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Abstract 

 A new method for approximating anisotropic, multi-group scatter cross sections 

for use in discretized and Monte Carlo multi-group neutron transport is presented.  The 

new method eliminates unphysical artifacts such as negative group scatter cross 

sections and falsely positive cross sections.  Additionally, when combined with the 

discrete elements angular quadrature method, the new cross sections eliminate the lack 

of angular support in the discrete ordinates quadrature method. 

 The new method generates piecewise-average group-to-group scatter cross 

sections.  The accuracy and efficiency for calculating the discrete elements cross 

sections has improved by many orders of magnitude compared to DelGrande and 

Mathews (7) previous implementation.  The new cross sections have extended the 

discrete elements method to all neutron-producing representations in the Evaluated 

Nuclear Data Files (13). 

 The new cross section method has been validated and tested with the cross 

section generation code, NJOY (13).  Results of transport calculations using discrete 

elements, discrete ordinates, and Monte Carlo methods for two, one-dimensional slab 

geometry problems are compared. 

 



Efficient and Accurate Computation of  Non-negative 

Anisotropic Group Scattering Cross Sections for  

Discrete Ordinates and Monte Carlo Radiation Transport 

 

I.  Introduction 

 

 The conventional practice for evaluating the discretized, multi-group Boltzmann 

transport equation is the discrete ordinates angular quadrature method with truncated 

Legendre expansions representing the multi-group cross sections.  The truncated 

Legendre expansions for the cross sections can lead to negative scatter cross sections.  

These negative scatter cross sections can give rise to negative scatter sources, which 

can lead to inaccurate, negative, and thereby unphysical angular flux solutions.  The 

unphysical angular flux solutions motivated many to rely on comparatively expensive 

Monte Carlo transport simulations. 

 Discrete element cross sections, recently introduced by DelGrande and Mathews 

(7), eliminate the negative scatter cross section artifacts, but efficient and accurate 

techniques for generating these discrete elements cross sections have not been available. 

 The cross sections for multi-group Monte Carlo transport also inherit 

inaccuracies by attempting to reconstruct non-negative cross sections from truncated 

Legendre expansions (5, 11). 

 In the work presented here, I have developed algorithms, implemented, and then 

validated a code to generate multi-group cross sections.  The code improves the 

efficiency of the calculation of discrete elements cross sections for discrete ordinates 

transport methods.  Furthermore, it provides accurate representations suitable for 

multi-group Monte Carlo transport methods.  The utility of these cross sections is 

demonstrated using various discrete ordinates transport calculations with two test 

problems. 

I.1:  MULTI-GROUP BOLTZMANN TRANSPORT EQUATION 

 The multi-group approximation for the Boltzmann transport equation (BTE) is 
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 ( ) ( ) ( ) ( ) ( ), ,
1

ˆ ˆ ˆ ˆ ˆ ˆ, , , , .
G

t s
g g g g g n g
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r r q r d r rs y s y¢ ¢ ¢

¢=

é ù ¢ ¢ ¢W×Ñ + W = W + W W ×W Wê úë û å ò
r r r r r r
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 The symbols in this dissertation are summarized in the table of symbols in the 

beginning and described in appendix A.  The notation used in this dissertation follows 

the conventions of Lewis and Miller (7).  The subscripts in the multi-group equation 

designate the group (g) and later the ordinate or element (n).  The spatial dependence is 

suppressed in all further equations.  The superscript designates the type of scatter or 

the total cross section.  For further development, the multi-group scatter cross section 

is defined as 

 ( )
( ) ( )

( ),

ˆ ˆ,

ˆ ˆ ,
gg

g

s

E E

g g

E

dE dE E E E

dE E

s

s ¢

¢

D D

¢

D

¢ ¢ ¢ ¢® W ×W F

¢W ×W =
¢ ¢F

ò ò

ò
 (2) 

where ( )E ¢F  is the energy-dependent spectral weighting function. 

 The multi-group cross section can be further discretized in angle into either the 

discrete ordinates approximation or the discrete elements approximation.  For discrete 

elements, discrete ordinates, or multi-group Monte Carlo, the representation of the 

multi-group cross section defined in equation (2) should have the following desirable 

attributes. 

1. Non-negative, but not strictly positive 

2. Account for all incident to secondary energy group pairs for all scatter 

mechanisms 

3. Efficiently computed 

4. Computed within user-specified accuracy 

5. Use a representation that is flexible enough to support Monte Carlo, discrete 

ordinates, and discrete elements multi-group transport methods 

 

 Multi-group Monte Carlo transport is not tested in this work and is presented 

clearly in the reference for MCNP (2).  The discrete elements and the discrete ordinates 

methods are introduced and compared. 
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I.2:  DISCRETE ORDINATES 

 The discrete ordinates method samples the angular flux at given directions and 

uses a quadrature rule to integrate the angular flux to get the scalar flux. 

 The one-dimensional, slab geometry, multi-group discrete ordinates equation is 

 ( ), , , , , , ,
,t

n n g n g n g n n g g n g
n g

d x q
dx

m y s y s y¢ ¢ ¢ ¢
¢ ¢

+ = + å å  (3) 

where the ordinate-to-ordinate, group-to-group scatter cross section is 

 

( ) ( )

( ), , ,

ˆ ˆ,

.
gg

g

s
nn

E E

n n g g

E

dE dE E E E

dE E

s

s ¢

¢

¢
D D

¢ ¢

D

¢ ¢ ¢® W ×W F

=
¢ ¢F

ò ò

ò
 (4) 

 Discrete ordinates conventionally uses the Legendre moments of the cross 

sections, 
, ,l g g
s ¢ , directly by computing the Legendre moments of the angular flux, lf , 

and combining those with the cross section Legendre moments to get the scattering 

source for each ordinate, n. 

 The series of approximate discrete ordinate, angular flux solutions to the multi-

group BTE equation do not converge uniformly.  As more points are added to the 

angular quadrature, the discontinuous solution (in multi-dimensional transport) for the 

angular flux suffers from a Gibbs phenomenon.  Therefore, increasing the number of 

ordinates used in a solution does not guarantee a better answer. 

 The discrete ordinates approximation can also skip energy groups in the down-

scatter arising from an incomplete angular quadrature approximation, called lack of 

angular support.  DelGrande and Mathews (7) gave an example of the lack of angular 

support for discrete ordinates for multi-group scatter cross sections that skipped 109 of 

the next lower-energy groups out of 175 groups.  Lack of angular support can lead to 

computational artifacts where an incorrect scalar flux is calculated.   

I.3:  DISCRETE ELEMENTS 

 The discrete elements method (7) integrates the BTE over discrete angular 

elements with a piece-wise constant representation of the angular flux.  The scalar flux 

is then a sum over each of the angular flux elements.  The resulting, angularly 

discretized, multi-group BTE has the form 
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 DelGrande and Mathews (7) referred to the cells of the Cartesian product of the 

energy and direction meshes as bins.  Thus, 
, , ,n n g g

s ¢ ¢  is the cross section for scatter 

from bin (n',g' ) to bin (n,g ).  The bin-to-bin cross section is defined as 

 

( ) ( )

( ), , ,

ˆ ˆ,

.
n gn g

mech

E E

n n g g
mech n

g

d d dE dE E E E

dE E
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s ¢ ¢DW DW D D

¢ ¢
¢

¢

¢ ¢ ¢ ¢ ¢W W ® W ×W F

=
¢ ¢DW F
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å

ò
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 DelGrande and Mathews (7) showed that the discrete elements approximation 

has several properties that are advantageous compared to the discrete ordinates 

approximation.  The first property is the convergence of the discrete elements 

approximation to the solution of the spatially discretized problem because the 

approximation is equivalent to a Riemann integral for the scalar flux in the limit as 

N ® ¥ .  Therefore, as the angular mesh is refined, the refined answer is more 

accurate than the previous answer.  Conversely, the discrete ordinates angular 

approximation, being based on the spherical harmonics functions, converges only point-

wise and refinements in angle for discrete ordinates may not improve the scalar flux 

solution. 

 The second important property of discrete elements is complete angular support.  

Discrete elements have non-zero cross sections between all allowed energy groups for 
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all possible scatters.  Again conversely, the discrete ordinates approximation need not 

have all possible energy groups included in the cross section representation. 

I.4:  MOTIVATION 

 Multi-group, non-negative, anisotropic scatter cross section methods for 

neutron transport have previously been either too expensive computationally (7) or too 

restrictive in application (2) to effectively implement for real materials and for any 

energy refinement. 

I.5:  GOAL OF THE RESEARCH 

 The goal is to develop, implement, and validate efficient and accurate 

computational methods for converting the Evaluated Nuclear Data Files version B-VI 

(ENDF/B-VI) (18) to multi-group cross sections, without an intermediate truncated 

Legendre expansion, in forms suitable for Monte Carlo, discrete ordinates, and discrete 

elements transport calculations. 

I.6:  SCOPE 

 I include the reactions in the ENDF/B-VI data where the neutrons are both 

incident and secondary particles.  The new methods for calculating multi-group 

anisotropic scattering cross sections are validated and compared to other methods.  The 

efficacy of these cross sections for discrete ordinates and discrete elements one-

dimensional slab geometry, multi-group transport are evaluated. 

I.7:  ASSUMPTIONS AND LIMITATIONS 

 The approximation for Doppler broadening of the cross section used by NJOY 

(13) is assumed to be adequate and I use it here.  Additionally, the R-Matrix, hybrid R-

Matrix, Adler-Adler, and Kalbach-Mann representations of the scatter cross sections 

that are used for some isotopes in ENDF/B-VI are not included.  They are not required 

for the evaluation and demonstrations presented here, and are left for a future effort.  

Utility of these cross sections for multi-group Monte Carlo calculations is self-evident 

and is not demonstrated due to time constraints.  Use of these cross sections with multi-

dimensional discrete ordinates and discrete elements is not demonstrated, also due to 

time constraints. 
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I.8:  APPROACH 

 This work starts with the discrete elements approximation introduced by 

DelGrande and Mathews (7).  They used Monte Carlo numerical quadrature to 

approximate the six dimensional integrals for the bin-to-bin cross sections.  My 

approach is to reduce the computational cost by splitting each six dimensional integral 

in equation (9) into two, three-dimensional integrals and introducing a scattering cross 

section operator.  All the necessary integrals are approximated using deterministic 

numerical quadratures to improve the computational efficiency and accuracy as 

compared to the Monte Carlo numerical estimate.  User-set tolerances are used in the 

deterministic quadratures to ensure the desired accuracy is achieved. 
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II. Numerical Approximations for Scatter Cross Sections 

 This chapter presents numerical approximations for the scatter cross section.  

The conventional truncated Legendre expansions are presented first, followed by the 

Monte Carlo technique used by DelGrande and Mathews (7) to estimate bin-to-bin 

cross sections.  A scatter cross section operator is introduced and is shown to recover 

both the truncated Legendre expansion and the bin-to-bin cross sections.  An element-

to-element conditional probability is introduced for the discrete elements quadrature.  

Piecewise-average group-to-group scatter cross sections are introduced, hereafter 

referred to as PAX cross sections.  Finally, the failure of a point-wise method for 

tabulating the group-to-group cross sections is presented. 

 PAXK is a symbol denoting piecewise-average cross sections with a uniform 

mesh of K (equal-width) intervals of m, ie K pieces.  In a complete, formal usage, one 

could refer to DE12/PAX64 analogously to S12/P11.  But, as long as K is large enough 

that the numerical approximation is negligible, DE12 should suffice. 

II.1:  TRUNCATED LEGENDRE EXPANSIONS 

 Current practice is to use truncated Legendre expansions of the group-to-group 

cross sections in discretized neutron transport.  The angular domain is typically 

approximated with discrete ordinates, as discussed in chapter 1.  These two 

approximations have their own computational artifacts that are important to 

distinguish.  The coefficients for the expansion, or the Legendre moments, are 
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Having tabulated the Legendre moments through order L, the group-to-group cross 

section can be recovered (approximately) as 

 ( ) ( ) ( ), , ,
0

2 1 .
2

L

lg g l g g
l

l Ps m s m¢ ¢
=

+» å  (11) 

This approach has the advantage of compact storage.  However, because the 

Legendre polynomials (for l>0) are not non-negative, the recovered cross sections can 
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be negative and in general have many regions of negativity.  Simply increasing the 

order of the expansion, L, does not necessarily help, and may even exacerbate the 

problem in certain regions. 

 To show some problems with truncated Legendre expansions, I used the 10B 

isotope with various group-to-group pairs and various energy group structures.  The 

first two examples use the 30-energy group structure given in appendix D.2 to show 

that, in practice, it is not possible to select an order, L>0, to use for a material and all 

energy groups pairs and maintain positivity.  The two examples have either negative 

regions for L small, but are strictly positive for larger L, or negative regions for all 

orders of L>0.  All of the expansions for 

 the cross sections, from P0 through P11, are shown on each plot and compared to the 

PAX64 cross section. 
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Figure 1:  Negative regions for low order, L, with group 1 to group 5 
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Figure 2:  Negative regions for all L>0 using group 1 to group 2 

These examples demonstrate that the choice of the truncation order is either 

dependent on the group-to-group pair, as in Figure 1, or cannot be chosen to guarantee 

non-negativity for L>0, as in Figure 2. 

