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Abstract

A dynamic helicopter model was incorporated into an optimal control problem

to determine minimal landing velocities. The solutions were determined using pseu-

dospectral collocation methods as implemented by the GPOPS-II software. These

solutions were then compiled to develop a Height-Velocity (HV) diagram. An HV

diagram displays regions of flight based on a helicopter’s airspeed and height above

the ground in which a safe landing would not be possible following engine failure. The

applied methodology for constructing the HV diagram reduced issues involving solu-

tion convergence that was encountered in previous research. The influence of ground

effect on the dynamic model was also investigated. After analyzing the HV diagrams

constructed using five additional ground effect models, the significant impact that a

chosen ground effect model has in the overall dynamic model was apparent. Finally,

the effect that modifying certain helicopter parameters has on the helicopter’s au-

torotation performance was considered. Optimal control solutions showed a decrease

in autorotation capabilities for the case of an increased gross weight as well as for the

case of a decreased rotor size.
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INVESTIGATION OF FACTORS IMPACTING A HELICOPTER

HEIGHT-VELOCITY DIAGRAM

I. Introduction

1.1 Chapter Overview

When a helicopter loses engine power, the pilot must perform a maneuver called

autorotation to land the aircraft. The ability for a helicopter to land safely depends

on a number of factors including helicopter properties, altitude, and airspeed. The

compilation of these factors in a Height-Velocity (HV) diagram informs pilots on

which regions of flight are hazardous in case of engine failure and would not allow for

a safe landing. Continuing the work completed by Harris [2], this research focuses on

analyzing autorotation characteristics and developing a method to analytically derive

a helicopter’s HV diagram using optimal control theory. This chapter introduces the

concepts of autorotation and HV diagrams and then provides the scope and objectives

of this research.

1.2 Autorotation

The term autorotation refers to the state of flight where a helicopter descends while

one or more of its engine is no longer providing power to the main rotor. Without

engine power, the rotor continues to spin due to power provided to it by the upward

airflow through the rotor. This rotorcraft flight condition is analogous to the glide

of a fixed-wing aircraft; lift is still produced but at a much lesser extent than during

normal operations with full engine power. Autorotations are typically performed

1



during emergencies after a helicopter experiences a mechanical failure of either the

engine, driveshaft, or tail rotor. Autorotations oftentimes provide the fastest rate

of descent for a helicopter to land. Consequently, an autorotation is also commonly

performed when there are other emergencies on board, such as a fire or control system

malfunction, requiring the helicopter to land quickly [5].

An autorotation maneuver can be described in three basic phases, which are dis-

cussed in more detail in rotorcraft flight handbooks such as [5] and [6]. The first

phase is the entry into autorotation, which occurs immediately after the helicopter

loses engine power. Initially, the rotor slows down, since it no longer has the power

required to maintain its previous flight condition. The collective pitch should then

be lowered to decrease the rotor’s drag and lift. This sends the helicopter into a dive.

The air flowing upward through the descending rotor then provides enough energy

to support a functional rotor angular velocity. The pilot’s reaction time during this

initial phase significantly affects the autorotation. The next phase is steady-state

autorotation during which the helicopter continues to descend to maintain its rotor

speed. As the helicopter approaches the ground, it dissipates its forward and vertical

velocities by performing a flare before landing. A flare describes a maneuver in which

the aircraft’s nose is raised in order to decrease the velocity of the aircraft before

landing. During the flare, the airflow through the rotor increases, thereby generating

more lift and slowing the helicopter. The rotor speed also decreases during the flare.

Finally, the pilot levels the helicopter in order to land without hitting the ground

with the tail. Figure 1.1 illustrates these phases of an autorotation.

2



Figure 1.1. A Helicopter During Autorotation [1]

1.3 HV Diagram

The ability for a helicopter to land safely within its structural limits following

an autorotation is contingent on the helicopter’s initial forward airspeed and height

above the ground when engine power is lost. HV diagrams show the combination

of these two factors based on the particular helicopter in question, the gross weight,

and density altitude. Figure 1.2 shows an example HV diagram for low-speed flight.

The shaded portion of the diagram depicts the unsafe flight region in which a safe

landing could not occur if engine failure occurs. In this region, the rotor speed does

not have enough time to recover after its initial drop to perform a successful flare.

Without a successful flare, the helicopter impacts the ground at a damaging velocity.

The dividing curve between the safe and unsafe regions on the HV diagram is referred

to as the “deadman’s curve” and includes three key, defining points: the low hover

point, high hover point, and knee point. The two hover points represent the lowest

and highest points on the curve, respectively. Above the upper portion of the curve,

the rotor speed can recover enough during the descent to flare and thus land safely.

Below the lower portion of the curve, the height of the helicopter above the ground is
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not high enough for the helicopter to accelerate to unrecoverable speeds, since it will

touch down on the ground very quickly after the power loss. Hence, the power loss in

this region allows for a safe landing. As forward airspeed increases, the autorotative

descent rate decreases [7]. This leads to the knee point where the upper and lower

portions of the curve intersect. HV diagrams typically also have a high-speed unsafe

region near the ground where the helicopter’s high airspeed does not allow for a

sufficient reduction in velocity before hitting the ground. These two unsafe regions

help create a flight path for pilots to follow during routine takeoffs and landings by

displaying flight regions to avoid.. This research focused on the low-speed portion of

the HV diagram.

Figure 1.2. Example Height-Velocity Diagram [2]

As described above, HV diagrams inform pilots of which regions of flight would be

hazardous if engine failure were to occur there. In addition to having HV diagrams

for total engine power loss, multi-engine rotorcraft have separate HV diagrams for one
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engine inoperable (OEI) flight in which only one engine fails. Naturally, the unsafe

region is smaller for OEI flight than for total power loss, since there is still some

power supplied to the rotor from the remaining engine(s). With multiple engines, the

chances of total power loss is significantly reduced. Since many military helicopters

have two engines, there is a need for accurate OEI HV diagrams in addition to the

total power loss diagrams.

Due to the implicit risks and expenses involved in conducting flight tests that

involve determining the limitations of safe flight, HV diagrams are usually produced

using analytical methods. Based on the analytical solutions, flight tests are performed

at select locations on the diagram to validate the results. This greatly reduces the

number of flight tests needed to determine the HV envelopes for a given helicopter at

various altitude densities and gross weights. (See Reference [8] for a summary of an

extensive test campaign to construct the HV diagrams for an AH-1G helicopter at two

additional gross weights that had not been previously tested.) It is thus essential to

have accurate analytical methods to estimate the deadman’s curve. Optimal control

theory has been utilized during past research as an effective tool in providing these

analytical means. By analyzing the optimal flight trajectories for several test cases,

the limitations of safe flight as described by an HV diagram can be estimated..

1.4 Research Catalyst

The Naval Air Systems Command (NAVAIR) is responsible for the acquisition,

testing, and management of aircraft for the Navy and Marine Corps. NAVAIR has a

need for additional methods for validating the HV data supplied to them by rotorcraft

manufacturers. This research will supplement the analytical methods available to

NAVAIR in calculating HV curves for rotorcraft in OEI flight. Additionally, this

research will provide an archetype for investigating autorotative characteristics using
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optimal control methods.

1.5 Research Objectives

This research aims to contribute to the increased understanding of autorotation

capabilities, specifically with regards to limits on the safe helicopter flight envelope.

The objectives of this research are as follows:

• Develop an improved mathematical model for helicopter dynamics.

• Analyze the trajectory of a helicopter during autorotation using optimal control.

• Implement a more robust optimal control solution process to derive a more defined
HV diagram.

• Determine the influence of ground effect in the dynamic model.

• Examine the effects of changes in helicopter properties on a helicopter’s autorotative
capabilities.

1.6 Thesis Overview

This chapter has introduced the topic of helicopter HV diagrams as well as pro-

vided the main objectives of this research. Chapter 2 provides background on prior

research into the construction of HV diagrams, an overview of optimal control theory,

and the application of optimal control to the autorotation problem. Chapter 3 dis-

cusses the methodology used in this research to develop a dynamic model of helicopter

flight, formulate an optimal control problem to use in constructing a HV diagram,

and investigate autorotative characteristics. Chapter 4 provides the results of the

autorotation investigation as well as the solutions to the optimal control problem.

