals.  Since our definition for 

PE (equation 2.13) was integrally derived, the search outcome tree collapses into a single 

level, similar to the outcome tree for the single munition, single target case, and the 

probability of a successful search is similar to equation 2.8, albeit with a new PE (6): 
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)1( )( WtVP

TRt

t
TRKSS

RTRte
P

PPP ⋅⋅⋅+−−
+

⋅⋅= αη

αη
η                                    (2.17) 

Since the outcome tree for engaging a target did not change, the probability of a 

successful attack is identical to the single munition, single target case, as shown in 

equation 2.10. 

2.3 The Multi-Munition, Multi-Target Case 

Even with multiple munitions, most of the theory developed for the single 

munition, multiple target case is applicable.  In fact, the only difference between the two 

cases lies in the probability of a successful attack.  This is due to the nature of the search 

and attack tasks.  In every case presented in this research, the munitions essentially search 

independently.  The likelihood of a particular munition having a successful search is 

dependent only on the characteristics of that particular munition—the characteristics or 

even presence of other munitions has no effect.  The only time the multiple munitions 

have an effect is when one munition attempts an attack on a target declared by another 

munition. 

The complexities associated with cooperative engagement is best shown through 

an outcome tree (see Figure 2.5): 
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Figure 2.5  Engagement Outcome Tree for Multiple Munition, Multiple Target Scenario 

Anytime a munition declares a target, there is a probability less than one that the declared 

target is in fact a real target.  Whether or not the declared target is a real target, a 

munition that attempts to engage a target declared by another munition may or may not 

recognize the declared target for what it truly is, according to its own PTR or PFTA|E.  If the 

attacking munition also recognizes the declared target as a target, then it will execute an 

attack that may or may not be successful.  If however, the attacking munition does not 

recognize the declared target as a target, it will return to searching, and may find another 

target or successfully attack a target declared by another munition.  The probability of a 

successful engagement is simply the sum of the products of the probabilities along the 

paths that lead to positive outcomes, shown analytically in equation 2.18 (6): 

+⋅−⋅−+⋅⋅= TRRTTRETArSSTRRTTRKsa PPttPPPPP || )1()(                         (2.18) 

)1()1()( || TRRTFTEFTAETArSS PPttP −⋅−⋅−                         . 

The probability of a successful search is identical to the single munition, multiple 

target case since, as previously stated, the individual munitions search independently.  

The collapsible characteristic of the single munition, multiple target search outcome tree 
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is also present in the multiple munition, multiple target case.  Thus, the probability of a 

successful search (and consequently the probability of a successful attack) can be 

calculated in closed form. 
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III. The Computer Simulation 

The MATLAB/Simulink simulation that was modified and used for this research 

was developed by AFRL/VACA as a developmental tool for their research in cooperative 

vehicles.  The simulation itself was still in the development phase and was modified even 

as this research was being conducted, in part because of this research and in part due to 

other initiatives on behalf of VACA.  This section discusses limitations of the initial 

simulation obtained from VACA and changes that were made to facilitate this research.  

Some of the changes discussed below were subsequently included in the VACA 

simulation, others were not. 

3.1 Original Simulation 

3.1.1 General.  The simulation as originally developed by VACA employs a 

maximum of eight vehicles searching for a maximum of ten targets and non-targets.  The 

vehicles exhibit cooperative behavior in terms of target identification, target 

classification, and task allocation in order to improve mission effectiveness.  A typical 

simulation begins with the vehicles starting from pre-determined positions and flying pre-

determined routes.  When an object enters a vehicle’s field of regard, the vehicle 

classifies the object as a target or non-target and assigns a probability of correct 

classification based on the angle from which the vehicle viewed the object.  Each vehicle 

then calculates the benefits of performing certain tasks.  Possible tasks are:  continue 

searching, re-classify (i.e. assist in classifying an object), attack, and perform battle 

damage assessment.  Vehicle tasks are assigned such that the overall benefit is 
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maximized.  This task allocation occurs each time the state of a target changes until the 

maximum simulation time is reached. 

3.1.2 Task Allocation.  Task allocation for the various vehicles is modeled as 

a capacitated transshipment problem, described in detail in (10).  The transshipment 

problem is a special case of linear programming and, if correctly formulated, yields an 

integer solution.  A graphical representation of the network is shown in Figure 3.1 (12).  

In short, each vehicle is a supply node of capacity one.  At the other end of the network is 

a demand of N, where N is the number of vehicles.  The targets are transshipment nodes 

with supplies and demands of zero.  Each vehicle therefore, must travel through the 

network to satisfy the end demand.  The vehicles travel through the network along arcs 

that represent specific tasks and have certain benefits associated with them.  The optimal 

task allocation provides the greatest overall benefit to the system. 

The flow through the network is determined in part by the benefits associated 

with the various arcs.  The values of these benefits are crucial to solving the network flow 

problem.  Unfortunately, the formulas for calculating these benefits are widely varied.  

For the original simulation, a heuristic approach was used wherein emphasis was placed 

on killing high value targets over performing other tasks such as reclassification or battle 

damage assessment. 
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Figure 3.1  Network Flow Model for Task Allocation 

 

3.1.3 Target Classification and Confidence.  The original simulation does 

not provide any means for a vehicle to incorrectly identify an object.  When a vehicle 

encounters an object, the vehicle always accurately classifies the object.  Thus, there are 

no false targets.  Instead of the possibility of false identification, the simulation uses a 

confidence level for correct classification.  When a vehicle classifies an object, it 

calculates a confidence level for that classification based on the angle from which the 

vehicle viewed the object.  If the confidence is below a pre-established threshold, then 

another vehicle may be (and usually is, depending on the results of the task allocation) 

assigned to assist in classifying the object.  The second vehicle flies to the object and 

assigns its own confidence of correct classification, just as the original vehicle did.  The 
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individual confidences are combined into a single confidence level that is compared to 

the threshold value.  Once the confidence of correct classification is greater than the 

threshold, the object is deemed classified. 

The classification scheme used by the simulation presents some difficulties.  First 

is the fact that a vehicle cannot misidentify an object.  According to Jacques (7) and 

Washburn (14), the possibility of misidentifying and subsequently attacking non-targets 

is crucial to evaluating the performance of cooperative search munitions.  While it is 

certainly desirable to have vehicles with sophisticated ATRs that minimize 

misidentification, a perfect ATR is simply unrealistic.  In order to accurately model real-

life, the ATR model must have some error associated with it.  This error is represented by 

the off-diagonals in the confusion matrix, as discussed in sections 2.1.3 and 2.2.2. 

The problem of misidentified targets carries over into the logic for combining 

multiple sightings of a target.  In the initial simulation, all sightings of a particular target 

are combined pair-wise to find a composite confidence of correct classification.  

However, this assumes that all of the classifications are of the same target type.  If the 

vehicles are allowed to misidentify targets, then the combinatorial logic in the original 

simulation breaks down.  When multiple classifications yield different results, those 

results cannot be combined to form a composite confidence level.  Rather, the individual 

classifications must be compared with the other classifications and only the confidence 

levels associated with similar classifications combined into composite confidence levels.  

The classification with the highest composite confidence level can then be accepted as 

the most likely classification.  
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3.1.4 Lethality.  In addition to the fact that the vehicles cannot misidentify 

objects, they also cannot miss a target during an attack, and all attacks result in a kill.  

Modifications were made to allow for non-lethal attacks (see section 3.2.4). 

3.1.5 Battle Damage Assessment.  One of the possible tasks that a vehicle 

may perform is battle damage assessment (BDA).  After a target has been attacked, 

another vehicle may be assigned to assess the damage done to that target.  In the original 

simulation, an attack always kills a target, and a battle damage assessment always 

confirms that kill—the BDA sensor is perfect.  This is obviously not accurate to real-life 

and was modified as discussed in section 3.2.5. 

