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AFIT/GSE/ENY/03-2 

ABSTRACT 

It is proposed that a Multi-Mission Aircraft (MMA) be prepared to combine some 

or all the functions of the aging AWACS, JSTARS, RIVET JOINT, COMPASS CALL, 

and ABCCC fleet. Three different thesis studies have been developed by three Air Force 

Institute of Technology GSE students to show the feasibility of replacing the current 

aging fleet with one or more MMA platforms. This is the thesis in which the payload 

issues have been examined. 

Within this thesis, two different alternative architectures, which are One Tail 

Number and Different Tail Numbers including nine different configurations, have been 

considered. Estimated payload characteristics of these alternatives have been compared to 

those of Boeing 767-400ER, which is the aircraft selected as the baseline for MMA 

platform. Reduced life cycle cost, increased measure of aircraft specifications, and 

minimum risk are the main objectives pursued by means of several systems engineering 

and aircraft design methodologies. 
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MULTIMISSION AIRCRAFT DESIGN STUDY, 
 

PAYLOAD  
 
 
 

1 INTRODUCTION 
 

1.1 Background 

All units in the Air Force have their crucial missions none of which can be 

excluded for a total success. The principle attack powers of the Air Force, the fighters 

and bombers need the vital support and guidance of the C4ISR (Command, Control, 

Communications, Computers, Intelligence, Surveillance, and Reconnaissance) units. 

They are considered the ears and eyes of the fighters. 

Over the recent years, the Intelligence, Surveillance, Reconnaissance, Command 

and Control missions in the Air Force have been performed individually by different 

platforms with coordination. However, because of the reasons cited above and more, the 

idea of a Multi-Mission Aircraft (MMA), which will combine all the desired capabilities 

on a single platform, has evolved as a replacement of the aging current fleet. 

On September 2001, the AFIT Faculty staff was contacted by USAF officials 

suggesting that the AFIT graduate students should perform a technical feasibility study of 

the newly proposed MMA concept. Following this coordination, the Major General Glen 

D. Shaffer, Director for Intelligence, Surveillance and Reconnaissance (ISR), DCS, Air 
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and Space Operations, USAF has requested a technical feasibility study for a multi-

mission aircraft. Memorandum of thesis topic proposal can be viewed from Appendix I. 

The MMA concept has been proposed as a replacement for the aging fleet of C-

135 and C-130 theater-based command and control (C2) and intelligence, surveillance 

and reconnaissance (ISR) fleet. The MMA is alternately designated as the Multisensor 

Command and Control Aircraft (MC2A) as indicated in this text. Figure 1-1 shows the 

role of MC2A within the system of systems constellation network. It has been proposed 

that the MMA be out-fitted to combine some or all the functions of the existing AWACS, 

JSTARS, RIVET JOINT, COMPASS CALL, and ABCCC platforms, which are to be 

defined later. It would also have links to other manned or unmanned ISR aircraft, as well 

as the satellites. 
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Figure 1-1: MC2A within the System of Systems Constellation Network (Wilson and 
Connor, 2001) 

A Systems Engineering Design Team consisting of 1 USAF and 2 TUAF officers 

was established in order to examine the case as their thesis study. Three investigation 

areas, Payload Design, Operational Environment and Electromagnetic were selected for 

that are thought to be strongly interrelated and for which design tradeoffs are believed 

strongly influencing overall system performance. Under this perspective, every team 

member will perform and present their individual theses. This specific thesis deals with 

the Aircraft Payload Design of the proposed MMA. 

1.2 Problem Statement 

The primary goal of this thesis is to develop a dependable, expandable and 

repeatable Systems Engineering process tailored to the issue of replacing the current 

aging fleet with a single platform by ensuring that every mission currently being served 

will continue. To minimize the LCC and risk, to increase mission utility, integrability, 

compatibility and to identify some possible downfalls caused by overloading, oversizing 

and poor arranging will be the primary objectives considered. Other objectives also 

include the identification the risks and dangers of exceeding the limits of the aircraft. 

Some of those limitations could be named as follows: 

• Airspeed: The weight of the loaded payload, which is required for the mission 

accomplishment, could cause the aircraft to perform out of its speed limits 

specifically during takeoff, cruising, loitering and landing phases. 
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• Range: The configuration of the aircraft could not meet the requirements of a 

specific operational scenario. For this reason, the idea of extending the range in 

order to satisfy those requirements could be considered. 

• Altitude While Loitering: Some surveillance and reconnaissance missions could 

require the aircraft cruise over or below a specific altitude. This could prevent 

some missions be performed simultaneously. 

• Payload Requirements: Composition of some equipment could cause degradations 

on the structure of the aircraft. Additionally, layout of the consoles, equipment, 

antenna etc. could cause exceedings in structural limitations. 

• At this point, it is also thought that integrating different types of sensors and 

antennas from different aircraft into one –or two–may require a substantial 

amount of power. This issue will also be considered one of the main system 

drivers for this study. 

As seen above, the requirements that may force the platform to exceed its design 

limits could be either of operational or electromagnetic origin. For this reason, it is 

intended to collaborate with the other Systems Engineering Design Team members in 

order to introduce a consistent presentation during this thesis work. 

Needs, constraints, and alterables, which will be the baseline of the study under 

the systems engineering approach, are going to be defined at the very beginning of the 

Chapter 3. It should be also noted that those needs, constraints, and alterables are not 

necessarily the official views of the decision makers. However, they were determined 

after a very thorough research and brainstorming. 



 

 1-5

1.3 Problem Solution 

Operational environment is converted to an H/H/P Model coded with 

TurboCASE/SysTM believing that it will be a representation of the overall platform 

displaying the interactions between the three main aspects of the issue. H/H/P Methods 

are the architecture and requirements methods created by Hatley, Hruschka and Pirbhai. 

The H/H/P techniques help to stimulate system specifications to iteratively generate a set 

of system requirements and architecture models (Hatley and others, 2000). 

TurboCASE/SysTM is a Systems Engineering Case Tool created by StructSoft Inc. 

that supports H/H/P Methods. TurboCASE/SysTM helps the user to build up models 

consisting of processes, terminators, and interconnections. It displays a clear 

representation of the system of the interest and arranges the interactions. A summary of 

both TurboCASE/SysTM Tool and H/H/P Methods will be presented at the end of the 

Chapter 2. 

This H/H/P model will certainly help us to figure out the overlapping areas of the 

Aircraft Design, Operational Environment, and Electromagnetic considerations. In this 

way, we have performed more effective studies and exchanged the ideas in a well-

organized way. 

After identifying the major areas to be investigated, common aircraft design 

approaches will be applied wherever needed to the fabricated scenarios. Some essential 

tradeoff studies have also been performed between the key areas that are considered to 

change the performance of the MMA platform dramatically. 
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In this thesis study, the best effort has been employed in an iterative way in order 

to dig into determined major pieces of the subject. I believe that as many iterations as 

possible should be implemented within the limitations of time, funding and manpower for 

more accurate and helpful results. So, the calculations were iterated several times up to 

the level time allowed. 

1.4 Scope 

It is necessary to recall that the backgrounds of the Systems Engineering Design 

Team members do not directly match to the crucial disciplines needed for this topic. 

Additionally, time limitations and possible restrictions to access the US only 

documentation have narrowed the scope of the effort. In some instances, it has been 

necessary to use hypothetical data to demonstrate the process that has been developed. 

The major focus of this thesis study will be mainly on “Aircraft Design with 

respect to Payload Limitations”. Basically; space, weight and power limitations on the 

integration of those aircraft mentioned earlier will be the main concern. In order to give 

specific answers for a MMA design and its compatibility, we should consider what is 

going to be integrated into the MMA architecture. Fundamentally, we can say that those 

should be the sensors, crew and all of the software and the hardware for the missions. By 

investigating the aircraft payload integration, we will be able to make decisions based on 

key factors such as weight, volume, speed and some other related configurations of the 

aircraft. To accomplish this, we need to understand the characteristics of the sensors, 

receivers, and transmitters. 
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However, because of the classification of the subject, it would not be possible to 

identify the entire payload on the current fleet. For this reason, sometimes, a set of 

payloads that is thought to be somewhat similar to the real ones has been assumed as the 

main payload to be integrated. 

Another important issue on the aircraft design is the selection of the aircraft for 

the sensor platforms. When this study was initiated, there was not an official 

announcement declaring the type of the aircraft to be chosen as the baseline. However, it 

is speculated that there is a tendency to choose Boeing 767-400ER. For convenience, this 

aircraft has been considered as the basis on which the entire payload will be mounted. 

The specifications of the aircraft in question will be covered in the Chapter 2 of this 

thesis as well. 

In this study, two different types of MMA system models are considered among 

several others. Different Tail Numbers (DTN) and One Tail Number (OTN) alternatives 

will be compared by adding or removing several tasks including air-refueling. 

1.5 Sequence of Presentation 

Chapter 2 provides the review of the current airframes and tasks that are intended 

to be replaced by the MMA platform. Technical specifications of those airframes along 

with the candidate aircraft 767-400ER are presented in tabular forms. It also includes 

summaries of the H/H/P Methods and TurboCASE/SysTM Tool, which have been used in 

outlining the overall system of interest. 
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In the first part of Chapter 3, basic systems engineering approach and other 

helpful methodologies used to carry out the research have been explained. Then, some 

important issues affecting the integration process are examined. Definitions of the MMA 

alternatives have also been introduced in this chapter. 

In Chapter 4, two alternative architectures were compared based on the Value 

System Design (VSD) generated in previous chapter. Chapter 4 also details the results 

attained after the research and provides a sensitivity analysis by changing the initially 

assigned importance factors. 

Chapter 5 presents the conclusions of conducted study and recommendations for 

further researches. There are several Excel spreadsheets available in the Appendices C, 

D, E and F that are utilized in making the estimations. Besides, a list of assumptions 

made in this thesis is also presented in the Appendix H. 

Overall interactions and conclusions from all three Systems Engineering Team 

Members have been summarized in the Chapter 5 of the thesis prepared by the 

Operational Environment representative of the team. 
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2 LITERATURE REVIEW 
 

 

2.1 Current Airframe and Tasks 

Currently, C-135, C-130 and Boeing 707 theater-based AWACS, JSTARS, 

RIVET JOINT, COMPASS CALL and ABCCC platforms have been performing 

command & control and intelligence, surveillance and reconnaissance tasks of the USAF. 

The MC2A concept has been proposed as a replacement of those aging fleets in question. 

In this chapter, the status of the ISR and Command & control platforms and the ongoing 

studies about MC2A will be scanned briefly. 

After an extended exploration and brainstorming with the Systems Engineering 

Team in AFIT, I have decided to focus mainly on payload integration including space, 

power and weight. I believe that the Air Force’s primary challenge is “to which extent the 

MC2A can concurrently perform ground moving target indication (GMTI) and air 

moving target indication (AMTI) tasks”. However, the operational perspective is not 

going to be included in this study. It will be covered by the other System Engineering 

Team Members along with Electromagnetic perspective.  

USAF Chief of Staff General John Jumper summarizes the main objective of 

building the MC2A as to shorten the “find, fix, track, target, engage, and assess loop”, 

which is the definition of the “kill chain”. Integrating all ISR and Command& Control 

tasks under a platform is the milestone to attain this objective. 
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For this reason, Air Force began negotiations with Boeing for the lease of 100 

commercial wide-body 767 air-refueling tankers in 2002. These aircraft are being 

explored under the study of forming the "smart tanker" that would carry communication 

relays and perhaps surveillance sensors and a new MC2A. This new platform will 

eventually replace previously mentioned Air Force intelligence gathering and battle 

management aircraft. Congress authorized the lease as a first step toward replacing the 

fleet in question in 2001 Fall.  

In 2002, Boeing 767-400ER was announced to be the platform of MC2A. A total 

of 55 MC2As are planned to be built and the first aircraft delivery is scheduled for 2010. 

During the first development phase, Raytheon and Boeing Companies will fabricate, test 

and integrate the MP-RTIP (multi-platform radar technology improvement program) 

radar onto the MC2A. 

Two different alternatives MMA models are believed to be considered by the Air 

Force Staff: 

1. One Tail Number (OTN): All missions within a single aircraft, 

2. Different Tail Numbers (DTN): Tail numbers representing the different sets of sensors 

within a particular aircraft 

However, according to the announcements made by the officials, it seems that the 

main consideration is given to the DTN architecture. Moreover, DTN MC2A will likely 

be built in two alternatives. The first one is the active emitter version that is going to be 
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the combination of the AWACS' aerial surveillance and Joint STARS' ground 

surveillance missions. The second variant will perform Rivet Joint and other passive 

electronic surveillance functions. These issues are displayed on Figure 2-1. 

 

MC2A

DTN
Different Tail Numbers

OTN
One Tail Number

Passive
SurveillanceActive Emitter

Aerial Surveillance
AWACS

Ground Surveillance
JSTARS

OTHERS

RIVET JOINT

 

Figure 2-1: MC2A Variations 

 

A Boeing 707 based platform called MC2A-X or Paul Revere is being used as a 

testbed for the proposed platforms. However, use of another Boeing 767-400ER based 

testbed is desired for more effective test and integration. It is reported that one of the 

main lessons learned after those experiments is that new antennas should be located in 

such a way that data links will not get lost, especially during critical times of transfer. 
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During the tests and evaluations performed in the year 2002, designers faced with many 

technical and political challenges. The immediate concerns are: 

1. Funding needed for the Boeing 767-400ER based testbed is waiting for the 

Congress approval. 

2. Integrating the JSTARS’ ground-surveillance mission and AWACS' airborne 

target tracking capability on one aircraft could be unachievable because of 

interference of the radars and substantial amount of power needed for both the air- 

and ground-surveillance radars. 

3. The enterprises, which are not included in the project, are accusing the decision 

makers for making noncompetitive bidding. (Wall, Robert. “Challenges Mount 

for Surveillance Aircraft”, Aviation Week & Space Technology, 26 August 2002, 

Issue 9 ) 

The MC2A program seems to be implemented under three steps or so-called 

spirals: 

Spiral 1: Upgrade to the 767 platform. The major change would be to shift from a 

707 platform to the 767. This step will be led by Northrop Grumman and Raytheon. 

Spiral 2: The common wide-body ISR program would add the E-3 airborne battle 

management capability. Boeing is scheduled to lead this phase. If technically feasible, it 

will be in this step that the ability to see and track moving air targets, as well as ground 

targets, will be integrated. 
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Spiral 3: A signals collection and intelligence function will be added to the 

MC2A. In this case, Raytheon will lead this successor to the Rivet Joint. However, this 

step is not as clear and defined as former two steps yet. 

It is also reported that how many of the MC2A be produced has not been decided 

yet and will be clear after the tests and evaluations finished (Airforce Magazine Online: 

Nov 2002, Vol 85, No 11). 

 

2.1.1 Current ISR and C2 Fleet  

In this section, the general characteristics of the current platforms will be 

reviewed. Following is the brief summary of the current fleets’ missions and 

specifications that are going to be replaced by MC2A: 

2.1.1.1 E-3 Sentry (AWACS)  

The E-3 Sentry is an Airborne Warning and Control System aircraft that provides 

all-weather surveillance, command, control and communications for both tactical and air 

defense forces. 

The E-3 system is carried onboard by a militarized version of the Boeing 707-

320B commercial jetliner. It is distinguished by the addition of a large, rotating rotodome 

that houses its radar antenna and identification friend-or-foe (IFF) and data-link fighter-

control (TADIL-C) antennas. The rotating radar dome is held 14 feet (4.2 meters) above 



 

2- 6

the fuselage by two struts. The dome is 30 feet (9.1 meters) in diameter and 6 ft (1.8 

meters) thick. It contains a radar subsystem that enables the aircraft to perform air, 

ground and even water surveillance. At operational altitudes, the radar has 360-degree 

view of the horizon and a range of 250 miles (375.5 kilometers) for low-flying objects 

and a larger range for the higher-flying targets. The radar’s IFF subsystem can detect the 

enemy forces by eliminating the obstacles caused by the ground contours that could 

easily confuse other radars systems. Figure 2-2 shows the detailed sensors and equipment 

placement of E-3 AWACS. 

 

 

Figure 2-2: E-3 Sentry AWACS (Jane’s C4I Systems, 1996)
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The AWACS houses either AN/APY-1 or AN/APY-2 airborne warning and 

control radars. Actually, APY-1 and 2 are generally similar with the primary difference 

being the APY-2’s full maritime research capability. The radars have six operating modes 

together with a radar technician controlled test and maintenance format. 

The slotted planar-array antenna is located inside the rotodome. The radar 

receivers and processors are housed in the center of the aircraft cabin, and the radar 

transmitter is located in the lower cargo bay to the rear on the main cargo floor. The 

maritime capable radar weighs around 3629 kg and consists of 12 components group 

(Jane’s Avionics, 2001-2002, 2001). Some known details of those components are as 

follows: 

• Radar Control and Maintenance Panel (RCMP): Located in the main cabin, 

RCMP houses the radar’s on\off control and radar technician’s systems access 

keyboard. 

• Radar Synchronizer: Mounted in the main cabin, software controlled synchronizer 

generates all the radar’s timing signals and maintains stability. 

• Stable Local Oscillator (STALO): Located in the main cabin, STALO generates 

radio signals for transmission and reception. It is also the system’s central clock 

and serves as a bridge between a signal generator, system clocks, and a clutter 

oscillator. 

• Transmitter Group: Mounted beneath the rear section of the main cabin, the 

transmitter group consists of 21 elements put into 8 pressurized containers. An 
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overhead rail system permits easy removal of the transmitter. Some of the known 

elements are listed below: 

¾ High Voltage Power Supply (HVPS): The HVPS converts input prime 

power into high voltage and includes a 90kV transformer, filter and 

regulators. 

¾ Transmit Electronics: 

¾ Rotary Coupler (RC): The RC provides circuit continuity between the 

rotodome electronics and the cabin. 

¾ Phase Control Electronics (PCE): The PCE is mounted in the rotodome 

and receives orders from the radar’s computer to scan or stabilize the 

beam. 

¾ Antenna Array (AA): Housed in the rotodome. The radar transmission 

array is located back-to-back with an IFF/SSR (Identification Friend or 

Foe / Secondary Surveillance Radar) aerial with the whole assembly. The 

AA consists of 30 slotted sticks and measures 7.3m x 1.5 m. 

¾ Microwave Receiver (MR): MR is located in the rotodome and includes 

three channels. 

¾ Analogue Receiver (AR): It is located in the main cabin of the aircraft. To 

convert the received Doppler signals from analogue to digital format is 

one of the several tasks that AR carries out. 

¾ Maritime Processor (MP): It is used in the over-water missions and also 

located in the cabin. 
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¾ Digital Doppler Processor (DDP): DDP is located in the aircraft’s main 

cabin and outputs digital detection data to the RDC. 

¾ Radar Data Correlator (RDC): RDC processes all target and status data 

and provides central computer and RCMP with these data. It also controls 

the radar’s internal functions including self-test performance 

measurement. It is located in the cabin of the aircraft (Streely, 1999). 

The design of the rotodome and the antenna provides great advantages to E-3 

AWACS. The low antenna sidelobes minimize the side-lobe clutter and increase the 

resistance to jamming. The only way the antenna to be affected by jamming is that it is 

directly pointed to the source of jamming. Another feature of the radar, which is the fact 

that it can shift to another radar frequency that is not affected at that time, ensures the E-3 

to operate effectively under electronic countermeasures. However, simultaneous use of 

two or more E-3 aircraft enhances the overall system effectiveness against jammers. 

The phase shifters, phase-control electronics and, receiver protectors and receiver 

paramplifiers mounted on the back of the antenna inside the dome. The phase shifters 

located in the one side of the antenna and the electronics on the other side for weight 

balance and easy access during maintenance. 

The high-power transmitter chain is completely redundant with an in-flight 

switchover capability in case of a malfunction. This redundancy in transmitter group 

along with other overall system redundancies provides a high reliability to E-3 aircraft. 
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Built-in test continually monitors radar operation under control of radar computer 

software. The radar demonstrated a 98.5 percent probability of detecting online faults. 

The E-3 fleet was upgraded in recent years with Electronic Support Measure 

(ESM) for passive detection, Joint Tactical Information System (JTIDS) for secure 

communication and Global Positioning System (GPS) for precise global positioning. 

The radar and other surveillance subsystems can gather simultaneous data 

including the position, heading and the identification of the target. During the course of 

any crises or a war, the data can be directly forwarded to any command and control 

center or to the president and secretary of the United States. 

The layout of the equipment in the fuselage is arranged in bays with areas 

allocated for communications, signal and data processing, command and control 

consoles, navigation and target identification systems. The signal and data processing is 

carried out on a high-speed powerful CC-2E central computer 

The aircraft is equipped with 14 command and control consoles fitted with high-

resolution color displays. Console operators can perform surveillance, identification, 

weapons control, battle management and communication tasks on the consoles that 

display the processed data on video screens. 

Four Pratt and Whitney TF-33-PW- 100/100A turbofan, 21,000-pound-thrust jet 

engines, which are mounted in pods under the wings, power the USA and NATO E-3 

AWACS aircraft. The fuel tanks located in the wings have a capacity of 90,500 liters. 



 

2- 11

The aircraft has in-flight refueling capability that increases its range. General 

specifications of AWACS are listed in Table 2-1. 

Function  Airborne surveillance and C3  
Thrust  24,000 lb.  
Powerplant  Four TF-33-PW-1 00 A turbofan engines  
Thrust  21,000 lb  
Dimensions:     
Wingspan  44.43 m (130 ft 10 in)  
Length  46.62 m (145 ft 6 in)  
Height with Rotodome  12.5 m (41 ft 9 in)  
Rotodome diameter   9.1 m (30 ft)  
Rotodome thickness  1.8 m (6 ft)  
Rotodome height above fuselage  3.35 m (11 ft)  
Wing Area 283.4m2 

Speed  More than 500 mph (800 km/h) 
Optimum Cruise 360mph (Mach 0.48) 

Aircraft Ceiling  more than 8788 m (29,000 ft)  
Endurance  more than 8 hr (unrefueled)  
Range  more than 9,250 km (5,000 n.mi)  
Unit Cost $123.4 million(fiscal 98 constant dollars) 
Maximum Take-off Weight  156,150 kg (347,000 lb)  
Armament  None.  
Crew     
Flight Crew  4 
Mission Crew 13-19 specialists (varies according to mission) 
Inventory Active force 33, Reserve 0, Coast Guard 0 

Table 2-1: AWACS Specifications (http://www.af.mil/factsheet/AWACS html, 2002) 

A key element to synchronizing data is the Boeing-developed interface adaptor. 

This adaptor provides a common time reference for use throughout the system and 
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interconnects the radar, IFF/SSR, avionics, navigation and guidance instruments and 

display and control subsystems. 

Boeing offered a modified 767 commercial jetliner as the new platform for the 

system. The 767 provides several advantages over the 707. Because of its larger body, 

767 has around 50% more floor space and nearly twice the volume of the 707. 

Additionally, its modernized engines provide a better fuel consumption performance. The 

Japanese Air Force received four of Boeing 767 AWACS in 2002 and some other 

countries like South Korea are seeking for purchasing the platform. 

2.1.1.2 Joint Surveillance and Target Attack Radar System (JSTARS) 

The Joint Surveillance and Target Attack Radar System (JSTARS) is a long 

range, air-to-ground surveillance and battle management system that is capable of 

looking inside the enemy territory and tracking the hostile movements. It is actually a 

joint development project of the US Air Force and the Army. 

JSTARS provides ground situation information through communication via 

secure data links to the Air Force command posts, the Army mobile ground stations and 

centers of military analysis far from the point of conflict. JSTARS offers a picture of the 

ground situation equivalent to that of the air situation provided by AWACS. JSTARS is 

capable of determining the direction, speed and patterns of military activity of ground 

vehicles and helicopters. 
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The JSTARS, which is also designated as E-8C, is a militarized version of the 

Boeing 707-300 commercial aircraft. It is powered by four Pratt and Whitney JT3D-3B 

turbojet engines, each providing 18,000 lb of thrust. It has a flight endurance of 11 hr or 

20 hr with in-flight refueling. 

The aircraft is equipped with the 24 ft diameter AN/APY-3 radar installed in 

canoe shaped radome under forward fuselage behind the nose landing gear. It is 

mechanically revolved and pointed to scan in elevation. It scans electronically in azimuth 

to determine the location and heading of moving targets. The radar is capable of looking 

deep into potentially hostile regions to detect, locate, classify, and track a variety of 

targets. 

JSTARS comprises an airborne segment together with a big number of Ground 

Station Modules that receive real-time data from the airborne platform. On a standard 

mission, the aircraft has a crew of 21 with three flight crew and 18 systems operators. On 

a long endurance mission, the aircraft has a crew of 34, with 6 flight crew and 28 system 

operators. Figure 2-3 and Figure 2-4 display two different interior layout alternatives of 

JSTARS. 

JSTARS has 17 operations consoles and 1 navigation/self-defense console. A 

console operator can carry out sector search focusing on smaller sectors and 

automatically track selected targets. There is a rest area within the aircraft to maintain the 

high personnel performance during the long missions. 
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Figure 2-3: Configuration of Interior of JSTARS (www.fas.org/doddir/fm34-25-1) 
 

 
Figure 2-4: Alternative JSTARS Interior Layout (www.fas.org) 
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The crew generally conducts the missions in coordination with a variety of other 

command, control and communications, and intelligence (C3I) and sensor platforms, 

weapons systems and ground C4I nodes. The crew can access the radar data in real-time 

on their consoles. They can also perform history playback, construct Synthetic Aperture 

Radar (SAR) mosaics, track targets, and perform target position predictions. 

While the authorities do not confirm, it is suggested that JSTARS configuration 

can scan a region of 1million km2 between the altitudes of 9,144 and 12,192 meters 

during an 8-hour sortie (Streely, 1999). 

Radar operating modes include: 

• Moving Target Indicator / Wide Area Surveillance (MTI/WAS), 

• Moving Target Indicator / Sector Search (MTI/SS), 

• Synthetic Aperture Radar / Fixed Target Indicator (SAR/FTI). 