Chapter 5 discusses conclusions from this research and recommendations for further

research.
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II. Background

2.1 Chapter Overview

This chapter discusses previous research into the construction of Height-Velocity

(HV) diagrams, which has transitioned from initially being solely empirically based

to now incorporating analytical methods to supplement flight tests. The majority of

current analytical methods for estimating HV curves apply optimal control theory

to analyze autorotation trajectories. This chapter provides an overview of optimal

control, focusing on the methods used in this research. The development of rotorcraft

dynamic models along with the application of optimal control to those models is then

discussed. Finally, a brief background of autorotation indices which have previously

been applied to analyze autorotation performance is presented.

2.2 Early Height Velocity Research

2.2.1 HV Flight Tests

Initial investigations into the safe regions of helicopter flight described by HV dia-

grams involved empirical analysis of helicopters during autorotation following power

failure. While autorotation was already a commonly taught maneuver by the onset

of the 1950’s, very little was known at that time about what heights were sufficient to

allow for successful autorotation and a safe landing. The first attempts to determine

these required heights were flight tests during which the helicopter’s engine would be

shut off to simulate engine failure. O’Hara and Mather [9] reported the findings of one

such series of flight tests conducted by the Aeronautical Research Council in 1951.

These tests measured the amount of height lost for the test helicopter, the Hoverfly

I, during autorotations at various initial heights and forward velocities. Based on

these measurements, the general trend of an unsafe flight envelope with an upper
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bound that decreases as forward velocity increases and a lower bound that increases

as velocity increases was inferred.

In the 1960s, the Aircraft Development Service of the Federal Aviation Adminis-

tration (FAA) launched a flight test program with the intent of developing a practi-

cal approach for determining the flight envelope shown in HV diagrams. This study

specifically examined the effects that flight altitude and helicopter gross weight had on

the low-speed HV diagrams for three different single-engine, single-rotor helicopters

that varied in disk loading and rotor inertia. During each test, a simulated engine

failure was executed at either a designated forward velocity with progressively lower

altitudes or a designated altitude with progressively lower velocities. Based on the

results of these flight tests, Hanley and Devore [10] noted that the HV diagrams for

each helicopter constituted a family of curves that varied as functions of the density

altitude and gross weight. After nondimensionalizing these curves using the critical

velocity and critical height determined from the knee point of the HV diagram, all

of the nondimensional test point values fell on the same curve. Hanley and Devore

determined that HV diagrams for a given helicopter can therefore be generalized in

nondimensional terms once the knee point of the flight condition in question has been

determined.

2.2.2 HV Semi-Empirical Methods

Pegg [11] continued off of the work of Hanley and Devore and utilized the FAA’s

flight test results to develop a semi-empirical method for determining a helicopter’s

HV diagram. Pegg’s semi-empiricial method first estimated the low hover height,

high hover height, and knee point of the HV diagram, and then used those points

to scale the HV curve for a given helicopter based on the flight density altitude and

gross weight. For the estimation of the knee point, this method calculated the critical
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velocity for each case but assumed, based on the flight data from the three test

helicopters, that the critical height would remain at approximately 95 feet. Pegg’s

semi-empirical method served as a useful baseline for developing HV diagrams. In

1980, the Helicopter Dynamic Performance (HDP) program used Pegg’s model as the

basis for its construction of the HV curve [12]. As digital computing power started to

provide more analytical capabilities, these early empirical and semi-empirical methods

for determining HV diagrams were supplemented by more effective analytical solution

methods, most notably optimal control.

2.3 Optimal Control

2.3.1 Optimal Control Overview

Optimal control theory provides a means of determining the control inputs into

a system that optimize a desired performance criterion while satisfying physical con-

straints on the system [13]. One of the first steps in formulating an optimal control

problem is to develop a mathematical model of the system being analyzed. These

models are commonly represented in state variable form, consisting of a set of state

variables (states), which describe specific components of the system, and control vari-

ables (controls), which describe the inputs to the system that drive the states to

optimize a performance index. The state and control variables are related by a set of

first-order differential equations that describe the dynamics of the system. Algebraic

equations are used to describe any path constraints that may exist on each of the

states and controls as well as the initial and terminal boundary conditions for the

variables. Finally, a scalar performance index (or objective/cost function) is selected

to be either minimized or maximized. In dynamic optimization problems, the per-

formance index is a functional, meaning that it is a function of functions, since the

state trajectory and control time history are functions [13]. The set of controls along
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with the associated states that minimize the performance index while satisfying the

constraints on the system constitute the solution of the optimal control problem.

In order to determine whether a solution is the minimum and thus the optimal

solution, certain necessary conditions must be met. The interested reader can refer to

Kirk [13] or Betts [14] for a detailed description of these necessary conditions based

on the boundary conditions of the problem.

Given the complex nature of most optimal control problems, optimal control so-

lutions are typically determined using numerical methods. Betts [15] [14] and Rao

[16] provide surveys of the common numerical methods for optimal control. The two

main classifications for these optimal control numerical methods are indirect methods

and direct methods. Figure 2.1 shows an overview of the optimal control problem

with respect to each of these methods. While explaining the fundamental differences

between indirect and direct methods, Rao [16] describes the numerical methods used

in optimal control as having three main components: 1) methods for solving systems

of nonlinear algebraic equations, 2) methods for solving differential equations and

integration functions, and 3) methods for solving nonlinear optimization problems.

Indirect methods involve the first two components, 1) and 2), while direct methods

involve the last two components, 2) and 3).

Figure 2.1. Indirect vs. Direct Methods [3]

10



2.3.2 Indirect Methods

Indirect methods apply the calculus of variations to the optimal control problem

in order to derive the first-order necessary conditions for optimality. The necessary

conditions are typically represented in terms of the Hamiltonian. The Hamiltonian

is the integrand in the cost functional augmented with the system constraints and

Lagrange multipliers. These Lagrange multipliers are called the costates of the sys-

tem. The costates may or may not have any physical significance, depending on the

system and problem formulation. The state equations are determined by taking the

partial derivatives of the Hamiltonian with respect to the costates. Similarly, the

costate equations are found by taking the partial derivative of the Hamiltonian with

respect to the states. The partial derivative of the Hamiltonian with respect to the

controls yields the control equations [13]. The Euler-Lagrange necessary conditions

include this set of equations along with the boundary conditions derived from known

initial states and the terminal costates. The boundary conditions (or transversal-

ity conditions) can vary based on whether the initial and terminal times/states are

fixed or free. Section 5.1 of [13] summarizes the different boundary conditions for

optimal control problems. The most common indirect methods for solving the result-

ing two-point boundary-value problem are the indirect shooting method, the indirect

multiple-shooting method, and indirect collocation methods [16]. Section 4.3 of [14]

lists some of the difficulties that arise when trying to solve optimal control problems

using indirect methods. One of the primary difficulties is having to make a relatively

accurate initial guess for the costates, which can be difficult since the costates do not

always correspond to physical quantities.
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2.3.3 Direct Methods

Whereas indirect methods require explicit derivation of the costate equations,

control equations, and transversality conditions, direct methods do not. Rather than

finding the derivatives of the Hamiltonian, direct methods discretize the continuous

optimal control problem into a nonlinear programming (NLP) problem and find the

resulting NLP solution. Similarly to indirect methods, the system equality and in-

equality constraints are appended to the cost function with Lagrange multipliers.

The augmented performance index is sometimes referred to as the Lagrangian. The

resulting necessary conditions for optimality are the Karush-Kuhn-Tucker (KKT)

conditions. The KKT conditions are: 1) the gradient of the Lagrangian with respect

to each of the states, controls, and Lagrange multipliers are zero; 2) the inequality

constraints must be feasible; 3) the Lagrange multipliers for the inequality constraints

posed as less than or equal to zero must be non-negative; and 4) the gradients of ac-

tive constraints must be linearly independent [14]. Two of the most prevalent direct

methods for solving the optimal control problem while only parameterizing the con-

trol are the direct shooting method and the direct multiple shooting method. Direct

collocation methods parameterize both the states and controls in their solutions [16].

