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Abstract

A new adaptive split-domain harmonic balance computational fluid dynamics

(CFD) method is developed to solve highly nonlinear time-periodic flows such as

those found in transonic turbomachinery. The basic harmonic balance CFD method

transforms an unsteady time-periodic problem into a steady-state problem by as-

suming a solution in the form of a Fourier series in time. The new method employs

a unique multi-domain split-operator solution technique to remove a large-series sta-

bility restriction present in previous harmonic balance CFD approaches. The new

method also minimizes the computational work required to obtain a harmonic bal-

ance solution by adapting the frequency content to the flow, starting with a small

number of Fourier frequencies and augmenting the frequency content in each cell as

necessary to capture local flow physics. The method reduces compute times by allow-

ing larger integration time steps, reducing Fourier transform calculations, and reduc-

ing overall problem size. Split-domain solutions to the 1-D inviscid Burgers’ equation

are computed with up to 97 frequencies, demonstrating improved stability. Differ-

ences between harmonic balance solutions and time-accurate solutions are found to

be asymptotic with Fourier series length. The adaptive split-domain approach is

applied to the 1-D and quasi-1-D Euler equations. Supersonic and subsonic Euler

calculations show that the adapted and non-adapted harmonic balance solutions are

equivalent. Accurate adapted quasi-1-D Euler solutions for a supersonic/subsonic

diverging nozzle with periodic unsteady outflow conditions are generated in 86%

less time than an equivalent non-adapted split-domain solution, demonstrating the

benefit of adapting frequency content to local flow conditions.
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ADAPTIVE HARMONIC BALANCE METHOD

FOR UNSTEADY, NONLINEAR,

ONE-DIMENSIONAL PERIODIC FLOWS

I. Introduction

High-fidelity numerical simulations of fluid flow through transonic turboma-

chinery are of considerable interest to designers of compressors and turbines in mod-

ern jet engines. Solutions can be obtained with conventional time-accurate compu-

tational fluid dynamics (CFD) codes, but the considerable time required to generate

these solutions limits their utility to the designer. For the class of problems where

the flow can be assumed to be fully developed and periodic in time, such as flow

past a rotor with oscillating blades or flow through a rotor-stator, time-accurate

calculations can be particularly inefficient. It is usually necessary to step through

many disturbance periods before a fully developed solution is reached. To achieve

shorter computation times for this class of problem, CFD techniques have been de-

veloped that take advantage of the time-periodic nature of the flow. These include

the time-linearization technique (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), the time-averaging

technique (13, 14, 15), and the harmonic balance technique (16, 17, 18, 19).

Of the three CFD techniques developed specifically for time-periodic flows, the

harmonic balance technique is most suitable for modeling the large disturbances and

strong nonlinearities found in transonic turbomachinery. All three techniques are

closely related in that they all assume a harmonic form for the unsteady flow, recast

the unsteady problem as a steady-state calculation, and employ convergence accel-

eration techniques to reduce computation time. However, the time-linearization and

time-averaging techniques have restrictions on the unsteadiness that are not present
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in the harmonic balance method. The time-linearized technique models unsteadiness

as a small-amplitude perturbation linearized about an nonlinear steady-state back-

ground flow. Linearization of the unsteadiness, combined with a small-disturbance

assumption, limits applicability to transonic flows. In the time-averaged technique

a small harmonic perturbation is time-averaged with the steady-state background

equations in a process similar to Reynolds averaging. Additional stress terms re-

sult that capture some nonlinearities in the unsteady flow, but a small disturbance

assumption is still made. Finally, both the time-linearized and time-averaged tech-

niques solve for only one harmonic at a time. Multiple-harmonic solutions are built

up by superposing several single-harmonic solutions, losing the effect of nonlinear

harmonic coupling. The harmonic balance method, on the other hand, has no small

disturbance restriction, and solves a set of nonlinear equations for several harmonics

simultaneously, more accurately capturing coupled nonlinear effects. This makes it

uniquely suited for calculating flow through transonic turbomachinery.

The fidelity of a harmonic balance solution is dependent on grid density, on

the number of harmonics included, and on the flow being modeled. On a given grid,

a flow that is smoothly unsteady (i.e., without moving discontinuities) will require

fewer harmonics than a flow containing a moving shock to achieve the same level of

fidelity. Because the computational cost increases with each harmonic included in

the solution, it is desirable to use the minimum number of harmonics needed for a

given problem.

In a typical transonic turbomachinery problem, the nature of the flow can

vary significantly throughout the domain of interest. This is illustrated in Fig. 1.1

(20), which shows experimental time-pressure plots at two locations on a single inlet

guide vane upstream of a transonic rotor. Existing harmonic balance implementa-

tions solve for a constant number of harmonics over the entire computational domain,

so problems containing both smooth and discontinuous unsteadiness require a com-

promise between reduced run time (fewer harmonics), and fidelity in the regions of
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reproduced by permission of authors (20)

Figure 1.1 Experimental Pressure Data on Inlet Guide Vane Upstream of Tran-
sonic Rotating Compressor Blade Row for 5% Span (top), and 95%
Span (bottom)

strong nonlinearity. The goal of this research is to remove the need for compromise

by extending the harmonic balance technique to allow a variable number of included

harmonics, and to automatically identify and apply, on a cell-by-cell basis, the min-

imum number of harmonics required to achieve a consistent fidelity throughout the

computational domain.

1.1 Overview of Harmonic Balance Method

The harmonic balance method has been used for many years as a means of an-

alyzing the behavior of harmonic ordinary differential equations (ODEs) (21). The

technique consists of assuming a solution in the form of a truncated Fourier series

with a predetermined number of harmonics, substituting the assumed solution into

the ODE, and algebraically manipulating the results to collect terms of like fre-

quency. Any resulting terms with a frequency not in the Fourier series are dropped.

Each harmonic is then balanced by requiring that like-frequency terms on each side

of the equation satisfy equality independently. Balancing results in a system of cou-
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pled algebraic equations which are solved for the Fourier coefficients of the assumed

solution.

When the same technique is applied to a partial differential equation (PDE),

the result is a system of ODEs or PDEs that are solved for the Fourier coefficients.

For example, consider a generic scalar one-dimensional Conservation Law equation

in differential form
∂ξ

∂t
+

∂Φ(ξ)

∂x
= 0. (1.1)

In this equation, ξ(x, t) is the scalar dependent variable, and Φ is a flux term that

depends on ξ.

If the time response of the conserved variable ξ at an arbitrary point in space,

x, is assumed to be periodic in time with radian frequency ω, then that response can

be approximated by a truncated complex Fourier series

ξ(x, t) ≈
N∑

n=−N

cn(x)einωt. (1.2)

In this series, the coefficients, cn, are functions of x only, while the exponential terms

are functions of time only. To derive the harmonic balance form of the conserva-

tion equation, the approximating series is substituted into the conservation equation

which, after some algebraic manipulation, is transformed into a system of ordinary

differential equations dependent only on x, which are solved for the unknown Fourier

coefficients. Because the variable ξ(x, t) is real, the Fourier coefficients correspond-

ing to ±n are complex conjugates of each other. Equations associated with negative

frequencies can therefore be dropped, leaving N + 1 complex differential equations

for 2N + 1 unknowns. In vector form, these equations are given by

dΦ̂(ξ̂)

dx
+ Ŝ(ξ̂) = 0 (1.3)
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where ξ̂ is the vector of Fourier coefficients, cn, Φ̂ is a vector of harmonic balance flux

terms, and Ŝ is a vector of source term arising from the time derivative in Eq. 1.1.

For problems of interest, Eq. 1.3 is highly nonlinear. A pseudo-time derivative

of the dependent vector ξ̂ is added (Eq. 1.4) so that a time-marching solution method

can be applied to find the steady-state solution

∂ξ̂

∂τ
+

∂Φ̂(ξ̂)

∂x
+ Ŝ(ξ̂) = 0. (1.4)

When steady state is reached, the added pseudo-time derivative is equal to zero, and

Eq. 1.3 is recovered.

Once a steady-state solution is obtained, useful information is recovered from

the calculated Fourier coefficients. The values of the dependent variable at any point

in time are easily reconstructed from the computed coefficients by performing the

summation in Eq. 1.2. The time-average values of the dependent variable are also

readily obtained, as they are the computed coefficients c0.

Previous Work in Harmonic Balance. The first use of the harmonic bal-

ance method in CFD was by Hall, Thomas, and Clark (16), who implemented a

harmonic balance Reynolds-Averaged Navier-Stokes solver. They applied it to a

single two-dimensional compressor blade row undergoing forced periodic vibration

under transonic flow conditions. This configuration contained moderately strong

shocks, but limited shock motion. Solutions containing up to 7 frequencies in the

approximating series were calculated. Solutions containing 3–5 frequencies showed

good agreement with standard time-accurate calculations for the time-average and

first harmonic terms, but took approximately one-tenth as long to compute. Solu-

tions with 7 frequencies failed to converge. In a follow-on effort, Thomas, Dowell,

and Hall (18) coupled an inviscid harmonic balance solver with a linear structural

model to study limit cycle oscillations of an aeroelastic system.
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Additional work in harmonic balance CFD was conducted by McMullen, Jame-

son, and Alonso (17, 19), who investigated several aspects of the harmonic balance

method not previously addressed. Using a somewhat different formulation than Hall

et al., they performed a stability analysis of the method, concluding that stability

could be an issue when large numbers of frequencies are included in the solution.

They applied the method to several test problems, including unsteady 1-D chan-

nel flow, 2-D oscillating flow behind a cylinder in crossflow, and a pitching airfoil.

Their results show good agreement with analytical and numerical predictions for

both time dependent and time-averaged data. Early cylinder crossflow calculations

fixed the fundamental frequency at the theoretical frequency of vortex shedding (17).

Later cylinder crossflow and pitching airfoil calculations employed a gradient-based

optimization approach to dynamically determine the correct fundamental frequency

(19).

1.2 Scope

The objective of this research is to extend the harmonic balance technique

to accurately resolve unsteady, nonlinear, periodic flows while minimizing compu-

tational cost. To achieve this objective, the solution technique must be able to

robustly solve for as many harmonics as necessary to attain the desired degree of

solution fidelity. To maintain overall efficiency and minimize computational cost,

higher harmonics should only be included where required by local flow conditions.

The scope of this research is defined by the following thesis statement and assump-

tions:

1.2.1 Thesis Statement. A spatially-adaptive harmonic balance method

can be implemented to accurately and efficiently compute a stationary time-periodic

flow field containing regions of smooth flow and regions with strong moving discon-

tinuities by automatically adjusting the number of frequencies in the solution, on a

point-by-point basis, to match local flow conditions.
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1.2.2 Assumptions. The implementation and effectiveness of the spatially-

adaptive harmonic balance technique are not strongly dependent on the spatial di-

mension of the problem, and will be adequately demonstrated in one spatial dimen-

sion. Efficiency will be measured by comparing average frequency content and run

time with a comparable non-adapted harmonic balance implementation. Accuracy

will be determined through comparison with conventional time-accurate results and

non-adapted harmonic balance results.

1.3 Research Approach

Several one-dimensional CFD codes were developed to investigate different

aspects of the adaptive harmonic balance method. The initial work investigated

harmonic balance solutions of the inviscid Burgers’ equation, a scalar analog of the

Euler equation, subject to a variety of periodic boundary conditions. Next, subsonic

and supersonic harmonic balance solutions to Euler’s equation were investigated.

Finally, the adaptive split-domain harmonic balance method was demonstrated by

solving the quasi-1-D Euler’s equation for an unsteady diverging nozzle configuration.

Inviscid Burgers’ Equation: Different implementations of the harmonic bal-

ance Burgers’ equation were tested to determine which implementation provided the

best performance, robustness, and accuracy. A new split-domain implementation

was shown to be a superior harmonic balance implementation when large numbers

of harmonics were included. The impact of shock strength, fundamental frequency,

and grid density on the harmonic balance solution were investigated.

Euler’s Equation: An adaptive split-domain harmonic balance Euler solver was

written to investigate the frequency augmentation approach and to develop methods

for properly treating transitions from one frequency to another at arbitrary points

in the computational grid. A study of the impact of user-specified parameters on
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the performance of the adaptive algorithm for both supersonic and subsonic flows

was conducted.

Quasi-1-D Euler’s Equation: The adaptive split-domain harmonic balance al-

gorithm is demonstrated by solving unsteady diverging nozzle flow. This configu-

ration is representative of anticipated production applications, containing regions of

both low and high frequency content, with abrupt transitions between the two.

1.4 Document Organization

The remainder of this document is organized as follows:

Chapter II: Details the theory and implementation of the adaptive split-domain
harmonic balance method.

Chapter III: Records the analysis and results of the harmonic balance method
applied to the inviscid 1-D Burgers equation for a variety of periodic boundary
conditions.

Chapter IV: Records the analysis and results of the adaptive split-domain
harmonic balance method applied to the one-dimensional Euler equation for both
supersonic and subsonic boundary conditions.

Chapter V: Presents a demonstration of the adaptive split-domain harmonic
balance technique applied to an unsteady quasi-1-D nozzle flow.

Chapter VI: Summarizes the results and conclusions of the current research

Chapter VII: Discusses future research topics suggested by the current re-
search.
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II. Theory and Implementation of Adaptive Split-Domain Harmonic

Balance

2.1 Introduction

In this chapter, a theoretical and practical foundation for the adaptive split-

domain harmonic balance CFD method is established. The chapter begins by ex-

panding on the brief overview of harmonic balance in CFD presented in Section 1.1

with a more in-depth derivation of the basic harmonic balance method and its appli-

cation to the solution of conservation equations. This is followed by a brief discussion

of previous harmonic balance CFD implementations, and a detailed description of the

new split-domain harmonic balance approach. The focus of the discussion then turns

to frequency augmentation and the adaptive harmonic balance algorithm. Finally,

the chapter concludes with a discussion of the implementation of full approxima-

tion scheme (FAS) multigrid convergence acceleration with adaptive split-domain

harmonic balance.

The discussion that follows is general. No specific solver implementation is

described, and no assumptions are made about the specific conservation equations

being solved or the discretization schemes used to obtain a numerical solution. Be-

cause of this, the concepts and algorithms described below are easily adapted to new

applications. In the chapters that follow, some or all of the ideas discussed below are

applied to a MacCormack discretization of the 1-D Burgers’ equation (Chapter III),

as well as cell-centered finite volume formulations of the 1-D Euler’s equation (Chap-

ter IV) and quasi-1-D Euler’s equation (Chapter V).

2.2 Derivation of the Harmonic Balance Equations

In Section 1.1, a brief overview of the application of the harmonic balance

method to a scalar conservation law was presented. The following discussion expands

on that brief overview, providing a detailed derivation of the harmonic balance form
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of the conservation law, and covering some aspects of numerical implementation.

The derivation is carried out based on the generic scalar conservation law, Eq. 1.1,

repeated here as Eq. 2.1
∂ξ

∂t
+

∂Φ(ξ)

∂x
= 0. (2.1)

A similar derivation for a specific conservation law, the 1-D inviscid Burgers’ equation

(Eq. 3.1) is presented in Appendix A.

As discussed in Section 1.1, the harmonic balance method centers on the as-

sumption that the dependent variable, ξ, can be approximated by a truncated Fourier

series

ξ(x, t) ≈
N∑

n=−N

cn(x)einωt. (2.2)

In this series, N is the number of positive and negative frequencies in the truncated

Fourier series, and ω is the fundamental radian frequency of the series, equal to 2π/P

where P is the period of oscillation of the physical system. The complex coefficients,

cn, are functions of the spatial variable only, while the exponentials are functions of

time. Substituting Eq. 2.2 into the first term on the left hand side of Eq. 2.1 and

evaluating the time derivative yields

∂ξ

∂t
≈

N∑

n=−N

inωcneinωt. (2.3)

This expression is the origin of the harmonic balance source term.

A similar substitution is performed for the second term on the left hand side

of Eq. 2.1. In this case, substitution requires the evaluation of the flux function, Φ,

with the approximating series as an argument. Upon evaluation, the resulting flux

is algebraically simplified and terms of like frequency are collected, resulting in an

expression of the form

Φ(ξ) ≈
M∑

n=−M

φne
inωt (2.4)
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where φn contains the sum of all coefficients of the exponential einωt. If the evaluation

of Φ requires products or integer powers of the dependent variable ξ, then M > N .

As part of the harmonic balance approximation, all exponential terms with frequency

greater than ±Nω are discarded, leaving only terms with frequencies present in the

approximating series

Φ(ξ) ≈
N∑

n=−N

φneinωt. (2.5)

As a simple example of the derivation of a harmonic balance flux, consider a

flux function Φ(ξ) = ξ2, and an approximating Fourier series with N = 1. Evaluation

of the flux with the approximating series as the argument yields

Φ(ξ) ≈
(

1∑

n=−1

cneinωt

)2

. (2.6)

Expanding the right-hand side of Eq. 2.6 gives

(
1∑

n=−1

cneinωt

)2

= c2
−1e

−i2ωt + c−1c0e
−iωt + c−1c1 + c0c−1e−iωt + (2.7)

c2
0 + c0c1e

iωt + c1c−1 + c1c0e
iωt + c2

1e
i2ωt

= c2
−1e

−i2ωt + 2c−1c0e
−iωt + 2c−1c1 + c2

0 +

2c0c1e
iωt + c2

1e
i2ωt. (2.8)

Equation 2.8 contains exponential terms with frequencies ±2ω. Since the assumed

solution contains frequencies only up to ±ω, these higher frequency terms are dis-

carded. The remaining terms in Eq. 2.8 are the harmonic balance flux terms for this

simple example:

φ−1 = 2c−1c0 φ0 = 2c−1c1 + c2
0 φ−1 = 2c1c0. (2.9)
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Substitution of Eq. 2.3 and Eq. 2.5 into the left hand side of Eq. 2.1 and

collection of terms with like exponentials yields the series approximation form of the

conservation equation
N∑

n=−N

[
inωcn +

dφn

dx

]
einωt = 0. (2.10)

At this point, the harmonic terms are required to balance across the equality; each

frequency is required to satisfy equality independently of the other frequencies. Since

the right hand side of Eq. 2.10 is identically zero, each of the terms in the summation

on the left hand side must be equal to zero, i.e.,

[
inωcn +

dφn

dx

]
einωt = 0 −N ≤ n ≤ N. (2.11)

The terms inside the square brackets must be identically equal to zero for each of the

2N + 1 complex equations represented by Eq. 2.11 to hold for all time. The expo-

nential terms are dropped, leaving a system of 2N + 1 coupled ordinary differential

equations for 2N + 1 complex coefficients. This system can be further simplified

because the dependent variable, ξ(x, t), is real and periodic. The negative frequency

Fourier coefficients are thus the complex conjugates of the corresponding positive

frequency coefficients, i.e., c−n = c̃n. Furthermore, since the zero-frequency term c0

must be real, the total number of unknowns is 2N +1: the real and imaginary parts

of N positive-frequency coefficients, plus the real zero-frequency coefficient. Since

the coefficients of the negative frequencies are not independent, the corresponding

equations need not be solved. Keeping just the positive frequency equations and

eliminating the exponential terms, Eq. 2.11 reduces to

inωcn +
dφn

dx
= 0 0 ≤ n ≤ N, (2.12)

or in vector form,
dΦ̂(ξ̂)

dx
+ Ŝ(ξ̂) = 0 (2.13)
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with

ξ̂ =




c0

c1

...

cN




, Ŝ(ξ̂) =




0

iωc1

...

iNωcN




, Φ̂(ξ̂) =




φ0

φ1

...