The antenna can be twisted to either side of the aircraft where it can develop a 

120-degree field of view covering nearly 19,305 square miles (50,000 km2) and is capable 

of detecting targets at more than 250 km (820,000 ft) away. MTI is the prime mode that 

covers beyond a notional service area. SAR helps to identify possible assembly areas, 

command posts (CPs). In other words, fixed high value targets are detected through SAR. 

Northrop Grumman was awarded with a US$14.5 million contract to upgrade the 

current AN/AP-3 radar in December 1998. The new much more powerful radar will be an 

electronically scanned 2-D X-band active aperture radar that will have also a helicopter 
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detection mode and inverse synthetic aperture (ISAR) imaging capability, as well as the 

MTI mode, allowing real-time imaging of moving objects. 

The E-8’s Operations and Control (O&C) subsystem controls the radar. As a 

whole, the subsystem is built around a real-time, VAX-based, distributed processing 

architecture. This includes individual DEC ALPHA based digital processors at each of 

the aircraft’s 18 Raytheon AXP-3000/500 workstations. The layout of the subsystem is so 

well organized that all operators can simultaneously access the needed data. Other 

elements of the O&C subsystem are believed to be Raytheon 920/866 supermini 

computers, three programmable signal processors, Miltope message printers and 

Interstate Electronics workstation color displays. 

The aircraft have two JTIDS terminals used in communication with the air 

elements. JTIDS is a US joint service, jam-resistant, secure communication system. 

JTIDS terminals allow the interchange of tactical information between aircraft, ships, and 

land stations. The system offers situation awareness and a command and control 

capability that could never be imagined before. The voice communication needs are 

provided by a set of 12 encrypted UHF band, three encrypted VHF band and two 

encrypted HF band radios. A Single Channel Ground and Airborne System (SINCGARS) 

could also be accommodated by the E-8, but it is not confirmed (Rackham, 1996). 

There are totally 13 JSTARS and three more will be delivered by 2004, and its 

unit cost is $244.4 million according to FY98. Table 2-2 summarizes the communication 
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and radar subsystems while Table 2-3 displays general specifications of JSTARS (http:// 

www.af.mil/ factsheets/ JSTARS, April 13 2002). 

 

Table 2-2: Subsystems of JSTARS 

Radar Subsystems  
Antenna 24-foot long, side-looking, phased array housed in radome 
Processors 3 signal processors, each containing 5 high-speed, fixed 

point distributed processors 
Operation and 
Control Subsystems 

 

Workstations Seventeen identical workstations for operators; 
One navigation/self-defense workstation 

Communications 
Subsystem 

 

Digital Data Links 

Surveillance and control data link (SCDL) 

Joint Tactical Information Distribution System (JTIDS) 

Tactical Data Information Link-J (TADIL-J) 

Satellite Communications Link (SATCOM) 

Constant Source with joint tactical terminal (JTT). 

Voice  
Communication 

Twelve encrypted AN/ARC-l64/HAVE QUICK UHF radios 

Twelve UHF agile filters 

Twelve UHF crypto TSEC KY-58 

Two encrypted HF radios (RT-1341 (V) 3/ARC 190) 

Two HF crypto 

Three encrypted RT-1300C VHF radios with SINCGARS 

Three VHF collocation filters, F-1613/A 

Three VHF crypto TSEC KY-58.  

Multiple intercom nets 
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Aircraft Boeing 707-300  

Primary Function:  Ground Surveillance  

Power Plant:  Four JT3D engines  

Length: 152'11" (46.6 m);  

Height: 42'6" (12.9 m);  

Weight: 
171,000 pounds (77,565 Kg)-- Empty 
155,000 pounds (70,307 Kg)-- Max Fuel 
336,000 pounds (152,408 Kg)-- Max Gross 

Wingspan:  145'9" (44.4 m);  

Speed:  .84 Mach  

Service ceiling 42,000 feet 

Range: 11 hours -- 20 hours with air refueling  

Crew-Standard mission 
          Long endurance 

21 comprising 18 operators and 3 flight crew 
34 comprising 28 operators and 6 flight crew 

Table 2-3: JSTARS Technical Characteristics (http\\www.fas.org) 

 

2.1.1.3 Rivet Joint 

The Rivet Joint surveillance aircraft are equipped with an extensive array of 

sophisticated intelligence gathering equipment enabling military specialists to monitor 

the electronic activity of the adversaries. Also known as "RJ", the aircraft has been 

widely used in the 1990's during the operation Desert Storm, the occupation of Haiti, and 

over Bosnia. 
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Using automated and manual equipment, electronic and intelligence specialists 

can precisely locate, record and analyze much of what is being done in the 

electromagnetic spectrum. The fleet of 14 RC-135 RIVET JOINT aircraft increased to 15 

in late 1999 with the addition of a converted C-135B. 

The interior seats 32 people, including the cockpit crew, electronic warfare 

officers, intelligence operators and in-flight maintenance technicians. Table 2-4 shows 

the specifications of the Rivet Joint. 

 

Primary Function:  Reconnaissance  

Contractor: L3 Communications 

Power Plant:  Four CFM 56-2B-1 engines 

Length: 135 feet (41.1 meters) 

Height: 42'6" (12.9 m);  

Max. Takeoff Weight: 322,500 pounds (146,284 kilograms) 

Wingspan:  131 feet (39.9 meters) 

Speed:  500+ miles per hour (Mach.66) 

Service Altitude: 28,000 ft 

Crew: 5 flight + 21-to 27 mission crew according to the mission 

Inventory:  Active force, 17  

Table 2-4: Rivet Joint Specifications 
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The aircraft has secure UHF, VHF, HF and SATCOM communications. The 

information can be transferred to AWACS via TADIL/A, satellite and Tactical 

Information Broadcast Service (TIBS), which is nearly a real-time information broadcast. 

Rivet Joint fleet is structurally the best in shape of all the big ISR platforms which could 

be considered a reason its mission would be the last to be migrated to the MC2A. 

(Airforce Magazine Online: Nov 2002, Vol 85, No 11) 

The Rivet Joint has been under an upgrade program called Block 7 including an 

engine and 17 sensor modernizations. Following is the summary of the Block 7 upgrade: 

• More powerful CFM 56-2B-1 engines 

• Increased endurance and maximum takeoff weight, reduced takeoff roll, 

• Track Management Processor occupying less space with a better performance. 

• ELINT Signal Processor, 

• New full-color 19inch displays, 

• Common Data and Retrieval System having a new, smaller, and high-capacity 

storage system, 

• Multiple Communications Emitter Location System replacing existing direction-

finding system with a smaller and more powerful commercial off-the-shelf 

(COTS) processor providing increased accuracy in geolocationing, 

• Background Search System offering increased speed, 

• Beamformer Processor which is ready for a full integration, 
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• New Search Database Processor as a replacement of the former one which 

couldn’t handle the dense airborne signal environments, 

• Operator Productivity Enhancements including new workstations with new mouse 

and better lighting, 

• ETD 100 Integration which switches the communication controls from manual 

operations to new workstations, 

• Video Display Improvements, 

• ELINT Enhancements added VHF/UHF direction-finding improvements, 

• NSA Subsystem Integration  

Other than those developments mentioned above, four airborne integrated 

terminal group radios are integrated and two JTIDS improvements have been performed 

concerning upgrade of the system to TADIL-J. 

Figure 2-5 shows the layout of the antennas on the body. Unfortunately, the 

recognized bulk shaped antenna located in the nose is not identified on the open 

literature. The antennas, which are located at the top of the fuselage including the tail, are 

such arranged that they provide an accuracy of 120° field of view in targeting. 

Additionally, these antennas are positioned in a way that aircraft’s wings do not blank 

signals from the ground during the turns (Fulghum, David A. “Crew Positions 

Reconfigured for Long, Complex Flights”, Aviation Week & Space Technology, 25 Nov 

2002: 59-61). 
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Figure 2-5 RIVET JOINT Antenna Layout 

 

2.1.1.4 Airborne Battlefield Command and Control Center (ABCCC) 

The ABCCC is a C-130 based Airborne Command and Control Airplane designed 

to carry USC-48 Airborne Command and Control Capsules onboard. When an Airborne 

Command Element (ACE) is onboard the ABCCC, the ACE will provide 

theater/component commander representation increasing mission effectiveness by 

providing theater unique expertise (C2, logistics, communications, reconstitution, the air 

tasking order, and battle plans). 
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The ABCCC consists of four major subsystems: The Communications Subsystem 

(CS), the Tactical Management Subsystem (TBMS), the Airborne Maintenance 

Subsystem (AMS) and the Capsule Subsystem (CS). 

The CS and its Automated Communications and Intercom Distribution System 

(ACIDS) monitors and ensures the security of all communications between the capsule 

and other aircraft and bases along with the communication within the capsule. The TBMS 

provides battle management capabilities for up to 12 consoles stationed in the CS. 

Finally, the Capsule Subsystem consists of the physical and environmental support for 

operating subsystems (Jane’s Avionics, 2001-2002, 2001). 

The aircraft have two HF radio probes towards the tips of the both wings, three 

mushroom shaped antennas on the top, and numerous antennas on the belly. The 

aircraft’s length is 40 ft and it weighs around 20000 lb. There are 23 totally secure radios, 

secure teletype and 15 computerized consoles inside the platform. Additionally, ABCCC 

is equipped with the JTIDS. Totally 7 ABCCC are in use and each costs around $9 

million. 

The battle staff is comprised of four functional areas: command, operations, 

intelligence, and communications. Normally, it includes 12 members working in 9 

different specialties. 

The USAF is planning to retire the fleet of seven EC-130E (ABCCC) aircraft that 

costs more than $100 million per year to operate in FY03 and to transfer their missions to 

the AWACS and the JSTARS aircrafts. The ABCCC has been used for especially 
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providing close air support to the Army over a conflict area. It also has provided a 

communications link between the ground commanders and air operations centers. 

However, especially the developments in the satellite communications and other 

improvements over the AWACS and JSTARS’ battle management capability have 

somewhat outdated the ABCCC. Some specialized equipment will be mounted on the 

AWACS and JSTARS in order to offset the missions of the ABCCC (http:// www.af.mil/ 

factsheets/ ABCCC, April 13 2002). 

2.1.1.5 Compass Call  

Compass Call is a modified version of Lockheed corporation's C-130 Hercules 

aircraft arranged to carry out tactical command, control and communications 

countermeasures (C3CM). Targeting command and control systems provides 

commanders with a huge advantage before and during the air operation. The fleet 

provides disruptive communications jamming and other unique capabilities to support the 

joint force commander across the spectrum of conflict. At the back of the plane is a set of 

microwave-powered equipment that sends out high-energy radio frequency output or 

interference. 

All new hardware and five-fold improved software, which includes over one 

million lines of computer code, have produced the usual minor bugs that always seem to 

appear with new technology improvements. One common problem is the failure of the 

built-in self-test. The main issue related to the hardware is the shortage of the spare parts 

and components caused by the budget cuts and appropriations. 
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The Compass Call aircraft carries a crew of 13 people. Four of those members are 

responsible for flight while others operate and maintain the mission equipment. The 

mission crew consists of an electronic warfare officer, an experienced cryptologist 

linguist, an acquisition operator, a high band operator, four analysis operators, and an 

airborne maintenance technician (http:// www.af.mil/ factsheets/ Compass Call, August 

18 2002). 

Some modifications are being made to the aircraft including an electronic 

countermeasures system (Rivet Fire), and air refueling capability. Rivet Fire has 

demonstrated its powerful effect on enemy command and control networks in Panama 

and Iraq. It is understood that the USAF is on the way to enable the system to jam more 

signals concurrently and at longer ranges. There are totally 13 Compass Call in active 

duty. Systems on the Compass Call include Raytheon Electronics ALQ-173 Blink 

Jammer, ALQ-175 High-Band Electronic Counter Measures (ECM) System and ALQ-

198 high band systems with digitally tuned receivers (Jane’s Avionics, 2001-2002, 2001). 

The COMPASS CALL houses an extensive communication suite including three 

Have Quick capable UHF, one VHF, one SATCOM (KY-58) and two HF (KY-75 or 

ANDVT) radios. Have Quick radios provide high security, anti-jam capability, 

survivability, and the joint and combined interoperability implications with the help of 

their channel hopping capability. It is suggested that single channel radios could be easily 

jammed or monitored by a very sophisticated enemy (MacKenzie, 2000). 

There is a tendency toward putting the role of Compass Call into Uninhabited 

Aerial Vehicles (UAV) and space systems so that communications intelligence tasks 
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could be executed in a more effective manner. MMA will certainly play a key role in 

commanding those jamming systems. 

2.1.2 Uninhabited Aerial Vehicles (UAVs) 

Concept of unmanned aircraft has been a part of aviation since before the Wright 

Brothers. In fact, although there had been several realistic models before 1903, Wright 

Bros are distinguished from early other initiators in such a way that their flight was the 

first controlled inhabited one. 

The term unmanned entails that a person is not flying the aircraft. However, an 

unmanned aircraft has actually a pilot or operator on the ground. That’s why a more 

correct term uninhabited is more commonly used in the literature. Previous terms such as 

drone, pilotless and remotely piloted have been left in the past and people prefer calling 

those aircraft as UAVs, which means unmanned or uninhabited aerial aircraft. 

UAVs are self-piloted or remotely piloted aircraft that can carry cameras, 

communication equipment, sensors and other payload regarding to the mission type they 

perform. They have been used for reconnaissance and surveillance purposes since 1950s. 

Moreover, UAVs are planned to carry out even tougher missions. 

Having many UAV projects deterred because of high cost and lack of technology 

during the period after 1950s, they were considered as surveillance aircraft for Close 

Range, Short Range, and Endurance categories by the early 1990s. Close Range was 

commonly defined as up to 50 kilometers while Short Range was defined to be within 

200 kilometers. Finally, any range beyond 200 kilometers was considered as Endurance. 
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During the following years, close and short-range definitions were combined and 

a different category came out as Shipboard. At present, these aircraft are categorized into 

two classes, which are Tactical UAV and Endurance. Additionally, each of these two 

categories is divided into high and low-altitude subcategories. 

Currently, there are tens of ongoing UAV development studies all over the world. 

Both propeller and jet engines have been selected by various numbers of unmanned 

aircraft. Needles to say, the ones with the prop-powered engines have considerably lower 

speed than the others do. 

There is a great effort on developing UAVs all around the world especially in the 

recent years. They are preferred maybe because they provide the commanders with very 

valuable data in a cheaper way than the conventional ISR platforms just because they are 

easily portable or they diminish the odds for casualties. However, it is apparent that a 

long-endurance UAV can go where others cannot and send back many data. 

A very simple version of UAVs is being used as a flying target to the fighters or 

SHORAD (Short Range Air Defense) units during air-to-air or surface-to-air missile 

exercises. The aircraft in question are not equipped with any specific mission equipment 

such that they can be easily sacrificed. 

Design of a UAV is much similar to design of any other aircraft, yet with some 

additional considerations especially in terms of takeoff and landing. Besides, the special 

avionics and systems for uninhabited flight should be taken into consideration. 
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There are many takeoff options including usual wheeled takeoff, via a launching 

rail, air or car launching, boosted vertical launch, and several others. Analogously, some 

landing options are as wheels, skids, parachutes, airbags and none; that is, letting it fly 

forever or crash. Trade studies should be done in order to choose between these 

alternatives. 

In fact, removing the crew from design requirements would not provide so much 

reduction in required weight and cost. On the other hand, it would allow us loosen the 

reliability and structural limitations, which have been set significantly high for inhabited 

flight. It also allows the designers to get rid of some redundancies, which are also taken 

into account for manned aircraft design. On the contrary, safety of ground personnel 

emerges as an issue that should be considered. 

With modern computer and guidance capabilities, the UAVs will certainly 

perform a wide variety of tactical tasks including dropping bombs and even air-to-air 

dogfighting. In this way, advanced tactical UAVs loaded with conventional bombs and 

missiles would be programmed or leaded to attack to any specific target. 

If UAVs could be equipped with adequate payload, they could perform air-to-air 

combat. The most significant asset of this improvement would be the fact that it would 

give an end to the possibility of pilot casualties. That does not mean that there will be no 

inhabited aircraft in the future. However, it is apparent that UAVs will replace most of 

the missions that have been done by the pilots. Those aircraft could do such maneuvers 

that a pilot could not because of the enormous g-force that is intolerable for a human 

being. 
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Use of satellite communications is one of the greatest aspects of UAV concept. A 

UAV sneaking over an area of interest could instantly inform missile launches, 

adversaries’ interferences or hostile settlements via satellite communication links. The 

fact that it could fly at low or high altitudes gives these aircraft the capability of carry out 

missions without being tracked by the adversaries’ detectors. Even if they crash during a 

very low-altitude flight, the loss is tolerable in comparison with a $20 million fighter jet 

along with its pilot. 

A basic UAV platform consists of one or more aircraft, one ground control 

station, one ground control terminal, and ground support equipment. Several uplink and 

downlink data links establish the full duplex communication between the aircraft and the 

ground control station. 

In this section, only two of those UAVs will be examined below although there 

are tens of others under development. 

2.1.2.1 RQ-1A Predator 

The RQ-1 Predator is a medium-altitude, long-endurance uninhabited aerial 

vehicle system that provides reconnaissance, surveillance and target acquisition support 

under the order of the Joint Forces Air Component Commander. The aircraft is fully 

autonomous but could be reprogrammed during the course of mission or remotely piloted 

(Munson, 2000). 

Predator is a system including four aircraft, a ground control station, a satellite 

link and 55 people serving 24 hours a day. The crew, consisting of one pilot and two 
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sensor operators fly the aircraft from the ground control station via satellite link. The 

aircraft carries one day-use camera, one infrared camera and one synthetic aperture radar. 

However, those sensors could not be controlled simultaneously. In the future, the 

Predator is intended to be equipped with a Multispectral Targeting System and an anti-

tank missile. Each aircraft can be separated into pieces and deployed easily to any area of 

interest by the cargo aircrafts. 

The aircraft has a range of 454 miles and a ceiling of 25000 ft. Its maximum 

takeoff weight is 1020kg and it can carry up to 204kg of payload. Unit cost is $40 million 

in 1998 dollars. There are totally 48 Predators all in active duty. It showed its asset by 

performing successful tasks over Bosnia and Kosovo theatre. It was also employed 

during the exercises performed in the recent years such as Southern Watch (1999), Allied 

Force (1999) and Enduring Freedom (2001). Test flights of the Predator have been 

performed at Wright Patterson AFB, Dayton, Ohio and it reached 50000 flight hours that 

is considered as a major milestone. The predator is intended to receive data and be 

controlled from the proposed MC2A platform. (ACC Public Affairs Office. “RQ-1 

Predator”. Excerpt from the article http: // www.langley.af.mil / factsheets / RQ-1 

Predator, May 2002). 

2.1.2.2 The Global Hawk  

The Global Hawk is an intelligence, surveillance and reconnaissance UAV that 

can provide high quality images by flying at high altitudes. It can perform a full mission 

from taxi to landing once the mission parameters are programmed. At present, it is 

performing the test flights successfully. 
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The Mission Control Element, which generally consists of four people, guides the 

Global Hawk. The ground segment can control up to three air vehicles simultaneously. 

On April 2000, Global Hawk attended two exercises; one of them was a long-

range flight. It flew 7,500 miles nonstop across the Pacific to Australia on April 22 2001, 

setting new world records for UAV endurance. 

During a typical mission, the aircraft can fly 1,200 miles to an area of interest and 

remain on station for 24 hours. Global Hawk weighs approximately 25,600 pounds 

(11,612 kg) when fully fueled. Most of its components are made up of lightweight, strong 

composite materials. It is still in the development phase conducted by several contractors 

(http:// www.af.mil/ factsheets/ The Global Hawk Unmanned Aerial Vehicle, Feb 2002). 

MMA concept could utilize Global Hawk for surveillance and intelligence 

purposes with the help of its 42-hour maximum endurance time and 635 km/h loiter 

speed. Northrop Grumman company officials state that the Global Hawk could provide 

enhanced capabilities by reducing the number of MMAs needed, and eliminating crew 

exposure to threats, yet in a more cost efficient way (Erwin, 2001). 

2.1.3 Candidate Aircraft 

2.1.3.1 Boeing 767-400ER  

Boeing 767-400ER Extended Range is the aircraft that seems to be the main 

platform for MMA although it has not been declared yet. A team of designers from the 
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Boeing and former McDonnell Douglas Aircraft Company performed studies of design 

improvements in order to meet the customer needs. 

Many capacity and performance improvements have been implemented to Boeing 

767-400ER differing from the earlier 767-300ER fleet including takeoff payload 

capability, passenger capacity, interiors, rotation capability, flight deck, electrical power 

system, engines, performance, and corrosion control. 

Boeing 767-400ER has the maximum takeoff weight of 450,000lb (204,120kg) 

which is 38,000lb (17240kg) greater than that of the 767-300ER. This is attained by 

increasing the fuselage length and wingspan of the aircraft. This enhancement allows the 

aircraft to carry additional passengers and payload. 

The larger tanks are located in the bulk cargo compartment area and the available 

bulk cargo capacity is reduced to 9.77m3 (345 ft3) which is balanced by adding that 

reduction to the forward and aft cargo compartments. The aircraft has an increased cargo 

capacity of 139m3 (4905ft3) as a result of these adjustments in the cargo compartments. 

The air-conditioning system has been upgraded to a more reliable digital bleed 

system that provides better cooling and ventilation. 

The stretched fuselage caused some downsides on the aircraft’s performance 

characteristics during the takeoff and landing. These problems have been solved by 

switching to all-new landing gears that are also strengthened for considerably heavy 767-

400ER. A shorter tailskid has also been added which eventually offers up to a 1000lb 

(455kg) additional payload capacity when departing from obstacle limited airports. 
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A new electrical power system provides a considerably enhanced supply for the 

operators and passengers. The 120kVA AC integrated drive generators (IDG) has been 

mounted along with reasonably powerful Honeywell 331-400 Auxiliary Power Units 

(APU). The aircraft is available with two engine types; Pratt Whitney PW4062 or 

General Electric CF6-80C2B7F1. Additionally, another version of General Electric B8F 

is available which offers an increased thrust. Newly installed swept-back wingtips reduce 

the fuel consumption and takeoff field length and increase aircraft’s climb performance. 

Boeing Company announces that the systematic weight management resulted in 

an 8000lb (3630kg) reduction in gross weight in spite of increases in the fuselage length 

and wingspan. Some basic definitions used in the tables are as follows: 

Maximum Design Taxi Weight (MTW): Maximum weight for ground 

maneuvers as limited by the aircraft structural characteristics and airworthiness 

requirements. It includes maximum takeoff weight and the fuel needed for start-up.  

Maximum Design Landing Weight (MLW): Maximum allowed weight for 

landing as limited aircraft’s structure and airworthiness. 

Maximum Design Takeoff Weight (MTOW): Maximum weight at the start of 

the takeoff run. 

Operating Empty Weight (OEW): Briefly, it is the weight excluding the usable 

fuel and the payload weight. More specifically, it includes the structure, engines, 

personnel, unusable fuel and other propulsion liquids and equipment that are considered 

an integrated part of the aircraft configuration. 
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Maximum Design Zero Fuel Weight (MZFW): Maximum weight just before 

the usable weight is loaded into the aircraft. 

Maximum Payload: Maximum Design Zero Fuel Weight minus Operational 

Empty Weight. 

Maximum Cargo Volume: Maximum space available for cargo. 

Usable Fuel: Fuel available for propulsion. 

Table 2-5 gives basic dimensions of Boeing 767-400ER including modified cabin 

floor area and volume. Estimations of those specifications will be explained in the 

volume analysis section of Chapter 3. Most of the dimensions are available at 

http//www.boeing.com and Jane’s All the World’s Aircraft, 2001-2002. However, the 

items that are not clearly defined in the open sources are estimated by utilizing relations 

between similar types of equipment in the 767 family for which open sources info is 

available. Estimated data are marked with (*) in the tables. The estimations will be 

further explained in the related parts of Chapter 3. In the remaining part of this thesis 

study, those specifications will be considered as the baseline in every calculations and 

comments.  
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Dimensions: External 
     Wing Span 
     Overall Length  
     Fuselage Length 
     Fuselage Max Width 
     Tail Height 
     Wing Aspect Ratio 

 
170 ft 7 in (51.99 m) 
201 ft 4 in (61.4 m) 
197 ft (60.07 m) 
16 ft 16 in (5.03 m) 
55 ft 4 in (16.8 m) 
9.3 

  Interior( Excluding Flight Deck) 
     Width 
     Length*(from front door to aft door) 
     Height 
     Floor Area* 
     Volume* 
     Bulk Cargo Hold Volume 
     Total Cargo Volume 

 
15 ft 6 in (4.72 m) 
143 ft 6 in(43.80 m) 
9 ft 5 in (2.87 m) 
2637.2 ft2 (245 m2) 
18787.4 ft3 ( 532 m3) 
345 ft3 (9.77 m3) 
4905 ft3 (138.9m3) 

Wing Area 3129 ft2 (290.70 m2)1 

                                                
1 Modified by the writer 
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Table 2-5: Technical Characteristics of Boeing 767-400ER 

 

Table 2-6 is a performance summary of Boeing 767-400ER (http\\www. 

boeing.com \commercial\767family\767-400ER\characterictics, Nov 2000). 

The Auxiliary Power Unit installed onto Boeing 767-400ER is Honeywell 331-

400 APU that delivers up to 120kVA. It is more powerful than the ones installed onto the 

former 767 fleet. Considering that the power supply will be a major concern in MMA 

concept, some tradeoffs will be implemented in Chapter 3. 
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Typical Mission Rules  

Basic 

PW4062 

Max. 

PW4062 

Basic 

CF6-80C2B7F1 

Max. 