2.3.4 Nonlinear Programming

Many methods for solving optimal control problems employ nonlinear/parameter

optimization or nonlinear programming. The NLP problem finds a set of discretized

system parameters that minimize a performance index subject to algebraic constraints

while meeting the KKT necessary conditions for optimality. The values for the pa-

rameters and their derivatives are calculated at each discretized point [15]. A NLP

problem can either be classified as either dense, meaning that a large percentage of

the derivatives of the cost function and constraint functions are nonzero, or sparse,
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meaning that a large percentage of the derivatives of the cost function and constraint

functions are zero [16]. Betts [14] details different techniques that are particularly

suited for solving different NLP problems based on this classification. One of the most

common methods for solving NLP problems is the Sequential Quadratic Programming

(SQP) algorithm. The SQP algorithm is described in detail in several optimization

textbooks, such as in Section 13.4 of [17]. Gill, Murray, and Saunders [18] developed

a sparse NLP solver SNOPT, which utilizes the SQP algorithm. SNOPT is especially

suitable for solving trajectory optimization problems.

2.3.5 Collocation Methods

In direct collocation methods, the problem’s interval of interest is divided into

mesh intervals in which the states and controls are collocated at selected points,

called collocation points or nodes. The transcribed NLP problem is then solved for

the states and controls at each collocation point simultaneously [19]. There are several

methods of choosing the location of the collocation points. Orthogonal collocation

methods select the roots of orthogonal polynomials, such as Chebyshev or Legendre

polynomials, as the nodes. These methods are often favored due to their increased

accuracy in quadrature approximations to definite integrals [16]. Collocation methods

can also be classified as either local collocation and global collocation.

2.3.6 Pseudospectral Methods

One type of direct, global orthogonal collocation are pseudospectral methods. In

pseudospectral methods, the optimal control problem is transcribed into a NLP prob-

lem using global polynomials to parameterize the states and controls, and a Gaussian

quadrature to collocate the differential-algebraic equations [20]. Pseudospectral meth-

ods define the domain of the problem as [-1,1] by performing an affine transformation.
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The most common sets of collocation points within the meshes of this domain are

Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto

(LGL) points. LG points do not include either the initial or terminal endpoints of

the mesh, LGR points include only one endpoint (either the initial or terminal), and

LGL points include both of the endpoints.

Rao et al. developed a Matrix Laboratory (MATLAB) software called GPOPS-II,

which utilizes pseudospectral methods and sparse nonlinear programming to solve

multi-phase optimal control problems [19]. In multi-phase problems, each phase has

its own cost function, dynamic constraints, and path constraints. Consequently, it

is possible to divide a problem into multiple phases if the dynamics or constraints

on the problem are not constant. The phases are connected together using linkage

constraints, which prevent any discontinuities between phases for the states and con-

trols. GPOPS-II employs an hp-adaptive Gaussian quadrature collocation method

to achieve solution convergence at LGR points. h methods reach convergence by

increasing the number of intervals, while p methods reach convergence by increasing

the degree of the approximating polynomial. hp-adaptive methods combine h and p

methods for convergence. The hp-adaptive methods allow for variance in the num-

ber and size of meshes as well as the degree of the approximating polynomial. This

facilitates spectral convergence in regions where the solution is smooth and the intro-

duction of additional mesh points in regions where the solution is discontinuous or

changes rapidly [19]. GPOPS-II then employs sparse derivative approximations with

a selected NLP solver, such as SNOPT or IPOPT.

2.4 Modeling Helicopter Descent With Optimal Control

In 1977, Johnson [4] applied optimal control theory to analyze the descent of a

helicopter following power loss during level flight. Johnson’s goal was to find the op-
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timal control to land a helicopter with minimum velocity after losing power. Johnson

modeled the helicopter as a point-mass whose motion stayed within a two-dimensional

plane according to the force diagram in Figure 2.2. When formulating this optimal

control problem, Johnson decided to use height above the ground as the independent

variable instead of time, since the final height of the helicopter is known for the landing

problem. The control variables for this model were the coefficient of thrust, CT , and

the angle of the thrust vector to the vertical, α. The collective pitch control could be

determined from these control variables using blade element theory. The longitudinal

cyclic pitch could not be determined from α without considering the helicopter’s pitch

attitude and rotor flapping, which Johnson did not include in this analysis. Following

the simulated power shut-off, Johnson used nondimensional, non-linear equations of

motion for the vertical descent velocity, horizontal velocity, rotor speed, and induced

velocity as the differential equation constraints for the control problem. This model

accounted for ground effect, rotor stall, vortex ring state, an exponential lag in the

power drop of the engine following shut-off, and a time delay from the pilot’s reac-

tion time. A quadratic cost function was implemented to minimize both the vertical

and horizontal velocities of the helicopter at landing. The boundary conditions were

derived from the initial and final heights. Johnson applied the steepest descent al-

gorithm, which is described in [13] and [17], to solve the two-point boundary value

problem from the indirect method to solve this two-point boundary-value problem.

The resulting solutions were in general agreement with available flight test data but

did have some discrepancies, such as the initial behavior of the rotor speed following

power loss. Johnson’s analysis demonstrated that optimal control could effectively be

adapted to evaluate the trajectory of a helicopter during autorotation.

In 1985, Lee [21] developed a point-mass dynamic model similar to the one used

by Johnson. After incorporating the helicopter properties for an OH-58A helicopter
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Figure 2.2. Force Diagram used by Johnson [4]

into the model, Lee formulated the optimal control problem to minimize the land-

ing velocity. Along with initial and terminal boundary constraints, Lee included a

path constraint to account for the limitations caused by blade stall. Lee solved the

optimization problem for several different initial heights and airspeeds using the Se-

quential Gradient Restoration (SGR) algorithm. Lee’s problem formulation assumed

an instantaneous, total power loss and did not account for a reaction delay by the

pilot. Among the notable conclusions reached during this research was the adequacy

of a point-mass model in accurately representing the descent of a helicopter during

autorotation. Lee found that the calculated point-mass steady-state sink rates were

within the bounds of experimentally determined data from OH-58A flight tests. Thus,

the pitching motion excluded from this model was determined to be negligible. Fur-

thermore, the flight trajectories of the optimal solutions closely matched the flight

tests. Lee also concluded that additional path constraints should be added for both

the state and control variables to better reflect reality.
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2.5 Optimal Control Analysis of OEI Flight

In the 1990’s, Chen and Zhao investigated optimal trajectories for twin engine

helicopters operating in one engine inoperable (OEI) flight [22]. Similarly to previous

research, Chen and Zhao developed a two-dimensional, point-mass helicopter model.

Unlike other models designed to analyze full power loss, their model included an

additional state to account for the power supplied by the remaining operating engine

after entering into OEI flight. Chen and Zhao implemented the SGR algorithm to

determine the optimal trajectories during a rejected takeoff, continued takeoff, balked

landing, and continued landing. One of the notable conclusions that Chen and Zhao

reached was that ground effect has a significant effect in trajectory optimization for

Vertical Takeoff and Landing (VTOL) flight.

In 2003, Carlson [23] collaborated with Zhao to apply optimal control theory to

develop OEI HV diagrams for the XV-15 tiltrotor aircraft. One major differentiator

between this and prior research was that Carlson employed direct collocation and NLP

to solve the optimal control problem to determine points along the deadman’s curve.

The collocation method proved to be an improvement over many of the previous

methods utilized for HV analysis.

Bachelder et al. [24] adapted a similar direct collocation optimal control strategy

for analyzing OEI flight for the MH-60S and the CH-53D. Using the optimal trajec-

tories, Bachelder estimated the high hover point and knee point of the HV curve.