φN




. (2.14)

To solve Eq. 2.13, a pseudo-time derivative of the vector of Fourier coefficients, ξ̂, is

added
∂ξ̂

∂τ
+

∂Φ̂(ξ̂)

∂x
+ Ŝ(ξ̂) = 0. (2.15)

A time-marching scheme is used to drive the solution to steady state. Once steady

state is reached, the pseudo-time derivative vanishes, and Eq. 2.13 is recovered.

Eq. 2.15 is the vector harmonic balance form of the scalar one-dimensional

conservation equation (Eq. 2.1). Derivation of the harmonic balance form for multi-

dimensional and vector conservation equations is similar to that of the scalar equa-

tion. For a multi-dimensional problem, multiple flux derivatives must be computed,

but the basic harmonic balance form remains unchanged. In the case of a vector

equation (e.g. the Euler equation), each of the conserved (or primitive) variables

is expanded in a separate Fourier series. The harmonic balance solution vector is

a concatenation of the Fourier coefficients for all the approximated variables. An

example of a vector equation derivation is found in (16).

Evaluating the harmonic balance flux vector, Φ̂, can be computationally expen-

sive. For a simple flux like that of the scalar 1-D inviscid Burgers’ equation (Eq. 3.1),

the asymptotic complexity of the harmonic balance flux calculation is O(N 2). For

a more complex vector equation such as the Euler equation (Eq. 4.1), the asymp-

totic complexity lies between O(N 3) and O(N4) (16). Considerable computational

savings can be realized by taking a multi-domain approach for the flux calculation.
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A multi-domain approach takes advantage of the relationship between the com-

puted Fourier coefficients, ξ̂, and their inverse discrete Fourier transform (IDFT)

(16). Given the vector of Fourier coefficients ξ̂, and F , a discrete Fourier transform

(DFT) operator that produces positive-frequency Fourier coefficients from a set of

real numbers, define ξ such that

ξ̂ = Fξ (2.16a)

ξ = F−1ξ̂. (2.16b)

The vector ξ is a real vector of length 2N + 1 that contains values of the dependent

variable, ξ(x, t), sampled at times t = (0, ∆t, 2∆t, · · · , 2N∆t), with ∆t = 2π
ω(2N+1)

,

the period of oscillation divided by the number of samples. A similar relationship is

assumed for the flux vector, Φ̂, and its IDFT (16).

Given these relationships, the harmonic balance flux, Φ̂, can be closely approx-

imated by calculating ξ from ξ̂, applying the time domain flux function Φ to each

element of ξ to obtain a vector of time-sampled fluxes, Φ, and transforming the result

back to the frequency domain (16). The asymptotic complexity of the DFT/IDFT

for arbitrary numbers of terms is O(N 2) (22). The complexity of the time-domain

flux calculation is O(N), so the complexity of the combined operation is O(N 2).

To put the potential computational savings in perspective, consider an Euler flux

calculation with N = 45, and assume a computational cost proportional to N 2 for

the multi-domain approach, and N 3.5 for the direct approach. Disregarding any con-

stants of proportionality, the direct approach is over 300 times more expensive than

the multi-domain approach.

In practice, the theoretical computational cost savings could be much higher.

The asymptotic complexity of a modern DFT/IDFT algorithm has a lower bound

of Ω(N log2 N) (22). The lower bound is typically obtainable only when the number

of terms being transformed is a power of 2, however. Since the number of terms
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transformed in the harmonic balance calculation is always odd, the ideal performance

is never achieved. However, very good performance can still be achieved if the

number of terms can be factored into integer powers of small primes (22), i.e., when

2N +1 = 2a3b5c7d11e for some integers a, b, c, d, and e. So the actual computational

cost will lie between N log2 N and N2, depending on the value of N . For the above

example with N = 45, a direct flux calculation is between 300 and 2400 times more

costly than a multi-domain calculation, disregarding constants of proportionality.

2.3 Prior Implementations of Harmonic Balance for CFD

Existing harmonic balance CFD solvers have taken two different approaches to

implementing the harmonic balance equations. Both are multi-domain approaches.

The first approach, developed by Hall, Thomas, and Clark (16), results in a system

of equations that is integrated in the time domain. The second, developed by Mc-

Mullen, Jameson, and Alonso (17), results in a system of equations integrated in the

frequency domain.

Derivation of the time-domain approach begins by substituting Eq. 2.16a and

the multi-domain flux calculation into Eq. 2.15 to obtain

∂(Fξ)

∂τ
+

∂(FΦ(ξ))

∂x
+ Ŝ(Fξ) = 0. (2.17)

An IDFT applied to Eq. 2.17 yields the final form of the time-domain harmonic

balance approach.
∂ξ

∂τ
+

∂Φ(ξ)

∂x
+ F−1Ŝ(Fξ) = 0. (2.18)

Eq. 2.18 has the form of the original conservation equation, Eq. 2.1, with an added

source term. The primary advantage of this formulation is that an existing steady-

state solver can be easily modified to solve the harmonic balance equations.
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Derivation of the frequency-domain formulation begins by rewriting Eq. 2.15

as
∂ξ̂

∂τ
+ R̂(ξ̂) + Ŝ(ξ̂) = 0, (2.19)

where R̂(ξ) is a residual containing the flux derivative term, dΦ̂
dx

, (or in multiple

dimensions, the sum of the flux derivatives for each dimension) as well as any terms

required by a specific discretization, such as artificial dissipation terms. A frequency

domain/time domain relationship is assumed for the residual, such that

R̂(ξ̂) = FR(F−1ξ̂) = FR(ξ) (2.20)

where R(ξ) contains the flux derivatives and additional terms evaluated at 2N + 1

points in time. Substitution of Eq. 2.20 into Eq. 2.19 yields the second harmonic

balance form,
∂ξ̂

∂τ
+ FR(F−1ξ̂) + Ŝ(ξ̂) = 0. (2.21)

Despite being integrated in the frequency domain, this formulation is very similar

to the time-domain formulation. Due to the linearity of F and F−1, if the same

discretization scheme is applied to both formulations, and the spatial discretiza-

tion of R(ξ) contains only linear difference operators, then Eqs. 2.18 and 2.21 are

mathematically equivalent.

2.4 Split-Domain Harmonic Balance

The time-domain and frequency-domain formulations of the harmonic balance

equations are adequate for calculating solutions with small N , but both have aspects

that reduce their utility for solutions requiring large N . The primary concern with

the existing formulations is the stability of the resulting harmonic balance equations.

A stability analysis of the frequency-domain approach indicates that as N becomes

large, the stability limit of the approach becomes restricted (17), requiring a smaller

time step and reducing efficiency. This property was confirmed experimentally for
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both the time-domain and frequency domain formulations, as well as for the direct

formulation (see Section 3.4.2).

The second, lesser concern with the existing formulations is the number of

transforms required per point, per iteration. A multi-step time integration technique

such as an explicit 3-, 4-, or 5-stage Runge-Kutta scheme requires one DFT/IDFT

evaluation per point for each stage of the integrator. For small N , this is of little

consequence, but for large N the cost of multiple DFT/IDFT evaluations could

become significant.

A new split-domain harmonic balance formulation was developed that ad-

dresses both the stability concern and the DFT/IDFT evaluation concern. In this

formulation, the inhomogeneous harmonic balance equation (Eq. 2.15) is split into a

homogeneous partial differential equation and an ordinary differential equation (23).

∂ξ̂1

∂τ
+

∂Φ̂(ξ̂1)

∂x
= 0 (2.22a)

dξ̂2

dτ
+ Ŝ(ξ̂2) = 0. (2.22b)

An approximate solution to Eq. 2.15 is obtained by sequentially solving Eqs. 2.22a

and 2.22b, using the solution from one as the initial condition for the other. For

example, one could solve Eq. 2.22a for ξ̂1(x, τ) subject to the initial condition

ξ̂1(x, 0) = ξ̂(x, 0), the initial condition for Eq. 2.15. The approximate solution is

then obtained by solving Eq. 2.22b for ξ̂2 with the initial condition ξ̂2(0) = ξ̂1(x, τ).

This split-operator approach is sometimes used to solve stiff systems of equations (i.e.

systems with widely differing time scales) such as those that result when finite-rate

chemistry is included in a CFD solution (24, 25).

An approximate numerical solution can be obtained using a Strang symmet-

ric splitting approach (26, 24, 23). Given difference operators M∆τ and L∆τ that

are second-order accurate for Eqs. 2.22a and 2.22b respectively, then the composed

operator L∆τ/2M∆τL∆τ/2 is second-order accurate for Eq. 2.15 (26). Furthermore,
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the stability characteristics of the composed operator are determined by the stability

characteristics of the individual operators M∆τ and L∆τ (26, 23). By choosing ap-

propriate discretizations for Eqs. 2.22a and 2.22b, the large-N time step restriction

is greatly reduced or eliminated.

To take advantage of the efficiencies of the multi-domain approach, Eq. 2.22a

is transformed to the time domain in a manner similar to Eq. 2.18. Together with

Eq. 2.22b, this transformed equation becomes the split-domain harmonic balance

form of Eq. 1.1.

∂ξ

∂τ
+

∂Φ(ξ)

∂x
= 0 (2.23a)

dξ̂

dτ
+ Ŝ(ξ̂) = 0. (2.23b)

The steps required to advance the solution one iteration from time level n to

time level n + 1 are:

step 1: Given the solution vector at time level n, ξ̂n, advance Eq. 2.23b one-half
pseudo-time step to produce ξ̂∗

step 2: Calculate ξ
∗

= F−1ξ̂∗

step 3: With ξ
∗

, advance Eq. 2.23a one full pseudo-time step to produce ξ
∗∗

step 4: Calculate ξ̂∗∗ = Fξ
∗∗

step 5: With ξ̂∗∗, advance Eq. 2.23b one-half pseudo-time step to produce ξ̂n+1

The split-domain harmonic balance approach has several advantages over pre-

vious harmonic balance implementations. First and foremost, it greatly reduces the

stability restriction for large N . Secondly, it requires only one DFT/IDFT calcu-

lation per point per iteration, regardless of the time integration scheme employed.

Another advantage lies in the fact that the system of equations represented by the

time-domain PDE, Eq. 2.23a, is uncoupled, and each equation has the same form as
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the original conservation equation. Thus a solution scheme developed for the orig-

inal equation can be applied in-turn, without modification, to each equation in the

harmonic balance system. This makes the split-domain approach easy to implement

in an existing code.

The split-domain harmonic balance formulation has one potential disadvan-

tage. As a result of splitting the harmonic balance equation, a new discretization

error is introduced. This error causes the steady-state solution to be dependent on

the numerical time-integration step size, ∆τ (25). An investigation of the impact

of splitting error on split-domain harmonic balance solutions was conducted (Ap-

pendix B) and it was found that splitting error is not a significant factor for the

solver implementations studied in this effort. It could become a factor, however, for

an implementations that allow very large numerical time steps.

Like the time-domain PDE, the system of equations represented by the fre-

quency domain ODE, Eq. 2.23b, is also uncoupled, with each equation having the

form

dck

dτ
+ i k ω ck = 0, 0 ≤ k ≤ N. (2.24)

Eq. 2.24 is a linear ODE with an easily obtained exact solution. Given a solution cn
k

at time level n as an initial condition, the exact solution to Eq. 2.23b at pseudo-time

∆τ/2 is given by

c
n+ 1

2
k = cn

ke−ikω ∆τ

2 , 0 ≤ k ≤ N. (2.25)

Insight into the split-domain harmonic balance iterative solution process is gained

by recognizing that Eq. 2.25 represents a small shift of the solution vector elements

in physical time. The time-shift property for the discrete Fourier transform states

that, given the time sampled sequence ξ with length 2N +1, and its discrete Fourier
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transform ξ̂, then (27)

ξk−α ⇔ ξ̂ne−
i2πnα

2N+1 , (2.26)

where the subscripts k and n range over the elements in the vector. The right hand

side of Eq. 2.25 is similar to that of Eq. 2.26, provided

α =
(2N + 1)ω∆τ

4π
. (2.27)

Thus the combined result of the operations represented by the split-domain solution

steps 4, 5, 1, and 2 (in that order) approximates a small physical-time shift of

the elements in the vector ξ along the continuous periodic function given by the

approximating Fourier series, Eq. 2.2.

With this understanding, the split-domain harmonic balance solution process

can be interpreted as a sequence of forward integrations of Eq. 2.23a in pseudo-time

(which, because Eq. 2.23a has the same form as Eq. 2.1, is just a scaled integration

in physical time), surrounded by backward physical-time shifts of the elements in the

solution vector (Fig. 2.1). The shift-integrate-shift sequence is continued until the

end values are the same as the starting values, at which point the overall steady-state

solution is reached.

2.5 Adaptive Split-Domain Harmonic Balance

The adaptive split-domain harmonic balance method minimizes the computa-

tional cost of the harmonic balance solution by automatically tailoring the number

of Fourier frequencies included in the solution according to the flow at a given point,

on a point-by-point (or for a finite volume discretization, cell-by-cell) basis. This is

accomplished by means of a frequency augmentation approach. With this approach,

the solution is begun with a user-specified minimum initial number of frequencies.

As the solution develops, frequencies are added in fixed increments to individual grid

points until a final frequency distribution and solution are obtained.
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Figure 2.1 Time-sample Shifting that Occurs with Each Iteration of the Split-
domain Solution Process

The frequency augmentation approach was chosen because it is simple and com-

putationally efficient, especially for problems that are elliptic in time (e.g. subsonic

flow problems). Computational efficiency stems from the fact that the low-frequency

coefficients included in the early solutions tend to have low-frequency spatial varia-

tions (Fig. 2.2), and thus take the most time to converge to steady state. By begin-

ning with a small number of Fourier frequencies, much of the work of converging the

low-frequency coefficients is accomplished while solving a reduced problem. Subse-

quent addition of higher Fourier frequencies introduces mostly high-spatial-frequency

errors which are quickly removed from the solution. In this respect, frequency aug-

mentation is similar to a full multigrid convergence acceleration method, in which

a solution is converged on a series of computational grids, beginning with a coarse

grid and continuing on successively finer grids until a final solution is obtained.

To implement a frequency augmentation approach, it is necessary to identify

which points in the computational grid need augmentation, and to properly handle

the frequency transitions that occur when a cell and its neighbor are solved with

different numbers of frequencies. Determining which cells need additional Fourier

frequencies requires a means of measuring the quality of the solution, and some
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Figure 2.2 Illustration of Typical Spatial Variation of a Low-frequency (top) and
High-frequency (bottom) Fourier Coefficient

criteria against which that quality can be compared. It also requires a strategy that

governs how often the criteria are applied. Handling frequency transitions requires

the development of a robust multi-frequency approach for solving the time-domain

equation, Eq. 2.23a.

2.5.1 Frequency Augmentation Criteria and Scheduling. The frequency

augmentation approach requires a reliable indicator of solution fidelity at each com-

putational cell. Since the final time-response of the flow is not known a priori, the

indicator must rely only on the current (and possibly past) state of the solution.

The indicator chosen for this research is the fraction of spectral energy contained in

the highest computed Fourier Frequency, EN , given by

EN =
|cN |2∑N
n=0 |cn|2

. (2.28)

The assumptions underlying the choice of EN as an adaptation metric are that the

majority of the spectral energy is contained in the low-frequency terms, and that the

fraction of energy contained in the highest calculated frequency decreases as more

terms are included in the approximating series. Thus the quality of the solution can
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be gauged by the amount of energy in the highest frequency term. Physically, these

assumptions require that, aside from localized discontinuities, the modeled flow field

is smoothly varying throughout its period. In addition, if discontinuities do appear,

they must not be impulse discontinuities, i.e., the discontinuity should be a step

rather than a spike. These physical requirements are consistent with the flow fields

of interest, and proved valid for all test cases examined.

The decision to augment frequencies at a point is made by comparing EN to

a threshold value, Ethresh . Because EN tends to mirror the spatially oscillatory na-

ture of the high-frequency coefficients, it is smoothed with an unweighted 5-point

spatial average prior to thresholding. When the smoothed EN exceeds the thresh-

old, additional frequencies are incorporated into the solution at that point. Fourier

coefficients for the new frequencies are initialized to zero. In the case of a vector

equation, EN is calculated for each of the variables expanded in a series, and the

solution is augmented if any one of these exceeds Ethresh . Selection of Ethresh is based

on experience and the desired solution fidelity. See Sections 4.4 and 5.4 for more on

the impact of threshold value on adapted solutions.

Threshold-based augmentation was supplemented by two forms of non-threshold

based augmentation. The first of these was fringe augmentation. The purpose of

fringe augmentation was to increase the size of a threshold-augmented region. In

some test cases with very rapid transitions between smooth and discontinuous flow,

the location of the transitions changed as frequencies were added and the solution

was refined. In those situations, it was sometimes necessary to augment a small

fringe of cells adjacent to threshold-identified cells in order to allow the transition to

shift in the direction of lower frequency content.

The second non-threshold-based augmentation was designed to enforce a min-

imum number of consecutive cells with the same frequency content. In some cases,

threshold-based augmentation can result in small (1-2 cell) segments of the compu-

tational domain having a different frequency content than their neighbors. To avoid
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Figure 2.3 Effect of Fringe Augmentation and Pixelation on a Threshold-based
Frequency Distribution

this situation, a pixelation process was applied to each newly augmented frequency

distribution. In this process, the grid was divided into contiguous, non-overlapping

segments with a uniform size, or pixelation width. Within each segment, the fre-

quency content was set to the maximum found within that segment. This guaranteed

a minimum number of contiguous cells with the same frequency content, while also

guaranteeing frequency content greater than or equal to that required to meet the

augmentation threshold. The cumulative effect of both fringe augmentation and

pixelation is illustrated in Fig. 2.3.

For the current research, both the augmentation fringe width and pixelation

width were controlled by user input at run time. Each could be disabled when not

needed by setting the fringe width to zero, and the pixelation width to one.

Once a cell was identified for augmentation, its frequency content was increased

by a predetermined increment, chosen to minimize compute time. The majority of

the run time required to solve the split-domain harmonic balance equations is com-

posed of two components–the time associated with solving the time-domain equations

(Eq. 2.23a), and the time spent performing the necessary Fourier transforms. Run
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time associated with the time-domain equations increases linearly with N . There

is no performance advantage favoring any particular increment, so long as the in-

crement is relatively small. There can, however, be a significant difference in the

run time of the Fourier transforms for different N , as discussed in Section 2.2. Nu-

merical tests were conducted to determine values of N which gave the best overall

performance. The results of these tests are documented in Appendix C.