CF6-80C2B8F 

Sea level takeoff thrust/ 

flat rated temperature 

 lb/°F 

lb/°C 

63,300/86 

63,300/30 

63,300/86 

63,300/30 

62,100/86 

62,100/30 

63,500/86 

63,500/30 

Max. taxi weight 
lb 

kg 

401,000 

181,890 

451,000 

201,570 

401,000 

181,890 

451,000 

204,570 

Max. takeoff weight 
lb  

kg 

400,000 

181,440 

450,000 

204,120 

400,000 

181,440 

450,000 

204,120 

Max. landing weight 
lb 

kg 

350,000 

158,760 

350,000 

158,760 

350,000 

158,760 

350,000 

158,760 

Max. zero fuel weight 
lb  

kg 

330,000 

149,685 

330,000 

149,685 

330,000 

149,685 

330,000 

149,685 

Operating empty weight lb 

kg 

227,400 

103,145 

227,400 

103,145 

227,300 

103,100 

227,300 

103,100 

Fuel Capacity 
gal. 

liter 

24,140 

91,377 

24,140 

91,377 

24,140 

91,377 

24,140 

91,377 

Cargo, Pallets/Containers 5/18 5/18 5/18 5/18 

Design range, MTOW, 

full passenger payload 

nmi 

km 

4260 

7890 

5585 

10343 

4315 

7991 

5625 

10418 

Takeoff field length(86°F)   

                             (30°C) 

Initial Cruise altitude 

(MTOW,ISA+10°C) 

ft 

m 

ft 

m 

8050 

2454 

34700 

10577 

11300 

3444 

32200 

9815 

8250 

2515 

34700 

10577 

11100 

3383 

32200 

9815 

Engine-out alt cap 

(MTOW,ISA+10°C) 

ft 

m 

15200 

4633 

8700 

2650 

14600 

4450 

9600 

2926 

Landing field length, MLW ft 

m 

5800 

1768 

5800 

1768 

5800 

1768 

5800 

1768 

Approach speed MLW 

(3000-nmi mission) 

kn 

kn 

149 

136 

149 

136 

149 

136 

149 

136 

Fuel burn/seat 

(3000-nmi mission) 

lb 

kg 

294.2 

133.4 

294.2 

133.4 

290.6 

131.8 

291.3 

132.1 

Table 2-6: Boeing 767-400ER Performance Summary 
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2.2 Systems Engineering Method and Tools 

2.2.1 Hatley/Hruschka/Pirbhai (H/H/P) Methods 

H/H/P Methods are basically architecture and requirements methods that have 

been widely used for almost two decades in system and software development. They are 

actually updated versions of the H/P methods that were developed in the past by Hatley, 

and Pirbhai. 

The methods provide new approaches for effective development of systems of 

any size and complexity, especially those for which discrete modes of operation are a 

primary feature. It applies equally well to all technologies and provides a common 

language for developers in a wide variety of disciplines. This asset of the methods makes 

them suitable for our MMA design study of the multiple sensors and their multiple roles 

of operation. 

Another important feature of the approach is the coexistence of the requirements 

and architecture models. The process keeps those two models separate but it records their 

continuing interrelationships. Other system development methods mostly automate only 

the requirements model excluding the architecture model (Hatley, Derek and others, 

PSARE, New York: Dorset House Publishing, 2000) 

H/H/P Methods help the Systems Engineers to define the physical structure of 

their systems with representations of physical interconnects and the material, information, 

and energy passing through them. 
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The model considers every system comprising layered subsystems below and 

supersystems above. This layered arrangement can be utilized both in representing 

systems and in defining the systems development process. Every system has a set of 

essential requirements that will satisfy the needs. Systems produce outputs from received 

inputs in order to meet the needs of the environment. Those definitions could be stated as 

the principles of the H/H/P Methods. 

The developers of the mentioned models explain their main principles of systems 

development as follows: 

To achieve the dependability and flexibility needed in the development of 
complex systems, all of the systems artifacts invoked by these principles must be 
represented separately, but with their relationships and interactions also 
represented. These artifacts include, at a minimum: the layered system structure 
and the relationships within it; the subsystems, supersystems, and their 
relationship; the essential requirements, the physical requirements, and their 
relationship; the information, material, and energy that travel into and out of the 
sub- and supersystems; the processing of that information, material and energy, 
and the links between the information, material, and energy, their processing and 
the sub- and supersystem.(Hatley and others, 2000) 

The developer can transfer the models into a software tool that is prepared for 

systems development purposes. Several automated tools provide support for many 

features of the H/H/P methods. TurboCASE/Sys, which is the one used to build the 

MMA environment in this thesis, and Axiom/Sys could be listed as the two of those tools 

at the first glance. At this point, let us describe the requirements and architecture methods 

that form the H/H/P Methods. The bridging between these two models is also introduced 

in Figure 2-6. 
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2.2.1.1 The Requirements Method  

This method combines the Structured Analysis (SA) method, and finite-state 

machine theory into a unified whole. Data processing is represented by data flow 

diagrams (DFDs), and the flow of control information is carried in a parallel structure of 

control flow diagrams (CFDs). Control specifications (CSPECs), including the finite state 

(FS) machine structures are introduced between those two flow diagrams. The finite state 

machines are used to control the behavior of the processes in the DFDs. This adds the 

model an important aspect missing in basic structured analysis. Besides, timing 

specifications called TSPECs represent the input-to-output timing relationships, and all 

the data is defined in a requirements dictionary. (Hatley and Pirbhai, 1987) 

2.2.1.2 The Architecture Method 

This method is an expansion and formalization of the engineering block diagram. 

Actually, it models the physical realization of the system. Architecture flow diagrams 

(AFDs) and architecture interconnect diagrams (AIDs) are used to provide this physical 

realization. These diagrams represent the physical modules that frame the system, the 

information flows and physical channels between the modules. The modules, flows, and 

channels are all meticulously defined in an architecture dictionary in a texture module.

The method includes an architecture template, which is used as a guide in adding 

derived requirements to the requirements model. The distribution of requirements to the 
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architecture is represented graphically using Superbubbles on enhanced DFDs. Then, it is 

recorded through Traceability Matrices (Hatley and Pirbhai, 1987). 

 

Figure 2-6: The Template Bridging Requirements and Architecture Models 

 

(SUB)SYSTEM 
REQUIREMENTS 
MODEL 

(SUB)SYSTEM 
ARCHITECTURE 
MODEL 

 
(SUB)SYSTEM 
ENHANCED 
REQUIREMENTS 
MODEL 

INPUT 
PROCESS 

CORE 
PROCESS 

OUTPUT 
PROCESS 

USER INTERFACE
PROCESSING

SUPPORT PROCESSING 

extracting 

enhancing

packaging 

categorizing 
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2.2.1 TurboCase/Sys 

TurboCASE/Sys is a fully functional system development tool that fully 

automates the system requirements and architecture methods developed by Derek Hatley 

and the late Imtiaz Pirbhai, including the latest advances in the methods. TurboCASE/Sys 

includes the following features: 

• Enhanced requirements using the architecture template, supporting interface 

functions between architecture modules.  

• Graphical allocation of requirements to architecture, using superbubbles.  

• Requirements/architecture traceability through traceability matrices.  

• Automatic creation of submodule requirements diagrams from the higher-level 

allocations  

One can download the trial version of the TurboCASE/SysTM from 

www.turbocase.com with a visual demo showing the features of the tool. However, there 

are some limitations on the trial and the student versions such as saving the program at 

most three times. 

It is easy to use the context-sensitive pop up menus of the TurboCASE/SysTM. 

Information entered in one view can be used in another view. For instance, you never 

need to enter a name twice because you can search for it and double click on it to use. 

Because the tool is totally integrated, you can make changes globally if you want.  
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Requirements and architecture dictionaries are built in the manner of H/H/P 

Methods. Information in the dictionary is consistent with the diagrams. Furthermore, you 

can have the built model checked and make the necessary adjustments in order to ensure 

the overall consistency with the mother and child models. 

The model can be controlled with either state transition diagrams or decision 

tables. From the requirements model, TurboCASE/Sys can turn it into an enhanced 

requirements model for the preparation of deciding the architecture of the system. 

One can use the superbubbles to allocate architecture modules. The allocated 

superbubbles are integrated with the architecture modules in the architecture diagrams. It 

is also possible to model the bus (interconnect) structure using the Architecture 

Interconnect Diagrams. Type of the interconnections such as radio, LAN, and others 

could be selected and TurboCASE/SysTM represents them with different symbols for 

convenience. For example, throttle linkage is shown as ++++++++. Moreover, 

TurboCASE/Sys maintains the traceability via traceability matrix for your architecture 

automatically. (Hatley and others, 2000)  

Actually, once you learn the H/H/P Methods from the reference book cited above, 

you will easily get familiar with the tool. Additionally, real time systems covered in the 

book with TurboCASE/SysTM is a great reference for the first time users of the tool. 
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3 METHODOLOGY 
 

3.1 Systems Engineering Approach  

Systems engineering generally focuses on the design of compound platforms that 

involve many individual subsystems. Systems engineers always have to keep the big 

picture in mind and should focus on both making sure that everything within a product 

properly works together and meets the customer’s operational and support requirements. 

Large-scale systems integration is generally seen as more of an organizational 

capability while systems engineering is viewed as a skill held by individuals. 

Consequently, large-scale systems integration entails the ability to manage many tasks 

that are needed to create a solution meeting the customer’s needs. The result of large-

scale systems integration can be a multifaceted product such as the MC2A platform, 

which is our subject. 

Systems engineers should follow an elegant systems approach for designing a 

large-scale system. There are several ways to do this most of which differs in some ways. 

The most famous one of those is Hall’s Methodology for Large Scale Systems that 

handles the design in seven steps. These seven steps help the systems engineers overcome 

the difficulties occurring during the design process. 

Systems Engineering process is an iterative process utilized until all stakeholder 

needs are satisfied with a reliable design. Otherwise, further iteration(s) are to be 
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performed by altering the methodology and the set of alternatives with the help of the 

information gathered on the former iterations. 

In this thesis, mostly Hall’s methodology will be employed by using some other 

helpful arguments. What I am going to do is to figure out whether an aircraft is 

appropriate for a particular set of missions in terms of payload issues. That’s why I 

should also utilize some other processes in order to come up with an answer to those 

questions. 

In spite of some downsides of utilizing Hall’s methodology for our case, there are 

many helpful arguments within those steps. If we come up with that both of the 

alternatives are good enough to load equipment, or vice versa, then we have to choose the 

best alternative by fabricating MOEs in order to rank those alternatives. Needless to say, 

generated importance and weight values might not reflect the official view of the Air 

Force Staff. However, one could employ the process, which I have created, by using the 

real numbers and would probably end in reasonable conclusions. 

Development of systems is divided into four phases by Hall. These phases 

comprise analysis and planning, preliminary design, detailed design and test, and 

production design. The seven steps aforesaid can be iteratively implemented within each 

four phases. Below, you will see the short descriptions of the Hall’s Steps (Sage, 1997). 

Then the exploitation of these steps will be done beginning with the section 2 of this 

chapter. 
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Problem Definition:  

Problem definition is the first step in the development of the program-planning 

phase. This step is very crucial since needs, alterables, constraints, scenario and some 

other vital descriptions that will shape the rest of the used methodology. The relationships 

between the products, for example between need and alterables, are visualized by 

interaction matrices. Actually, problem definition is a group activity held by the systems 

engineers, decision makers, and other engineers from the relevant disciplines. 

Documenting in this way makes the process neater helping the systems engineers to 

produce results that are more reasonable. 

Value System Design (VSD) 

This is the step in which the objectives are identified and ordered in a hierarchical 

manner. Additionally, needs, constraints and alterables are made related. A set of 

measures are defined in order to use in determining the achievability of the objectives. 

The ordering of those subjects is fulfilled by forming a subordinating matrix. 

The set of objectives must serve as the standard by which the alternative solutions 

are evaluated. Since the established objectives are generally in conflict, some tradeoff 

studies should be conducted. Those tradeoffs are made on alternative sets of objectives 

and constraints. 
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These identified objectives should be validated by the costumer to ensure that the 

baseline represents what the costumer expects. This validation is attained by means of 

several activities before jumping to the next step. 

System Synthesis 

Systems Synthesis is the step performed in order to figure out the answers to the 

following questions: 

• What are the alternative approaches for attaining each objective? 

• How is each alternative described? 

The answers to these questions are activities and the objectives, the activities and 

the constraints, and the activities measures and the objectives. Systems Synthesis is the 

activity in which all the elements are combined in order to convert the functional 

architecture to the physical architecture. The linkages of objectives, activities, objective 

measures, and activity measures cover the systems synthesis part of the program 

planning. Several helpful processes and methods can be used such as H\H\P Methods that 

are going to be employed in this thesis. 

System Modeling and Analysis 

The alternative System Models are introduced in this step after the iterations of 

the former steps. Although there might be several of them at the beginning, the models 

that are considered could be reduced in accordance with the costumer. 
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Decision Making 

This is the step that the final proposed solution is introduced to the decision maker 

including the advantages and the disadvantages of the considered models based on certain 

criteria. Alternative solutions are also presented emphasizing assorted viewpoints. 

Planning for Action 

This step includes the implementation of the achieved solutions and documenting 

the process of development. Implementation involves reviewing the results of the 

iteration and making plans based on the results. After finishing the study, one should 

document everything possible so that the system could be sustained and the study could 

provide support for the future improvement studies. This is the step where the decision is 

made whether additional iterations are to be employed or giving an end to the study. It 

should also be noted that these two steps are going to be introduced in the Chapter 4 as a 

conclusion of the conducted analyses. 

It is important to say that the intent of this study is to determine the design 

parameters and to design a tool useful for others to evaluate the different architectures. 

The writer will be looking at the aircraft as a new NATO aircraft comprised of the basic 

missions of the current U.S. platforms as the baseline. Overall goal is to provide the end 

users with a value system in which they can provide the correct measures and determine 

the best solution. This is due to the desire to accomplish an unclassified study to be used 

as a systems development educational tool. 
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3.2 Problem Definition 

We need to identify the problem thoroughly in order to define the system 

satisfactorily under the Systems Engineering approach. The background and the problem 

statement were introduced in Chapter 1. At this point, needs, constraints, alterables and 

actors related to aircraft design payload integration should be defined. Short definitions 

of the statements are also presented next to each subject for a more clear understanding. 

3.2.1 Needs 

I have assumed that the MMA needs to have following features: 

a) Continuous Operations: All weather, 24/7 operations. This implies in-flight 

refueling capability. 

b) Dissemination and Transmission: Outward communication of others and active 

remote sensing. 

c) Command, Control, Communications and Counter Measures (C3CM). 

d) ISR Processing and Exploitation: The manipulation and data extraction of the 

collected data. 

e) Receiving and ISR Collection: Inward communication from others and passive or 

active gathering of remote transmissions for intelligence data. 
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f) Air and Ground Battle Management (BM): The management and tracking of air 

and ground assets and adversaries. 

g) Air and Ground Command and Control (C2)  

h) Long-term Compatibility: It should be designed to integrate easily future 

technologies along with satisfying the needs of the current situation. 

i) Joint Service Interoperability: The platform should be decisively communicating 

with closely related services. 

3.2.2 Alterables 

Some alterables, or those items pertaining to the needs that can be changed, could 

possibly be uncontrollable ones such things as being the state of the art. I determined the 

alterables of the MMA payload design as following. 

a) Constant “c”: The most significant alterable defined within this thesis study is the 

“c”, which refers to the multiplication constant yielding the total number of selected 

equipment to be integrated on the proposed MMA. The weight, volume and power 

characteristics of one unit of a particular equipment have been multiplied by the selected 

c, which can be chosen from 1 to 5. (Fulghum, David A. “Sigint, Jamming Joined in 

Single Package”, Aviation Week & Space Technology, 23 Dec 2002: 34). Use of c has 

been explained thoroughly at the beginning of Chapter 4. 
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b) APU Selection: Rating of the selected APU that is mounted on the aircraft plays a 

key role in electrical power tradeoff. This issue is discussed in electrical power analysis 

section of this chapter. 

c) Engine Model Selection: Performance characteristics and airframe limits of 767-

400ER vary with respect to the selected engine model. So, the model giving the best 

performance should be selected. 

d)  Range: Maximum endurance and ranges of MMA alternatives are very important 

especially for operational consideration. 

e) Takeoff Roll Length: It should be within the limits of NATO and national 

standards. It should be kept in mind that length of any NATO runway must be longer 

than 8000 feet (Aftergood, 1999). 

f) Mission Requirements: The space, weight and power requirements of the 

missions need to be evaluated. The missions must also perform together. 

g) System Architecture: Although a single aircraft is ideal and highly desired, a 

modular or different tail numbered platform may need to be used if some of the current 

missions are incompatible, or if the limitations of a single aircraft will not allow so. 

Therefore, the system architecture will select the airframe based on all of the mission 

components being consolidated into one permanent platform or into a set of modular 

platforms. 
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h) Future Politics/Players/Conflicts/Demands: Each of these future aspects could 

force the design of the MMA in a completely different direction causing to determine a 

new set of requirements. 

i) CONOPs: How a system is employed affects the multi-mission system 

compatibility because having multiple missions also means having multiple concerns and 

goals. A fully outlined training, techniques and procedures (TTP) manual will need to be 

developed. 

3.2.3 Constraints 

The constraints under which the needs must be satisfied and range over which the 

alterables can be varied are defined as follows: 

a) Airframe Limits: Each airframe has its space, weight, and range/endurance limits. The 

airframe must be able to meet the property and loitering requirements of the combined 

missions. 

b) Safety: Information, technology, crew and the aircraft safety will certainly play a key 

role in determining the optimal architecture. The high number of people onboard may 

evolve some safety matters. We should keep in mind that most of the systems onboard 

will be confidential and the crew will include all well-trained and valuable people. 

Additionally, we should be careful about ensuring the communication safety that could 

be a major concern because of the magnitude of the complicated electronic systems 

mounted on the aircraft. 
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c) Operations Environment: Need for trained personnel, aircraft/human survivability, 

electromagnetic environment, the overall mission performance and scenario will probably 

limit the ability of the airframe. 

d) Funding: The decision makers have not yet established funding level of the MMA 

platform. The final LCC could lead us to a conclusion that the former fleet should remain 

in service if the MMA proves to be non-cost-effective. However, this seems to be not 

possible because some of the current systems are already outdated. 

e) Logistics Supportability: Transportation, labor, supply, environmental impacts, 

limitations of some bases and rapid turnover time will all limit the logistics and 

maintenance of the MMA. For example, a very heavy MMA alternative might not take 

off from a base located at a high altitude just because of the base’s inadequate runway 

length. 

f) Development Time: If the technology is not already in place, it could extend the 

development time of the airframe. If the development takes too much time, then a future 

enemy or conflict could cause revision of the requirements, and so the ongoing MMA 

configuration might become impractical. 

g) Classification of the System: Each mission aircraft currently consist of works and 

reports at different levels of security. Bringing these different levels together and meeting 

security requirements may increase the difficulty in obtaining the overall integration. 
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h) Technology Availability: In order to combine missions that currently require their own 

airframe, technology must be in place to minimize the property needs of the missions. 

Newly designed transmitters and receivers need to be installed that can conduct the 

planned missions. On the other hand, existing technology such as air-refueling will be 

used on the new MMA platform. 

i) System Compatibility: Standardization, interoperability and system supportability will 

all need to be considered. 

j) Government Requirements and Policies: International and National level policies and 

regulations may restrict and even drive some of the decision variables. 

k) Performance: Minimal performance in each sensor type will be no less than that of 

current systems. 

3.2.4 Actors and Relevant Disciplines 

The key players for the MMA platform could be named as; 

• Decision Makers: ACC, AMC, AFSOC, CINCs, 

• Owners/Operators: Fighters, bombers and operators of Air Force, Navy and Army, 

• Developers: Boeing Company, Raytheon Corporation, Northrop Grumman and 

others. 

The concept map developed to show the interactions between the actors and 

drivers is presented in Figure 3-1. 
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Figure 3-1: Concept Map 
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Some of the relevant disciplines could be labeled as follows: 

• Physics (electromagnetic), 

• Logistics,  

• Operational Research,  

• Acquisition, 

• Engineering (mechanical, material, environmental, sensor, transistor, receivers, 

aeronautics, industrial, systems). 

3.3 Value System Design 

A chart was developed along with other two systems engineering students at 

AFIT in order to show visually cross-interactions among the objectives, needs, alterables 

and constraints. This chart found in Appendix A has been used as a key element to build 

the system synthesis architecture as they will identify where special or in-depth research 

will need to be accomplished in order to understand the system design completely. It 

should be noted that this chart represents the interactions for overall MMA integration 

rather than payload design only. 

Numerical values were assigned to the designated strengths -high, medium, and 

low- so that the levels of interactions could be identified. Each overall interaction values 

were calculated with respect to their interactions among the other elements. Every 

elements of each group of objectives, alterables, constraints and needs are arranged based 

on those total and natural group interaction levels. The cross-interactions have been 

categorized by level in Table 3-1. 
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HIGH INTERACTION MEDIUM INTERACTION LOW INTERACTION
Max Mission Effectiveness

Mission Integration & Compatibility
Air C2 ISR Processing & Exploration

Ground C2 Air BM
ISR Collect. & Recog. Mission Ground BM
Dissemination & Transmission C3 CM

Joint Service Interoperability

Future Politics/Players/…
CONOPs

Operations Environment Air Frame Limits
Tecnnology Availability Funding

Development Time Classification of System
System Compatibility Logistics Supportability

Safety

Gov't regulations & Policies
CONSTRAINTS

ALTERABLES

Minimize LCC

Longterm Compatibility

All-Weather Capability   (24/7)

OBJECTIVES Minimize Risk

NEEDS

System Architecture Mission Requirements

Table 3-1: Objectives, Needs, Alterables and Constraints Summary by Level of Cross-Interaction 
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We will need a Value System in order to make any optimization for choosing the 

best alternative. Therefore, a VSD (Figure 3-2) for payload consideration was developed 

using basic hierarchy techniques based on the interactions matrix in Appendix A, the 

concept map (Figure 3-1) and the cross-interactions summary (Table 3-1). Corresponding 

weights for LCC, A/C Specifications and Risk are set to 0.20, 0.50 and 0.30 successively 

summing up to 1. A/C specifications issue is thought to have the measure of 0.50 since it 

is considered as the most important concern during the course of integration. Similarly, 

the other values are chosen in accordance with the mentioned interaction matrix. 

Different weights could be assigned to each of those aspects if they are believed to have 

different importance than those of indicated above. 

This objective hierarchy of VSD will be developed into as fine detailed as 

possible with the given backgrounds and the limitations of research through this chapter. 

The reader could notice that the VSD, which was generated for the overall MMA, is 

different from the one in this text. That is quite normal since grading the alternatives and 

coming up with a result will be based merely on the payload integration issues. That is 

why any alternative that is robust in terms of payload considerations does not have to be 

so with regard to EM or Operational views. Obviously, the overall results would be 

attained by combining those three viewpoints. 
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Figure 3-2: VSD for A\C Payload Design 
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3.4 System Synthesis 

Based on the interactions matrix in Appendix A, an interface and flow model was 

created using techniques defined by Hatley, Hruschka and Pirbhai (H/H/P). These 

techniques help to stimulate system specifications to generate iteratively a set of system 

requirements and architecture models. The interface model depicts key requirements and 

interactions within the MMA design. The flow model was then used to build and track 

the architectures and some of their variants. The process interface was the centerpiece or 

driving force behind the iterations. As each architecture was developed, the system 

requirements were enhanced and fed back into the interface. As the process continues, 

several architecture variations developed and noted as sub-bullets in the systems 

architecture model. The tool automatically organizes the requirements you set manually. 

3.4.1 H/H/P Model Developed in TurboCASE/SysTM  

Initially, environment where the MMA will operate has been pictured in Figure 3-

3. Each element in the environment is described with different types of lines. The dark 

line represents the MMA as a superbubble. The next figure after environment model is 

Requirements Context Diagram for MMA platform. Then, DFD0, DFD1, selected 

requirements dictionary entries, PSPECs, enhanced DFD0 and AFCD come in a row. In 

fact, some other figures available in the generated model are not introduced here because 

of space concerns in the text. Besides, it is believed that these figures and tables are 

enough for payload consideration. 
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Figure 3-3: Environment Model for MMA 
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Figure 3-4: Requirements Context Diagram for MMA 
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Figure 3-5 : DFD0 
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Figure 3-6 : DFD1 
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Name Composed of Type 

ALLIED INFO ISR INFO + IFF ID  DATA 

COMMANDS HOLD + ATTACK CONTROL

BROADCAST NOISE JAMMING SIGNAL DATA 

ISR TASKS INTELLIGENCE + SURVEILLANCE 
+ RECONNAISSANCE 

DATA 

Table 3-2: Selected Requirements Dictionary Entries for Flows on DFD0 

 

 

 
 

PSPEC1: According to the mission plan, Command ISR and ECM TASKS 

with the help of info gathered from the allies in order to meet the THEATER 

LEVEL NEEDS and AOI NEEDS. 

PSPEC2: Collect ISR data by sticking to the mission plan and send Air and 

Ground MTI info to the ISR database. 

PSPEC3: According to set broadcast parameters, relay ground-to-ground 

uplink and downlink communication. 

PSPEC4: Saturate foe radar by broadcasting noise. 

Table 3-3: Process Specifications (PSPECs) for Processes in DFD0 
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Figure 3-7 : Enhanced DFD0
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Figure 3-8: AFCD
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3.5 System Modeling  

System models were developed after several iterations. These models include but 

are not limited to the following: 

a) Baseline: The status of each mission without future improvements. That is, current 

situation. 

b) Legacy Improvements/ Standard Acquisition Process: Follows the traditional method 

followed by DOD in replacing aircraft. Under the Legacy concept, each weapon system 

will be replaced by a similar upgraded system. Legacy replacement results in system 

architecture almost identical to that of today. In spite of widely different schedules, 

budgets and technical risk, it still remains a feasible alternative. 

c) One Tail Number (OTN): This would involve consolidation of multiple missions under 

a single airframe. This is the desired outcome from decision makers as it is expected to 

reduce the life cycle cost, and increase the ability to combine data and information. 

d) Different Tail Number (DTN): Each aircraft would consist of sets of compatible 

missions. For example, tail number A1 may consist of Battle Management, C2 and IFF; 

tail number A2 may consist of C3CM, GMTI, IFF; tail number A3 may consist of C3CM 

and ISR; etc.  

e) RTC: The architecture consists of a suite of three types of aircraft missions. This 

concept centers on separating the three basic functions of systems described earlier into 
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transmitting platforms, receiving and processing platforms, and separate command and 

control platforms. More than three aircraft could be used in the architecture but would be 

limited to one of the three primary missions. 

f) Sensor Craft: This is a long dwelling, real estate unlimited aircraft that could 

accomplish all potential missions under one aircraft. Sensor Craft is an envisioned 

platform mounted on a state of the art aircraft. Diamond shaped platform is shown in 

Figure 3-9. 