The results were compared to Sikorsky’s method for examining HV diagrams with its

HDP program. While the solutions were similar, the dynamic model used in the op-

timal control formulation was determined to be less accurate than the HDP dynamic

model.
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2.6 HV Diagram Determined Using GPOPS-II

In 2018, Harris [2] applied optimal control to analytically derive an OEI HV

diagram for an AH-1Z helicopter. Harris developed a point-mass dynamic model

that compared favorably to AH-1Z flight test data for low-speed flight. The optimal

control problem formulation included constraints on the initial and final states as

well as path constraints. Both the initial altitude of the helicopter and the final time

were chosen to be free variables. Harris selected the cost function to minimize the

initial altitude when finding points along the upper portion of the HV curve, and

to maximize the initial altitude when finding points along the lower portion of the

curve. Harris solved the optimal control problem using pseudospectral collocation via

the GPOPS-II software discussed in Section 2.3.6. Based on the solutions at multiple

conditions, Harris constructed an HV diagram. The research conducted during this

thesis is a continuation of the work performed by Harris.

2.7 Autorotative Performance

A helicopter’s autorotative performance relies on several factors, including rotor

disk loading, stored kinetic energy, and blade loading. In Section 8.5 of [7], Johnson

describes several performance indices based on some of these factors. These indices

are useful in the design process of a helicopter to help ensure certain autorotative

characteristics will be achieved as well as in analyzing the autorotative characteris-

tics of existing rotorcraft. The development of many of these autorotation indices is

summarized in [25]. The first index is the rotor energy factor, which is the kinetic

energy of the main rotor divided by the helicopter’s gross weight. The autorotation

landing index represents the amount of time that touchdown can be delayed. This

measure is dependent on rotor inertia and blade stall characteristics. The next au-

torotative index discussed by Wood is a measure of the usable energy level of the
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helicopter, which depends on the operating and maximum blade loading coefficients.

The last index is simply denoted autorotation index (AI) and is the ratio of the kinetic

energy of the main rotor to the hover power required. Fradenburgh [26] introduced

an additional autorotation measure, the flare index, which was used by Sikorsky Air-

craft. The flare index is the ratio of the rotor energy available to energy required

to perform the flare maneuver. Fradenburgh found a high correlation with this flare

index and pilot opinion on the ease of landing during autorotation. In Chapter 5 of

[27], Leishman compares the flare indices for several helicopters.

2.8 Conclusions from Previous Research

Initial approaches for constructing Height-Velocity diagrams revealed a need to

supplement flight tests with accurate analytical methods. The first step in developing

these analytical methods involves constructing a mathematical model representative

of a helicopter’s behavior during flight. Several studies have shown that a point-

mass dynamic model can adequately portray a helicopter in autorotation. Optimal

control has been successfully utilized to determine flight trajectories and estimate the

boundary between safe and unsafe flight regions in the case of engine failure. Direct

collocation methods in particular have proven to be effective in solving for the HV

curve. The research reviewed in this chapter was fundamental in establishing the

research methodology for this thesis as discussed in Chapter 3.
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III. Research Methodology

3.1 Chapter Overview

This chapter describes the development of a helicopter dynamic model and the

research methods employed to analyze varying effects on a helicopter’s autorotation

characteristics based on this model. The research approach for this thesis begins

by developing a helicopter model based on previous research. That model is then

incorporated into an optimal control problem to construct a Height-Velocity (HV) di-

agram. The optimal control formulation diverges from prior research by implementing

an alternative method for determining the HV curve. Following the construction of

the HV curve, the influence of ground effect in the dynamic model is investigated.

Finally, additional factors affecting autorotation are analyzed.

3.2 Basic Assumptions

A point-mass model has been selected for this research since point-mass models

have been shown by several studies, including those by Johnson [4] and Lee [21], to

adequately represent a helicopter during flight. Since a helicopter ideally experiences

minimal lateral movement when performing an autorotation, the model confines heli-

copter motion within a vertical plane. Similar to Harris’s research [2], the rotor inflow

is modeled using momentum theory and is assumed to be uniform. The helicopter

mass is assumed to be constant throughout the autorotation, since any changes in

mass due to factors such as fuel burn are negligible. The helicopter model reflects

standard sea-level atmospheric conditions with no wind and constant air density. This

research focuses on the low-speed portion of the HV diagram, thus assuming a low

advance ratio. The engine failure occurs when the helicopter is in level, steady-state

flight, which is often the assumed initial conditions for an HV diagram.
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3.3 7-State Dynamic Model

3.3.1 Helicopter Model

The helicopter dynamic models used by Lee [21] and Harris [2] formed the starting

point for the development of the models used in this research. The force diagram

shown in Figure 3.1 depicts a point-mass helicopter in descent and provides the basis

for the dynamic model’s equations of motion. Balancing the vertical and horizontal

forces acting on the point-mass produces Equations 3.1a and 3.1b, respectively.

Figure 3.1. Point-Mass Helicopter Force Diagram

mẇ = mg − T cosα−D sin θ (3.1a)

mu̇ = T sinα−D cos θ (3.1b)

Figure 3.1 also presents many of the state and control variables for the dynamic
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model. The two controls are the rotor thrust and the angle of attack of the rotor disk

plane, α. Two of the states describe the position of the helicopter: h is the height

of the helicopter above the ground, and x is the horizontal distance the helicopter

travels starting at engine failure. The next two states are the vertical and horizontal

velocities of the helicopter, w and u, respectively. By definition, the derivatives of

the positions are the velocities as shown in Equations 3.2a and 3.2b. It is important

to note that a negative is included in Equation 3.2a, since the height is defined as

positive in the upward direction, and the vertical velocity is defined as positive in the

downward direction.

ḣ = −w (3.2a)

ẋ = u (3.2b)

The torque balance equation is given in Equation 3.3a, where the required torque

is determined from Equation 3.3b. The torque coefficient is equivalent to the power

coefficient, which is discussed in the next section. The energy balance equation for

the helicopter rotor is shown in Equation 3.3d. These equations introduce another

state variable in the rotor rotational speed, Ω.

IRΩ̇ = −QReq (3.3a)

QReq = ρA(ωR)2CQ (3.3b)

CQ = CP (3.3c)

IRΩΩ̇ = PS − PR (3.3d)
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3.3.2 Required Power

The total power required by the helicopter can be calculated as a combination of

main rotor power, tail rotor power, and accessory power losses. After including the

gearbox efficiencies, this summation becomes:

PR =
1

ηC

(
PMR

ηMR

+
PTR

ηTR

+ PAcc

)
(3.4)

The power requirements for the main rotor are calculated using the methods

discussed in Section 6.4 of [7]. Johnson explains that the required rotor power for a

helicopter in forward flight can be estimated by aggregating the rotor induced power,

profile power, parasite power, and climb power. Equation 3.6 shows this relationship

in terms of power coefficients.

PMR = ρA(ΩR)3CPMR
(3.5)

CPMR
= CPi

+ CPo + CPP
+ CPC

(3.6)

The rotor induced power is the power that is associated with the production of

thrust. The calculation for the induced power coefficient, CPi
, includes an empirical

correction factor, ki to account for any losses such as those from tip loss or nonuniform

inflow.

CPi
= kiλiCT (3.7)

The profile power is the power necessary for the rotor blades to rotate through the

air. The profile power coefficient, CPo , incorporates the average blade drag coefficient,

cdo, and the helicopter speed as represented by the advance ratio, µ. The following
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approximation is accurate for low advance ratios, such as those that are encountered

during this research.

µ =
u cosα + w sinα

ΩR
(3.8)

CPo =
σcdo

8
(1 + 4.65µ2) (3.9)

Whereas the profile power accounts for blade drag, rotor parasite power encom-

passes the drag from the whole helicopter. The drag that the helicopter experiences

is estimated using an equivalent flat plate area, f , when calculating the profile power

coefficient, CPp .

CPp =
f

2A
µ3 (3.10)

The climb power is the power necessary for the helicopter to change its altitude.