 The truncated Legendre expansion through order L will often develop negative 

regions, as the energy group structure is refined.  The 10B isotope for group 1 to group 

5, shown in Figure 1, is an example of the onset of negative regions as the energy group 

structure is refined.  The example in Figure 1 favors a high-order truncated Legendre 

expansion because the group-to-group cross section is strictly positive and, indeed, all 

expansions greater than P4 are strictly positive.  In the next figures, only the P11 

Legendre expansion is shown and compared to the PAX64 cross sections for a refined 

energy group structure using 117 energy groups, described in appendix D.4.  The 

secondary energy group, group 5, has been refined into four groups of equal width in 

lethargy, with the incident energy group held constant. 
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Figure 3:  10B cross section for group 1 to 14 in 117-group structure 
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Figure 4:  10B cross section for group 1 to 15 in 117-group structure 
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Figure 5:  10B cross section for group 1 to 16 in 117-group structure 
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Figure 6:  10B cross section for group 1 to 17 in 117-group structure 

 The truncated Legendre expansions may perform adequately for the occasional 

combination of material, Legendre order, and energy group structure.  But changing 
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any one of these contributors to a previously adequate combination, for example the 

energy group in the figures above, can lead to regions of negativity in the truncate 

Legendre expansion.  Therefore, although the Legendre moments are efficient to 

generate and use for discretized transport, a truncated Legendre expansion does not 

guarantee the most important quality for transport data—non-negativity. 

 Another property of the group-to-group cross sections is discontinuities in the 

first derivative.  And consequently, the globally smooth truncated Legendre expansions 

do not converge uniformly.  This point-wise convergence of the truncated Legendre 

expansion is another disadvantage of the approximation because increasing the number 

of moments included in the expansion to recover the group-to-group cross sections does 

not guarantee a more accurate solution throughout the entire domain of the expansion. 

 When the two approximations, discrete ordinates and a truncated Legendre 

expansion for the cross section, are combined, several artifacts are obscured.  

Additionally, the combination of the two approximations, neither of which converges 

uniformly, leads to a certain art whereby the order of the Legendre truncation and the 

number of ordinates to use is divined through experience. 

The lack of angular support in the discrete ordinates is obscured because the 

truncated Legendre expansion is non-zero for all points between –1 and 1 except for the 

finite number of nodes.  The combined approximation will have both negative cross 

sections for certain directions and positive cross sections for other directions where the 

group-to-group cross section would be zero.  Thus, the lack of angular support is 

obscured. 

Combining truncated Legendre expansions and discrete ordinates angular 

quadratures can lead to negative scalar fluxes in two ways.  Using the equation to 

calculate the scalar flux 

 ,
1

,
N

g n n g
n
wf y

=
= å  (12) 

having either negative weights, wn, or negative angular fluxes can lead to negative 

scalar fluxes.  The negative angular fluxes can arise from having a discrete ordinates 

quadrature set with an angle between two ordinates that falls in a region of negativity 

in the truncated Legendre expansion for the group-to-group scatter cross section.  This 

ordinate-to-ordinate pair with a negative value for the scatter cross section can lead to a 
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negative scatter source.  If no other source is present in the spatial cell, then the angular 

flux solution will be negative.  Having an angular quadrature set with negative weights 

(although this is always avoided in practice) could also lead to negative scalar fluxes.  

Therefore, I reject discrete ordinates with truncated Legendre expansions for the cross 

section because the two important properties of the BTE can be lost using this 

combination of approximations—non-negative fluxes and non-negative input data. 

II.2:  EVALUATION OF BIN-TO-BIN CROSS SECTIONS BY MULTIDIMENSIONAL MONTE 

CARLO NUMERICAL INTEGRATION 

 DelGrande and Mathews (7) used Monte Carlo numerical integration to 

generate the bin-to-bin cross sections.  This bin-to-bin cross section, restated from 

chapter 1, is 
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 This integral is slow to converge with Monte Carlo and the stochastic 

convergence does not guarantee that all possible bin-to-bin scatters are taken into 

account without using an infinite number of samples.  And, of the bin-to-bin scatters 

that are taken into account, many bin-to-bin pairs will have large stochastic errors due 

to the slow convergence of Monte Carlo integration.  In practice, DelGrande and 

Mathews (7) assumed that scatters with low probability, and consequently large 

stochastic error, would not contribute significantly to the transport result.  Scatters 

with low probability can be the dominant source of particles at some energies in some 

locations of some transport problems.  I present an example of this in a shield 

penetration problem in chapter 6.  I reject the Monte Carlo evaluation of the bin-to-bin 

cross section because of its slow convergence and large stochastic error. 

 To reduce the stochastic error and improve efficiency and accuracy, variance 

reduction techniques were investigated for use in the Monte Carlo evaluation of the bin-

to-bin cross section.  As the various ENDF/B-VI scatter mechanisms were investigated, 

several of the integrations had either analytic solutions or could be deterministically 

integrated.  The replacement of the Monte Carlo integrations using deterministic 
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quadratures or analytic integrations continued following the textbook on variance 

reduction for Monte Carlo by Hammersley, 

It should almost go without saying, if it were not so important to stress it, that 
whenever in the Monte Carlo estimate of a multiple integral we are able to 
perform part of the integration by analytical means, that part should be so 
performed.  As in some other kinds of gambling, it pays to make use of one’s 
knowledge of form.  (9) 
 

Eventually, it was determined that all of the nested integrations in equation (13) could 

be integrated either deterministically or analytically.  The Monte Carlo quadrature used 

by DelGrande and Mathews (7) was abandoned, leading to the methods used in section 

II.4. 

II.3:  SCATTER CROSS SECTION OPERATOR 

 The two methods, bin-to-bin cross section evaluation with Monte Carlo 

integration and truncated Legendre expansions for cross section, can be combined and 

extended using the scatter cross section operator that I define as 
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where g is any real function of m defined everywhere in the interval [-1,1].  
,g g

S ¢  is a 

mapping from the function space which comprises its domain to the real line.  It is a 

linear functional as defined by Stakgold (20). 
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is the conditional probability that a particle, uniformly distributed in 
n¢DW  will scatter 

into nDW  given that it does scatter and that the cosine of the angle of that scatter is m.  

Because this conditional probability is entirely determined by the choice of a partition of 

the unit sphere into elements of solid angle, nDW , ie. by the discrete elements angular 

quadrature set, ( ),n n
h m¢  can be pre-computed and tabulated. 
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The element-to-element conditional probability function has been numerically 

evaluated and tabulated using a Monte Carlo numerical integration.  It has also been 

numerically evaluated using a Gauss-Chebyshev numerical quadrature for the special 

case of one-dimensional transport (14). 

The scatter cross section operator acting on the function ( ),n n
h m¢  is 

( ), ,
S
g g n n
h m¢ ¢ =  
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Rearranging the integrals and performing the integration over the delta distribution 

function introduced in equation (15) gives the equation 
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The bin-to-bin cross section is therefore 
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 The Legendre moments for the truncated Legendre expansion of the scatter 

cross section can be obtained by operating on ( )lP m  with S: 
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which is the equation for generating the Legendre moments of the scatter cross section. 

 Piecewise-average group-to-group scatter cross sections (PAX) can be obtained 

using the scatter cross section operator: 
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where H is the Heaviside function, 0 ,k K= K  and 

 
21 .k
k
K

m = - +  (21) 

 PAX cross sections have several advantages compared to either truncated 

Legendre moments or Monte Carlo evaluation of bin-to-bin cross sections.  They are 

non-negative and converge uniformly.  The PAX cross sections can be used for discrete 

elements, discrete ordinates, or multi-group Monte Carlo transport having been 

calculated once for given:  material, energy group structure, ( )E ¢F , number of pieces, 

and temperature.  In the remaining chapters, I have developed, validated, and 

demonstrated an algorithm to calculate the PAX cross sections using deterministic 

quadratures for the integrations in equation (20).  My algorithms use deterministic 

quadratures to control the quadrature error introduced in approximating equation (20).  

PAX cross sections are accurate for each group-to-group pair because each mechanism 

represented in ENDF/B-VI and each group-to-group pair are calculated independently. 

II.4:  APPLICATIONS OF PIECEWISE-AVERAGE GROUP-TO-GROUP SCATTER CROSS 

SECTIONS 

II.4.1:  Bin-to-Bin Cross Sections 

 PAX cross sections can be used in a very efficient way to approximate the bin-

to-bin cross sections: 
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If the piecewise conditional scattering probabilities 
, ,n n k

h ¢  are pre-computed and stored 

for a particular discrete elements angular quadrature set and choice of K, and similarly, 

the PAX cross sections 
, ,g g k

s ¢  are pre-computed and stored, then the set of 
, , ,n n g g

s ¢ ¢  

values is obtained by the simple tensor contraction in equation (22) with no redundant 

calculations. 
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II.4.2:  Legendre Moments 

 Likewise, a numerical approximation to the Legendre moments of the scatter 

cross section in equation (19) using the PAX cross section is 
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Computational efficiency like that for the bin-to-bin cross sections is achieved for the 

Legendre moments by pre-computing and storing an array of 
( )

,
2 1

2 l k
l P+

 for 

0l L= K  and 1k K= K , for a choice of L and K. 

II.4.3:  Multi-Group Monte Carlo Transport 

 In addition to the fully discretized transport methods, multi-group Monte Carlo 

transport could also use the PAX cross sections by creating a tabular cumulative 

distribution function to invert by table search and interpolation.  The conventional 

method for generating group-to-group cross sections for multi-group Monte Carlo 

creates a strictly positive representation of the scatter cross section from a truncated 

Legendre expansion using a maximum entropy method (5, 11).  Sixteen equally-likely 

intervals of m are then created from this strictly positive representation.  As shown in 

Figure 1, however, the group-to-group cross sections can have several separated 

regions of zero value.  Neither the 16 equal-likelihood intervals nor the strictly positive 

maximum entropy method accurately approximates these zero-value regions.  

Therefore, I expect the PAX cross sections would be more accurate than the 

conventional method for creating group-to-group Monte Carlo cross sections (although 

this research is left for a future effort). 

II.5:  FAILURE OF POINT-WISE EVALUATION OF THE GROUP-TO-GROUP CROSS 

SECTIONS 

 The PAX cross sections are a finite volume approach rather than a numerical 

quadrature based on interpolation between point values, such as composite midpoint: 
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 An attempt was made to evaluate the group-to-group cross sections at a grid of 

points for use within a numerical quadrature based on interpolation.  Point-wise 

evaluation of the group-to-group cross section fails due to poles in ( )',
mech
g g Ls m  for the 

level inelastic scatter mechanism (where Lm  is the cosine of the scatter angle in the 

laboratory frame of reference).  The level inelastic scatter mechanism can have an 

ENDF/B-VI representation in the center of mass frame of reference.  Evaluating the 

cross section in the laboratory frame (the frame of the transport problem) involves 

transforming the distribution function for the cosine of the scatter angle into the 

laboratory frame using 
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L CM
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d
f f

d
m

m m
m

=  (28) 

where f represents the distribution function for the special case of the angular 

distribution described in section III.1.4, and CMm  is the cosine of the scattering angle in 

the center of mass frame of reference.  For the level inelastic scattering mechanism, this 

transformation is infinite as Lm  approaches 1 and the incident energy of the neutron 

approaches the energy deficit.  The result is that the incident energy integration in 

equation (26) fails to converge. 

 Numerically evaluating the PAX cross sections 
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is not a problem because ( ), CME Es m¢®  is well-behaved, and CM

L

d
d
m
m

 does not 

appear because H is a point function, not a distribution function. 
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III.  Implementation 

 The numerical approximations to the group-to-group scatter cross sections 

using the scatter cross section operator defined in chapter 2 have been implemented in a 

computer code.  This computer code uses ENDF/B-VI data to generate the three 

different numerical approximations using the scatter cross section operator.  Although a 

computer code could have been written to implement only the new PAX cross sections, 

I decided to implement a single code that could perform all three different group-to-

group cross section approximations:  Legendre moments, bin-to-bin cross sections, and 

PAX cross sections, because the new PAX cross sections would have to be validated 

against existing codes that only output either bin-to-bin cross sections or Legendre 

moments. 

 My code philosophy balances efficiency, robustness, and code readability.  The 

programming language FORTRAN 90/95 has self-documenting features such as 

extended variable names and modular structure.  Coding decisions were made to 

emphasize readability for the purpose of debugging.  Therefore, the improvements in 

efficiency in the computation are a consequence of the algorithms discussed in this 

chapter and the cross section operator discussed in chapter 2.  Code optimization is left 

to the compiler. 

 This chapter presents several algorithms used in the new computer code.  These 

algorithms use some FORTRAN 90/95 key words.  These key words are summarized 

in appendix B, and are printed in an italic, mono-spaced font, e.g. ElseIf. 

 ENDF/B-VI data is used directly so that no intermediate approximations are 

used prior to calculating the group-to-group cross sections.  DelGrande and Mathews 

(7) used an intermediate output from the NJOY code called A Compact ENDF (ACE) 

file (13).  The NJOY code uses approximations to generate the ACE files.  These 

approximations introduce errors that cannot be controlled by the user of the new 

computer code.  NJOY has its own residual constraints from earlier assumptions about 

computational power and resources because it was developed during the 1970s. 