3.1.6 Communications.  The simulation entails perfect global 

communications.  All of the vehicles are privy to, and make decisions based on, the same 

information.  This makes cooperative behavior appear more beneficial than it truly is.  In 

actual combat, the communications range would be limited and information may be mis-

communicated or not communicated at all.  In such a scenario, different vehicles would 

calculate benefits based on different information, and the network flow problem would 

produce sub-optimal results.  While communications is certainly an important aspect of 

cooperative behavior, it was only partly addressed in this research.  Modifications were 

made which allow the vehicles to communicate bad information (i.e. false targets), but 

the communications remained global and reliable (i.e. no miscommunication).  Compared 

to other areas such as the autonomous target recognition model and lethality of the 

vehicles, the remaining communications issues seemed a relatively minor issue.  They are 

addressed only as recommendations for future research. 
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3.2 Simulation Modifications 

Several modifications were made to the simulation to accommodate the desired 

research: 

• Increase the maximum number of targets 

• Separate truth information from sensed information 

• Provide a realistic ATR model 

• Provide for non-lethal attacks 

• Modify the battle damage assessment algorithm 

• Change the frequency of the optimization (task allocation) calculations 

• Modify the benefit calculations used in the task allocation routine 

• Other modifications 

These modifications are described below.  The resulting simulation, with all of these 

modifications, was used to compare the results of cooperative search and engagement 

with non-cooperative search and engagement. 

3.2.1 Maximum Number of Targets.  The first step in adapting the 

simulation for this research was increasing the number of targets.  While conceptually 

this may seem to be a simple task, it was actually quite complex.  Much of the Simulink 

layout in the original code used individual paths for signals pertaining to each target.  The 

individual signals were obtained by de-muxing outputs from preceding routines.  This 

allowed each individual value in the routine’s output to be named, arguably improving 

traceability in the system.  However, in order to increase the number of targets, new paths 

had to be added for each new target—a task that quickly becomes tedious.   
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Instead of de-muxing the output signals into many paths of individual signals, the 

output signals were de-muxed into fewer signals of larger size.  For example, in the 

original code, a routine which output the cost of a vehicle attacking the various targets 

and the estimated time for that vehicle to attack the various targets would have an output 

vector of size )2( tgtsN⋅ .  That output vector would be de-muxed into )2( tgtsN⋅  individual 

signals.  In the modified code, the output vector is de-muxed into only 2 signals, each of 

size tgtsN .  With this modification, the number of targets can be increased or decreased 

with relative ease since many of the requisite changes in Simulink will occur 

automatically. 

3.2.2 Truth Information vs. Sensed Information.  The original simulation 

did not distinguish between truth information and sensed information.  This led to 

dilemmas in several places throughout the simulation.  For instance, when a vehicle 

encountered an object, it would classify the object according to truth information.  

Likewise, when a target was attacked, the remaining vehicles would recognize the target 

state as the true target state.  Such logic does not accurately represent real world 

scenarios.  To bring the simulation closer to reality, new variable structures were created 

to keep track of information as sensed by the vehicles.  The accuracy of the sensed 

information is dependent on probability matrices that were added to the logic and 

discussed below. 

The separation of truth and sensed information has significant ramifications.  

Previously, the vehicles allocated tasks based on truth information.  Now, decisions are 

made based on information which may or may not be accurate.  Thus some task 

allocations may not maximize the benefit (and may even be detrimental) in reality.  This 
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incorporates some of the possible disadvantages of cooperative behavior.  For non-

cooperating vehicles, bad information will only affect the vehicle incorrectly sensing the 

information.  With cooperating vehicles, the bad information is passed to all of the 

vehicles and propagated through the entire network. 

3.2.3 Autonomous Target Recognition.  The original code did not provide 

logic for a realistic autonomous target recognition model.  With the original code, a 

vehicle always classified an object as what it truly was (target or non-target).  The 

decision to attack or not was based on an estimation of the quality of the classification 

(labeled the ATR metric), which in turn was based on the angle from which the vehicle 

observed the object.  A vehicle would not be assigned to attack a target until the ATR 

metric was greater than an established threshold.  This setup was deemed inadequate for 

this research. 

New logic was added to allow the vehicles to misidentify objects.  This was 

accomplished via a confusion matrix (see sections 2.1.3 and 2.2.2).  When a vehicle 

encounters an object, a call is made to a function referencing the confusion matrix.  

Depending on the true type of the object encountered, the vehicle will classify it based on 

a random draw and the probabilities in the confusion matrix.  This provides a significant 

improvement to the simulation.  For one, it allows vehicles to misidentify objects, thus 

allowing false target attacks—something the original code never permitted.  The use of a 

confusion matrix also allows different probabilities of classification for different object 

types.  So, if a particular non-target happens to look similar to an actual target, the 

confusion matrix would have a relatively high probability that the non-target might be 

classified as the target, or vice-versa.   
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3.2.4 Non-Lethal Attacks.  Non-lethal attacks fall into two categories:  

missed targets and low lethality warheads.  For the purposes of this research, the two 

categories are combined and simply called non-lethal attacks.  In the original simulation 

non-lethal attacks were not possible, although a pre-determined number of attacks could 

be required before considering a target killed.  This logic was modified to allow a hit to 

be non-lethal.  This was accomplished with a random draw and probability of kill (Pk).  

Thus, when a vehicle attacks a target, a random draw is made and compared to the value 

of Pk.  If the random draw and Pk value are such that a successful hit occurs, then the 

target is considered killed.  However, this information is not communicated to the other 

vehicles.  The vehicle that would communicate that information—the attacking vehicle—

is also dead and unable to provide that information.  Thus, the non-attacking vehicles 

know that an attack was made on a target, but they do not know if the attack was 

successful.   

3.2.5 Battle Damage Assessment.  BDA has the potential of significantly 

widening the scope of a simulation as issues such as heterogeneous vehicle types or 

separate sensors within a single vehicle become significant.  In an attempt to limit the 

scope of this research, the BDA task was eliminated.  The benefit of the BDA task was 

set to zero, so it is never advantageous for a vehicle to perform BDA.  Rather, vehicles 

only track the number of times a particular target has been attacked and incorporate a 

probability that the target is still alive into the benefit calculations (discussed in section 

3.2.7). 

3.2.6 Task Allocation.  As previously stated, the optimization routine for 

allocating vehicle tasks was event triggered in the original simulation.  Under certain 
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conditions, this scheme had undesirable results.  For example, if a low priority target was 

encountered early in the simulation, the optimization routine may have determined that it 

was better for all of the vehicles to continue searching in the hopes of finding a high 

priority target.  If no other targets were found, then the optimization routine would never 

be reactivated, benefits would not be recalculated, and tasks would not be reassigned.  

Thus, the vehicles would continue to search until they ran out of gas instead of searching 

for a period of time and then attacking the known low priority target.  To avoid this 

situation, a modification was made to trigger the optimization routine if a certain time 

period had passed without the optimization routine being triggered by an event.  Thus, in 

the above example, the optimization routine would first be triggered by the low priority 

target encounter and subsequently triggered at regular time intervals. 

3.2.7 Benefit Calculations.  The benefit calculations used in the original 

simulation were based on heuristics which, although intuitively appropriate, did not have 

strong mathematical support.  For this research, a more rigorous method was developed 

and implemented based on the probabilities of success discussed in Chapter II. 

The development of the search benefit was relatively straight forward, and the 

final result is shown in equation 3.1.   

Search Benefit = ssP⋅ξ                                               (3.1) 

In this equation, a weighting parameter, ξ, is applied to the probability of a successful 

search developed in Chapter II (equation 2.17).  The weighting parameter ξ is the relative 

merit of searching for additional targets versus attacking a known target and can vary 

within the range 0 to 1.  Thus, if ξ is 0, there is no benefit obtained from continued 
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searching, while if ξ is 1, emphasis is placed on continued searching rather than attacking 

targets. 

The benefit calculation for attacking a target is more complex, and took on 

different forms depending on the sensed target priority. 