The climb power coefficient, CPc , is derived from the helicopter’s vertical velocity, w,

and the aircraft weight, W .

CPc = − wW

ρA(ΩR)3
(3.11)

The purpose of the tail rotor is to balance the torque created by the main rotor

and provide yaw control for the helicopter. As a result of having a longer moment

arm, the tail rotor does not need to match the thrust produced by the main rotor

and consequently has much lower power requirements than the main rotor. Rather

than analyzing each of the components of power for the tail rotor, the required power

for the tail rotor is calculated based on the thrust required to balance the main rotor

torque. The following equation for tail rotor power used by Harris in [2] additionally
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incorporates the advance ratio.

TTR =
QMR

lTR

(3.12a)

CTTR
=

TTR

ρATR(ΩTRRTR)2
(3.12b)

PRTR
= (1 − 1.2µ)

CTTR

MTR

(3.12c)

Accessory power losses are unique to each aircraft. Harris [2] provides empirically

derived values for the accessory power losses for the AH-1Z.

3.3.3 Engine Power

Since this model is designed to analyze twin-engine rotorcraft during one engine

inoperable (OEI) operations, the power provided to the rotor system by each engine

is considered separately as individual state variables. P1 denotes the power available

from the engine that experiences failure. Immediately following the engine failure,

the power available decays as shown in Equation 3.13 [28], where τ1 is a time constant

for the first engine.

Ṗ1 = − 1

τ1
P1 (3.13)

After losing power from the first engine, the second engine will increase its power

output, P2, to try to compensate for the loss. Equation 3.14b describes this increase

in power output [22],[2]. The engine two time constant, τ2 is used to calculate the

rate of change for the power. There will naturally be a lag in the time it takes for

the system to realize the working engine needs to compensate for the failed one, so

the power output from the working engine will not immediately increase as shown

in Equation 3.14a. Equation 3.14c describes the power available from the operating
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engine after being modified by the engine governor [24]. The maximum power output

for the single operating engine is given by POEI .

Ṗ2 = 0 for t ≤ 0.5 (3.14a)

Ṗ2 =
1

τ2
(P2AG − P2) for t > 0.5 (3.14b)

P2AG = min[POEI , PR −G(Ω − Ω0)] (3.14c)

3.3.4 Rotor Inflow

Due to the descending flight path of helicopters during autorotation, the rotor

will likely operate in vortex ring state (VRS). In [4], Johnson describes an algorithm

using an empirical extension of momentum theory to determine rotor inflow during

flight that encounters VRS. This algorithm uses the ideal induced velocity in hover,

which is shown in Equation 3.15a, to find the rotor axial and radial velocity ratios as

shown in Equation 3.15b and 3.15c. The velocity ratios are then input into the VRS

model given by Johnson to estimate the inflow ratio, λ.

vh =

√
T

2
(3.15a)

µx =
u cosα− w sinα

vh
(3.15b)

µz =
u sinα− w cosα

vh
(3.15c)

3.3.5 Ground Effect

Whenever a helicopter is in close proximity to the ground, the induced velocity

at the rotor decreases. This phenomenon, known as ground effect, causes a reduction
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in the amount of power required to produce a given thrust. Likewise, ground effect

causes an increase in the amount of thrust produced by a rotor at a given power.

Ground effect can be modeled by including a ground effect factor, kg, to scale thrust.

Equations 3.1a and 3.1b can then be modified as shown in Equations 3.23a and 3.23b

to include this factor.

mẇ = mg − Tkg cosα−D sin θ (3.16a)

mu̇ = Tkg sinα−D cos θ (3.16b)

There are several empirical models for determining what value to use for the

ground effect factor. Section 4.8 of [7] lists six such models that are analyzed in

this research. Equations 3.17-3.22 denote the ground effect models. The ground

effect factor in the first three models is only a function of the rotor height above the

ground, z, and the rotor radius. The last three models additionally use blade element

theory to include rotor thrust into the calculations.

Cheeseman and Bennett:

kg =

[
1 − 1

(4z/R)2

]−1
(3.17)

Hayden:

kg =

[
0.9926 +

0.03794

(z/2R)2

]2/3
(3.18)

Schmaus, Berry, Gross, and Koliais:

kg =

[
0.146 + 2.090

( z
R

)
− 2.068

( z
R

)2
+ 0.932

( z
R

)3
− 0.157

( z
R

)4]−2/3
(3.19)

The following ground effect models incorporate blade element theory:
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Cheeseman and Bennett (blade element theory):

kg =

[
1 + 1.5

σaλi
4CT

1

(4z/R)2

]
(3.20)

Law:

kg =

[
1.0991 − 0.1042/(z/D)

1 + (CT/σ)(0.2894 − 0.3913/(z/D))

]−1
(3.21)

Zbrozek:

kg =

[
0.9122 +

0.0544

(z/R)
√
CT/σ

]
(3.22)

Figure 3.2 compares the values for the ground effect factors for each of the above

models as a function of z/R. For this comparison, the models incorporating blade

element theory utilized values of thrust for hover. As z/R increases, the values for

the ground effect factor approach one, since ground effect becomes negligible once the

helicopter rotor is more than one rotor diameter above the ground. For the purposes

of this study, the ground effect factor equals one whenever z/R ≥ 2.
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Figure 3.2. Comparison of Ground Effect Models
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3.3.6 Equations of Motion

The seven dynamic equations described above that compose the equations of mo-

tion for this model are:

mẇ = mg − Tkg cosα−D sin θ (3.23a)

mu̇ = Tkg sinα−D cos θ (3.23b)

IRΩ̇Ω = P1 + P2 − PReq (3.23c)

ḣ = −w (3.23d)

ẋ = u (3.23e)

τ1Ṗs1 = −Ps1 (3.23f)

τ2Ṗ2 = 0 for t ≤ 0.5 (3.23g)

τ2Ṗs2 = PA2G − Ps2 for t > 0.5 (3.23h)

3.3.7 States

The seven state variables selected for this model are listed in Equations 3.24a-

3.24g. Each of these states have been nondimensionalized to allow for ease of cal-

culations in the dynamic model. The states have been scaled so that each variable

is approximately the same order of magnitude. The scaling follows similar scaling
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techniques used by Lee [21], Johnson [4].

x1 =
w

0.01Ω0R
(3.24a)

x2 =
u

0.01Ω0R
(3.24b)

x3 =
Ω

Ω0

(3.24c)

x4 =
h

10R
(3.24d)

x5 =
x

10R
(3.24e)

x6 =
P1

POEI

(3.24f)

x7 =
P2

POEI

(3.24g)

3.3.8 Controls

The two control variables are the thrust coefficient and the angle of attack of the

rotor tip path plane.

u1 = 1000CT (3.25a)

u2 = α (3.25b)

3.3.9 Nondimensional Equations of Motion

In order to nondimensionalize each of the variables in the dynamic model, time

must also be addressed. Lee [21] uses the following equations to define nondimen-

sional time, τ , and the derivative with respect to that non-dimensional time, which
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is denoted in the equations of motion using a prime notation (’).

τ =
t

tref
(3.26a)

tref =
100

Ω0

(3.26b)

τ =
Ω0t

100
(3.26c)

d

dτ
=

100

Ω0

d

dt
(3.26d)

Incorporating all of the nondimensional terms into the dynamic equations pro-

duces the following equations of motion:

x′1 = g0 −m0x
2
3kgu1 cosu2 − f0zx1

√
x21 + x22 (3.27a)

x′2 = m0x
2
3kgu1 sinu2 − f0xx2

√
x21 + x22 (3.27b)

x′3 =
i0
x3

(x6 + x7 − PR1) (3.27c)

x′4 = −0.1x1 (3.27d)

x′5 = 0.1x2 (3.27e)

x′6 = −k1x6 (3.27f)

x′7 = 0 for τ ≤ 0.5

tref
(3.27g)

x′7 = k2(P2 − x7) for τ >
0.5

tref
(3.27h)
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3.3.10 Additional Parameters

Additional nondimensional variables for the power terms that are included in the

equations of motion are:

PR1 =
PR

POEI

(3.28a)

P2 = min[PR1 −G1(x3 − 1), 1] (3.28b)

The constants used in this dynamic model are:

g0 =
10, 000g

Ω2
0R

(3.29a)

m0 =
10ρπR3

m
(3.29b)

f0z =
ρfezR

2m
(3.29c)

f0x =
ρfexR

2m
(3.29d)

i0 =
100POEI

IRΩ3
0

(3.29e)

k1 =
tref
τ1

(3.29f)

k2 =
tref
τ2

(3.29g)

G1 =
GΩ0

POEI

(3.29h)

3.4 Optimal Control Problem Formulation

The optimal control problem for this research implements the above helicopter

model to determine minimum landing velocities for a grid of initial altitudes and

airspeeds. A HV diagram can then be delineated based on the resulting solutions.
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The equations of motion of the helicopter serve as equality constraints in the optimal

control problem. The initial conditions, path constraints, and final conditions provide

additional equality and inequality constraints.