 

Figure 3-9: Imaginary Picture of Sensor Craft Aircraft 

 

g) Modular: The aircraft would have a compartment or module that could be inserted 

based on the mission. Each module would be outfitted with different hardware and 

software specific to the missions’ needs. 

Only the OTN and DTN architectures will be considered in this thesis because the 

OTN is the preference of the customer and the DTN seems to be the one closest to the 
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desires of the customer according to the literature review I have made. Although the form 

of the OTN is obvious, the DTN alternative can be created as a combination of several 

variants. Therefore, four different types of DTN each of which consists of two 

subordinate variants have been established despite the fact that more options could be 

generated by changing the configurations. Those specific DTN architectures are 

generated by considering time limitations and importance of two major fleets, AWACS 

and JSTARS. 

The overall feasibility of any DTN architecture will be considered as the 

combination of those two secondary DTNs. Table 3-4 is the list of MMA alternatives that 

will be examined in this thesis. 

ALTERNATIVE TITLE CONFIGURATION  

One Tail Number OTN 
JSTARS-AWACS-RJ-COMPASS CALL-

ABCCC 

DTN11 AWACS-JSTARS 
DTN1 

DTN12 RJ-ABCCC-COMPASS CALL 

DTN21 AWACS-ABCCC 
DTN2 

DTN22 JSTARS-RJ-COMPASS CALL 

DTN31 AWACS-RJ 
DTN3 

DTN32 JSTARS-COMPASS CALL-ABCCC 

DTN41 AWACS-COMPASS CALL 

Different Tail 

Numbers 

DTN4 
DTN42 JSTARS-RJ-ABCCC 

Table 3-4: MMA Alternatives 
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3.6 System Analysis 

In any system, many variables could influence the overall performance, cost, or 

design of the detailed components. I will primarily present those factors and then I will 

try to find out their effects on previously identified alternative models. 

3.6.1 Weight Analysis  

It is apparent that one of the major concerns of the integration is going to be the 

weight. We should carefully make the necessary tradeoffs between weight of fuel and 

payload that are directly affecting range and endurance. The weight of an aircraft is 

categorized into the same several portions in most of the aircraft design books. I have 

defined them in chapter 2 of this thesis under the title of Boeing 767-400ER. Now, let me 

introduce the basic aircraft weight equation: 

                 Wo = Wpayload +Wempty +Wfuel                                        Equation 3-1 

where Wo is total takeoff gross weight. Wpayload is the weight of flight and mission crew, 

consoles, and special equipment related to the mission of the aircraft. Many kinds of 

radars, antennas and sensors can be named under special equipment related to the mission 

type. Wfuel is the weight of the fuel required for performing the mission, and Wempty is the 

empty weight of the aircraft that includes the structure, engines, landing gear, 
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instruments, fixed equipment and anything else not considered as the part of payload 

(Raymer, 1999). 

To simplify the calculations, both Wempty and Wfuel can be written as the fraction 

of Wo such as Wempty/Wo and Wfuel/Wo. In this way, some necessary tradeoffs could be 

easily done between fuel and payload weights. Finally, Equation 3.1 could be expressed 

as follows: 

0W = )/W(W)/W(W1
W

0fuel0empty

Payload

−−                             Equation 3-2 

Although it is possible that the Boeing Company will implement changes to Wo, I 

am assuming that it will be unchanged during the development study. That means we 

have got other three variables left in the formula that can be altered. On the other hand, 

there are two different engine selections and two variations, which are basic and 

maximum, of each engine types of Boeing 767-400ER. Besides, selecting basic or 

maximum model causes big differences in the performance of the aircraft. Nevertheless, 

both Pratt Whitney and General Electric maximum model engines have similar 

performance values. Therefore, I assume the General Electric CF6-80C2B8F maximum 

model engine with the Wo of 450,000 lb is mounted on the aircraft allowing us to load 

more weight than the basic model engine. For additional data on 767-400ER engine 

characteristics, the reader should consult Table 2-6 and Table 3-5. 
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On the other hand, Wempty seems to be somewhat alterable by removing some 

basic furnishings in the passenger cabin provided in the commercial version of 767-

400ER. The furnishings contain seats for flight-deck crew, cabin crew and passengers, 

lavatory and water compartment, food providers, cabin windows and miscellaneous. 

Weight of furnishings in pounds for a commercial aircraft is formulated as follows 

(Roskam, 1999): 

Wfur = flight-deck crew seats + passenger seats + cabin-crew seats + (lavatories 

and water) + food providers +cabin windows +miscellaneous, 

Or: 

Wfur = 55Nfdc + 32Npax + 15Ncc + Klav (Npax)1.33 + Kbuf (Npax)1.12 + 109{Npax 

(1+Pc)/100}0.505 + 0.771(Wo/1,000)                                 Equation 3-3 

where Klav = 1.11 and Kbuf = 5.68 for long range aircraft. Pc refers to design ultimate 

cabin pressure in psi whose value depends on the design altitude for the pressure cabin. 

Pc has been selected as 6.7 assuming the aircraft’s maximum flight altitude is 50000 ft 

(http://www.tpub.com/ase2/75.htm). Actually, Pc is fixed to 6.7 for the altitudes greater 

than 40000 ft in the cited reference. Additionally, estimations are based on the three-class 

arrangement with 243 passenger seats (http\\www.boeing.com). 

In fact, seats for the flight-deck crew will remain in the aircraft. Therefore, we 

should not include them in the furniture that will be taken out from the commercial 767-

400ER. Additionally, it is assumed that the cabin windows will be removed from the 
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aircraft, those gaps being filled with probably aluminum monocoque skin. So, based on 

the density difference of glass and aluminum, the weight gained from window removal 

will be assumed as the half of the formula estimate for the type of glass required for that 

altitude. 

According to the estimations made by the formula introduced above, eliminating 

those 243 passenger and 10 cabin crew seats along with other redundant furnishings 

including screens, galley equipment, lavatory, video control center and closets will 

provide us; 

Wfur= 0 + 7926 + 150 + 1652.64 + 2668.25 + (478.448/2) + 346.95 = 12983 lb (5889 kg) 

It should be noted that seats for each flight crew, cabin crew, and passenger are 

considered as 55 lb, 15 lb and 32 lb respectively according to the Equation 3.3. 

Eventually, those estimations will reduce Wempty by 12983 lb to 214,317 lb 

(97,212 kg) while the weight assigned for payload will increase by 12983 lb to 115,683 

lb (52,473 kg). 

If JP-8 with the density of 6.7 lb\gal is chosen as the fuel to fly the aircraft, the 

maximum usable fuel weighs around 161,738 lb. However, we cannot load the aircraft 

with more than 120,000 lb of fuel on the ground if we have to use up all the payload 

capacity because of the magnitude of the mission equipment. Nevertheless, we can use all 

the capacity in case of an in-flight refueling remembering that the maximum landing 

weight should be less than 350,000 lb. Numbers of refueling will be determined in 
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accordance with the operational aspects. Associated ranges vs. weight plots obtained 

from www.boeing.com are available in the Appendix B. They will be used in the text if 

needed. Table 3-5 shows the basic weight characteristics of Boeing 767-400ER after the 

adjustments explained above. 

 Basic Maximum 

Maximum taxi weight 401,000 lb (181,890 kg) 451,000 lb (204,570 kg) 

Maximum takeoff weight 400,000 lb(181,440 kg) 450,000 lb(204,120 kg) 

Maximum landing weight 350,000 lb (158,760 kg) 350,000 lb (158,760 kg) 

Maximum zero fuel weight 330,000 lb (149,685 kg) 330,000 lb (149,685 kg) 

Operating empty weight 214,417 lb (97,296 kg) 214,317 lb (97,212 kg) 

Maximum payload weight 115,583 lb (52,429 kg) 115,683 lb (52,473 kg) 
Usable Fuel US Gal. 

Lt 

lb2 

kg 

  24140 

  91380 

161738 

 73363 

  24140 

  91380 

161738 

  73363 

Max. fuel at 

takeoff 

lb 

kg 

70,000 

31,751 

120,000 

   54,431 

                                                
2 JP-8 with the density of 6.7 lb/gal 
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Table 3-5: Adjusted Weight Characteristics of Boeing 767-400ER 

Now that we cannot play with the Wo and Wempty in the estimations, we need to 

optimize the weight of fuel and payload according to the mission the platform will 

perform. Obviously, weight is directly related to the density of the fuel that means 

different types of gasoline will load different weights to the aircraft to carry during the 

flight. We know that military aircraft consume JP-8 that has a greater density than 

Aviation Gasoline. At present, we do not know if the MMA platform has a serious weight 

concern. However, the idea of fueling with Aviation Gas instead of JP-8 can be suggested 

as a last resort although this transformation could possibly change aircraft’s aerodynamic 

performances. Following Table 3-6 summarizes commercial and military fuel densities: 

Average Actual Density 
 

 

0°F 100°F Mil-spec density 
Aviation Gasoline 6.1{.73} 5.7{.68} 6.0{.72} 
JP-4 6.7{.80} 6.4{.77} 6.5{.78} 
JP-5 7.2{.86} 6.8{.82} 6.8{.82} 
JP-8/JETA1   6.7{.80} 

Table 3-6: Fuel Densities (lb\gal or kg\liter) (Raymer, 1999) 

 

Range is estimated by using the Breguet range equation: 

R=
i
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         or      
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where  

R             = Range (ft or m) 

SFC        = Specific Fuel Consumption (1/s) 

V            = Velocity (ft/s or m/s) 

L/D         = Lift-to-Drag Ratio 

Wi-1 / Wi = Phase Mission Weight Fraction 

Fuel consumption rate varies according to the phase of the flight, which are 

typically takeoff, climb, cruise, loitering and landing. Additionally, the overall range and 

fuel needed are estimated as a function of all those phases. In the range trade, we will 

possibly need for the Specific Fuel Consumption (SFC) values during the cruise and 

takeoff. Although range can be directly found out from available tables, we need to be 

able to estimate them from the formulas for operational issues. The SFC constants can be 

calculated by using the formulas below (Raymer, 1999): 

SFCcruise=0.88e (-0.05BPR)                                                                   Equation 3-5 

SFCmaxT=0.67e (-0.12BPR)                                                                   Equation 3-6 

where BPR is the bypass-ratio. The formulas above are for subsonic non-afterburning 

engines such as found on commercial transports, and cover a bypass ratio range from 
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zero to six. Table 3-7 displays the engine specifications including BPR values for each 

type of engines that could be mounted onto Boeing 767-400ER. 

 CF6-80C2 PW4062 

Air Flow (kg/s) 802  816  

BPR 5.05 4.8 

Dry Weight (kg) 4309 4179 

Max.Takeoff Thrust (lb) 63500 63300 

Table 3-7: Engine Characteristics of Boeing 767-400ER (Jane’s All the World’s Aircraft, 

2001-2002, 2001) 

These equations would yield SFCcruise as 0.684 and SFCmaxT as 0.365 for the 

associated BPR for CF6-80C2 engine. Lift to drag (L/D) ratio of Boeing 767-400ER can 

be considered as 17 by using the historical data tables available in the aircraft design 

books (Raymer, 1999). Those tables give the L\D ratio as a combination of the wing 

aspect ratio and maximum thrust of selected engine. 

Now, we are ready to do any estimation if we are given the total weight of the 

payload loaded. However, here comes the most important question: What will be the total 

weight of the payload needed for the missions? It certainly depends on the selection of 

the alternative, whether OTN or DTN. I will present those estimates in Chapter 4 by 

using the historical data available in the C4I sources and latest company catalogs from 

the internet. 
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3.6.2 Volume Analysis  

As indicated in the Chapter 2, cabin floor area and volume values of Boeing 767-

400ER are not available in the open literature. However, they are very important to know 

for any estimation in payload design. Thus, the historical data of other versions of 767 

family (200, 200ER, 300, and 300ER) were examined in JMP IN which is a widely used 

statistical tool. Both linear and quadratic fit correlation models have been established in 

order to have the least biased estimate of the historical data. The codes that have the 

highest R2 values were selected. By using the codes gathered after this effort, the cabin 

volume and floor area have been estimated. 

However, these estimates are based on the length from front door to the aft door 

for 767-400ER. When we look at the drawings of the aircraft, there is an extra space 

beyond the doors that is approximately equal to the flight deck volume. Thus, 13.5 m3 of 

volume and 5 m2 of area are added to the value found after estimations. 

Moreover, that volume estimate reflects the cabin volume excluding the passenger 

stow bins replaced at the top of the seats. Now that our new aircraft will not fulfill 

commercial transportation, we can easily discard them for extra storage. Each outboard 

bin on the Boeing 767-400ER can accommodate two Air Transport Association (ATA) 

carry-on bags (9-by 17-by 23.75 inch) stowed diagonally yielding to a 0.1191 m3 volume 

each. Assuming Three Class Arrangement, which is for 243 passengers, and one 

outboard bin for every rows of seat, there could be around 150 bins. By eliminating those 

compartments, we will gain at least 150 x 0.1191 = 17.865 m3 extra storage volume. 
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Another confirmation for estimated overhead storage volume could be made by 

making a comparison with the 767-300 version. It is stated that overhead stowage for 

carry-on baggage is 0.08 m3 (3.0 cu ft) per passenger assuming 767-300 accommodation 

for 269 passengers. That configuration gives 269 x 0.08 m3 = 21.52 m3 space for storage 

confirming our assumption of 17.865 m3 cabin volume (Jane’s All the World’s Aircraft, 

2001-2002, 2001). 

After all those assumptions and calculations, the final rounded estimates are as 

follows: 

Cabin Floor Area= 245m² + 5m² =250m² (2691ft2) 

Cabin Volume= 532m3 + 13.5m3 + 17.865 m3 = 563.4m3 (19896 ft3) 

If we divide the cabin volume to the length, we will get 12.863 m3, which is the 

approximate volume of space sitting on a 1-meter length. This estimate can be used in 

volume trade in the optimization section. It should be also noted that the flight deck is not 

included in the estimations since it is believed not to have so much impact on the indoor 

layout design of the aircraft. I am also aware that there is a risk of having biased 

estimates because the sample size is too small, which is 4. However, the procedure for the 

small sample sizes were exactly used assuming that the data is normally distributed. We 

should have a sample size greater than 30 in order to get rid of the normality assumption. 

However, necessary tests are performed in order to check the normality of the distribution 

(Devore, 2000). 
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I could have assumed a rough estimate of cabin volume just by inspecting other 

Boeing transport without doing any calculations. However, I wanted to have some 

reasonable numbers rather than thrown up values. 

Boeing 767-400ER has a bulk cargo hold volume capacity of 9.77 m3 (345 ft3) 

and a total cargo volume capacity of 138.9 m3 (4905 ft3). These values will be real estate 

limitations for settling the payload need to be installed inside the aircraft. Figures 3-10 

and 3-11 display the cabin and lower deck layout of Boeing 767-400ER while Table 3-8 

provides a comparison between 767-400ER and 707, the aircraft at which the JSTARS 

and AWACS platforms are currently housed. 
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Figure 3-10 Interior Layout of Boeing 767-400ER 
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Figure 3-11: Lower Deck Cargo Layout of Boeing 767-400ER 

 707 767-400ER Ratio 
Lower Deck Cargo Dimensions 

Forward 
Aft 
Bulk Cargo 
Total 

 
24.49 
25.63 
NA 
50.12 

 
67.97 
61.17 
9.77 
138.91 

 
2.775 
2.386 
- 
2.772 

Cabin Dimensions (m) 
Length 
Width 
Max Height 

 
29.94 
3.54 
2.192 

 
43.80 
4.72 
2.87 

 
1.463 
1.333 
1.309 

Interior Wetted Volume (m3) 226.5 563.4 2.487 

Table 3-8: Dimension and Volume Comparison of 707-320B vs. 767-400ER 
(http\\www.boeing.com) 

 

It is noticeable that newly selected aircraft has at least two times greater volume 

capacity than the old one. This difference will certainly provide a freedom to the 

designers in spite of the fact that it is not known yet whether that much space is big 

enough or not. 

 

53 FT 4 IN 
16.27 M 

48 FT 4 IN
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CONTAINERS  
SHOWN 
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3.6.3 Electrical Power Analysis 

Electrical power to the avionics, hydraulics, environmental-control, lighting, and 

other subsystems is provided by the electrical system in an aircraft. The electrical system 

consists of batteries or generators (engine generator and APU), transformers, electrical 

controls, circuit breakers and cables. 

Generators commonly produce AC power that is converted to DC by the 

transformers. Boeing 767-400ER has two engine driven 120kVA Integrated Drive 

Generators (IDG) supplying 115/200 V, 400 Hz, three phase AC power and has another 

120kVA generator attached to the APU. Actually, the 767-400ER has one of the most 

powerful generators available in the market. 

All large-scale aircraft including the commercial transport and military 

applications are completely dependent upon the hydraulic system for flight control. If the 

hydraulic pumps stop running, an emergency hydraulic power will be needed as well as 

an electrical power until the engines can be restarted. There are several forms of 

emergency power available in the aviation industry. Most commercial transports and 

military aircraft are accommodated with jet-powered APUs. 

Usually, an APU is designed to provide ground power for air conditioning, cabin 

lighting, and engine starting. In some cases, the APU is run continuously in-flight for 

additional hydraulic or electrical power. 
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The APU is actually another jet engine, and its installation requires detailed care 

during the initial design layout. The APU needs its own inlet, exhaust pipes, and it must 

be covered by a firewall. Ground access is very important since it requires frequent 

maintenance. The APU is generally mounted inside the tailcone of a transport aircraft so 

that the noise can be isolated. The APU can also be located inside the landing gear pods 

of some military transport aircraft whose landing gears are located in fuselage-mounted 

pods. 

It should be also remembered that the exhaust from the APU is extremely hot and 

noisy. Therefore, aircraft structure and obviously any human being should not be 

imposed to it. I introduce specifications of some APUs available in the market in Table 3-

9 believing that it could enlighten the issue. 

The dry weight seen in the table represents only the uninstalled APU weight. 

Obviously, the installed APU will be heavier than the uninstalled one because of the 

firewalls and other additional material. That’s why the uninstalled APU weight value 

should be multiplied by 2.2 in order to get the real weight loaded on the aircraft (Raymer, 

1999). 

APU Type Startup Ceiling 
(ft) 

Dry Weight 
(lb) 

Ground Power 
(kVA) 

Honeywell 331-350 41,000 560 115 

Honeywell 331-500 43,000 730 120 

Honeywell 700 25,000 650 100 

PW901 25000 835 180 
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Table 3-9: Auxiliary Power Units (Jane’s All the World’s Aircraft 2001-2002, 2001) 

 

As of November 2002, the statistics of Honeywell 331-400, which is the APU on 

Boeing 767-400ER, were not available on the open sources. However, the information 

about Honeywell 331-500 could be used instead since it has also 120-kVA ground power. 

As seen on the table above, Pratt & Whitney (Canada) PW901 provides 180kVA power 

that is half as much as the one on the Boeing 767-400ER. The first iteration will be done 

based on the APU that is currently installed on the Boeing 767-400ER. If more power is 

needed, the P&W generator installation will be considered and the results will be stated. 

It should be also noted that selecting the P&W brand APU would load an additional 105 

lb (47.62 kg) weight on the aircraft. This weight addition will be also kept in mind during 

the estimations. I should also express that both kVA and kW can be used as the unit of 

power because of the fact that watts is the product of Volt and Ampere. 

Now, let me dig into more. Is the most powerful APU available in the market 

going to be good enough to satisfy the need for the high power demand? In order to 

answer this question, we should examine thoroughly each subsystem that will be 

mounted on the aircraft and identify the overall power demand. Actually, it is not a piece 

of cake. To do this rigorously requires “component weights, geometries, and power and 

cooling requirements will have to be estimated by the avionics experts, but that will take 

six months to a year” (Raymer,1999:303). So, a simpler procedure will be used here. 
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While each alternatives are being examined, a list of mission equipment will be 

listed along with the weight and volume characteristics and power needs. The required 

specifications have been collected from several sources -mostly Jane’s avionics, radar, 

C4I and aircraft systems books. These sources are numbered with the reference numbers 

of 16, 27, 35 and 40 in the bibliography. In most cases, power consumption and volume 

values have been estimated by using the formulas available in the aircraft design books. 

The reader should refer to Appendix D to see a tabular list of the formulas giving the 

power and volume characteristics of different avionic systems for a given weight. Some 

reductions to the formula results could be applied because of the technological 

enhancements in the electronic systems over the years. This approach is similar to that 

employed in the Space Mission Analysis and Design (SMAD) methodology, which is 

used in conceptual satellite design (Wertz and Larson, 1999). Explanations that are more 

detailed will be introduced while those values are being estimated through the text. 

After the test-flights performed with Paul Revere platform, it is revealed that the 

MMA concept will need for high amount of electric power because of its extended 

avionic systems. Therefore, the idea of installing additional powerful APUs onto the 

aircraft could be considered in order to increase the power supply. 

This discussion brings up the question whether we can install more than one APU 

to meet the power requirements or not. The physical realities of the APU installation 

stated above make us think that adding an extra APU does not make sense, or a very 

detailed design should be implemented to locate that equipment. Additionally, I have not 
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run into any aircraft having multiple APUs on the available literature. Thus, the idea of 

installing more than one APU onto an alternative is disregarded. 

3.6.4 Avionics Analysis  

Avionics is the abbreviation of “aviation electronics” that includes radios, radars, 

flight instruments, flight control computers, infrared detectors, navigational aids and 

other equipment. Today’s avionics are the integral part of the design process with the 

approximate cost of approaching a third of total costs for some military aircraft (Raymer, 

1999). We can envision that the MMA’s avionics will also cost a lot. 

 Avionics could be classified as Communication\Navigation (Com\Nav), Mission 

Equipment, and Vehicle Management (Raymer, 1999). Now that a commercial transport 

aircraft that is currently available in the market has been chosen for the MMA concept, 

the Com\Nav and Vehicle Management subsystems are going to come inherently with the 

baseline architecture. Thus, our main concern should be on the Mission Equipment. 

 As electronics progressed, military aircraft began to be dependent on the onboard 

electronics for the fulfillment of the mission. Mission equipment now includes air-to air 

and air-to ground radar, electronic countermeasures, infrared seekers and sensors, IFF, 

gun and missile aiming, terrain following autopilots (i.e. Lantern system), active 

electronic stealth techniques and host of other mission-specific systems. These systems 

also require a lot of onboard computing power. 
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The location of the avionics is very important. They should be close to the crew to 

have short cables. They must be supplied with enough power and cooling air. They are 

very sensitive to vibration and heat. 

The interconnectivity of airborne electronics is called architecture and it mainly 

includes six aspects; displays, controls, computation, data buses, safety partitioning and 

environment (Kayton, 1997). That means we have to allocate some room for all of these 

six aspects inside or on the surface of the aircraft. 

 For the sophisticated aircraft, design of the avionics system requires integrated 

teamwork done with the aircraft designers and avionics experts. Besides, it is a very time 

consuming and tedious work to do, as I stated before. For a military aircraft, most of the 

avionics equipment will be new and it will be very hard to make the exact drawings since 

the avionic components most probably have not been designed yet. 

 However, for the initial design, the historical data of the current systems could be 

used in the weight, volume and the performance trade. The required data can be delivered 

from the manufacturers. However, the manufacturers generally do not release the latest 

data to anyone who is not a potential costumer for them. In this case, there is no option 

than using the data, which is sometimes very old, available on the open sources. 

 There is a trend toward miniaturizing and integrating the avionics systems such as 

the active phased arrays that are providing a better performance and up to 30% reduction 

in space and weight. Those arrays even let the antennas be mounted on the skin of the 

aircraft during the manufacturing phase. 
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 Although a specific technological improvement factor can be employed in the 

estimations, there is a strange contradiction in design of some kind of avionics 

components. Those avionics are getting better in performance not in dimension. That’s 

why we can assume the similar weight and volume characteristics of the current systems 

with not so much potential weight reduction due to the technological developments. For 

this reason, it is chosen as zero in my estimations. Raymer gives a rule of thumb 

expressing that the avionics has a density of around 30-45 lb/ft3 or 480-720kg/m3. This 

will be used in Appendix D in order to estimate the volume in case a suitable formula 

cannot be fit to particular avionics equipment. 

 The transport aircraft have quite small radar with respect to the bombers in their 

nose. This radar is generally used for weather avoidance. Figure 3-12 shows the antenna 

layout of both commercial and military aircraft. It is seen that there are many antennas 

distributed all over the fuselage, wings and tail. They are easily identified on a close shot 

picture of a commercial jet as tens of sticks attached on the fuselage. Keeping in mind 

that these are the antennas needed only for basic communication purposes, other special 

purpose surveillance and intelligence sensors will take a lot of space on the body of the 

aircraft. They would certainly require detailed engineering and laboring. 
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Figure 3-12: Avionics Placement on Multi-purpose Transport and Military Aircraft 

(Kayton, 1997) 

The avionics systems that are to be installed on the new MMA platform need to 

be identified. For this reason, I ought to name every subsystem, especially the C4I 

systems, on the current aircraft. I have already listed all known subsystems of the current 

fleet in several tables in the Chapter 2. Besides, Table 3-10 summarizes the equipment 

mounted onboard the current airframes. 