Like the augmentation increment, the timing of frequency adaptation was

based on run-time performance considerations. Frequency augmentation is most

effective when it is based on solutions that are representative of the final solution.

If adaptation is attempted too early in the solution process, unneeded frequencies

could be added based on transient flow structures that are not present in the final

solution. On the other hand, if the solution is allowed to develop too long before

adaptation is attempted, the result could be wasted computational effort. The goal

of adaptation scheduling is to identify the “right” times to adapt the solution.

A dual-trigger adaptation scheduling strategy is taken. The primary trigger is

based on a modified L2 norm of the change in the solution during one iteration. The

L2 norm, or residual, is defined as

R =

√
∑ni

i=1(∆ξ̂i · ∆̃ξ̂i)

ni
. (2.29)

The L2 norm is a measure of the remaining error in the solution. In Eq. 2.29, ni

is the number of cells in the computational grid, ∆ξ̂ is the change in the solution

vector in one iteration, and the overset ˜ indicates complex conjugation. Adaptation

is triggered when log10(R) drops by a user-specified amount, indicating that a desired

level of solution development has been reached. The secondary trigger is based on the

number of iterations completed. The iteration-based scheduling serves as a backup

to residual-based scheduling in the rare cases where solution convergence stalls and

the specified residual drop is not achieved.
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The residual drop and iteration count are measured relative to a reference

residual and iteration number. The initial reference values are set after the first

iteration of the solution. The reference values are then reset whenever the solution

is adapted. Adaptation trigger values for the first and subsequent adaptations are

different. The initial trigger values are set to allow time for the solution to develop

from a poor initial guess. Subsequent trigger values are set to allow errors introduced

by frequency augmentation to be removed from the solution, and to further refine

the solution a small amount. The initial trigger values are typically much larger than

the subsequent trigger values.

The adaptive frequency augmentation algorithm is summarized in Fig. 2.4.

2.5.2 Treatment of Frequency Transitions. Discretization of the spatial

derivative in the time-domain portion of the split-domain harmonic balance equa-

tions (Eq. 2.23a) requires the addition and/or subtraction of the solution vector in

a cell, ξi, (or the corresponding fluxes, Φ(ξi)) with the other solution vectors in

its discretization stencil. This presents a problem when those cells have different

maximum frequencies. Not only do the solution vectors have different numbers of

elements, but those elements correspond to the state of the flow at different points

in time; they have different sample rates. To solve this problem, the solution vectors

must be resampled so that the sample rate is consistent across the discretization

stencil (Fig. 2.5).

Two different resampling methods are employed in the present implementa-

tion. These methods include truncation/zero-padding in the frequency domain,

and linear interpolation in the time domain. The primary means of resampling

is truncation/zero-padding in the frequency domain. With this method, a vector is

down-sampled by taking its Fourier transform, truncating the results, and transform-

ing the truncated Fourier coefficient vector back to the time domain. Upsampling is

achieved in a similar manner, except that instead of truncating the Fourier coefficient
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vector, it is padded with new zero-valued high-frequency coefficients. This approach

results in very smooth interpolation. When the results are used in a linear operation

such as addition or subtraction, the approach is equivalent to performing the same

linear operation directly in the frequency domain.

One drawback with frequency-domain truncation/zero padding is that the in-

terpolated values are not bounded by the original data. When sample rates are very

small, interpolation can result in non-physical values, as demonstrated in Fig. 2.6.

When this occurs, linear interpolation in the time-domain is applied.

With the linear interpolation method, conservative variables are obtained at

the required sample times by linearly interpolating the calculated values. Besides

guaranteeing that the interpolated values are bounded by the computed values, this

approach has the advantage that it can be applied entirely in the time domain, and

does not require any additional Fourier transforms.

Despite the higher computational cost and potential low-sample-rate problems,

frequency-domain truncation/zero-padding was selected as the primary resampling
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method. This choice was based on the quality of the solution computed at a sample

rate transition. The superiority of the method over linear interpolation is illustrated

in Fig. 2.7. This figure contains plots of contours of constant Fourier coefficient

magnitude for both types of interpolation at a transition from 7 frequencies (15

samples/period) to 16 frequencies (33 samples/period). Also included in the plots

(dashed) are coefficient magnitude contours for a solution with a constant 16 frequen-

cies. The frequency-domain truncation/zero padded solution is much smoother and

more closely matches the constant-sample-rate results than the linearly-interpolated

solution.

In the adaptive split-domain harmonic balance solver written for this research,

a 3-stage Runge-Kutta time-integration scheme was used to advance the time-domain

PDE, Eq. 2.23a (See Section 4.2). In order to achieve a smooth solution at frequency

transitions, it was necessary to resample the transition boundaries at every integra-

tion stage. Attempts to time-lag the transitions by freezing the resampled values

at the first integration stage resulted in discontinuities at the transition point, even

when both sides of the transition had the same number of frequencies and no inter-

polation was required.
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Figure 2.7 Comparison of Fourier Coefficient Magnitudes at a Transition
from 7 Frequencies to 16 Frequencies, for Solutions Computed
with Time-domain Linear Interpolation (left) and Frequency-domain
Truncation/Zero-padding (right) Resampling Methods

As a consequence of the need to resample the transition boundaries at each inte-

gration stage, the previously uncoupled system of equations represented by Eq. 2.23a

becomes effectively coupled through the resampling operation. This significantly in-

creases the storage requirements of the solver. When the time-domain system of

equations was uncoupled, the numerical integration scheme could be applied sepa-

rately to each equation in the system, reducing the storage requirement for inter-

mediate solutions to a single time sample. But when the equations are coupled,

intermediate solutions for all samples must be stored. For this reason, it is impor-

tant that the adaptive split-domain harmonic balance method be implemented with

a numerical integration scheme with low storage requirements if that scheme is a

mulit-step scheme.

2.6 Multigrid and Adaptive Split-Domain Harmonic Balance

The Full Approximation Storage (FAS) multigrid method is a commonly used

technique for accelerating the calculation of steady-state solutions to nonlinear con-

servation equations. The method works by transferring a partially converged solution

to a coarser computational grid, where a coarse grid correction is calculated. This

2-22



correction is then applied to the solution on the fine grid. Because the coarse grid

contains fewer grid points, calculation of the coarse grid correction is faster than

calculation of the solution on the fine grid.

Implementation of FAS multigrid in an adaptive split-domain harmonic balance

solver requires some special considerations. In the following discussion, the basic

FAS multigrid scheme as found in (28) is presented, followed by the specifics of the

adaptive split-domain implementation.

Theory of FAS Multigrid. Consider an equation of the form

LhUh = fh, (2.30)

defined on a grid with spacing h, where Lh is a nonlinear operator, Uh is the exact

solution, and fh is a forcing function. Let uh be an approximate solution to Eq. 2.30,

and V h = Uh − uh be the error in the approximate solution. The goal of the FAS

multigrid scheme is to quickly calculate an estimate of the solution error, V h.

Substituting Uh = V h +uh into Eq. 2.30 and subtracting Lhuh from both sides

gives

Lh(V h + uh) − Lhuh = fh − Lhuh. (2.31)

If the terms in Eq. 2.31 are sufficiently smooth, the equation can be transferred or

“restricted” onto a coarse grid with grid spacing 2h without much loss of accuracy.

Given a coarse grid operator, L2h, and a restriction operator, I2h
h , the restricted

equation is given by

L2h(I2h
h uh + V 2h) − L2h(I2h

h uh) = I2h
h (fh − Lhuh). (2.32)

The coarse grid operator L2h may or may not be the same as the fine grid operator,

Lh. V 2h is the approximate solution error on the coarse grid. Eq. 2.32 can be
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rewritten to have the same form as Eq. 2.30, i.e.,

L2hu2h = f 2h (2.33)

where

u2h = I2h
h uh + V 2h (2.34)

f 2h = I2h
h (fh − Lhuh) + L2h(I2h

h uh). (2.35)

The FAS multigrid scheme solves for u2h on the coarse grid, which, because it has

half as many points as the fine grid, requires half as much work. In addition, since

the coarse grid spacing is larger, in many cases a larger integration time step may be

taken. Once a solution for u2h is obtained, the error in the solution, V 2h is recovered

and interpolated to the fine grid to form a coarse grid correction. The fine grid

solution is updated by adding the coarse grid correction to the original approximate

solution, as illustrated in Eq. 2.36.

(uh)new = (uh)old + Ih
2h(u

2h − I2h
h uh

old) (2.36)

Because Eq. 2.33 has the same form as Eq. 2.30, the FAS multigrid algorithm

is easily extended to more than two levels. Each coarse grid becomes the fine grid

for a still coarser grid. In theory, this can continue until there is only one point in

the interior of the coarsest grid.

A typical multigrid implementation begins by performing a small number of

iterations on the finest grid to remove high spatial-frequency errors. This smoothed

solution is restricted to the next coarsest grid, where the solution is again smoothed

for a small number of iterations. The process of smooth and restrict is repeated

until the coarsest grid is reached, at which point the solution is converged to steady

state. Once steady state is reached, a coarse grid correction is made to the next finer
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grid, and a small number of iterations are performed to remove errors introduced by

prolongation. The process is repeated until the finest grid is reached, completing one

multigrid cycle. This down-and-up pattern is referred to as a “V” cycle (Fig. 2.8).

Other cycles with different restriction/prolongation patterns (e.g., the “W” cycle)

are also sometimes used.

8h

h

2h

4h 4h

h

2h

Restrict

Restrict

Restrict

Converge to Steady State

Coarse Grid Correction

Coarse Grid Correction

n1 iterations

m iterations

n1 iterations

n2 iterations

Coarse Grid Correction

n2 iterations

Figure 2.8 Illustration of a 4-Level Multigrid V Cycle

FAS Multigrid and Split-domain Harmonic Balance. In order to apply FAS

Multigrid to the split-domain harmonic balance equations, they must be put in the

form of Eq. 2.30. Let Lf be defined as the time-integration operator that advances the

solution to the frequency-domain ODE (Eq. 2.23b) by one half time step. Similarly,

let Lt be defined as the time-integration operator that advances the time-domain

PDE by one full time step. The process of integrating the solution vector ξ̂ from

time level n to time level n + 1 with the split-domain scheme can then be written as

ξ̂n+1 = LfFLtF−1Lf ξ̂
n. (2.37)

Subtracting ξ̂n from both sides and dividing by the integration time step, ∆τ , gives

ξ̂n+1 − ξ̂n

∆τ
=

1

∆τ
[LfFLtF−1Lf − I]ξ̂n, (2.38)
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where I is the identity operator. The left-hand side of Eq. 2.38 is a first-order

forward-difference approximation of the pseudo-time derivative ∂ξ̂
∂τ

added to the

steady-state harmonic balance equation to allow the use of a time-marching solution

method. Removing the derivative results in an operator-notation expression for the

steady-state split-domain harmonic balance equations that is in the desired form,

i.e. Lξ̂ = f̂ , where f̂ = 0, and

L =
1

∆τ
[LfFLtF−1Lf − I]. (2.39)

To calculate a coarse grid correction for the split-domain harmonic balance

equations at time level n, the updated solution at time level n + 1, ξ̂n+1, must first

be calculated. The change in the solution vector, ξ̂n+1− ξ̂n, is computed and divided

by the pseudo-time step, ∆τ . The result, along with the solution at time level n, is

restricted to the next coarsest grid and the coarse grid correction is calculated. The

correction is added to ξ̂n. The previously calculated ξ̂n+1 is discarded.

FAS Multigrid and Frequency Augmentation. To implement adaptive frequency

augmentation and FAS multigrid together, no major changes are required in either

method. A strategy is required to govern what grid levels augmentation will occur

on, and how frequency maps will be transfered from one grid level to another. The

only additional requirement is that frequency transitions must be properly handled

during restriction and prolongation.

In the current research, frequency augmentation was applied only on the finest

grid. Frequency map consistency from the finest grid to the coarsest grid was main-

tained by setting the frequency map pixelation width to 2k−1, where k is the depth of

the multigrid cycle. This width guarantees that the two fine grid cells contributing

to a coarse grid cell both have the same sample rate for all grid levels (Fig. 2.9).

Thus every region of the grid is represented by the same frequency content on all

grid levels. This approach eliminates frequency transitions during restriction, be-
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Figure 2.9 Illustration of How a Pixelation Width of 2N−1 Preserves Spatial Fre-
quency Content and Eliminates Frequency Transitions During Restric-
tion

cause all frequency transitions occur between cells that contribute to different coarse

grid cells. Frequency transitions are still encountered during prolongation, however.

These transitions are handled by zero-padding the high-frequency Fourier coefficients

of the cell with the smaller sample rate.
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III. Application of Split-Domain Harmonic Balance to Burgers’

Equation

3.1 Introduction

The purpose of the research documented in this chapter was to examine the

behavior of the split-domain harmonic balance method when applied to problems

with strong discontinuities moving over large regions of the grid. A useful model

for this research was the 1-D inviscid Burgers’ equation, a simplified form of Euler’s

equation that yields traveling discontinuities in the flow field for large amplitude

periodic disturbance boundary conditions. The study included the application of

the harmonic balance method to two families of unsteady boundary conditions – one

based on a single-frequency sine wave and the second based on a simulated wake

function. The amplitude and frequency of the boundary conditions were varied to

generate test cases with a wide range of flow properties, from smooth and continuous

to strongly discontinuous. The effect of number of Fourier frequencies included in

the harmonic balance calculation of the solution to these different test cases was

of particular interest. To provide a basis for comparison of accuracy, stability, and

performance, harmonic balance solvers based on prior harmonic balance approaches

were also implemented and tested.

3.2 Solver Implementation

Four harmonic balance CFD solvers were written to solve the one-dimensional

inviscid Burgers equation, given by

∂u

∂t
+

1

2

∂u2

∂x
= 0, (3.1)

where u(x, t) is the dependent variable, t is the temporal variable, and x is the spa-

tial variable. The four solvers included a direct harmonic balance implementation
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(Eq. 2.15), a time-domain implementation (Eq. 2.18), a frequency-domain imple-

mentation (Eq. 2.21), and a split-domain implementation (Eq. 2.23).

The direct, time-domain, and frequency-domain solvers were implemented with

an explicit MacCormack discretization scheme, modified to incorporate source terms

(24). MacCormack’s scheme is a two-step solution scheme that is second order in

both time and space. For a scalar conservation equation with source term, the

modified MacCormack scheme is given by

ξ∗i = ξn
i − ∆t

([
Φ̂(ξn

i+1) − Φ̂(ξn
i )

2∆x

]
+ S(ξn

i )

)
(3.2a)

ξn+1
i =

1

2

(
ξn
i + ξ∗i − ∆t

([
Φ̂(ξ∗i ) − Φ̂(ξ∗i−1)

2∆x

]
+ S(ξ∗i )

))
. (3.2b)

Discretizations of the direct, time-domain, and frequency-domain harmonic balance

equations were obtained by substitution of the appropriate solution vectors, flux

functions, and source terms into Eqs. 3.2a and 3.2b. (See Appendix A for a derivation

of the harmonic balance Burgers’ flux function and source term required for the direct

solver.) For the frequency-domain formulation, substitution resulted in Eqs. 3.3a and

3.3b, and for the time-domain formulation, Eqs. 3.4a and 3.4b.

ξ̂∗i = ξ̂n
i − ∆τ

(
F
[

(ξ
n

i+1)
2 − (ξ

n

i )2

4∆x

]
+ Ŝ(ξ̂n

i )

)
(3.3a)

ξ̂n+1
i =

1

2

(
ξ̂n
i + ξ̂∗i − ∆τ

(
F
[

(ξ
∗

i )
2 − (ξ

∗

i−1)
2

4∆x

]
+ Ŝ(ξ̂∗i )

))
(3.3b)

ξ
∗

i = ξ
n

i − ∆τ

(
(ξ

n

i+1)
2 − (ξ

n

i )2

4∆x
+ F−1Ŝ(ξ̂n

i )

)
(3.4a)

ξ
n+1

i =
1

2

(
ξ

n

i + ξ
∗

i − ∆τ

(
(ξ

∗

i )
2 − (ξ

∗

i−1)
2

4∆x
+ F−1Ŝ(ξ̂∗i )

))
(3.4b)
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In these expressions, the squaring of a vector quantity denotes element-wise squaring.

The quantities ξ̂, ξ, and Ŝ are as defined in Section 2.2. The residual function in the

time-domain harmonic balance equation (Eq. 2.21) has a different definition for each

of the solution stages, and is defined as the expressions in square brackets in Eqs. 3.4a

and 3.4b. Note that because these expressions contain only linear operations (vector

subtraction and scalar division), the frequency domain solver and time-domain solver

should be equivalent.

The split-domain solver was implemented with different discretization schemes

for the time-domain PDE, Eq. 2.23a, and the frequency-domain ODE, Eq. 2.23b.

The time-domain PDE was solved with an unmodified MacCormack discretization,

given by

ξ
∗

i = ξ
n

i − ∆τ

4∆x
((ξ

n

i+1)
2 − (ξ

n

i )2) (3.5a)

ξ
n+1

i =
1

2

(
ξ

n

i + ξ
∗

i −
∆τ

4∆x

(
(ξ

∗

i )
2 − (ξ

∗

i−1)
2
))

. (3.5b)

The frequency-domain ODE was solved with a three-stage Runge-Kutta numerical

integrator

ξ̂∗ = ξ̂n + 0.35
∆τ

2
Ŝ(ξ̂n)

ξ̂∗∗ = ξ̂n + 0.6
∆τ

2
Ŝ(ξ̂∗) (3.6)

ξ̂n+1/2 = ξ̂n +
∆τ

2
Ŝ(ξ̂∗∗).

Note that Eq. 3.6 advances the ODE by one-half pseudo-time step, as required by

the symmetric Strang splitting approach (see Section 2.4).

All solvers required artificial dissipation to prevent oscillations near discontinu-

ities in the solution. Dissipation was incorporated in the direct, frequency-domain,

and split-domain formulations by adding second derivative smoothing (Eq. 3.7) of
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the Fourier coefficients at the end of each iteration, according to

ξ̂i,new = ξ̂i + α
ξ̂i−1 − 2ξ̂i + ξ̂i+1

∆x2
. (3.7)

Dissipation was added to the time-domain solver by applying the same smoothing

operator to the time-domain solution vector, ξ. Due to the linearity of the Fourier

transform and artificial dissipation operators, this added dissipation was mathemat-

ically equivalent to that of the other solvers. The dissipation parameter α was a

small constant, of order 1.0e-6, that controlled the amount of applied damping.