High Priority Target:      Attack Benefit = sa
n

k
R

R PP
t
ETAt ⋅−⋅−⋅− )1()()1( ξ             (3.2) 

Low Priority Target:      Attack Benefit = sa
n

k
R

R PP
t
ETAt ⋅−⋅−⋅⋅− )1()()1( βξ        (3.3) 

Non-Target:      Attack Benefit = 0                                                                (3.4) 

Equations 3.2 through 3.4 not only consider the probability of a successful attack 

(equation 2.18), but also the probability that the target is alive and the estimated time to 

reach the target.  The probability that the target is alive is obtained by a simple binomial 

probability calculation: 

Probability target is alive = (1 – Pk)n                                            (3.5) 

where Pk is the probability that an attack on a target will result in a kill, and n is the 

number of attacks that have been made on the target.  Thus, as more attacks are made on 

a target, the likelihood of the target still being alive decreases, discouraging subsequent 

attacks.  This is an improvement over previous work by Gillen (3).  In Gillen’s research, 

more than two attacks on the same target was discouraged regardless of the warhead 

lethality.  With equation 3.5, the warhead lethality is considered in the probability 

calculation.  Thus, more attacks will be allowed for low lethality warheads and fewer 

attacks will be allowed for high lethality warheads. 

The estimated time to reach the target is also important in the attack benefit 

calculation.  The logic is:  if the time to get to the target is greater than the time remaining 



 

3-12 

in the simulation (i.e. the time remaining until the vehicle runs out of fuel), then there is 

no point in trying to attack the target.  However, if the vehicle can get to the target before 

running out of fuel, then an attack may be warranted.  The mathematical translation is the 

term 

R

R

t
ETAt −                                                                   (3.6) 

Unfortunately, this particular term had other effects that were detrimental to the system’s 

performance, as discussed in section 5.5.1.  In subsequent revisions, the term was 

removed from the benefit calculations and logic added to prevent munitions from 

attempting to attack targets that could not be reached. 

Finally, weighting parameters were applied to the attack benefits.  The weighting 

parameter for attacking a target rather than continuing to search is simply the 

complement of ξ.  For low priority targets, a second weighting factor β was added to 

represent the value of low priority targets relative to the value of high priority targets.  If 

low priority targets were just as valuable as high priority targets, then β would equal 1.  

Likewise, if low priority targets were not important at all, β would equal 0. 

In some of the scenarios explored in this research, the vehicles were allowed to 

cooperatively classify objects in an attempt to reduce the false target attack rate.  For 

these scenarios, another benefit calculation was needed for re-classifying objects.  The 

benefit for this task was made identical to the attack benefit.  With this scheme, a vehicle 

will not attempt to re-classify a target unless initial classification attempts indicate that 

the object may be a target worth attacking.  Thus, search time is not wasted trying to 

make sure a non-target really is a non-target. 
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3.2.8 Additional Modifications.  In order to facilitate this research, several 

other modifications were made to the original simulation.  These modifications allow 

summary and output to a file of specified statistics, allow the activation or de-activation 

of various features (such as cooperation), and facilitate the optimization of the benefit 

calculations via response surface methodology.  While these changes were important for 

this research effort, they did not affect how the actual simulation ran and are not 

described in detail here. 
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IV. Response Surface Methodology 

4.1 Introduction 

Response surface methodology (RSM) is a process where statistical and 

mathematical design techniques are combined with empirical model building to 

systematically determine a process’s response with respect to certain inputs.  The 

technique has been widely used in industrial applications and has also seen use in 

developmental applications as a means to improve or optimize processes and products.  

The goal in RSM is to determine optimum parameter settings by accurately mapping the 

process response, called the response surface, in as few experimental runs as possible, 

thereby saving time and money. 

RSM can be broken into several phases, as described by Myers and Montgomery 

(9).  The first phase, Phase 0, is a screening experiment.  In this phase, several factors that 

may affect the response are identified and tested to determine the significance of each.  

This is accomplished by conducting experiments (in this case simulation runs) with the 

factors set at various levels and recording the resulting responses.  A regression model is 

fit to the data using traditional linear regression techniques (see reference 10 for a review 

of linear regression methods), and the significance of individual coefficients in that 

regression model tested via a statistical t-test.  Those factors that provide little insight or 

influence on the response surface are discarded, and the most important factors are kept.  

This phase is crucial to reducing the number of subsequent runs and becomes more 

important as the number of possibly influential factors increases. 
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In Phase 1, an attempt is made to determine the vicinity of the optimum point.  A 

regression model is created using those significant factors found in Phase 0.  If this model 

indicates that the optimum point is far from the current design region, then the 

experimenter moves the design region closer to the estimated optimum point via a variety 

of optimization techniques (i.e. the method of steepest ascent) and starts the process over 

by conducting new Phase 0 experiments.  Once the design region is near the estimated 

optimum point, Phase 2 begins. 

The goal in Phase 2 is to more accurately determine the location and nature of the 

optimum point.  This is accomplished by constructing higher order models of the 

response surface.  Additional experiments (or simulation runs) are usually required for 

this phase so that the precise nature of the curvature can be determined.  Once the nature 

of the curvature is estimated, a final optimum point may be settled on. 

One of the advantages of RSM over other optimization techniques lies in its 

sequential process.  If designed correctly, the results from each phase can be used for the 

next phase, thereby minimizing the total number of runs.  It is also quite adaptable to 

different testing environments.  If testing resources are abundant, then relatively loose 

criteria may be used in Phase 0 to determine significant factors, resulting in more factors 

being kept in the model and perhaps increasing the fidelity of the subsequent models.  

However, if testing resources are limited, then strict criteria may be used and the number 

of significant factors, along with the requisite number of runs, greatly reduced.  RSM also 

provides more insight into the nature of the response surface.  Instead of simply 

determining an optimum point, the method provides gradient information near the 
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optimum point.  This allows the designer to balance the sensitivity of the optimum 

settings with the desire to achieve the best response. 

4.2 Application 

RSM was used in this research to find the optimum settings for the two weighting 

parameters (ξ and β) applied to the benefit calculations discussed in Chapter III.  The 

relative value of each parameter by no means reflects the relative importance of the 

factors.  While there were differences in the significance of the two factors, the optimum 

settings are just that:  the factor settings that provide the optimum response—not an 

indicator of significance. 

4.2.1 Independent Variables.  Two independent variables were optimized:  

ξ and β.  Recall from section III that ξ describes the relative merit between continuing to 

search for additional targets versus attacking a known target, and β describes the value of 

low priority targets to high priority targets.  Each factor independently varied (in natural 

variables) between 0 (the low setting) and 1 (the high setting). 

4.2.2 Responses.  Two responses were chosen to represent the mission 

effectiveness of each simulation run: 

• Number of Targets Killed, and 

• Hit Formula. 

The number of targets killed was simply the total number of targets (of any priority) that 

were killed.  The hit formula, taken from Gillen’s research (3), is a mathematical formula 

that considers the different priority targets that were hit as well as hits on non-targets: 
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Hit Formula = 2 • (# high priority hits) + (# low priority hits) – (# non-target hits)     (4.1) 

With this formula, more benefit is gained from attacking high priority targets versus low 

priority targets, and attacks on non-targets result in a penalty.  Both responses were 

simultaneously optimized.  Thus, the final optimum parameter settings may not maximize 

either response individually, but do represent the optimum balance of the two responses.  

Each response could be weighted to indicate their relative importance.  For this research, 

each response was treated with equal importance. 

4.2.3 Phase 0 Screening Experiments.  Although only two factors were 

considered for the response surface, a screening experiment was performed.  Because of 

the small number of factors, a full factorial design was chosen.  A conceptual 

presentation of this design is shown in Figure 4.1, where each dot represents an 

experimental setting. 

 

Figure 4.1  Two Factor, Full Factorial Screening Design 

With the full factorial design, there would be no confounding of effects.  Thus, 

higher order effects and interactions could be estimated in addition to the main effects.  

This design required a minimum of four runs (the four corners of Figure 4.1).  Three 

replications were made at each design point and three center runs were included for a 
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total of 15 runs.  The center runs allow testing for the presence of curvature (i.e. a 

quadratic model), though the exact nature of the curvature (i.e. whether it was with 

respect to ξ or β) still requires additional runs.  The 15 runs in the screening experiment 

were carried over into subsequent experiments (Phase 1) where they were augmented 

with additional runs as required (thus the screening experiments did not add any to the 

total number of runs required).   

In most cases, the screening experiments indicated that both factors were 

significant (at a significance level of 0.10).  However, in some scenarios, one of the 

parameters could be dropped and the experiment simplified.  In such cases, the runs from 

the screening experiment could be used to construct a model (linear or quadratic) and 

determine the optimum settings without any additional runs.   