 AWACS JSTARS Rivet 
Joint 

ABCCC Compass 
Call 

INS 1 1 1 1 1
TACAN 1 1 1 1 1
ESM 1  
RCMP x  
Radar Synchronizer x  
STALO x  
AR x  
MP x  
DDP x  
RDC x  
Consoles 14 18 x 15 x

Avionics L.-, 
(Shaded) 

Military IFF- 
Marker 
Beacon" 

DMEl 

MLS1&2- Glide Slope 1 & 2 

-TCAS Dir/OmnI 
-ATC Transponder 1 & 2 
-VHF 2/Military UHF 
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 AWACS JSTARS Rivet 
Joint 

ABCCC Compass 
Call 

Air Data Computer 1  
Interface Adaptor 1  
PCE x  
AA(transmitter, IFF\SSR) x  
MR x  
HVPS w\ transformer, filter, 
regulators 

x     

Transmit Electronics x  
RC x  
Digital Processor 18  
Supermini Computers x  
Signal Processors 3 x  
High-speed Processors 15  
Printers x x x x x
Workstations 18  
JTIDS Terminals x 2 x x 
UHF Radios x 12 x 3
VHF Radios x 3 x 1
HF Radios x 2 x

Totally 
23 
Radios 2

SINCGARS 1 x 
SATCOM x x x  1
INTERCOM x Multiple x x x
SCDL Air Data Terminal 1  
TADIL 1 x x  
JTT with a constant source 1  
Integrated Terminal Group 
Radios 

  4   

 Track Management Processor x  
Common Data and Retrieval 
Sys 

  x   

 Comms. Emitter Location Sys Multiple  
Background Search Sys. x  
Beamformer Processor x  
Search Database Processor x  
ACIDS 1 
CS 1 
TBMS 1 
AMS 1 
Blink Jammer  1
Radar Warning and Homing x x x x x
Countrmeasr. Dispensing Set  1
Countrmeasr. Receiving Set  1



 

 3-49

 AWACS JSTARS Rivet 
Joint 

ABCCC Compass 
Call 

Terrain Following Radar x x x x x
Crypto Equip. x 19 x x x
ECM Sys.  1

Table 3-10: Equipment Mounted on the Current Airframes 

 

Generally, the sources from which I have gathered the data about systems do not 

mention about how many of them are mounted on the related airframe. For example, 

Jane’s All the World’s Aircraft states that there are supermini computers installed on the 

JSTARS. However, the total number of those computers is not clearly stated. This forced 

me to assume some fabricated configurations for those equipment. 

System enclosures mechanically mount computer modules to a backplane module 

within an aircraft. Traditionally, Air Transport Tracking (ATR) units are the standard 

enclosure formats (Newport, 1994). The ATR system enclosure formats are shown in 

Table 3-11. One would need for this conversion table a lot since dimensions of the 

avionics systems are defined in ATR units in some sources. 

 Width (in) Height (in) Length (in) 
1 ½ ATR 15.29 7.64 12.52 
1 ATR 10.09 7.64 12.52 
¾ ATR 7.50 7.64 12.52 
½ ATR 4.88 7.64 12.76 
⅜ ATR 3.56 7.64 12.76 
¼ ATR 2.29 7.64 12.76 

Table 3-11: Standard Enclosure Dimensions (Taken from MIL-STD-1788) 



 

 3-50

 

A new technology called network-centric environment is intended to employ in 

data transfer between the MC2A and other aerial platforms. Under current technologies, a 

crew aboard the MC2A would have to put data about targets into a data link that connects 

to a fighter aircraft. The fighter pilot would have to look at the data and translate it into 

something he finds on his radarscope while still flying his plane. It is not the case in 

network-centric environment such that information can move directly from one platform 

to another without requiring human intervention. In a network-centric environment, the 

data would move straight from the MC2A’s computers to the fighter’s control system. 

Such applications eliminate steps that are non–value added that take time and that can 

introduce error. 

There are also several ongoing studies about integrating the intelligence and 

jamming equipment into one payload or system such as the Adaptive Joint C4ISR Node 

(AJCN). This system is designed to relay communications, listen to the advisories’ 

conversations, or jam enemy’s communications all at the same time. It can be applicable 

to almost any type of platforms since it is modular. Although this integration used to 

seem unattainable several years ago, the latest developments made it possible. The basic 

package contains two currently used subsystems, the Signal Intelligence (SIGINT) 

software and the Joint Tactical Radio System (JTRS). JTRS is designed to receive signals 

from different sensors and convert them into a common language that can be transmitted 

throughout a network. These two capabilities will be combined with the jamming 

function. The system can switch to another task whenever needed. For example, it can 
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shift to jam the foe’s communication systems while it was providing long-range 

communication to the friendly forces. Actually, this is a big milestone in multimission 

aircraft concept. This development could solve many problems in integration in terms of 

volume and power considerations. The project is planned to be in use by the year 2007 

after a 5-year test and evaluation period (Fulghum, David A. “Sigint, Jamming Joined in 

Single Package”, Aviation Week & Space Technology, 23 Dec 2002: 34). 

It is known that JSTARS, AWACS and RJ are equiped with JTIDS. However, 

there are some similarities and redundancies in the computations performed with separate 

JTIDS, GPS, INS and Relative Navigation (RelNav) units. That is, the same data is 

gathered independently by each of those subsystems. So, a fully integrated navigation 

system called Multifunctional Information and Distribution System (MIDS) having lower 

cost, weight, volume and power requirements than the mentioned subsystems will be 

considered as an alternative in the estimations performed in Chapter 4. The MIDS will 

integrate all the functions of aforesaid subsystems within a one-unit air-data computer. 

Moreover, it will also provide the optimum combination of the measurements from those 

multiple sensors. 

Jan Roskam gives a quick formula (Equation 3.7) in order to estimate the weight 

of the instrumentation, avionics and electronics of an aircraft in his book Airplane 

Design, Part V: Component Weight Estimation, 1999. The results are remarkably close to 

the real values of the several commercial airplanes: 
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Wiae = 0.575 x (Wempty)0.556 x (R)0.25                              Equation 3-7 

where Wiae is the weight of instrumentation, avionics and electronics, R is the maximum 

range, which is 5626 nmi for Boeing 767-400ER. Given values yield to an approximate 

weight of 4738 lb (2149 kg) for the previously mentioned subsystems. 

 

3.6.5 Life Cycle Cost (LCC) 

Life cycle cost has become one of the major concerns in preliminary aircraft 

design. Commercial and military aircraft LCC consist of different segments. The 

elements that make up aircraft LCC are shown in Figure 3-13. The sizes of the boxes also 

represent roughly the relative magnitude of the cost involved. 

Research, Development, Test and Evaluation (RDT&E) cost includes the costs 

associated with the airworthiness, mission capability, and compliance with Mil-Specs. 

RTD&E costs are actually nonrecurring irrespective of how many aircraft are produced. 

It is typically less than 10% of the overall LCC (Raymer, 1999). 



 

 3-53

Production
y airframe
y engine
y avionics

Ground
support eqpt.

& initial
spares Special

construction

O&M
-fuel/oil
-crew
-ground personnel
-maintenance
-indirect costs

Disposal
RDT&E

Flyaway cost

Military procurement cost

Program cost

LCC  

Figure 3-13: Elements of LCC (Raymer, 1999) 
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The flyaway cost covers the labor and material costs to produce the aircraft 

including airframe, engines and avionics. It is directly related to the number of aircraft 

manufactured. However, the cost of every new aircraft gets smaller because of the 

learning curve effect. For the military aircraft, flyaway cost is approximately half of the 

total LCC (Raymer, 1999). Actually, it is very difficult to distinguish the RTD&E and 

flyaway costs. So, they will be estimated under the same title in this thesis. 

Modified DAPCA IV Cost Model is used in order to estimate the RTD&E and 

flyaway costs. For convenience, the formulas in mks units, which are typically kg, meter, 

second, km/hr, are selected. It should be remembered that costs are in constant 1999 US 

dollars (Raymer, 1999). 

Following are the formulas used in LCC estimation. 

HE = 7.53 Wempty
0.777 V0.894 Q0.163                                       Equation 3-8 

HT = 10.5 Wempty
0.777 V0.696 Q0.263                                       Equation 3-9 

HM = 15.2 Wempty
0.82 V0.484 Q0.641                                        Equation 3-10 

HQ = 0.076 HM   if cargo A\C 
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HQ = 0.133 HM    otherwise                                                Equation 3-11 

CD = 48.7 Wempty
0.630 V1.3                                                   Equation 3-12 

CF = 1408 Wempty
0.325 V0.822 FTA1.21                                   Equation 3-13 

CM = 22.6 Wempty
0.921 V0.621 Q0.799                                       Equation 3-14 

Ceng = 2251 [9.66 Tmax + 243.25 Mmax  

+ 1.74 Tturbine inlet -2228]                                 Equation 3-15 

RTD&E + flyaway costs = HE RE + HT RT + HM RM + HQ RQ + CD 

 + CF + CM + Ceng Neng + Cavionics           Equation 3-16 

where 

HE = Engineering Hours 

HT = Tooling Hours 

HM = Manufacturing Hours 

HQ = Quality Control Hours 

CD = Development Support Cost 

CF = Flight Test Cost 

CM = Manufacturing Materials Cost 

Ceng = Engineering Production Cost 
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Cavionics = Avionics Cost 

V = Maximum Velocity (km\hr) 

Q = Lesser of production quantity or number to be produced in 5 years 

FTA = Number of flight test A\C 

Neng = Total production quantity times number of engines per A\C 

Tmax = Engine maximum thrust (kN) 

Mmax = Engine maximum Mach number 

Tturbine inlet = Turbine inlet temperature (K) 

It should be also noted that the hours estimated by DAPCA are based upon the 

design and fabrication of an aluminum aircraft. The hours estimated with this model are 

multiplied by the appropriate hourly rates, called wrap rates, in order to calculate the 

labor costs. Following wrap rates, which are adjusted to 2003 by assuming 5% compound 

interest rate, are used in those estimations (Raymer, 1999): 

RE = Engineering = $104.53 

RT = Tooling = $106.96 

RQ = Quality Control = $98.46 

RM = Manufacturing = $88.73 



 

 3-57

Unfortunately, DAPCA does not estimate avionics weight. However, avionics 

cost can be approximated as $8.5 – $15.8 per gram in 2003 dollars. So, an average of $12 

per gram is assumed as the unit avionics cost (Raymer, 1999). 

Analogously, there are not any formulas used to calculate the interior 

accommodations such as seats, lavatories, and similar items. Nevertheless, Roskam 

suggests that cost per aircraft be increased by approximately $3000 per passenger for jet 

transport (adjusted to 2003 dollars). Additionally, initial spares will add possibly 10 to 

15% to an aircraft’s purchase price (Raymer, 1999). 

Military procurement or acquisition cost includes the production cost and the 

ground support equipment cost such as simulators and test equipment. One of the latest 

trends in military aircraft manufacturing is called “cost sharing”, which means that the 

military officials invite the manufacturer to share some of the RDT&E costs expecting 

the manufacturers recovering them during the production. However, it is somewhat 

related to the future decision makers’ permission to the full cost recovery. 

Program cost includes the total cost to deploy the aircraft into the military 

inventory. Some aircraft require special ground facilities such that an aircraft having a 

wide wingspan requires building larger hangars that causes a special construction cost. 

O&M costs are typically equal to the development and production costs for the 

military aircraft. O&M costs cover fuel, oil, maintenance, and other indirect costs. The 

disposal cost for military aircraft can be ignored in LCC estimation since it is generally 
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assumed that they have no market value after lifetime has ended. Storage cost after 

disposing the aircraft is not a big deal (Raymer, 1999). 

We need to know the yearly fuel usage of a single A\C in order calculate the fuel 

and oil costs. To do this, a typical mission profile is selected and the total duration and 

fuel burned are used to determine the average fuel burned per hour. This is multiplied by 

the average yearly flight hours per A\C, which must be assumed based upon typical data 

for that class of aircraft. Table 3-12 gives some rough guidelines for some LCC 

parameters for military and civil transport aircraft. 

A/C Class FH/YR/AC Crew Ratio MMH/FH 

Military Transport 700-1400 1.5 if FH/YR < 1200 
2.5 if 1200 < FH/YR < 2400 
3.5 if 2400 <FH/YR  

20-40 

Civil Transport 2500-4500 - 5-15 

Table 3-12: LCC Parameter Approximation (Raymer, 1999) 
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Then, the total amount of fuel burned per year of operations is multiplied by the 

fuel price as obtained from the vendors. Although fuel prices can change always, they 

were around 80 cents per gallon as of December 2002 (http://www.eia.doe.gov, Dec 

2002). Raymer also suggests the same price. It should be also noted that the oil costs 

average less than half a percent of the fuel costs and can be ignored. 

Maintenance cost is calculated by multiplying the MMH/YR times maintenance 

labor cost. In the absence of better data, the maintenance labor cost can be approximated 

by the manufacturing wrap rate, which is $88.73. Materials, parts and supplies used for 

maintenance will approximately equal the labor costs for military aircraft (Raymer, 

1999). 

Consumer Price Index information provided by United States Bureau of Labor 

Statistics is used as an approximate economic escalation-factor. The average salary per 

crewmember can be assumed as typically $48000 per year or $4000 per month. 

 

3.6.6 Takeoff Roll Length Analysis 

Takeoff roll length of an aircraft is directly related to Wo and the altitude of the 

airport from sea level. Namely, required runway length increases as takeoff weight and 

altitude of the airport get higher. 
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As a NATO aircraft, MMA has to comply with the regulations of the NATO as 

well. Most importantly, length of a NATO runway must be longer than 8000 feet 

(Aftergood, 1999). It is certain that this limitation directly affects the amount of loadable 

fuel before takeoff. In some cases, the aircraft might not take off because it cannot be 

loaded with enough amount of fuel due to its huge gross weight. Alternatively, an 

immediate in-flight refueling just after the takeoff might be unavoidable. It is also 

apparent that this issue will affect the range of the aircraft and the timing of first air 

refueling after takeoff. 

Besides, aircraft need more runway length in order to take off from higher 

altitudes. Related tradeoffs have been introduced in Chapter 4 by using two runway 

length plots of 767-400ER, which are available in Appendix B. 

3.6.7 Assessment of Risk 

Every implementation contains some risk to an extent whose magnitude may vary 

with respect to many factors. Therefore, every decision along with investment should be 

made by considering risk. Risks that MMA integration involves have been examined 

under five categories. 

3.6.7.1 Technical Risk 

Integrating big numbers of electronic systems into one airframe could cause 

several technical problems. Most specifically, physical limitations of the aircraft may not 

be sufficient for required amount of equipment. If selected aircraft has any problems with 
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meeting those requirements, then another aircraft should be selected or the requirements 

set at the beginning should be modified. For example, if 767-400ER is not big enough to 

load all avionics that the OTN alternative needs, then a bigger aircraft must be considered 

or a suitable DTN alternative should be employed. 

There is a rapid increase in the required computer programming before an aircraft 

can enter the operation. This computerization makes almost everything easier for the 

crew. However, the aircraft could be so relied on those systems that you might have to 

reactivate the aircraft if they stop working. In short, it could be too difficult to recover 

any failure in a system that is highly dependent on computerization while that problem 

could be instantly solved without any severe damage in less sophisticated systems. 

3.6.7.2 Cost 

In many cases, implementation of a project or investment might be cancelled only 

because of the magnitude of its cost. Cost has been considered as a major concern 

although it used to be believed trivial for military applications. Therefore, the cost 

estimation accuracy has to be ensured in order to prevent further inconsistencies. 

Insufficient number of similar investments in a specific type of area could cause a risk or 

uncertainty for cost assessments. Besides, changes in external economic environment are 

always a threat to making right decisions. In other words, past information is often 

valuable while there is a risk in using it directly without adjustments for expected future 

conditions. Additionally, biased data and estimations should be recognized through 

analysis review procedures. 
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3.6.7.3 Implementation Schedule 

Opposite relationship between available budget and implementation schedule 

compels analysts and decision makers to make some necessary tradeoffs in terms of 

many aspects of the project. More specifically, development and test period for some 

kind of equipment might extend the delivery time of an aircraft. Therefore, decision 

makers sometimes should decide whether an aircraft should have a better performance or 

should be in use earlier. 

3.6.7.4 Simultaneous Systems Limitations 

The fact that different types of systems have to work simultaneously in order to 

run an integrated system is a huge problem standing in front of MMA integration. For 

example, the aircraft might not be performing two different types of missions at the same 

time when two different sensors do not cover the same area of interest. Analogously, 

altitude or air speed necessary for specific equipment might not work for another crucial 

sensor that is also needed for simultaneous operations. 

Another simultaneous system operability problem is certainly the interference 

between conflicting systems. It does not make any sense to construct a self-jamming 

aircraft in spite of the fact that it meets all of the physical requirements. Hence, it is very 

important to conduct fundamental consistency tests before letting the aircraft enter the 

operation. 
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3.6.7.5 Vulnerability 

Risk of loosing so many precious equipment and crew in case of a crashing 

should be taken into account before determining the type of MMA to be produced. It is 

obvious that OTN alternative is more risky than others in terms of information security 

issues. It should be also remembered that the same risk for DTN alternatives could not be 

ignored either. 

Additionally, the incident that the airframe is captured by the adversaries is also a 

risk that must be always kept in mind. However, this small probability is never a 

preventive reason to create such architecture. OTN is again more risky than DTN 

regarding to the risk of possession by the adversary. 

The issues that are considered important in the problem definition part have been 

examined so far. Now it is time to reveal which alternative, either OTN or DTN, meets 

the requirements with the help of the spreadsheets available in Appendix E and F. This 

study will be presented in Chapter 4. 
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4 RESULTS 
 

4.1 Assessments of the MMA Alternatives  

In this chapter, the payload characteristics of each type of MMA will be assessed 

based on the established methodology. The MMA will obviously consist of the common 

equipment, which are necessary to fly an aircraft, and mission equipment, which are 

necessary to perform the tasks of current airframes desired to be integrated on the MMA. 

For this reason, an Excel spreadsheet, which is available in Appendix E, has been 

prepared calculating the power and volume characteristics of selected equipment by using 

the formulas presented in Appendix D. The spreadsheet also estimates the required rest 

area, lavatory and galley measurements for indicated number of crew. 

Once you insert the weight of any particular avionics system in kilograms, the 

spreadsheet calculates the weight in pounds, needed volume in ft3, m3 and in3 and power 

in watts. A specified technology enhancement can be also applied to the ultimate 

estimations considering that technological improvements have increased the performance 

of the avionics equipment since the time the formulas were prepared. However, I have 

chosen that enhancement rate as 0% for this study because of the reasons stated in section 

3.6.4 and more. One could change the initially inserted weight, enhancement percentage 

and crew numbers by plugging different values into the assigned cells in the spreadsheet. 

In the quantity column of the spreadsheet, the known quantities of related 

equipment available in a single current airframe have been inserted. For example, the 
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reader would see 12 in the quantity cell for UHF radio which is the total number of 

associated radio available in the JSTARS. 

Constant c for each equipment, which was defined in section 3.2.2, has been 

selected by inspecting the number of regarding equipment currently mounted on the 

current fleet. For example; if you are dealing with integrating, let’s say, AWACS and 

JSTARS, c has been chosen as 1.5 that indicates that 12 x 1.5 = 18 UHF Radios are 

considered on the DTN11 architecture. Similarly, choosing c as zero means that related 

equipment is not needed on that particular MMA. It is very important to state that the 

common equipment available on each airframe is not multiplied by the constant c in the 

calculations. In other words, c for the common equipment is always 1. Common 

equipment in question are listed at the very beginning of estimations with the same title. 

Even though c could be chosen up to five in theory, it would never be so high for 

any type of integration. For example, c for VHF Radio of OTN alternative has been 

chosen as 3.5 instead of 5. Although OTN is an integration of 5 current fleet, required 

number of those radios will be less than the sum of radios needed individually. In other 

words, the main idea is 1 + 1 < 2. 

The equipment are categorized with respect to the site they are positioned. These 

sites are interior cabin, below front cabin, below rear cabin and on the outer surface of the 

fuselage. Hence, not only any violation of overall space limitations but also the ones 

regarding to any specific region of the aircraft have been checked. I should also express 
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that there is no need to set such a categorization for weight and power issues. Following 

is the list of arguments used as the baseline of the spreadsheet: 

• Each crew seat weighs 14.5 kg (32 lb) luckily needing no power to run. The room 

they occupy will be considered along with the operational consoles. Additionally, 

each crew is assumed to weigh 81.65 kg (180 lb) (Roskam, 1999). 

• The layout of the operational consoles mounted on the AWACS is chosen as the 

baseline. Each console will be placed back to back along the corridor leaving a 60 

cm walkway between the processors located adjacent to the other side of the 

cabin. Each console will host 6 operators with displays and computers. Every set 

of consoles will occupy 7.2679m² area and 13.88175m3 space including the 

clearance between the sets of consoles. The space between the top of a console 

and ceiling is also included in the total volume of a console since that part of the 

cabin couldn’t be allocated for any other equipment. The clearance between two 

sets of consoles is assumed as 60 cm. Analogously, each set of consoles are 

assumed to weigh 90 kg including the computers and displays. Figure 4.1 depicts 

the proposed console from a three dimensional view. 
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Figure 4-1 : Imaginary 3-D view of an Operational Console 

 

• A rest area is located under the cabin near to the flight deck having double decker 

bunk beds positioned longitudually. Total number of beds will be the one third of 

the crew onboard. Each bed can host 2 crew at a time and has dimensions of 1m x 

1.68m x 1.9m. At most 8 bunks can be located longitudinally on one side of the 

corridor because of the length limitation (the length of the lower cabin is 16.27m). 

A-44 cm walkway is allowed between the beds located on each side of the 

corridor. This would cause a 12.027 m3 lose in the available volume. That some 

processors and avionics may also be located at the same place is going to be a 

threat to the full satisfaction of the resting crew. Noise and radiation from the 

equipment could possibly cause fatigue and insomnia on the crew. Actually, this 
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is a bigger problem than expected since the rest area could not be big enough for a 

large number of mission crew needed for a 24 hour mission. A standard power 

need of 500Watts is considered for any size of the rest area. That power will be 

used in order to illumine the location. 

• Now that the OTN needs to be in-flight refuel capable, some extra equipment has 

to be installed at the top of the fuselage near to the nose. Following equation is 

utilized in order to calculate the weight of the in-flight refuel system (Nicolai, 

1988): 

Win-flight = 13.64 ( Wfuel x 10-2)0.392                          Equation 4-1 

where Wfuel is the maximum usable fuel in gallons. This formula gives the weight 

of mentioned subsystem as 117.18 lb (53.15 kg). 

• Weights of lavatories and galley are estimated by using Equation 3-3. Required 

space and power are calculated according to the size of the crew. Power need for 

the galley would be considerably high because of the devices such as microwave 

ovens and refrigerators etc. 

• A key assumption in the estimations is that the APU can be utilized as a continous 

source of power like other two engine driven generators (Raymer, 1999: 299). 

• It is certain that some of the equipment available on the airframes are not listed in 

this thesis. They might be either classified or not mentioned in the open sources. 
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For this reason, those equipment are considered as 5% of the total interior 

equipment and added to the estimations. 

• The weights gathered from the sources are for the uninstalled avionics. We should 

keep in mind that extra joining and covering material will be used in the 

installation. Following formula gives WTRON, which is the total installed avionics 

weight: 

WTRON = 2.117 (WAU)0.933                                       Equation 4-2 

where WAU is the uninstalled avionics equipment weight (Nicolai, 1988). 

• Generators are considered having 84% power efficiency. That is, 84% of the 

generated power is usable. 

• Crew numbers for each sensor combinations have been obtained from the member 

of Systems Engineering Design Team dealing with the operational environment 

issue. Mission of each person onboard has been also examined by her. 

• Range and endurance estimates are based upon a takeoff from a 8000 feet long 

runway. 

The imaginary antenna layout of OTN is drawn in Figure 4-2 and Figure 4-3. The 

antennas are placed at approximately the same places where they used to be on the 

related current airframe. 
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Figure 4-2: OTN Antenna Placement (Side view) 

 

 

Figure 4-3: OTN Antenna Placement (Front view) 
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AWACS radar is positioned at the top of the fuselage in front of the tail. JSTARS 

radar is mounted on the belly while RJ sensors are located on the cheek just below the 

ESM antennas on each side of the fuselage. 

Besides, COMPASS CALL jamming pod has been placed under the belly 

between the landing gears and tailcone. It is certain that there are dozens of other 

communication and navigation antennas as shown in Figure 3-5. 

The interference between those antenna arrays were inspected by the AFIT EM 

representative of the MMA study. She envisioned that both AWACS and JSTARS 

sensors will have harmonic and spurious interference with RJ antennas. Time 

management is recommended as an option for compatibility. This interpretation makes 

OTN alternative unattainable in terms of electromagnetic considerations. Although other 

alternatives have also some interferences between each other, this problem can be 

overcome with the help of available techniques and technologies. So, other MMA 

alternatives are considered as practical with reapect to electromagnetic considerations. 

Notional placement of the operational consoles, processors, computers, lavatory 

and galley inside the OTN is shown in Figure 4-4. It is seen that 57 consoles are located 

on the right side of the cabin while the processors reside on the opposite side. Lavatories 

are arbitrarily positioned in the front cabin entrance and at the end of the consoles. Galley 

equipment is at the end of the corridor just like the ones on commercial aircraft. 
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Figure 4-4: Notional Interior Layout of OTN 

 

Now let’s examine what we can mount onto Boeing 767-400ER without violating 

the weight, volume and power limitations. Table 4-1 summarizes the limitations of 

Boeing 767-400ER. 

 

 Weight (kg) Volume (m3) Power (Watts) 

Interior - 563.4 - 
Below front Cabin - 67.97 - 
Below Rear Cabin - 61.17 - 
Bulk Cargo - 9.77 - 
Engine - - 240,000 
APU - - 120,000/180,000 
TOTAL 52,473 702.31 *302,400/352,800 

* with 84% power efficiency 

Table 4-1: Summary of Limitations of 767-400ER 
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Alternatives listed in system modeling section of Chapter 3 have been examined. 