Burgers’ equation is hyperbolic in time. For positive values of the dependent

variable, u, all flow information travels in the direction of increasing spatial coordi-

nate. Boundary conditions are therefore implemented by fixing the inflow boundary

values, and extrapolating the outflow boundary values from upstream. A 0th order

extrapolation was implemented. For the direct, frequency-domain, and split-domain

solvers, boundary conditions were applied in the frequency domain. Boundary con-

ditions were applied in the time domain for the time-domain solver.

To accelerate convergence to steady state, local time stepping was employed.

Using the definition of the Courant-Friedricks-Lewy (CFL) stability limit for the

MacCormack discretization (29), the maximum time step at each point was deter-

mined according to

∆τi = CFL
∆x

max(ξi)
(3.8)

where CFL was a user-specified value less than or equal to 1.0, and max(ξ i) was the

maximum element in the vector of time-sampled dependent variables at the ith grid

point.

3.3 Test Configuration

Solutions were obtained for two families of periodic inflow boundary condi-

tions. The first family was constructed by varying the amplitude and frequency of a
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sinusoidal oscillation about a mean value of 1.0, i.e.,

u(0, t) = 1.0 + a sin(ωt) (3.9)

where a is the amplitude of the oscillation, and ω is the frequency of the oscillation

in radians per second. The second family consisted of amplitude and frequency

variations of a simulated wake function, defined by

u(0, t) =





1.0 0 ≤ t < 3π
2ω

1.0 + a sin2(2ωt) 3π
2ω

≤ t ≤ 2π
ω

(3.10)

The basic forms of the input families are shown in Fig. 3.1.

u
(0

,t
)

1

Amplitude

2π/ω

Time

u
(0

,t
)

Amplitude

2π/ω

Time

1.0

Figure 3.1 Sinusoidal (left) and Wake Function (right) Boundary Condition Wave-
forms

For each of these families, combinations of three amplitudes and three frequen-

cies were applied, for a total of nine inflow conditions. The three amplitudes were

a = 0.1, 0.3, and 0.5, while the frequencies, defined in terms of f = ω/2π, were

f = 0.75, 1.5, and 3.0. Over a 2-unit grid, these amplitudes produce a wide range

of flow behavior, from smooth and continuous to strongly shocked. The frequencies

chosen are typical of the reduced frequencies found in axial compressor simulations

(5, 6, 9).
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Inflow boundary conditions for the time-domain solver were obtained by eval-

uating Eqs. 3.9 and 3.10 at 2N + 1 points in time, given by

t =
2πn

ω(2N + 1)
0 ≤ n ≤ 2N. (3.11)

Inflow boundary conditions for the direct, frequency-domain, and split-domain solvers

were obtained by computing Fourier series coefficients for N frequencies. For Eq. 3.9,

the real Fourier series coefficients are given by

a0 = 1.0 (3.12a)

an = 0.0 1 ≤ n ≤ N (3.12b)

bn =





a n = 1

0.0 1 < n ≤ N.

(3.12c)

The real Fourier series coefficients for Eq. 3.10 are given by

a0 = 1 + .125 a (3.13a)

an =





8a
n(n2

−16)π
sin(nπ

2
)) 1 ≤ n ≤ N, n 6= 4

−0.125 a n = 4

(3.13b)

bn =





8a
n(n2

−16)π
(cos(nπ) − cos(nπ

2
)) 1 ≤ n ≤ N, n 6= 4

0.0 n = 4.

(3.13c)

Complex Fourier series coefficients for the positive frequencies were obtained

from the real Fourier series coefficient by means of the following relations

c0 =
1

2
a0 (3.14a)

cn =
1

2
(an − ibn). (3.14b)
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3.4 Results

3.4.1 Accuracy. From the standpoint of accuracy, the four harmonic bal-

ance implementations were equivalent, producing solutions that were effectively iden-

tical. Representative solutions are shown for each input variation in Figs. 3.2 and

3.3. These figures compare the solution at t = 0 relative to the input period with an

equivalent fully developed time-accurate calculation. The harmonic balance solutions

were generated with 48 Fourier frequencies on a 501 point grid. The time-accurate

solutions were obtained on the same grid using a validated MacCormack scheme with

the same artificial dissipation used for the harmonic balance equation, Eq. 3.7.

As can be seen in Figs. 3.2 and 3.3, the input boundary conditions resulted

in solutions ranging from smooth traveling waves to strong moving discontinuities.

In all but two cases, the 48 frequency harmonic balance solutions were comparable

to the time-accurate solutions. The two exceptions were the sine input cases with

amplitudes a = 0.5 and 0.3 at the lowest disturbance frequency. These cases contain

significant high-frequency oscillations in their solutions. It will be shown that these

cases require additional terms in the approximating series.

Effect of Series Length. To determine the effect of series length on the accuracy

of the harmonic balance method, solutions were generated for each input condition

with series lengths ranging from 2 to 48 frequencies. A quantitative measure of the

difference between each of these solutions and an equivalent time-accurate solution

was obtained by calculating the difference root mean square (RMS) for 10 equally

spaced temporal samples spanning one period of the disturbance. These 10 RMS

differences were averaged to obtain a solution difference. The results are plotted in

Figs. 3.4 and 3.5.

The results show that the differences between the harmonic balance and time-

accurate solutions did not go to zero, but were asymptotic with respect to approx-

imating series length. In each case where a good solution was obtained, there was
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Figure 3.2 Comparison of Time-accurate (Solid Line) and 48-Frequency Harmonic
Balance (Symbols) Solutions for the Sine Input for t = 0. Inset plots
Show Dependent Variable Magnitude vs. Nondimensional Distance
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Figure 3.6 Comparison of 48-Frequency and 97-Frequency Solutions for a = 0.5,
f = 0.75, on a 501 Point Grid

a series length corresponding to some Fourier frequency beyond which no improve-

ment occurred. This frequency is hereafter referred to as the asymptotic frequency,

and the associated solution is called the asymptotic solution. Solutions based on

fewer frequencies are called sub-asymptotic, while those with more frequencies are

called super-asymptotic. It is clear from Fig. 3.4 that the two cases with oscillatory

solutions are sub-asymptotic, and thus required additional frequencies to minimize

error. This was confirmed by generating a 97 frequency solution to the a = 0.5,

f = 0.75 case, which is compared with the 48 frequency solution in Fig. 3.6. In the

higher-frequency solution, most of the high frequency oscillations have been removed.

The fact that the differences between the harmonic balance and time-accurate

solutions were asymptotic with respect to series length does not mean that the

harmonic balance solutions did not continue to converge. The truncation error in

the harmonic balance solution simply became insignificant compared to differences

caused by other factors such as a slight difference in shock location.
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Both disturbance amplitude and disturbance frequency influenced the asymp-

totic frequency. As amplitude increased, the asymptotic frequency also increased.

This was attributed to the presence of stronger discontinuities in the larger ampli-

tude solutions. In contrast, as the disturbance frequency increased, the asymptotic

frequency usually decreased. This behavior is explained qualitatively.

If the shape and period of the time response of Burgers’ equation at every

point in the grid is fixed, the response then has a fixed frequency content with

significant energy up to some frequency ωmax . In the harmonic balance solution,

ωmax is expressed as some multiple of the fundamental frequency, say nmaxω. Then

nmax = ωmax/ω is inversely proportional to ω, increasing as ω decreases.

True inverse proportionality was observed in some test cases (e.g., the sine

input with frequency change from f = 1.5 to f = 3.0, all amplitudes), but for

the majority of the cases the asymptotic frequency was less than that predicted by

the simple model. This is consistent with the fact that a discontinuity in the time

response is generally sharper for higher disturbance frequencies, and thus ωmax is not

constant.

Effect of Grid Density. All of the harmonic balance solutions became

dissipative to some degree as the computational grid was coarsened. The impact on

solution quality depended on the nature of the flow field. For solutions with strong

discontinuities the effect was relatively minor, and sometimes beneficial, while for

smooth, small-amplitude solutions the effect introduced severe damping.

One example of a beneficial dissipative effect is shown in Fig. 3.7. This figure

shows that while the coarse grid solution experiences some smearing of the shock,

there is almost complete elimination of the non-physical oscillations present in the

49-frequency fine grid solution. Eliminating these oscillations on a fine grid would

require the use of a much longer approximating Fourier series.
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Figure 3.7 Smoothing Effect of Coarse Grid on Harmonic Balance Solution

An example of unfavorable effect of a coarse grid is illustrated in Fig. 3.8. This

figure compares the 501-point time-accurate solution, the 101-point time-accurate so-

lution, and the 101 point harmonic balance solution. The coarse-grid, time-accurate

solution shows some degradation, primarily in the form of a phase-lag in the peaks of

the solution. In contrast, the coarse grid damping effect caused considerable degra-

dation in the harmonic balance solution. The harmonic balance method was more

sensitive to grid density than the time-accurate method.

The effect of grid density in both cases was traced to the Fourier coefficients

corresponding to the higher computed frequencies. Figure 3.9(a) shows the variation

in magnitude of one high frequency (n = 47) coefficient for the a = 0.5, f = 0.75 sine

input on the 501 point grid. The computed coefficient shows rapid oscillation in the

spatial dimension. Figure 3.9(b) shows the same coefficient calculated on the 101

point grid. In this case, the coarse grid did not contain sufficient spatial resolution

to capture the oscillations in magnitude, and the magnitude of the coefficient was

under-predicted. The impact of poorly resolved high-frequency coefficients depended

on the relative importance of those frequencies in the harmonic balance solution.
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Figure 3.8 Severe Damping Effect of Coarse Grid on Harmonic Balance Solution

In the case shown in Fig. 3.7, most of the energy in the solution was contained

in relatively low frequencies, and coarse-grid damping of the highest frequencies

resulted in beneficial smoothing. For the case shown in Fig. 3.8, however, the damped

frequencies comprised a significant part of the solution, and the overall accuracy was

degraded. The generalized loss of higher-frequency information caused the harmonic

balance method to be more sensitive to grid density than the time-accurate method.

The results suggest that while grid density is important for harmonic balance

solutions, grid density is even more important for smooth solutions that require fewer

terms in the approximating series. Problems that require many terms may require

less grid resolution, partially offsetting the cost of the additional terms.

3.4.2 Stability. One of the primary motivations for the split-domain ap-

proach was improved high-frequency stability. The superiority of the split-domain

approach was clearly evident in the test results. For low-frequency (N < 10) so-

lutions, all of the harmonic balance solvers exhibited good stability, successfully

computing solutions with CFL > 0.95. As the number of frequencies increased, the
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Figure 3.9 Comparison of Spatial Variation of High-frequency Coefficient on (a)
501 Point Grid and (b) 101 Point Grid

maximum stable CFL of the direct, time-domain, and frequency-domain solvers was

significantly reduced, while the maximum stable CFL of the split-domain solver re-

mained unchanged. For example, for the a = 0.3, f = 1.5 test case on a 501 point

grid, the split-domain solver was able to compute a 48-frequency solution with a

CFL of 1.0, the maximum CFL for the MacCormack discretization scheme. For the

same configuration, the direct, time-domain, and frequency-domain solvers became

unstable when the CFL exceeded 0.42.

For super-asymptotic solutions, increased series length sometimes had a detri-

mental effect on numerical stability, even for the split-domain solver. All sub-

asymptotic and asymptotic solutions, however, were successfully converged to a

residual (L2 norm) of 5.0E-8 with a CFL of 0.95, independent of the number of

frequencies used.

The need for a reduced CFL was not consistently related to the number of

super-asymptotic frequencies included in the solution. Only test cases with a dis-

turbance frequency of 3.0 required a reduced CFL to obtain 48-frequency solutions.

In these cases, reductions of 40% to 60% in CFL were required. All other test cases

converged with an un-reduced CFL, despite the fact that some of those cases had

smaller asymptotic frequencies than some of the f = 3.0 cases.
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3.4.3 Performance. The best overall run-time performance was obtained

from the split-domain solver, especially for large N solutions. For a typical 49-

frequency solution, the split-domain solver ran approximately 3 times faster (based

on CPU time) than the frequency-domain and time-domain solvers, and 7 times

faster than the direct solver. Factors contributing to the faster run time were the

larger time step allowed by the higher CFL, and the fact that the split-domain scheme

calculates fluxes in the time domain with only a single Fourier transform pair.

A third factor that heavily influenced the performance of all the multi-domain

solvers, including the split-domain solver, was the choice of N = 49. As discussed

in Section 2.2, the computational cost of an FFT, and thus of a multi-domain flux

calculation, is highly dependent on the number of terms being transformed. This is

dramatically illustrated by examining run times for a typical 48-frequency solution.

At 48 frequencies, the split-domain solver is only about 1.8 times faster than

the direct solver, while the time-domain and frequency domain solvers are about 2.4

times slower than the direct solver. The drop in performance is explained by looking

at the number of terms being transformed by the FFT for each N . For N = 49, the

number of terms transformed is 2N + 1 = 99, which is easily factored into 32 111,

and thus the proportional cost of the FFT is close to the best-case N log2 N . But

when N = 48, the number of terms transformed is 97, which is prime and cannot

be factored into products of small primes. In this case, the cost of the FFT is

proportional to the worst-case N 2. As a result, all of the multi-domain solvers take

appreciably longer to run when N is reduced from 49 to 48. The split-domain solver

manages to outperform the direct solver, but only because it is running at a higher

CFL and computes a single transform pair per point per iteration.

3.5 Summary

Large amplitude, time-periodic solutions to Burgers’ equation were computed

with a split-domain harmonic balance solver, and compared to solutions computed
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using prior harmonic balance approaches. The split-domain method produced so-

lutions comparable to those of the prior methods, while successfully eliminating a

stability restriction experienced by those methods when a large number of Fourier

frequencies are included in the solution. This, combined with a reduction in the num-

ber of FFTs required to implement the split-domain method, resulted in significantly

reduced run times.

Solutions for boundary conditions containing moving waves ranging from smooth

disturbances to strong discontinuities were successfully computed. Comparison with

conventional time-accurate calculations showed that the error in the harmonic bal-

ance solutions was asymptotic with respect to the number of frequencies included in

the approximating solution. When the number of frequencies was equal to or greater

than the asymptotic frequency, the harmonic balance solutions were comparable to

the time-accurate solutions. Several factors were found to influence the asymptotic

frequency, including disturbance frequency, the strength of the moving wave, and

the computational grid density.
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IV. Application of Adaptive Split-Domain Harmonic Balance to

Euler’s Equation

4.1 Introduction

This chapter documents an investigation of the adaptive harmonic balance

method for CFD. The primary goal of the investigation was to establish that the

energy-based frequency augmentation approach described in Section 2.5 reliably and

effectively matches harmonic balance frequency content to local flow conditions,

producing accurate solutions in less time than a non-adapted harmonic balance ap-

proach. The effects of grid density, augmentation threshold, pixelation width, and

adaptation scheduling on the quality of adapted solutions and performance of the

adaptation algorithm were examined. Finally, the compatibility of the adaptive split-

domain harmonic balance approach with FAS multigrid convergence acceleration was

confirmed.

To accomplish these objectives, adapted harmonic balance solutions were com-

puted for a variety of supersonic and subsonic inviscid 1-D periodic flows governed by

the 1-D Euler’s equation. Results were compared with non-adapted harmonic bal-

ance solutions, and with solutions obtained using conventional time-accurate CFD

techniques.

4.2 Solver Implementation

The one-dimensional Euler equations in strong conservation form are given by

∂Q

∂t
+

∂F

∂x
= 0 (4.1)
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where

Q =




ρ

ρu

Et


 , F =




ρu

ρu2 + p

(Et + p)u


 (4.2)

and ρ, u, and p are the density, velocity, and pressure, respectively. Total energy, Et,

is defined as ρ(e + 1
2
u2), where e is specific internal energy. All quantities are nondi-

mensional. Together with the perfect gas relation and an assumption of a constant

ratio of specific heats, γ = 1.4, Eq. 4.1 represents a closed system of equations.

Equation 4.1 provides the form of the time-domain PDE in a split-domain har-

monic balance implementation of the 1-D Euler equation. In the harmonic balance

implementation, the dependent vector Q is replaced by a new vector Q̂ which is

composed of the 2N + 1 instances of the vector Q sampled at times t = (0, ∆t,

2∆t, · · · , 2N∆t), with ∆t = 2π
ω(2N+1)

, the period of oscillation divided by the number

of samples, 2N + 1. However, because the equations corresponding to each sample

are independent of the other samples, they can be treated independently. For this

reason, the following discussion is based on a single sample.

A cell-centered finite-volume solver (30) was written to solve the time-domain

PDE. The finite-volume solver is based on a discretization of the integral form of

Eq. 4.1
∂

∂τ

∫

V

Q dV +

∫

S

F · n̂ dS = 0. (4.3)

In Eq. 4.3, dV is a differential volume element, n̂ is a unit vector normal to the control

volume surface, and dS is a differential surface element. Integration is performed

over the interior (first term) and surface (second term) of the control volume. The

physical time variable t has been replaced by a pseudo-time variable τ . If the control

volume is taken to be a single grid cell, then for a one-dimensional computational
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grid, Eq. 4.3 reduces to

V
∂Qi

∂τ
+ Fr

i − Fl
i = 0 (4.4)

for each cell. The one-dimensional cell volume, V , is just the cell size ∆x, and Qi

is the average, or cell center, value of the conserved variables inside the cell. The

fluxes at the left and right faces, Fl and Fr, are constructed by averaging the fluxes

evaluated at the cell centers on either side of the face. For a grid with uniform cell

size, this scheme is second-order accurate in space and is equivalent to a second-order

central difference scheme.

To avoid oscillations at discontinuities, second and fourth order modified Jameson-

Schmidt-Turkel (JST) artificial dissipation (30, 31) was implemented. JST artificial

dissipation adds an additional term, D, of the form

D = (D2 − D4)Q (4.5)

to the left hand side of Eq. 4.4. D2 and D4 are second and fourth order difference

operators defined as

D2 Qi ≡ ∇(λi+1/2 ε
(2)
i+1/2)∆Qi (4.6)

D4 Qi ≡ (∇∆)(λi ε
(4)
i ∇∆)Qi (4.7)

where

ε
(2)
i+1/2 = K(2) max(νi, νi+1) (4.8)

ε
(4)
i = max(0, K(2) − K(4)νi) (4.9)

νi =

∣∣∣∣
pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

∣∣∣∣ . (4.10)

In the above equations, ∆ and ∇ are first-order forward and backward differ-

ence operators, λi = |ui|+ai is the maximum eigenvalue of the flux Jacobian matrix
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∂Fi

∂Qi

, λi+1/2 = 1/2(λi +λi+1), and ai is the local speed of sound. The parameters K (2)

and K(4) control the amount of dissipation applied, and are set by the user at run

time. For the test problems described below, typical values of K (2) ranged from 0.4

to 0.55, while values of K(4) ranged from 0.004 to 0.04.

Experience with the code showed that solution quality and convergence prop-

erties were sometimes improved by including additional second order dissipation.