Another important piece of information obtained from the screening experiments 

was the presence of curvature.  Since replications and center points were included in the 

experiment, a lack of fit test could be performed.  In most scenarios, the lack of fit test 

indicated the presence of curvature with regards to at least one of the responses. 

4.2.4 Phases 1 and 2.  For this study, Phases 1 and 2 were essentially 

combined.  This was done for two reasons.  First, the screening experiments typically 

indicated the presence of curvature, thus using a linear model for a Phase 1 experiment 

(as is often done) did not seem reasonable.  In addition, the software used for 

constructing the models could construct second order models just as easily as first order 

models.  The second reason for combining Phases 1 and 2 was the range of the weighting 

parameters.  As previously stated, each parameter could vary between 0 and 1.  This 

range was small enough that the entire range could be used for the experiment without 
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major fears of missing optimum points (due to too coarse of an experiment).  Since the 

entire range of the parameters was used in the experiment, the design region could not be 

moved to bring it closer to an external optimum point.  Thus the initial design region 

would also be the final design region, and a higher order model was constructed. 

The design chosen for this phase was the central composite design (CCD), shown 

graphically in Figure 4.2. 

 

Figure 4.2  Two Factor, Central Composite Design 

According to Myers and Montgomery (9), the general CCD is composed of three 

parts: 

• A 2k factorial or fraction of resolution V or greater.  This portion of the 

CCD is required for the estimation of the linear terms and is the only 

portion that contributes to the estimation of interaction terms.  It is 

orthogonal, resulting in the minimum variance possible for the number of 

runs performed. 
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• Axial points.  With axial points, one factor at a time is varied while the 

other factors are held at their mid-level values.  The axial points contribute 

to the estimation of individual quadratic terms, but not interactions. 

• Center runs.  Center runs allow the sum of the quadratic terms to be 

estimated, providing an estimation of whether curvature is present or not.  

They do not however, allow individual quadratic terms to be estimated.  

They also serve to stabilize the design (especially important with spherical 

designs). 

There are several nice aspects to the CCD and its application to this research.  The 

Phase 0 screening experiment consisted of a full 22 factorial with three replicates.  This 

served as the first portion of the Phase 2 CCD and also fulfilled the requirement for 

center points (Myers and Montgomery recommend three to five center points).  However, 

a quirk in the data reduction software used for this research required additional center 

runs.  Using the data reduction software (JMP 4.0.4), an orthogonal CCD with three 

replications was set up.  The software required a minimum of eight center runs for this 

design.  Thus, while the three center runs from the screening experiment could be applied 

to the CCD, an additional five runs had to be completed.  This reduced the efficiency (in 

terms of number of runs) of the RSM, but also served to increase the stability of the 

design by reducing the variance.  This trade-off was deemed acceptable, especially since 

the axial points created a spherical design, as described below. 

The axial distance for the axial point runs was chosen so that the resulting design 

would be both orthogonal and rotatable.  An orthogonal design is variance optimal, 

providing the least amount of variance compared to any other design with the same 
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number of runs.  Rotatability is desirable for prediction purposes.  With a rotatable 

design, variance is only a function of distance from the center of the design region.  This 

allows for consistent estimates of the response across the entire design region.  The axial 

distance required for both orthogonality and rotatability was 2 .  The downside of this 

axial distance was that it created a spherical design, which is a singular design when used 

to fit a second order model.  Center points alleviate the singularity, and since an 

abundance of center points were already built into the design, the singularity of the 

design was not a concern. 

A total of 17 additional runs were required to complete the CCD.  The majority of 

these runs (12) were axial runs with replicates.  The other five runs were center runs 

required by the data reduction software. 

As previously stated, two responses were simultaneously optimized:  the total 

number of targets killed and the target formula.  The goal was to maximize both 

responses.  This was accomplished through the use of desirability functions, which were 

a feature of the data reduction software.  With this method, each response is given a 

weight relative to the other and the individual responses are essentially combined into a 

single response.  The single response is then maximized.  This can be (and was for 

several of the experiments, as a check) accomplished by hand, as follows: 

• Models for each response were constructed from the CCD.  Since the 

responses were functions of only two variables, the responses could be 

plotted in three dimensions, as shown in Figure 4.3. 



 

4-9 

TgtsKilled Formula  

Figure 4.3  Sample Response Plots 

• The responses were then non-dimensionalized by dividing each value by 

the maximum value for that particular response.  These non-dimensional 

responses were then averaged according to equation 4.2: 
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In equation 4.2, the responses are equally weighted.  If one desired to give 

priority to one response over the other, then coefficients indicating the 

relative importance could simply be applied to the non-dimensional 

responses.  A sample plot of the combined responses is shown in Figure 

4.4: 
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Composite  

Figure 4.4  Sample Plot of Non-Dimensional Composite Response 

• The optimum settings of the input variables could then be found by 

finding the maximum of the composite response.  For those experiments 

where this hand-optimization was accomplished, results matched those 

obtained by the data reduction software. 
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V. Results and Analysis 

The results presented in this chapter can be broken into two phases.  The first 

phase consists of the results from the processes and experiments described in the previous 

chapters of this thesis.  These results are presented in sections 5.1 through 5.4.  The 

results, while informational, were somewhat unexpected.  Specifically, cooperative 

behavior performed worse than non-cooperative behavior.  This led to the second phase, 

in which modifications were made to both the behavior algorithm and the optimization 

process in an attempt to achieve more desirable results.  The changes and the improved 

results are presented in section 5.5. 

5.1 Response Surface Methodology 

5.1.1 Weighting Parameters.  As previously discussed in Chapter III, 

weighting parameters were applied to the benefit calculations.  The weighting parameter 

ξ represents the relative weight of continuing to search for targets versus attacking a 

declared target, and β represents the value of low priority targets relative to high priority 

targets.  These weighting parameters were optimized for the various scenarios using 

RSM.  The results obtained from the RSM are interesting and bear mention here. 

For all of the scenarios examined, ξ is statistically more significant than β.  In 

approximately half of the cases, β is not statistically significant at all (at the 0.1 

significance level), while ξ is significant in every case.  However, the level of 

significance of the two weighting parameters does not appear to follow any trends.  Their 

significances vary between scenarios and between cases within given scenarios. 
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In all of the scenarios examined, the optimum setting for ξ is zero.  This can be 

considered a desirable characteristic.  The lack of variability between scenarios means 

that the scenario parameters do not influence ξ.  Thus, ξ does not need to be adjusted for 

a particular scenario—it is quite robust in that sense.  Unfortunately, this result is likely 

due to the choice of responses optimized in the RSM.  By using the hit formula (equation 

4.1) as one of the responses, too great of an emphasis was placed on attacking targets 

versus actually killing targets.  Thus, the optimum setting for ξ always promoted 

attacking known targets rather than searching for additional targets.  The optimum 

settings for β are more variable.  With respect to this weighting parameter, the RSM at 

times yielded optimum points at both extremities of the allowable range (i.e. 1 or 0), 

depending on the particular case.  Again, there did not appear to be any link between 

which setting was optimum and the particular scenarios.   

5.2 Number of Targets Killed 

Three cooperation algorithms were examined:  no cooperation, cooperative 

engagement, and cooperative classification and engagement.  The effects of the different 

algorithms are presented in this section. 