3.4.1 Optimal Control Problem Statement

The initial cost function selected for this research was simply the square root of

the sum of the final landing velocities squared. The cost function was then weighted

in order to minimize the vertical landing velocity more than the landing airspeed.

This weighting reflects the requirement of a lower vertical velocity to land safely. An

inverse tangent of the two final velocities was also appended to the cost function to

promote a vertical landing. This addition was found to improve convergence and

generate better solutions for the upper portion of the HV curve.

minimize
u

J =
√

100x21f + x22f + tan−1
(
x2f
x1f

)
subject to x′ − f = 0,

x(τ0) − x0 = 0,

g1(x) ≤ 0,

g2(u) ≤ 0,

x(τf ) − xf = 0

(3.30)

A significant difference between this problem formulation and that of Harris [2] is

the chosen cost function. Harris’s cost function minimized or maximized the initial

height given an initial airspeed and constraints on the final landing velocity. This

cost function minimizes the landing velocity of the helicopter for a given set of initial

conditions. Based on the solutions for the final velocities, a determination can be

made whether a safe landing is possible from the given initial height and airspeed.
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3.4.1.1 Initial Conditions

The initial conditions are based on the selected starting height and airspeed for

the given iteration. Level flight is assumed at the instant of engine failure, so the

initial vertical velocity is set equal to zero. The rotor angular velocity, thrust, power,

and rotor angle of attack are calculated for the trim flight conditions for the chosen

height and horizontal velocity.

t0 = 0

w0 = 0

u0 = Selected initial airspeed

Ω0 = Trim condition Ω

h0 = Selected initial altitude

x0 = 0

P10 = Engine 1 power at engine failure

P20 = Engine 2 power at engine failure

CT0 = Trim condition CT

α0 = Trim condition α

3.4.1.2 Path Constraints

The states and controls are subject to the following path constraints:
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0 ≤ t ≤ tmax

0 ≤ w ≤ wmax

0 ≤ u ≤ umax

Ωmin ≤ Ω ≤ Ωmax

0 ≤ h ≤ h0

0 ≤ x ≤ xmax

0 ≤ P1 ≤ POEI

0 ≤ P2 ≤ POEI

0 ≤ CT ≤ CTmax

αmin ≤ α ≤ αmax

Many of the minimum and maximum bounds for the path constraints are chosen

based on the helicopter properties and match the path constraints used by Harris in

[2]. The maximum values for time and distance, x, were chosen to be values that are

much larger than what would be achieved during an OEI autorotation.

tmax = 15 ∗ tref

wmax = 3000 ft
min

umax = 200kts

Ωmin = 0.92 ∗ Ω0

Ωmax = 1.06 ∗ Ω0

xmax = 10000ft

POEI = 869, 000ft∗lb
sec

CTmax = 0.015

αmin = −8 deg

αmax = 8 deg
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3.4.1.3 Final Conditions

Since the final condition describes the helicopter as it lands on the ground, the

final altitude has an equality constraint set to zero.

hf = 0

The remainder of the states and controls are not fixed but are still bounded by

the path constraints listed above.

3.5 Methodology Summary

This chapter describes the research methodology used for this thesis. It outlines

the equations of motion for the dynamic model as well as the optimal control problem

formulation. The solution of the optimal control problem includes the minimum

landing velocity that the helicopter has from a given set of initial conditions. The

magnitude of the horizontal and vertical landing velocities determine if that test case

is in the safe or unsafe region of flight. Compiling several test cases produces an

HV diagram. This chapter also presents several ground effect models that will be

incorporated into the overall helicopter dynamic model.
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IV. Results

4.1 Chapter Overview

This chapter begins by discussing the optimal control solutions for the 7-state

helicopter model. An Height-Velocity (HV) diagram is then presented based on these

solutions. After establishing an initial HV diagram, changes are then made to the

helicopter model to analyze the effects that various factors have on a helicopter’s

autorotation performance and HV diagram. Variations in the ground effect factor as

well as changes to helicopter characteristics, such as gross weight and rotor radius,

are presented.

4.2 7-State Helicopter Model Results

The baseline for the investigations composing this research uses the helicopter

dynamic model and accompanying optimal control problem formulation discussed in

Chapter 3 with the parameters of the AH-1Z as given in [2]. Solving the optimal

control problem addresses whether the helicopter is able to safely land following an

autorotation from a given initial flight condition. Compiling those answers for an

array of test cases generates an HV diagram that displays the safe and unsafe regions

of flight.

4.2.1 Flight Trajectories and Optimal Controls

4.2.1.1 Safe Region

Figure 4.1 shows the helicopter’s trajectory following single-engine failure occur-

ring at a height of 100 feet while flying at an airspeed of 10 knots. This trajectory

follows the typical phases of an autorotation. The beginning of the flight path shows
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a slight decrease in altitude as the main rotor stops receiving power from the failed

engine. That is followed by a steady rate of descent as the helicopter flies forward.

The rate of descent then levels out as the helicopter flares before touching down on

the ground.

Figure 4.1. Autorotation Trajectory from an Airspeed of 10 Knots at 100 Feet

The time histories of each of the states and controls for this flight profile are

presented in Figure 4.2. Once again, the helicopter’s trajectory can be seen by the

plots of the states h and x. Both the horizontal and vertical velocities increase

during the first portion of the autorotation as the helicopter dives. They then plateau

momentarily during the steady-state autorotation before decreasing as the helicopter

flares as it approaches the ground. This test case represents a safe landing since both u

and w reach zero velocity at landing. The helicopter begins steady-state autorotation

around five seconds after engine failure, and then commences the flare approximately
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nine seconds after engine failure. The rotor speed decreases initially after failure

before slowly increasing during the steady-state descent. As the helicopter flares, the

rotor speed decreases significantly as the helicopter slows down to land. As the power

from the failed engine quickly decreases to zero after failure, the power output from

the remaining engine increases to the one engine inoperable (OEI) power limit to

attempt to compensate for the lost engine. There is a small delay of half a second

for the power output from the remaining engine to increase. This lag represents the

time it takes for the second engine to recognize that the first engine has failed. For

the controls, the rotor tip-path-plane angle of attack starts at the upper limit before

oscillating and decreasing to the lower limit. The rotor thrust increases sharply as the

helicopter enters into a dive in the first second after engine failure. The thrust levels

out during the steady-state autorotation phase before increasingly slightly when the

helicopter flares. The thrust then decreases as the helicopter lands on the ground.

Figure 4.3 displays the profile for another safe landing. This test case started from

hover at 20 feet. One key difference between this flight profile and the previous one

from 100 feet is that the rotor speed increases initially rather than decreasing. This

is a result of the compressed amount of time for an autorotation due to the engine

failure occurring closer to the ground, which does not allow for a very long descent

before the flare. The flare occurs shortly before two seconds after engine failure.

During the flare, the rotor plane angle of attack decreases sharply while the thrust

increases. Both the vertical and horizontal velocities decrease as a result, and the

helicopter is able to land with zero velocity.