The additional dissipation was included by means of a modified D2 operator, given

by

D2 Qi ≡ ∇(K(2g) + λi+1/2 ε
(2)
i+1/2)∆Qi. (4.11)

The new parameter K(2g) controls the amount of additional second order dissipa-

tion. For positive K(2g), second order dissipation in the form of second difference

smoothing is applied throughout the grid. If K (2g) is zero, the original modified JST

dissipation is recovered. Typical values of K (2g) used in this study ranged from 0.0

for supersonic flows to 0.001 for subsonic flows.

Including the artificial dissipation term and replacing the cell volume with the

cell size, ∆x, the semi-discretized one-dimensional finite-volume Euler’s equation

becomes
∂Qi

∂τ
= − 1

∆x
(Fr

i − Fl
i + Di). (4.12)

A three-stage Runge-Kutta (RK) scheme (Eq. 4.13) with good high-frequency smooth-

ing properties and minimal storage requirements (32) was used to advance the solu-

tion in pseudo-time.

Q∗ = Qn + 0.35 ∆τ R(Qn)

Q∗∗ = Qn + 0.6 ∆τ R(Q∗) (4.13)

Qn+1 = Qn + ∆τ R(Q∗∗)
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In Eq. 4.13, R(Q) is the right hand side of Eq. 4.12 evaluated at the indicated time

levels. Artificial dissipation terms were evaluated once during the first RK stage,

and frozen for the remaining stages.

Implementation of the split-domain harmonic balance approach also required

the solution of the frequency-domain ODE, Eq. 2.23b. Two solution approaches were

tested—an exact integration approach, given by Eq. 2.25, and a numerical approach

based on the Runge-Kutta integration scheme applied to the time-domain PDE. It

was found that the exact approach provided no significant improvement in solution

quality or stability compared to numerical integration, and sometimes slowed or

stalled convergence to steady state. For this reason, the numerical approach was

employed for the results documented below.

Boundary conditions were enforced by setting a single ghost cell outside the

boundaries of the computational domain (see Appendix D). Because only one ghost

cell was maintained, the fourth-order dissipation term, D4 Q, was set to zero in

the cells adjacent to the boundaries. All boundary conditions were calculated and

applied in the time-domain.

Local time stepping was employed to accelerate convergence to steady state.

The maximum stable time step allowed in the ith cell was determined as follows:

∆τmax = CFL min
samples

(
∆xi

λi

)
. (4.14)

Local time steps were calculated every iteration in conjunction with the artificial

dissipation term, and used immediately. This meant that the time step used for

the first frequency-domain ODE integration (step one of the split-domain iteration,

Section 2.4) was different from that used for steps three and five, the time-domain and

second frequency-domain integration. This did not affect the steady-state solution,

however, because the change in time step from one iteration to another became

negligible as the solution approached steady state.
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The maximum stable CFL for the solver was 1.7. In a number of test cases with

large sample rates, a reduced CFL was required. A simple variable CFL function

was implemented that linearly varied the CFL from a user-specified maximum at the

lowest sample rate to a user-specified minimum at the highest sample rate. During

the early stages of the solution when sample rates were low, a large CFL was applied.

As the solution progressed and frequencies were added to the solution, the CFL was

reduced to maintain a stability solution. The linear scaling approach provided a

conservative but robust scaling of CFL with sample rate.

In addition to local time stepping, full approximation storage (FAS) multigrid

convergence acceleration (28, 33) was implemented as described in Section 2.6. Two

different restriction operators were used to transfer the fine-grid solution to the

next coarsest grid (33). Split-domain residuals (Eq. 2.39) were transfered using a

conservative transfer operator defined by

Ik
k+1Rk+1 =

1

Vk

∑
(Vk+1Rk+1), (4.15)

where the subscripts k and k + 1 identify coarse and fine grid values respectively,

and V is cell volume. Summation occurs over the two fine grid cells making up each

coarse grid cell. A volume-weighted transfer operator, defined by

Ik
k+1Q̂k+1 =

∑
(Vk+1Q̂k+1)∑

(Vk+1)
(4.16)

was used to transfer the solution values themselves. Immediately after restriction,

initial local time steps for the coarse grid were calculated according to Eq. 4.14.

Once a coarse grid correction was computed, it was transfered to the next finest grid

using linear interpolation as shown in Fig. 4.1.
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Figure 4.1 Linear Interpolation from Coarse Grid to Fine Grid

4.3 Test Configurations

Adaptive frequency augmentation was applied to several one-dimensional test

cases. The first set of cases consisted of a family of flow fields with sinusoidally

varying supersonic inflow. For these cases, the inflow Mach number was varied

according to

M = 2.0 + a sin(ωt) (4.17)

while maintaining a constant nondimensional density and static pressure of 1.0 and

0.17857, respectively. The disturbance frequency, ω was chosen so that approxi-

mately two complete disturbance cycles would occur each flow-through period on a

unit grid. The magnitude of the sinusoidal disturbance was varied to achieve different

flow characteristics.

Pressure distributions at several snapshots in time for a flow field with a = 0.25

are shown in Fig. 4.2. These solutions were obtained from a fully-developed time-

accurate Roe solver calculation. Because the supersonic flow was hyperbolic in time

with all flow information traveling in the downstream direction, the fully-developed

solution was achieved very quickly. The snapshots plotted in Fig. 4.2 were take after

5 1/2 flow-through periods.
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Figure 4.2 Static Pressure for Supersonic Test Configuration SS3, M = 2.0±0.25,
Generated with Time-accurate Roe Solver on 1000 Cell Grid
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Figure 4.3 Flow Interactions for Simulated Oscillating Piston in an Open Tube

The last test case consisted of a purely subsonic flow field loosely approximating

the flow in an open tube with an oscillating piston at one end. The piston action

was simulated by imposing a sinusoidal velocity u(t) = a sin(ωt) at a fixed boundary

while maintaining a zero pressure gradient and constant total enthalpy. The open end

of the tube was modeled with a characteristic-variable far-field boundary condition

(34). Details of the boundary condition implementation are given in Appendix D.

While these boundary conditions do not exactly model a physical system, they

do result in a complex, periodic, subsonic flow field containing alternating right-

running shock and expansion waves interacting with reflections from the open end

of the tube (Fig. 4.3). Initial flow conditions of u = 0, ρ = 1, and p = 0.7142857

were assumed. By varying the length of the tube and the magnitude and frequency

of the imposed sinusoidal piston velocity, the flow field was tuned so that a sta-

tionary periodic flow field with moderately strong features was produced. Tuning

was accomplished by computing a large number of piston cycles with a validated

time-accurate CFD solver, starting from a zero-velocity initial solution. The time

history of the mass in the tube was used to determine when a stationary solution was

achieved. The chosen configuration achieved fully developed flow in approximately

150 piston cycles, as shown in Fig. 4.4.

Figure 4.5 contains pressure plots for the fully developed subsonic test flow

field at several points in time, computed during the 199th piston cycle of the time-

accurate calculation.
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Figure 4.4 Time-accurate Development of the Stationary Flow Field for the
Piston-In-Tube Configuration

All harmonic balance solutions for both the supersonic and subsonic test cases

were converged to an overall residual (Eq. 2.29), of 1.0e-9, or approximately 6.5 or-

ders of magnitude. For comparison purposes, time-accurate solutions such as those

discussed above were also computed. A summary of case names and defining param-

eters of all the test cases is contained in Table 4.1.

Table 4.1 Summary of Test Configuration Parameters

Config Unsteady Amp ω Grid Length

SS1 0.05 4π 2.0
SS2 0.1 4π 1.0
SS3 0.25 4π 1.0
SS4 0.5 4π 1.0
SU1 0.1π 5π 2.0
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4.4 Tuning the Adaptive Solver

The following paragraphs discuss several user-definable parameters that con-

trol frequency augmentation and their impact on solution accuracy and solver per-

formance. For a detailed discussion of the adaptive algorithm and these parameters,

see Section 2.5.

4.4.1 Selection of Augmentation Threshold. The key parameter of the

adaptive harmonic balance method is the augmentation threshold, Ethresh . This

threshold value indirectly controls the sample rate distribution, and thus the run

time of a calculation and the accuracy of the resulting solution.

To study the impact of Ethresh on frequency content, accuracy, and run time,

solutions were generated for both supersonic and subsonic configurations with thresh-

olds ranging from 5.0e-4 to 1.0e-10. Examples of the frequency content and solution

quality resulting from different augmentation thresholds are shown in Figs. 4.6–4.9.

These figures show frequency and pressure distributions for configurations SS3 and

SU1, respectively, for Ethresh = 1.0e-4, 1.0e-7, and 1.0e-10. The pressure distributions

were reconstructed from the computed Fourier coefficients at time t = 0 relative to

the disturbance period. It is important to note that the reconstruction could just as

easily have been generated for any time with equal fidelity.

Figure 4.6 shows adapted frequency distributions for configuration SS3. From

this plot, one can determine the number of Fourier frequencies included at each cell in

the computational grid for each of the three augmentation thresholds. As seen in the

figure, there was a significant increase and refinement of the frequency distribution

with the change from 1.0e-4 to 1.0e-7. The increased frequency content was accompa-

nied by a significant improvement in solution quality as shown in Fig. 4.7. However,

further decreasing the threshold to 1.0e-10 resulted in no perceptible change to the

reconstructed pressures, despite another large increase in frequency content.
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The adapted frequency content of the subsonic case also increased significantly

with each decrease in Ethresh (Fig. 4.8). Unlike the supersonic case, however, the

subsonic pressure distributions for thresholds of 1.0e-4 and 1.0e-7 are nearly identical

(Fig. 4.9). The increased frequency content resulting from the decrease in threshold

did not improve the solution. A further threshold decrease to 1.0e-10 resulted in

a reduction in solution quality, as high-frequency oscillations appeared upstream of

the strongest shocks.

The results for both the subsonic and supersonic cases are consistent with the

Burgers’ equation results presented in Section 3.4. There it was found that including

more frequencies in the harmonic balance solution did not always improve the so-

lution; there was an asymptotic frequency beyond which no improvement occurred.

The same should be true for augmentation threshold, since it indirectly controls

frequency content. For the current test configurations, solution quality did not im-

prove as Ethresh was decreased below 5.0e-8 (supersonic) and 1.0e-4 (subsonic). In

Section 3.4.2, it was also found that in some cases, a reduced CFL was required to

obtain a stable solution incorporating frequencies above the asymptotic frequency.

This was the case for the subsonic configuration with thresholds below 1.0e-6 (Ta-

ble 4.2). Evidence suggests that the low CFL required to obtain a solution with

Ethresh = 1.0e-10 contributed to the appearance of high-frequency oscillations in the

subsonic solution (see Appendix B).

Table 4.2 Maximum Fourier Frequency and Stable CFL for Configuration SU1,
500 Cells, for Decreases in Augmentation Threshold

Threshold Max N Max CFL

1.0e-6 40 1.7
1.0e-7 45 1.5
1.0e-8 58 1.1
1.0e-9 67a 1.0
1.0e-10 82a 0.7

a Maximum allowed for run
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The effect of Ethresh on problem size (given by the average frequency content

of the solution), and run time is shown in Figs. 4.10 and 4.11. Figure 4.10 shows

the average number of Fourier frequencies included in each adapted solution. For

both the supersonic and subsonic configurations, the average frequency content was

inversely proportional to the log10(Ethresh). The size of the supersonic adapted har-

monic balance problem grew approximately 8 times from the largest threshold to the

smallest, while the size of the subsonic problem grew approximately 3.5 times.

The growth in run time with decreasing Ethresh is shown in Fig. 4.11. Run time

for the supersonic case grew at approximately the same rate as the problem size,

increasing 6.7 times from the largest to smallest thresholds. Down to a threshold

of 5e-8, run time for the subsonic case also grew at the same rate as problem size.

For smaller thresholds, however, the subsonic run time grew at approximately twice

the rate of problem size. This was due to the reduced CFL required at these low

thresholds.
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Figure 4.10 Change in Average Frequency Content with Changing Augmentation
Threshold for Configurations SS3 and SU1 on 500 Cell Grid
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Figure 4.11 Change in Relative Compute Time with Changing Augmentation
Threshold for Configurations SS3 and SU1 on 500 Cell Grid

These results suggest that a reasonable lower limit for the augmentation thresh-

old would be 5.0e-8. Adapting to a smaller threshold increased run times, but re-

sulted in no improvement in solution quality. Determining a suitable upper limit for

the augmentation threshold is less clear. Based on these results, a conservative upper

bound for a high-fidelity solution would be on the order of 5.0e-7. A larger thresh-

old may be acceptable for some problems, however, as was seen with configuration

SU1, where a threshold of 1.0e-4 produced comparable results (c.f., Fig. 4.9). It is

likely that a maximum acceptable value will vary widely depending on the flow being

modeled, the grid used, and the desired solution quality. If a lower-fidelity solution

is acceptable (e.g., only the time-average solution is of interest) then a much higher

threshold would suffice.

4.4.2 Fringe Width. None of the test cases required fringe augmentation.

Therefore the fringe augmentation width was set to zero.
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4.4.3 Pixelation Width. Solutions for both subsonic and supersonic test

cases were insensitive to the adaptation pixelation width. Widths as small as 1

(no pixelation) and as large as 25 were applied, with no significant change in the

solution. For the subsonic case, solutions with larger pixelation widths converged

slightly faster than those with smaller widths (4% faster for a width of 25, vice a

width of 1); but for the supersonic case no consistent advantage was observed.

Based on these results, there is no requirement for frequency pixelation. A

slight performance improvement might be realized by including pixelation, but any

advantage will be case dependent. Other factors, such as multigrid implementation,

may increase the importance of pixelation, however (see Section 2.6).

4.4.4 Adaptation Trigger. Solutions were computed for various values of

the primary residual-based adaptation triggers, labeled κ1 (initial) and κ2 (subse-

quent). To ensure that augmentation was based on these triggers, the iteration-based

triggers were disabled.

The adaptation triggers were found to have little impact on the final solution.

They did, however, have a significant impact on run times. The behavior for a given

set of triggers was quite different for supersonic and subsonic solutions. For the

supersonic configurations, tests showed that it was best to adapt after only a small

reduction in residual. The hyperbolic nature of the supersonic flow fields meant that

any disturbance introduced in the flow had to propagate out of the grid before the

solution converged. Thus, there was no advantage in converging a solution prior to

adding new frequencies. The optimum trigger values for the supersonic cases were

found to be κ1 = 0.25 and κ2 = 0. In comparison, a solution with κ1 = 2.0 and

κ2 = 0.1 took 50% longer to compute.

The opposite behavior was observed for the subsonic case. Here, the elliptic

nature of the problem meant that converging the low-frequency solutions before

adapting provided a distinct performance advantage. The best run time for the
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subsonic case were achieved with κ1 = 2.5 and κ2 = 0.1. The longest run time

(approximately 55% longer) was achieved with κ1 = 0.5 and κ2 = 0.1. Attempts to

run with κ1 = 0.25 resulted in unstable solutions.

One subsonic test, conducted with κ1= 2.75, never adapted. The solution

residual at the initial frequency content (N = 3) plateaued after a drop of approxi-

mately 2.55 orders of magnitude, and failed to achieve the specified drop. Had the

iteration-based triggers been enabled, they would have ensured that the solution was

eventually adapted.

4.5 Results

4.5.1 Accuracy. Figures 4.12–4.15 compare results for both adapted and

non-adapted harmonic balance solutions and a conventional time-accurate solution.

Figs. 4.12 and 4.13 contain pressure and coefficient magnitudes for configuration SS4,

while Figs. 4.14 and 4.15 contain similar information for configuration SU1.

The pressure distributions shown for configuration SS4 (Fig. 4.12) are typical

of all the supersonic configurations. The reconstructed pressures for the adapted and

non-adapted solutions are equivalent, and compare favorably with the time-accurate

calculation. Both include slight second order Gibbs effects at the shocks that would

be removed with an increase in artificial dissipation. Examining the magnitudes

of the momentum term Fourier coefficients (Fig. 4.13) confirms that, except for

some small differences in the highest frequencies and near frequency transitions,

the adapted and non-adapted results are essentially identical. This suggests that

the omitted frequencies in the augmented solution have no significant impact on

accuracy.

The reconstructed pressure distributions for the adapted and non-adapted har-

monic balance solutions for configuration SU1 (Figs. 4.14) are comparable. There are

slight differences in the two solutions, however, as can be seen by examining the co-

efficient magnitude contours in Fig. 4.15. Unlike the supersonic case, there are small
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but noticeable differences between the adapted and non-adapted harmonic balance

Fourier coefficients. These differences result from the use of a variable CFL in the

adapted solution. The steady-state solution computed by the split-domain harmonic

balance method has a small dependence on time step size (see Appendix B). Appli-

cation of CFL scaling resulted in larger time steps in some cells, and thus slightly

changed the steady-state solution. The two solutions would be made nearly iden-

tical by freezing the CFL of the adapted solution at the same value used for the

non-adapted solution, but this would increase run time and result in only minute

changes to the reconstructed pressures.

Both adapted and non-adapted harmonic balance solutions for configuration

SU1 show some discrepancies when compared to the time-accurate solution, par-

ticularly in the trough regions. These discrepancies were traced to the boundary

condition at the open (right) end of the grid. A comparison of the computed pres-

sure at that boundary for the harmonic balance and time accurate solutions is shown

in Fig. 4.16. The pressure recovery immediately following the period of negative ve-

locity (inflow) is much sharper for the time-accurate solution than for the harmonic

balance solution. The steady-state solutions calculated for time samples in the re-

covery region have a shock wave located at the exit boundary (Fig. 4.17). The far

field boundary condition applied at that boundary was not designed for such an

extreme gradient; the pressures at the boundary were over-predicted. The same

boundary condition was used in the time-accurate code, but in that case, the shock

at the boundary was moving, and so its effect on the boundary condition was less

severe. The end result was a delay and attenuation of the left-running expansion

wave reflected from the right boundary.

4.5.2 Grid Density. The maximum significant Fourier frequency for any

harmonic balance solution is highly dependent on grid density. High frequency co-

efficients vary rapidly in the spatial dimensions, and require a fine grid for accurate

resolution. For a grid too coarse to support a given Fourier frequency, the coeffi-
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cient magnitudes are damped, and less energy is contained in that frequency. This

establishes a natural ceiling for frequency augmentation, which leads to an observed

benefit of the adaptive harmonic balance approach – it automatically matches the

included frequency content to the computational grid. The variation in adapted

frequency distribution with grid density is illustrated in Figs. 4.18 and 4.19, which

show the final frequency distributions at several grid densities for configurations SS3

and SU1, respectively.
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Figure 4.19 Variation in Adapted Frequency Distributions With Changing Grid
Density for Test Configuration SU1, Augmentation Threshold 5.0e-8

4.5.3 Performance. To gauge the performance benefit of the adaptive

harmonic balance approach, two performance metrics were examined. The first

metric measured problem size reduction, as measured by the difference between the

maximum and average frequency content of an adapted solution. The second metric

was the run time required to converge a solution to steady state.
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For each of the test configurations SS2, SS3, SS4, and SU1, an adapted solution

was calculated with an augmentation threshold of 7.0e-8, optimal triggers, and a

pixelation width of 7. No multigrid acceleration was used. A non-adapted solution

was then calculated, again with no multigrid, based on the highest frequency content

in the adapted solution. Both adapted and non-adapted solutions for configurations

SS2, SS3, and SS4 were computed with a fixed CFL of 1.7. For case SU1, the adapted

solution was computed with a CFL that scaled from 1.7 at the lowest frequency to

1.35 at the highest frequency, while the non-adapted solution required a fixed CFL

of 1.3.