Contrary to expectations, cooperative logic did not increase the number of targets 

killed (see Figure 5.1).  For low lethality warheads (Pk = 0.5), there is no statistical 

difference between the three cooperation algorithms examined (at a 95% family 

confidence level).  This seems to be due to the cooperative logic and the characteristics of 

the warhead itself.  If we look at the number of targets attacked (Figure 5.2) and the 

number of attacks made on those targets (Figure 5.3), we see that the cooperative cases 

made many attacks on just a few targets, while the non-cooperative cases attacked more 
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targets, but made fewer attacks overall.  The non-cooperative cases suggest that the 

warhead often was not lethal enough to kill a target, even with up to two attacks on a 

given target (since the munitions had a 50% overlap in their coverage).    The fact that the 

cooperative cases did not fair any better indicates a possible disadvantage of cooperative 

behavior.  With these cases, the munitions attacked a fewer number of targets, 

automatically limiting the number of targets that could possibly be killed.  If some of the 

munitions had searched longer rather than attacking a target that had been attacked 

multiple times, the results may have been better.   
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Figure 5.1  Number of Killed Targets From Initial Research 
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Figure 5.2  Number of Targets Attacked From Initial Research 
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Figure 5.3  Number of Attacks on Targets From Initial Research 

Conclusions for the high lethality cases (Pk = 0.8) are somewhat more difficult to 

make.  In these cases, the non-cooperating munitions perform better than either of the 

cooperative algorithms.  Again, this is likely due to the cooperative munitions executing 
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many attacks on only a few targets (see Figure 5.2 and Figure 5.3).  The effects of this 

behavior are so dominant at low false target attack rates that the high lethality cases with 

cooperation do no better than the low lethality cases.  The high lethality cases also exhibit 

interesting behavior with respect to the false target attack rate.  At false target attack rates 

of approximately 0.005 to 0.01, there is an increase in the number of targets killed.  The 

consistency of this behavior across multiple scenarios suggests a real trend, though the 

reason behind this behavior is currently unknown. 

5.3 Hit Formula.   

Although cooperative behavior did not increase the number of targets killed, it did 

improve the quality of the targets attacked, as can be seen in an analysis of the hit 

formula response (Figure 5.4).  The cases with cooperative behavior consistently 

outperform the cases without cooperative behavior.  This is due to the fact that 

cooperative behavior allows many munitions to be brought to bear against high priority 

targets.  However, cooperative behavior alone does not solve all of the problems 

encountered with non-cooperating munitions.  As the false target attack rate increases, 

both the non-cooperative cases and the cases with only cooperative engagement suffer 

similar performance degradation.  Even though the munitions in the cooperative 

engagement cases attack targets seen by other munitions, thereby increasing the 

likelihood of killing the target, they still rely on a single munition to identify the target.  

Thus, any deficiencies in the individual munition’s ATR can become compounded.  This 

can be solved in part through the use of cooperative classification.  Notice in Figure 5.4 

that for scenarios using cooperative engagement and classification, the rate of decrease in 

the value of the hit formula with respect to the false target attack rate is much less than 
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for either cooperatively engaging munitions or non-cooperating munitions.  This 

reduction in the effective false target attack rate is discussed in more detail in section 5.4. 
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Figure 5.4  Hit Formula Results From Initial Research 

For each cooperation algorithm, it appears that the low lethality warhead (Pk = 

0.5) outperforms the high lethality warhead (Pk = 0.8).  This is due to the form of the 

attack benefit calculation (equations 3.2 and 3.3).  In calculating the benefit of attacking a 

target, an individual munition considers the probability that the target is still alive, even if 

attacks have already been made against that target (equation 3.5).  Low lethality 

warheads will require more attacks on a given target before the target is likely to be dead.  

Thus, the results in Figure 5.4 are reasonable. 

5.4 False Target Attack Rate 

The false target attack rate (α) is important to any discussion of weapon 

effectiveness.  With the implementation of cooperative behavior in autonomous weapons, 
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the subject takes on even greater significance.  Cooperative behavior has great potential 

to improve the performance of weapon systems, but there are many potential pitfalls that 

must be addressed.  One such pitfall is the communication of bad information.  If a 

munition misidentifies a non-target as a target, that error is propagated through the entire 

network of weapons with results that may be worse than if the munitions did not 

communicate at all.  A proposed solution to this problem is to have the munitions 

cooperatively classify potential targets, but this may have the undesirable effect of 

forcing munitions to spend excessive time trying to classify a single object.  This research 

investigated these concerns by tallying the number of false target attacks in any given 

scenario.  Conceptually, if cooperative behavior and the propagation of bad information 

significantly affect mission success, the number of false target attacks should be higher 

for cooperative engagement than for no cooperation at all.  Likewise, if cooperative 

classification can alleviate the effects of bad information, the number of false target 

attacks should be lower.  The results are presented below. 

Figure 5.5 shows the effects the various cooperation algorithms had on the 

number of false target attacks.  First, notice the similarity between results obtained from 

the no cooperation algorithm and the cooperative engagement algorithm.  For the most 

part, the algorithms yielded results that were not statistically different (only the non-

cooperative, high lethality case had any points that were significantly different at the 0.5 

significance level).  Thus, it appears that the propagation of bad information in a 

cooperative environment may not significantly increase the false target attack rate. 

Notice however, the significant improvement gained with the use of cooperative 

classification.  Both the cooperative engagement cases and the no cooperation cases 
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waste increasingly more munitions as the false target attack rate increases.  With 

cooperative classification however, the number of false target attacks remains low.  

Cooperative classification appears to effectively lower the false target attack rate.  This 

conclusion is significant.  Results such as these mean that shortcomings in a munition’s 

ATR may be overcome in large part by group behavior. 
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Figure 5.5  Number of False Target Attacks From Initial Research 

5.5 Exploratory Excursions 

As previously mentioned, the initial results obtained in this research and discussed 

above did not produce the desired results.  While there may indeed be scenarios where 

cooperative behavior leads to poorer results than non-cooperative behavior, it was 

thought that the degradation with cooperative behavior seen in this research was due to 

other factors.  This led to a re-examination of the process and metrics used for this 

research.  Several areas were modified, and limited exploratory experiments conducted.  

Those modifications and the ensuing results are presented in this section. 
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5.5.1 Benefit Calculations.  The basic problem with the initial results was 

that too many munitions were attacking a single target too early in the simulation.  This 

was in large part a result of the benefit calculations themselves.  Several deficiencies 

were identified in the development and application of the benefit calculations.  They are 

addressed below. 

In its original form, the calculation of the benefit of attacking a target (equations 

3.2 and 3.3) was a function of the probability of a successful attack (Psa) (equation 2.18) 

which in turn was a function of the probability of a successful search (Pss) (equation 

2.17).  As the time remaining in the simulation decreased, Pss decreased.  This caused Psa 

to decrease, though not as quickly as Pss.  This was due to the fact that Psa had a non-zero 

base value while Pss did not (compare equations 2.17 and 2.18).  Thus, Pss prematurely 

became less than Psa.  This effect carried into the benefit calculations and forced 

munitions to attack targets when it would have been more appropriate for them to 

continue searching.  The problem was alleviated by effectively decreasing Pss as it is used 

in calculating Psa.  A multiplier of 0.01 was applied to the appropriate components of 

equation 2.18 so that the Psa  became: 

+⋅−⋅−⋅+⋅⋅= TRRTTRETArSSTRRTTRKsa PPttPPPPP || )1()(01.0                         (5.1) 

)1()1()(01.0 || TRRTFTEFTAETArSS PPttP −⋅−⋅−⋅                         . 

With equation 5.1, Psa becomes more constant and remains less than Pss for a longer 

period of time. 

Equation 2.18 (and subsequently equation 5.1) was developed for application to 

munitions cooperatively attacking a target declared by another munition.  In applying the 

equation to the simulation, no distinction was made between a munition attacking a target 
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declared by another munition and a munition attacking a target it had declared on its own.  

In truth however, there is a significant difference.  For a munition attacking a target that it 

has declared on its own, Psa should be: 

TRRTKsa PPP |⋅=                                                           (5.1) 

Applying this logic to the computer simulation, the munition that initially sees a target 

will have the greatest Psa, since all other munitions will have to consider the probability 

that they will not recognize the target if they attempt the attack. 

The calculation of the attack benefit (equations 3.2 and 3.3) included a term 

comparing the time remaining in the simulation to the estimated time required to reach 

the target (equation 3.6).  The intent of including this term was to prevent munitions from 

attempting to attack targets they could not reach.  However, the term also had the effect 

of decreasing the benefit of attacking targets as time progressed.  In addition, it was 

realized that a similar time term was included in the calculation of the probability of a 

successful attack.  The Pss used in calculating Psa is calculated at a time ETAr tt − .  If the 

munition cannot reach a given target in the time remaining in the simulation, the Pss after 

the attack will be less than zero.  With this realization, the time term was removed from 

the attack benefit calculation and logic was added to the simulation setting Psa equal to 

zero if the Pss after the attack was less than zero.  With these changes, a munition still 

does not attack a target it cannot reach, and the duplication of the time parameter is 

eliminated. 