III.1:  CASES FOR SECONDARY ENERGY AND ANGULAR DISTRIBUTIONS 

 In general, ENDF/B-VI represents scatter cross sections as 
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 ( ) ( ) ( ) ( ), , ,s
jointE E E E f E Es m s n m¢ ¢ ¢ ¢® =  (30) 

where the joint distribution is normalized as 

 ( ), 1,jointdE d f E Em m ¢ =ò ò  (31) 

and the multiplicity function, ( )En ¢ , represents the number of secondary neutrons 

created as a function of the incident energy.  The multiplicity function is often used for 

fissionable isotopes but can also be used to represent the number of secondary neutrons 

in reactions such as (n, 2n).  With the inclusion of the multiplicity function in the scatter 

cross section by ENDF/B-VI, the fission cross section is a mechanism to be used within 

the scatter cross section operator. 

 The joint distribution can be expressed in three ways, 
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 (32) 

Each of these three cases, have approximations of f and g, and those approximations are 

called laws by ENDF/B-VI notation. Elastic and level-inelastic scatter are treated 

together as a special case. 

 All three of these cases can be represented in ENDF/B-VI in either the center of 

mass reference frame or the laboratory reference frame.  If the ENDF/B-VI data is 

represented in the center of mass reference frame, then the scatter cross section 

operator is transformed from the laboratory reference frame to the center of mass 

reference frame.  Otherwise, if the ENDF/B-VI data is represented in the laboratory 

reference frame, then the scatter cross section operator is not transformed. 

 The cross section function, ( )Es ¢ , may be quite smooth over large energy 

ranges or it can vary rapidly in regions where resonances are present for a given 

material.  The rapidly varying resonance regions are represented using parameterized 

functions with tabulated parameters.  Other regions are represented by interpolation 

functions using tabulated values. 

 The scatter cross section operator is restated for convenience with the above 

approximation of the continuous scatter cross section from ENDF/B-VI as 
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The explicit nesting of the integrals in the scatter cross section operator is used to show 

the different dependencies of the cases. 

 Three cases for the joint distribution are presented.  Then, elastic and level 

inelastic scatter are presented as an important special case.  The mechanisms that 

typically use each of the cases are presented.  The actual ENDF/B-VI laws are stated in 

appendix F. 

III.1.1:  Separable Energy and Angular Distributions 

 The assumption in the first case is the separability of the secondary energy 

distribution and the scatter angle distribution.  It is 

 ( ) ( ) ( ), .jointf E E f E g E Em m¢ ¢ ¢=  (34) 

 This distribution is often used for representations such as fission or (n, 2n) 

reactions.  This representation is only chosen when the reactions produce at least three 

secondary particles, ie. two neutrons and a remaining nucleus.  This three-body problem 

results in a weak dependence between the angular distribution and the secondary 

energy distribution of the secondary particles.  The ENDF/B-VI evaluators can then 

reasonably separate the joint distribution into two separate distributions. 

 With separable energy and angular distributions, the integrals in the scatter 

cross section operator can be rearranged as 
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 Calculating a mechanism with a separable energy and angular distribution is the 

most efficient case because the integration requires only two-level nesting of 
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quadratures.  Section III.4.1 presents the algorithm I use to calculate the two innermost 

integrations. 

III.1.2:  Angular Distribution Dependent on Secondary Energy  

 The second case has an angular distribution dependent on the secondary energy.  

This case is 

 ( ) ( ) ( ), , .jointf E E g E E f E Em m¢ ¢ ¢=  (36) 

 This case can be used for any (n, n+product) reactions, where the product can be 

a neutron, multiple neutrons, a proton, an alpha particle, etc.  It is used when the 

secondary energy and the angular distribution are more strongly correlated.  It can also 

be used when the ENDF/B-VI evaluators have so little information that only a rough 

assumption about the secondary energy and angular distributions can be made.  The 

rough approximation to the angular and energy correlation may be due to the large 

number of products produced during the reaction.  For both possibilities, the second 

case can represent the appropriate ENDF/B-VI laws.  The integrals in the scatter cross 

section operator can be rearranged as 
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 This case takes the most computational time due to the three-level nesting of the 

quadrature. 

III.1.3:  Secondary Energy Distribution Dependent on Scatter Angle 

 The last case is used for only one law in ENDF/B-VI:  the laboratory angle-

energy law.  This case is 

 ( ) ( ) ( ), , .jointf E E f E g E Em m m¢ ¢ ¢=  (38) 

 In rare circumstances, the ENDF/B-VI evaluators can only accurately 

determine the secondary energy of the products of the reaction as a function of angle, as 

in a laboratory experiment.  Then, the secondary energy distribution is clearly 

dependent on the scatter angle and this appropriate law is chosen. 
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 The use of the laboratory angle-energy law in ENDF/B-VI is so rare that I did 

not find an example that used it.  Nevertheless, my code does support this option by 

rearranging the integrals in the scatter cross section operator as 
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 Presumably, this is also computationally expensive because of the three-level 

nesting of the quadrature. 

III.1.4:  Elastic and Level Inelastic Scatter Cases 

 The special case for the third case is elastic and level inelastic scatter 

mechanisms.  In these mechanisms, the secondary energy of the neutron is uniquely 

determined by the incident energy and the angle of scatter, with the formula 

 ( ) ( ) ( )( ), , ,sjointf E E f E E E Em m d m¢ ¢ ¢= -  (40) 

where Es is determined by conservation of energy and momentum as 
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and where Q is “the excess of kinetic energy of the product particles over that of the 

original particles” (11), and A is the ratio of the mass of the target nucleus to the mass of 

the neutron. 

 The integrals in the scatter cross section operator can be rearranged as 
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where the secondary energy group boundaries, Eg and Eg-1, are included in the bounds of 

the integration with respect to m.  The bounds can be obtained from equation (41) 

given E ¢, E, and Q. 
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 The special case of elastic and level inelastic scatter is the most frequently used 

and typically contributes the most to the group-to-group scatter cross sections.  

Although finding the limits of integration of the cosine of the scattering angle takes 

extra computational time, the overall computational effort is comparable to the first case 

(section III.1.1) of separable energy and angular distributions.  Additionally, because the 

neutron can always scatter elastically at any incident energy, this special case is always 

used for each incident energy group. 

III.2:  QUADRATURES 

 Two adaptive quadratures, Simpson and Gauss-Simpson, were used to perform 

the needed nested integrations.  Both adaptive quadratures used FORTRAN 90/95 

recursion to subdivide intervals as necessary to achieve user-set error tolerances.  Two 

other quadrature methods were also considered, but were discarded—Romberg 

integration (4) and IMSL (5) adaptive integration routines. 

III.2.1:  Characteristics of the Integrand 

 Section III.1 presented four cases of nested integrations.  Each of the nested 

integrations uses data from ENDF/B-VI.  The data from ENDF/B-VI is associated 

with laws that describe the use of either tabulated data or tabulated parameters for 

reconstruction of the data.  For either type of ENDF/B-VI data, the characteristics of 

the integrands in section III.1 are similar: 

1. Finite number of discontinuities in the integrand 

2. Finite number of discontinuities in the first derivative of the integrand 

3. Localized, non-polynomial behavior 

4. Finely partitioned domain to handle the characteristics in #1 and #2 above 

 A quadrature with a robust, adequate, and practical implementation was needed 

to address the characteristics of the integrand.  The discontinuities in the integrand and 

the first derivative of the integrand require a relatively fine initial mesh for any of the 

integrations described in section III.1.  With a relatively fine initial mesh, a modest 

order numerical quadrature is sufficient.  The localized, non-polynomial behavior 

requires an adaptive method.  An open quadrature method does not evaluate the 

integrand at the endpoints of the domain, but a closed quadrature method uses at least 

the endpoints of the domain of integration.  And, to avoid data and code complexity to 
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use only a closed method, both open and closed methods were used when appropriate.  

An algorithm of modest order, adaptive, and with either open or closed methods 

addressed each of the characteristics of the integrand. 

III.2.2:  Romberg Integration 

The first numerical quadrature discarded was a Romberg automatic integration, 

given in numerical methods texts such as Burden and Faires (4).  The Romberg 

numerical method was discarded for two reasons, global error testing and closed end-

point method.  The Romberg method uses a global convergence test.  I used the relative 

error  

 ( )
( )

, .
2rel

x yx y
x y

e -=
+

 (43) 

If the entire integration did not pass the relative error tolerance, then another Romberg 

iteration was performed.  Because each Romberg iteration is twice as expensive as the 

previous iteration, this method was slower to converge than the adaptive quadrature 

methods used.  In practice, the global error in the integration could be dominated by 

only one or two sub-domain pieces.  Despite this, Romberg subdivides all the 

subintervals. 

Romberg integration is a succession of composite trapezoid quadratures with an 

Aitken extrapolation for the next approximation to the integral.  The trapezoid 

numerical quadrature is a closed quadrature, which is not useful for several of the nested 

quadratures required in evaluating the integrals in section III.1.  One could use a 

Romberg scheme based on composite midpoint, which is an open rule, but it is even less 

efficient.  In order to reuse function evaluations, it requires 3n evaluations for n levels of 

subdivision; composite trapezoid requires only 2n. 

III.2.3:  IMSL Adaptive Integration Routines 

 IMSL’s adaptive quadratures (5) were not used for two reasons.  The first reason 

is that they use Gauss-Kronrod quadrature in each subinterval; thus the number of 

points used was excessive—17 points in each subinterval.  Usually, the partitioning of 

the domain to account for discontinuities was sufficient for the relative error tolerance 

to be passed with a far more modest number of points, such as those used in either 

Simpson or Gauss-Simpson adaptive methods. 
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 The second reason that the IMSL routines were not used is the many required 

different subroutines and variations.  The IMSL integration routines are written in 

FORTRAN 77 and pre-compiled, and consequently are not recursive.  Without 

recursion, the same IMSL library routine cannot be used for nested integrals.  

Therefore, the IMSL routines were discarded due to a lack of flexibility and excessive 

number of quadrature points. 

III.2.4:  Adaptive Simpson Integration 

 The limits of integration and the integrand are assumed to be separate 

subroutines to either adaptive integration quadrature.  Given the limits of integration, 

any places in the domain where the integrand is discontinuous or its first derivative is 

discontinuous must be found and tabulated.  The initial tabulation is used as a mesh for 

the adaptive quadratures.  The adaptive quadratures then integrate each of the mesh 

pieces individually.  Each of the adaptive methods performs two quadratures on the 

subinterval.  If the two quadratures pass a relative error test for convergence, then the 

integration on the subinterval is complete; otherwise, the subinterval is subdivided and 

each sub-piece is integrated and tested for convergence individually. 

 The adaptive Simpson routine (Algorithm 1) is logically correct.  In the code, it 

is implemented with additional arguments in order to avoid redundant function 

evaluations and quadrature calculations.  The algorithm for the adaptive Simpson 

method is covered first because the adaptive Simpson method is embedded in the 

adaptive Gauss-Simpson method. 

Algorithm 1:  Adaptive Simpson 

Input: 0 1,x x  

Output:  Q 

01x x xD = -  

( ) ( ) ( )( )0 0 0 14 2 3Q f x f x x f x x= + + D + D  

( ) ( ) ( )( )0 0 04 4 1 2 6LQ f x f x x f x x x= + + D + + D D  

( ) ( ) ( )( )0 0 12 4 3 4 6RQ f x x f x x f x x= + D + + D + D  

1 R LQ Q Q= +  

If( ( )0 01 12 relQ Q Q Qe- £ +  )Then 



 28

 1Q Q=  
Else

 Left integral = Adaptive Simpson ( 0 1
0 0,

2
x x

x x
+

+ ) 

 Right integral = Adaptive Simpson ( 0 1
0 1,

2
x x

x x
+

+ ) 

 Q = Left integral + right integral 
End If

 

III.2.5:  Adaptive Gauss-Simpson Integration 

 The adaptive Gauss-Simpson initially uses a two point Gauss-Legendre 

quadrature.  If the relative error tolerance is not passed, then the Gauss subroutine calls 

two different Gauss-Simpson subroutines for each portion of the integrand. 

Algorithm 2:  Adaptive Gauss 

Input: 0 1,x x  

Output:  Q 
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If( ( )0 01 12 relQ Q Q Qe- £ +  )Then 

 1Q Q=  
Else
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 Left integral = Adaptive Left Gauss-Simpson ( 0 1
0 0, ,

2 L
x x

x x Q
+

+ ) 

 Right integral = Adaptive Right Gauss-Simpson ( 0 1
0 1, ,

2 R
x x

x x Q
+

+ ) 

 Q = Left integral + right integral 
End If

Algorithm 3:  Adaptive Left Gauss-Simpson 

Input: 0 1, , prevx x Q  

Output:  Q 
01

4
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1 midx x xD = -  

( ) ( ) ( )( )14 2 3R mid midQ f x f x x f x x= + + D + D  

1 R LQ Q Q= +  

If( ( )0 01 12 relQ Q Q Qe- £ +  )Then 

 1Q Q=  
Else

 Left integral = Adaptive Left Gauss-Simpson ( 0 1
0 0, ,

2 L
x x

x x Q
+

+ ) 

 Right integral = Adaptive Simpson ( 0 1
0 1,

2
x x

x x
+

+ ) 

 Q = Left integral + right integral 
End If

Algorithm 4:  Adaptive Right Gauss-Simpson 

Input: 0 1, , prevx x Q  

Output:  Q 

0 1
2mid

x x
x

+
=  

0midx x xD = -  

( ) ( ) ( )( )0 14 2 3L midQ f x f x x f x x= + + D + D  
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-
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1 R LQ Q Q= +  

If( ( )0 01 12 relQ Q Q Qe- £ +  )Then 

 1Q Q=  
Else

 Left integral = Adaptive Simpson ( 0 1
0 0,

2
x x

x x
+

+ ) 

 Right integral = Adaptive Right Gauss-Simpson ( 0 1
0 1, ,

2 R
x x

x x Q
+

+ ) 

 Q = Left integral + right integral 
End If

 

 The adaptive Simpson integration is more efficient than the adaptive Gauss-

Simpson because all of the points in the integration can be reused if additional 

subdivision is needed.  This efficiency can improve the runtime of the calculation by 

approximately a factor of two. 