Required weight, volume and power values have been calculated by assigning suitable c 

values to the subsystems. The writer selected the c constants by inspecting the airframes 

that form the related alternative. A team of avionics experts could determine more 

suitable values representing the selected MMA for more accurate results. Table 4-2 

summarizes the results gathered for alternatives in question. The meanings of 

configuration symbols can be seen from Table 3-2. Moreover, the reader can find the 

detailed lists of equipment and assigned c constants for every alternative from Appendix 

E. 

The power requirements that are not violating the aircraft’s boundaries are written 

in boldface so that they can be easily identified. The power comparison has been made 

with respect to different type of generator considerations. The first column of the power 

title assumes that APU can’t be utilized as a major electric supply. 

The next two columns make the comparison when 120kVA and 180kVA APUs 

are respectively used as a major power source along with the engine driven generators. 

The last column named “Enhanced” refers to the configurations installed with the PW901 

APU and new MIDS instead of JTIDS knowing that the MIDS can be installed without 

waiting for any development period. 
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 No APU Use 120kVA APU 180kVA APU Enhanced 
180kVA APU 

Weight(kg) 52473 52473 52473 52473 

Volume(m3) 702.31 702.31 702.31 702.31 Limitations 

Power(Watts) 201600 302400 352800 352800 

Weight(kg) 42024 42024 42129 40905 

Volume(m3) 527.45 527.45 530.15 529.28 OTN 

Power(Watts) 789260 789260 789260 760245 

Weight(kg) 22557.07 22557.07 22661.85 21845.83 

Volume(m3) 363.08 363.08 365.78 365.21 DTN11 

Power(Watts) 373425.32 373425.32 373425.32 354082.48 

Weight(kg) 23923.15 23923.15 24027.93 23415.91 

Volume(m3) 357.24 357.24 359.94 359.51 DTN12 

Power(Watts) 459924.85 459924.85 459924.85 445417.71 

Weight(kg) 15916.18 15916.18 16020.96 15286.54 

Volume(m3) 345.78 345.78 348.48 347.96 DTN21 

Power(Watts) 235707.29 235707.29 235707.29 218298.73 

Weight(kg) 32384.06 32384.06 32488.84 31672.81 

Volume(m3) 409.03 409.03 411.73 411.16 DTN22 

Power(Watts) 608295.01 608295.01 608295.01 588952.17 

Weight(kg) 25603.15 25603.15 25707.93 24973.51 

Volume(m3) 401.74 401.74 404.44 403.92 DTN31 

Power(Watts) 397702.60 397702.60 397702.60 380294.05 

Weight(kg) 32714.12 32714.12 32818.90 31798.87 

Volume(m3) 391.08 391.08 393.78 393.06 DTN32 

Power(Watts) 623543.92 623543.92 623543.92 599365.36 

Weight(kg) 21128.84 21128.84 21233.62 20825.61 

Volume(m3) 355.44 355.44 358.14 357.86 DTN41 

Power(Watts) 426973.44 426973.44 426973.44 417302.02 

Weight(kg) 30269.63 30269.63 30374.41 29354.38 

Volume(m3) 401.46 401.46 404.16 403.44 DTN42 

Power(Watts) 478212.18 478212.18 478212.18 454033.63 

Table 4-2: Summary of Characteristics of MMA Alternatives 
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At this point, let me explain from where the numbers in Table 4-2 came. For 

example, let’s pick OTN alternative. Estimations for this alternative architecture begin on 

page E-2 of Appendix E. At the top of that page, limitations of Boeing 767-400ER are 

presented. After those limitations, common equipment available on every alternative are 

listed. Then comes mission equipment starting with the ones located in the cabin of the 

aircraft. 

Now, let me explain every cell in a single row, say, of HF Radio. There is 2 in the 

quantity cell representing the HF radio. This means that 2 HF radios are needed in a 

single existing airframe. 3.5 next to 2 indicates that OTN architecture will need 3.5 times 

as many HF radios as the current airframe. 35.17 is the unit uninsatalled weight in 

kilograms obtained from dependable sources that were stated in section 3.6.3. The 

number in the installed weight cell, which is 58.654, is calculated by using Equation 4-2. 

Then, volume and power values, which are 0.0469 m3 and 4850.15 Watts 

respectively,are estimated by using the most suitable formula introduced in Appendix D. 

Volume results are presented in three different units since some of those formulas give 

results in ft3 and others in in3. Total weight of the HF radios to be mounted on OTN is the 

product of 2, 3.5 and 58.654. Total volume and power have been estimated in the same 

way. 

This process has been utilized for every equipment listed on pages E-2, E-3, and 

E-4. The spreadsheet at the top of page E-5 estimates the necessary measurements of 

crew, seats, galley and lavatory for a total number of 61 crew members. It should be 
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noted that rest area is examined under the title of Below Front Cabin on page E-4. It is 

envisioned that 10 double-decker and 1 single beds will be necessary for selected number 

crew members. 

Table at the bottom of the same page summarizes the results of OTN alternative. 

The last row of that table shows the sum of everything mounted on OTN. You will see 

that 40905 kg, 529.28 m3 and 760245 Watts on Table 4-2 are the same as the ones in the 

last row of the table on page E-5. “OVERLOAD” at the bottom of total power is an alert 

indicating that 760245 Watts is greater than the maximum available power, which is 

352800 Watts, on Boeing 767-400ER. 

It should be also remembered that the estimations presented on pages from E-2 to 

E-5 are only for the “Enhanced 180kVA APU” configuration, which is going to be 

described below. Detailed estimations for other configurations are not included in 

Appendix E because of space concerns. 

Results on Table 4-2 reveal that Boeing 767-400ER has no problem with meeting 

the weight and volume requirements of any combinations of the MMA. Even the OTN, 

which will supposedly have the greatest amount of avionics onboard, can be carried by 

767-400ER. On the other hand, a serious electric power problem instantly draws 

attention. 

“No APU use” assumption won’t let any of the alternatives be feasible. That is, if 

the APUs work only as the ground starting or emergency power supply, then 767-400ER 

doesn’t have enough electric power in order to carry any kind of MMA. 
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Actually, the opposite approach wouldn’t change the situation a lot. More 

specifically, none of the configurations except for DTN21 can be handled with currently 

mounted generators along with the APU. Even the selection of PW901 wouldn’t do any 

help to meet the power requirements. 

However, we should pay attention to the result of DTN11 after the enhancements. 

It is obvious that making only one or two c value adjustments would directly draw it 

under the threshold. For example, if we decreased the number of crew only by 1, the 

power consumption would become 350403 kVA, which is evidently less than 352800. 

This is a significant result indeed since DTN11 refers to AWACS-JSTARS integration. 

However, such a decrease will not affect the other alternatives so much. Only the 

power consumption of DTN31 could be drawn to 352645 kVA by decreasing the number 

of crew by 7. This possibility should be examined by considering the overlapping 

specialitites of the crew onboard. Now, let’s take a look at the results when c is assumed 

to be 1 for every sort of integration. Results are introduced in Table 4-3. 

Configuration Enhanced Power (Watts) 

OTN 578254.5 

DTN11 313839.9 

DTN12 369812.1 

DTN21 175535.5 

DTN22 476972.7 

DTN31 341413 

DTN32 440126.4 

DTN41 380465.8 

DTN42 351353 

Table 4-3: Power Requirements for c=1  
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It is seen that alternatives DTN11, DTN21, DTN31 and DTN42 become feasible 

in terms of power requirements when c is applied as 1. However, this enhancement seems 

unattainable until proposed AJCN technology improvement is available. This requires 

that related MMA integrations have to be delayed until 2007. AJCN technology was 

discussed in Avionics Analysis section of Chapter 3. 

Actually, the proposed AJCN technology will provide better volume and power 

characteristics than the case c is equal to1. AJCN equipment will combine, say, five 

different payloads that have to be installed separately at present. This development is 

equivelant to the case that those five payloads have the c value of 0.2 each. I have not 

examined this case because it is not definite which of those existing payloads will be 

integrated into the proposed AJCN equipment. 

Assuming a higher power efficiency rate for the generators also needs to be 

considered. Figure 4-5 displays the power supply change with respect to the accompanied 

efficiency rates. If we had a 100% efficient PW901 APU installed, then we would have 

420000kVA power which lets the DTN11, DTN21, DTN31 and DTN41 become feasible. 
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Figure 4-5: Generator Power Efficiency Trade 
 
 

As a result, these estimations show that the current aging fleet can not be put 

together into one Boeing 767-400ER by using existing technology. Another significant 

result of those argument stated above is that different selections and assumptions, and 

detailed engineering could turn any slightly infeasible configuration into a practical 

alternative. For this reason, extending the time of delivery could be considered in order to 

employ future developments in SIGINT technology. 

Now that we have figured out the weights, we can get into another issue and look 

at the weight vs range and endurance trade. We need to know the maximum endurance 

and range so that one can utilize them in the operational consideration. Besides, takeoff 

roll length of an aircraft depends on the altitude of the airport it takes off. Table 4-4 
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shows the maximum takeoff gross weights that a Boeing 767-400ER aircraft can have at 

different altitudes in order to take off from a 8000 feet long runway. 

 

Airport Altitude Maximum Wo 
feet lb kg 

0 410000 178350 

2000 390000 169650 

4000 370000 160950 

6000 350000 152250 

8000 328000 142680 

Table 4-4: Airport Altitude vs. Maximum Wo for 8000ft Runway Length (Based on 

Appendix B) 

 
 

Table 4-5 displays loadable fuel before takeoff, time of first refueling after 

takeoff, endurance and range values of alternative MMAs given an airport at sea level 

with the runway length of 8000 feet. The ranges and the runway characteristics of the 

alternatives are gathered from Appendix B for given estimated payload weights. The 

similar tables for other base altitudes can be obtained from Appendix G. 
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 Range Endurance Total Number of 

 
Wpayload Wfuel Wo 

After Takeoff After First Refuel After Takeoff After First Refuel In-flight Refueling 

 kg kg kg nmi km nmi km hr hr times 

OTN 40905 40233 178350 2600 4815.2 4250 7871 5.66494118 9.26 2 

DTN11 21,846 59,292 178350 4,550 8426.6 5550 10279 9.91364706 12.09294118 2 

DTN12 23923.15 57,215 178350 4,300 7963.6 5420 10038 9.36894118 11.80941176 2 

DTN21 15286.54 65,851 178350 5200 9630.4 5750 10649 11.3298824 12.52823529 2 

DTN22 31672.81 49,465 178350 3500 6482 5300 9816 7.62588235 11.54823529 2 

DTN31 24973.51 56,164 178350 4200 7778.4 5470 10130 9.15105882 11.91764706 2 

DTN32 31798.87 49,339 178350 3400 6296.8 5150 9538 7.408 11.22117647 2 

DTN41 20825.61 60,312 178350 4650 8611.8 5700 10556 10.1315294 12.41882353 2 

DTN42 29354.38 51,784 178350 3750 6945 5350 9908 8.17058824 11.65647059 2 

 

Table 4-5: Weight vs. Range and Endurance Trade at Sea Level Altitude 
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One significant result that these range tables reveal that the OTN alternative can 

not take off from an airport located at an altitude of 8000 feet from sea level since it 

cannot be loaded with enough fuel for takeoff. This is because of its huge weight and the 

runway requirement at that altitude. At the same altitude, you should refuel DTN32 and 

DTN 22 alternatives at most 26 and 39 minutes later than takeoff respectively. 

Analogously, OTN has to be refueled at most 32 minutes later than takeoff at a 

6000 feet altitude. This worst case scenario reveals that although 767-400ER is 

confirmed to carry all kinds of MMA alternatives, weight issue could cause some 

problems with respect to takeoff consideration. 

Additionally, it is appearant that all of the DTN alternatives have an after-first-

refuel-endurance time around 12 hours. Although 3% reserve fuel is allowed in the 

estimations, the endurances of DTN11, DTN 21 and DTN41 alternatives seem critical 

since they are barely greater than 12 hours. This point should be considered while the 

operational issues are being inspected. If the refuelings are to be done earlier than 

suggested maximum endurance times, then these DTNs in question should be refueled 

three times for reliability of the mission. Besides, the amount of fuel to be loaded at the 

final refueling should be carefully selected so that the aircraft won’t weigh heavier than 

158,760 kg when it comes to landing. 
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4.2 Decision Making 

Several variations producing different results have been introduced so far. It is 

recommended that one should start the decision making phase after selecting one of the 

aforementioned combinations. Actually, it is obvious that the answer will change 

according to the considered configuration. It is possible that choosing different number of 

crew, APU and etc. would end in different ranking although none of the alternatives 

seems good enough to meet the requirements. Besides, there is a very important point that 

should be taken into account which is the fact that both of two subordinate DTNs have to 

be feasible in order that we can confidently say the DTN in question is feasible. For 

instance, the DTN1 can be considered practical only if both DTN11 and DTN12 are 

feasible at the same time. The case that DTN11 meeting all of the reqiurements doesn’t 

allow the DTN1 to be feasible unless DTN12 is also viable. 

There are certainly many ways to make a decision among several options. I will 

employ an approach in which previously defined issues are given importance according 

to the interaction matrix mentioned before. Each issue will be multiplied by related 

Measure of Effectiveness (MOE) factors. The addition of these products will yield the 

overall grade of that specific alternative. The one having the highest grade will be 

selected as the best choice. 

This methodology is actually the one that should be employed in case of all of the 

alternatives meeting all the requirements. Now that none of the alternatives are good 

enough, the process should be stopped here. Actually, my major intent is just to display 
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the way of decision-making employed in this thesis rather than dictating a result as the 

final decision. It should be remembered that the final decision is always up to the 

decision maker. 

Therefore, OTN and DTN1 have been compared assuming that other alternatives 

are proved to be infeasible. Detailed calculations can be viewed from Appendix F. 

Necessary MOEs have been generated by making comparisons between maximum 

loadable weight, volume and power, and the ones regarding alternatives have. 

The decision making has been performed assuming that: 

• 2 engine driven 120kVA generators and 1 PW901 APU provide power. 

• MIDS improvement has been utilized, 

• The power efficiency of the generators is 84%, 

• All of the MMAs are in-flight capable, 

• A total number of 55 Boeing 767-400ER will be purchased, 

• All MMA alternatives will take off from an air force base stationed at sea level 

and having a runway length of 8000feet. 

I want to introduce the estimated cost of each alternative before getting started the 

grading process. The methodology introduced in the LCC section of this thesis gives the 

cost of any MMA as shown in Table 4-6. The total corrected cost is calculated by 

multiplying the total cost by a technology factor, which is assumed to be 1.75. It should 

be also noted that the costs are Net Present Value of FY2003 in US$. Each portion 

forming the overall LCC can be viewed from Appendix F.  
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 TOTAL COST TOTAL COST CORRECTED 

OTN $60,992,711,733.54 $106,737,245,533.69 

DTN1 $49,856,406,614.06 $87,248,711,574.60 

DTN2 $50,065,132,159.77 $87,613,981,279.59 

DTN3 $53,923,024,705.57 $94,365,293,234.74 

DTN4 $51,522,238,705.38 $90,163,917,734.42 

Table 4-6: LCC of MMA Alternatives 

 

It is appearent that OTN has the highest LCC. Life cycle costs of all DTN 

alternatives vary from $87 billion and $94 billion. If cost were the only criteria of 

selection, then DTN1 having the lowest LCC should have been selected. 

Overall scores of both alternatives have been shown in Table 4-7 below. It is 

appearent that DTN1 having a 68% grade out of 100% is better than OTN. The huge 

difference between those scores indicates the robustness of the DTN1 over OTN. These 

scores are relative and only indicates the best of two considered alternatives. Having a 

positive score wouldn’t mean to be feasible. This scoring has been performed in order to 

show the methodology followed in this thesis. Details behind the resulting cells can be 

viewed from Appendix F.  

 PAYLOAD VSD 
Importance 0.2 0.5 0.3  
Alternative LCC A\C SPECIFICATIONS RISK OVERALL GRADE 
OTN 0.594736617 0.16227972 0.66 0.398087183
DTN1 0.712964919 0.556799298 0.87 0.681992633

Table 4-7: MMA Decision Table 
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It is seen that the A\C Specifications score of OTN has a big impact on its 

relatively low overall grade. Under these conditions, there is no doubt that the DTN1 is 

the better of two cited alternatives. However, it is possible that the results could change 

because of any changes in the importance factor. Therefore, a sensitivity analysis has 

been conducted in order to reveal the changes in case of assigning different importance 

values to the major issues. The results are introduced in Figure 4-6, 4-7 and 4-8. 

As seen from the introduced sensitivity analysis charts, OTN never becomes 

robust. Although the overall grade of OTN gets higher as the importance of LCC 

increases, it cannot exceed the grade of DTN1. When it comes to aircraft specifications 

issue, the situation gets even worse. That is, the difference between those scores becomes 

larger as the assigned importance factor increases. Similarly, the results do not change 

when the same adjustment has been implemented for risk. 

It is determined to stop the process at this point because it is revealed that 

integration seems unattainable by means of existing technology. 
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Figure 4-6 : LCC Sensitivity Analysis Chart
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Figure 4-7: Aircraft Specifications Sensitivity Analysis Chart
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RISK
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Figure 4-8: Risk Sensitivity Analysis Chart 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS  

In previous chapter, nine different configurations of MMA have been created with 

the help of the methodology introduced beforehand. Estimated characteristics of those 

alternatives have been compared to those of 767-400ER. As a result, it is envisioned that 

none of the alternatives is feasible using existing technology. 

Actually, the major problem seems to be the power requirements to run the 

equipment onboard. It is surprising that even combination of two existing fleet seems 

infeasible except for AWACS-ABCCC integration. However, as a result of a couple of 

improvements including a more powerful APU installation and MIDS selection, some of 

the alternatives have become practicable. But, any particular alternative couldn’t be 

determined to be the best of all since none of them meets the requirements completely. 

Because of this, it is recommended that the requirements set at the beginning should be 

updated or the project should be delayed until necessary SIGINT technology is available 

on the market. 

Moreover, it is seen that power consumption is not the only problem standing in 

front of the MMA concept. Although the weight characteristics of the alternatives are all 

below the limitations, it is envisioned that OTN and maybe DTN22 and DTN32 might 

meet with some severe problems in terms of takeoff. However, it is believed that the 
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producer of the aircraft could recover this problem by either increasing the maximum 

engine thrust or installing a more powerful couple of engines. 

That OTN alternative is not feasible in terms of both payload and electromagnetic 

considerations is the most significant conclusion achieved by this study. It is important 

because OTN was the alternative that the sponsor desired. 

Finally, it should be remembered that estimations in this thesis have been 

performed by ignoring possible electromagnetic interferences between the sensors 

installed on the MMA alternatives inspected. 

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

This thesis represents the first payload design study of integrating the current 

C4ISR fleets into one or more MMA architecture. It is recommended that further studies 

be shaped according to the feedback that will be gotten from the decision makers. It is the 

reader’s belief that further research performed by the process introduced within this text 

would give results that are more satisfactory if real input data could be used in 

accordance with the relevant section of the AFRL. 

It is also recommended that further researchers should create and examine more 

DTN configurations than the ones generated in this study in order to figure out a pair of 

feasible DTN architecture. 
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Besides, layout of the equipment and antennas couldn’t be examined in detail 

because of time limitations. It is suggested that layout studies should be performed by 

means of design software, which is generally called CAD. 

It is also believed that establishing a design team from relevant specialties such as 

avionics and mechanical engineering under the command of a systems engineer could 

provide valuable results. In this way, the overall results and interactions could be 

introduced within one thesis study. 
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APPENDIX A: System Interaction Matrix  

 
X / / Min.LCC / / X / X X X / / / / / / / /
X / / X X X / / X X X X / X / X X X X X X X X
X / X X X / / X / X / X / / X X
Mission Integration & / X / X X X / / / X X / X X X X X X X X
Compatibility C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 A1 A2 A3 A4 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11
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/ / / X X System Compability (C9) / / / / X / X X X X / / / /
/ X / X X X / X X / / X / / / /

X Technology Availibility (C7) X / X X X / X / / X X
X / X Logistics Supportibility (C6) / / X / / X X

/ X X Operations Environment (C5) X X X X X X X X X X X X X
/ ? X / / X / X X / / X X

X Safety (C3) / / / X X
X Gov't Regulations & Policies (C2) X / / /

/ / / X / X X / / / /
A1 A2 A3 A4 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

X X X System Architec. (A4) / X / X X X
X / X / X X X X / / X X

X : HIGH INTERACTION X Mission Requirements (A2) / X / X X X X X X X X
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/ X / X / X / Ground C2 (N10
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APPENDIX B:  

WEIGHT vs. RANGE and RUNWAY LENGTH PLOTS OF 767-400ER 

 

NOTES: 
* CF6-80C2B8F ENGINES 
* CRUISE MACH = 0.80 
* STANDARD DAY 
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APPENDIX B:  

WEIGHT vs. RANGE and RUNWAY LENGTH PLOTS OF 767-400ER 

 

NOTES: 
* PW4062 ENGINES 
* CRUISE MACH = 0.80 
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APPENDIX B:  

WEIGHT vs. RANGE and RUNWAY LENGTH PLOTS OF 767-400ER 

 

NOTES: 
* CF6-80C2B8F ENGINES 
* STANDARD DAY, DRY RUNWAY SURFACE 
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APPENDIX B:  

WEIGHT vs. RANGE and RUNWAY LENGTH PLOTS OF 767-400ER 

 

NOTES: 
* PW4062 ENGINES 
* STANDARD DAY, DRY RUNWAY SURFACE 
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APPENDIX C:  

767-400ER CABIN AREA AND VOLUME ESTIMATION BASED ON 

HISTORICAL DATA 
•  

 
 
Bivariate Fit of volume By multiplication 
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Linear Fit 
volume = 315.38885 + 0.2757509 multiplication 
 
Summary of Fit 
RSquare 0.929568
RSquare Adj 0.859137
Root Mean Square Error 22.88458
Mean of Response 487.3667
Observations (or Sum Wgts) 3
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 6911.9428 6911.94 13.1982
Error 1 523.7039 523.70 Prob > F
C. Total 2 7435.6467 0.1710
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Polynomial Fit Degree=2 
volume = 280.97088 + 0.3827033 multiplication - 0.0010655 (multiplication-623.671)^2 
Summary of Fit 
RSquare 1
RSquare Adj .
Root Mean Square Error .
Mean of Response 487.3667
Observations (or Sum Wgts) 3
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 2 7435.6467 3717.82 .
Error 0 0.0000 . Prob > F
C. Total 2 7435.6467 .
 
 
 
 
Bivariate Fit of volume By floor area 
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Linear Fit 
volume = 299.93465 + 0.9098642 floor area 
 
Summary of Fit 
RSquare 0.939542
RSquare Adj 0.879084
Root Mean Square Error 21.20249
Mean of Response 487.3667



 

 C-3

Observations (or Sum Wgts) 3
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 6986.1009 6986.10 15.5404
Error 1 449.5458 449.55 Prob > F
C. Total 2 7435.6467 0.1582
 
Polynomial Fit Degree=2 
volume = 268.47465 + 1.1966078 floor area - 0.0098151 (floor area-206)^2 
 
 
Summary of Fit 
RSquare 1
RSquare Adj .
Root Mean Square Error .
Mean of Response 487.3667
Observations (or Sum Wgts) 3
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 2 7435.6467 3717.82 .
Error 0 0.0000 . Prob > F
C. Total 2 7435.6467 .
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APPENDIX D:  

FORMULAS FOR AVIONICS VOLUME AND POWER ESTIMATION 

Following are the formulas used in estimating volume and power consumption 

values of the avionics equipment mounted on the MMA alternatives. The formulas are 

obtained from Fundamentals of Aircraft Design, Leland M Nicolai, 1988. The most 

suitable formulas have been chosen for the systems not included in the formulas. Some 

adjustments have been implemented to the formulas when the achieved results were 

extremely different from what they were believed to be. 

Radar Systems: 

 Weight = 0.431 (Power)0.777 

 Weight = 38.21 (Volume)0.873 

 for the radar weight(less antenna) in pounds, power required in watts and volume 

required (less antenna) in cubic feet. 

Doppler Navigation Systems: 

 Weight = 0.408 (Power)0.868 

 Weight = 29.67 (Volume)0.662 

 for the Doppler system weight in pounds, power required in watts and volume 

required in cubic feet. 
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Inertial Navigation Systems: 

 Weight = 0.465 (Power)0.848 

 Weight = 51.85 (Volume)0.738 

 for the Inertial Navigation Systems weight in pounds, power required in watts and 

volume required in cubic feet. 

TACAN Systems: 

Weight = 13.61 + 0.104(Power) 

  Weight = 0.311 (Volume)0.704 

 for the TACAN Systems weight in pounds, power required in watts and volume 

required in cubic inches. 

Receiver Systems: 

 Weight = 6.3 + 0.17(Power) 

 Weight = 44.5 (Volume)0.737 

 for the Receiver Systems weight in pounds, power required in watts and volume 

required in cubic feet. 

Transmitter Systems: 

 Weight = 0.73 (Power)0.610 

 Weight = 6.4 + 40.2 (Volume) 

 for the Transmitter System weight in pounds, power required in watts and volume 

required in cubic feet. 
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Identification Systems: 

 Weight = 0.607 (Power)0.724 

 Weight = 0.069 (Volume)0.868 

 for the Identification Systems weight in pounds, power required in watts and 

volume required in cubic inches. 

Computers: 

 Weight = 2.246 (Power)0.630 

 Weight = 0.123 (Volume)0.817 

 for the Computer weight required in pounds, power required in watts and volume 

required in cubic inches. 

Electronic Counter Measures (ECM): 

 Weight = 0.429 (Power)0.771 

 Weight = 0.055 (Volume)0.912 

for the ECM Systems weight required in pounds, power required in watts and 

volume required in cubic inches. 
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

SUMMARY 
In this Appendix, estimations for "Enhanced 180kVA APU" configuration that 

was described in section 4.1 are presented. The overall results including other APU 

selections have been summarized in the table below. 