5.5.2 Response Surface Methodology.  Originally, the number of targets 

attacked and the hit formula were optimized using RSM.  The data obtained with the 

optimum settings for these combined responses did not meet expectations.  Specifically, 
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the number of targets attacked was consistently less for cooperative behavior than for 

non-cooperative behavior.  In reviewing the results and the process behind them, it 

appeared that optimizing with respect to the hit formula often drove many of the 

munitions to attack a single, high value target.  It was decided that the hit formula was 

not necessarily the best response to optimize, since it was concerned with the number of 

attacks versus the number of kills.  New responses were chosen and the RSM re-

accomplished for a limited number of scenarios.  In the second RSM, the hit formula 

response was replaced with the number of false target attacks.  Thus, the two responses to 

be optimized were the number of targets killed and the number of false target attacks, 

with the objective of maximizing and minimizing the respective responses. 

The design space was also refined to reflect the expected optimum settings of the 

pertinent factors ξ and β.  Results from the original experiments consistently showed the 

optimum value of ξ to be at or near the lowest setting.  Thus, the design space for ξ  was 

allowed to vary from 0 to 0.5 (in natural variables).  Since the number of targets killed 

(with no distinction between high priority and low priority targets) was used as a 

response in the new optimization, it was expected that the value of β would be at the 

upper limit.  Consequently, β was allowed to range from 0.5 to 1. 

5.5.3 Results.  The results from the revised experiments and simulation were 

much more attractive than the original results.  As shown in Figure 5.6, cooperative 

behavior provides mixed results compared to non-cooperative behavior.  Cooperative 

engagement alone performs worse than all the other cooperation algorithms, including no 

cooperation at all.  This can be explained in part by the simulation setup.  In all scenarios, 

the munitions have a 50% overlap in coverage.  Thus, even in the non-cooperating 
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scenarios, two munitions may see a target and attack it—providing a killed target despite 

the low lethality warheads.   
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Figure 5.6  Number of Targets Killed with Revised Experiments 

Another reason the cooperative engagement algorithm does not perform as well as 

the non-cooperating algorithm is, as with the original experiments, too many munitions 

attack the same targets (see Figure 5.7).  In fact, this behavior has enormous 

consequences as the number of false targets increases.  As α increases, the cooperative 

engagement algorithm calls more and more munitions to attack false targets.  Eventually 

(at α greater than 0.01), the number of false target attacks begins to outweigh the number 

of true targets killed, and the RSM determines optimum settings that simply prohibit 

munitions from executing any attacks.  The fact that similar behavior is not seen in the 

non-cooperating algorithm can be attributed to the higher number of killed targets that the 

non-cooperating algorithm produces.  With the non-cooperating algorithm the number of 

killed targets still outweighs the number of false target attacks, though as α continues to 
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increase, behavior similar to that of the cooperative engagement algorithm would be 

expected. 
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Figure 5.7  Number of Targets Attacked with Revised Experiments 

The cooperative classification algorithm also kills fewer targets than the non-

cooperative algorithm when the false target attack rate is less than 0.005 (see Figure 5.6).  

This is due to the limited number of attacks executed on valid targets.  Since the 

cooperative classification algorithm requires a higher confidence level for classifying 

objects, the munitions spend more time looking at targets and making sure of their 

identification.  This limits the amount of area they search and consequently limits the 

number of targets they encounter and attack.  However, as α increases above 0.005, the 

cooperative classification algorithm begins to outperform the other algorithms.  This is 

due to the effective α.  From Figure 5.8, we see that the number of false target attacks in 

both the non-cooperative and cooperative engagement algorithms steadily increases with 

the false target attack rate.  Cooperative classification however, appears to significantly 
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reduce and stabilize the effective false target attack rate.  Thus, more munitions are kept 

available to attack true targets and provide more kills than the other algorithms. 
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Figure 5.8  Number of False Target Attacks with Revised Experiments 
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VI. Conclusions and Recommendations 

This research investigated the use of cooperative behavior in autonomous wide 

area search munitions.  Generic munitions and scenarios were used so that the results 

would have broad applicability.  Two categories of conclusions may be drawn from these 

results:  those pertaining to the application of cooperative behavior and those pertaining 

to the process used in this research. 

It is generally believed that cooperative behavior will improve group 

performance.  This research shows that conclusion is not necessarily true.  The results 

depend on the form of cooperative behavior used and the specific scenario characteristics 

(namely the false target attack rate).  Cooperative attack by itself does not improve 

performance over non-cooperating munitions.  In fact, it does quite the opposite.  

Cooperative attack brings more munitions to bear against fewer targets.  Thus, the system 

as a whole attacks and kills fewer targets.  In addition, as the false target attack rate 

increases, the possibility that a misidentified non-target will draw away many of the 

munitions becomes very real.  Eventually, the possibility of the munitions being wasted 

on non-targets becomes so great that it is better for the munitions to simply not attack 

anything at all. 

Cooperative classification however, offers more promise.  At low false target 

attack rates, cooperatively classifying munitions perform nearly as well (though still 

slightly worse) than non-cooperating munitions.  The benefit to cooperative classification 

becomes apparent as the false target attack rate becomes large.  While the other 

cooperation algorithms see decreasing performance as the false target attack rate 

increases, the performance with cooperative classification remains relatively constant.  
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This is due to the remarkable ability of cooperative classification to discern non-targets 

from real targets.  Even at high false target attack rates, cooperative classification allows 

the munitions to identify objects with a very high degree of accuracy.  Non-targets are not 

attacked nearly as often as they are with the other cooperation algorithms and thus more 

munitions are kept available to attack real targets.   

The improved performance seen with cooperative classification alludes to excess 

capacity in the system as a whole.  How much more is the system capable of when 

cooperative classification is employed?  The precise boundaries of these expanded 

capabilities can be explored by varying different parameters such as the number and 

grouping of munitions and the search pattern and formation of those munitions.  In 

particular, the overlap in the munitions’ fields of regard could be removed.  This would 

allow the munitions to search a larger area, or allow the same area to be searched with 

fewer munitions. 

The consistency of performance exhibited with cooperative classification hints at 

a robustness across scenarios.  The actual extent of this robustness should be investigated 

by varying the battlefield parameters.  Parameters of particular interest would be the 

distribution of targets (i.e. uniform versus clustered), relative density of high versus low 

priority targets, etc. 

Another area that may be of interest is the task allocation.  Both Gillen’s research 

(3) and this research used RSM to optimize the decision rule parameters off-line.  

However, this research also used an on-line optimization to actually allocate tasks as a 

group.  Such a form of task allocation would most likely be more costly and prone to 

failure since it would require communicating more information between individual 
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munitions.  An interesting question is whether the on-line optimization improves 

performance enough to warrant such risks or costs. 

For simplicity, this research purposely ignored some limitations in the simulation 

which future research may want to address.  Some of these limitations are listed below. 

• Communications.  Although bad information could be communicated in the 

current simulation, every munition received the same information.  A more 

realistic scenario would limit the communications range of the munitions, 

allowing some munitions to not receive any information about some targets.  

This would lead to sub-optimal solutions to the transshipment problem. 

• Moving Targets.  The current simulation only employs stationary targets.  

Moving targets could significantly complicate a simulation because it 

introduces the problem of target registry and how munitions determine if 

sighted targets are ones that have already been sighted, but it is a problem that 

will eventually need to be addressed—most of our enemies do not stand still 

and wait for us to shoot them. 

• Link classifications with viewing angle.  In reality, the likelihood of a 

munition correctly identifying an object would depend on the viewing angle.  

In the simulation used in this research, the two were separate.  A confidence 

level was constructed based on the viewing angle, but the classification of the 

object was based on a simple random draw that did not change with the 

viewing angle. 