 The adaptive Gauss-Simpson integration method is used because it is an open 

rule.  A two-point Gauss-Legendre quadrature method was used with composite 

Simpson because both methods have error ( )4xDO .  Having more points in the Gauss-

Legendre method would decrease efficiency because the points are discarded upon 

recursion. 

III.3:  MAIN PROGRAM AND INCIDENT ENERGY INTEGRATION 

 The portions of the algorithm that do not involve the scatter cross section 

operator reside in the main program.  These include file input/output, looping through 

the incident energy groups, looping through the different mechanisms, and looping 

through the secondary energy groups.  In the loop for the secondary energy group, a 

subroutine is called to perform the outer-most integral, the incident energy integral, for 

the scatter cross section operator for all four cases presented in section III.1 

Algorithm 5:  Main program 

Call GetENDFData 
Do g' = 1, G (number of energy groups) 
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 Do mech = 1, M (number of mechanisms) 
  If( mechanism does not occur )Cycle 
  Call GetLimits( glow, ghigh ) 
  Do  g = glow, ghigh 
   Call IncidentEnergy( integral value(g, mech) ) 
  End Do
  Accumulate the sum of the integrals 
 End Do

Call OutputIntegral(g'-to-g integral ) 
End Do

 

 Because the incident energy integration has no discontinuities in the integrand, 

it uses the recursive, adaptive Simpson method detailed in section III.2 for its efficiency.  

The incident energy mesh is constructed with special care because of the many places 

within the limits of integration for the incident energy group that its integrand, has, or 

could have, discontinuities in the first derivative.  These discontinuities arise from the 

following places: 

1. User-specified boundaries in the energy group structure 

2. Tabulation of ( )Es ¢  from ENDF 

3. Tabulation of ( )En ¢  from ENDF 

4. Tabulation of ( )E ¢F  from user-set parameters 

5. Tabulation of ( )f Em ¢  or ( ),f E Em ¢  from ENDF 

6. Discontinuous tabulation of either PAX cross sections or direct calculation of 

bin-to-bin cross sections with ( ),n n
h m¢  when using elastic or level-inelastic 

scatter mechanisms because of implicit secondary energy group dependence 

7. Tabulation of either ( )g E E ¢  or ( ),g E E m¢  from ENDF 

 Given an incident energy mesh with mesh points at all of the discontinuities in 

the first derivative, the algorithm for the incident energy mesh calls the recursive, 

adaptive Simpson method given in Algorithm 1 above for each mesh interval. 
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III.4:  JOINT ANGULAR AND SECONDARY ENERGY DISTRIBUTION ALGORITHMS 

 The joint angular and secondary energy distributions use the three cases and the 

special case given in section III.1.  The four cases use slightly different algorithms and I 

present them individually. 

III.4.1:  Separable Angular and Secondary Energy Distribution 

 The first case that is detailed in section III.1.1, separable angular and secondary 

energy distributions, uses two separate (as opposed to nested) integrations.  The 

separable energy integration is performed using closed-form solutions for integrals of 

the functions using the tabulated parameters from ENDF/B-VI.  The separable angular 

distribution is performed using the adaptive Gauss-Simpson method presented in 

section III.2 above.  The PAX cross section, equation (20), has discontinuities in the 

cosine of the scatter angle mesh from the two Heaviside functions.  Because I chose to 

include all of the different approximations for generating the group-to-group scatter 

cross sections from the cross section operator in one computer code, these 

discontinuities require use of the adaptive Gauss-Simpson method. 

III.4.2:  Angular Distribution Dependent on Secondary Energy 

 The second case presented in section III.1.2 has an angular distribution 

dependent on the secondary energy.  This algorithm uses two nested, adaptive Gauss-

Simpson calls.  The secondary energy integration can have discontinuities in the 

tabulation for the secondary energy.  Therefore, the open adaptive Gauss-Simpson 

method was an obvious choice.  The integration for the angular distribution used the 

Gauss-Simpson method for the same reason as given in the separable case. 

III.4.3:  Secondary Energy Distribution Dependent on Scatter Angle 

 The third case presented in section III.1.3, in which the secondary energy 

distribution is dependent on the scatter angle, uses different integration methods for the 

outer and inner integrals.  The outer integral, for the angular distribution, uses an 

adaptive Gauss-Simpson method as given in the separable case.  The inner integral uses 

closed-form solutions for the integrations of the interpolating functions using the 

tabulated values of the secondary energy given by the ENDF/B-VI, laboratory angle-

energy law. 
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III.4.4:  Elastic and Level Inelastic Scatter 

 The elastic and level inelastic scatter special case described in section III.1.4 uses 

the adaptive Gauss-Simpson method for the same reason given in section III.4.1 for the 

separable angular distribution.  There is no secondary energy group integration given 

in equation (42).  To account for the secondary energy group, a subroutine to calculate 

the cosine of the scatter angle limits of integration dependent on the secondary energy 

group is added prior to the adaptive Gauss-Simpson integration. 

 To handle the laboratory frame transformation to the center of mass frame, an 

additional subroutine was required to transform the boundaries of the mesh used for the 

cosine of the scatter angle for either the PAX cross sections in equation (20) or for 

direct evaluation of the bin-to-bin cross sections in equation (17).  A point-wise 

transformation was also required for the evaluation of the Legendre moments in 

equation (19).  The same equation used for the transformation can be derived from 

equation (41) and is described in detail in the NJOY documentation (13). 

III.5:  DATA STRUCTURE 

 ENDF/B-VI allows cross-section evaluators to store data in any of numerous 

different ways.  Compromises between memory requirements and efficiency in accessing 

the data within my code required some ingenuity and the use of FORTRAN 90/95 

allocatable arrays for dynamic memory usage. 

 These arrays are allocated at runtime to store the largest extent of each of the 

dimensions needed for a mechanism’s distribution.  For example 10B has several level 

inelastic scatter mechanisms available as well as an elastic scatter mechanism.  Each of 

the mechanisms has potentially different data storage and representation.  Therefore, I 

used derived types  to allow for all of the available choices for the angular 

distributions.  This derived type  contains the integer flags necessary to identify 

the appropriate representation (one of the ENDF/B-VI laws listed in appendix F).  

Then, an array is allocated for each angular distribution representation to the largest 

extent required by any of the mechanisms.  Finally, the data is read from the input 

ENDF/B-VI file and filled into the appropriate representation array.  One of the 

consequences of this approach is that the code must allocate extra integer arrays that 

contain the boundaries for each of the data arrays.  To demonstrate how the arrays are 
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allocated and how the data is read into these arrays, a sample of a pseudo-code for one 

type of storage is provided in Algorithm 6. 

Algorithm 6:  Pseudo-code for reading and storing ENDF/B-VI data 

Open( ENDF file ) 
Do
 Read( Character String, line number ) 
 If( line number == exit line number )Exit 
End Do
Do
 Read( mechanism number, ENDF law ) 
 If( mechanism number /= valid mechanism number )Cycle 
 Select Case( ENDF law ) 
 Case( Legendre expansion ) 
  Read( number of energy mesh, number of Legendre moments ) 
  max number energy mesh = Max( new number, previous max ) 
  max number moments = Max( new number, previous max ) 
 End Case
 Read( next section number ) 
 If( next section number /= this section number )Exit 
End Do
Close( ENDF file ) 
Allocate( energy data(max incident mesh) ) 
Allocate( moment data(0:max number moments, max incident mesh) ) 
Open( ENDF file ) 
Do
 Read( mechanism number, ENDF law ) 
 If( mechanism number /= valid mechanism number )Cycle 
 Select Case( ENDF law ) 
 Case( Legendre expansion ) 
  Read( number of energy mesh, number of Legendre moments ) 
  Do i = 1, number of energy mesh 
   Read( energy data(i) ) 
   Read( moment data(0:number of Legendre moments) ) 
  End Do
 End Case
 Read( next section number ) 
 If( next section number /= this section number )Exit 
End Do
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IV.  Cross Section Code Validation 

 I validated the cross section code by comparing its output with the results of two 

other codes:  NJOY and DelGrande’s Monte Carlo discrete elements cross section 

codes.  Several online ENDF/B-VI plotting sites were also used for initial validation 

checks (19, 21).  NJOY was used to validate the accurate evaluation of the secondary 

energy and angular distributions as well as the nested integrations.  The online sites 

were used to directly validate the values produced by my code of the cross section data 

recreated from ENDF/B-VI.  Comparing the new computer code to DelGrande’s Monte 

Carlo discrete elements code validated the discrete elements approximation. 

IV.1:  DIRECT VALIDATION 

 Validation began by confirming that the input data had been read correctly from 

the ENDF/B-VI file.  After checking the input, it was important to verify that the data 

was being faithfully represented and recreated.  When dealing with the many different 

interpolation functions, ENDF/B-VI laws, and different reference frames, the faithful 

reconstruction of the cross section curves was essential. 

 Direct validation of the cross section curves involved examining and comparing 

many different plots for many different isotopes and mechanisms.  The plots were then 

superimposed to determine whether or not the curves generated by my program 

matched those at respected online sites such as the ENDF/B-VI site (19) or the T2-

Nuclear site (21), which is a site run by the group within the Los Alamos national 

laboratory that maintains and distributes the NJOY code. 

 All of the different resonance region parameterizations with Doppler broadening 

of the cross section and the tabulated cross sections were checked.  The joint 

angular/secondary energy distributions were left to the NJOY validation portion.  

Figure 7 shows an example of one of the validations performed using the ENDF/B-VI 

site (19).  The curve is the elastic scatter cross section of 56Fe using the Reich-Moore 

resonance parameterization, which is one of the most complicated cross section curves 

represented in ENDF/B-VI files.  To the limit of the benchmark data, this calculation is 

correct. 
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Figure 7:  Comparison of download data to reconstructed data 
56Fe elastic scatter cross section reconstruction of Reich-Moore 
resonance region parameterization broadened to 300K 

IV.2:  NJOY VALIDATION 

 Although the direct validation of the cross section curves is a powerful tool, it 

cannot validate everything in my new computer code.  The validation of the 

reconstruction and integration of the angular and secondary energy distributions, as 

well as the integration of the cross section, used the NJOY code.  Two methods using 

NJOY were employed—the development environment that contains a powerful 

debugging tool, and the output of the NJOY calculation. 

IV.2.1:  NJOY Validation Using the Development Environment 

 The Compaq Visual FORTRAN development environment (5) has two 

debugging features that I used for validation.  Both debugging tools are used while 

performing step debugging, a runtime environment that allows a programmer to step 
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through the execution of a computer code line by line.  The first feature allows the 

programmer to view the value of any variable while step debugging.  The second 

feature allows the programmer to change the value of any variable during step 

debugging.  Using these two tools, it was possible to enter a specific value for any of the 

different distributions in the new computer code.  The calculated result of using the 

entered value could then be compared to the NJOY calculated result while both 

computer codes were running in a step debugging mode.  Not only did this greatly aid 

the debugging of the new computer code; it also validated the new computer code when 

the two results matched within the single-precision NJOY uses for calculations.  The 

interpolation of the tabulated data and other intermediate values were validated using 

these two tools. 

IV.2.2:  NJOY Validation Using Legendre Moments 

 The second validation method used the mechanism-specific Legendre moments 

output that is generated by NJOY.  These NJOY Legendre moments could then be 

compared to two different computations of Legendre moments by the new computer 

code.  The new computer code matched the Legendre moments from NJOY to the 

practical extent possible. 

 NJOY has several behaviors that make the comparisons difficult.  The first 

NJOY behavior is the elimination of the output when the value of the cross section 

drops below 10-9 barns.  This behavior creates a difficulty because some mechanism and 

group-to-group pairs have values below the NJOY cutoff.  These could not be checked.  

Therefore, I was forced to rely upon the previous validations of the cross section curves 

and interpolations, and the validation of the group-to-group pairs above the cutoff. 

 Another behavior that makes comparison to NJOY difficult is limited error 

control within the program.  For example, NJOY will perform some integrations using 

a pre-selected (hard coded) number of intervals for a composite quadrature.  The code 

does not refine that mesh and compare quadrature results to test for convergence, nor 

does it use any other error control scheme.  If the cross section involved is dominated 

by other mechanisms, this can be a practical approach, but it does not provide a reliable 

benchmark.  In such cases, the NJOY result may only be good to one or two digits (out 

of the four digits printed). 
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 The new computer code was designed to calculate and output the Legendre 

moments for comparison to the NJOY Legendre moments.  The comparisons between 

NJOY and the direct calculations for the Legendre moments from my code were 

favorable and matched to within 0.1%.  I considered this level of accuracy to validate the 

integration routines and the joint distributions that generate the Legendre moments.  