The reduction of frequency content and run time for the adapted solution

is shown in Fig. 4.20. In all cases, adaptation resulted in reduced run times, de-

spite relatively small reductions in frequency content. The subsonic case showed the

most improvement, with more than a 50% reduction in run time compared to the

non-adapted case. Much of this reduction was due to the variable CFL. The higher

average CFL, coupled with the efficiency gained by solving the large-scale flow struc-

tures with fewer frequencies, resulted in a run time reduction 20% larger than the

problem size reduction.

Since the adapted and non-adapted supersonic cases were computed with the

same CFL, the adapted solutions had no time-step advantage. Due to the overhead

of the adaptive approach, the number of iterations required to converge the adapted

solutions increased relative to the non-adapted solutions by as much as 15%. Despite

this increase in iterations, the reduced average frequency content still resulted in a

small but significant reduction in run time.

4.6 Multigrid

To demonstrate that the adaptive harmonic balance technique is compatible

with multigrid acceleration, FAS multigrid was applied to one test case. A low-

disturbance-magnitude supersonic case (configuration SS1) was solved on a 1025
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Figure 4.20 Reduction in Average Frequency Content and Run Time for Adapted
vs Non-adapted Harmonic Balance Solutions

point grid using a 5-level FAS Multigrid V cycle. This configuration resulted in a

solution that is relatively smooth over most of the grid. The adapted frequency

distribution contained just 2 frequencies at the inlet, and gradually increased in 1-

frequency increments to 7 frequencies at the exit. A representative pressure plot for

this configuration computed with and without multigrid convergence acceleration is

shown in Fig. 4.21.

One minor modification to the augmentation algorithm was made to simplify

implementation of the multigrid scheme. The primary residual-based adaptation

trigger was replaced with a trigger based on the number of multigrid cycles com-

pleted. For this configuration, adapting every 3 multigrid cycles was found to be

effective.

Run times for both adapted and non-adapted solutions, with and without

multigrid, are given in Table 4.3. In both the adapted and non-adapted cases, run

times with multigrid acceleration are approximately half those without. The non-

adapted solution benefits slightly more than the adapted solution.
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Table 4.3 Run-time Performance Comparison for Adapted vs Non-adapted Har-
monic Balance Solutions, With and Without Multigrid Acceleration,
Case SS1, 1025 Cells, in Seconds

Non-Multigrid Multigrid
7 Freq Adapted 7 Freq Adapted

102.3 88.4 50.9 45.7

4.7 Summary

The adaptive split-domain harmonic balance method was successfully applied

to a variety of supersonic and subsonic one-dimensional flow fields containing strong

moving shocks. The energy-based augmentation approach reliably identified cells

where additional frequency content was needed and could be supported by the com-

putational grid. The resulting adapted harmonic balance solutions were equivalent

to non-adapted harmonic balance solutions, and compared well with conventional

time-accurate solutions.
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Adaptation scheduling was found to have a significant impact on the run-time

performance of the adaptive solver. In some cases, applying the wrong scheduling

approach more than doubled solution compute time. For supersonic flows, rapid

adaptation with minimal flow development time produced the best performance. For

subsonic flows, a scheduling approach that allowed more time for flow development

between adaptations was best.

The compatibility of the adaptive split-domain harmonic balance approach and

FAS multigrid acceleration was demonstrated. Solutions were computed with and

without frequency augmentation, and with and without multigrid acceleration. The

relative performance benefits of each approach remained consistent.

For all test configurations, adapted harmonic balance solutions took less time

to compute than equivalent non-adapted solutions. Reductions from 25% to greater

than 50% were observed. These reductions were obtained despite the fact that most

of the test configurations contained strong discontinuities throughout the solution

domain, and thus had high average adapted frequency content.
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V. Application of Adaptive Split-Domain Harmonic Balance to an

Unsteady Diverging Nozzle

5.1 Introduction

The test problems solved in the previous chapter using the frequency augmen-

tation approach were useful for developing the adaptive harmonic balance approach,

but they were not ideal for demonstrating performance improvements. In those test

problems, there were moving shocks throughout the computational domain, which

led to a high average frequency content. In a transonic turbomachinery application,

one would expect large variations in flow time response at different points in the

computational domain, from near steady-state flow far upstream of a blade row, to

a region of strong moving shocks near the leading edge of the blades.

The purpose of the analysis documented in this chapter is to demonstrate the

adaptive split-domain harmonic balance approach on a problem representative of

a transonic turbomachinery problem. The chosen test case consists of a diverging

nozzle with supersonic inflow and subsonic outflow. Unsteadiness is introduced by

varying the subsonic outflow conditions. The resulting flow field contains steady-

state flow over most of the first half of the nozzle, a narrow region near the center

of the nozzle with an oscillating normal shock, and smoothly varying flow over the

latter part of the nozzle. These flow features make a good test case for the frequency

augmentation algorithm. The case contains mostly smooth flow with low (or no)

frequency content. It abruptly transitions to a small region where the time response

of the flow is essentially a square wave, and thus has high frequency content. It then

abruptly transitions back to low frequency content. The robustness of the algorithm

is demonstrated by handling the transitions, and the effectiveness is demonstrated

by a low average frequency content and reduced computation time.
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5.2 Solver Implementation

The one-dimensional split-domain harmonic balance Euler solver developed in

Chapter IV was modified to solve the quasi-1-D Euler equation. The quasi-1-D Euler

equation (35) in finite volume form is given by

∂

∂τ

∫

V

Q′ dV +

∫

S

F′ · n̂ dS +

∫

V

H dV = 0 (5.1)

where

Q′ = AQ = A




ρ

ρu

Et


 , (5.2)

F′ = AF = A




ρu

ρu2 + p

(Et + p)u


 , (5.3)

and

H =




0

−pdA
dx

0


 (5.4)

where A is the cross sectional area of the nozzle and the other quantities are as

defined for the 1-D Euler equation in Section 4.2. Substituting the approximation

∂A
∂x

= ∆A
∆x

and assuming the computational grid does not change with time, Eq. 5.1

reduces to

Ai∆xi
∂Qi

∂τ
+ Ar

i F
r
i − Al

iF
l
i − pi(A

r
i − Al

i) = 0 (5.5)

for the ith grid cell, where A is the average area over the cell, and Al and Ar are

the cross sectional areas at the left and right cell interfaces respectively. Adding
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artificial dissipation as discussed in Section 4.2, and recognizing that Ai∆xi = Vi,

the approximate volume of a vertical slice through the nozzle, the semi-discretized

quasi-1-D Euler equation becomes

∂Qi

∂τ
= − 1

Vi
(Fr

i A
r
i − Fl

iA
l
i − pi(A

r
i − Al

i) + Di). (5.6)

Modifying the 1-D Euler code to solve the Quasi-1-D Euler equations thus required

changing the definition of the cell volume, multiplication of the left and right fluxes

by the appropriate cross sectional areas, and inclusion of the pressure term. A

characteristic-based, specified-density outflow boundary condition (35) designed for

the diverging nozzle was also incorporated (See Appendix D). Other aspects of the

solver remain as described in Section 4.2.

5.3 Test Configuration

The quasi-1-D adaptive split-domain harmonic balance solver was applied to

the problem of flow through a diverging nozzle with constant supersonic inflow and

unsteady subsonic outflow (Fig. 5.1).

A = 1.398 + 0.347 tanh(0.8 x − 4.0)

Inflow

Supersonic

Moving Shock

Unsteady

Subsonic 

Outflow

10

Figure 5.1 Unsteady Diverging Nozzle Configuration

A common steady-state quasi-1-D nozzle test case (36) was modified to gen-

erate an unsteady flowfield. Assumed conditions at the inlet were: Mach number =

1.5, density = 0.002241 slugs/ft3, pressure = 2000 lbf/ft2, and temperature = 520R.
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Unsteadiness was introduced by adding a sinusoidal variation to the exit density.

ρ = 0.003954 + 0.0001 sin(0.1π t) slugs/ft3 (5.7)

Density was varied as a matter of convenience–the desired unsteady behavior was

produced, and a specified-density nozzle boundary condition was available. For

computation, all values were nondimensionalized by the inlet velocity and density.

Without the unsteady term in the exit density, these boundary conditions result

in a flow field with a normal shock near the midpoint of the nozzle and subsonic exit

flow (36). With the addition of the specified unsteadiness at the exit, the flow behind

the shock becomes smoothly unsteady, but remains subsonic. The location of the

shock oscillates about its steady-state location, while the supersonic flow ahead of

the upstream limit of shock motion is not affected and remains steady.

The unsteady amplitude was selected by first finding the range of constant

densities for which a steady-state solution could be obtained using the initial con-

ditions described below. The amplitude was set to the largest value that produced

upper and lower extremes within that range. The frequency ω = 0.1π was selected to

maximize the extent of shock motion and still produce an interesting subsonic flow

behind the moving shock. Higher disturbance frequencies produced a more complex

subsonic flow, but resulted in a restricted range of shock motion. Lower disturbance

frequencies resulted in essentially the same range of shock motion, but produced less

complex flow behind the shock.

Flow solutions were obtained for three computational grids with densities of

256, 512, and 1024 cells. A uniform cell size was maintained in each grid. Solutions

were initialized to inlet conditions over the first 28% of the grids. Over the remainder

of the grids, density and total energy were initialized to inlet conditions, while veloc-

ity was initialized to 34% of inlet velocity. Adapted harmonic balance solutions to

the unsteady problem were computed for six augmentation thresholds from 5.0e-2 to
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5.0e-7 in order-of-magnitude increments. In addition, one steady-state (0-frequency)

solution was computed on each grid to validate the basic solver.

Augmentation increments available to the adaptation algorithm were specified

in terms of candidate numbers of frequencies that could be included in the solution

in a given cell. The available candidates are listed in Table 5.1. Since the flow in

much of the grid was steady-state, each of the solutions was begun with 0 frequen-

cies. The unsteady flow downstream of the shock was smoothly varying, and thus

had low frequency content, so all of the lower-frequency candidates were included.

Finally, higher frequency candidates in evenly spaced increments were included to

allow refinement of the moving shock region.

Table 5.1 Candidate Numbers of Frequencies Available to the Adaptive Harmonic
Balance Solver for the Unsteady Nozzle Test Case

0 1 2 3 4 5
6 7 10 13 16 19
22 24 27 32 37 42

A subsonic adaptation scheduling strategy was adopted (See Section 4.4). The

primary adaptation triggers for the initial and following adaptations were set to 2.6

and 0.1, respectively, while the secondary, iteration based triggers were set to 7000

and 1200. In addition, fringe augmentation widths of 4, 8, and 25 were required for

the 256, 512, and 1024 cell grids, respectively.

All solutions were initiated with a CFL of 1.7. One test case (1024-cell grid

with augmentation threshold of 5.0e-4) required a scaled CFL to maintain stability.

For this case, the CFL was scaled down to 1.25 at the highest frequency content.

All harmonic balance solutions were converged to a residual below 1.0e-6, a drop of

approximately 4.6 to 4.9 orders of magnitude.

For comparison purposes, conventional time-accurate unsteady solutions were

also computed on each grid. Each solution was begun from a steady-state calculation

based on the mean outflow properties, and run time-accurately for 20 outflow cycles.
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Figure 5.2 Time-accurate Development of the Fully-developed Unsteady Nozzle
Flow Field

The mass in the nozzle was tracked as the time-accurate solution developed to verify

that a fully-developed solution was reached. Based on this measure, fully developed

flow was reached at about the 12th cycle (Fig. 5.2).

5.4 Results

5.4.1 Comparison with Exact Solutions. To validate the basic steady-

state quasi-1-D harmonic balance solver, 0-frequency (steady-state) solutions were

calculated for each grid density and compared with an exact solution. The exact

solution for a diverging nozzle with constant outflow properties is easily obtained

from the isentropic flow equations and Rankine-Hugoniot normal shock relations

(37, 36).

All solutions showed good agreement with the theoretical solution, as illus-

trated in Fig. 5.3. The root-mean-square (RMS) percent error was 4.9%, 3.5%, and

2.5% for the 256 cell, 512 cell and 1024 cell solutions, respectively. Most of the

observed error was attributed to smearing of the normal shock across several cells.
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Figure 5.3 Comparison of 0-Frequency (Steady State) and Theoretical Pressures
for 1024 Dell Grid Diverging Nozzle

Excluding the error in the shock region reduced the RMS percent error for the coarse,

medium, and fine grids to 0.31%, 0.16%, and 0.08%.

The validity of the unsteady harmonic balance solutions was confirmed by

examining the time-average mass flux throughout the grid. With constant supersonic

flow at the inlet boundary, conservation of mass requires that the time-averaged mass

flux at any given point in the nozzle be inversely proportional to the ratio of nozzle

cross-sectional area at that point to the area at the inlet. In Fig. 5.4, the computed

time-average mass flux (the zero-frequency Fourier coefficient of ρu) for the 256 and

1024 cell grids is plotted along with the theoretical value. The harmonic balance

solutions show good agreement with the theoretical values everywhere except in the

region of shock motion, where the effect of shock smearing introduces errors. The

error distribution of the time-average momentum for the 256, 512, and 1024 cell

harmonic balance calculations is shown in Fig. 5.5. In all three cases, the error

peaks at the edges of the region of shock motion, with the maximum error ranging
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from 3.5% for the 256 cell solution to 1.5% for the 1024 cell solution. Errors of this

magnitude are acceptable for an unsteady analysis of this type.

5.4.2 Unsteady Nozzle Solutions. The unsteady-outflow nozzle configura-

tion proved to be a challenging test of the adaptive harmonic balance solver. The

transition from steady-state flow to high-frequency content flow presented difficul-

ties during the early transient stages of solution development. As the solution was

refined, the upstream limit of shock motion shifted upstream slightly. Higher frequen-

cies were needed in the transition cells to allow the disturbance to shift upstream, but

none were available to the solution. Because the upstream flow was supersonic and

steady-state, the transition cells had zero energy in the first Fourier frequency, and

so no frequencies were added by previous threshold-based augmentation. In many

cases, the solution in the frequency-deficient cells broke down before an adaptation

was triggered and more frequencies were added.

This situation was successfully resolved by including fringe augmentation (Sec-

tion 2.5). This effectively pre-augmented a number of cells ahead of the developing

unsteadiness and gave the developing unsteadiness room to propagate upstream.

(Two alternative solutions to the problem—starting the solution with a larger num-

ber of frequencies, and/or decreasing the amount of flow development between adap-

tations by lowering the repeat adaptation triggers—were rejected as having too neg-

ative an impact on run-time performance.) Fringe augmentation provided a reliable

solution to the problem with minimum increase in run time.

A typical growth history of an adapted frequency distribution is shown in

Fig. 5.6. The figure shows the complete adaptation history for a solution on the

finest grid with an augmentation threshold of 5.0e-7. Each frame shows the frequency

distribution after frequency augmentation at the indicated iteration, from the first

adaptation at iteration 4,725, to the final adaptation at iteration 16,990. As can be

seen in Fig. 5.6, the frequency distribution had stabilized outside the shock region by
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the fourth adaptation. Subsequent adaptations added frequencies only to the region

of shock motion.

In Fig. 5.7, pressure distributions for this same adapted solution are shown at

10 snapshots in time spanning one period of the flow oscillation. Also shown are

snapshots from a time-accurate calculation on the same computational grid, along

with the final frequency envelope. This figure illustrates how the adapted frequency

distribution relates to the computed flow solution. Figure 5.7 also illustrates how the

adapted harmonic balance solution sharply captured the oscillating normal shock

and agreed with the time-accurate solution at all points in time. The spatially

varying frequency content produced no visible artifacts in the reconstructed harmonic

balance solution.

A quantitative assessment of the adapted harmonic balance solution was ob-

tained by calculating the RMS of the percentage differences between the adapted

solution and the time-accurate solution for each of the 10 samples in Fig. 5.7, and

averaging the results. The average RMS difference was 0.14%. (The maximum RMS

difference over the 10 samples was 0.27%.) A similar calculation was performed for

solutions obtained on all three grids with all six augmentation thresholds. The re-

sults are plotted in Fig. 5.8. While there was some difference in the average RMS

values for large augmentation thresholds, the solutions on all three grids converged

to provide nearly identical agreement at a threshold of 5.0e-7.

Nearly all of the difference between the time-accurate solutions and adapted

harmonic balance solutions with high augmentation thresholds was in the region of

the moving shock. Figure 5.9 illustrates how this region developed with decreases in

augmentation threshold. This figure shows solutions in the region of shock motion

for the 256 cell and 1024 cell grids at a time corresponding to 1/4 of the oscillation

period.

For a given augmentation threshold, the solutions on both grids had similar

properties. At a threshold of 5.0e-2, the shock was poorly defined, and there was
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significant overshoot behind the shock. At a threshold of 5.0e-4, the shock was well

defined, but there was ringing before and after the shock. With a threshold of 5.0e-

6, the shock was crisply defined on both grids, and most of the ringing around the

shock was removed. While the defects at each threshold level were more pronounced

on the finer grid due to higher grid resolution and frequency content, the basic form

of the defects was the same on both grids.

The frequency distributions for the solutions shown in Fig. 5.9 are shown in

Fig. 5.10. These plots illustrate the relative number of frequencies required to achieve

each level of solution fidelity. They also illustrate how the adapted frequency distri-

bution automatically adjusted for grid density. Though a given threshold achieved

a qualitatively similar solution on each grid, the number of frequencies included in

the shock region on the fine grid was significantly higher than the number included

on the coarse grid.

Figure 5.10 also includes the final frequency distribution for solutions with

a threshold of 5.0e-7. As can be seen, a large increase in frequency content was

needed to achieve a small improvement in the solution as indicated in Fig. 5.8.

The variation in maximum frequency content with grid density and augmentation

threshold is shown for all grids and thresholds in Fig. 5.11.

While it was the maximum frequency content that determined the fidelity of

each solution, it was the average frequency content that determined the computa-

tional cost of each solution. The average frequency content for each adapted solution

is shown in Fig. 5.12. Since the discontinuous flow was limited to a small portion

of the computational domain, the overall average frequency content remained small

for all augmentation thresholds. On the finest grid, average frequency content at

the smallest threshold grew by approximately 4.5 frequencies, while the maximum

frequency grew by 35 frequencies.