4.2.1.2 Hover Points

The low hover point and high hover point were determined by iteratively solv-

ing the optimal control problem at incremental initial altitudes in hover. Table 4.1
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Figure 4.2. States and Controls for Autorotation from an Airspeed of 10 Kts at 100
Feet
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Figure 4.3. States and Controls for Autorotation from Hover at 20 Feet
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presents the vertical and horizontal landing velocities for each initial height. The

cutoff limits between a safe and unsafe landing were selected to be w < 2.5 ft/sec and

u < 10 knots based on the structural limitations of the AH-1Z [2]. Accordingly, the

low hover point is 39 feet and the high hover point is 151 feet.

Table 4.1. Altitude Sweep at Hover

h0 (ft) wf (ft/sec) uf (kts)
200 0 0
180 0 0
170 0 0
160 0 0
155 0 0
151 0 0
150 0.5188 26.6797
140 1.8953 28.2395
130 6.5302 25.6929
120 8.9302 23.5834
110 10.6011 21.8575
100 11.8093 20.1867
90 12.2150 14.0673
80 8.4619 12.8871
70 9.9964 11.2041
60 8.3174 10.0912
50 6.2101 8.9857
40 3.5600 7.7777
39 2.3217 7.9593
38 2.0254 7.6686
35 2.0334 6.7792
30 1.0817 0.0000
25 0 0
20 0 0
10 0 0

Figures 4.4 and 4.5 show the associated states and controls for the low hover point

and high hover point, respectively.
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Figure 4.4. States and Controls for Autorotation from Hover at 39 Feet
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Figure 4.5. States and Controls for Autorotation from Hover at 151 Feet
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4.2.1.3 Unsafe Region

Within the unsafe region of the HV envelope, the helicopter’s velocity is unable

to decrease sufficiently to allow for a safe landing. The states for the test case of

four knots at 70 feet is shown in Figure 4.6. As can be seen, the helicopter’s air-

speed continues to increase throughout the autorotation until the aircraft impacts

the ground. Meanwhile, the vertical velocity increases during the dive then decreases

during the flare. This difference in behavior for the two velocities is a result of the

selected objective function for the optimal control problem, which prioritizes reduc-

ing the vertical landing velocity more than the final airspeed. Weighting the landing

velocities differently in the cost function would slightly alter the optimal control so-

lution, but was not found to significantly change the location of the HV curve during

this research. Since the horizontal velocity does not decrease during the flare, the

helicopter is unable to land safely. As a result, this test case represents a point in the

unsafe region of flight.

Figure 4.7 shows a comparison of the trajectories for autorotations from the two

hover points and an initial airspeed of 4 knots at 70 feet. For the autorotation from

the high hover point, the helicopter can be seen flaring above the ground as it slows

down before landing. For the case with initial conditions of 4 knots at 70 feet, the

helicopter starts a flare as it approaches the ground, but does not slow down enough

to avoid crashing. The autorotation from the low hover point appears to follow a

similar trajectory without much of a flare. The helicopter is still able to land safely

though as a consequence of having less need for a large flare, since it is descending at

a lower velocity.
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Figure 4.6. States and Controls for an Airspeed of 4 Knots at 70 Feet
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Figure 4.7. Autorotation Trajectories
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4.2.2 Height-Velocity Diagram

The iterative process of incrementally adjusting the initial height was repeated

at several airspeeds. This produced a grid of test cases at varying initial heights

and airspeeds. The landing velocities for each of these test cases were compiled to

construct the HV diagram in Figure 4.8. The green circles represent test cases in

which the helicopter was able to land with both zero vertical and horizontal final

velocities. The yellow circles are test cases in which the helicopter lands with nonzero

velocities that are within the limits for a safe landing. The red points are the test

cases that are within the unsafe flight envelope.

Figure 4.8. 7-State HV Diagram

This methodology for constructing an HV diagram provides the minimized landing

velocities for each set of initial conditions. This allows for a full grid of safe and

unsafe points to be compiled. In comparison, the methodology used by Harris [2]
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only determined points along the HV curve by solving for the height at a given

airspeed and landing velocity. That method encounters problems with the optimal

control converging for certain test cases, especially near the knee point.

4.3 Ground Effect Investigation

The HV diagram above utilizes Hayden’s method for calculating the ground effect

factor. To investigate the influence of ground effect on the dynamic model, the other

ground effect models discussed in Chapter 3 were implemented. In addition, test

cases utilizing various percentages of the Hayden ground effect factor were analyzed.

4.3.1 Ground Effect Models

Five additional methods for calculating the ground effect factor were implemented

into the helicopter’s dynamic model. The optimal control solution process was used as

above for an array of test cases to approximate the low hover point, high hover point,

and knee point. Each of the resulting HV diagrams are shown in Figures 4.9-4.13.

50



Figure 4.9. HV Diagram Using the Cheeseman/Bennett Ground Effect Factor
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Figure 4.10. HV Diagram Using the Schmaus/Berry/Gross/Koliais Ground Effect
Factor
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Figure 4.11. HV Diagram Using the Cheeseman/Bennett Blade Element Theory
Ground Effect Factor
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Figure 4.12. HV Diagram Using the Law Ground Effect Factor
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Figure 4.13. HV Diagram Using the Zbrozek Ground Effect Factor
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Table 4.2 lists the low and high hover points determined from using each of the

different ground effect models. The Cheeseman and Bennett model using blade ele-

ment theory had the smallest HV envelope. This result was expected because that

model has the largest ground effect factor as seen in Figure 3.2. A higher ground

effect factor means that whenever the helicopter is near the ground, more thrust can

be produced for a given power output. The helicopter can then flare more effectively,

which allows it to land safely from a wider range of initial conditions. Contrastingly,

having a lower ground effect factor in the dynamic model impedes the helicopter’s

flare performance. The model developed by Schmaus et al. provides the smallest

ground effect factor of any of the methods analyzed in this research. As illustrated by

Figure 4.10, an HV curve was not able to be defined using this ground effect model.

While the optimal control solutions showed that the helicopter was able to land safely

when beginning the autorotation at low initial heights, the lack of significant ground

effect in the model made successful autorotations unachievable from above an initial

height of approximately 20 feet. Several test cases were conducted at high initial

altitudes up to 1000 feet as well as high initial airspeeds up to 40 knots without

achieving landing velocities within the safe limits. Thus, no high hover point or knee

point could be estimated using the Schmaus ground effect model.

Excluding the results from the Schmaus et al. model, the low hover points are

between 29 feet and 49 feet, and the high hover points are between 144 feet and 156

feet. The knee points are all under an airspeed of 8 knots, and they are under 6 knots

for both the Zbrozek and Cheeseman/Bennett blade element theory models. Figure

4.14 outlines points along the HV curve for each of ground effect models. (Note:

Dashed lines between the points are shown to better see and compare the different

models. The dashed lines do not accurately represent the shape of the HV curves.)
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Figure 4.14. Comparison of Ground Effect Factors
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Table 4.2. Hover Points for Each Ground Effect Model

Ground Effect Model Low Hover Point (ft) High Hover Point (ft)
Cheeseman and Bennett (BE) 49 147
Hayden 39 151
Zbrozek 36 144
Cheeseman and Bennett 29 147
Law 29 156
Schmaus, Berry, Gross, and Koliais 16 -

4.3.2 Variance of Ground Effect Factor

In conjunction with analyzing the six ground effect factor models, test cases were

conducted using the Hayden ground effect factor reduced to 90%, 50%, 10%, and 0%

of its nominal value. As expected, the reduction to 90% of the ground effect factor

slightly increased the size of the unsafe flight region. The low hover point decreased

by seven feet, while the high hover point remained approximately the same with a

shift of one foot. Figure 4.15 presents a partial HV diagram for the 90% ground effect

factor. The reduction to 50% of the ground effect factor produced similar results as

the Schmaus model. The low hover point decreased by twenty-one feet. As with the

Schmaus model, neither a high hover point nor a knee point could be determined.

Further reductions to 10% and 0% (i.e. no ground effect) yielded similar results,

except with the low hover point dropping below ten feet.