Table 1 presents a summary of an example isotope, mechanism, and energy group-to-

group pair. 

 Validating the integration routines that generate the Legendre moments is a 

necessary condition for the PAX cross sections to be correct.  But, I did not consider it 

sufficient.  The approximation to the Legendre moments using PAX cross sections from 

equation (24) presented in chapter 2, were also generated and compared to the NJOY 

moments. 

Method of Generation 0th moment 1st moment 2nd moment 3rd moment 

NJOY 0.02432 -0.01391 0.002504 0.001285 

New code using direct 
calculation 

0.024317 -0.013913 0.0025041 0.0012850 

New code with PAX64 
approximation 

0.024317 -0.013905 0.0024859 0.0013161 

Table 1:  Comparison of Legendre moments 
10B elastic scatter cross sections (in barns) for group 1 to 4 using LANL-
30 defined in appendix D 

 All of the ENDF/B-VI representations were examined with results similar to 

this example.  I consider the new computer code, including the new PAX cross section 

approximation, to have been successfully validated using the combination of the 

different comparisons. 

IV.3:  DISCRETE ELEMENTS VALIDATION 

 Although the PAX cross sections were validated by the investigation using 

NJOY, the PAX cross section used to generate bin-to-bin cross sections were also 

validated.  I chose DelGrande’s Monte Carlo cross section code (7) to use as a 

benchmark for bin-to-bin cross sections because it has been previously validated and 

published. 
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 The element-to-element conditional probability, ( ),n n
h m¢ , was also validated 

directly by comparing the discrete quadrature one-dimensional code output to Monte 

Carlo estimates of ( ),n n
h m¢  for all ( ),n n¢  pairs of a slab-geometry DE8 angular 

quadrature partition of the sphere (14).  These agreed within the estimated uncertainties 

of the Monte Carlo calculations. 

 The approximation of the bin-to-bin cross sections using PAX cross sections 

presented in equation (22) agreed within the estimated uncertainties of DelGrande’s 

Monte Carlo cross section code.  I consider the bin-to-bin cross sections calculated 

using the PAX cross sections to be valid using the combination of the results from the 

NJOY comparison, the comparison to the DelGrande’s Monte Carlo cross section code, 

and the direct comparison of the element-to-element conditional probability function to 

Monte Carlo calculations. 
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V.  Performance of the PAX Cross Section Code  

 The performance scaling and the typical memory requirements for the PAX 

cross section portion of the scatter cross section code are presented.  The code is 

examined to determine how the computer runtime scales with respect to:  the number of 

energy groups, the number of tabulated PAX cross section points, and the desired 

accuracy of the calculation. 

 The runtime scaling power, p, can be empirically estimated from two 

computational runs with a parameter changing from N1 to N2 and runtimes 1tD  and 

2tD  

 2 2

1 1
,

p
N t
N t

æ ö D÷ç ÷ç =÷ç ÷÷ç Dçè ø
 (44) 

hence, 
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 All of the examples in the following sections, with the exception of the 

investigated parameter, have been run with:  the 30 group structure presented in 

appendix D, a material temperature of 300K, a relative error tolerance of 0.001, and a 

PAX mesh of 64 equal-width pieces.  The computations were run on a computer with a 

1 GHz processor and 512 MB of RAM.  The examples are typical of other testing and 

evaluation performed. 

V.1:  SCALING WITH THE NUMBER OF ENERGY GROUPS 

 The runtime scales as approximately linear with the number of energy groups.  

As the number of groups increases from G1 to G2, the ratio of the non-zero group-to-

group pairs, 1
pairsN  to 2

pairsN , in the PAX cross section should vary as 
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This does not result in quadratic scaling of the amount of computational effort because 

the amount of computation required for each group-to-group pair should be 
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proportional to gED , hence, inversely proportional to the number of energy groups, G.  

The offset in the computational effort for each group-to-group pair combined with the 

increase in the number of non-zero group-to-group pairs results in the observed 

approximately-linear scaling  

 As an example, cross sections of the isotope 56Fe were generated for 30, 59, and 

117 groups using the new energy groups listed in appendix D.  This isotope is 

representative because it has a parameterized resonance region.  Additionally, the 56Fe 

isotope has many different scatter mechanisms.  Therefore, the runtime scaling is a good 

average over many different effects. 

Number of Groups Computational Time Scaling Power (p) 

30 3246 seconds  

59 5193 seconds 0.69 

117 10079 seconds 0.97 

Figure 8:  Scaling of code runtime with the number of energy groups 

 

V.2:  SCALING WITH THE NUMBER OF PAX CROSS SECTION PIECES 

 The scaling with the number PAXK cross section pieces, or scaling with K, was 

approximately quadratic.  An increase in K linearly increases the computational cost of 

the angular integration and also linearly increases the computational cost of the incident 

energy integration.  Nested, the two linear increases are quadratic scaling. 

 As an example, cross sections for 1
1H  were generated with K equal to 64, 128, 

and 256.  This isotope is a good example of runtime scaling as K increases because 

elastic scatter is the only mechanism available and elastic scatter is present for all 

materials and all incident energy groups. 

Number of Points Computational Time Scaling Power (p) 

64 6 seconds  

128 24 seconds 2.0 

256 117 seconds 2.3 

Figure 9:  Scaling of the code runtime with PAX cross section pieces 
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V.3:  IMPACT OF RELATIVE ERROR TOLERANCE ON RUNTIME 

 There is little increase in the runtime with lower relative tolerances.  I 

investigated relative tolerances only as low as 0.0001 because the ENDF/B-VI data 

upon which the PAX cross sections depend are accurate to at most 4 digits.  When the 

integrations are performed for the PAX cross sections, the relative error in the 

integrations usually met the tightest, 0.0001, relative tolerance.  Therefore, relaxing the 

relative tolerance does not improve runtime drastically because often no extra recursion 

was required to pass the stricter tolerance. 

 As an example, cross sections of the isotope 56Fe were generated with relative 

tolerance settings of 0.01, 0.001, and 0.0001.  

Relative Error Tolerance Computational Time 

0.01 3014 seconds 

0.001 3245 seconds 

0.0001 4395 seconds 

Figure 10:  Runtime versus relative error tolerance 

V.4:  MEMORY REQUIREMENTS 

 The memory requirements for the PAX cross section code were quite modest.  

The most memory required for any of the materials and user-set input data was 40 MB 

of RAM.  Typically, only 10 MB were needed.  For practical work, the memory 

requirements are not limiting; the use of the dynamically allocated arrays presented in 

chapter 3 was successful. 
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VI.  1-D Transport Comparisons for Multi-Group Cross Section 

Approximations 

 This chapter presents two test problems to demonstrate the improvement of 

using the discrete elements approximation with PAX cross sections over the discrete 

ordinates approximation with truncated Legendre expansions for the group-to-group 

scatter cross sections.  One-dimensional slab geometry transport favors the discrete 

ordinates approximation in comparison to the discrete elements approximation.  The 

discrete ordinates Gauss-Legendre angular quadrature should approximate the angular 

flux solution better than the discrete elements composite midpoint rule because the 

solution for ( ),g xy m  is continuous in x and m, except at 0m= , given incident fluxes 

and emission sources that are continuous in m.  Therefore, if discrete elements with 

PAX cross sections produces fluxes that are at least as good as those produced by 

discrete ordinates with truncated Legendre group-to-group scatter cross sections, then 

I anticipate that this will also be true in two- and three-dimensional transport, which 

favor the discrete elements approximation because ( )ˆ,g ry Wr
 need not be continuous in 

rr  and Ŵ. 

 The two test problems use many of the same parameters for the cross sections 

and the transport. 

1. Cross sections are Doppler broadened to 300 K. 

2. 0.001 relative tolerance for piecewise average, group cross sections 

3. 51.0 10-´  relative tolerance for transport convergence 

4. PAX64 cross sections 

5. Symmetry boundary at left end 

6. Vacuum boundary at right end 

7. Energy-weight function, ( ) 1E EF =  

8. Isotropic source in energy group 1 of the new 30, 59, and 117 group structures 

defined in appendix D 
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 The source emits only in group 1 so that the computational artifacts of the 

anisotropic down-scatter into the lower energy groups would not be obscured by a 

source in those groups. 

VI.1:  TEST PROBLEM 1:  THIN SOURCE EMBEDDED IN WATER 

 The first test problem has water throughout the entire problem with a 

symmetry boundary on the left and a vacuum boundary on the right.  The source is 

located in a thin region of water on the left side of the problem emitting isotropically in 

energy group 1.  The dimensions in the figure below are in centimeters. 

Source

0.0 0.1 20.1

Symmetry Vacuum

 

Figure 11:  Thin source embedded in water 

 Three energy groups out of the 30-group structure were chosen for comparison 

in this problem.  The groups were chosen to demonstrate the differences between the 

anisotropic and isotropic computations as well as the differences between the discrete 

ordinates and discrete elements computations.  Energy group 1 was chosen to show the 

impact of the anisotropy when the scalar flux solution is dominated by the removal 

cross section and streaming.  Energy group 2 was chosen to show the impact of the 

anisotropy of the down-scatter source.  Finally, energy group 28 was chosen to show 

that, although the anisotropy of the higher energy groups is important to the value of 

the cross section, the overall down-scatter source is mostly isotropic and both discrete 

ordinates and discrete elements perform well. 

VI.1.1:  Isotropic Comparison 

 The first series of figures compares calculations using both isotropic discrete 

ordinates (S12/P0) and isotropic discrete elements (DE12). 
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Figure 12:  Isotropic comparison for group 1 
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Figure 13:  Isotropic comparison for group 2 
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Figure 14:  Isotropic comparison for group 28 

 The good agreement between both the discrete elements and the discrete 

ordinates for all three energy groups demonstrates DE12 is an adequate resolution 

compared to the discrete ordinates S12. 

VI.1.2:  Anisotropic Comparison 

 The anisotropic comparison includes a Monte Carlo multi-group transport 

calculation using PAX64 cross sections.  Energy groups 1 and 2 exhibit a computational 

artifact for both discrete ordinates and discrete elements compared to the Monte Carlo 

solution for the scalar flux due to the optically thin source region (in these groups).  In 

one-dimensional transport with a thin source, much of the contribution to the scalar 

flux in and near the source region arises from neutrons traveling nearly perpendicular 

to the axis ( 1m = ).  The Monte Carlo simulation includes particles emitted with m  

near or equal to zero, but the discrete ordinates (Sn quadratures) and discrete elements 

methods need very high angular resolution (many elements or ordinates) to include 

ordinates close enough to perpendicular near-perpendicular contribution to the scalar 

flux. 
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Instead of using the typical discrete ordinates, Sn, quadrature based on a Gauss-

Legendre quadrature rule (in one-dimension), a two angular region Gauss-Legendre 

rule could be used.  The discontinuity in the angular flux at 0m=  can be better 

approximated using a double Sn quadrature rule (DSn), such as the DS6 quadrature rule 

given in appendix E.  The DS6 quadrature with the P5 Legendre expansion for the 

group scatter cross section has been included to examine the effects of a quadrature rule 

that better approximates the discontinuity at 0m= . 
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Figure 15:  Energy group 1 anisotropic comparison 

 The first energy group exhibits the angular quadrature artifact in the scalar flux, 

although the DS6 is significantly better than the DE12 or the any of the S12 quadratures.  

Near the source region, the discrete elements and the discrete ordinates underestimate 

the scalar flux.  Note that the DE12 is a better approximation than the S12 quadratures. 

 Although the DS6 quadrature is qualitatively a better approximation to the 

scalar flux in energy group 1 than DE12, an angular flux comparison demonstrates the 

negativity associated with the P5 Legendre expansion for the group scatter cross 

section.  Figure 16 through Figure 18 show the angular flux as a function of both space 
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and the ordinate or element.  Note that the angular flux is an angle integrated value for 

the discrete elements and a point value for the discrete ordinates. 
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Figure 16:  Energy group 1, DS6/P5 positive angular flux 

 The white areas in the plot are negative values in the angular flux arising from 

the P5 Legendre expansion for the group scatter cross sections.  The negative values for 

the angular flux do not contribute significantly to the scalar flux, but are completely 

unphysical.  The negative angular flux is plotted in Figure 17. 
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Figure 17:  Energy group 1, DS6/P5 negative angular flux 

 The DE12 angular quadrature with the PAX64 cross sections result in positive 

angular fluxes throughout the entire problem when a source is present.  The negative, 

unphysical angular flux is present in the DS6/P5 and not in the DE12. 
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Figure 18:  Energy group 1, DE12 angular flux 

 Energy group 2 is used for two comparisons, the importance of the anisotropy to 

the scalar flux solution (thus motivating my work in investigating anisotropic scatter 

cross sections) and the point-wise convergence of the scalar flux when using the 

truncated Legendre expansions.  The down-scatter source from group 1 is highly 

anisotropic and the scalar flux solution is incorrect for the isotropic approximation 

(shown as S12/P0). 
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Figure 19:  Energy group 2 with discrete ordinates 

 The point-wise convergence of the scalar flux when using discrete ordinates 

with truncated Legendre expansions is evident for the typical Sn quadrature.  The DS6 

discrete ordinate quadrature is a good approximation for the scalar flux.  But, the S12 

quadratures are not converging uniformly to the scalar flux solution when the 

truncation order of the Legendre expansion is increasing.  The P3 approximation is 

closer to the Monte Carlo scalar flux solution for spatial positions greater than 1 cm and 

the P5 approximation is closer for spatial positions less than 1 cm.  The P0 and P1 

approximations do not show any uniform convergence to the scalar flux compared to 

the other truncated Legendre expansions.  Thus, different discrete ordinates 

quadratures (S12 and DS6) combined with different truncated Legendre expansions do 

not converge uniformly to the scalar flux solutions—leading to the art form of choosing 

an appropriate truncation order and discrete ordinate quadrature set. 