Low average frequency content translated directly into reduced compute times,

as shown in Fig. 5.13. As can be seen in this figure, the compute time grew more
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Figure 5.11 Change in Maximum Frequency Content of Adapted Harmonic Bal-
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slowly than the average frequency content. This was due to the inherent efficiency

of resolving the flow features that are slowest to converge during the early stages of

the adaptive solution when the frequency content was low. On the coarsest grid, the

compute time for the lowest augmentation threshold is less than twice that of the

highest threshold. On the finest grid, the compute time grew only 2.3 times from

the highest threshold to the lowest.

To determine the efficiency of the adaptive harmonic balance approach relative

to non-adapted harmonic balance, each of the harmonic balance solutions was re-

computed with a fixed number of frequencies. The maximum frequency content for

each of the adapted solutions was identified and used to generate the fixed-frequency

solutions, ensuring that both solutions maintained the same fidelity. The efficiency of

the adaptive method was examined by comparing problem sizes and compute times.

The problem size for the fixed frequency calculation was determined by the

number of frequencies included in the solution. The equivalent problem size for the

adapted calculation is given by the average frequency content. The difference be-
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tween these two quantities is shown in Figure 5.14 in terms of percent reduction.

For the largest augmentation threshold, the reduction in problem size was approxi-

mately 45% for all grid densities. This represents a significant reduction, considering

that the average number of frequencies in each solution was approximately one, the

minimum possible number of frequencies for a frequency augmentation approach.

Any improvement would require a frequency decimation approach where frequencies

are identified as unnecessary and removed from the solution. Such an approach was

not implemented in the current research. The problem size reduction was more sub-

stantial for the small thresholds, approaching 90% for the smallest threshold on the

finest grid.
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Figure 5.14 Reduction in Average Frequency Content for Adapted vs Non-adapted
Harmonic Balance Solutions

The difference between compute times for the adapted and fixed-frequency

solutions is shown in Fig. 5.15, again in terms of percent reduction. It is clear from

these results that a given reduction in problem size did not necessarily result in an

equivalent reduction in compute time, especially for higher augmentation thresholds

and lower grid densities. Defining an efficiency of the adaptive solver as the ratio

of the compute time reduction to the problem size reduction, the average efficiency

5-18



0

10

20

30

40

50

60

70

80

90

100

5e-2 5e-3 5e-4 5e-5 5e-6 5e-7

Augmentation Threshold

P
er

ce
n

t 
R

ed
u

ct
io

n

256 Cells 512 Cells 1024 Cells

Figure 5.15 Reduction in Compute Time for Adapted vs Non-adapted Harmonic
Balance Solutions

for a threshold of 5.0e-2 was only 47%. For lower thresholds the efficiency was much

higher, averaging 91% for a threshold of 5.0e-6, and 95% for a threshold of 5.0e-7.

The adaptive solution on the finest grid with an augmentation threshold of 5.0e-7

achieved a 99% adaptive efficiency with an 86% reduction in compute time. The

adaptive efficiencies for all solutions are shown in Fig. 5.16.

5.5 Summary

The adaptive split-domain harmonic balance method developed and analyzed

in previous chapters was successfully applied to solve the quasi-1-D inviscid flow in a

supersonic-subsonic diverging nozzle with unsteady outflow properties. This problem

is representative of the types of problems the adaptive harmonic balance approach

was designed for: a stationary unsteady flow field containing mostly smooth, low-

frequency content flow, but with isolated regions of highly nonlinear high-frequency

content flow.
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Adapted harmonic balance solutions were generated for a variety of grid den-

sities and augmentation thresholds. The energy-based frequency augmentation ap-

proach proved effective in matching frequency content to underlying flow. Regions

of the computational domain requiring higher frequency content were identified, and

frequencies were added until augmentation threshold levels were achieved. Given

thresholds produced qualitatively uniform solutions across tested grid densities. At

the lowest augmentation thresholds, the adapted harmonic balance solutions showed

good agreement with both theoretical and time-accurate numerical solutions.

The combination of an energy-based frequency augmentation approach, fringe

augmentation, and the split-domain solver proved to be robust and stable. The

adaptation algorithm and solution scheme successfully handled a rapid transition

from steady-state supersonic flow to the highly nonlinear, unsteady, mixed super-

sonic/subsonic flow in the region of the moving shock. In all but one case, the

maximum stable CFL of the solver was able to be used for the entire solution.
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The adaptive harmonic balance approach effectively reduced the time needed

to obtain a high-fidelity solution with the harmonic balance method. The compute

time for solutions with thresholds of 5.0e-6 and 5.0e-7 averaged greater than 80%

reductions relative to equivalent non-adapted solutions on all grids. With these

reductions, the difference in compute time between low-fidelity and high-fidelity

solutions was also reduced so that the highest fidelity solutions took only 2–2.5

times longer than the lowest-fidelity solutions.
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VI. Summary and Conclusions

6.1 Summary of Research

A new adaptive split-domain harmonic balance CFD method was developed

and applied to a variety of one-dimensional problems. The new method employed

a unique multi-domain split-operator (split-domain) solution approach to efficiently

solve harmonic balance equations with large numbers of Fourier frequencies. The

split-domain approach successfully removed a numerical stability restriction present

in previous harmonic balance CFD implementations. It also reduced the computa-

tional work required to calculate a solution by reducing the number of FFTs required

to just one per point, per iteration. Improved stability and reduced computational

work both resulted in reduced run time.

To further improve performance, the split-domain solution method was com-

bined with a frequency-adaptation algorithm that minimized the size of the harmonic

balance problem by varying the number of frequencies included in the harmonic bal-

ance solution. A frequency-augmentation adaptation approach was employed. With

this approach, harmonic balance solutions were begun with a minimum number of

frequencies, and periodically examined to determine where additional frequencies

were needed to capture the local flow. The decision to add frequencies was based on

an examination of the fraction of spectral energy contained in the largest included

Fourier frequency. Frequencies were added to cells that contained more energy in

the highest frequency than a user-specified maximum threshold. By changing the

threshold, the number of frequencies in the solution, and thus the solution accuracy

and run time, were controlled.

The non-adaptive split-domain harmonic balance CFD method was applied

to the 1-D inviscid Burgers’ equation. Large amplitude, time-periodic solutions

were computed and compared to solutions computed with prior harmonic balance

approaches. The split-domain method produced solutions comparable to those of
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the prior methods, while successfully eliminating a stability restriction experienced

by those methods when a large number of Fourier frequencies are included in the

solution. It was found that the difference between harmonic balance solutions and

conventional time-accurate solutions was asymptotic with respect to the number of

Fourier frequencies included in the harmonic balance solution. When the number of

frequencies was equal to or greater than some asymptotic frequency, the harmonic

balance solutions were comparable to the time-accurate solutions. Several factors

were found to influence the asymptotic frequency, including disturbance frequency,

the strength of the moving discontinuity, and the computational grid density.

The full adaptive split-domain harmonic balance CFD method was applied to

the 1-D Euler equation. The method was successfully employed to solve a variety of

supersonic and subsonic one-dimensional flow fields containing strong moving shocks.

The energy-based augmentation approach reliably identified cells where additional

frequency content was needed and could be supported by the computational grid.

The resulting adapted harmonic balance solutions were equivalent to non-adapted

harmonic balance solutions, and compared well with conventional time-accurate so-

lutions.

Adaptation scheduling was found to have a significant impact on the run-time

performance of the adaptive solver. In some cases, applying the wrong scheduling

approach more than doubled solution compute time. For supersonic flows, rapid

adaptation with minimal flow development time produced the best performance. For

subsonic flows, a scheduling approach that allowed more time for flow development

between adaptations was best.

The compatibility of the adaptive split-domain harmonic balance approach and

FAS multigrid acceleration was demonstrated. Solutions were computed with and

without frequency augmentation, and with and without multigrid acceleration. The

relative performance benefits of each approach remained consistent.
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Finally, the adaptive split-domain approach was demonstrated by solving for

quasi-1-D flow in a supersonic-subsonic diverging nozzle with unsteady outflow prop-

erties. This problem contained a wide range of flow regimes, including supersonic

steady-state flow, continuous, unsteady subsonic flow, and an oscillating normal

shock. Adapted harmonic balance solutions were generated for a variety of grid

densities and augmentation thresholds. The energy-based frequency augmentation

approach proved effective in matching frequency content to the underlying flow.

Regions of the computational domain requiring higher frequency content were iden-

tified, and frequencies were added until augmentation threshold levels were achieved.

However, it was necessary to supplement threshold-based augmentation with fringe

augmentation in order to successfully handle shifting frequency transitions during

the early stages of solution development. Given thresholds produced qualitatively

uniform solutions across tested grid densities. At the lowest augmentation thresh-

olds, the adapted harmonic balance solutions showed good agreement with both

theoretical and time-accurate numerical solutions.

The adaptive harmonic balance approach effectively reduced the time needed

to obtain an accurate solution with the harmonic balance method. The compute

time for solutions with thresholds of 5.0e-6 and 5.0e-7 averaged greater than 80%

reductions relative to equivalent non-adapted split-domain solutions on all grids.

With these reductions, the difference in compute time between low-fidelity and high-

fidelity solutions was also reduced, to the point where the highest fidelity solutions

took only 2–2.5 times longer than the lowest-fidelity solutions.

6.2 Conclusions

As a result of the research conducted and documented in this dissertation, the

following major conclusions were reached:

1. The harmonic balance method produces accurate solutions to strongly nonlinear

time-periodic flow problems, provided that a sufficient number of Fourier fre-
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quencies are included. There is a practical asymptotic limit that is dependent

on the flow field and on the density of the computational grid. Thus, adding

frequencies does not automatically improve a harmonic balance solution.

2. A split-operator, multi-domain (split-domain) solution approach can be em-

ployed to efficiently solve a harmonic-balance CFD problem with a sufficient

number of frequencies to accurately model a strongly nonlinear periodic flow.

The split-domain approach effectively reduces or removes stability restrictions

associated with high-frequency harmonic balance solutions. It also reduces the

required number of Fourier transform pairs to one, regardless of the time in-

tegration scheme implemented. Finally, the approach is fully compatible with

FAS multigrid convergence acceleration.

3. The number of frequencies included in a split-domain harmonic balance solu-

tion can be varied from cell to cell without negatively impacting solution qual-

ity. With proper implementation, transitions between regions with different

frequency content are transparent and do not affect a reconstructed solution.

Frequency transitions cannot be treated as time-lagged boundaries; both sides

of the transition must be synchronously integrated in time. Resampling via

truncation or zero-padding of Fourier coefficients was an effective way to com-

pute differences across frequency transitions.

4. For flows with time-responses that are mostly continuous with a finite number

of discontinuities and no impulses, the fraction of spectral energy contained in

the highest computed Fourier frequency of a harmonic balance solution (EN )

is an accurate indicator of how completely the solution has modeled local flow

behavior. Solutions containing an insufficient number of Fourier frequencies

will have a higher EN than those that contain a sufficient number. When a

computational grid is too coarse to support high frequencies, the EN is reduced.

A given minimum solution fidelity can be maintained by selecting an upper
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bound on EN and including sufficient frequencies to ensure EN is below this

bound.

5. A spatially-adaptive harmonic balance method can be implemented to accurately

and efficiently compute a stationary time-periodic flow field containing regions

of smooth flow and regions with strong moving discontinuities by automatically

adjusting the number of frequencies in the solution, on a point-by-point (cell-

by-cell) basis, to match local flow conditions. A restatement of the research

thesis. An adaptive split-domain harmonic balance CFD solver employing an

energy-based frequency augmentation adaptation approach was demonstrated

and shown to significantly reduce the time required to compute an accurate

harmonic balance solution.
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VII. Recommendations for Future Research

The next logical step in the development of the adaptive split-domain harmonic bal-

ance approach is the extension of the method to higher dimensions and application

to turbomachinery problems. Extension of the basic approach should be straightfor-

ward, requiring only minor modifications to the current implementation. Part of this

effort should be the development of a boundary condition to model a rotor-stator

interface. Additional areas that merit further research are discussed below.

Combined Grid/Frequency Adaptation

Grid adaptation provides a means of efficiently resolving flow features when

their precise location is not known a priori. Applying grid adaptation to conventional

unsteady CFD problems is difficult, however, because flow features are in constant

motion. Since the harmonic balance method solves a steady-state problem, imple-

mentation of grid adaptation should be greatly simplified. One of the primary goals

of research into combined grid and frequency adaptation would be to determine if

frequency content information could be used along with flow feature information to

drive adjustments to the computational grid.

Improved Multigrid for Harmonic Balance CFD

One of the primary incentives for developing harmonic balance CFD approaches

is that a steady-state problem is solved, which allows convergence acceleration tech-

niques such as multigrid to be employed. The current research demonstrated the

compatibility of FAS multigrid and adaptive split-domain harmonic balance, but

identifying the best multigrid approach was beyond scope. Identifying an optimal

multigrid approach for harmonic balance problems would be of great value.

One property of a harmonic balance solution that limits the effectiveness of

multigrid is that the real and imaginary parts of the high frequency Fourier coeffi-
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cients tend to be highly oscillatory in the spatial dimensions. Conventional multigrid

techniques are most effective when the spatial behavior of the solution is smooth,

so that little information is lost when the solution is transfered to a coarser grid.

When multigrid is applied to oscillatory problems, information is lost during grid

transfer operations, and convergence acceleration is reduced. Some attempts have

been made to develop multigrid techniques for oscillatory elliptic PDEs (e.g. (38)).

One avenue of research would be to adapt these techniques to the harmonic balance

equations.

Another approach suggested by the current research would be to transfer so-

lutions between grids using the magnitude-phase form of the Fourier coefficients,

rather than the real and imaginary form. It was observed that the magnitude of

the complex Fourier coefficients was considerably less oscillatory than the real and

imaginary components. The phase, when “unwrapped” so that it was continuous and

had values greater than 2π, was nearly linear with respect to the spatial dimension.

The smoother properties of a magnitude/phase should allow more accurate transfer

between grids. The major challenge facing such an approach is developing a reliable

means of unwrapping phase.

Magnitude/Phase Harmonic Balance Solver

In order to accurately capture the oscillatory behavior of the real and imagi-

nary coefficients of higher-frequency Fourier coefficients, a fine computational grid is

necessary. As noted above, spatial variation of the magnitude and unwrapped phase

of the coefficients is much smoother, and thus can be captured with a much coarser

grid (39). Development of a harmonic balance method based on a magnitude/phase

representation of the complex coefficients, could significantly reduce the number of

grid cells required to compute an accurate harmonic balance solution, and thus re-

duce the memory and run-time requirements as well. A magnitude/phase solver
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would also improve multigrid efficiency, increasing the accuracy of the corrections

computed on coarse grids.

Many aspects of a magnitude/phase solver would be similar to the current split-

domain solver. Boundary condition and flux calculations could still be done in time

domain. However, face fluxes would likely be computed from averaged cell magnitude

and phase, instead of averaged cell fluxes as in the current implementation. As with

magnitude/phase multigrid transfers, a major research challenge is determining how

to correctly implement continuous phase.

Efficient Single-domain Harmonic Balance

The suggested research areas discussed thus far have all involved the extension

or modification of the adaptive split-domain harmonic balance method. An inves-

tigation of an efficient single-domain harmonic balance approach, while suggested

by the split-domain approach, is a research area that could result in a significant

departure from the current method.

The basis of the proposed research is the physical interpretation of the split-

domain solution process discussed in Section 2.4. It was shown that the split-domain

solution approach is equivalent to a sequence of successive integrate-shift operations

in which Eq. 2.23a, repeated here as Eq. 7.1, is integrated forward in pseudo time,

and the elements of the solution vector ξ are shifted backward in physical time.

∂ξ

∂τ
+

∂Φ(ξ)

∂x
= 0 (7.1)

A steady-state solution is achieved when the change in ξ due to the pseudo-time

integration step is the negative of the change due to the physical time shift.

The combined size of the physical-time shifts was shown to be equal to

(2N+1)ω∆τ
2π

∆t, where ∆t is the physical time sample increment. If ∆τ = ∆t = 2π
(2N+1)ω

,

then the size of the physical time shift is equal to the integration step size, ∆t. In
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this case, the distinction between pseudo-time and physical time disappears, and the

change in ξ due to the shift operation is simply the difference between consecutive

elements of ξ. For this integration step size, there is no need to transform to the

frequency domain to compute the shift.

Instead of simply fixing the time integration step size and replacing the fre-

quency domain operations, an alternative form of the harmonic balance equations

could be employed. If pseudo-time is replaced by physical time and Eq. 7.1 is inte-

grated from an initial condition at time t to time t + ∆t, then the harmonic balance

problem reduces to

A

[
ξ +

∂Φ(ξ)

∂x

]
= 0, (7.2)

where A is a 2N + 1 x 2N + 1 matrix with the form

A =




1 0 . . . 0 −1

−1 1 0 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 −1 1




. (7.3)

This approach would be more flexible, because no specific integration time step is

required.

Both single-domain approaches eliminate the need for Fourier transforms dur-

ing the solution process, and thus might reduce the time required to compute a

solution. The second approach has the additional advantage that the frequency of

oscillation, ω, does not appear in the equations, and thus would not need to be

known a priori ; it would enter the solution only through the boundary conditions.
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Appendix A. Derivation of Harmonic Balance Burgers’ Equation for

a Complex Fourier Series

In this appendix, a direct-substitution implementation of the one-dimensional har-

monic balance Burgers’ equation is derived.

The one-dimensional inviscid Burgers equation is given by

∂u

∂t
+

1

2

∂u2

∂x
= 0 (A.1)

where u(x, t) is the dependent variable, t is the temporal variable, and x is the spatial

variable. Let u(x, t) be approximated by a truncated complex Fourier series

u(x, t) ≈
N∑

n=−N

cn(x)einωt (A.2)

where N is the number of positive frequencies in the truncated series, and ω is the

fundamental frequency of the series. In this series, the complex coefficients, an,

are functions of the spatial variable only. Substituting Eq. A.2 into Eq. A.1 and

evaluating the time derivative, one obtains

N∑

n=−N

inωcneinωt +
1

2

∂

∂x

(
N∑

m=−N

N∑

n=−N

cmcnei(m+n)ωt

)
= 0. (A.3)

As a result of squaring the approximating series in the flux term, Eq. A.3 contains

high frequency terms with |m + n| > N . As part of the harmonic balance approx-

imation, these terms are discarded, leaving only terms with frequencies included in

the approximating Fourier series. Gathering the remaining terms of like frequency

gives
N∑

k=0

[
ikωck +

1

2

∂

∂x

(
N∑

m=−N

N∑

n=−N

cmcnδ(m+n),k

)]
eikωt = 0. (A.4)
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In these equations, δ(m+n),k is the Kronecker delta function, defined as 1 if (m+n) =

k, and 0 if (m + n) 6= k, thus the summation inside the spatial derivative contains

only products of cm and cn such that m + n = k.