Table 4.3. Hover Points for Each Ground Effect Model

Percent of Ground Effect Factor Low Hover Point (ft) High Hover Point (ft)
100% 39 151
90% 32 150
50% 18 -
10% 8 -
0% 7 -
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Figure 4.15. 90% Ground Effect Factor
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4.4 Autorotation Index

A brief study was conducted to analyze the effect that changing helicopter char-

acteristics, such as gross weight and main rotor radius, has on the helicopter’s ability

to land an autorotation safely. For each set of initial conditions, the helicopter pa-

rameters were set such that the helicopter could land with zero velocity. Individual

parameters were then adjusted incrementally until the helicopter surpassed the safe

landing limits. This provides insight to the aircraft limitations that exist at a certain

initial altitude and airspeed.

The Autorotation Index (AI) given in Equation 4.1 was implemented to determine

if the index possesses any strong correlation with when the landing safety limits are

exceeded. According to Leishman [27], a lower AI correlates to worse autorotation

capabilities.

AI =
IRΩ2

0

2WDL
(4.1)

4.4.1 Effect of Gross Weight

One of the most significant factors affecting a helicopter’s autorotation perfor-

mance is its gross weight, which is why flight manuals have separate HV diagrams for

different weights. Figure 4.16 shows the migration of the landing velocities as the AI

varies as a result of changing the helicopter gross weight. The blue points represent

the gross weight as it increases incrementally by 100 pounds. The red lines represent

the boundary limitations for a safe landing.

As expected, an increase in gross weight decreases the helicopter’s autorotation

performance. By comparing Figures 4.16a-4.16c, it appears that the separation be-

tween a safe and unsafe landing is more sensitive to increases in gross weight at higher

initial heights than at lower initial heights. Looking at the values for the AI supports
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that inference. The first weight over the safety limit for the hover at 30 feet test

case 16,900 lbs, which correlates to an AI of approximately 15.6. Meanwhile the first

weight over the safety limit for the hover at 160 feet test case is 16,500 lbs, which

correlates to a higher AI of 16.4.

(a) Hover at 30 ft

(b) Hover at 160 ft

(c) Airspeed of 2 kts at 40 ft

Figure 4.16. Variation in Autorotation Index by Changing Gross Weight
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4.4.2 Effect of Rotor Radius

Figure 4.17 shows the landing velocities as the main rotor radius changes in one

foot increments. With a rotor radius of 25 feet, the helicopter is able to touchdown

with zero velocity for each of these three test cases. As rotor radius is reduced, the

landing velocity increases substantially. Similarly to changes in gross weight, changes

to the rotor radius have a more pronounced effect on the landing velocities starting

from a higher initial height. For the test cases shown in Figures 4.17a and 4.17b, the

safe landing limits are surpassed at a rotor radius of 22 feet and 23 feet, and an AI

of 14.3 and 17.0, respectively.
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(a) Hover at 30 ft

(b) Hover at 160 ft

(c) Airspeed of 2 kts at 40 ft

Figure 4.17. Variation in Autorotation Index by Changing Rotor Radius
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4.5 Chapter Summary

This chapter presented the solutions to the optimal control problem using GPOPS-

II. The compilation of the optimal control solutions produced a grid of safe and unsafe

landing conditions that outlined the HV curve. Along with a full HV diagram using

the Hayden ground effect model, partial diagrams were presented for five other ground

effect models as well as for variations of the Hayden ground effect factor. Lastly, the

influence of changing the helicopter parameters of gross weight and rotor radius was

presented.

64



V. Conclusions and Recommendations

5.1 Conclusions

Most of the main research objectives listed in Chapter 1 were achieved. A math-

ematical model for helicopter dynamics was developed and implemented into an op-

timal control problem. The model used for this research could be improved upon

as discussed below in Section 5.2. The optimal control problem minimizing landing

velocity was solved using pseudospectral collocation methods and nonlinear program-

ming (NLP) via GPOPS and SNOPT to produce the helicopter’s trajectory during

autorotation. The solutions to several iterations of this problem at varying initial

altitudes and airspeeds were compiled to produce a Height-Velocity (HV) diagram.

Changes in the helicopter model parameters were then investigated. The main con-

clusions from this research are given below.

5.1.1 HV Diagram Construction

The iterative approach to solving for minimized landing velocities proved to be

an effective methodology in constructing an HV diagram and delineating between

safe and unsafe flight regions. This method allows for additional insight that other

methods do not, since it solves the optimal landing velocity for initial conditions

surrounding the HV curve in addition to points along the curve itself. Knowing the

landing capabilities for more test cases allows for more confidence in the accuracy of

the HV curve. Being able to solve for a wider variety of initial heights and airspeeds

also reduces convergence issues when solving the optimal control problem.
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5.1.2 Ground Effect

A proper ground effect model must be included in the helicopter dynamic model in

order to obtain accurate solutions using the techniques utilized during this research.

Excluding ground effect from the dynamic model or including a ground effect model

whose ground effect factor is lower than 1.2 does not allow for an effective flare as the

helicopter approaches the ground. Without the increased thrust provided by ground

effect, the helicopter is unable sufficiently slow down before impact. Partial HV

diagrams were constructed using five different models for ground effect factor. Based

on the six models analyzed during this research, the models that did not incorporate

blade element theory produced more conservative HV curves.

5.1.3 Autorotation Index

The Autorotation Index (AI) was implemented to provide a means of comparing

autorotation capabilities between helicopters with different characteristics. The two

helicopter parameters presented were helicopter gross weight and main rotor radius.

As the gross weight increases, the AI decreases, and the helicopter lands with an

increased velocity. Meanwhile, the AI increases as the rotor radius increases, resulting

in the helicopter being able to land with a lower velocity. One noteworthy observation

was that a higher AI is required to land safely from a higher initial height than is

required to land safely from a lower initial height.

5.2 Recommendations for Future Work

The work accomplished during this research can be continued and improved upon

in a number of ways. Below are some areas for future work and improvement.
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5.2.1 Improvements to the Dynamic Model

One area of improvement would be to expand the dynamic model used in this

research to include the derivatives of thrust and angle of attack. This would allow for

limits to be placed on the rates of change for these variables, which would produce

more realistic solutions. Solutions from models that include these derivatives as extra

variables, such as the models used by Harris in [2], could then be compared to these

solutions to estimate the effect that having rate limits on the control variables has

on the HV diagram. In addition to adding the derivatives for thrust and rotor tip-

path-plane angle of attack, a pilot model could be incorporated to provide optimal

solutions that can actually be implemented during flight.

5.2.2 Collective Pitch

One of the initial goals of this research was to develop an additional dynamic

model that contained collective pitch as a control variable instead of the current

control variable of thrust. The reasoning behind including collective pitch as a control

is that that would more accurately reflect the control inputs that a helicopter pilot

actually uses while flying. Developing this type of dynamic model would require a

further incorporation of blade element theory. Johnson [7] provides possible iterative

methods for calculating induced velocity that could be used when replacing thrust

with collective pitch in the dynamic model.

5.2.3 Autorotation Index Study

The study analyzing the effect of varying helicopter parameters could be continued

to include the influence of factors such as rotor speed or solidity. Due to the nondimen-

sional nature of the dynamic model, further studies should include nondimensional

factors. Further analysis of the correlation between the AI and the capability for a

67



safe landing would also be beneficial. Different calculations for an autorotation index,

such as those discussed in Section 2.7, could be compared.

5.3 Summary

This research produced an HV diagram using a 7-state helicopter model that was

incorporated into an optimization problem to determine minimum landing velocities.

The applied methodology reduced solution convergence issues that were present in

prior research, and consequently provided a more robust way to determine the HV

curve. Additional HV diagrams were created using alternative methods for calculating

the ground effect factor. These diagrams showed the importance that ground effect

plays during an autorotation landing and the necessity to include a proper ground

effect model. The effect of variations of a few helicopter properties was also examined.

This research provides a methodology for composing an HV curve analytically as well

as examining factors that influence the HV curve.
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