 Having shown the non-uniform convergence to the Monte Carlo solution for the 

scalar flux, an investigation of the convergence was made for the discrete elements 

approximations using the PAX64 cross sections.  The scalar flux for five discrete 

elements quadratures was compared to the scalar flux estimate from Monte Carlo in 
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energy group 2.  The discrete elements angular quadratures are converging towards the 

Monte Carlo estimate for the scalar flux. 
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Figure 20:  Energy group 2 with discrete elements 

 Energy group 28 shows the continued importance of the anisotropic cross 

sections.  Although the P1 expansion is different from the other calculations, the discrete 

elements and discrete ordinates calculations match the Monte Carlo estimate of the 

scalar flux closely. 
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Figure 21:  Energy group 28 anisotropic comparison 

 The thin source in a water-medium test problem displayed two important 

features of the different discrete approximations to the scalar flux solution.  The 

anisotropic scatter cross section dominates the shape of the scalar flux.  And, the 

discrete elements approximation to the scalar flux is converging to the Monte Carlo 

solution while the discrete ordinates to the scalar flux using truncated Legendre 

expansions is not converging uniformly. 

VI.2:  TEST PROBLEM 2:  MULTI-LAYER SHIELD 

 Five different effects were examined with the second test problem:  negative 

scalar fluxes when using diamond difference spatial quadratures, incorrect scalar fluxes 

when using discrete ordinates with truncated Legendre expansions for the scatter cross 

sections, convergence to the wrong energy dependence when using truncated Legendre 

expansions, uniform convergence of the energy dependence with increased number of 

discrete elements, and the importance of low probability scatters to the energy 

dependence. 
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This problem used four materials as a shield for a high energy source.  Figure 22 

shows the diagram for test problem 2 where the dimensions are all in centimeters. The 

isotropic source in energy group 1 was distributed uniformly throughout the 56Fe 

region.  All of the examples used 96 equal-thickness spatial cells. 

0.0 1.25 3.75 5.0 6.25

56Fe 1H2
16O 10B4C 207Pb

Symmetry Vacuum

Dist ributed
Source

 

Figure 22:  Multi-layer shield 

VI.2.1:  Diamond Difference Generates Negative Scalar Fluxes 

 The first effect examined was the negative scalar fluxes when the diamond 

difference (DD) spatial quadrature method was used.  The scalar flux for an exponential 

characteristic (EC) spatial quadrature method is compared to the DD calculation for 

energy group 30 with both spatial quadrature methods using a discrete element angular 

quadrature with PAX64 cross sections (ie. non-negative cross sections). 
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Figure 23:  EC comparison to DD 

 The DD calculation is incorrect throughout the entire problem for this energy 

group.  The scalar flux in the B4C region (between 3.75 and 5.0 cm) is unphysical and 

oscillates between positive and negative values, as is seen in Figure 24 (an enlargement 

of the B4C region). 

 The oscillations of the DD method in the B4C region have led to a drastic 

overestimation of 8 orders of magnitude in the scalar flux in the 207Pb region (between 

5.0 to 6.25 cm).  The DD method has failed to produce positive scalar fluxes even with 

non-negative group-to-group cross sections. 
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Figure 24:  DD close-up of B4C 

 The test problem was run with continued spatial refinements using DD to 

discover when the scalar flux in energy group 30 would no longer be negative.  The DD 

scalar flux solution continued to have negative values for the scalar flux when over 5000 

spatial cells were used—a physical thickness of just over 10 mm per cell.  Higher 

refinements were not possible with the spatial transport code because the code was not 

written for efficient memory usage, but rather, it stores all variables to facilitate 

examination of them. 

VI.2.2:  Discrete Ordinates Compared to Discrete Elements 

 The step spatial quadrature method was used to compare discrete ordinates with 

truncated Legendre expansions for the cross sections to discrete elements using PAX64 

cross sections.  The step method was used because it is a non-negative method (as 

opposed to DD) with non-negative cross sections.  An EC calculation was also 

performed for comparison.  The EC method is also non-negative, but the EC method 

cannot use negative cross sections and the step method can. 
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 The multi-layer shield problem was run using the step spatial quadrature for 

both S12/P5 and DE12.  Energy group 30 was again examined and the results are shown 

in Figure 25. 
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Figure 25:  Step comparison to EC 

 The scalar flux for the step method is close to the EC scalar flux solution when 

both methods used the discrete elements angular quadrature.  This indicates the 

inadequacy of the spatial mesh for the ( )xsDO  step method as compared with the 

( )4xsDO  EC method.  By comparison, the much larger difference between the 

step/DE12 and the step/S12/P5 results is significant.  I attribute this difference to the 

inaccuracies of the discrete ordinates angular quadrature with a P5 truncated Legendre 

expansion. 
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Figure 26:  Close-up of step comparison to EC 

 An enlargement of the scalar flux solution for the B4C and 207Pb regions of the 

scalar flux shows the inaccurate scalar flux using the S12 angular quadrature with P5 

truncated Legendre expansion in the outer regions. 

VI.2.3:  Effects of Angular Quadrature Refinement on Energy Dependence 

 The effects of the angular quadrature refinement on the energy dependence were 

examined by comparing the energy dependence using a step/DE12 to four step/Sn/Pl 

calculations.  The EC/DE12 agreed with the step/DE12 calculation.  The step spatial 

quadrature method is again used because of its non-negativity when using non-negative 

cross sections.  The 30-group structure from appendix D is used in Figure 27 to plot the 

neutron current exiting the test problem at the vacuum boundary. 
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Figure 27:  Effect of discrete ordinates angular resolution in energy dependence 

 The angular quadrature is not converging to the step/DE12 solution for the four 

step/Sn/Pl calculations.  This is shown by the more accurate S2/P1 solution for energies 

less than 10 eV and the less accurate S2/P1 solution for energies greater than 10 eV.  To 

investigate if the discrete ordinates solutions with the truncated Legendre expansions 

were consistently differing from the discrete elements solutions, a plot of the relative 

error rele  of the discrete ordinates compared to the discrete elements was made in 

Figure 28, where 
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Figure 28:  Relative difference between step/Sn/Pl and step/DE12 

 The relative difference between the step with different Sn/Pl combinations and 

the step spatial quadrature with DE12 shows that some combinations are less accurate at 

some energies and more accurate at other energies.  The inclusion of the double Sn 

quadrature (DS12) shows that the artifact discussed in test problem 1 is not dominating 

the error in the solution.  Instead the difference between the step/DE12 and the 

step/Sn/Pl can be attributed to the truncated Legendre expansions for the group scatter 

cross sections. 

VI.2.4:  Angular Refinement of Discrete Elements with Energy Dependence 

 Convergence of the discrete elements angular quadrature is expected as more 

elements are added.  For this test problem, Figure 29 shows the EC spatial quadrature 

methods with DE2, DE4, DE6, and DE12. 
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Figure 29:  Effect of discrete elements angular resolution in energy dependence 

 In a similar comparison to Figure 28, relative differences between the DE2, DE4, 

and DE6 to the DE12 solution are shown in Figure 30. 
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Figure 30:  Relative difference between DE12 and DE2, DE4, and DE6 

 The error in the DE2 calculation is dominated by its nearly isotropic 

approximation.  The angular quadrature for DE2 is insufficiently angularly resolved for 

this test problem.  The DE4 and the DE6 are converging to the DE12 solution for the 

energy dependence of the current at the vacuum boundary. 

VI.2.5:  Energy Group Refinement 

 The effects of refining the energy groups for this test problem were investigated.  

Three different comparisons with energy group refinement were made:  EC with DE12, 

step with S12/P5, and step with DE12.  The energy meshes, with 30, 59, and 117 groups, 

were made using the energy group structures defined in appendix D. 
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Figure 31:  Energy dependence for EC with DE12 
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Figure 32:  Energy dependence for step with S12/P5 
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Figure 33:  Energy dependence for step with DE12 

 All three energy dependencies are changing with the refinement in energy 

group.  Although the step/S12/P5 appears qualitatively similar, the comparison of 

step/S12/P5 to the step/DE12 in section VI.2.3 demonstrated that the current was 

incorrect.  The energy dependence is changing for both the step/DE12 and EC/DE12 

calculations, as the energy group structure is refined.  Therefore, the energy group 

structure may not be sufficiently refined in energy to accurately determine the energy 

dependence of the current at the vacuum boundary, depending on the application. 

VI.2.6:  Attributing Features in the Energy Dependence 

 A comparison was made between the rightward partial current entering the 
207Pb region and the rightward partial current at the vacuum boundary because the 

refinement in energy in Figure 31 showed an increasingly variable solution in the 

energy dependence in the energy range of 10 keV to 1 MeV.  The comparison was made 

using the 117-group structure presented in appendix D.  Figure 34 shows the rightward 

current at both the vacuum boundary and the B4C/207Pb boundary. 
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Figure 34:  Comparison of energy dependence of rightward partial current at two 
spatial locations 

 Without any intrinsic source in the 207Pb region, the variation of the energy 

dependence of the current exiting at the vacuum boundary arises from either the cross 

section of 207Pb or the current flow from the B4C.  Figure 34 shows that the current 

entering the 207Pb from the B4C is smooth in the 10 keV to 1 MeV energy range in 

comparison to the current at the vacuum boundary.  Due to the smoothness of the 

entering flux and the large variation of the total cross section of 207Pb shown in Figure 

35 in this energy range, I attribute the variation in the energy dependence of the 

rightward partial current at the vacuum boundary to the 207Pb cross section. 
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Figure 35:  207Pb total cross section 

 Figure 34 shows that energy dependence for energies less than 100 eV of the 

rightward partial current at the vacuum boundary is fairly flat compared to the current 

exiting the B4C region.  Because the current, in this problem, exiting at the vacuum 

boundary can only arise from inflow from the B4C region or down-scatter within the 
207Pb region, the low energy current must be down-scatter because the inflow current is 

negligible. 

 To examine the contributions to the down-scatter source, a calculation with the 

30-group structure in appendix D.2 was used.  The 30-group calculation has similar, but 

less resolved energy dependence of the currents.  The 207Pb region down-scatter 

contribution to group 30 from each incident group was calculated as an angle-

integrated, region-integrated down-scatter source.  To demonstrate the low probability 

of scatter from the incident group, the fractions of the scatter cross section from the 

incident group to group 30 are also presented in Table 2. 

Table 2:  Down-scatter source contribution to 207Pb region 
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Incident Group Down-Scatter Source Fraction of Scatter from 

Incident Group to Group 30 

1 6.755617E-08 1.274419E-09 

2 2.545111E-08 1.320084E-09 

3 1.559567E-08 1.406711E-09 

4 1.341229E-08 2.325594E-09 

5 9.901283E-09 2.036932E-09 

7 9.066829E-14 9.475451E-15 

8 6.584222E-13 1.225620E-13 

9 1.137028E-13 1.919159E-14 

29 4.874568E-10 9.697575E-03 

 The group-29 down-scatter source was smaller than the down-scatter source for 

each incident group 1 through 5.  Therefore, I attribute the energy dependence of the 

current below 100 eV to the down-scatter source from energies in the range of 7.79 to 

14.1 MeV.  Low-probability scatters at the high energies are dominating the energy 

dependence at low energies of the current at the vacuum boundary.  Among 109 group-

one neutrons that scatter in 207Pb, only 1.3 neutrons scatter directly into group 30.  

Nevertheless, in this problem, more than half (51%) of the neutrons that enter group 30 

in the lead do so by direct scatter from group 1. 
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VII.  Summary and Conclusions 

 Nonlinear, accurate, and robust spatial quadrature schemes for the multi-group 

discrete ordinates method, such as the exponential characteristic method, provide 

physically meaningful, non-negative fluxes given non-negative incident fluxes, emission 

sources, and scattering cross sections.  Conventional techniques based on Legendre 

expansions of the scattering cross sections cannot be relied upon to provide such cross 

sections.  Multi-group discrete element bin-to-bin scattering cross sections, introduced 

by DelGrande and Mathews (7), are non-negative if calculated from non-negative 

scattering cross sections ( ),s E Es m¢® .  These cross sections eliminate, or at least 

strongly ameliorate, many other artifacts of conventional discrete ordinates cross 

sections and angular quadratures, as discussed by DelGrande and Mathews (7). 

 The original objective of this effort was to develop an accurate and efficient 

scheme for calculating the cross sections directly from the data in ENDF/B-VI (18).  

This would make it possible to use the exponential characteristic method, and similar 

methods, for anisotropic scattering in real materials.  This has been accomplished. 

 DelGrande and Mathews used Monte Carlo simulations that sampled from ACE 

files (13).  I explored enhancing his approach by introducing variance reduction 

schemes, but abandoned that approach.  It is easy to obtain modest accuracy in the cross 

sections for the likely scatters, but to do so for one-in-a-million scatters seems 

unachievable.  The multi-layer shield problem presented here shows that such unlikely 

scattering events can be the dominant source of particles in at least some energy groups 

in some problems, so I sought a method that would calculate such cross sections 

accurately and efficiently. 