The frequencies in Eq. A.4 are now “balanced”. Since the right hand side is

identically zero, this simply means that each of the terms in the outer summation is

required to satisfy equality individually. For the resulting 2N +1 complex equations

to hold for all time, the terms inside the square brackets must be identically equal

to zero. The exponential terms can be dropped, leaving a system of 2N + 1 coupled

ordinary differential equations for 2N + 1 complex coefficients. Since the dependent

variable, u(x, t), is real and periodic, the negative frequency Fourier coefficients are

just the complex conjugates of the corresponding positive frequency coefficients, i.e.

c−n = c̃n. Furthermore, the steady-state coefficient c0 must be real, bringing the total

number of unknowns to 2N +1: the real and imaginary parts of N positive-frequency

coefficient, plus the steady-state coefficient.

Keeping just the positive frequency equations and eliminating the exponential

terms, Eq. A.4 reduces to

ikωck +
1

2

d

dx

(
N∑

m=−N

N∑

n=−N

cmcn δ(m+n),k

)
= 0 0 ≤ k ≤ N (A.5)

or in vector form,

Ŝ(Û) +
dF̂(Û)

dx
= 0 (A.6)

where

Û =




c0

c1

...

cN




Ŝ(Û) =




0

iωc1

...

iNωcN




F̂(Û) =
1

2




∑N
m=−N

∑N
n=−N c′mc′n δ(m+n),0

∑N
m=−N

∑N
n=−N c′mc′n δ(m+n),1

...
∑N

m=−N

∑N
n=−N c′mc′n δ(m+n),N




(A.7)
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and c′n is defined as cn if n ≥ 0, and c̃n if n < 0. An example of the harmonic balance

Burgers’ equation flux vector is presented here for N = 3.

F̂(Û)N=3 =




1
2
(c0 + |c1|2 + |c2|2 + |c3|2)

c0c1 + c̃1c2 + c̃2c3

c0c2 + c̃1c3

c0c3




(A.8)
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Appendix B. Impact of Operator Splitting Error in the Split-Domain

Harmonic Balance Solution

Introduction

One potential problem with a split-operator solution technique such as the

split-domain harmonic balance formulation, is that for nonlinear problems, the op-

erator splitting is not exact (23). In addition, discretization of a split equation

typically results in the introduction of an error that is dependent on the size of the

numerical time step taken to solve the problem. Therefore, it is necessary to under-

stand the nature of the splitting error for a specific application before the approach

is used. This appendix examines the error introduced by the split-domain harmonic

balance approach both analytically and experimentally.

Linear analysis of Splitting-induced Error

Consider the linear scalar equation

∂ξ

∂t
+ aξx − bξ = 0 (B.1)

where ξ and b are complex scalars, and ξx is the spatial derivative of ξ. Splitting

into two homogeneous equations gives

∂ξ

∂t
+ aξx = 0 (B.2)

dξ

dt
− bξ = 0. (B.3)

For simplicity, assume a first-order forward-Euler discretization in time. The

effective finite difference equation resulting from a symmetric Strang splitting which

evaluates the ODE twice is obtained by successively applying the time discretization.
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Integrate the ODE 1/2 time step:

ξ∗ = ξ +
∆t

2
bξ (B.4)

Integrate the PDE a full time step using the results of the previous integration:

ξ∗∗ = ξ∗ − ∆t(a(ξ∗)x)

= ξ +
∆t

2
bξ − ∆ta(ξ +

∆t

2
bξ)x

= ξ + ∆t(
b

2
ξ − aξx) −

∆t2

2
abξx (B.5)

Finally, integrate the ODE an additional 1/2 time step, again using the results of

the previous integration step:

ξn+1 = ξ∗∗ +
∆t

2
bξ∗∗

= ξ + ∆t

(
b

2
ξ − aξx

)
− ∆t2

2
abξx +

∆t

2
bξ +

∆t2
(

b2

4
ξ − ab

2
ξx

)
− ∆t3

4
ab2ξx

= ξ + ∆t(bξ − aξx) + ∆t2
(

b2

4
ξ − abξx

)
− ∆t3

4
ab2ξx (B.6)

Subtracting ξ + ∆t(bξ − aξx) from both sides of Eq. B.6 and dividing by ∆t

gives
ξn+1 − ξ

∆t
+ aξx − bξ = ∆t

(
b2

4
ξ − abξx

)
− ∆t2

4
ab2ξx (B.7)

At steady-state, the first term on the left hand side is equal to zero. The semi-

discretized equation satisfied at steady-state is therefore given by

aξx − bξ = ∆t

(
b2

4
ξ − abξx

)
+ H.O.T. (B.8)
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The first term on the right hand side of Eq. B.8 represents the time-step-

dependent splitting error. More insight into the effect of this error is gained by

discarding the higher order terms and rewriting the equation.

(b∆t + 1)aξx −
(

b +
b2∆t

4

)
ξ = 0 (B.9)

This shows that the splitting error affects both the wave speed and the strength

of the source term. Since the current research involved only explicit solvers, b∆t is

assumed to be much less than a, and the error in wave speed is disregarded. The

remaining discussion will concentrate on the source term error component.

The harmonic balance source term is given by

Ŝ(ξ̂) =




0

iωc1

...

iNωcN




. (B.10)

The nth harmonic balance source term has the same form as the source in the model

equation, with b = inω. Assuming the results of the simplified analysis can be

applied to each term independently, the effective source term for the split-domain

harmonic balance equations becomes

Ŝ(ξ̂) =




0

(−ω2∆t
4

+ iω)c1

...

(−ω2N2∆t
4

+ iNω)cN




. (B.11)

The splitting error adds a negative real component to the harmonic balance source

coefficient. Several conclusions can be drawn from this result. First, it is clear

that the steady-state (zero-frequency) equation is unaffected by splitting error. The
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error should remain small for low frequencies, but will increase rapidly in the high

frequencies due to the N 2 term. Since the error term contains the square of the

fundamental frequency, the splitting error will be somewhat more prominent for

high-frequency unsteady-flows.

Experimental Analysis of Splitting-induced Error

To assess the actual effect of splitting error on a harmonic balance solution,

supersonic and subsonic solutions (configurations SS3 and SU1 from Chapter IV)

were computed at a variety of CFLs. Each of the solutions was computed on a 601

point grid. The supersonic solutions were computed with 32 frequencies, while the

subsonic solutions were computed with 45 frequencies.

Figures B.1–B.4 show a comparison of the real part of the 5th, 15th, 25th, and

32nd Fourier coefficients of momentum, respectively, for the supersonic case at CFLs

of 0.5, 1.1, and 1.7. As predicted by the simple linear analysis, there was little dif-

ference between the solutions for the low frequency coefficient (Fig. B.1). For higher

Fourier frequencies, the effect of splitting error became more pronounced (Figs. B.2,

B.3, and B.4). As the splitting error increased with larger time steps (CFLs), the

solution became more dissipative. The frequency of the spatial oscillations in each

coefficient remained essentially unchanged. Results for the imaginary part of the

Fourier coefficients were similar.

Figures B.5–B.9 show similar comparisons of the real part of the 5th, 15th,

25th, 35nd and 45th Fourier coefficients of momentum for the subsonic case at CFLs

of 0.6, 1.0, and 1.4. For low to mid frequencies (Figs. B.5, B.6, and B.7), the

splitting error exhibits the same increasingly dissipative effect as in the supersonic

case. However, at higher frequencies, the dissipative effect of the splitting error seems

to decrease again.
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The discussion so far has focused on the impact of splitting error on individual

Fourier coefficients. Figures B.10 and B.11 illustrate how the splitting error affects

the reconstructed solutions.

As can be seen in Fig. B.10, splitting error had little effect on the supersonic

solution. Solutions at the lowest and highest CFL were qualitatively similar except

for the presence of increased oscillations behind the moving shocks with smaller time

steps. The subsonic solution also experiences an increase in oscillations behind the

moving shocks with a smaller time step (Fig. B.11). However, in the trough re-

gions, the low-CFL solution shows a slight improvement over the high-CFL solution,

partially overcoming the error introduced at the exit boundary (See Section 4.5).

For both the supersonic and subsonic cases, the oscillations that occurred be-

hind the shocks for low-CFL solutions were not readily removed by increasing the

amount of artificial dissipation in the solution. Any dissipation strong enough to af-

fect these oscillations also damped low-frequency modes that were not significantly

affected by changes in time step size, resulting in an overall degradation of the solu-

tion.

Conclusions

A simplified analysis of splitting-induced error in the split-domain harmonic

balance method suggested that any time-step size dependency in a converged solution

would be most evident in the higher-frequency terms. Just such an error, in the form

of damping of high-frequency Fourier coefficients, was observed experimentally for

both supersonic and subsonic flow fields. The observed error had little effect on

reconstructed flow properties such as pressure. If anything, the increased splitting

error resulting from a larger time step had a positive rather than negative effect on

the solution, eliminating high-frequency oscillations that were otherwise difficult to

remove.
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Figure B.8 Effect of Splitting Error on 35th Fourier Coefficient with Changing CFL
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Figure B.9 Effect of Splitting Error on 45th Fourier Coefficient with Changing CFL
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Appendix C. Determination of Optimal Frequency Augmentation

Increments

The number of Fourier frequencies N included in an adapted split-domain harmonic

balance solution can have a large influence on the time needed to compute the so-

lution. To find the values of N that give the best overall performance, a numerical

experiment was conducted. In this experiment, a one-dimensional split-domain Eu-

ler solver (see Section 4.2) was run a fixed number of iterations for every number

of frequencies N from 3 to 100. The execution time for each run was recorded,

normalized by the execution time for N = 3, and plotted in Fig. C.1.
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Figure C.1 Effect of Series Length on Split Domain Solver Run Time

Values of N that result in locally minimized execution time were identified as

candidates for frequency augmentation. These are listed in Table C.1. Note that
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Table C.1 Candidate Numbers of Fourier Frequencies, N , for an Efficient Adaptive
Harmonic Balance Solution

0 1 2 3 4 5 6
7 10 12 13 16 17 19
22 24 27 31 32 37 38
40 45 49 52 58 62 67
73 82 87 94 97

frequency counts 0, 1, and 2 are also included in this table, though they were not

included in the experiment.

The only computations in the split-domain harmonic balance method that are

not linearly dependent on N are the FFT and inverse FFT used to transform the

solution vector between the frequency domain and the time domain. The values of

N identified in Table C.1 are therefore those that minimized the cost of the FFT

calculations. In the tested solver implementation, FFT calculations were performed

via “Fastest Fourier Transform in the West” (FFTW) library calls (40). The locally

minimizing values of N could change if a different FFT library was employed.

While any adaptive harmonic balance computation could include every value

of N listed in Table C.1, some values could be omitted if information is known

about the flow being calculated. If the flow field is known to contain strong moving

discontinuities throughout the entire computational domain, then it will have a high

frequency content everywhere as well. In such a case, it is unnecessary to include

every possible low-frequency candidate. For such a calculation, the following values

might be appropriate: 6, 12, 17, 24, 32, 37, 40, 45, 49, . . . . In this set of N , some

lower values have been omitted, because it is known that the lower N will not appear

in the final frequency distribution. The low N that are included simply provide

“stepping stones” to the final solution. All of the higher N have been included,

however, so that the final frequency distribution can be fit to the flow as closely

as possible. If, on the other hand, the flow field being modeled contains regions of

smoothly unsteady (or even steady-state) flow, it would be appropriate to include all
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of the candidate N . In any case, it will not affect the final solution if all candidate

frequencies are included in a calculation. It simply may take longer to compute than

would otherwise be necessary.
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Appendix D. Implementation of Boundary Conditions for the 1-D

and Quasi-1-D Euler Equation

Boundary conditions for the adaptive split-domain 1-D Euler and quasi-1-D Euler

solvers were enforced by calculating appropriate values for a single ghost cell outside

the boundary of the grid. Ghost cell values were computed after the first integration

of the frequency-domain ODE and subsequent transformation to the time domain,

but before integration of the time domain equation (between steps 2 and 3 of the

split-domain update process as defined in Section 2.4, page 2-10.) This approach

allowed the use of conventional steady-state CFD boundary conditions.

Supersonic Boundary Conditions

A characteristic analysis of 1-D supersonic flow shows that all flow informa-

tion propagates in the downstream direction (34). Therefore, at a supersonic inflow

boundary, all flow information comes from outside the computational domain. Con-

versely, at a supersonic outflow boundary all flow information comes from inside the

computational domain.

Supersonic Inflow. At a supersonic inflow boundary, all ghost cell values must

be specified. At the inlet, Mach number, density and pressure were given. Inlet

velocity was obtained using the definition of Mach number and the relation for the

speed of sound in a perfect gas:

u = M

√
γp

ρ
(D.1)

Unsteady supersonic boundary conditions were obtained by varying Mach num-

ber while holding pressure and density constant. The unsteady Mach number was

given by

M(t) = 2.0 + a sin(ωt) (D.2)
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where a and ω were the amplitude and frequency of the unsteady variation. For

harmonic balance solutions, samples of the unsteady Mach number were obtained

at 2N + 1 points spanning one period of oscillation, where N was the number of

frequencies included in the harmonic balance solution in the interior cell adjacent to

the boundary.

M(n) = 2.0 + a sin

(
2πn

2N + 1

)
n = 0, 1, . . . , 2N (D.3)

Conservative flow variables were constructed from the specified primitive vari-

ables.

Qg =




ρ

ρu

ρ
(

p
(γ−1)ρ

+ 1
2
u2
)


 (D.4)

Supersonic Outflow. At a supersonic outflow boundary, ghost cell values were

obtained by means of a zeroth-order extrapolation from the interior cell adjacent to

the boundary.

Qg = Qadj (D.5)

Piston Boundary Condition

The action of an oscillating piston was simulated by specifying a sinusoidal

velocity in the ghost point, while maintaining a zero pressure gradient and constant

stagnation enthalpy. A zero-pressure gradient was maintained by setting the pressure

in the ghost cell equal to the pressure in the interior cell adjacent to the boundary,

i.e., p = padj. For inviscid flow of a perfect gas, stagnation enthalpy, given by

H = e+p/ρ+ 1
2
u2, is constant (41). Therefore, it could be computed from the initial

conditions in the tube. Using the perfect gas relation p = (γ − 1)ρ e, and the fact
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that the initial velocity was zero, the stagnation enthalpy was given by

H =
pinit

(γ − 1)ρinit

. (D.6)

For time-accurate solutions, the velocity in the ghost cell was given by

u(t) = a sin(ωt). (D.7)

For harmonic balance solutions, samples of the sinusoidal velocity were obtained

at 2N + 1 points spanning one period of oscillation, where N was the number of

frequencies included in the harmonic balance solution in the interior cell adjacent to

the boundary.

u(n) = a sin

(
2πn

2N + 1

)
n = 0, 1, . . . , 2N (D.8)

Given u, p, and H, the conservative variables in the ghost cell were computed.

Qg =




γ p

(γ−1)(H−
1
2
u2)

ρu

ρ
(

p
(γ−1)ρ

+ 1
2
u2
)


 (D.9)

Subsonic Characteristic Farfield Boundary Condition

A characteristic analysis of 1-D subsonic flow reveals that there are two charac-

teristics traveling downstream, and one characteristic traveling upstream (34). Thus

at a subsonic inflow boundary, two properties must be specified and one must be

computed from the interior flow field. Conversely, at a subsonic outflow bound-

ary, only one property can be specified, and two properties must be computed from

the interior flow field. The boundary conditions implemented in this research are

developed in (34). Only the implementation is presented here.
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Inflow. Given specified farfield properties ρf , uf , and pf , and properties

in the first interior cell, ρadj, uadj, and padj, define

ρ0 =
1

2
(ρf + ρadj) (D.10)

p0 =
1

2
(pf + padj) (D.11)

a0 =

√
γp0

ρ0
(D.12)

The primitive variables at the boundary are given by

pb = pf + padj + ρ0a0(uf − uadj) (D.13)

ρb = ρf +
pf − pb

a2
0

(D.14)

ub = uf +
pf − pb

ρ0a0

(D.15)

The primitive variables in the ghost cells were obtained through a first-order

extrapolation of the boundary values and the values in the first cell in the grid.

ρg = 2ρb − ρadj (D.16)

ug = 2ub − uadj (D.17)

pg = 2pb − padj (D.18)

These primitive variables were used to compute conservative variables in the ghost

point using Eq. D.4.

Outflow. For the subsonic outflow boundary condition, pressure was

specified, and density and velocity were computed. The primitive variables at a
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subsonic outflow boundary were given by

pb = pf (D.19)

ρb = ρadj +
pb − padj

a2
0

(D.20)

ub = uadj +
padj − pb

ρ0a0

. (D.21)

These values were extrapolated to the ghost point and conservative variables were

computed using Eq. D.4.

Subsonic Nozzle Outflow Boundary Condition

A variation of the characteristic subsonic outflow BC was incorporated into

the quasi-1-D Euler solver. This boundary condition, developed in (35), takes into

account the varying geometry of the nozzle. In addition, the specified property at

the boundary is density rather than pressure.

At the exit boundary, the time-accurate unsteady density was specified accord-

ing to

ρ(t) = ρavg + a sin(ωt). (D.22)

For harmonic balance solutions, samples of the unsteady density were obtained at

2N + 1 points spanning one period of oscillation, where N was the number of fre-

quencies included in the harmonic balance solution in the interior cell adjacent to

the boundary.

ρ(n) = ρavg + a sin

(
2πn

2N + 1

)
n = 0, 1, . . . , 2N (D.23)
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The remaining primitive variables at the exit were given by the solution to two

differential equations (35)

−p
∂ρ

∂x
+ ρ2 ∂e

∂x
= 0 (D.24a)

(a + u)

(
∂p

∂x
+ ρa

∂u

∂x

)
+

1

A

dA

dx
uρa2 = 0 (D.24b)

In Eq. D.24b, A is the cross sectional area of the nozzle at the exit, and a is the local

speed of sound.

Equation D.24a was solved for eb by approximating the spatial derivatives with

first-order backward differences, and substituting the known exit density.

eb =
eadj

1 − (γ − 1)(1 − ρadj/ρ)
(D.25)

The exit velocity, u, was obtained by solving Eq. D.24b. The spatial derivatives

were replaced with first-order backward differences and terms were rearranged to

form a quadratic expression for u. Of the two possible solutions, one produced a

non-physical answer when the nozzle cross sectional area was assumed constant and

the pressure gradient ∂p
∂x

was negative. This solution was discarded, leaving the

following equation for u:

u =
−β +

√
β2 + 4ρa2(padj − p + ρ a uadj)

2ρa
(D.26)

where

β = ρa2 ∆A

Aexit
+ (p − padj) + ρa(a − uadj) (D.27)

and the quantity ∆A was the change in nozzle cross sectional area across the cell

adjacent to the boundary.
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The quantities r, u, and e, were used to compute conservative variables in the

ghost point using Eq. D.4.
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