Finally, one important lesson was learned in this research regarding the process 

itself.  While a wide variety of methods can be used to obtain equally valid results, the 
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actual applicability of those results depends greatly the method used.  In this research, the 

original choice of responses used in the RSM was poor.  The results obtained from the 

original runs provided some insight into the effects of cooperative behavior, but they did 

not provide as much information as was desired—they could not since the responses that 

were optimized did not address the same issues about which we wanted to draw 

conclusions.  Thus, the importance of thorough planning was inadvertently illustrated. 
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Appendix A:  Test Matrices 

Table A.1.  Test Matrix for Original Objective 

 

 

 

0
1
2

PFTA|E 0.2

Pk ηT ηFT α
Coop
Factor Scenario

Tgt2Value SearchWeight Average Low 95% Up 95% Average Low 95% Up 95%
0.5 0.00774 0 0 0 -1 -1 1.29 1.1539 1.4261 6.28 5.92 6.64 41

1 -1 1.09 0.9804 1.1996 12.29 11.315 13.265 42
2 -1 -1 1.14 1.017 1.263 11.96 10.846 13.074 43

0.025 0.005 0 -1 1.19 1.047 1.333 5.07 4.567 5.573 53
1 -1 1.08 0.9487 1.2113 10.11 8.837 11.383 54
2 -1 1.04 0.924 1.156 11.68 10.509 12.851 55

0.05 0.01 0 -1 1.12 0.9839 1.2561 3.98 3.368 4.592 59
1 -1 -1 1.04 0.9311 1.1489 9.42 7.987 10.853 60
2 -1 1.11 1.0049 1.2151 12.65 11.579 13.721 61

0.1 0.02 0 -1 -1 0.98 0.8363 1.1237 0.98 0.279 1.681 47
1 1 -1 1.17 1.0288 1.3112 4.12 2.908 5.332 48
2 -1 1.09 0.9769 1.2031 11.51 10.319 12.701 49

Pk ηT ηFT α
Coop
Factor Scenario

Tgt2Value SearchWeight Average Low 95% Up 95% Average Low 95% Up 95%
0.8 0.00774 0 0 0 -1 1.63 1.5115 1.7485 6.13 5.756 6.504 44

1 -1 -1 1.34 1.2375 1.4425 11.99 11.327 12.653 45
2 -1 -1 1.24 1.1303 1.3497 11.2 10.377 12.023 46

0.025 0.005 0 1 -1 2.53 2.3462 2.7138 5.42 4.7982 6.042 56
1 -1 1.32 1.2076 1.4324 10.08 9.1456 11.014 57
2 -1 1.23 1.125 1.335 10.54 9.6923 11.388 58

0.05 0.01 0 1 -1 2.16 1.9778 2.3422 2.9 2.2824 3.518 62
1 1 -1 1.56 1.4238 1.6962 6.77 5.6045 7.935 63
2 1 -1 1.83 1.7006 1.9594 9.77 9.0029 10.537 64

0.1 0.02 0 1 -1 1.69 1.5036 1.8764 0.2 -0.607 1.0066 50
1 -1 1 0.8837 1.1163 4.77 3.407 6.1328 51
2 1 -1 1.69 1.5499 1.8301 8.64 7.606 9.6737 52

Coop Engage & Class

Test Matrix for the Original Objective

Coop Factor
No Coop
Coop Engage

Significant Factors # Killed Targets Formula

Significant Factors # Killed Targets Formula
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Table A.2.  Test Matrix for Revised Objective 

 
 
 
 
 

0
1
2

PFTA|E 0.2

Pk ηT ηFT α
Coop
Factor Scenario

Tgt2Value SearchWeight Average σ Average σ
0.5 0.00774 0 0 0 -0.5769 2.07 0.819645 0 0 80

1 -0.5 1.93 0.768772 0 0 81
2 -0.2692 1.89 0.851558 0 0 82

0.025 0.005 0 0.60331 1.79 0.97747 1.28 0.82975 86
1 0.51187 1.49 1.01 0.88 0.890806 87
2 -0.4333 1.76 0.78005 0.15 0.609272 88

0.05 0.01 0 0.72123 1.65 1.04809 2.35 1.17529 92
1 0.66918 1.32 0.94152 1.65 1.05768 93
2 -0.4091 1.85 0.77035 0.14 0.40252 94

0.1 0.02 0 0.88915 1.39 1.00398 3.72 1.31871 95
1 1 0 0 0 0 96
2 1 -0.42 1.78 0.73278 0.41 0.93306 97

Test Matrix for Revised Objective

Significant Factors # Killed Targets # False Tgt Attacks

No Coop
Coop Engage
Coop Engage & Class

Coop Factor
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Appendix B:  Sample Designs 

B.1 Sample Design – β is insignificant: 
 
Least Squares Fit 
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Summary of Fit 
RSquare 0.792526
RSquare Adj 0.735942
Root Mean Square Error 0.493902
Mean of Response 1.066667
Observations (or Sum Wgts) 15
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 3 10.250000 3.41667 14.0062
Error 11 2.683333 0.24394 Prob > F
C. Total 14 12.933333  0.0004
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 1 1.3500000 1.35000 10.1250
Pure Error 10 1.3333333 0.13333 Prob > F
Total Error 11 2.6833333  0.0098
    Max RSq
    0.8969
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  1.0666667 0.127525 8.36 <.0001
Tgt2Value  -0.083333 0.142577 -0.58 0.5707
SearchWeight  -0.916667 0.142577 -6.43 <.0001
Tgt2Value*SearchWeight  0.0833333 0.142577 0.58 0.5707
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value 1 1 0.083333 0.3416 0.5707  
SearchWeight 1 1 10.083333 41.3354 <.0001  
Tgt2Value*SearchWeight 1 1 0.083333 0.3416 0.5707  
Residual by Predicted Plot 
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Tgt2Value 
Leverage Plot 
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Tgt2Value*SearchWeight 
Leverage Plot 
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Response #FalseTgtAttacks 
Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
RSquare 0.553691
RSquare Adj 0.431971
Root Mean Square Error 1.269693
Mean of Response 1.466667
Observations (or Sum Wgts) 15
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 3 22.000000 7.33333 4.5489
Error 11 17.733333 1.61212 Prob > F
C. Total 14 39.733333  0.0263
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 1 1.066667 1.06667 0.6400
Pure Error 10 16.666667 1.66667 Prob > F
Total Error 11 17.733333  0.4423
    Max RSq
    0.5805
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  1.4666667 0.327833 4.47 0.0009
Tgt2Value  -0.166667 0.366529 -0.45 0.6582
SearchWeight  -1.333333 0.366529 -3.64 0.0039
Tgt2Value*SearchWeight  0.1666667 0.366529 0.45 0.6582
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value 1 1 0.333333 0.2068 0.6582  
SearchWeight 1 1 21.333333 13.2331 0.0039  
Tgt2Value*SearchWeight 1 1 0.333333 0.2068 0.6582  
Residual by Predicted Plot 
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Tgt2Value 
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Leverage Plot 
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B.2 Sample Final Model – β is insignificant: 
 
Least Squares Fit 
Response #TgtsKilled 
Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
RSquare 0.884021
RSquare Adj 0.864691
Root Mean Square Error 0.353553
Mean of Response 1.066667
Observations (or Sum Wgts) 15
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 2 11.433333 5.71667 45.7333
Error 12 1.500000 0.12500 Prob > F
C. Total 14 12.933333  <.0001
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  1.6666667 0.204124 8.16 <.0001 
SearchWeight  -0.916667 0.102062 -8.98 <.0001 
SearchWeight*SearchWeight  -0.75 0.228218 -3.29 0.0065 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
SearchWeight 1 1 10.083333 80.6667 <.0001  
SearchWeight*SearchWeight 1 1 1.350000 10.8000 0.0065  
Residual by Predicted Plot 
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SearchWeight 
Leverage Plot 
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Summary of Fit 
RSquare 0.563758
RSquare Adj 0.491051
Root Mean Square Error 1.20185
Mean of Response 1.466667
Observations (or Sum Wgts) 15
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 2 22.400000 11.2000 7.7538
Error 12 17.333333 1.4444 Prob > F
C. Total 14 39.733333  0.0069
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  2 0.693889 2.88 0.0138 
SearchWeight  -1.333333 0.346944 -3.84 0.0023 
SearchWeight*SearchWeight  -0.666667 0.775791 -0.86 0.4070 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
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Source Nparm DF Sum of Squares F Ratio Prob > F  
SearchWeight 1 1 21.333333 14.7692 0.0023  
SearchWeight*SearchWeight 1 1 1.066667 0.7385 0.4070  
Residual by Predicted Plot 
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B.3 Sample Screening Design:  ξ and β are significant: 
 