 By separating the angular and energy dependences of the discrete elements and 

energy group structure, I found it possible to formulate the cross sections such that the 

maximum nesting of integrations was only three deep, and usually only two.  Nested 

adaptive numerical quadratures have proven effective in making these calculations 

efficient while providing user-set convergence tolerances.  This has been implemented 

in FORTRAN-95, demonstrating the computational practicality of the approach.  An 

efficient code for generating the scattering-cosine-dependent conditional element-to-

element scattering probabilities, ( ),n n
h m¢ , is the only piece needed for efficient 
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generation of bin-to-bin cross sections for multi-dimensional transport calculations.  

Many approaches to defining partitions of the unit sphere into discrete elements are 

possible; each would need its own code for the element-to-element conditional 

probabilities. 

 In order to validate my computational techniques and the code that implemented 

them, it was necessary to generate Legendre coefficients for group-to-group cross 

sections and compare them with the values produced by NJOY. 

 By introducing a scattering operator, it became clear that one code could provide 

not only bin-to-bin cross sections and Legendre moments, but also group-to-group 

cross sections approximated as piecewise-average functions of the scattering cosine, 

which I call PAX cross sections.  The PAX cross sections are one of the major 

contributions of this work.  They are readily computed and tabulated and can then be 

used to produce bin-to-bin cross sections and Legendre moments.  Furthermore, the 

PAX cross sections could be used directly for sampling scattering in multi-group Monte 

Carlo transport simulations, or could be used to generate equal-likelihood scattering 

intervals for use in such codes. 

 The code written for this research is not a production code.  Some of the 

ENDF/B-VI scatter laws are not yet implemented.  Also, writing independent modules 

for computing Legendre moments, bin-to-bin cross sections, and piecewise-average 

cross sections could substantially reduce run times.  Nevertheless, the practicality and 

some of the benefits of my methods have been demonstrated successfully using this 

code. 

 The impact of these new approaches to generating and using scattering cross 

sections, if adopted by the community, will be to provide physically meaningful and 

more accurate cross sections and physically meaningful and more accurate fluxes from 

radiation transport calculations that use them. 
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Appendix A:  Variable Definitions 

A.1:  CONTINUOUS REPRESENTATIONS 

 ( )ˆ, ,r Ey Wr
 (48) 

The angular flux is a distribution function in space, energy, and angle.  It can be 

described as a neutron path length rate density with units such as 3 .
neutron cm

s cm eV steradian
 

 ( )ˆ ˆ, ,s r E Es ¢ ¢® W ×Wr
 (49) 

The continuous scatter cross section is a point function in space, incident energy, and 

incident direction.  It is distribution function with respect to the secondary energy and 

the secondary direction.  The continuous scatter cross section has units of 

.barns
eV steradian

 

A.2:  ENERGY GROUP REPRESENTATIONS 

 ( ) ( ) ( ) 1
ˆ ˆ, , , ,g g gr E r E E E Ey y -W » W F £ £r r

 (50) 

where the energy-dependent spectral weighting function is normalized by 

 ( ) 1
gE

dE E
D

F =ò  (51) 

and 

 

1

g

g g

E

E E

dE dE
-D

=ò ò  (52) 

The group angular flux, gy , is a distribution function in space and angle, and a bin 

integrated function in energy.  It has units of 3 .
neutron cm

s cm
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( ) ( )
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ˆ ˆ, ,

ˆ ˆ,
gg

g
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E Es
g g

E

dE dE r E E E
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dE E

s

s ¢

¢

D D

¢

D

¢ ¢ ¢ ¢® W ×W F

¢W ×W =
¢ ¢F

ò ò

ò

r

r
 (53) 

The group scatter cross section is a point function in space and incident direction, and a 

spectrum-weighted average over energy.  It is a distribution function with respect to the 

secondary direction and a bin integrated function with respect to the secondary energy.  

The group scatter cross section has units of .barns
steradian

 

A.3:  DISCRETE ELEMENT REPRESENTATIONS 

 ( ) ( ),ˆ, n g
g

n

r
r

y
y W »

DW

r
r

 (54) 

where nDW  is an element of solid angle.  The discrete element, group angular flux ,n gy  

is a distribution function in space and a bin-integrated function in energy and angle.  It 

has dimensions of 3 .
neutron cm

s cm
 

 ( )

( ) ( )

( ), , ,

ˆ ˆ, ,
n gn g

g

s

E Es
n n g g

n
E

d d dE dE r E E E

r
dE E

s

s ¢ ¢

¢

DW DW D D

¢ ¢
¢
D

¢ ¢ ¢ ¢ ¢W W ® W ×W F

=
¢ ¢DW F

ò ò ò ò

ò

r

r
 (55) 

The bin-to-bin cross section is a point function in space, a spectrum-weighted average 

in energy, and an element average in incident direction.  It is a bin-integrated function 

with respect to the secondary energy and the secondary direction.  The bin-to-bin cross 

section has units of .barns  
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Appendix B:  Summary of FORTRAN 90/95 Syntax Terms 

A more complete presentation of FORTRAN 90/95 syntax can be found in reference 

(7). 

• Allocatable Array 

An array whose shape and size are not determined until space is created for the 

array by means of an allocate 

• Allocate( array( ) ) 

Command the creates an array at execution 

• Call mysub( ) 

A call to user-defined subroutine, mysub 

• Close( myfile ) 

A command to close a file previously opened for I/O 

• Cycle 

A command to execute the next loop in a Do constuct 

• Do…End Do 

A loop initiated by Do and terminated by End Do 

• Derived Type 

A programmer-defined variable type, typically a compound of other intrinsic 

types 

• Extent  

Number of elements in a particular dimension of an array 

• If( )Then…ElseIf( )…Else…End If 

A logical construct 

• Open( myfile ) 

A command to open a file for I/O 

• Read( ) 

A command to retrieve information from a file previously opened for input 

• Select Case( )…Case( )…End Select Case( ) 

A logical construct to select from many cases using the same variable 
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Appendix C:  Doppler Broadening 

 The cross section equations presented in chapter 2 are general enough to include 

Doppler broadening.  The cross section, ( )Es ¢ , in equation (30) changes to ( )* ,E Ts ¢ , 

an effective cross section that includes the temperature dependence.  The broadening is 

important to the cross section calculation because the total energy available for the 

reaction is the important parameter for determining the likelihood of a reaction.  

Therefore, the energy of the incident neutron and the average energy of the target 

nuclei, characterized by the material temperature, combine to form a broadened cross 

section or an effective cross section.  This broadening of the cross section is typically 

called Doppler broadening.  If a transport calculation is to be performed at realistic 

temperatures such as between three hundred to a few thousand degrees Kelvin, then the 

cross section must be broadened in order for the transport result to be meaningful.  

Additionally, this research required validation from sources that contained only Doppler 

broadened data. 

 Prior to deriving the broadening integral, I assume that the functional 

dependence of the secondary neutron energy and the angle of scatter of the neutron do 

not strongly depend on the temperature of the interacting material.  This 

approximation exactly follows the NJOY development (13).  The value of the cross 

section is the only function broadened and the angular and secondary energy 

distributions remain unaffected by the Doppler broadening. 

 The effective cross section for a material at temperature T is defined to be that 

cross section that gives the same reaction rate for a stationary target nuclei as the real 

cross section gives for moving nuclei.  The effective cross section is 

 ( ) ( ) ( ), , ,v v T dv v v v v P v Tr s r s¢ ¢ ¢ ¢= - -ò
r r r r r r

 (56) 

where v
r

 is the velocity of the incident neutron, v¢r
 is the velocity of the target, r  is the 

density of the target nuclei, s  is the cross section for stationary nuclei, and ( ),P v T¢r
 is 

the distribution function for the target nuclei velocities in the laboratory system. 

 The velocity distribution of the target nuclei can be a very complicated function.  

For many applications, however, the target motion can be approximated as isotropic 
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and the distribution of the velocities can be approximated by the Maxwell-Boltzmann 

function, 

 ( ) 2
3

2
3

2
, ,vP v T dv e dvaa

p
¢-¢ ¢ ¢=r r r

 (57) 

where 
2
M
kT

a = , k is Boltzmann’s constant, and M is the target mass. 

 Equation (56) can be partially integrated in terms of the relative speed defined as  

 ,V v v¢= -r r
 (58) 

to give the standard Doppler broadened cross section as the sum 

 ( ) ( ) ( )* *, , , ,v T v T v Ts s s= - -  (59) 

with the function defined as 

 ( ) ( ) ( )2
3

2* 2
1 2 02

, .v Vv T dV V V e
v

aas s
p

¥ - -= ò  (60) 

The exponential function in equation (60) limits the significant part of the integral to 

the range 

 
4 4 .v V v
a a

- < < +  (61) 

For ( )* vs - , the integral depends only on velocities satisfying 

 
40 .V
a

£ <  (62) 

Because all of the data used in the ENDF/B-VI are given energy, rather than velocity, 

these results can be converted to energy units using 

 
21 4 16 .

2m
kTE m
Aa

æ ö÷ç= =÷ç ÷çè ø
 (63) 

 The numerical evaluation of equation (60) developed for NJOY and used in this 

dissertation assumes that the cross section can be represented by a piecewise linear 

function of energy to acceptable accuracy.  A piecewise linear function to represent the 

resonance regions was generated to satisfy this need.  The method used to generate the 

piecewise linear function representation was a simple bisection method.  Having 

generated a piecewise linear representation, equation (60) was evaluated using the 

following procedure. 
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 Using the subscripts in the following derivations to denote the piecewise linear 

values obtained for the resonance regions and defining the reduced variables y va=  

and x va= , the cross section becomes 

 ( ) ( )2 2 ,i i ix s x xs s= + -  (64) 

with slope 

 
( )
( )

1
2 2

1

.ii
i

ii

s
x x

s s+

+

-
=

-
 (65) 

Equation (60) can now be written as 

 ( ) ( ) ( ) { }
1

2* 2 2
2

0

1 ,
i

i

xN
x y

i i i i i
i ix

y dx x x e A s x B s
y

s s s
p

+
- -

=

é ù= = - +ê úë ûå åò  (66) 

where 

 0ox =  (67) 

 1 ,Nx + = ¥  (68) 

 2 02 1
1 2 ,iA H H H

yy
= + +  (69) 

 2
2 04 3 3 1

1 4 6 4 ,iB H H H yH y H
yy

= + + + +  (70) 

and where nH  is shorthand for ( )1,n i iH x y x y+- - .  The extrapolations to zero and 

infinity assume a constant cross section ( )0 0Ns s= = .  The H functions are the 

incomplete probability integrals defined by 

 ( )
21, .

b
n z

n
a

H a b dz z e
p

-= ò  (71) 

These functions can be computed by 

 ( ) ( ) ( ), ,n n nH a b F a F b= -  (72) 

where 

 ( )
21 .n z

n
a

F a dz z e
p

¥
-= ò  (73) 

The nF  functions satisfy a recursion relation that can be used to obtain 
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 ( ) ( )0
1 erfc ,
2

F a a=  (74) 

 ( ) ( )2
1

1 exp ,
2

F a a
p

= -  (75) 

 ( ) ( ) ( )1
2 1

1 ,
2

n
n n

nF a F a a F a-
-

-= +  (76) 

and where the ( )erfc a  denotes the complementary error function 

 ( )
22erfc .z

a

a dz e
p

¥
-= ò  (77) 



 77

Appendix D:  Energy Group Structures 

 All of the energy group structures used throughout the dissertation are 

documented here.  The values are all in eV and are displayed using the FORTRAN 

exponential notation.  The values displayed are the energy group boundaries. 

D.1:  LANL-30 

1.70E+7 3.68E+6 3.03E+5 4.54E+2 4.14E-1 

1.50E+7 2.87E+6 1.84E+5 1.67E+2 1.52E-1 

1.35E+7 2.23E+6 6.76E+4 6.14E+1 1.39E-4 

1.20E+7 1.74E+6 2.48E+4 2.26E+1  

1.00E+7 1.35E+6 9.12E+3 8.32E00  

7.79E+6 8.23E+5 3.35E+3 3.06E00  

6.07E+6 5.00E+5 1.24E+3 1.13E00  

D.2:  ALTERED LANL-30 

 This energy group structure is identical to the LANL-30 shown above except 

that the highest energy groups has been replaced with a group containing 14.0 to 14.1 

MeV neutrons.  The second energy group has also changed to accommodate the new 

highest energy group. 