 No APU 
Use 

120kVA 
APU 

180kVA 
APU 

Enhanced 
180kVA APU 

Weight(kg) 52473 52473 52473 52473 
Volume(m3) 702.31 702.31 702.31 702.31 Limitations 
Power(Watts) 201600 302400 352800 352800 
Weight(kg) 42024 42024 42129 40905 

Volume(m3) 527.45 527.45 530.15 529.28 OTN 
Power(Watts) 789260 789260 789260 760245 
Weight(kg) 22557.07 22557.07 22661.85 21845.83 

Volume(m3) 363.08 363.08 365.78 365.21 DTN11 
Power(Watts) 373425.32 373425.32 373425.32 354082.48 
Weight(kg) 23923.15 23923.15 24027.93 23415.91 

Volume(m3) 357.24 357.24 359.94 359.51 DTN12 
Power(Watts) 459924.85 459924.85 459924.85 445417.71 
Weight(kg) 15916.18 15916.18 16020.96 15286.54 

Volume(m3) 345.78 345.78 348.48 347.96 DTN21 
Power(Watts) 235707.29 235707.29 235707.29 218298.73 
Weight(kg) 32384.06 32384.06 32488.84 31672.81 

Volume(m3) 409.03 409.03 411.73 411.16 DTN22 
Power(Watts) 608295.01 608295.01 608295.01 588952.17 
Weight(kg) 25603.15 25603.15 25707.93 24973.51 

Volume(m3) 401.74 401.74 404.44 403.92 DTN31 
Power(Watts) 397702.60 397702.60 397702.60 380294.05 
Weight(kg) 32714.12 32714.12 32818.90 31798.87 

Volume(m3) 391.08 391.08 393.78 393.06 DTN32 
Power(Watts) 623543.92 623543.92 623543.92 599365.36 
Weight(kg) 21128.84 21128.84 21233.62 20825.61 

Volume(m3) 355.44 355.44 358.14 357.86 DTN41 
Power(Watts) 426973.44 426973.44 426973.44 417302.02 
Weight(kg) 30269.63 30269.63 30374.41 29354.38 

Volume(m3) 401.46 401.46 404.16 403.44 DTN42 
Power(Watts) 478212.18 478212.18 478212.18 454033.63 
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

OTN 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800
Quantity Constant Power

Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 3.8 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151 266.94
UHF Radio 12 2.5 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 3.5 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
HF Radio 2 3.5 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088 418.828
Radar Warning&Homing 1 3 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398 4926.92
ECM Equipment 1 1 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874 258564
Countermeas. Dispensing Set 1 1 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 1 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781 873.525
Terrain Following Radar 1 0 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424 6259.66

Max. Power (Watts)

In the Flight Deck

Uninstalled Weight Installed Weight

Uninstalled Weight Installed Weight Adjusted Volume

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

OTN 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
MIDS 2 3 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123 991.815
Crypto Equipment 57 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008 5.36698
TADIL SYSTEM 1 2.5 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118 350
Operational Consoles 57 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136 176.171
SATCOM 2 3.8 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078 532.855
Signal Processors 3 3.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Air Data Terminals 15 3.8 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 3.8 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 1 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045 35.8
Radar Synchronizer 3 3.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
STALO 1 1 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039 64.9789
AR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
DDP 2 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
RDC 1 1 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085 57.8293
Interface Adaptor 2 3.8 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008 6.22754
Digital Processor 57 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Supermini Computers 5 2 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 2 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Printers 5 3.5 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203 138.887
SINCGARS 1 1 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 1 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156 750
JTT with a constant source 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 4 1 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
Track Management Processor 2 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Beamformer Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Search Database Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
ACIDS 1 1 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013 135

Installed WeightUninstalled Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

OTN 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 1 100 220.462 155.49659 342.811 563.727 974120 15.963 1000
TADIL DATA TERMINAL 2 3 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 28
TADIL SDLT 1 3 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 15
Common Data Retrivial Sys 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Comms.  Emitter Location Sys. 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Background Search sys. 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
In the Rotodome
PCE 1 1 100 182.5365 136.48661 300.901 1.65509 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 1 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 1 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
BLINK JAMMER 1 1 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045 4000
Below Front Cabin
Rest Area 61 326.58653 720 676.347 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

Uninstalled Weight Installed Weight

1210 kg
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

OTN 
Insert Number of crew onboard
OTHER Crew Adjusted Volume Power

People kg lb ft3 in3 m3 Watts
Crew 61 4980.44 10980 0 0 0 0
Seats 61 14.515 32 0
Galley 61 257.385 567.4365 1412.587 2440949.6 40 6000
Lavatory 61 119.255 262.9125 1112.412 1922247.8 31.5 2100

TOTAL 391.155 862.349 2524.999 4363197.4 71.5 8100
10.5

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 36611 80712.7 15379.9 435.5103 658573.34
ROTODOME EQUIPMENT 391.54 863.189 434.5981 12.30645 15093.482
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 1304.8 2876.54 1000.465 28.33 45280.447
CLASSIFIED EQUIPMENT 1830.5 4035.64 768.995 21.77551 32928.667
GRAND TOTAL 40905 90179.8 18691.6 529.2872 760245.85

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Weight

Considered with consoles

BUNK BEDS

Total Weight Total Volume
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN11 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant Power
Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.3073 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.0891 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.6151 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.6003 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 1.8 13.16 29.0128 23.441565 51.6797 0.5344 923.383 0.0151 266.94
UHF Radio 12 1.5 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 1.8 3.1 6.834322 6.0836093 13.412 0.045 77.7503 0.0013 118.144
HF Radio 2 1.8 35.17 77.53649 58.654276 129.31 1.6551 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.3119 539.023 0.0088 418.828
Radar Warning&Homing 1 1.5 92.53284 203.9997 144.63551 318.866 1.4064 2430.19 0.0398 4926.92
ECM Equipment 1 0 2300 5070.626 2898.7645 6390.67 172.12 297430 4.874 258564
Countermeas. Dispensing Set 1 0 53.1 117.0653 86.145788 189.919 2.7529 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 0 42.65 94.02704 70.215876 154.799 2.7595 4768.43 0.0781 873.525

In the Flight Deck

Max. Power (Watts)

Adjusted VolumeUninstalled Weight Installed Weight

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN11 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Terrain Following Radar 1 1 112.95 249.0118 174.20624 384.059 8.5598 14791.4 0.2424 6259.66
MIDS 2 2 23.18 51.10309 39.753163 87.6406 0.434 750.034 0.0123 991.815
Crypto Equipment 32 1 1.42 3.13056 2.9363369 6.47351 0.028 48.4528 0.0008 5.36698
TADIL SYSTEM 1 1.5 20 44.0924 34.640316 76.3687 0.4152 717.396 0.0118 350
Operational Consoles 32 1 15 33.0693 26.485855 58.3912 81.705 141186 2.3136 176.171
SATCOM 2 1.8 8.3 18.29835 15.248275 33.6167 0.2769 478.426 0.0078 532.855
Signal Processors 3 1.8 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
Air Data Terminals 15 1.8 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 1.8 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 1 3.98 8.774388 7.6808939 16.9335 0.16 276.55 0.0045 35.8
Radar Synchronizer 3 1.8 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
STALO 1 1 4.79 10.56013 9.1300655 20.1283 0.1374 237.382 0.0039 64.9789
AR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 1 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
DDP 2 1 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
RDC 1 1 7.07 15.58666 13.128925 28.9443 0.3001 518.641 0.0085 57.8293
Interface Adaptor 2 1.8 1.57 3.461253 3.2247439 7.10933 0.028 48.4528 0.0008 6.22754
Digital Processor 32 1 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
Supermini Computers 5 1 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 1 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
Printers 5 1.8 8 17.63696 14.733428 32.4816 0.7151 1235.73 0.0203 138.887
SINCGARS 1 1 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 1 20 44.0924 34.640316 76.3687 0.5497 949.965 0.0156 750
JTT with a constant source 1 1 53.4 117.7267 86.599792 190.92 1.1171 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 3 0 3.1 6.834322 6.0836093 13.412 0.045 77.7503 0.0013 118.144
Track Management Processor 2 0 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
Beamformer Processor 1 0 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323
Search Database Processor 1 0 109 240.3036 168.51547 371.513 8.6681 14978.4 0.2455 3323

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN11 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
ACIDS 1 0 11.34 25.00039 20.402098 44.9789 0.4605 795.685 0.013 135
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 1 100 220.462 155.49659 342.811 563.73 974120 15.963 1000
TADIL DATA TERMINAL 2 1.5 4.6 10.14125 8.7917214 19.3824 0.0124 21.4823 0.0004 28
TADIL SDLT 1 1.5 4.6 10.14125 8.7917214 19.3824 0.0124 21.4823 0.0004 15
In the Rotodome
PCE 1 1 100 182.5365 136.48661 300.901 1.6551 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 1 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 1 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
Below Front Cabin
Rest Area 36 326.58653 720 676.35 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.35 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN11 

Insert Number of crew onboard
OTHER Crew Adjusted Volume Power

People kg lb ft3 in3 m3 Watts
Crew 36 2939.28 6480 0 0 0 0
Seats 36 14.515 32 0
Galley 36 142.585 314.3451 706.2934 1220474.8 20 3000
Lavatory 36 59.1386 130.3782 635.6641 1098427.3 18 1200

TOTAL 216.238 476.7232 1341.957 2318902.1 38 4200
6

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 18465 40709.1 9879.679 279.7613 286989.18
ROTODOME EQUIPMENT 375.09 826.935 415.5282 11.76645 11093.482
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 1314.8 2898.59 1000.465 28.33 33280.447
CLASSIFIED EQUIPMENT 923.27 2035.45 493.9839 13.98807 14349.459
GRAND TOTAL 21846 48161.7 12897.3 365.2108 354082.48

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Total VolumeTotal Weight

BUNK BEDS

Weight

Considered with consoles
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN12 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant Power
Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 2.8 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151 266.94
UHF Radio 12 1.6 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 2.8 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
HF Radio 2 2.8 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088 418.828
Radar Warning&Homing 1 2 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398 4926.92
ECM Equipment 1 1 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874 258564
Countermeas. Dispensing Set 1 1 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 1 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781 873.525

In the Flight Deck

Uninstalled Weight Installed Weight

Uninstalled Weight Installed Weight Adjusted Volume

Max. Power (Watts)

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN12 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Terrain Following Radar 1 0 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424 6259.66
MIDS 2 1.5 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123 991.815
Crypto Equipment 37 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008 5.36698
TADIL SYSTEM 1 1 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118 350
Operational Consoles 37 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136 176.171
SATCOM 2 2.5 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078 532.855
Signal Processors 3 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Air Data Terminals 15 2.5 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 2.5 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 0 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045 35.8
Radar Synchronizer 3 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
STALO 1 0 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039 64.9789
AR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
DDP 2 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
RDC 1 0 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085 57.8293
Interface Adaptor 2 2.5 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008 6.22754
Digital Processor 37 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Supermini Computers 5 0 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Printers 5 2.5 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203 138.887
SINCGARS 1 0 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 0 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156 750
JTT with a constant source 1 0 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 4 1 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
Track Management Processor 2 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Beamformer Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Search Database Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323

Uninstalled Weight Installed Weight

 



 

 E-12

APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN12 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
ACIDS 1 0 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013 135
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 0 100 220.462 155.49659 342.811 563.727 974120 15.963 1000
TADIL DATA TERMINAL 2 1 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 28
TADIL SDLT 1 1 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 15
Common Data Retrivial Sys 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Comms.  Emitter Location Sys. 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Background Search sys. 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
In the Rotodome
PCE 1 0 100 182.5365 136.48661 300.901 1.65509 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 0 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 0 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
BLINK JAMMER 1 1 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045 4000
Below Front Cabin
Rest Area 41 326.58653 720 676.347 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN12 
Insert Number of crew onboard

OTHER Crew Adjusted Volume Power
People kg lb ft3 in3 m3 Watts

Crew 41 3347.51 7380 0 0 0 0
Seats 41 14.515 32 0
Galley 41 164.942 363.6351 1059.44 1830712.2 30 4500
Lavatory 41 70.3058 154.9976 794.5801 1373034.2 22.5 1500

TOTAL 249.763 550.6327 1854.02 3203746.4 52.5 6000
7

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 21455 47299.3 10909.53 308.9234 412426.48
ROTODOME EQUIPMENT 16.445 36.2546 38.13984 1.08 4000
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 104.78 231 95.34961 2.7 0
CLASSIFIED EQUIPMENT 1072.7 2364.96 545.4764 15.44617 20621.324
GRAND TOTAL 23416 51623.2 12696.14 359.5145 445417.71

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Weight

Considered with consoles

BUNK BEDS

Total Weight Total Volume
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN21 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant Power
Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 1.8 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151 266.94
UHF Radio 12 2 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 2.2 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
HF Radio 2 2.2 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088 418.828
Radar Warning&Homing 1 1 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398 4926.92
ECM Equipment 1 0 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874 258564
Countermeas. Dispensing Set 1 0 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 0 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781 873.525

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77

Uninstalled Weight Installed Weight Adjusted Volume

Max. Power (Watts)

In the Flight Deck

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN21 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Terrain Following Radar 1 0 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424 6259.66
MIDS 2 1.8 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123 991.815
Crypto Equipment 28 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008 5.36698
TADIL SYSTEM 1 1.2 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118 350
Operational Consoles 28 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136 176.171
SATCOM 2 1.8 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078 532.855
Signal Processors 3 1.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Air Data Terminals 15 1.8 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 1.8 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 1 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045 35.8
Radar Synchronizer 3 1.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
STALO 1 1 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039 64.9789
AR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
DDP 2 1.2 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
RDC 1 1 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085 57.8293
Interface Adaptor 2 1.8 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008 6.22754
Digital Processor 28 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Supermini Computers 5 0 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Printers 5 1.8 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203 138.887
SINCGARS 1 0 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 0 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156 750
JTT with a constant source 1 0 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 4 0 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
Track Management Processor 2 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Beamformer Processor 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Search Database Processor 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN21 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
ACIDS 1 1 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013 135
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 1 100 220.462 155.49659 342.811 563.727 974120 15.963 1000
TADIL DATA TERMINAL 2 1 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 28
TADIL SDLT 1 1 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 15
Common Data Retrivial Sys 1 0 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Comms.  Emitter Location Sys. 1 0 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Background Search sys. 1 0 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
In the Rotodome
PCE 1 1 100 182.5365 136.48661 300.901 1.65509 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 1 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 0 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
BLINK JAMMER 1 0 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045 4000
Below Front Cabin
Rest Area 32 326.58653 720 676.347 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN21 

Insert Number of crew onboard
OTHER Crew Adjusted Volume Power

People kg lb ft3 in3 m3 Watts
Crew 32 2612.69 5760 0 0 0 0
Seats 32 14.515 32 0
Galley 32 124.963 275.4963 706.2934 1220474.8 20 3000
Lavatory 32 50.5636 111.4736 635.6641 1098427.3 18 1200

TOTAL 190.042 418.9699 1341.957 2318902.1 38 4200
5.5

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 12266 27041.4 9268.655 262.4591 172909.42
ROTODOME EQUIPMENT 325.31 717.186 447.9629 12.68489 7093.4824
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 1314.8 2898.59 1000.465 28.33 21280.447
CLASSIFIED EQUIPMENT 613.29 1352.07 463.4328 13.12295 8645.4711
GRAND TOTAL 15287 33701 12288.16 347.9619 218298.73

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

Weight

Considered with consoles

BUNK BEDS

Total Weight Total Volume
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN22 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant
Common Equipment piece c kg lb kg lb ft3 in3 m3
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855
Mission Equipment Quantity Constant Adjusted Volume
In the Cabin piece c kg lb kg lb ft3 in3 m3
Intercom System 2 3 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151
UHF Radio 12 1.6 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011
VHF Radio 3 2.8 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013
HF Radio 2 3 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088
Radar Warning&Homing 1 2 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398
ECM Equipment 1 1 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874
Countermeas. Dispensing Set 1 1 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078
Countermeas. Receiving Set 1 1 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77

Uninstalled Weight Installed Weight Adjusted Volume

Max. Power (Watts)

In the Flight Deck

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN22 
Mission Equipment Quantity Constant Adjusted Volume
In the Cabin piece c kg lb kg lb ft3 in3 m3
Terrain Following Radar 1 2 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424
MIDS 2 2 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123
Crypto Equipment 48 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008
TADIL SYSTEM 1 2 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118
Operational Consoles 48 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136
SATCOM 2 2.5 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078
Signal Processors 3 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
Air Data Terminals 15 2.5 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5
Air Data Computer 2 2.5 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142
RCMP 1 0 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045
Radar Synchronizer 3 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
STALO 1 0 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039
AR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452
MP 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
DDP 2 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
RDC 1 0 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085
Interface Adaptor 2 2.5 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008
Digital Processor 48 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
Supermini Computers 5 1 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142
High-speed Processors 15 1.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
Printers 5 2.5 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203
SINCGARS 1 1 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015
SCDL Terminal 2 1 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156
JTT with a constant source 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316
Integrated Terminal Group Radios 4 1 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013
Track Management Processor 2 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
Beamformer Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455
Search Database Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455

Uninstalled Weight Installed Weight
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APPENDIX E:  

VOLUME-POWER ESTIMATION SPREADSHEET 
DTN22 

Mission Equipment Quantity Constant Adjusted Volume
In the Cabin piece c kg lb kg lb ft3 in3 m3
ACIDS 1 0 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15
ESM SYSTEM 1 0 100 220.462 155.49659 342.811 563.727 974120 15.963
TADIL DATA TERMINAL 2 2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004
TADIL SDLT 1 2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004
Common Data Retrivial Sys 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078
Comms.  Emitter Location Sys. 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078
Background Search sys. 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316
In the Rotodome
PCE 1 0 100 182.5365 136.48661 300.901 1.65509 2860 0.0469
AA(transmitter, IFF\SSR) 1 0 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297
MR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452
SLR Antenna 1 1 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452
BLINK JAMMER 1 1 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045
Below Front Cabin
Rest Area 52 326.58653 720 676.347 1168727 19.152
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally
Transmit Electronics 1 NA NA NA NA NA NA 25.63
RC 1 NA NA NA NA NA NA m3
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN22 

Insert Number of crew onboard
OTHER Crew Adjusted Volume Power

People kg lb ft3 in3 m3 Watts
Crew 52 4245.62 9360 0 0 0 0
Seats 52 14.515 32 0
Galley 52 215.247 474.5387 1059.44 1830712.2 30 4500
Lavatory 52 96.4436 212.6214 953.4961 1647641 27 1800

TOTAL 326.206 719.16 2012.936 3478353.2 57 6300
9

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 29271 64531.2 12281.54 347.7744 545316.44
ROTODOME EQUIPMENT 66.226 146.003 421.2334 11.928 8000
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 104.78 231 95.34961 2.7 0
CLASSIFIED EQUIPMENT 1463.5 3226.56 614.0768 17.38872 27265.822
GRAND TOTAL 31673 69826.5 14519.84 411.1561 588952.17

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Weight

Considered with consoles

BUNK BEDS

Total Weight Total Volume
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN31 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant Power
Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 1.8 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151 266.94
UHF Radio 12 1.8 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 1.8 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
HF Radio 2 1.8 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088 418.828
Radar Warning&Homing 1 1 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398 4926.92
ECM Equipment 1 0 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874 258564
Countermeas. Dispensing Set 1 0 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 0 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781 873.525

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77

Uninstalled Weight Installed Weight Adjusted Volume

Max. Power (Watts)

In the Flight Deck

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN31 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Terrain Following Radar 1 1 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424 6259.66
MIDS 2 1.8 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123 991.815
Crypto Equipment 40 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008 5.36698
TADIL SYSTEM 1 1.8 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118 350
Operational Consoles 40 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136 176.171
SATCOM 2 1.8 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078 532.855
Signal Processors 3 1.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Air Data Terminals 15 1.8 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 1.8 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 1 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045 35.8
Radar Synchronizer 3 1.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
STALO 1 1 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039 64.9789
AR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
DDP 2 1.2 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
RDC 1 1 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085 57.8293
Interface Adaptor 2 1.8 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008 6.22754
Digital Processor 40 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Supermini Computers 5 0 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Printers 5 1.8 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203 138.887
SINCGARS 1 0 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 0 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156 750
JTT with a constant source 1 0 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 4 1 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
Track Management Processor 2 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Beamformer Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Search Database Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN31 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
ACIDS 1 0 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013 135
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 1 100 220.462 155.49659 342.811 563.727 974120 15.963 1000
TADIL DATA TERMINAL 2 1.8 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 28
TADIL SDLT 1 1.8 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 15
Common Data Retrivial Sys 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Comms.  Emitter Location Sys. 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Background Search sys. 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
In the Rotodome
PCE 1 1 100 182.5365 136.48661 300.901 1.65509 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 1 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 0 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
BLINK JAMMER 1 0 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045 4000
Below Front Cabin
Rest Area 44 326.58653 720 676.347 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN31 

Insert Number of crew onboard
OTHER Crew Adjusted Volume Power

People kg lb ft3 in3 m3 Watts
Crew 44 3592.45 7920 0 0 0 0
Seats 44 14.515 32 0
Galley 44 178.518 393.5635 1059.44 1830712.2 30 4500
Lavatory 44 77.2291 170.2608 794.5801 1373034.2 22.5 1500

TOTAL 270.262 595.8243 1854.02 3203746.4 52.5 6000
7.5

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 21491 47380.6 11150.83 315.7562 327190.67
ROTODOME EQUIPMENT 325.31 717.186 447.9629 12.68489 7093.4824
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 1314.8 2898.59 1000.465 28.33 21280.447
CLASSIFIED EQUIPMENT 1074.6 2369.03 557.5413 15.78781 16359.534
GRAND TOTAL 24974 55057.1 14264.44 403.9239 380294.05

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Weight

Considered with consoles

BUNK BEDS

Total Weight Total Volume
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN32 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant Power
Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 3 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151 266.94
UHF Radio 12 2.8 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 2.8 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
HF Radio 2 3 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088 418.828
Radar Warning&Homing 1 2 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398 4926.92
ECM Equipment 1 1 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874 258564
Countermeas. Dispensing Set 1 1 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 1 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781 873.525

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77

Uninstalled Weight Installed Weight Adjusted Volume

Max. Power (Watts)

In the Flight Deck

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN32 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Terrain Following Radar 1 1 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424 6259.66
MIDS 2 2.5 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123 991.815
Crypto Equipment 42 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008 5.36698
TADIL SYSTEM 1 2 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118 350
Operational Consoles 42 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136 176.171
SATCOM 2 2.5 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078 532.855
Signal Processors 3 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Air Data Terminals 15 2.5 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 2.5 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 0 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045 35.8
Radar Synchronizer 3 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
STALO 1 0 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039 64.9789
AR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
DDP 2 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
RDC 1 0 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085 57.8293
Interface Adaptor 2 2.5 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008 6.22754
Digital Processor 42 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Supermini Computers 5 1 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Printers 5 2.5 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203 138.887
SINCGARS 1 1 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 1 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156 750
JTT with a constant source 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 4 0 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
Track Management Processor 2 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Beamformer Processor 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Search Database Processor 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN32 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
ACIDS 1 0 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013 135
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 0 100 220.462 155.49659 342.811 563.727 974120 15.963 1000
TADIL DATA TERMINAL 2 2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 28
TADIL SDLT 1 2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 15
Common Data Retrivial Sys 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Comms.  Emitter Location Sys. 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Background Search sys. 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
In the Rotodome
PCE 1 0 100 182.5365 136.48661 300.901 1.65509 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 0 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 1 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
BLINK JAMMER 1 1 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045 4000
Below Front Cabin
Rest Area 46 326.58653 720 676.347 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN32 

Insert Number of crew onboard
OTHER Crew Adjusted Volume Power

People kg lb ft3 in3 m3 Watts
Crew 46 3755.75 8280 0 0 0 0
Seats 46 14.515 32 0
Galley 46 187.63 413.6534 1059.44 1830712.2 30 4500
Lavatory 46 81.9326 180.6302 794.5801 1373034.2 22.5 1500

TOTAL 284.078 626.2836 1854.02 3203746.4 52.5 6000
8

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 29391 64795.9 11672.85 330.5382 555233.76
ROTODOME EQUIPMENT 66.226 146.003 421.2334 11.928 8000
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 104.78 231 95.34961 2.7 0
CLASSIFIED EQUIPMENT 1469.5 3239.8 583.6424 16.52691 27761.688
GRAND TOTAL 31799 70104.4 13880.72 393.0581 599365.36

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Weight

Considered with consoles

BUNK BEDS

Total Weight Total Volume
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN41 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant Power
Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 1.8 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151 266.94
UHF Radio 12 1.5 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 1.8 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
HF Radio 2 1.8 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088 418.828
Radar Warning&Homing 1 1 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398 4926.92
ECM Equipment 1 1 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874 258564
Countermeas. Dispensing Set 1 1 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 1 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781 873.525

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77

Uninstalled Weight Installed Weight Adjusted Volume

Max. Power (Watts)

In the Flight Deck

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN41 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Terrain Following Radar 1 1 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424 6259.66
MIDS 2 1 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123 991.815
Crypto Equipment 28 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008 5.36698
TADIL SYSTEM 1 1.2 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118 350
Operational Consoles 28 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136 176.171
SATCOM 2 1.8 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078 532.855
Signal Processors 3 1.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Air Data Terminals 15 1.8 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 1.8 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 1 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045 35.8
Radar Synchronizer 3 1.8 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
STALO 1 1 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039 64.9789
AR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
DDP 2 1.2 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
RDC 1 1 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085 57.8293
Interface Adaptor 2 1.8 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008 6.22754
Digital Processor 28 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Supermini Computers 5 1 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Printers 5 1.8 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203 138.887
SINCGARS 1 0 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 0 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156 750
JTT with a constant source 1 0 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 4 0 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
Track Management Processor 2 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Beamformer Processor 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Search Database Processor 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN41 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
ACIDS 1 0 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013 135
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 1 100 220.462 155.49659 342.811 563.727 974120 15.963 1000
TADIL DATA TERMINAL 2 1.2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 28
TADIL SDLT 1 1.2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 15
Common Data Retrivial Sys 1 0 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Comms.  Emitter Location Sys. 1 0 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Background Search sys. 1 0 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
In the Rotodome
PCE 1 1 100 182.5365 136.48661 300.901 1.65509 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 1 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 1 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 0 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
BLINK JAMMER 1 1 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045 4000
Below Front Cabin
Rest Area 32 326.58653 720 676.347 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN41 