Least Squares Fit 
Response # Tgts Killed 
Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
RSquare 0.859375
RSquare Adj 0.821023
Root Mean Square Error 0.350325
Mean of Response 0.6
Observations (or Sum Wgts) 15
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 3 8.2500000 2.75000 22.4074
Error 11 1.3500000 0.12273 Prob > F
C. Total 14 9.6000000  <.0001
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 1 1.3500000 1.35000 .
Pure Error 10 0.0000000 0.00000 Prob > F
Total Error 11 1.3500000  .
    Max RSq
    1.0000
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  0.6 0.090453 6.63 <.0001
Tgt2Value  0.25 0.10113 2.47 0.0310
SearchWeight  -0.75 0.10113 -7.42 <.0001
Tgt2Value*SearchWeight  -0.25 0.10113 -2.47 0.0310
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value 1 1 0.7500000 6.1111 0.0310  
SearchWeight 1 1 6.7500000 55.0000 <.0001  
Tgt2Value*SearchWeight 1 1 0.7500000 6.1111 0.0310  
Residual by Predicted Plot 
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Tgt2Value 
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Response Formula 
Whole Model 
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Summary of Fit 
RSquare 0.47926
RSquare Adj 0.33724
Root Mean Square Error 1.186413
Mean of Response 0.866667
Observations (or Sum Wgts) 15
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 3 14.250000 4.75000 3.3746
Error 11 15.483333 1.40758 Prob > F
C. Total 14 29.733333  0.0582
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 1 2.816667 2.81667 2.2237
Pure Error 10 12.666667 1.26667 Prob > F
Total Error 11 15.483333  0.1668
    Max RSq
    0.5740
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  0.8666667 0.306331 2.83 0.0164
Tgt2Value  -0.083333 0.342488 -0.24 0.8122
SearchWeight  -1.083333 0.342488 -3.16 0.0090
Tgt2Value*SearchWeight  0.0833333 0.342488 0.24 0.8122
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value 1 1 0.083333 0.0592 0.8122  
SearchWeight 1 1 14.083333 10.0054 0.0090  
Tgt2Value*SearchWeight 1 1 0.083333 0.0592 0.8122  
Residual by Predicted Plot 

-2

-1

0

1

2

3

Fo
rm

ul
a 

R
es

id
ua

l

-1 0 1 2 3 4
Formula Predicted

 
 



 

B-12 

Tgt2Value 
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B.4 Sample Central Composite Design:  ξ and β are significant: 
 
Least Squares Fit 
Response # Tgts Killed 
Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
RSquare 0.798609
RSquare Adj 0.75988
Root Mean Square Error 0.504622
Mean of Response 0.6875
Observations (or Sum Wgts) 32
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 26.254275 5.25085 20.6204
Error 26 6.620725 0.25464 Prob > F
C. Total 31 32.875000  <.0001
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 3 1.9540585 0.651353 3.2102
Pure Error 23 4.6666667 0.202899 Prob > F
Total Error 26 6.6207251  0.0418
    Max RSq
    0.8580
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  -3.38e-14 0.178411 -0.00 1.0000 
Tgt2Value&RS  0.4785534 0.103006 4.65 <.0001 
SearchWeight&RS  -0.787479 0.103006 -7.65 <.0001 
Tgt2Value*SearchWeight  -0.25 0.145672 -1.72 0.0980 
Tgt2Value*Tgt2Value  0.4166667 0.126155 3.30 0.0028 
SearchWeight*SearchWeight  0.5 0.126155 3.96 0.0005 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value&RS 1 1 5.496320 21.5844 <.0001  
SearchWeight&RS 1 1 14.882955 58.4463 <.0001  
Tgt2Value*SearchWeight 1 1 0.750000 2.9453 0.0980  
Tgt2Value*Tgt2Value 1 1 2.777778 10.9085 0.0028  
SearchWeight*SearchWeight 1 1 4.000000 15.7082 0.0005  
Residual by Predicted Plot 
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Tgt2Value&RS 
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Tgt2Value*Tgt2Value 
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Summary of Fit 
RSquare 0.602
RSquare Adj 0.525461
Root Mean Square Error 0.938186
Mean of Response 0.875
Observations (or Sum Wgts) 32
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 34.614977 6.92300 7.8653
Error 26 22.885023 0.88019 Prob > F
C. Total 31 57.500000  0.0001
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 3 6.885023 2.29501 3.2991
Pure Error 23 16.000000 0.69565 Prob > F
Total Error 26 22.885023  0.0384
    Max RSq
    0.7217
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
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Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  -7.46e-14 0.331699 -0.00 1.0000 
Tgt2Value&RS  0.4297379 0.191506 2.24 0.0336 
SearchWeight&RS  -0.954146 0.191506 -4.98 <.0001 
Tgt2Value*SearchWeight  0.0833333 0.270831 0.31 0.7608 
Tgt2Value*Tgt2Value  0.625 0.234547 2.66 0.0131 
SearchWeight*SearchWeight  0.5416667 0.234547 2.31 0.0291 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value&RS 1 1 4.432191 5.0355 0.0336  
SearchWeight&RS 1 1 21.849453 24.8235 <.0001  
Tgt2Value*SearchWeight 1 1 0.083333 0.0947 0.7608  
Tgt2Value*Tgt2Value 1 1 6.250000 7.1007 0.0131  
SearchWeight*SearchWeight 1 1 4.694444 5.3334 0.0291  
Residual by Predicted Plot 
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Tgt2Value*SearchWeight 
Leverage Plot 
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B.5 Sample Final Design:  ξ and β are significant: 
 
Least Squares Fit 
Response # Tgts Killed 
Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
RSquare 0.775795
RSquare Adj 0.74258
Root Mean Square Error 0.522484
Mean of Response 0.6875
Observations (or Sum Wgts) 32
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 4 25.504275 6.37607 23.3564
Error 27 7.370725 0.27299 Prob > F
C. Total 31 32.875000  <.0001
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  -4.8e-14 0.184726 -0.00 1.0000 
Tgt2Value&RS  0.4785534 0.106652 4.49 0.0001 
SearchWeight&RS  -0.787479 0.106652 -7.38 <.0001 
Tgt2Value*Tgt2Value  0.4166667 0.130621 3.19 0.0036 
SearchWeight*SearchWeight  0.5 0.130621 3.83 0.0007 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value&RS 1 1 5.496320 20.1338 0.0001  
SearchWeight&RS 1 1 14.882955 54.5184 <.0001  
Tgt2Value*Tgt2Value 1 1 2.777778 10.1754 0.0036  
SearchWeight*SearchWeight 1 1 4.000000 14.6526 0.0007  
Residual by Predicted Plot 
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Tgt2Value&RS 
Leverage Plot 
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SearchWeight*SearchWeight 
Leverage Plot 
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Response Formula 
Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
RSquare 0.60055
RSquare Adj 0.541373
Root Mean Square Error 0.922323
Mean of Response 0.875
Observations (or Sum Wgts) 32
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 4 34.531644 8.63291 10.1482
Error 27 22.968356 0.85068 Prob > F
C. Total 31 57.500000  <.0001
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  -6.93e-14 0.32609 -0.00 1.0000 
Tgt2Value&RS  0.4297379 0.188268 2.28 0.0306 
SearchWeight&RS  -0.954146 0.188268 -5.07 <.0001 
Tgt2Value*Tgt2Value  0.625 0.230581 2.71 0.0115 
SearchWeight*SearchWeight  0.5416667 0.230581 2.35 0.0264 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Tgt2Value&RS 1 1 4.432191 5.2102 0.0306  
SearchWeight&RS 1 1 21.849453 25.6847 <.0001  
Tgt2Value*Tgt2Value 1 1 6.250000 7.3471 0.0115  
SearchWeight*SearchWeight 1 1 4.694444 5.5185 0.0264  
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Residual by Predicted Plot 
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Tgt2Value*Tgt2Value 
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