1.41E+7 3.68E+6 3.03E+5 4.54E+2 4.14E-1 

1.40E+7 2.87E+6 1.84E+5 1.67E+2 1.52E-1 

1.35E+7 2.23E+6 6.76E+4 6.14E+1 1.39E-4 

1.20E+7 1.74E+6 2.48E+4 2.26E+1  

1.00E+7 1.35E+6 9.12E+3 8.32E00  

7.79E+6 8.23E+5 3.35E+3 3.06E00  

6.07E+6 5.00E+5 1.24E+3 1.13E00  

D.3:  NEW 59 GROUP STRUCTURE 

 This group structure is based on the altered LANL-30 presented above except 

that each energy group has been cut into two pieces using the geometric mean.  The 

formula is the square root of the product of the energy group boundaries.  The highest 

energy group has not been cut into two pieces. 
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1.41E+7 3.68E+6 3.03E+5 4.54E+2 4.14E-1 

 3.249862E+6 2.361186E+5 2.753507E+2 2.508545E-1 

1.40E+7 2.87E+6 1.84E+5 1.67E+2 1.52E-1 

1.374773E+7 2.529842E+6 1.115276E+5 1.012610E+2 4.596520E-3 

1.35E+7 2.23E+6 6.76E+4 6.14E+1 1.39E-4 

1.272792E+7 1.969822E+6 4.094484E+4 3.725104E+1  

1.20E+7 1.74E+6 2.48E+4 2.26E+1  

1.095445E+7 1.532645E+6 1.503915E+4 1.371248E+1  

1.00E+7 1.35E+6 9.12E+3 8.32E00  

8.826098E+6 1.054064E+6 5.527386E+3 5.045711E+00  

7.79E+6 8.23E+5 3.35E+3 3.06E00  

6.876431E+6 6.414827E+5 2.038136E+3 1.859516E+00  

6.07E+6 5.00E+5 1.24E+3 1.13E00  

4.726267E+6 3.892300E+5 7.503066E+2 6.839737E-1  

D.4:  NEW 117 GROUP STRUCTURE 

 This group structure is based on the new 59 group structure presented above 

except that each energy group has been cut into two pieces using the geometric mean.  

The formula is the square root of the product of the energy group boundaries.  The 

highest energy group has not been cut into two pieces. 

1.41E+7 3.68E+6 3.03E+5 4.54E+2 4.14E-1 

 3.458250E+6 2.674770E+5 3.535664E+2 3.222635E-1 

 3.249862E+6 2.361186E+5 2.753507E+2 2.508545E-1 

 3.054031E+6 2.084366E+5 2.144378E+2 1.952687E-1 

1.40E+7 2.87E+6 1.84E+5 1.67E+2 1.52E-1 

1.387329E+7 2.694559E+6 1.432518E+5 1.300407E+2 2.643239E-2 

1.374773E+7 2.529842E+6 1.115276E+5 1.012610E+2 4.596520E-3 

1.362330E+7 2.375194E+6 8.682895E+4 7.885065E+1 7.993224E-3 

1.35E+7 2.23E+6 6.76E+4 6.14E+1 1.39E-4 

1.310828E+7 2.095878E+6 5.261056E+4 4.782482E+1  

1.272792E+7 1.969822E+6 4.094484E+4 3.725104E+1  
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1.235860E+7 1.851348E+6 3.186584E+4 2.901506E+1  

1.20E+7 1.74E+6 2.48E+4 2.26E+1  

1.146531E+7 1.633035E+6 1.931246E+4 1.760403E+1  

1.095445E+7 1.532645E+6 1.503915E+4 1.371248E+1  

1.046635E+7 1.438426E+6 1.171141E+4 1.068119E+1  

1.00E+7 1.35E+6 9.12E+3 8.32E00  

9.394732E+6 1.192890E+6 7.099983E+3 6.479222E+00  

8.826098E+6 1.054064E+6 5.527386E+3 5.045711E+00  

8.291882E+6 9.313939E+5 4.303109E+3 3.929361E+00  

7.79E+6 8.23E+5 3.35E+3 3.06E00  

7.318975E+6 7.265950E+5 2.612997E+3 2.385397E+00  

6.876431E+6 6.414827E+5 2.038136E+3 1.859516E+00  

6.460645E+6 5.663403E+5 1.589745E+3 1.449570E+00  

6.07E+6 5.00E+5 1.24E+3 1.13E00  

5.356159E+6 4.411519E+5 9.645622E+2 8.791418E-1  

4.726267E+6 3.892300E+5 7.503066E+2 6.839737E-1  

4.170451E+6 3.434191E+5 5.836430E+2 5.321326E-1  
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Appendix E:  Discrete Ordinates Quadrature Sets 

 The discrete ordinates for a Gauss-Legendre quadrature values are taken 

directly from Lewis and Miller (7).  The directions are given for a one-dimensional 

transport calculation and the weights sum to 2.  The discrete ordinates are symmetric 

around 0m=  and only tabulated for 0m> . 

nm  nw  

0.5773502691 1.0000000000 

Table 3:  S2 level symmetric directions and weights 

nm  nw  

0.3399810435 0.6521451549 

0.8611363115 0.3478548451 

Table 4:  S4 level symmetric directions and weights 

nm  nw  

0.2386191860 0.4679139346 

0.6612093864 0.3607615730 

0.9324695142 0.1713244924 

Table 5:  S6 level symmetric directions and weights 

nm  nw  

0.1252334085 0.2491470458 

0.3678314989 0.2334925365 

0.5873179542 0.2031674267 

0.7699026741 0.1600783286 

0.9041172563 0.1069393260 

0.9815606342 0.0471753364 

Table 6:  S12 level symmetric directions and weights 
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nm  nw  

0.0337652428 0.08566224618 

0.1693953067 0.1803807865 

0.3806904069 0.2339569672 

0.6193095930 0.2339569672 

0.8306046932 0.1803807865 

0.9662347571 0.08566224618 

Table 7:  DS6 double level symmetric directions and weights 
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Appendix F:  ENDF/B-VI Data Representations 

 The ENDF/B-VI documentation (18) allows for many different specific 

representations.  These fill in the appropriate cases presented in chapter 3.  The primary 

advantage of working directly with the ENDF/B-VI representations is that no other 

intermediate approximations have been used prior to calculating the group-to-group 

cross sections.  The implemented, neutron-producing reactions are presented below. 

Cross section representation 
Tabular 
Histogram 
Linear x, linear y 
Linear x, log y 
Log x, linear y 
Log x, log y 
Parameterized (resonance regions) 

Isotope dependence  
Single-level Breit-Wigner  
Multi-level Breit-Wigner  
Reich-Moore  

Unresolved resonance regions  
All parameters energy dependent 
Fission parameters energy dependent 
No parameters energy dependent 

Independent angular distributions 
Frame of reference 
Center of mass  
Laboratory frame 
Representations 

Legendre polynomial expansion of the scatter cosine  
Tabular approximation of the scatter cosine  
Two energy ranges Legendre and tabular  
Isotropic 

Independent energy distributions (laboratory frame only) 
Representations 

Tabular 
Generalized evaporation spectrum 
Simple fission spectrum 
Evaporation spectrum 
Energy dependent Watt spectrum 

Dependent energy and angular distributions 
Frame of reference 

Center of mass 
Laboratory 

Representations 
Continuum energy-angle distribution 
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Legendre coefficients  
Tabulated function  
Discrete two-body scattering  
Isotropic discrete emission  
N-body phase space distribution  
Laboratory angle-energy distribution  

Energy dependent fission neutron production 
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Appendix G:  Sample Input Files 

 Sample input files are given for the various programs that create, manipulate, 

and ultimately use the cross section data.  The three programs created specifically for 

this dissertation are the cross section integrator for neutrons, the converter to 

macroscopic cross sections, and the one-dimensional transport code capable of using five 

different discrete spatial quadrature methods. 

G.1:  CROSS SECTION INTEGRATOR SAMPLE FILE 

&XSINNml 
 ENDFName = "I:\XSINRunFolder\InputFiles\B10.txt" 
 enGroupName = "I:\XSINRunFolder\InputFiles\AltLANL30Grp.txt" 
 outputDirectory = "I:\DissTest2\30Groups\B10\" 
 outputFile = "ScatB10_30" 
! include discrete elements 
 discreteElements = .FALSE. 
 DEName = "c:\XSIN\Input\h_1D2.txt" 
! include legendre moments for validation 
 LegendreMoments = .FALSE. 
 numberMoments = 5 
! include average tabular values 
 averageTabular = .TRUE. 
! factors of two to use in [-1,1] total == 2**numberTabular 
 numberTabular = 7 
 enableDiagnostic = .TRUE. 
 desTol = 0.001 
 absoluteTol = 1.E-25 
 enSpectralType = "One_over_E" 
 mechanisms = 2, 5, 11, 16, 17, 18, 21, 22, 23, 24, 25, 29, 30, 32, 33, 34, 35, 36, 
37, 38, 41, 42, 44, 45, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 
67,68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 
89,90, 91 
 temperature = 300 
/  
&DiagnosticNml 
 doAllGroups = .TRUE. 
 startIncEnGroup = 1 
 endIncEnGroup = 30 
 startSecEnGroup = 1 
 endSecEnGroup = 30 
 outputExcelStyle = .FALSE. 
 outputMMAStyle = .FALSE. 
 outputEachMechanism = .FALSE. 
/ 
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G.2:  MICROSCOPIC TO MACROSCOPIC CONVERTER SAMPLE FILE 

&IntegrateTabNml 
! check whether to create the discrete elements cross sections 
 createDiscreteElem = .FALSE. 
! check whether to create the Legendre moments cross sections 
 createLegendreMom = .FALSE. 
! check whether to unfold the unique pairings to create the  
! complete discrete elements bin-to-bin four dimensional array 
 DEInformationFile = "i:\DEHEval\H_1D12.txt" 
! location for the output and the base name for the output 
 outputDirectory = "i:\DissTest1\MixedXS\Total\" 
 outputBaseFile = "H20Tot_30" 
/ 
&MixerNml 
 mixerDefinition = "Mixing" 
! the only possible types are "Scatter" and "Total" 
 xSectType = "Total" 
! the number of elements to be mixed 
 numElements = 2 
! the total number of isotopes to be read in 
 totNumIsotopes = 2 
! this value = 1/(cm*barns) 
 density = 3.3296047E-2 
 numberEnergyGroups = 30 
 numberTabular = 7 
 numberLegendre = 5 
/ 
&ElementNml 
 elementName = "Hydrogen" 
 numIsoPerElem = 1 
 compoundValue = 2 
/ 
&ElementNml 
 elementName = "Oxygen" 
 numIsoPerElem = 1 
 compoundValue = 1 
/ 
&IsotopeNml 
 isotopeFile = "i:\DissTest1\H1_30\Total\TotH1_30Tab.txt" 
 referenceElement = "Hydrogen" 
 elementAtomPercent = 1.0 
/ 
&IsotopeNml 
 isotopeFile = "i:\DissTest1\O16_30\Total\TotO16_30Tab.txt" 
 referenceElement = "Oxygen" 
 elementAtomPercent = 1.0 
/ 
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G.3:  1-D TRANSPORT CODE SAMPLE FILE 

&ProblemDef 
 problemDescription = "MultiLayer Iron-Water-B4C-Lead" 
 discRun = .TRUE. 
 isotropic = .FALSE. 
 domain_Diagnostic = .FALSE. 
 numberEnergyGrps = 30 
 numberRegions = 4 
 numberSources = 1 
 numberMaterials = 4 
 outLocation = "i:\TestProblem1\TransportRuns\MultiLayer\" 
 outBaseFile = "MultiLayer_3June" 
/ 
&DiscreteDef 
 ! levelSymQuad is "DE" or "S2", "S4", ... 
 levelSymQuad = "DE" 
 spatialQuadType = "DD" 
 numberRefinements = 0 
 LegendreOrder = 0 
 tolerance = 0.0001 
 ECtolerance = 0.0000001 
 ! representation is "BtB" or "Leg" 
 representation = "BtB" 
 energyGroupFile = "i:\TestProblem1\LANL30Grp.txt" 
/ 
&BoundaryCondDef 
 leftBoundCond = "Sym" 
 rightBoundCond = "Vac" 
/ 
&RegionDef 
 xMin = 0.0 
 xMax = 1.25 
 matIndex = 1 
 regionRefine = 6 
 numberMCBounds = 1 
/ 
&RegionDef 
 xMin = 1.25 
 xMax = 3.75 
 matIndex = 2 
 regionRefine = 7 
 numberMCBounds = 1 
/ 
&RegionDef 
 xMin = 3.75 
 xMax = 4.0 
 matIndex = 3 
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 regionRefine = 6 
 numberMCBounds = 1 
/ 
&RegionDef 
 xMin = 4.0 
 xMax = 5.25 
 matIndex = 4 
 regionRefine = 6 
 numberMCBounds = 1 
/ 
&SourceDef 
 sourceDescription = "Source MultiLayer" 
 materialRegion = 1 
 sourceGroup = 1 
 sourceStrength = 50.0 
/ 
&MaterialDefDisc 
 materialDescription = "Iron" 
 scatXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\Fe56_DEDE.txt" 
 discreteElemFile = "c:\FORTRAN Programs\H_1D\H_1D12.txt" 
 totXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\Fe56_TotTab.txt" 
/ 
&MaterialDefDisc 
 materialDescription = "Water" 
 scatXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\Water_12DE.txt" 
 discreteElemFile = "c:\FORTRAN Programs\H_1D\H_1D12.txt" 
 totXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\WaterTotTab.txt" 
/ 
&MaterialDefDisc 
 materialDescription = "B4C" 
 scatXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\B4C_DEDE.txt" 
 discreteElemFile = "c:\FORTRAN Programs\H_1D\H_1D12.txt" 
 totXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\B4C_TotTab.txt" 
/ 
&MaterialDefDisc 
 materialDescription = "Lead" 
 scatXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\Pb207_DEDE.txt" 
 discreteElemFile = "c:\FORTRAN Programs\H_1D\H_1D12.txt" 
 totXSectFile = 
"i:\TestProblem1\TransportRuns\MultiLayer\Pb207_TotTab.txt" 
/ 
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