Insert Number of crew onboard
OTHER Crew Adjusted Volume Power

People kg lb ft3 in3 m3 Watts
Crew 32 2612.69 5760 0 0 0 0
Seats 32 14.515 32 0
Galley 32 124.963 275.4963 706.2934 1220474.8 20 3000
Lavatory 32 50.5636 111.4736 635.6641 1098427.3 18 1200

TOTAL 190.042 418.9699 1341.957 2318902.1 38 4200
5.5

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 17525 38637 9565.182 270.8558 347198.27
ROTODOME EQUIPMENT 341.76 753.441 486.1027 13.76489 11093.482
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 1314.8 2898.59 1000.465 28.33 33280.447
CLASSIFIED EQUIPMENT 876.27 1931.85 478.2591 13.54279 17359.914
GRAND TOTAL 20826 45912.6 12637.65 357.8584 417302.02

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Weight

Considered with consoles

BUNK BEDS

Total Weight Total Volume
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN42 
Interior TOTAL

Max. Volume(m3) 563.4 702.31
Generators assumed 84% efficient

Engine APU TOTAL
Max. Payload Weight (kg) 52473 240000 120000 302400

240000 180000 352800

Quantity Constant Power
Common Equipment piece c kg lb kg lb ft3 in3 m3 Watts
ILS-VOR 1 1 5.5 12.12541 10.38674 22.8988 0.30734 531.08 0.0087 25
Gyro Compass 1 1 3.81 8.399602 7.3743519 16.2576 0.21 362.88 0.0059 58.5744
Autopilot System 1 1 76 167.5511 120.37047 265.371 1.1336 1958.86 0.0321 1523.95
Radar Altimeter 1 1 2.1 4.629702 4.230108 9.32578 0.08913 154.019 0.0025 52.2895
Range only Radar 1 1 11.34 25.00039 20.402098 44.9789 0.61513 1062.95 0.0174 396.143
Flight Deck Instrument 1 1 115 253.5313 177.1544 390.558 3597.44
Flight Data Recorder 2 1 7.07 15.58666 13.128925 28.9443 0.60028 1037.28 0.017 57.8293
Weather Radar 1 1 45.5 100.3102 74.583969 164.429 3.0194 5217.53 0.0855 2100.86
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Intercom System 2 2.8 13.16 29.0128 23.441565 51.6797 0.53436 923.383 0.0151 266.94
UHF Radio 12 2.5 8.8 19.40066 16.103608 35.5023 0.3882 670.801 0.011 582.728
VHF Radio 3 3 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
HF Radio 2 3 35.17 77.53649 58.654276 129.31 1.65509 2860 0.0469 4850.15
IFF 1 1 2.962 6.530084 5.8305525 12.8542 0.55 950.4 0.0156 67.8096
TACAN 1 1 20.86525 45.99995 36.036539 79.4469 1.65 2851.2 0.0467 633.047
Embedded GPS\INS 1 1 20.4 44.97425 35.286274 77.7928 0.31193 539.023 0.0088 418.828
Radar Warning&Homing 1 2 92.53284 203.9997 144.63551 318.866 1.40636 2430.19 0.0398 4926.92
ECM Equipment 1 0 2300 5070.626 2898.7645 6390.67 172.124 297430 4.874 258564
Countermeas. Dispensing Set 1 0 53.1 117.0653 86.145788 189.919 2.75287 4756.96 0.078 9107.89
Countermeas. Receiving Set 1 0 42.65 94.02704 70.215876 154.799 2.75951 4768.43 0.0781 873.525

Uninstalled Weight Installed Weight

Uninstalled Weight Installed Weight Adjusted Volume

In the Flight Deck

Max. Power (Watts)

Below Front Cabin Below Rear Cabin Bulk Cargo
67.97 61.17 9.77

 



 

 E-35

APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN42 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
Terrain Following Radar 1 2 112.95 249.0118 174.20624 384.059 8.55985 14791.4 0.2424 6259.66
MIDS 2 2.5 23.18 51.10309 39.753163 87.6406 0.43405 750.034 0.0123 991.815
Crypto Equipment 52 1 1.42 3.13056 2.9363369 6.47351 0.02804 48.4528 0.0008 5.36698
TADIL SYSTEM 1 2.2 20 44.0924 34.640316 76.3687 0.41516 717.396 0.0118 350
Operational Consoles 52 1 15 33.0693 26.485855 58.3912 81.7049 141186 2.3136 176.171
SATCOM 2 2.5 8.3 18.29835 15.248275 33.6167 0.27687 478.426 0.0078 532.855
Signal Processors 3 2.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Air Data Terminals 15 2 22.5 49.60395 38.664033 85.2395 52.972 91535.6 1.5 642.312
Air Data Computer 2 2.5 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
RCMP 1 0 3.98 8.774388 7.6808939 16.9335 0.16004 276.55 0.0045 35.8
Radar Synchronizer 3 2 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
STALO 1 0 4.79 10.56013 9.1300655 20.1283 0.13737 237.382 0.0039 64.9789
AR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
MP 1 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
DDP 2 0 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
RDC 1 0 7.07 15.58666 13.128925 28.9443 0.30014 518.641 0.0085 57.8293
Interface Adaptor 2 2 1.57 3.461253 3.2247439 7.10933 0.02804 48.4528 0.0008 6.22754
Digital Processor 52 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Supermini Computers 5 1 7.48 16.49056 13.837927 30.5074 0.5 864 0.0142 125.729
High-speed Processors 15 1.5 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Printers 5 2 8 17.63696 14.733428 32.4816 0.71512 1235.73 0.0203 138.887
SINCGARS 1 1 3.1 6.834322 6.0836093 13.412 0.0517 89.3388 0.0015 10
SCDL Terminal 2 1 20 44.0924 34.640316 76.3687 0.54975 949.965 0.0156 750
JTT with a constant source 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
Integrated Terminal Group Radios 4 1 3.1 6.834322 6.0836093 13.412 0.04499 77.7503 0.0013 118.144
Track Management Processor 2 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Beamformer Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323
Search Database Processor 1 1 109 240.3036 168.51547 371.513 8.66808 14978.4 0.2455 3323

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN42 
Mission Equipment Quantity Constant Adjusted Volume Power
In the Cabin piece c kg lb kg lb ft3 in3 m3 Watts
ACIDS 1 1 11.34 25.00039 20.402098 44.9789 0.46047 795.685 0.013 135
In-flight Refuel System 1 1 53.15 117.1756 86.221467 190.086 0 0 0 1147.06
JTIDS Terminal 2 0 155 341.7161 234.04552 515.981 5.2972 9153.56 0.15 5597.26
ESM SYSTEM 1 0 100 220.462 155.49659 342.811 563.727 974120 15.963 1000
TADIL DATA TERMINAL 2 2.2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 28
TADIL SDLT 1 2.2 4.6 10.14125 8.7917214 19.3824 0.01243 21.4823 0.0004 15
Common Data Retrivial Sys 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Comms.  Emitter Location Sys. 1 1 2.52 5.555642 5.0144992 11.0551 0.27531 475.734 0.0078 18
Background Search sys. 1 1 53.4 117.7267 86.599792 190.92 1.11706 1930.27 0.0316 1155.06
In the Rotodome
PCE 1 0 100 182.5365 136.48661 300.901 1.65509 2860 0.0469 4850.15
AA(transmitter, IFF\SSR) 1 0 18.762 41.36308 33.632033 74.1459 1.0478 1810.59 0.0297 267.81
MR 1 0 99.79 219.999 155.1919 342.139 15.961 27582.7 0.452 1975.52
SLR Antenna 1 1 29.5 65.03629 49.781136 109.748 15.961 27582.7 0.452 4000
BLINK JAMMER 1 0 9 19.84158 16.44482 36.2546 1.58916 2746.07 0.045 4000
Below Front Cabin
Rest Area 56 326.58653 720 676.347 1168727 19.152 500
Below Rear Cabin
HVPS with 1 NA NA NA Totally NA NA NA Totally NA
Transmit Electronics 1 NA NA NA NA NA NA 25.63 NA
RC 1 NA NA NA NA NA NA m3 NA
APU 1 1 47.62725 105 104.77995 231 95.3496 164764 2.7 0
*AWACS Equip. plus APU occupy 25.63 m3 space in the below rear cabin(according to Boeing 707 data)
*AWACS Equip. in the dome weighs 1210 kg which is 1/3 of total AWACS equipment
Each Terminal 1m*1m*1.5m

1210 kg

Uninstalled Weight Installed Weight
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APPENDIX E:  
VOLUME-POWER ESTIMATION SPREADSHEET 

DTN42 
Insert Number of crew onboard

OTHER Crew Adjusted Volume Power
People kg lb ft3 in3 m3 Watts

Crew 56 4572.21 10080 0 0 0 0
Seats 56 14.515 32 0
Galley 56 233.875 515.6066 1059.44 1830712.2 30 4500
Lavatory 56 106.434 234.6457 953.4961 1647641 27 1800

TOTAL 354.824 782.2522 2012.936 3478353.2 57 6300
9.5

Note: 0% technology improvement  is applied to the estimated volume and power values 
Each Crew weighs 180 lb,Each Seat weighs 32 lb

Total Power
kg lb ft3 m3 Watts

COMMON EQUIPMENT 440.76 971.708 6.575165 0.186188 7869.9099
TOTAL INTERIOR EQUIPMENT 27079 59697.9 12058.39 341.4555 420632.11
ROTODOME EQUIPMENT 49.781 109.748 383.0935 10.848 4000
BELOW FRONT CABIN EQUIPMENT 326.59 719.999 1101.068 31.17878 500
BELOW REAR CABIN EQUIPMENT 104.78 231 95.34961 2.7 0
CLASSIFIED EQUIPMENT 1353.9 2984.9 602.9194 17.07277 21031.606
GRAND TOTAL 29354 64715.3 14247.39 403.4412 454033.63

CLASSIFIED EQUIPMENT CONSIDERED AS THE 5% OF THE INTERIOR EQUIPMENT

OVERLOAD

Considered with consoles

BUNK BEDS

Total Weight Total Volume

Weight
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APPENDIX F:  
LCC ESTIMATION SPREADSHEET 

 

DECISION TABLE 

 PAYLOAD DESIGN VSD 
Weight 2 5 3 10
Importance 0.2 0.5 0.3 1
     
     
Alternative LCC A\C SPECS RISK Overall Grade 
OTN 0.594736617 0.16227972 0.66 0.398087183
DTN1 0.712964919 0.556799298 0.87 0.681992633
     
     

  
DTN1 IS THE BEST 
ALTERNATIVE  
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APPENDIX F:  
LCC ESTIMATION SPREADSHEET 

Weight 5 5 5 5 20
Importance 0.25 0.25 0.25 0.25 1

LCC
Alternative RDT&E and Flyaway CO&M COST GROUND EQPT SPEC. CONST. Overall Grade
OTN 0.51 0.373091934 0.5000 1 0.594736617
DTN1 0.63 0.73 0.5000 1 0.712964919

Alternative Airframe Engine Avionics Grade
OTN 0.61 0.55 0.36 0.51
DTN11 0.39 0.45 0.64 0.49
DTN12 0.71 0.74 0.83 0.76

Alternative Fuel/Oil Crew Ground Pers. Maintenance Indirect Costs Training  Grade
OTN 0.389 0.386 0.386 0.347 0.347 0.386 0.37
DTN11 0.611 0.614 0.614 0.653 0.653 0.614 0.63
DTN12 0.823 0.812 0.812 0.842 0.842 0.812 0.82

COST ESTIMATION
Service Life(Years) 25
Note: All costs are base on the Net Present Value (NPV)
Interest Rate= 5.00%

1lb= 6.7Gal
Technology factor assumed 1.75 for corrected total cost
TOTAL COST

OTN $60,992,711,733.54
DTN1 $49,856,406,614.06 $87,248,711,574.60

RDT&E and FLYAWAY COSTS

O&M COST

TOTAL COST CORRECTED
$106,737,245,533.69
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APPENDIX F:  
LCC ESTIMATION SPREADSHEET 

OTN
RDT&E and Flyaway Wempty(kg) Q(piece) V(km\hr) FTA Wavionics(kg)
$43,212,862,651.07 97212 55 850 1 40905

Airframe Cost He Hm Hq Ht Ncrew(persons)
$13,510,366,148.76 45168218.28 63853562.47 4852870.748 24730824.99 61

Engine Cost Re Rm Rq Rt MMH/YR
$2,705,196,502.31 104.53 88.73 98.46 106.96 66000

Avionics Cost Cd Cf Cm Ceng Cavionics
$26,997,300,000.00 434547332.1 15051991.77 1437200596 7439968.927 26997300000

Tinlet(K) Tmax(kN) Mmax Neng MMH/FH
1500 282.4621 0.8 110 30

Wfuel (kg/HR) Wfuel (lb/HR) Vfuel (Gal) FH\YR\AC Crew Ratio
6113.583333 13478.14323 2011.663168 2200 2.5

O&M Cost(PV) Ground Equipment&
$16,707,349,082.47 Initial Spares Cost(PV)

O&M Cost(Annual) $1,072,500,000.00 15% of purchase price
$1,185,427,472.36

Fuel/Oil
$194,728,994.67 Special Constr. Cost

Crew None
$118,944,836.96

Ground Pers.
$223,021,569.30

Maintenance
$306,752,285.71

Indirect(material etc.)
$306,752,285.71

Training
$35,227,500.00  
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APPENDIX F:  
LCC ESTIMATION SPREADSHEET 

DTN11
RDT&E and Flyaway Wempty(kg) Q(piece) V(km\hr) FTA Wavionics(kg)
$20,344,475,161.17 97212 30 850 1 21846

Airframe Cost He Hm Hq Ht Ncrew(persons)
$10,698,419,910.13 40918961.75 43295959.87 3290492.95 21086578 36

Engine Cost Re Rm Rq Rt MMH/YR
$1,781,495,251.04 104.53 88.73 98.46 106.96 35000

Avionics Cost Cd Cf Cm Ceng Cavionics
$7,864,560,000.00 434547332.1 15051991.77 885497791.5 7439968.927 7864560000

Tinlet(K) Tmax(kN) Mmax Neng MMH/FH
1500 282.4621 0.8 60 25

Wfuel (kg/HR) Wfuel (lb/HR) Vfuel (Gal) FH\YR\AC Crew Ratio
6113.583333 13478.14323 2011.663168 1400 2.5

O&M Cost(PV) Ground Equipment&
$5,165,056,739.68 Initial Spares Cost(PV)

O&M Cost(Annual) $585,000,000.00 15% of purchase price
$366,473,467.77

Fuel/Oil
$67,591,882.45 Special Constr. Cost

Crew None
$38,289,247.07

Ground Pers.
$71,792,338.26

Maintenance
$88,730,000.00

Indirect(material etc.)
$88,730,000.00

Training
$11,340,000.00  
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APPENDIX F:  
LCC ESTIMATION SPREADSHEET 

DTN12
RDT&E and Flyaway Wempty(kg) Q(piece) V(km\hr) FTA Wavionics(kg)
$18,772,092,581.44 97212 25 850 1 23923

Airframe Cost He Hm Hq Ht Ncrew(persons)
$10,008,136,281.65 39720806.93 38520524.66 2927559.874 20099323.44 41

Engine Cost Re Rm Rq Rt MMH/YR
$1,587,056,299.79 104.53 88.73 98.46 106.96 35000

Avionics Cost Cd Cf Cm Ceng Cavionics
$7,176,900,000.00 434547332.1 15051991.77 765458529.6 7439968.927 7176900000

Tinlet(K) Tmax(kN) Mmax Neng MMH/FH
1500 282.4621 0.8 50 25

Wfuel (kg/HR) Wfuel (lb/HR) Vfuel (Gal) FH\YR\AC Crew Ratio
6113.583333 13478.14323 2011.663168 1400 2.5

O&M Cost(PV) Ground Equipment&
$4,502,282,131.76 Initial Spares Cost(PV)

O&M Cost(Annual) $487,500,000.00 15% of purchase price
$319,447,980.70

Fuel/Oil
$56,326,568.70 Special Constr. Cost

Crew None
$36,339,331.71

Ground Pers.
$68,136,246.96

Maintenance
$73,941,666.67

Indirect(material etc.)
$73,941,666.67

Training
$10,762,500.00  
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APPENDIX G:  

WEIGHT vs. ENDURANCE TRADE 
Takeoff from Sea Level

Total Number of
After Takeoff After First Refuel In-flight Refueling

kg kg kg nmi km nmi km hr hr times
OTN 40905 40233 178350 2600 4815.2 4250 7871 5.66494118 9.26 2
DTN11 21,846 59,292 178350 4,550 8426.6 5550 10279 9.91364706 12.09294118 2
DTN12 23923.15 57,215 178350 4,300 7963.6 5420 10038 9.36894118 11.80941176 2
DTN21 15286.54 65,851 178350 5200 9630.4 5750 10649 11.3298824 12.52823529 2
DTN22 31672.81 49,465 178350 3500 6482 5300 9816 7.62588235 11.54823529 2
DTN31 24973.51 56,164 178350 4200 7778.4 5470 10130 9.15105882 11.91764706 2
DTN32 31798.87 49,339 178350 3400 6296.8 5150 9538 7.408 11.22117647 2
DTN41 20825.61 60,312 178350 4650 8611.8 5700 10556 10.1315294 12.41882353 2
DTN42 29354.38 51,784 178350 3750 6945 5350 9908 8.17058824 11.65647059 2

Takeoff from 2000 feet

Total Number of
After Takeoff After First Refuel In-flight Refueling

kg kg kg nmi km nmi km hr hr times
OTN 40905 31533 169650 1800 3333.6 4250 7871 3.92188235 9.26 3
DTN11 21,846 50,592 169650 3,800 7037.6 5,550 10278.6 8.27952941 12.09247059 2
DTN12 23923.15 48,515 169650 3550 6574.6 5,420 10037.8 7.73482353 11.80922353 2
DTN21 15286.54 57,151 169650 4,500 8334 5750 10649 9.80470588 12.52823529 2
DTN22 31672.81 40,765 169650 2700 5000.4 5300 9815.6 5.88282353 11.54776471 2
DTN31 24973.51 47,464 169650 3,450 6389.4 5470 10130.4 7.51694118 11.91816471 2
DTN32 31798.87 40,639 169650 2600 4815.2 5150 9537.8 5.66494118 11.22094118 2
DTN41 20825.61 51,612 169650 3,900 7222.8 5700 10556.4 8.49741176 12.41929412 2
DTN42 29354.38 43,084 169650 3050 5648.6 5350 9908.2 6.64541176 11.65670588 2

Range
After Takeoff

Endurance

Endurance

Range
After Takeoff After First Refuel

After First Refuel

Wpayload Wfuel Wo

WoWpayload Wfuel
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APPENDIX G:  

WEIGHT vs. ENDURANCE TRADE 
Takeoff from 4000 feet

Total Number of
After Takeoff After First Refuel In-flight Refueling

kg kg kg nmi km nmi km hr hr times
OTN 40905 22833 160950 950 1759.4 4250 7871 2.06988235 9.26 3
DTN11 21,846 41,892 160950 2,900 5370.8 5550 10279 6.31858824 12.09294118 2
DTN12 23923.15 39,815 160950 2,750 5093 5420 10038 5.99176471 11.80941176 2
DTN21 15286.54 48,451 160950 3750 6945 5750 10649 8.17058824 12.52823529 2
DTN22 31672.81 32,065 160950 1900 3518.8 5300 9816 4.13976471 11.54823529 2
DTN31 24973.51 38,764 160950 2600 4815.2 5470 10130 5.66494118 11.91764706 2
DTN32 31798.87 31,939 160950 1800 3333.6 5150 9538 3.92188235 11.22117647 2
DTN41 20825.61 42,912 160950 3000 5556 5700 10556 6.53647059 12.41882353 2
DTN42 29354.38 34,384 160950 2200 4074.4 5350 9908 4.79341176 11.65647059 2

Takeoff from 6000 feet

Total Number of
After Takeoff After First Refuel In-flight Refueling

kg kg kg nmi km nmi km hr hr times
OTN 40905 14133 152250 250 463 4250 7871 0.54470588 9.26 3
DTN11 21,846 33,192 152250 2,200 4074.4 5550 10279 4.79341176 12.09294118 2
DTN12 23923.15 31,115 152250 2,000 3704 5420 10038 4.35764706 11.80941176 2
DTN21 15286.54 39,751 152250 3100 5741.2 5750 10649 6.75435294 12.52823529 2
DTN22 31672.81 23,365 152250 1200 2222.4 5300 9816 2.61458824 11.54823529 2
DTN31 24973.51 30,064 152250 1900 3518.8 5470 10130 4.13976471 11.91764706 2
DTN32 31798.87 23,239 152250 1150 2129.8 5150 9538 2.50564706 11.22117647 2
DTN41 20825.61 34,212 152250 2300 4259.6 5700 10556 5.01129412 12.41882353 2
DTN42 29354.38 25,684 152250 1500 2778 5350 9908 3.26823529 11.65647059 2

Range
After Takeoff After First Refuel

Endurance

After Takeoff After First Refuel
Range EnduranceWoWpayload Wfuel

Wpayload Wfuel Wo
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APPENDIX G:  

WEIGHT vs. ENDURANCE TRADE 

Takeoff from 8000 feet

Total Number of
After Takeoff After First Refuel In-flight Refueling

kg kg kg nmi km nmi km hr hr times
OTN 40905 4563 142680 0 0 4250 7871 0 9.26 3
DTN11 21,846 23,622 142680 1,200 2222.4 5550 10279 2.61458824 12.09294118 2
DTN12 23923.15 21,545 142680 1,000 1852 5420 10038 2.17882353 11.80941176 2
DTN21 15286.54 30,181 142680 2150 3981.8 5750 10649 4.68447059 12.52823529 2
DTN22 31672.81 13,795 142680 300 555.6 5300 9816 0.65364706 11.54823529 3
DTN31 24973.51 20,494 142680 850 1574.2 5470 10130 1.852 11.91764706 2
DTN32 31798.87 13,669 142680 200 370.4 5150 9538 0.43576471 11.22117647 3
DTN41 20825.61 24,642 142680 1400 2592.8 5700 10556 3.05035294 12.41882353 2
DTN42 29354.38 16,114 142680 650 1203.8 5350 9908 1.41623529 11.65647059 2

Range Endurance
After Takeoff After First RefuelWpayload Wfuel Wo
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APPENDIX H:  

LIST OF ASSUMPTIONS 

Assumptions made in this thesis can be grouped under four titles: 

1. Weight and Volume Assumptions: 

• Three-class arrangement with 243 passenger seats is assumed in order to figure 

out the furnishing to be discarded from the commercial version of 767-400ER. 

• Klav = 1.11,  Kbuf = 5.68,  Pc = 6.7 and maximum flight altitude = 50000 ft. 

• Flight crew, cabin crew, and passenger seats are considered as 55 lb, 15 lb and 32 

lb respectively. 

• Installed APU weight is 2.22 times greater than uninstalled APU. 

• AWACS equipment plus APU occupy 25.63-m3 space in the lower rear cabin. 

• AWACS equipment in the dome weighs 1210 kg that is 1/3 of total AWACS 

equipment. 

• Each crewmember weighs 180lb. 

• 1 bed for each 3 crew will be located inside the front cargo cabin. Dimension of a 

bunk bed is 1m x 1.68m x 1.9m. There is a 44 cm walkway between two sets of 

beds. Power needed for illuminating the rest are is 500W. 

• Classified equipment is 5% of the total interior equipment. 

• Dimension of an operational console is 2.53m x 2.32m x 1.32m. 

• There is a 60 cm walkway between the corridors and processors. 
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2. Airframe Assumptions: 

• Boeing 767-400ER is the aircraft selected for the MMA platform. 

• General Electric CF6-80C2B8F maximum model engine is mounted on the 

aircraft. 

• APU is assumed as a main power supply along with other two engine driven 

generators. 

• Power efficiency of an electric generator is 84%. 

• The engine by-pass ratio is 5.05. 

• JP-8 fuel is used for propulsion. 

• MMA’s cruise and loitering speeds are both 850 km/hr. 

• MMA’s Lift to Drag ratio is 17. 

• Cabin length of the 767-400ER is 43.80m. 

• All of the MMAs are in-flight capable. 

3. Cost Assumptions: 

• Wrap rates for engineering, tooling, quality control and manufacturing are 

$104.53, $106.96, $98.46, and $88.73 respectively. 

• Cost estimations are in NPV of FY 2003 with an interest rate of 5% per year. 

• Avionics cost is $12 per gram. 

• Initial Spares will add 15% to an aircraft’s purchase price. 

• Purchase price of one Boeing 767-400ER is $130,000,000. 

• Interior accommodation cost is $3000 per passenger. 
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• Some LCC parameter approximations are listed in Table 3-12. 

• The average salary per crewmember is $48000 per year or $4000 per month. 

• Maintenance wrap rate is equal to manufacturing wrap rate. 

• Technology factor applied to Total Corrected Cost is 1.75. 

• A total number of 55 MMA will be produced. 

4. Others: 

• Total power consumption value of any MMA architecture has been estimated 

assuming that all of the equipment is running concurrently. 

• The generated VSD consists of LCC, A/C Specifications and Risk. Their 

importance factors are 0.2, 0.50 and 0.30 respectively. 

• All MMA alternatives will take off from an air force base stationed at sea level 

and having a runway length of 8000 feet. 

• Electromagnetic interference between the installed avionics is ignored. 

• MIDS improvement has been utilized. 

• Other assumptions made in the estimations can be obtained by clicking on the 

related cells of the spreadsheet available in Appendix E. 
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